WorldWideScience

Sample records for adaptive optics views

  1. Sensorless adaptive optics and the effect of field of view in biological second harmonic generation microscopy

    Vandendriessche, Stefaan; Vanbel, Maarten K.; Verbiest, Thierry

    2014-05-01

    In light of the population aging in many developed countries, there is a great economical interest in improving the speed and cost-efficiency of healthcare. Clinical diagnosis tools are key to these improvements, with biophotonics providing a means to achieve them. Standard optical microscopy of in vitro biological samples has been an important diagnosis tool since the invention of the microscope, with well known resolution limits. Nonlinear optical imaging improves on the resolution limits of linear microscopy, while providing higher contrast images and a greater penetration depth due to the red-shifted incident light compared to standard optical microscopy. It also provides information on molecular orientation and chirality. Adaptive optics can improve the quality of nonlinear optical images. We analyzed the effect of sensorless adaptive optics on the quality of the nonlinear optical images of biological samples. We demonstrate that care needs to be taken when using a large field of view. Our findings provide information on how to improve the quality of nonlinear optical imaging, and can be generalized to other in vitro biological samples. The image quality improvements achieved by adaptive optics should help speed up clinical diagnostics in vitro, while increasing their accuracy and helping decrease detection limits. The same principles apply to in vivo biological samples, and in the future it may be possible to extend these findings to other nonlinear optical effects used in biological imaging.

  2. Refined adaptive optics simulation with wide field of view for the E-ELT

    Refined simulation tools for wide field AO systems (such as MOAO, MCAO or LTAO) on ELTs present new challenges. Increasing the number of degrees of freedom (scales as the square of the telescope diameter) makes the standard simulation's codes useless due to the huge number of operations to be performed at each step of the Adaptive Optics (AO) loop process. This computational burden requires new approaches in the computation of the DM voltages from WFS data. The classical matrix inversion and the matrix vector multiplication have to be replaced by a cleverer iterative resolution of the Least Square or Minimum Mean Square Error criterion (based on sparse matrices approaches). Moreover, for this new generation of AO systems, concepts themselves will become more complex: data fusion coming from multiple Laser and Natural Guide Stars (LGS / NGS) will have to be optimized, mirrors covering all the field of view associated to dedicated mirrors inside the scientific instrument itself will have to be coupled using split or integrated tomography schemes, differential pupil or/and field rotations will have to be considered, etc. All these new entries should be carefully simulated, analysed and quantified in terms of performance before any implementation in AO systems. For those reasons I developed, in collaboration with the ONERA, a full simulation code, based on iterative solution of linear systems with many parameters (use of sparse matrices). On this basis, I introduced new concepts of filtering and data fusion (LGS / NGS) to effectively manage modes such as tip, tilt and defocus in the entire process of tomographic reconstruction. The code will also eventually help to develop and test complex control laws (Multi-DM and multi-field) who have to manage a combination of adaptive telescope and post-focal instrument including dedicated deformable mirrors. The first application of this simulation tool has been studied in the framework of the EAGLE multi-object spectrograph

  3. Sensorless adaptive optics and the effect of field of view in biological second harmonic generation microscopy

    Vandendriessche, Stefaan; Vanbel, Maarten; Verbiest, Thierry

    2014-01-01

    In light of the population aging in many developed countries, there is a great economical interest in improving the speed and cost-efficiency of healthcare. Clinical diagnosis tools are key to these improvements, with biophotonics providing a means to achieve them. Standard optical microscopy of in vitro biological samples has been an important diagnosis tool since the invention of the microscope, with well known resolution limits. Nonlinear optical imaging improves on the resolution limits o...

  4. [Adaptive optics for ophthalmology].

    Saleh, M

    2016-04-01

    Adaptive optics is a technology enhancing the visual performance of an optical system by correcting its optical aberrations. Adaptive optics have already enabled several breakthroughs in the field of visual sciences, such as improvement of visual acuity in normal and diseased eyes beyond physiologic limits, and the correction of presbyopia. Adaptive optics technology also provides high-resolution, in vivo imaging of the retina that may eventually help to detect the onset of retinal conditions at an early stage and provide better assessment of treatment efficacy. PMID:27019970

  5. Adaptive Optics Views of the Hubble Deep Fields Final report on LLNL LDRD Project 03-ERD-002

    Max, C E; Gavel, D; Pennington, D; Gibbard, S; van Dam, M; Larkin, J; Koo, D; Raschke, L; Melbourne, J

    2007-02-17

    We used laser guide star adaptive optics at the Lick and Keck Observatories to study active galactic nuclei and galaxies, with emphasis on those in the early Universe. The goals were to observe large galaxies like our own Milky Way in the process of their initial assembly from sub-components, to identify central active galactic nuclei due to accreting black holes in galaxy cores, and to measure rates of star formation and evolution in galaxies. In the distant universe our focus was on the GOODS and GEMS fields (regions in the Northern and Southern sky that include the Hubble Deep Fields) as well as the Extended Groth Strip and COSMOS fields. Each of these parts of the sky has been intensively studied at multiple wavelengths by the Hubble Space Telescope, the Chandra X-Ray Observatory, the XMM Space Telescope, the Spitzer Space Telescope, and several ground-based telescopes including the Very Large Array radio interferometer, in order to gain an unbiased view of a significant statistical sample of galaxies in the early universe.

  6. Solar Adaptive Optics

    Thomas R. Rimmele

    2011-06-01

    Full Text Available Adaptive optics (AO has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO and Ground-Layer AO (GLAO will be given.

  7. Adaptive optical processors.

    Ghosh, A

    1989-06-15

    There are two different approaches for improving the accuracy of analog optical associative processors: postprocessing with a bimodal system and preprocessing with a preconditioner. These two approaches can be combined to develop an adaptive optical multiprocessor that can adjust the computational steps depending on the data and produce solutions of linear algebra problems with a specified accuracy in a given amount of time. PMID:19752909

  8. New Adaptive Optics Technique Demonstrated

    2007-03-01

    First ever Multi-Conjugate Adaptive Optics at the VLT Achieves First Light On the evening of 25 March 2007, the Multi-Conjugate Adaptive Optics Demonstrator (MAD) achieved First Light at the Visitor Focus of Melipal, the third Unit Telescope of the Very Large Telescope (VLT). MAD allowed the scientists to obtain images corrected for the blurring effect of atmospheric turbulence over the full 2x2 arcminute field of view. This world premiere shows the promises of a crucial technology for Extremely Large Telescopes. ESO PR Photo 19a/07 ESO PR Photo 19a/07 The MCAO Demonstrator Telescopes on the ground suffer from the blurring effect induced by atmospheric turbulence. This turbulence causes the stars to twinkle in a way which delights the poets but frustrates the astronomers, since it blurs the fine details of the images. However, with Adaptive Optics (AO) techniques, this major drawback can be overcome so that the telescope produces images that are as sharp as theoretically possible, i.e., approaching space conditions. Adaptive Optics systems work by means of a computer-controlled deformable mirror (DM) that counteracts the image distortion induced by atmospheric turbulence. It is based on real-time optical corrections computed from image data obtained by a 'wavefront sensor' (a special camera) at very high speed, many hundreds of times each second. The concept is not new. Already in 1989, the first Adaptive Optics system ever built for Astronomy (aptly named "COME-ON") was installed on the 3.6-m telescope at the ESO La Silla Observatory, as the early fruit of a highly successful continuing collaboration between ESO and French research institutes (ONERA and Observatoire de Paris). Ten years ago, ESO initiated an Adaptive Optics program to serve the needs for its frontline VLT project. Today, the Paranal Observatory is without any doubt one of the most advanced of its kind with respect to AO with no less than 7 systems currently installed (NACO, SINFONI, CRIRES and

  9. FDM adaptive optics technology development

    Thibault, Simon; Doucet, Michel; Rioux, Myriam

    2004-10-01

    INO supports research on Ferrofluidic Deformable Mirror (FDM) adaptive optics technologies and, as such, its research activities include the development and characterization of FDM and high resolution (ExAO) adaptive optics systems using such FDMs. Liquid mirrors have long been recognized as a potential low-cost alternative to conventional solid mirrors. Since the trend is towards advanced adaptive optics systems, a need for deformable mirrors with a large number of low-cost actuators exists. This paper presents updated experimental results using a new INO FDM prototype (271 actuators, 50 µm stroke) as well as a theoretical model of surface behaviors.

  10. Maritime adaptive optics beam control

    Corley, Melissa S.

    2010-01-01

    The Navy is interested in developing systems for horizontal, near ocean surface, high-energy laser propagation through the atmosphere. Laser propagation in the maritime environment requires adaptive optics control of aberrations caused by atmospheric distortion. In this research, a multichannel transverse adaptive filter is formulated in Matlab's Simulink environment and compared to a complex lattice filter that has previously been implemented in large system simulations. The adaptive fil...

  11. Solar Ground-Layer Adaptive Optics

    Ren, Deqing; Jolissaint, Laurent; Zhang, Xi; Dou, Jianpei; Chen, Rui; Zhao, Gang; Zhu, Yongtian

    2015-05-01

    Solar conventional adaptive optics (CAO) with one deformable-mirror uses a small field-of-view (FOV) for wave-front sensing, which yields a small corrected FOV for high-resolution imaging. Solar activities occur in a two-dimensional extended FOV and studies of solar magnetic fields need high-resolution imaging over a FOV at least 60''. Recently, solar Tomography Adaptive Optics (TAO) and Multi-Conjugate Adaptive Optics (MCAO) were being developed to overcome this problem of small AO corrected FOV. However, for both TAO and MCAO, wavefront distortions need to be tomographically reconstructed from measurements on multiple guide stars, which is a complicated and time-consuming process. Solar Ground-Layer Adaptive Optics (S-GLAO) uses one or several guide stars, and does not rely on a tomographic reconstruction of the atmospheric turbulence. In this publication, we present two unique wavefront sensing approaches for the S-GLAO. We show that our S-GLAO can deliver good to excellent performance at variable seeing conditions in the Near Infrared (NIR) J and H bands, and is much simpler to implement. We discuss details of our S-GLAO associated wavefront approaches, which make our S-GLAO a unique solution for sunspot high-resolution imaging that other current adaptive optics systems, including the solar MCAO, cannot offer.

  12. Adaptive Optics for Large Telescopes

    The use of adaptive optics was originally conceived by astronomers seeking to correct the blurring of images made with large telescopes due to the effects of atmospheric turbulence. The basic idea is to use a device, a wave front corrector, to adjust the phase of light passing through an optical system, based on some measurement of the spatial variation of the phase transverse to the light propagation direction, using a wave front sensor. Although the original concept was intended for application to astronomical imaging, the technique can be more generally applied. For instance, adaptive optics systems have been used for several decades to correct for aberrations in high-power laser systems. At Lawrence Livermore National Laboratory (LLNL), the world's largest laser system, the National Ignition Facility, uses adaptive optics to correct for aberrations in each of the 192 beams, all of which must be precisely focused on a millimeter scale target in order to perform nuclear physics experiments

  13. Adaptive Optics for Large Telescopes

    Olivier, S

    2008-06-27

    The use of adaptive optics was originally conceived by astronomers seeking to correct the blurring of images made with large telescopes due to the effects of atmospheric turbulence. The basic idea is to use a device, a wave front corrector, to adjust the phase of light passing through an optical system, based on some measurement of the spatial variation of the phase transverse to the light propagation direction, using a wave front sensor. Although the original concept was intended for application to astronomical imaging, the technique can be more generally applied. For instance, adaptive optics systems have been used for several decades to correct for aberrations in high-power laser systems. At Lawrence Livermore National Laboratory (LLNL), the world's largest laser system, the National Ignition Facility, uses adaptive optics to correct for aberrations in each of the 192 beams, all of which must be precisely focused on a millimeter scale target in order to perform nuclear physics experiments.

  14. Adaptive Optics Simulations for Siding Spring

    Goodwin, Michael; Lambert, Andrew

    2012-01-01

    Using an observational derived model optical turbulence profile (model-OTP) we have investigated the performance of Adaptive Optics (AO) at Siding Spring Observatory (SSO), Australia. The simulations cover the performance for AO techniques of single conjugate adaptive optics (SCAO), multi-conjugate adaptive optics (MCAO) and ground-layer adaptive optics (GLAO). The simulation results presented in this paper predict the performance of these AO techniques as applied to the Australian National University (ANU) 2.3 m and Anglo-Australian Telescope (AAT) 3.9 m telescopes for astronomical wavelength bands J, H and K. The results indicate that AO performance is best for the longer wavelengths (K-band) and in the best seeing conditions (sub 1-arcsecond). The most promising results are found for GLAO simulations (field of view of 180 arcsecs), with the field RMS for encircled energy 50% diameter (EE50d) being uniform and minimally affected by the free-atmosphere turbulence. The GLAO performance is reasonably good over...

  15. Adaptive optics projects at ESO

    Hubin, Norbert N.; Arsenault, Robin; Bonnet, Henri; Conan, Rodolphe; Delabre, Bernard; Donaldson, Robert; Dupuy, Christophe; Fedrigo, Enrico; Ivanescu, L.; Kasper, Markus E.; Kissler-Patig, Markus; Lizon, Jean-Luis; Le Louarn, Miska; Marchetti, Enrico; Paufique, J.; Stroebele, Stefan; Tordo, Sebastien

    2003-02-01

    Over the past two years ESO has reinforced its efforts in the field of Adaptive Optics. The AO team has currently the challenging objectives to provide 8 Adaptive Optics systems for the VLT in the coming years and has now a world-leading role in that field. This paper will review all AO projects and plans. We will present an overview of the Nasmyth Adaptive Optics System (NAOS) with its infrared imager CONICA installed successfully at the VLT last year. Sodium Laser Guide Star plans will be introduced. The status of the 4 curvature AO systems (MACAO) developed for the VLT interferometer will be discussed. The status of the SINFONI AO module developed to feed the infrared integral field spectrograph (SPIFFI) will be presented. A short description of the Multi-conjugate Adaptive optics Demonstrator MAD and its instrumentation will be introduced. Finally, we will present the plans for the VLT second-generation AO systems and the researches performed in the frame of OWL.

  16. Adaptive Optics for Industry and Medicine

    Dainty, Christopher

    2008-01-01

    Monteiro ... [et al.]. Adaptive optics system to compensate complex-shaped wavefronts (oral paper) / Miguel Ares, and Santiago Royo. A kind of novel linear phase retrieval wavefront sensor and its application in close-loop adaptive optics system (oral paper) / Xinyang Li ... [et al.]. Ophthalmic Shack-Hatmann wavefront sensor applications (oral paper) / Daniel R. Neal. Wave front sensing of an optical vortex and its correction with the help of bimorph mirror (poster paper) / F. A. Starikov ... [et al.]. Recent advances in laser metrology and correction of high numerical aperture laser beams using quadri-wave lateral shearing-interferometry (poster paper) / Benoit Wattellier, Ivan Doudet and William Boucher. Thin film optical metrology using principles of wavefront sensing and interference (poster paper) / D. M. Faichnie, A. H. Greenaway and I. Bain. Direct diffractive image simulation (poster paper) / A. P. Maryasov, N. P. Maryasov, A. P. Layko. High speed smart CMOS sensor for adaptive optics (poster paper) / T. D. Raymond ... [et al.]. Traceable astigmatism measurements for wavefront sensors (poster paper) / S. R. G. Hall, S. D. Knox, R. F. Stevens -- pt. 3. Adaptive optics in vision science. Dual-conjugate adaptive optics instrument for wide-field retinal imaging (oral paper) / Jörgen Thaung, Mette-Owner Petersen and Zoran Popovic. Visual simulation using electromagnetic adaptive-optics (oral paper) / Laurent Vabre ... [et al.]. High-resolution field-of-view widening in human eye retina imaging (oral paper) / Alexander V. Dubinin, Tatyana Yu. Cherezova, Alexis V. Kudryashov. Psychophysical experiments on visual performance with an ocular adaptive optics system (oral paper) / E. Dalimier, J. C. Dainty and J. Barbur. Does the accommodative mechanism of the eye calibrate itself using aberration dynamics? (oral paper) / K. M. Hampson, S. S. Chin and E. A. H. Mallen. A study of field aberrations in the human eye (oral paper) / Alexander V. Goncharov ... [et al.]. Dual

  17. Intelligent Optical Systems Using Adaptive Optics

    Clark, Natalie

    2012-01-01

    Until recently, the phrase adaptive optics generally conjured images of large deformable mirrors being integrated into telescopes to compensate for atmospheric turbulence. However, the development of smaller, cheaper devices has sparked interest for other aerospace and commercial applications. Variable focal length lenses, liquid crystal spatial light modulators, tunable filters, phase compensators, polarization compensation, and deformable mirrors are becoming increasingly useful for other imaging applications including guidance navigation and control (GNC), coronagraphs, foveated imaging, situational awareness, autonomous rendezvous and docking, non-mechanical zoom, phase diversity, and enhanced multi-spectral imaging. The active components presented here allow flexibility in the optical design, increasing performance. In addition, the intelligent optical systems presented offer advantages in size and weight and radiation tolerance.

  18. A simplified adaptive optics system

    Ivanescu, Liviu; Racine, René; Nadeau, Daniel

    2003-02-01

    Affordable adaptive optics on small telescopes allow to introduce the technology to a large community and provide opportunities to train new specialists in the field. We have developed a low order, low cost adaptive optics system for the 1.6m telescope of the Mont Megantic Observatory. The system corrects tip-tilt, focus, astigmatisms and one trefoil term. It explores a number of new approaches. The sensor receives a single out-of-focus image of the reference star. The central obstruction of the telescope can free the focus detection from the effect of seeing and allows a very small defocus. The deformable mirror is profiled so as to preserve a parabolic shape under pressure from actuators located at its edge. A separate piezoelectric platform drives the tilt mirror.

  19. Electron density measurements for plasma adaptive optics

    Neiswander, Brian; Matlis, Eric; Corke, Thomas

    2014-01-01

    This study investigates the feasibility of using plasma as an adaptive optical medium for applications such as beam steering, wavefront control, and adaptive filtering. The optical path length of light propagating through plasma depends on the plasma electron density, which may be controlled via the prescribed voltage, frequency, pressure, gas, and electrode geometry. Accurate control of the optical path length requires characterization of the electron density over all operating conditions. E...

  20. In vivo high-resolution retinal imaging using adaptive optics.

    Seyedahmadi, Babak Jian; Vavvas, Demetrios

    2010-01-01

    Retinal imaging with conventional methods is only able to overcome the lowest order of aberration, defocus and astigmatism. The human eye is fraught with higher order of aberrations. Since we are forced to use the human optical system in retinal imaging, the images are degraded. In addition, all of these distortions are constantly changing due to head/eye movement and change in accommodation. Adaptive optics is a promising technology introduced in the field of ophthalmology to measure and compensate for these aberrations. High-resolution obtained by adaptive optics enables us to view and image the retinal photoreceptors, retina pigment epithelium, and identification of cone subclasses in vivo. In this review we will be discussing the basic technology of adaptive optics and hardware requirement in addition to clinical applications of such technology. PMID:21090998

  1. Optical Design and Optimization of Translational Reflective Adaptive Optics Ophthalmoscopes

    Sulai, Yusufu N. B.

    The retina serves as the primary detector for the biological camera that is the eye. It is composed of numerous classes of neurons and support cells that work together to capture and process an image formed by the eye's optics, which is then transmitted to the brain. Loss of sight due to retinal or neuro-ophthalmic disease can prove devastating to one's quality of life, and the ability to examine the retina in vivo is invaluable in the early detection and monitoring of such diseases. Adaptive optics (AO) ophthalmoscopy is a promising diagnostic tool in early stages of development, still facing significant challenges before it can become a clinical tool. The work in this thesis is a collection of projects with the overarching goal of broadening the scope and applicability of this technology. We begin by providing an optical design approach for AO ophthalmoscopes that reduces the aberrations that degrade the performance of the AO correction. Next, we demonstrate how to further improve image resolution through the use of amplitude pupil apodization and non-common path aberration correction. This is followed by the development of a viewfinder which provides a larger field of view for retinal navigation. Finally, we conclude with the development of an innovative non-confocal light detection scheme which improves the non-invasive visualization of retinal vasculature and reveals the cone photoreceptor inner segments in healthy and diseased eyes.

  2. Optical View of an Entrepreneur

    Wyant, James

    2007-03-01

    The WYKO Corporation was founded on December 27, 1982 to design, manufacture, sell, and service metrology instruments for many applications, with the largest market being in the magnetic data storage industry. WYKO grew out of the research my students and I did at the Optical Sciences Center at the University of Arizona, but it's origins actually started earlier at the Itek Corporation where I went to work after getting my PhD in optics at the University of Rochester. Founding, growing, and cashing out was an unbelievable experience that was more fun than I ever dreamed anything could be. In this talk I will discuss the formation, growth, and eventual selling of the WYKO Corporation to Veeco in 1997. Both the fun parts and the not so fun parts will be discussed. The biggest surprises experienced and what I think are the most important factors in growing a successful high-tech company will be described.

  3. Stellar photometry with Multi Conjugate Adaptive Optics

    Fiorentino, Giuliana; McConnachie, Alan; Stetson, Peter B; Bono, Giuseppe; Turri, Paolo; Andersen, David; Veran, Jean-Pierre; Diolaiti, Emiliano; Schreiber, Laura; Ciliegi, Paolo; Bellazzini, Michele; Tolstoy, Eline; Monelli, Matteo; Iannicola, Giacinto; Ferraro, Ivan; Testa, Vincenzo

    2016-01-01

    We overview the current status of photometric analyses of images collected with Multi Conjugate Adaptive Optics (MCAO) at 8-10m class telescopes that operated, or are operating, on sky. Particular attention will be payed to resolved stellar population studies. Stars in crowded stellar systems, such as globular clusters or in nearby galaxies, are ideal test particles to test AO performance. We will focus the discussion on photometric precision and accuracy reached nowadays. We briefly describe our project on stellar photometry and astrometry of Galactic globular clusters using images taken with GeMS at the Gemini South telescope. We also present the photometry performed with DAOPHOT suite of programs into the crowded regions of these globulars reaching very faint limiting magnitudes Ks ~21.5 mag on moderately large fields of view (~1.5 arcmin squared). We highlight the need for new algorithms to improve the modeling of the complex variation of the Point Spread Function across the ?eld of view. Finally, we outl...

  4. Adaptive optical interconnects: the ADDAPT project

    Henker, Ronny; Pliva, Jan; Khafaji, Mahdi; Ellinger, Frank; Toifl, Thomas; Offrein, Bert; Cevrero, Alessandro; Oezkaya, Ilter; Seifried, Marc; Ledentsov, Nikolay; Kropp, Joerg-R.; Shchukin, Vitaly; Zoldak, Martin; Halmo, Leos; Turkiewicz, Jaroslaw; Meredith, Wyn; Eddie, Iain; Georgiades, Michael; Charalambides, Savvas; Duis, Jeroen; van Leeuwen, Pieter

    2015-09-01

    Existing optical networks are driven by dynamic user and application demands but operate statically at their maximum performance. Thus, optical links do not offer much adaptability and are not very energy-efficient. In this paper a novel approach of implementing performance and power adaptivity from system down to optical device, electrical circuit and transistor level is proposed. Depending on the actual data load, the number of activated link paths and individual device parameters like bandwidth, clock rate, modulation format and gain are adapted to enable lowering the components supply power. This enables flexible energy-efficient optical transmission links which pave the way for massive reductions of CO2 emission and operating costs in data center and high performance computing applications. Within the FP7 research project Adaptive Data and Power Aware Transceivers for Optical Communications (ADDAPT) dynamic high-speed energy-efficient transceiver subsystems are developed for short-range optical interconnects taking up new adaptive technologies and methods. The research of eight partners from industry, research and education spanning seven European countries includes the investigation of several adaptive control types and algorithms, the development of a full transceiver system, the design and fabrication of optical components and integrated circuits as well as the development of high-speed, low loss packaging solutions. This paper describes and discusses the idea of ADDAPT and provides an overview about the latest research results in this field.

  5. Computational adaptive optics of the human retina

    South, Fredrick A.; Liu, Yuan-Zhi; Carney, P. Scott; Boppart, Stephen A.

    2016-03-01

    It is well known that patient-specific ocular aberrations limit imaging resolution in the human retina. Previously, hardware adaptive optics (HAO) has been employed to measure and correct these aberrations to acquire high-resolution images of various retinal structures. While the resulting aberration-corrected images are of great clinical importance, clinical use of HAO has not been widespread due to the cost and complexity of these systems. We present a technique termed computational adaptive optics (CAO) for aberration correction in the living human retina without the use of hardware adaptive optics components. In CAO, complex interferometric data acquired using optical coherence tomography (OCT) is manipulated in post-processing to adjust the phase of the optical wavefront. In this way, the aberrated wavefront can be corrected. We summarize recent results in this technology for retinal imaging, including aberration-corrected imaging in multiple retinal layers and practical considerations such as phase stability and image optimization.

  6. Teaching Optics and Systems Engineering With Adaptive Optics Workbenches

    Harrington, David; Hunter, Lisa; Max, Claire; Hoffmann, Mark; Pitts, Mark; Armstrong, J D

    2010-01-01

    Adaptive optics workbenches are fully functional optical systems that can be used to illustrate and teach a variety of concepts and cognitive processes. Four systems have been funded, designed and constructed by various institutions and people as part of education programs associated with the Center for Adaptive Optics, the Professional Development Program and the Institute for Science and Engineer Educators. Activities can range from first-year undergraduate explorations to professional level training. These workbenches have been used in many venues including the Center for Adaptive Optics AO Summer School, the Maui Community College hosted Akamai Maui Short Course, classrooms, training of new staff in laboratories and other venues. The activity content has focused on various elements of systems thinking, characterization, feedback and system control, basic optics and optical alignment as well as advanced topics such as phase conjugation, wave-front sensing and correction concepts and system design. The work...

  7. Pulse front adaptive optics in multiphoton microscopy

    Sun, B.; Salter, P. S.; Booth, M. J.

    2016-03-01

    The accurate focusing of ultrashort laser pulses is extremely important in multiphoton microscopy. Using adaptive optics to manipulate the incident ultrafast beam in either the spectral or spatial domain can introduce significant benefits when imaging. Here we introduce pulse front adaptive optics: manipulating an ultrashort pulse in both the spatial and temporal domains. A deformable mirror and a spatial light modulator are operated in concert to modify contours of constant intensity in space and time within an ultrashort pulse. Through adaptive control of the pulse front, we demonstrate an enhancement in the measured fluorescence from a two photon microscope.

  8. Optical Profilometers Using Adaptive Signal Processing

    Hall, Gregory A.; Youngquist, Robert; Mikhael, Wasfy

    2006-01-01

    A method of adaptive signal processing has been proposed as the basis of a new generation of interferometric optical profilometers for measuring surfaces. The proposed profilometers would be portable, hand-held units. Sizes could be thus reduced because the adaptive-signal-processing method would make it possible to substitute lower-power coherent light sources (e.g., laser diodes) for white light sources and would eliminate the need for most of the optical components of current white-light profilometers. The adaptive-signal-processing method would make it possible to attain scanning ranges of the order of decimeters in the proposed profilometers.

  9. Development of large aperture composite adaptive optics

    Kmetík, Viliam; Vítovec, Bohumil; Jiran, L.; Němcová, Š.; Zicha, J.; Inneman, A.; Mikuličková, L.; Pavlica, R.

    Vol. 9442. Bellingham: SPIE-INT SOC OPTICAL ENGINEERING, 2015 - (Kovačičinová, J.; Vít, T.), 94420L-94420L. (SPIE). ISBN 978-1-62841-557-5. ISSN 0277-786X. [Optics and Measurement Conference 2014 (OaM 2014). Liberec (CZ), 07.10.2014-10.10.2014] R&D Projects: GA TA ČR TA01010878 Institutional support: RVO:61389021 Keywords : Large aperture * adaptive optics * deformable mirror * bimorph deformable mirror * composite optics Subject RIV: BH - Optics, Masers, Lasers http://dx.doi.org/10.1117/12.2175713 .

  10. A Miniaturized Adaptive Optic Device for Optical Telecommunications Project

    National Aeronautics and Space Administration — To advance the state-of-the-art uplink laser communication technology, new adaptive optic beam compensation techniques are needed for removing various time-varying...

  11. Optical ballast and adaptive dynamic stable resonator

    Zhang Guang-Yin; Jiao Zhi-Yong; Guo Shu-Guang; Zhang Xiao-Hua; Gu Xue-Wen; Yan Cai-Fan; Wu Ding-Er; Song Feng

    2004-01-01

    In this paper a new concept of ‘optical ballast' is put forward. Optical ballast is a kind of device that can be used to decrease the variation and fluctuation of the propagation characteristics of light beams caused by the disturbance of refractive index of the medium. To illustrate the idea clearly and concretely, a fully adaptive dynamic stable solid-state laser resonator is presented as application example of optical ballast.

  12. Overview of Advanced LIGO Adaptive Optics

    Brooks, Aidan F.; Abbott, Benjamin; Arain, Muzammil A.; Ciani, Giacomo; Cole, Ayodele; Grabeel, Greg; Gustafson, Eric; Guido, Chris; Heintze, Matthew; Heptonstall, Alastair; Jacobson, Mindy; KIM, WON; King, Eleanor; Lynch, Alexander; O'Connor, Stephen

    2016-01-01

    This is an overview of the adaptive optics used in Advanced LIGO (aLIGO), known as the thermal compensation system (TCS). The thermal compensation system was designed to minimize thermally-induced spatial distortions in the interferometer optical modes and to provide some correction for static curvature errors in the core optics of aLIGO. The TCS is comprised of ring heater actuators, spatially tunable CO$_{2}$ laser projectors and Hartmann wavefront sensors. The system meets the requirements...

  13. 大视场液晶自适应视网膜成像系统%Retinal imaging system with large field of view based on liquid crystal adaptive optics

    刘丽丽; 黄涛; 蔡敏; 高明; 封文江

    2013-01-01

    A retinal imaging Adaptive Optical (AO) system with a large Field of View(FOV) was designed to expand the FOV of the retinal image of liquid crystal AO system. Based on analysis of the AO retinal imaging system under an isoplanatic angle, it pointed out that the FOV for wave-front detection should be smaller than a half isoplanatic angle for precise wave-front detection and the half FOV should not be larger than the isoplanatic angle in imaging. A coaxial wave-front detection and optical imaging system was fabricated, meanwhile, an adjustable pupil was used to switch the different FOVs for wave-front detection and imaging, respectively. After adaptive optical wave front correction, the wave-front error is significantly reduced and the FOV for imaging is enlarged from a diameter of 200 μm to 500 μm without any harmful effect on imaging quality. By utilizing an adjustable pupil in the system based on the isoplanatic angle, the retinal image FOV has increased by 2.5 times as compared with that of existing AO system. The applicability of the system on clinical practice is increased a lot by this research.%设计了大视场眼底自适应成像系统,用于扩大现有视网膜自适应成像系统的视场.对人眼等晕角视场下的自适应像差校正成像进行分析,确定了波前探测与成像校正两个过程对视场的不同要求.在共光源像差探测及成像光学系统中,采用切变视场光阑的方式先后在波前探测和自适应校正成像过程中进行小-大视场切换,避免了大视场中眼波像差探测失真问题,使成像区域由200 μm扩展到500 μm.利用人眼等晕角大视场使眼底液晶自适应成像系统在不降低成像质量的前提下将成像区域扩展了2.5倍,大幅提升了该自适应成像系统在临床上应用的可行性.

  14. The Adaptive Optics Summer School Laboratory Activities

    Ammons, S Mark; Armstrong, J D; Crossfield, Ian; Do, Tuan; Fitzgerald, Mike; Harrington, David; Hickenbotham, Adam; Hunter, Jennifer; Johnson, Jess; Johnson, Luke; Li, Kaccie; Lu, Jessica; Maness, Holly; Morzinski, Katie; Norton, Andrew; Putnam, Nicole; Roorda, Austin; Rossi, Ethan; Yelda, Sylvana

    2011-01-01

    Adaptive Optics (AO) is a new and rapidly expanding field of instrumentation, yet astronomers, vision scientists, and general AO practitioners are largely unfamiliar with the root technologies crucial to AO systems. The AO Summer School (AOSS), sponsored by the Center for Adaptive Optics, is a week-long course for training graduate students and postdoctoral researchers in the underlying theory, design, and use of AO systems. AOSS participants include astronomers who expect to utilize AO data, vision scientists who will use AO instruments to conduct research, opticians and engineers who design AO systems, and users of high-bandwidth laser communication systems. In this article we describe new AOSS laboratory sessions implemented in 2006-2009 for nearly 250 students. The activity goals include boosting familiarity with AO technologies, reinforcing knowledge of optical alignment techniques and the design of optical systems, and encouraging inquiry into critical scientific questions in vision science using AO sys...

  15. Pulse front control with adaptive optics

    Sun, B.; Salter, P. S.; Booth, M. J.

    2016-03-01

    The focusing of ultrashort laser pulses is extremely important for processes including microscopy, laser fabrication and fundamental science. Adaptive optic elements, such as liquid crystal spatial light modulators or membrane deformable mirrors, are routinely used for the correction of aberrations in these systems, leading to improved resolution and efficiency. Here, we demonstrate that adaptive elements used with ultrashort pulses should not be considered simply in terms of wavefront modification, but that changes to the incident pulse front can also occur. We experimentally show how adaptive elements may be used to engineer pulse fronts with spatial resolution.

  16. Optical axis jitter rejection for double overlapped adaptive optics systems

    Luo, Qi; Luo, Xi; Li, Xinyang

    2016-04-01

    Optical axis jitters, or vibrations, which arise from wind shaking and structural oscillations of optical platforms, etc., cause a deleterious impact on the performance of adaptive optics systems. When conventional integrators are utilized to reject such high frequency and narrow-band disturbance, the benefits are quite small despite their acceptable capabilities to reject atmospheric turbulence. In our case, two suits of complete adaptive optics systems called double overlapped adaptive optics systems (DOAOS) are used to counteract both optical jitters and atmospheric turbulence. A novel algorithm aiming to remove vibrations is proposed by resorting to combine the Smith predictor and notch filer. With the help of loop shaping method, the algorithm will lead to an effective and stable controller, which makes the characteristics of error transfer function close to notch filters. On the basis of the spectral analysis of observed data, the peak frequency and bandwidth of vibrations can be identified in advance. Afterwards, the number of notch filters and their parameters will be determined using coordination descending method. The relationship between controller parameters and filtering features is discussed, and the robustness of the controller against varying parameters of the control object is investigated. Preliminary experiments are carried out to validate the proposed algorithms. The overall control performance of DOAOS is simulated. Results show that time delays are a limit of the performance, but the algorithm can be successfully implemented on our systems, which indicate that it has a great potential to reject jitters.

  17. Teaching Optics and Systems Engineering With Adaptive Optics Workbenches

    Harrington, D. M.; Ammons, M.; Hunter, L.; Max, C.; Hoffmann, M.; Pitts, M.; Armstrong, J. D.

    2010-12-01

    Adaptive optics workbenches are fully functional optical systems that can be used to illustrate and teach a variety of concepts and cognitive processes. Four systems have been funded, designed and constructed by various institutions and people as part of education programs associated with the Center for Adaptive Optics, the Professional Development Program and the Institute for Scientist & Engineer Educators. Activities can range from first-year undergraduate explorations to professional level training. These workbenches have been used in many venues including the Center for Adaptive Optics AO Summer School, the Maui Community College-hosted Akamai Maui Short Course, classrooms, training of new staff in laboratories and other venues. The activity content has focused on various elements of systems thinking, characterization, feedback and system control, basic optics and optical alignment as well as advanced topics such as phase conjugation, wave-front sensing and correction concepts, and system design. The workbenches have slightly different designs and performance capabilities. We describe here outlines for several activities utilizing these different designs and some examples of common student learner outcomes and experiences.

  18. Adaptive optics assisted reconfigurable liquid-driven optical switch

    Fuh, Yiin-Kuen; Huang, Wei-Chi

    2013-07-01

    This study demonstrates a mechanical-based, liquid-driven optical switch integrated with adaptive optics and a reconfigurable black liquid (dye-doped liquid). The device aperture can be continuously tuned between 0.6 and 6.9 mm, precisely achieved by a syringe pump for volume control. Adaptive optics (AO) capability and possible enhancement of the lost power intensity of the ink-polluted glass plate have also been experimentally investigated. While measuring power intensity with/without AO indicates only a marginal difference of ˜1%, a significant difference of 3 s in the response characteristic of "switching on" time can be observed. An extremely high contrast ratio of ˜105 for a red-colored light is achieved.

  19. HIGH-EFFICIENCY AUTONOMOUS LASER ADAPTIVE OPTICS

    As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limit their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys

  20. High-efficiency Autonomous Laser Adaptive Optics

    Baranec, Christoph; Law, Nicholas M; Ramaprakash, A N; Tendulkar, Shriharsh; Hogstrom, Kristina; Bui, Khanh; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Dekany, Richard; Kulkarni, Shrinivas; Punnadi, Sujit

    2014-01-01

    As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limits their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.

  1. Adaptive optics without altering visual perception

    Koenig,, I.; NW, Hart; HJ, Hofer

    2014-01-01

    Adaptive optics combined with visual psychophysics creates the potential to study the relationship between visual function and the retina at the cellular scale. This potential is hampered, however, by visual interference from the wavefront-sensing beacon used during correction. For example, we have previously shown that even a dim, visible beacon can alter stimulus perception (Hofer, H. J., Blaschke, J., Patolia, J., & Koenig, D. E. (2012). Fixation light hue bias revisited: Implications for ...

  2. Overview of Advanced LIGO Adaptive Optics

    Brooks, Aidan F; Arain, Muzammil A; Ciani, Giacomo; Cole, Ayodele; Grabeel, Greg; Gustafson, Eric; Guido, Chris; Heintze, Matthew; Heptonstall, Alastair; Jacobson, Mindy; Kim, Won; King, Eleanor; Lynch, Alexander; O'Connor, Stephen; Ottaway, David; Mailand, Ken; Mueller, Guido; Munch, Jesper; Sannibale, Virginio; Shao, Zhenhua; Smith, Michael; Veitch, Peter; Vo, Thomas; Vorvick, Cheryl; Willems, Phil

    2016-01-01

    This is an overview of the adaptive optics used in Advanced LIGO (aLIGO), known as the thermal compensation system (TCS). The thermal compensation system was designed to minimize thermally-induced spatial distortions in the interferometer optical modes and to provide some correction for static curvature errors in the core optics of aLIGO. The TCS is comprised of ring heater actuators, spatially tunable CO$_{2}$ laser projectors and Hartmann wavefront sensors. The system meets the requirements of correcting for nominal distortion in Advanced LIGO to a maximum residual error of 5.4nm, weighted across the laser beam, for up to 125W of laser input power into the interferometer.

  3. Electron density measurements for plasma adaptive optics

    Neiswander, Brian W.

    Over the past 40 years, there has been growing interest in both laser communications and directed energy weapons that operate from moving aircraft. As a laser beam propagates from an aircraft in flight, it passes through boundary layers, turbulence, and shear layers in the near-region of the aircraft. These fluid instabilities cause strong density gradients which adversely affect the transmission of laser energy to a target. Adaptive optics provides corrective measures for this problem but current technology cannot respond quickly enough to be useful for high speed flight conditions. This research investigated the use of plasma as a medium for adaptive optics for aero-optics applications. When a laser beam passes through plasma, its phase is shifted proportionally to the electron density and gas heating within the plasma. As a result, plasma can be utilized as a dynamically controllable optical medium. Experiments were carried out using a cylindrical dielectric barrier discharge plasma chamber which generated a sub-atmospheric pressure, low-temperature plasma. An electrostatic model of this design was developed and revealed an important design constraint relating to the geometry of the chamber. Optical diagnostic techniques were used to characterize the plasma discharge. Single-wavelength interferometric experiments were performed and demonstrated up to 1.5 microns of optical path difference (OPD) in a 633 nm laser beam. Dual-wavelength interferometry was used to obtain time-resolved profiles of the plasma electron density and gas heating inside the plasma chamber. Furthermore, a new multi-wavelength infrared diagnostic technique was developed and proof-of-concept simulations were conducted to demonstrate the system's capabilities.

  4. Adaption of optical Fresnel transform to optical Wigner transform

    Enlightened by the algorithmic isomorphism between the rotation of the Wigner distribution function (WDF) and the αth fractional Fourier transform, we show that the optical Fresnel transform performed on the input through an ABCD system makes the output naturally adapting to the associated Wigner transform, i.e. there exists algorithmic isomorphism between ABCD transformation of the WDF and the optical Fresnel transform. We prove this adaption in the context of operator language. Both the single-mode and the two-mode Fresnel operators as the image of classical Fresnel transform are introduced in our discussions, while the two-mode Wigner operator in the entangled state representation is introduced for fitting the two-mode Fresnel operator.

  5. Holographic Adaptive Laser Optics System (HALOS): Fast, Autonomous Aberration Correction

    Andersen, G.; MacDonald, K.; Gelsinger-Austin, P.

    2013-09-01

    We present an adaptive optics system which uses a multiplexed hologram to deconvolve the phase aberrations in an input beam. This wavefront characterization is extremely fast as it is based on simple measurements of the intensity of focal spots and does not require any computations. Furthermore, the system does not require a computer in the loop and is thus much cheaper, less complex and more robust as well. A fully functional, closed-loop prototype incorporating a 32-element MEMS mirror has been constructed. The unit has a footprint no larger than a laptop but runs at a bandwidth of 100kHz over an order of magnitude faster than comparable, conventional systems occupying a significantly larger volume. Additionally, since the sensing is based on parallel, all-optical processing, the speed is independent of actuator number running at the same bandwidth for one actuator as for a million. We are developing the HALOS technology with a view towards next-generation surveillance systems for extreme adaptive optics applications. These include imaging, lidar and free-space optical communications for unmanned aerial vehicles and SSA. The small volume is ideal for UAVs, while the high speed and high resolution will be of great benefit to the ground-based observation of space-based objects.

  6. A panoramic view of fiber and integrated optics in spain

    Martín Pereda, José Antonio; Gómez-Reino Carnota, Carlos

    1993-01-01

    A general view of the present status of optics and related fields in Spain is presented. The main emphasis is on the relation between optics and some emerging areas such as Optical Communications and Nonlinear Optics. Principal activities of the more important groups are summarized.

  7. View-invariant human action recognition via robust locally adaptive multi-view learning

    Jia-geng FENG; Jun XIAO

    2015-01-01

    Human action recognition is currently one of the most active research areas in computer vision. It has been widely used in many applications, such as intelligent surveillance, perceptual interface, and content-based video retrieval. However, some extrinsic factors are barriers for the development of action recognition;e.g., human actions may be observed from arbitrary camera viewpoints in realistic scene. Thus, view-invariant analysis becomes important for action recognition algorithms, and a number of researchers have paid much attention to this issue. In this paper, we present a multi-view learning approach to recognize human actions from different views. As most existing multi-view learning algorithms often suffer from the problem of lacking data adaptiveness in the nearest neighborhood graph construction procedure, a robust locally adaptive multi-view learning algorithm based on learning multiple local L1-graphs is proposed. Moreover, an efficient iterative optimization method is proposed to solve the proposed objective function. Experiments on three public view-invariant action recognition datasets, i.e., ViHASi, IXMAS, and WVU, demonstrate data adaptiveness, effectiveness, and efficiency of our algorithm. More importantly, when the feature dimension is correctly selected (i.e.,>60), the proposed algorithm stably outperforms state-of-the-art counterparts and obtains about 6%improvement in recognition accuracy on the three datasets.

  8. Adaptive optics and laser guide stars at Lick observatory

    Brase, J.M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    For the past several years LLNL has been developing adaptive optics systems for correction of both atmospheric turbulence effects and thermal distortions in optics for high-power lasers. Our early work focused on adaptive optics for beam control in laser isotope separation and ground-based free electron lasers. We are currently developing innovative adaptive optics and laser systems for sodium laser guide star applications at the University of California`s Lick and Keck Observeratories. This talk will describe our adaptive optics technology and some of its applications in high-resolution imaging and beam control.

  9. In vivo cellular visualization of the human retina using optical coherence tomography and adaptive optics

    Olivier, S S; Jones, S M; Chen, D C; Zawadzki, R J; Choi, S S; Laut, S P; Werner, J S

    2006-01-05

    Optical coherence tomography (OCT) sees the human retina sharply with adaptive optics. In vivo cellular visualization of the human retina at micrometer-scale resolution is possible by enhancing Fourier-domain optical-coherence tomography with adaptive optics, which compensate for the eye's optical aberrations.

  10. Extreme Adaptive Optics Planet Imager: XAOPI

    Macintosh, B A; Graham, J; Poyneer, L; Sommargren, G; Wilhelmsen, J; Gavel, D; Jones, S; Kalas, P; Lloyd, J; Makidon, R; Olivier, S; Palmer, D; Patience, J; Perrin, M; Severson, S; Sheinis, A; Sivaramakrishnan, A; Troy, M; Wallace, K

    2003-09-17

    Ground based adaptive optics is a potentially powerful technique for direct imaging detection of extrasolar planets. Turbulence in the Earth's atmosphere imposes some fundamental limits, but the large size of ground-based telescopes compared to spacecraft can work to mitigate this. We are carrying out a design study for a dedicated ultra-high-contrast system, the eXtreme Adaptive Optics Planet Imager (XAOPI), which could be deployed on an 8-10m telescope in 2007. With a 4096-actuator MEMS deformable mirror it should achieve Strehl >0.9 in the near-IR. Using an innovative spatially filtered wavefront sensor, the system will be optimized to control scattered light over a large radius and suppress artifacts caused by static errors. We predict that it will achieve contrast levels of 10{sup 7}-10{sup 8} at angular separations of 0.2-0.8 inches around a large sample of stars (R<7-10), sufficient to detect Jupiter-like planets through their near-IR emission over a wide range of ages and masses. We are constructing a high-contrast AO testbed to verify key concepts of our system, and present preliminary results here, showing an RMS wavefront error of <1.3 nm with a flat mirror.

  11. Thirty meter telescope adaptive optics computing challenges

    The Thirty Meter Telescope (TMT) will be used with Adaptive Optics (AO) systems to allow near diffraction-limited performance in the near-infrared and achieve the main TMT science goals. Adaptive optics systems reduce the effect of the atmospheric distortions by dynamically measuring the distortions with wavefront sensors, performing wavefront reconstruction with a real time controller (RTC), and then compensating for the distortions with deformable mirrors. The requirements for the RTC subsystem of the TMT first light AO system will represent a significant advance over the current generation of astronomical AO control systems. Memory and processing requirements would be at least 2 orders of magnitude greater than the currently most powerful AO systems using conventional approaches, so that innovative wavefront reconstruction algorithms and new hardware approaches will be required. In this paper, we will first present the requirements and challenges for the RTC of the first light AO system, together with the algorithms that have been developed to reduce the memory and processing requirements, and then two possible hardware architectures based on Field Programmable Gate Array (FPGA). (authors)

  12. Optical Design for Extremely Large Telescope Adaptive Optics Systems

    Bauman, B J

    2003-11-26

    Designing an adaptive optics (AO) system for extremely large telescopes (ELT's) will present new optical engineering challenges. Several of these challenges are addressed in this work, including first-order design of multi-conjugate adaptive optics (MCAO) systems, pyramid wavefront sensors (PWFS's), and laser guide star (LGS) spot elongation. MCAO systems need to be designed in consideration of various constraints, including deformable mirror size and correction height. The y,{bar y} method of first-order optical design is a graphical technique that uses a plot with marginal and chief ray heights as coordinates; the optical system is represented as a segmented line. This method is shown to be a powerful tool in designing MCAO systems. From these analyses, important conclusions about configurations are derived. PWFS's, which offer an alternative to Shack-Hartmann (SH) wavefront sensors (WFS's), are envisioned as the workhorse of layer-oriented adaptive optics. Current approaches use a 4-faceted glass pyramid to create a WFS analogous to a quad-cell SH WFS. PWFS's and SH WFS's are compared and some newly-considered similarities and PWFS advantages are presented. Techniques to extend PWFS's are offered: First, PWFS's can be extended to more pixels in the image by tiling pyramids contiguously. Second, pyramids, which are difficult to manufacture, can be replaced by less expensive lenslet arrays. An approach is outlined to convert existing SH WFS's to PWFS's for easy evaluation of PWFS's. Also, a demonstration of PWFS's in sensing varying amounts of an aberration is presented. For ELT's, the finite altitude and finite thickness of LGS's means that the LGS will appear elongated from the viewpoint of subapertures not directly under the telescope. Two techniques for dealing with LGS spot elongation in SH WFS's are presented. One method assumes that the laser will be pulsed and uses a segmented micro

  13. Axial range of conjugate adaptive optics in two-photon microscopy

    Paudel, Hari P; Mertz, Jerome; Bifano, Thomas

    2015-01-01

    We describe an adaptive optics technique for two-photon microscopy in which the deformable mirror used for aberration compensation is positioned in a plane conjugate to the plane of the aberration. We demonstrate in a proof-of-principle experiment that this technique yields a large field of view advantage in comparison to standard pupil-conjugate adaptive optics. Further, we show that the extended field of view in conjugate AO is maintained over a relatively large axial translation of the deformable mirror with respect to the conjugate plane. We conclude with a discussion of limitations and prospects for the conjugate AO technique in two-photon biological microscopy.

  14. Optical design of the adaptive optics laser guide star system

    Bissinger, H. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The design of an adaptive optics package for the 3 meter Lick telescope is presented. This instrument package includes a 69 actuator deformable mirror and a Hartmann type wavefront sensor operating in the visible wavelength; a quadrant detector for the tip-tile sensor and a tip-tilt mirror to stabilize atmospheric first order tip-tile errors. A high speed computer drives the deformable mirror to achieve near diffraction limited imagery. The different optical components and their individual design constraints are described. motorized stages and diagnostics tools are used to operate and maintain alignment throughout observation time from a remote control room. The expected performance are summarized and actual results of astronomical sources are presented.

  15. Dual-thread parallel control strategy for ophthalmic adaptive optics

    Yu, Yongxin; Zhang, Yuhua

    2014-01-01

    To improve ophthalmic adaptive optics speed and compensate for ocular wavefront aberration of high temporal frequency, the adaptive optics wavefront correction has been implemented with a control scheme including 2 parallel threads; one is dedicated to wavefront detection and the other conducts wavefront reconstruction and compensation. With a custom Shack-Hartmann wavefront sensor that measures the ocular wave aberration with 193 subapertures across the pupil, adaptive optics has achieved a ...

  16. DKIST Adaptive Optics System: Simulation Results

    Marino, Jose; Schmidt, Dirk

    2016-05-01

    The 4 m class Daniel K. Inouye Solar Telescope (DKIST), currently under construction, will be equipped with an ultra high order solar adaptive optics (AO) system. The requirements and capabilities of such a solar AO system are beyond those of any other solar AO system currently in operation. We must rely on solar AO simulations to estimate and quantify its performance.We present performance estimation results of the DKIST AO system obtained with a new solar AO simulation tool. This simulation tool is a flexible and fast end-to-end solar AO simulator which produces accurate solar AO simulations while taking advantage of current multi-core computer technology. It relies on full imaging simulations of the extended field Shack-Hartmann wavefront sensor (WFS), which directly includes important secondary effects such as field dependent distortions and varying contrast of the WFS sub-aperture images.

  17. Optically sensitive Medipix2 detector for adaptive optics wavefront sensing

    Vallerga, John; Tremsina, Anton; Siegmund, Oswald; Mikulec, Bettina; Clark, Allan G; CERN. Geneva

    2005-01-01

    A new hybrid optical detector is described that has many of the attributes desired for the next generation adaptive optics (AO) wavefront sensors. The detector consists of a proximity focused microchannel plate (MCP) read out by multi-pixel application specific integrated circuit (ASIC) chips developed at CERN ("Medipix2") with individual pixels that amplify, discriminate and count input events. The detector has 256 x 256 pixels, zero readout noise (photon counting), can be read out at 1 kHz frame rates and is abutable on 3 sides. The Medipix2 readout chips can be electronically shuttered down to a temporal window of a few microseconds with an accuracy of 10 ns. When used in a Shack-Hartmann style wavefront sensor, a detector with 4 Medipix chips should be able to centroid approximately 5000 spots using 7 x 7 pixel sub-apertures resulting in very linear, off-null error correction terms. The quantum efficiency depends on the optical photocathode chosen for the bandpass of interest.

  18. Multi-Conjugate Adaptive Optics images of the Trapezium Cluster

    Bouy, H; Marchetti, E; Martín, E L; Huélamo, N; Navascues, D Barrado y

    2007-01-01

    Multi-Conjugate Adaptive Optics (MCAO) combines the advantages of standard adaptive optics, which provides high contrast and high spatial resolution, and of wide field ~1' imaging. Up to recently, MCAO for astronomy was limited to laboratory experiments. In this paper, we present the first scientific results obtained with the first MCAO instrument put on the sky. We present a new study of the Trapezium cluster using deep MCAO images with a field of view of 1'x1' obtained at the VLT. We have used deep J, H and Ks images recently obtained with the prototype MCAO facility MAD at the VLT in order to search for new members and new multiple systems in the Trapezium cluster. On bright targets (Ks~9mag), these images allow us to reach DeltaKs~6mag as close as 0.4" We report the detection of 128 sources, including 10 new faint objects in the magnitude range between 16.1

  19. `imaka - a ground-layer adaptive optics system on Maunakea

    Chun, Mark; Toomey, Douglas; Lu, Jessica; Service, Max; Baranec, Christoph; Thibault, Simon; Brousseau, Denis; Hayano, Yutaka; Oya, Shin; Santi, Shane; Kingery, Christopher; Loss, Keith; Gardiner, John; Steele, Brad

    2016-01-01

    We present the integration status for `imaka, the ground-layer adaptive optics (GLAO) system on the University of Hawaii 2.2-meter telescope on Maunakea, Hawaii. This wide-field GLAO pathfinder system exploits Maunakea's highly confined ground layer and weak free-atmosphere to push the corrected field of view to ~1/3 of a degree, an areal field approaching an order of magnitude larger than any existing or planned GLAO system, with a FWHM ~ 0.33 arcseconds in the visible and near infrared. We discuss the unique design aspects of the instrument, the driving science cases and how they impact the system, and how we will demonstrate these cases on the sky.

  20. Using Site Testing Data for Adaptive Optics Simulations

    Herriot, Glen; Andersen, David; Conan, Rod; Ellerbroek, Brent; Gilles, Luc; Hickson, Paul; Jackson, Kate; Lardière, Olivier; Pfrommer, Thomas; Véran, Jean-Pierre; Wang, Lianqi

    2011-01-01

    Astronomical Site testing data plays a vital role in the simulation, design, evaluation and operation of adaptive optics systems for large telescope. We present the example of TMT and its first light facilitiy adaptive optics system NFIRAOS, and illustrate the many simulations done based on site testing data.

  1. Proposed Multiconjugate Adaptive Optics Experiment at Lick Observatory

    Bauman, B J; Gavel, D T; Flath, L M; Hurd, R L; Max, C E; Olivier, S S

    2001-08-15

    While the theory behind design of multiconjugate adaptive optics (MCAO) systems is growing, there is still a paucity of experience building and testing such instruments. We propose using the Lick adaptive optics (AO) system as a basis for demonstrating the feasibility/workability of MCAO systems, testing underlying assumptions, and experimenting with different approaches to solving MCAO system issues.

  2. Optimized micromirror arrays for adaptive optics

    Michalicek, M. Adrian; Comtois, John H.; Hetherington, Dale L.

    1999-01-01

    This paper describes the design, layout, fabrication, and surface characterization of highly optimized surface micromachined micromirror devices. Design considerations and fabrication capabilities are presented. These devices are fabricated in the state-of-the-art, four-level, planarized, ultra-low-stress polysilicon process available at Sandia National Laboratories known as the Sandia Ultra-planar Multi-level MEMS Technology (SUMMiT). This enabling process permits the development of micromirror devices with near-ideal characteristics that have previously been unrealizable in standard three-layer polysilicon processes. The reduced 1 μm minimum feature sizes and 0.1 μm mask resolution make it possible to produce dense wiring patterns and irregularly shaped flexures. Likewise, mirror surfaces can be uniquely distributed and segmented in advanced patterns and often irregular shapes in order to minimize wavefront error across the pupil. The ultra-low-stress polysilicon and planarized upper layer allow designers to make larger and more complex micromirrors of varying shape and surface area within an array while maintaining uniform performance of optical surfaces. Powerful layout functions of the AutoCAD editor simplify the design of advanced micromirror arrays and make it possible to optimize devices according to the capabilities of the fabrication process. Micromirrors fabricated in this process have demonstrated a surface variance across the array from only 2-3 nm to a worst case of roughly 25 nm while boasting active surface areas of 98% or better. Combining the process planarization with a ``planarized-by-design'' approach will produce micromirror array surfaces that are limited in flatness only by the surface deposition roughness of the structural material. Ultimately, the combination of advanced process and layout capabilities have permitted the fabrication of highly optimized micromirror arrays for adaptive optics.

  3. The research and development of the adaptive optics in ophthalmology

    Wu, Chuhan; Zhang, Xiaofang; Chen, Weilin

    2015-08-01

    Recently the combination of adaptive optics and ophthalmology has made great progress and become highly effective. The retina disease is diagnosed by retina imaging technique based on scanning optical system, so the scanning of eye requires optical system characterized by great ability of anti-moving and optical aberration correction. The adaptive optics possesses high level of adaptability and is available for real time imaging, which meets the requirement of medical retina detection with accurate images. Now the Scanning Laser Ophthalmoscope and the Optical Coherence Tomography are widely used, which are the core techniques in the area of medical retina detection. Based on the above techniques, in China, a few adaptive optics systems used for eye medical scanning have been designed by some researchers from The Institute of Optics And Electronics of CAS(The Chinese Academy of Sciences); some foreign research institutions have adopted other methods to eliminate the interference of eye moving and optical aberration; there are many relevant patents at home and abroad. In this paper, the principles and relevant technique details of the Scanning Laser Ophthalmoscope and the Optical Coherence Tomography are described. And the recent development and progress of adaptive optics in the field of eye retina imaging are analyzed and summarized.

  4. Beam shaping for laser-based adaptive optics in astronomy

    Béchet, Clémentine; Guesalaga, Andrés; Neichel, Benoit; Fesquet, Vincent; González-Núñez, Héctor; Zúñiga, Sebastián; Escarate, Pedro; Guzman, Dani

    2014-01-01

    The availability and performance of laser-based adaptive optics (AO) systems are strongly dependent on the power and quality of the laser beam before being projected to the sky. Frequent and time-consuming alignment procedures are usually required in the laser systems with free-space optics to optimize the beam. Despite these procedures, significant distortions of the laser beam have been observed during the first two years of operation of the Gemini South multi-conjugate adaptive optics syst...

  5. VASAO: visible all sky adaptive optics

    Veillet, Christian; Lai, Olivier; Salmon, Derrick; Pique, Jean-Paul

    2006-06-01

    Building on an extensive and successful experience in Adaptive Optics (AO) and on recent developments made in its funding nations, the Canada-France-Hawaii-Telescope Corporation (CFHT) is studying the VASAO concept: an integrated AO system that would allow diffraction limited imaging of the whole sky in the visible as well as in the infrared. At the core of VASAO, Pueo-Hou (the new Pueo) is built on Pueo, the current CFHT AO bonnette. Pueo will be refurbished and improved to be able to image the isoplanetic field at 700 nm with Strehl ratios of 30% or better, making possible imaging with a resolution of 50 milliarcseconds between 500 and 700nm, and at the telescope limit of diffraction above. The polychromatic tip-tilt laser guide star currently envisioned will be generated by a single 330nm mode-less laser, and the relative position of the 330nm and 589nm artificial stars created on the mesosphere by the 330nm excitation of the sodium layer will be monitored to provide the atmospheric tip-tilt along the line of sight, following the philosophy developed for the ELP-OA project. The feasibility study of VASAO will take most of 2006 in parallel with the development of a science case making the best possible use of the unique capabilities of the system, If the feasibility study is encouraging, VASAO development could start in 2007 for a full deployment on the sky by 2011-2012.

  6. Adaptive optics at the PHELIX laser

    Heuck, Hans-Martin; Wittrock, Ulrich; Fils, Jérôme; Borneis, Stefan; Witte, Klaus; Eisenbart, Udo; Javorkova, Dasa; Bagnoud, Vincent; Götte, Stefan; Tauschwitz, Andreas; Onkels, Eckehard

    2007-05-01

    GSI Darmstadt currently builds a high-energy petawatt Nd:glass laser system, called PHELIX (Petawatt High-Energy Laser for Heavy-Ion Experiments). PHELIX will offer the world-wide unique combination of a high current, high-energy heavy-ion beam with an intense laser beam. Aberrations due to the beam transport and due to the amplification process limit the focusability and the intensity at the target. We have investigated the aberrations of the different amplification stages. The pre-amplifier stage consists of three rod-amplifiers which cause mainly defocus, but also a small part of coma and astigmatism. The main amplifier consists of five disk amplifiers with a clear aperture of 315 mm. These large disk-amplifiers cause pump-shot aberrations which occur instantly. After a shot, the disk amplifiers need a cooling time of several hours to relax to their initial state. This limits the repetition rate and causes long-term aberrations. We will present first measurements of the pump-shot and long-term aberrations caused by the pre- and the main amplifier in a single-pass configuration. In this context, we will present the adaptive optics system which is implemented in the PHELIX beam line and discuss its capability to compensate for the pump-shot and long-term aberrations.

  7. Large Binocular Telescope Adaptive Optics System: New achievements and perspectives in adaptive optics

    Esposito, Simone; Pinna, Enrico; Puglisi, Alfio; Quirós-Pacheco, Fernando; Arcidiacono, Carmelo; Xompero, Marco; Briguglio, Runa; Agapito, Guido; Busoni, Lorenzo; Fini, Luca; Argomedo, Javier; Gherardi, Alessandro; Brusa, Guido; Miller, Douglas; Guerra, Juan Carlos; Stefanini, Paolo; Salinari, Piero; 10.1117/12.898641

    2012-01-01

    The Large Binocular Telescope (LBT) is a unique telescope featuring two co-mounted optical trains with 8.4m primary mirrors. The telescope Adaptive Optics (AO) system uses two innovative key components, namely an adaptive secondary mirror with 672 actuators and a high-order pyramid wave-front sensor. During the on-sky commissioning such a system reached performances never achieved before on large ground-based optical telescopes. Images with 40mas resolution and Strehl Ratios higher than 80% have been acquired in H band (1.6 micron). Such images showed a contrast as high as 10e-4. Based on these results, we compare the performances offered by a Natural Guide Star (NGS) system upgraded with the state-of-the-art technology and those delivered by existing Laser Guide Star (LGS) systems. The comparison, in terms of sky coverage and performances, suggests rethinking the current role ascribed to NGS and LGS in the next generation of AO systems for the 8-10 meter class telescopes and Extremely Large Telescopes (ELTs)...

  8. Adaptive optics for daytime deep space laser communications to Mars

    Wilson, Keith E.; Wright, Malcolm; Lee, Shinkhak; Troy, Mitchell

    2005-01-01

    This paper describes JPL research in adaptive optics (AO) to reduce the daytime background noise on a Mars-to-Earth optical communications link. AO can reduce atmosphere-induced wavefront aberrations, and enable single mode receiver operation thereby buying back margin in the deep space optical communications link.

  9. Modelling of multi-conjugate adaptive optics for spatially variant aberrations in microscopy

    Adaptive optics has been implemented in a range of high-resolution microscopes in order to overcome the problems of specimen-induced aberrations. Most implementations have used a single aberration correction across the imaged field. It is known, however, that aberrations often vary across the field of view, so a single correction setting cannot compensate all aberrations. Multi-conjugate adaptive optics (MCAO) has been suggested as a possible method for correction of these spatially variant aberrations. MCAO is modelled to simulate the correction of aberrations, both for simple model specimens and using real aberration data from a biological specimen. (special issue article)

  10. A low-cost compact metric adaptive optics system

    Mansell, Justin D.; Henderson, Brian; Wiesner, Brennen; Praus, Robert; Coy, Steve

    2007-09-01

    The application of adaptive optics has been hindered by the cost, size, and complexity of the systems. We describe here progress we have made toward creating low-cost compact turn-key adaptive optics systems. We describe our new low-cost deformable mirror technology developed using polymer membranes, the associated USB interface drive electronics, and different ways that this technology can be configured into a low-cost compact adaptive optics system. We also present results of a parametric study of the stochastic parallel gradient descent (SPGD) control algorithm.

  11. Simulating Astronomical Adaptive Optics Systems Using Yao

    Rigaut, François; Van Dam, Marcos

    2013-12-01

    Adaptive Optics systems are at the heart of the coming Extremely Large Telescopes generation. Given the importance, complexity and required advances of these systems, being able to simulate them faithfully is key to their success, and thus to the success of the ELTs. The type of systems envisioned to be built for the ELTs cover most of the AO breeds, from NGS AO to multiple guide star Ground Layer, Laser Tomography and Multi-Conjugate AO systems, with typically a few thousand actuators. This represents a large step up from the current generation of AO systems, and accordingly a challenge for existing AO simulation packages. This is especially true as, in the past years, computer power has not been following Moore's law in its most common understanding; CPU clocks are hovering at about 3GHz. Although the use of super computers is a possible solution to run these simulations, being able to use smaller machines has obvious advantages: cost, access, environmental issues. By using optimised code in an already proven AO simulation platform, we were able to run complex ELT AO simulations on very modest machines, including laptops. The platform is YAO. In this paper, we describe YAO, its architecture, its capabilities, the ELT-specific challenges and optimisations, and finally its performance. As an example, execution speed ranges from 5 iterations per second for a 6 LGS 60x60 subapertures Shack-Hartmann Wavefront sensor Laser Tomography AO system (including full physical image formation and detector characteristics) up to over 30 iterations/s for a single NGS AO system.

  12. Adaptive optics OCT using 1060nm swept source and dual deformable lenses for human retinal imaging

    Jian, Yifan; Lee, Sujin; Cua, Michelle; Miao, Dongkai; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2016-03-01

    Adaptive optics concepts have been applied to the advancement of biological imaging and microscopy. In particular, AO has also been very successfully applied to cellular resolution imaging of the retina, enabling visualization of the characteristic mosaic patterns of the outer retinal layers using flood illumination fundus photography, Scanning Laser Ophthalmoscopy (SLO), and Optical Coherence Tomography (OCT). Despite the high quality of the in vivo images, there has been a limited uptake of AO imaging into the clinical environment. The high resolution afforded by AO comes at the price of limited field of view and specialized equipment. The implementation of a typical adaptive optics imaging system results in a relatively large and complex optical setup. The wavefront measurement is commonly performed using a Hartmann-Shack Wavefront Sensor (HS-WFS) placed at an image plane that is optically conjugated to the eye's pupil. The deformable mirror is also placed at a conjugate plane, relaying the wavefront corrections to the pupil. Due to the sensitivity of the HS-WFS to back-reflections, the imaging system is commonly constructed from spherical mirrors. In this project, we present a novel adaptive optics OCT retinal imaging system with significant potential to overcome many of the barriers to integration with a clinical environment. We describe in detail the implementation of a compact lens based wavefront sensorless adaptive optics (WSAO) 1060nm swept source OCT human retinal imaging system with dual deformable lenses, and present retinal images acquired in vivo from research volunteers.

  13. Architecture and performance of astronomical adaptive optics systems

    Bloemhof, E.

    2002-01-01

    In recent years the technological advances of adaptive optics have enabled a great deal of innovative science. In this lecture I review the system-level design of modern astronomical AO instruments, and discuss their current capabilities.

  14. Solar adaptive optics at the Observatorio del Teide, Tenerife

    Soltau, Dirk; Berkefeld, Thomas; Schmidt, Dirk; von der Lühe, Oskar

    2013-10-01

    Observing the Sun with high angular resolution is difficult because the turbulence in the atmosphere is strongest during day time. In this paper we describe the principles of solar adaptive optics exemplified by the two German solar telescopes VTT and GREGOR at the Observatorio del Teide. With theses systems we obtain near diffraction limited images of the Sun. Ways to overcome the limits of conventional AO by applying multiconjugate adaptive optics (MCAO) are shown.

  15. Wavefront sensorless adaptive optics ophthalmoscopy in the human eye

    Hofer, Heidi; Sredar, Nripun; Queener, Hope; Li, Chaohong; Porter, Jason

    2011-01-01

    Wavefront sensor noise and fidelity place a fundamental limit on achievable image quality in current adaptive optics ophthalmoscopes. Additionally, the wavefront sensor ‘beacon’ can interfere with visual experiments. We demonstrate real-time (25 Hz), wavefront sensorless adaptive optics imaging in the living human eye with image quality rivaling that of wavefront sensor based control in the same system. A stochastic parallel gradient descent algorithm directly optimized the mean intensity in ...

  16. Contrast-based sensorless adaptive optics for retinal imaging

    Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T. O.; He, Zheng; Metha, Andrew

    2015-01-01

    Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In thi...

  17. An adaptive optics approach for laser beam correction in turbulence utilizing a modified plenoptic camera

    Ko, Jonathan; Wu, Chensheng; Davis, Christopher C.

    2015-09-01

    Adaptive optics has been widely used in the field of astronomy to correct for atmospheric turbulence while viewing images of celestial bodies. The slightly distorted incoming wavefronts are typically sensed with a Shack-Hartmann sensor and then corrected with a deformable mirror. Although this approach has proven to be effective for astronomical purposes, a new approach must be developed when correcting for the deep turbulence experienced in ground to ground based optical systems. We propose the use of a modified plenoptic camera as a wavefront sensor capable of accurately representing an incoming wavefront that has been significantly distorted by strong turbulence conditions (C2n distortions. After the large distortions have been corrected, a secondary mode utilizing more traditional adaptive optics algorithms can take over to fine tune the wavefront correction. This two-stage algorithm can find use in free space optical communication systems, in directed energy applications, as well as for image correction purposes.

  18. [Adaptive radiotherapy in routine: The radiation oncologist's point of view].

    Henriques de Figueiredo, B; Petit, A; Sargos, P; Kantor, G; Pouypoudat, C; Saut, O; Zacharatou, C; Antoine, M

    2015-10-01

    Adaptive radiotherapy is defined as all processes leading to the modification of a treatment plan on the basis of patient-specific variations observed during the course of a treatment. This concept is currently of particular relevance due to the development of onboard volumetric imaging systems, which allow for daily viewing of variations in both tumour and organs at risk in terms of position, shape or volume. However, its application in routine clinical practice is limited due to the demanding nature of the processes involved (re-delineation and replanning) and increased dependence on available human resources. Even if "online" strategies, based on deformable image registration (DIR) algorithms, could lead to a reduction in both work and calculation time, for the moment their use is limited to the research field due to uncertainties surrounding the validity of results gathered. Other strategies without DIR can be used as "offline" or "hybrid offline-online" strategies that seem to offer a compromise between time consumption and therapeutic gain for the patient. PMID:26337475

  19. Amplitude variations on the Extreme Adaptive Optics testbed

    Evans, J; Thomas, S; Dillon, D; Gavel, D; Phillion, D; Macintosh, B

    2007-08-14

    High-contrast adaptive optics systems, such as those needed to image extrasolar planets, are known to require excellent wavefront control and diffraction suppression. At the Laboratory for Adaptive Optics on the Extreme Adaptive Optics testbed, we have already demonstrated wavefront control of better than 1 nm rms within controllable spatial frequencies. Corresponding contrast measurements, however, are limited by amplitude variations, including those introduced by the micro-electrical-mechanical-systems (MEMS) deformable mirror. Results from experimental measurements and wave optic simulations of amplitude variations on the ExAO testbed are presented. We find systematic intensity variations of about 2% rms, and intensity variations with the MEMS to be 6%. Some errors are introduced by phase and amplitude mixing because the MEMS is not conjugate to the pupil, but independent measurements of MEMS reflectivity suggest that some error is introduced by small non-uniformities in the reflectivity.

  20. Wavefront sensorless adaptive optics ophthalmoscopy in the human eye

    Hofer, Heidi; Sredar, Nripun; Queener, Hope; Li, Chaohong; Porter, Jason

    2011-07-01

    Wavefront sensor noise and fidelity place a fundamental limit on achievable image quality in current adaptive optics ophthalmoscopes. Additionally, the wavefront sensor `beacon' can interfere with visual experiments. We demonstrate real-time (25 Hz), wavefront sensorless adaptive optics imaging in the living human eye with image quality rivaling that of wavefront sensor based control in the same system. A stochastic parallel gradient descent algorithm directly optimized the mean intensity in retinal image frames acquired with a confocal adaptive optics scanning laser ophthalmoscope (AOSLO). When imaging through natural, undilated pupils, both control methods resulted in comparable mean image intensities. However, when imaging through dilated pupils, image intensity was generally higher following wavefront sensor-based control. Despite the typically reduced intensity, image contrast was higher, on average, with sensorless control. Wavefront sensorless control is a viable option for imaging the living human eye and future refinements of this technique may result in even greater optical gains.

  1. Horizontal Path Laser Communications Employing MEMS Adaptive Optics Correction

    Thompson, C A; Wilks, S C; Brase, J M; Young, R A; Johnson, G W; Ruggiero, A J

    2001-09-05

    Horizontal path laser communications are beginning to provide attractive alternatives for high-speed optical communications, In particular, companies are beginning to sell fiberless alternatives for intranet and sporting event video. These applications are primarily aimed at short distance applications (on the order of 1 km pathlength). There exists a potential need to extend this pathlength to distances much greater than a 1km. For cases of long distance optical propagation, atmospheric turbulence will ultimately limit the maximum achievable data rate. In this paper, we propose a method of improved signal quality through the use of adaptive optics. In particular, we show work in progress toward a high-speed, small footprint Adaptive Optics system for horizontal path laser communications. Such a system relies heavily on recent progress in Micro-Electro-Mechanical Systems (MEMS) deformable mirrors as well as improved communication and computational components. In this paper we detail two Adaptive Optics approaches for improved through-put, the first is the compensated receiver (the traditional Adaptive Optics approach), the second is the compensated transmitter/receiver. The second approach allows for correction of the optical wavefront before transmission from the transmitter and prior to detection at the receiver.

  2. Integrating multi-view transmission system into MPEG-21 stereoscopic and multi-view DIA (digital item adaptation)

    Lee, Seungwon; Park, Ilkwon; Kim, Manbae; Byun, Hyeran

    2006-10-01

    As digital broadcasting technologies have been rapidly progressed, users' expectations for realistic and interactive broadcasting services also have been increased. As one of such services, 3D multi-view broadcasting has received much attention recently. In general, all the view sequences acquired at the server are transmitted to the client. Then, the user can select a part of views or all the views according to display capabilities. However, this kind of system requires high processing power of the server as well as the client, thus posing a difficulty in practical applications. To overcome this problem, a relatively simple method is to transmit only two view-sequences requested by the client in order to deliver a stereoscopic video. In this system, effective communication between the server and the client is one of important aspects. In this paper, we propose an efficient multi-view system that transmits two view-sequences and their depth maps according to user's request. The view selection process is integrated into MPEG-21 DIA (Digital Item Adaptation) so that our system is compatible to MPEG-21 multimedia framework. DIA is generally composed of resource adaptation and descriptor adaptation. It is one of merits that SVA (stereoscopic video adaptation) descriptors defined in DIA standard are used to deliver users' preferences and device capabilities. Furthermore, multi-view descriptions related to multi-view camera and system are newly introduced. The syntax of the descriptions and their elements is represented in XML (eXtensible Markup Language) schema. If the client requests an adapted descriptor (e.g., view numbers) to the server, then the server sends its associated view sequences. Finally, we present a method which can reduce user's visual discomfort that might occur while viewing stereoscopic video. This phenomenon happens when view changes as well as when a stereoscopic image produces excessive disparity caused by a large baseline between two cameras. To

  3. Improvement in the performance of solar adaptive optics

    Adaptive optics (AO), which provides diffraction limited imaging over a field-of-view (FOV), is a powerful technique for solar observation. In the tomographic approach, each wavefront sensor (WFS) is looking at a single reference that acts as a guide star. This allows a 3D reconstruction of the distorted wavefront to be made. The correction is applied by one or more deformable mirrors (DMs). This technique benefits from information about atmospheric turbulence at different layers, which can be used to reconstruct the wavefront extremely well. With the assistance of the MAOS software package, we consider the tomography errors and WFS aliasing errors, and focus on how the performance of a solar telescope (pointing toward zenith) is related to atmospheric anisoplanatism. We theoretically quantify the performance of the tomographic solar AO system. The results indicate that the tomographic AO system can improve the average Strehl ratio of a solar telescope in a 10″ – 80″ diameter FOV by only employing one DM conjugated to the telescope pupil. Furthermore, we discuss the effects of DM conjugate altitude on the correction achievable by the AO system by selecting two atmospheric models that differ mainly in terms of atmospheric properties at ground level, and present the optimum DM conjugate altitudes for different observation sites

  4. New challenges for Adaptive Optics Extremely Large Telescopes

    Le Louarn, M; Sarazin, M; Tokovinin, A

    2000-01-01

    The performance of an adaptive optics (AO) system on a 100m diameter ground based telescope working in the visible range of the spectrum is computed using an analytical approach. The target Strehl ratio of 60% is achieved at 0.5um with a limiting magnitude of the AO guide source near R~10, at the cost of an extremely low sky coverage. To alleviate this problem, the concept of tomographic wavefront sensing in a wider field of view using either natural guide stars (NGS) or laser guide stars (LGS) is investigated. These methods use 3 or 4 reference sources and up to 3 deformable mirrors, which increase up to 8-fold the corrected field size (up to 60\\arcsec at 0.5 um). Operation with multiple NGS is limited to the infrared (in the J band this approach yields a sky coverage of 50% with a Strehl ratio of 0.2). The option of open-loop wavefront correction in the visible using several bright NGS is discussed. The LGS approach involves the use of a faint (R ~22) NGS for low-order correction, which results in a sky cov...

  5. Digital adaptive optics line-scanning confocal imaging system

    Liu, Changgeng; Kim, Myung K.

    2015-11-01

    A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack-Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea.

  6. Neptune’s zonal winds from near-IR Keck adaptive optics imaging in August 2001

    Martin, S.C.; De Pater, I.; Marcus, P.

    2011-01-01

    We present H-band (1.4–1.8 μm) images of Neptune with a spatial resolution of ∼0.06″, taken with the W.M. Keck II telescope using the slit-viewing camera (SCAM) of the NIRSPEC instrument backed with Adaptive Optics. Images with 60-second integration times span 4 hours each on UT 20 and 21 August, 20

  7. The Effect of Aberrations and Scatter on Image Resolution Assessed by Adaptive Optics Retinal Section Imaging

    Wanek, Justin; Mori, Marek; Shahidi, Mahnaz

    2007-01-01

    The effect of increased high order wavefront aberrations on image resolution was investigated and the performance of adaptive optics (AO) for correcting wavefront error in the presence of increased light scatter was assessed in a model eye. An AO section imaging system provided an oblique view of a simulated model eye retina and incorporated a wavefront sensor and deformable mirror for measurement and compensation of wavefront aberrations. Image resolution was quantified by the width of a Lor...

  8. PASSATA - Object oriented numerical simulation software for adaptive optics

    Agapito, G; Esposito, S

    2016-01-01

    We present the last version of the PyrAmid Simulator Software for Adaptive opTics Arcetri (PASSATA), an IDL and CUDA based object oriented software developed in the Adaptive Optics group of the Arcetri observatory for Monte-Carlo end-to-end adaptive optics simulations. The original aim of this software was to evaluate the performance of a single conjugate adaptive optics system for ground based telescope with a pyramid wavefront sensor. After some years of development, the current version of PASSATA is able to simulate several adaptive optics systems: single conjugate, multi conjugate and ground layer, with Shack Hartmann and Pyramid wavefront sensors. It can simulate from 8m to 40m class telescopes, with diffraction limited and resolved sources at finite or infinite distance from the pupil. The main advantages of this software are the versatility given by the object oriented approach and the speed given by the CUDA implementation of the most computational demanding routines. We describe the software with its...

  9. Photonic crystal-adaptive optical devices

    Buss, Thomas

    This Ph.D. thesis presents methods for enhancing the optical functionality of transparent glass panes by introduction of invisible nanoscale surface structures, such as gratings and planar photonic cyrstals. In this way the primary functionality of the glass - transparancy - may be enhanced with...... new properties, turning window glasses or glass surfaces of hand-held electronics into multifunctional devices. Common to all examples discussed, gratings and photonic crystals are used to engineer the optical dispersion and selectively modify the direction of guided light and transfer free...... minimized, thus allowing a homogeneous, glare-free, white-light daylighting into the room. Even more functionality can be achieved when the optical effects are tunable or reconfigurable. This is investigated with photonic crystal dye lasers. These lasers combine a photonic crystal resonator with a dye...

  10. Wavelet methods in multi-conjugate adaptive optics

    The next generation ground-based telescopes rely heavily on adaptive optics for overcoming the limitation of atmospheric turbulence. In the future adaptive optics modalities, like multi-conjugate adaptive optics (MCAO), atmospheric tomography is the major mathematical and computational challenge. In this severely ill-posed problem, a fast and stable reconstruction algorithm is needed that can take into account many real-life phenomena of telescope imaging. We introduce a novel reconstruction method for the atmospheric tomography problem and demonstrate its performance and flexibility in the context of MCAO. Our method is based on using locality properties of compactly supported wavelets, both in the spatial and frequency domains. The reconstruction in the atmospheric tomography problem is obtained by solving the Bayesian MAP estimator with a conjugate-gradient-based algorithm. An accelerated algorithm with preconditioning is also introduced. Numerical performance is demonstrated on the official end-to-end simulation tool OCTOPUS of European Southern Observatory. (paper)

  11. Beaconless adaptive-optics technique for HEL beam control

    Khizhnyak, Anatoliy; Markov, Vladimir

    2016-05-01

    Effective performance of forthcoming laser systems capable of power delivery on a distant target requires an adaptive optics system to correct atmospheric perturbations on the laser beam. The turbulence-induced effects are responsible for beam wobbling, wandering, and intensity scintillation, resulting in degradation of the beam quality and power density on the target. Adaptive optics methods are used to compensate for these negative effects. In its turn, operation of the AOS system requires a reference wave that can be generated by the beacon on the target. This report discusses a beaconless approach for wavefront correction with its performance based on the detection of the target-scattered light. Postprocessing of the beacon-generated light field enables retrieval and detailed characterization of the turbulence-perturbed wavefront -data that is essential to control the adaptive optics module of a high-power laser system.

  12. A Unified View of Adaptive Variable-Metric Projection Algorithms

    Masahiro Yukawa

    2009-01-01

    Full Text Available We present a unified analytic tool named variable-metric adaptive projected subgradient method (V-APSM that encompasses the important family of adaptive variable-metric projection algorithms. The family includes the transform-domain adaptive filter, the Newton-method-based adaptive filters such as quasi-Newton, the proportionate adaptive filter, and the Krylov-proportionate adaptive filter. We provide a rigorous analysis of V-APSM regarding several invaluable properties including monotone approximation, which indicates stable tracking capability, and convergence to an asymptotically optimal point. Small metric-fluctuations are the key assumption for the analysis. Numerical examples show (i the robustness of V-APSM against violation of the assumption and (ii the remarkable advantages over its constant-metric counterpart for colored and nonstationary inputs under noisy situations.

  13. A real-time simulation facility for astronomical adaptive optics

    Basden, Alastair

    2014-01-01

    In this paper we introduce the concept of real-time hardware-in-the-loop simulation for astronomical adaptive optics, and present the case for the requirement for such a facility. This real-time simulation, when linked with an adaptive optics real-time control system, provides an essential tool for the validation, verification and integration of the Extremely Large Telescope real-time control systems prior to commissioning at the telescope. We demonstrate that such a facility is crucial for the success of the future extremely large telescopes.

  14. Hybrid Deconvolution of Adaptive Optics Retinal Images from Wavefront Sensing

    Adaptive optics can be used to compensate for the wave aberration of the human eyes to achieve high-resolution imaging in real time. However the correction is partial due to the limitation of hardware. We propose a kind of hybrid image post-processing method, which uses the blind deconvolution combined with the residual data in wavefront sensor to restore the partially adaptive optics corrected retinal image. This method is applied in the image restoration of the vivid human retinal images. The results show that it is effective to improve the retinal image quality

  15. Hybrid Deconvolution of Adaptive Optics Retinal Images from Wavefront Sensing

    TIAN Yu; RAO Chang-Hui; RAO Xue-Jun; WANG Cheng; YU Xiang; LIU Qian; XUE Li-Xia; LING Ning; JIANG Wen-Han

    2008-01-01

    Adaptive optics can be used to compensate for the wave aberration of the human eyes to achieve high-resolution imaging in real time.However the correction is partial due to the limitation of hardware.We propose a kind of hybrid image post-processing method.which uses the blind deconvolution combined with the residual data in wavefront sensor to restore the partially adaptive optics corrected retinal image.This method is applied in the image restoration of the vivid human retinal images.The results show that it is effective to improve the retinal image quality.

  16. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics

    Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Seungjae; Lee, Byoungho; Kim, Myung K.

    2015-11-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: self­interference incoherent digital holography (SIDH). The SIDH generates a complex-i.e., amplitude plus phase-hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  17. Characterization and Operation of Liquid Crystal Adaptive Optics Phoropter

    Awwal, A; Bauman, B; Gavel, D; Olivier, S; Jones, S; Hardy, J L; Barnes, T; Werner, J S

    2003-02-05

    Adaptive optics (AO), a mature technology developed for astronomy to compensate for the effects of atmospheric turbulence, can also be used to correct the aberrations of the eye. The classic phoropter is used by ophthalmologists and optometrists to estimate and correct the lower-order aberrations of the eye, defocus and astigmatism, in order to derive a vision correction prescription for their patients. An adaptive optics phoropter measures and corrects the aberrations in the human eye using adaptive optics techniques, which are capable of dealing with both the standard low-order aberrations and higher-order aberrations, including coma and spherical aberration. High-order aberrations have been shown to degrade visual performance for clinical subjects in initial investigations. An adaptive optics phoropter has been designed and constructed based on a Shack-Hartmann sensor to measure the aberrations of the eye, and a liquid crystal spatial light modulator to compensate for them. This system should produce near diffraction-limited optical image quality at the retina, which will enable investigation of the psychophysical limits of human vision. This paper describes the characterization and operation of the AO phoropter with results from human subject testing.

  18. Adaptive optics-assisted optical coherence tomography for imaging of patients with age related macular degeneration

    Sudo, Kenta; Cense, Barry

    2013-03-01

    We developed an optical coherence tomography (OCT) prototype with a sample arm that uses a 3.4 mm beam, which is considerably larger than the 1.2 to 1.5 mm beam that is used in commercialized OCT systems. The system is equipped with adaptive optics (AO), and to distinguish it from traditional AO-OCT systems with a larger 6 mm beam we have coined this concept AO-assisted OCT. Compared to commercialized OCT systems, the 3.4 mm aperture combined with AO improves light collection efficiency and imaging lateral resolution. In this paper, the performance of the AOa-OCT system was compared to a standard OCT system and demonstrated for imaging of age-related macular degeneration (AMD). Measurements were performed on the retinas of three human volunteers with healthy eyes and on one eye of a patient diagnosed with AMD. The AO-assisted OCT system imaged retinal structures of healthy human eyes and a patient eye affected by AMD with higher lateral resolution and a 9° by 9° field of view. This combination of a large isoplanatic patch and high lateral resolution can be expected to fill a gap between standard OCT with a 1.2 mm beam and conventional AO-OCT with a 6 mm beam and a 1.5° by 1.5° isoplanatic patch.

  19. Limitations to adaptive optics image quality in rodent eyes

    Zhou, Xiaolin; Bedggood, Phillip; Metha, Andrew

    2012-01-01

    Adaptive optics (AO) retinal image quality of rodent eyes is inferior to that of human eyes, despite the promise of greater numerical aperture. This paradox challenges several assumptions commonly made in AO imaging, assumptions which may be invalidated by the very high power and dioptric thickness of the rodent retina. We used optical modeling to compare the performance of rat and human eyes under conditions that tested the validity of these assumptions. Results showed that AO image quality ...

  20. Adaptive optics for control of the laser welding process

    Mrňa, Libor; Šarbort, Martin; Řeřucha, Šimon; Jedlička, Petr

    Praha: Institute of Plasma Physics, 2012 - (Vít, T.; Kovačičinová, J.; Lédl, V.), s. 93-98 ISBN 978-80-87026-02-1. [Optics and Measurement 2012. Liberec (CZ), 16.10.2012-18.10.2012] R&D Projects: GA MPO 2A-3TP1/113; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : laser welding beam shaping * adaptive optics, * power optics * beam shaping Subject RIV: JB - Sensors, Measurment, Regulation

  1. Adaptive optical system for astronomical applications

    Merkle, F.; Bille, J.; Freischlad, K.; Frieben, M.; Jahn, G.; Reischmann, H.-L.

    The active optical system being developed for use with the 0.75-m RC telescope at the Landessternwarte in Heidelberg, FRG, is discussed. A 5-cm electrostatically deformable aluminum-coated polymer mirror (sensitivity 0.05 microns/V, maximum local tilt 3 microns/5 mm) is mounted in a gimbal with piezoelectric-actuator tilt control. The mirror control systems being tested are a modified shearing interferometer with crosstalk-compensated feedback and Fourier-modulus wavefront computation, both using a 32 x 32 diode array as detector. Modal phase compensation is achieved using Zernike polynomials and Karhunen-Loeve functions; the correction for the tilt terms of the series expansion is left to the overall-tilt compensation unit, for which preliminary test results are shown.

  2. Optic flow improves adaptability of spatiotemporal characteristics during split-belt locomotor adaptation with tactile stimulation.

    Eikema, Diderik Jan A; Chien, Jung Hung; Stergiou, Nicholas; Myers, Sara A; Scott-Pandorf, Melissa M; Bloomberg, Jacob J; Mukherjee, Mukul

    2016-02-01

    Human locomotor adaptation requires feedback and feed-forward control processes to maintain an appropriate walking pattern. Adaptation may require the use of visual and proprioceptive input to decode altered movement dynamics and generate an appropriate response. After a person transfers from an extreme sensory environment and back, as astronauts do when they return from spaceflight, the prolonged period required for re-adaptation can pose a significant burden. In our previous paper, we showed that plantar tactile vibration during a split-belt adaptation task did not interfere with the treadmill adaptation however, larger overground transfer effects with a slower decay resulted. Such effects, in the absence of visual feedback (of motion) and perturbation of tactile feedback, are believed to be due to a higher proprioceptive gain because, in the absence of relevant external dynamic cues such as optic flow, reliance on body-based cues is enhanced during gait tasks through multisensory integration. In this study, we therefore investigated the effect of optic flow on tactile-stimulated split-belt adaptation as a paradigm to facilitate the sensorimotor adaptation process. Twenty healthy young adults, separated into two matched groups, participated in the study. All participants performed an overground walking trial followed by a split-belt treadmill adaptation protocol. The tactile group (TC) received vibratory plantar tactile stimulation only, whereas the virtual reality and tactile group (VRT) received an additional concurrent visual stimulation: a moving virtual corridor, inducing perceived self-motion. A post-treadmill overground trial was performed to determine adaptation transfer. Interlimb coordination of spatiotemporal and kinetic variables was quantified using symmetry indices and analyzed using repeated-measures ANOVA. Marked changes of step length characteristics were observed in both groups during split-belt adaptation. Stance and swing time symmetries were

  3. Evolutionary adaptation to high altitude: a view from in utero

    Julian, Colleen Glyde; Wilson, Megan J.; Moore, Lorna G.

    2009-01-01

    A primary focus within biological anthropology has been to elucidate the processes of evolutionary adaptation. A. Roberto Frisancho helped move anthropology towards more mechanistic explanations of human adaptation by drawing attention to the importance of the functional relevance of human variation. Using the natural laboratory of high altitude, he and others asked whether the unique physiology of indigenous high-altitude residents was the result of acclimatization, developmental plasticity ...

  4. Laser guide stars and adaptive optics for astronomy

    Max, C.E. [ed.

    1992-07-15

    Five papers are included: feasibility experiment for sodium-alyer laser guide stars at LLNL; system design for a high power sodium beacon laser; sodium guide star adaptive optics system for astronomical imaging in the visible and near-infrared; high frame-rate, large field wavefront sensor; and resolution limits for ground-based astronomical imaging. Figs, tabs, refs.

  5. Data-Driven Optimal Control for Adaptive Optics

    Hinnen, K.J.G.

    2007-01-01

    Adaptive optics (AO) is a technique to actively correct the wavefront distortions introduced in a light beam as it propagates through a turbulent medium. Nowadays, it is commonly applied in ground-based telescopes to counteract the devastating effect of atmospheric turbulence. This thesis focuses on

  6. New algorithms for adaptive optics point-spread function reconstruction

    Gendron, E; Fusco, T; Rousset, G; Gendron, Eric; Cl\\'{e}net, Yann; Fusco, Thierry

    2006-01-01

    Context. The knowledge of the point-spread function compensated by adaptive optics is of prime importance in several image restoration techniques such as deconvolution and astrometric/photometric algorithms. Wavefront-related data from the adaptive optics real-time computer can be used to accurately estimate the point-spread function in adaptive optics observations. The only point-spread function reconstruction algorithm implemented on astronomical adaptive optics system makes use of particular functions, named $U\\_{ij}$. These $U\\_{ij}$ functions are derived from the mirror modes, and their number is proportional to the square number of these mirror modes. Aims. We present here two new algorithms for point-spread function reconstruction that aim at suppressing the use of these $U\\_{ij}$ functions to avoid the storage of a large amount of data and to shorten the computation time of this PSF reconstruction. Methods. Both algorithms take advantage of the eigen decomposition of the residual parallel phase covari...

  7. On the influence of the Illuminati in astronomical adaptive optics

    Morzinski, Katie M.; Males, Jared R.

    2012-01-01

    Astronomical adaptive optics (AO) has come into its own. Major O/IR telescopes are achieving diffraction-limited imaging; major facilities are being built with AO as an integral part. To the layperson, it may seem that AO has developed along a serpentine path. However, with a little illumination, the mark of Galileo's heirs becomes apparent in explaining the success of AO.

  8. Unfit to Learn? How Long View Organizations Adapt to Environmental Jolts

    P.P.M.A.R. Heugens (Pursey); S.C. Zyglidopoulos (Stelios)

    2007-01-01

    textabstractLong view organizations have a technical core combining high levels of Woodwardian (1958) technological complexity and Thompsonian (1967) technological intensity. This significantly diminishes their capacity for operational flexibility and strategic adaptation. Little is known about how

  9. The AVES adaptive optics spectrograph for the VLT: status report

    Pallavicini, Roberto; Delabre, Bernard; Pasquini, Luca; Zerbi, Filippo M.; Bonanno, Giovanni; Comari, Maurizio; Conconi, Paolo; Mazzoleni, Ruben; Santin, Paolo; Damiani, Francesco; Di Marcantonio, Paolo; Franchini, Mariagrazia; Spano, Paolo; Bonifacio, P.; Catalano, Santo; Molaro, Paolo P.; Randich, S.; Rodono, Marcello

    2003-03-01

    We report on the status of AVES, the Adaptive-optics Visual Echelle Spectrograph proposed for the secondary port of the Nasmyth Adaptive Optics System (NAOS) recently installed at the VLT. AVES is an intermediate resolution (R ≍ 16,000) high-efficiency fixed- format echelle spectrograph which operates in the spectral band 500 - 1,000 nm. In addition to a high intrinsic efficiency, comparable to that of ESI at Keck II, it takes advantage of the adaptive optics correction provided by NAOS to reduce the sky and detector contribution in background-limited observations of weak sources, thus allowing a further magnitude gain with respect to comparable non-adaptive optics spectrographs. Simulations show that the instrument will be capable of reaching a magnitude V = 22.5 at S/N > 10 in two hours, two magnitudes weaker than GIRAFFE at the same resolution and 3 magnitudes weaker than the higher resolution UVES spectrograph. Imaging and coronographic functions have also been implemented in the design. We present the results of the final design study and we dicuss the technical and operational issues related to its implementation at the VLT as a visitor instrument. We also discuss the possibility of using a scaled-up non-adaptive optics version of the same design as an element of a double- or triple-arm intermediate-resolution spectrograph for the VLT. Such an option looks attractive in the context of a high-efficiency large-bandwidth (320 - 1,500 nm) spectrograph ("fast-shooter") being considered by ESO as a 2nd-generation VLT instrument.

  10. Adaptive wide-field optical tomography

    Venugopal, Vivek; Intes, Xavier

    2013-03-01

    We describe a wide-field optical tomography technique, which allows the measurement-guided optimization of illumination patterns for enhanced reconstruction performances. The iterative optimization of the excitation pattern aims at reducing the dynamic range in photons transmitted through biological tissue. It increases the number of measurements collected with high photon counts resulting in a dataset with improved tomographic information. Herein, this imaging technique is applied to time-resolved fluorescence molecular tomography for preclinical studies. First, the merit of this approach is tested by in silico studies in a synthetic small animal model for typical illumination patterns. Second, the applicability of this approach in tomographic imaging is validated in vitro using a small animal phantom with two fluorescent capillaries occluded by a highly absorbing inclusion. The simulation study demonstrates an improvement of signal transmitted (˜2 orders of magnitude) through the central portion of the small animal model for all patterns considered. A corresponding improvement in the signal at the emission wavelength by 1.6 orders of magnitude demonstrates the applicability of this technique for fluorescence molecular tomography. The successful discrimination and localization (˜1 mm error) of the two objects with higher resolution using the optimized patterns compared with nonoptimized illumination establishes the improvement in reconstruction performance when using this technique.

  11. Adaptive optics assisted Fourier domain OCT with balanced detection

    Meadway, A.; Bradu, A.; Hathaway, M.; Van der Jeught, S.; Rosen, R. B.; Podoleanu, A. Gh.

    2011-03-01

    Two factors are of importance to optical coherence tomography (OCT), resolution and sensitivity. Adaptive optics improves the resolution of a system by correcting for aberrations causing distortions in the wave-front. Balanced detection has been used in time domain OCT systems by removing excess photon noise, however it has not been used in Fourier domain systems, as the cameras used in the spectrometers saturated before excess photon noise becomes a problem. Advances in camera technology mean that this is no longer the case and balanced detection can now be used to improve the signal to noise ratio in a Fourier domain (FD) OCT system. An FD-OCT system, enhanced with adaptive optics, is presented and is used to show the improvement that balanced detection can provide. The signal to noise ratios of single camera detection and balanced detection are assessed and in-vivo retinal images are acquired to demonstrate better image quality when using balance detection.

  12. Modeling for deformable mirrors and the adaptive optics optimization program

    We discuss aspects of adaptive optics optimization for large fusion laser systems such as the 192-arm National Ignition Facility (NIF) at LLNL. By way of example, we considered the discrete actuator deformable mirror and Hartmann sensor system used on the Beamlet laser. Beamlet is a single-aperture prototype of the 11-0-5 slab amplifier design for NIF, and so we expect similar optical distortion levels and deformable mirror correction requirements. We are now in the process of developing a numerically efficient object oriented C++ language implementation of our adaptive optics and wavefront sensor code, but this code is not yet operational. Results are based instead on the prototype algorithms, coded-up in an interpreted array processing computer language

  13. Adaptation: a contemporary view, revisiting Crichton-Miller's 1925 paper.

    Music, Graham

    2016-03-01

    In this paper I discuss a contemporary 'take' on the concept of adaptation in light of Crichton-Miller's original 1926 paper. I look briefly at some of the ways that contemporary thinking is both similar to and different from ideas of 90 years ago. In particular I think about how recent neurobiological findings, epigenetic research and attachment theory have cast new light on our understanding of the ways humans adapt to social and emotional environments. It looks at how psychiatric presentations which are seen as maladaptive might well have an adaptive origin in early life. In this account I emphasise how a more modern version of evolutionary theory can be developed, particularly one influenced by life history theory, and suggest that such ideas have powerful explanatory power as well as being based solidly in good research. PMID:26908879

  14. Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice

    Jian, Yifan; Xu, Jing; Gradowski, Martin A.; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2014-01-01

    We present wavefront sensorless adaptive optics (WSAO) Fourier domain optical coherence tomography (FD-OCT) for in vivo small animal retinal imaging. WSAO is attractive especially for mouse retinal imaging because it simplifies optical design and eliminates the need for wavefront sensing, which is difficult in the small animal eye. GPU accelerated processing of the OCT data permitted real-time extraction of image quality metrics (intensity) for arbitrarily selected retinal layers to be optimi...

  15. Experience with wavefront sensor and deformable mirror interfaces for wide-field adaptive optics systems

    Basden, A G; Bharmal, N A; Bitenc, U; Brangier, M; Buey, T; Butterley, T; Cano, D; Chemla, F; Clark, P; Cohen, M; Conan, J -M; de Cos, F J; Dickson, C; Dipper, N A; Dunlop, C N; Feautrier, P; Fusco, T; Gach, J L; Gendron, E; Geng, D; Goodsell, S J; Gratadour, D; Greenaway, A H; Guesalaga, A; Guzman, C D; Henry, D; Holck, D; Hubert, Z; Huet, J M; Kellerer, A; Kulcsar, C; Laporte, P; Roux, B Le; Looker, N; Longmore, A J; Marteaud, M; Martin, O; Meimon, S; Morel, C; Morris, T J; Myers, R M; Osborn, J; Perret, D; Petit, C; Raynaud, H; Reeves, A P; Rousset, G; Lasheras, F Sanchez; Rodriguez, M Sanchez; Santos, J D; Sevin, A; Sivo, G; Stadler, E; Stobie, B; Talbot, G; Todd, S; Vidal, F; Younger, E J

    2016-01-01

    Recent advances in adaptive optics (AO) have led to the implementation of wide field-of-view AO systems. A number of wide-field AO systems are also planned for the forthcoming Extremely Large Telescopes. Such systems have multiple wavefront sensors of different types, and usually multiple deformable mirrors (DMs). Here, we report on our experience integrating cameras and DMs with the real-time control systems of two wide-field AO systems. These are CANARY, which has been operating on-sky since 2010, and DRAGON, which is a laboratory adaptive optics real-time demonstrator instrument. We detail the issues and difficulties that arose, along with the solutions we developed. We also provide recommendations for consideration when developing future wide-field AO systems.

  16. Recent Results and Perspectives for Precision Astrometry and Photometry with Adaptive Optics

    Lu, Jessica R; Yelda, Sylvana; Do, Tuan; Clarkson, Will; McCrady, Nate; Morris, Mark R

    2010-01-01

    Large ground-based telescopes equipped with adaptive optics (AO) systems have ushered in a new era of high-resolution infrared photometry and astrometry. Relative astrometric accuracies of <0.2 mas have already been demonstrated from infrared images with spatial resolutions of 55-95 mas resolution over 10-20'' fields of view. Relative photometric accuracies of 3% and absolute photometric accuracies of 5%-20% are also possible. I will review improvements and current limitations in astrometry and photometry with adaptive optics of crowded stellar fields. These capabilities enable experiments such as measuring orbits for brown dwarfs and exoplanets, studying our Galaxy's supermassive black hole and its environment, and identifying individual stars in young star clusters, which can be used test the universality of the initial mass function.

  17. Gemini multi-conjugate adaptive optics system review I: Design, trade-offs and integration

    Rigaut, Francois; Boccas, Maxime; d'Orgeville, Céline; Vidal, Fabrice; van Dam, Marcos A; Arriagada, Gustavo; Fesquet, Vincent; Galvez, Ramon L; Gausachs, Gaston; Cavedoni, Chad; Ebbers, Angelic W; Karewicz, Stan; James, Eric; Lührs, Javier; Montes, Vanessa; Perez, Gabriel; Rambold, William N; Rojas, Roberto; Walker, Shane; Bec, Matthieu; Trancho, Gelys; Sheehan, Michael; Irarrazaval, Benjamin; Boyer, Corinne; Ellerbroek, Brent L; Flicker, Ralf; Gratadour, Damien; Garcia-Rissmann, Aurea; Daruich, Felipe

    2013-01-01

    The Gemini Multi-conjugate adaptive optics System (GeMS) at the Gemini South telescope in Cerro Pach{\\'o}n is the first sodium-based multi-Laser Guide Star (LGS) adaptive optics system. It uses five LGSs and two deformable mirrors to measure and compensate for atmospheric distortions. The GeMS project started in 1999, and saw first light in 2011. It is now in regular operation, producing images close to the diffraction limit in the near infrared, with uniform quality over a field of view of two square arcminutes. The present paper (I) is the first one in a two-paper review of GeMS. It describes the system, explains why and how it was built, discusses the design choices and trade-offs, and presents the main issues encountered during the course of the project. Finally, we briefly present the results of the system first light.

  18. Proton irradiation of liquid crystal based adaptive optical devices

    To assess its radiation hardness, a liquid crystal based adaptive optical element has been irradiated using a 60 MeV proton beam. The device with the functionality of an optical beam steerer was characterised before, during and after the irradiation. A systematic set of measurements on the transmission and beam deflection angles was carried out. The measurements showed that the transmission decreased only marginally and that its optical performance degraded only after a very high proton fluence (1010p/cm2). The device showed complete annealing in the functionality as a beam steerer, which leads to the conclusion that the liquid crystal technology for optical devices is not vulnerable to proton irradiation as expected in space.

  19. Infinite impulse response modal filtering in visible adaptive optics

    Agapito, G; Quirós-Pacheco, F; Puglisi, A; Esposito, S

    2012-01-01

    Diffraction limited resolution adaptive optics (AO) correction in visible wavelengths requires a high performance control. In this paper we investigate infinite impulse response filters that optimize the wavefront correction: we tested these algorithms through full numerical simulations of a single-conjugate AO system comprising an adaptive secondary mirror with 1127 actuators and a pyramid wavefront sensor (WFS). The actual practicability of the algorithms depends on both robustness and knowledge of the real system: errors in the system model may even worsen the performance. In particular we checked the robustness of the algorithms in different conditions, proving that the proposed method can reject both disturbance and calibration errors.

  20. Infinite impulse response modal filtering in visible adaptive optics

    Agapito, G.; Arcidiacono, C.; Quirós-Pacheco, F.; Puglisi, A.; Esposito, S.

    2012-07-01

    Diffraction limited resolution adaptive optics (AO) correction in visible wavelengths requires a high performance control. In this paper we investigate infinite impulse response filters that optimize the wavefront correction: we tested these algorithms through full numerical simulations of a single-conjugate AO system comprising an adaptive secondary mirror with 1127 actuators and a pyramid wavefront sensor (WFS). The actual practicability of the algorithms depends on both robustness and knowledge of the real system: errors in the system model may even worsen the performance. In particular we checked the robustness of the algorithms in different conditions, proving that the proposed method can reject both disturbance and calibration errors.

  1. Fast calibration of high-order adaptive optics systems

    Kasper, Markus; Fedrigo, Enrico; Looze, Douglas P.; Bonnet, Henri; Ivanescu, Liviu; Oberti, Sylvain

    2004-06-01

    We present a new method of calibrating adaptive optics systems that greatly reduces the required calibration time or, equivalently, improves the signal-to-noise ratio. The method uses an optimized actuation scheme with Hadamard patterns and does not scale with the number of actuators for a given noise level in the wave-front sensor channels. It is therefore highly desirable for high-order systems and/or adaptive secondary systems on a telescope without a Gregorian focal plane. In the latter case, the measurement noise is increased by the effects of the turbulent atmosphere when one is calibrating on a natural guide star.

  2. Adaptive optics for deeper imaging of biological samples.

    Girkin, John M; Poland, Simon; Wright, Amanda J

    2009-02-01

    Optical microscopy has been a cornerstone of life science investigations since its first practical application around 400 years ago with the goal being subcellular resolution, three-dimensional images, at depth, in living samples. Nonlinear microscopy brought this dream a step closer, but as one images more deeply the material through which you image can greatly distort the view. By using optical devices, originally developed for astronomy, whose optical properties can be changed in real time, active compensation for sample-induced aberrations is possible. Submicron resolution images are now routinely recorded from depths over 1mm into tissue. Such active optical elements can also be used to keep conventional microscopes, both confocal and widefield, in optimal alignment. PMID:19272766

  3. Adaptive optics for control of the laser welding process

    Jedlička Petr; Řeřucha Šimon; Šarbort Martin; Mrňa Libor

    2013-01-01

    The laser head with fixed focus optics is commonly used for the deep penetration laser welding. In such case the geometry and position of the beam waist are defined by the focusing lens. If the laser beam incident on the focusing lens is not well collimated but divergent and its divergence can be varied by proper adaptive optical elements, then also the geometry and position of the focus will be changeable. In this way it is possible to affect the energy coupling from the laser beam to t...

  4. Adaptive Data Rates for Flexible Transceivers in Optical Networks

    Brian Thomas Teipen

    2012-05-01

    Full Text Available Efforts towards commercializing higher-speed optical transmission have demonstrated the need for advanced modulation formats, several of which require similar transceiver hardware architecture. Adaptive transceivers can be built to have a number of possible operational configurations selected by software. Such software-defined transceiver configurations can create specific modulation formats to support sets of data rates, corresponding tolerances to system impairments, and sets of electronic digital signal processing schemes chosen to best function in a given network environment. In this paper, we discuss possibilities and advantages of reconfigurable, bit-rate flexible transceivers, and their potential applications in future optical networks.

  5. Adaptive optics for improved retinal surgery and diagnostics

    Humayun, M S; Sadda, S R; Thompson, C A; Olivier, S S; Kartz, M W

    2000-08-21

    It is now possible to field a compact adaptive optics (AO) system on a surgical microscope for use in retinal diagnostics and surgery. Recent developments in integrated circuit technology and optical photonics have led to the capability of building an AO system that is compact and significantly less expensive than traditional AO systems. It is foreseen that such an AO system can be integrated into a surgical microscope while maintaining a package size of a lunchbox. A prototype device can be developed in a manner that lends itself well to large-scale manufacturing.

  6. Laser Tomography Adaptive Optics (LTAO): A performance study

    Tatulli, E

    2013-01-01

    We present an analytical derivation of the on-axis performance of Adaptive Optics systems using a given number of guide stars of arbitrary altitude, distributed at arbitrary angular positions in the sky. The expressions of the residual error are given for cases of both continuous and discrete turbulent atmospheric profiles. Assuming Shack-Hartmann wavefront sensing with circular apertures, we demonstrate that the error is formally described by integrals of products of three Bessel functions. We compare the performance of Adaptive Optics correction when using natural, Sodium or Rayleigh laser guide stars. For small diameter class telescopes (~5m), we show that a few number of Rayleigh beacons can provide similar performance to that of a single Sodium laser, for a lower overall cost of the instrument. For bigger apertures, using Rayleigh stars may not be such a suitable alternative because of the too severe cone effect that drastically degrades the quality of the correction.

  7. Neptune and Titan Observed with Keck Telescope Adaptive Optics

    Max, C.E.; Macintosh, B.A.; Gibbard, S.; Gavel, D.T.; Roe, H.; De Pater, I.; Ghez, A.M.; Acton, S.; Wizinowich, P.L.; Lai, O.

    2000-05-05

    The authors report on observations taken during engineering science validation time using the new adaptive optics system at the 10-m Keck II Telescope. They observe Neptune and Titan at near-infrared wavelengths. These objects are ideal for adaptive optics imaging because they are bright and small, yet have many diffraction-limited resolution elements across their disks. In addition Neptune and Titan have prominent physical features, some of which change markedly with time. They have observed infrared-bright storms on Neptune, and very low-albedo surface regions on Titan, Saturn's largest moon, Spatial resolution on Neptune and Titan was 0.05-0.06 and 0.04-0.05 arc sec, respectively.

  8. Contrast-based sensorless adaptive optics for retinal imaging.

    Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T O; He, Zheng; Metha, Andrew

    2015-09-01

    Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In this study we show, for the first time, contrast-based NS-AO ophthalmoscopy for full-frame in vivo imaging of human and animal eyes. We suggest a robust image quality metric that could be used for any imaging modality, and test its performance against other metrics using (physical) model eyes. PMID:26417525

  9. Laser Guide Star Adaptive Optics without Tip-tilt

    Davies, R; Lidman, C; Louarn, M Le; Kasper, M; Förster-Schreiber, N M; Roccatagliata, V; Ageorges, N; Amico, P; Dumas, C; Mannucci, F

    2008-01-01

    Adaptive optics (AO) systems allow a telescope to reach its diffraction limit at near infrared wavelengths. But to achieve this, a bright natural guide star (NGS) is needed for the wavefront sensing, severely limiting the fraction of the sky over which AO can be used. To some extent this can be overcome with a laser guide star (LGS). While the laser can be pointed anywhere in the sky, one still needs to have a natural star, albeit fainter, reasonably close to correct the image motion (tip-tilt) to which laser guide stars are insensitive. There are in fact many astronomical targets without suitable tip-tilt stars, but for which the enhanced resolution obtained with the Laser Guide Star Facility (LGSF) would still be very beneficial. This article explores what adaptive optics performance one might expect if one dispenses with the tip-tilt star, and in what situations this mode of observing might be needed.

  10. Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging

    Zawadzki, RJ; Jones, SM; Pilli, S; Balderas-Mata, S; Kim, DY; Olivier, SS; Werner, JS

    2011-01-01

    We describe an ultrahigh-resolution (UHR) retinal imaging system that combines adaptive optics Fourier-domain optical coherence tomography (AO-OCT) with an adaptive optics scanning laser ophthalmoscope (AO-SLO) to allow simultaneous data acquisition by the two modalities. The AO-SLO subsystem was integrated into the previously described AO-UHR OCT instrument with minimal changes to the latter. This was done in order to ensure optimal performance and image quality of the AO- UHR OCT. In this d...

  11. Adaptive coded spreading OFDM signal for dynamic-λ optical access network

    Liu, Bo; Zhang, Lijia; Xin, Xiangjun

    2015-12-01

    This paper proposes and experimentally demonstrates a novel adaptive coded spreading (ACS) orthogonal frequency division multiplexing (OFDM) signal for dynamic distributed optical ring-based access network. The wavelength can be assigned to different remote nodes (RNs) according to the traffic demand of optical network unit (ONU). The ACS can provide dynamic spreading gain to different signals according to the split ratio or transmission length, which offers flexible power budget for the network. A 10×13.12 Gb/s OFDM access with ACS is successfully demonstrated over two RNs and 120 km transmission in the experiment. The demonstrated method may be viewed as one promising for future optical metro access network.

  12. Adaptation technology between IP layer and optical layer in optical Internet

    Ji, Yuefeng; Li, Hua; Sun, Yongmei

    2001-10-01

    Wavelength division multiplexing (WDM) optical network provides a platform with high bandwidth capacity and is supposed to be the backbone infrastructure supporting the next-generation high-speed multi-service networks (ATM, IP, etc.). In the foreseeable future, IP will be the predominant data traffic, to make fully use of the bandwidth of the WDM optical network, many attentions have been focused on IP over WDM, which has been proposed as the most promising technology for new kind of network, so-called Optical Internet. According to OSI model, IP is in the 3rd layer (network layer) and optical network is in the 1st layer (physical layer), so the key issue is what adaptation technology should be used in the 2nd layer (data link layer). In this paper, firstly, we analyze and compare the current adaptation technologies used in backbone network nowadays. Secondly, aiming at the drawbacks of above technologies, we present a novel adaptation protocol (DONA) between IP layer and optical layer in Optical Internet and describe it in details. Thirdly, the gigabit transmission adapter (GTA) we accomplished based on the novel protocol is described. Finally, we set up an experiment platform to apply and verify the DONA and GTA, the results and conclusions of the experiment are given.

  13. Laboratory testing the layer oriented wavefront sensor for the multiconjugate adaptive optics demonstrator

    Arcidiacono, Carmelo; Lombini, Matteo; Diolaiti, Emiliano; Farinato, Jacopo; Ragazzoni, Roberto

    2006-06-01

    The Multiconjugate Adaptive optics Demonstrator (MAD) for ESO-Very Large Telescopes (VLT) will demonstrate on sky the MultiConjugate Adaptive Optics (MCAO) technique. In this paper the laboratory tests relative to the first preliminary acceptance in Europe of the Layer Oriented (LO) Wavefront Sensor (WFS) for MAD will be described: the capabilities of the LO approach have been checked and the ability of the WFS to measure phase screens positioned at different altitudes has been experimented. The LO WFS was opto-mechanically integrated and aligned in INAF - Astrophysical Observatory of Arcetri before the delivering to ESO (Garching) to be installed on the final optical bench. The LO WFS looks for up to 8 reference stars on a 2arcmin Field of View and up to 8 pyramids can be positioned where the focal spot images of the reference stars form, splitting the light in four beams. Then two objectives conjugated at different altitudes simultaneously produce a quadruple pupil image of each reference star. An optical bench setup and transparent plastic screens have been used to simulate telescope and static atmospheric layers at different altitudes and a set of optical fibers as (white) light source. The plastic screens set has been characterized using an inteferometer and the wave-front measurements compared to the LO WFS ones have shown correlation up to ~95%.

  14. Performance of a MEMS-base Adaptive Optics Optical Coherency Tomography System

    Evans, J; Zadwadzki, R J; Jones, S; Olivier, S; Opkpodu, S; Werner, J S

    2008-01-16

    We have demonstrated that a microelectrical mechanical systems (MEMS) deformable mirror can be flattened to < 1 nm RMS within controllable spatial frequencies over a 9.2-mm aperture making it a viable option for high-contrast adaptive optics systems (also known as Extreme Adaptive Optics). The Extreme Adaptive Optics Testbed at UC Santa Cruz is being used to investigate and develop technologies for high-contrast imaging, especially wavefront control. A phase shifting diffraction interferometer (PSDI) measures wavefront errors with sub-nm precision and accuracy for metrology and wavefront control. Consistent flattening, required testing and characterization of the individual actuator response, including the effects of dead and low-response actuators. Stability and repeatability of the MEMS devices was also tested. An error budget for MEMS closed loop performance will summarize MEMS characterization.

  15. Lens-based wavefront sensorless adaptive optics swept source OCT.

    Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J; Bonora, Stefano; Sarunic, Marinko V

    2016-01-01

    Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient's eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects. PMID:27278853

  16. Lens-based wavefront sensorless adaptive optics swept source OCT

    Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J.; Bonora, Stefano; Sarunic, Marinko V.

    2016-06-01

    Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient’s eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects.

  17. Possibilities of joint application of adaptive optics technique and nonlinear optical phase conjugation to compensate for turbulent distortions

    Lukin, V. P.; Kanev, F. Yu; Kulagin, O. V.

    2016-05-01

    The efficiency of integrating the nonlinear optical technique based on forming a reverse wavefront and the conventional adaptive optics into a unified complex (for example, for adaptive focusing of quasi-cw laser radiation) is demonstrated. Nonlinear optical phase conjugation may provide more exact information about the phase fluctuations in the corrected wavefront in comparison with the adaptive optics methods. At the same time, the conventional methods of adaptive optics provide an efficient control of a laser beam projected onto a target for a rather long time.

  18. Thermally tuneable optical modulator adapted for differential signaling

    Zortman, William A.

    2016-01-12

    An apparatus for optical modulation is provided. The apparatus includes a modulator structure and a heater structure. The modulator structure comprises a ring or disk optical resonator having a closed curvilinear periphery and a pair of oppositely doped semiconductor regions within and/or adjacent to the optical resonator and conformed to modify the optical length of the optical resonator upon application of a bias voltage. The heater structure comprises a relatively resistive annulus of semiconductor material enclosed between an inner disk and an outer annulus of relatively conductive semiconductor material. The inner disk and the outer annulus are adapted as contact regions for a heater activation current. The heater structure is situated within the periphery of the optical resonator such that in operation, at least a portion of the resonator is heated by radial conductive heat flow from the heater structure. The apparatus further includes a substantially annular isolation region of dielectric or relatively resistive semiconductor material interposed between the heater structure and the modulator structure. The isolation region is effective to electrically isolate the bias voltage from the heater activation current.

  19. Manufacturing of glassy thin shell for adaptive optics: results achieved

    Poutriquet, F.; Rinchet, A.; Carel, J.-L.; Leplan, H.; Ruch, E.; Geyl, R.; Marque, G.

    2012-07-01

    Glassy thin shells are key components for the development of adaptive optics and are part of future & innovative projects such as ELT. However, manufacturing thin shells is a real challenge. Even though optical requirements for the front face - or optical face - are relaxed compared to conventional passive mirrors, requirements concerning thickness uniformity are difficult to achieve. In addition, process has to be completely re-defined as thin mirror generates new manufacturing issues. In particular, scratches and digs requirement is more difficult as this could weaken the shell, handling is also an important issue due to the fragility of the mirror. Sagem, through REOSC program, has recently manufactured different types of thin shells in the frame of European projects: E-ELT M4 prototypes and VLT Deformable Secondary Mirror (VLT DSM).

  20. High-resolution adaptive optics scanning laser ophthalmoscope with multiple deformable mirrors

    Chen, Diana C.; Olivier, Scot S.; Jones; Steven M.

    2010-02-23

    An adaptive optics scanning laser ophthalmoscopes is introduced to produce non-invasive views of the human retina. The use of dual deformable mirrors improved the dynamic range for correction of the wavefront aberrations compared with the use of the MEMS mirror alone, and improved the quality of the wavefront correction compared with the use of the bimorph mirror alone. The large-stroke bimorph deformable mirror improved the capability for axial sectioning with the confocal imaging system by providing an easier way to move the focus axially through different layers of the retina.

  1. Behavioural distinction between strategic control and spatial realignment during visuomotor adaptation in a viewing window task.

    Jane M Lawrence-Dewar

    Full Text Available We must frequently adapt our movements in order to successfully perform motor tasks. These visuomotor adaptations can occur with or without our awareness and so, have generally been described by two mechanisms: strategic control and spatial realignment. Strategic control is a conscious modification used when discordance between an intended and actual movement is observed. Spatial realignment is an unconscious recalibration in response to subtle differences between an intended and efferent movement. Traditional methods of investigating visuomotor adaptation often involve simplistic, repetitive motor goals and so may be vulnerable to subject boredom or expectation. Our laboratory has recently developed a novel, engaging computer-based task, the Viewing Window, to investigate visuomotor adaptation to large, apparent distortions. Here, we contrast behavioural measures of visuomotor adaptation during the Viewing Window task when either gradual progressive rotations or large, sudden rotations are introduced in order to demonstrate that this paradigm can be utilized to investigate both strategic control and spatial realignment. The gradual rotation group demonstrated significantly faster mean velocities and spent significantly less time off the object compared to the sudden rotation group. These differences demonstrate adaptation to the distortion using spatial realignment. Scan paths revealed greater after-effects in the gradual rotation group reflected by greater time spent scanning areas off of the object. These results demonstrate the ability to investigate both strategic control and spatial realignment. Thus, the Viewing Window provides a powerful engaging tool for investigating the neural basis of visuomotor adaptation and impairment following injury and disease.

  2. Computational adaptive optics for broadband optical interferometric tomography of biological tissue

    Boppart, Stephen A.

    2015-03-01

    High-resolution real-time tomography of biological tissues is important for many areas of biological investigations and medical applications. Cellular level optical tomography, however, has been challenging because of the compromise between transverse imaging resolution and depth-of-field, the system and sample aberrations that may be present, and the low imaging sensitivity deep in scattering tissues. The use of computed optical imaging techniques has the potential to address several of these long-standing limitations and challenges. Two related techniques are interferometric synthetic aperture microscopy (ISAM) and computational adaptive optics (CAO). Through three-dimensional Fourierdomain resampling, in combination with high-speed OCT, ISAM can be used to achieve high-resolution in vivo tomography with enhanced depth sensitivity over a depth-of-field extended by more than an order-of-magnitude, in realtime. Subsequently, aberration correction with CAO can be performed in a tomogram, rather than to the optical beam of a broadband optical interferometry system. Based on principles of Fourier optics, aberration correction with CAO is performed on a virtual pupil using Zernike polynomials, offering the potential to augment or even replace the more complicated and expensive adaptive optics hardware with algorithms implemented on a standard desktop computer. Interferometric tomographic reconstructions are characterized with tissue phantoms containing sub-resolution scattering particles, and in both ex vivo and in vivo biological tissue. This review will collectively establish the foundation for high-speed volumetric cellular-level optical interferometric tomography in living tissues.

  3. Beam shaping for laser-based adaptive optics in astronomy

    Béchet, Clémentine; Neichel, Benoit; Fesquet, Vincent; González-Núñez, Héctor; Zúñiga, Sebastián; Escarate, Pedro; Guzman, Dani

    2014-01-01

    The availability and performance of laser-based adaptive optics (AO) systems are strongly dependent on the power and quality of the laser beam before being projected to the sky. Frequent and time-consuming alignment procedures are usually required in the laser systems with free-space optics to optimize the beam. Despite these procedures, significant distortions of the laser beam have been observed during the first two years of operation of the Gemini South multi-conjugate adaptive optics system (GeMS). A beam shaping concept with two deformable mirrors is investigated in order to provide automated optimization of the laser quality for astronomical AO. This study aims at demonstrating the correction of quasi-static aberrations of the laser, in both amplitude and phase, testing a prototype of this two-deformable mirror concept on GeMS. The paper presents the results of the preparatory study before the experimental phase. An algorithm to control amplitude and phase correction, based on phase retrieval techniques...

  4. Adapting smartphones for low-cost optical medical imaging

    Pratavieira, Sebastião.; Vollet-Filho, José D.; Carbinatto, Fernanda M.; Blanco, Kate; Inada, Natalia M.; Bagnato, Vanderlei S.; Kurachi, Cristina

    2015-06-01

    Optical images have been used in several medical situations to improve diagnosis of lesions or to monitor treatments. However, most systems employ expensive scientific (CCD or CMOS) cameras and need computers to display and save the images, usually resulting in a high final cost for the system. Additionally, this sort of apparatus operation usually becomes more complex, requiring more and more specialized technical knowledge from the operator. Currently, the number of people using smartphone-like devices with built-in high quality cameras is increasing, which might allow using such devices as an efficient, lower cost, portable imaging system for medical applications. Thus, we aim to develop methods of adaptation of those devices to optical medical imaging techniques, such as fluorescence. Particularly, smartphones covers were adapted to connect a smartphone-like device to widefield fluorescence imaging systems. These systems were used to detect lesions in different tissues, such as cervix and mouth/throat mucosa, and to monitor ALA-induced protoporphyrin-IX formation for photodynamic treatment of Cervical Intraepithelial Neoplasia. This approach may contribute significantly to low-cost, portable and simple clinical optical imaging collection.

  5. Extreme Adaptive Optics Testbed: Results and Future Work

    Evans, J W; Sommargren, G; Poyneer, L; Macintosh, B; Severson, S; Dillon, D; Sheinis, A; Palmer, D; Kasdin, J; Olivier, S

    2004-07-15

    'Extreme' adaptive optics systems are optimized for ultra-high-contrast applications, such as ground-based extrasolar planet detection. The Extreme Adaptive Optics Testbed at UC Santa Cruz is being used to investigate and develop technologies for high-contrast imaging, especially wavefront control. A simple optical design allows us to minimize wavefront error and maximize the experimentally achievable contrast before progressing to a more complex set-up. A phase shifting diffraction interferometer is used to measure wavefront errors with sub-nm precision and accuracy. We have demonstrated RMS wavefront errors of <1.3 nm and a contrast of >10{sup -7} over a substantial region using a shaped pupil. Current work includes the installation and characterization of a 1024-actuator Micro-Electro-Mechanical- Systems (MEMS) deformable mirror, manufactured by Boston Micro-Machines, which will be used for wavefront control. In our initial experiments we can flatten the deformable mirror to 1.8-nm RMS wavefront error within a control radius of 5-13 cycles per aperture. Ultimately this testbed will be used to test all aspects of the system architecture for an extrasolar planet-finding AO system.

  6. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  7. Multi angle view of lung using optical coherence tomography (OCT)

    Golabchi, Ali; DiMarzio, Charles A.; Gouldstone, Andrew

    2012-03-01

    Lung imaging, visualization and measurement of alveolar volume has great importance in determining lung health. However, the heterogeneity of lung tissue complicates this task. In this paper multi angle Optical Coherence Tomography (OCT) is used to overcome this problem. One of the limitations of utilizing OCT in lung is the speckle noise and artifacts that originate from the refraction at the tissue-air interface inside the lung. Multi angle view of lung using OCT is incoherent summation of multiple angle-diverse images. Utilizing image registration of multi angle OCT scans of the lung helps reduce the speckle noise and refraction artifacts. This technique helps extract more information from the images which improves visualization and the ability to measure the geometry of alveoli. The other diculty of utilizing OCT is interpreting the images due to the low numerical aperture (NA) on the OCT. The multi angle view of the lung increases NA, which increase the imaging resolution through synthetic aperture imaging. In this paper in ated excised lung tissue and lung phantom are presented.

  8. Adaptive noise reduction for fiber optic gyroscopes in borehole applications

    Yan, Tingyang; Zhang, Chunxi; Gao, Shuang; Ma, Zongfeng

    2006-11-01

    Fiber Optic Gyroscopes (FOGs) have been investigated and proposed as alternative sensors to magnetometers in borehole surveying applications due to their compactness, ruggedness, low cost and high environmental insensitivity. However, FOGs are subject to high measurement noise from various sources, which deteriorates the performance and quality of FOGs, thus the overall system accuracy is limited. To improve the accuracy of the surveying system, adaptive filtering techniques are utilized to reduce the noise level at the output of the FOG. A Forward Linear Prediction (FLP) filter based on Normalized Least-Mean-Square (NLMS) adaptive algorithm was designed and evaluated using kinematic data. Results show that the FLP filter can suppress the FOG noise to a certain degree and a satisfactory signal-to-noise ratio improvement can be achieved using this method.

  9. Optical implementation for adaptive beamforming of array antenna

    Liu, Ming; Shi, Xiang quan

    2010-11-01

    It is difficult for the traditional phased array radar to process large array-element and high time-bandwidth-product signal in real time. An optical architecture of implement true time delay adaptive beamforming based on Stimulate Photon Echoes(SPE) is introduced. The principle of how to implement a true time delay based on SPE phenomenon with its theory models is established. the method of how to implement variable time delays using laser beams modulated by linear frequency chirped pulses is discussed, the relationship between chirp bandwidth and delay step is demonstrated by simulation results. As a result, it allows to filter thousands of simultaneous AOAs with 30 GHz dynamically in both spatial and spectral domains, which can be used to adaptively steer a large RF phased array antenna toward the direction of interest while minimizing the effects of unwanted interference signals.

  10. Optic for industrial endoscope/borescope with narrow field of view and low distortion

    Stone, Gary F.; Trebes, James E.

    2005-08-16

    An optic for the imaging optics on the distal end of a flexible fiberoptic endoscope or rigid borescope inspection tool. The image coverage is over a narrow (optical distortion (optic will permit non-contact surface roughness measurements using optical techniques. This optic will permit simultaneous collection of selected image plane data, which data can then be subsequently optically processed. The image analysis will yield non-contact surface topology data for inspection where access to the surface does not permit a mechanical styles profilometer verification of surface topology. The optic allows a very broad spectral band or range of optical inspection. It is capable of spectroscopic imaging and fluorescence induced imaging when a scanning illumination source is used. The total viewing angle for this optic is 10 degrees for the full field of view of 10 degrees, compared to 40-70 degrees full angle field of view of the conventional gradient index or GRIN's lens systems.

  11. Night myopia studied with an adaptive optics visual analyzer.

    Pablo Artal

    Full Text Available PURPOSE: Eyes with distant objects in focus in daylight are thought to become myopic in dim light. This phenomenon, often called "night myopia" has been studied extensively for several decades. However, despite its general acceptance, its magnitude and causes are still controversial. A series of experiments were performed to understand night myopia in greater detail. METHODS: We used an adaptive optics instrument operating in invisible infrared light to elucidate the actual magnitude of night myopia and its main causes. The experimental setup allowed the manipulation of the eye's aberrations (and particularly spherical aberration as well as the use of monochromatic and polychromatic stimuli. Eight subjects with normal vision monocularly determined their best focus position subjectively for a Maltese cross stimulus at different levels of luminance, from the baseline condition of 20 cd/m(2 to the lowest luminance of 22 × 10(-6 cd/m(2. While subjects performed the focusing tasks, their eye's defocus and aberrations were continuously measured with the 1050-nm Hartmann-Shack sensor incorporated in the adaptive optics instrument. The experiment was repeated for a variety of controlled conditions incorporating specific aberrations of the eye and chromatic content of the stimuli. RESULTS: We found large inter-subject variability and an average of -0.8 D myopic shift for low light conditions. The main cause responsible for night myopia was the accommodation shift occurring at low light levels. Other factors, traditionally suggested to explain night myopia, such as chromatic and spherical aberrations, have a much smaller effect in this mechanism. CONCLUSIONS: An adaptive optics visual analyzer was applied to study the phenomenon of night myopia. We found that the defocus shift occurring in dim light is mainly due to accommodation errors.

  12. Simulation of a ground-layer adaptive optics system for the Kunlun Dark Universe Survey Telescope

    Peng Jia; Sijiong Zhang

    2013-01-01

    Ground Layer Adaptive Optics (GLAO) is a recently developed technique extensively applied to ground-based telescopes,which mainly compensates for the wavefront errors induced by ground-layer turbulence to get an appropriate point spread function in a wide field of view.The compensation results mainly depend on the turbulence distribution.The atmospheric turbulence at Dome A in the Antarctic is mainly distributed below 15 meters,which is an ideal site for applications of GLAO.The GLAO system has been simulated for the Kunlun Dark Universe Survey Telescope,which will be set up at Dome A,and uses a rotating mirror to generate several laser guide stars and a wavefront sensor with a wide field of view to sequentially measure the wavefronts from different laser guide stars.The system is simulated on a computer and parameters of the system are given,which provide detailed information about the design of a practical GLAO system.

  13. High Resolution Observations using Adaptive Optics: Achievements and Future Needs

    K. Sankarasubramanian; T. Rimmele

    2008-03-01

    Over the last few years, several interesting observations were obtained with the help of solar Adaptive Optics (AO). In this paper, few observations made using the solarAOare enlightened and briefly discussed. A list of disadvantages with the current AO system are presented. With telescopes larger than 1.5 m expected during the next decade, there is a need to develop the existing AO technologies for large aperture telescopes. Some aspects of this development are highlighted. Finally, the recent AO developments in India are also presented.

  14. Self-characterization of linear and nonlinear adaptive optics systems.

    Hampton, Peter J; Conan, Rodolphe; Keskin, Onur; Bradley, Colin; Agathoklis, Pan

    2008-01-10

    We present methods used to determine the linear or nonlinear static response and the linear dynamic response of an adaptive optics (AO) system. This AO system consists of a nonlinear microelectromechanical systems deformable mirror (DM), a linear tip-tilt mirror (TTM), a control computer, and a Shack-Hartmann wavefront sensor. The system is modeled using a single-input-single-output structure to determine the one-dimensional transfer function of the dynamic response of the chain of system hardware. An AO system has been shown to be able to characterize its own response without additional instrumentation. Experimentally determined models are given for a TTM and a DM. PMID:18188192

  15. Third MACAO-VLTI Curvature Adaptive Optics System now installed

    Arsenault, R.; Donaldson, R.; Dupuy, C.; Fedrigo, E.; Hubin, N.; Ivanescu, L.; Kasper, M.; Oberti, S.; Paufique, J.; Rossi, S.; Silber, A.; Delabre, B.; Lizon, J.-L.; Gigan, P.

    2004-09-01

    IN JULY of this year the MACAO team returned to Paranal for the third time to install another MACAOVLTI system. These are 4 identical 60 element curvature adaptive optics systems, located in the Coudé room of each UT whose aim is to feed a turbulence corrected wavefront to the VLTI Recombination Laboratory. This time the activities took place on Yepun (UT4). The naming convention has been to associate the MACAO-VLTI number to the UT number where it is installed. Therefore, although we speak here of MACAO#4, it is the third system installed in Paranal.

  16. Performance of the Gemini Planet Imager's adaptive optics system.

    Poyneer, Lisa A; Palmer, David W; Macintosh, Bruce; Savransky, Dmitry; Sadakuni, Naru; Thomas, Sandrine; Véran, Jean-Pierre; Follette, Katherine B; Greenbaum, Alexandra Z; Ammons, S Mark; Bailey, Vanessa P; Bauman, Brian; Cardwell, Andrew; Dillon, Daren; Gavel, Donald; Hartung, Markus; Hibon, Pascale; Perrin, Marshall D; Rantakyrö, Fredrik T; Sivaramakrishnan, Anand; Wang, Jason J

    2016-01-10

    The Gemini Planet Imager's adaptive optics (AO) subsystem was designed specifically to facilitate high-contrast imaging. A definitive description of the system's algorithms and technologies as built is given. 564 AO telemetry measurements from the Gemini Planet Imager Exoplanet Survey campaign are analyzed. The modal gain optimizer tracks changes in atmospheric conditions. Science observations show that image quality can be improved with the use of both the spatially filtered wavefront sensor and linear-quadratic-Gaussian control of vibration. The error budget indicates that for all targets and atmospheric conditions AO bandwidth error is the largest term. PMID:26835769

  17. Adaptive optics optical coherence tomography for in vivo mouse retinal imaging

    Jian, Yifan; Zawadzki, Robert J.; Sarunic, Marinko V.

    2013-05-01

    Small animal models of retinal diseases are important to vision research, and noninvasive high resolution in vivo rodent retinal imaging is becoming an increasingly important tool used in this field. We present a custom Fourier domain optical coherence tomography (FD-OCT) instrument for high resolution imaging of mouse retina. In order to overcome aberrations in the mouse eye, we incorporated a commercial adaptive optics system into the sample arm of the refractive FD-OCT system. Additionally, a commercially available refraction canceling lens was used to reduce lower order aberrations and specular back-reflection from the cornea. Performance of the adaptive optics (AO) system for correcting residual wavefront aberration in the mice eyes is presented. Results of AO FD-OCT images of mouse retina acquired in vivo with and without AO correction are shown as well.

  18. Six-channel adaptive fibre-optic interferometer

    Romashko, R V; Bezruk, M N; Kamshilin, A A; Kulchin, Yurii N

    2012-06-30

    We have proposed and analysed a scheme for the multiplexing of orthogonal dynamic holograms in photorefractive crystals which ensures almost zero cross talk between the holographic channels upon phase demodulation. A six-channel adaptive fibre-optic interferometer was built, and the detection limit for small phase fluctuations in the channels of the interferometer was determined to be 2.1 Multiplication-Sign 10{sup -8} rad W{sup 1/2} Hz{sup -1/2}. The channel multiplexing capacity of the interferometer was estimated. The formation of 70 channels such that their optical fields completely overlap in the crystal reduces the relative detection limit in the working channel by just 10 %. We found conditions under which the maximum cross talk between the channels was within the intrinsic noise level in the channels (-47 dB).

  19. Astrometric performance of the Gemini multi-conjugate adaptive optics system in crowded fields

    Neichel, Benoit; Rigaut, Francois; Ammons, S Mark; Carrasco, Eleazar R; Lassalle, Emmanuel

    2014-01-01

    The Gemini Multi-conjugate adaptive optics System (GeMS) is a facility instrument for the Gemini-South telescope. It delivers uniform, near-diffraction-limited image quality at near-infrared wavelengths over a 2 arcminute field of view. Together with the Gemini South Adaptive Optics Imager (GSAOI), a near-infrared wide field camera, GeMS/GSAOI's combination of high spatial resolution and a large field of view will make it a premier facility for precision astrometry. Potential astrometric science cases cover a broad range of topics including exo-planets, star formation, stellar evolution, star clusters, nearby galaxies, black holes and neutron stars, and the Galactic center. In this paper, we assess the astrometric performance and limitations of GeMS/GSAOI. In particular, we analyze deep, mono-epoch images, multi-epoch data and distortion calibration. We find that for single-epoch, un-dithered data, an astrometric error below 0.2 mas can be achieved for exposure times exceeding one minute, provided enough star...

  20. Image restoration of the open-loop adaptive optics retinal imaging system based on optical transfer function analysis

    Yu, Lei; Qi, Yue; Li, Dayu; Xia, Mingliang; Xuan, Li

    2013-07-01

    The residual aberrations of the adaptive optics retinal imaging system will decrease the quality of the retinal images. To overcome this obstacle, we found that the optical transfer function (OTF) of the adaptive optics retinal imaging system can be described as the Levy stable distribution. Then a new method is introduced to estimate the OTF of the open-loop adaptive optics system, based on analyzing the residual aberrations of the open-loop adaptive optics system in the residual aberrations measuring mode. At last, the estimated OTF is applied to restore the retinal images of the open-loop adaptive optics retinal imaging system. The contrast and resolution of the restored image is significantly improved with the Laplacian sum (LS) from 0.0785 to 0.1480 and gray mean grads (GMG) from 0.0165 to 0.0306.

  1. Ergodic capacity comparison of optical wireless communications using adaptive transmissions.

    Hassan, Md Zoheb; Hossain, Md Jahangir; Cheng, Julian

    2013-08-26

    Ergodic capacity is investigated for the optical wireless communications employing subcarrier intensity modulation with direct detection, and coherent systems with and without polarization multiplexing over the Gamma-Gamma turbulence channels. We consider three different adaptive transmission schemes: (i) variable-power, variable-rate adaptive transmission, (ii) complete channel inversion with fixed rate, and (iii) truncated channel inversion with fixed rate. For the considered systems, highly accurate series expressions for ergodic capacity are derived using a series expansion of the modified Bessel function and the Mellin transformation of the Gamma-Gamma random variable. Our asymptotic analysis reveals that the high SNR ergodic capacities of coherent, subcarrier intensity modulated, and polarization multiplexing systems gain 0.33 bits/s/Hz, 0.66 bits/s/Hz, and 0.66 bits/s/Hz respectively with 1 dB increase of average transmitted optical power. Numerical results indicate that a polarization control error less than 10° has little influence on the capacity performance of polarization multiplexing systems. PMID:24105580

  2. Adaptive Optics Imaging Survey of Luminous Infrared Galaxies

    Laag, E A; Canalizo, G; van Breugel, W; Gates, E L; de Vries, W; Stanford, S A

    2006-03-13

    We present high resolution imaging observations of a sample of previously unidentified far-infrared galaxies at z < 0.3. The objects were selected by cross-correlating the IRAS Faint Source Catalog with the VLA FIRST catalog and the HST Guide Star Catalog to allow for adaptive optics observations. We found two new ULIGs (with L{sub FIR} {ge} 10{sup 12} L{sub {circle_dot}}) and 19 new LIGs (with L{sub FIR} {ge} 10{sup 11} L{sub {circle_dot}}). Twenty of the galaxies in the sample were imaged with either the Lick or Keck adaptive optics systems in H or K{prime}. Galaxy morphologies were determined using the two dimensional fitting program GALFIT and the residuals examined to look for interesting structure. The morphologies reveal that at least 30% are involved in tidal interactions, with 20% being clear mergers. An additional 50% show signs of possible interaction. Line ratios were used to determine powering mechanism; of the 17 objects in the sample showing clear emission lines--four are active galactic nuclei and seven are starburst galaxies. The rest exhibit a combination of both phenomena.

  3. Non-iterative adaptive optical microscopy using wavefront sensing

    Tao, X.; Azucena, O.; Kubby, J.

    2016-03-01

    This paper will review the development of wide-field and confocal microscopes with wavefront sensing and adaptive optics for correcting refractive aberrations and compensating scattering when imaging through thick tissues (Drosophila embryos and mouse brain tissue). To make wavefront measurements in biological specimens we have modified the laser guide-star techniques used in astronomy for measuring wavefront aberrations that occur as star light passes through Earth's turbulent atmosphere. Here sodium atoms in Earth's mesosphere, at an altitude of 95 km, are excited to fluoresce at resonance by a high-power sodium laser. The fluorescent light creates a guide-star reference beacon at the top of the atmosphere that can be used for measuring wavefront aberrations that occur as the light passes through the atmosphere. We have developed a related approach for making wavefront measurements in biological specimens using cellular structures labeled with fluorescent proteins as laser guide-stars. An example is a fluorescently labeled centrosome in a fruit fly embryo or neurons and dendrites in mouse brains. Using adaptive optical microscopy we show that the Strehl ratio, the ratio of the peak intensity of an aberrated point source relative to the diffraction limited image, can be improved by an order of magnitude when imaging deeply into live dynamic specimens, enabling near diffraction limited deep tissue imaging.

  4. AVES: an adaptive optics visual echelle spectrograph for the VLT

    Pasquini, Luca; Delabre, Bernard; Avila, Gerardo; Bonaccini, Domenico

    1998-07-01

    We present the preliminary study of a low cost, high performance spectrograph for the VLT, for observations in the V, R and I bands. This spectrograph is meant for intermediate (R equals 16,000) resolution spectroscopy of faint (sky and/or detector limited) sources, with particular emphasis on the study of solar-type (F-G) stars belonging to the nearest galaxies and to distant (or highly reddened) galactic clusters. The spectrograph is designed to use the adaptive optics (AO) systems at the VLT Telescope. Even if these AO systems will not provide diffraction limited images in the V, R and I bands, the photon concentration will still be above approximately 60% of the flux in an 0.3 arcsecond aperture for typical Paranal conditions. This makes the construction of a compact, cheap and efficient echelle spectrograph possible. AVES will outperform comparable non adaptive optic instruments by more than one magnitude for sky- and/or detector-limited observations, and it will be very suitable for observations in crowded fields.

  5. Adaptive distributed Kalman filtering with wind estimation for astronomical adaptive optics.

    Massioni, Paolo; Gilles, Luc; Ellerbroek, Brent

    2015-12-01

    In the framework of adaptive optics (AO) for astronomy, it is a common assumption to consider the atmospheric turbulent layers as "frozen flows" sliding according to the wind velocity profile. For this reason, having knowledge of such a velocity profile is beneficial in terms of AO control system performance. In this paper we show that it is possible to exploit the phase estimate from a Kalman filter running on an AO system in order to estimate wind velocity. This allows the update of the Kalman filter itself with such knowledge, making it adaptive. We have implemented such an adaptive controller based on the distributed version of the Kalman filter, for a realistic simulation of a multi-conjugate AO system with laser guide stars on a 30 m telescope. Simulation results show that this approach is effective and promising and the additional computational cost with respect to the distributed filter is negligible. Comparisons with a previously published slope detection and ranging wind profiler are made and the impact of turbulence profile quantization is assessed. One of the main findings of the paper is that all flavors of the adaptive distributed Kalman filter are impacted more significantly by turbulence profile quantization than the static minimum mean square estimator which does not incorporate wind profile information. PMID:26831389

  6. Multi-modal adaptive optics system including fundus photography and optical coherence tomography for the clinical setting.

    Salas, Matthias; Drexler, Wolfgang; Levecq, Xavier; Lamory, Barbara; Ritter, Markus; Prager, Sonja; Hafner, Julia; Schmidt-Erfurth, Ursula; Pircher, Michael

    2016-05-01

    We present a new compact multi-modal imaging prototype that combines an adaptive optics (AO) fundus camera with AO-optical coherence tomography (OCT) in a single instrument. The prototype allows acquiring AO fundus images with a field of view of 4°x4° and with a frame rate of 10fps. The exposure time of a single image is 10 ms. The short exposure time results in nearly motion artifact-free high resolution images of the retina. The AO-OCT mode allows acquiring volumetric data of the retina at 200kHz A-scan rate with a transverse resolution of ~4 µm and an axial resolution of ~5 µm. OCT imaging is acquired within a field of view of 2°x2° located at the central part of the AO fundus image. Recording of OCT volume data takes 0.8 seconds. The performance of the new system is tested in healthy volunteers and patients with retinal diseases. PMID:27231621

  7. Multi-modal adaptive optics system including fundus photography and optical coherence tomography for the clinical setting

    Salas, Matthias; Drexler, Wolfgang; Levecq, Xavier; Lamory, Barbara; Ritter, Markus; Prager, Sonja; Hafner, Julia; Schmidt-Erfurth, Ursula; Pircher, Michael

    2016-01-01

    We present a new compact multi-modal imaging prototype that combines an adaptive optics (AO) fundus camera with AO-optical coherence tomography (OCT) in a single instrument. The prototype allows acquiring AO fundus images with a field of view of 4°x4° and with a frame rate of 10fps. The exposure time of a single image is 10 ms. The short exposure time results in nearly motion artifact-free high resolution images of the retina. The AO-OCT mode allows acquiring volumetric data of the retina at 200kHz A-scan rate with a transverse resolution of ~4 µm and an axial resolution of ~5 µm. OCT imaging is acquired within a field of view of 2°x2° located at the central part of the AO fundus image. Recording of OCT volume data takes 0.8 seconds. The performance of the new system is tested in healthy volunteers and patients with retinal diseases.

  8. Retrieval of Aerosol Optical Depth over Land using two-angle view Satellite Radiometry during TARFOX

    Veefkind, J.P.; Leeuw, G. de; Durkee, P.H.

    1998-01-01

    A new aerosol optical depth retrieval algorithm is presented that uses the two-angle view capability of the Along Track Scanning Radiometer 2 (ATSR-2). By combining the two-angle view and the spectral information this so-called dual view algorithm separates between aerosol and surface contributions

  9. The adaptation of methods in multilayer optics for the calculation of specular neutron reflection

    The adaptation of standard methods in multilayer optics to the calculation of specular neutron reflection is described. Their application is illustrated with examples which include a glass optical flat and a deuterated Langmuir-Blodgett film. (author)

  10. Adaptive Optics Observations of Exoplanets, Brown Dwarfs, & Binary Stars

    Hinkley, Sasha

    2011-01-01

    The current direct observations of brown dwarfs and exoplanets have been obtained using instruments not specifically designed for overcoming the large contrast ratio between the host star and any wide-separation faint companions. However, we are about to witness the birth of several new dedicated observing platforms specifically geared towards high contrast imaging of these objects. The Gemini Planet Imager, VLT-SPHERE, Subaru HiCIAO, and Project 1640 at the Palomar 5m telescope will return images of numerous exoplanets and brown dwarfs over hundreds of observing nights in the next five years. Along with diffraction-limited coronagraphs and high-order adaptive optics, these instruments also will return spectral and polarimetric information on any discovered targets, giving clues to their atmospheric compositions and characteristics. Such spectral characterization will be key to forming a detailed theory of comparative exoplanetary science which will be widely applicable to both exoplanets and brown dwarfs. Fu...

  11. Kalman filtering to suppress spurious signals in Adaptive Optics control

    Poyneer, L; Veran, J P

    2010-03-29

    In many scenarios, an Adaptive Optics (AO) control system operates in the presence of temporally non-white noise. We use a Kalman filter with a state space formulation that allows suppression of this colored noise, hence improving residual error over the case where the noise is assumed to be white. We demonstrate the effectiveness of this new filter in the case of the estimated Gemini Planet Imager tip-tilt environment, where there are both common-path and non-common path vibrations. We discuss how this same framework can also be used to suppress spatial aliasing during predictive wavefront control assuming frozen flow in a low-order AO system without a spatially filtered wavefront sensor, and present experimental measurements from Altair that clearly reveal these aliased components.

  12. Multiple Object Adaptive Optics: Mixed NGS/LGS tomography

    Morris, Tim; Gendron, Eric; Basden, Alastair; Martin, Olivier; Osborn, James; Henry, David; Hubert, Zoltan; Sivo, Gaetano; Gratadour, Damien; Chemla, Fanny; Sevin, Arnaud; Cohen, Matthieu; Younger, Eddy; Vidal, Fabrice; Wilson, Richard; Batterley, Tim; Bitenc, Urban; Reeves, Andrew; Bharmal, Nazim; Raynaud, Henri-François; Kulcsar, Caroline; Conan, Jean-Marc; Guzman, Dani; De Cos Juez, Javier; Huet, Jean-Michel; Perret, Denis; Dickson, Colin; Atkinson, David; Baillie, Tom; Longmore, Andy; Todd, Stephen; Talbot, Gordon; Morris, Simon; Myers, Richard; Rousset, Gérard

    2013-12-01

    Open-loop adaptive optics has been successfully demonstrated on-sky by several groups, including the fully tomographic MOAO demonstration made using CANARY. MOAO instrumentation such as RAVEN will deliver the first astronomical science and other planned instruments aim to extend both open-loop AO performance and the number of corrected fields. Many of these planned systems rely on the use of tomographic open-loop LGS wavefront sensing. Here we present results from the combined NGS/LGS tomographic CANARY system and then compare the NGS- and LGS-based tomographic system performance. We identify the major system performance drivers, and highlight some potential routes for further exploitation of open-loop tomographic AO.

  13. Proposed adaptive optics system for Vainu Bappu Telescope

    Saxena, A. K.; Chinnappan, V.; Lancelot, J. P.

    It is known that the atmospheric turbulence spreads the star image as produced by the medium and large size optical telescopes by many orders resulting in reduction in the resolution of these telescopes. Adaptive optics system can partially or substantially sharpen the image thus improving the resolution and throughput of these telescopes. The atmospheric degradation can be effectively represented by Fried's parameter. We have measured Fried's parameter at very short intervals using speckle interferometer at VBT. Based on this input, an on-line wavefront error measurement and correction system was developed and tested in the laboratory. Low cost, high speed wavefront sensor using CMOS imager and Shack-Hartman lenslet array was developed and tested in the laboratory which could be used for on-line correction experiments. The wavefront errors are computed in terms of Zernike coefficients. MEMS based adaptive mirror with 37 actuators was used for the correction of higher order aberrations. Finite element analysis was carried out to know the mechanical properties and the influence function of the mirror. In-house developed Long Trace Profilometer was used to measure the surface produced by the mirror for various combination of actuator voltages and gave good insight about the behaviour of the mirror. An aberrated wavefront was captured by the wave-front sensor and the computed Zernike polynomials were used for correction of the wavefront. It is found that the peak intensity has increased about 3.8 times with reduction in size of the image. Now, the plan is to make a version that can be mounted at the cassegrain focus of the telescope. Here we deal with the low cost approach used in design; new algorithms developed for wavefront error computation from noisy data, speed optimization and related issues and the interface problems for using the system in the telescope.

  14. Optic for an endoscope/borescope having high resolution and narrow field of view

    Stone, Gary F.; Trebes, James E.

    2003-10-28

    An optic having optimized high spatial resolution, minimal nonlinear magnification distortion while at the same time having a limited chromatic focal shift or chromatic aberrations. The optic located at the distal end of an endoscopic inspection tool permits a high resolution, narrow field of view image for medical diagnostic applications, compared to conventional optics for endoscopic instruments which provide a wide field of view, low resolution image. The image coverage is over a narrow (optical distortion (optic is also optimized for best color correction as well as to aid medical diagnostics.

  15. Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation

    Huang, Jian; Mei, Haiping; Deng, Ke; Kang, Li; Zhu, Wenyue; Yao, Zhoushi

    2015-12-01

    Designing and evaluating the adaptive optics system for coherent optical communication link through atmosphere requires to distinguish the effects of the residual wavefront and disturbed amplitude to the signal to noise ratio. Based on the new definition of coherent efficiency, a formula of signal to noise ratio for describing the performance of coherent optical communication link after wavefront compensation is derived in the form of amplitude non-uniformity and wavefront error separated. A beam quality metric is deduced mathematically to evaluate the effect of disturbed amplitude to the signal to noise ratio. Experimental results show that the amplitude fluctuation on the receiver aperture may reduce the signal to noise ratio about 24% on average when Fried coherent length r0=16 cm.

  16. Compact MEMS-based Adaptive Optics Optical Coherence Tomography for Clinical Use

    Chen, D; Olivier, S; Jones, S; Zawadzki, R; Evans, J; Choi, S; Werner, J

    2008-02-04

    We describe a compact MEMS-based adaptive optics (AO) optical coherence tomography system with improved AO performance and ease of clinical use. A typical AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror that measures and corrects the ocular and system aberrations. Because of the limitation on the current deformable mirror technologies, the amount of real-time ocular-aberration compensation is restricted and small in the previous AO-OCT instruments. In this instrument, we proposed to add an optical apparatus to correct the spectacle aberrations of the patients such as myopia, hyperopia and astigmatism. This eliminated the tedious process of the trial lenses in clinical imaging. Different amount of spectacle aberration compensation was achieved by motorized stages and automated with the AO computer for ease of clinical use. In addition, the compact AO-OCT was optimized to have minimum system aberrations to reduce AO registration errors and improve AO performance.

  17. 4th International Workshop on Adaptive Optics for Industry and Medicine

    Wittrock, Ulrich

    2005-01-01

    This book treats the development and application of adaptive optics for industry and medicine. The contributions describe recently developed components for adaptive-optics systems such as deformable mirrors, wavefront sensors, and mirror drivers as well as complete adaptive optical systems and their applications in industry and medicine. Applications range from laser-beam forming and adaptive aberration correction for high-power lasers to retinal imaging in ophthalmology. The contributions are based on presentations made at the 4th International Workshop on Adaptive Optics in Industry and Medicine which took place in Münster, Germany, in October 2003. This highly successful series of workshops on adaptive optics started in 1997 and continues with the 5th workshop in Beijing in 2005.

  18. Augmenting reality in Direct View Optical (DVO) overlay applications

    Hogan, Tim; Edwards, Tim

    2014-06-01

    The integration of overlay displays into rifle scopes can transform precision Direct View Optical (DVO) sights into intelligent interactive fire-control systems. Overlay displays can provide ballistic solutions within the sight for dramatically improved targeting, can fuse sensor video to extend targeting into nighttime or dirty battlefield conditions, and can overlay complex situational awareness information over the real-world scene. High brightness overlay solutions for dismounted soldier applications have previously been hindered by excessive power consumption, weight and bulk making them unsuitable for man-portable, battery powered applications. This paper describes the advancements and capabilities of a high brightness, ultra-low power text and graphics overlay display module developed specifically for integration into DVO weapon sight applications. Central to the overlay display module was the development of a new general purpose low power graphics controller and dual-path display driver electronics. The graphics controller interface is a simple 2-wire RS-232 serial interface compatible with existing weapon systems such as the IBEAM ballistic computer and the RULR and STORM laser rangefinders (LRF). The module features include multiple graphics layers, user configurable fonts and icons, and parameterized vector rendering, making it suitable for general purpose DVO overlay applications. The module is configured for graphics-only operation for daytime use and overlays graphics with video for nighttime applications. The miniature footprint and ultra-low power consumption of the module enables a new generation of intelligent DVO systems and has been implemented for resolutions from VGA to SXGA, in monochrome and color, and in graphics applications with and without sensor video.

  19. Adaptive optics scanning laser ophthalmoscope imaging: technology update

    Merino D

    2016-04-01

    Full Text Available David Merino, Pablo Loza-Alvarez The Institute of Photonic Sciences (ICFO, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain Abstract: Adaptive optics (AO retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it. Keywords: high-resolution, in vivo retinal imaging, AOSLO

  20. Adaptive optics scanning laser ophthalmoscope imaging: technology update

    Merino, David; Loza-Alvarez, Pablo

    2016-01-01

    Adaptive optics (AO) retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it. PMID:27175057

  1. The Inner Kiloparsec of Mrk 273 with Keck Adaptive Optics

    Vivian, U; Sanders, David; Max, Claire; Armus, Lee; Iwasawa, Kazushi; Evans, Aaron; Kewley, Lisa; Fazio, Giovanni

    2013-01-01

    There is X-ray, optical, and mid-infrared imaging and spectroscopic evidence that the late-stage ultraluminous infrared galaxy merger Mrk 273 hosts a powerful active galactic nucleus (AGN). However, the exact location of the AGN and the nature of the nuclei have been difficult to determine due to dust obscuration and the limited wavelength coverage of available high-resolution data. Here we present near-infrared integral-field spectra and images of the nuclear region of Mrk 273 taken with OSIRIS and NIRC2 on the Keck II Telescope with laser guide star adaptive optics. We observe three spatially resolved components, and analyze the local molecular and ionized gas emission lines and their kinematics. We confirm the presence of the hard X-ray AGN in the southwest nucleus. In the north nucleus, we find a strongly rotating gas disk whose kinematics indicate a central black hole of mass 1.04 +/- 0.1 x 10^9 Msun. The H2 emission line shows an increase in velocity dispersion along the minor axis in both directions, a...

  2. Adaptive optics ophthalmologic systems using dual deformable mirrors

    Jones, S; Olivier, S; Chen, D; Sadda, S; Joeres, S; Zawadzki, R; Werner, J S; Miller, D

    2007-02-01

    Adaptive Optics (AO) have been increasingly combined with a variety of ophthalmic instruments over the last decade to provide cellular-level, in-vivo images of the eye. The use of MEMS deformable mirrors in these instruments has recently been demonstrated to reduce system size and cost while improving performance. However, currently available MEMS mirrors lack the required range of motion for correcting large ocular aberrations, such as defocus and astigmatism. In order to address this problem, we have developed an AO system architecture that uses two deformable mirrors, in a woofer/tweeter arrangement, with a bimorph mirror as the woofer and a MEMS mirror as the tweeter. This setup provides several advantages, including extended aberration correction range, due to the large stroke of the bimorph mirror, high order aberration correction using the MEMS mirror, and additionally, the ability to ''focus'' through the retina. This AO system architecture is currently being used in four instruments, including an Optical Coherence Tomography (OCT) system and a retinal flood-illuminated imaging system at the UC Davis Medical Center, a Scanning Laser Ophthalmoscope (SLO) at the Doheny Eye Institute, and an OCT system at Indiana University. The design, operation and evaluation of this type of AO system architecture will be presented.

  3. Polymer-based micro deformable mirror for adaptive optics applications

    Zamkotsian, Frederic; Conedera, Veronique; Liotard, Arnaud; Schroeder, Andreas; Fabre, Norbert; Camon, Henri; Lanzoni, Patrick

    2005-01-01

    Next generation giant telescopes as well as next generation instrumentation for 10m-class telescopes relies on the availability of highly performing adaptive optical systems, for studying new fields like circumstellar disks and extrasolar planets. These systems require deformable mirrors with very challenging parameters, including number of actuators up to 250 000 and inter-actuator spacing around 500μm. MOEMS-based devices are promising for future deformable mirrors. However, only limited strokes for large driving voltages have been demonstrated. In order to overcome these limitations, we are currently developing a micro-deformable mirror based on an array of electrostatic actuators with attachment posts to a continuous mirror on top. The originality of our approach lies in the elaboration of a sacrificial layer and of a structural layer made of polymer materials, using low-temperature process. This process allows the realization of high optical quality mirrors on top of an actuator array made with various techniques. We have developed the first polymer piston-motion actuator in order to reach high strokes for low driving voltages: a 10μm thick mobile plate with four springs attached to the substrate, and with an air gap of 10μm exhibits a piston motion of 2μm for 30V. Preliminary comparison with FEM models show very good agreement and design of a complete polymer-based MDM looks possible.

  4. Unfit to Learn? How Long View Organizations Adapt to Environmental Jolts

    Heugens, Pursey; Zyglidopoulos, Stelios

    2007-01-01

    textabstractLong view organizations have a technical core combining high levels of Woodwardian (1958) technological complexity and Thompsonian (1967) technological intensity. This significantly diminishes their capacity for operational flexibility and strategic adaptation. Little is known about how such organizations manage to learn from rare events. We shed light on this issue by reporting a thirteen-year longitudinal study of a major oil company, tracing its experiences with a socio-politic...

  5. Multi-conjugate adaptive optics observations of the Orion Trapezium Cluster

    We obtained very deep and high spatial resolution near-infrared images of the Orion Trapezium Cluster using the Multi-Conjugate Adaptive Optics Demonstrator (MAD) instrument at the VLT. The goal of these observations has been to search for objects at the very low-mass end of the IMF down to the planetary-mass regime. Three fields in the innermost dense part of the Trapezium Cluster, with a total area of 3.5 sq.arcmin have been surveyed at 1.65μm and 2.2μm. Several new candidate planetary mass objects with potential masses Jup have been detected based on their photometry and on their location in the colour-magnitude diagram. The performance of the multi-conjugate adaptive optics correction is excellent over a large field-of-view of ∼ 1'. The final data has a spatial resolution of Jup), however, must await future confirmation by spectroscopic and/or photometric observations.

  6. Gemini multi-conjugate adaptive optics system review II: Commissioning, operation and overall performance

    Neichel, Benoit; Vidal, Fabrice; van Dam, Marcos A; Garrel, Vincent; Carrasco, Eleazar Rodrigo; Pessev, Peter; Winge, Claudia; Boccas, Maxime; d'Orgeville, Céline; Arriagada, Gustavo; Serio, Andrew; Fesquet, Vincent; Rambold, William N; Lührs, Javier; Moreno, Cristian; Gausachs, Gaston; Galvez, Ramon L; Montes, Vanessa; Vucina, Tomislav B; Marin, Eduardo; Urrutia, Cristian; Lopez, Ariel; Diggs, Sarah J; Marchant, Claudio; Ebbers, Angelic W; Trujillo, Chadwick; Bec, Matthieu; Trancho, Gelys; McGregor, Peter; Young, Peter J; Colazo, Felipe; Edwards, Michelle L

    2014-01-01

    The Gemini Multi-conjugate Adaptive Optics System - GeMS, a facility instrument mounted on the Gemini South telescope, delivers a uniform, near diffraction limited images at near infrared wavelengths (0.95 microns- 2.5 microns) over a field of view of 120 arc seconds. GeMS is the first sodium layer based multi laser guide star adaptive optics system used in astronomy. It uses five laser guide stars distributed on a 60 arc seconds square constellation to measure for atmospheric distortions and two deformable mirrors to compensate for it. In this paper, the second devoted to describe the GeMS project, we present the commissioning, overall performance and operational scheme of GeMS. Performance of each sub-system is derived from the commissioning results. The typical image quality, expressed in full with half maximum, Strehl ratios and variations over the field delivered by the system are then described. A discussion of the main contributor to performance limitation is carried-out. Finally, overheads and future ...

  7. Optical digitizing and strategies to combine different views of an optical sensor

    Duwe, Hans P.

    1997-09-01

    Non-contact digitization of objects and surfaces with optical sensors based on fringe or pattern projection in combination with a CCD-camera allows a representation of surfaces with pointclouds equals x, y, z data points. To digitize the total surface of an object, it is necessary to combine the different measurement data obtained by the optical sensor from different views. Depending on the size of the object and the required accuracy of the measured data, different sensor set-ups with handling system or a combination of linear and rotation axes are described. Furthermore, strategies to match the overlapping pointclouds of a digitized object are introduced. This is very important especially for the digitization of large objects like 1:1 car models, etc. With different sensor sizes, it is possible to digitize small objects like teeth, crowns, inlays, etc. with an overall accuracy of 20 micrometer as well as large objects like car models, with a total accuracy of 0.5 mm. The various applications in the field of optical digitization are described.

  8. Telescope with a wide field of view internal optical scanner

    Degnan, III, John James (Inventor); Zheng, Yunhui (Inventor)

    2012-01-01

    A telescope with internal scanner utilizing either a single optical wedge scanner or a dual optical wedge scanner and a controller arranged to control a synchronous rotation of the first and/or second optical wedges, the wedges constructed and arranged to scan light redirected by topological surfaces and/or volumetric scatterers. The telescope with internal scanner further incorporates a first converging optical element that receives the redirected light and transmits the redirected light to the scanner, and a second converging optical element within the light path between the first optical element and the scanner arranged to reduce an area of impact on the scanner of the beam collected by the first optical element.

  9. Experience with wavefront sensor and deformable mirror interfaces for wide-field adaptive optics systems

    Basden, A. G.; Atkinson, D.; Bharmal, N. A.; Bitenc, U.; Brangier, M.; Buey, T.; Butterley, T.; Cano, D.; Chemla, F.; Clark, P.; Cohen, M.; Conan, J.-M.; de Cos, F. J.; Dickson, C.; Dipper, N. A.; Dunlop, C. N.; Feautrier, P.; Fusco, T.; Gach, J. L.; Gendron, E.; Geng, D.; Goodsell, S. J.; Gratadour, D.; Greenaway, A. H.; Guesalaga, A.; Guzman, C. D.; Henry, D.; Holck, D.; Hubert, Z.; Huet, J. M.; Kellerer, A.; Kulcsar, C.; Laporte, P.; Le Roux, B.; Looker, N.; Longmore, A. J.; Marteaud, M.; Martin, O.; Meimon, S.; Morel, C.; Morris, T. J.; Myers, R. M.; Osborn, J.; Perret, D.; Petit, C.; Raynaud, H.; Reeves, A. P.; Rousset, G.; Sanchez Lasheras, F.; Sanchez Rodriguez, M.; Santos, J. D.; Sevin, A.; Sivo, G.; Stadler, E.; Stobie, B.; Talbot, G.; Todd, S.; Vidal, F.; Younger, E. J.

    2016-06-01

    Recent advances in adaptive optics (AO) have led to the implementation of wide field-of-view AO systems. A number of wide-field AO systems are also planned for the forthcoming Extremely Large Telescopes. Such systems have multiple wavefront sensors of different types, and usually multiple deformable mirrors (DMs). Here, we report on our experience integrating cameras and DMs with the real-time control systems of two wide-field AO systems. These are CANARY, which has been operating on-sky since 2010, and DRAGON, which is a laboratory AO real-time demonstrator instrument. We detail the issues and difficulties that arose, along with the solutions we developed. We also provide recommendations for consideration when developing future wide-field AO systems.

  10. Further considerations on layer-oriented adaptive optics for solar telescopes

    Kellerer, Aglae

    2014-01-01

    The future generation of telescopes will be equipped with multi-conjugate adaptive optical (MCAO) systems in order to obtain high angular resolution within large fields of view. MCAO comes in two flavors: star- and layer-oriented. Existing solar MCAO systems rely exclusively on the star-oriented approach. Earlier we have suggested a method to implement the layer-oriented approach, and in view of recent concerns we now explain the proposed scheme in further detail. We note that in any layer-oriented system, one sensor is conjugated to the pupil and the others are conjugated to higher altitudes. For the latter the sensing surface is illuminated by only part of the field-of-view. Nighttime layer-oriented systems correct for this field reduction in terms of the pyramid sensors, which indicate the phase shift directly. Their successful implementation shows that the field reduction is no crucial limitation. In the solar approach the images recorded behind the Shack-Hartmann sub-apertures are vignetted due to the fi...

  11. Application of a photorefractive bismuth titanate crystal for the construction of adaptive fiber optic seismic receivers

    The possibility of using a photorefractive Bi12TiO20 crystal to create an adaptive fiber optic geophone has been studied. It is shown that this crystal provides efficient phase demodulation in and adaptive interferometer scheme at low optical powers

  12. Handling complex adaptive optics concepts including the third and fourth dimensions

    Dima, Marco; Viotto, Valentina; Arcidiacono, Carmelo; Bergomi, Maria; Brunelli, Alessandro; Farinato, Jacopo; Gentile, Giorgia; Magrin, Demetrio; Ragazzoni, Roberto; Satta, Antonello

    2010-07-01

    Adaptive Optics (AO) concepts involve sometimes very complex behaviors of rays, waves and optical elements. Just think, to be convinced, the way multiple probes aim to correct for a large field of view Multi Conjugated AO, and to how these deploy onto a dynamic turbulent atmosphere. In order to explain the behavior of novel concepts we developed visualization techniques that involve the display of three dimensional images and the creation of movies to explain how the concept deals with an evolving situation, or, in other words, adding the fourth dimension of time. We produce solid models of the optical concepts we are developing, including the evolving temporal behavior of the turbulence, and these can be manipulated in a virtual manner in order to allow for the production of different means of visualization. These ranges from so called "static movies" where a three dimensional concept is just explored in three dimension by handling it around the observer, to the creation of three dimensional anaglyphs or anaglyphs movies. While the paper is mainly focused onto the ways these techniques are exploited in order to produce satisfactory results, the poster allow the visitor to experience some of these images and movies. The aim of this work is not only of a sort of high level didactical purpose, but we think it would be useful into scientific discussion and during meeting to develop engineering concepts of several AO concepts.

  13. High resolution adaptive optics imaging complements standard spectral domain optical coherent tomography in retinal diseases with micro-structural details: a case series

    Gibran Syed Khurshid

    2016-01-01

    Full Text Available Purpose: To evaluate if high resolution adaptive optics confocal scanning laser ophthalmoscopy (AO-SLO can be used as an adjunct complementary diagnostic tool to spectral domain optical coherent tomography (SD-OCT in characterizing three macular diseases: rod-cone dystrophy, acute retinal pigment epitheliitis (Krill’s disease, and occult macular dystrophy. Methods: As part of a complete clinical examination, each patient was subjected to color fundus pictures, multimodal imaging scans with Heidelberg SpectralisTM and high resolution retinal images with a custom built adaptive optics scanning laser ophthalmolscope (AO-SLO. The registered AO-SLO images were averaged to improve the signal to noise ratio and used to generate larger photoreceptor mosaics. Results: AO-SLO mosaics for all three conditions showed distinct, characteristic disruptions of the photoreceptors in areas that corresponded to the abnormalities observed on fundus photography and SD-OCT scans. Conclusions: AO-SLO defined fine structural changes associated with retinal pathology at the photoreceptor level that could not be achieved using standard diagnostic methods. A combination of adaptive optics scanning laser ophthalmoscopy (AO-SLO and SD-OCT provided views of the retina with enhanced lateral and axial resolution. High-resolution, ultra-structural details of the retina may provide additional insights into the disease etiology, progression and management of patients with vision threatening macular diseases.

  14. Status Update and Closed-Loop Performance of the Magellan Adaptive Optics VisAO Camera

    Kopon, Derek; Close, Laird M.; Males, Jared; Gasho, Victor; Morzinski, Katie; Follette, Katherine

    2014-01-01

    We present laboratory results of the closed-loop performance of the Magellan Adaptive Optics (AO) Adaptive Secondary Mirror (ASM), pyramid wavefront sensor (PWFS), and VisAO visible adaptive optics camera. The Magellan AO system is a 585-actuator low-emissivity high-throughput system scheduled for first light on the 6.5 meter Magellan Clay telescope in November 2012. Using a dichroic beamsplitter near the telescope focal plane, the AO system will be able to simultaneously perform visible (500...

  15. Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems

    Wu, Zhizheng; Ben Amara, Foued

    2013-01-01

    Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems presents a novel design of wavefront correctors based on magnetic fluid deformable mirrors (MFDM) as well as corresponding control algorithms. The presented wavefront correctors are characterized by their linear, dynamic response. Various mirror surface shape control algorithms are presented along with experimental evaluations of the performance of the resulting adaptive optics systems. Adaptive optics (AO) systems are used in various fields of application to enhance the performance of optical systems, such as imaging, laser, free space optical communication systems, etc. This book is intended for undergraduate and graduate students, professors, engineers, scientists and researchers working on the design of adaptive optics systems and their various emerging fields of application. Zhizheng Wu is an associate professor at Shanghai University, China. Azhar Iqbal is a research associate at the University of Toronto, Canada. Foue...

  16. Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography.

    Xu, Yang; Liu, Yuan-Zhi; Boppart, Stephen A; Carney, P Scott

    2016-03-10

    In this paper, we introduce an algorithm framework for the automation of interferometric synthetic aperture microscopy (ISAM). Under this framework, common processing steps such as dispersion correction, Fourier domain resampling, and computational adaptive optics aberration correction are carried out as metrics-assisted parameter search problems. We further present the results of this algorithm applied to phantom and biological tissue samples and compare with manually adjusted results. With the automated algorithm, near-optimal ISAM reconstruction can be achieved without manual adjustment. At the same time, the technical barrier for the nonexpert using ISAM imaging is also significantly lowered. PMID:26974799

  17. A Reflective Gaussian Coronagraph for Extreme Adaptive Optics: Laboratory Performance

    Park, Ryeojin; Close, Laird M.; Siegler, Nick; Nielsen, Eric L.; Stalcup, Thomas

    2006-11-01

    We report laboratory results of a coronagraphic test bench to assess the intensity reduction differences between a ``Gaussian'' tapered focal plane coronagraphic mask and a classical hard-edged ``top hat'' function mask at extreme adaptive optics (ExAO) Strehl ratios of ~94%. However, unlike a traditional coronagraph design, we insert a reflective focal plane mask at 45° to the optical axis. We also use an intermediate secondary mask (mask 2) before a final image in order to block additional mask-edge-diffracted light. The test bench simulates the optical train of ground-based telescopes (in particular, the 8.1 m Gemini North Telescope). It includes one spider vane, different mask radii (r = 1.9λ/D, 3.7λ/D, and 7.4λ/D), and two types of reflective focal plane masks (hard-edged top-hat and Gaussian tapered profiles). In order to investigate the relative performance of these competing coronagraphic designs with regard to extrasolar planet detection sensitivity, we utilize the simulation of realistic extrasolar planet populations (Nielsen et al.). With an appropriate translation of our laboratory results to expected telescope performance, a Gaussian tapered mask radius of 3.7λ/D with an additional mask (mask 2) performs best (highest planet detection sensitivity). For a full survey with this optimal design, the simulation predicts that ~30% more planets would be detected than with a top-hat function mask of similar size with mask 2. Using the best design, the point contrast ratio between the stellar point-spread function (PSF) peak and the coronagraphic PSF at 10λ/D (0.4" in the H band if D = 8.1 m) is ~10 times higher than a classical Lyot top-hat coronagraph. Hence, we find that a Gaussian apodized mask with an additional blocking mask is superior (~10 times higher contrast) to the use of a classical Lyot coronagraph for ExAO-like Strehl ratios.

  18. Focusing adaptive-optics for neutron spectroscopy at extreme conditions

    Simeoni, G. G.; Valicu, R. G.; Borchert, G.; Böni, P.; Rasmussen, N. G.; Yang, F.; Kordel, T.; Holland-Moritz, D.; Kargl, F.; Meyer, A.

    2015-12-01

    Neutron Spectroscopy employing extreme-conditions sample environments is nowadays a crucial tool for the understanding of fundamental scientific questions as well as for the investigation of materials and chemical-physical properties. For all these kinds of studies, an increased neutron flux over a small sample area is needed. The prototype of a focusing neutron guide component, developed and produced completely at the neutron source FRM II in Garching (Germany), has been installed at the time-of-flight (TOF) disc-chopper neutron spectrometer TOFTOF and came into routine-operation. The design is based on the compressed Archimedes' mirror concept for finite-size divergent sources. It represents a unique device combining the supermirror technology with Adaptive Optics, suitable for broad-bandwidth thermal-cold TOF neutron spectroscopy (here optimized for 1.4-10 Å). It is able to squeeze the beam cross section down to a square centimeter, with a more than doubled signal-to-background ratio, increased efficiency at high scattering angles, and improved symmetry of the elastic resolution function. We present a comparison between the simulated and measured beam cross sections, as well as the performance of the instrument within real experiments. This work intends to show the unprecedented opportunities achievable at already existing instruments, along with useful guidelines for the design and construction of next-generation neutron spectrometers.

  19. Adaptive optics images. III. 87 Kepler objects of interest

    Dressing, Courtney D.; Dupree, Andrea K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Adams, Elisabeth R. [Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, AZ 85719 (United States); Kulesa, Craig; McCarthy, Don, E-mail: cdressing@cfa.harvard.edu [Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2014-11-01

    The Kepler mission has revolutionized our understanding of exoplanets, but some of the planet candidates identified by Kepler may actually be astrophysical false positives or planets whose transit depths are diluted by the presence of another star. Adaptive optics images made with ARIES at the MMT of 87 Kepler Objects of Interest place limits on the presence of fainter stars in or near the Kepler aperture. We detected visual companions within 1'' for 5 stars, between 1'' and 2'' for 7 stars, and between 2'' and 4'' for 15 stars. For those systems, we estimate the brightness of companion stars in the Kepler bandpass and provide approximate corrections to the radii of associated planet candidates due to the extra light in the aperture. For all stars observed, we report detection limits on the presence of nearby stars. ARIES is typically sensitive to stars approximately 5.3 Ks magnitudes fainter than the target star within 1'' and approximately 5.7 Ks magnitudes fainter within 2'', but can detect stars as faint as ΔKs = 7.5 under ideal conditions.

  20. Focusing adaptive-optics for neutron spectroscopy at extreme conditions

    Neutron Spectroscopy employing extreme-conditions sample environments is nowadays a crucial tool for the understanding of fundamental scientific questions as well as for the investigation of materials and chemical-physical properties. For all these kinds of studies, an increased neutron flux over a small sample area is needed. The prototype of a focusing neutron guide component, developed and produced completely at the neutron source FRM II in Garching (Germany), has been installed at the time-of-flight (TOF) disc-chopper neutron spectrometer TOFTOF and came into routine-operation. The design is based on the compressed Archimedes' mirror concept for finite-size divergent sources. It represents a unique device combining the supermirror technology with Adaptive Optics, suitable for broad-bandwidth thermal-cold TOF neutron spectroscopy (here optimized for 1.4–10 Å). It is able to squeeze the beam cross section down to a square centimeter, with a more than doubled signal-to-background ratio, increased efficiency at high scattering angles, and improved symmetry of the elastic resolution function. We present a comparison between the simulated and measured beam cross sections, as well as the performance of the instrument within real experiments. This work intends to show the unprecedented opportunities achievable at already existing instruments, along with useful guidelines for the design and construction of next-generation neutron spectrometers

  1. Micron narrowband adaptive optics imaging in the arches cluster

    Blum, R D; Pasquali, A; Heydari-Malayeri, M; Conti, P S; Schmutz, W

    2001-01-01

    Canada-France-Hawaii-Telescope adaptive optics bonnette images through narrow-band filters in the $K-$band are presented for the Arches cluster. Continuum fluxes, line fluxes, and equivalent widths are derived from high angular resolution images, some near diffraction limited, for the well known massive stars in the Arches cluster. Images were obtained in the lines of \\ion{He}{1} 2.06 \\mic, \\ion{H}{1} Br$\\gamma$ (2.17 \\mic), and \\ion{He}{2} 2.19 \\mic as well as continuum positions at 2.03 \\mic, 2.14 \\mic, and 2.26 \\mic. In addition, fluxes are presented for \\ion{H}{1} P$\\alpha$ (1.87 \\mic) and a nearby continuum position (1.90 \\mic) from Hubble Space Telescope archival data. The 2 \\mic and P$\\alpha$ data reveal two new emission-line stars and three fainter candidate emission-line objects. Indications for a spectral change of one object between earlier observations in 1992/1993 and our data from 1999 are found. The ratio of \\ion{He}{2} 2.19 \\mic to Br$\\gamma$ emission exhibits a narrow distribution among the s...

  2. Adaptive optics for ultra short pulsed lasers in UHV environment

    Deneuville, Francois; Ropert, Laurent; Sauvageot, Paul; Theis, Sébastien

    2015-02-01

    ISP SYSTEM has developed an electro-mechanical deformable mirror compatible with Ultra High Vacuum environment, suitable for ultra short pulsed lasers. The design of the MD-AME deformable mirror is based on force application on numerous locations. μ-AME actuators are driven by stepper motors, and their patented special design allows controlling the force with a very high accuracy. Materials and assembly method have been adapted to UHV constraints and the performances were evaluated on a first application for a beam with a diameter of 250mm. A Strehl ratio above 0.9 was reached for this application. Optical aberrations up to Zernike order 5 can be corrected with a very low residual error as for standard MD-AME mirror. Amplitude can reach up to several hundreds of μm for low order corrections. Hysteresis is lower than 0.1% and linearity better than 99%. Contrary to piezo-electric actuators, the μ-AME actuators avoid print-through effects and they permit to keep the mirror shape stable even unpowered, providing a high resistance to electro-magnetic pulses. The deformable mirror design allows changing easily an actuator or even the membrane if needed, in order to improve the facility availability. They are designed for circular, square or elliptical aperture from 30mm up to 500mm or more, with incidence angle from 0° to 45°. They can be equipped with passive or active cooling for high power lasers with high repetition rate.

  3. Adaptive Optics Images of Kepler Objects of Interest

    Adams, Elisabeth R; Dupree, Andrea K; Gautier, T Nick; Kulesa, Craig; McCarthy, Don

    2012-01-01

    All transiting planets are at risk of contamination by blends with nearby, unresolved stars. Blends dilute the transit signal, causing the planet to appear smaller than it really is, or produce a false positive detection when the target star is blended with eclipsing binary stars. This paper reports on high spatial-resolution adaptive optics images of 90 Kepler planetary candidates. Companion stars are detected as close as 0.1 arcsec from the target star. Images were taken in the near-infrared (J and Ks bands) with ARIES on the MMT and PHARO on the Palomar Hale 200-inch. Most objects (60%) have at least one star within 6 arcsec separation and a magnitude difference of 9. Eighteen objects (20%) have at least one companion within 2 arcsec of the target star; 6 companions (7%) are closer than 0.5 arcsec. Most of these companions were previously unknown, and the associated planetary candidates should receive additional scrutiny. Limits are placed on the presence of additional companions for every system observed,...

  4. Focusing adaptive-optics for neutron spectroscopy at extreme conditions

    Simeoni, G. G., E-mail: ggsimeoni@outlook.com [Heinz Maier-Leibnitz Zentrum (MLZ), FRM II, Technical University of Munich, D-85748 Garching (Germany); Physics Department E13, Technical University of Munich, D-85748 Garching (Germany); Valicu, R. G. [Heinz Maier-Leibnitz Zentrum (MLZ), FRM II, Technical University of Munich, D-85748 Garching (Germany); Physics Department E13, Technical University of Munich, D-85748 Garching (Germany); Physics Department E21, Technical University of Munich, D-85748 Garching (Germany); Borchert, G. [Heinz Maier-Leibnitz Zentrum (MLZ), FRM II, Technical University of Munich, D-85748 Garching (Germany); Böni, P. [Physics Department E21, Technical University of Munich, D-85748 Garching (Germany); Rasmussen, N. G. [Nanoscience Center, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen (Denmark); Yang, F.; Kordel, T.; Holland-Moritz, D.; Kargl, F.; Meyer, A. [Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt, D-51170 Köln (Germany)

    2015-12-14

    Neutron Spectroscopy employing extreme-conditions sample environments is nowadays a crucial tool for the understanding of fundamental scientific questions as well as for the investigation of materials and chemical-physical properties. For all these kinds of studies, an increased neutron flux over a small sample area is needed. The prototype of a focusing neutron guide component, developed and produced completely at the neutron source FRM II in Garching (Germany), has been installed at the time-of-flight (TOF) disc-chopper neutron spectrometer TOFTOF and came into routine-operation. The design is based on the compressed Archimedes' mirror concept for finite-size divergent sources. It represents a unique device combining the supermirror technology with Adaptive Optics, suitable for broad-bandwidth thermal-cold TOF neutron spectroscopy (here optimized for 1.4–10 Å). It is able to squeeze the beam cross section down to a square centimeter, with a more than doubled signal-to-background ratio, increased efficiency at high scattering angles, and improved symmetry of the elastic resolution function. We present a comparison between the simulated and measured beam cross sections, as well as the performance of the instrument within real experiments. This work intends to show the unprecedented opportunities achievable at already existing instruments, along with useful guidelines for the design and construction of next-generation neutron spectrometers.

  5. Query-Adaptive Hash Code Ranking for Large-Scale Multi-View Visual Search.

    Liu, Xianglong; Huang, Lei; Deng, Cheng; Lang, Bo; Tao, Dacheng

    2016-10-01

    Hash-based nearest neighbor search has become attractive in many applications. However, the quantization in hashing usually degenerates the discriminative power when using Hamming distance ranking. Besides, for large-scale visual search, existing hashing methods cannot directly support the efficient search over the data with multiple sources, and while the literature has shown that adaptively incorporating complementary information from diverse sources or views can significantly boost the search performance. To address the problems, this paper proposes a novel and generic approach to building multiple hash tables with multiple views and generating fine-grained ranking results at bitwise and tablewise levels. For each hash table, a query-adaptive bitwise weighting is introduced to alleviate the quantization loss by simultaneously exploiting the quality of hash functions and their complement for nearest neighbor search. From the tablewise aspect, multiple hash tables are built for different data views as a joint index, over which a query-specific rank fusion is proposed to rerank all results from the bitwise ranking by diffusing in a graph. Comprehensive experiments on image search over three well-known benchmarks show that the proposed method achieves up to 17.11% and 20.28% performance gains on single and multiple table search over the state-of-the-art methods. PMID:27448359

  6. Optical identification of sea-mines - Gated viewing three-dimensional laser radar

    Busck, Jens

    2005-01-01

    A gated viewing high accuracy mono-static laser radar has been developed for the purpose of improving the optical underwater sea-mine identification handled by the Navy. In the final stage of the sea-mine detection, classification and identification process the Navy applies a remote operated...... vehicle for optical identification of the bottom seamine. The experimental results of the thesis indicate that replacing the conventional optical video and spotlight system applied by the Navy with the gated viewing two- and three-dimensional laser radar can improve the underwater optical sea...... three-dimensional images recorded with the gated viewing three-dimensional laser radar have never been reported. The underwater images of a low contrast target are recorded at 4-5 m range. The presented underwater images compare well with the best of the reported three-dimensional underwater optical...

  7. Are integral controllers adapted to the new era of ELT adaptive optics?

    Conan, J.-M.; Raynaud, H.-F.; Kulcsár, C.; Meimon, S.

    2011-09-01

    With ELTs we are now entering a new era in adaptive optics developments. Meeting unprecedented level of performance with incredibly complex systems implies reconsidering AO concepts at all levels, including controller design. Concentrating mainly on temporal aspects, one may wonder if integral controllers remain an adequate solution. This question is all the more important that, with ever larger degrees of freedom, one may be tempted to discard more sophisticated approaches because they are deemed too complex to implement. The respective performance of integrator versus LQG control should therefore be carefully evaluated in the ELT context. We recall for instance the impressive correction improvement brought by such controllers for the rejection of windshake and vibration components. LQG controller significantly outperforms the integrator because its disturbance rejection transfer function closely matches the energy concentration, respectively at low temporal frequencies for windshake, and around localized resonant peaks for vibrations. The application to turbulent modes should also be investigated, especially for very low spatial frequencies now explored on the huge ELT pupil. The questions addressed here are: 1/ How do integral and LQG controllers compare in terms of performance for a given sampling frequency and noise level?; 2/ Could we relax sampling frequency with LQG control?; 3/ Does a mode to mode adaptation of temporal rejection bring significant performance improvement?; 4/ Which modes particularly benefit from this fine tuning of the rejection transfer function? Based on a simplified ELT AO configuration, and through a simple analytical formulation, performance is evaluated for several control approaches. Various assumptions concerning the perturbation parameters (seeing and outer-scale value, windshake amplitude) are considered. Bode's integral theorem allows intuitive understanding of the results. Practical implementation and computation complexity

  8. Coherence gated wavefront sensorless adaptive optics for two photon excited fluorescence retinal imaging (Conference Presentation)

    Jian, Yifan; Cua, Michelle; Bonora, Stefano; Pugh, Edward N.; Zawadzki, Robert J.; Sarunic, Marinko V.

    2016-03-01

    We present a novel system for adaptive optics two photon imaging. We utilize the bandwidth of the femtosecond excitation beam to perform coherence gated imaging (OCT) of the sample. The location of the focus is directly observable in the cross sectional OCT images, and adjusted to the desired depth plane. Next, using real time volumetric OCT, we perform Wavefront Sensorless Adaptive Optics (WSAO) aberration correction using a multi-element adaptive lens capable of correcting up to 4th order Zernike polynomials. The aberration correction is performed based on an image quality metric, for example intensity. The optimization time is limited only by the OCT acquisition rate, and takes ~30s. Following aberration correction, two photon fluorescence images are acquired, and compared to results without adaptive optics correction. This technique is promising for multiphoton imaging in multi-layered, scattering samples such as eye and brain, in which traditional wavefront sensing and guide-star sensorless adaptive optics approaches may not be suitable.

  9. Adaptation of sensor morphology: an integrative view of perception from biologically inspired robotics perspective.

    Iida, Fumiya; Nurzaman, Surya G

    2016-08-01

    Sensor morphology, the morphology of a sensing mechanism which plays a role of shaping the desired response from physical stimuli from surroundings to generate signals usable as sensory information, is one of the key common aspects of sensing processes. This paper presents a structured review of researches on bioinspired sensor morphology implemented in robotic systems, and discusses the fundamental design principles. Based on literature review, we propose two key arguments: first, owing to its synthetic nature, biologically inspired robotics approach is a unique and powerful methodology to understand the role of sensor morphology and how it can evolve and adapt to its task and environment. Second, a consideration of an integrative view of perception by looking into multidisciplinary and overarching mechanisms of sensor morphology adaptation across biology and engineering enables us to extract relevant design principles that are important to extend our understanding of the unfinished concepts in sensing and perception. PMID:27499843

  10. On application of constrained receding horizon control in astronomical adaptive optics

    Konnik, Mikhail V.; De Doná, José; Welsh, James Stuart

    2012-07-01

    Control system design for adaptive optics is becoming more complex and sophisticated with increasing demands on the compensation of atmospheric turbulence. Contemporary controllers used in adaptive optics systems are optimised in the sense of a cost function (linear quadratic regulators) or to a worst case scenario (robust H∞ controllers). Prediction, to some extent, can be incorporated into the controllers using the Kalman filter and a model of the atmospheric turbulence. Despite the growing number of publications on adaptive optics control systems, only the unconstrained case is usually considered. Accounting for the physical constraints of the adaptive optics system components, such as limited actuator stroke, still represents a problem. As a possible solution, one can consider constrained receding horizon control (RHC), also known as Model Predictive Control (MPC). The ability of RHC to handle constraints and make predictions of the future control signals makes it attractive for application in astronomical adaptive optics. The main potential difficulty with the application of RHC is its heavy computational load. This paper presents preliminary results on numerical simulations of an adaptive optics system controlled by constrained RHC. In particular, the case of output disturbance rejection is considered. The results of numerical simulations are provided. Finally, methods for improving the computational performance of constrained receding horizon controllers in adaptive optics are also discussed.

  11. Formal Model for Restructuring of Object-Oriented Frameworks to Architecture Model-View-Adapter

    Santaolaya-Salgado René

    2014-04-01

    Full Text Available The restructuring of legacy code can be done for different purposes, among which is the migration to new technologies that facilitate the maintenance and code reuse. The frameworks have features that, in some way, limit the reuse of your code. In this paper, we propose a formal model that describes a process of restructuring legacy code object-orientedframeworks (MOO to code according to the architecture Model-View-Adapter (MVA. This process is carried out using 11 methods of restructuring, with the aim of separating the code from business logic (the model, which is the most reusable framework, the code that implements the view and the code that handles specific processing of the application. As a result, the legacy code of the framework is ready for a subsequent migration to Web services.

  12. Adaptive strategies of remote systems operators exposed to perturbed camera-viewing conditions

    Stuart, Mark A.; Manahan, Meera K.; Bierschwale, John M.; Sampaio, Carlos E.; Legendre, A. J.

    1991-01-01

    This report describes a preliminary investigation of the use of perturbed visual feedback during the performance of simulated space-based remote manipulation tasks. The primary objective of this NASA evaluation was to determine to what extent operators exhibit adaptive strategies which allow them to perform these specific types of remote manipulation tasks more efficiently while exposed to perturbed visual feedback. A secondary objective of this evaluation was to establish a set of preliminary guidelines for enhancing remote manipulation performance and reducing the adverse effects. These objectives were accomplished by studying the remote manipulator performance of test subjects exposed to various perturbed camera-viewing conditions while performing a simulated space-based remote manipulation task. Statistical analysis of performance and subjective data revealed that remote manipulation performance was adversely affected by the use of perturbed visual feedback and performance tended to improve with successive trials in most perturbed viewing conditions.

  13. Adaptive data-driven parallelization of multi-view video coding on multi-core processor

    PANG Yi; HU WeiDong; SUN LiFeng; YANG ShiQiang

    2009-01-01

    Multi-view video coding (MVC) comprises rich 3D information and is widely used in new visual media, such as 3DTV and free viewpoint TV (FTV). However, even with mainstream computer manufacturers migrating to multi-core processors, the huge computational requirement of MVC currently prohibits its wide use in consumer markets. In this paper, we demonstrate the design and implementation of the first parallel MVC system on Cell Broadband EngineTM processor which is a state-of-the-art multi-core processor. We propose a task-dispatching algorithm which is adaptive data-driven on the frame level for MVC, and implement a parallel multi-view video decoder with modified H.264/AVC codec on real machine. This approach provides scalable speedup (up to 16 times on sixteen cores) through proper local store management, utilization of code locality and SIMD improvement. Decoding speed, speedup and utilization rate of cores are expressed in experimental results.

  14. The optical design of a visible adaptive optics system for the Magellan Telescope

    Kopon, Derek

    The Magellan Adaptive Optics system will achieve first light in November of 2012. This AO system contains several subsystems including the 585-actuator concave adaptive secondary mirror, the Calibration Return Optic (CRO) alignment and calibration system, the CLIO 1-5 microm IR science camera, the movable guider camera and active optics assembly, and the W-Unit, which contains both the Pyramid Wavefront Sensor (PWFS) and the VisAO visible science camera. In this dissertation, we present details of the design, fabrication, assembly, alignment, and laboratory performance of the VisAO camera and its optical components. Many of these components required a custom design, such as the Spectral Differential Imaging Wollaston prisms and filters and the coronagraphic spots. One component, the Atmospheric Dispersion Corrector (ADC), required a unique triplet design that had until now never been fabricated and tested on sky. We present the design, laboratory, and on-sky results for our triplet ADC. We also present details of the CRO test setup and alignment. Because Magellan is a Gregorian telescope, the ASM is a concave ellipsoidal mirror. By simulating a star with a white light point source at the far conjugate, we can create a double-pass test of the whole system without the need for a real on-sky star. This allows us to test the AO system closed loop in the Arcetri test tower at its nominal design focal length and optical conjugates. The CRO test will also allow us to calibrate and verify the system off-sky at the Magellan telescope during commissioning and periodically thereafter. We present a design for a possible future upgrade path for a new visible Integral Field Spectrograph. By integrating a fiber array bundle at the VisAO focal plane, we can send light to a pre-existing facility spectrograph, such as LDSS3, which will allow 20 mas spatial sampling and R˜1,800 spectra over the band 0.6-1.05 microm. This would be the highest spatial resolution IFU to date, either

  15. Polymer-based micro-deformable mirror for adaptive optics

    Liotard, Arnaud; Zamkotsian, Frederic; Conedera, Veronique; Fabre, Norbert; Lanzoni, Patrick; Camon, Henri; Chazallet, Frederic

    2006-01-01

    Highly performing adaptive optical (AO) systems are mandatory for next generation giant telescopes as well as next generation instrumentation for 10m-class telescopes, for studying new fields like circumstellar disks and extra-solar planets. These systems require deformable mirrors with very challenging parameters, including number of actuators up to 250 000 and inter-actuator spacing around 500μm. MOEMS-based devices are promising for future deformable mirrors. We are currently developing a micro-deformable mirror (MDM) based on an array of electrostatic actuators with attachment posts to a continuous mirror on top. In order to reach large stroke for low driving voltage, the originality of our approach lies in the elaboration of a sacrificial layer and of a structural layer made of polymer materials. We have developed the first polymer piston-motion actuator: a 10μm thick mobile plate with four springs attached to the substrate, and with an air gap of 10μm exhibits a piston motion of 2μm for 30V, and measured resonance frequency of 6.5kHz is well suited for AO systems. The electrostatic force provides a non-linear actuation, while AO systems are based on linear matrices operations. We have successfully developed a dedicated 14-bit electronics in order to "linearize" the actuation. Actual location of the actuator versus expected location of the actuator is obtained with a standard deviation of 21 nm. Comparison with FEM models shows very good agreement, and design of a complete polymer-based MDM has been done.

  16. Ultrahigh-speed ultrahigh-resolution adaptive optics: optical coherence tomography system for in-vivo small animal retinal imaging

    Jian, Yifan; Xu, Jing; Zawadzki, Robert J.; Sarunic, Marinko V.

    2013-03-01

    Small animal models of human retinal diseases are a critical component of vision research. In this report, we present an ultrahigh-resolution ultrahigh-speed adaptive optics optical coherence tomography (AO-OCT) system for small animal retinal imaging (mouse, fish, etc.). We adapted our imaging system to different types of small animals in accordance with the optical properties of their eyes. Results of AO-OCT images of small animal retinas acquired with AO correction are presented. Cellular structures including nerve fiber bundles, capillary networks and detailed double-cone photoreceptors are visualized.

  17. Adapting stereoscopic movies to the viewing conditions using depth-preserving and artifact-free novel view synthesis

    Devernay, Frédéric; Duchêne, Sylvain; Ramos-Peon, Adrian

    2011-01-01

    The 3D shape perceived from viewing a stereoscopic movie depends on the viewing conditions, most notably on the screen size and distance, and depth and size distortions appear because of the differences between the shooting and viewing geometries. When the shooting geometry is constrained, or when the same stereoscopic movie must be displayed with different viewing geometries (e.g. in a movie theater and on a 3DTV), these depth distortions may be reduced by novel view synthesis techniques. Th...

  18. Intelligent correction of laser beam propagation through turbulent media using adaptive optics

    Ko, Jonathan; Wu, Chensheng; Davis, Christopher C.

    2014-10-01

    Adaptive optics methods have long been used by researchers in the astronomy field to retrieve correct images of celestial bodies. The approach is to use a deformable mirror combined with Shack-Hartmann sensors to correct the slightly distorted image when it propagates through the earth's atmospheric boundary layer, which can be viewed as adding relatively weak distortion in the last stage of propagation. However, the same strategy can't be easily applied to correct images propagating along a horizontal deep turbulence path. In fact, when turbulence levels becomes very strong (Cn 2>10-13 m-2/3), limited improvements have been made in correcting the heavily distorted images. We propose a method that reconstructs the light field that reaches the camera, which then provides information for controlling a deformable mirror. An intelligent algorithm is applied that provides significant improvement in correcting images. In our work, the light field reconstruction has been achieved with a newly designed modified plenoptic camera. As a result, by actively intervening with the coherent illumination beam, or by giving it various specific pre-distortions, a better (less turbulence affected) image can be obtained. This strategy can also be expanded to much more general applications such as correcting laser propagation through random media and can also help to improve designs in free space optical communication systems.

  19. High-Resolution Adaptive Optics Scanning Laser Ophthalmoscope with Dual Deformable Mirrors

    Chen, D C; Jones, S M; Silva, D A; Olivier, S S

    2006-08-11

    Adaptive optics scanning laser ophthalmoscope (AO SLO) has demonstrated superior optical quality of non-invasive view of the living retina, but with limited capability of aberration compensation. In this paper, we demonstrate that the use of dual deformable mirrors can effectively compensate large aberrations in the human retina. We used a bimorph mirror to correct large-stroke, low-order aberrations and a MEMS mirror to correct low-stroke, high-order aberration. The measured ocular RMS wavefront error of a test subject was 240 nm without AO compensation. We were able to reduce the RMS wavefront error to 90 nm in clinical settings using one deformable mirror for the phase compensation and further reduced the wavefront error to 48 nm using two deformable mirrors. Compared with that of a single-deformable-mirror SLO system, dual AO SLO offers much improved dynamic range and better correction of the wavefront aberrations. The use of large-stroke deformable mirrors provided the system with the capability of axial sectioning different layers of the retina. We have achieved diffraction-limited in-vivo retinal images of targeted retinal layers such as photoreceptor layer, blood vessel layer and nerve fiber layers with the combined phase compensation of the two deformable mirrors in the AO SLO.

  20. Anisotropic optical flow algorithm based on self-adaptive cellular neural network

    Zhang, Congxuan; Chen, Zhen; Li, Ming; Sun, Kaiqiong

    2013-01-01

    An anisotropic optical flow estimation method based on self-adaptive cellular neural networks (CNN) is proposed. First, a novel optical flow energy function which contains a robust data term and an anisotropic smoothing term is projected. Next, the CNN model which has the self-adaptive feedback operator and threshold is presented according to the Euler-Lagrange partial differential equations of the proposed optical flow energy function. Finally, the elaborate evaluation experiments indicate the significant effects of the various proposed strategies for optical flow estimation, and the comparison results with the other methods show that the proposed algorithm has better performance in computing accuracy and efficiency.

  1. Monte-Carlo modelling of multi-object adaptive optics performance on the European Extremely Large Telescope

    Basden, Alastair

    2016-01-01

    The performance of a wide-field adaptive optics system depends on input design parameters. Here we investigate the performance of a multi-object adaptive optics system design for the European Extremely Large Telescope, using an end-to-end Monte-Carlo adaptive optics simulation tool, DASP, with relevance for proposed instruments such as MOSAIC. We consider parameters such as the number of laser guide stars, sodium layer depth, wavefront sensor pixel scale, actuator pitch and natural guide star availability. We provide potential areas where costs savings can be made, and investigate trade-offs between performance and cost, and provide solutions that would enable such an instrument to be built with currently available technology. Our key recommendations include a trade-off for laser guide star wavefront sensor pixel scale of about 0.7 arcseconds per pixel, and a field of view of at least 7 arcseconds, that EMCCD technology should be used for natural guide star wavefront sensors even if reduced frame rate is nece...

  2. Integrated Laboratory Demonstrations of Multi-Object Adaptive Optics on a Simulated 10-Meter Telescope at Visible Wavelengths

    Ammons, S Mark; Laag, Edward A; Kupke, Renate; Gavel, Donald T; Bauman, Brian J; Max, Claire E

    2009-01-01

    One important frontier for astronomical adaptive optics (AO) involves methods such as Multi-Object AO and Multi-Conjugate AO that have the potential to give a significantly larger field of view than conventional AO techniques. A second key emphasis over the next decade will be to push astronomical AO to visible wavelengths. We have conducted the first laboratory simulations of wide-field, laser guide star adaptive optics at visible wavelengths on a 10-meter-class telescope. These experiments, utilizing the UCO/Lick Observatory's Multi-Object / Laser Tomography Adaptive Optics (MOAO/LTAO) testbed, demonstrate new techniques in wavefront sensing and control that are crucial to future on-sky MOAO systems. We (1) test and confirm the feasibility of highly accurate atmospheric tomography with laser guide stars, (2) demonstrate key innovations allowing open-loop operation of Shack-Hartmann wavefront sensors (with errors of ~30 nm) as will be needed for MOAO, and (3) build a complete error budget model describing sy...

  3. Experimental Adaptive Digital Performance Monitoring for Optical DP-QPSK Coherent Receiver

    Borkowski, Robert; Zhang, Xu; Zibar, Darko;

    2011-01-01

    We report on a successful experimental demonstration of a digital optical performance monitoring (OPM) yielding satisfactory estimation accuracy along with adaptive impairment equalization. No observable penalty is measured when equalizer is driven by monitoring module....

  4. The numerical simulation tool for the MAORY multiconjugate adaptive optics system

    Arcidiacono, Carmelo; Bregoli, Giovanni; Diolaiti, Emiliano; Foppiani, Italo; Agapito, Guido; Puglisi, Alfio; Xompero, Marco; Oberti, Sylvain; Cosentino, Giuseppe; Lombini, Matteo; Butler, Chris R; Ciliegi, Paolo; Cortecchia, Fausto; Patti, Mauro; Esposito, Simone; Feautrier, Philippe

    2016-01-01

    The Multiconjugate Adaptive Optics RelaY (MAORY) is and Adaptive Optics module to be mounted on the ESO European-Extremely Large Telescope (E-ELT). It is a hybrid Natural and Laser Guide System that will perform the correction of the atmospheric turbulence volume above the telescope feeding the Multi-AO Imaging Camera for Deep Observations Near Infrared spectro-imager (MICADO). We developed an end-to-end Monte- Carlo adaptive optics simulation tool to investigate the performance of a the MAORY and the calibration, acquisition, operation strategies. MAORY will implement Multiconjugate Adaptive Optics combining Laser Guide Stars (LGS) and Natural Guide Stars (NGS) measurements. The simulation tool implements the various aspect of the MAORY in an end to end fashion. The code has been developed using IDL and uses libraries in C++ and CUDA for efficiency improvements. Here we recall the code architecture, we describe the modeled instrument components and the control strategies implemented in the code.

  5. Adaptive Integrated Optical Bragg Grating in Semiconductor Waveguide Suitable for Optical Signal Processing

    Moniem, T. A.

    2016-05-01

    This article presents a methodology for an integrated Bragg grating using an alloy of GaAs, AlGaAs, and InGaAs with a controllable refractive index to obtain an adaptive Bragg grating suitable for many applications on optical processing and adaptive control systems, such as limitation and filtering. The refractive index of a Bragg grating is controlled by using an external electric field for controlling periodic modulation of the refractive index of the active waveguide region. The designed Bragg grating has refractive indices programmed by using that external electric field. This article presents two approaches for designing the controllable refractive indices active region of a Bragg grating. The first approach is based on the modification of a planar micro-strip structure of the iGaAs traveling wave as the active region, and the second is based on the modification of self-assembled InAs/GaAs quantum dots of an alloy from GaAs and InGaAs with a GaP traveling wave. The overall design and results are discussed through numerical simulation by using the finite-difference time-domain, plane wave expansion, and opto-wave simulation methods to confirm its operation and feasibility.

  6. Optical coherence tomographic view of persistent primary fetal vasculature

    Purpose was to report on the posterior segment changes in a patient with bilateral persistent primary fetal vasculature as detected by optical coherence tomography. An 18-year-old lady with poor vision, left esotropia and bilateral posterior polar cataract was found to have dysplasia of the macula in the both eyes. Fundus fluorescein angiography, optical coherence tomography, ''A'' scan biometry and genetic work up was performed as a part of investigation. There was increase in thickness of the macular area in both the eyes (450-500mm). The left eye showed a ''sail like'' fold extending over macula, from nasal to temporal side. The tissue had the same sensitivity and thickness as inner the retinal layers (180-200). There was no detectable nerve fibre layer in the macula of either eye. Fundus fluorescein angiography was normal in the right eye, and showed hyperfluorescence at the inferior pole of the disk in the left eye corresponding to the Bergmeister papilla. There was no staining of the membrane with the dye. Evaluation of the posterior segment is important in predicting the visual outcome in patients with any from of PFV. Optical coherence tomography is an adjuvant to direct visualization and aids in further delineating posterior segment changes seen in this condition. (author)

  7. Fixation light hue bias revisited: implications for using adaptive optics to study color vision

    Hofer, H. J.; Blaschke, J.; Patolia, J.; Koenig, D. E.

    2012-01-01

    Current vision science adaptive optics systems use near infrared wavefront sensor ‘beacons’ that appear as red spots in the visual field. Colored fixation targets are known to influence the perceived color of macroscopic visual stimuli(Jameson, D. and Hurvich, L. M., 1967. Fixation-light bias: an unwanted by-product of fixation control. Vis. Res. 7, 805 – 809.), suggesting that the wavefront sensor beacon may also influence perceived color for stimuli displayed with adaptive optics. Despite i...

  8. Laboratory Testing the Layer Oriented Wavefront Sensor for the Multiconjugate Adaptive optics Demonstrator

    Arcidiacono, Carmelo; Lombini, Matteo; Diolaiti, Emiliano; Farinato, Jacopo; Ragazzoni, Roberto

    2009-01-01

    The Multiconjugate Adaptive optics Demonstrator (MAD) for ESO-Very Large Telescopes (VLT) will demonstrate on sky the MultiConjugate Adaptive Optics (MCAO) technique. In this paper the laboratory tests relative to the first preliminary acceptance in Europe of the Layer Oriented (LO) Wavefront Sensor (WFS) for MAD will be described: the capabilities of the LO approach have been checked and the ability of the WFS to measure phase screens positioned at different altitudes has been experimented. ...

  9. Adaptative Multigrid and Variable Parameterization for Optical-flow Estimation

    Memin, Etienne; Pérez, Patrick

    1997-01-01

    We investigate the use of adaptative multigrid minimization algorithms for the estimation of the apparent motion field. The proposed approach provides a coherent and efficient framework for estimating piecewise smooth flow fields for different parameterizations relative to adaptative partitions of the image. The performances of the resulting algorithms are demonstrated in the difficult context of a non convex global energy formulation.

  10. Adaptive Optical Phase Estimation Using Time-Symmetric Quantum Smoothing

    Wheatley, T A; Yonezawa, H; Nakane, D; Arao, H; Pope, D T; Ralph, T C; Wiseman, H M; Furusawa, A; Huntington, E H

    2009-01-01

    Quantum parameter estimation has many applications, from gravitational wave detection to quantum key distribution. We present the first experimental demonstration of the time-symmetric technique of quantum smoothing. We consider both adaptive and non-adaptive quantum smoothing, and show that both are better than their well-known time-asymmetric counterparts (quantum filtering). For the problem of estimating a stochastically varying phase shift on a coherent beam, our theory predicts that adaptive quantum smoothing (the best scheme) gives an estimate with a mean-square error up to $2\\sqrt{2}$ times smaller than that from non-adaptive quantum filtering (the standard quantum limit). The experimentally measured improvement is $2.24 \\pm 0.14$.

  11. Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking

    Ferguson, R. Daniel; Zhong, Zhangyi; Hammer, Daniel X.; Mujat, Mircea; Patel, Ankit H.; Deng, Cong; Zou, Weiyao; Burns, Stephen A.

    2010-01-01

    We have developed a new, unified implementation of the adaptive optics scanning laser ophthalmoscope (AOSLO) incorporating a wide-field line-scanning ophthalmoscope (LSO) and a closed-loop optical retinal tracker. AOSLO raster scans are deflected by the integrated tracking mirrors so that direct AOSLO stabilization is automatic during tracking. The wide-field imager and large-spherical-mirror optical interface design, as well as a large-stroke deformable mirror (DM), enable the AOSLO image fi...

  12. Principle of adaptive optical current transducer on independent variables and its test

    LU Zhong-feng; GUO Zhi-zhong

    2008-01-01

    In order to improve the measurement precision of the optical current transducer (OCT), the adaptive optical transducing principle on independent variables is presented in this paper. And one of the adaptive opti-cal current transducer(AOCT) on the independent variables of the output of the electricmegnet current trans-ducer is introduced. According to IEC660044-8, the performance of AOCT was examined roundly applying the standard testing system authenticated by the state authority. The results indicate that the measurement precision of the AOCT has already reached 0.2 class under the temperature from -40℃ to 60℃,which proves the feasi-bility of the method.

  13. High-Resolution Adaptive Optics Test-Bed for Vision Science

    Wilks, S C; Thomspon, C A; Olivier, S S; Bauman, B J; Barnes, T; Werner, J S

    2001-09-27

    We discuss the design and implementation of a low-cost, high-resolution adaptive optics test-bed for vision research. It is well known that high-order aberrations in the human eye reduce optical resolution and limit visual acuity. However, the effects of aberration-free eyesight on vision are only now beginning to be studied using adaptive optics to sense and correct the aberrations in the eye. We are developing a high-resolution adaptive optics system for this purpose using a Hamamatsu Parallel Aligned Nematic Liquid Crystal Spatial Light Modulator. Phase-wrapping is used to extend the effective stroke of the device, and the wavefront sensing and wavefront correction are done at different wavelengths. Issues associated with these techniques will be discussed.

  14. Imaging human retinal pigment epithelium cells using adaptive optics optical coherence tomography

    Liu, Zhuolin; Kocaoglu, Omer P.; Turner, Timothy L.; Miller, Donald T.

    2016-03-01

    Retinal pigment epithelium (RPE) cells are vital to health of the outer retina, but are often compromised in ageing and major ocular diseases that lead to blindness. Early manifestation of RPE disruption occurs at the cellular level, and while biomarkers at this scale hold considerable promise, RPE cells have proven extremely challenging to image in the living human eye. We present a novel method based on optical coherence tomography (OCT) equipped with adaptive optics (AO) that overcomes the associated technical obstacles. The method takes advantage of the 3D resolution of AO-OCT, but more critically sub-cellular segmentation and registration that permit organelle motility to be used as a novel contrast mechanism. With this method, we successfully visualized RPE cells and characterized their 3D reflectance profile in every subject and retinal location (3° and 7° temporal to the fovea) imaged to date. We have quantified RPE packing geometry in terms of cell density, cone-to-RPE ratio, and number of nearest neighbors using Voronoi and power spectra analyses. RPE cell density (cells/mm2) showed no significant difference between 3° (4,892+/-691) and 7° (4,780+/-354). In contrast, cone-to- RPE ratio was significantly higher at 3° (3.88+/-0.52:1) than 7° (2.31+/- 0.23:1). Voronoi analysis also showed most RPE cells have six nearest neighbors, which was significantly larger than the next two most prevalent associations: five and seven. Averaged across the five subjects, prevalence of cells with six neighbors was 51.4+/-3.58% at 3°, and 54.58+/-3.01% at 7°. These results are consistent with histology and in vivo studies using other imaging modalities.

  15. The merging cluster of galaxies Abell 3376: an optical view

    Durret, Florence; Neto, Gastao B Lima; Adami, Christophe; Bertin, Emmanuel; Bagchi, Joydeep

    2013-01-01

    Abell 3376 is a merging cluster of galaxies at redshift z=0.046, famous mostly for its giant radio arcs, and shows an elongated and highly substructured X-ray emission, but has not been analysed in detail at optical wavelengths. We have obtained wide field images of Abell 3376 in the B band and derive the GLF applying a statistical subtraction of the background in three regions: a circle of 0.29 deg radius (1.5 Mpc) encompassing the whole cluster, and two circles centered on each of the two brightest galaxies (BCG2, northeast, coinciding with the peak of X-ray emission, and BCG1, southwest) of radii 0.15 deg (0.775 Mpc). We also compute the GLF in the zone around BCG1, which is covered by the WINGS survey in the B and V bands, by selecting cluster members in the red sequence in a (B-V) versus V diagram. Finally, we discuss the dynamical characteristics of the cluster implied by a Serna & Gerbal analysis. The GLFs are not well fit by a single Schechter function, but satisfactory fits are obtained by summin...

  16. A simplified free-space adaptive optics system against atmospheric turbulence

    Sharma, Sanjay

    2012-03-01

    Optical free-space communications have the distinct advantages over conventional radio frequency and microwave systems in terms of information capacity and increased security. However, optical carrier frequencies drastically suffer due to atmospheric turbulence. This effect is a random process and time-varying process; therefore, it is very difficult to overcome the effect. Adaptive optics is the technology used to mitigate chaotic optical wave-front distortions in real time by measuring the wave-front distortion with the help of a sensor and then adapting the wave-front corrector to lessen the phase distortions and ultimately to recover a closely approximated signal to its original counterpart. But these systems are too expensive and large. This study employs the various aspects of Adaptive Optics system, such as wave-front corrector, wave-front sensors and analytical analysis of open and closed-loop systems using loop equations, in order to make free-space optics communication links more vulnerable against atmospheric turbulence and wave-front phase distributions. The purpose of this study is to investigate a wave-front sensorless adaptive optics system, which would provide reduced complexity, size and cost.

  17. A controllable viewing angle LCD with an optically isotropic liquid crystal

    An optically isotropic liquid crystal (LC) such as a blue phase LC or an optically isotropic nano-structured LC exhibits a very wide viewing angle because the induced birefringence is along the in-plane electric field. Utilizing such a material, we propose a liquid crystal display (LCD) whose viewing angle can be switched from wide view to narrow view using only one panel. In the device, each pixel is divided into two parts: a major pixel and a sub-pixel. The main pixels display the images while the sub-pixels control the viewing angle. In the main pixels, birefringence is induced by horizontal electric fields through inter-digital electrodes leading to a wide viewing angle, while in the sub-pixels, birefringence is induced by the vertical electric field so that phase retardation occurs only at oblique angles. As a result, the dark state (or contrast ratio) of the entire pixel can be controlled by the voltage of the sub-pixels. Such a switchable viewing angle LCD is attractive for protecting personal privacy.

  18. 15 Gbit/s indoor optical wireless systems employing fast adaptation and imaging reception in a realistic environment

    Alsaadi, Fuad E.

    2016-03-01

    Optical wireless systems are promising candidates for next-generation indoor communication networks. Optical wireless technology offers freedom from spectrum regulations and, compared to current radio-frequency networks, higher data rates and increased security. This paper presents a fast adaptation method for multibeam angle and delay adaptation systems and a new spot-diffusing geometry, and also considers restrictions needed for complying with eye safety regulations. The fast adaptation algorithm reduces the computational load required to reconfigure the transmitter in the case of transmitter and/or receiver mobility. The beam clustering approach enables the transmitter to assign power to spots within the pixel's field of view (FOV) and increases the number of such spots. Thus, if the power per spot is restricted to comply with eye safety standards, the new approach, in which more spots are visible within the FOV of the pixel, leads to enhanced signal-to-noise ratio (SNR). Simulation results demonstrate that the techniques proposed in this paper lead to SNR improvements that enable reliable operation at data rates as high as 15 Gbit/s. These results are based on simulation and not on actual measurements or experiments.

  19. Multi time-step wave-front reconstruction for tomographic Adaptive-Optics systems

    Ono, Yoshito H; Oya, Shin; Lardiere, Olivier; Andersen, David R; Correia, Carlos; Jackson, Kate; Bradley, Colin

    2016-01-01

    In tomographic adaptive-optics (AO) systems, errors due to tomographic wave-front reconstruction limit the performance and angular size of the scientific field of view (FoV), where AO correction is effective. We propose a multi time-step tomographic wave-front reconstruction method to reduce the tomographic error by using the measurements from both the current and the previous time-steps simultaneously. We further outline the method to feed the reconstructor with both wind speed and direction of each turbulence layer. An end-to-end numerical simulation, assuming a multi-object AO (MOAO) system on a 30 m aperture telescope, shows that the multi time-step reconstruction increases the Strehl ratio (SR) over a scientific FoV of 10 arcminutes in diameter by a factor of 1.5--1.8 when compared to the classical tomographic reconstructor, depending on the guide star asterism and with perfect knowledge of wind speeds and directions. We also evaluate the multi time-step reconstruction method and the wind estimation meth...

  20. Adaptive optical beam shaping for compensating projection-induced focus deformation

    Pütsch, Oliver; Stollenwerk, Jochen; Loosen, Peter

    2016-02-01

    Scanner-based applications are already widely used for the processing of surfaces, as they allow for highly dynamic deflection of the laser beam. Particularly, the processing of three-dimensional surfaces with laser radiation initiates the development of highly innovative manufacturing techniques. Unfortunately, the focused laser beam suffers from deformation caused by the involved projection mechanisms. The degree of deformation is field variant and depends on both the surface geometry and the working position of the laser beam. Depending on the process sensitivity, the deformation affects the process quality, which motivates a method of compensation. Current approaches are based on a local adaption of the laser power to maintain constant intensity within the interaction zone. For advanced manufacturing, this approach is insufficient, as the residual deformation of the initial circular laser spot is not taken into account. In this paper, an alternative approach is discussed. Additional beam-shaping devices are integrated between the laser source and the scanner, and allow for an in situ compensation to ensure a field-invariant circular focus spot within the interaction zone. Beyond the optical design, the approach is challenging with respect to the control theory's point of view, as both the beam deflection and the compensation have to be synchronized.

  1. High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors for large aberration correction

    Chen, D; Jones, S M; Silva, D A; Olivier, S S

    2007-01-25

    Scanning laser ophthalmoscopes with adaptive optics (AOSLO) have been shown previously to provide a noninvasive, cellular-scale view of the living human retina. However, the clinical utility of these systems has been limited by the available deformable mirror technology. In this paper, we demonstrate that the use of dual deformable mirrors can effectively compensate large aberrations in the human retina, making the AOSLO system a viable, non-invasive, high-resolution imaging tool for clinical diagnostics. We used a bimorph deformable mirror to correct low-order aberrations with relatively large amplitudes. The bimorph mirror is manufactured by Aoptix, Inc. with 37 elements and 18 {micro}m stroke in a 10 mm aperture. We used a MEMS deformable mirror to correct high-order aberrations with lower amplitudes. The MEMS mirror is manufactured by Boston Micromachine, Inc with 144 elements and 1.5 {micro}m stroke in a 3 mm aperture. We have achieved near diffraction-limited retina images using the dual deformable mirrors to correct large aberrations up to {+-} 3D of defocus and {+-} 3D of cylindrical aberrations with test subjects. This increases the range of spectacle corrections by the AO systems by a factor of 10, which is crucial for use in the clinical environment. This ability for large phase compensation can eliminate accurate refractive error fitting for the patients, which greatly improves the system ease of use and efficiency in the clinical environment.

  2. ELTs Adaptive Optics for Multi-Objects 3D Spectroscopy Key Parameters and Design Rules

    Neichel, B; Fusco, T; Gendron, E; Puech, M; Rousset, G; Hammer, F

    2006-01-01

    In the last few years, new Adaptive Optics [AO] techniques have emerged to answer new astronomical challenges: Ground-Layer AO [GLAO] and Multi-Conjugate AO [MCAO] to access a wider Field of View [FoV], Multi-Object AO [MOAO] for the simultaneous observation of several faint galaxies, eXtreme AO [XAO] for the detection of faint companions. In this paper, we focus our study to one of these applications : high red-shift galaxy observations using MOAO techniques in the framework of Extremely Large Telescopes [ELTs]. We present the high-level specifications of a dedicated instrument. We choose to describe the scientific requirements with the following criteria : 40% of Ensquared Energy [EE] in H band (1.65um) and in an aperture size from 25 to 150 mas. Considering these specifications we investigate different AO solutions thanks to Fourier based simulations. Sky Coverage [SC] is computed for Natural and Laser Guide Stars [NGS, LGS] systems. We show that specifications are met for NGS-based systems at the cost of ...

  3. Ganzfeld stimulation or sleep enhance long term motor memory consolidation compared to normal viewing in saccadic adaptation paradigm.

    Caroline Voges

    Full Text Available Adaptation of saccade amplitude in response to intra-saccadic target displacement is a type of implicit motor learning which is required to compensate for physiological changes in saccade performance. Once established trials without intra-saccadic target displacement lead to de-adaptation or extinction, which has been attributed either to extra-retinal mechanisms of spatial constancy or to the influence of the stable visual surroundings. Therefore we investigated whether visual deprivation ("Ganzfeld"-stimulation or sleep can partially maintain this motor learning compared to free viewing of the natural surroundings. Thirty-five healthy volunteers performed two adaptation blocks of 100 inward adaptation trials - interspersed by an extinction block - which were followed by a two-hour break with or without visual deprivation (VD. Using additional adaptation and extinction blocks short and long (4 weeks term memory of this implicit motor learning were tested. In the short term, motor memory tested immediately after free viewing was superior to adaptation performance after VD. In the long run, however, effects were opposite: motor memory and relearning of adaptation was superior in the VD conditions. This could imply independent mechanisms that underlie the short-term ability of retrieving learned saccadic gain and its long term consolidation. We suggest that subjects mainly rely on visual cues (i.e., retinal error in the free viewing condition which makes them prone to changes of the visual stimulus in the extinction block. This indicates the role of a stable visual array for resetting adapted saccade amplitudes. In contrast, visual deprivation (GS and sleep, might train subjects to rely on extra-retinal cues, e.g., efference copy or prediction to remap their internal representations of saccade targets, thus leading to better consolidation of saccadic adaptation.

  4. Quality evaluation of adaptive optical image based on DCT and Rényi entropy

    Xu, Yuannan; Li, Junwei; Wang, Jing; Deng, Rong; Dong, Yanbing

    2015-04-01

    The adaptive optical telescopes play a more and more important role in the detection system on the ground, and the adaptive optical images are so many that we need find a suitable method of quality evaluation to choose good quality images automatically in order to save human power. It is well known that the adaptive optical images are no-reference images. In this paper, a new logarithmic evaluation method based on the use of the discrete cosine transform(DCT) and Rényi entropy for the adaptive optical images is proposed. Through the DCT using one or two dimension window, the statistical property of Rényi entropy for images is studied. The different directional Rényi entropy maps of an input image containing different information content are obtained. The mean values of different directional Rényi entropy maps are calculated. For image quality evaluation, the different directional Rényi entropy and its standard deviation corresponding to region of interest is selected as an indicator for the anisotropy of the images. The standard deviation of different directional Rényi entropy is obtained as the quality evaluation value for adaptive optical image. Experimental results show the proposed method that the sorting quality matches well with the visual inspection.

  5. Magnetic smart material application to adaptive x-ray optics

    Ulmer, M. P.; Graham, Michael E.; Vaynman, Semyon; Cao, J.; Takacs, Peter Z.

    2010-09-01

    We discuss a technique of shape modification that can be applied to thin walled ({100-400 micron thickness) electroformed replicated optics or slumped glass optics to improve the near net shape of the mirror as well as the midfrequency ripple. The process involves sputter deposition of a magnetic smart material (MSM) film onto a permanently magnetic material. The MSM material exhibits strains about 400 times stronger than ordinary ferromagnetic materials. The deformation process involves a magnetic write head which traverses the surface, and under the guidance of active metrology feedback, locally magnetizes the surface to impart strain where needed. Designs and basic concepts as applied to space borne X-ray optics will be described.

  6. Packetisation in Optical Packet Switch Fabrics using adaptive timeout values

    Mortensen, Brian Bach

    2006-01-01

    either because the timer reaches a specific timeout value, or because the optical packet is completely filled with segments. Only two distinct values of the timeout value are used. Which of the two timeout values to use, is selected by 3 different control thresholds. The first threshold level applies to...... the inter arrival rate at the individual VOQs. The remaining thresholds applies to the optical slot level inter arrival rate at the input and output line cards. If any measurements are beyond a given threshold, the higher timeout value is used. The proposed method can be used to make a trade...

  7. Development of a scalable generic platform for adaptive optics real time control

    Surendran, Avinash; Ramaprakash, A N; Parihar, Padmakar

    2015-01-01

    The main objective of the present project is to explore the viability of an adaptive optics control system based exclusively on Field Programmable Gate Arrays (FPGAs), making strong use of their parallel processing capability. In an Adaptive Optics (AO) system, the generation of the Deformable Mirror (DM) control voltages from the Wavefront Sensor (WFS) measurements is usually through the multiplication of the wavefront slopes with a predetermined reconstructor matrix. The ability to access several hundred hard multipliers and memories concurrently in an FPGA allows performance far beyond that of a modern CPU or GPU for tasks with a well defined structure such as Adaptive Optics control. The target of the current project is to generate a signal for a real time wavefront correction, from the signals coming from a Wavefront Sensor, wherein the system would be flexible to accommodate all the current Wavefront Sensing techniques and also the different methods which are used for wavefront compensation. The system ...

  8. Extreme Adaptive Optics Testbed: Performance and Characterization of a 1024 Deformable Mirror

    Evans, J W; Morzinski, K; Severson, S; Poyneer, L; Macintosh, B; Dillon, D; REza, L; Gavel, D; Palmer, D

    2005-10-30

    We have demonstrated that a microelectrical mechanical systems (MEMS) deformable mirror can be flattened to < 1 nm RMS within controllable spatial frequencies over a 9.2-mm aperture making it a viable option for high-contrast adaptive optics systems (also known as Extreme Adaptive Optics). The Extreme Adaptive Optics Testbed at UC Santa Cruz is being used to investigate and develop technologies for high-contrast imaging, especially wavefront control. A phase shifting diffraction interferometer (PSDI) measures wavefront errors with sub-nm precision and accuracy for metrology and wavefront control. Consistent flattening, required testing and characterization of the individual actuator response, including the effects of dead and low-response actuators. Stability and repeatability of the MEMS devices was also tested. An error budget for MEMS closed loop performance will summarize MEMS characterization.

  9. An adaptive optics system for solid-state laser systems used in inertial confinement fusion

    Using adaptive optics the authors have obtained nearly diffraction-limited 5 kJ, 3 nsec output pulses at 1.053 microm from the Beamlet demonstration system for the National Ignition Facility (NIF). The peak Strehl ratio was improved from 0.009 to 0.50, as estimated from measured wavefront errors. They have also measured the relaxation of the thermally induced aberrations in the main beam line over a period of 4.5 hours. Peak-to-valley aberrations range from 6.8 waves at 1.053 microm within 30 minutes after a full system shot to 3.9 waves after 4.5 hours. The adaptive optics system must have enough range to correct accumulated thermal aberrations from several shots in addition to the immediate shot-induced error. Accumulated wavefront errors in the beam line will affect both the design of the adaptive optics system for NIF and the performance of that system

  10. Computational adaptive optics for broadband interferometric tomography of tissues and cells

    Adie, Steven G.; Mulligan, Jeffrey A.

    2016-03-01

    Adaptive optics (AO) can shape aberrated optical wavefronts to physically restore the constructive interference needed for high-resolution imaging. With access to the complex optical field, however, many functions of optical hardware can be achieved computationally, including focusing and the compensation of optical aberrations to restore the constructive interference required for diffraction-limited imaging performance. Holography, which employs interferometric detection of the complex optical field, was developed based on this connection between hardware and computational image formation, although this link has only recently been exploited for 3D tomographic imaging in scattering biological tissues. This talk will present the underlying imaging science behind computational image formation with optical coherence tomography (OCT) -- a beam-scanned version of broadband digital holography. Analogous to hardware AO (HAO), we demonstrate computational adaptive optics (CAO) and optimization of the computed pupil correction in 'sensorless mode' (Zernike polynomial corrections with feedback from image metrics) or with the use of 'guide-stars' in the sample. We discuss the concept of an 'isotomic volume' as the volumetric extension of the 'isoplanatic patch' introduced in astronomical AO. Recent CAO results and ongoing work is highlighted to point to the potential biomedical impact of computed broadband interferometric tomography. We also discuss the advantages and disadvantages of HAO vs. CAO for the effective shaping of optical wavefronts, and highlight opportunities for hybrid approaches that synergistically combine the unique advantages of hardware and computational methods for rapid volumetric tomography with cellular resolution.

  11. Adaptive optics for control of the laser welding process

    Mrňa, Libor; Šarbort, Martin; Řeřucha, Šimon; Jedlička, Petr

    Vol. 48. Liberec : EDP Sciences, 2013, 00017:1-6. ISBN 9781632661944. [OaM 2012 International Conference on Optics and Measurement. Liberec (CZ), 16.10.2012-18.10.2012] R&D Projects: GA MPO 2A-3TP1/113; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Fresnel absorption * multiple reflections * keyhole * evolution Subject RIV: JB - Sensors, Measurment, Regulation

  12. Silicon carbide deformable mirror with 37 actuators for adaptive optics

    Ahn, Kyohoon; Rhee, Hyug-Gyo; Yang, Ho-Soon; Kihm, Hagyong

    2015-11-01

    We present a prototype of a silicon carbide (SiC) deformable mirror (DM) for high power laser applications. The DM has a continuous SiC faceplate, the diameter and the thickness of which are 100 mm and 2 mm, respectively, and 37 stack-type piezoelectric actuators arranged in a rectangular grid. Compared with the glass faceplates used for conventional DMs, SiC has a high thermal diffusivity that effectively minimizes mirror distortions due to thermal gradients. The faceplate is thick enough for possible integration with monolithic cooling channels inside the faceplate. The faceplate without cooling channels presented in this paper has a high bending stiffness compared with glass DMs, but the proposed actuator configuration has flexure supports to reduce the shear stress at the adhesive while preserving optical performances. To examine the characteristics of the SiC DM, we simulated influence functions (IFs) by using a finite element analysis and then compared these results with the IF measured by using an optical interferometer. The optical performance of the DM was verified by generating Zernike polynomial modes based on the measured IF.

  13. A Phase-Shifting Zernike Wavefront Sensor for the Palomar P3K Adaptive Optics System

    Wallace, J. Kent; Crawford, Sam; Loya, Frank; Moore, James

    2012-01-01

    A phase-shifting Zernike wavefront sensor has distinct advantages over other types of wavefront sensors. Chief among them are: 1) improved sensitivity to low-order aberrations and 2) efficient use of photons (hence reduced sensitivity to photon noise). We are in the process of deploying a phase-shifting Zernike wavefront sensor to be used with the realtime adaptive optics system for Palomar. Here we present the current state of the Zernike wavefront sensor to be integrated into the high-order adaptive optics system at Mount Palomar's Hale Telescope.

  14. Investigation of Power8 processors for astronomical adaptive optics real-time control

    Basden, Alastair

    2015-01-01

    The forthcoming Extremely Large Telescopes all require adaptive optics systems for their successful operation. The real-time control for these systems becomes computationally challenging, in part limited by the memory bandwidths required for wavefront reconstruction. We investigate new POWER8 processor technologies applied to the problem of real-time control for adaptive optics. These processors have a large memory bandwidth, and we show that they are suitable for operation of first-light ELT instrumentation, and propose some potential real-time control system designs. A CPU-based real-time control system significantly reduces complexity, improves maintainability, and leads to increased longevity for the real-time control system.

  15. An adaptive optics approach to the reduction of misalignments and beam jitters in gravitational wave interferometers

    We describe a study and the preliminary experimental results on the possibility of using adaptive optics systems for the reduction of geometrical fluctuations of input laser beams in long baseline interferometric detectors of gravitational waves. The experimental tests aimed to test the efficiency of Hermite-Gauss versus Shack-Hartmann wavefront reconstruction and feedback diagonalization. These preliminary results seem to indicate that the adaptive optics systems may be integrated in the near future as stabilization stages before a passive mode cleaner cavity, provided that the operational band of the mirror is increased together with the efficiency of the control system

  16. AVES-IMCO: an adaptive optics visible spectrograph and imager/coronograph for NAOS

    Beuzit, Jean-Luc; Lagrange, A.-M.; Mouillet, D.; Chauvin, G.; Stadler, E.; Charton, J.; Lacombe, F.; AVES-IMCO Team

    2001-05-01

    The NAOS adaptive optics system will very soon provide diffraction-limited images on the VLT, down to the visible wavelengths (0.020 arcseconds at 0.83 micron for instance). At the moment, the only instrument dedicated to NAOS is the CONICA spectro-imager, operating in the near-infrared from 1 to 5 microns. We are now proposing to ESO, in collaboration with an Italian group, the development of a visible spectrograph/imager/coronograph, AVES-IMCO (Adaptive Optics Visual Echelle Spectrograph and IMager/COronograph). We present here the general concept of the new instrument as well as its expected performances in the different modes.

  17. Analysis of adaptive laser scanning optical system with focus-tunable components

    Pokorný, P.; Mikš, A.; Novák, J.; Novák, P.

    2015-05-01

    This work presents a primary analysis of an adaptive laser scanner based on two-mirror beam-steering device and focustunable components (lenses with tunable focal length). It is proposed an optical scheme of an adaptive laser scanner, which can focus the laser beam in a continuous way to a required spatial position using the lens with tunable focal length. This work focuses on a detailed analysis of the active optical or opto-mechanical components (e.g. focus-tunable lenses) mounted in the optical systems of laser scanners. The algebraic formulas are derived for ray tracing through different configurations of the scanning optical system and one can calculate angles of scanner mirrors and required focal length of the tunable-focus component provided that the position of the focused beam in 3D space is given with a required tolerance. Computer simulations of the proposed system are performed using MATLAB.

  18. Network-element view information model for an optical burst core switch

    Kan, Chao; Balt, Halt; Michel, Stephane R.; Verchere, Dominique G.

    2001-10-01

    To natively support the bursty IP datagrams over all-optical Wavelength Division Multiplexing (WDM) networks, the Optical Burst Switching (OBS) WDM network has been proposed as a suitable architecture for future optical Internet backbone networks. However, managing the OBS network will be complicated due to the scale of the networks and the correlation between different technology layers. This paper presents an information model for the OBS core node, from the network-element view, to describe the management information flows between the optical burst layer and the traditional WDM transport layer, and how to model them using various Managed Objects (MOs). We also provide the structure of Management Information Base (MIB) used in SNMP management interface for managing the parameters identified at different layers.

  19. Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy

    Hunter, Jennifer J.; Masella, Benjamin; Dubra, Alfredo; Sharma, Robin; Yin, Lu; Merigan, William H.; Palczewska, Grazyna; Palczewski, Krzysztof; Williams, David R.

    2010-01-01

    In vivo two-photon imaging through the pupil of the primate eye has the potential to become a useful tool for functional imaging of the retina. Two-photon excited fluorescence images of the macaque cone mosaic were obtained using a fluorescence adaptive optics scanning laser ophthalmoscope, overcoming the challenges of a low numerical aperture, imperfect optics of the eye, high required light levels, and eye motion. Although the specific fluorophores are as yet unknown, strong in vivo intrins...

  20. Fuzzy-Based Adaptive Hybrid Burst Assembly Technique for Optical Burst Switched Networks

    Abubakar Muhammad Umaru; Muhammad Shafie Abd Latiff; Yahaya Coulibaly

    2014-01-01

    The optical burst switching (OBS) paradigm is perceived as an intermediate switching technology for future all-optical networks. Burst assembly that is the first process in OBS is the focus of this paper. In this paper, an intelligent hybrid burst assembly algorithm that is based on fuzzy logic is proposed. The new algorithm is evaluated against the traditional hybrid burst assembly algorithm and the fuzzy adaptive threshold (FAT) burst assembly algorithm via simulation. Simulation results sh...

  1. Implantable collamer lens and femtosecond laser for myopia: comparison using an adaptive optics visual simulator

    Cari Pérez-Vives; César Albarrán-Diego; Santiago García-Lázaro; Teresa Ferrer-Blasco; Robert Montés-Micó

    2014-01-01

    Purpose: To compare optical and visual quality of implantable collamer lens (ICL) implantation and femtosecond laser in situ keratomileusis (F-LASIK) for myopia. Methods: The CRX1 adaptive optics visual simulator (Imagine Eyes, Orsay, France) was used to simulate the wavefront aberration pattern after the two surgical procedures for -3-diopter (D) and -6-D myopia. Visual acuity at different contrasts and contrast sensitivities at 10, 20, and 25 cycles/degree (cpd) were measured for 3-mm an...

  2. Adaptive micro-optical phase modulators based on liquid crystal technology

    Algorri Genaro, José Francisco

    2015-01-01

    This thesis began with the project “Advanced Devices of Liquid Crystal and Electroluminescent Organic Diodes. Hybrid Applications for 3D Vision” funded by the Spanish government. The goal of this project was the development of optical devices to achieve 3D vision in portable devices without glasses or external elements. In order to achieve the goals of this project, solutions based on liquid crystal are considered. Specifically, adaptive micro-optical phase modulators based on liquid crystal ...

  3. A benchmark for multiconjugated adaptive optics: VLT-MAD observations of the young massive cluster Trumpler 14

    Rochau, B.; Brandner, W.; Stolte, A.; Henning, T.; Da Rio, N.; Gennaro, M.; Hormuth, F.; Marchetti, E.; Amico, P.

    2011-12-01

    The Multi-conjugate Adaptive optics Demonstrator (MAD) is the first multiconjugated adaptive optics system at the Very Large Telescope (VLT). We present H and KS observations of the young massive cluster Trumpler 14 revealing the power of MCAO systems by providing a homogeneous Strehl ratio over a large field of view. Mean Strehl ratios of 6.0 and 5.9 per cent with maximum Strehl ratios of 9.8 and 12.6 per cent in H and KS, respectively, show significant improvement of the spatial point spread function (PSF) stability compared to single-conjugated adaptive optics systems. Photometry of our observations cover a dynamic range of ˜10 mag including 2-3 times greater number of sources than comparable seeing-limited observations. The colour-magnitude diagram reveals that the massive cluster originated in a recent starburst-like event 1 ± 0.5 Myr ago. We tentatively detect hints for an older population of 3 Myr suggesting that low intensity star formation might have been going on in the HII region for a few Myr. We derive the luminosity function and mass function between 0.1 and 3.2 M⊙ and identify a change in the power-law slope of the mass function at mc˜ 0.53+0.12- 0.10 M⊙. The MF appears shallow with power-law slopes of Γ1=-0.50 ± 0.11 above mc and Γ2= 0.63 ± 0.32 below mc. Based on Observations with VLT-MAD collected during the Science Verification campaign at the European Southern Observatory, Paranal, Chile.

  4. Wide-viewing angle IPS-LCD for TV applications using optical compensation technology

    Kajita, D.; Hiyama, I.; Utsumi, U.; Ishii, M.; Ono, K.

    2006-02-01

    The viewing angle performance in IPS-LCDs has been greatly improved, by using two technologies. One is optical compensation technology using a biaxial film. The other is the newly developed IPS-Pro cell structure with its higher transmission efficiency. These technologies have been successfully introduced into the fabrication of 32-inch IPS-LCDs with a minimum contrast ratio of over three times that of the conventional and with a color saturation (area ratio to NTSC at CIE1931 xy chromaticity coordinates) of over 70 % at almost all viewing angles.

  5. Adaptive PMD Compensation in 10 Gbit/s RZ Optical Communication System

    Yu; Li; Zhang; Xiaoguang; Zhou; Guangtao; Shen; Yu; Zheng; Yuan; Li; Chaoyang; Liu; Yumin; Chen; Lin; Yang; Bojun

    2003-01-01

    We report an experiment of adaptive compensation for polarization mode dispersion (PMD) in 10Gbit/s return zero (RZ) optical communication system. The quasi-real-time PMD compensation is realized. The algorithm so-called particle swarm optimization (PSO) is used to control feedback compensation system.

  6. Placing Limits on Extragalactic Substructure with Gravitational Lenses and Adaptive Optics

    Lagattuta, David J.; Vegetti, S.; Auger, M. W.; Fassnacht, C. D.; Koopmans, L. V. E.; McKean, J. P.

    2011-01-01

    We present the first results from a systematic search for extragalactic substructure, using high resolution Adaptive Optics (AO) images of known strong gravitational lenses. In particular we focus on two lens systems, B0128+437 and B1939+666, placing limits on both luminous and dark matter substruct

  7. Using 50-mm electrostatic membrane deformable mirror in astronomical adaptive optics

    Tokovinin, A.; Thomas, S.; Vdovin, G.

    2004-01-01

    Membrane micro-machined deformable mirrors (MMDM) feature low cost, low power consumption, small size and absence of hysteresis. Interested in using such a device for the adaptive optics system at the SOAR 4.1-m telescope, we evaluated the performance of a 79-channel 50-mm (pupil size 35mm) MMDM fro

  8. Operation of the adaptive optics system at the Large Binocular Telescope Observatory

    Miller, Douglas L.; Guerra, Juan Carlos; Boutsia, Konstantina; Fini, Luca; Argomedo, Javier; Biddick, Chris; Agapito, Guido; Arcidiacono, Carmelo; Briguglio, Runa; Brusa, Guido; Busoni, Lorenzo; Esposito, Simone; Hill, John; Kulesa, Craig; McCarthy, Don; Pinna, Enrico; Puglisi, Alfio T.; Quiros-Pacheco, Fernando; Riccardi, Armando; Xompero, Marco

    2012-07-01

    The Adaptive Optics System at the Large Binocular Telescope Observatory consists of two Adaptive Secondary (ASM) mirrors and two Pyramid Wavefront sensors. The first ASM/Pyramid pair has been commissioned and is being used for science operation using the NIR camera PISCES on the right side of the binocular telescope. The left side ASM/Pyramid system is currently being commissioned, with completion scheduled for the Fall of 2012. We will discuss the operation of the first Adaptive Optics System at the LBT Observatory including interactions of the AO system with the telescope and its TCS, observational modes, user interfaces, observational scripting language, time requirement for closed loop and offsets and observing efficiency.

  9. Adaptive optics imaging of the outer retinal tubules in Bietti's crystalline dystrophy.

    Battu, R; Akkali, M C; Bhanushali, D; Srinivasan, P; Shetty, R; Berendschot, T T J M; Schouten, J S A G; Webers, C A

    2016-05-01

    PurposeTo study the outer retinal tubules using spectral domain optical coherence tomography and adaptive optics and in patients with Bietti's crystalline dystrophy.MethodsTen eyes of five subjects from five independent families with Bietti's crystalline Dystrophy (BCD) were characterized with best-corrected visual acuity (BCVA), full-field electroretinography, and fundus autofluorescence (FAF). High-resolution images were obtained with the spectral domain optical coherence tomography (SD-OCT) and adaptive optics (AO).ResultsSD-OCT showed prominent outer retinal layer loss and outer retinal tubulations at the margin of outer retinal loss. AO images displayed prominent macrotubules and microtubules with characteristic features in eight out of the 10 eyes. Crystals were present in all ten eyes. There was a reduction in the cone count in all eyes in the area outside the outer retinal tubules (ORT).ConclusionsThis study describes the morphology of the outer retinal tubules when imaged enface on the adaptive optics in patients with BCD. These findings provide insight into the macular structure of these patients. This may have prognostic implications and refine the study on the pathogenesis of BCD. PMID:26915747

  10. Characterization of a tunable astigmatic fluidic lens with adaptive optics correction for compact phoropter application

    Fuh, Yiin-Kuen; Huang, Chieh-Tse

    2014-07-01

    Fluidically controlled lenses which adaptively correct prescribed refractive error without mechanically moving parts are extensively applied in the ophthalmic applications. Capable of variable-focusing properties, however, the associated aberrations due to curvature change and refractive index mismatch can inherently degrade image quality severely. Here we present the experimental study of the aberrations in tunable astigmatic lens and use of adaptive optics to compensate for the wavefront errors. Characterization of the optical properties of the individual lenses is carried out by Shack-Hartmann measurements. An adaptive optics (AO) based scheme is demonstrated for three injected fluidic volumes, resulting in a substantial reduction of the wavefront errors from -0.12, -0.25, -0.32 to 0.01, -0.01, -0.20 μm, respectively, corresponding to the optical power tenability of 0.83 to 1.84 D. Furthermore, an integrated optical phoroptor consisting of adjustable astigmatic lenses and AO correction is demonstrated such that an induced refraction error of -1 D cylinder at 180° of a model eye vision is experimentally corrected.

  11. KNOW THE STAR, KNOW THE PLANET. I. ADAPTIVE OPTICS OF EXOPLANET HOST STARS

    The results of an adaptive optics survey of exoplanet host stars for stellar companions are presented. We used the Advanced Electro-Optical System telescope and its adaptive optics system to collect deep images of the stars in the I band. Sixty-two exoplanet host stars were observed and fifteen multiple star systems were resolved. Of these eight are known multiples, while seven are new candidate binaries. For all binaries, we measured the relative astrometry of the pair and the differential magnitude in the I band. We improved the orbits of HD 19994 and τ Boo. These observations will provide improved statistics on the duplicity of exoplanet host stars and provide an increased understanding of the dynamics of known binary star exoplanet hosts.

  12. Neurosurgical hand-held optical coherence tomography (OCT) forward-viewing probe

    Sun, Cuiru; Lee, Kenneth K. C.; Vuong, Barry; Cusimano, Michael; Brukson, Alexander; Mariampillai, Adrian; Standish, Beau A.; Yang, Victor X. D.

    2012-02-01

    A prototype neurosurgical hand-held optical coherence tomography (OCT) imaging probe has been developed to provide micron resolution cross-sectional images of subsurface tissue during open surgery. This new ergonomic hand-held probe has been designed based on our group's previous work on electrostatically driven optical fibers. It has been packaged into a catheter probe in the familiar form factor of the clinically accepted Bayonet shaped neurosurgical non-imaging Doppler ultrasound probes. The optical design was optimized using ZEMAX simulation. Optical properties of the probe were tested to yield an ~20 um spot size, 5 mm working distance and a 3.5 mm field of view. The scan frequency can be increased or decreased by changing the applied voltage. Typically a scan frequency of less than 60Hz is chosen to keep the applied voltage to less than 2000V. The axial resolution of the probe was ~15 um (in air) as determined by the OCT system. A custom-triggering methodology has been developed to provide continuous stable imaging, which is crucial for clinical utility. Feasibility of this probe, in combination with a 1310 nm swept source OCT system was tested and images are presented to highlight the usefulness of such a forward viewing handheld OCT imaging probe. Knowledge gained from this research will lay the foundation for developing new OCT technologies for endovascular management of cerebral aneurysms and transsphenoidal neuroendoscopic treatment of pituitary tumors.

  13. Comparison of Adaptive Optics and Phase-Conjugate Mirrors for Correction of Aberrations in Double-Pass Amplifiers

    Jackel, Steven; Moshe, Inon; Lavi, Raphy

    2003-02-01

    Correction of birefringence-induced effects (depolarization and bipolar focusing) were achieved in double-pass amplifiers by use of a Faraday rotator between the laser rod and the retroreflecting optic. A necessary condition was ray retrace. Retrace was limited by imperfect conjugate-beam fidelity and by nonreciprocal refractive indices. We compared various retroreflectors: stimulated-Brillouin-scatter phase-conjugate mirrors (PCMs), PCMs with rod-to-PCM relay imaging (IPCM), IPCMs with astigmatism-correcting adaptive optics, and all-adaptive-optics imaging variable-radius mirrors. Results with flash-lamp-pumped, Nd:Cr:GSGG double-pass amplifiers showed the superiority of adaptive optics over nonlinear optics retroreflectors in terms of maximum average power, improved beam quality, and broader oscillator pulse duration /bandwidth operating range. Hybrid PCM-adaptive optics retroreflectors yielded intermediate power /beam-quality results.

  14. Fiber Optic Adaptive Probe as a Cuvette Substitution for UV-Vis Spectrophotometer (Genesis 10S

    Fredy Kurniawan

    2014-04-01

    Full Text Available Fiber optic adaptive probe UV-Vis for Genesis 10S has been fabricated to substitute cuvette for real time analysis. Most of standard spectrophotometers UV-Vis (the common type use cuvette to place sample which is being analyzed. The light pass through the sample in the cuvette to detector then the intensity of the absorption of the solution is measured. Most of the cuvette system requires to transferring sample solution to cuvette from its original vessel, so the real time analysis cannot be conducted. The probe with special design using fiber optic cable FT-Au tonics 420-10 has been made to substitute the cuvette system. The light from the source moved inside fiber optic cable, which has been cut in the middle of the cable (the sample can passes through at this gap, to the detector. The end (entrance and exit of the fiber optic was designed so that it fit to the compartment of the Genesis 10S spectrophotometer without any modification from the standard instrument condition. The spectrum results from the probe in varies gap, in the range 0.2 – 1 cm, was observed. The gap in the middle of the fiber optic was equal to the length of the pathway in the cuvette system. Rhoda mine B was used as the sample with variation concentration 4.175 × 10-5 M, 3.34 × 10-5 M, 2.5 × 10-5 M, and 1.67 × 10-5 M. The spectrum result of adaptive fiber optic probe was compared to the spectrum of standard cuvette system. The optimum result was provided using 0.2 cm gap. The maximum wavelength absorbance of adaptive fiber optic probe was at 533 nm which similar to the cuvette system.

  15. Human beings' adaptability to extreme environmental changes from medical and physical points of view

    Khabarova, Olga; Ragulskaya, Maria; Dimitrova, Svetla; Safaraly-Oghlu Babayev, Elchin; Samsonov, Sergey; Med. Dimitry Markov, Of; Nazarova, Of Med. Olga N.; Rudenchik, Evgeny

    The question about features of human reaction on the sharp environmental physical activity (EPA) changes is considered by international group of physicists and physicians on the base of results of monitoring of human health state in different cities spread on latitude and longitude. The typical reaction of human body on the influences, exceeding the organisms' ability to adaptation, is of stress-reaction character. From medical point of view there is no significant difference for human body -what external (EPA) agent shocked an organism (emotional or some physical threats). First attempt of the organism to restore its homeostasis is stress-reaction, being universal for many stress-factors. Its main stages (such as alarm, resistance, and exhaustion) are detectable by different medical equipments, but we tried to find universal, non-traumatic method of daily measurements, enough sensitive and appropriate for observation of people reaction both on weather and space weather (geomagnetic activity) changes. The experiment was based on a method of electrical conductivity measurements of biologically active (acupunctural) points of human skin. The used method (electroacupunctural method by Dr. R.Voll) is very sensitive to current state of an organism and characterize the functional condition of different organs and systems of human body and allows to express so-called "group's health status" in the units, suitable for comparison with meteorological and heliogeophysical parameters. We conduct the parallel investigations as a part of collaborative study in different geographic latitudes-longitudes (Baku:40° 23'43"N -49° 52'56"E, Troitsk (Moscow region): 55° 28'40"N -37° 18'42"E, Yakutsk: 62° 02'00"N -129° 44'00"E). Measurements were carried out on daily basis with permanent group of functionally healthy persons (Moscow -19, Yakutsk -22, CityBaku -12 volunteers). Daily monitoring of nervous, endocrinological, lymphatic systems, blood, lungs, thick and thin intestine

  16. Optimal control techniques for the adaptive optics system of the LBT

    Agapito, G.; Quiros-Pacheco, F.; Tesi, P.; Esposito, S.; Xompero, M.

    2008-07-01

    In this paper we will discuss the application of different optimal control techniques for the adaptive optics system of the LBT telescope which comprises a pyramid wavefront sensor and an adaptive secondary mirror. We have studied the application of both the Kalman and the H∞ filter to estimate the temporal evolution of the phase perturbations due to the atmospheric turbulence and the telescope vibrations. We have evaluated the performance of these control techniques with numerical simulations in preparation of the laboratory tests that will be carried out in the Arcetri laboratories.

  17. Length-adaptive graph search for automatic segmentation of pathological features in optical coherence tomography images

    Keller, Brenton; Cunefare, David; Grewal, Dilraj S.; Mahmoud, Tamer H.; Izatt, Joseph A.; Farsiu, Sina

    2016-07-01

    We introduce a metric in graph search and demonstrate its application for segmenting retinal optical coherence tomography (OCT) images of macular pathology. Our proposed "adjusted mean arc length" (AMAL) metric is an adaptation of the lowest mean arc length search technique for automated OCT segmentation. We compare this method to Dijkstra's shortest path algorithm, which we utilized previously in our popular graph theory and dynamic programming segmentation technique. As an illustrative example, we show that AMAL-based length-adaptive segmentation outperforms the shortest path in delineating the retina/vitreous boundary of patients with full-thickness macular holes when compared with expert manual grading.

  18. Adaptive Bit Rate Video Streaming Through an RF/Free Space Optical Laser Link

    A. Akbulut

    2010-06-01

    Full Text Available This paper presents a channel-adaptive video streaming scheme which adjusts video bit rate according to channel conditions and transmits video through a hybrid RF/free space optical (FSO laser communication system. The design criteria of the FSO link for video transmission to 2.9 km distance have been given and adaptive bit rate video streaming according to the varying channel state over this link has been studied. It has been shown that the proposed structure is suitable for uninterrupted transmission of videos over the hybrid wireless network with reduced packet delays and losses even when the received power is decreased due to weather conditions.

  19. Note: A top-view optical approach for observing the coalescence of liquid drops

    Wang, Luhai; Zhang, Guifu; Wu, Haiyi; Yang, Jiming; Zhu, Yujian

    2016-02-01

    We developed a new device that is capable of top-view optical examination of the coalescence of liquid drops. The device exhibits great potential for visualization, particularly for the early stage of liquid bridge expansion, owing to the use of a high-speed shadowgraph technique. The fluid densities of the two approaching drops and that of the ambient fluid are carefully selected to be negligibly different, which allows the size of the generated drops to be unlimitedly large in principle. The unique system design allows the point of coalescence between two drops to serve as an undisturbed optical pathway through which to image the coalescence process. The proposed technique extended the dimensionless initial finite radius of the liquid bridge to 0.001, in contrast to 0.01 obtained for conventional optical measurements. An examination of the growth of the bridge radius for a water and oil-tetrachloroethylene system provided results similar to Paulsen's power laws of the inertially limited viscous and inertial regimes. Furthermore, a miniscule shift in the center of the liquid bridge was detected at the point of crossover between the two regimes, which can be scarcely distinguished with conventional side-view techniques.

  20. Algorithm for localized adaptive diffuse optical tomography and its application in bioluminescence tomography

    A reconstruction algorithm for diffuse optical tomography based on diffusion theory and finite element method is described. The algorithm reconstructs the optical properties in a permissible domain or region-of-interest to reduce the number of unknowns. The algorithm can be used to reconstruct optical properties for a segmented object (where a CT-scan or MRI is available) or a non-segmented object. For the latter, an adaptive segmentation algorithm merges contiguous regions with similar optical properties thereby reducing the number of unknowns. In calculating the Jacobian matrix the algorithm uses an efficient direct method so the required time is comparable to that needed for a single forward calculation. The reconstructed optical properties using segmented, non-segmented, and adaptively segmented 3D mouse anatomy (MOBY) are used to perform bioluminescence tomography (BLT) for two simulated internal sources. The BLT results suggest that the accuracy of reconstruction of total source power obtained without the segmentation provided by an auxiliary imaging method such as x-ray CT is comparable to that obtained when using perfect segmentation. (paper)

  1. Algorithm for localized adaptive diffuse optical tomography and its application in bioluminescence tomography

    Naser, Mohamed A.; Patterson, Michael S.; Wong, John W.

    2014-04-01

    A reconstruction algorithm for diffuse optical tomography based on diffusion theory and finite element method is described. The algorithm reconstructs the optical properties in a permissible domain or region-of-interest to reduce the number of unknowns. The algorithm can be used to reconstruct optical properties for a segmented object (where a CT-scan or MRI is available) or a non-segmented object. For the latter, an adaptive segmentation algorithm merges contiguous regions with similar optical properties thereby reducing the number of unknowns. In calculating the Jacobian matrix the algorithm uses an efficient direct method so the required time is comparable to that needed for a single forward calculation. The reconstructed optical properties using segmented, non-segmented, and adaptively segmented 3D mouse anatomy (MOBY) are used to perform bioluminescence tomography (BLT) for two simulated internal sources. The BLT results suggest that the accuracy of reconstruction of total source power obtained without the segmentation provided by an auxiliary imaging method such as x-ray CT is comparable to that obtained when using perfect segmentation.

  2. On distributed wavefront reconstruction for large-scale adaptive optics systems.

    de Visser, Cornelis C; Brunner, Elisabeth; Verhaegen, Michel

    2016-05-01

    The distributed-spline-based aberration reconstruction (D-SABRE) method is proposed for distributed wavefront reconstruction with applications to large-scale adaptive optics systems. D-SABRE decomposes the wavefront sensor domain into any number of partitions and solves a local wavefront reconstruction problem on each partition using multivariate splines. D-SABRE accuracy is within 1% of a global approach with a speedup that scales quadratically with the number of partitions. The D-SABRE is compared to the distributed cumulative reconstruction (CuRe-D) method in open-loop and closed-loop simulations using the YAO adaptive optics simulation tool. D-SABRE accuracy exceeds CuRe-D for low levels of decomposition, and D-SABRE proved to be more robust to variations in the loop gain. PMID:27140879

  3. The Robo-AO KOI Survey: laser adaptive optics imaging of every Kepler exoplanet candidate

    Ziegler, Carl; Baranec, Christoph; Morton, Tim; Riddle, Reed; Atkinson, Dani; Nofi, Larissa

    2016-01-01

    The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star (KOI) with laser adaptive optics imaging to hunt for blended nearby stars which may be physically associated companions. With the unparalleled efficiency provided by the first fully robotic adaptive optics system, we perform the critical search for nearby stars (0.15" to 4.0" separation with contrasts up to 6 magnitudes) that dilute the observed planetary transit signal, contributing to inaccurate planetary characteristics or astrophysical false positives. We present 3313 high resolution observations of Kepler planetary hosts from 2012-2015, discovering 479 nearby stars. We measure an overall nearby star probability rate of 14.5\\pm0.8%. With this large data set, we are uniquely able to explore broad correlations between multiple star systems and the properties of the planets which they host, providing insight into the formation and evolution of planetary systems in our galaxy. Several KOIs of particular interest...

  4. Optical Digital Imitation Painting Design Based on Self-Adaptive Image Feature

    Zhu Liyan; Qin Jianfei; Qu Liyong; Song Shuwei; Xu Weidong

    2016-01-01

    Based on the study of existing digital imitation camouflage technology, we propose a kind of optical digital imitation camouflage design algorithm which is based on the characteristic of self-adaptive image. Picking main color feature of the background by using K-means clustering algorithm, counting the shape characteristics of each main color spots by separating layers, we generated digital camouflage pattern automatically by segmenting the background region characteristics and fill the back...

  5. Ferrofluid Based Deformable Mirrors - a New Approach to Adaptive Optics Using Liquid Mirrors

    Laird, P.; Bergamasco, R.; Berube, V.; Borra, E. F.; Ritcey, A.; Rioux, M.; Robitaille, N.; Thibault, S.; Silva Jr, L. Vieira da; Yockell-Lelievre, H.

    2002-01-01

    The trend towards ever larger telescopes and more advanced adaptive optics systems is driving the need for deformable mirrors with a large number of low cost actuators. Liquid mirrors have long been recognized a potential low cost alternative to conventional solid mirrors. By using a water or oil based ferrofluid we are able to benefit from a stronger magnetic response than is found in magnetic liquid metal amalgams and avoid the difficulty of passing a uniform current through a liquid. Depos...

  6. Adaptive Optics Parameters connection to wind speed at the Teide Observatory

    Garcia-Lorenzo, B.; Eff-Darwich, A.; J. J. Fuensalida; Castro-Almazan, J.

    2009-01-01

    Current projects for large telescopes demand a proper knowledge of atmospheric turbulence to design efficient adaptive optics systems in order to reach large Strehl ratios. However, the proper characterization of the turbulence above a particular site requires long-term monitoring. Due to the lack of long-term information on turbulence, high-altitude winds (in particular winds at the 200 mbar pressure level) were proposed as a parameter for estimating the total turbulence at a particular site...

  7. “Lucky Averaging”: Quality improvement on Adaptive Optics Scanning Laser Ophthalmoscope Images

    Huang, Gang; Zhong, Zhangyi; Zou, Weiyao; Burns, Stephen A.

    2011-01-01

    Adaptive optics(AO) has greatly improved retinal image resolution. However, even with AO, temporal and spatial variations in image quality still occur due to wavefront fluctuations, intra-frame focus shifts and other factors. As a result, aligning and averaging images can produce a mean image that has lower resolution or contrast than the best images within a sequence. To address this, we propose an image post-processing scheme called “lucky averaging”, analogous to lucky imaging (Fried, 1978...

  8. Registration of adaptive optics corrected retinal nerve fiber layer (RNFL) images

    Ramaswamy, Gomathy; Lombardo, Marco; Devaney, Nicholas

    2014-01-01

    Glaucoma is the leading cause of preventable blindness in the western world. Investigation of high-resolution retinal nerve fiber layer (RNFL) images in patients may lead to new indicators of its onset. Adaptive optics (AO) can provide diffraction-limited images of the retina, providing new opportunities for earlier detection of neuroretinal pathologies. However, precise processing is required to correct for three effects in sequences of AO-assisted, flood-illumination images: uneven illumina...

  9. Observer-Based Control Techniques for the LBT Adaptive Optics under Telescope Vibrations

    Agapito, Guido; Quirós-Pacheco, Fernando; Tesi, Pietro; Riccardi, Armando; Esposito, Simone

    2011-01-01

    This paper addresses the application of observer-based control techniques for the adaptive optics system of the LBT telescope. In such a context, attention is focused on the use of Kalman and H∞ filters to estimate the temporal evolution of phase perturbations due to the atmospheric turbulence and the telescope vibrations acting on tip/tilt modes. We shall present preliminary laboratory experiments carried out at the Osservatorio Astrofisico di Arcetri using the Kalman filter.

  10. Prediction of wavefronts in adaptive optics to reduce servo lag errors using data mining

    Vyas, Akondi; Roopashree, M. B.; Prasad, B Raghavendra

    2009-01-01

    Servo lag errors in adaptive optics lead to inaccurate compensation of wavefront distortions. An attempt has been made to predict future wavefronts using data mining on wavefronts of the immediate past to reduce these errors. Monte Carlo simulations were performed on experimentally obtained data that closely follows Kolmogorov phase characteristics. An improvement of 6% in wavefront correction is reported after data mining is performed. Data mining is performed in three steps (a) Data cube Se...

  11. Progressive Prediction of Turbulence Using Wave-Front Sensor Data in Adaptive Optics Using Data Mining

    Vyas, Akondi; Roopashree, M. B.; Prasad, B Raghavendra

    2009-01-01

    Nullifying the servo bandwidth errors improves the strehl ratio by a substantial quantity in adaptive optics systems. An effective method for predicting atmospheric turbulence to reduce servo bandwidth errors in real time closed loop correction systems is presented using data mining. Temporally evolving phase screens are simulated using Kolmogorov statistics and used for data analysis. A data cube is formed out of the simulated time series. Partial data is used to predict the subsequent phase...

  12. Adaptive synchronization in chaotic laser diodes subject to optical feedback(s)

    In this paper a proposal is made of an adaptive coupling function for achieving synchronization between two lasers subject to optical feedback. Such a control scheme requires knowledge of the systems' parameters. For the first time we demonstrate that when these parameters are not available on-line parameter estimation can be applied. Generalization of the approach to the multi-feedback systems is also presented. (author)

  13. The Clipped View: Ponderings on the Point-of-view in the Cinematographic Adaptation of "Eu Receberia as Piores Notícias de seus Lindos Lábios"

    Ricardo Magalhães Bulhões

    2015-06-01

    Full Text Available http://dx.doi.org/10.5007/2175-7917.2015v20n2p25 This paper was carried out to assess the cinematographic adaptation of Eu receberia as Piores Notícias dos seus Lindos Lábios, directed by Beto Brant and Renato Ciasca, based on the novel with the same title by Marçal Aquino. Both in the novel and in the film, every moment, the reader/viewer is invited to deal with the narrator-character's tense vision telling his own story connecting flashes of his own traumatic recollections. In a swinging movement, most of the time intersected by lines and accounts of supporting characters, the protagonist embodies the character of an afflicted narrator, who does not manage to get rid of haunting conflicts, mainly of Lavínia, a seductive and enigmatic woman with whom he had fallen in love. In our paper, the main interest is focused on the point-of-view. In the film the optical nature of the cinematographic medium takes a look into the structure of the dramatic action. Thus, the issue of the point-of-view stands out as a decisive category which reveals the very specificities of both literature and the cinema.

  14. Validation Through Simulations of a Cn2 Profiler for the ESO/VLT Adaptive Optics Facility

    Garcia-Rissmann, A; Kolb, J; Louarn, M Le; Madec, P -Y; Neichel, B

    2015-01-01

    The Adaptive Optics Facility (AOF) project envisages transforming one of the VLT units into an adaptive telescope and providing its ESO (European Southern Observatory) second generation instruments with turbulence corrected wavefronts. For MUSE and HAWK-I this correction will be achieved through the GALACSI and GRAAL AO modules working in conjunction with a 1170 actuators Deformable Secondary Mirror (DSM) and the new Laser Guide Star Facility (4LGSF). Multiple wavefront sensors will enable GLAO and LTAO capabilities, whose performance can greatly benefit from a knowledge about the stratification of the turbulence in the atmosphere. This work, totally based on end-to-end simulations, describes the validation tests conducted on a Cn2 profiler adapted for the AOF specifications. Because an absolute profile calibration is strongly dependent on a reliable knowledge of turbulence parameters r0 and L0, the tests presented here refer only to normalized output profiles. Uncertainties in the input parameters inherent t...

  15. Practical High-Order Adaptive Optics Systems For Extrasolar Planet Searches

    Macintosh, B A; Olivier, S; Bauman, B; Brase, J; Carr, E; Carrano, C J; Gavel, D; Max, C E; Patience, J

    2001-08-29

    Direct detection of photons emitted or reflected by an extrasolar planet is an extremely difficult but extremely exciting application of adaptive optics. Typical contrast levels for an extrasolar planet would be 10{sup 9}-Jupiter is a billion times fainter than the sun. Current adaptive optics systems can only achieve contrast levels of 10{sup 6}, but so-called ''extreme'' adaptive optics systems with 10{sup 4}-10{sup 5} degrees of freedom could potentially detect extrasolar planets. We explore the scaling laws defining the performance of these systems, first set out by Angel (1994), and derive a different definition of an optimal system. Our sensitivity predictions are somewhat more pessimistic than the original paper, due largely to slow decorrelation timescales for some noise sources, though choosing to site an ExAO system at a location with exceptional r{sub 0} (e.g. Mauna Kea) can offset this. We also explore the effects of segment aberrations in a Keck-like telescope on ExAO; although the effects are significant, they can be mitigated through Lyot coronagraphy.

  16. High-resolution Imaging of Living Retina through Optic Adaptive Retinal Imaging System

    Chunhui Jiang; Wenji Wang; Ning Ling; Gezhi Xu; Xuejun Rao; Xinyang Li; Yudong Zhang

    2002-01-01

    Purpose: To evaluate the possibility as well as the usage of adaptive optics in high-resolution retinal imaging.Methods:From March to November 2001, the fundus of 25 adults were checked by using Optic Adaptive Retinal Imaging System (OAS). The age of the subjects varied from 18~48 years. All had normal visual acuity from 0.9 to 1.0. No abnormality was found in the ocular examination, and their medical as well as ocular history was unremarkable. Results: High-resolution images of the retinal cells, photoreceptor and bipolar cell, were analysed. In these images, the cells are clearly resolved. The density of the photoreceptor at area 1.5 degree from the foveloa is around 40 000~50 000/mm2. At area 3 degree, it drops to less than 30 000/mm2.Conclusion:Optic Adaptive Retinal Imaging System (AOS) is able to get high-resolution image of retinal cells in living human eyes. It may be widely used in ophthalmology experimentally and clinically.

  17. MAD Adaptive Optics Imaging of High Luminosity Quasars: A Pilot Project

    Liuzzo, E; Paiano, S; Treves, A; Uslenghi, M; Arcidiacono, C; Baruffolo, A; Diolaiti, E; Farinato, J; Lombini, M; Moretti, A; Ragazzoni, R; Brast, R; Donaldson, R; Kolb, J; Marchetti, E; Tordo, S

    2016-01-01

    We present near-IR images of five luminous quasars at z~2 and one at z~4 obtained with an experimental adaptive optics instrument at the ESO Very Large Telescope. The observations are part of a program aimed at demonstrating the capabilities of multi-conjugated adaptive optics imaging combined with the use of natural guide stars for high spatial resolution studies on large telescopes. The observations were mostly obtained under poor seeing conditions but in two cases. In spite of these non optimal conditions, the resulting images of point sources have cores of FWHM ~0.2 arcsec. We are able to characterize the host galaxy properties for 2 sources and set stringent upper limits to the galaxy luminosity for the others. We also report on the expected capabilities for investigating the host galaxies of distant quasars with adaptive optics systems coupled with future Extremely Large Telescopes. Detailed simulations show that it will be possible to characterize compact (2-3 kpc) quasar host galaxies for QSOs at z = ...

  18. Real-time blind deconvolution of retinal images in adaptive optics scanning laser ophthalmoscopy

    Li, Hao; Lu, Jing; Shi, Guohua; Zhang, Yudong

    2011-06-01

    With the use of adaptive optics (AO), the ocular aberrations can be compensated to get high-resolution image of living human retina. However, the wavefront correction is not perfect due to the wavefront measure error and hardware restrictions. Thus, it is necessary to use a deconvolution algorithm to recover the retinal images. In this paper, a blind deconvolution technique called Incremental Wiener filter is used to restore the adaptive optics confocal scanning laser ophthalmoscope (AOSLO) images. The point-spread function (PSF) measured by wavefront sensor is only used as an initial value of our algorithm. We also realize the Incremental Wiener filter on graphics processing unit (GPU) in real-time. When the image size is 512 × 480 pixels, six iterations of our algorithm only spend about 10 ms. Retinal blood vessels as well as cells in retinal images are restored by our algorithm, and the PSFs are also revised. Retinal images with and without adaptive optics are both restored. The results show that Incremental Wiener filter reduces the noises and improve the image quality.

  19. Ship detection for high resolution optical imagery with adaptive target filter

    Ju, Hongbin

    2015-10-01

    Ship detection is important due to both its civil and military use. In this paper, we propose a novel ship detection method, Adaptive Target Filter (ATF), for high resolution optical imagery. The proposed framework can be grouped into two stages, where in the first stage, a test image is densely divided into different detection windows and each window is transformed to a feature vector in its feature space. The Histograms of Oriented Gradients (HOG) is accumulated as a basic feature descriptor. In the second stage, the proposed ATF highlights all the ship regions and suppresses the undesired backgrounds adaptively. Each detection window is assigned a score, which represents the degree of the window belonging to a certain ship category. The ATF can be adaptively obtained by the weighted Logistic Regression (WLR) according to the distribution of backgrounds and targets of the input image. The main innovation of our method is that we only need to collect positive training samples to build the filter, while the negative training samples are adaptively generated by the input image. This is different to other classification method such as Support Vector Machine (SVM) and Logistic Regression (LR), which need to collect both positive and negative training samples. The experimental result on 1-m high resolution optical images shows the proposed method achieves a desired ship detection performance with higher quality and robustness than other methods, e.g., SVM and LR.

  20. Status update and closed-loop performance of the Magellan adaptive optics VisAO camera

    Kopon, Derek; Close, Laird M.; Males, Jared; Gasho, Victor; Morzinski, Katie; Follette, Katherine

    2012-07-01

    We present laboratory results of the closed-loop performance of the Magellan Adaptive Optics (AO) Adaptive Secondary Mirror (ASM), pyramid wavefront sensor (PWFS), and VisAO visible adaptive optics camera. The Magellan AO system is a 585-actuator low-emissivity high-throughput system scheduled for first light on the 6.5 meter Magellan Clay telescope in November 2012. Using a dichroic beamsplitter near the telescope focal plane, the AO system will be able to simultaneously perform visible (500-1000 nm) AO science with our VisAO camera and either 10 μm or 3-5 μm science using either the BLINC/MIRAC4 or CLIO cameras, respectively. The ASM, PWS, and VisAO camera have undergone final system tests in the solar test tower at the Arcetri Institute in Florence, Italy, reaching Strehls of 37% in i'-band with 400 modes and simulated turbulence of 14 cm ro at v-band. We present images and test results of the assembled VisAO system, which includes our prototype advanced Atmospheric Dispersion Corrector (ADC), prototype calcite Wollaston prisms for SDI imaging, and a suite of beamsplitters, filters, and other optics. Our advanced ADC performs in the lab as designed and is a 58% improvement over conventional ADC designs. We also present images and results of our unique Calibration Return Optic (CRO) test system and the ASM, which has successfully run in closedloop at 1kHz. The CRO test is a retro reflecting optical test that allows us to test the ASM off-sky in close-loop using an artificial star formed by a fiber source.

  1. Adaptive Optics at Optical Wavelengths: Test Observations of Kyoto 3DII Connected to Subaru Telescope AO188

    Matsubayashi, K.; Sugai, H.; Shimono, A.; Akita, A.; Hattori, T.; Hayano, Y.; Minowa, Y.; Takeyama, N.

    2016-09-01

    Adaptive optics (AO) enables us to observe objects with high spatial resolution, which is important in most astrophysical observations. Most AO systems are operational at near-infrared wavelengths but not in the optical range, because optical observations require a much higher performance to obtain the same Strehl ratio as near-infrared observations. Therefore, to enable AO-assisted observations at optical wavelengths, we connected the Kyoto Tridimensional Spectrograph II (Kyoto 3DII), which can perform integral field spectroscopy, to the second generation AO system of the Subaru Telescope (AO188). We developed a new beam-splitter that reflects light below 594 nm for the wavefront sensors of AO188 and transmits above 644 nm for Kyoto 3DII. We also developed a Kyoto 3DII mount at the Nasmyth focus of the Subaru Telescope. In test observations, the spatial resolution of the combined AO188–Kyoto 3DII was higher than that in natural seeing conditions, even at 6500 Å. The full width at half maximum of an undersampled (1.5 spaxels) bright guide star (7.0 mag in the V-band) was 0.″12.

  2. Retinal axial focusing and multi-layer imaging with a liquid crystal adaptive optics camera

    With the help of adaptive optics (AO) technology, cellular level imaging of living human retina can be achieved. Aiming to reduce distressing feelings and to avoid potential drug induced diseases, we attempted to image retina with dilated pupil and froze accommodation without drugs. An optimized liquid crystal adaptive optics camera was adopted for retinal imaging. A novel eye stared system was used for stimulating accommodation and fixating imaging area. Illumination sources and imaging camera kept linkage for focusing and imaging different layers. Four subjects with diverse degree of myopia were imaged. Based on the optical properties of the human eye, the eye stared system reduced the defocus to less than the typical ocular depth of focus. In this way, the illumination light can be projected on certain retina layer precisely. Since that the defocus had been compensated by the eye stared system, the adopted 512 × 512 liquid crystal spatial light modulator (LC-SLM) corrector provided the crucial spatial fidelity to fully compensate high-order aberrations. The Strehl ratio of a subject with −8 diopter myopia was improved to 0.78, which was nearly close to diffraction-limited imaging. By finely adjusting the axial displacement of illumination sources and imaging camera, cone photoreceptors, blood vessels and nerve fiber layer were clearly imaged successfully. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  3. Fast binarized time-reversed adapted-perturbation (b-TRAP) optical focusing inside scattering media

    Ma, Cheng; Liu, Yan; Wang, Lihong V

    2015-01-01

    Light scattering inhibits high-resolution optical imaging, manipulation and therapy deep inside biological tissue by preventing focusing. To form deep foci, wavefront-shaping and time-reversal techniques that break the optical diffusion limit have been developed. For in vivo applications, such focusing must provide high gain, high speed, and a large number of spatial modes. However, none of the previous techniques meet these requirements simultaneously. Here, we overcome this challenge by rapidly measuring the perturbed optical field within a single camera exposure followed by adaptively time-reversing the phase-binarized perturbation. Consequently, a phase-conjugated wavefront is synthesized within a millisecond, two orders of magnitude shorter than the digitally achieved record. We demonstrated real-time focusing in dynamic scattering media, and extended laser speckle contrast imaging to new depths. The unprecedented combination of fast response, high gain, and large mode count makes this work a major strid...

  4. Mission to Mars: Adaptive Identifier for the Solution of Inverse Optical Metrology Tasks

    Krapivin, Vladimir F.; Varotsos, Costas A.; Christodoulakis, John

    2016-04-01

    A human mission to Mars requires the solution of many problems that mainly linked to the safety of life, the reliable operational control of drinking water as well as health care. The availability of liquid fuels is also an important issue since the existing tools cannot fully provide the required liquid fuels quantities for the mission return journey. This paper presents the development of new methods and technology for reliable, operational, and with high availability chemical analysis of liquid solutions of various types. This technology is based on the employment of optical sensors (such as the multi-channel spectrophotometers or spectroellipsometers and microwave radiometers) and the development of a database of spectral images for typical liquid solutions that could be the objects of life on Mars. This database exploits the adaptive recognition of optical images of liquids using specific algorithms that are based on spectral analysis, cluster analysis and methods for solving the inverse optical metrology tasks.

  5. High performance pseudo-analytical simulation of multi-object adaptive optics over multi-GPU systems

    Abdelfattah, Ahmad M.

    2014-01-01

    Multi-object adaptive optics (MOAO) is a novel adaptive optics (AO) technique dedicated to the special case of wide-field multi-object spectrographs (MOS). It applies dedicated wavefront corrections to numerous independent tiny patches spread over a large field of view (FOV). The control of each deformable mirror (DM) is done individually using a tomographic reconstruction of the phase based on measurements from a number of wavefront sensors (WFS) pointing at natural and artificial guide stars in the field. The output of this study helps the design of a new instrument called MOSAIC, a multi-object spectrograph proposed for the European Extremely Large Telescope (E-ELT). We have developed a novel hybrid pseudo-analytical simulation scheme that allows us to accurately simulate in detail the tomographic problem. The main challenge resides in the computation of the tomographic reconstructor, which involves pseudo-inversion of a large dense symmetric matrix. The pseudo-inverse is computed using an eigenvalue decomposition, based on the divide and conquer algorithm, on multicore systems with multi-GPUs. Thanks to a new symmetric matrix-vector product (SYMV) multi-GPU kernel, our overall implementation scores significant speedups over standard numerical libraries on multicore, like Intel MKL, and up to 60% speedups over the standard MAGMA implementation on 8 Kepler K20c GPUs. At 40,000 unknowns, this appears to be the largest-scale tomographic AO matrix solver submitted to computation, to date, to our knowledge and opens new research directions for extreme scale AO simulations. © 2014 Springer International Publishing Switzerland.

  6. High-Contrast Imaging using Adaptive Optics for Extrasolar Planet Detection

    Evans, J W

    2006-08-18

    Direct imaging of extrasolar planets is an important, but challenging, next step in planetary science. Most planets identified to date have been detected indirectly--not by emitted or reflected light but through the effect of the planet on the parent star. For example, radial velocity techniques measure the doppler shift in the spectrum of the star produced by the presence of a planet. Indirect techniques only probe about 15% of the orbital parameter space of our solar system. Direct methods would probe new parameter space, and the detected light can be analyzed spectroscopically, providing new information about detected planets. High contrast adaptive optics systems, also known as Extreme Adaptive Optics (ExAO), will require contrasts of between 10{sup -6} and 10{sup -7} at angles of 4-24 {lambda}/D on an 8-m class telescope to image young Jupiter-like planets still warm with the heat of formation. Contrast is defined as the intensity ratio of the dark wings of the image, where a planet might be, to the bright core of the star. Such instruments will be technically challenging, requiring high order adaptive optics with > 2000 actuators and improved diffraction suppression. Contrast is ultimately limited by residual static wavefront errors, so an extrasolar planet imager will require wavefront control with an accuracy of better than 1 nm rms within the low- to mid-spatial frequency range. Laboratory demonstrations are critical to instrument development. The ExAO testbed at the Laboratory for Adaptive Optics was designed with low wavefront error and precision optical metrology, which is used to explore contrast limits and develop the technology needed for an extrasolar planet imager. A state-of-the-art, 1024-actuator micro-electrical-mechanical-systems (MEMS) deformable mirror was installed and characterized to provide active wavefront control and test this novel technology. I present 6.5 x 10{sup -8} contrast measurements with a prolate shaped pupil and flat mirror

  7. A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system

    Li, Chaohong; Sredar, Nripun; Ivers, Kevin M.; Queener, Hope; Porter, Jason

    2010-01-01

    We present a direct slope-based correction algorithm to simultaneously control two deformable mirrors (DMs) in a woofer-tweeter adaptive optics system. A global response matrix was derived from the response matrices of each deformable mirror and the voltages for both deformable mirrors were calculated simultaneously. This control algorithm was tested and compared with a 2-step sequential control method in five normal human eyes using an adaptive optics scanning laser ophthalmoscope. The mean ...

  8. Commissioning of the Adaptive Optics System NAOS-CONICA for the VLT : the way to First Light

    Hartung, Markus

    2003-01-01

    In October 2002 NAOS-CONICA, one of the most powerful adaptive optics systems was offered to the astronomical community. The instrument is installed at the Very Large Telescope in Chile and operated by the European Southern Observatory. The adaptive optics system NAOS corrects for atmospheric turbulence and provides the near-infrared multi-mode camera and spectrograph CONICA with diffraction limited images. Development of NAOS was achieved by a French consortium, while CONICA was developed ...

  9. A Post-Genomic View of Behavioral Development and Adaptation to the Environment

    LaFreniere, Peter; MacDonald, Kevin

    2013-01-01

    Recent advances in molecular genetics and epigenetics are reviewed that have major implications for the bio-behavioral sciences and for understanding how organisms adapt to their environments at both phylogenetic and ontogenic levels. From a post-genomics perspective, the environment is as crucial as the DNA sequence for constructing the…

  10. Adapting to climate variability: the views of peasant farmers in Nepal

    Chalise, S.; Maraseni, T.; Maroulis, J.

    2014-01-01

    There are growing concerns, especially from farmers in rural mid-east Nepal, about main-streaming locally-led climate adaptation strategies. Using a bottom-up approach, we analysed the bio-physical and socio-economic impacts on Nepalese agriculture from three focus group discussions and a survey of

  11. From the proteomic point of view: Integration of adaptive changes to iron deficiency in plants

    Hans-Jörg Mai

    2016-04-01

    Full Text Available Knowledge about the proteomic adaptations to iron deficiency in plants may contribute to find possible new research targets in order to generate crop plants that are more tolerant to iron deficiency, to increase the iron content or to enhance the bioavailability of iron in food plants. We provide this update on adaptations to iron deficiency from the proteomic standpoint. We have mined the data and compared ten studies on iron deficiency-related proteomic changes in six different Strategy I plant species. We summarize these results and point out common iron deficiency-induced alterations of important biochemical pathways based on the data provided by these publications, deliver explanations on the possible benefits that arise from these adaptations in iron-deficient plants and present a concluding model of these adaptations. Furthermore, we demonstrate the close interdependence of proteins which were found regulated across multiple studies, and we pinpoint proteins with yet unknown function, which may play important roles in iron homeostasis.

  12. Computational Optical Imaging Systems for Spectroscopy and Wide Field-of-View Gigapixel Photography

    Kittle, David Scott

    This dissertation explores computational optical imaging methods to circumvent the physical limitations of classical sensing. An ideal imaging system would maximize resolution in time, spectral bandwidth, three-dimensional object space, and polarization. Practically, increasing any one parameter will correspondingly decrease the others. Spectrometers strive to measure the power spectral density of the object scene. Traditional pushbroom spectral imagers acquire high resolution spectral and spatial resolution at the expense of acquisition time. Multiplexed spectral imagers acquire spectral and spatial information at each instant of time. Using a coded aperture and dispersive element, the coded aperture snapshot spectral imagers (CASSI) here described leverage correlations between voxels in the spatial-spectral data cube to compressively sample the power spectral density with minimal loss in spatial-spectral resolution while maintaining high temporal resolution. Photography is limited by similar physical constraints. Low f/# systems are required for high spatial resolution to circumvent diffraction limits and allow for more photon transfer to the film plain, but require larger optical volumes and more optical elements. Wide field systems similarly suffer from increasing complexity and optical volume. Incorporating a multi-scale optical system, the f/#, resolving power, optical volume and wide field of view become much less coupled. This system uses a single objective lens that images onto a curved spherical focal plane which is relayed by small micro-optics to discrete focal planes. Using this design methodology allows for gigapixel designs at low f/# that are only a few pounds and smaller than a one-foot hemisphere. Computational imaging systems add the necessary step of forward modeling and calibration. Since the mapping from object space to image space is no longer directly readable, post-processing is required to display the required data. The CASSI system uses

  13. Status Update and Closed-Loop Performance of the Magellan Adaptive Optics VisAO Camera

    Kopon, Derek; Males, Jared; Gasho, Victor; Morzinski, Katie; Follette, Katherine

    2014-01-01

    We present laboratory results of the closed-loop performance of the Magellan Adaptive Optics (AO) Adaptive Secondary Mirror (ASM), pyramid wavefront sensor (PWFS), and VisAO visible adaptive optics camera. The Magellan AO system is a 585-actuator low-emissivity high-throughput system scheduled for first light on the 6.5 meter Magellan Clay telescope in November 2012. Using a dichroic beamsplitter near the telescope focal plane, the AO system will be able to simultaneously perform visible (500-1000 nm) AO science with our VisAO camera and either 10 micron or 3-5 micron science using either the BLINC/MIRAC4 or CLIO cameras, respectively. The ASM, PWS, and VisAO camera have undergone final system tests in the solar test tower at the Arcetri Institute in Florence, Italy, reaching Strehls of 37% in i'-band with 400 modes and simulated turbulence of 14 cm ro at v-band. We present images and test results of the assembled VisAO system, which includes our prototype advanced Atmospheric Dispersion Corrector (ADC), prot...

  14. Adaptive cancellation of light relative intensity noise for fiber optic gyroscope

    Zhong xiao Ji

    2013-07-01

    Full Text Available In order to reduce the relative intensity noise (RIN in the interferometric signal of the fiber optic gyroscope (FOG, an adaptive noise subtraction method is presented, which aims to overcome to the drawbacks that the fixed delay time and gain of the digital noise subtraction method. The drawbacks will make the performance of FOG to be degraded greatly in the changing environment. In the paper the adaptive noise subtraction system based on the recursive least squares algorithm (RLS is formed in FPGA, in which the interferometric signal is regarded as the signal source, and RIN in the free end of the optical fiber coupler of FOG is looked as the noise reference signal. The two critical parameters that minimum delay time and its varying range result from measuring the minimum and maximum delay times of the interferometric signal in a certain temperature range. The off-line and on-line temperature experimental results verify the capability of adapting to the environmental temperature.

  15. Adaptive Cancellation of Light Relative Intensity Noise for Fiber Optic Gyroscope

    Zhongxiao Ji

    2013-07-01

    Full Text Available In order to reduce the relative intensity noise (RIN in the interferometric signal of the fiber optic gyroscope (FOG, an adaptive noise subtraction method is presented, which aims to overcome to the drawbacks that the fixed delay time and gain of the digital noise subtraction method. The drawbacks will make the performance of FOG to be degraded greatly in the changing environment. In the paper the adaptive noise subtraction system based on the recursive least squares algorithm (RLS is formed in FPGA, in which the interferometric signal is regarded as the signal source, and RIN in the free end of the optical fiber coupler of FOG is looked as the noise reference signal. The two critical parameters that minimum delay time and its varying range result from measuring the minimum and maximum delay times of the interferometric signal in a certain temperature range. The off-line and on-line temperature experimental results verify the capability of adapting to the environmental temperature.      

  16. Development of active/adaptive lightweight optics for the next generation of telescopes

    Ghigo, M.; Basso, S.; Citterio, O.; Mazzoleni, F.; Vernani, D.

    2006-02-01

    The future large optical telescopes will have such large dimensions to require innovative technical solutions either in the engineering and optical fields. Their optics will have dimensions ranging from 30 to 100 m. and will be segmented. It is necessary to develop a cost effective industrial process, fast and efficient, to create the thousands of segments neeededs to assemble the mirrors of these instruments. INAF-OAB (Astronomical Observatory of Brera) is developing with INAF-Arcetri (Florence Astronomical Observatory) a method of production of lightweight glass optics that is suitable for the manufacturing of these segments. These optics will be also probably active and therefore the segments have to be thin, light and relatively flexible. The same requirements are valid also for the secondary adaptive mirrors foreseen for these telescopes and that therefore will benefit from the same technology. The technique under investigation foresees the thermal slumping of thin glass segments using a high quality ceramic mold (master). The sheet of glass is placed onto the mold and then, by means of a suitable thermal cycle, the glass is softened and its shape is changed copying the master shape. At the end of the slumping the correction of the remaining errors will be performed using the Ion Beam Figuring technique, a non-contact deterministic technique. To reduce the time spent for the correction it will be necessary to have shape errors on the segments as small as possible. A very preliminary series of experiments already performed on reduced size segments have shown that it is possible to copy a master shape with high accuracy (few microns PV) and it is very likely that copy accuracies of 1 micron or less are possible. The paper presents in detail the concepts of the proposed process and describes our current efforts that are aimed at the production of a scaled demonstrative adaptive segment of 50 cm of diameter.

  17. Adaptive neuro-fuzzy prediction of modulation transfer function of optical lens system

    Petković, Dalibor; Shamshirband, Shahaboddin; Anuar, Nor Badrul; Md Nasir, Mohd Hairul Nizam; Pavlović, Nenad T.; Akib, Shatirah

    2014-07-01

    The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the adaptive neuro-fuzzy (ANFIS) estimator is designed and adapted to predict MTF value of the actual optical system. Neural network in ANFIS adjusts parameters of membership function in the fuzzy logic of the fuzzy inference system. The back propagation learning algorithm is used for training this network. This intelligent estimator is implemented using MATLAB/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.

  18. Modulation transfer function estimation of optical lens system by adaptive neuro-fuzzy methodology

    Petković, Dalibor; Shamshirband, Shahaboddin; Pavlović, Nenad T.; Anuar, Nor Badrul; Kiah, Miss Laiha Mat

    2014-07-01

    The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the adaptive neuro-fuzzy (ANFIS) estimator is designed and adapted to estimate MTF value of the actual optical system. Neural network in ANFIS adjusts parameters of membership function in the fuzzy logic of the fuzzy inference system. The back propagation learning algorithm is used for training this network. This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.

  19. Wavefront detection method of a single-sensor based adaptive optics system.

    Wang, Chongchong; Hu, Lifa; Xu, Huanyu; Wang, Yukun; Li, Dayu; Wang, Shaoxin; Mu, Quanquan; Yang, Chengliang; Cao, Zhaoliang; Lu, Xinghai; Xuan, Li

    2015-08-10

    In adaptive optics system (AOS) for optical telescopes, the reported wavefront sensing strategy consists of two parts: a specific sensor for tip-tilt (TT) detection and another wavefront sensor for other distortions detection. Thus, a part of incident light has to be used for TT detection, which decreases the light energy used by wavefront sensor and eventually reduces the precision of wavefront correction. In this paper, a single Shack-Hartmann wavefront sensor based wavefront measurement method is presented for both large amplitude TT and other distortions' measurement. Experiments were performed for testing the presented wavefront method and validating the wavefront detection and correction ability of the single-sensor based AOS. With adaptive correction, the root-mean-square of residual TT was less than 0.2 λ, and a clear image was obtained in the lab. Equipped on a 1.23-meter optical telescope, the binary stars with angle distance of 0.6″ were clearly resolved using the AOS. This wavefront measurement method removes the separate TT sensor, which not only simplifies the AOS but also saves light energy for subsequent wavefront sensing and imaging, and eventually improves the detection and imaging capability of the AOS. PMID:26367988

  20. Shades of grey-the blurring view of innate and adaptive immunity

    Lanier, LL

    2013-01-01

    This special issue of Nature Reviews Immunology focuses on the types of lymphocyte that blur the traditional boundaries between the innate and adaptive immune systems. The development and functional properties of 'innate-like' B and T cells and natural killer (NK) cells are reviewed and the emerging understanding of newly discovered innate lymphoid cells (ILCs) is considered. © 2013 Macmillan Publishers Limited. All rights reserved.

  1. A framework for view-dependent hologram representation and adaptive reconstruction

    Viswanathan, Kartik; Gioia, Patrick; Morin, Luce

    2015-01-01

    In this paper, we present a complete framework for networked holo-gram adaptive transmission; we propose a well-suited wavelet basis allowing efficient local diffractive pattern extraction according to the user position, expose the relations between observer parameters and the pruning in the wavelet decomposition representation, and explain how the reconstruction is performed. The proposed framework has been validated on an experimental setup involving a kinect sensor for viewer position esti...

  2. Contrast enhancement in microscopy of human thyroid tumors by means of acousto-optic adaptive spatial filtering

    Yushkov, Konstantin B.; Molchanov, Vladimir Y.; Belousov, Pavel V.; Abrosimov, Aleksander Y.

    2016-01-01

    We report a method for edge enhancement in the images of transparent samples using analog image processing in coherent light. The experimental technique is based on adaptive spatial filtering with an acousto-optic tunable filter in a telecentric optical system. We demonstrate processing of microscopic images of unstained and stained histological sections of human thyroid tumor with improved contrast.

  3. woptic: Optical conductivity with Wannier functions and adaptive k-mesh refinement

    Assmann, E.; Wissgott, P.; Kuneš, J.; Toschi, A.; Blaha, P.; Held, K.

    2016-05-01

    We present an algorithm for the adaptive tetrahedral integration over the Brillouin zone of crystalline materials, and apply it to compute the optical conductivity, dc conductivity, and thermopower. For these quantities, whose contributions are often localized in small portions of the Brillouin zone, adaptive integration is especially relevant. Our implementation, the woptic package, is tied into the WIEN2WANNIER framework and allows including a local many-body self energy, e.g. from dynamical mean-field theory (DMFT). Wannier functions and dipole matrix elements are computed with the DFT package WIEN2k and Wannier90. For illustration, we show DFT results for fcc-Al and DMFT results for the correlated metal SrVO3.

  4. woptic: optical conductivity with Wannier functions and adaptive k-mesh refinement

    Assmann, E; Kuneš, J; Toschi, A; Blaha, P; Held, K

    2015-01-01

    We present an algorithm for the adaptive tetrahedral integration over the Brillouin zone of crystalline materials, and apply it to compute the optical conductivity, dc conductivity, and thermopower. For these quantities, whose contributions are often localized in small portions of the Brillouin zone, adaptive integration is especially relevant. Our implementation, the woptic package, is tied into the wien2wannier framework and allows including a many-body self energy, e.g. from dynamical mean-field theory (DMFT). Wannier functions and dipole matrix elements are computed with the DFT package Wien2k and Wannier90. For illustration, we show DFT results for fcc-Al and DMFT results for the correlated metal SrVO$_3$.

  5. Efficient wave function simulations in nonlinear quantum optics using an adaptive coherent state basis

    Full text: We show that a suitable set of coherent basis states placed on a discrete hexagonal grid can be used to numerically very accurately represent general quantum states in a memory efficient way. Adding an algorithm for dynamic basis adaptation allows highly accurate Quantum Monte Carlo wave function simulations with small basis sets. At the example of the intricate nonlinear dynamics of an optical parametric oscillator around threshold, we demonstrate that this approach yields accurate time dependent solutions with a substantially smaller basis sets than required for a photon number basis. Above threshold the adaptive basis splits into localized subsets allowing efficient representation of bimodal or even more complex phase space distributions and directly yields an intuitive physical picture of the ongoing dynamics. (author)

  6. Wavefront sensorless adaptive optics fluorescence biomicroscope for in vivo retinal imaging in mice.

    Wahl, Daniel J; Jian, Yifan; Bonora, Stefano; Zawadzki, Robert J; Sarunic, Marinko V

    2016-01-01

    Cellular-resolution in vivo fluorescence imaging is a valuable tool for longitudinal studies of retinal function in vision research. Wavefront sensorless adaptive optics (WSAO) is a developing technology that enables high-resolution imaging of the mouse retina. In place of the conventional method of using a Shack-Hartmann wavefront sensor to measure the aberrations directly, WSAO uses an image quality metric and a search algorithm to drive the shape of the adaptive element (i.e. deformable mirror). WSAO is a robust approach to AO and it is compatible with a compact, low-cost lens-based system. In this report, we demonstrated a hill-climbing algorithm for WSAO with a variable focus lens and deformable mirror for non-invasive in vivo imaging of EGFP (enhanced green fluorescent protein) labelled ganglion cells and microglia cells in the mouse retina. PMID:26819812

  7. Impacts and Adaptation: From the Points of View of Financial Management System in Enterprise Groups

    2002-01-01

    The integration of international economy dominated wi th the financial market leads to fierce competition. This requires firms impleme nt modern corporate financial mechanism. From the view of the current situation of financial management in China, we demonstrates the differences in financial m anagement between Chinese enterprises and international companies by describing detailed case studies of typical large enterprises in China. To transform the enterprise management mechanism, the enterprise fi...

  8. Adaptive Sensor Optimization and Cognitive Image Processing Using Autonomous Optical Neuroprocessors; TOPICAL

    Measurement and signal intelligence demands has created new requirements for information management and interoperability as they affect surveillance and situational awareness. Integration of on-board autonomous learning and adaptive control structures within a remote sensing platform architecture would substantially improve the utility of intelligence collection by facilitating real-time optimization of measurement parameters for variable field conditions. A problem faced by conventional digital implementations of intelligent systems is the conflict between a distributed parallel structure on a sequential serial interface functionally degrading bandwidth and response time. In contrast, optically designed networks exhibit the massive parallelism and interconnect density needed to perform complex cognitive functions within a dynamic asynchronous environment. Recently, all-optical self-organizing neural networks exhibiting emergent collective behavior which mimic perception, recognition, association, and contemplative learning have been realized using photorefractive holography in combination with sensory systems for feature maps, threshold decomposition, image enhancement, and nonlinear matched filters. Such hybrid information processors depart from the classical computational paradigm based on analytic rules-based algorithms and instead utilize unsupervised generalization and perceptron-like exploratory or improvisational behaviors to evolve toward optimized solutions. These systems are robust to instrumental systematics or corrupting noise and can enrich knowledge structures by allowing competition between multiple hypotheses. This property enables them to rapidly adapt or self-compensate for dynamic or imprecise conditions which would be unstable using conventional linear control models. By incorporating an intelligent optical neuroprocessor in the back plane of an imaging sensor, a broad class of high-level cognitive image analysis problems including geometric

  9. DESIGN ISSUES FOR BIT RATE-ADAPTIVE 3R O/E/OTRANSPONDER IN INTELLIGENT OPTICAL NETWORKS

    朱栩; 曾庆济; 杨旭东; 刘逢清; 肖石林

    2002-01-01

    This paper reported the design and implementation of a bit rate-adaptive Optical-Electronic-Optical (O/E/O) transponder accomplishing almost full data rate transparency up to 2.5 Gb/s with 3R (Reamplifying, Reshaping and Retiming) processing in electronic domain. Based on the chipsets performing clock recovery in several continuous bit rate ranges, a clock and data regenerating circuit self-adaptive to the bit rate of input signal was developed. Key design issues were presented, laying stress on the functional building blocks and scheme for the bit rate-adaptive retiming circuit. The experimental results show a good scalability performance.

  10. VLT/NACO infrared adaptive optics images of small scale structures in OMC1

    Lacombe, F; Rouan, D; Clénet, Y; Lemaire, J L; Lagrange, A M; Mouillet, D; Rousset, G; Marlot, C; Feautrier, P; Gustafsson, M; Field, D; Lacombe, Francois; Gendron, Eric; Rouan, Daniel; Clenet, Yann; Lemaire, Jean-Louis; Lagrange, Anne-Marie; Mouillet, David; Rousset, Gerard; Marlot, Claude; Feautrier, Philippe; Field, David; Proxy, Bernard Servan; ccsd-00000915, ccsd

    2003-01-01

    Near-infrared observations of line emission from excited H2 and in the continuum are reported in the direction of the Orion molecular cloud OMC1, using the European Southern Observatory Very Large Telescope UT4, equipped with the NAOS adaptive optics system and the CONICA infrared array camera. Spatial resolution has been achieved at close to the diffraction limit of the telescope (0.08" - 0.12") and images show a wealth of morphological detail. Structure is not fractal but shows two preferred scale sizes of 2.4" (1100 AU) and 1.2" (540 AU), where the larger scale may be associated with star formation.

  11. Fast Fourier and Wavelet Transforms for Wavefront Reconstruction in Adaptive Optics

    Dowla, F U; Brase, J M; Olivier, S S

    2000-07-28

    Wavefront reconstruction techniques using the least-squares estimators are computationally quite expensive. We compare wavelet and Fourier transforms techniques in addressing the computation issues of wavefront reconstruction in adaptive optics. It is shown that because the Fourier approach is not simply a numerical approximation technique unlike the wavelet method, the Fourier approach might have advantages in terms of numerical accuracy. However, strictly from a numerical computations viewpoint, the wavelet approximation method might have advantage in terms of speed. To optimize the wavelet method, a statistical study might be necessary to use the best basis functions or ''approximation tree.''

  12. The Subaru Coronagraphic Extreme Adaptive Optics Imager: First Results and On-Sky Performance

    Currie, Thayne; Martinache, Frantz; Clergeon, Christophe; McElwain, Michael; Thalmann, Christian; Jovanovic, Nemanja; Singh, Garima; Kudo, Tomoyuki

    2013-01-01

    We present new on-sky results for the Subaru Coronagraphic Extreme Adaptive Optics imager (SCExAO) verifying and quantifying the contrast gain enabled by key components: the closed-loop coronagraphic low-order wavefront sensor (CLOWFS) and focal plane wavefront control ("speckle nulling"). SCExAO will soon be coupled with a high-order, Pyramid wavefront sensor which will yield > 90% Strehl ratio and enable 10^6--10^7 contrast at small angular separations allowing us to image gas giant planets at solar system scales. Upcoming instruments like VAMPIRES, FIRST, and CHARIS will expand SCExAO's science capabilities.

  13. Object-oriented software design for the Mt. Wilson 100-inch Hooker telescope adaptive optics system

    Schneider, Thomas G.

    2000-06-01

    The object oriented software design paradigm has been instrumented in the development of the Adoptics software used in the Hooker telescope's ADOPT adaptive optics system. The software runs on a Pentium-class PC host and eight DSP processors connected to the host's motherboard bus. C++ classes were created to implement most of the host software's functionality, with the object oriented features of inheritance, encapsulation and abstraction being the most useful. Careful class design at the inception of the project allowed for the rapid addition of features without comprising the integrity of the software. Base class implementations include the DSP system, real-time graphical displays and opto-mechanical actuator control.

  14. Clock recovering characteristics of adaptive finite-impulse-response filters in digital coherent optical receivers.

    Kikuchi, Kazuro

    2011-03-14

    We analyze the clock-recovery process based on adaptive finite-impulse-response (FIR) filtering in digital coherent optical receivers. When the clock frequency is synchronized between the transmitter and the receiver, only five taps in half-symbol-spaced FIR filters can adjust the sampling phase of analog-to-digital conversion optimally, enabling bit-error rate performance independent of the initial sampling phase. Even if the clock frequency is not synchronized between them, the clock-frequency misalignment can be adjusted within an appropriate block interval; thus, we can achieve an asynchronous clock mode of operation of digital coherent receivers with block processing of the symbol sequence. PMID:21445201

  15. Precise Astrometry of Visual Binaries with Adaptive Optics. A Way for Finding Exoplanets?

    Hełminiak, Krzysztof

    2008-01-01

    We present the results of our study of astrometric stability of 200-in Hale (Mt. Palomar) and 10-m Keck II (Mauna Kea) telescopes, both with Adaptive Optics (AO) facilities. A group of nearby visual binaries and multiples was observed in near infrared, relative separations and position angles measured. We have also checked the influence of some systematic effects (e.g. atmospherical refraction, varying plate scale factor) on result and precision of astrometric measurements. We conclude that in visual binaries astrometrical observations it is possible to achieve much better precision than 1 miliarcsecond, which in many cases allows detection of the astrometrical signal produced by planetary-mass object.

  16. Titan imagery with Keck adaptive optics during and after probe entry

    De Pater, Imke; Ádámkovics, Máte; Bouchez, Antonin H.; Brown, Michael E.; Gibbard, Seran G.; Marchis, Franck; Roe, Henry G.; Schaller, Emily L.; Young, Eliot

    2006-01-01

    We present adaptive optics data from the Keck telescope, taken while the Huygens probe descended through Titan's atmosphere and on the days following touchdown. No probe entry signal was detected. Our observations span a solar phase angle range from 0.05° up to 0.8°, with the Sun in the west. Contrary to expectations, the east side of Titan's stratosphere was usually brightest. Compiling images obtained with Keck and Gemini over the past few years reveals that the east-west asymmetry can be e...

  17. Progress with multi-conjugate adaptive optics at the Big Bear Solar Observatory

    Schmidt, Dirk; Gorceix, Nicolas; Marino, Jose; Zhang, Xianyu; Berkefeld, Thomas; Rimmele, Thomas R.; Goode, Philip R.

    2016-05-01

    The MCAO system at BBSO is the pathfinder system for a future system at the 4-meter DKIST. It deploys three DMs, one in the pupil and two in higher altitudes. The design allows to move the latter independently to adapt to the turbulence profile within about 2-9 km.The optical path has been improved in 2015, and has shown satisfying solar images. The MCAO loop was able to improve the wavefront error across the field slightly compared to classical AO.We will report on the latest improvements, on-Sun results and motivate the design of the system.

  18. Bi-photon propagation control with optimized wavefront by means of Adaptive Optics

    Minozzi, M; Sergienko, A V; Vallone, G; Villoresi, P

    2012-01-01

    We present an efficient method to control the spatial modes of entangled photons produced through SPDC process. Bi-photon beam propagation is controlled by a deformable mirror, that shapes a 404nm CW diode laser pump interacting with a nonlinear BBO type-I crystal. Thanks to adaptive optical system, the propagation of 808nm SPDC light produced is optimized over a distance of 2m. The whole system optimization is carried out by a feedback between deformable mirror action and entangled photon coincidence counts. We also demonstrated the improvement of the two-photon coupling into single mode fibers.

  19. Bi-photon propagation control with optimized wavefront by means of Adaptive Optics

    Minozzi, M.; Bonora, S.; Sergienko, A. V.; G. Vallone; Villoresi, P.

    2012-01-01

    We present an efficient method to control the spatial modes of entangled photons produced through SPDC process. Bi-photon beam propagation is controlled by a deformable mirror, that shapes a 404nm CW diode laser pump interacting with a nonlinear BBO type-I crystal. Thanks to adaptive optical system, the propagation of 808nm SPDC light produced is optimized over a distance of 2m. The whole system optimization is carried out by a feedback between deformable mirror action and entangled photon co...

  20. LBT adaptive secondary mirrors: chopping procedures and optical calibration on the test bench

    Briguglio, Runa; Xompero, Marco; Riccardi, Armando

    2012-07-01

    In this paper we will describe the chopping capabilities of the Large Binocular Telescope adaptive secondary mirrors. The chopping testing procedure has been implemented at the Arcetri Test Tower in Florence, Italy, together with the optical testing set-up. The deformable mirror static figuring error, after the flattening calibration at both chopping positions (+/- 25 μm tilt with respect to the nominal position), is measured to be compatible to the figuring at the zero tilt position, i.e. 30 nm RMS. The figuring error measured at a +25 μm tilted position, while the mirror was chopping at 10Hz, is within requirements for seeing limited mode observations.

  1. Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy.

    Albert, O; Sherman, L; Mourou, G; Norris, T B; Vdovin, G

    2000-01-01

    Off-axis aberrations in a beam-scanning multiphoton confocal microscope are corrected with a deformable mirror. The optimal mirror shape for each pixel is determined by a genetic learning algorithm, in which the second-harmonic or two-photon fluorescence signal from a reference sample is maximized. The speed of the convergence is improved by use of a Zernike polynomial basis for the deformable mirror shape. This adaptive optical correction scheme is implemented in an all-reflective system by use of extremely short (10-fs) optical pulses, and it is shown that the scanning area of an f:1 off-axis parabola can be increased by nine times with this technique. PMID:18059779

  2. Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy.

    Hunter, Jennifer J; Masella, Benjamin; Dubra, Alfredo; Sharma, Robin; Yin, Lu; Merigan, William H; Palczewska, Grazyna; Palczewski, Krzysztof; Williams, David R

    2010-01-01

    In vivo two-photon imaging through the pupil of the primate eye has the potential to become a useful tool for functional imaging of the retina. Two-photon excited fluorescence images of the macaque cone mosaic were obtained using a fluorescence adaptive optics scanning laser ophthalmoscope, overcoming the challenges of a low numerical aperture, imperfect optics of the eye, high required light levels, and eye motion. Although the specific fluorophores are as yet unknown, strong in vivo intrinsic fluorescence allowed images of the cone mosaic. Imaging intact ex vivo retina revealed that the strongest two-photon excited fluorescence signal comes from the cone inner segments. The fluorescence response increased following light stimulation, which could provide a functional measure of the effects of light on photoreceptors. PMID:21326644

  3. Recovery Management in All Optical Networks Using Biologically-Inspired Complex Adaptive System

    Inadyuti Dutt

    2013-01-01

    Full Text Available All-Optical Networks have the ability to display varied advantages like performance efficiency, throughput etc but their efficiency depends on their survivability as they are attack prone. These attacks can be categorised as active or passive because they try to access information within the network or alter the information in the network. The attack once detected has to be recovered by formulating back-up or alternative paths. The proposed heuristic uses biologically inspired Complex Adaptive System, inspired by Natural Immune System. The study shows that natural immune system exhibit unique behaviour of detecting foreign bodies in our body and removing them on their first occurrences. This phenomenon is being utilised in the proposed heuristic for recovery management in All-optical Network

  4. Adaptive information interchange system of the fiber-optic measuring networks with the computer

    Denisov, Igor V.; Drozdov, Roman S.; Sedov, Victor A.

    2005-06-01

    In the present paper the characteristics and opportunities of application of the system of parallel input-output of information from the fiber-optical measuring network into computer are considered. The system consists of two pars: on manframe and several expansion blocks. The first part is internal, is connected directly in the socket of the motherboard of the personal computer. It is designed for buffering system signals and development of cojmands of controlling by the system for input-output of signals into personal computer and signals generation onto expansion blocks. The second part is external, connects to the mainframe by means of cables. It designed for transformation of information from the fiber-optical measuring network into signalsof rthe mainframe and instrument settings adaptation. The analysis of speed of procesing of analog and digital data by system is presented. The possible schemes of use of the system for processing quasistationary and dynamic fields are considered.

  5. Stochastic parallel gradient descent based adaptive optics used for high contrast imaging coronagraph

    Dong, Bing; Zhang, Xi

    2011-01-01

    An adaptive optics (AO) system based on stochastic parallel gradient descent (SPGD) algorithm is proposed to reduce the speckle noises in the optical system of stellar coronagraph in order to further improve the contrast. The principle of SPGD algorithm is described briefly and a metric suitable for point source imaging optimization is given. The feasibility and good performance of SPGD algorithm is demonstrated by experimental system featured with a 140-actuators deformable mirror (DM) and a Hartmann- Shark wavefront sensor. Then the SPGD based AO is applied to a liquid crystal array (LCA) based coronagraph. The LCA can modulate the incoming light to generate a pupil apodization mask in any pattern. A circular stepped pattern is used in our preliminary experiment and the image contrast shows improvement from 10^-3 to 10^-4.5 at angular distance of 2{\\lambda}/D after corrected by SPGD based AO.

  6. Ferrofluid Based Deformable Mirrors - a New Approach to Adaptive Optics Using Liquid Mirrors

    Laird, P; Berube, V; Borra, E F; Ritcey, A; Rioux, M; Robitaille, N; Thibault, S; Yockell-Lelievre, H

    2002-01-01

    The trend towards ever larger telescopes and more advanced adaptive optics systems is driving the need for deformable mirrors with a large number of low cost actuators. Liquid mirrors have long been recognized a potential low cost alternative to conventional solid mirrors. By using a water or oil based ferrofluid we are able to benefit from a stronger magnetic response than is found in magnetic liquid metal amalgams and avoid the difficulty of passing a uniform current through a liquid. Depositing a thin silver colloid known as a metal liquid-like film (MELLF) on the ferrofluid surface solves the problem of low reflectivity of pure ferrofluids. This combination provides a liquid optical surface that can be precisely shaped in a magnetic field. We present experimental results obtained with a prototype deformable liquid mirror based on this combination.

  7. Ferrofluid based deformable mirrors: a new approach to adaptive optics using liquid mirrors

    Laird, Phil R.; Bergamasco, R.; Bérubé, Vincent; Borra, Ermanno F.; Gingras, Julie; Ritcey, Anna-Marie R.; Rioux, Myriam; Robitaille, Nathalie; Thibault, Simon; Vieira da Silva, L., Jr.; Yockell-Lelièvre, Helene

    2003-02-01

    The trend towards ever larger telescopes and more advanced adaptive optics systems is driving the need for deformable mirrors with a large number of low cost actuators. Liquid mirrors have long been recognized a potential low cost alternative to conventional solid mirrors. By using a water or oil based ferrofluid we are able to benefit from a stronger magnetic response than is found in magnetic liquid metal amalgams and avoid the difficulty of passing a uniform current through a liquid. Depositing a thin silver colloid known as a metal liquid like film (MELLF) on the ferrofluid surface solves the problem of low reflectivity of pure ferrofluids. This combination provides a liquid optical surface that can be precisely shaped in a magnetic field. We present experimental results obtained with a prototype deformable liquid mirror based on this combination.

  8. Combinational-deformable-mirror adaptive optics system for compensation of high-order modes of wavefront

    Huafeng Yang; Guilin Liu; Changhui Rao; Yudong Zhang; Wenhan Jiang

    2007-01-01

    A new kind of adaptive optics (AO) system, in which several low spatial frequency deformable mirrors(DMs) with optical conjugation relationship are combined to correct high-order aberrations, is proposed.The phase compensation principle and the control method of the combinational AO system are introduced.The numerical simulations for the AO system with two 60-element DMs are presented. The results indicate that the combinational DM in the AO system can correct different aberrations effectively as one single DM with more actuators, and there is no change of control method. This technique can be applied to a large telescope AO system to improve the spatial compensation capability for wavefront by using current DM.

  9. Numerical control matrix rotation for the LINC-NIRVANA Multi-Conjugate Adaptive Optics system

    Arcidiacono, Carmelo; Ragazzoni, Roberto; Farinato, Jacopo; Esposito, Simone; Riccardi, Armando; Pinna, Enrico; Puglisi, Alfio; Fini, Luca; Xompero, Marco; Busoni, Lorenzo; Quiros-Pacheco, Fernando; Briguglio, Runa; 10.1117/12.857347

    2010-01-01

    LINC-NIRVANA will realize the interferometric imaging focal station of the Large Binocular Telescope. A double Layer Oriented multi-conjugate adaptive optics system assists the two arms of the interferometer, supplying high order wave-front correction. In order to counterbalance the field rotation, mechanical derotation for the two ground wave-front sensors, and optical derotators for the mid-high layers sensors fix the positions of the focal planes with respect to the pyramids aboard the wave-front sensors. The derotation introduces pupil images rotation on the wavefront sensors: the projection of the deformable mirrors on the sensor consequently change. The proper adjustment of the control matrix will be applied in real-time through numerical computation of the new matrix. In this paper we investigate the temporal and computational aspects related to the pupils rotation, explicitly computing the wave-front errors that may be generated.

  10. Adaptive Optics Imaging of Lyman Break Galaxies as Progenitors of Spheroids in the Local Universe

    Akiyama, M; Kobayashi, N; Ohta, K; Iwata, I

    2007-01-01

    In order to reveal the stellar mass distribution of z~3 galaxies, we are conducting deep imaging observations of U-dropout Lyman Break Galaxies (LBGs) with Adaptive Optics (AO) systems in K-band, which corresponds to rest-frame V-band of z~3 galaxies. The results of the Subaru intensive-program observations with AO36/NGS/IRCS indicate that 1) the K-band peaks of some of the LBGs brighter than K=22.0 mag show significant offset from those in the optical images, 2) the z~3 Mv* LBGs and serendipitously observed Distant Red Galaxies (DRGs) have flat profiles similar to disk galaxies in the local universe (i.e., Sersic with n2 systems among the luminous z~3 LBGs and DRGs, and their strong spatial clustering, we infer that the dense n2 spheroids of nearby galaxies through relaxations due to major merger events.

  11. Adaptive optics correction into single mode fiber for a low Earth orbiting space to ground optical communication link using the OPALS downlink.

    Wright, Malcolm W; Morris, Jeffery F; Kovalik, Joseph M; Andrews, Kenneth S; Abrahamson, Matthew J; Biswas, Abhijit

    2015-12-28

    An adaptive optics (AO) testbed was integrated to the Optical PAyload for Lasercomm Science (OPALS) ground station telescope at the Optical Communications Telescope Laboratory (OCTL) as part of the free space laser communications experiment with the flight system on board the International Space Station (ISS). Atmospheric turbulence induced aberrations on the optical downlink were adaptively corrected during an overflight of the ISS so that the transmitted laser signal could be efficiently coupled into a single mode fiber continuously. A stable output Strehl ratio of around 0.6 was demonstrated along with the recovery of a 50 Mbps encoded high definition (HD) video transmission from the ISS at the output of the single mode fiber. This proof of concept demonstration validates multi-Gbps optical downlinks from fast slewing low-Earth orbiting (LEO) spacecraft to ground assets in a manner that potentially allows seamless space to ground connectivity for future high data-rates network. PMID:26832033

  12. AuroView 2000 - An optical image processing system in rank and grade analysis of coal

    Ghosh, A. [Jadavpur University, Calcutta (India). Dept. of Geological Science

    2002-07-01

    Rank and grade analysis of coal plays an important role in its use in different industries like thermal power plants and/or steel industries. Petrographically, coal is evaluated on the basis of its relative abundance of microscopic constituents that ultimately influence its reactivity, heat value, ash content, agglutinating characteristics and inflammability. Rank is a maturity characteristic of coal, measured on the basis of reflectance values usually of a particular organic constituent, vitrinite. Using the optical image processing system called AuroView 2000, the microscope images of a coal sample are acquired through a computer under normal incident light as well as under fluorescent light. The image under normal incident light is a black and white (b/w), whereas the image under fluorescent light is coloured. From these images, important groups of microscopic components called mineral matter, vitrinite, liptinite and inertinite are classified. The AuroView 2000 software has two modules viz. analysis module and prediction module. The analysis module is capable of producing modal percentages of macerals and mineral matter, and can measure mean max R-0, V-type distribution (reflectance) automatically or manually under this set up without any MPV attachment. In fact, it converts light intensity values (the grey levels) to a calibrated reflectance scale. The prediction module can predict ash content (%), VM on dmmf basis and elemental carbon on pure coal basis. Finally, it can predict the rank and grade of coal as per Indian Bureau of Standards nomenclature.

  13. Noiseless imaging detector for adaptive optics with kHz frame rates

    Vallerga, John V.; McPhate, Jason; Mikulec, Bettina; Tremsin, Anton; Clark, Allan; Siegmund, Oswald

    2004-10-01

    A new hybrid optical detector is described that has many of the attributes desired for the next generation AO wavefront sensors. The detector consists of a proximity focused MCP read out by four multi-pixel application specific integrated circuit (ASIC) chips developed at CERN ("Medipix2") with individual pixels that amplify, discriminate and count input events. The detector has 512 x 512 pixels, zero readout noise (photon counting) and can be read out at 1kHz frame rates. The Medipix2 readout chips can be electronically shuttered down to a temporal window of a few microseconds with an accuracy of 10 nanoseconds. When used in a Shack-Hartman style wavefront sensor, it should be able to centroid approximately 5000 spots using 7 x 7 pixel sub-apertures resulting in very linear, off-null error correction terms. The quantum efficiency depends on the optical photocathode chosen for the bandpass of interest. A three year development effort for this detector technology has just been funded as part of the first Adaptive Optics Development Program managed by the National Optical Astronomy Observatory.

  14. In-vivo imaging of inner retinal cellular morphology with adaptive optics - optical coherence tomography: challenges and possible solutions

    Zawadzki, Robert J.; Jones, Steven M.; Kim, Dae Yu; Poyneer, Lisa; Capps, Arlie G.; Hamann, Bernd; Olivier, Scot S.; Werner, John S.

    2012-03-01

    Recent progress in retinal image acquisition techniques, including optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO), combined with improved performance of adaptive optics (AO) instrumentation, has resulted in improvement in the quality of in vivo images of cellular structures in the outer layers of the human retina. Despite the significant progress in imaging cone and rod photoreceptor mosaics, visualization of cellular structures in the inner retina has been achieved only with extrinsic contrast agents that have not been approved for use with humans. In this paper we describe the main limiting factors in visualizing inner retinal cells and the methods we implemented to reduce their effects on images acquired with AO-OCT. These include improving the system point spread function (AO performance), monitoring of motion artifacts (retinal motion tracking), and speckle pattern reduction (temporal and spatial averaging). Results of imaging inner retinal morphology and the improvement offered by the new UC Davis AOOCT system with spatio-temporal image averaging are presented.

  15. MAD Adaptive Optics Imaging of High-luminosity Quasars: A Pilot Project

    Liuzzo, E.; Falomo, R.; Paiano, S.; Treves, A.; Uslenghi, M.; Arcidiacono, C.; Baruffolo, A.; Diolaiti, E.; Farinato, J.; Lombini, M.; Moretti, A.; Ragazzoni, R.; Brast, R.; Donaldson, R.; Kolb, J.; Marchetti, E.; Tordo, S.

    2016-08-01

    We present near-IR images of five luminous quasars at z ∼ 2 and one at z ∼ 4 obtained with an experimental adaptive optics (AO) instrument at the European Southern Observatory Very Large Telescope. The observations are part of a program aimed at demonstrating the capabilities of multi-conjugated adaptive optics imaging combined with the use of natural guide stars for high spatial resolution studies on large telescopes. The observations were mostly obtained under poor seeing conditions but in two cases. In spite of these nonoptimal conditions, the resulting images of point sources have cores of FWHM ∼ 0.2 arcsec. We are able to characterize the host galaxy properties for two sources and set stringent upper limits to the galaxy luminosity for the others. We also report on the expected capabilities for investigating the host galaxies of distant quasars with AO systems coupled with future Extremely Large Telescopes. Detailed simulations show that it will be possible to characterize compact (2–3 kpc) quasar host galaxies for quasi-stellar objects at z = 2 with nucleus K-magnitude spanning from 15 to 20 (corresponding to absolute magnitude ‑31 to ‑26) and host galaxies that are 4 mag fainter than their nuclei.

  16. Interferometric adaptive optics for high power laser pointing, wave-front control and phasing

    Baker, K L; Stappaerts, E A; Homoelle, D C; Henesian, M A; Bliss, E S; Siders, C W; Barty, C J

    2009-01-21

    Implementing the capability to perform fast ignition experiments, as well as, radiography experiments on the National Ignition Facility (NIF) places stringent requirements on the control of each of the beam's pointing and overall wavefront quality. One quad of the NIF beams, 4 beam pairs, will be utilized for these experiments and hydrodynamic and particle-in-cell simulations indicate that for the fast ignition experiments, these beams will be required to deliver 50% (4.0 kJ) of their total energy (7.96 kJ) within a 40 {micro}m diameter spot at the end of a fast ignition cone target. This requirement implies a stringent pointing and overall phase conjugation error budget on the adaptive optics system used to correct these beam lines. The overall encircled energy requirement is more readily met by phasing of the beams in pairs but still requires high Strehl ratios, Sr, and rms tip/tilt errors of approximately one {micro}rad. To accomplish this task we have designed an interferometric adaptive optics system capable of beam pointing, high Strehl ratio and beam phasing with a single pixilated MEMS deformable mirror and interferometric wave-front sensor. We present the design of a testbed used to evaluate the performance of this wave-front sensor below along with simulations of its expected performance level.

  17. Efficient reconstruction method for ground layer adaptive optics with mixed natural and laser guide stars.

    Wagner, Roland; Helin, Tapio; Obereder, Andreas; Ramlau, Ronny

    2016-02-20

    The imaging quality of modern ground-based telescopes such as the planned European Extremely Large Telescope is affected by atmospheric turbulence. In consequence, they heavily depend on stable and high-performance adaptive optics (AO) systems. Using measurements of incoming light from guide stars, an AO system compensates for the effects of turbulence by adjusting so-called deformable mirror(s) (DMs) in real time. In this paper, we introduce a novel reconstruction method for ground layer adaptive optics. In the literature, a common approach to this problem is to use Bayesian inference in order to model the specific noise structure appearing due to spot elongation. This approach leads to large coupled systems with high computational effort. Recently, fast solvers of linear order, i.e., with computational complexity O(n), where n is the number of DM actuators, have emerged. However, the quality of such methods typically degrades in low flux conditions. Our key contribution is to achieve the high quality of the standard Bayesian approach while at the same time maintaining the linear order speed of the recent solvers. Our method is based on performing a separate preprocessing step before applying the cumulative reconstructor (CuReD). The efficiency and performance of the new reconstructor are demonstrated using the OCTOPUS, the official end-to-end simulation environment of the ESO for extremely large telescopes. For more specific simulations we also use the MOST toolbox. PMID:26906596

  18. Spatio-angular Minimum-variance Tomographic Controller for Multi-Object Adaptive Optics systems

    Correia, Carlos M; Veran, Jean-Pierre; Andersen, David; Lardiere, Olivier; Bradley, Colin

    2015-01-01

    Multi-object astronomical adaptive-optics (MOAO) is now a mature wide-field observation mode to enlarge the adaptive-optics-corrected field in a few specific locations over tens of arc-minutes. The work-scope provided by open-loop tomography and pupil conjugation is amenable to a spatio-angular Linear-Quadratic Gaussian (SA-LQG) formulation aiming to provide enhanced correction across the field with improved performance over static reconstruction methods and less stringent computational complexity scaling laws. Starting from our previous work [1], we use stochastic time-progression models coupled to approximate sparse measurement operators to outline a suitable SA-LQG formulation capable of delivering near optimal correction. Under the spatio-angular framework the wave-fronts are never explicitly estimated in the volume,providing considerable computational savings on 10m-class telescopes and beyond. We find that for Raven, a 10m-class MOAO system with two science channels, the SA-LQG improves the limiting mag...

  19. Top-Down Visual Saliency Detection in Optical Satellite Images Based on Local Adaptive Regression Kernel

    Xiaoguang Cui

    2014-01-01

    Full Text Available This paper proposes a novel top-down visual saliency detection method for optical satellite images using local adaptive regression kernels. This method provides a saliency map by measuring the likeness of image patches to a given single template image. The local adaptive regression kernel (LARK is used as a descriptor to extract feature and compare against analogous feature from the target image. A multi-scale pyramid of the target image is constructed to cope with large-scale variations. In addition, accounting for rotation variations, the histogram of kernel orientation is employed to estimate the rotation angle of image patch, and then comparison is performed after rotating the patch by the estimated angle. Moreover, we use the bounded partial correlation (BPC to compare features between image patches and the template so as to rapidly generate the saliency map. Experiments were performed in optical satellite images to find airplanes, and experimental results demonstrate that the proposed method is effective and robust in complex scenes.

  20. Experimental demonstration of laser tomographic adaptive optics on a 30-meter telescope at 800 nm

    Ammons, S., Mark; Johnson, Luke; Kupke, Renate; Gavel, Donald T.; Max, Claire E.

    2010-07-01

    A critical goal in the next decade is to develop techniques that will extend Adaptive Optics correction to visible wavelengths on Extremely Large Telescopes (ELTs). We demonstrate in the laboratory the highly accurate atmospheric tomography necessary to defeat the cone effect on ELTs, an essential milestone on the path to this capability. We simulate a high-order Laser Tomographic AO System for a 30-meter telescope with the LTAO/MOAO testbed at UCSC. Eight Sodium Laser Guide Stars (LGSs) are sensed by 99x99 Shack-Hartmann wavefront sensors over 75". The AO system is diffraction-limited at a science wavelength of 800 nm (S ~ 6-9%) over a field of regard of 20" diameter. Openloop WFS systematic error is observed to be proportional to the total input atmospheric disturbance and is nearly the dominant error budget term (81 nm RMS), exceeded only by tomographic wavefront estimation error (92 nm RMS). The total residual wavefront error for this experiment is comparable to that expected for wide-field tomographic adaptive optics systems of similar wavefront sensor order and LGS constellation geometry planned for Extremely Large Telescopes.

  1. Robotic Laser-Adaptive-Optics Imaging of 715 Kepler Exoplanet Candidates using Robo-AO

    Law, Nicholas M; Baranec, Christoph; Riddle, Reed; Ravichandran, Ganesh; Ziegler, Carl; Johnson, John Asher; Tendulkar, Shriharsh P; Bui, Khanh; Burse, Mahesh P; Das, H K; Dekany, Richard G; Kulkarni, Shrinivas; Punnadi, Sujit; Ramaprakash, A N

    2013-01-01

    The Robo-AO Kepler Planetary Candidate Survey is designed to observe every Kepler planet candidate host star with laser adaptive optics imaging to search for blended nearby stars, which may be physically associated companions and/or responsible for transit false positives. In this paper we present the results from the 2012 observing season, searching for stars close to 715 representative Kepler planet candidate hosts. We find 53 companions, 44 of which are new discoveries. We detail the Robo-AO survey data reduction methods including a method of using the large ensemble of target observations as mutual point-spread-function references, along with a new automated companion-detection algorithm designed for large adaptive optics surveys. Our survey is sensitive to objects from 0.15" to 2.5" separation, with contrast ratios up to delta-m~6. We measure an overall nearby-star-probability for Kepler planet candidates of 7.4% +/- 1.0%, and calculate the effects of each detected nearby star on the Kepler-measured plan...

  2. Adaptive Optics Parameters connection to wind speed at the Teide Observatory

    García-Lorenzo, B; Fuensalida, J J; Castro-Almazan, J

    2009-01-01

    Current projects for large telescopes demand a proper knowledge of atmospheric turbulence to design efficient adaptive optics systems in order to reach large Strehl ratios. However, the proper characterization of the turbulence above a particular site requires long-term monitoring. Due to the lack of long-term information on turbulence, high-altitude winds (in particular winds at the 200 mbar pressure level) were proposed as a parameter for estimating the total turbulence at a particular site, with the advantage of records of winds going back several decades. We present the first complete study of atmospheric adaptive optics parameters above the Teide Observatory (Canary Islands, Spain) in relation to wind speed. On-site measurements of CN2(h) profiles (more than 20200 turbulence profiles) from G-SCIDAR observations and wind vertical profiles from balloons have been used to calculate the seeing, the isoplanatic angle and the coherence time. The connection of these parameters to wind speeds at ground and 200 m...

  3. Wavefront sensorless approaches to adaptive optics for in vivo fluorescence imaging of mouse retina

    Wahl, Daniel J.; Bonora, Stefano; Mata, Oscar S.; Haunerland, Bengt K.; Zawadzki, Robert J.; Sarunic, Marinko V.; Jian, Yifan

    2016-03-01

    Adaptive optics (AO) is necessary to correct aberrations when imaging the mouse eye with high numerical aperture. In order to obtain cellular resolution, we have implemented wavefront sensorless adaptive optics for in vivo fluorescence imaging of mouse retina. Our approach includes a lens-based system and MEMS deformable mirror for aberration correction. The AO system was constructed with a reflectance channel for structural images and fluorescence channel for functional images. The structural imaging was used in real-time for navigation on the retina using landmarks such as blood vessels. We have also implemented a tunable liquid lens to select the retinal layer of interest at which to perform the optimization. At the desired location on the mouse retina, the optimization algorithm used the fluorescence image data to drive a modal hill-climbing algorithm using an intensity or sharpness image quality metric. The optimization requires ~30 seconds to complete a search up to the 20th Zernike mode. In this report, we have demonstrated the AO performance for high-resolution images of the capillaries in a fluorescence angiography. We have also made progress on an approach to AO with pupil segmentation as a possible sensorless technique suitable for small animal retinal imaging. Pupil segmentation AO was implemented on the same ophthalmic system and imaging performance was demonstrated on fluorescent beads with induced aberrations.

  4. Interferometric adaptive optics for high-power laser pointing, wavefront control, and phasing

    Baker, K. L.; Stappaerts, E. A.; Homoelle, D. C.; Henesian, M. A.; Bliss, E. S.; Siders, C. W.; Barty, C. P. J.

    2009-02-01

    Implementing the capability to perform fast ignition experiments, as well as, radiography experiments on the National Ignition Facility (NIF) places stringent requirements on the control of each of the beam's pointing and overall wavefront quality. One quad of the NIF beams, 4 beam pairs, will be utilized for these experiments and hydrodynamic and particle-in-cell simulations indicate that for the fast ignition experiments, these beams will be required to deliver 50%(4.0 kJ) of their total energy(7.96 kJ) within a 40 μm diameter spot at the end of a fast ignition cone target. This requirement implies a stringent pointing and overall phase conjugation error budget on the adaptive optics system used to correct these beam lines. The overall encircled energy requirement is more readily met by phasing of the beams in pairs but still requires high Strehl ratios, Sr, and RMS tip/tilt errors of approximately one μrad. To accomplish this task we have designed an interferometric adaptive optics system capable of beam pointing, high Strehl ratio and beam phasing with a single pixilated MEMS deformable mirror and interferometric wave-front sensor. We present the design of a testbed used to evaluate the performance of this wave-front sensor below along with simulations of its expected performance level.

  5. Science with ESO's Multi-conjugate Adaptive-optics Demonstrator - MAD

    Melnick, Jorge; Marchetti, Enrico; Amico, Paola

    2012-07-01

    ESO's Multi-conjugate Adaptive-optics Demonstrator (MAD) was a prototype designed and built to demonstrate wide-field adaptive optics science on large telescopes. The outstanding results obtained during commissioning and guaranteed time observations (GTO) prompted ESO to issue and open call to the community for 23 science demonstration (SD) observing nights distributed in three runs (in order to provide access to the summer an winter skies). Thus, in total MAD was used for science for 33 nights including the 10 nights of GTO time. date, 19 articles in refereed journals (including one in Nature) have been published based fully or partially o MAD data. To the best of our knowledge, these are not only the first, but also the only scientific publication from MCAO instruments world-wide to date (at least in Astronomy). The scientific impact of these publication, as measured by the h-index, is comparable to that of other AO instruments on the VLT, although over the years these instruments have been allocated many more nights than MAD. In this contribution we present an overview of the scientific results from MAD and a more detailed discussion of the most cited papers.

  6. The Orion Fingers: Near-IR Adaptive Optics Imaging of an Explosive Protostellar Outflow

    Bally, John; Silvia, Devin; Youngblood, Allison

    2015-01-01

    Aims. Adaptive optics images are used to test the hypothesis that the explosive BN/KL outflow from the Orion OMC1 cloud core was powered by the dynamical decay of a non-hierarchical system of massive stars. Methods. Narrow-band H2, [Fe II], and broad-band Ks obtained with the Gemini South multi-conjugate adaptive optics (AO) system GeMS and near-infrared imager GSAOI are presented. The images reach resolutions of 0.08 to 0.10", close to the 0.07" diffraction limit of the 8-meter telescope at 2.12 microns. Comparison with previous AO-assisted observations of sub-fields and other ground-based observations enable measurements of proper motions and the investigation of morphological changes in H2 and [Fe II] features with unprecedented precision. The images are compared with numerical simulations of compact, high-density clumps moving ~1000 times their own diameter through a lower density medium at Mach 1000. Results. Several sub-arcsecond H2 features and many [Fe ii] 'fingertips' on the projected outskirts of th...

  7. Real-time atmospheric imaging and processing with hybrid adaptive optics and hardware accelerated lucky-region fusion (LRF) algorithm

    Liu, Jony Jiang; Carhart, Gary W.; Beresnev, Leonid A.; Aubailly, Mathieu; Jackson, Christopher R.; Ejzak, Garrett; Kiamilev, Fouad E.

    2014-09-01

    Atmospheric turbulences can significantly deteriorate the performance of long-range conventional imaging systems and create difficulties for target identification and recognition. Our in-house developed adaptive optics (AO) system, which contains high-performance deformable mirrors (DMs) and the fast stochastic parallel gradient decent (SPGD) control mechanism, allows effective compensation of such turbulence-induced wavefront aberrations and result in significant improvement on the image quality. In addition, we developed advanced digital synthetic imaging and processing technique, "lucky-region" fusion (LRF), to mitigate the image degradation over large field-of-view (FOV). The LRF algorithm extracts sharp regions from each image obtained from a series of short exposure frames and fuses them into a final improved image. We further implemented such algorithm into a VIRTEX-7 field programmable gate array (FPGA) and achieved real-time video processing. Experiments were performed by combining both AO and hardware implemented LRF processing technique over a near-horizontal 2.3km atmospheric propagation path. Our approach can also generate a universal real-time imaging and processing system with a general camera link input, a user controller interface, and a DVI video output.

  8. The absolute age of the globular cluster M15 using near-infrared adaptive optics images from PISCES/LBT

    Monelli, M; Bono, G; Ferraro, I; Iannicola, G; Fiorentino, G; Arcidiacono, C; Massari, D; Boutsia, K; Briguglio, R; Busoni, L; Carini, R; Close, L; Cresci, G; Esposito, S; Fini, L; Fumana, M; Guerra, J C; Hill, J; Kulesa, C; Mannucci, F; McCarthy, D; Pinna, E; Puglisi, A; Quiros-Pacheco, F; Ragazzoni, R; Riccardi, A; Skemer, A; Xompero, M

    2015-01-01

    We present deep near-infrared (NIR) J, Ks photometry of the old, metal-poor Galactic globular cluster M\\,15 obtained with images collected with the LUCI1 and PISCES cameras available at the Large Binocular Telescope (LBT). We show how the use of First Light Adaptive Optics system coupled with the (FLAO) PISCES camera allows us to improve the limiting magnitude by ~2 mag in Ks. By analyzing archival HST data, we demonstrate that the quality of the LBT/PISCES color magnitude diagram is fully comparable with analogous space-based data. The smaller field of view is balanced by the shorter exposure time required to reach a similar photometric limit. We investigated the absolute age of M\\,15 by means of two methods: i) by determining the age from the position of the main sequence turn-off; and ii) by the magnitude difference between the MSTO and the well-defined knee detected along the faint portion of the MS. We derive consistent values of the absolute age of M15, that is 12.9+-2.6 Gyr and 13.3+-1.1 Gyr, respectiv...

  9. Adapt

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  10. Robo-AO KP: A new era in robotic adaptive optics

    Riddle, Reed L.; Baranec, Christoph; Law, Nicholas M.; Kulkarni, Shrinivas R.; Duev, Dmitry; Ziegler, Carl; Jensen-Clem, Rebecca M.; Atkinson, Dani Eleanor; Tanner, Angelle M.; Zhang, Celia; Ray, Amy

    2016-01-01

    Robo-AO is the first and only fully automated adaptive optics laser guide star AO instrument. It was developed as an instrument for 1-3m robotic telescopes, in order to take advantage of their availability to pursue large survey programs and target of opportunity observations that aren't possible with other AO systems. Robo-AO is currently the most efficient AO system in existence, and it can achieve an observation rate of 20+ science targets per hour. In more than three years of operations at Palomar Observatory, it has been quite successful, producing technology that is being adapted by other AO systems and robotic telescope projects, as well as several high impact scientific publications. Now, Robo-AO has been selected to take over operation of the Kitt Peak National Observatory 2.1m telescope. This will give Robo-AO KP the opportunity to pursue multiple science programs consisting of several thousand targets each during the three years it will be on the telescope. One-sixth of the observing time will be allocated to the US community through the NOAO TAC process. This presentation will discuss the process adapting Robo-AO to the KPNO 2.1m telescope, the plans for integration and initial operations, and the science operations and programs to be pursued.

  11. Adaptive optics microscopy enhances image quality in deep layers of CLARITY processed brains of YFP-H mice

    Reinig, Marc R.; Novack, Samuel W.; Tao, Xiaodong; Ermini, Florian; Bentolila, Laurent A.; Roberts, Dustin G.; MacKenzie-Graham, Allan; Godshalk, S. E.; Raven, M. A.; Kubby, Joel

    2016-03-01

    Optical sectioning of biological tissues has become the method of choice for three-dimensional histological analyses. This is particularly important in the brain were neurons can extend processes over large distances and often whole brain tracing of neuronal processes is desirable. To allow deeper optical penetration, which in fixed tissue is limited by scattering and refractive index mismatching, tissue-clearing procedures such as CLARITY have been developed. CLARITY processed brains have a nearly uniform refractive index and three-dimensional reconstructions at cellular resolution have been published. However, when imaging in deep layers at submicron resolution some limitations caused by residual refractive index mismatching become apparent, as the resulting wavefront aberrations distort the microscopic image. The wavefront can be corrected with adaptive optics. Here, we investigate the wavefront aberrations at different depths in CLARITY processed mouse brains and demonstrate the potential of adaptive optics to enable higher resolution and a better signal-to-noise ratio. Our adaptive optics system achieves high-speed measurement and correction of the wavefront with an open-loop control using a wave front sensor and a deformable mirror. Using adaptive optics enhanced microscopy, we demonstrate improved image quality wavefront, point spread function, and signal to noise in the cortex of YFP-H mice.

  12. Computational hydrodynamics and optical performance of inductively-coupled plasma adaptive lenses

    Mortazavi, M.; Urzay, J., E-mail: jurzay@stanford.edu; Mani, A. [Center for Turbulence Research, Stanford University, Stanford, California 94305-3024 (United States)

    2015-06-15

    This study addresses the optical performance of a plasma adaptive lens for aero-optical applications by using both axisymmetric and three-dimensional numerical simulations. Plasma adaptive lenses are based on the effects of free electrons on the phase velocity of incident light, which, in theory, can be used as a phase-conjugation mechanism. A closed cylindrical chamber filled with Argon plasma is used as a model lens into which a beam of light is launched. The plasma is sustained by applying a radio-frequency electric current through a coil that envelops the chamber. Four different operating conditions, ranging from low to high powers and induction frequencies, are employed in the simulations. The numerical simulations reveal complex hydrodynamic phenomena related to buoyant and electromagnetic laminar transport, which generate, respectively, large recirculating cells and wall-normal compression stresses in the form of local stagnation-point flows. In the axisymmetric simulations, the plasma motion is coupled with near-wall axial striations in the electron-density field, some of which propagate in the form of low-frequency traveling disturbances adjacent to vortical quadrupoles that are reminiscent of Taylor-Görtler flow structures in centrifugally unstable flows. Although the refractive-index fields obtained from axisymmetric simulations lead to smooth beam wavefronts, they are found to be unstable to azimuthal disturbances in three of the four three-dimensional cases considered. The azimuthal striations are optically detrimental, since they produce high-order angular aberrations that account for most of the beam wavefront error. A fourth case is computed at high input power and high induction frequency, which displays the best optical properties among all the three-dimensional simulations considered. In particular, the increase in induction frequency prevents local thermalization and leads to an axisymmetric distribution of electrons even after introduction of

  13. Computational hydrodynamics and optical performance of inductively-coupled plasma adaptive lenses

    This study addresses the optical performance of a plasma adaptive lens for aero-optical applications by using both axisymmetric and three-dimensional numerical simulations. Plasma adaptive lenses are based on the effects of free electrons on the phase velocity of incident light, which, in theory, can be used as a phase-conjugation mechanism. A closed cylindrical chamber filled with Argon plasma is used as a model lens into which a beam of light is launched. The plasma is sustained by applying a radio-frequency electric current through a coil that envelops the chamber. Four different operating conditions, ranging from low to high powers and induction frequencies, are employed in the simulations. The numerical simulations reveal complex hydrodynamic phenomena related to buoyant and electromagnetic laminar transport, which generate, respectively, large recirculating cells and wall-normal compression stresses in the form of local stagnation-point flows. In the axisymmetric simulations, the plasma motion is coupled with near-wall axial striations in the electron-density field, some of which propagate in the form of low-frequency traveling disturbances adjacent to vortical quadrupoles that are reminiscent of Taylor-Görtler flow structures in centrifugally unstable flows. Although the refractive-index fields obtained from axisymmetric simulations lead to smooth beam wavefronts, they are found to be unstable to azimuthal disturbances in three of the four three-dimensional cases considered. The azimuthal striations are optically detrimental, since they produce high-order angular aberrations that account for most of the beam wavefront error. A fourth case is computed at high input power and high induction frequency, which displays the best optical properties among all the three-dimensional simulations considered. In particular, the increase in induction frequency prevents local thermalization and leads to an axisymmetric distribution of electrons even after introduction of

  14. Computational hydrodynamics and optical performance of inductively-coupled plasma adaptive lenses

    Mortazavi, M.; Urzay, J.; Mani, A.

    2015-06-01

    This study addresses the optical performance of a plasma adaptive lens for aero-optical applications by using both axisymmetric and three-dimensional numerical simulations. Plasma adaptive lenses are based on the effects of free electrons on the phase velocity of incident light, which, in theory, can be used as a phase-conjugation mechanism. A closed cylindrical chamber filled with Argon plasma is used as a model lens into which a beam of light is launched. The plasma is sustained by applying a radio-frequency electric current through a coil that envelops the chamber. Four different operating conditions, ranging from low to high powers and induction frequencies, are employed in the simulations. The numerical simulations reveal complex hydrodynamic phenomena related to buoyant and electromagnetic laminar transport, which generate, respectively, large recirculating cells and wall-normal compression stresses in the form of local stagnation-point flows. In the axisymmetric simulations, the plasma motion is coupled with near-wall axial striations in the electron-density field, some of which propagate in the form of low-frequency traveling disturbances adjacent to vortical quadrupoles that are reminiscent of Taylor-Görtler flow structures in centrifugally unstable flows. Although the refractive-index fields obtained from axisymmetric simulations lead to smooth beam wavefronts, they are found to be unstable to azimuthal disturbances in three of the four three-dimensional cases considered. The azimuthal striations are optically detrimental, since they produce high-order angular aberrations that account for most of the beam wavefront error. A fourth case is computed at high input power and high induction frequency, which displays the best optical properties among all the three-dimensional simulations considered. In particular, the increase in induction frequency prevents local thermalization and leads to an axisymmetric distribution of electrons even after introduction of

  15. Optical solar energy adaptations and radiative temperature control of green leaves and tree barks

    Henrion, Wolfgang; Tributsch, Helmut [Department of Si-Photovoltaik and Solare Energetik, Hahn-Meitner-Institut Berlin, 14109 Berlin (Germany)

    2009-01-15

    Trees have adapted to keep leaves and barks cool in sunshine and can serve as interesting bionic model systems for radiative cooling. Silicon solar cells, on the other hand, loose up to one third of their energy efficiency due to heating in intensive sunshine. It is shown that green leaves minimize absorption of useful radiation and allow efficient infrared thermal emission. Since elevated temperatures are detrimental for tensile water flow in the Xylem tissue below barks, the optical properties of barks should also have evolved so as to avoid excessive heating. This was tested by performing optical studies with tree bark samples from representative trees. It was found that tree barks have optimized their reflection of incoming sunlight between 0.7 and 2 {mu}m. This is approximately the optical window in which solar light is transmitted and reflected by green vegetation. Simultaneously, the tree bark is highly absorbing and thus radiation emitting between 6 and 10 {mu}m. These two properties, mainly provided by tannins, create optimal conditions for radiative temperature control. In addition, tannins seem to have adopted a function as mediators for excitation energy towards photo-antioxidative activity for control of radiation damage. The results obtained are used to discuss challenges for future solar cell optimization. (author)

  16. A formal protocol test procedure for the Survivable Adaptable Fiber Optic Embedded Network (SAFENET)

    High, Wayne

    1993-03-01

    This thesis focuses upon a new method for verifying the correct operation of a complex, high speed fiber optic communication network. These networks are of growing importance to the military because of their increased connectivity, survivability, and reconfigurability. With the introduction and increased dependence on sophisticated software and protocols, it is essential that their operation be correct. Because of the speed and complexity of fiber optic networks being designed today, they are becoming increasingly difficult to test. Previously, testing was accomplished by application of conformance test methods which had little connection with an implementation's specification. The major goal of conformance testing is to ensure that the implementation of a profile is consistent with its specification. Formal specification is needed to ensure that the implementation performs its intended operations while exhibiting desirable behaviors. The new conformance test method presented is based upon the System of Communicating Machine model which uses a formal protocol specification to generate a test sequence. The major contribution of this thesis is the application of the System of Communicating Machine model to formal profile specifications of the Survivable Adaptable Fiber Optic Embedded Network (SAFENET) standard which results in the derivation of test sequences for a SAFENET profile. The results applying this new method to SAFENET's OSI and Lightweight profiles are presented.

  17. Demonstration of adaptive optics for mitigating laser propagation through a random air-water interface

    Land, Phillip; Majumdar, Arun K.

    2016-05-01

    This paper describes a new concept of mitigating signal distortions caused by random air-water interface using an adaptive optics (AO) system. This is the first time the concept of using an AO for mitigating the effects of distortions caused mainly by a random air-water interface is presented. We have demonstrated the feasibility of correcting the distortions using AO in a laboratory water tank for investigating the propagation effects of a laser beam through an airwater interface. The AO system consisting of a fast steering mirror, deformable mirror, and a Shack-Hartmann Wavefront Sensor for mitigating surface water distortions has a unique way of stabilizing and aiming a laser onto an object underneath the water. Essentially the AO system mathematically takes the complex conjugate of the random phase caused by air-water interface allowing the laser beam to penetrate through the water by cancelling with the complex conjugates. The results show the improvement of a number of metrics including Strehl ratio, a measure of the quality of optical image formation for diffraction limited optical system. These are the first results demonstrating the feasibility of developing a new sensor system such as Laser Doppler Vibrometer (LDV) utilizing AO for mitigating surface water distortions.

  18. LSPV+7, a branch-point-tolerant reconstructor for strong turbulence adaptive optics.

    Steinbock, Michael J; Hyde, Milo W; Schmidt, Jason D

    2014-06-20

    Optical wave propagation through long paths of extended turbulence presents unique challenges to adaptive optics (AO) systems. As scintillation and branch points develop in the beacon phase, challenges arise in accurately unwrapping the received wavefront and optimizing the reconstructed phase with respect to branch cut placement on a continuous facesheet deformable mirror. Several applications are currently restricted by these capability limits: laser communication, laser weapons, remote sensing, and ground-based astronomy. This paper presents a set of temporally evolving AO simulations comparing traditional least-squares reconstruction techniques to a complex-exponential reconstructor and several other reconstructors derived from the postprocessing congruence operation. The reconstructors' behavior in closed-loop operation is compared and discussed, providing several insights into the fundamental strengths and limitations of each reconstructor type. This research utilizes a self-referencing interferometer (SRI) as the high-order wavefront sensor, driving a traditional linear control law in conjunction with a cooperative point source beacon. The SRI model includes practical optical considerations and frame-by-frame fiber coupling effects to allow for realistic noise modeling. The "LSPV+7" reconstructor is shown to offer the best performance in terms of Strehl ratio and correction stability-outperforming the traditional least-squares reconstructed system by an average of 120% in the studied scenarios. Utilizing a continuous facesheet deformable mirror, these reconstructors offer significant AO performance improvements in strong turbulence applications without the need for segmented deformable mirrors. PMID:24979411

  19. Morphologies of High Redshift, Dust Obscured Galaxies from Keck Laser Guide Star Adaptive Optics

    Melbourne, J; Armus, Lee; Dey, Arjun; Brand, K; Thompson, D; Soifer, B T; Matthews, K; Jannuzi, B T; Houck, J R

    2008-01-01

    Spitzer MIPS images in the Bootes field of the NOAO Deep Wide-Field Survey have revealed a class of extremely dust obscured galaxy (DOG) at z~2. The DOGs are defined by very red optical to mid-IR (observed-frame) colors, R - [24 um] > 14 mag, i.e. f_v (24 um) / f_v (R) > 1000. They are Ultra-Luminous Infrared Galaxies with L_8-1000 um > 10^12 -10^14 L_sun, but typically have very faint optical (rest-frame UV) fluxes. We imaged three DOGs with the Keck Laser Guide Star Adaptive Optics (LGSAO) system, obtaining ~0.06'' resolution in the K'-band. One system was dominated by a point source, while the other two were clearly resolved. Of the resolved sources, one can be modeled as a exponential disk system. The other is consistent with a de Vaucouleurs profile typical of elliptical galaxies. The non-parametric measures of their concentration and asymmetry, show the DOGs to be both compact and smooth. The AO images rule out double nuclei with separations of greater than 0.1'' (< 1 kpc at z=2), making it unlikely ...

  20. High Redshift Dust Obscured Galaxies, A Morphology-SED Connection Revealed by Keck Adaptive Optics

    Melbourne, J; Brand, K; Desai, V; Armus, L; Dey, Arjun; Jannuzi, B T; Houck, J R; Matthews, K; Soifer, B T

    2009-01-01

    A simple optical to mid-IR color selection, R-[24] > 14, i.e. f_nu(24) / f_nu(R) > 1000, identifies highly dust obscured galaxies (DOGs) with typical redshifts of z~2 +/- 0.5. Extreme mid-IR luminosities (L_{IR} > 10^{12-14}) suggest that DOGs are powered by a combination of AGN and star formation, possibly driven by mergers. In an effort to compare their photometric properties with their rest frame optical morphologies, we obtained high spatial resolution (0.05 -0.1") Keck Adaptive Optics (AO) K'-band images of 15 DOGs. The images reveal a wide range of morphologies, including: small exponential disks (8 of 15), small ellipticals (4 of 15), and unresolved sources (2 of 15). One particularly diffuse source could not be classified because of low signal to noise ratio. We find a statistically significant correlation between galaxy concentration and mid-IR luminosity, with the most luminous DOGs exhibiting higher concentration and smaller physical size. DOGs with high concentration also tend to have spectral ene...

  1. MACAO-VLTI: An Adaptive Optics system for the ESO VLT interferometer

    Arsenault, Robin; Alonso, Jaime; Bonnet, Henri; Brynnel, Joar; Delabre, Bernard; Donaldson, Robert; Dupuy, Christophe; Fedrigo, Enrico; Farinato, Jacopo; Hubin, Norbert N.; Ivanescu, L.; Kasper, Markus E.; Paufique, J.; Rossi, S.; Tordo, Sebastien; Stroebele, Stefan; Lizon, Jean-Luis; Gigan, Pierre; Delplancke, Francoise; Silber, A.; Quattri, Marco; Reiss, Roland

    2003-02-01

    MACAO stands for Multi Application Curvature Adaptive Optics. A similar concept is applied to fulfill the need for wavefront correction for several VLT instruments. MACAO-VLTI is one of these built in 4 copies in order to equip the Coude focii of the ESO VLT's. The optical beams will then be corrected before interferometric recombination in the VLTI (Very Large Telescope Interferometer) laboratory. MACAO-VLTI uses a 60 elements bimorph mirror and curvature wavefront sensor. A custom made board processes the signals provided by the wavefront detectors, 60 Avalanche Photo-diodes, and transfer them to a commercial Power PC CPU board for Real Time Calculation. Mirrors Commands are sent to a High Voltage amplifier unit through an optical fiber link. The tip-tilt correction is done by a dedicated Tip-tilt mount holding the deformable mirror. The whole wavefront is located at the Coude focus. Software is developed in house and is ESO compatible. Expected performance is a Strehl ratio sligthly under 60% at 2.2 micron for bright reference sources (star V<10) and a limiting magnitude of 17.5 (Strehl ~0.1). The four systems will be installed in Paranal successively, the first one being planned for June 2003 and the last one for June 2004.

  2. Ultra-lightweight telescope with MEMS adaptive optic for distortion correction.

    Spahn, Olga Blum; Cowan, William D.; Shaw, Michael J.; Adams, David Price; Sweatt, William C.; Dagel, Daryl James; Grine, Alejandro J.; Mani, Seethambal S.; Resnick, Paul James; Gass, Fawn Renee; Grossetete, Grant David

    2004-12-01

    Recent world events have underscored the need for a satellite based persistent global surveillance capability. To be useful, the satellite must be able to continuously monitor objects the size of a person anywhere on the globe and do so at a low cost. One way to satisfy these requirements involves a constellation of satellites in low earth orbit capable of resolving a spot on the order of 20 cm. To reduce cost of deployment, such a system must be dramatically lighter than a traditional satellite surveillance system with a high spatial resolution. The key to meeting this requirement is a lightweight optics system with a deformable primary and secondary mirrors and an adaptive optic subsystem correction of wavefront distortion. This proposal is concerned with development of MEMS micromirrors for correction of aberrations in the primary mirror and improvement of image quality, thus reducing the optical requirements on the deployable mirrors. To meet this challenge, MEMS micromirrors must meet stringent criteria on their performance in terms of flatness, roughness and resolution of position. Using Sandia's SUMMIT foundry which provides the world's most sophisticated surface MEMS technology as well as novel designs optimized by finite element analysis will meet severe requirements on mirror travel range and accuracy.

  3. Implantable collamer lens and femtosecond laser for myopia: comparison using an adaptive optics visual simulator

    Cari Pérez-Vives

    2014-04-01

    Full Text Available Purpose: To compare optical and visual quality of implantable collamer lens (ICL implantation and femtosecond laser in situ keratomileusis (F-LASIK for myopia. Methods: The CRX1 adaptive optics visual simulator (Imagine Eyes, Orsay, France was used to simulate the wavefront aberration pattern after the two surgical procedures for -3-diopter (D and -6-D myopia. Visual acuity at different contrasts and contrast sensitivities at 10, 20, and 25 cycles/degree (cpd were measured for 3-mm and 5-mm pupils. The modulation transfer function (MTF and point spread function (PSF were calculated for 5-mm pupils. Results: F-LASIK MTF was worse than ICL MTF, which was close to diffraction-limited MTF. ICL cases showed less spread out of PSF than F-LASIK cases. ICL cases showed better visual acuity values than F-LASIK cases for all pupils, contrasts, and myopic treatments (p0.05. For -6-D myopia, however, statistically significant differences in contrast sensitivities were found for both pupils for all evaluated spatial frequencies (p<0.05. Contrast sensitivities were better after ICL implantation than after F-LASIK. Conclusions: ICL implantation and F-LASIK provide good optical and visual quality, although the former provides better outcomes of MTF, PSF, visual acuity, and contrast sensitivity, especially for cases with large refractive errors and pupil sizes. These outcomes are related to the F-LASIK producing larger high-order aberrations.

  4. KAPAO: a MEMS-based natural guide star adaptive optics system

    Severson, Scott A; Contreras, Daniel S; Gilbreth, Blaine N; Littleton, Erik; McGonigle, Lorcan P; Morrison, William A; Rudy, Alex R; Wong, Jonathan R; Xue, Andrew; Spjut, Erik; Baranec, Christoph; Riddle, Reed; 10.1117/12.2005959

    2013-01-01

    We describe KAPAO, our project to develop and deploy a low-cost, remote-access, natural guide star adaptive optics (AO) system for the Pomona College Table Mountain Observatory (TMO) 1-meter telescope. We use a commercially available 140-actuator BMC MEMS deformable mirror and a version of the Robo-AO control software developed by Caltech and IUCAA. We have structured our development around the rapid building and testing of a prototype system, KAPAO-Alpha, while simultaneously designing our more capable final system, KAPAO-Prime. The main differences between these systems are the prototype's reliance on off-the-shelf optics and a single visible-light science camera versus the final design's improved throughput and capabilities due to the use of custom optics and dual-band, visible and near-infrared imaging. In this paper, we present the instrument design and on-sky closed-loop testing of KAPAO-Alpha as well as our plans for KAPAO-Prime. The primarily undergraduate-education nature of our partner institutions,...

  5. Comparison of the marginal adaptation of direct and indirect composite inlay restorations with optical coherence tomography

    TÜRK, Ayşe Gözde; SABUNCU, Metin; ÜNAL, Sena; ÖNAL, Banu; ULUSOY, Mübin

    2016-01-01

    ABSTRACT Objective The purpose of the study was to use the photonic imaging modality of optical coherence tomography (OCT) to compare the marginal adaptation of composite inlays fabricated by direct and indirect techniques. Material and Methods Class II cavities were prepared on 34 extracted human molar teeth. The cavities were randomly divided into two groups according to the inlay fabrication technique. The first group was directly restored on cavities with a composite (Esthet X HD, Dentsply, Germany) after isolating. The second group was indirectly restored with the same composite material. Marginal adaptations were scanned before cementation with an invisible infrared light beam of OCT (Thorlabs), allowing measurement in 200 µm intervals. Restorations were cemented with a self-adhesive cement resin (SmartCem2, Dentsply), and then marginal adaptations were again measured with OCT. Mean values were statistically compared by using independent-samples t-test and paired samples t-test (pinlays presented statistically smaller marginal discrepancy values than indirect inlays, before (p=0.00001442) and after (p=0.00001466) cementation. Marginal discrepancy values were increased for all restorations after cementation (p=0.00008839, p=0.000000952 for direct and indirect inlays, respectively). The mean marginal discrepancy value of the direct group increased from 56.88±20.04 µm to 91.88±31.7 µm, whereas the indirect group increased from 107.54±35.63 µm to 170.29±54.83 µm. Different techniques are available to detect marginal adaptation of restorations, but the OCT system can give quantitative information about resin cement thickness and its interaction between tooth and restoration in a nondestructive manner. Conclusions Direct inlays presented smaller marginal discrepancy than indirect inlays. The marginal discrepancy values were increased for all restorations that refer to cement thickness after cementation. PMID:27556210

  6. Coordinated Optical/X-ray observations of the CTTS V2129 Oph The Chandra View

    Flaccomio, E.; Argiroffi, C.; Alencar, S. H. P.; Bouvier, J.; Donati, J.-F.; Getman, K.; Gregory, S. G.; Hussain, G.; Ibrahimov, M.; Jardine, M. M.; Skelly, M.; Walter, F.

    2011-12-01

    Young low-mass accreting stars (classical T Tauri stars; CTTSs) possess strong magnetic fields that are responsible for the regulation of the accretion and outflow processes, and the confinement and heating of coronal plasma. Understanding the physics of CTTS magnetospheres and of their interaction with circumstellar disks can elucidate the history and evolution of our own Sun and Solar System, at the stage when planets were being formed. In June 2009 we have conducted an extensive multi-wavelength observing campaign of V2129 Oph, a K5 CTTS in the ρ Ophiuchi molecular cloud, with the goal of obtaining a synoptic view of its photosphere, magnetic field, coronal plasma, and of its accretion spot(s) and funnel flow(s). We here report on the X-ray emission, as observed by the Chandra High Energy Transmission Grating (HETG). High-density plasma, presumably from the accretion shock, is responsible for the soft X-ray emission, at least during the first half of the observation. The X-ray emission from both the coronal plasma (T˜20MK) and the cooler and denser material from the accretion spot (T˜3MK) is observed to vary between the first and second half of the observation. From the high-resolution X-ray spectra we constrain the emission measure of the two components and the density of the cool plasma. Finally we interpret the time variability of the cool plasma component in terms of stellar rotation and the time-changing viewing angle of the accretion stream, as constrained by simultaneous optical observations.

  7. The design of a switchable dual-field-of-view thermal optical system

    Zhang, Ting-cheng; Liao, Zhi-bo

    2013-09-01

    For the middle wave 640×512 cooled thermal IR focal plane array with 15μm pixel pitch, a design of 3.7~4.8μm refractive infrared switchable dual-field-of-view imaging system is described, which makes use of a mechanical holder to switch two lenses into and out of the whole optical system to change the focal length from 45mm to 135mm. The system includes a telescope and a relay sub-system to avoid vignetting caused by the presence of the cold shield. Preliminary calculations are carried out first to determine the focal powers and first-order parameters of each lens and then the aberration equations are solved to achieve the initial configuration of the system as the starting point. During the optimization, in order to correct varied aberrations, such as spherical aberrations, coma, astigmatism, and chromatic aberrations, more lenses, glasses and aspherical surfaces are employed. In consideration of decreasing the manufacture cost and fabrication difficulties, only germ, silicon and one ZnS single lens are allowed to make use of, and the highest order of aspherical coefficients is no more than 8th. Meanwhile, the separation between the two lenses fixed in the mechanical holder must be controlled strictly to make sure no ray will be obscured by them when they are switched out of the system. Between the telescope and the relay system, the relay system and the image plane, there are two mirrors to fold the system, so reserved space must be valued in the optical path. Finally, a total of ten lenses with two aspherical surfaces and two mirrors are used in the design, making the system cost effective and compact. At the end, the design results are given. The modulation transfer function (MTF) of each field-of-view is above 0.5 in all focal positions at the spatial frequency of 33lp/mm, which approaches the diffraction limits and the energy permeance ratio is greater than 80%, showing excellent performance.

  8. Compensation of modal dispersion in multimode fiber systems using adaptive optics via convex optimization

    Panicker, Rahul Alex

    Multimode fibers (MMF) are widely deployed in local-, campus-, and storage-area-networks. Achievable data rates and transmission distances are, however, limited by the phenomenon of modal dispersion. We propose a system to compensate for modal dispersion using adaptive optics. This leads to a 10- to 100-fold improvement in performance over current standards. We propose a provably optimal technique for minimizing inter-symbol interference (ISI) in MMF systems using adaptive optics via convex optimization. We use a spatial light modulator (SLM) to shape the spatial profile of light launched into an MMF. We derive an expression for the system impulse response in terms of the SLM reflectance and the field patterns of the MMF principal modes. Finding optimal SLM settings to minimize ISI, subject to physical constraints, is posed as an optimization problem. We observe that our problem can be cast as a second-order cone program, which is a convex optimization problem. Its global solution can, therefore, be found with minimal computational complexity. Simulations show that this technique opens up an eye pattern originally closed due to ISI. We then propose fast, low-complexity adaptive algorithms for optimizing the SLM settings. We show that some of these converge to the global optimum in the absence of noise. We also propose modified versions of these algorithms to improve resilience to noise and speed of convergence. Next, we experimentally compare the proposed adaptive algorithms in 50-mum graded-index (GRIN) MMFs using a liquid-crystal SLM. We show that continuous-phase sequential coordinate ascent (CPSCA) gives better bit-error-ratio performance than 2- or 4-phase sequential coordinate ascent, in concordance with simulations. We evaluate the bandwidth characteristics of CPSCA, and show that a single SLM is able to simultaneously compensate over up to 9 wavelength-division-multiplexed (WDM) 10-Gb/s channels, spaced by 50 GHz, over a total bandwidth of 450 GHz. We also

  9. High resolution adaptive optics imaging complements standard spectral domain optical coherent tomography in retinal diseases with micro-structural details: a case series

    Gibran Syed Khurshid; Sasha Strul; Adam Boretsky; Massoud Motamedi; Praveena Gupta

    2016-01-01

    Purpose: To evaluate if high resolution adaptive optics confocal scanning laser ophthalmoscopy (AO-SLO) can be used as an adjunct complementary diagnostic tool to spectral domain optical coherent tomography (SD-OCT) in characterizing three macular diseases: rod-cone dystrophy, acute retinal pigment epitheliitis (Krill’s disease), and occult macular dystrophy. Methods: As part of a complete clinical examination, each patient was subjected to color fundus pictures, multimodal imaging scans with...

  10. Multi-View Stereo Matching Based on Self-Adaptive Patch and Image Grouping for Multiple Unmanned Aerial Vehicle Imagery

    Xiongwu Xiao

    2016-01-01

    Full Text Available Robust and rapid image dense matching is the key to large-scale three-dimensional (3D reconstruction for multiple Unmanned Aerial Vehicle (UAV images. However, the following problems must be addressed: (1 the amount of UAV image data is very large, but ordinary computer memory is limited; (2 the patch-based multi-view stereo-matching algorithm (PMVS does not work well for narrow-baseline cases, and its computing efficiency is relatively low, and thus, it is difficult to meet the UAV photogrammetry’s requirements of convenience and speed. This paper proposes an Image-grouping and Self-Adaptive Patch-based Multi-View Stereo-matching algorithm (IG-SAPMVS for multiple UAV imagery. First, multiple UAV images were grouped reasonably by a certain grouping strategy. Second, image dense matching was performed in each group and included three processes. (1 Initial feature-matching consists of two steps: The first was feature point detection and matching, which made some improvements to PMVS, according to the characteristics of UAV imagery. The second was edge point detection and matching, which aimed to control matching propagation during the expansion process; (2 The second process was matching propagation based on the self-adaptive patch. Initial patches were built that were centered by the obtained 3D seed points, and these were repeatedly expanded. The patches were prevented from crossing the discontinuous terrain by using the edge constraint, and the extent size and shape of the patches could automatically adapt to the terrain relief; (3 The third process was filtering the erroneous matching points. Taken the overlap problem between each group of 3D dense point clouds into account, the matching results were merged into a whole. Experiments conducted on three sets of typical UAV images with different texture features demonstrate that the proposed algorithm can address a large amount of UAV image data almost without computer memory restrictions, and

  11. Correction of distortion for optimal image stacking in Wide Field Adaptive Optics: Application to GeMS data

    Bernard, A; Neichel, B; Fusco, T; Bounissou, S; Samal, M; Andersen, M; Zavagno, A; Plana, H

    2016-01-01

    The advent of Wide Field Adaptive Optics (WFAO) systems marks the beginning of a new era in high spatial resolution imaging. The newly commissioned Gemini South Multi-Conjugate Adaptive Optics System (GeMS) combined with the infrared camera Gemini South Adaptive Optics Imager (GSAOI), delivers quasi diffraction-limited images over a field of 2 arc-minutes across. However, despite this excellent performance, some variable residues still limit the quality of the analyses. In particular, distortions severely affect GSAOI and become a critical issue for high-precision astrometry and photometry. In this paper, we investigate an optimal way to correct for the distortion following an inverse problem approach. Formalism as well as applications on GeMS data are presented.

  12. Monte-Carlo modelling of multi-conjugate adaptive optics performance on the European Extremely Large Telescope

    Basden, Alastair

    2015-01-01

    The performance of a wide-field adaptive optics system depends on input design parameters. Here we investigate the performance of a multi-conjugate adaptive optics system design for the European Extremely Large Telescope, using an end-to-end Monte-Carlo adaptive optics simulation tool, DASP. We consider parameters such as the number of laser guide stars, sodium layer depth, wavefront sensor pixel scale, number of deformable mirrors, mirror conjugation and actuator pitch. We provide potential areas where costs savings can be made, and investigate trade-offs between performance and cost. We conclude that a 6 laser guide star system using 3 DMs seems to be a sweet spot for performance and cost compromise.

  13. On-sky results of the adaptive optics MACAO for the new IR-spectrograph CRIRES at VLT

    Paufique, J; Delabre, B; Donaldson, R; Esteves, R; Fedrigo, E; Gigan, P; Gojak, D; Hubin, N; Kasper, M; Kaeufl, U; Lizon, J L; Marchetti, E; Oberti, S; Pirard, J F; Pozna, E; Santos, J; Stroebele, S; Tordo, S; Lizon, JL.; Pirard, JF.

    2006-01-01

    The adaptive optics MACAO has been implemented in 6 focii of the VLT observatory, in three different flavors. We present in this paper the results obtained during the commissioning of the last of these units, MACAO-CRIRES. CRIRES is a high-resolution spectrograph, which efficiency will be improved by a factor two at least for point-sources observations with a NGS brighter than R=15. During the commissioning, Strehl exceeding 60% have been observed with fair seeing conditions, and a general description of the performance of this curvature adaptive optics system is done.

  14. ShaneAO: wide science spectrum adaptive optics system for the Lick Observatory

    Gavel, Donald; Dillon, Daren; Norton, Andrew; Ratliff, Chris; Cabak, Jerry; Phillips, Andrew; Rockosi, Connie; McGurk, Rosalie; Srinath, Srikar; Peck, Michael; Deich, William; Lanclos, Kyle; Gates, John; Saylor, Michael; Ward, Jim; Pfister, Terry

    2014-01-01

    A new high-order adaptive optics system is now being commissioned at the Lick Observatory Shane 3-meter telescope in California. This system uses a high return efficiency sodium beacon and a combination of low and high-order deformable mirrors to achieve diffraction-limited imaging over a wide spectrum of infrared science wavelengths covering 0.8 to 2.2 microns. We present the design performance goals and the first on-sky test results. We discuss several innovations that make this system a pathfinder for next generation AO systems. These include a unique woofer-tweeter control that provides full dynamic range correction from tip/tilt to 16 cycles, variable pupil sampling wavefront sensor, new enhanced silver coatings developed at UC Observatories that improve science and LGS throughput, and tight mechanical rigidity that enables a multi-hour diffraction- limited exposure in LGS mode for faint object spectroscopy science.

  15. Probability of the residual wavefront variance of an adaptive optics system and its application.

    Huang, Jian; Liu, Chao; Deng, Ke; Yao, Zhousi; Xian, Hao; Li, Xinyang

    2016-02-01

    For performance evaluation of an adaptive optics (AO) system, the probability of the system residual wavefront variance can provide more information than the wavefront variance average. By studying the Zernike coefficients of an AO system residual wavefront, we derived the exact expressions for the probability density functions of the wavefront variance and the Strehl ratio, for instantaneous and long-term exposures owing to the insufficient control loop bandwidth of the AO system. Our calculations agree with the residual wavefront data of a closed loop AO system. Using these functions, we investigated the relationship between the AO system bandwidth and the distribution of the residual wavefront variance. Additionally, we analyzed the availability of an AO system for evaluating the AO performance. These results will assist in designing and probabilistic analysis of AO systems. PMID:26906850

  16. A novel high precision adaptive equalizer in digital coherent optical receivers

    Ma, Xiurong; Xu, Yujun; Wang, Xiao; Ding, Zhaocai

    2015-10-01

    A novel high precision adaptive equalization method is introduced and applied to dynamic equalization for quadrature phase shift keying (QPSK) coherent optical communication system in this paper. A frequency-domain constant modulus algorithm (CMA) method is used to equalize the received signal roughly. Then, some non-ideal output signals will be picked out through the error measurement, and they will be equalized accurately further in a fixed time-domain CMA equalizer. This high precision equalization method can decrease the equalization error, then it can reduce the bit error ratio (BER) of coherent communication system. Simulation results show that there is a 6% decrease for computation complexity by proposed scheme when compared with time-domain CMA. Furthermore, compared with time-domain CMA and frequency-domain CMA, about 2 dB and 2.2 dB in OSNR improvement can be obtained by proposed scheme at the BER value of 1e-3, respectively.

  17. A Status Report on the Thirty Meter Telescope Adaptive Optics Program

    B. L. Ellerbroek

    2013-06-01

    We provide an update on the recent development of the adaptive optics (AO) systems for the Thirty Meter Telescope (TMT) since mid-2011. The first light AO facility for TMT consists of the Narrow Field Infra-Red AO System (NFIRAOS) and the associated Laser Guide Star Facility (LGSF). This order 60 × 60 laser guide star (LGS) multi-conjugate AO (MCAO) architecture will provide uniform, diffraction-limited performance in the J, H and K bands over 17–30 arcsec diameter fields with 50 per cent sky coverage at the galactic pole, as is required to support TMT science cases. The NFIRAOS and LGSF subsystems completed successful preliminary and conceptual design reviews, respectively, in the latter part of 2011. We also report on progress in AO component prototyping, control algorithm development, and system performance analysis, and conclude with an outline of some possible future AO systems for TMT.

  18. Optical Digital Imitation Painting Design Based on Self-Adaptive Image Feature

    Zhu Liyan

    2016-01-01

    Full Text Available Based on the study of existing digital imitation camouflage technology, we propose a kind of optical digital imitation camouflage design algorithm which is based on the characteristic of self-adaptive image. Picking main color feature of the background by using K-means clustering algorithm, counting the shape characteristics of each main color spots by separating layers, we generated digital camouflage pattern automatically by segmenting the background region characteristics and fill the background color image according to the statistics expected value. The simulation results show that, the digital camouflage generated automatically is blend well with the background .It keeps the background color and shape features, so has good camouflage effect. This algorithm can also provide the basic algorithm foundation for digital deformation camouflage.

  19. A Fossil Bulge Globular Cluster revealed by VLT Multi-Conjugate Adaptive Optics

    Ortolani, Sergio; Momany, Yazan; Saviane, Ivo; Bica, Eduardo; Jilkova, Lucie; Salerno, Gustavo Malta; Jungwiert, Bruno

    2011-01-01

    The globular cluster HP1 is projected on the bulge, very close to the Galactic center. The Multi-Conjugate Adaptive Optics (MCAO) Demonstrator (MAD) at the Very Large Telescope (VLT) allowed to acquire high resolution deep images that, combined with first epoch New Technology Telescope (NTT) data, enabled to derive accurate proper motions. The cluster and bulge field stellar contents were disentangled by means of this process, and produced unprecedented definition in the color-magnitude diagrams for this cluster. The metallicity of [Fe/H] ~ -1.0 from previous spectroscopic analysis is confirmed, which together with an extended blue horizontal branch, imply an age older than the halo average. Orbit reconstruction results suggest that HP1 is spatially confined within the bulge.

  20. Real-Time Wavefront Control for the PALM-3000 High Order Adaptive Optics System

    Truong, Tuan N.; Bouchez, Antonin H.; Dekany, Richard G.; Guiwits, Stephen R.; Roberts, Jennifer E.; Troy, Mitchell

    2008-01-01

    We present a cost-effective scalable real-time wavefront control architecture based on off-the-shelf graphics processing units hosted in an ultra-low latency, high-bandwidth interconnect PC cluster environment composed of modules written in the component-oriented language of nesC. The architecture enables full-matrix reconstruction of the wavefront at up to 2 KHz with latency under 250 us for the PALM-3000 adaptive optics systems, a state-of-the-art upgrade on the 5.1 meter Hale Telescope that consists of a 64 x 64 subaperture Shack-Hartmann wavefront sensor and a 3368 active actuator high order deformable mirror in series with a 241 active actuator tweeter DM. The architecture can easily scale up to support much larger AO systems at higher rates and lower latency.

  1. Large-Stroke Self-Aligned Vertical Comb Drive Actuators for Adaptive Optics Applications

    Carr, E J; Olivier, S S; Solgaard, O

    2005-10-27

    A high-stroke micro-actuator array was designed, modeled, fabricated and tested. Each pixel in the 4x4 array consists of a self-aligned vertical comb drive actuator. This micro-actuator array was designed to become the foundation of a micro-mirror array that will be used as a deformable mirror for adaptive optics applications. Analytical models combined with CoventorWare{reg_sign} simulations were used to design actuators that would move up to 10{micro}m in piston motion with 100V applied. Devices were fabricated according to this design and testing of these devices demonstrated an actuator displacement of 1.4{micro}m with 200V applied. Further investigation revealed that fabrication process inaccuracy led to significantly stiffer mechanical springs in the fabricated devices. The increased stiffness of the springs was shown to account for the reduced displacement of the actuators relative to the design.

  2. Photoreceptor counting and montaging of en-face retinal images from an adaptive optics fundus camera

    Xue, Bai; Choi, Stacey S.; Doble, Nathan; Werner, John S.

    2007-05-01

    A fast and efficient method for quantifying photoreceptor density in images obtained with an en-face flood-illuminated adaptive optics (AO) imaging system is described. To improve accuracy of cone counting, en-face images are analyzed over extended areas. This is achieved with two separate semiautomated algorithms: (1) a montaging algorithm that joins retinal images with overlapping common features without edge effects and (2) a cone density measurement algorithm that counts the individual cones in the montaged image. The accuracy of the cone density measurement algorithm is high, with >97% agreement for a simulated retinal image (of known density, with low contrast) and for AO images from normal eyes when compared with previously reported histological data. Our algorithms do not require spatial regularity in cone packing and are, therefore, useful for counting cones in diseased retinas, as demonstrated for eyes with Stargardt's macular dystrophy and retinitis pigmentosa.

  3. Adaptive optics retinal imaging reveals S-cone dystrophy in tritan color-vision deficiency

    Baraas, Rigmor C.; Carroll, Joseph; Gunther, Karen L.; Chung, Mina; Williams, David R.; Foster, David H.; Neitz, Maureen

    2007-05-01

    Tritan color-vision deficiency is an autosomal dominant disorder associated with mutations in the short-wavelength-sensitive- (S-) cone-pigment gene. An unexplained feature of the disorder is that individuals with the same mutation manifest different degrees of deficiency. To date, it has not been possible to examine whether any loss of S-cone function is accompanied by physical disruption in the cone mosaic. Two related tritan subjects with the same novel mutation in their S-cone-opsin gene, but different degrees of deficiency, were examined. Adaptive optics was used to obtain high-resolution retinal images, which revealed distinctly different S-cone mosaics consistent with their discrepant phenotypes. In addition, a significant disruption in the regularity of the overall cone mosaic was observed in the subject completely lacking S-cone function. These results taken together with other recent findings from molecular genetics indicate that, with rare exceptions, tritan deficiency is progressive in nature.

  4. A Tilt-correction Adaptive Optical System for the Solar Telescope of Nanjing University

    Chang-Hui Rao; Xiu-Fa Gao; Tian Mi; Wen-Han Jiang; Cheng Fang; Ning Ling; Wei-Chao Zhou; Ming-De Ding; Xue-Jun Zhang; Dong-Hong Chen; Mei Li

    2003-01-01

    A tilt-correction adaptive optical system installed on the 430 mm Solar Telescope of Nanjing University has been put in operation. It consists of a tip-tilt mirror, a correlation tracker and an imaging CCD camera. An absolute difference algorithm is used for detecting image motion in the correlation tracker. The sampling frequency of the system is 419 Hz. We give a description of the system's configuration, an analysis of its performance and a report of our observational results. A residual jitter of 0.14 arcsec has been achieved. The error rejection bandwidth of the system can be adjusted in the range 5-28 Hz according to the beacon size and the strength of atmospheric turbulence.

  5. Fast-adaptive fiber-optic sensor for ultra-small vibration and deformation measurement

    Adaptive fiber-optic interferometer measuring system based on a dynamic hologram recorded in photorefractive CdTe crystal without applying an external electric field is developed. Vectorial mixing of two waves with different polarizations in the anisotropic diffraction geometry allows for the realization of linear regime of phase demodulation at the diffusion hologram. High sensitivity of the interferometer is achieved due to recording of the hologram in reflection geometry at high spatial frequencies in a crystal with sufficient concentration of photorefractive centers. The sensitivity obtained makes possible a broadband detection of ultra-small vibrations with amplitude of less then 0.1 nm. High cut-off frequency of the interferometer achieved using low-power light sources due to fast response of CdTe crystal allows one to eliminate temperature fluctuations and other industrial noises

  6. MACAO-VLTI first light: adaptive optics at the service of interferometry

    Arsenault, R.; Alonso, J.; Bonnet, H.; Brynnel, J.; Delabre, B.; Donaldson, R.; Dupuy, C.; Fedrigo, E.; Spyromilio, J.; Erm, T.; Farinato, J.; Hubin, N.; Ivanescu, L.; Kasper, M.; Oberti, S.; Paufique, J.; Rossi, S.; Tordo, S.; Stroebele, S.; Lizon, J.-L.; Gigan, P.; Pouplard, F.; Delplancke, F.; Silber, A.; Quattri, M.; Reiss, R.

    2003-06-01

    The AO department of ESO has completed the design of an adaptive AO system for the VLT Interferometer. Ordering of components, manufacturing and integration took place in 2001 and 2002. The system is built in four copies, one for each VLT. It is installed at the Coudé room and the Coudé train is used as a 'science path'. Only one of the mirrors (M8, pupil conjugated) is replaced by the corrective optics. The 60 elements system should allow a Strehl ratio of ~0.6 on bright sources. Commissioning activities started in April 2003 and the delivery of the 4th system is planned for late 2004. At the time of this writing the first commissioning of the first MACAO has been completed and results are encouraging. The integration and test phase of the 2nd system is in full swing.

  7. Enhancement and bias removal of optical coherence tomography images: An iterative approach with adaptive bilateral filtering.

    Sudeep, P V; Issac Niwas, S; Palanisamy, P; Rajan, Jeny; Xiaojun, Yu; Wang, Xianghong; Luo, Yuemei; Liu, Linbo

    2016-04-01

    Optical coherence tomography (OCT) has continually evolved and expanded as one of the most valuable routine tests in ophthalmology. However, noise (speckle) in the acquired images causes quality degradation of OCT images and makes it difficult to analyze the acquired images. In this paper, an iterative approach based on bilateral filtering is proposed for speckle reduction in multiframe OCT data. Gamma noise model is assumed for the observed OCT image. First, the adaptive version of the conventional bilateral filter is applied to enhance the multiframe OCT data and then the bias due to noise is reduced from each of the filtered frames. These unbiased filtered frames are then refined using an iterative approach. Finally, these refined frames are averaged to produce the denoised OCT image. Experimental results on phantom images and real OCT retinal images demonstrate the effectiveness of the proposed filter. PMID:26907572

  8. 3-D Adaptive Sparsity Based Image Compression With Applications to Optical Coherence Tomography.

    Fang, Leyuan; Li, Shutao; Kang, Xudong; Izatt, Joseph A; Farsiu, Sina

    2015-06-01

    We present a novel general-purpose compression method for tomographic images, termed 3D adaptive sparse representation based compression (3D-ASRC). In this paper, we focus on applications of 3D-ASRC for the compression of ophthalmic 3D optical coherence tomography (OCT) images. The 3D-ASRC algorithm exploits correlations among adjacent OCT images to improve compression performance, yet is sensitive to preserving their differences. Due to the inherent denoising mechanism of the sparsity based 3D-ASRC, the quality of the compressed images are often better than the raw images they are based on. Experiments on clinical-grade retinal OCT images demonstrate the superiority of the proposed 3D-ASRC over other well-known compression methods. PMID:25561591

  9. Performance Testing of an Off-Limb Solar Adaptive Optics System

    Taylor, G E; Marino, J; Rimmele, T R; McAteer, R T J

    2015-01-01

    Long-exposure spectro-polarimetry in the near-infrared is a preferred method to measure the magnetic field and other physical properties of solar prominences. In the past, it has been very difficult to observe prominences in this way with sufficient spatial resolution to fully understand their dynamical properties. Solar prominences contain highly transient structures, visible only at small spatial scales; hence they must be observed at sub-arcsecond resolution, with a high temporal cadence. An adaptive optics (AO) system capable of directly locking-on to prominence structure away from the solar limb has the potential to allow for diffraction-limited spectro-polarimetry of solar prominences. In this paper, the performance of the off-limb AO system and its expected performance, at the desired science wavelength {\\CaII} 8542A, are shown.

  10. Capacity achieving nonbinary LDPC coded non-uniform shaping modulation for adaptive optical communications.

    Lin, Changyu; Zou, Ding; Liu, Tao; Djordjevic, Ivan B

    2016-08-01

    A mutual information inspired nonbinary coded modulation design with non-uniform shaping is proposed. Instead of traditional power of two signal constellation sizes, we design 5-QAM, 7-QAM and 9-QAM constellations, which can be used in adaptive optical networks. The non-uniform shaping and LDPC code rate are jointly considered in the design, which results in a better performance scheme for the same SNR values. The matched nonbinary (NB) LDPC code is used for this scheme, which further improves the coding gain and the overall performance. We analyze both coding performance and system SNR performance. We show that the proposed NB LDPC-coded 9-QAM has more than 2dB gain in symbol SNR compared to traditional LDPC-coded star-8-QAM. On the other hand, the proposed NB LDPC-coded 5-QAM and 7-QAM have even better performance than LDPC-coded QPSK. PMID:27505775

  11. On-sky performance during verification and commissioning of the Gemini Planet Imager's adaptive optics system

    Poyneer, Lisa A; Macintosh, Bruce; Palmer, David W; Perrin, Marshall D; Sadakuni, Naru; Savransky, Dmitry; Bauman, Brian; Cardwell, Andrew; Chilcote, Jeffrey K; Dillon, Daren; Gavel, Donald; Goodsell, Stephen J; Hartung, Markus; Hibon, Pascale; Rantakyro, Fredrik T; Thomas, Sandrine; Veran, Jean-Pierre

    2014-01-01

    The Gemini Planet Imager instrument's adaptive optics (AO) subsystem was designed specifically to facilitate high-contrast imaging. It features several new technologies, including computationally efficient wavefront reconstruction with the Fourier transform, modal gain optimization every 8 seconds, and the spatially filtered wavefront sensor. It also uses a Linear-Quadratic-Gaussian (LQG) controller (aka Kalman filter) for both pointing and focus. We present on-sky performance results from verification and commissioning runs from December 2013 through May 2014. The efficient reconstruction and modal gain optimization are working as designed. The LQG controllers effectively notch out vibrations. The spatial filter can remove aliases, but we typically use it oversized by about 60% due to stability problems.

  12. Optical Layout Analysis of Polarization Interference Imaging Spectrometer by Jones Calculus in View of both Optical Throughput and Interference Fringe Visibility

    Zhang, Xuanni; Zhang, Chunmin

    2013-01-01

    A polarization interference imaging spectrometer based on Savart polariscope was presented. Its optical throughput was analyzed by Jones calculus. The throughput expression was given, and clearly showed that the optical throughput mainly depended on the intensity of incident light, transmissivity, refractive index and the layout of optical system. The simulation and analysis gave the optimum layout in view of both optical throughput and interference fringe visibility, and verified that the layout of our former design was optimum. The simulation showed that a small deviation from the optimum layout influenced interference fringe visibility little for the optimum one, but influenced severely for others, so a small deviation is admissible in the optimum, and this can mitigate the manufacture difficulty. These results pave the way for further research and engineering design.

  13. Multi-laser-guided adaptive optics for the Large Binocular Telescope

    Lloyd-Hart, M.; Angel, R.; Green, R.; Stalcup, T.; Milton, N. M.; Powell, K.

    2007-09-01

    We describe the conceptual design of an advanced laser guide star facility (LGSF) for the Large Binocular Telescope (LBT), to be built in collaboration with the LBT's international partners. The highest priority goal for the facility is the correction of ground-layer turbulence, providing partial seeing compensation in the near IR bands over a 4' field. In the H band, GLAO is projected to improve the median seeing from 0.55" to 0.2". The new facility will build on the LBT's natural guide star AO system, integrated into the telescope with correction by adaptive secondary mirrors, and will draw on Arizona's experience in the construction of the first multi-laser adaptive optics (AO) system at the 6.5 m MMT. The LGSF will use four Rayleigh beacons at 532 nm, projected to an altitude of 25 km, on each of the two 8.4 m component telescopes. Initial use of the system for ground layer correction will deliver image quality well matched to the LBT's two LUCIFER near IR instruments. They will be used for direct imaging over a 4'×4' field and will offer a unique capability in high resolution multi-object spectroscopy. The LGSF is designed to include long-term upgrade paths. Coherent imaging at the combined focus of the two apertures will be exploited by the LBT Interferometer in the thermal IR. Using the same launch optics, an axial sodium or Rayleigh beacon can be added to each constellation, for tomographic wavefront reconstruction and diffraction limited imaging over the usual isoplanatic patch. In the longer term, a second DM conjugated to high altitude is foreseen for the LBT's LINC-NIRVANA instrument, which would extend the coherent diffraction-limited field to an arcminute in diameter with multi-conjugate AO.

  14. Preconditioned conjugate gradient wave-front reconstructors for multiconjugate adaptive optics.

    Gilles, Luc; Ellerbroek, Brent L; Vogel, Curtis R

    2003-09-10

    Multiconjugate adaptive optics (MCAO) systems with 10(4)-10(5) degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of adaptive optics degrees of freedom. We develop scalable open-loop iterative sparse matrix implementations of minimum variance wave-front reconstruction for telescope diameters up to 32 m with more than 10(4) actuators. The basic approach is the preconditioned conjugate gradient method with an efficient preconditioner, whose block structure is defined by the atmospheric turbulent layers very much like the layer-oriented MCAO algorithms of current interest. Two cost-effective preconditioners are investigated: a multigrid solver and a simpler block symmetric Gauss-Seidel (BSGS) sweep. Both options require off-line sparse Cholesky factorizations of the diagonal blocks of the matrix system. The cost to precompute these factors scales approximately as the three-halves power of the number of estimated phase grid points per atmospheric layer, and their average update rate is typically of the order of 10(-2) Hz, i.e., 4-5 orders of magnitude lower than the typical 10(3) Hz temporal sampling rate. All other computations scale almost linearly with the total number of estimated phase grid points. We present numerical simulation results to illustrate algorithm convergence. Convergence rates of both preconditioners are similar, regardless of measurement noise level, indicating that the layer-oriented BSGS sweep is as effective as the more elaborated multiresolution preconditioner. PMID:14503692

  15. Robotic laser adaptive optics imaging of 715 Kepler exoplanet candidates using Robo-AO

    The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star with laser adaptive optics imaging to search for blended nearby stars, which may be physically associated companions and/or responsible for transit false positives. In this paper, we present the results from the 2012 observing season, searching for stars close to 715 Kepler planet candidate hosts. We find 53 companions, 43 of which are new discoveries. We detail the Robo-AO survey data reduction methods including a method of using the large ensemble of target observations as mutual point-spread-function references, along with a new automated companion-detection algorithm designed for large adaptive optics surveys. Our survey is sensitive to objects from ≈0.''15 to 2.''5 separation, with magnitude differences up to Δm ≈ 6. We measure an overall nearby-star probability for Kepler planet candidates of 7.4% ± 1.0%, and calculate the effects of each detected nearby star on the Kepler-measured planetary radius. We discuss several Kepler Objects of Interest (KOIs) of particular interest, including KOI-191 and KOI-1151, which are both multi-planet systems with detected stellar companions whose unusual planetary system architecture might be best explained if they are 'coincident multiple' systems, with several transiting planets shared between the two stars. Finally, we find 98% confidence evidence that short-period giant planets are two to three times more likely than longer-period planets to be found in wide stellar binaries.

  16. Large Binocular Telescope Interferometer Adaptive Optics: On-sky performance and lessons learned

    Bailey, Vanessa P; Puglisi, Alfio T; Esposito, Simone; Vaitheeswaran, Vidhya; Skemer, Andrew J; Defrere, Denis; Vaz, Amali; Leisenring, Jarron M

    2014-01-01

    The Large Binocular Telescope Interferometer is a high contrast imager and interferometer that sits at the combined bent Gregorian focus of the LBT's dual 8.4~m apertures. The interferometric science drivers dictate 0.1'' resolution with $10^3-10^4$ contrast at $10~\\mu m$, while the $4~\\mu m$ imaging science drivers require even greater contrasts, but at scales $>$0.2''. In imaging mode, LBTI's Adaptive Optics system is already delivering $4~\\mu m$ contrast of $10^4-10^5$ at $0.3''-0.75''$ in good conditions. Even in poor seeing, it can deliver up to 90\\% Strehl Ratio at this wavelength. However, the performance could be further improved by mitigating Non-Common Path Aberrations. Any NCPA remedy must be feasible using only the current hardware: the science camera, the wavefront sensor, and the adaptive secondary mirror. In preliminary testing, we have implemented an ``eye doctor'' grid search approach for astigmatism and trefoil, achieving 5\\% improvement in Strehl Ratio at $4~\\mu m$, with future plans to tes...

  17. MagAO: Status and on-sky performance of the Magellan adaptive optics system

    Morzinski, Katie M; Males, Jared R; Kopon, Derek; Hinz, Phil M; Esposito, Simone; Riccardi, Armando; Puglisi, Alfio; Pinna, Enrico; Briguglio, Runa; Xompero, Marco; Quirós-Pacheco, Fernando; Bailey, Vanessa; Follette, Katherine B; Rodigas, T J; Wu, Ya-Lin; Arcidiacono, Carmelo; Argomedo, Javier; Busoni, Lorenzo; Hare, Tyson; Uomoto, Alan; Weinberger, Alycia

    2014-01-01

    MagAO is the new adaptive optics system with visible-light and infrared science cameras, located on the 6.5-m Magellan "Clay" telescope at Las Campanas Observatory, Chile. The instrument locks on natural guide stars (NGS) from 0$^\\mathrm{th}$ to 16$^\\mathrm{th}$ $R$-band magnitude, measures turbulence with a modulating pyramid wavefront sensor binnable from 28x28 to 7x7 subapertures, and uses a 585-actuator adaptive secondary mirror (ASM) to provide flat wavefronts to the two science cameras. MagAO is a mutated clone of the similar AO systems at the Large Binocular Telescope (LBT) at Mt. Graham, Arizona. The high-level AO loop controls up to 378 modes and operates at frame rates up to 1000 Hz. The instrument has two science cameras: VisAO operating from 0.5-1 $\\mu$m and Clio2 operating from 1-5 $\\mu$m. MagAO was installed in 2012 and successfully completed two commissioning runs in 2012-2013. In April 2014 we had our first science run that was open to the general Magellan community. Observers from Arizona, Ca...

  18. Optical Communication System for Remote Monitoring and Adaptive Control of Distributed Ground Sensors Exhibiting Collective Intelligence

    Cameron, S.M.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1998-11-01

    Comprehensive management of the battle-space has created new requirements in information management, communication, and interoperability as they effect surveillance and situational awareness. The objective of this proposal is to expand intelligent controls theory to produce a uniquely powerful implementation of distributed ground-based measurement incorporating both local collective behavior, and interoperative global optimization for sensor fusion and mission oversight. By using a layered hierarchal control architecture to orchestrate adaptive reconfiguration of autonomous robotic agents, we can improve overall robustness and functionality in dynamic tactical environments without information bottlenecks. In this concept, each sensor is equipped with a miniaturized optical reflectance modulator which is interactively monitored as a remote transponder using a covert laser communication protocol from a remote mothership or operative. Robot data-sharing at the ground level can be leveraged with global evaluation criteria, including terrain overlays and remote imaging data. Information sharing and distributed intelli- gence opens up a new class of remote-sensing applications in which small single-function autono- mous observers at the local level can collectively optimize and measure large scale ground-level signals. AS the need for coverage and the number of agents grows to improve spatial resolution, cooperative behavior orchestrated by a global situational awareness umbrella will be an essential ingredient to offset increasing bandwidth requirements within the net. A system of the type described in this proposal will be capable of sensitively detecting, tracking, and mapping spatial distributions of measurement signatures which are non-stationary or obscured by clutter and inter- fering obstacles by virtue of adaptive reconfiguration. This methodology could be used, for example, to field an adaptive ground-penetrating radar for detection of underground structures in

  19. Develop techniques for ion implantation of PLZT [lead-lanthanum-zirconate-titanate] for adaptive optics

    Research was conducted at Pacific Northwest Laboratory to develop high photosensitivity adaptive optical elements utilizing ion implanted lanthanum-doped lead-zirconate-titanate (PLZT). One centimeter square samples were prepared by implanting ferroelectric and anti-ferroelectric PLZT with a variety of species or combinations of species. These included Ne, O, Ni, Ne/Cr, Ne/Al, Ne/Ni, Ne/O, and Ni/O, at a variety of energies and fluences. An indium-tin oxide (ITO) electrode coating was designed to give a balance of high conductivity and optical transmission at near uv to near ir wavelengths. Samples were characterized for photosensitivity; implanted layer thickness, index of refraction, and density; electrode (ITO) conductivity; and in some cases, residual stress curvature. Thin film anti-ferroelectric PLZT was deposited in a preliminary experiment. The structure was amorphous with x-ray diffraction showing the beginnings of a structure at substrate temperatures of approximately 5500C. This report summarizes the research and provides a sampling of the data taken during the report period

  20. Adaptive Optics: Arroyo Simulation Tool and Deformable Mirror Actuation Using Golay Cells

    Lint, Adam S.

    2005-01-01

    The Arroyo C++ libraries, written by Caltech post-doc student Matthew Britton, have the ability to simulate optical systems and atmospheric signal interference. This program was chosen for use in an end-to-end simulation model of a laser communication system because it is freely distributed and has the ability to be controlled by a remote system or "smart agent." Proposed operation of this program by a smart agent has been demonstrated, and the results show it to be a suitable simulation tool. Deformable mirrors, as a part of modern adaptive optics systems, may contain thousands of tiny, independently controlled actuators used to modify the shape of the mirror. Each actuator is connected to two wires, creating a cumbersome and expensive device. Recently, an alternative actuation method that uses gas-filled tubes known as Golay cells has been explored. Golay cells, operated by infrared lasers instead of electricity, would replace the actuator system thereby creating a more compact deformable mirror. The operation of Golay cells and their ability to move a deformable mirror in excess of the required 20 microns has been demonstrated. Experimentation has shown them to be extremely sensitive to pressure and temperature, making them ideal for use in a controlled environment.

  1. Marginal adaptation analysis performed with en face optical coherence tomography in fixed partial dentures

    Sinescu, Cosmin; Negrutiu, Meda Lavinia; Antonie, Sergiu; Dobre, George; Bradu, Adrian; Hughes, Michael; Rominu, Mihai; Podoleanu, Adrian Gh.

    2009-02-01

    Frameworks for fixed partial denture made out of dental alloys thought classic techniques currently involve many errors like marginal and internal gaps. The aim of this study is to present alternative technologies in making frameworks from dental alloys using selective laser sintering/ selective laser melting (SLS/ SLM) and to investigate the marginal adaptation of the fixed dental prostheses using the en face optical coherence tomography. These procedures imply the use of a scanning device PROBIS, SMART OPTICS with the help of 3D Dental Scanner software. For digitizing the 3D model we used the Dental Wings Kunde Software. The files obtained were sent to a SLS/ SLM machine, Hint-Els rapidPro, where the CoCr powder was sintered/melt by selectively consolidating successive layers of powder material on top of each other, using thermal energy supplied by a focused and computer controlled laser beam. Through this technique can be produced up to 80 pieces in only one step. A parallel between the classic casting technique and this new technology reveal the least has several advantages: fast finishing time, excellent marginal and internal fit, biocompatibility and superior chemical properties. SLS/ SLM proved to be a promising technology that may overcome the classic ones, because of the superior marginal fit of the fixed dental prostheses to the teeth.

  2. First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes

    Gómez-Vieyra, Armando; Dubra, Alfredo; Williams, David R.; Malacara-Hernández, Daniel

    2009-09-01

    Scanning laser ophthalmoscopes (SLOs) and optical coherence tomographs are the state-of-the-art retinal imaging instruments, and are essential for early and reliable diagnosis of eye disease. Recently, with the incorporation of adaptive optics (AO), these instruments have started to deliver near diffraction-limited performance in both humans and animal models, enabling the resolution of the retinal ganglion cell bodies, their processes, the cone photoreceptor and the retinal pigment epithelial cells mosaics. Unfortunately, these novel instruments have not delivered consistent performance across human subjects and animal models. One of the limitations of current instruments is the astigmatism in the pupil and imaging planes, which degrades image quality, by preventing the wavefront sensor from measuring aberrations with high spatial content. This astigmatism is introduced by the sequence of off-axis reflective elements, typically spherical mirrors, used for relaying pupil and imaging planes. Expressions for minimal astigmatism on the image and pupil planes in off-axis reflective afocal telescopes formed by pairs of spherical mirrors are presented. The formulas, derived from the marginal ray fans equation, are valid for small angles of incidence (systems. An example related to this last application is discussed.

  3. The Last Gasps of VY Canis Majoris Aperture Synthesis and Adaptive Optics Imagery

    Monnier, J D; López, B; Cruzalebes, P; Danchi, W C; Haniff, C A

    1999-01-01

    We present new observations of the red supergiant VY CMa at 1.25 micron, 1.65 micron, 2.26 micron, 3.08 micron and 4.8 micron. Two complementary observational techniques were utilized: non-redundant aperture masking on the 10-m Keck-I telescope yielding images of the innermost regions at unprecedented resolution, and adaptive optics imaging on the ESO 3.6-m telescope at La Silla attaining extremely high (~10^5) peak-to-noise dynamic range over a wide field. For the first time the inner dust shell has been resolved in the near-infrared to reveal a one-sided extension of circumstellar emission within 0.1" (~15 R_star) of the star. The line-of-sight optical depths of the circumstellar dust shell at 1.65 micron, 2.26 micron, and 3.08 micron have been estimated to be 1.86 +/- 0.42, 0.85 +/- 0.20, and 0.44 +/- 0.11. These new results allow the bolometric luminosity of VY~CMa to be estimated independent of the dust shell geometry, yielding L_star ~ 2x10^5 L_sun. A variety of dust condensations, including a large sca...

  4. Application of adaptive optics for controlling the NIF laser performance and spot size

    The National Ignition Facility (NIF) laser will use a 192-beam multi-pass architecture capable of delivering several MJ of UV energy in temporal pulse formats varying from sub-ns square to 20 ns precisely-defined high-contrast shapes. Each beam wavefront will be subjected to effects of optics inhomogeneities, figuring errors, mounting distortions, prompt and slow thermal effects from flashlamps, driven and passive air-path turbulence, and gravity-driven deformations. A 39-actuator intra-cavity deformable mirror, controlled by data from a 77-lenslet Hartman sensor will be used to correct these wavefront aberrations and thus to assure that stringent farfield spot requirements are met. We have developed numerical models for the expected distortions, the operation of the adaptive optic system, and the anticipated effects on beam propagation, component damage, frequency conversion, and target-plane energy distribution. These models have been extensively validated against data from LLNL's Beamlet, and Amplab lasers. We review the expected beam wavefront aberrations and their potential for adverse effects on the laser performance, describe our model of the corrective system operation, and display our predictions for corrected-beam operation of the NI

  5. High-performance oscillators employing adaptive optics comprised of discrete elements

    Jackel, Steven M.; Moshe, Inon; Lavi, Raphael

    1999-05-01

    Flashlamp pumped oscillators utilizing Nd:Cr:GSGG or Nd:YAG rods were stabilized against varying levels of thermal focusing by use of a Variable Radius Mirror (VRM). In its simplest form, the VRM consisted of a lens followed by a concave mirror. Separation of the two elements controlled the radius of curvature of the reflected phase front. Addition of a concave-convex variable-separation cylindrical lens pair, allowed astigmatism to be corrected. These distributed optical elements together with a computer controlled servo system formed an adaptive optic capable of correcting the varying thermal focusing and astigmatism encountered in a Nd:YAG confocal unstable resonator (0 - 30 W) and in Nd:Cr:GSGG stable (hemispherical or concave- convex) resonators so that high beam quality could be maintained over the entire operating range. By utilizing resonators designed to eliminate birefringence losses, high efficiency could also be maintained. The ability to eliminate thermally induced losses in GSGG allows operating power to be increased into the range where thermal fracture is a factor. We present some results on the effect of surface finish (fine grind, grooves, chemical etch strengthening) on fracture limit and high gain operation.

  6. Performance Characterization of KAPAO, a Low-Cost Natural Guide Star Adaptive Optics Instrument

    Long, Joseph; Choi, P. I.; Severson, S. A.; Littleton, E.; Badham, K.; Bolger, D.; Guerrero, C.; Ortega, F.; Wong, J.; Baranec, C.; Riddle, R. L.

    2014-01-01

    We present a software overview of KAPAO, an adaptive optics system designed for the Pomona College 1-meter telescope at Table Mountain Observatory. The instrument is currently in the commissioning phase and data presented here are from both in-lab and on-sky observations. In an effort to maximize on-sky performance, we have developed a suite of instrument-specific data analysis tools. This suite of tools aids in the alignment of the instrument's optics, and the optimization of on-sky performance. The analysis suite visualizes and extends the telemetry output by the Robo-AO control software. This includes visualization of deformable mirror and wavefront sensor telemetry and a Zernike decomposition of the residual wavefront error. We complement this with analysis tools for the science camera data. We model a synthetic PSF for the Table Mountain telescope to calibrate our Strehl measurements, and process image data cubes to track instrument performance over the course of an observation. By coupling WFS telemetry with science camera data we can use image sharpening techniques to account for non-common-path wavefront errors and improve image performance. Python packages for scientific computing, such as NumPy and Matplotlib, are employed to complement existing IDL code. A primary goal of this suite of software is to support the remote use of the system by a broad range of users that includes faculty and undergraduate students from the consortium of member campuses.

  7. Adaptive optics for high resolution spectroscopy: A direct application with the future NIRPS spectrograph

    Conod, Uriel; Wildi, François; Pepe, Francesco

    2016-01-01

    Radial velocity instruments require high spectral resolution and extreme thermo-mecanical stability, even more difficult to achieve in near-infra red (NIR) where the spectrograph has to be cooled down. For a seeing-limited spectrograph, the price of high spectral resolution is an increased instrument volume, proportional to the diameter of the primary mirror. A way to control the size, cost, and stability of radial velocity spectrographs is to reduce the beam optical etendue thanks to an Adaptive Optics (AO) system. While AO has revolutionized the field of high angular resolution and high contrast imaging during the last 20 years, it has not yet been (successfully) used as a way to control spectrographs size, especially in the field of radial velocities. In this work we present the AO module of the future NIRPS spectrograph for the ESO 3.6 m telescope, that will be feed with multi-mode fibers. We converge to an AO system using a Shack-Hartmann wavefront sensor with 14x14 subapertures, able to feed 50% of the ...

  8. An Analysis of Fundamental Waffle Mode in Early AEOS Adaptive Optics Images

    Makidon, R B; Perrin, M D; Roberts, L C; Soummer, R; Oppenheimer, B R; Graham, J R

    2005-01-01

    Adaptive optics (AO) systems have significantly improved astronomical imaging capabilities over the last decade, and are revolutionizing the kinds of science possible with 4-5m class ground-based telescopes. A thorough understanding of AO system performance at the telescope can enable new frontiers of science as observations push AO systems to their performance limits. We look at recent advances with wave front reconstruction (WFR) on the Advanced Electro-Optical System (AEOS) 3.6 m telescope to show how progress made in improving WFR can be measured directly in improved science images. We describe how a "waffle mode" wave front error (which is not sensed by a Fried geometry Shack-Hartmann wave front sensor) affects the AO point-spread function (PSF). We model details of AEOS AO to simulate a PSF which matches the actual AO PSF in the I-band, and show that while the older observed AEOS PSF contained several times more waffle error than expected, improved WFR techniques noticeably improve AEOS AO performance. ...

  9. A Guided Mode View on Near-Field Scanning Optical Microscopy Measurements of Optical Magnetic Fields with Slit Probes

    Stoffer, Remco; Hammer, Manfred; Ivanova, O. V.; Hoekstra, Hugo J.W.M.

    2010-01-01

    Recent Near-field Scanning Optical Microscopy (NSOM) experiments with slit metal coated probes claim to measure the out-of-plane optical magnetic field around a dielectric sample waveguide [1]. The observations can also be explained by mode overlap calculations.

  10. Adaptive Optics Imaging of Healthy and Abnormal Regions of Retinal Nerve Fiber Bundles of Patients With Glaucoma

    Chen, Monica F; Chui, Toco Y. P; Alhadeff, Paula; Rosen, Richard B.; Ritch, Robert; Dubra, Alfredo; Hood, Donald C.

    2015-01-01

    Adaptive optics SLO images revealed details of glaucomatous damage that are difficult, if not impossible, to see with current OCT technology. Thus, AO-SLO may prove useful in following progression in clinical trials, or in disease management if AO-SLO becomes widely available and easy to use.

  11. The Absolute Age of the Globular Cluster M15 Using Near-infrared Adaptive Optics Images from PISCES/LBT.

    Monelli, M.; Testa, V.; Bono, G.; Ferraro, I.; Iannicola, G.; Fiorentino, G.; Arcidiacono, C.; Massari, D.; Boutsia, K.; Briguglio, R.; Busoni, L.; Carini, R.; Close, L.; Cresci, G.; Esposito, S.; Fini, L.; Fumana, M.; Guerra, J. C.; Hill, J.; Kulesa, C.; Mannucci, F.; McCarthy, D.; Pinna, E.; Puglisi, A.; Quiros-Pacheco, F.; Ragazzoni, R.; Riccardi, A.; Skemer, A.; Xompero, M.

    2015-10-01

    We present deep near-infrared J, {K}{{s}} photometry of the old, metal-poor Galactic globular cluster M15 obtained with images collected with the LUCI1 and PISCES cameras available at the Large Binocular Telescope (LBT). We show how the use of First Light Adaptive Optics (FLAO) system coupled with the PISCES camera allows us to improve the limiting magnitude by ˜2 mag in {K}{{s}}. By analyzing archival Hubble Space Telescope data, we demonstrate that the quality of the LBT/PISCES color-magnitude diagram is fully comparable with analogous space-based data. The smaller field of view is balanced by the shorter exposure time required to reach a similar photometric limit. We investigated the absolute age of M15 by means of two methods: (i) by determining the age from the position of the main-sequence turnoff (MSTO), and (ii) by the magnitude difference between the MSTO and the well-defined knee detected along the faint portion of the MS. We derive consistent values of the absolute age of M15, that is, 12.9 ± 2.6 Gyr and 13.3 ± 1.1 Gyr, respectively. Observations were carried out using the Large Binocular Telescope at Mount Graham, AZ. The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are the University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; the Ohio State University; and the Research Corporation, on behalf of the University of Notre Dame, University of Minnesota, and University of Virginia.

  12. Local Ensemble Transform Kalman Filter: a non-stationary control law for complex adaptive optics systems on ELTs

    Gray, Morgan; Rodionov, Sergey; Bertino, Laurent; Bocquet, Marc; Fusco, Thierry

    2013-01-01

    We propose a new algorithm for an adaptive optics system control law which allows to reduce the computational burden in the case of an Extremely Large Telescope (ELT) and to deal with non-stationary behaviors of the turbulence. This approach, using Ensemble Transform Kalman Filter and localizations by domain decomposition is called the local ETKF: the pupil of the telescope is split up into various local domains and calculations for the update estimate of the turbulent phase on each domain are performed independently. This data assimilation scheme enables parallel computation of markedly less data during this update step. This adapts the Kalman Filter to large scale systems with a non-stationary turbulence model when the explicit storage and manipulation of extremely large covariance matrices are impossible. First simulation results are given in order to assess the theoretical analysis and to demonstrate the potentiality of this new control law for complex adaptive optics systems on ELTs.

  13. Optical design of communication simulator for orbital angular momentum based free-space link with an adaptive optics receiver

    Espinoza, Alonzo; Gao, Wenbo; Odom, Garret; Cvijetic, Milorad; Takashima, Yuzuru

    2015-09-01

    Optical angular momentum (OAM) based communication requires multiple OAM modes. Spiral phase plates for OAM generation are lithographically fabricated. Phase profile of the phase plate is evaluated by surface profiler as well as optically by using Mach Zehnder interferometer.

  14. Diffraction-limited upgrade to ARGOS: the LBT's ground-layer adaptive optics system

    Hart, Michael; Busoni, Lorenzo; Durney, Olivier; Esposito, Simone; Gässler, Wolfgang; Gasho, Victor; Rabien, Sebastian; Rademacher, Matt

    2010-07-01

    The Large Binocular Telescope (LBT) is now operating with the first of two permanently installed adaptive secondary mirrors, and the first of two complementary near-IR instruments called LUCIFER is operational as well. The ARGOS laser-guided ground-layer adaptive optics (GLAO) system, described elsewhere at this conference1, will build on this foundation to deliver the highest resolution over the 4 arc min wide-field imaging and multi-object spectroscopic modes of LUCIFER. In this paper, we describe a planned upgrade to ARGOS which will supplement the Rayleigh-based GLAO system with sodium laser guide stars (LGS) to fulfill the telescope's diffraction-limited potential. In its narrow-field mode of 30 arc sec, LUCIFER will deliver imaging at the Nyquist limit of the individual 8.4 m apertures down to J band and long-slit spectroscopy with resolution up to 40,000. In addition, the LBT Interferometer2 (LBTI) will cophase the two apertures, offering imaging at the diffraction limit of the 22.8 m baseline at wavelengths from 1.2 to 20 μm. In the first phase of the upgrade, a 10 W sodium LGS will be added to each half of the LBT, using the same launch telescopes mounted behind the two secondary mirrors as the Rayleigh LGS. The upgrade will rely on other components of the ARGOS infrastructure such as acquisition and guiding, and fast tip-tilt cameras. New wavefront sensors will be added to LUCIFER and LBTI. In the upgrade's second phase, the sodium and Rayleigh LGS will be used together in a hybrid tomographic sensing system. This configuration will offer the advantage that a single tip-tilt star will continue to be sufficient even for MCAO operation3, which is planned with LBT's LINC-NIRVANA instrument4,5.

  15. Optimization algorithm in adaptive PMD compensation in 10Gb/s optical communication system

    Diao, Cao; Li, Tangjun; Wang, Muguang; Gong, Xiangfeng

    2005-02-01

    In this paper, the optimization algorithms are introduced in adaptive PMD compensation in 10Gb/s optical communication system. The PMD monitoring technique based on degree of polarization (DOP) is adopted. DOP can be a good indicator of PMD with monotonically deceasing of DOP as differential group delay (DGD) increasing. In order to use DOP as PMD monitoring feedback signal, it is required to emulate the state of DGD in the transmission circuitry. A PMD emulator is designed. A polarization controller (PC) is used in fiber multiplexer to adjust the polarization state of optical signal, and at the output of the fiber multiplexer a polarizer is used. After the feedback signal reach the control computer, the optimization program run to search the global optimization spot and through the PC to control the PMD. Several popular modern nonlinear optimization algorithms (Tabu Search, Simulated Annealing, Genetic Algorithm, Artificial Neural Networks, Ant Colony Optimization etc.) are discussed and the comparisons among them are made to choose the best optimization algorithm. Every algorithm has its advantage and disadvantage, but in this circs the Genetic Algorithm (GA) may be the best. It eliminates the worsen spots constantly and lets them have no chance to enter the circulation. So it has the quicker convergence velocity and less time. The PMD can be compensated in very few steps by using this algorithm. As a result, the maximum compensation ability of the one-stage PMD and two-stage PMD can be made in very short time, and the dynamic compensation time is no more than 10ms.

  16. Star formation properties and dynamics of Luminous Infrared Galaxies with adaptive optics

    Vaisanen, Petri; Ryder, Stuart

    2009-01-01

    Near infrared adaptive optics observations are crucial to be able to interpret kinematic and dynamical data and study star formation properties within the often extremely dusty interacting luminous IR galaxies (LIRGs). NIR AO data are also needed to find supernovae in their bright and dusty central regions and to fully characterize the young stellar clusters found in these kinds of systems. We have used AO in the K-band to survey a sample of LIRGs at 0.1 arcsec (30 to 100 pc) resolution. The data are merged with SALT and AAT spectroscopic follow-up and HST and Spitzer archival imaging. The first AO detected SNe are reported as well as details of the first studied LIRGs. One LIRG showed an unexpected third component in the interaction, which moreover turned out to host the most active star formation. Another target showed evidence in the NIR of a very rare case of leading spiral arms, rotating in the same direction as the arms open.

  17. Stroke saturation on a MEMS deformable mirror for woofer-tweeter adaptive optics

    Morzinski, Katie; Gavel, Donald; Dillon, Daren

    2009-01-01

    High-contrast imaging of extrasolar planet candidates around a main-sequence star has recently been realized from the ground using current adaptive optics (AO) systems. Advancing such observations will be a task for the Gemini Planet Imager, an upcoming "extreme" AO instrument. High-order "tweeter" and low-order "woofer" deformable mirrors (DMs) will supply a >90%-Strehl correction, a specialized coronagraph will suppress the stellar flux, and any planets can then be imaged in the "dark hole" region. Residual wavefront error scatters light into the DM-controlled dark hole, making planets difficult to image above the noise. It is crucial in this regard that the high-density tweeter, a micro-electrical mechanical systems (MEMS) DM, have sufficient stroke to deform to the shapes required by atmospheric turbulence. Laboratory experiments were conducted to determine the rate and circumstance of saturation, i.e. stroke insufficiency. A 1024-actuator 1.5-um-stroke MEMS device was empirically tested with software Kol...

  18. Development of a Low-order Adaptive Optics System at Udaipur Solar Observatory

    A. R. Bayanna; B. Kumar; R. E. Louis; P. Venkatakrishnan; S. K. Mathew

    2008-03-01

    A low-order Adaptive Optics (AO) system is being developed at the Udaipur Solar Observatory and we present in this paper the status of the project, which includes the image stabilization system and calibration of wavefront sensor and deformable mirror. The image stabilization system comprises of a piezo driven tip-tilt mirror, a high speed camera (955 fps), a frame grabber system for sensing the overall tilt and a Linux based Intel Pentium 4 control computer with Red Hat Linux OS. The system operates under PID control. In the closed loop, an rms image motion of 0.1–0.2 arcsec was observed with the improvement factor varying from 10–20 depending on the external conditions. Error rejection bandwidth of the system at 0 dB is 80–100 Hz. In addition to that, we report the on-going efforts in the calibration of lenslet array and deformable mirror for sensing and correcting the local tilt of the wavefront.

  19. Reducing adaptive optics latency using Xeon Phi many-core processors

    Barr, David; Basden, Alastair; Dipper, Nigel; Schwartz, Noah

    2015-11-01

    The next generation of Extremely Large Telescopes (ELTs) for astronomy will rely heavily on the performance of their adaptive optics (AO) systems. Real-time control is at the heart of the critical technologies that will enable telescopes to deliver the best possible science and will require a very significant extrapolation from current AO hardware existing for 4-10 m telescopes. Investigating novel real-time computing architectures and testing their eligibility against anticipated challenges is one of the main priorities of technology development for the ELTs. This paper investigates the suitability of the Intel Xeon Phi, which is a commercial off-the-shelf hardware accelerator. We focus on wavefront reconstruction performance, implementing a straightforward matrix-vector multiplication (MVM) algorithm. We present benchmarking results of the Xeon Phi on a real-time Linux platform, both as a standalone processor and integrated into an existing real-time controller (RTC). Performance of single and multiple Xeon Phis are investigated. We show that this technology has the potential of greatly reducing the mean latency and variations in execution time (jitter) of large AO systems. We present both a detailed performance analysis of the Xeon Phi for a typical E-ELT first-light instrument along with a more general approach that enables us to extend to any AO system size. We show that systematic and detailed performance analysis is an essential part of testing novel real-time control hardware to guarantee optimal science results.

  20. Retina imaging system with adaptive optics for the eye with or without myopia

    Li, Chao; Xia, Mingliang; Jiang, Baoguang; Mu, Quanquan; Chen, Shaoyuan; Xuan, Li

    2009-04-01

    An adaptive optics system for the retina imaging is introduced in the paper. It can be applied to the eye with myopia from 0 to 6 diopters without any adjustment of the system. A high-resolution liquid crystal on silicon (LCOS) device is used as the wave-front corrector. The aberration is detected by a Shack-Harmann wave-front sensor (HASO) that has a Root Mean Square (RMS) measurement accuracy of λ/100 ( λ = 0.633 μm). And an equivalent scale model eye is constructed with a short focal length lens (˜18 mm) and a diffuse reflection object (paper screen) as the retina. By changing the distance between the paper screen and the lens, we simulate the eye with larger diopters than 5 and the depth of field. The RMS value both before and after correction is obtained by the wave-front sensor. After correction, the system reaches the diffraction-limited resolution approximately 230 cycles/mm at the object space. It is proved that if the myopia is smaller than 6 diopters and the depth of field is between -40 and +50 mm, the system can correct the aberration very well.

  1. Direct imaging of exoplanets in the habitable zone with adaptive optics

    Males, Jared R; Guyon, Olivier; Morzinski, Katie M; Puglisi, Alfio; Hinz, Philip; Follette, Katherine B; Monnier, John D; Tolls, Volker; Rodigas, Timothy J; Weinberger, Alycia; Boss, Alan; Kopon, Derek; Wu, Ya-lin; Esposito, Simone; Riccardi, Armando; Xompero, Marco; Briguglio, Runa; Pinna, Enrico

    2014-01-01

    One of the primary goals of exoplanet science is to find and characterize habitable planets, and direct imaging will play a key role in this effort. Though imaging a true Earth analog is likely out of reach from the ground, the coming generation of giant telescopes will find and characterize many planets in and near the habitable zones (HZs) of nearby stars. Radial velocity and transit searches indicate that such planets are common, but imaging them will require achieving extreme contrasts at very small angular separations, posing many challenges for adaptive optics (AO) system design. Giant planets in the HZ may even be within reach with the latest generation of high-contrast imagers for a handful of very nearby stars. Here we will review the definition of the HZ, and the characteristics of detectable planets there. We then review some of the ways that direct imaging in the HZ will be different from the typical exoplanet imaging survey today. Finally, we present preliminary results from our observations of t...

  2. ORBITAL CONSTRAINTS ON THE β Pic INNER PLANET CANDIDATE WITH KECK ADAPTIVE OPTICS

    A point source observed 8 AU in projection from β Pictoris in L' (3.8 μm) imaging in 2003 has been recently presented as a planet candidate. Here we show the results of L'-band adaptive optics imaging obtained at Keck Observatory in 2008. We do not detect β Pic b beyond a limiting radius of 0.''29, or 5.5 AU in projection, from the star. If β Pic b is an orbiting planet, then it has moved ≥0.''12 (2.4 AU in projection) closer to the star in the five years separating the two epochs of observation. We examine the range of orbital parameters consistent with the observations, including likely bounds from the locations of previously inferred planetesimal belts. We find a family of low-eccentricity orbits with semimajor axes ∼8-9 AU that are completely allowed, as well as a broad region of orbits with e ∼ 10 AU that are allowed if the apparent motion of the planet was toward the star in 2003. We compare this allowed space with predictions of the planetary orbital elements from the literature. Additionally, we show how similar observations in the next several years can further constrain the space of allowed orbits. Non-detections of the source through 2013 will exclude the interpretation of the candidate as a planet orbiting between the 6.4 and 16 AU planetesimal belts.

  3. Subaru Telescope adaptive optics observations of gravitationally lensed quasars in the Sloan Digital Sky Survey

    Rusu, Cristian E.; Oguri, Masamune; Minowa, Yosuke; Iye, Masanori; Inada, Naohisa; Oya, Shin; Kayo, Issha; Hayano, Yutaka; Hattori, Masayuki; Saito, Yoshihiko; Ito, Meguru; Pyo, Tae-Soo; Terada, Hiroshi; Takami, Hideki; Watanabe, Makoto

    2016-05-01

    We present the results of an imaging observation campaign conducted with the Subaru Telescope adaptive optics system (IRCS+AO188) on 28 gravitationally lensed quasars and candidates (23 doubles, 1 quad, 1 possible triple, and 3 candidates) from the SDSS Quasar Lens Search. We develop a novel modelling technique that fits analytical and hybrid point spread functions (PSFs), while simultaneously measuring the relative astrometry, photometry, as well as the lens galaxy morphology. We account for systematics by simulating the observed systems using separately observed PSF stars. The measured relative astrometry is comparable with that typically achieved with the Hubble Space Telescope, even after marginalizing over the PSF uncertainty. We model for the first time the quasar host galaxies in five systems, without a priori knowledge of the PSF, and show that their luminosities follow the known correlation with the mass of the supermassive black hole. For each system, we obtain mass models far more accurate than those previously published from low-resolution data, and we show that in our sample of lensing galaxies the observed light profile is more elliptical than the mass, for ellipticity ≳0.25. We also identify eight doubles for which the sources of external and internal shear are more reliably separated, and should therefore be prioritized in monitoring campaigns aimed at measuring time delays in order to infer the Hubble constant.

  4. SHARP - III: First Use Of Adaptive Optics Imaging To Constrain Cosmology With Gravitational Lens Time Delays

    Chen, Geoff C F; Wong, Kenneth C; Fassnacht, Christopher D; Chiueh, Tzihong; Halkola, Aleksi; Hu, I Shing; Auger, Matthew W; Koopmans, Leon V E; Lagattuta, David J; McKean, John P; Vegetti, Simona

    2016-01-01

    Accurate and precise measurements of the Hubble constant are critical for testing our current standard cosmological model and revealing possibly new physics. With Hubble Space Telescope (HST) imaging, each strong gravitational lens system with measured time delays can allow one to determine the Hubble constant with an uncertainty of $\\sim 7\\%$. Since HST will not last forever, we explore adaptive-optics (AO) imaging as an alternative that can provide higher angular resolution than HST imaging but has a less stable point spread function (PSF) due to atmospheric distortion. To make AO imaging useful for time-delay-lens cosmography, we develop a method to extract the unknown PSF directly from the imaging of strongly lensed quasars. In a blind test with two mock data sets created with different PSFs, we are able to recover the important cosmological parameters (time-delay distance, external shear, lens mass profile slope, and total Einstein radius). Our analysis of the Keck AO image of the strong lens system RXJ1...

  5. PALM-3000: EXOPLANET ADAPTIVE OPTICS FOR THE 5 m HALE TELESCOPE

    We describe and report first results from PALM-3000, the second-generation astronomical adaptive optics (AO) facility for the 5.1 m Hale telescope at Palomar Observatory. PALM-3000 has been engineered for high-contrast imaging and emission spectroscopy of brown dwarfs and large planetary mass bodies at near-infrared wavelengths around bright stars, but also supports general natural guide star use to V ≈ 17. Using its unique 66 × 66 actuator deformable mirror, PALM-3000 has thus far demonstrated residual wavefront errors of 141 nm rms under ∼1'' seeing conditions. PALM-3000 can provide phase conjugation correction over a 6.''4 × 6.''4 working region at λ = 2.2 μm, or full electric field (amplitude and phase) correction over approximately one-half of this field. With optimized back-end instrumentation, PALM-3000 is designed to enable 10–7 contrast at 1'' angular separation, including post-observation speckle suppression processing. While continued optimization of the AO system is ongoing, we have already successfully commissioned five back-end instruments and begun a major exoplanet characterization survey, Project 1640

  6. PALM-3000: Exoplanet Adaptive Optics for the 5-meter Hale Telescope

    Dekany, R; Burruss, R; Bouchez, A; Truong, T; Baranec, C; Guiwits, S; Hale, D; Angione, J; Trinh, T; Zolkower, J; Shelton, J C; Palmer, D; Henning, J; Croner, E; Troy, M; McKenna, D; Tesch, J; Hildebrandt, S; Milburn, J

    2013-01-01

    We describe and report first results from PALM-3000, the second-generation astronomical adaptive optics facility for the 5.1-m Hale telescope at Palomar Observatory. PALM-3000 has been engineered for high-contrast imaging and emission spectroscopy of brown dwarfs and large planetary mass bodies at near-infrared wavelengths around bright stars, but also supports general natural guide star use to V ~ 17. Using its unique 66 x 66 actuator deformable mirror, PALM-3000 has thus far demonstrated residual wavefront errors of 141 nm RMS under 1 arcsecond seeing conditions. PALM-3000 can provide phase conjugation correction over a 6.4 x 6.4 arcsecond working region at an observing wavelength of 2.2 microns, or full electric field (amplitude and phase) correction over approximately one half of this field. With optimized back-end instrumentation, PALM-3000 is designed to enable as high as 10e-7 contrast at ~1 arc second angular separation, after including post-observation speckle suppression processing. While optimizati...

  7. Gemini K-band NIRI Adaptive Optics Observations of Massive Galaxies at 1 < z < 2

    Carrasco, Eleazar R; Trujillo, I

    2010-01-01

    We present deep K-band adaptive-optics observations of eight very massive (M* ~ 4 x 10^11 Msun) galaxies at 1 < z < 2 utilizing the Gemini NIRI/Altair Laser Guide System. These systems are selected from the Palomar Observatory Wide-Field Infrared (POWIR) survey, and are amongst the most massive field galaxies at these epochs. The depth and high spatial resolution of our images allow us to explore for the first time the stellar mass surface density distribution of massive distant galaxies from 1 to 15 kpc on an individual galaxy basis, rather than on stacked images. We confirm that some of these massive objects are extremely compact with measured effective radii between 0."1 - 0."2, giving sizes which are < 2 kpc, a factor of ~ 7 smaller in effective radii than similar mass galaxies today. Examining stellar mass surface densities as a function of fixed physical aperture, we find an over-density of material within the inner profiles, and an under-density in the outer profile, within these high-z galaxi...

  8. Mapping the Clumpy Structures within Submillimeter Galaxies using Laser-Guide Star Adaptive Optics Spectroscopy

    Menéndez-Delmestre, Karín; Swinbank, Mark; Smail, Ian; Ivison, Rob J; Chapman, Scott C; Gonçalves, Thiago S

    2013-01-01

    We present the first integral-field spectroscopic observations of high-redshift submillimeter-selected galaxies (SMGs) using Laser Guide Star Adaptive Optics (LGS-AO). We target H-alpha emission of three SMGs at redshifts z~1.4-2.4 with the OH-Suppressing Infrared Imaging Spectrograph (OSIRIS) on Keck. The spatially-resolved spectroscopy of these galaxies reveals unresolved broad H-alpha line regions (FWHM>1000 km/s) likely associated with an AGN and regions of diffuse star formation traced by narrow-line H-alpha emission (FWHM<500 km/s) dominated by multiple Halpha-bright stellar clumps, each contributing 1-30% of the total clump-integrated H-alpha emission. We find that these SMGs host high star-formation rate surface densities, similar to local extreme sources, such as circumnuclear starbursts and luminous infrared galaxies. However, in contrast to these local environments, SMGs appear to be undergoing such intense activity on significantly larger spatial scales as revealed by extended H-alpha emission ...

  9. Adaptive Optics Imaging of QSOs with Double-Peaked Narrow Lines: Are they Dual AGNs?

    Rosario, D J; Max, C E; Shields, G A; Smith, K L

    2011-01-01

    Active galaxies hosting two accreting and merging super-massive black holes (SMBHs) -- dual Active Galactic Nuclei (AGN) -- are predicted by many current and popular models of black hole-galaxy co-evolution. We present here the results of a program that has identified a set of probable dual AGN candidates based on Near Infra-red (NIR) Laser Guide-Star Adaptive Optics (LGS AO) imaging with the Keck II telescope. These candidates are selected from a complete sample of radio-quiet Quasi-stellar Objects (QSOs) that show double-peaked narrow AGN emission lines, drawn from the Sloan Digital Sky Survey (SDSS). Of the twelve QSOs imaged, we find six with double galaxy structure, of which four are in galaxy mergers. We measure the ionization of the two velocity components in the narrow AGN lines to test the hypothesis that both velocity components come from an active nucleus. The combination of a well-defined parent sample and high-quality imaging allows us to place constraints on the fraction of SDSS QSOs that host d...

  10. Understanding the changes of cone reflectance in adaptive optics flood illumination retinal images over three years

    Mariotti, Letizia; Devaney, Nicholas; Lombardo, Giuseppe; Lombardo, Marco

    2016-01-01

    Although there is increasing interest in the investigation of cone reflectance variability, little is understood about its characteristics over long time scales. Cone detection and its automation is now becoming a fundamental step in the assessment and monitoring of the health of the retina and in the understanding of the photoreceptor physiology. In this work we provide an insight into the cone reflectance variability over time scales ranging from minutes to three years on the same eye, and for large areas of the retina (≥ 2.0 × 2.0 degrees) at two different retinal eccentricities using a commercial adaptive optics (AO) flood illumination retinal camera. We observed that the difference in reflectance observed in the cones increases with the time separation between the data acquisitions and this may have a negative impact on algorithms attempting to track cones over time. In addition, we determined that displacements of the light source within 0.35 mm of the pupil center, which is the farthest location from the pupil center used by operators of the AO camera to acquire high-quality images of the cone mosaic in clinical studies, does not significantly affect the cone detection and density estimation. PMID:27446708

  11. Adaptive optics self-calibration using differential OTF (dOTF)

    Rodack, Alexander T.; Knight, Justin M.; Codona, Johanan L.; Miller, Kelsey L.; Guyon, Olivier

    2015-09-01

    We demonstrate self-calibration of an adaptive optical system using differential OTF [Codona, JL; Opt. Eng. 0001; 52(9):097105-097105. doi:10.1117/1.OE.52.9.097105]. We use a deformable mirror (DM) along with science camera focal plane images to implement a closed-loop servo that both flattens the DM and corrects for non-common-path aberrations within the telescope. The pupil field modification required for dOTF measurement is introduced by displacing actuators near the edge of the illuminated pupil. Simulations were used to develop methods to retrieve the phase from the complex amplitude dOTF measurements for both segmented and continuous sheet MEMS DMs and tests were performed using a Boston Micromachines continuous sheet DM for verification. We compute the actuator correction updates directly from the phase of the dOTF measurements, reading out displacements and/or slopes at segment and actuator positions. Through simulation, we also explore the effectiveness of these techniques for a variety of photons collected in each dOTF exposure pair.

  12. The First Circumstellar Disk Imaged in Silhouette with Adaptive Optics: MagAO Imaging of Orion 218-354

    Follette, Katherine B; Males, Jared R; Kopon, Derek; Wu, Ya-Lin; Morzinski, Katie M; Hinz, Philip; Rodigas, Timothy J; Puglisi, Alfio; Esposito, Simone; Riccardi, Armando; Pinna, Enrico; Xompero, Marco; Briguglio, Runa

    2013-01-01

    We present high resolution adaptive optics (AO) corrected images of the silhouette disk Orion 218-354 taken with Magellan AO (MagAO) and its visible light camera, VisAO, in simultaneous differential imaging (SDI) mode at H-alpha. This is the first image of a circumstellar disk seen in silhouette with adaptive optics and is among the first visible light adaptive optics results in the literature. We derive the disk extent, geometry, intensity and extinction profiles and find, in contrast with previous work, that the disk is likely optically-thin at H-alpha. Our data provide an estimate of the column density in primitive, ISM-like grains as a function of radius in the disk. We estimate that only ~10% of the total sub-mm derived disk mass lies in primitive, unprocessed grains. We use our data, Monte Carlo radiative transfer modeling and previous results from the literature to make the first self-consistent multiwavelength model of Orion 218-354. We find that we are able to reproduce the 1-1000micron SED with a ~2...

  13. The adaptive secondary mirror for the Large Binocular Telescope: optical acceptance test and preliminary on-sky commissioning results

    Riccardi, Armando; Xompero, Marco; Briguglio, Runa; Quirós-Pacheco, Fernando; Busoni, Lorenzo; Fini, Luca; Puglisi, Alfio; Esposito, Simone; Arcidiacono, Carmelo; Pinna, Enrico; Ranfagni, Piero; Salinari, Piero; Brusa, Guido; Demers, Richard; Biasi, Roberto; Gallieni, Daniele

    2010-07-01

    The Large Binocular Telescope (LBT) has two adaptive secondary mirrors based on 672 voice-coil force actuators. The shape of the mirror is controlled using internal metrology based on co-located capacitive sensors. The first mirror unit is currently mounted on LBT for on-sky commissioning as part of the First Light Adaptive Optics System (FLAO). During spring-time 2009 the optical acceptance test was performed using the 14-m optical test tower at the Osservatorio Astrofisico di Arcetri (INAF) showing the capability of flattening the shell at the level of 14nm rms residual surface error. This paper reports the optical layout, calibration procedures and results of the optical acceptance test. Moreover we report the first results obtained during the early runs of FLAO commissioning showing the ability of the mirror to compensate for atmospheric turbulence with extremely high Strehl ratio values (better than 80% in H-band) as permitted by the largest number of correcting degrees of freedom currently available on-sky for astronomical telescopes.

  14. Review of small-angle coronagraphic techniques in the wake of ground-based second-generation adaptive optics systems

    Mawet, Dimitri; Lawson, Peter; Mugnier, Laurent; Traub, Wesley; Boccaletti, Anthony; Trauger, John; Gladysz, Szymon; Serabyn, Eugene; Milli, Julien; Belikov, Ruslan; Kasper, Markus; Baudoz, Pierre; Macintosh, Bruce; Marois, Christian; Oppenheimer, Ben; Barrett, Harrisson; Beuzit, Jean-Luc; Devaney, Nicolas; Girard, Julien; Guyon, Olivier; Krist, John; Mennesson, Bertrand; Mouillet, David; Murakami, Naoshi; Poyneer, Lisa; Savransky, Dmitri; ́erinaud, Christophe V; Wallace, James K

    2012-01-01

    Small-angle coronagraphy is technically and scientifically appealing because it enables the use of smaller telescopes, allows covering wider wavelength ranges, and potentially increases the yield and completeness of circumstellar environment - exoplanets and disks - detection and characterization campaigns. However, opening up this new parameter space is challenging. Here we will review the four posts of high contrast imaging and their intricate interactions at very small angles (within the first 4 resolution elements from the star). The four posts are: choice of coronagraph, optimized wavefront control, observing strategy, and post-processing methods. After detailing each of the four foundations, we will present the lessons learned from the 10+ years of operations of zeroth and first-generation adaptive optics systems. We will then tentatively show how informative the current integration of second-generation adaptive optics system is, and which lessons can already be drawn from this fresh experience. Then, w...

  15. In-the-plane design of an off-axis ophthalmic adaptive optics system using toroidal mirrors

    Liu, Zhuolin; Kocaoglu, Omer P.; Miller, Donald T.

    2013-01-01

    Adaptive optics (AO) ophthalmoscopes have garnered increased clinical and scientific use for imaging the microscopic retina. Unlike conventional ophthalmoscopes, however, AO systems are commonly designed with spherical mirrors that must be used off-axis. This arrangement causes astigmatism to accumulate at the retina and pupil conjugate planes, degrading AO performance. To mitigate this effect and more fully tap the benefit of AO, we investigated a novel solution based on toroidal mirrors. De...

  16. Funding for Adaptive Optics in the United States by the National Science Foundation 2006-2009: An Update

    Frogel, Jay A.

    2009-01-01

    In 2006 I published an article in GeminiFocus that examined funding for astronomical adaptive optics related technology and instrumentation in the United States from 1995 through mid-2006. That article concluded that based on projections then current, AO implementation on public and private telescopes in the U.S. will soon seriously lag that on the ESO VLT as measured by funds available. It called for a significant infusion of public funds for AO development and implementation so that when co...

  17. First results on an adaptive optics pre-mode cleaning system based on interferometric phase-front detection

    We present an adaptive optics (AO) system for the control of geometrical fluctuations in a laser beam based on the interferometric detection of phase front. By comparison with the usual Shack-Hartman-based AO system, we show that this technique is of particular interest when high sensitivity and high band-pass are required for correction of small perturbations such as, for instance, the control of the input beam of gravitational waves interferometric detectors

  18. Adaptive optics full-field OCT: a resolution almost insensitive to aberrations (Conference Presentation)

    Xiao, Peng; Fink, Mathias; Boccara, A. Claude

    2016-03-01

    A Full-Field OCT (FFOCT) setup coupled to a compact transmissive liquid crystal spatial light modulator (LCSLM) is used to induce or correct aberrations and simulate eye examinations. To reduce the system complexity, strict pupil conjugation was abandoned. During our work on quantifying the effect of geometrical aberrations on FFOCT images, we found that the image resolution is almost insensitive to aberrations. Indeed if the object channel PSF is distorted, its interference with the reference channel conserves the main feature of an unperturbed PSF with only a reduction of the signal level. This unique behavior is specific to the use of a spatially incoherent illumination. Based on this, the FFOCT image intensity was used as the metric for our wavefront sensorless correction. Aberration correction was first conducted on an USAF resolution target with the LSCLM as both aberration generator and corrector. A random aberration mask was induced, and the low-order Zernike Modes were corrected sequentially according to the intensity metric function optimization. A Ficus leaf and a fixed mouse brain tissue slice were also imaged to demonstrate the correction of sample self-induced wavefront distortions. After optimization, more structured information appears for the leaf imaging. And the high-signal fiber-like myelin fiber structures were resolved much more clearly after the whole correction process for mouse brain imaging. Our experiment shows the potential of this compact AO-FFOCT system for aberration correction imaging. This preliminary approach that simulates eyes aberrations correction also opens the path to a simple implementation of FFOCT adaptive optics for retinal examinations.

  19. Stability evaluation and improvement of adaptive optics systems by using the Lyapunov stability approach

    Wang, Liang; Chen, Tao; Liu, Xin-yue; Lin, Xu-dong; Yang, Xiao-xia; Li, Hong-zhuang

    2016-02-01

    In this research, investigations on the closed-loop control stability of adaptive optics systems are conducted by using the Lyapunov approach. As an direct metric of the control stability, the error propagator includes the effects of both the integral gain and the influence matrix and is effective for control-stability evaluation. An experimental 97-element AO system is developed for the control-stability investigation, and the Southwell sensor-actuator configuration rather than the Fried geometry is adopted so as to suppress the potential waffle mode. Because filtering out small singular values of the influence matrix can be used to improve the control stability, the effect of the influence matrix and the effect of the integral gain are considered as a whole by using the error propagator. Then, the control stability of the AO system is evaluated for varying the integral gains and the number of filtered-out singular values. Afterwards, an analysis of the evaluations of the error propagator is made, and a conclusion can be drawn that the control stability can be improved by filtering out more singular values of the influence matrix when the integral gain is high. In other words, the error propagator is useful for trading off the bandwidth error and the fitting error of AO systems in a control-stability approach. Finally, a performance measurement of the experimental AO system is conducted when 13 smaller singular values of the influence matrix are filtered out, and the results show that filtering out a small fraction of the singular values has a minor influence on the performance of this AO system.

  20. SAXO: the extreme adaptive optics system of SPHERE (I) system overview and global laboratory performance

    Sauvage, Jean-Francois; Fusco, Thierry; Petit, Cyril; Costille, Anne; Mouillet, David; Beuzit, Jean-Luc; Dohlen, Kjetil; Kasper, Markus; Suarez, Marcos; Soenke, Christian; Baruffolo, Andrea; Salasnich, Bernardo; Rochat, Sylvain; Fedrigo, Enrico; Baudoz, Pierre; Hugot, Emmanuel; Sevin, Arnaud; Perret, Denis; Wildi, Francois; Downing, Mark; Feautrier, Philippe; Puget, Pascal; Vigan, Arthur; O'Neal, Jared; Girard, Julien; Mawet, Dimitri; Schmid, Hans Martin; Roelfsema, Ronald

    2016-04-01

    The direct imaging of exoplanet is a leading field of today's astronomy. The photons coming from the planet carry precious information on the chemical composition of its atmosphere. The second-generation instrument, Spectro-Polarimetric High contrast Exoplanet Research (SPHERE), dedicated to detection, photometry and spectral characterization of Jovian-like planets, is now in operation on the European very large telescope. This instrument relies on an extreme adaptive optics (XAO) system to compensate for atmospheric turbulence as well as for internal errors with an unprecedented accuracy. We demonstrate the high level of performance reached by the SPHERE XAO system (SAXO) during the assembly integration and test (AIT) period. In order to fully characterize the instrument quality, two AIT periods have been mandatory. In the first phase at Observatoire de Paris, the performance of SAXO itself was assessed. In the second phase at IPAG Grenoble Observatory, the operation of SAXO in interaction with the overall instrument has been optimized. In addition to the first two phases, a final check has been performed after the reintegration of the instrument at Paranal Observatory, in the New Integration Hall before integration at the telescope focus. The final performance aimed by the SPHERE instrument with the help of SAXO is among the highest Strehl ratio pretended for an operational instrument (90% in H band, 43% in V band in a realistic turbulence r0, and wind speed condition), a limit R magnitude for loop closure at 15, and a robustness to high wind speeds. The full-width at half-maximum reached by the instrument is 40 mas for infrared in H band and unprecedented 18.5 mas in V band.

  1. Dwarf planet Ceres: Ellipsoid dimensions and rotational pole from Keck and VLT adaptive optics images

    Drummond, J. D.; Carry, B.; Merline, W. J.; Dumas, C.; Hammel, H.; Erard, S.; Conrad, A.; Tamblyn, P.; Chapman, C. R.

    2014-07-01

    The dwarf planet (1) Ceres, the largest object between Mars and Jupiter, is the target of the NASA Dawn mission, and we seek a comprehensive description of the spin-axis orientation and dimensions of Ceres in order to support the early science operations at the rendezvous in 2015. We have obtained high-angular resolution images using adaptive optics cameras at the W.M. Keck Observatory and the ESO VLT over ten dates between 2001 and 2010, confirming that the shape of Ceres is well described by an oblate spheroid. We derive equatorial and polar diameters of 967 ± 10 km and 892 ± 10 km, respectively, for a model that includes fading of brightness towards the terminator, presumably linked to limb darkening. These dimensions lie between values derived from a previous analysis of a subset of these images obtained at Keck by Carry et al. (Carry et al. [2008]. Astron. Astrophys. 478 (4), 235-244) and a study of Hubble Space Telescope observations (Thomas et al. [2005]. Nature 437, 224-226). Although the dimensions are 1-2% smaller than those found from the HST, the oblateness is similar. We find the spin-vector coordinates of Ceres to lie at (287°, +64°) in equatorial EQJ2000 reference frame (346°, +82° in ecliptic ECJ2000 coordinates), yielding a small obliquity of 3°. While this is in agreement with the aforementioned studies, we have improved the accuracy of the pole determination, which we set at a 3° radius.

  2. MAPPING THE CLUMPY STRUCTURES WITHIN SUBMILLIMETER GALAXIES USING LASER-GUIDE STAR ADAPTIVE OPTICS SPECTROSCOPY

    We present the first integral-field spectroscopic observations of high-redshift submillimeter-selected galaxies (SMGs) using Laser-Guide Star Adaptive Optics. We target Hα emission of three SMGs at redshifts z ∼ 1.4-2.4 with the OH-Suppressing Infrared Imaging Spectrograph on Keck. The spatially resolved spectroscopy of these galaxies reveals unresolved broad-Hα line regions (FWHM >1000 km s–1) likely associated with an active galactic nucleus (AGN) and regions of diffuse star formation traced by narrow-line Hα emission (FWHM ∼–1) dominated by multiple Hα-bright stellar clumps, each contributing 1%-30% of the total clump-integrated Hα emission. We find that these SMGs host high star formation rate surface densities, similar to local extreme sources, such as circumnuclear starbursts and luminous infrared galaxies. However, in contrast to these local environments, SMGs appear to be undergoing such intense activity on significantly larger spatial scales as revealed by extended Hα emission over 4-16 kpc. Hα kinematics show no evidence of ordered global motion as would be found in a disk, but rather large velocity offsets (∼few × 100 km s–1) between the distinct stellar clumps. Together with the asymmetric distribution of the stellar clumps around the AGN in these objects, it is unlikely that we are unveiling a clumpy disk structure as has been suggested in other high-redshift populations of star-forming galaxies. The SMG clumps in this sample may correspond to remnants of originally independent gas-rich systems that are in the process of merging, hence triggering the ultraluminous SMG phase.

  3. World-wide deployment of Robo-AO visible-light robotic laser adaptive optics systems

    Baranec, Christoph; Riddle, Reed; Law, Nicholas Michael; Lu, Jessica R.; Tonry, John; Tully, R. Brent; Wright, Shelley; Kulkarni, Shrinivas; Severson, Scott; Choi, Philip; Ramaprakash, A.; Chun, Mark; Connelley, Mike; Tokunaga, Alan; Hall, Donald

    2015-08-01

    In the next few years, several modest-sized telescopes around the world will be upgraded with autonomous laser adaptive optics systems based on the Robo-AO prototype deployed at the Palomar Observatory 1.5-m telescope. The prototype commenced scientific operations in June 2012 and more than 19,000 observations have since been performed at the ~0.12" visible-light diffraction limit. We are planning to move the prototype system to the 2.1-m telescope at Kitt Peak for a 3-year deployment which will serve a consortium of users including Caltech, the University of Hawai`i, IUCAA, NCU and institutions in China. Additionally, 2 months per year will be made available to the US astronomical community.New Robo-AO systems are in various stages of development: a clone by IUCAA for the 2-m IGO telescope in India; a natural guide star variant, KAPAO, by Pomona College at the 1-m Table Mountain telescope in California; and second generation Robo-AO systems are planned for the 3-m IRTF and 2.2-m University of Hawai'i telescopes on Maunakea, Hawai`i. The latter will exploit Maunakea's excellent observing conditions to provide higher Strehl ratios, sharper imaging, ~0.07", and correction to lambda = 400 nm. An additional infrared integral-field spectrograph will be fed by the UH 2.2-m Robo-AO system to quickly classify transients, such as supernovae and asteroids, discovered by the ATLAS system in Hawai`i.

  4. DIFFRACTO-ASTROMETRY WITH HUBBLE SPACE TELESCOPE AND ADAPTIVE OPTICS IMAGES

    L. J. Sanchez

    2008-01-01

    Full Text Available Como continuación del trabajo de Allen et al. (1974, 2004 acerca de los movimientos internos de sistemas tipo Trapecio, decidimos investigar la posibilidad de realizar astrometría de precisión sobre imágenes del Telescopio Espacial Hubble (HST y sobre imágenes obtenidas con sistemas de óptica Adaptativa (OA. Una región muy bien observada por el HST es la del Trapecio de Orión. Los archivos del HST contienen observaciones de acceso público de este Trapecio tomadas con la WFPC/WFPC2 durante un intervalo de 16 años (1991¿2007. Con la utilización de nuevas técnicas (a las que llamamos Difracto Astrometría determinamos la separación entre las componentes A y E del Trapecio de Orión con una precisión que llega a 0.03" sobre imágenes saturadas. Estas técnicas parecen ser muy prometedoras para explotar no solamente el banco de datos públicos del HST, sino también imágenes obtenidas con telescopios que utilizan técnicas de OA. Para demostrar este último punto, usamos estas mismas técnicas para realizar astrometría de precisición sobre imágenes IR del Trapecio de Orión obtenidas con el sistema Multi-Conjugate Adaptive Optics (MCAO del VLT.

  5. Monte Carlo simulation of ELT-scale multi-object adaptive optics deformable mirror requirements and tolerances

    Basden, A. G.; Bharmal, N. A.; Myers, R. M.; Morris, S. L.; Morris, T. J.

    2013-10-01

    Multi-object adaptive optics (MOAO) has been demonstrated by the CANARY instrument on the William Herschel Telescope. However, for proposed MOAO systems on the next-generation extremely large telescopes (ELTs), such as ELT Adaptive optics for GaLaxy Evolution (EAGLE), many challenges remain. Here we investigate requirements that MOAO operation places on deformable mirrors (DMs) using a full end-to-end Monte Carlo adaptive optics (AO) simulation code. By taking into consideration a prior global ground-layer (GL) correction, we show that actuator density for the MOAO DMs can be reduced with little performance loss. We note that this reduction is only possible with the addition of a GL DM, whose order is greater than or equal to that of the original MOAO mirrors. The addition of a GL DM of lesser order does not affect system performance (if tip/tilt star sharpening is ignored). We also quantify the maximum mechanical DM stroke requirements (3.5 μm desired) and provide tolerances for the DM alignment accuracy, both lateral (to within an eighth of a sub-aperture) and rotational (to within 0.2°). By presenting results over a range of laser guide star asterism diameters, we ensure that these results are equally applicable for laser tomographic AO systems. We provide the opportunity for significant cost savings to be made in the implementation of MOAO systems, resulting from the lower requirement for DM actuator density.

  6. Gender equity issues in astronomy: facts, fiction, and what the adaptive optics community can do to close the gap

    D'Orgeville, Céline; Rigaut, François; Maddison, Sarah; Masciadri, Elena

    2014-07-01

    Gender equality in modern societies is a topic that never fails to raise passion and controversy, in spite of the large body of research material and studies currently available to inform the general public and scientists alike. This paper brings the gender equity and equality discussion on the Adaptive Optics community doorstep. Its aim is threefold: (1) Raising awareness about the gender gap in science and astronomy in general, and in Adaptive Optics in particular; (2) Providing a snapshot of real and/or perceived causes for the gender gap existing in science and engineering; and (3) Presenting a range of practical solutions which have been or are being implemented at various institutions in order to bridge this gap and increase female participation at all levels of the scientific enterprise. Actual data will be presented to support aim (1), including existing gender data in science, engineering and astronomy, as well as original data specific to the Adaptive Optics community to be gathered in time for presentation at this conference. (2) will explore the often complex causes converging to explain gender equity issues that are deeply rooted in our male-dominated culture, including: conscious and unconscious gender biases in perceptions and attitudes, worklife balance, n-body problem, fewer numbers of female leaders and role models, etc. Finally, (3) will offer examples of conscious and pro-active gender equity measures which are helping to bring the female to male ratio closer to its desirable 50/50 target in science and astronomy.

  7. Advancing adaptive optics technology: Laboratory turbulence simulation and optimization of laser guide stars

    Rampy, Rachel A.

    Since Galileo's first telescope some 400 years ago, astronomers have been building ever-larger instruments. Yet only within the last two decades has it become possible to realize the potential angular resolutions of large ground-based telescopes, by using adaptive optics (AO) technology to counter the blurring effects of Earth's atmosphere. And only within the past decade have the development of laser guide stars (LGS) extended AO capabilities to observe science targets nearly anywhere in the sky. Improving turbulence simulation strategies and LGS are the two main topics of my research. In the first part of this thesis, I report on the development of a technique for manufacturing phase plates for simulating atmospheric turbulence in the laboratory. The process involves strategic application of clear acrylic paint onto a transparent substrate. Results of interferometric characterization of the plates are described and compared to Kolmogorov statistics. The range of r0 (Fried's parameter) achieved thus far is 0.2--1.2 mm at 650 nm measurement wavelength, with a Kolmogorov power law. These plates proved valuable at the Laboratory for Adaptive Optics at University of California, Santa Cruz, where they have been used in the Multi-Conjugate Adaptive Optics testbed, during integration and testing of the Gemini Planet Imager, and as part of the calibration system of the on-sky AO testbed named ViLLaGEs (Visible Light Laser Guidestar Experiments). I present a comparison of measurements taken by ViLLaGEs of the power spectrum of a plate and the real sky turbulence. The plate is demonstrated to follow Kolmogorov theory well, while the sky power spectrum does so in a third of the data. This method of fabricating phase plates has been established as an effective and low-cost means of creating simulated turbulence. Due to the demand for such devices, they are now being distributed to other members of the AO community. The second topic of this thesis pertains to understanding and

  8. High-resolution imaging of the retinal nerve fiber layer in normal eyes using adaptive optics scanning laser ophthalmoscopy.

    Kohei Takayama

    Full Text Available PURPOSE: To conduct high-resolution imaging of the retinal nerve fiber layer (RNFL in normal eyes using adaptive optics scanning laser ophthalmoscopy (AO-SLO. METHODS: AO-SLO images were obtained in 20 normal eyes at multiple locations in the posterior polar area and a circular path with a 3-4-mm diameter around the optic disc. For each eye, images focused on the RNFL were recorded and a montage of AO-SLO images was created. RESULTS: AO-SLO images for all eyes showed many hyperreflective bundles in the RNFL. Hyperreflective bundles above or below the fovea were seen in an arch from the temporal periphery on either side of a horizontal dividing line to the optic disc. The dark lines among the hyperreflective bundles were narrower around the optic disc compared with those in the temporal raphe. The hyperreflective bundles corresponded with the direction of the striations on SLO red-free images. The resolution and contrast of the bundles were much higher in AO-SLO images than in red-free fundus photography or SLO red-free images. The mean hyperreflective bundle width around the optic disc had a double-humped shape; the bundles at the temporal and nasal sides of the optic disc were narrower than those above and below the optic disc (P<0.001. RNFL thickness obtained by optical coherence tomography correlated with the hyperreflective bundle widths on AO-SLO (P<0.001 CONCLUSIONS: AO-SLO revealed hyperreflective bundles and dark lines in the RNFL, believed to be retinal nerve fiber bundles and Müller cell septa. The widths of the nerve fiber bundles appear to be proportional to the RNFL thickness at equivalent distances from the optic disc.

  9. The jet of the BL Lac object PKS 0521 -365 in the near-IR : MAD adaptive optics observations

    Falomo, R; Treves, A; Giovannini, G; Venturi, T; Moretti, A; Arcidiacono, C; Farinato, J; Ragazzoni, R; Diolaiti, E; Lombini, M; Tavecchio, F; Brast, R; Marchetti, E; Tordo, S

    2009-01-01

    BL Lac objects are low--power active nuclei exhibiting a variety of peculiar properties that are caused by the presence of a relativistic jet and orientation effects. We present here adaptive optics near-IR images at high spatial resolution of the nearby BL Lac object PKS 0521-365, which is known to display a prominent jet both at radio and optical frequencies. The observations were obtained in Ks--band using the ESO multi-conjugated adaptive optics demonstrator at the Very Large Telescope. This allowed us to obtain images with 0.1 arcsec effective resolution. We performed a detailed analysis of the jet and its related features from the near-IR images, and combined them with images previously obtained with HST in the R band and by a re-analysis of VLA radio maps. We find a remarkable similarity in the structure of the jet at radio, near-IR, and optical wavelengths. The broad--band emission of the jet knots is dominated by synchrotron radiation, while the nucleus also exhibits a significant inverse Compton com...

  10. A new network architecture for future optical networks : coarse optical circuit switching by default, rerouting over circuits for adaptation

    Chou, Jerry

    2009-01-01

    As Internet traffic continues to grow unabated at an exponential rate, it is unclear whether or not the existing packet routing network architecture based on electronic routers will continue to scale at the necessary pace. On the other hand, optical fiber and switching elements have demonstrated an abundance of capacity that appears to be unmatched by electronic routers. In particular, the simplicity of circuit switching makes it well-suited for optical implementations. Therefore, given the r...

  11. On the power and offset allocation for rate adaptation of spatial multiplexing in optical wireless MIMO channels

    Park, Kihong

    2013-04-01

    In this paper, we consider resource allocation method in the visible light communication. It is challenging to achieve high data rate due to the limited bandwidth of the optical sources. In order to increase the spectral efficiency, we design a suitable multiple-input multiple-output (MIMO) system utilizing spatial multiplexing based on singular value decomposition and adaptive modulation. More specifically, after explaining why the conventional allocation method in radio frequency MIMO channels cannot be applied directly to the optical intensity channels, we theoretically derive a power allocation method for an arbitrary number of transmit and receive antennas for optical wireless MIMO systems. Based on three key constraints: the nonnegativity of the intensity-modulated signal, the aggregate optical power budget, and the bit error rate requirement, we propose a novel method to allocate the optical power, the offset value, and the modulation size. Based on some selected simulation results, we show that our proposed allocation method gives a better spectral efficiency at the expense of an increased computational complexity in comparison to a simple method that allocates the optical power equally among all the data streams. © 2013 IEEE.

  12. Opto-Mechanical Design of ShaneAO: the Adaptive Optics System for the 3-meter Shane Telescope

    Ratliff, Christopher; Gavel, Donald; Kupke, Renate; Dillon, Daren; Gates, Elinor; Deich, William; Ward, Jim; Cowley, David; Pfister, Terry; Saylor, Mike

    2014-01-01

    A Cassegrain mounted adaptive optics instrument presents unique challenges for opto-mechanical design. The flexure and temperature tolerances for stability are tighter than those of seeing limited instruments. This criteria requires particular attention to material properties and mounting techniques. This paper addresses the mechanical designs developed to meet the optical functional requirements. One of the key considerations was to have gravitational deformations, which vary with telescope orientation, stay within the optical error budget, or ensure that we can compensate with a steering mirror by maintaining predictable elastic behavior. Here we look at several cases where deformation is predicted with finite element analysis and Hertzian deformation analysis and also tested. Techniques used to address thermal deformation compensation without the use of low CTE materials will also be discussed.

  13. Improved adaptive-threshold burst assembly in optical burst switching networks

    Jiuru Yang; Gang Wang; Shilou Jia

    2007-01-01

    An improved adaptive-threshold burst assembly algorithm is proposed to alleviate the limitation of conventional assembly schemes on data loss and delay. The algorithm will adjust the values of assembly factors according to variant traffic regions. And the simulation results show that, by using the adaptive-factor adaptive assembly scheme, the performance of networks is extensively enhanced in terms of burst loss probability and average queuing delay.

  14. Two fiber optics communication adapters apply to the control system of HIRFL-CSR

    The authors introduced two kinds of fiber adapters that apply to the engineering HIRFL-CSR. Including design of two adapters, operational principle, and hardware construction, field of application. How to control equipment which have the standard RS232 or RS485 interface at long distance by two adapters. Replace the RS485 bus with the fiber and the 485-Fiber Adapter, solved the problem of communication disturb. The requirements of control in the national great science engineering HIRFL-CSR are fulfilled. (authors)

  15. Optical projectors simulate human eyes to establish operator's field of view

    Beam, R. A.

    1966-01-01

    Device projects visual pattern limits of the field of view of an operator as his eyes are directed at a given point on a control panel. The device, which consists of two projectors, provides instant evaluation of visual ability at a point on a panel.

  16. Dynamical Gauge Fields on Optical Lattices: A Lattice Gauge Theorist Point of View

    Meurice, Yannick

    2011-01-01

    Dynamical gauge fields are essential to capture the short and large distance behavior of gauge theories (confinement, mass gap, chiral symmetry breaking, asymptotic freedom). I propose two possible strategies to use optical lattices to mimic simulations performed in lattice gauge theory. I discuss how new developments in optical lattices could be used to generate local invariance and link composite operators with adjoint quantum numbers that could play a role similar to the link variables used in lattice gauge theory. This is a slightly expanded version of a poster presented at the KITP Conference: Frontiers of Ultracold Atoms and Molecules (Oct 11-15, 2010) that I plan to turn into a more comprehensive tutorial that could be used by members of the optical lattice and lattice gauge theory communities. Suggestions are welcome.

  17. Improvement on the quality of the images obtained with adaptive optics and application to the study of the active galactic nuclei

    Exposito, Jonathan

    2013-01-01

    My work is connecting three areas in astrophysics: the study of active galactic nuclei (AGN), adaptive optics (AO) and the optimization of the methods for related data-processing. It focuses on the development of tools to obtain the best image quality in terms of resolution and contrast so as to maximize the scientific return especially for the study of AGN. Adaptive optics can compensate for the effects of atmospheric turbulence on the wavefront and thus to approach the theoretical resolutio...

  18. A convergent blind deconvolution method for post-adaptive-optics astronomical imaging

    In this paper, we propose a blind deconvolution method which applies to data perturbed by Poisson noise. The objective function is a generalized Kullback–Leibler (KL) divergence, depending on both the unknown object and unknown point spread function (PSF), without the addition of regularization terms; constrained minimization, with suitable convex constraints on both unknowns, is considered. The problem is non-convex and we propose to solve it by means of an inexact alternating minimization method, whose global convergence to stationary points of the objective function has been recently proved in a general setting. The method is iterative and each iteration, also called outer iteration, consists of alternating an update of the object and the PSF by means of a fixed number of iterations, also called inner iterations, of the scaled gradient projection (SGP) method. Therefore, the method is similar to other proposed methods based on the Richardson–Lucy (RL) algorithm, with SGP replacing RL. The use of SGP has two advantages: first, it allows one to prove global convergence of the blind method; secondly, it allows the introduction of different constraints on the object and the PSF. The specific constraint on the PSF, besides non-negativity and normalization, is an upper bound derived from the so-called Strehl ratio (SR), which is the ratio between the peak value of an aberrated versus a perfect wavefront. Therefore, a typical application, but not a unique one, is to the imaging of modern telescopes equipped with adaptive optics systems for the partial correction of the aberrations due to atmospheric turbulence. In the paper, we describe in detail the algorithm and we recall the results leading to its convergence. Moreover, we illustrate its effectiveness by means of numerical experiments whose results indicate that the method, pushed to convergence, is very promising in the reconstruction of non-dense stellar clusters. The case of more complex astronomical targets

  19. A view in the mirror - Or through the looking glass. [history of development of optical telescopes

    Meinel, A. B.; Meinel, M. P.

    1986-01-01

    The development of optical telescopes from the age of astrology to those of today and the future is discussed. The rationales for changes in the design of telescopes during this time are explored. The cost drivers, and how to reduce them, are also discussed.

  20. Adapting an optical nanoantenna for high E-field probing applications to a waveguided optical waveguide (WOW)

    Rindorf, Lars Henning; Glückstad, Jesper

    2013-01-01

    light wavelength while admitting other wavelengths of light which address certain functionalities, e.g. drug release, in the WOW. In particular, we study a bow-tie optical nano-antenna to circular dielectric waveguides in aqueous environments. It is shown with finite element computer simulations that...

  1. Optimisation of the ion optical range adaptation method for tracking of moving tumours with scanned ion beams

    Currently an ion optical solution for beam tracking of moving targets with scanned ion beams is being investigated at GSI for the treatment of moving tumours, such as lung cancer. Beam tracking compensates target motion by adapting the lateral beam position as well as the beam range according to the motion parameters. Tracking of the lateral position is achieved via scanning magnets. For range adaptation the proposed ion optical solution uses an energy degrader with variable thickness inserted into the therapy beam line downstream of the synchrotron. By deflecting the particle beam via dipole magnets to different positions on the degrader, the range of the Bragg peak can be adjusted in real-time. Hence density changes due to organ motion can be compensated for each target spot during beam scanning. In order to reach a beam quality suitable for therapy with this method, systematic studies on the ion optical parameters have to be carried out. Different degrader designs (ramp or discrete step shaped), different materials (e.g. PMMA, graphite), as well as optimised degrader positions have been examined. The results of simulated beam profiles are presented.

  2. Dynamic Wavelength and Bandwidth Allocation Using Adaptive Linear Prediction in WDM/TDM Ethernet Passive Optical Networks

    LU Yi-yi; GUO Yong; HE Chen

    2009-01-01

    Hybrid wavelength-division-multiplexing (WDM)/time-division-multiplexing (TDM) ethernet passive optical networks (EPONs) can achieve low per-subscriber cost and scalability to increase the number of subscribers. This paper discusses dynamic wavelength and bandwidth allocation (DWBA) algorithm in hybrid WDM/TDM EPONs. Based on the correlation structure of the variable bit rate (VBR) video traffic, we propose a quality-of-service (QoS) supported DWBA using adaptive linear traffic prediction. Wavelength and timeslot are allocated dynamically by optical line terminal (OLT) to all optical network units (ONUs) based on the bandwidth requests and the guaranteed service level agreements (SLA) of all ONUs. Mean square error of the predicted average arriv-ing rate of compound video traffic during waiting period is minimized through Wiener-Hopf equation. Simulation results show that the DWBA-adaptive-linear-prediction (DWBA-ALP) algorithm can significantly improve the QoS performances in terms of low delay and high bandwidth utilization.

  3. Aberration correction in double-pass amplifiers through the use of phase-conjugate mirrors and/or adaptive optics

    Jackel, Steven M.; Moshe, Inon; Lavi, Raphael

    2001-04-01

    Corrrection of birefringence induced effects (depolarization and bipolar focusing) was achieved in double-pass amplifiers using a Faraday rotator placed between the laser rod and the retroreflecting optic. A necessary condition was that each ray in the beam retraced its path through the amplifying medium. Retrace was limited by imperfect conjugate-beam fidelity and by nonreciprocal double-pass indices of refraction. We compare various retroreflectors: stimulated Brillouin scatter phase-conjugate-mirrors (PCMs), PCMs with relay lenses to image the rod principal plane onto the PCM entrance aperture (IPCMs), IPCMs with external, adaptively-adjusted, astigmatism-correcting cylindrical doublets, and all adaptive optics imaging variable-radius-mirrors (IVRMs). Results with flashlamp pumped, Nd:Cr:GSGG double-pass amplifiers show that average output power increased fivefold with a Faraday rotator plus complete nonlinear optics retroreflector package (IPCM+cylindrical zoom), and that this represents an 80% increase over the power achieved using just a PCM. Far better results are, however, achieved with an IVRM.

  4. Ophiuchus: an optical view of a very massive cluster of galaxies hidden behind the Milky Way

    Durret, Florence; Nagayama, Takahiro; Adami, Christophe; Biviano, Andrea

    2015-01-01

    The Ophiuchus cluster, at a redshift z=0.0296, is known from X-rays to be one of the most massive nearby clusters, but due to its very low Galactic latitude its optical properties have not been investigated in detail. We discuss the optical properties of the galaxies in the Ophiuchus cluster, in particular with the aim of understanding better its dynamical properties. We have obtained deep optical imaging in several bands with various telescopes, and applied a sophisticated method to model and subtract the contributions of stars in order to measure galaxy magnitudes as accurately as possible. The colour-magnitude relations obtained show that there are hardly any blue galaxies in Ophiuchus (at least brighter than r'<=19.5), and this is confirmed by the fact that we only detect two galaxies in Halpha. We also obtained a number of spectra with ESO-FORS2, that we combined with previously available redshifts. Altogether, we have 152 galaxies with spectroscopic redshifts in the 0.02<=z<=0.04 range, and 89 ...

  5. Forward-viewing photoacoustic imaging probe with bundled ultra-thin hollow optical fibers

    Seki, A.; Iwai, K.; Katagiri, T.; Matsuura, Y.

    2016-07-01

    A photoacoustic imaging system composed of a flexible bundle of thin hollow-optical fibers is proposed for endoscopic diagnosis. In this system, a bundle of 127 hollow-optical fibers with an inner diameter of 100 μm was fabricated. The total diameter of the bundle was 2.1 mm, and the minimum bending radius was around 10 mm. Owing to the small numerical aperture of hollow optical fibers, a high resolution image was obtained without using a lens array at the distal end. In the imaging system, the hollow fibers in the bundle were aligned at the input end, so the hollow fibers were sequentially excited by linearly scanning the laser beam at the input end. Photoacoustic imaging systems consisting of the bundled fibers for excitation of acoustic wave and piezoelectric probes for detection of photoacoustic signals were built. By using the systems, photoacoustic images of blood vessels in the ovarian membrane of fish were taken to test the feasibility of the system. As a result, photoacoustic images of the vessel were successfully obtained with a laser fluence of around 6.6 mJ cm‑2.

  6. Superresolving distant galaxies with gravitational telescopes : Keck laser guide star adaptive optics and Hubble Space Telescope imaging of the lens system SDSS J0737+3216

    Marshall, Philip J.; Treu, Tommaso; Melbourne, Jason; Gavazzi, Raphael; Bundy, Kevin; Ammons, S. Mark; Bolton, Adam S.; Burles, Scott; Larkin, James E.; Le Mignant, David; Koo, David C.; Koopmans, Leon V. E.; Max, Claire E.; Moustakas, Leonidas A.; Steinbring, Eric; Wright, Shelley A.

    2007-01-01

    We combine high-resolution images in four optical/infrared bands, obtained with the laser guide star adaptive optics ( LGSAO) system on the Keck telescope and with the Hubble Space Telescope ( HST), to study the gravitational lens system SDSS J0737 + 3216 ( lens redshift 0.3223, source redshift 0.58

  7. Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates

    Boriskina, Svetlana V

    2011-01-01

    A major challenge for plasmonics as an enabling technology for quantum information processing is the realization of active spatio-temporal control of light on the nanoscale. The use of phase-shaped pulses or beams enforces specific requirements for on-chip integration and imposes strict design limitations. We introduce here an alternative approach, which is based on exploiting the strong sub-wavelength spatial phase modulation in the near-field of resonantly-excited high-Q optical microcavities integrated into plasmonic nanocircuits. Our theoretical analysis reveals the formation of areas of circulating powerflow (optical vortices) in the near-fields of optical microcavities, whose positions and mutual coupling can be controlled by tuning the microcavities parameters and the excitation wavelength. We show that optical powerflow though nanoscale plasmonic structures can be dynamically molded by engineering interactions of microcavity-induced optical vortices with noble-metal nanoparticles. The proposed strateg...

  8. A wide angle view imaging diagnostic with all reflective, in-vessel optics at JET

    Highlights: ► A new wide angle view camera system has been installed at JET. ► The system helps to protect the ITER-like wall plasma facing components from damage. ► The coverage of the vessel by camera observation systems was increased. ► The system comprises an in-vessel part with parabolic and flat mirrors. ► The required image quality for plasma monitoring and wall protection was delivered. -- Abstract: A new wide angle view camera system has been installed at JET in preparation for the ITER-like wall campaigns. It considerably increases the coverage of the vessel by camera observation systems and thereby helps to protect the – compared to carbon – more fragile plasma facing components from damage. The system comprises an in-vessel part with parabolic and flat mirrors and an ex-vessel part with beam splitters, lenses and cameras. The system delivered the image quality required for plasma monitoring and wall protection

  9. The Subaru Coronagraphic Extreme Adaptive Optics system: enabling high-contrast imaging on solar-system scales

    Jovanovic, N.; Martinache, F.; Guyon, O.; Clergeon, C.; Singh, G; Kudo, T.; Garrel, V.; Newman, K; Doughty, D.; Lozi, J.; Males, J.; Minowa, Y.; Hayano, Y.; Takato, N.; Morino, J.

    2015-01-01

    The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument is a multipurpose high-contrast imaging platform designed for the discovery and detailed characterization of exoplanetary systems and serves as a testbed for high-contrast imaging technologies for ELTs. It is a multi-band instrument which makes use of light from 600 to 2500nm allowing for coronagraphic direct exoplanet imaging of the inner 3 lambda/D from the stellar host. Wavefront sensing and control are key to the operati...

  10. Adaptive Optics Discovery of Supernova 2004ip in the Nuclear Regions of the Luminous Infrared Galaxy IRAS 18293-3413

    Mattila, S.; Vaisanen, P.; Farrah, D.; Efstathiou, A.; Meikle, W P S; Dahlen, T.; Fransson, C.; Lira, P.; Lundqvist, P.; Ostlin, G.; Ryder, S; Sollerman, J

    2007-01-01

    We report a supernova discovery in Ks-band images from the NAOS CONICA adaptive optics (AO) system on the ESO Very Large Telescope (VLT). The images were obtained as part of a near-infrared search for highly-obscured supernovae in the nuclear regions of luminous and ultraluminous infrared galaxies. SN 2004ip is located within a circumnuclear starburst at 1.4 arcsec (or 500 pc) projected distance from the K-band nucleus of the luminous infrared galaxy IRAS 18293-3413. The supernova luminosity ...

  11. Wavefront response matrix for closed-loop adaptive optics system based on non-modulation pyramid wavefront sensor

    Wang, Jianxin; Bai, Fuzhong; Ning, Yu; Li, Fei; Jiang, Wenhan

    2012-06-01

    Pyramid wavefront sensor (PWFS) is a kind of wavefront sensor with high spatial resolution and high energy utilization. In this paper an adaptive optics system with PWFS as wavefront sensor and liquid-crystal spatial light modulator (LC-SLM) as wavefront corrector is built in the laboratory. The wavefront response matrix is a key element in the close-loop operation. It can be obtained by measuring the real response to given aberrations, which is easily contaminated by noise and influenced by the inherent aberration in the optical system. A kind of analytic solution of response matrix is proposed, with which numerical simulation and experiment are also implemented to verify the performance of closed-loop correction of static aberration based on linear reconstruction theory. Results show that this AO system with the proposed matrix can work steadily in closed-loop operation.

  12. Tracking and imaging of dynamic objects in scattering media by time-reversed adapted-perturbation (TRAP) optical focusing

    Ma, Cheng; Liu, Yan; Wang, Lihong V

    2014-01-01

    The ability to steer light propagation inside scattering media has long been sought-after due to its potential widespread applications. To form optical foci inside scattering media, the only feasible strategy is to guide photons by using either implanted or virtual guide stars. However, all of these guide stars must be introduced extrinsically, either invasively or by physical contact, limiting the scope of their application. Here, we focus light inside scattering media by employing intrinsic dynamics as guide stars. By time-reversing the perturbed component of the scattered light adaptively, we concentrate light to the origin of the perturbation, where the permittivity varied spontaneously. We demonstrate dynamic light focusing onto moving targets and imaging of a time-variant object obscured by highly scattering media, without invasiveness and physical contact. Anticipated applications include all-weather optical communication with airplanes or satellites, tracking vehicles in thick fogs, and imaging and ph...

  13. Working Beyond the Static Limits of Laser Stability by Use of Adaptive and Polarization-Conjugation Optics

    Moshe, Inon; Jackel, Steven; Lallouz, Raphael

    1998-09-01

    Strong thermo-optical aberrations in flash lamp-pumped Nd:Cr:GSGG rods were corrected to yield TEM 00 output at twice the efficiency of Nd:YAG. A hemispherical resonator operating at the limit of stability was employed. As much as 3 W of average power in a Gaussian beam ( M 2 1 ) was generated. Unique features were zero warm-up time and the ability to vary the repetition rate without varying energy, near- and far-field profiles, or polarization purity. Thermal focusing and astigmatism were corrected with a microprocessor-controlled adaptive-optics backmirror composed of discrete elements (variable-radius mirror). A reentrant resonator coupled polarizer losses back into the laser rod and corrected depolarization.

  14. Outline of optical design and viewing geometry for divertor Thomson scattering on MAST upgrade

    Hawke, J.; Scannell, R.; Harrison, J.; Huxford, R.; Böhm, Petr

    2013-01-01

    Roč. 8, č. 11 (2013), C11010-C11010. ISSN 1748-0221. [International Symposium Laser Aided Plasma Diagnostics/16./. Madison, 22.09.2013-26.09.2013] Institutional support: RVO:61389021 Keywords : Plasma diagnostics - interferometry * Spectroscopy and imaging * Optics * Plasma diagnostics - charged-particle spectroscopy Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.526, year: 2013 http://iopscience.iop.org/1748-0221/8/11/C11010/pdf/1748-0221_8_11_C11010.pdf

  15. Multi-actuator adaptive lens for wavefront correction in optical coherence tomography and two-photon excitation fluorescence microscopy (Conference Presentation)

    Bonora, Stefano; Lee, Sujin; Jian, Yifan; Cua, Michelle; Pugh, Edward N.; Zawadzki, Robert J.; Sarunic, Marinko V.

    2016-03-01

    We present a new type of adaptive lens with 18 actuators that can correct up the 4th order of aberration. The Multi-actuator Adaptive Lens (M-AL) can guarantee a good level of aberration correction for many applications and, with respect to deformable mirror, it allows the realization of more compact and simple optical systems. The adaptive lens is based on the use of piezoelectric actuators and, without any obstruction or electrodes in the clear aperture, can guarantee a fast response time, in the order of about 10ms. The clear aperture of the M-AL allows its use in "classical" Adaptive Optics configuration together with a wavefront sensor. To introduce a further simplification to the optical system design we show that the adaptive lens can be also driven with a wavefront sensorless control algorithm during in vivo optical coherence tomography of the human retina and for two-photon excitation fluorescence microscopy. In the experimental setup we used two aberration correcting devices a commercial adaptive lens (AL) with a high dynamic range to correct for defocus and the Multi-actuator Adaptive Lens (M-AL) to correct for the Zernike aberrations up to the 4th order. Experimental results show that the ocular aberrations of human eyes can be successfully corrected with our M-AL for pupils of 5mm and that retinal cones can be readily imaged.

  16. NEAR-INFRARED ADAPTIVE OPTICS IMAGING OF INFRARED LUMINOUS GALAXIES: THE BRIGHTEST CLUSTER MAGNITUDE-STAR FORMATION RATE RELATION

    We have established a relation between the brightest super star cluster (SSC) magnitude in a galaxy and the host star formation rate (SFR) for the first time in the near-infrared (NIR). The data come from a statistical sample of ∼40 luminous IR galaxies (LIRGs) and starbursts utilizing K-band adaptive optics imaging. While expanding the observed relation to longer wavelengths, less affected by extinction effects, it also pushes to higher SFRs. The relation we find, MK ∼ –2.6log SFR, is similar to that derived previously in the optical and at lower SFRs. It does not, however, fit the optical relation with a single optical to NIR color conversion, suggesting systematic extinction and/or age effects. While the relation is broadly consistent with a size-of-sample explanation, we argue physical reasons for the relation are likely as well. In particular, the scatter in the relation is smaller than expected from pure random sampling strongly suggesting physical constraints. We also derive a quantifiable relation tying together cluster-internal effects and host SFR properties to possibly explain the observed brightest SSC magnitude versus SFR dependency

  17. Near-infrared adaptive optics imaging of infrared luminous galaxies: the brightest cluster magnitude - star formation rate relation

    Randriamanakoto, Zara; Vaisanen, Petri; Kankare, Erkki; Kotilainen, Jari; Mattila, Seppo; Ryder, Stuart

    2013-01-01

    We have established a relation between the brightest super star cluster magnitude in a galaxy and the host star formation rate (SFR) for the first time in the near infrared (NIR). The data come from a statistical sample of ~ 40 luminous IR galaxies (LIRGs) and starbursts utilizing K-band adaptive optics imaging. While expanding the observed relation to longer wavelengths, less affected by extinction effects, it also pushes to higher SFRs. The relation we find, M_K ~ - 2.6 log SFR, is similar to that derived previously in the optical and at lower SFRs. It does not, however, fit the optical relation with a single optical to NIR color conversion, suggesting systematic extinction and/or age effects. While the relation is broadly consistent with a size-of-sample explanation, we argue physical reasons for the relation are likely as well. In particular, the scatter in the relation is smaller than expected from pure random sampling strongly suggesting physical constraints. We also derive a quantifiable relation tying...

  18. Wide Field-of-View Fluorescence Imaging with Optical-Quality Curved Microfluidic Chamber for Absolute Cell Counting

    Mohiuddin Khan Shourav

    2016-07-01

    Full Text Available Field curvature and other aberrations are encountered inevitably when designing a compact fluorescence imaging system with a simple lens. Although multiple lens elements can be used to correct most such aberrations, doing so increases system cost and complexity. Herein, we propose a wide field-of-view (FOV fluorescence imaging method with an unconventional optical-quality curved sample chamber that corrects the field curvature caused by a simple lens. Our optics simulations and proof-of-concept experiments demonstrate that a curved substrate with lens-dependent curvature can reduce greatly the distortion in an image taken with a conventional planar detector. Following the validation study, we designed a curved sample chamber that can contain a known amount of sample volume and fabricated it at reasonable cost using plastic injection molding. At a magnification factor of approximately 0.6, the curved chamber provides a clear view of approximately 119 mm2, which is approximately two times larger than the aberration-free area of a planar chamber. Remarkably, a fluorescence image of microbeads in the curved chamber exhibits almost uniform intensity over the entire field even with a simple lens imaging system, whereas the distorted boundary region has much lower brightness than the central area in the planar chamber. The absolute count of white blood cells stained with a fluorescence dye was in good agreement with that obtained by a commercially available conventional microscopy system. Hence, a wide FOV imaging system with the proposed curved sample chamber would enable us to acquire an undistorted image of a large sample volume without requiring a time-consuming scanning process in point-of-care diagnostic applications.

  19. Tiling strategies for optical follow-up of gravitational wave triggers by wide field of view telescopes

    Ghosh, Shaon; Nelemans, Gijs; Groot, Paul J; Price, Larry R

    2015-01-01

    The advanced LIGO and Virgo detectors scheduled to come online in the next two years will open up the much anticipated era of gravitational wave astronomy. Among the strongest contenders for the first detection are merging binary neutron stars, a fraction of which are also expected to produce observable electromagnetic signals in coincidence with the gravitational wave events. In this paper we investigate the strategy of using gravitational wave sky-localizations that we can expect to see in the first two years of the advanced detector era, to look for electromagnetic counterparts using wide field of view optical telescopes. The key to efficient observation of the gravitational wave sky-localizations is to obtain the optimal discretized approximation of the sky-localizations, where the coarseness of the discretization will depend on the field of view of the telescope. We examine various strategies of scanning these sky-localizations and propose the ranked-tiling strategy that we found to be the most effective...

  20. Hybrid diversity method utilizing adaptive diversity function for recovering unknown aberrations in an optical system

    Dean, Bruce H. (Inventor)

    2009-01-01

    A method of recovering unknown aberrations in an optical system includes collecting intensity data produced by the optical system, generating an initial estimate of a phase of the optical system, iteratively performing a phase retrieval on the intensity data to generate a phase estimate using an initial diversity function corresponding to the intensity data, generating a phase map from the phase retrieval phase estimate, decomposing the phase map to generate a decomposition vector, generating an updated diversity function by combining the initial diversity function with the decomposition vector, generating an updated estimate of the phase of the optical system by removing the initial diversity function from the phase map. The method may further include repeating the process beginning with iteratively performing a phase retrieval on the intensity data using the updated estimate of the phase of the optical system in place of the initial estimate of the phase of the optical system, and using the updated diversity function in place of the initial diversity function, until a predetermined convergence is achieved.