WorldWideScience

Sample records for adaptive optics scanning

  1. Digital adaptive optics line-scanning confocal imaging system

    Liu, Changgeng; Kim, Myung K.

    2015-11-01

    A digital adaptive optics line-scanning confocal imaging (DAOLCI) system is proposed by applying digital holographic adaptive optics to a digital form of line-scanning confocal imaging system. In DAOLCI, each line scan is recorded by a digital hologram, which allows access to the complex optical field from one slice of the sample through digital holography. This complex optical field contains both the information of one slice of the sample and the optical aberration of the system, thus allowing us to compensate for the effect of the optical aberration, which can be sensed by a complex guide star hologram. After numerical aberration compensation, the corrected optical fields of a sequence of line scans are stitched into the final corrected confocal image. In DAOLCI, a numerical slit is applied to realize the confocality at the sensor end. The width of this slit can be adjusted to control the image contrast and speckle noise for scattering samples. DAOLCI dispenses with the hardware pieces, such as Shack-Hartmann wavefront sensor and deformable mirror, and the closed-loop feedbacks adopted in the conventional adaptive optics confocal imaging system, thus reducing the optomechanical complexity and cost. Numerical simulations and proof-of-principle experiments are presented that demonstrate the feasibility of this idea.

  2. Adaptive optics scanning laser ophthalmoscope imaging: technology update

    Merino D

    2016-04-01

    Full Text Available David Merino, Pablo Loza-Alvarez The Institute of Photonic Sciences (ICFO, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain Abstract: Adaptive optics (AO retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it. Keywords: high-resolution, in vivo retinal imaging, AOSLO

  3. Adaptive optics scanning laser ophthalmoscope imaging: technology update

    Merino, David; Loza-Alvarez, Pablo

    2016-01-01

    Adaptive optics (AO) retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it. PMID:27175057

  4. Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking

    Ferguson, R. Daniel; Zhong, Zhangyi; Hammer, Daniel X.; Mujat, Mircea; Patel, Ankit H.; Deng, Cong; Zou, Weiyao; Burns, Stephen A.

    2010-01-01

    We have developed a new, unified implementation of the adaptive optics scanning laser ophthalmoscope (AOSLO) incorporating a wide-field line-scanning ophthalmoscope (LSO) and a closed-loop optical retinal tracker. AOSLO raster scans are deflected by the integrated tracking mirrors so that direct AOSLO stabilization is automatic during tracking. The wide-field imager and large-spherical-mirror optical interface design, as well as a large-stroke deformable mirror (DM), enable the AOSLO image fi...

  5. Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging

    Zawadzki, RJ; Jones, SM; Pilli, S; Balderas-Mata, S; Kim, DY; Olivier, SS; Werner, JS

    2011-01-01

    We describe an ultrahigh-resolution (UHR) retinal imaging system that combines adaptive optics Fourier-domain optical coherence tomography (AO-OCT) with an adaptive optics scanning laser ophthalmoscope (AO-SLO) to allow simultaneous data acquisition by the two modalities. The AO-SLO subsystem was integrated into the previously described AO-UHR OCT instrument with minimal changes to the latter. This was done in order to ensure optimal performance and image quality of the AO- UHR OCT. In this d...

  6. Analysis of adaptive laser scanning optical system with focus-tunable components

    Pokorný, P.; Mikš, A.; Novák, J.; Novák, P.

    2015-05-01

    This work presents a primary analysis of an adaptive laser scanner based on two-mirror beam-steering device and focustunable components (lenses with tunable focal length). It is proposed an optical scheme of an adaptive laser scanner, which can focus the laser beam in a continuous way to a required spatial position using the lens with tunable focal length. This work focuses on a detailed analysis of the active optical or opto-mechanical components (e.g. focus-tunable lenses) mounted in the optical systems of laser scanners. The algebraic formulas are derived for ray tracing through different configurations of the scanning optical system and one can calculate angles of scanner mirrors and required focal length of the tunable-focus component provided that the position of the focused beam in 3D space is given with a required tolerance. Computer simulations of the proposed system are performed using MATLAB.

  7. High-resolution adaptive optics scanning laser ophthalmoscope with multiple deformable mirrors

    Chen, Diana C.; Olivier, Scot S.; Jones; Steven M.

    2010-02-23

    An adaptive optics scanning laser ophthalmoscopes is introduced to produce non-invasive views of the human retina. The use of dual deformable mirrors improved the dynamic range for correction of the wavefront aberrations compared with the use of the MEMS mirror alone, and improved the quality of the wavefront correction compared with the use of the bimorph mirror alone. The large-stroke bimorph deformable mirror improved the capability for axial sectioning with the confocal imaging system by providing an easier way to move the focus axially through different layers of the retina.

  8. Real-time blind deconvolution of retinal images in adaptive optics scanning laser ophthalmoscopy

    Li, Hao; Lu, Jing; Shi, Guohua; Zhang, Yudong

    2011-06-01

    With the use of adaptive optics (AO), the ocular aberrations can be compensated to get high-resolution image of living human retina. However, the wavefront correction is not perfect due to the wavefront measure error and hardware restrictions. Thus, it is necessary to use a deconvolution algorithm to recover the retinal images. In this paper, a blind deconvolution technique called Incremental Wiener filter is used to restore the adaptive optics confocal scanning laser ophthalmoscope (AOSLO) images. The point-spread function (PSF) measured by wavefront sensor is only used as an initial value of our algorithm. We also realize the Incremental Wiener filter on graphics processing unit (GPU) in real-time. When the image size is 512 × 480 pixels, six iterations of our algorithm only spend about 10 ms. Retinal blood vessels as well as cells in retinal images are restored by our algorithm, and the PSFs are also revised. Retinal images with and without adaptive optics are both restored. The results show that Incremental Wiener filter reduces the noises and improve the image quality.

  9. High-Resolution Adaptive Optics Scanning Laser Ophthalmoscope with Dual Deformable Mirrors

    Chen, D C; Jones, S M; Silva, D A; Olivier, S S

    2006-08-11

    Adaptive optics scanning laser ophthalmoscope (AO SLO) has demonstrated superior optical quality of non-invasive view of the living retina, but with limited capability of aberration compensation. In this paper, we demonstrate that the use of dual deformable mirrors can effectively compensate large aberrations in the human retina. We used a bimorph mirror to correct large-stroke, low-order aberrations and a MEMS mirror to correct low-stroke, high-order aberration. The measured ocular RMS wavefront error of a test subject was 240 nm without AO compensation. We were able to reduce the RMS wavefront error to 90 nm in clinical settings using one deformable mirror for the phase compensation and further reduced the wavefront error to 48 nm using two deformable mirrors. Compared with that of a single-deformable-mirror SLO system, dual AO SLO offers much improved dynamic range and better correction of the wavefront aberrations. The use of large-stroke deformable mirrors provided the system with the capability of axial sectioning different layers of the retina. We have achieved diffraction-limited in-vivo retinal images of targeted retinal layers such as photoreceptor layer, blood vessel layer and nerve fiber layers with the combined phase compensation of the two deformable mirrors in the AO SLO.

  10. High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors for large aberration correction

    Chen, D; Jones, S M; Silva, D A; Olivier, S S

    2007-01-25

    Scanning laser ophthalmoscopes with adaptive optics (AOSLO) have been shown previously to provide a noninvasive, cellular-scale view of the living human retina. However, the clinical utility of these systems has been limited by the available deformable mirror technology. In this paper, we demonstrate that the use of dual deformable mirrors can effectively compensate large aberrations in the human retina, making the AOSLO system a viable, non-invasive, high-resolution imaging tool for clinical diagnostics. We used a bimorph deformable mirror to correct low-order aberrations with relatively large amplitudes. The bimorph mirror is manufactured by Aoptix, Inc. with 37 elements and 18 {micro}m stroke in a 10 mm aperture. We used a MEMS deformable mirror to correct high-order aberrations with lower amplitudes. The MEMS mirror is manufactured by Boston Micromachine, Inc with 144 elements and 1.5 {micro}m stroke in a 3 mm aperture. We have achieved near diffraction-limited retina images using the dual deformable mirrors to correct large aberrations up to {+-} 3D of defocus and {+-} 3D of cylindrical aberrations with test subjects. This increases the range of spectacle corrections by the AO systems by a factor of 10, which is crucial for use in the clinical environment. This ability for large phase compensation can eliminate accurate refractive error fitting for the patients, which greatly improves the system ease of use and efficiency in the clinical environment.

  11. “Lucky Averaging”: Quality improvement on Adaptive Optics Scanning Laser Ophthalmoscope Images

    Huang, Gang; Zhong, Zhangyi; Zou, Weiyao; Burns, Stephen A.

    2011-01-01

    Adaptive optics(AO) has greatly improved retinal image resolution. However, even with AO, temporal and spatial variations in image quality still occur due to wavefront fluctuations, intra-frame focus shifts and other factors. As a result, aligning and averaging images can produce a mean image that has lower resolution or contrast than the best images within a sequence. To address this, we propose an image post-processing scheme called “lucky averaging”, analogous to lucky imaging (Fried, 1978...

  12. Optimisation of the ion optical range adaptation method for tracking of moving tumours with scanned ion beams

    Currently an ion optical solution for beam tracking of moving targets with scanned ion beams is being investigated at GSI for the treatment of moving tumours, such as lung cancer. Beam tracking compensates target motion by adapting the lateral beam position as well as the beam range according to the motion parameters. Tracking of the lateral position is achieved via scanning magnets. For range adaptation the proposed ion optical solution uses an energy degrader with variable thickness inserted into the therapy beam line downstream of the synchrotron. By deflecting the particle beam via dipole magnets to different positions on the degrader, the range of the Bragg peak can be adjusted in real-time. Hence density changes due to organ motion can be compensated for each target spot during beam scanning. In order to reach a beam quality suitable for therapy with this method, systematic studies on the ion optical parameters have to be carried out. Different degrader designs (ramp or discrete step shaped), different materials (e.g. PMMA, graphite), as well as optimised degrader positions have been examined. The results of simulated beam profiles are presented.

  13. High-resolution imaging of the retinal nerve fiber layer in normal eyes using adaptive optics scanning laser ophthalmoscopy.

    Kohei Takayama

    Full Text Available PURPOSE: To conduct high-resolution imaging of the retinal nerve fiber layer (RNFL in normal eyes using adaptive optics scanning laser ophthalmoscopy (AO-SLO. METHODS: AO-SLO images were obtained in 20 normal eyes at multiple locations in the posterior polar area and a circular path with a 3-4-mm diameter around the optic disc. For each eye, images focused on the RNFL were recorded and a montage of AO-SLO images was created. RESULTS: AO-SLO images for all eyes showed many hyperreflective bundles in the RNFL. Hyperreflective bundles above or below the fovea were seen in an arch from the temporal periphery on either side of a horizontal dividing line to the optic disc. The dark lines among the hyperreflective bundles were narrower around the optic disc compared with those in the temporal raphe. The hyperreflective bundles corresponded with the direction of the striations on SLO red-free images. The resolution and contrast of the bundles were much higher in AO-SLO images than in red-free fundus photography or SLO red-free images. The mean hyperreflective bundle width around the optic disc had a double-humped shape; the bundles at the temporal and nasal sides of the optic disc were narrower than those above and below the optic disc (P<0.001. RNFL thickness obtained by optical coherence tomography correlated with the hyperreflective bundle widths on AO-SLO (P<0.001 CONCLUSIONS: AO-SLO revealed hyperreflective bundles and dark lines in the RNFL, believed to be retinal nerve fiber bundles and Müller cell septa. The widths of the nerve fiber bundles appear to be proportional to the RNFL thickness at equivalent distances from the optic disc.

  14. Tracking features in retinal images of adaptive optics confocal scanning laser ophthalmoscope using KLT-SIFT algorithm.

    Li, Hao; Lu, Jing; Shi, Guohua; Zhang, Yudong

    2010-01-01

    With the use of adaptive optics (AO), high-resolution microscopic imaging of living human retina in the single cell level has been achieved. In an adaptive optics confocal scanning laser ophthalmoscope (AOSLO) system, with a small field size (about 1 degree, 280 μm), the motion of the eye severely affects the stabilization of the real-time video images and results in significant distortions of the retina images. In this paper, Scale-Invariant Feature Transform (SIFT) is used to abstract stable point features from the retina images. Kanade-Lucas-Tomasi(KLT) algorithm is applied to track the features. With the tracked features, the image distortion in each frame is removed by the second-order polynomial transformation, and 10 successive frames are co-added to enhance the image quality. Features of special interest in an image can also be selected manually and tracked by KLT. A point on a cone is selected manually, and the cone is tracked from frame to frame. PMID:21258443

  15. Objective assessment of foveal cone loss ratio in surgically closed macular holes using adaptive optics scanning laser ophthalmoscopy.

    Satoshi Yokota

    Full Text Available PURPOSE: To use adaptive optics scanning laser ophthalmoscopy (AO-SLO to quantify cone loss ratio in the foveola in order to assess foveal cone status and to investigate relationships between foveal structural abnormalities and visual function in patients with macular hole (MH after surgery. METHODS: We evaluated 10 normal eyes of 10 healthy volunteers and 19 eyes of 18 patients in whom anatomically successful MH closure had been performed. All subjects underwent a comprehensive ophthalmologic examination that included measurements of spectral-domain optical coherence tomography and AO-SLO. RESULTS: On AO-SLO regular cone mosaic was seen in all normal eyes whereas dark regions suggesting cone loss were seen in all eyes after MH repair. Visual acuity was better in eyes without dark regions at the center of the fovea than in eyes with them (P = 0.001. Cone loss ratio in the foveola correlated with postoperative visual acuity (P<0.001, mean foveal sensitivity (P = 0.029, thinner inner and outer segments at the center of the fovea (P = 0.002, larger size of the disrupted inner and outer segment junction line (P = 0.018, and cone outer segment tip line (P<0.001. Cone loss ratio in the foveola was significantly greater in eyes that had moderately reflective foveal lesions after surgery (P = 0.006. CONCLUSIONS: AO-SLO is a useful means of assessing foveal cone damage objectively and quantitatively. The location and extent of cone damage, especially if it involves the foveola, is an important factor determining visual function after MH surgery.

  16. [Adaptive optics for ophthalmology].

    Saleh, M

    2016-04-01

    Adaptive optics is a technology enhancing the visual performance of an optical system by correcting its optical aberrations. Adaptive optics have already enabled several breakthroughs in the field of visual sciences, such as improvement of visual acuity in normal and diseased eyes beyond physiologic limits, and the correction of presbyopia. Adaptive optics technology also provides high-resolution, in vivo imaging of the retina that may eventually help to detect the onset of retinal conditions at an early stage and provide better assessment of treatment efficacy. PMID:27019970

  17. Solar Adaptive Optics

    Thomas R. Rimmele

    2011-06-01

    Full Text Available Adaptive optics (AO has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO and Ground-Layer AO (GLAO will be given.

  18. Adaptive optical processors.

    Ghosh, A

    1989-06-15

    There are two different approaches for improving the accuracy of analog optical associative processors: postprocessing with a bimodal system and preprocessing with a preconditioner. These two approaches can be combined to develop an adaptive optical multiprocessor that can adjust the computational steps depending on the data and produce solutions of linear algebra problems with a specified accuracy in a given amount of time. PMID:19752909

  19. Fluorescent scanning laser ophthalmoscopy for cellular resolution in vivo mouse retinal imaging: benefits and drawbacks of implementing adaptive optics (Conference Presentation)

    Zhang, Pengfei; Goswami, Mayank; Pugh, Edward N.; Zawadzki, Robert J.

    2016-03-01

    Scanning Laser Ophthalmoscopy (SLO) is a very important imaging tool in ophthalmology research. By combing with Adaptive Optics (AO) technique, AO-SLO can correct for ocular aberrations resulting in cellular level resolution, allowing longitudinal studies of single cells morphology in the living eyes. The numerical aperture (NA) sets the optical resolution that can be achieve in the "classical" imaging systems. Mouse eye has more than twice NA of the human eye, thus offering theoretically higher resolution. However, in most SLO based imaging systems the imaging beam size at mouse pupil sets the NA of that instrument, while most of the AO-SLO systems use almost the full NA of the mouse eye. In this report, we first simulated the theoretical resolution that can be achieved in vivo for different imaging beam sizes (different NA), assumingtwo cases: no aberrations and aberrations based on published mouse ocular wavefront data. Then we imaged mouse retinas with our custom build SLO system using different beam sizes to compare these results with theory. Further experiments include comparison of the SLO and AO-SLO systems for imaging different type of fluorescently labeled cells (microglia, ganglion, photoreceptors, etc.). By comparing those results and taking into account systems complexity and ease of use, the benefits and drawbacks of two imaging systems will be discussed.

  20. Feature Adaptive Sampling for Scanning Electron Microscopy

    Dahmen, Tim; Engstler, Michael; Pauly, Christoph; Trampert, Patrick; de Jonge, Niels; Mücklich, Frank; Slusallek, Philipp

    2016-01-01

    A new method for the image acquisition in scanning electron microscopy (SEM) was introduced. The method used adaptively increased pixel-dwell times to improve the signal-to-noise ratio (SNR) in areas of high detail. In areas of low detail, the electron dose was reduced on a per pixel basis, and a-posteriori image processing techniques were applied to remove the resulting noise. The technique was realized by scanning the sample twice. The first, quick scan used small pixel-dwell times to gener...

  1. Optical Profilometers Using Adaptive Signal Processing

    Hall, Gregory A.; Youngquist, Robert; Mikhael, Wasfy

    2006-01-01

    A method of adaptive signal processing has been proposed as the basis of a new generation of interferometric optical profilometers for measuring surfaces. The proposed profilometers would be portable, hand-held units. Sizes could be thus reduced because the adaptive-signal-processing method would make it possible to substitute lower-power coherent light sources (e.g., laser diodes) for white light sources and would eliminate the need for most of the optical components of current white-light profilometers. The adaptive-signal-processing method would make it possible to attain scanning ranges of the order of decimeters in the proposed profilometers.

  2. Scanning Tunneling Optical Resonance Microscopy

    Bailey, Sheila; Wilt, Dave; Raffaelle, Ryne; Gennett, Tom; Tin, Padetha; Lau, Janice; Castro, Stephanie; Jenkins, Philip; Scheiman, Dave

    2003-01-01

    Scanning tunneling optical resonance microscopy (STORM) is a method, now undergoing development, for measuring optoelectronic properties of materials and devices on the nanoscale by means of a combination of (1) traditional scanning tunneling microscopy (STM) with (2) tunable laser spectroscopy. In STORM, an STM tip probing a semiconductor is illuminated with modulated light at a wavelength in the visible-to-near-infrared range and the resulting photoenhancement of the tunneling current is measured as a function of the illuminating wavelength. The photoenhancement of tunneling current occurs when the laser photon energy is sufficient to excite charge carriers into the conduction band of the semiconductor. Figure 1 schematically depicts a proposed STORM apparatus. The light for illuminating the semiconductor specimen at the STM would be generated by a ring laser that would be tunable across the wavelength range of interest. The laser beam would be chopped by an achromatic liquid-crystal modulator. A polarization-maintaining optical fiber would couple the light to the tip/sample junction of a commercial STM. An STM can be operated in one of two modes: constant height or constant current. A STORM apparatus would be operated in the constant-current mode, in which the height of the tip relative to the specimen would be varied in order to keep the tunneling current constant. In this mode, a feedback control circuit adjusts the voltage applied to a piezoelectric actuator in the STM that adjusts the height of the STM tip to keep the tunneling current constant. The exponential relationship between the tunneling current and tip-to-sample distance makes it relatively easy to implement this mode of operation. The choice of method by which the photoenhanced portion of the tunneling current would be measured depends on choice of the frequency at which the input illumination would be modulated (chopped). If the frequency of modulation were low enough (typically < 10 Hz) that the

  3. New Adaptive Optics Technique Demonstrated

    2007-03-01

    Enrico Marchetti, the MAD Project Manager. "The system behaviour was very stable and the acquisition and closed loop operations were fast and smooth." ESO PR Photo 19d/07 ESO PR Photo 19d/07 AO Strehl Maps After routine checks on the closed loop stability and preliminary scans of the system parameters, the telescope was pointed to Omega Centauri, a very crowded area in the sky, and an optimal test case for extracting accurate measurements on AO correction performance with good spatial resolution on the FoV. Three 11 magnitude stars within a circle of ~1.5 arcmin diameter were selected as the baseline for wavefront sensing and the MCAO loop was closed successfully. Omega Centauri will be observed for several nights more, in order to test the AO correction in different seeing conditions. "This is a tremendous achievement that opens new perspectives in the era of extremely large telescopes," said Catherine Cesarsky, ESO's Director General. " "I am very proud of the ESO staff and wish to congratulate all involved for their prowess," she added. The MAD images perfectly show the validity of the concept. The image quality was almost uniform over the whole field of view and beautifully corrected for some of the atmospheric turbulence. More Information The Multi-Conjugate Adaptive Optics (MCAO) Demonstrator MAD was built by ESO in collaboration with the Astronomical Observatories of Arcetri and Padova (Italy) and the Faculdade de Ciencias da Universidade de Lisboa (Portugal), as a pathfinder for 2nd generation VLT instrumentation and the European Extremely Large Telescope project. The MCAO technique is based on probing the atmospheric turbulence on a large volume of atmosphere by means of several wavefront sensors (WFS), which point at different locations in the observed field of view, and by means of several deformable mirrors - optically conjugated at different altitudes on the atmosphere above the telescope - which correct for the atmospheric disturbance. The signals provided

  4. Handbook of optical and laser scanning

    Marshall, Gerald F

    2011-01-01

    From its initial publication titled Laser Beam Scanning in 1985 to Handbook of Optical and Laser Scanning, now in its second edition, this reference has kept professionals and students at the forefront of optical scanning technology. Carefully and meticulously updated in each iteration, the book continues to be the most comprehensive scanning resource on the market. It examines the breadth and depth of subtopics in the field from a variety of perspectives. The Second Edition covers: Technologies such as piezoelectric devices Applications of laser scanning such as Ladar (laser radar) Underwater

  5. FDM adaptive optics technology development

    Thibault, Simon; Doucet, Michel; Rioux, Myriam

    2004-10-01

    INO supports research on Ferrofluidic Deformable Mirror (FDM) adaptive optics technologies and, as such, its research activities include the development and characterization of FDM and high resolution (ExAO) adaptive optics systems using such FDMs. Liquid mirrors have long been recognized as a potential low-cost alternative to conventional solid mirrors. Since the trend is towards advanced adaptive optics systems, a need for deformable mirrors with a large number of low-cost actuators exists. This paper presents updated experimental results using a new INO FDM prototype (271 actuators, 50 µm stroke) as well as a theoretical model of surface behaviors.

  6. The research and development of the adaptive optics in ophthalmology

    Wu, Chuhan; Zhang, Xiaofang; Chen, Weilin

    2015-08-01

    Recently the combination of adaptive optics and ophthalmology has made great progress and become highly effective. The retina disease is diagnosed by retina imaging technique based on scanning optical system, so the scanning of eye requires optical system characterized by great ability of anti-moving and optical aberration correction. The adaptive optics possesses high level of adaptability and is available for real time imaging, which meets the requirement of medical retina detection with accurate images. Now the Scanning Laser Ophthalmoscope and the Optical Coherence Tomography are widely used, which are the core techniques in the area of medical retina detection. Based on the above techniques, in China, a few adaptive optics systems used for eye medical scanning have been designed by some researchers from The Institute of Optics And Electronics of CAS(The Chinese Academy of Sciences); some foreign research institutions have adopted other methods to eliminate the interference of eye moving and optical aberration; there are many relevant patents at home and abroad. In this paper, the principles and relevant technique details of the Scanning Laser Ophthalmoscope and the Optical Coherence Tomography are described. And the recent development and progress of adaptive optics in the field of eye retina imaging are analyzed and summarized.

  7. Maritime adaptive optics beam control

    Corley, Melissa S.

    2010-01-01

    The Navy is interested in developing systems for horizontal, near ocean surface, high-energy laser propagation through the atmosphere. Laser propagation in the maritime environment requires adaptive optics control of aberrations caused by atmospheric distortion. In this research, a multichannel transverse adaptive filter is formulated in Matlab's Simulink environment and compared to a complex lattice filter that has previously been implemented in large system simulations. The adaptive fil...

  8. Adaptive Optics for Large Telescopes

    The use of adaptive optics was originally conceived by astronomers seeking to correct the blurring of images made with large telescopes due to the effects of atmospheric turbulence. The basic idea is to use a device, a wave front corrector, to adjust the phase of light passing through an optical system, based on some measurement of the spatial variation of the phase transverse to the light propagation direction, using a wave front sensor. Although the original concept was intended for application to astronomical imaging, the technique can be more generally applied. For instance, adaptive optics systems have been used for several decades to correct for aberrations in high-power laser systems. At Lawrence Livermore National Laboratory (LLNL), the world's largest laser system, the National Ignition Facility, uses adaptive optics to correct for aberrations in each of the 192 beams, all of which must be precisely focused on a millimeter scale target in order to perform nuclear physics experiments

  9. Adaptive Optics for Large Telescopes

    Olivier, S

    2008-06-27

    The use of adaptive optics was originally conceived by astronomers seeking to correct the blurring of images made with large telescopes due to the effects of atmospheric turbulence. The basic idea is to use a device, a wave front corrector, to adjust the phase of light passing through an optical system, based on some measurement of the spatial variation of the phase transverse to the light propagation direction, using a wave front sensor. Although the original concept was intended for application to astronomical imaging, the technique can be more generally applied. For instance, adaptive optics systems have been used for several decades to correct for aberrations in high-power laser systems. At Lawrence Livermore National Laboratory (LLNL), the world's largest laser system, the National Ignition Facility, uses adaptive optics to correct for aberrations in each of the 192 beams, all of which must be precisely focused on a millimeter scale target in order to perform nuclear physics experiments.

  10. All-optical scanning acoustic microscope

    Sharples, Steve David

    2003-01-01

    In this thesis a new instrument, the all-optical scanning acoustic microscope (O-SAM) is presented, it is a non contact scanning acoustic microscope (SAM) which uses lasers to both generate and detect surface acoustics waves (SAWs) The non contact nature of the O-SAM overcomes some difficulties associated with conventional SAMs because of the couplant and surface contact involved. This O-SAM also overcomes many of the problems associated with conventional laser ultrasound systems including th...

  11. Adaptive optics projects at ESO

    Hubin, Norbert N.; Arsenault, Robin; Bonnet, Henri; Conan, Rodolphe; Delabre, Bernard; Donaldson, Robert; Dupuy, Christophe; Fedrigo, Enrico; Ivanescu, L.; Kasper, Markus E.; Kissler-Patig, Markus; Lizon, Jean-Luis; Le Louarn, Miska; Marchetti, Enrico; Paufique, J.; Stroebele, Stefan; Tordo, Sebastien

    2003-02-01

    Over the past two years ESO has reinforced its efforts in the field of Adaptive Optics. The AO team has currently the challenging objectives to provide 8 Adaptive Optics systems for the VLT in the coming years and has now a world-leading role in that field. This paper will review all AO projects and plans. We will present an overview of the Nasmyth Adaptive Optics System (NAOS) with its infrared imager CONICA installed successfully at the VLT last year. Sodium Laser Guide Star plans will be introduced. The status of the 4 curvature AO systems (MACAO) developed for the VLT interferometer will be discussed. The status of the SINFONI AO module developed to feed the infrared integral field spectrograph (SPIFFI) will be presented. A short description of the Multi-conjugate Adaptive optics Demonstrator MAD and its instrumentation will be introduced. Finally, we will present the plans for the VLT second-generation AO systems and the researches performed in the frame of OWL.

  12. Adaptive Optics for Industry and Medicine

    Dainty, Christopher

    2008-01-01

    wavefront corrector ophthalmic adaptive optics: design and alignment (oral paper) / Alfredo Dubra and David Williams. High speed simultaneous SLO/OCT imaging of the human retina with adaptive optics (oral paper) / M. Pircher ... [et al.]. Characterization of an AO-OCT system (oral paper) / Julia W. Evans ... [et al.]. Adaptive optics optical coherence tomography for retina imaging (oral paper) / Guohua Shi ... [et al.]. Development, calibration and performance of an electromagnetic-mirror-based adaptive optics system for visual optics (oral paper) / Enrique Gambra ... [et al.]. Adaptive eye model (poster paper) / Sergey O. Galetskzy and Alexty V. Kudryashov. Adaptive optics system for retinal imaging based on a pyramid wavefront sensor (poster paper) / Sabine Chiesa ... [et al.]. Modeling of non-stationary dynamic ocular aberrations (poster paper) / Conor Leahy and Chris Dainty. High-order aberrations and accommodation of human eye (poster paper) / Lixia Xue ... [et al.]. Electromagnetic deformable mirror: experimental assessment and first ophthalmic applications (poster paper) / L. Vabre ... [et al.]. Correcting ocular aberrations in optical coherence tomography (poster paper) / Simon Tuohy ... [et al.] -- pt. 4. Adaptive optics in optical storage and microscopy. The application of liquid crystal aberration compensator for the optical disc systems (invited paper) / Masakazu Ogasawara. Commercialization of the adaptive scanning optical microscope (ASOM) (oral paper) / Benjamin Potsaid ... [et al.]. A practical implementation of adaptive optics for aberration compensation in optical microscopy (oral paper) / A. J. Wright ... [et al.]. Active focus locking in an optically sectioning microscope using adaptive optics (poster paper) / S. Poland, A. J. Wright, J. M. Girkin. Towards four dimensional particle tracking for biological applications / Heather I. Campbell ... [et al.]. Adaptive optics for microscopy (poster paper) / Xavier Levecq -- pt. 5. Adaptive optics in lasers

  13. Optical-CT scanning of polymer gels

    The application of optical-CT scanning to achieve accurate high-resolution 3D dosimetry is a subject of current interest. The purpose of this paper is to provide a brief overview of past research and achievements in optical-CT polymer gel dosimetry, and to review current issues and challenges. The origins of optical-CT imaging of light-scattering polymer gels are reviewed. Techniques to characterize and optimize optical-CT performance are presented. Particular attention is given to studies of artifacts in optical-CT imaging, an important area that has not been well studied to date. The technique of optical-CT simulation by Monte-Carlo modeling is introduced as a tool to explore such artifacts. New simulation studies are presented and compared with experimental data

  14. Optical transmission scanning for damage quantification in impacted GFRP composites

    Khomenko, Anton; Karpenko, Oleksii; Koricho, Ermias G.; Haq, Mahmoodul; Cloud, Gary L.; Udpa, Lalita

    2016-04-01

    Glass fiber reinforced polymer (GFRP) composites constitute nearly 90% of the global composites market and are extensively used in aerospace, marine, automotive and construction industries. While their advantages of lightweight and superior mechanical properties are well explored, non-destructive evaluation (NDE) techniques that allow for damage/defect detection and assessment of its extent and severity are not fully developed. Some of the conventional NDE techniques for GFRPs include ultrasonics, X-ray, IR thermography, and a variety of optical techniques. Optical methods, specifically measuring the transmission properties (e.g. ballistic optical imaging) of specimens, provide noninvasive, safe, inexpensive, and compact solutions and are commonly used in biomedical applications. In this work, this technique is adapted for rapid NDE of GFRP composites. In its basic form, the system for optical transmission scanning (OTS) consists of a light source (laser diode), a photo detector and a 2D translation stage. The proposed technique provides high-resolution, rapid and non-contact OT (optical transmittance)-scans, and does not require any coupling. The OTS system was used for inspection of pristine and low-velocity impacted (damaged) GFRP samples. The OT-scans were compared with conventional ultrasonic C-scans and showed excellent agreement but with better resolution. Overall, the work presented lays the groundwork for cost-effective, non-contact, and rapid NDE of GFRP composite structures.

  15. Intelligent Optical Systems Using Adaptive Optics

    Clark, Natalie

    2012-01-01

    Until recently, the phrase adaptive optics generally conjured images of large deformable mirrors being integrated into telescopes to compensate for atmospheric turbulence. However, the development of smaller, cheaper devices has sparked interest for other aerospace and commercial applications. Variable focal length lenses, liquid crystal spatial light modulators, tunable filters, phase compensators, polarization compensation, and deformable mirrors are becoming increasingly useful for other imaging applications including guidance navigation and control (GNC), coronagraphs, foveated imaging, situational awareness, autonomous rendezvous and docking, non-mechanical zoom, phase diversity, and enhanced multi-spectral imaging. The active components presented here allow flexibility in the optical design, increasing performance. In addition, the intelligent optical systems presented offer advantages in size and weight and radiation tolerance.

  16. A simplified adaptive optics system

    Ivanescu, Liviu; Racine, René; Nadeau, Daniel

    2003-02-01

    Affordable adaptive optics on small telescopes allow to introduce the technology to a large community and provide opportunities to train new specialists in the field. We have developed a low order, low cost adaptive optics system for the 1.6m telescope of the Mont Megantic Observatory. The system corrects tip-tilt, focus, astigmatisms and one trefoil term. It explores a number of new approaches. The sensor receives a single out-of-focus image of the reference star. The central obstruction of the telescope can free the focus detection from the effect of seeing and allows a very small defocus. The deformable mirror is profiled so as to preserve a parabolic shape under pressure from actuators located at its edge. A separate piezoelectric platform drives the tilt mirror.

  17. Contrast-based sensorless adaptive optics for retinal imaging

    Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T. O.; He, Zheng; Metha, Andrew

    2015-01-01

    Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In thi...

  18. Wavefront sensorless adaptive optics ophthalmoscopy in the human eye

    Hofer, Heidi; Sredar, Nripun; Queener, Hope; Li, Chaohong; Porter, Jason

    2011-07-01

    Wavefront sensor noise and fidelity place a fundamental limit on achievable image quality in current adaptive optics ophthalmoscopes. Additionally, the wavefront sensor `beacon' can interfere with visual experiments. We demonstrate real-time (25 Hz), wavefront sensorless adaptive optics imaging in the living human eye with image quality rivaling that of wavefront sensor based control in the same system. A stochastic parallel gradient descent algorithm directly optimized the mean intensity in retinal image frames acquired with a confocal adaptive optics scanning laser ophthalmoscope (AOSLO). When imaging through natural, undilated pupils, both control methods resulted in comparable mean image intensities. However, when imaging through dilated pupils, image intensity was generally higher following wavefront sensor-based control. Despite the typically reduced intensity, image contrast was higher, on average, with sensorless control. Wavefront sensorless control is a viable option for imaging the living human eye and future refinements of this technique may result in even greater optical gains.

  19. Optical characterication of probes for photon scanning tunnelling microscopy

    Vohnsen, Brian; Bozhevolnyi, Sergey I.

    The photon scanning tunnelling microscope is a well-established member of the family of scanning near-field optical microscopes used for optical imaging at the sub-wavelength scale. The quality of the probes, typically pointed uncoated optical fibres, used is however difficult to evaluate in a...

  20. Electron density measurements for plasma adaptive optics

    Neiswander, Brian; Matlis, Eric; Corke, Thomas

    2014-01-01

    This study investigates the feasibility of using plasma as an adaptive optical medium for applications such as beam steering, wavefront control, and adaptive filtering. The optical path length of light propagating through plasma depends on the plasma electron density, which may be controlled via the prescribed voltage, frequency, pressure, gas, and electrode geometry. Accurate control of the optical path length requires characterization of the electron density over all operating conditions. E...

  1. Adaptive optical interconnects: the ADDAPT project

    Henker, Ronny; Pliva, Jan; Khafaji, Mahdi; Ellinger, Frank; Toifl, Thomas; Offrein, Bert; Cevrero, Alessandro; Oezkaya, Ilter; Seifried, Marc; Ledentsov, Nikolay; Kropp, Joerg-R.; Shchukin, Vitaly; Zoldak, Martin; Halmo, Leos; Turkiewicz, Jaroslaw; Meredith, Wyn; Eddie, Iain; Georgiades, Michael; Charalambides, Savvas; Duis, Jeroen; van Leeuwen, Pieter

    2015-09-01

    Existing optical networks are driven by dynamic user and application demands but operate statically at their maximum performance. Thus, optical links do not offer much adaptability and are not very energy-efficient. In this paper a novel approach of implementing performance and power adaptivity from system down to optical device, electrical circuit and transistor level is proposed. Depending on the actual data load, the number of activated link paths and individual device parameters like bandwidth, clock rate, modulation format and gain are adapted to enable lowering the components supply power. This enables flexible energy-efficient optical transmission links which pave the way for massive reductions of CO2 emission and operating costs in data center and high performance computing applications. Within the FP7 research project Adaptive Data and Power Aware Transceivers for Optical Communications (ADDAPT) dynamic high-speed energy-efficient transceiver subsystems are developed for short-range optical interconnects taking up new adaptive technologies and methods. The research of eight partners from industry, research and education spanning seven European countries includes the investigation of several adaptive control types and algorithms, the development of a full transceiver system, the design and fabrication of optical components and integrated circuits as well as the development of high-speed, low loss packaging solutions. This paper describes and discusses the idea of ADDAPT and provides an overview about the latest research results in this field.

  2. Adaptive noise Wiener filter for scanning electron microscope imaging system.

    Sim, K S; Teh, V; Nia, M E

    2016-03-01

    Noise on scanning electron microscope (SEM) images is studied. Gaussian noise is the most common type of noise in SEM image. We developed a new noise reduction filter based on the Wiener filter. We compared the performance of this new filter namely adaptive noise Wiener (ANW) filter, with four common existing filters as well as average filter, median filter, Gaussian smoothing filter and the Wiener filter. Based on the experiments results the proposed new filter has better performance on different noise variance comparing to the other existing noise removal filters in the experiments. SCANNING 38:148-163, 2016. © 2015 Wiley Periodicals, Inc. PMID:26235517

  3. Five modified boundary scan adaptive test generation algorithms

    Niu Chunping; Ren Zheping; Yao Zongzhong

    2006-01-01

    To study the diagnostic problem of Wire-OR (W-O) interconnect fault of PCB (Printed Circuit Board), five modified boundary scan adaptive algorithms for interconnect test are put forward. These algorithms apply Global-diagnosis sequence algorithm to replace the equal weight algorithm of primary test, and the test time is shortened without changing the fault diagnostic capability. The descriptions of five modified adaptive test algorithms are presented, and the capability comparison between the modified algorithm and the original algorithm is made to prove the validity of these algorithms.

  4. Computational adaptive optics of the human retina

    South, Fredrick A.; Liu, Yuan-Zhi; Carney, P. Scott; Boppart, Stephen A.

    2016-03-01

    It is well known that patient-specific ocular aberrations limit imaging resolution in the human retina. Previously, hardware adaptive optics (HAO) has been employed to measure and correct these aberrations to acquire high-resolution images of various retinal structures. While the resulting aberration-corrected images are of great clinical importance, clinical use of HAO has not been widespread due to the cost and complexity of these systems. We present a technique termed computational adaptive optics (CAO) for aberration correction in the living human retina without the use of hardware adaptive optics components. In CAO, complex interferometric data acquired using optical coherence tomography (OCT) is manipulated in post-processing to adjust the phase of the optical wavefront. In this way, the aberrated wavefront can be corrected. We summarize recent results in this technology for retinal imaging, including aberration-corrected imaging in multiple retinal layers and practical considerations such as phase stability and image optimization.

  5. Teaching Optics and Systems Engineering With Adaptive Optics Workbenches

    Harrington, David; Hunter, Lisa; Max, Claire; Hoffmann, Mark; Pitts, Mark; Armstrong, J D

    2010-01-01

    Adaptive optics workbenches are fully functional optical systems that can be used to illustrate and teach a variety of concepts and cognitive processes. Four systems have been funded, designed and constructed by various institutions and people as part of education programs associated with the Center for Adaptive Optics, the Professional Development Program and the Institute for Science and Engineer Educators. Activities can range from first-year undergraduate explorations to professional level training. These workbenches have been used in many venues including the Center for Adaptive Optics AO Summer School, the Maui Community College hosted Akamai Maui Short Course, classrooms, training of new staff in laboratories and other venues. The activity content has focused on various elements of systems thinking, characterization, feedback and system control, basic optics and optical alignment as well as advanced topics such as phase conjugation, wave-front sensing and correction concepts and system design. The work...

  6. Novel optical scanning cryptography using Fresnel telescope imaging.

    Yan, Aimin; Sun, Jianfeng; Hu, Zhijuan; Zhang, Jingtao; Liu, Liren

    2015-07-13

    We propose a new method called modified optical scanning cryptography using Fresnel telescope imaging technique for encryption and decryption of remote objects. An image or object can be optically encrypted on the fly by Fresnel telescope scanning system together with an encryption key. For image decryption, the encrypted signals are received and processed with an optical coherent heterodyne detection system. The proposed method has strong performance through use of secure Fresnel telescope scanning with orthogonal polarized beams and efficient all-optical information processing. The validity of the proposed method is demonstrated by numerical simulations and experimental results. PMID:26191901

  7. Pulse front adaptive optics in multiphoton microscopy

    Sun, B.; Salter, P. S.; Booth, M. J.

    2016-03-01

    The accurate focusing of ultrashort laser pulses is extremely important in multiphoton microscopy. Using adaptive optics to manipulate the incident ultrafast beam in either the spectral or spatial domain can introduce significant benefits when imaging. Here we introduce pulse front adaptive optics: manipulating an ultrashort pulse in both the spatial and temporal domains. A deformable mirror and a spatial light modulator are operated in concert to modify contours of constant intensity in space and time within an ultrashort pulse. Through adaptive control of the pulse front, we demonstrate an enhancement in the measured fluorescence from a two photon microscope.

  8. Development of large aperture composite adaptive optics

    Kmetík, Viliam; Vítovec, Bohumil; Jiran, L.; Němcová, Š.; Zicha, J.; Inneman, A.; Mikuličková, L.; Pavlica, R.

    Vol. 9442. Bellingham: SPIE-INT SOC OPTICAL ENGINEERING, 2015 - (Kovačičinová, J.; Vít, T.), 94420L-94420L. (SPIE). ISBN 978-1-62841-557-5. ISSN 0277-786X. [Optics and Measurement Conference 2014 (OaM 2014). Liberec (CZ), 07.10.2014-10.10.2014] R&D Projects: GA TA ČR TA01010878 Institutional support: RVO:61389021 Keywords : Large aperture * adaptive optics * deformable mirror * bimorph deformable mirror * composite optics Subject RIV: BH - Optics, Masers, Lasers http://dx.doi.org/10.1117/12.2175713 .

  9. A Miniaturized Adaptive Optic Device for Optical Telecommunications Project

    National Aeronautics and Space Administration — To advance the state-of-the-art uplink laser communication technology, new adaptive optic beam compensation techniques are needed for removing various time-varying...

  10. Optical ballast and adaptive dynamic stable resonator

    Zhang Guang-Yin; Jiao Zhi-Yong; Guo Shu-Guang; Zhang Xiao-Hua; Gu Xue-Wen; Yan Cai-Fan; Wu Ding-Er; Song Feng

    2004-01-01

    In this paper a new concept of ‘optical ballast' is put forward. Optical ballast is a kind of device that can be used to decrease the variation and fluctuation of the propagation characteristics of light beams caused by the disturbance of refractive index of the medium. To illustrate the idea clearly and concretely, a fully adaptive dynamic stable solid-state laser resonator is presented as application example of optical ballast.

  11. Overview of Advanced LIGO Adaptive Optics

    Brooks, Aidan F.; Abbott, Benjamin; Arain, Muzammil A.; Ciani, Giacomo; Cole, Ayodele; Grabeel, Greg; Gustafson, Eric; Guido, Chris; Heintze, Matthew; Heptonstall, Alastair; Jacobson, Mindy; KIM, WON; King, Eleanor; Lynch, Alexander; O'Connor, Stephen

    2016-01-01

    This is an overview of the adaptive optics used in Advanced LIGO (aLIGO), known as the thermal compensation system (TCS). The thermal compensation system was designed to minimize thermally-induced spatial distortions in the interferometer optical modes and to provide some correction for static curvature errors in the core optics of aLIGO. The TCS is comprised of ring heater actuators, spatially tunable CO$_{2}$ laser projectors and Hartmann wavefront sensors. The system meets the requirements...

  12. Solar Ground-Layer Adaptive Optics

    Ren, Deqing; Jolissaint, Laurent; Zhang, Xi; Dou, Jianpei; Chen, Rui; Zhao, Gang; Zhu, Yongtian

    2015-05-01

    Solar conventional adaptive optics (CAO) with one deformable-mirror uses a small field-of-view (FOV) for wave-front sensing, which yields a small corrected FOV for high-resolution imaging. Solar activities occur in a two-dimensional extended FOV and studies of solar magnetic fields need high-resolution imaging over a FOV at least 60''. Recently, solar Tomography Adaptive Optics (TAO) and Multi-Conjugate Adaptive Optics (MCAO) were being developed to overcome this problem of small AO corrected FOV. However, for both TAO and MCAO, wavefront distortions need to be tomographically reconstructed from measurements on multiple guide stars, which is a complicated and time-consuming process. Solar Ground-Layer Adaptive Optics (S-GLAO) uses one or several guide stars, and does not rely on a tomographic reconstruction of the atmospheric turbulence. In this publication, we present two unique wavefront sensing approaches for the S-GLAO. We show that our S-GLAO can deliver good to excellent performance at variable seeing conditions in the Near Infrared (NIR) J and H bands, and is much simpler to implement. We discuss details of our S-GLAO associated wavefront approaches, which make our S-GLAO a unique solution for sunspot high-resolution imaging that other current adaptive optics systems, including the solar MCAO, cannot offer.

  13. Optical characterication of probes for photon scanning tunnelling microscopy

    Vohnsen, Brian; Bozhevolnyi, Sergey I.

    1999-01-01

    The photon scanning tunnelling microscope is a well-established member of the family of scanning near-field optical microscopes used for optical imaging at the sub-wavelength scale. The quality of the probes, typically pointed uncoated optical fibres, used is however difficult to evaluate in a...... technique. Here we present experimental results obtained for optical characterization of two different probes by imaging of a well-specified near-field intensity distribution at various spatial frequencies. In particular, we observe that a sharply pointed dielectric probe can be highly suitable for imaging...

  14. Transfer functions in collection scanning near-field optical microscopy

    Bozhevolnyi, Sergey I.; Vohnsen, Brian; Bozhevolnaya, Elena A.

    1999-01-01

    considered with respect to the relation between near-field optical images and the corresponding intensity distributions. Our conclusions are supported with numerical simulations and experimental results obtained by using a photon scanning tunneling microscope with an uncoated fiber tip....

  15. The Adaptive Optics Summer School Laboratory Activities

    Ammons, S Mark; Armstrong, J D; Crossfield, Ian; Do, Tuan; Fitzgerald, Mike; Harrington, David; Hickenbotham, Adam; Hunter, Jennifer; Johnson, Jess; Johnson, Luke; Li, Kaccie; Lu, Jessica; Maness, Holly; Morzinski, Katie; Norton, Andrew; Putnam, Nicole; Roorda, Austin; Rossi, Ethan; Yelda, Sylvana

    2011-01-01

    Adaptive Optics (AO) is a new and rapidly expanding field of instrumentation, yet astronomers, vision scientists, and general AO practitioners are largely unfamiliar with the root technologies crucial to AO systems. The AO Summer School (AOSS), sponsored by the Center for Adaptive Optics, is a week-long course for training graduate students and postdoctoral researchers in the underlying theory, design, and use of AO systems. AOSS participants include astronomers who expect to utilize AO data, vision scientists who will use AO instruments to conduct research, opticians and engineers who design AO systems, and users of high-bandwidth laser communication systems. In this article we describe new AOSS laboratory sessions implemented in 2006-2009 for nearly 250 students. The activity goals include boosting familiarity with AO technologies, reinforcing knowledge of optical alignment techniques and the design of optical systems, and encouraging inquiry into critical scientific questions in vision science using AO sys...

  16. Adaptive Optics Simulations for Siding Spring

    Goodwin, Michael; Lambert, Andrew

    2012-01-01

    Using an observational derived model optical turbulence profile (model-OTP) we have investigated the performance of Adaptive Optics (AO) at Siding Spring Observatory (SSO), Australia. The simulations cover the performance for AO techniques of single conjugate adaptive optics (SCAO), multi-conjugate adaptive optics (MCAO) and ground-layer adaptive optics (GLAO). The simulation results presented in this paper predict the performance of these AO techniques as applied to the Australian National University (ANU) 2.3 m and Anglo-Australian Telescope (AAT) 3.9 m telescopes for astronomical wavelength bands J, H and K. The results indicate that AO performance is best for the longer wavelengths (K-band) and in the best seeing conditions (sub 1-arcsecond). The most promising results are found for GLAO simulations (field of view of 180 arcsecs), with the field RMS for encircled energy 50% diameter (EE50d) being uniform and minimally affected by the free-atmosphere turbulence. The GLAO performance is reasonably good over...

  17. Pulse front control with adaptive optics

    Sun, B.; Salter, P. S.; Booth, M. J.

    2016-03-01

    The focusing of ultrashort laser pulses is extremely important for processes including microscopy, laser fabrication and fundamental science. Adaptive optic elements, such as liquid crystal spatial light modulators or membrane deformable mirrors, are routinely used for the correction of aberrations in these systems, leading to improved resolution and efficiency. Here, we demonstrate that adaptive elements used with ultrashort pulses should not be considered simply in terms of wavefront modification, but that changes to the incident pulse front can also occur. We experimentally show how adaptive elements may be used to engineer pulse fronts with spatial resolution.

  18. Contrast-based sensorless adaptive optics for retinal imaging.

    Zhou, Xiaolin; Bedggood, Phillip; Bui, Bang; Nguyen, Christine T O; He, Zheng; Metha, Andrew

    2015-09-01

    Conventional adaptive optics ophthalmoscopes use wavefront sensing methods to characterize ocular aberrations for real-time correction. However, there are important situations in which the wavefront sensing step is susceptible to difficulties that affect the accuracy of the correction. To circumvent these, wavefront sensorless adaptive optics (or non-wavefront sensing AO; NS-AO) imaging has recently been developed and has been applied to point-scanning based retinal imaging modalities. In this study we show, for the first time, contrast-based NS-AO ophthalmoscopy for full-frame in vivo imaging of human and animal eyes. We suggest a robust image quality metric that could be used for any imaging modality, and test its performance against other metrics using (physical) model eyes. PMID:26417525

  19. Optical scanning system for quality control of GEM-foils

    An optical scanning system was commissioned and further developed in the Detector Laboratory of Helsinki Institute of Physics and University of Helsinki. It was designed to automatically scan, perform on-line analysis and to classify the overall quality of GEM-foils especially of the GEM-TPC detectors for Super-FRS at FAIR. The optical scanning system consists of precision positioning table, lighting, optics and operating system with analysis software. It has active scanning area of 95×95 cm2 and it can study this area with the minimum resolution of 128 lp/mm. Performance of the system and first results from the GEM-foil uniformity and quality analysis are presented.

  20. Optical axis jitter rejection for double overlapped adaptive optics systems

    Luo, Qi; Luo, Xi; Li, Xinyang

    2016-04-01

    Optical axis jitters, or vibrations, which arise from wind shaking and structural oscillations of optical platforms, etc., cause a deleterious impact on the performance of adaptive optics systems. When conventional integrators are utilized to reject such high frequency and narrow-band disturbance, the benefits are quite small despite their acceptable capabilities to reject atmospheric turbulence. In our case, two suits of complete adaptive optics systems called double overlapped adaptive optics systems (DOAOS) are used to counteract both optical jitters and atmospheric turbulence. A novel algorithm aiming to remove vibrations is proposed by resorting to combine the Smith predictor and notch filer. With the help of loop shaping method, the algorithm will lead to an effective and stable controller, which makes the characteristics of error transfer function close to notch filters. On the basis of the spectral analysis of observed data, the peak frequency and bandwidth of vibrations can be identified in advance. Afterwards, the number of notch filters and their parameters will be determined using coordination descending method. The relationship between controller parameters and filtering features is discussed, and the robustness of the controller against varying parameters of the control object is investigated. Preliminary experiments are carried out to validate the proposed algorithms. The overall control performance of DOAOS is simulated. Results show that time delays are a limit of the performance, but the algorithm can be successfully implemented on our systems, which indicate that it has a great potential to reject jitters.

  1. Teaching Optics and Systems Engineering With Adaptive Optics Workbenches

    Harrington, D. M.; Ammons, M.; Hunter, L.; Max, C.; Hoffmann, M.; Pitts, M.; Armstrong, J. D.

    2010-12-01

    Adaptive optics workbenches are fully functional optical systems that can be used to illustrate and teach a variety of concepts and cognitive processes. Four systems have been funded, designed and constructed by various institutions and people as part of education programs associated with the Center for Adaptive Optics, the Professional Development Program and the Institute for Scientist & Engineer Educators. Activities can range from first-year undergraduate explorations to professional level training. These workbenches have been used in many venues including the Center for Adaptive Optics AO Summer School, the Maui Community College-hosted Akamai Maui Short Course, classrooms, training of new staff in laboratories and other venues. The activity content has focused on various elements of systems thinking, characterization, feedback and system control, basic optics and optical alignment as well as advanced topics such as phase conjugation, wave-front sensing and correction concepts, and system design. The workbenches have slightly different designs and performance capabilities. We describe here outlines for several activities utilizing these different designs and some examples of common student learner outcomes and experiences.

  2. Adaptive Matching of the Scanning Aperture of the Environment Parameter

    Choni, Yu. I.; Yunusov, N. N.

    2016-04-01

    We analyze a matching system for the scanning aperture antenna radiating through a layer with unpredictably changing parameters. Improved matching has been achieved by adaptive motion of a dielectric plate in the gap between the aperture and the radome. The system is described within the framework of an infinite layered structure. The validity of the model has been confirmed by numerical simulation using CST Microwave Studio software and by an experiment. It is shown that the reflection coefficient at the input of some types of a matching device, which is due to the deviation of the load impedance from the nominal value, is determined by a compact and versatile formula. The potential efficiency of the proposed matching system is shown by a specific example, and its dependence on the choice of the starting position of the dielectric plate is demonstrated.

  3. Adaptive optics assisted reconfigurable liquid-driven optical switch

    Fuh, Yiin-Kuen; Huang, Wei-Chi

    2013-07-01

    This study demonstrates a mechanical-based, liquid-driven optical switch integrated with adaptive optics and a reconfigurable black liquid (dye-doped liquid). The device aperture can be continuously tuned between 0.6 and 6.9 mm, precisely achieved by a syringe pump for volume control. Adaptive optics (AO) capability and possible enhancement of the lost power intensity of the ink-polluted glass plate have also been experimentally investigated. While measuring power intensity with/without AO indicates only a marginal difference of ˜1%, a significant difference of 3 s in the response characteristic of "switching on" time can be observed. An extremely high contrast ratio of ˜105 for a red-colored light is achieved.

  4. Implementation of 3D Optical Scanning Technology for Automotive Applications.

    Kuş, Abdil

    2009-01-01

    Reverse engineering (RE) is a powerful tool for generating a CAD model from the 3D scan data of a physical part that lacks documentation or has changed from the original CAD design of the part. The process of digitizing a part and creating a CAD model from 3D scan data is less time consuming and provides greater accuracy than manually measuring the part and designing the part from scratch in CAD. 3D optical scanning technology is one of the measurement methods which have evolved over the last few years and it is used in a wide range of areas from industrial applications to art and cultural heritage. It is also used extensively in the automotive industry for applications such as part inspections, scanning of tools without CAD definition, scanning the casting for definition of the stock (i.e. the amount of material to be removed from the surface of the castings) model for CAM programs and reverse engineering. In this study two scanning experiments of automotive applications are illustrated. The first one examines the processes from scanning to re-manufacturing the damaged sheet metal cutting die, using a 3D scanning technique and the second study compares the scanned point clouds data to 3D CAD data for inspection purposes. Furthermore, the deviations of the part holes are determined by using different lenses and scanning parameters. PMID:22573995

  5. HIGH-EFFICIENCY AUTONOMOUS LASER ADAPTIVE OPTICS

    As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limit their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys

  6. High-efficiency Autonomous Laser Adaptive Optics

    Baranec, Christoph; Law, Nicholas M; Ramaprakash, A N; Tendulkar, Shriharsh; Hogstrom, Kristina; Bui, Khanh; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Dekany, Richard; Kulkarni, Shrinivas; Punnadi, Sujit

    2014-01-01

    As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limits their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.

  7. Adaptive optics without altering visual perception

    Koenig,, I.; NW, Hart; HJ, Hofer

    2014-01-01

    Adaptive optics combined with visual psychophysics creates the potential to study the relationship between visual function and the retina at the cellular scale. This potential is hampered, however, by visual interference from the wavefront-sensing beacon used during correction. For example, we have previously shown that even a dim, visible beacon can alter stimulus perception (Hofer, H. J., Blaschke, J., Patolia, J., & Koenig, D. E. (2012). Fixation light hue bias revisited: Implications for ...

  8. Overview of Advanced LIGO Adaptive Optics

    Brooks, Aidan F; Arain, Muzammil A; Ciani, Giacomo; Cole, Ayodele; Grabeel, Greg; Gustafson, Eric; Guido, Chris; Heintze, Matthew; Heptonstall, Alastair; Jacobson, Mindy; Kim, Won; King, Eleanor; Lynch, Alexander; O'Connor, Stephen; Ottaway, David; Mailand, Ken; Mueller, Guido; Munch, Jesper; Sannibale, Virginio; Shao, Zhenhua; Smith, Michael; Veitch, Peter; Vo, Thomas; Vorvick, Cheryl; Willems, Phil

    2016-01-01

    This is an overview of the adaptive optics used in Advanced LIGO (aLIGO), known as the thermal compensation system (TCS). The thermal compensation system was designed to minimize thermally-induced spatial distortions in the interferometer optical modes and to provide some correction for static curvature errors in the core optics of aLIGO. The TCS is comprised of ring heater actuators, spatially tunable CO$_{2}$ laser projectors and Hartmann wavefront sensors. The system meets the requirements of correcting for nominal distortion in Advanced LIGO to a maximum residual error of 5.4nm, weighted across the laser beam, for up to 125W of laser input power into the interferometer.

  9. Electron density measurements for plasma adaptive optics

    Neiswander, Brian W.

    Over the past 40 years, there has been growing interest in both laser communications and directed energy weapons that operate from moving aircraft. As a laser beam propagates from an aircraft in flight, it passes through boundary layers, turbulence, and shear layers in the near-region of the aircraft. These fluid instabilities cause strong density gradients which adversely affect the transmission of laser energy to a target. Adaptive optics provides corrective measures for this problem but current technology cannot respond quickly enough to be useful for high speed flight conditions. This research investigated the use of plasma as a medium for adaptive optics for aero-optics applications. When a laser beam passes through plasma, its phase is shifted proportionally to the electron density and gas heating within the plasma. As a result, plasma can be utilized as a dynamically controllable optical medium. Experiments were carried out using a cylindrical dielectric barrier discharge plasma chamber which generated a sub-atmospheric pressure, low-temperature plasma. An electrostatic model of this design was developed and revealed an important design constraint relating to the geometry of the chamber. Optical diagnostic techniques were used to characterize the plasma discharge. Single-wavelength interferometric experiments were performed and demonstrated up to 1.5 microns of optical path difference (OPD) in a 633 nm laser beam. Dual-wavelength interferometry was used to obtain time-resolved profiles of the plasma electron density and gas heating inside the plasma chamber. Furthermore, a new multi-wavelength infrared diagnostic technique was developed and proof-of-concept simulations were conducted to demonstrate the system's capabilities.

  10. Adaption of optical Fresnel transform to optical Wigner transform

    Enlightened by the algorithmic isomorphism between the rotation of the Wigner distribution function (WDF) and the αth fractional Fourier transform, we show that the optical Fresnel transform performed on the input through an ABCD system makes the output naturally adapting to the associated Wigner transform, i.e. there exists algorithmic isomorphism between ABCD transformation of the WDF and the optical Fresnel transform. We prove this adaption in the context of operator language. Both the single-mode and the two-mode Fresnel operators as the image of classical Fresnel transform are introduced in our discussions, while the two-mode Wigner operator in the entangled state representation is introduced for fitting the two-mode Fresnel operator.

  11. Near field scanning optical microscopy of polycrystalline semiconductors

    Herndon, Mary Kay

    1999-09-01

    Photovoltaic devices are commonly used for space applications and remote terrestrial power requirements. Polycrystalline solar cell devices often have much lower efficiencies than their crystalline counterparts, but because they can be fabricated much more cheaply, they can still be cost-effective when compared to single crystal devices. The long term goal of this work is to provide information that will lead to higher quality devices with improved cost efficiency. In order to do this, a better understanding of the mechanisms that take place in these materials is needed. The goal of this thesis was to improve our understanding of these devices by adapting a novel characterization technique, Near Field Scanning Optical Microscopy (NSOM), to the study of polycrystalline films. Visible light NSOM is a relatively new technique that allows for optical characterization of materials with resolution beyond the far-field diffraction limit. By using NSOM to study the physical and electrical properties of polycrystalline solar cells, individual grains can be studied and more insight can be gained as to how various properties of the thin films affect the device efficiency. For this research, an NSOM was designed and built to be versatile enough to handle the sorts of samples and measurements required for studying a variety of photovoltaic devices. As a first step, the NSOM was used to characterize single crystal GaAs solar cell devices. Measurements of topography and NSOM-induced photocurrent were obtained simultaneously on cross sections of the material, allowing the p-n junction to be probed. Because the NSOM data could be compared to an expected result, this allowed verification of the new microscope's imaging capabilities and ensured accurate data interpretation. Effects of surface recombination were detected on the cleaved edges. The NSOM was used to characterize surface quality and study the effects of surface passivation treatments. Of the polycrystalline materials

  12. Compact piezoelectric transducer fiber scanning probe for optical coherence tomography.

    Zhang, Ning; Tsai, Tsung-Han; Ahsen, Osman O; Liang, Kaicheng; Lee, Hsiang-Chieh; Xue, Ping; Li, Xingde; Fujimoto, James G

    2014-01-15

    We developed a compact, optical fiber scanning piezoelectric transducer (PZT) probe for endoscopic and minimally invasive optical coherence tomography (OCT). Compared with previous forward-mount fiber designs, we present a reverse-mount design that achieves a shorter rigid length. The fiber was mounted at the proximal end of a quadruple PZT tube and scanned inside the hollow PZT tube to reduce the probe length. The fiber resonant frequency was 338 Hz using a 17-mm-long fiber. A 0.9 mm fiber deflection was achieved with a driving amplitude of 35 V. Using a GRIN lens-based optical design with a 1.3× magnification, a ∼6 μm spot was scanned over a 1.2 mm diameter field. The probe was encased in a metal hypodermic tube with a ∼25 mm rigid length and covered with a 3.2 mm outer diameter (OD) plastic sheath. Imaging was performed with a swept source OCT system based on a Fourier domain modelocked laser (FDML) light source at a 240 kHz axial scan rate and 8 μm axial resolution (in air). En face OCT imaging of skin in vivo and human colon ex vivo was demonstrated. PMID:24562102

  13. Adaptive optics and laser guide stars at Lick observatory

    Brase, J.M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    For the past several years LLNL has been developing adaptive optics systems for correction of both atmospheric turbulence effects and thermal distortions in optics for high-power lasers. Our early work focused on adaptive optics for beam control in laser isotope separation and ground-based free electron lasers. We are currently developing innovative adaptive optics and laser systems for sodium laser guide star applications at the University of California`s Lick and Keck Observeratories. This talk will describe our adaptive optics technology and some of its applications in high-resolution imaging and beam control.

  14. In vivo cellular visualization of the human retina using optical coherence tomography and adaptive optics

    Olivier, S S; Jones, S M; Chen, D C; Zawadzki, R J; Choi, S S; Laut, S P; Werner, J S

    2006-01-05

    Optical coherence tomography (OCT) sees the human retina sharply with adaptive optics. In vivo cellular visualization of the human retina at micrometer-scale resolution is possible by enhancing Fourier-domain optical-coherence tomography with adaptive optics, which compensate for the eye's optical aberrations.

  15. Extreme Adaptive Optics Planet Imager: XAOPI

    Macintosh, B A; Graham, J; Poyneer, L; Sommargren, G; Wilhelmsen, J; Gavel, D; Jones, S; Kalas, P; Lloyd, J; Makidon, R; Olivier, S; Palmer, D; Patience, J; Perrin, M; Severson, S; Sheinis, A; Sivaramakrishnan, A; Troy, M; Wallace, K

    2003-09-17

    Ground based adaptive optics is a potentially powerful technique for direct imaging detection of extrasolar planets. Turbulence in the Earth's atmosphere imposes some fundamental limits, but the large size of ground-based telescopes compared to spacecraft can work to mitigate this. We are carrying out a design study for a dedicated ultra-high-contrast system, the eXtreme Adaptive Optics Planet Imager (XAOPI), which could be deployed on an 8-10m telescope in 2007. With a 4096-actuator MEMS deformable mirror it should achieve Strehl >0.9 in the near-IR. Using an innovative spatially filtered wavefront sensor, the system will be optimized to control scattered light over a large radius and suppress artifacts caused by static errors. We predict that it will achieve contrast levels of 10{sup 7}-10{sup 8} at angular separations of 0.2-0.8 inches around a large sample of stars (R<7-10), sufficient to detect Jupiter-like planets through their near-IR emission over a wide range of ages and masses. We are constructing a high-contrast AO testbed to verify key concepts of our system, and present preliminary results here, showing an RMS wavefront error of <1.3 nm with a flat mirror.

  16. Thirty meter telescope adaptive optics computing challenges

    The Thirty Meter Telescope (TMT) will be used with Adaptive Optics (AO) systems to allow near diffraction-limited performance in the near-infrared and achieve the main TMT science goals. Adaptive optics systems reduce the effect of the atmospheric distortions by dynamically measuring the distortions with wavefront sensors, performing wavefront reconstruction with a real time controller (RTC), and then compensating for the distortions with deformable mirrors. The requirements for the RTC subsystem of the TMT first light AO system will represent a significant advance over the current generation of astronomical AO control systems. Memory and processing requirements would be at least 2 orders of magnitude greater than the currently most powerful AO systems using conventional approaches, so that innovative wavefront reconstruction algorithms and new hardware approaches will be required. In this paper, we will first present the requirements and challenges for the RTC of the first light AO system, together with the algorithms that have been developed to reduce the memory and processing requirements, and then two possible hardware architectures based on Field Programmable Gate Array (FPGA). (authors)

  17. Optical Design for Extremely Large Telescope Adaptive Optics Systems

    Bauman, B J

    2003-11-26

    Designing an adaptive optics (AO) system for extremely large telescopes (ELT's) will present new optical engineering challenges. Several of these challenges are addressed in this work, including first-order design of multi-conjugate adaptive optics (MCAO) systems, pyramid wavefront sensors (PWFS's), and laser guide star (LGS) spot elongation. MCAO systems need to be designed in consideration of various constraints, including deformable mirror size and correction height. The y,{bar y} method of first-order optical design is a graphical technique that uses a plot with marginal and chief ray heights as coordinates; the optical system is represented as a segmented line. This method is shown to be a powerful tool in designing MCAO systems. From these analyses, important conclusions about configurations are derived. PWFS's, which offer an alternative to Shack-Hartmann (SH) wavefront sensors (WFS's), are envisioned as the workhorse of layer-oriented adaptive optics. Current approaches use a 4-faceted glass pyramid to create a WFS analogous to a quad-cell SH WFS. PWFS's and SH WFS's are compared and some newly-considered similarities and PWFS advantages are presented. Techniques to extend PWFS's are offered: First, PWFS's can be extended to more pixels in the image by tiling pyramids contiguously. Second, pyramids, which are difficult to manufacture, can be replaced by less expensive lenslet arrays. An approach is outlined to convert existing SH WFS's to PWFS's for easy evaluation of PWFS's. Also, a demonstration of PWFS's in sensing varying amounts of an aberration is presented. For ELT's, the finite altitude and finite thickness of LGS's means that the LGS will appear elongated from the viewpoint of subapertures not directly under the telescope. Two techniques for dealing with LGS spot elongation in SH WFS's are presented. One method assumes that the laser will be pulsed and uses a segmented micro

  18. Optical design of the adaptive optics laser guide star system

    Bissinger, H. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The design of an adaptive optics package for the 3 meter Lick telescope is presented. This instrument package includes a 69 actuator deformable mirror and a Hartmann type wavefront sensor operating in the visible wavelength; a quadrant detector for the tip-tile sensor and a tip-tilt mirror to stabilize atmospheric first order tip-tile errors. A high speed computer drives the deformable mirror to achieve near diffraction limited imagery. The different optical components and their individual design constraints are described. motorized stages and diagnostics tools are used to operate and maintain alignment throughout observation time from a remote control room. The expected performance are summarized and actual results of astronomical sources are presented.

  19. Processing of Graphene combining Optical Detection and Scanning Probe Lithography

    Zimmermann Sören

    2015-01-01

    Full Text Available This paper presents an experimental setup tailored for robotic processing of graphene with in-situ vision based control. A robust graphene detection approach is presented applying multiple image processing operations of the visual feedback provided by a high-resolution light microscope. Detected graphene flakes can be modified using a scanning probe based lithographical process that is directly linked to the in-situ optical images. The results of this process are discussed with respect to further application scenarios.

  20. Dual-thread parallel control strategy for ophthalmic adaptive optics

    Yu, Yongxin; Zhang, Yuhua

    2014-01-01

    To improve ophthalmic adaptive optics speed and compensate for ocular wavefront aberration of high temporal frequency, the adaptive optics wavefront correction has been implemented with a control scheme including 2 parallel threads; one is dedicated to wavefront detection and the other conducts wavefront reconstruction and compensation. With a custom Shack-Hartmann wavefront sensor that measures the ocular wave aberration with 193 subapertures across the pupil, adaptive optics has achieved a ...

  1. Progress of MEMS Scanning Micromirrors for Optical Bio-Imaging

    Lih Y. Lin

    2015-11-01

    Full Text Available Microelectromechanical systems (MEMS have an unmatched ability to incorporate numerous functionalities into ultra-compact devices, and due to their versatility and miniaturization, MEMS have become an important cornerstone in biomedical and endoscopic imaging research. To incorporate MEMS into such applications, it is critical to understand underlying architectures involving choices in actuation mechanism, including the more common electrothermal, electrostatic, electromagnetic, and piezoelectric approaches, reviewed in this paper. Each has benefits and tradeoffs and is better suited for particular applications or imaging schemes due to achievable scan ranges, power requirements, speed, and size. Many of these characteristics are fabrication-process dependent, and this paper discusses various fabrication flows developed to integrate additional optical functionality beyond simple lateral scanning, enabling dynamic control of the focus or mirror surface. Out of this provided MEMS flexibility arises some challenges when obtaining high resolution images: due to scanning non-linearities, calibration of MEMS scanners may become critical, and inherent image artifacts or distortions during scanning can degrade image quality. Several reviewed methods and algorithms have been proposed to address these complications from MEMS scanning. Given their impact and promise, great effort and progress have been made toward integrating MEMS and biomedical imaging.

  2. DKIST Adaptive Optics System: Simulation Results

    Marino, Jose; Schmidt, Dirk

    2016-05-01

    The 4 m class Daniel K. Inouye Solar Telescope (DKIST), currently under construction, will be equipped with an ultra high order solar adaptive optics (AO) system. The requirements and capabilities of such a solar AO system are beyond those of any other solar AO system currently in operation. We must rely on solar AO simulations to estimate and quantify its performance.We present performance estimation results of the DKIST AO system obtained with a new solar AO simulation tool. This simulation tool is a flexible and fast end-to-end solar AO simulator which produces accurate solar AO simulations while taking advantage of current multi-core computer technology. It relies on full imaging simulations of the extended field Shack-Hartmann wavefront sensor (WFS), which directly includes important secondary effects such as field dependent distortions and varying contrast of the WFS sub-aperture images.

  3. Optically sensitive Medipix2 detector for adaptive optics wavefront sensing

    Vallerga, John; Tremsina, Anton; Siegmund, Oswald; Mikulec, Bettina; Clark, Allan G; CERN. Geneva

    2005-01-01

    A new hybrid optical detector is described that has many of the attributes desired for the next generation adaptive optics (AO) wavefront sensors. The detector consists of a proximity focused microchannel plate (MCP) read out by multi-pixel application specific integrated circuit (ASIC) chips developed at CERN ("Medipix2") with individual pixels that amplify, discriminate and count input events. The detector has 256 x 256 pixels, zero readout noise (photon counting), can be read out at 1 kHz frame rates and is abutable on 3 sides. The Medipix2 readout chips can be electronically shuttered down to a temporal window of a few microseconds with an accuracy of 10 ns. When used in a Shack-Hartmann style wavefront sensor, a detector with 4 Medipix chips should be able to centroid approximately 5000 spots using 7 x 7 pixel sub-apertures resulting in very linear, off-null error correction terms. The quantum efficiency depends on the optical photocathode chosen for the bandpass of interest.

  4. Optical Design and Optimization of Translational Reflective Adaptive Optics Ophthalmoscopes

    Sulai, Yusufu N. B.

    The retina serves as the primary detector for the biological camera that is the eye. It is composed of numerous classes of neurons and support cells that work together to capture and process an image formed by the eye's optics, which is then transmitted to the brain. Loss of sight due to retinal or neuro-ophthalmic disease can prove devastating to one's quality of life, and the ability to examine the retina in vivo is invaluable in the early detection and monitoring of such diseases. Adaptive optics (AO) ophthalmoscopy is a promising diagnostic tool in early stages of development, still facing significant challenges before it can become a clinical tool. The work in this thesis is a collection of projects with the overarching goal of broadening the scope and applicability of this technology. We begin by providing an optical design approach for AO ophthalmoscopes that reduces the aberrations that degrade the performance of the AO correction. Next, we demonstrate how to further improve image resolution through the use of amplitude pupil apodization and non-common path aberration correction. This is followed by the development of a viewfinder which provides a larger field of view for retinal navigation. Finally, we conclude with the development of an innovative non-confocal light detection scheme which improves the non-invasive visualization of retinal vasculature and reveals the cone photoreceptor inner segments in healthy and diseased eyes.

  5. Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy

    Hunter, Jennifer J.; Masella, Benjamin; Dubra, Alfredo; Sharma, Robin; Yin, Lu; Merigan, William H.; Palczewska, Grazyna; Palczewski, Krzysztof; Williams, David R.

    2010-01-01

    In vivo two-photon imaging through the pupil of the primate eye has the potential to become a useful tool for functional imaging of the retina. Two-photon excited fluorescence images of the macaque cone mosaic were obtained using a fluorescence adaptive optics scanning laser ophthalmoscope, overcoming the challenges of a low numerical aperture, imperfect optics of the eye, high required light levels, and eye motion. Although the specific fluorophores are as yet unknown, strong in vivo intrins...

  6. Parsing optical scanned 3D data by Bayesian inference

    Xiong, Hanwei; Xu, Jun; Xu, Chenxi; Pan, Ming

    2015-10-01

    Optical devices are always used to digitize complex objects to get their shapes in form of point clouds. The results have no semantic meaning about the objects, and tedious process is indispensable to segment the scanned data to get meanings. The reason for a person to perceive an object correctly is the usage of knowledge, so Bayesian inference is used to the goal. A probabilistic And-Or-Graph is used as a unified framework of representation, learning, and recognition for a large number of object categories, and a probabilistic model defined on this And-Or-Graph is learned from a relatively small training set per category. Given a set of 3D scanned data, the Bayesian inference constructs a most probable interpretation of the object, and a semantic segment is obtained from the part decomposition. Some examples are given to explain the method.

  7. Using Site Testing Data for Adaptive Optics Simulations

    Herriot, Glen; Andersen, David; Conan, Rod; Ellerbroek, Brent; Gilles, Luc; Hickson, Paul; Jackson, Kate; Lardière, Olivier; Pfrommer, Thomas; Véran, Jean-Pierre; Wang, Lianqi

    2011-01-01

    Astronomical Site testing data plays a vital role in the simulation, design, evaluation and operation of adaptive optics systems for large telescope. We present the example of TMT and its first light facilitiy adaptive optics system NFIRAOS, and illustrate the many simulations done based on site testing data.

  8. Proposed Multiconjugate Adaptive Optics Experiment at Lick Observatory

    Bauman, B J; Gavel, D T; Flath, L M; Hurd, R L; Max, C E; Olivier, S S

    2001-08-15

    While the theory behind design of multiconjugate adaptive optics (MCAO) systems is growing, there is still a paucity of experience building and testing such instruments. We propose using the Lick adaptive optics (AO) system as a basis for demonstrating the feasibility/workability of MCAO systems, testing underlying assumptions, and experimenting with different approaches to solving MCAO system issues.

  9. Second-harmonic scanning optical microscopy of poled silica waveguides

    Pedersen, Kjeld; Bozhevolnyi, Sergey I.; Arentoft, Jesper;

    2000-01-01

    Second-harmonic scanning optical microscopy (SHSOM) is performed on electric-field poled silica-based waveguides. Two operation modes of SHSOM are considered. Oblique transmission reflection and normal reflection modes are used to image the spatial distribution of nonlinear susceptibilities in the...... limitations of the two operation modes when used for SHSOM studies of poled silica-based waveguides are discussed. The influence of surface defects on the resulting second-harmonic images is also considered. ©2000 American Institute of Physics....

  10. Optical and scanning electron microscopies in examination of ultrathin foils

    Konvalina, Ivo; Hovorka, Miloš; Fořt, Tomáš; Müllerová, Ilona

    Brno : Institute of Scientific Instruments AS CR, v.v.i, 2010 - (Mika, F.), s. 23-24 ISBN 978-80-254-6842-5. [International Seminar on Recent Trends in Charged Particle Optics and Surface Physics Instrumentation /12./. Skalský dvůr (CZ), 31.05.2010-04.06.2010] R&D Projects: GA AV ČR IAA100650902 Institutional research plan: CEZ:AV0Z20650511 Keywords : very low energy scanning transmission electron microscopy * ultrathin foils * laser confocal microscope Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  11. Optimized micromirror arrays for adaptive optics

    Michalicek, M. Adrian; Comtois, John H.; Hetherington, Dale L.

    1999-01-01

    This paper describes the design, layout, fabrication, and surface characterization of highly optimized surface micromachined micromirror devices. Design considerations and fabrication capabilities are presented. These devices are fabricated in the state-of-the-art, four-level, planarized, ultra-low-stress polysilicon process available at Sandia National Laboratories known as the Sandia Ultra-planar Multi-level MEMS Technology (SUMMiT). This enabling process permits the development of micromirror devices with near-ideal characteristics that have previously been unrealizable in standard three-layer polysilicon processes. The reduced 1 μm minimum feature sizes and 0.1 μm mask resolution make it possible to produce dense wiring patterns and irregularly shaped flexures. Likewise, mirror surfaces can be uniquely distributed and segmented in advanced patterns and often irregular shapes in order to minimize wavefront error across the pupil. The ultra-low-stress polysilicon and planarized upper layer allow designers to make larger and more complex micromirrors of varying shape and surface area within an array while maintaining uniform performance of optical surfaces. Powerful layout functions of the AutoCAD editor simplify the design of advanced micromirror arrays and make it possible to optimize devices according to the capabilities of the fabrication process. Micromirrors fabricated in this process have demonstrated a surface variance across the array from only 2-3 nm to a worst case of roughly 25 nm while boasting active surface areas of 98% or better. Combining the process planarization with a ``planarized-by-design'' approach will produce micromirror array surfaces that are limited in flatness only by the surface deposition roughness of the structural material. Ultimately, the combination of advanced process and layout capabilities have permitted the fabrication of highly optimized micromirror arrays for adaptive optics.

  12. Beam shaping for laser-based adaptive optics in astronomy

    Béchet, Clémentine; Guesalaga, Andrés; Neichel, Benoit; Fesquet, Vincent; González-Núñez, Héctor; Zúñiga, Sebastián; Escarate, Pedro; Guzman, Dani

    2014-01-01

    The availability and performance of laser-based adaptive optics (AO) systems are strongly dependent on the power and quality of the laser beam before being projected to the sky. Frequent and time-consuming alignment procedures are usually required in the laser systems with free-space optics to optimize the beam. Despite these procedures, significant distortions of the laser beam have been observed during the first two years of operation of the Gemini South multi-conjugate adaptive optics syst...

  13. VASAO: visible all sky adaptive optics

    Veillet, Christian; Lai, Olivier; Salmon, Derrick; Pique, Jean-Paul

    2006-06-01

    Building on an extensive and successful experience in Adaptive Optics (AO) and on recent developments made in its funding nations, the Canada-France-Hawaii-Telescope Corporation (CFHT) is studying the VASAO concept: an integrated AO system that would allow diffraction limited imaging of the whole sky in the visible as well as in the infrared. At the core of VASAO, Pueo-Hou (the new Pueo) is built on Pueo, the current CFHT AO bonnette. Pueo will be refurbished and improved to be able to image the isoplanetic field at 700 nm with Strehl ratios of 30% or better, making possible imaging with a resolution of 50 milliarcseconds between 500 and 700nm, and at the telescope limit of diffraction above. The polychromatic tip-tilt laser guide star currently envisioned will be generated by a single 330nm mode-less laser, and the relative position of the 330nm and 589nm artificial stars created on the mesosphere by the 330nm excitation of the sodium layer will be monitored to provide the atmospheric tip-tilt along the line of sight, following the philosophy developed for the ELP-OA project. The feasibility study of VASAO will take most of 2006 in parallel with the development of a science case making the best possible use of the unique capabilities of the system, If the feasibility study is encouraging, VASAO development could start in 2007 for a full deployment on the sky by 2011-2012.

  14. Stellar photometry with Multi Conjugate Adaptive Optics

    Fiorentino, Giuliana; McConnachie, Alan; Stetson, Peter B; Bono, Giuseppe; Turri, Paolo; Andersen, David; Veran, Jean-Pierre; Diolaiti, Emiliano; Schreiber, Laura; Ciliegi, Paolo; Bellazzini, Michele; Tolstoy, Eline; Monelli, Matteo; Iannicola, Giacinto; Ferraro, Ivan; Testa, Vincenzo

    2016-01-01

    We overview the current status of photometric analyses of images collected with Multi Conjugate Adaptive Optics (MCAO) at 8-10m class telescopes that operated, or are operating, on sky. Particular attention will be payed to resolved stellar population studies. Stars in crowded stellar systems, such as globular clusters or in nearby galaxies, are ideal test particles to test AO performance. We will focus the discussion on photometric precision and accuracy reached nowadays. We briefly describe our project on stellar photometry and astrometry of Galactic globular clusters using images taken with GeMS at the Gemini South telescope. We also present the photometry performed with DAOPHOT suite of programs into the crowded regions of these globulars reaching very faint limiting magnitudes Ks ~21.5 mag on moderately large fields of view (~1.5 arcmin squared). We highlight the need for new algorithms to improve the modeling of the complex variation of the Point Spread Function across the ?eld of view. Finally, we outl...

  15. Adaptive optics at the PHELIX laser

    Heuck, Hans-Martin; Wittrock, Ulrich; Fils, Jérôme; Borneis, Stefan; Witte, Klaus; Eisenbart, Udo; Javorkova, Dasa; Bagnoud, Vincent; Götte, Stefan; Tauschwitz, Andreas; Onkels, Eckehard

    2007-05-01

    GSI Darmstadt currently builds a high-energy petawatt Nd:glass laser system, called PHELIX (Petawatt High-Energy Laser for Heavy-Ion Experiments). PHELIX will offer the world-wide unique combination of a high current, high-energy heavy-ion beam with an intense laser beam. Aberrations due to the beam transport and due to the amplification process limit the focusability and the intensity at the target. We have investigated the aberrations of the different amplification stages. The pre-amplifier stage consists of three rod-amplifiers which cause mainly defocus, but also a small part of coma and astigmatism. The main amplifier consists of five disk amplifiers with a clear aperture of 315 mm. These large disk-amplifiers cause pump-shot aberrations which occur instantly. After a shot, the disk amplifiers need a cooling time of several hours to relax to their initial state. This limits the repetition rate and causes long-term aberrations. We will present first measurements of the pump-shot and long-term aberrations caused by the pre- and the main amplifier in a single-pass configuration. In this context, we will present the adaptive optics system which is implemented in the PHELIX beam line and discuss its capability to compensate for the pump-shot and long-term aberrations.

  16. Visual Scanning Hartmann Optical Tester (VSHOT) Uncertainty Analysis (Milestone Report)

    Gray, A.; Lewandowski, A.; Wendelin, T.

    2010-10-01

    In 1997, an uncertainty analysis was conducted of the Video Scanning Hartmann Optical Tester (VSHOT). In 2010, we have completed a new analysis, based primarily on the geometric optics of the system, and it shows sensitivities to various design and operational parameters. We discuss sources of error with measuring devices, instrument calibrations, and operator measurements for a parabolic trough mirror panel test. These help to guide the operator in proper setup, and help end-users to understand the data they are provided. We include both the systematic (bias) and random (precision) errors for VSHOT testing and their contributions to the uncertainty. The contributing factors we considered in this study are: target tilt; target face to laser output distance; instrument vertical offset; laser output angle; distance between the tool and the test piece; camera calibration; and laser scanner. These contributing factors were applied to the calculated slope error, focal length, and test article tilt that are generated by the VSHOT data processing. Results show the estimated 2-sigma uncertainty in slope error for a parabolic trough line scan test to be +/-0.2 milliradians; uncertainty in the focal length is +/- 0.1 mm, and the uncertainty in test article tilt is +/- 0.04 milliradians.

  17. High resolution adaptive optics imaging complements standard spectral domain optical coherent tomography in retinal diseases with micro-structural details: a case series

    Gibran Syed Khurshid; Sasha Strul; Adam Boretsky; Massoud Motamedi; Praveena Gupta

    2016-01-01

    Purpose: To evaluate if high resolution adaptive optics confocal scanning laser ophthalmoscopy (AO-SLO) can be used as an adjunct complementary diagnostic tool to spectral domain optical coherent tomography (SD-OCT) in characterizing three macular diseases: rod-cone dystrophy, acute retinal pigment epitheliitis (Krill’s disease), and occult macular dystrophy. Methods: As part of a complete clinical examination, each patient was subjected to color fundus pictures, multimodal imaging scans with...

  18. Large Binocular Telescope Adaptive Optics System: New achievements and perspectives in adaptive optics

    Esposito, Simone; Pinna, Enrico; Puglisi, Alfio; Quirós-Pacheco, Fernando; Arcidiacono, Carmelo; Xompero, Marco; Briguglio, Runa; Agapito, Guido; Busoni, Lorenzo; Fini, Luca; Argomedo, Javier; Gherardi, Alessandro; Brusa, Guido; Miller, Douglas; Guerra, Juan Carlos; Stefanini, Paolo; Salinari, Piero; 10.1117/12.898641

    2012-01-01

    The Large Binocular Telescope (LBT) is a unique telescope featuring two co-mounted optical trains with 8.4m primary mirrors. The telescope Adaptive Optics (AO) system uses two innovative key components, namely an adaptive secondary mirror with 672 actuators and a high-order pyramid wave-front sensor. During the on-sky commissioning such a system reached performances never achieved before on large ground-based optical telescopes. Images with 40mas resolution and Strehl Ratios higher than 80% have been acquired in H band (1.6 micron). Such images showed a contrast as high as 10e-4. Based on these results, we compare the performances offered by a Natural Guide Star (NGS) system upgraded with the state-of-the-art technology and those delivered by existing Laser Guide Star (LGS) systems. The comparison, in terms of sky coverage and performances, suggests rethinking the current role ascribed to NGS and LGS in the next generation of AO systems for the 8-10 meter class telescopes and Extremely Large Telescopes (ELTs)...

  19. Adaptive optics for daytime deep space laser communications to Mars

    Wilson, Keith E.; Wright, Malcolm; Lee, Shinkhak; Troy, Mitchell

    2005-01-01

    This paper describes JPL research in adaptive optics (AO) to reduce the daytime background noise on a Mars-to-Earth optical communications link. AO can reduce atmosphere-induced wavefront aberrations, and enable single mode receiver operation thereby buying back margin in the deep space optical communications link.

  20. Adaptive optics ophthalmologic systems using dual deformable mirrors

    Jones, S; Olivier, S; Chen, D; Sadda, S; Joeres, S; Zawadzki, R; Werner, J S; Miller, D

    2007-02-01

    Adaptive Optics (AO) have been increasingly combined with a variety of ophthalmic instruments over the last decade to provide cellular-level, in-vivo images of the eye. The use of MEMS deformable mirrors in these instruments has recently been demonstrated to reduce system size and cost while improving performance. However, currently available MEMS mirrors lack the required range of motion for correcting large ocular aberrations, such as defocus and astigmatism. In order to address this problem, we have developed an AO system architecture that uses two deformable mirrors, in a woofer/tweeter arrangement, with a bimorph mirror as the woofer and a MEMS mirror as the tweeter. This setup provides several advantages, including extended aberration correction range, due to the large stroke of the bimorph mirror, high order aberration correction using the MEMS mirror, and additionally, the ability to ''focus'' through the retina. This AO system architecture is currently being used in four instruments, including an Optical Coherence Tomography (OCT) system and a retinal flood-illuminated imaging system at the UC Davis Medical Center, a Scanning Laser Ophthalmoscope (SLO) at the Doheny Eye Institute, and an OCT system at Indiana University. The design, operation and evaluation of this type of AO system architecture will be presented.

  1. Novel adaptive laser scanning sensor for reverse engineering measurement

    Zhao Ji; Ma Zi; Lin Na; Zhu Quanmin

    2007-01-01

    In this paper, a series of new techniques are used to optimize typical laser scanning sensor. The integrated prototype is compared with traditional approach to demonstrate the much improved performance. In the research and development, camera calibration is achieved by extracting characteristic points of the laser plane, so that the calibration efficiency is improved significantly. With feedback control of its intensity, the laser is automatically adjusted for different material. A modified algorithm is presented to improve the accuracy of laser stripe extraction. The fusion of data extracted from left and right camera is completed with re-sampling technique. The scanner is integrated with a robot arm and some other machinery for on-line measurement and inspection, which provides a flexible measurement tool for reverse engineering.

  2. A low-cost compact metric adaptive optics system

    Mansell, Justin D.; Henderson, Brian; Wiesner, Brennen; Praus, Robert; Coy, Steve

    2007-09-01

    The application of adaptive optics has been hindered by the cost, size, and complexity of the systems. We describe here progress we have made toward creating low-cost compact turn-key adaptive optics systems. We describe our new low-cost deformable mirror technology developed using polymer membranes, the associated USB interface drive electronics, and different ways that this technology can be configured into a low-cost compact adaptive optics system. We also present results of a parametric study of the stochastic parallel gradient descent (SPGD) control algorithm.

  3. A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system

    Li, Chaohong; Sredar, Nripun; Ivers, Kevin M.; Queener, Hope; Porter, Jason

    2010-01-01

    We present a direct slope-based correction algorithm to simultaneously control two deformable mirrors (DMs) in a woofer-tweeter adaptive optics system. A global response matrix was derived from the response matrices of each deformable mirror and the voltages for both deformable mirrors were calculated simultaneously. This control algorithm was tested and compared with a 2-step sequential control method in five normal human eyes using an adaptive optics scanning laser ophthalmoscope. The mean ...

  4. Simulating Astronomical Adaptive Optics Systems Using Yao

    Rigaut, François; Van Dam, Marcos

    2013-12-01

    Adaptive Optics systems are at the heart of the coming Extremely Large Telescopes generation. Given the importance, complexity and required advances of these systems, being able to simulate them faithfully is key to their success, and thus to the success of the ELTs. The type of systems envisioned to be built for the ELTs cover most of the AO breeds, from NGS AO to multiple guide star Ground Layer, Laser Tomography and Multi-Conjugate AO systems, with typically a few thousand actuators. This represents a large step up from the current generation of AO systems, and accordingly a challenge for existing AO simulation packages. This is especially true as, in the past years, computer power has not been following Moore's law in its most common understanding; CPU clocks are hovering at about 3GHz. Although the use of super computers is a possible solution to run these simulations, being able to use smaller machines has obvious advantages: cost, access, environmental issues. By using optimised code in an already proven AO simulation platform, we were able to run complex ELT AO simulations on very modest machines, including laptops. The platform is YAO. In this paper, we describe YAO, its architecture, its capabilities, the ELT-specific challenges and optimisations, and finally its performance. As an example, execution speed ranges from 5 iterations per second for a 6 LGS 60x60 subapertures Shack-Hartmann Wavefront sensor Laser Tomography AO system (including full physical image formation and detector characteristics) up to over 30 iterations/s for a single NGS AO system.

  5. ComPoScan: Adaptive Scanning for Efficient Concurrent Communications and Positioning with 802.11

    King, Thomas; Kjærgaard, Mikkel Baun

    2008-01-01

    Using 802.11 concurrently for communications and positioning is problematic, especially if location-based services (e.g., indoor navigation) are concurrently executed with real-time applications (e.g., VoIP, video conferencing). Periodical scanning for measuring the signal strength interrupts the...... by validation in several real-world deployments. Results from the emulation show that the system can realize different trade-offs by changing parameters. Furthermore, the emulation shows that the system works independently of the environment, the network card, the signal strength measurement...... technology, and number and placement of access points. We also show that ComPoScan does not harm the positioning accuracy of a positioning system. By validation in several real-world deployments, we provided evidence for that the real system works as predicted by the emulation. In addition, we provide...

  6. Adaptive optics OCT using 1060nm swept source and dual deformable lenses for human retinal imaging

    Jian, Yifan; Lee, Sujin; Cua, Michelle; Miao, Dongkai; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2016-03-01

    Adaptive optics concepts have been applied to the advancement of biological imaging and microscopy. In particular, AO has also been very successfully applied to cellular resolution imaging of the retina, enabling visualization of the characteristic mosaic patterns of the outer retinal layers using flood illumination fundus photography, Scanning Laser Ophthalmoscopy (SLO), and Optical Coherence Tomography (OCT). Despite the high quality of the in vivo images, there has been a limited uptake of AO imaging into the clinical environment. The high resolution afforded by AO comes at the price of limited field of view and specialized equipment. The implementation of a typical adaptive optics imaging system results in a relatively large and complex optical setup. The wavefront measurement is commonly performed using a Hartmann-Shack Wavefront Sensor (HS-WFS) placed at an image plane that is optically conjugated to the eye's pupil. The deformable mirror is also placed at a conjugate plane, relaying the wavefront corrections to the pupil. Due to the sensitivity of the HS-WFS to back-reflections, the imaging system is commonly constructed from spherical mirrors. In this project, we present a novel adaptive optics OCT retinal imaging system with significant potential to overcome many of the barriers to integration with a clinical environment. We describe in detail the implementation of a compact lens based wavefront sensorless adaptive optics (WSAO) 1060nm swept source OCT human retinal imaging system with dual deformable lenses, and present retinal images acquired in vivo from research volunteers.

  7. Architecture and performance of astronomical adaptive optics systems

    Bloemhof, E.

    2002-01-01

    In recent years the technological advances of adaptive optics have enabled a great deal of innovative science. In this lecture I review the system-level design of modern astronomical AO instruments, and discuss their current capabilities.

  8. Non-linear optical measurements using a scanned, Bessel beam

    Collier, Bradley B.; Awasthi, Samir; Lieu, Deborah K.; Chan, James W.

    2015-03-01

    Oftentimes cells are removed from the body for disease diagnosis or cellular research. This typically requires fluorescent labeling followed by sorting with a flow cytometer; however, possible disruption of cellular function or even cell death due to the presence of the label can occur. This may be acceptable for ex vivo applications, but as cells are more frequently moving from the lab to the body, label-free methods of cell sorting are needed to eliminate these issues. This is especially true of the growing field of stem cell research where specialized cells are needed for treatments. Because differentiation processes are not completely efficient, cells must be sorted to eliminate any unwanted cells (i.e. un-differentiated or differentiated into an unwanted cell type). In order to perform label-free measurements, non-linear optics (NLO) have been increasingly utilized for single cell analysis because of their ability to not disrupt cellular function. An optical system was developed for the measurement of NLO in a microfluidic channel similar to a flow cytometer. In order to improve the excitation efficiency of NLO, a scanned Bessel beam was utilized to create a light-sheet across the channel. The system was tested by monitoring twophoton fluorescence from polystyrene microbeads of different sizes. Fluorescence intensity obtained from light-sheet measurements were significantly greater than measurements made using a static Gaussian beam. In addition, the increase in intensity from larger sized beads was more evident for the light-sheet system.

  9. High-sensitive scanning laser magneto-optical imaging system

    A high-sensitive scanning laser magneto-optical (MO) imaging system has been developed. The system is mainly composed of a laser source, galvano meters, and a high-sensitive differential optical-detector. Preliminary evaluation of system performance by using a Faraday indicator with a Faraday rotation coefficient of 3.47x10-5 rad/μm Oe shows a magnetic sensitivity of about 5 μT, without any need for accumulation or averaging processing. Using the developed MO system we have succeeded in the fast and quantitative imaging of a rotationally symmetric magnetic field distribution around an YBa2Cu3O7-δ (YBCO) strip line applied with dc-biased current, and also succeeded in the detection of quantized fine signals corresponding to magnetic flux quantum generation in a superconducting loop of an YBCO Josephson vortex flow transistor. Thus, the developed system enables us not only to do fast imaging and local signal detection but also to directly evaluate both the strength and direction of a magnetic signal.

  10. Solar adaptive optics at the Observatorio del Teide, Tenerife

    Soltau, Dirk; Berkefeld, Thomas; Schmidt, Dirk; von der Lühe, Oskar

    2013-10-01

    Observing the Sun with high angular resolution is difficult because the turbulence in the atmosphere is strongest during day time. In this paper we describe the principles of solar adaptive optics exemplified by the two German solar telescopes VTT and GREGOR at the Observatorio del Teide. With theses systems we obtain near diffraction limited images of the Sun. Ways to overcome the limits of conventional AO by applying multiconjugate adaptive optics (MCAO) are shown.

  11. Wavefront sensorless adaptive optics ophthalmoscopy in the human eye

    Hofer, Heidi; Sredar, Nripun; Queener, Hope; Li, Chaohong; Porter, Jason

    2011-01-01

    Wavefront sensor noise and fidelity place a fundamental limit on achievable image quality in current adaptive optics ophthalmoscopes. Additionally, the wavefront sensor ‘beacon’ can interfere with visual experiments. We demonstrate real-time (25 Hz), wavefront sensorless adaptive optics imaging in the living human eye with image quality rivaling that of wavefront sensor based control in the same system. A stochastic parallel gradient descent algorithm directly optimized the mean intensity in ...

  12. Creating and Probing Graphene Electron Optics with Local Scanning Probes

    Stroscio, Joseph

    Ballistic propagation and the light-like dispersion of graphene charge carriers make graphene an attractive platform for optics-inspired graphene electronics where gate tunable potentials can control electron refraction and transmission. In analogy to optical wave propagation in lenses, mirrors and metamaterials, gate potentials can be used to create a negative index of refraction for Veselago lensing and Fabry-Pérot interferometers. In circular geometries, gate potentials can induce whispering gallery modes (WGM), similar to optical and acoustic whispering galleries albeit on a much smaller length scale. Klein scattering of Dirac carriers plays a central role in determining the coherent propagation of electron waves in these resonators. In this talk, I examine the probing of electron resonators in graphene confined by linear and circular gate potentials with the scanning tunneling microscope (STM). The tip in the STM tunnel junction serves both as a tunable local gate potential, and as a probe of the graphene states through tunneling spectroscopy. A combination of a back gate potential, Vg, and tip potential, Vb, creates and controls a circular pn junction that confines the WGM graphene states. The resonances are observed in two separate channels in the tunneling spectroscopy experiment: first, by directly tunneling into the state at the bias energy eVb, and, second, by tunneling from the resonance at the Fermi level as the state is gated by the tip potential. The second channel produces a fan-like set of WGM peaks, reminiscent of the fringes seen in planar geometries by transport measurements. The WGM resonances split in a small applied magnetic field, with a large energy splitting approaching the WGM spacing at 0.5 T. These results agree well with recent theory on Klein scattering in graphene electron resonators. This work is done in collaboration with Y. Zhao, J. Wyrick, F.D. Natterer, J. F. Rodriquez-Nieva, C. Lewandoswski, K. Watanabe, T. Taniguchi, N. B

  13. Optical and Electrical Characterization at the Nanoscale by a Transparent Tip of a Scanning Tunneling Microscope

    Sychugov, Ilya; Omi, Hiroo; Murashita, Toru; KOBAYASHI, Yoshihiro

    2009-01-01

    A new type of scanning probe microscope, combining features of the scanning tunnelling microscope, the scanning tunnelling luminescence microscope with a transparent probe and the aperture scanning near-field optical microscope, is described. Proof-of-concept experiments were performed under ultrahigh vacuum conditions at varying temperature on GaAs/AlAs heterostructures.

  14. Single crystalline film screens for cathode-ray tubes: New life of television scanning optical microscopy

    Advantages of television scanning optical microscopy are discussed in comparison with cameral microscopy. Peculiarities of new types of cathode-ray tubes with single crystalline film screens, as a source of scanning beam, are described

  15. Computational adaptive optics for broadband interferometric tomography of tissues and cells

    Adie, Steven G.; Mulligan, Jeffrey A.

    2016-03-01

    Adaptive optics (AO) can shape aberrated optical wavefronts to physically restore the constructive interference needed for high-resolution imaging. With access to the complex optical field, however, many functions of optical hardware can be achieved computationally, including focusing and the compensation of optical aberrations to restore the constructive interference required for diffraction-limited imaging performance. Holography, which employs interferometric detection of the complex optical field, was developed based on this connection between hardware and computational image formation, although this link has only recently been exploited for 3D tomographic imaging in scattering biological tissues. This talk will present the underlying imaging science behind computational image formation with optical coherence tomography (OCT) -- a beam-scanned version of broadband digital holography. Analogous to hardware AO (HAO), we demonstrate computational adaptive optics (CAO) and optimization of the computed pupil correction in 'sensorless mode' (Zernike polynomial corrections with feedback from image metrics) or with the use of 'guide-stars' in the sample. We discuss the concept of an 'isotomic volume' as the volumetric extension of the 'isoplanatic patch' introduced in astronomical AO. Recent CAO results and ongoing work is highlighted to point to the potential biomedical impact of computed broadband interferometric tomography. We also discuss the advantages and disadvantages of HAO vs. CAO for the effective shaping of optical wavefronts, and highlight opportunities for hybrid approaches that synergistically combine the unique advantages of hardware and computational methods for rapid volumetric tomography with cellular resolution.

  16. Amplitude variations on the Extreme Adaptive Optics testbed

    Evans, J; Thomas, S; Dillon, D; Gavel, D; Phillion, D; Macintosh, B

    2007-08-14

    High-contrast adaptive optics systems, such as those needed to image extrasolar planets, are known to require excellent wavefront control and diffraction suppression. At the Laboratory for Adaptive Optics on the Extreme Adaptive Optics testbed, we have already demonstrated wavefront control of better than 1 nm rms within controllable spatial frequencies. Corresponding contrast measurements, however, are limited by amplitude variations, including those introduced by the micro-electrical-mechanical-systems (MEMS) deformable mirror. Results from experimental measurements and wave optic simulations of amplitude variations on the ExAO testbed are presented. We find systematic intensity variations of about 2% rms, and intensity variations with the MEMS to be 6%. Some errors are introduced by phase and amplitude mixing because the MEMS is not conjugate to the pupil, but independent measurements of MEMS reflectivity suggest that some error is introduced by small non-uniformities in the reflectivity.

  17. In vivo high-resolution retinal imaging using adaptive optics.

    Seyedahmadi, Babak Jian; Vavvas, Demetrios

    2010-01-01

    Retinal imaging with conventional methods is only able to overcome the lowest order of aberration, defocus and astigmatism. The human eye is fraught with higher order of aberrations. Since we are forced to use the human optical system in retinal imaging, the images are degraded. In addition, all of these distortions are constantly changing due to head/eye movement and change in accommodation. Adaptive optics is a promising technology introduced in the field of ophthalmology to measure and compensate for these aberrations. High-resolution obtained by adaptive optics enables us to view and image the retinal photoreceptors, retina pigment epithelium, and identification of cone subclasses in vivo. In this review we will be discussing the basic technology of adaptive optics and hardware requirement in addition to clinical applications of such technology. PMID:21090998

  18. Horizontal Path Laser Communications Employing MEMS Adaptive Optics Correction

    Thompson, C A; Wilks, S C; Brase, J M; Young, R A; Johnson, G W; Ruggiero, A J

    2001-09-05

    Horizontal path laser communications are beginning to provide attractive alternatives for high-speed optical communications, In particular, companies are beginning to sell fiberless alternatives for intranet and sporting event video. These applications are primarily aimed at short distance applications (on the order of 1 km pathlength). There exists a potential need to extend this pathlength to distances much greater than a 1km. For cases of long distance optical propagation, atmospheric turbulence will ultimately limit the maximum achievable data rate. In this paper, we propose a method of improved signal quality through the use of adaptive optics. In particular, we show work in progress toward a high-speed, small footprint Adaptive Optics system for horizontal path laser communications. Such a system relies heavily on recent progress in Micro-Electro-Mechanical Systems (MEMS) deformable mirrors as well as improved communication and computational components. In this paper we detail two Adaptive Optics approaches for improved through-put, the first is the compensated receiver (the traditional Adaptive Optics approach), the second is the compensated transmitter/receiver. The second approach allows for correction of the optical wavefront before transmission from the transmitter and prior to detection at the receiver.

  19. An Adaptive-Tabu GA for Registration of CT and Surface Laser Scan.

    Lee, Jiann-Der; Huang, Jau-Hua; Huang, Chung-Hsien; Liu, Li-Chang

    2005-01-01

    An adaptive-tabu GA (Genetic Algorithm) method is proposed to improve some traditional GA methods in the registration of computer tomography (CT) and surface laser scan. In this method, the adaptive memory structure and search strategy of Tabu Search (TS) with the modified chromosome crossover and adaptive mutation are proposed to increase the convergence speed and accuracy of the fitness function. This registration method can be used on non-fiducial stereo-tactic brain surgeries to assist surgeons to diagnose and treat brain diseases. PMID:17280970

  20. An adaptive non-raster scanning method in atomic force microscopy for simple sample shapes

    It is a significant challenge to reduce the scanning time in atomic force microscopy while retaining imaging quality. In this paper, a novel non-raster scanning method for high-speed imaging is presented. The method proposed here is developed for a specimen with the simple shape of a cell. The image is obtained by scanning the boundary of the specimen at successively increasing heights, creating a set of contours. The scanning speed is increased by employing a combined prediction algorithm, using a weighted prediction from the contours scanned earlier, and from the currently scanned contour. In addition, an adaptive change in the height step after each contour scan is suggested. A rigorous simulation test bed recreates the x–y specimen stage dynamics and the cantilever height control dynamics, so that a detailed parametric comparison of the scanning algorithms is possible. The data from different scanning algorithms are compared after the application of an image interpolation algorithm (the Delaunay interpolation algorithm), which can also run on-line. (paper)

  1. Ultrasharp carbon whisker optical fiber probes for scanning near-field optical microscopy

    Mensi, Mounir; Mikhailov, Gennadii; Pyatkin, Sergey; Adamcik, Jozef; Sekatskii, Sergey; Dietler, Giovanni

    2010-05-01

    We report the growth of ultrasharp carbon whiskers onto apertured near-field optical glass fiber probes. The ultrasharp carbon whiskers are produced by the electron-assisted dissociation of residual oil vapors present in the vacuum chamber during the electron beam exposition of the tip. This cost effective manufacturing procedure is reproducible, fast and allows controlling the shape of the carbon whisker. The radius of curvature of the whisker apex is approximately 10 nm while its small total length is around 100 nm thus fulfilling the requirements of aperture Scanning Near-Field Optical Microscope (SNOM) probes, i.e. to keep the distance between the sample and the optical aperture during the scanning at subwavelength scale. Furthermore, due to the intrinsic properties of the amorphous carbon whisker, the probes are durable. The carbon whisker optical fiber probes are mounted on tuning-forks using the earlier discussed double-resonant principle. This process ensures a high quality factor of the sensor in the range 2000-5500, which enables to cope with the large stiffness of the tuning-fork actuator and obtain a characteristic noise-limited sensitivity smaller than 10pN necessary to image soft biological samples without destroying them. To illustrate the sensor's performances, transmission near-field optical images of SNOM calibration grating as well as high-resolution state-of-the-art topographic images of single DNA molecules are presented. Prospects of further improvements of the fabrication method enabling to achieve the lighting rod enhancement of the optical near-field (nano-antenna effect) are briefly discussed.

  2. Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas

    Within a clinical trial on scanning time-domain optical mammography reported on in a companion publication (part I), craniocaudal and mediolateral projection optical mammograms were recorded from 154 patients, suspected of having breast cancer. Here we report on in vivo optical properties of the subset of 87 histologically validated carcinomas which were visible in optical mammograms recorded at two or three near-infrared wavelengths. Tumour absorption and reduced scattering coefficients were derived from distributions of times of flight of photons recorded at the tumour site employing the model of diffraction of photon density waves by a spherical inhomogeneity, located in an otherwise homogeneous tissue slab. Effective tumour radii, taken from pathology, and tumour location along the compression direction, deduced from off-axis optical scans of the tumour region, were included in the analysis as prior knowledge, if available. On average, tumour absorption coefficients exceeded those of surrounding healthy breast tissue by a factor of about 2.5 (670 nm), whereas tumour reduced scattering coefficients were larger by about 20% (670 nm). From absorption coefficients at 670 nm and 785 nm total haemoglobin concentration and blood oxygen saturation were deduced for tumours and surrounding healthy breast tissue. Apart from a few outliers total haemoglobin concentration was observed to be systematically larger in tumours compared to healthy breast tissue. In contrast, blood oxygen saturation was found to be a poor discriminator for tumours and healthy breast tissue; both median values of blood oxygen saturation are the same within their statistical uncertainties. However, the ratio of total haemoglobin concentration over blood oxygen saturation further improves discrimination between tumours and healthy breast tissue. For 29 tumours detected in optical mammograms recorded at three wavelengths (670 nm, 785 nm, 843 nm or 884 nm), scatter power was derived from transport

  3. PASSATA - Object oriented numerical simulation software for adaptive optics

    Agapito, G; Esposito, S

    2016-01-01

    We present the last version of the PyrAmid Simulator Software for Adaptive opTics Arcetri (PASSATA), an IDL and CUDA based object oriented software developed in the Adaptive Optics group of the Arcetri observatory for Monte-Carlo end-to-end adaptive optics simulations. The original aim of this software was to evaluate the performance of a single conjugate adaptive optics system for ground based telescope with a pyramid wavefront sensor. After some years of development, the current version of PASSATA is able to simulate several adaptive optics systems: single conjugate, multi conjugate and ground layer, with Shack Hartmann and Pyramid wavefront sensors. It can simulate from 8m to 40m class telescopes, with diffraction limited and resolved sources at finite or infinite distance from the pupil. The main advantages of this software are the versatility given by the object oriented approach and the speed given by the CUDA implementation of the most computational demanding routines. We describe the software with its...

  4. Photonic crystal-adaptive optical devices

    Buss, Thomas

    This Ph.D. thesis presents methods for enhancing the optical functionality of transparent glass panes by introduction of invisible nanoscale surface structures, such as gratings and planar photonic cyrstals. In this way the primary functionality of the glass - transparancy - may be enhanced with...... new properties, turning window glasses or glass surfaces of hand-held electronics into multifunctional devices. Common to all examples discussed, gratings and photonic crystals are used to engineer the optical dispersion and selectively modify the direction of guided light and transfer free...... minimized, thus allowing a homogeneous, glare-free, white-light daylighting into the room. Even more functionality can be achieved when the optical effects are tunable or reconfigurable. This is investigated with photonic crystal dye lasers. These lasers combine a photonic crystal resonator with a dye...

  5. Wavelet methods in multi-conjugate adaptive optics

    The next generation ground-based telescopes rely heavily on adaptive optics for overcoming the limitation of atmospheric turbulence. In the future adaptive optics modalities, like multi-conjugate adaptive optics (MCAO), atmospheric tomography is the major mathematical and computational challenge. In this severely ill-posed problem, a fast and stable reconstruction algorithm is needed that can take into account many real-life phenomena of telescope imaging. We introduce a novel reconstruction method for the atmospheric tomography problem and demonstrate its performance and flexibility in the context of MCAO. Our method is based on using locality properties of compactly supported wavelets, both in the spatial and frequency domains. The reconstruction in the atmospheric tomography problem is obtained by solving the Bayesian MAP estimator with a conjugate-gradient-based algorithm. An accelerated algorithm with preconditioning is also introduced. Numerical performance is demonstrated on the official end-to-end simulation tool OCTOPUS of European Southern Observatory. (paper)

  6. Beaconless adaptive-optics technique for HEL beam control

    Khizhnyak, Anatoliy; Markov, Vladimir

    2016-05-01

    Effective performance of forthcoming laser systems capable of power delivery on a distant target requires an adaptive optics system to correct atmospheric perturbations on the laser beam. The turbulence-induced effects are responsible for beam wobbling, wandering, and intensity scintillation, resulting in degradation of the beam quality and power density on the target. Adaptive optics methods are used to compensate for these negative effects. In its turn, operation of the AOS system requires a reference wave that can be generated by the beacon on the target. This report discusses a beaconless approach for wavefront correction with its performance based on the detection of the target-scattered light. Postprocessing of the beacon-generated light field enables retrieval and detailed characterization of the turbulence-perturbed wavefront -data that is essential to control the adaptive optics module of a high-power laser system.

  7. High resolution adaptive optics imaging complements standard spectral domain optical coherent tomography in retinal diseases with micro-structural details: a case series

    Gibran Syed Khurshid

    2016-01-01

    Full Text Available Purpose: To evaluate if high resolution adaptive optics confocal scanning laser ophthalmoscopy (AO-SLO can be used as an adjunct complementary diagnostic tool to spectral domain optical coherent tomography (SD-OCT in characterizing three macular diseases: rod-cone dystrophy, acute retinal pigment epitheliitis (Krill’s disease, and occult macular dystrophy. Methods: As part of a complete clinical examination, each patient was subjected to color fundus pictures, multimodal imaging scans with Heidelberg SpectralisTM and high resolution retinal images with a custom built adaptive optics scanning laser ophthalmolscope (AO-SLO. The registered AO-SLO images were averaged to improve the signal to noise ratio and used to generate larger photoreceptor mosaics. Results: AO-SLO mosaics for all three conditions showed distinct, characteristic disruptions of the photoreceptors in areas that corresponded to the abnormalities observed on fundus photography and SD-OCT scans. Conclusions: AO-SLO defined fine structural changes associated with retinal pathology at the photoreceptor level that could not be achieved using standard diagnostic methods. A combination of adaptive optics scanning laser ophthalmoscopy (AO-SLO and SD-OCT provided views of the retina with enhanced lateral and axial resolution. High-resolution, ultra-structural details of the retina may provide additional insights into the disease etiology, progression and management of patients with vision threatening macular diseases.

  8. The New Weather Radar for America's Space Program in Florida: A Temperature Profile Adaptive Scan Strategy

    Carey, L. D.; Petersen, W. A.; Deierling, W.; Roeder, W. P.

    2009-01-01

    A new weather radar is being acquired for use in support of America s space program at Cape Canaveral Air Force Station, NASA Kennedy Space Center, and Patrick AFB on the east coast of central Florida. This new radar replaces the modified WSR-74C at Patrick AFB that has been in use since 1984. The new radar is a Radtec TDR 43-250, which has Doppler and dual polarization capability. A new fixed scan strategy was designed to best support the space program. The fixed scan strategy represents a complex compromise between many competing factors and relies on climatological heights of various temperatures that are important for improved lightning forecasting and evaluation of Lightning Launch Commit Criteria (LCC), which are the weather rules to avoid lightning strikes to in-flight rockets. The 0 C to -20 C layer is vital since most generation of electric charge occurs within it and so it is critical in evaluating Lightning LCC and in forecasting lightning. These are two of the most important duties of 45 WS. While the fixed scan strategy that covers most of the climatological variation of the 0 C to -20 C levels with high resolution ensures that these critical temperatures are well covered most of the time, it also means that on any particular day the radar is spending precious time scanning at angles covering less important heights. The goal of this project is to develop a user-friendly, Interactive Data Language (IDL) computer program that will automatically generate optimized radar scan strategies that adapt to user input of the temperature profile and other important parameters. By using only the required scan angles output by the temperature profile adaptive scan strategy program, faster update times for volume scans and/or collection of more samples per gate for better data quality is possible, while maintaining high resolution at the critical temperature levels. The temperature profile adaptive technique will also take into account earth curvature and refraction

  9. Topographic, electrochemical, and optical images captured using standing approach mode scanning electrochemical/optical microscopy.

    Takahashi, Yasufumi; Hirano, Yu; Yasukawa, Tomoyuki; Shiku, Hitoshi; Yamada, Hiroshi; Matsue, Tomokazu

    2006-12-01

    We developed a high-resolution scanning electrochemical microscope (SECM) for the characterization of various biological materials. Electrode probes were fabricated by Ti/Pt sputtering followed by parylene C-vapor deposition polymerization on the pulled optical fiber or glass capillary. The effective electrode radius estimated from the cyclic voltammogram of ferrocyanide was found to be 35 nm. The optical aperture size was less than 170 nm, which was confirmed from the cross section of the near-field scanning optical microscope (NSOM) image of the quantum dot (QD) particles with diameters in the range of 10-15 nm. The feedback mechanism controlling the probe-sample distance was improved by vertically moving the probe by 0.1-3 microm to reduce the damage to the samples. This feedback mode, defined as "standing approach (STA) mode" (Yamada, H.; Fukumoto, H.; Yokoyama, T.; Koike, T. Anal. Chem. 2005, 77, 1785-1790), has allowed the simultaneous electrochemical and topographic imaging of the axons and cell body of a single PC12 cell under physiological conditions for the first time. STA-mode feedback imaging functions better than tip-sample regulation by the conventionally available AFM. For example, polystyrene beads (diameter approximately 6 microm) was imaged using the STA-mode SECM, whereas imaging was not possible using a conventional AFM instrument. PMID:17128996

  10. Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy.

    Yi, Ji; Chen, Siyu; Shu, Xiao; Fawzi, Amani A; Zhang, Hao F

    2015-10-01

    We achieved human retinal imaging using visible-light optical coherence tomography (vis-OCT) guided by an integrated scanning laser ophthalmoscopy (SLO). We adapted a spectral domain OCT configuration and used a supercontinuum laser as the illumating source. The center wavelength was 564 nm and the bandwidth was 115 nm, which provided a 0.97 µm axial resolution measured in air. We characterized the sensitivity to be 86 dB with 226 µW incidence power on the pupil. We also integrated an SLO that shared the same optical path of the vis-OCT sample arm for alignment purposes. We demonstrated the retinal imaging from both systems centered at the fovea and optic nerve head with 20° × 20° and 10° × 10° field of view. We observed similar anatomical structures in vis-OCT and NIR-OCT. The contrast appeared different from vis-OCT to NIR-OCT, including slightly weaker signal from intra-retinal layers, and increased visibility and contrast of anatomical layers in the outer retina. PMID:26504622

  11. A real-time simulation facility for astronomical adaptive optics

    Basden, Alastair

    2014-01-01

    In this paper we introduce the concept of real-time hardware-in-the-loop simulation for astronomical adaptive optics, and present the case for the requirement for such a facility. This real-time simulation, when linked with an adaptive optics real-time control system, provides an essential tool for the validation, verification and integration of the Extremely Large Telescope real-time control systems prior to commissioning at the telescope. We demonstrate that such a facility is crucial for the success of the future extremely large telescopes.

  12. Hybrid Deconvolution of Adaptive Optics Retinal Images from Wavefront Sensing

    Adaptive optics can be used to compensate for the wave aberration of the human eyes to achieve high-resolution imaging in real time. However the correction is partial due to the limitation of hardware. We propose a kind of hybrid image post-processing method, which uses the blind deconvolution combined with the residual data in wavefront sensor to restore the partially adaptive optics corrected retinal image. This method is applied in the image restoration of the vivid human retinal images. The results show that it is effective to improve the retinal image quality

  13. Hybrid Deconvolution of Adaptive Optics Retinal Images from Wavefront Sensing

    TIAN Yu; RAO Chang-Hui; RAO Xue-Jun; WANG Cheng; YU Xiang; LIU Qian; XUE Li-Xia; LING Ning; JIANG Wen-Han

    2008-01-01

    Adaptive optics can be used to compensate for the wave aberration of the human eyes to achieve high-resolution imaging in real time.However the correction is partial due to the limitation of hardware.We propose a kind of hybrid image post-processing method.which uses the blind deconvolution combined with the residual data in wavefront sensor to restore the partially adaptive optics corrected retinal image.This method is applied in the image restoration of the vivid human retinal images.The results show that it is effective to improve the retinal image quality.

  14. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics

    Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Seungjae; Lee, Byoungho; Kim, Myung K.

    2015-11-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: self­interference incoherent digital holography (SIDH). The SIDH generates a complex-i.e., amplitude plus phase-hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  15. Characterization and Operation of Liquid Crystal Adaptive Optics Phoropter

    Awwal, A; Bauman, B; Gavel, D; Olivier, S; Jones, S; Hardy, J L; Barnes, T; Werner, J S

    2003-02-05

    Adaptive optics (AO), a mature technology developed for astronomy to compensate for the effects of atmospheric turbulence, can also be used to correct the aberrations of the eye. The classic phoropter is used by ophthalmologists and optometrists to estimate and correct the lower-order aberrations of the eye, defocus and astigmatism, in order to derive a vision correction prescription for their patients. An adaptive optics phoropter measures and corrects the aberrations in the human eye using adaptive optics techniques, which are capable of dealing with both the standard low-order aberrations and higher-order aberrations, including coma and spherical aberration. High-order aberrations have been shown to degrade visual performance for clinical subjects in initial investigations. An adaptive optics phoropter has been designed and constructed based on a Shack-Hartmann sensor to measure the aberrations of the eye, and a liquid crystal spatial light modulator to compensate for them. This system should produce near diffraction-limited optical image quality at the retina, which will enable investigation of the psychophysical limits of human vision. This paper describes the characterization and operation of the AO phoropter with results from human subject testing.

  16. Limitations to adaptive optics image quality in rodent eyes

    Zhou, Xiaolin; Bedggood, Phillip; Metha, Andrew

    2012-01-01

    Adaptive optics (AO) retinal image quality of rodent eyes is inferior to that of human eyes, despite the promise of greater numerical aperture. This paradox challenges several assumptions commonly made in AO imaging, assumptions which may be invalidated by the very high power and dioptric thickness of the rodent retina. We used optical modeling to compare the performance of rat and human eyes under conditions that tested the validity of these assumptions. Results showed that AO image quality ...

  17. Optical Field Measurement of Nano-Apertures with a Scanning Near-Field Optical Microscope

    XU Tie-Jun; XU Ji-Ying; WANG Jia; TIAN Qian

    2004-01-01

    @@ We investigate optical near-field distributions of the unconventional C-apertures and the conventional square apertures in preliminary experiment with an aperture scanning near-field optical microscope. These nano-apertures are fabricated in Au film on a glass substrate with focused ion beam technology. The experimental results indicate the uptrend of output light intensity that a C-aperture enables the intensity maximum to increase at least 10times more than a square aperture with same unit length. The measured near-field light spot sizes of C-apertureand square aperture with 200-nm unit length are 439nm × 500nm and 245nm × 216nm, respectively.

  18. CCD-based optical CT scanning of highly attenuating phantoms

    Al-Nowais, Shamsa [Department of Physics, University of Surrey, Guildford (United Kingdom); Doran, Simon J [CRUK Clinical MR Research Group, Institute of Cancer Research, Sutton (United Kingdom)], E-mail: Simon.Doran@icr.ac.uk

    2009-05-01

    The introduction of optical computed tomography (optical-CT) offers economic and easy to use 3-D optical readout for gel dosimeters. However, previous authors have noted some challenges regarding the accuracy of such imaging techniques at high values of optical density. In this paper, we take a closer look at the 'cupping' artefact evident in both light-scattering polymer systems and highly light absorbing phantoms using our CCD-based optical scanner. In addition, a technique is implemented whereby the maximum measurable optical absorbance is extended to correct for any errors that may have occurred in the estimated value of the dark current or ambient light reaching the detector. The results indicate that for absorbance values up to 2.0, the optical scanner results have good accuracy, whereas this is not the case at high absorbance values for reasons yet to be explained.

  19. Adaptive optics for control of the laser welding process

    Mrňa, Libor; Šarbort, Martin; Řeřucha, Šimon; Jedlička, Petr

    Praha: Institute of Plasma Physics, 2012 - (Vít, T.; Kovačičinová, J.; Lédl, V.), s. 93-98 ISBN 978-80-87026-02-1. [Optics and Measurement 2012. Liberec (CZ), 16.10.2012-18.10.2012] R&D Projects: GA MPO 2A-3TP1/113; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : laser welding beam shaping * adaptive optics, * power optics * beam shaping Subject RIV: JB - Sensors, Measurment, Regulation

  20. Adaptive optical system for astronomical applications

    Merkle, F.; Bille, J.; Freischlad, K.; Frieben, M.; Jahn, G.; Reischmann, H.-L.

    The active optical system being developed for use with the 0.75-m RC telescope at the Landessternwarte in Heidelberg, FRG, is discussed. A 5-cm electrostatically deformable aluminum-coated polymer mirror (sensitivity 0.05 microns/V, maximum local tilt 3 microns/5 mm) is mounted in a gimbal with piezoelectric-actuator tilt control. The mirror control systems being tested are a modified shearing interferometer with crosstalk-compensated feedback and Fourier-modulus wavefront computation, both using a 32 x 32 diode array as detector. Modal phase compensation is achieved using Zernike polynomials and Karhunen-Loeve functions; the correction for the tilt terms of the series expansion is left to the overall-tilt compensation unit, for which preliminary test results are shown.

  1. Optic flow improves adaptability of spatiotemporal characteristics during split-belt locomotor adaptation with tactile stimulation.

    Eikema, Diderik Jan A; Chien, Jung Hung; Stergiou, Nicholas; Myers, Sara A; Scott-Pandorf, Melissa M; Bloomberg, Jacob J; Mukherjee, Mukul

    2016-02-01

    Human locomotor adaptation requires feedback and feed-forward control processes to maintain an appropriate walking pattern. Adaptation may require the use of visual and proprioceptive input to decode altered movement dynamics and generate an appropriate response. After a person transfers from an extreme sensory environment and back, as astronauts do when they return from spaceflight, the prolonged period required for re-adaptation can pose a significant burden. In our previous paper, we showed that plantar tactile vibration during a split-belt adaptation task did not interfere with the treadmill adaptation however, larger overground transfer effects with a slower decay resulted. Such effects, in the absence of visual feedback (of motion) and perturbation of tactile feedback, are believed to be due to a higher proprioceptive gain because, in the absence of relevant external dynamic cues such as optic flow, reliance on body-based cues is enhanced during gait tasks through multisensory integration. In this study, we therefore investigated the effect of optic flow on tactile-stimulated split-belt adaptation as a paradigm to facilitate the sensorimotor adaptation process. Twenty healthy young adults, separated into two matched groups, participated in the study. All participants performed an overground walking trial followed by a split-belt treadmill adaptation protocol. The tactile group (TC) received vibratory plantar tactile stimulation only, whereas the virtual reality and tactile group (VRT) received an additional concurrent visual stimulation: a moving virtual corridor, inducing perceived self-motion. A post-treadmill overground trial was performed to determine adaptation transfer. Interlimb coordination of spatiotemporal and kinetic variables was quantified using symmetry indices and analyzed using repeated-measures ANOVA. Marked changes of step length characteristics were observed in both groups during split-belt adaptation. Stance and swing time symmetries were

  2. Laser guide stars and adaptive optics for astronomy

    Max, C.E. [ed.

    1992-07-15

    Five papers are included: feasibility experiment for sodium-alyer laser guide stars at LLNL; system design for a high power sodium beacon laser; sodium guide star adaptive optics system for astronomical imaging in the visible and near-infrared; high frame-rate, large field wavefront sensor; and resolution limits for ground-based astronomical imaging. Figs, tabs, refs.

  3. Data-Driven Optimal Control for Adaptive Optics

    Hinnen, K.J.G.

    2007-01-01

    Adaptive optics (AO) is a technique to actively correct the wavefront distortions introduced in a light beam as it propagates through a turbulent medium. Nowadays, it is commonly applied in ground-based telescopes to counteract the devastating effect of atmospheric turbulence. This thesis focuses on

  4. New algorithms for adaptive optics point-spread function reconstruction

    Gendron, E; Fusco, T; Rousset, G; Gendron, Eric; Cl\\'{e}net, Yann; Fusco, Thierry

    2006-01-01

    Context. The knowledge of the point-spread function compensated by adaptive optics is of prime importance in several image restoration techniques such as deconvolution and astrometric/photometric algorithms. Wavefront-related data from the adaptive optics real-time computer can be used to accurately estimate the point-spread function in adaptive optics observations. The only point-spread function reconstruction algorithm implemented on astronomical adaptive optics system makes use of particular functions, named $U\\_{ij}$. These $U\\_{ij}$ functions are derived from the mirror modes, and their number is proportional to the square number of these mirror modes. Aims. We present here two new algorithms for point-spread function reconstruction that aim at suppressing the use of these $U\\_{ij}$ functions to avoid the storage of a large amount of data and to shorten the computation time of this PSF reconstruction. Methods. Both algorithms take advantage of the eigen decomposition of the residual parallel phase covari...

  5. On the influence of the Illuminati in astronomical adaptive optics

    Morzinski, Katie M.; Males, Jared R.

    2012-01-01

    Astronomical adaptive optics (AO) has come into its own. Major O/IR telescopes are achieving diffraction-limited imaging; major facilities are being built with AO as an integral part. To the layperson, it may seem that AO has developed along a serpentine path. However, with a little illumination, the mark of Galileo's heirs becomes apparent in explaining the success of AO.

  6. Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy.

    Albert, O; Sherman, L; Mourou, G; Norris, T B; Vdovin, G

    2000-01-01

    Off-axis aberrations in a beam-scanning multiphoton confocal microscope are corrected with a deformable mirror. The optimal mirror shape for each pixel is determined by a genetic learning algorithm, in which the second-harmonic or two-photon fluorescence signal from a reference sample is maximized. The speed of the convergence is improved by use of a Zernike polynomial basis for the deformable mirror shape. This adaptive optical correction scheme is implemented in an all-reflective system by use of extremely short (10-fs) optical pulses, and it is shown that the scanning area of an f:1 off-axis parabola can be increased by nine times with this technique. PMID:18059779

  7. The AVES adaptive optics spectrograph for the VLT: status report

    Pallavicini, Roberto; Delabre, Bernard; Pasquini, Luca; Zerbi, Filippo M.; Bonanno, Giovanni; Comari, Maurizio; Conconi, Paolo; Mazzoleni, Ruben; Santin, Paolo; Damiani, Francesco; Di Marcantonio, Paolo; Franchini, Mariagrazia; Spano, Paolo; Bonifacio, P.; Catalano, Santo; Molaro, Paolo P.; Randich, S.; Rodono, Marcello

    2003-03-01

    We report on the status of AVES, the Adaptive-optics Visual Echelle Spectrograph proposed for the secondary port of the Nasmyth Adaptive Optics System (NAOS) recently installed at the VLT. AVES is an intermediate resolution (R ≍ 16,000) high-efficiency fixed- format echelle spectrograph which operates in the spectral band 500 - 1,000 nm. In addition to a high intrinsic efficiency, comparable to that of ESI at Keck II, it takes advantage of the adaptive optics correction provided by NAOS to reduce the sky and detector contribution in background-limited observations of weak sources, thus allowing a further magnitude gain with respect to comparable non-adaptive optics spectrographs. Simulations show that the instrument will be capable of reaching a magnitude V = 22.5 at S/N > 10 in two hours, two magnitudes weaker than GIRAFFE at the same resolution and 3 magnitudes weaker than the higher resolution UVES spectrograph. Imaging and coronographic functions have also been implemented in the design. We present the results of the final design study and we dicuss the technical and operational issues related to its implementation at the VLT as a visitor instrument. We also discuss the possibility of using a scaled-up non-adaptive optics version of the same design as an element of a double- or triple-arm intermediate-resolution spectrograph for the VLT. Such an option looks attractive in the context of a high-efficiency large-bandwidth (320 - 1,500 nm) spectrograph ("fast-shooter") being considered by ESO as a 2nd-generation VLT instrument.

  8. Adaptive wide-field optical tomography

    Venugopal, Vivek; Intes, Xavier

    2013-03-01

    We describe a wide-field optical tomography technique, which allows the measurement-guided optimization of illumination patterns for enhanced reconstruction performances. The iterative optimization of the excitation pattern aims at reducing the dynamic range in photons transmitted through biological tissue. It increases the number of measurements collected with high photon counts resulting in a dataset with improved tomographic information. Herein, this imaging technique is applied to time-resolved fluorescence molecular tomography for preclinical studies. First, the merit of this approach is tested by in silico studies in a synthetic small animal model for typical illumination patterns. Second, the applicability of this approach in tomographic imaging is validated in vitro using a small animal phantom with two fluorescent capillaries occluded by a highly absorbing inclusion. The simulation study demonstrates an improvement of signal transmitted (˜2 orders of magnitude) through the central portion of the small animal model for all patterns considered. A corresponding improvement in the signal at the emission wavelength by 1.6 orders of magnitude demonstrates the applicability of this technique for fluorescence molecular tomography. The successful discrimination and localization (˜1 mm error) of the two objects with higher resolution using the optimized patterns compared with nonoptimized illumination establishes the improvement in reconstruction performance when using this technique.

  9. Widefield scanning imaging with optical super-resolution

    Li, Yanghui; Shi, Zhaoyi; Shuai, Shaojie; Wang, Le

    2015-08-01

    An economical, pollution-free microsphere-based widefield scanning imaging method is presented. This system is able to visualize the surface pattern of the sample through a transparent dielectric microsphere stuck onto a glass probe. The microsphere endows the system with super-resolution capability, while the field of view can easily be expanded by scanning and image stitching. The feasibilities and advantages of this method have been verified experimentally.

  10. Adaptive optics assisted Fourier domain OCT with balanced detection

    Meadway, A.; Bradu, A.; Hathaway, M.; Van der Jeught, S.; Rosen, R. B.; Podoleanu, A. Gh.

    2011-03-01

    Two factors are of importance to optical coherence tomography (OCT), resolution and sensitivity. Adaptive optics improves the resolution of a system by correcting for aberrations causing distortions in the wave-front. Balanced detection has been used in time domain OCT systems by removing excess photon noise, however it has not been used in Fourier domain systems, as the cameras used in the spectrometers saturated before excess photon noise becomes a problem. Advances in camera technology mean that this is no longer the case and balanced detection can now be used to improve the signal to noise ratio in a Fourier domain (FD) OCT system. An FD-OCT system, enhanced with adaptive optics, is presented and is used to show the improvement that balanced detection can provide. The signal to noise ratios of single camera detection and balanced detection are assessed and in-vivo retinal images are acquired to demonstrate better image quality when using balance detection.

  11. Modeling for deformable mirrors and the adaptive optics optimization program

    We discuss aspects of adaptive optics optimization for large fusion laser systems such as the 192-arm National Ignition Facility (NIF) at LLNL. By way of example, we considered the discrete actuator deformable mirror and Hartmann sensor system used on the Beamlet laser. Beamlet is a single-aperture prototype of the 11-0-5 slab amplifier design for NIF, and so we expect similar optical distortion levels and deformable mirror correction requirements. We are now in the process of developing a numerically efficient object oriented C++ language implementation of our adaptive optics and wavefront sensor code, but this code is not yet operational. Results are based instead on the prototype algorithms, coded-up in an interpreted array processing computer language

  12. Adaptive AFM scan speed control for high aspect ratio fast structure tracking

    Ahmad, Ahmad; Schuh, Andreas; Rangelow, Ivo W. [Department of Microelectronic and Nanoelectronic Systems, Faculty of Electrical Engineering and Information Technology Ilmenau University of Technology, Gustav-Kirchhoffstr. 1, 98684 Ilmenau (Germany)

    2014-10-15

    Improved imaging rates in Atomic Force Microscopes (AFM) are of high interest for disciplines such as life sciences and failure analysis of semiconductor wafers, where the sample topology shows high aspect ratios. Also, fast imaging is necessary to cover a large surface under investigation in reasonable times. Since AFMs are composed of mechanical components, they are associated with comparably low resonance frequencies that undermine the effort to increase the acquisition rates. In particular, high and steep structures are difficult to follow, which causes the cantilever to temporarily loose contact to or crash into the sample. Here, we report on a novel approach that does not affect the scanner dynamics, but adapts the lateral scanning speed of the scanner. The controller monitors the control error signal and, only when necessary, decreases the scan speed to allow the z-piezo more time to react to changes in the sample's topography. In this case, the overall imaging rate can be significantly increased, because a general scan speed trade-off decision is not needed and smooth areas are scanned fast. In contrast to methods trying to increase the z-piezo bandwidth, our method is a comparably simple approach that can be easily adapted to standard systems.

  13. Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice

    Jian, Yifan; Xu, Jing; Gradowski, Martin A.; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2014-01-01

    We present wavefront sensorless adaptive optics (WSAO) Fourier domain optical coherence tomography (FD-OCT) for in vivo small animal retinal imaging. WSAO is attractive especially for mouse retinal imaging because it simplifies optical design and eliminates the need for wavefront sensing, which is difficult in the small animal eye. GPU accelerated processing of the OCT data permitted real-time extraction of image quality metrics (intensity) for arbitrarily selected retinal layers to be optimi...

  14. Advances in optical CT scanning for gel dosimetry

    Jordan, K.

    2004-01-01

    Optical computed tomography (CT) is physically similar to x-ray CT but is more versatile since many powerful light sources exist and optical elements such as mirrors, lenses, polarizers and efficient detectors are available. There are many potential forms of optical CT. Attenuation, fluorescence or scatter, polarization and refractive index spatial changes are all examples of optical CT. To date, optical CT for gel dosimetry has been limited to attenuation measurements that are the sum of scatter and absorption along defined lines. Polymerization gels turn white with absorbed dose and attenuation is due to scatter. Radiochromic gels also form a dose image due to changes in visible absorption. This short review concentrates on the papers published since the DOSGEL 2001 meeting and highlights experimental results and issues that are important for obtaining good quality input data for reconstruction. The format involves selected highlights from the papers and associated points from our experience with optical CT experimentation. The comments are intended to assist researchers unfamiliar with optical measurements to obtain high quality transmission data, a necessary step in quantitative gel dosimetry.

  15. Optical System Design For High Speed Bar Code Scanning

    Hellekson, Ronald; Reddersen, Brad; Campbell, Scott

    1987-04-01

    Spectra-Physics recently introduced the Model 750 SL scanner for use in the European point-of-sale market, to meet the European requirement for a scanner of less than 13 cm height. The model 750 SL uses a higher density computer designed scan pattern with a retrodirective collection system to scan and detect UPC, EAN, and JAN bar codes. The scanner "reads" these bar codes in such a way that the user need not precisely align the bar code symbol with respect to the window in the scanner even at package speeds up to 100 inches per second. By using a unique geometrical arrangement of mirrors, a polygonal mirror assembly, and a custom-designed plastic bifocal lens, a design was developed to meet these requirements. This paper describes the design of this new low cost scanner, the use of computer-aided design in the development of this scanner, and some observations on the future of bar code scanning.

  16. A Guided Mode View on Near-Field Scanning Optical Microscopy Measurements of Optical Magnetic Fields with Slit Probes

    Stoffer, Remco; Hammer, Manfred; Ivanova, O. V.; Hoekstra, Hugo J.W.M.

    2010-01-01

    Recent Near-field Scanning Optical Microscopy (NSOM) experiments with slit metal coated probes claim to measure the out-of-plane optical magnetic field around a dielectric sample waveguide [1]. The observations can also be explained by mode overlap calculations.

  17. Proton irradiation of liquid crystal based adaptive optical devices

    To assess its radiation hardness, a liquid crystal based adaptive optical element has been irradiated using a 60 MeV proton beam. The device with the functionality of an optical beam steerer was characterised before, during and after the irradiation. A systematic set of measurements on the transmission and beam deflection angles was carried out. The measurements showed that the transmission decreased only marginally and that its optical performance degraded only after a very high proton fluence (1010p/cm2). The device showed complete annealing in the functionality as a beam steerer, which leads to the conclusion that the liquid crystal technology for optical devices is not vulnerable to proton irradiation as expected in space.

  18. Genomewide scan for adaptive differentiation along altitudinal gradient in the Andrew's toad Bufo andrewsi.

    Guo, Baocheng; Lu, Di; Liao, Wen Bo; Merilä, Juha

    2016-08-01

    Recent studies of humans, dogs and rodents have started to discover the genetic underpinnings of high altitude adaptations, yet amphibians have received little attention in this respect. To identify possible signatures of adaptation to altitude, we performed a genome scan of 15 557 single nucleotide polymorphisms (SNPs) obtained with restriction site-associated DNA sequencing of pooled samples from 11 populations of Andrew's toad (Bufo andrewsi) from the edge of the Tibetan Plateau, spanning an altitudinal gradient from 1690 to 2768 m.a.s.l. We discovered significant geographic differentiation among all sites, with an average FST   = 0.023 across all SNPs. Apart from clear patterns of isolation by distance, we discovered numerous outlier SNPs showing strong associations with variation in altitude (1394 SNPs), average annual temperature (1859 SNPs) or both (1051 SNPs). Levels and patterns of genetic differentiation in these SNPs were consistent with the hypothesis that they have been subject to directional selection and reflect adaptation to altitudinal variation among the study sites. Genes with footprints of selection were significantly enriched in binding and metabolic processes. Several genes potentially related to high altitude adaptation were identified, although the identity and functional significance of most genomic targets of selection remain unknown. In general, the results provide genomic support for results of earlier common garden and low coverage genetic studies that have uncovered substantial adaptive differentiation along altitudinal and latitudinal gradients in amphibians. PMID:27289071

  19. Infinite impulse response modal filtering in visible adaptive optics

    Agapito, G; Quirós-Pacheco, F; Puglisi, A; Esposito, S

    2012-01-01

    Diffraction limited resolution adaptive optics (AO) correction in visible wavelengths requires a high performance control. In this paper we investigate infinite impulse response filters that optimize the wavefront correction: we tested these algorithms through full numerical simulations of a single-conjugate AO system comprising an adaptive secondary mirror with 1127 actuators and a pyramid wavefront sensor (WFS). The actual practicability of the algorithms depends on both robustness and knowledge of the real system: errors in the system model may even worsen the performance. In particular we checked the robustness of the algorithms in different conditions, proving that the proposed method can reject both disturbance and calibration errors.

  20. Infinite impulse response modal filtering in visible adaptive optics

    Agapito, G.; Arcidiacono, C.; Quirós-Pacheco, F.; Puglisi, A.; Esposito, S.

    2012-07-01

    Diffraction limited resolution adaptive optics (AO) correction in visible wavelengths requires a high performance control. In this paper we investigate infinite impulse response filters that optimize the wavefront correction: we tested these algorithms through full numerical simulations of a single-conjugate AO system comprising an adaptive secondary mirror with 1127 actuators and a pyramid wavefront sensor (WFS). The actual practicability of the algorithms depends on both robustness and knowledge of the real system: errors in the system model may even worsen the performance. In particular we checked the robustness of the algorithms in different conditions, proving that the proposed method can reject both disturbance and calibration errors.

  1. Fast calibration of high-order adaptive optics systems

    Kasper, Markus; Fedrigo, Enrico; Looze, Douglas P.; Bonnet, Henri; Ivanescu, Liviu; Oberti, Sylvain

    2004-06-01

    We present a new method of calibrating adaptive optics systems that greatly reduces the required calibration time or, equivalently, improves the signal-to-noise ratio. The method uses an optimized actuation scheme with Hadamard patterns and does not scale with the number of actuators for a given noise level in the wave-front sensor channels. It is therefore highly desirable for high-order systems and/or adaptive secondary systems on a telescope without a Gregorian focal plane. In the latter case, the measurement noise is increased by the effects of the turbulent atmosphere when one is calibrating on a natural guide star.

  2. Algorithm for localized adaptive diffuse optical tomography and its application in bioluminescence tomography

    A reconstruction algorithm for diffuse optical tomography based on diffusion theory and finite element method is described. The algorithm reconstructs the optical properties in a permissible domain or region-of-interest to reduce the number of unknowns. The algorithm can be used to reconstruct optical properties for a segmented object (where a CT-scan or MRI is available) or a non-segmented object. For the latter, an adaptive segmentation algorithm merges contiguous regions with similar optical properties thereby reducing the number of unknowns. In calculating the Jacobian matrix the algorithm uses an efficient direct method so the required time is comparable to that needed for a single forward calculation. The reconstructed optical properties using segmented, non-segmented, and adaptively segmented 3D mouse anatomy (MOBY) are used to perform bioluminescence tomography (BLT) for two simulated internal sources. The BLT results suggest that the accuracy of reconstruction of total source power obtained without the segmentation provided by an auxiliary imaging method such as x-ray CT is comparable to that obtained when using perfect segmentation. (paper)

  3. Algorithm for localized adaptive diffuse optical tomography and its application in bioluminescence tomography

    Naser, Mohamed A.; Patterson, Michael S.; Wong, John W.

    2014-04-01

    A reconstruction algorithm for diffuse optical tomography based on diffusion theory and finite element method is described. The algorithm reconstructs the optical properties in a permissible domain or region-of-interest to reduce the number of unknowns. The algorithm can be used to reconstruct optical properties for a segmented object (where a CT-scan or MRI is available) or a non-segmented object. For the latter, an adaptive segmentation algorithm merges contiguous regions with similar optical properties thereby reducing the number of unknowns. In calculating the Jacobian matrix the algorithm uses an efficient direct method so the required time is comparable to that needed for a single forward calculation. The reconstructed optical properties using segmented, non-segmented, and adaptively segmented 3D mouse anatomy (MOBY) are used to perform bioluminescence tomography (BLT) for two simulated internal sources. The BLT results suggest that the accuracy of reconstruction of total source power obtained without the segmentation provided by an auxiliary imaging method such as x-ray CT is comparable to that obtained when using perfect segmentation.

  4. Fluorescence in situ hybridization on human metaphase chromosomes detected by near-field scanning optical microscopy

    Moers, M.H.P.; Kalle, W.H.J.; Ruiter, A.G.T.; Wiegant, J.C.A.G.; Raap, A.K.; Greve, J.; Grooth, de B.G.; Hulst, van N.F.

    1996-01-01

    Fluorescence in situ hybridization o­n human metaphase chromosomes is detected by near-field scanning optical microscopy. This combination of cytochemical and scanning probe techniques enables the localization and identification of several fluorescently labelled genomic DNA fragments o­n a single ch

  5. Scanning probe and optical tweezer investigations of biomolecular interactions

    Rigby-Singleton, Shellie

    2002-07-01

    A complex array of intermolecular forces controls the interactions between and within biological molecules. The desire to empirically explore the fundamental forces has led to the development of several biophysical techniques. Of these, the atomic force microscope (AFM) and the optical tweezers have been employed throughout this thesis to monitor the intermolecular forces involved in biomolecular interactions. The AFM is a well-established force sensing technique capable of measuring biomolecular interactions at a single molecule level. However, its versatility has not been extrapolated to the investigation of a drug-enzyme complex. The energy landscape for the force induced dissociation of the DHFR-methotrexate complex was studied. Revealing an energy barrier to dissociation located {approx}0.3 nm from the bound state. Unfortunately, the AFM has a limited range of accessible loading rates and in order to profile the complete energy landscape alternative force sensing instrumentation should be considered, for example the BFP and optical tweezers. Thus, this thesis outlines the development and construction an optical trap capable of measuring intermolecular forces between biomolecules at the single molecule level. To demonstrate the force sensing abilities of the optical set up, proof of principle measurements were performed which investigate the interactions between proteins and polymer surfaces subjected to varying degrees of argon plasma treatment. Complementary data was gained from measurements performed independently by the AFM. Changes in polymer resistance to proteins as a response to changes in polymer surface chemistry were detected utilising both AFM and optical tweezers measurements. Finally, the AFM and optical tweezers were employed as ultrasensitive biosensors. Single molecule investigations of the antibody-antigen interaction between the cardiac troponin I marker and its complementary antibody, reveals the impact therapeutic concentrations of heparin

  6. Adaptive circle-ellipse fitting method for estimating tree diameter based on single terrestrial laser scanning

    Bu, Guochao; Wang, Pei

    2016-04-01

    Terrestrial laser scanning (TLS) has been used to extract accurate forest biophysical parameters for inventory purposes. The diameter at breast height (DBH) is a key parameter for individual trees because it has the potential for modeling the height, volume, biomass, and carbon sequestration potential of the tree based on empirical allometric scaling equations. In order to extract the DBH from the single-scan data of TLS automatically and accurately within a certain range, we proposed an adaptive circle-ellipse fitting method based on the point cloud transect. This proposed method can correct the error caused by the simple circle fitting method when a tree is slanted. A slanted tree was detected by the circle-ellipse fitting analysis, then the corresponding slant angle was found based on the ellipse fitting result. With this information, the DBH of the trees could be recalculated based on reslicing the point cloud data at breast height. Artificial stem data simulated by a cylindrical model of leaning trees and the scanning data acquired with the RIEGL VZ-400 were used to test the proposed adaptive fitting method. The results shown that the proposed method can detect the trees and accurately estimate the DBH for leaning trees.

  7. Spot Weight Adaptation for Moving Target in Spot Scanning Proton Therapy

    Paul eMorel

    2015-05-01

    Full Text Available Purpose: This study describes a real-time spot weight adaptation method in spot-scanning proton therapy for moving target or moving patient, so that the resultant dose distribution closely matches the planned dose distribution. Materials and Methods: The method proposed in this study adapts the weight (MU of the delivering pencil beam to that of the target spot it will actually hit during patient/target motion. The target spot a certain delivering pencil beam may hit relies on patient monitoring and/or motion modeling using four-dimensional (4D CT. After the adapted delivery, the required total weight (MU for this target spot is then subtracted from the planned value. With continuous patient motion and continuous spot scanning, the planned doses to all target spots will eventually be all fulfilled. In a proof-of-principle test, a lung case was presented with realistic temporal and motion parameters; the resultant dose distribution using spot weight adaptation was compared to that without using this method. The impact of the real-time patient/target position tracking or prediction was also investigated.Results: For moderate motion (i.e., mean amplitude 0.5 cm, D95% to the planning target volume (PTV was only 81.5% of the prescription (RX dose; with spot weight adaptation PTV D95% achieves 97.7%RX. For large motion amplitude (i.e., 1.5 cm, without spot weight adaptation PTV D95% is only 42.9% of RX; with spot weight adaptation, PTV D95% achieves 97.7%RX. Larger errors in patient/target position tracking or prediction led to worse final target coverage; an error of 3mm or smaller in patient/target position tracking is preferred. Conclusion: The proposed spot weight adaptation method was able to deliver the planned dose distribution and maintain target coverage when patient motion was involved. The successful implementation of this method would rely on accurate monitoring or prediction of patient/target motion.

  8. Adaptive optics for control of the laser welding process

    Jedlička Petr; Řeřucha Šimon; Šarbort Martin; Mrňa Libor

    2013-01-01

    The laser head with fixed focus optics is commonly used for the deep penetration laser welding. In such case the geometry and position of the beam waist are defined by the focusing lens. If the laser beam incident on the focusing lens is not well collimated but divergent and its divergence can be varied by proper adaptive optical elements, then also the geometry and position of the focus will be changeable. In this way it is possible to affect the energy coupling from the laser beam to t...

  9. Adaptive Data Rates for Flexible Transceivers in Optical Networks

    Brian Thomas Teipen

    2012-05-01

    Full Text Available Efforts towards commercializing higher-speed optical transmission have demonstrated the need for advanced modulation formats, several of which require similar transceiver hardware architecture. Adaptive transceivers can be built to have a number of possible operational configurations selected by software. Such software-defined transceiver configurations can create specific modulation formats to support sets of data rates, corresponding tolerances to system impairments, and sets of electronic digital signal processing schemes chosen to best function in a given network environment. In this paper, we discuss possibilities and advantages of reconfigurable, bit-rate flexible transceivers, and their potential applications in future optical networks.

  10. Adaptive optics for improved retinal surgery and diagnostics

    Humayun, M S; Sadda, S R; Thompson, C A; Olivier, S S; Kartz, M W

    2000-08-21

    It is now possible to field a compact adaptive optics (AO) system on a surgical microscope for use in retinal diagnostics and surgery. Recent developments in integrated circuit technology and optical photonics have led to the capability of building an AO system that is compact and significantly less expensive than traditional AO systems. It is foreseen that such an AO system can be integrated into a surgical microscope while maintaining a package size of a lunchbox. A prototype device can be developed in a manner that lends itself well to large-scale manufacturing.

  11. Laser Tomography Adaptive Optics (LTAO): A performance study

    Tatulli, E

    2013-01-01

    We present an analytical derivation of the on-axis performance of Adaptive Optics systems using a given number of guide stars of arbitrary altitude, distributed at arbitrary angular positions in the sky. The expressions of the residual error are given for cases of both continuous and discrete turbulent atmospheric profiles. Assuming Shack-Hartmann wavefront sensing with circular apertures, we demonstrate that the error is formally described by integrals of products of three Bessel functions. We compare the performance of Adaptive Optics correction when using natural, Sodium or Rayleigh laser guide stars. For small diameter class telescopes (~5m), we show that a few number of Rayleigh beacons can provide similar performance to that of a single Sodium laser, for a lower overall cost of the instrument. For bigger apertures, using Rayleigh stars may not be such a suitable alternative because of the too severe cone effect that drastically degrades the quality of the correction.

  12. Neptune and Titan Observed with Keck Telescope Adaptive Optics

    Max, C.E.; Macintosh, B.A.; Gibbard, S.; Gavel, D.T.; Roe, H.; De Pater, I.; Ghez, A.M.; Acton, S.; Wizinowich, P.L.; Lai, O.

    2000-05-05

    The authors report on observations taken during engineering science validation time using the new adaptive optics system at the 10-m Keck II Telescope. They observe Neptune and Titan at near-infrared wavelengths. These objects are ideal for adaptive optics imaging because they are bright and small, yet have many diffraction-limited resolution elements across their disks. In addition Neptune and Titan have prominent physical features, some of which change markedly with time. They have observed infrared-bright storms on Neptune, and very low-albedo surface regions on Titan, Saturn's largest moon, Spatial resolution on Neptune and Titan was 0.05-0.06 and 0.04-0.05 arc sec, respectively.

  13. Laser Guide Star Adaptive Optics without Tip-tilt

    Davies, R; Lidman, C; Louarn, M Le; Kasper, M; Förster-Schreiber, N M; Roccatagliata, V; Ageorges, N; Amico, P; Dumas, C; Mannucci, F

    2008-01-01

    Adaptive optics (AO) systems allow a telescope to reach its diffraction limit at near infrared wavelengths. But to achieve this, a bright natural guide star (NGS) is needed for the wavefront sensing, severely limiting the fraction of the sky over which AO can be used. To some extent this can be overcome with a laser guide star (LGS). While the laser can be pointed anywhere in the sky, one still needs to have a natural star, albeit fainter, reasonably close to correct the image motion (tip-tilt) to which laser guide stars are insensitive. There are in fact many astronomical targets without suitable tip-tilt stars, but for which the enhanced resolution obtained with the Laser Guide Star Facility (LGSF) would still be very beneficial. This article explores what adaptive optics performance one might expect if one dispenses with the tip-tilt star, and in what situations this mode of observing might be needed.

  14. Adaptation technology between IP layer and optical layer in optical Internet

    Ji, Yuefeng; Li, Hua; Sun, Yongmei

    2001-10-01

    Wavelength division multiplexing (WDM) optical network provides a platform with high bandwidth capacity and is supposed to be the backbone infrastructure supporting the next-generation high-speed multi-service networks (ATM, IP, etc.). In the foreseeable future, IP will be the predominant data traffic, to make fully use of the bandwidth of the WDM optical network, many attentions have been focused on IP over WDM, which has been proposed as the most promising technology for new kind of network, so-called Optical Internet. According to OSI model, IP is in the 3rd layer (network layer) and optical network is in the 1st layer (physical layer), so the key issue is what adaptation technology should be used in the 2nd layer (data link layer). In this paper, firstly, we analyze and compare the current adaptation technologies used in backbone network nowadays. Secondly, aiming at the drawbacks of above technologies, we present a novel adaptation protocol (DONA) between IP layer and optical layer in Optical Internet and describe it in details. Thirdly, the gigabit transmission adapter (GTA) we accomplished based on the novel protocol is described. Finally, we set up an experiment platform to apply and verify the DONA and GTA, the results and conclusions of the experiment are given.

  15. Second-harmonic scanning optical microscopy of semiconductor quantum dots

    Vohnsen, B.; Bozhevolnyi, S.I.; Pedersen, K.;

    2001-01-01

    transmission mode. In both cases the SH signal peaks at a pump wavelength of similar to 885 nm in correspondence to the maximum in the photoluminescence spectrum of the QD sample. SH near-field optical images exhibit spatial signal variations on a subwavelength scale that depend on the pump wavelength. We...

  16. Second-harmonic scanning optical microscopy of semiconductor quantum dots

    Vohnsen, B.; Bozhevolnyi, S.I.; Pedersen, K.; Østergaard, John Erland; Jensen, Jacob Riis; Hvam, Jørn Märcher

    transmission mode. In both cases the SH signal peaks at a pump wavelength of similar to 885 nm in correspondence to the maximum in the photoluminescence spectrum of the QD sample. SH near-field optical images exhibit spatial signal variations on a subwavelength scale that depend on the pump wavelength. We...

  17. Performance of a MEMS-base Adaptive Optics Optical Coherency Tomography System

    Evans, J; Zadwadzki, R J; Jones, S; Olivier, S; Opkpodu, S; Werner, J S

    2008-01-16

    We have demonstrated that a microelectrical mechanical systems (MEMS) deformable mirror can be flattened to < 1 nm RMS within controllable spatial frequencies over a 9.2-mm aperture making it a viable option for high-contrast adaptive optics systems (also known as Extreme Adaptive Optics). The Extreme Adaptive Optics Testbed at UC Santa Cruz is being used to investigate and develop technologies for high-contrast imaging, especially wavefront control. A phase shifting diffraction interferometer (PSDI) measures wavefront errors with sub-nm precision and accuracy for metrology and wavefront control. Consistent flattening, required testing and characterization of the individual actuator response, including the effects of dead and low-response actuators. Stability and repeatability of the MEMS devices was also tested. An error budget for MEMS closed loop performance will summarize MEMS characterization.

  18. Light propagation studies on laser modified waveguides using scanning near-field optical microscopy

    Borrise, X.; Berini, Abadal Gabriel; Jimenez, D.; Perez-Murano, F.; Barniol, N.; Davis, Zachary James; Boisen, Anja

    2001-01-01

    By means of direct laser writing on Al, a new method to locally modify optical waveguides is proposed. This technique has been applied to silicon nitride waveguides, allowing modifications of the optical propagation along the guide. To study the formed structures, a scanning near-held optical...... microscope (SNOM) has been used. The laser modifications locally changes the optical properties of the waveguide. The change in the effective refractive index is attributed to a TE to TM mode conversion, Thus, the laser modification might be a new way to fabricate optical mode converters....

  19. A hybrid scanning probe microscope (SPM) module based on a DVD optical head

    The development of a highly sensitive (sub-nanometer) and multi-platform scanning probe microscope (SPM) module is presented. The module is based on an optical DVD pick-up head and uses its astigmatic detection scheme to detect the vertical displacement of the SPM cantilevers. The complete hybrid SPM module is capable of scanning in SPM intermittent contact, SPM contact and optical profilometry modes. The module can be used in a modified optical microscope or be implemented in a stand-alone system. Measurement results prove that the mechanical stability of this SPM module is high enough for atomic resolution imaging. Both scanning-sample and scanning-probe-type SPM setups have been tested based on this SPM module. The noise level and drift rate in the z-direction of the stand-alone system are 10 pm (rms) and 0.2 nm min−1, respectively

  20. Picosecond optical nonlinearities in symmetrical and unsymmetrical phthalocyanines studied using the Z-scan technique

    S Venugopal Rao; P T Anusha; L Giribabu; Surya P Tewari

    2010-11-01

    We present our experimental results on the picosecond nonlinear optical (NLO) studies of symmetrical and unsymmetrical phthalocyanines, examined using the Z-scan technique. Both the open-aperture and closed-aperture Z-scan curves for three samples were recorded and the nonlinear coefficients were extracted from the theoretical fits. The nonlinear absorption/refraction contribution from the solvent was also identified. The observed open aperture behaviour for these molecules is understood in terms of the absorption coefficients of these molecules near 800 nm and the peak intensities used. It is established that these phthalocyanines exhibit large optical nonlinearities and, hence, are suitable for optical limiting applications.

  1. Light amplification by stimulated emission from an optically pumped molecular junction in a scanning tunneling microscope

    Braun, K; Kern, A. M.; X. Wang; Adler, H.; Peisert, H.; Chasse, T.; Zhang, D.(Department of Physics, The University of Michigan, Ann Arbor, MI, United States of America); Meixner, A.J.

    2013-01-01

    Here, we introduce and experimentally demonstrate optical amplification and stimulated emission from a single optically pumped molecular tunneling junction of a scanning tunneling microscope. The gap between a sharp gold tip and a flat gold substrate covered with a self-assembled monolayer of 5-chloro-2-mercaptobenzothiazole molecules forms an extremely small optical gain medium. When electrons tunnel from the molecules highest occupied molecular orbital to the tip, holes are left behind. The...

  2. Lens-based wavefront sensorless adaptive optics swept source OCT.

    Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J; Bonora, Stefano; Sarunic, Marinko V

    2016-01-01

    Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient's eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects. PMID:27278853

  3. Holographic Adaptive Laser Optics System (HALOS): Fast, Autonomous Aberration Correction

    Andersen, G.; MacDonald, K.; Gelsinger-Austin, P.

    2013-09-01

    We present an adaptive optics system which uses a multiplexed hologram to deconvolve the phase aberrations in an input beam. This wavefront characterization is extremely fast as it is based on simple measurements of the intensity of focal spots and does not require any computations. Furthermore, the system does not require a computer in the loop and is thus much cheaper, less complex and more robust as well. A fully functional, closed-loop prototype incorporating a 32-element MEMS mirror has been constructed. The unit has a footprint no larger than a laptop but runs at a bandwidth of 100kHz over an order of magnitude faster than comparable, conventional systems occupying a significantly larger volume. Additionally, since the sensing is based on parallel, all-optical processing, the speed is independent of actuator number running at the same bandwidth for one actuator as for a million. We are developing the HALOS technology with a view towards next-generation surveillance systems for extreme adaptive optics applications. These include imaging, lidar and free-space optical communications for unmanned aerial vehicles and SSA. The small volume is ideal for UAVs, while the high speed and high resolution will be of great benefit to the ground-based observation of space-based objects.

  4. Lens-based wavefront sensorless adaptive optics swept source OCT

    Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J.; Bonora, Stefano; Sarunic, Marinko V.

    2016-06-01

    Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient’s eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects.

  5. Possibilities of joint application of adaptive optics technique and nonlinear optical phase conjugation to compensate for turbulent distortions

    Lukin, V. P.; Kanev, F. Yu; Kulagin, O. V.

    2016-05-01

    The efficiency of integrating the nonlinear optical technique based on forming a reverse wavefront and the conventional adaptive optics into a unified complex (for example, for adaptive focusing of quasi-cw laser radiation) is demonstrated. Nonlinear optical phase conjugation may provide more exact information about the phase fluctuations in the corrected wavefront in comparison with the adaptive optics methods. At the same time, the conventional methods of adaptive optics provide an efficient control of a laser beam projected onto a target for a rather long time.

  6. Dual wavelength optical CT scanning of anthropomorphic shaped 3D dosimeters

    To create an optical density map of 3D dosimeter phantoms, the ratio of the transmission profile (either a line or planar) acquired after irradiation of the dosimeter and a pre-irradiation reference scan of the same dosimeter phantom is taken. Any uncertainty in repositioning of the phantom may result in an uncertainty in the optical density map and finally also in the derived dose maps. Correct repositioning is paramount when scanning noncylindrical dosimeter phantoms as any repositioning error will give rise to severe imaging artifacts. We hereby propose a different scanning technique that does not require any repositioning of the dosimeter phantom. In this method, no pre-irradiation san is recorded but the dosimeter phantom is scanned twice with light at two different wavelengths. It is demonstrated that this method is accurate in scanning non-cylindrical anthropomorphic shaped phantoms

  7. Thermally tuneable optical modulator adapted for differential signaling

    Zortman, William A.

    2016-01-12

    An apparatus for optical modulation is provided. The apparatus includes a modulator structure and a heater structure. The modulator structure comprises a ring or disk optical resonator having a closed curvilinear periphery and a pair of oppositely doped semiconductor regions within and/or adjacent to the optical resonator and conformed to modify the optical length of the optical resonator upon application of a bias voltage. The heater structure comprises a relatively resistive annulus of semiconductor material enclosed between an inner disk and an outer annulus of relatively conductive semiconductor material. The inner disk and the outer annulus are adapted as contact regions for a heater activation current. The heater structure is situated within the periphery of the optical resonator such that in operation, at least a portion of the resonator is heated by radial conductive heat flow from the heater structure. The apparatus further includes a substantially annular isolation region of dielectric or relatively resistive semiconductor material interposed between the heater structure and the modulator structure. The isolation region is effective to electrically isolate the bias voltage from the heater activation current.

  8. Manufacturing of glassy thin shell for adaptive optics: results achieved

    Poutriquet, F.; Rinchet, A.; Carel, J.-L.; Leplan, H.; Ruch, E.; Geyl, R.; Marque, G.

    2012-07-01

    Glassy thin shells are key components for the development of adaptive optics and are part of future & innovative projects such as ELT. However, manufacturing thin shells is a real challenge. Even though optical requirements for the front face - or optical face - are relaxed compared to conventional passive mirrors, requirements concerning thickness uniformity are difficult to achieve. In addition, process has to be completely re-defined as thin mirror generates new manufacturing issues. In particular, scratches and digs requirement is more difficult as this could weaken the shell, handling is also an important issue due to the fragility of the mirror. Sagem, through REOSC program, has recently manufactured different types of thin shells in the frame of European projects: E-ELT M4 prototypes and VLT Deformable Secondary Mirror (VLT DSM).

  9. Scanning optical pyrometer for measuring temperatures in hollow cathodes

    Polk, J. E.; Marrese-Reading, C. M.; Thornber, B.; Dang, L.; Johnson, L. K.; Katz, I

    2007-01-01

    Life-limiting processes in hollow cathodes are determined largely by the temperature of the electron emitter. To support cathode life assessment, a noncontact temperature measurement technique which employs a stepper motor-driven fiber optic probe was developed. The probe is driven inside the hollow cathode and collects light radiated by the hot interior surface of the emitter. Ratio pyrometry is used to determine the axial temperature profile. Thermocouples on the orifice plate provide measu...

  10. Stochastic scanning method to shorten acquisition time using liquid crystal optical phased array

    Wang, Xiangru; Huang, Ziqiang; Tan, Qinggui; Kong, Lingjiang; Qiu, Qi

    2016-02-01

    Agile beam steering has been previously reported to be one of the unique properties of a liquid crystal optical phased array. We propose a stochastic scanning method using the property of agile beam steering to shorten acquisition time in building a free-space laser communication link. As a specific example, Gaussian stochastic scan enables higher acquisition probability and shorter acquisition time. In addition, there are two factors to influence the results: standard deviation of stochastic scanning angle and the width of the laser beam. Theoretical analysis is presented that the stochastic scanning method is a unique method to speed up the acquisition process in free-space laser communication.

  11. Confocal scanning optical microscopy of a 3-million-year-old Australopithecus afarensis femur.

    Bromage, T G; Goldman, H M; McFarlin, S C; Perez Ochoa, A; Boyde, A

    2009-01-01

    Portable confocal scanning optical microscopy (PCSOM) has been specifically developed for the noncontact and nondestructive imaging of early human fossil hard tissues, which here we describe and apply to a 3-million-year-old femur from the celebrated Ethiopian skeleton, "Lucy," referred to Australopithecus afarensis. We examine two bone tissue parameters that demonstrate the potential of this technology. First, subsurface reflection images from intact bone reveal bone cell spaces, the osteocyte lacunae, whose density is demonstrated to scale negatively with body size, reflecting aspects of metabolism and organismal life history. Second, images of a naturally fractured cross section near to Lucy's femoral mid-shaft, which match in sign those of transmitted circularly polarized light, reveal relative collagen fiber orientation patterns that are an important indicator of femoral biomechanical efficacy. Preliminary results indicate that Lucy was characterized by metabolic constraints typical for a primate her body size and that in her femur she was adapted to habitual bipedalism. Limitations imposed by the transport and invasive histology of unique or rare fossils motivated development of the PCSOM so that specimens may be examined wherever and whenever nondestructive imaging is required. PMID:19191265

  12. Computational adaptive optics for broadband optical interferometric tomography of biological tissue

    Boppart, Stephen A.

    2015-03-01

    High-resolution real-time tomography of biological tissues is important for many areas of biological investigations and medical applications. Cellular level optical tomography, however, has been challenging because of the compromise between transverse imaging resolution and depth-of-field, the system and sample aberrations that may be present, and the low imaging sensitivity deep in scattering tissues. The use of computed optical imaging techniques has the potential to address several of these long-standing limitations and challenges. Two related techniques are interferometric synthetic aperture microscopy (ISAM) and computational adaptive optics (CAO). Through three-dimensional Fourierdomain resampling, in combination with high-speed OCT, ISAM can be used to achieve high-resolution in vivo tomography with enhanced depth sensitivity over a depth-of-field extended by more than an order-of-magnitude, in realtime. Subsequently, aberration correction with CAO can be performed in a tomogram, rather than to the optical beam of a broadband optical interferometry system. Based on principles of Fourier optics, aberration correction with CAO is performed on a virtual pupil using Zernike polynomials, offering the potential to augment or even replace the more complicated and expensive adaptive optics hardware with algorithms implemented on a standard desktop computer. Interferometric tomographic reconstructions are characterized with tissue phantoms containing sub-resolution scattering particles, and in both ex vivo and in vivo biological tissue. This review will collectively establish the foundation for high-speed volumetric cellular-level optical interferometric tomography in living tissues.

  13. Nonlinear Optical Interactions in Bacteriorhodopsin Using Z-Scan

    Aranda, Francisco J.; Rao, Devulapalli V. G. L. N.; Wong, Chi L.; Zhou, Ping; Chen, Zhong; Akkara, Joseph A.; Kaplan, David L.; Roach, Joseph F.

    1995-06-01

    Nonlinear refractive index coefficient n2 of bacteriorhodopsin suspensions in water is measured by the Z-scan technique with a low power continuous wave laser at 647.1 manometer wavelength. Our results indicate that both the magnitude and the sign of n2 depend strongly on the light intensity. Negative values for n2 are obtained for on axis laser irradiance at the focus above 3 W/cm2. The observed self-defocusing phenomena can be attributed to the index change due to the light induced transition between the photochromic states. The results elucidate the origin of n2 and offer a plausible explanation for the differences in the reported n2 measurements.

  14. Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy.

    Hunter, Jennifer J; Masella, Benjamin; Dubra, Alfredo; Sharma, Robin; Yin, Lu; Merigan, William H; Palczewska, Grazyna; Palczewski, Krzysztof; Williams, David R

    2010-01-01

    In vivo two-photon imaging through the pupil of the primate eye has the potential to become a useful tool for functional imaging of the retina. Two-photon excited fluorescence images of the macaque cone mosaic were obtained using a fluorescence adaptive optics scanning laser ophthalmoscope, overcoming the challenges of a low numerical aperture, imperfect optics of the eye, high required light levels, and eye motion. Although the specific fluorophores are as yet unknown, strong in vivo intrinsic fluorescence allowed images of the cone mosaic. Imaging intact ex vivo retina revealed that the strongest two-photon excited fluorescence signal comes from the cone inner segments. The fluorescence response increased following light stimulation, which could provide a functional measure of the effects of light on photoreceptors. PMID:21326644

  15. Beam shaping for laser-based adaptive optics in astronomy

    Béchet, Clémentine; Neichel, Benoit; Fesquet, Vincent; González-Núñez, Héctor; Zúñiga, Sebastián; Escarate, Pedro; Guzman, Dani

    2014-01-01

    The availability and performance of laser-based adaptive optics (AO) systems are strongly dependent on the power and quality of the laser beam before being projected to the sky. Frequent and time-consuming alignment procedures are usually required in the laser systems with free-space optics to optimize the beam. Despite these procedures, significant distortions of the laser beam have been observed during the first two years of operation of the Gemini South multi-conjugate adaptive optics system (GeMS). A beam shaping concept with two deformable mirrors is investigated in order to provide automated optimization of the laser quality for astronomical AO. This study aims at demonstrating the correction of quasi-static aberrations of the laser, in both amplitude and phase, testing a prototype of this two-deformable mirror concept on GeMS. The paper presents the results of the preparatory study before the experimental phase. An algorithm to control amplitude and phase correction, based on phase retrieval techniques...

  16. Adapting smartphones for low-cost optical medical imaging

    Pratavieira, Sebastião.; Vollet-Filho, José D.; Carbinatto, Fernanda M.; Blanco, Kate; Inada, Natalia M.; Bagnato, Vanderlei S.; Kurachi, Cristina

    2015-06-01

    Optical images have been used in several medical situations to improve diagnosis of lesions or to monitor treatments. However, most systems employ expensive scientific (CCD or CMOS) cameras and need computers to display and save the images, usually resulting in a high final cost for the system. Additionally, this sort of apparatus operation usually becomes more complex, requiring more and more specialized technical knowledge from the operator. Currently, the number of people using smartphone-like devices with built-in high quality cameras is increasing, which might allow using such devices as an efficient, lower cost, portable imaging system for medical applications. Thus, we aim to develop methods of adaptation of those devices to optical medical imaging techniques, such as fluorescence. Particularly, smartphones covers were adapted to connect a smartphone-like device to widefield fluorescence imaging systems. These systems were used to detect lesions in different tissues, such as cervix and mouth/throat mucosa, and to monitor ALA-induced protoporphyrin-IX formation for photodynamic treatment of Cervical Intraepithelial Neoplasia. This approach may contribute significantly to low-cost, portable and simple clinical optical imaging collection.

  17. Extreme Adaptive Optics Testbed: Results and Future Work

    Evans, J W; Sommargren, G; Poyneer, L; Macintosh, B; Severson, S; Dillon, D; Sheinis, A; Palmer, D; Kasdin, J; Olivier, S

    2004-07-15

    'Extreme' adaptive optics systems are optimized for ultra-high-contrast applications, such as ground-based extrasolar planet detection. The Extreme Adaptive Optics Testbed at UC Santa Cruz is being used to investigate and develop technologies for high-contrast imaging, especially wavefront control. A simple optical design allows us to minimize wavefront error and maximize the experimentally achievable contrast before progressing to a more complex set-up. A phase shifting diffraction interferometer is used to measure wavefront errors with sub-nm precision and accuracy. We have demonstrated RMS wavefront errors of <1.3 nm and a contrast of >10{sup -7} over a substantial region using a shaped pupil. Current work includes the installation and characterization of a 1024-actuator Micro-Electro-Mechanical- Systems (MEMS) deformable mirror, manufactured by Boston Micro-Machines, which will be used for wavefront control. In our initial experiments we can flatten the deformable mirror to 1.8-nm RMS wavefront error within a control radius of 5-13 cycles per aperture. Ultimately this testbed will be used to test all aspects of the system architecture for an extrasolar planet-finding AO system.

  18. Scanning optical pyrometer for measuring temperatures in hollow cathodes

    Life-limiting processes in hollow cathodes are determined largely by the temperature of the electron emitter. To support cathode life assessment, a noncontact temperature measurement technique which employs a stepper motor-driven fiber optic probe was developed. The probe is driven inside the hollow cathode and collects light radiated by the hot interior surface of the emitter. Ratio pyrometry is used to determine the axial temperature profile. Thermocouples on the orifice plate provide measurements of the external temperature during cathode operation and are used to calibrate the pyrometer system in situ with a small oven enclosing the externally heated cathode. The diagnostic method and initial measurements of the temperature distribution in a hollow cathode are discussed

  19. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  20. Measurement of abrasion of polyethylene TEP cotyles ABG I of coax using optical scanning topography

    Mandát, Dušan; Nožka, Libor; Hrabovský, Miroslav

    Washington: SPIE, 2005 - (Štrba, A.; Senderáková, D.; Hrabovský, M.), 241-244. (Proceedings of SPIE. 5945). ISBN 0-8194-5951-8. ISSN 0277-786X. [Slovak-Czech-Polish Optical Conference on Wave and Quantum Aspects of Contemporary Optics /14./. Nitra (SK), 13.09.2004-17.09.2004] R&D Projects: GA MŠk(CZ) LN00A015 Keywords : 3D optical scanning topography * cotyle * WRML * image analysis * digital image processing * profile Subject RIV: BH - Optics, Masers, Lasers

  1. Adaptive noise reduction for fiber optic gyroscopes in borehole applications

    Yan, Tingyang; Zhang, Chunxi; Gao, Shuang; Ma, Zongfeng

    2006-11-01

    Fiber Optic Gyroscopes (FOGs) have been investigated and proposed as alternative sensors to magnetometers in borehole surveying applications due to their compactness, ruggedness, low cost and high environmental insensitivity. However, FOGs are subject to high measurement noise from various sources, which deteriorates the performance and quality of FOGs, thus the overall system accuracy is limited. To improve the accuracy of the surveying system, adaptive filtering techniques are utilized to reduce the noise level at the output of the FOG. A Forward Linear Prediction (FLP) filter based on Normalized Least-Mean-Square (NLMS) adaptive algorithm was designed and evaluated using kinematic data. Results show that the FLP filter can suppress the FOG noise to a certain degree and a satisfactory signal-to-noise ratio improvement can be achieved using this method.

  2. Optical implementation for adaptive beamforming of array antenna

    Liu, Ming; Shi, Xiang quan

    2010-11-01

    It is difficult for the traditional phased array radar to process large array-element and high time-bandwidth-product signal in real time. An optical architecture of implement true time delay adaptive beamforming based on Stimulate Photon Echoes(SPE) is introduced. The principle of how to implement a true time delay based on SPE phenomenon with its theory models is established. the method of how to implement variable time delays using laser beams modulated by linear frequency chirped pulses is discussed, the relationship between chirp bandwidth and delay step is demonstrated by simulation results. As a result, it allows to filter thousands of simultaneous AOAs with 30 GHz dynamically in both spatial and spectral domains, which can be used to adaptively steer a large RF phased array antenna toward the direction of interest while minimizing the effects of unwanted interference signals.

  3. Wide-field optical coherence tomography angiography enabled by two repeated measurements of B-scans.

    Wang, Ruikang K; Zhang, Anqi; Choi, Woo June; Zhang, Qinqin; Chen, Chieh-Li; Miller, Andrew; Gregori, Giovanni; Rosenfeld, Philip J

    2016-05-15

    Optical coherence tomography angiography (OCTA) has increasingly become clinically important, particularly in ophthalmology. However, the field of view (FOV) for current OCTA imaging is severely limited due to A-scan rates that can be afforded by current clinical systems and, more importantly, the requirement of a repeated scanning protocol. This Letter evaluates the possibility of using only two repeated B-scans for OCTA for the purpose of an increased FOV. The effect of repeated numbers on the OCTA result is discussed through experiments on an animal model in vivo and evaluated using quantitative metrics for image quality. Demonstrated through in vivo imaging of a pathological human eye, we show that optical microangiography-based OCTA with two repeated B-scans can provide wide-field angiography up to 12×12  mm with clinically acceptable image quality. PMID:27176995

  4. Night myopia studied with an adaptive optics visual analyzer.

    Pablo Artal

    Full Text Available PURPOSE: Eyes with distant objects in focus in daylight are thought to become myopic in dim light. This phenomenon, often called "night myopia" has been studied extensively for several decades. However, despite its general acceptance, its magnitude and causes are still controversial. A series of experiments were performed to understand night myopia in greater detail. METHODS: We used an adaptive optics instrument operating in invisible infrared light to elucidate the actual magnitude of night myopia and its main causes. The experimental setup allowed the manipulation of the eye's aberrations (and particularly spherical aberration as well as the use of monochromatic and polychromatic stimuli. Eight subjects with normal vision monocularly determined their best focus position subjectively for a Maltese cross stimulus at different levels of luminance, from the baseline condition of 20 cd/m(2 to the lowest luminance of 22 × 10(-6 cd/m(2. While subjects performed the focusing tasks, their eye's defocus and aberrations were continuously measured with the 1050-nm Hartmann-Shack sensor incorporated in the adaptive optics instrument. The experiment was repeated for a variety of controlled conditions incorporating specific aberrations of the eye and chromatic content of the stimuli. RESULTS: We found large inter-subject variability and an average of -0.8 D myopic shift for low light conditions. The main cause responsible for night myopia was the accommodation shift occurring at low light levels. Other factors, traditionally suggested to explain night myopia, such as chromatic and spherical aberrations, have a much smaller effect in this mechanism. CONCLUSIONS: An adaptive optics visual analyzer was applied to study the phenomenon of night myopia. We found that the defocus shift occurring in dim light is mainly due to accommodation errors.

  5. High Resolution Observations using Adaptive Optics: Achievements and Future Needs

    K. Sankarasubramanian; T. Rimmele

    2008-03-01

    Over the last few years, several interesting observations were obtained with the help of solar Adaptive Optics (AO). In this paper, few observations made using the solarAOare enlightened and briefly discussed. A list of disadvantages with the current AO system are presented. With telescopes larger than 1.5 m expected during the next decade, there is a need to develop the existing AO technologies for large aperture telescopes. Some aspects of this development are highlighted. Finally, the recent AO developments in India are also presented.

  6. Self-characterization of linear and nonlinear adaptive optics systems.

    Hampton, Peter J; Conan, Rodolphe; Keskin, Onur; Bradley, Colin; Agathoklis, Pan

    2008-01-10

    We present methods used to determine the linear or nonlinear static response and the linear dynamic response of an adaptive optics (AO) system. This AO system consists of a nonlinear microelectromechanical systems deformable mirror (DM), a linear tip-tilt mirror (TTM), a control computer, and a Shack-Hartmann wavefront sensor. The system is modeled using a single-input-single-output structure to determine the one-dimensional transfer function of the dynamic response of the chain of system hardware. An AO system has been shown to be able to characterize its own response without additional instrumentation. Experimentally determined models are given for a TTM and a DM. PMID:18188192

  7. Third MACAO-VLTI Curvature Adaptive Optics System now installed

    Arsenault, R.; Donaldson, R.; Dupuy, C.; Fedrigo, E.; Hubin, N.; Ivanescu, L.; Kasper, M.; Oberti, S.; Paufique, J.; Rossi, S.; Silber, A.; Delabre, B.; Lizon, J.-L.; Gigan, P.

    2004-09-01

    IN JULY of this year the MACAO team returned to Paranal for the third time to install another MACAOVLTI system. These are 4 identical 60 element curvature adaptive optics systems, located in the Coudé room of each UT whose aim is to feed a turbulence corrected wavefront to the VLTI Recombination Laboratory. This time the activities took place on Yepun (UT4). The naming convention has been to associate the MACAO-VLTI number to the UT number where it is installed. Therefore, although we speak here of MACAO#4, it is the third system installed in Paranal.

  8. Performance of the Gemini Planet Imager's adaptive optics system.

    Poyneer, Lisa A; Palmer, David W; Macintosh, Bruce; Savransky, Dmitry; Sadakuni, Naru; Thomas, Sandrine; Véran, Jean-Pierre; Follette, Katherine B; Greenbaum, Alexandra Z; Ammons, S Mark; Bailey, Vanessa P; Bauman, Brian; Cardwell, Andrew; Dillon, Daren; Gavel, Donald; Hartung, Markus; Hibon, Pascale; Perrin, Marshall D; Rantakyrö, Fredrik T; Sivaramakrishnan, Anand; Wang, Jason J

    2016-01-10

    The Gemini Planet Imager's adaptive optics (AO) subsystem was designed specifically to facilitate high-contrast imaging. A definitive description of the system's algorithms and technologies as built is given. 564 AO telemetry measurements from the Gemini Planet Imager Exoplanet Survey campaign are analyzed. The modal gain optimizer tracks changes in atmospheric conditions. Science observations show that image quality can be improved with the use of both the spatially filtered wavefront sensor and linear-quadratic-Gaussian control of vibration. The error budget indicates that for all targets and atmospheric conditions AO bandwidth error is the largest term. PMID:26835769

  9. ScanSim: A tool for simulating optical-CT imaging

    Oldham, Mark

    2010-01-01

    A software tool has been developed that can simulate image formation in a variety of optical-CT scanning configurations. The formalism of the simulation is introduced, including two main modes: a diverging point source mode, and a converging broad beam mode. Preliminary results are presented for scanning Presage dosimeters in both modes and immersed in refractive media of widely varying refractive index (RI), including air, water, and a fully matched medium. Pronounced differences in the edge...

  10. Adaptive optics optical coherence tomography for in vivo mouse retinal imaging

    Jian, Yifan; Zawadzki, Robert J.; Sarunic, Marinko V.

    2013-05-01

    Small animal models of retinal diseases are important to vision research, and noninvasive high resolution in vivo rodent retinal imaging is becoming an increasingly important tool used in this field. We present a custom Fourier domain optical coherence tomography (FD-OCT) instrument for high resolution imaging of mouse retina. In order to overcome aberrations in the mouse eye, we incorporated a commercial adaptive optics system into the sample arm of the refractive FD-OCT system. Additionally, a commercially available refraction canceling lens was used to reduce lower order aberrations and specular back-reflection from the cornea. Performance of the adaptive optics (AO) system for correcting residual wavefront aberration in the mice eyes is presented. Results of AO FD-OCT images of mouse retina acquired in vivo with and without AO correction are shown as well.

  11. Six-channel adaptive fibre-optic interferometer

    Romashko, R V; Bezruk, M N; Kamshilin, A A; Kulchin, Yurii N

    2012-06-30

    We have proposed and analysed a scheme for the multiplexing of orthogonal dynamic holograms in photorefractive crystals which ensures almost zero cross talk between the holographic channels upon phase demodulation. A six-channel adaptive fibre-optic interferometer was built, and the detection limit for small phase fluctuations in the channels of the interferometer was determined to be 2.1 Multiplication-Sign 10{sup -8} rad W{sup 1/2} Hz{sup -1/2}. The channel multiplexing capacity of the interferometer was estimated. The formation of 70 channels such that their optical fields completely overlap in the crystal reduces the relative detection limit in the working channel by just 10 %. We found conditions under which the maximum cross talk between the channels was within the intrinsic noise level in the channels (-47 dB).

  12. Can previous thyroid scan induce cytogenetic radio adaptive response in patients treated by radioiodine for hyperthyroidism?

    Background: Induction of radio adaptive responses in cells pretreated with a low dose radiation before exposure to a high dose is well documented by many in investigators. The aim of this study is to determine the frequency of chromosomal aberration in peripheral blood lymphocytes of patients treated by radioiodine (131 I) for hyperthyroidism, with or without previous thyroid scan with 99m Tc. Materials and methods: venous blood samples were obtained from 35 patients one month after radioiodine therapy and cytogenetic ally evaluated using analysis of metaphase in two groups. The first group (n=15, 13 females and 2 males, mean age=44.7±11.5 years and mean weight 74.4±7.9 Kg) received 5 mCi 99m Tc for thyroid scanning 38.6±19.9 days before radioiodine therapy with 10.4±3.4 mCi 131I. The second group (n=20, 14 females and 6 males, mean age=41.0±10.8 years and mean weight=68.1±9.2 Kg) didn't have history of thyroid scanning. We also studied a control group (n=29, 11 females and 8 males age=33.7±7.4 and mean weight=70.0±8.8 Kg) who didn't have any history of diagnostic or therapeutic and also occupational exposure. Results: The mean frequency of total chromosomal aberrations in the first and second groups and controls were 1.46±1.55, 1.65±1.62 and 0.93±0.92 respectively. Results also showed that the mean frequency of total chromosome aberration in two groups were higher than controls and significantly higher in patients who had not received 99m Tc compared those who had undertaken thyroid scan before radioiodine therapy (p=0.03). Conclusion: These findings may indicate the fact that the radiation dose received from 99m Tc could induce resistance to subsequent higher radiation dose of 131 I in peripheral blood lymphocytes and it might be due to cytogenetic radio adaptive response

  13. Handheld histology-equivalent sectioning laser-scanning confocal optical microscope for interventional imaging.

    Kumar, Karthik; Avritscher, Rony; Wang, Youmin; Lane, Nancy; Madoff, David C; Yu, Tse-Kuan; Uhr, Jonathan W; Zhang, Xiaojing

    2010-04-01

    A handheld, forward-imaging, laser-scanning confocal microscope (LSCM) demonstrating optical sectioning comparable with microtome slice thicknesses in conventional histology, targeted towards interventional imaging, is reported. Fast raster scanning (approximately 2.5 kHz line scan rate, 3.0-5.0 frames per second) was provided by a 2-axis microelectromechanical system (MEMS) scanning mirror fabricated by a method compatible with complementary metal-oxide-semiconductor (CMOS) processing. Cost-effective rapid-prototyped packaging combined the MEMS mirror with micro-optical components into a probe with 18 mm outer diameter and 54 mm rigid length. ZEMAX optical design simulations indicate the ability of the handheld optical system to obtain lateral resolution of 0.31 and axial resolution of 2.85 microm. Lateral and axial resolutions are experimentally measured at 0.5 microm and 4.2 microm respectively, with field of view of 200 x 125 microm. Results of reflectance imaging of ex vivo swine liver, and fluorescence imaging of the expression of cytokeratin and mammaglobin tumor biomarkers in epithelial human breast tissue from metastatic breast cancer patients are presented. The results indicate that inexpensive, portable handheld optical microscopy tools based on silicon micromirror technologies could be important in interventional imaging, complementing existing coarse-resolution techniques to improve the efficacy of disease diagnosis, image-guided excisional microsurgery, and monitored photodynamic therapy. PMID:20012209

  14. Z-scan: A simple technique for determination of third-order optical nonlinearity

    Z-scan is a simple experimental technique to measure intensity dependent nonlinear susceptibilities of third-order nonlinear optical materials. This technique is used to measure the sign and magnitude of both real and imaginary part of the third order nonlinear susceptibility (χ(3)) of nonlinear optical materials. In this paper, we investigate third-order nonlinear optical properties of Ag-polymer composite film by using single beam z-scan technique with Q-switched, frequency doubled Nd: YAG laser (λ=532 nm) at 5 ns pulse. The values of nonlinear absorption coefficient (β), nonlinear refractive index (n2) and third-order nonlinear optical susceptibility (χ(3)) of permethylazine were found to be 9.64 × 10−7 cm/W, 8.55 × 10−12 cm2/W and 5.48 × 10−10 esu, respectively

  15. GPR Signal Processing with Geography Adaptive Scanning using Vector Radar for Antipersonal Landmine Detection

    Shinsuke Sato

    2008-11-01

    Full Text Available Ground Penetrating Radar (GPR is a promising sensor for landmine detection, however there are two major problems to overcome. One is the rough ground surface. The other problem is the distance between the antennas of GPR. It remains irremovable clutters on a sub-surface image output from GPR by first problem. Geography adaptive scanning is useful to image objects beneath rough ground surface. Second problem makes larger the nonlinearity of the relationship between the time for propagation and the depth of a buried object, imaging the small objects such as an antipersonnel landmine closer to the antennas. In this paper, we modify Kirchhoff migration so as to account for not only the variation of position of the sensor head, but also the antennas alignment of the vector radar. The validity of this method is discussed through application to the signals acquired in experiments.

  16. Image restoration of the open-loop adaptive optics retinal imaging system based on optical transfer function analysis

    Yu, Lei; Qi, Yue; Li, Dayu; Xia, Mingliang; Xuan, Li

    2013-07-01

    The residual aberrations of the adaptive optics retinal imaging system will decrease the quality of the retinal images. To overcome this obstacle, we found that the optical transfer function (OTF) of the adaptive optics retinal imaging system can be described as the Levy stable distribution. Then a new method is introduced to estimate the OTF of the open-loop adaptive optics system, based on analyzing the residual aberrations of the open-loop adaptive optics system in the residual aberrations measuring mode. At last, the estimated OTF is applied to restore the retinal images of the open-loop adaptive optics retinal imaging system. The contrast and resolution of the restored image is significantly improved with the Laplacian sum (LS) from 0.0785 to 0.1480 and gray mean grads (GMG) from 0.0165 to 0.0306.

  17. Measurement of Temperature Change in Nonlinear Optical Materials by Using the Z-Scan Technique

    DONG Shu-Guang; YANG Jun-Yi; SHUI Min; YI Chuan-Xiang; LI Zhong-Guo; SONG Ying-Lin

    2011-01-01

    @@ Spatial and temporal changes of temperature in a novel polymer are investigated by using the Z-scan technique under ns laser pulse excitation.According to the open aperture Z-scan experimental results, the nonlinear absorption coefficient of the polymer is determined.By solving the diffusion equation of heat conduction induced by optical absorption, the spatial and temporal changes in temperature are obtained.This change in temperature drives the photo-acoustic and electromagnetic wave propagating in the polymer and induces the change in refractive index, which serves as a negative lens, and the closed aperture Z-scan shows a peak and valley profile.Based on the numerical calculation, we achieve a good fit to the closed-aperture Z-scan curve with an optimized nonlinear refractive index.This consistency attests the existence of temperature change in the solution, and the Z-scan technique is suitable to investigate this change in temperature.

  18. Full-color holographic 3D imaging system using color optical scanning holography

    Kim, Hayan; Kim, You Seok; Kim, Taegeun

    2016-06-01

    We propose a full-color holographic three-dimensional imaging system that composes a recording stage, a transmission and processing stage and reconstruction stage. In recording stage, color optical scanning holography (OSH) records the complex RGB holograms of an object. In transmission and processing stage, the recorded complex RGB holograms are transmitted to the reconstruction stage after conversion to off-axis RGB holograms. In reconstruction stage, the off-axis RGB holograms are reconstructed optically.

  19. Scanning near-field optical microscopy utilizing silicon nitride probe photoluminescence

    Lulevich, V.; Ducker, W. A.

    2005-01-01

    We describe a simple method for performing high-resolution scanning near-field optical microscopy (SNOM). A commercial Si3N4 tip is illuminated by an intense light source, which causes the tip to emit redshifted (inelastically scattered) light. Part of the redshifted light passes through a sample, allowing transmission light microscopy. By simple modification of a commercial atomic force microscopes (AFM), we are able to image many different samples with high-resolution optical microscopy, ac...

  20. Synthetic aperture laser optical feedback imaging using a translational scanning with galvanometric mirrors

    Glastre, Wilfried; Jacquin, Olivier; Hugon, Olivier; de Chatellus, Hugues Guillet; Lacot, Eric

    2012-01-01

    In this paper we present an experimental setup based on Laser Optical Feedback Imaging (LOFI) and on Synthetic Aperture (SA) with translational scanning by galvanometric mirrors for the purpose of making deep and resolved images through scattering media. We provide real 2D optical synthetic-aperture image of a fixed scattering target with a moving aperture and an isotropic resolution. We demonstrate theoretically and experimentally that we can keep microscope resolution beyond the working dis...

  1. Ergodic capacity comparison of optical wireless communications using adaptive transmissions.

    Hassan, Md Zoheb; Hossain, Md Jahangir; Cheng, Julian

    2013-08-26

    Ergodic capacity is investigated for the optical wireless communications employing subcarrier intensity modulation with direct detection, and coherent systems with and without polarization multiplexing over the Gamma-Gamma turbulence channels. We consider three different adaptive transmission schemes: (i) variable-power, variable-rate adaptive transmission, (ii) complete channel inversion with fixed rate, and (iii) truncated channel inversion with fixed rate. For the considered systems, highly accurate series expressions for ergodic capacity are derived using a series expansion of the modified Bessel function and the Mellin transformation of the Gamma-Gamma random variable. Our asymptotic analysis reveals that the high SNR ergodic capacities of coherent, subcarrier intensity modulated, and polarization multiplexing systems gain 0.33 bits/s/Hz, 0.66 bits/s/Hz, and 0.66 bits/s/Hz respectively with 1 dB increase of average transmitted optical power. Numerical results indicate that a polarization control error less than 10° has little influence on the capacity performance of polarization multiplexing systems. PMID:24105580

  2. Adaptive Optics Imaging Survey of Luminous Infrared Galaxies

    Laag, E A; Canalizo, G; van Breugel, W; Gates, E L; de Vries, W; Stanford, S A

    2006-03-13

    We present high resolution imaging observations of a sample of previously unidentified far-infrared galaxies at z < 0.3. The objects were selected by cross-correlating the IRAS Faint Source Catalog with the VLA FIRST catalog and the HST Guide Star Catalog to allow for adaptive optics observations. We found two new ULIGs (with L{sub FIR} {ge} 10{sup 12} L{sub {circle_dot}}) and 19 new LIGs (with L{sub FIR} {ge} 10{sup 11} L{sub {circle_dot}}). Twenty of the galaxies in the sample were imaged with either the Lick or Keck adaptive optics systems in H or K{prime}. Galaxy morphologies were determined using the two dimensional fitting program GALFIT and the residuals examined to look for interesting structure. The morphologies reveal that at least 30% are involved in tidal interactions, with 20% being clear mergers. An additional 50% show signs of possible interaction. Line ratios were used to determine powering mechanism; of the 17 objects in the sample showing clear emission lines--four are active galactic nuclei and seven are starburst galaxies. The rest exhibit a combination of both phenomena.

  3. Multi-Conjugate Adaptive Optics images of the Trapezium Cluster

    Bouy, H; Marchetti, E; Martín, E L; Huélamo, N; Navascues, D Barrado y

    2007-01-01

    Multi-Conjugate Adaptive Optics (MCAO) combines the advantages of standard adaptive optics, which provides high contrast and high spatial resolution, and of wide field ~1' imaging. Up to recently, MCAO for astronomy was limited to laboratory experiments. In this paper, we present the first scientific results obtained with the first MCAO instrument put on the sky. We present a new study of the Trapezium cluster using deep MCAO images with a field of view of 1'x1' obtained at the VLT. We have used deep J, H and Ks images recently obtained with the prototype MCAO facility MAD at the VLT in order to search for new members and new multiple systems in the Trapezium cluster. On bright targets (Ks~9mag), these images allow us to reach DeltaKs~6mag as close as 0.4" We report the detection of 128 sources, including 10 new faint objects in the magnitude range between 16.1

  4. Non-iterative adaptive optical microscopy using wavefront sensing

    Tao, X.; Azucena, O.; Kubby, J.

    2016-03-01

    This paper will review the development of wide-field and confocal microscopes with wavefront sensing and adaptive optics for correcting refractive aberrations and compensating scattering when imaging through thick tissues (Drosophila embryos and mouse brain tissue). To make wavefront measurements in biological specimens we have modified the laser guide-star techniques used in astronomy for measuring wavefront aberrations that occur as star light passes through Earth's turbulent atmosphere. Here sodium atoms in Earth's mesosphere, at an altitude of 95 km, are excited to fluoresce at resonance by a high-power sodium laser. The fluorescent light creates a guide-star reference beacon at the top of the atmosphere that can be used for measuring wavefront aberrations that occur as the light passes through the atmosphere. We have developed a related approach for making wavefront measurements in biological specimens using cellular structures labeled with fluorescent proteins as laser guide-stars. An example is a fluorescently labeled centrosome in a fruit fly embryo or neurons and dendrites in mouse brains. Using adaptive optical microscopy we show that the Strehl ratio, the ratio of the peak intensity of an aberrated point source relative to the diffraction limited image, can be improved by an order of magnitude when imaging deeply into live dynamic specimens, enabling near diffraction limited deep tissue imaging.

  5. AVES: an adaptive optics visual echelle spectrograph for the VLT

    Pasquini, Luca; Delabre, Bernard; Avila, Gerardo; Bonaccini, Domenico

    1998-07-01

    We present the preliminary study of a low cost, high performance spectrograph for the VLT, for observations in the V, R and I bands. This spectrograph is meant for intermediate (R equals 16,000) resolution spectroscopy of faint (sky and/or detector limited) sources, with particular emphasis on the study of solar-type (F-G) stars belonging to the nearest galaxies and to distant (or highly reddened) galactic clusters. The spectrograph is designed to use the adaptive optics (AO) systems at the VLT Telescope. Even if these AO systems will not provide diffraction limited images in the V, R and I bands, the photon concentration will still be above approximately 60% of the flux in an 0.3 arcsecond aperture for typical Paranal conditions. This makes the construction of a compact, cheap and efficient echelle spectrograph possible. AVES will outperform comparable non adaptive optic instruments by more than one magnitude for sky- and/or detector-limited observations, and it will be very suitable for observations in crowded fields.

  6. Adaptive distributed Kalman filtering with wind estimation for astronomical adaptive optics.

    Massioni, Paolo; Gilles, Luc; Ellerbroek, Brent

    2015-12-01

    In the framework of adaptive optics (AO) for astronomy, it is a common assumption to consider the atmospheric turbulent layers as "frozen flows" sliding according to the wind velocity profile. For this reason, having knowledge of such a velocity profile is beneficial in terms of AO control system performance. In this paper we show that it is possible to exploit the phase estimate from a Kalman filter running on an AO system in order to estimate wind velocity. This allows the update of the Kalman filter itself with such knowledge, making it adaptive. We have implemented such an adaptive controller based on the distributed version of the Kalman filter, for a realistic simulation of a multi-conjugate AO system with laser guide stars on a 30 m telescope. Simulation results show that this approach is effective and promising and the additional computational cost with respect to the distributed filter is negligible. Comparisons with a previously published slope detection and ranging wind profiler are made and the impact of turbulence profile quantization is assessed. One of the main findings of the paper is that all flavors of the adaptive distributed Kalman filter are impacted more significantly by turbulence profile quantization than the static minimum mean square estimator which does not incorporate wind profile information. PMID:26831389

  7. Genome-Wide Scan for Adaptive Divergence and Association with Population-Specific Covariates.

    Gautier, Mathieu

    2015-12-01

    In population genomics studies, accounting for the neutral covariance structure across population allele frequencies is critical to improve the robustness of genome-wide scan approaches. Elaborating on the BayEnv model, this study investigates several modeling extensions (i) to improve the estimation accuracy of the population covariance matrix and all the related measures, (ii) to identify significantly overly differentiated SNPs based on a calibration procedure of the XtX statistics, and (iii) to consider alternative covariate models for analyses of association with population-specific covariables. In particular, the auxiliary variable model allows one to deal with multiple testing issues and, providing the relative marker positions are available, to capture some linkage disequilibrium information. A comprehensive simulation study was carried out to evaluate the performances of these different models. Also, when compared in terms of power, robustness, and computational efficiency to five other state-of-the-art genome-scan methods (BayEnv2, BayScEnv, BayScan, flk, and lfmm), the proposed approaches proved highly effective. For illustration purposes, genotyping data on 18 French cattle breeds were analyzed, leading to the identification of 13 strong signatures of selection. Among these, four (surrounding the KITLG, KIT, EDN3, and ALB genes) contained SNPs strongly associated with the piebald coloration pattern while a fifth (surrounding PLAG1) could be associated to morphological differences across the populations. Finally, analysis of Pool-Seq data from 12 populations of Littorina saxatilis living in two different ecotypes illustrates how the proposed framework might help in addressing relevant ecological issues in nonmodel species. Overall, the proposed methods define a robust Bayesian framework to characterize adaptive genetic differentiation across populations. The BayPass program implementing the different models is available at http://www1.montpellier

  8. Adaptive statistical iterative reconstruction technology in the application of PET/CT whole body scans

    Objective: To improve image quality of low dose CT in whole body PET/CT using adaptive statistical iterative reconstruction (ASiR) technology. Methods: Twice CT scans were performed with GE water model,scan parameters were: 120 kV, 120 and 300 mA respectively. In addition, 30 subjects treated with PET/CT were selected randomly, whole body PET/CT were performed after 18F-FDG injection of 3.70 MBq/kg, Sharp IR+time of flight + VUE Point HD technology were used for 1.5 min/bed in PET; CT of spiral scan was performed under 120 kV using automatic exposure control technology (30-210 mA, noise index 25). Model and patients whole body CT images were reconstructed with conventional and 40% ASiR methods respectively, and the CT attenuation value and noise index were measured. Results: Research of model and clinical showed that standard deviation of ASiR method in model CT was 33.0% lower than the conventional CT reconstruction method (t =27.76, P<0.01), standard deviation of CT in normal tissues (brain, lung, mediastinum, liver and vertebral body) and lesions (brain, lung, mediastinum, liver and vertebral body) reduced by 21.08% (t =23.35, P<0.01) and 24.43% (t =16.15, P<0.01) respectively, especially for normal liver tissue and liver lesions, standard deviations of CT were reduced by 51.33% (t=34.21, P<0.0) and 49.54% (t=15.21, P<0.01) respectively. Conclusion: ASiR reconstruction method was significantly reduced the noise of low dose CT image and improved the quality of CT image in whole body PET/CT, which seems more suitable for quantitative analysis and clinical applications. (authors)

  9. Combining optical tweezers and scanning probe microscopy to study DNA-protein interactions

    Huisstede, Jurgen H.G.; Subramaniam, Vinod; Bennink, Martin L.

    2007-01-01

    We present the first results obtained with a new instrument designed and built to study DNA-protein interactions at the single molecule level. This microscope combines optical tweezers with scanning probe microscopy and allows us to locate DNA-binding proteins on a single suspended DNA molecule. A s

  10. Wave Optical Calculation of Probe Size in Low Energy Scanning Electron Microscope

    Radlička, Tomáš

    2015-01-01

    Roč. 21, S4 (2015), s. 212-217. ISSN 1431-9276 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : scanning electron microscope * optical calculation Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.877, year: 2014

  11. Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients

    Using a triple wavelength (670 nm, 785 nm, 843/884 nm) scanning laser-pulse mammograph we recorded craniocaudal and mediolateral projection optical mammograms of 154 patients, suspected of having breast cancer. From distributions of times of flight of photons recorded at typically 1000-2000 scan positions, optical mammograms were derived displaying (inverse) photon counts in selected time windows, absorption and reduced scattering coefficients or total haemoglobin concentration and blood oxygen saturation. Optical mammograms were analysed by comparing them with x-ray and MR mammograms, including results of histopathology, attributing a subjective visibility score to each tumour assessed. Out of 102 histologically confirmed tumours, 72 tumours were detected retrospectively in both optical projection mammograms, in addition 20 cases in one projection only, whereas 10 tumours were not detectable in any projection. Tumour contrast and contrast-to-noise ratios of mammograms of the same breast, but derived from measured DTOFs by various methods were quantitatively compared. On average, inverse photon counts in selected time windows, including total photon counts, provide highest tumour contrast and contrast-to-noise ratios. Based on the results of the present study we developed a multi-wavelength, multi-projection scanning time-domain optical mammograph with improved spectral and spatial (angular) sampling, that allows us to record entire mammograms simultaneously at various offsets between the transmitting fibre and receiving fibre bundle and provides first results for illustration

  12. Light amplification by stimulated emission from an optically pumped molecular junction in a scanning tunneling microscope

    Braun, K; Wang, X; Adler, H; Peisert, H; Chasse, T; Zhang, D; Meixner, A J

    2013-01-01

    Here, we introduce and experimentally demonstrate optical amplification and stimulated emission from a single optically pumped molecular tunneling junction of a scanning tunneling microscope. The gap between a sharp gold tip and a flat gold substrate covered with a self-assembled monolayer of 5-chloro-2-mercaptobenzothiazole molecules forms an extremely small optical gain medium. When electrons tunnel from the molecules highest occupied molecular orbital to the tip, holes are left behind. These can be repopulated by hot electrons induced by the laser-driven plasmon oscillation on the metal surfaces enclosing the cavity. Solving the laser-rate equations for this system shows that the repopulation process can be efficiently stimulated by the gap modes near field, TERS scattering from neighboring molecules acting as an optical seed. Our results demonstrate how optical enhancement inside the plasmonic cavity can be further increased by a stronger localization via tunneling through molecules. We anticipate that st...

  13. Accuracy of optical scanning methods of the Cerec®3D system in the process of making ceramic inlays

    Trifković Branka

    2010-01-01

    Full Text Available Background/Aim. One of the results of many years of Cerec® 3D CAD/CAM system technological development is implementation of one intraoral and two extraoral optical scanning methods which, depending on the current indications, are applied in making fixed restorations. The aim of this study was to determine the degree of precision of optical scanning methods by the use of the Cerec®3D CAD/CAM system in the process of making ceramic inlays. Methods. The study was conducted in three experimental groups of inlays prepared using the procedure of three methods of scanning Cerec ®3D system. Ceramic inlays made by conventional methodology were the control group. The accuracy of optical scanning methods of the Cerec®3D system computer aided designcomputer aided manufacturing (CAD/CAM was indirectly examined by measuring a marginal gap size between inlays and demarcation preparation by scanning electron microscope (SEM. Results. The results of the study showed a difference in the accuracy of the existing methods of scanning dental CAD/CAM systems. The highest level of accuracy was achieved by the extraoral optical superficial scanning technique. The value of marginal gap size inlays made with the technique of extraoral optical superficial scanning was 32.97 ± 13.17 μ. Techniques of intraoral optical superficial and extraoral point laser scanning showed a lower level of accuracy (40.29 ± 21.46 μ for inlays of intraoral optical superficial scanning and 99.67 ± 37.25 μ for inlays of extraoral point laser scanning. Conclusion. Optical scanning methods in dental CAM/CAM technologies are precise methods of digitizing the spatial models; application of extraoral optical scanning methods provides the hightest precision.

  14. The adaptation of methods in multilayer optics for the calculation of specular neutron reflection

    The adaptation of standard methods in multilayer optics to the calculation of specular neutron reflection is described. Their application is illustrated with examples which include a glass optical flat and a deuterated Langmuir-Blodgett film. (author)

  15. Segmentation of the Optic Disc in 3-D OCT Scans of the Optic Nerve Head

    Lee, Kyungmoo; Niemeijer, Meindert; Garvin, Mona K.; Kwon, Young H.; Sonka, Milan; Abràmoff, Michael D.

    2009-01-01

    Glaucoma is the second leading ocular disease causing blindness due to gradual damage to the optic nerve and resultant visual field loss. Segmentations of the optic disc cup and neuroretinal rim can provide important parameters for detecting and tracking this disease. The purpose of this study is to describe and evaluate a method that can automatically segment the optic disc cup and rim in spectral-domain 3-D OCT (SD-OCT) volumes. Four intraretinal surfaces were segmented using a fast multisc...

  16. `imaka - a ground-layer adaptive optics system on Maunakea

    Chun, Mark; Toomey, Douglas; Lu, Jessica; Service, Max; Baranec, Christoph; Thibault, Simon; Brousseau, Denis; Hayano, Yutaka; Oya, Shin; Santi, Shane; Kingery, Christopher; Loss, Keith; Gardiner, John; Steele, Brad

    2016-01-01

    We present the integration status for `imaka, the ground-layer adaptive optics (GLAO) system on the University of Hawaii 2.2-meter telescope on Maunakea, Hawaii. This wide-field GLAO pathfinder system exploits Maunakea's highly confined ground layer and weak free-atmosphere to push the corrected field of view to ~1/3 of a degree, an areal field approaching an order of magnitude larger than any existing or planned GLAO system, with a FWHM ~ 0.33 arcseconds in the visible and near infrared. We discuss the unique design aspects of the instrument, the driving science cases and how they impact the system, and how we will demonstrate these cases on the sky.

  17. Adaptive Optics Observations of Exoplanets, Brown Dwarfs, & Binary Stars

    Hinkley, Sasha

    2011-01-01

    The current direct observations of brown dwarfs and exoplanets have been obtained using instruments not specifically designed for overcoming the large contrast ratio between the host star and any wide-separation faint companions. However, we are about to witness the birth of several new dedicated observing platforms specifically geared towards high contrast imaging of these objects. The Gemini Planet Imager, VLT-SPHERE, Subaru HiCIAO, and Project 1640 at the Palomar 5m telescope will return images of numerous exoplanets and brown dwarfs over hundreds of observing nights in the next five years. Along with diffraction-limited coronagraphs and high-order adaptive optics, these instruments also will return spectral and polarimetric information on any discovered targets, giving clues to their atmospheric compositions and characteristics. Such spectral characterization will be key to forming a detailed theory of comparative exoplanetary science which will be widely applicable to both exoplanets and brown dwarfs. Fu...

  18. Kalman filtering to suppress spurious signals in Adaptive Optics control

    Poyneer, L; Veran, J P

    2010-03-29

    In many scenarios, an Adaptive Optics (AO) control system operates in the presence of temporally non-white noise. We use a Kalman filter with a state space formulation that allows suppression of this colored noise, hence improving residual error over the case where the noise is assumed to be white. We demonstrate the effectiveness of this new filter in the case of the estimated Gemini Planet Imager tip-tilt environment, where there are both common-path and non-common path vibrations. We discuss how this same framework can also be used to suppress spatial aliasing during predictive wavefront control assuming frozen flow in a low-order AO system without a spatially filtered wavefront sensor, and present experimental measurements from Altair that clearly reveal these aliased components.

  19. Multiple Object Adaptive Optics: Mixed NGS/LGS tomography

    Morris, Tim; Gendron, Eric; Basden, Alastair; Martin, Olivier; Osborn, James; Henry, David; Hubert, Zoltan; Sivo, Gaetano; Gratadour, Damien; Chemla, Fanny; Sevin, Arnaud; Cohen, Matthieu; Younger, Eddy; Vidal, Fabrice; Wilson, Richard; Batterley, Tim; Bitenc, Urban; Reeves, Andrew; Bharmal, Nazim; Raynaud, Henri-François; Kulcsar, Caroline; Conan, Jean-Marc; Guzman, Dani; De Cos Juez, Javier; Huet, Jean-Michel; Perret, Denis; Dickson, Colin; Atkinson, David; Baillie, Tom; Longmore, Andy; Todd, Stephen; Talbot, Gordon; Morris, Simon; Myers, Richard; Rousset, Gérard

    2013-12-01

    Open-loop adaptive optics has been successfully demonstrated on-sky by several groups, including the fully tomographic MOAO demonstration made using CANARY. MOAO instrumentation such as RAVEN will deliver the first astronomical science and other planned instruments aim to extend both open-loop AO performance and the number of corrected fields. Many of these planned systems rely on the use of tomographic open-loop LGS wavefront sensing. Here we present results from the combined NGS/LGS tomographic CANARY system and then compare the NGS- and LGS-based tomographic system performance. We identify the major system performance drivers, and highlight some potential routes for further exploitation of open-loop tomographic AO.

  20. Evanescent field characterisation for a d-shaped optical fibre using scanning near-field optical microscopy

    Scanning near field optical microscopy is used to measure the evanescent filed and mode profile of a Ge-doped D-shaped optical fibre. The structure of the fibre is determined by differential etching followed by an investigation of the resultant topography with an atomic force microscope. This information is then used to theoretically model the expected behaviour of the fibre and it is shown that the theoretically model the expected behaviour of the fibre and it is shown that the theoretical results are in excellent agreement with the experimentally observed fields

  1. Proposed adaptive optics system for Vainu Bappu Telescope

    Saxena, A. K.; Chinnappan, V.; Lancelot, J. P.

    It is known that the atmospheric turbulence spreads the star image as produced by the medium and large size optical telescopes by many orders resulting in reduction in the resolution of these telescopes. Adaptive optics system can partially or substantially sharpen the image thus improving the resolution and throughput of these telescopes. The atmospheric degradation can be effectively represented by Fried's parameter. We have measured Fried's parameter at very short intervals using speckle interferometer at VBT. Based on this input, an on-line wavefront error measurement and correction system was developed and tested in the laboratory. Low cost, high speed wavefront sensor using CMOS imager and Shack-Hartman lenslet array was developed and tested in the laboratory which could be used for on-line correction experiments. The wavefront errors are computed in terms of Zernike coefficients. MEMS based adaptive mirror with 37 actuators was used for the correction of higher order aberrations. Finite element analysis was carried out to know the mechanical properties and the influence function of the mirror. In-house developed Long Trace Profilometer was used to measure the surface produced by the mirror for various combination of actuator voltages and gave good insight about the behaviour of the mirror. An aberrated wavefront was captured by the wave-front sensor and the computed Zernike polynomials were used for correction of the wavefront. It is found that the peak intensity has increased about 3.8 times with reduction in size of the image. Now, the plan is to make a version that can be mounted at the cassegrain focus of the telescope. Here we deal with the low cost approach used in design; new algorithms developed for wavefront error computation from noisy data, speed optimization and related issues and the interface problems for using the system in the telescope.

  2. A compact combined ultrahigh vacuum scanning tunnelling microscope (UHV STM) and near-field optical microscope

    We have designed and constructed a hybrid scanning near-field optical microscope (SNOM)–scanning tunnelling microscope (STM) instrument which operates under ultrahigh vacuum (UHV) conditions. Indium tin oxide (ITO)-coated fibre-optic tips capable of high quality STM imaging and tunnelling spectroscopy are fabricated using a simple and reliable method which foregoes the electroless plating strategy previously employed by other groups. The fabrication process is reproducible, producing robust tips which may be exchanged under UHV conditions. We show that controlled contact with metal surfaces considerably enhances the STM imaging capabilities of fibre-optic tips. Light collection (from the cleaved back face of the ITO-coated fibre-optic tip) and optical alignment are facilitated by a simple two-lens arrangement where the in-vacuum collimation/collection lens may be adjusted using a slip-stick motor. A second in-air lens focuses the light (which emerges from the UHV system as a parallel beam) onto a cooled CCD spectrograph or photomultiplier tube. The application of the instrument to combined optical and electronic spectroscopy of Au and GaAs surfaces is discussed

  3. Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation

    Huang, Jian; Mei, Haiping; Deng, Ke; Kang, Li; Zhu, Wenyue; Yao, Zhoushi

    2015-12-01

    Designing and evaluating the adaptive optics system for coherent optical communication link through atmosphere requires to distinguish the effects of the residual wavefront and disturbed amplitude to the signal to noise ratio. Based on the new definition of coherent efficiency, a formula of signal to noise ratio for describing the performance of coherent optical communication link after wavefront compensation is derived in the form of amplitude non-uniformity and wavefront error separated. A beam quality metric is deduced mathematically to evaluate the effect of disturbed amplitude to the signal to noise ratio. Experimental results show that the amplitude fluctuation on the receiver aperture may reduce the signal to noise ratio about 24% on average when Fried coherent length r0=16 cm.

  4. Compact MEMS-based Adaptive Optics Optical Coherence Tomography for Clinical Use

    Chen, D; Olivier, S; Jones, S; Zawadzki, R; Evans, J; Choi, S; Werner, J

    2008-02-04

    We describe a compact MEMS-based adaptive optics (AO) optical coherence tomography system with improved AO performance and ease of clinical use. A typical AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror that measures and corrects the ocular and system aberrations. Because of the limitation on the current deformable mirror technologies, the amount of real-time ocular-aberration compensation is restricted and small in the previous AO-OCT instruments. In this instrument, we proposed to add an optical apparatus to correct the spectacle aberrations of the patients such as myopia, hyperopia and astigmatism. This eliminated the tedious process of the trial lenses in clinical imaging. Different amount of spectacle aberration compensation was achieved by motorized stages and automated with the AO computer for ease of clinical use. In addition, the compact AO-OCT was optimized to have minimum system aberrations to reduce AO registration errors and improve AO performance.

  5. 4th International Workshop on Adaptive Optics for Industry and Medicine

    Wittrock, Ulrich

    2005-01-01

    This book treats the development and application of adaptive optics for industry and medicine. The contributions describe recently developed components for adaptive-optics systems such as deformable mirrors, wavefront sensors, and mirror drivers as well as complete adaptive optical systems and their applications in industry and medicine. Applications range from laser-beam forming and adaptive aberration correction for high-power lasers to retinal imaging in ophthalmology. The contributions are based on presentations made at the 4th International Workshop on Adaptive Optics in Industry and Medicine which took place in Münster, Germany, in October 2003. This highly successful series of workshops on adaptive optics started in 1997 and continues with the 5th workshop in Beijing in 2005.

  6. Scanning a DNA molecule for bound proteins using hybrid magnetic and optical tweezers.

    Marijn T J van Loenhout

    Full Text Available The functional state of the genome is determined by its interactions with proteins that bind, modify, and move along the DNA. To determine the positions and binding strength of proteins localized on DNA we have developed a combined magnetic and optical tweezers apparatus that allows for both sensitive and label-free detection. A DNA loop, that acts as a scanning probe, is created by looping an optically trapped DNA tether around a DNA molecule that is held with magnetic tweezers. Upon scanning the loop along the λ-DNA molecule, EcoRI proteins were detected with ~17 nm spatial resolution. An offset of 33 ± 5 nm for the detected protein positions was found between back and forwards scans, corresponding to the size of the DNA loop and in agreement with theoretical estimates. At higher applied stretching forces, the scanning loop was able to remove bound proteins from the DNA, showing that the method is in principle also capable of measuring the binding strength of proteins to DNA with a force resolution of 0.1 pN/[Formula: see text]. The use of magnetic tweezers in this assay allows the facile preparation of many single-molecule tethers, which can be scanned one after the other, while it also allows for direct control of the supercoiling state of the DNA molecule, making it uniquely suitable to address the effects of torque on protein-DNA interactions.

  7. The Inner Kiloparsec of Mrk 273 with Keck Adaptive Optics

    Vivian, U; Sanders, David; Max, Claire; Armus, Lee; Iwasawa, Kazushi; Evans, Aaron; Kewley, Lisa; Fazio, Giovanni

    2013-01-01

    There is X-ray, optical, and mid-infrared imaging and spectroscopic evidence that the late-stage ultraluminous infrared galaxy merger Mrk 273 hosts a powerful active galactic nucleus (AGN). However, the exact location of the AGN and the nature of the nuclei have been difficult to determine due to dust obscuration and the limited wavelength coverage of available high-resolution data. Here we present near-infrared integral-field spectra and images of the nuclear region of Mrk 273 taken with OSIRIS and NIRC2 on the Keck II Telescope with laser guide star adaptive optics. We observe three spatially resolved components, and analyze the local molecular and ionized gas emission lines and their kinematics. We confirm the presence of the hard X-ray AGN in the southwest nucleus. In the north nucleus, we find a strongly rotating gas disk whose kinematics indicate a central black hole of mass 1.04 +/- 0.1 x 10^9 Msun. The H2 emission line shows an increase in velocity dispersion along the minor axis in both directions, a...

  8. Polymer-based micro deformable mirror for adaptive optics applications

    Zamkotsian, Frederic; Conedera, Veronique; Liotard, Arnaud; Schroeder, Andreas; Fabre, Norbert; Camon, Henri; Lanzoni, Patrick

    2005-01-01

    Next generation giant telescopes as well as next generation instrumentation for 10m-class telescopes relies on the availability of highly performing adaptive optical systems, for studying new fields like circumstellar disks and extrasolar planets. These systems require deformable mirrors with very challenging parameters, including number of actuators up to 250 000 and inter-actuator spacing around 500μm. MOEMS-based devices are promising for future deformable mirrors. However, only limited strokes for large driving voltages have been demonstrated. In order to overcome these limitations, we are currently developing a micro-deformable mirror based on an array of electrostatic actuators with attachment posts to a continuous mirror on top. The originality of our approach lies in the elaboration of a sacrificial layer and of a structural layer made of polymer materials, using low-temperature process. This process allows the realization of high optical quality mirrors on top of an actuator array made with various techniques. We have developed the first polymer piston-motion actuator in order to reach high strokes for low driving voltages: a 10μm thick mobile plate with four springs attached to the substrate, and with an air gap of 10μm exhibits a piston motion of 2μm for 30V. Preliminary comparison with FEM models show very good agreement and design of a complete polymer-based MDM looks possible.

  9. A 2-axis Polydimethylsiloxane (PDMS) based electromagnetic MEMS scanning mirror for optical coherence tomography

    Kim, Sehui; Lee, Changho; Kim, Jin Young; Lim, Geunbae; Kim, Jeehyun; Kim, Chulhong

    2016-03-01

    Optical coherence tomography (OCT) is a noninvasive imaging tool for visualizing cross-sectional images of biological tissues on a microscale. Various microelectromechanical system (MEMS) techniques have been applied to OCT for endoscopic catheters and handheld probes. Despite having several advantages such as compact sizes and high speeds for real-time imaging, the complexities of the fabrication processes and relatively high costs were bottlenecks for fast clinical translation and commercialization of the earlier MEMS scanners. To overcome these issues, we developed a 2-axis polydimethylsiloxane (PDMS)-based electromagnetic MEMS scanning mirror based on flexible, cost-effective, and handleable PDMS. The size of this MEMS scanner was 15 × 15 × 15 mm3. To realize the characteristics of the scanner, we obtained the DC/AC responses and scanning patterns. The measured maximum scanning angles were 16.6° and 11.6° along the X and Y axes, respectively. The resonance frequencies were 82 and 57 Hz along the X and Y axes, respectively. The scanning patterns (raster and Lissajous scan patterns) are also demonstrated by controlling the frequency and amplitude. Finally, we showed the in vivo 2D-OCT images of human fingers by using a spectral domain OCT system with a PDMSbased MEMS scanning mirror. We then reconstructed the 3D images of human fingers. The obtained field of view was 8 × 8 mm2. The PDMS-based MEMS scanning mirror has the potential to combine other optical modalities and be widely used in preclinical and clinical translation research.

  10. Nonlinear optical properties of zinc oxide doped bismuth thin films using Z-scan technique

    Abed, S.; Bouchouit, K.; Aida, M. S.; Taboukhat, S.; Sofiani, Z.; Kulyk, B.; Figa, V.

    2016-06-01

    ZnO doped Bi thin films were grown on glass substrates by spray ultrasonic technique. This paper presents the effect of Bi doping concentration on structural and nonlinear optical properties of zinc oxide thin films. These thin films were characterized by X-ray diffractometer technique. XRD analysis revealed that the ZnO:Bi thin films indicated good preferential orientation along c-axis perpendicular to the substrate. The nonlinear optical properties such as nonlinear absorption coefficient (β) and third order nonlinear susceptibility (Imχ(3)) are investigated. The calculations have been performed with a Z scan technique using Nd:YAG laser emitting 532 nm. The reverse saturable absorption (RSA) mechanism was responsible for the optical limiting effect. The results suggest that this material considered as a promising candidate for future optical device applications.

  11. Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy

    Farahani, Javad N.; Eisler, Hans-Jürgen; Pohl, Dieter W; Pavius, Michaël; Flückiger, Philippe; Gasser, Philippe; Hecht, Bert

    2007-01-01

    A method for the fabrication of bow-tie optical antennas at the apex of pyramidal Si3N4 atomic force microscopy tips is described. We demonstrate that these novel optical probes are capable of sub-wavelength imaging of single quantum dots at room temperature. The enhanced and confined optical near-field at the antenna feed gap leads to locally enhanced photoluminescence (PL) of single quantum dots. Photoluminescence quenching due to the proximity of metal is found to be insignificant. The met...

  12. Progress on Developing Adaptive Optics–Optical Coherence Tomography for In Vivo Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts

    Zawadzki, RJ; Capps, AG; Kim, DY; Panorgias, A.; Stevenson, SB; Hamann, B; Werner, JS

    2014-01-01

    Recent progress in retinal image acquisition techniques, including optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO), combined with improved performance of adaptive optics (AO) instrumentation, has resulted in improvement in the quality of in vivo images of cellular structures in the human retina. Here, we present a short review of progress on developing AO-OCT instruments. Despite significant progress in imaging speed and resolution, eye movements present during acqu...

  13. Multi-modal adaptive optics system including fundus photography and optical coherence tomography for the clinical setting.

    Salas, Matthias; Drexler, Wolfgang; Levecq, Xavier; Lamory, Barbara; Ritter, Markus; Prager, Sonja; Hafner, Julia; Schmidt-Erfurth, Ursula; Pircher, Michael

    2016-05-01

    We present a new compact multi-modal imaging prototype that combines an adaptive optics (AO) fundus camera with AO-optical coherence tomography (OCT) in a single instrument. The prototype allows acquiring AO fundus images with a field of view of 4°x4° and with a frame rate of 10fps. The exposure time of a single image is 10 ms. The short exposure time results in nearly motion artifact-free high resolution images of the retina. The AO-OCT mode allows acquiring volumetric data of the retina at 200kHz A-scan rate with a transverse resolution of ~4 µm and an axial resolution of ~5 µm. OCT imaging is acquired within a field of view of 2°x2° located at the central part of the AO fundus image. Recording of OCT volume data takes 0.8 seconds. The performance of the new system is tested in healthy volunteers and patients with retinal diseases. PMID:27231621

  14. Multi-modal adaptive optics system including fundus photography and optical coherence tomography for the clinical setting

    Salas, Matthias; Drexler, Wolfgang; Levecq, Xavier; Lamory, Barbara; Ritter, Markus; Prager, Sonja; Hafner, Julia; Schmidt-Erfurth, Ursula; Pircher, Michael

    2016-01-01

    We present a new compact multi-modal imaging prototype that combines an adaptive optics (AO) fundus camera with AO-optical coherence tomography (OCT) in a single instrument. The prototype allows acquiring AO fundus images with a field of view of 4°x4° and with a frame rate of 10fps. The exposure time of a single image is 10 ms. The short exposure time results in nearly motion artifact-free high resolution images of the retina. The AO-OCT mode allows acquiring volumetric data of the retina at 200kHz A-scan rate with a transverse resolution of ~4 µm and an axial resolution of ~5 µm. OCT imaging is acquired within a field of view of 2°x2° located at the central part of the AO fundus image. Recording of OCT volume data takes 0.8 seconds. The performance of the new system is tested in healthy volunteers and patients with retinal diseases.

  15. In-vivo imaging of inner retinal cellular morphology with adaptive optics - optical coherence tomography: challenges and possible solutions

    Zawadzki, Robert J.; Jones, Steven M.; Kim, Dae Yu; Poyneer, Lisa; Capps, Arlie G.; Hamann, Bernd; Olivier, Scot S.; Werner, John S.

    2012-03-01

    Recent progress in retinal image acquisition techniques, including optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO), combined with improved performance of adaptive optics (AO) instrumentation, has resulted in improvement in the quality of in vivo images of cellular structures in the outer layers of the human retina. Despite the significant progress in imaging cone and rod photoreceptor mosaics, visualization of cellular structures in the inner retina has been achieved only with extrinsic contrast agents that have not been approved for use with humans. In this paper we describe the main limiting factors in visualizing inner retinal cells and the methods we implemented to reduce their effects on images acquired with AO-OCT. These include improving the system point spread function (AO performance), monitoring of motion artifacts (retinal motion tracking), and speckle pattern reduction (temporal and spatial averaging). Results of imaging inner retinal morphology and the improvement offered by the new UC Davis AOOCT system with spatio-temporal image averaging are presented.

  16. Low Temperature Apertureless Near-field Scanning Optical Microscope for Optical Spectroscopy of Single Ge/Si Quantum Dots

    Zhu, Henry; Patil, N. G.; Levy, Jeremy

    2001-03-01

    A low-temperature apertureless near-field scanning optical microscope has been designed and constructed for the purpose of investigating the optical properties of individual Ge/Si quantum dots. The microscope fits in the 37 mm bore of a Helium vapor magneto-optic cryostat, allowing operations down to liquid helium temperatures in magnetic fields up to 8 Tesla. An in situ microscope objective focuses light onto the sample, which is scanned in the three spatial directions using a compact modular stage. An AFM/STM tip resides on the top; feedback is achieved using a quartz tuning fork oscillator. Both tip and objective are attached to inertial sliding motors that can move in fine (10 nm) steps to achieve touchdown and focus. A femtosecond optical parametric oscillator is used to excite carriers in the quantum dots both resonantly and non-resonantly; scattered luminescence from the AFM/STM tip is collected and analyzed spectrally using a 1/2 meter imaging spectrometer and a LN_2-cooled InGaAs array. We gratefully acknowledge NSF (DMR-9701725, IMR-9802784) and DARPA (DAAD-16-99-C1036) for financial support of this work.

  17. Reproducibilty test of ferrous xylenol orange gel dose response with optical cone beam CT scanning

    Jordan, K.; Battista, J.

    2004-01-01

    Our previous studies of ferrous xylenol orange gelatin gel have revealed a spatial dependence to the dose response of samples contained in 10 cm diameter cylinders. Dose response is defined as change in optical attenuation coefficient divided by the dose (units cm-1 Gy-1). This set of experiments was conducted to determine the reproducibility of our preparation, irradiation and full 3D optical cone beam CT scanning. The data provided an internal check of a larger storage time-dose response dependence study.

  18. Cancer cell imaging by stable wet near-field scanning optical microscope with resonance tracking method

    Park, Kyoung-Duck [Sungkyunkwan University, Suwon (Korea, Republic of); Inha University, Incheon (Korea, Republic of); Park, Doo-Jae; Jeong, Mun-Seok [Sungkyunkwan University, Suwon (Korea, Republic of); Choi, Geun-Chang [Seoul National University, Seoul (Korea, Republic of); Lee, Seung-Gol [Inha University, Incheon (Korea, Republic of); Byeon, Clare-Chisu [Kyungpook National University, Daegu (Korea, Republic of); Choi, Soo-Bong [Incheon National University, Incheon (Korea, Republic of)

    2014-05-15

    We report on a successful topographical and optical imaging of various cancer cells in liquid and in air by using a stable wet near-field scanning optical microscope that utilizes a resonance tracking method. We observed a clear dehydration which gives rise to a decrease in the cell volume down to 51%. In addition, a micro-ball lens effect due to the round-shaped young cancer cells was observed from near-field imaging, where the refractive index of young cancer cells was deduced.

  19. Measurement of the depletion beam focal spot using near-field scanning optical microscopy probes

    The submicron size doughnut shape focal spot, which is traditionally measured by scattering off a nanoparticle or a fluorescent bead, is measured for the first time by a near-field scanning optical microscopy (NSOM) fiber probe. Measurement results agree very well with calculations. This method offers superior repeatability, better control and is less time-consuming than the traditional method as the probes are mechanically protected by their insertion into fiber optic ferrules, which also greatly facilitates the alignment of the tip to the focal spot. (paper)

  20. Cancer cell imaging by stable wet near-field scanning optical microscope with resonance tracking method

    We report on a successful topographical and optical imaging of various cancer cells in liquid and in air by using a stable wet near-field scanning optical microscope that utilizes a resonance tracking method. We observed a clear dehydration which gives rise to a decrease in the cell volume down to 51%. In addition, a micro-ball lens effect due to the round-shaped young cancer cells was observed from near-field imaging, where the refractive index of young cancer cells was deduced.

  1. Z-scan and optical limiting properties of Hibiscus Sabdariffa dye

    Diallo, A.; Zongo, S.; Mthunzi, P.; Rehman, S.; Alqaradawi, S. Y.; Soboyejo, W.; Maaza, M.

    2014-12-01

    The intensity-dependent refractive index n 2 and the nonlinear susceptibility χ (3) of Hibiscus Sabdariffa dye solutions in the nanosecond regime at 532 nm are reported. More presicely, the variation of n 2, β, and real and imaginary parts of χ (3) versus the natural dye extract concentration has been carried out by z-scan and optical limiting techniques. The third-order nonlinearity of the Hibiscus Sabdariffa dye solutions was found to be dominated by nonlinear refraction, which leads to strong optical limiting of laser.

  2. Synthetic aperture laser optical feedback imaging using a translational scanning with galvanometric mirrors

    Glastre, Wilfried; Hugon, Olivier; De Chatellus, Hugues Guillet; Lacot, Eric

    2012-01-01

    In this paper we present an experimental setup based on Laser Optical Feedback Imaging (LOFI) and on Synthetic Aperture (SA) with translational scanning by galvanometric mirrors for the purpose of making deep and resolved images through scattering media. We provide real 2D optical synthetic-aperture image of a fixed scattering target with a moving aperture and an isotropic resolution. We demonstrate theoretically and experimentally that we can keep microscope resolution beyond the working distance. A photometric balance is made and we show that the number of photons participating in the final image decreases with the square of the reconstruction distance. This degradation is partially compensated by the high sensitivity of LOFI.

  3. Scanning probe microscopy of thermally excited mechanical modes of an optical microcavity

    Kippenberg, T J; Vahala, K J

    2006-01-01

    The resonant buildup of light within optical microcavities elevates the radiation pressure which mediates coupling of optical modes to the mechanical modes of a microcavity. Above a certain threshold pump power, regenerative mechanical oscillation occurs causing oscillation of certain mechanical eigenmodes. Here, we present a methodology to spatially image the micro-mechanical resonances of a toroid microcavity using a scanning probe technique. The method relies on recording the induced frequency shift of the mechanical eigenmode when in contact with a scanning probe tip. The method is passive in nature and achieves a sensitivity sufficient to spatially resolve the vibrational mode pattern associated with the thermally agitated displacement at room temperature. The recorded mechanical mode patterns are in good qualitative agreement with the theoretical strain fields as obtained by finite element simulations.

  4. Application of a photorefractive bismuth titanate crystal for the construction of adaptive fiber optic seismic receivers

    The possibility of using a photorefractive Bi12TiO20 crystal to create an adaptive fiber optic geophone has been studied. It is shown that this crystal provides efficient phase demodulation in and adaptive interferometer scheme at low optical powers

  5. A Correlative Optical Microscopy and Scanning Electron Microscopy Approach to Locating Nanoparticles in Brain Tumors

    Kempen, Paul J.; Kircher, Moritz F; DE LA ZERDA, ADAM; Zavaleta, Cristina L.; Jokerst, Jesse V.; Mellinghoff, Ingo K.; Gambhir, Sanjiv S.; Sinclair, Robert

    2014-01-01

    The growing use of nanoparticles in biomedical applications, including cancer diagnosis and treatment, demands the capability to exactly locate them within complex biological systems. In this work a correlative optical and scanning electron microscopy technique was developed to locate and observe multi-modal gold core nanoparticle accumulation in brain tumor models. Entire brain sections from mice containing orthotopic brain tumors injected intravenously with nanoparticles were imaged using b...

  6. Scanning fiber-optic nonlinear endomicroscopy with miniature aspherical compound lens and multimode fiber collector

    Wu, Yicong; Xi, Jiefeng; Cobb, Michael J.; Li, Xingde

    2009-01-01

    A flexible scanning fiber-optic endomicroscope using a miniature compound lens and a multimode-fiber (MMF) collector was developed for two-photon fluorescence (TPF) and second-harmonic generation (SHG) imaging. The compound lens consisted of a pair of aspherical lenses and exhibited reduced chromatic aberration compared with gradient-index lenses, thus increasing the TPF/SHG collection efficiency. The introduction of a short MMF collector at the distal end of the double-clad fiber of the endo...

  7. Flexydos3D: A new deformable anthropomorphic 3D dosimeter readout with optical CT scanning

    A new deformable polydimethylsiloxane (PDMS) based dosimeter is proposed that can be cast in an anthropomorphic shape and that can be used for 3D radiation dosimetry of deformable targets. The new material has additional favorable characteristics as it is tissue equivalent for high-energy photons, easy to make and is non-toxic. In combination with dual wavelength optical scanning, it is a powerful dosimeter for dose verification of image gated or organ tracked radiotherapy with moving and deforming targets

  8. Simulation of near-field scanning optical microscopy using a plasmonic gap probe

    Tanaka, Kazuo; Tanaka, Masahiro; Katayama, Kiyofumi

    2006-10-01

    Imaging by near-field scanning optical microscopy (NSOM) with a plasmonic gap probe (PGP) is simulated to confirm the operation of the recently proposed PGP. The simulations demonstrate that the probe works in illumination, collection-reflection and collection mode, and that is it not necessary to vibrate the probe tip in order to remove background noise. The resolution of the scanned image is also shown to be approximately equal to the diameter of the probe tip. Furthermore, the throughput of the probe is much higher than conventional aperture probes providing similar resolution. The proposed probe thus has the advantages of both aperture probes and scattering probes, and is expected to have excellent characteristics for use as a scanning probe for NSOM.

  9. Laser-induced cantilever behaviour in apertureless scanning near-field optical microscopes

    The laser-induced deformation of a typical commercial cantilever commonly used for scanning near-field optical microscopes was investigated by means of a software package based on the finite element method. The thermo-mechanical behaviour of such a cantilever whose tip was irradiated by a laser beam was calculated in the temperature regime between room temperature and 850 K. The spatial tip displacement was simulated at timescales <0.1 ms, since feedback-based constant force measurements exhibit reaction times in this range. It could be shown that in addition to former tip-based thermal expansion calculations the cantilever deformation is already significant at moderate temperatures, particularly when a reflective coating is present. The experimental and calculated results suggest that tip scanning in cantilever-based scanning probe microscopes for laser-based surface modification applications should be performed in thermal equilibrium. (paper)

  10. Full-color optical scanning holography with common red, green, and blue channels [Invited].

    Kim, Hayan; Kim, You Seok; Kim, Taegeun

    2016-01-20

    We propose color optical scanning holography (OSH) that records red, green, and blue (RGB) holograms of real objects by single scanning. The proposed color OSH composes a RGB multiplexing unit, color time-dependent Fresnel zone plate generation unit, scanning unit, space-integrating photodetection unit, and demultiplexing unit. In the proposed color OSH, RGB beams follow a common path from the multiplexing unit to a photodetector, generating an electric current containing the object's complex RGB hologram information. In the demultiplexing unit, the complex RGB holograms are extracted and arranged as a complex color hologram. In experiments, we record the complex color hologram of a three-dimensional object composed of RGB transparencies using the color OSH. Numerical reconstruction shows that the recorded hologram contains information about the object's color as well as the diffracted field from the object. PMID:26835951

  11. Status Update and Closed-Loop Performance of the Magellan Adaptive Optics VisAO Camera

    Kopon, Derek; Close, Laird M.; Males, Jared; Gasho, Victor; Morzinski, Katie; Follette, Katherine

    2014-01-01

    We present laboratory results of the closed-loop performance of the Magellan Adaptive Optics (AO) Adaptive Secondary Mirror (ASM), pyramid wavefront sensor (PWFS), and VisAO visible adaptive optics camera. The Magellan AO system is a 585-actuator low-emissivity high-throughput system scheduled for first light on the 6.5 meter Magellan Clay telescope in November 2012. Using a dichroic beamsplitter near the telescope focal plane, the AO system will be able to simultaneously perform visible (500...

  12. Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems

    Wu, Zhizheng; Ben Amara, Foued

    2013-01-01

    Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems presents a novel design of wavefront correctors based on magnetic fluid deformable mirrors (MFDM) as well as corresponding control algorithms. The presented wavefront correctors are characterized by their linear, dynamic response. Various mirror surface shape control algorithms are presented along with experimental evaluations of the performance of the resulting adaptive optics systems. Adaptive optics (AO) systems are used in various fields of application to enhance the performance of optical systems, such as imaging, laser, free space optical communication systems, etc. This book is intended for undergraduate and graduate students, professors, engineers, scientists and researchers working on the design of adaptive optics systems and their various emerging fields of application. Zhizheng Wu is an associate professor at Shanghai University, China. Azhar Iqbal is a research associate at the University of Toronto, Canada. Foue...

  13. Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography.

    Xu, Yang; Liu, Yuan-Zhi; Boppart, Stephen A; Carney, P Scott

    2016-03-10

    In this paper, we introduce an algorithm framework for the automation of interferometric synthetic aperture microscopy (ISAM). Under this framework, common processing steps such as dispersion correction, Fourier domain resampling, and computational adaptive optics aberration correction are carried out as metrics-assisted parameter search problems. We further present the results of this algorithm applied to phantom and biological tissue samples and compare with manually adjusted results. With the automated algorithm, near-optimal ISAM reconstruction can be achieved without manual adjustment. At the same time, the technical barrier for the nonexpert using ISAM imaging is also significantly lowered. PMID:26974799

  14. Adaptive Q control for Tapping-mode Nano-scanning Using a Piezo-actuated Bimorph Probe

    Gunev, Ihsan; Karaman, Sertac; Basdogan, Cagatay

    2012-01-01

    A new approach, called Adaptive Q-control, for tapping-mode Atomic Force Microscopy (AFM) is introduced and implemented on a home-made AFM set-up utilizing a Laser Doppler Vibrometer (LDV) and a piezo-actuated bimorph probe. In the standard Q-control, the effective Q-factor of the scanning probe is adjusted prior to the scanning depending on the application. However, there is a trade-off in setting the effective Q-factor of an AFM probe. The Q-factor is either increased to reduce the tapping forces or decreased to increase the maximum achievable scan speed. Realizing these two benefits simultaneously using the standard Q-control is not possible. In adaptive Q-control, the Q-factor of the probe is set to an initial value as in standard Q-control, but then modified on the fly during scanning when necessary to achieve this goal. In this paper, we present the basic theory behind the adaptive Q-control, the electronics enabling the on-line modification of the probe's effective Q-factor, and the results of the expe...

  15. Comparison of the marginal adaptation of direct and indirect composite inlay restorations with optical coherence tomography

    TÜRK, Ayşe Gözde; SABUNCU, Metin; ÜNAL, Sena; ÖNAL, Banu; ULUSOY, Mübin

    2016-01-01

    ABSTRACT Objective The purpose of the study was to use the photonic imaging modality of optical coherence tomography (OCT) to compare the marginal adaptation of composite inlays fabricated by direct and indirect techniques. Material and Methods Class II cavities were prepared on 34 extracted human molar teeth. The cavities were randomly divided into two groups according to the inlay fabrication technique. The first group was directly restored on cavities with a composite (Esthet X HD, Dentsply, Germany) after isolating. The second group was indirectly restored with the same composite material. Marginal adaptations were scanned before cementation with an invisible infrared light beam of OCT (Thorlabs), allowing measurement in 200 µm intervals. Restorations were cemented with a self-adhesive cement resin (SmartCem2, Dentsply), and then marginal adaptations were again measured with OCT. Mean values were statistically compared by using independent-samples t-test and paired samples t-test (pinlays presented statistically smaller marginal discrepancy values than indirect inlays, before (p=0.00001442) and after (p=0.00001466) cementation. Marginal discrepancy values were increased for all restorations after cementation (p=0.00008839, p=0.000000952 for direct and indirect inlays, respectively). The mean marginal discrepancy value of the direct group increased from 56.88±20.04 µm to 91.88±31.7 µm, whereas the indirect group increased from 107.54±35.63 µm to 170.29±54.83 µm. Different techniques are available to detect marginal adaptation of restorations, but the OCT system can give quantitative information about resin cement thickness and its interaction between tooth and restoration in a nondestructive manner. Conclusions Direct inlays presented smaller marginal discrepancy than indirect inlays. The marginal discrepancy values were increased for all restorations that refer to cement thickness after cementation. PMID:27556210

  16. A Reflective Gaussian Coronagraph for Extreme Adaptive Optics: Laboratory Performance

    Park, Ryeojin; Close, Laird M.; Siegler, Nick; Nielsen, Eric L.; Stalcup, Thomas

    2006-11-01

    We report laboratory results of a coronagraphic test bench to assess the intensity reduction differences between a ``Gaussian'' tapered focal plane coronagraphic mask and a classical hard-edged ``top hat'' function mask at extreme adaptive optics (ExAO) Strehl ratios of ~94%. However, unlike a traditional coronagraph design, we insert a reflective focal plane mask at 45° to the optical axis. We also use an intermediate secondary mask (mask 2) before a final image in order to block additional mask-edge-diffracted light. The test bench simulates the optical train of ground-based telescopes (in particular, the 8.1 m Gemini North Telescope). It includes one spider vane, different mask radii (r = 1.9λ/D, 3.7λ/D, and 7.4λ/D), and two types of reflective focal plane masks (hard-edged top-hat and Gaussian tapered profiles). In order to investigate the relative performance of these competing coronagraphic designs with regard to extrasolar planet detection sensitivity, we utilize the simulation of realistic extrasolar planet populations (Nielsen et al.). With an appropriate translation of our laboratory results to expected telescope performance, a Gaussian tapered mask radius of 3.7λ/D with an additional mask (mask 2) performs best (highest planet detection sensitivity). For a full survey with this optimal design, the simulation predicts that ~30% more planets would be detected than with a top-hat function mask of similar size with mask 2. Using the best design, the point contrast ratio between the stellar point-spread function (PSF) peak and the coronagraphic PSF at 10λ/D (0.4" in the H band if D = 8.1 m) is ~10 times higher than a classical Lyot top-hat coronagraph. Hence, we find that a Gaussian apodized mask with an additional blocking mask is superior (~10 times higher contrast) to the use of a classical Lyot coronagraph for ExAO-like Strehl ratios.

  17. Scanning tunneling microscope based nanoscale optical imaging of molecules on surfaces

    Zhang, Chao; Chen, Liuguo; Zhang, Rui; Dong, Zhenchao

    2015-08-01

    We provide an overview of the development of a merged system of low-temperature ultrahigh-vacuum scanning tunneling microscope (STM) with photon collection and detection units for optical imaging at the nanoscale. Focusing on our own work over the past ten years, the paper starts from a brief introduction of the STM induced luminescence (STML) technique and the challenge for nanoscale optical imaging, and then describes the design and instrumentation on the photon collection and detection system. The powerful potentials of the technique are illustrated using several selected examples from STML to tip enhanced Raman scattering that are mainly related to photon mapping. Such photon maps could reveal not only the local electromagnetic properties and the nature of optical transitions in the junction, but also exhibit spatial imaging resolution down to sub-molecular and sub-nanometer scale. The paper is concluded with a brief overlook on the future development of the STML technique.

  18. TH-C-BRD-09: Successes and Limitations of Online Range Adaptive Spot Scanning Proton Therapy for NSCLC

    Cheung, JP [UT MD Anderson Cancer Center, Houston, TX (United States); UT Graduate School of Biomedical Sciences at Houston, Houston, TX (United States); Dong, L [Scripps Proton Therapy Center, San Diego, CA (United States); Park, P [Emory University, Scottsdale, GA (United States); Zhu, XR; Kudchadker, RJ; Frank, SJ; Court, LE [UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-15

    Purpose: To determine the ability to adapt discrete spot-scanning proton therapy (SSPT) plans based on geometric changes of anatomy to minimize normal tissue dose and maintain target coverage. Methods: We developed and tested a range-correction algorithm to compensate for anatomy changes in SSPT with correction factors for target lateral size changes and energy scaling. This algorithm adjusts the energy of each spot from the original optimized treatment plan to match the new daily anatomy based on water equivalent path-length. To correct for the lateral target size changes, the peripheral spots were scaled based on phantom studies with variable target size. For energy change corrections, alternative cumulative scaling factor lookup tables were generated based on calculated central-axis and integral depth dose calculations for different energies. These various adaptive algorithms were performed on 7 lung cancer patients that were previously treated with proton therapy and who required at least one adaptive intervention. Single-field optimized SSPT plans were generated for these patients with clinical beam angles. Dose-volume histogram metrics were obtained for these patients for both the non-adaptive and the different adaptive plans applied to the last available weekly CT scan. Results: The doses to normal tissue were largely reduced for the spinal cord (Dmax), total lung (V20Gy), and contralateral lung (V20Gy) for all different methods of adaptive planning. With both corrections applied, the average changes for these metrics were −6.2Gy, −2.7%, and −4.9%, respectively. The same method generated unacceptably high target hot spots with average target V110% increase of 12.3%. Conclusion: Adaptive methods based on direct adjustments to proton range can reduce normal tissue doses under large anatomical changes but are insufficient in achieving clinically acceptable target doses and generate unacceptably sizeable hot spots. Adaptive planning methods for proton

  19. TH-C-BRD-09: Successes and Limitations of Online Range Adaptive Spot Scanning Proton Therapy for NSCLC

    Purpose: To determine the ability to adapt discrete spot-scanning proton therapy (SSPT) plans based on geometric changes of anatomy to minimize normal tissue dose and maintain target coverage. Methods: We developed and tested a range-correction algorithm to compensate for anatomy changes in SSPT with correction factors for target lateral size changes and energy scaling. This algorithm adjusts the energy of each spot from the original optimized treatment plan to match the new daily anatomy based on water equivalent path-length. To correct for the lateral target size changes, the peripheral spots were scaled based on phantom studies with variable target size. For energy change corrections, alternative cumulative scaling factor lookup tables were generated based on calculated central-axis and integral depth dose calculations for different energies. These various adaptive algorithms were performed on 7 lung cancer patients that were previously treated with proton therapy and who required at least one adaptive intervention. Single-field optimized SSPT plans were generated for these patients with clinical beam angles. Dose-volume histogram metrics were obtained for these patients for both the non-adaptive and the different adaptive plans applied to the last available weekly CT scan. Results: The doses to normal tissue were largely reduced for the spinal cord (Dmax), total lung (V20Gy), and contralateral lung (V20Gy) for all different methods of adaptive planning. With both corrections applied, the average changes for these metrics were −6.2Gy, −2.7%, and −4.9%, respectively. The same method generated unacceptably high target hot spots with average target V110% increase of 12.3%. Conclusion: Adaptive methods based on direct adjustments to proton range can reduce normal tissue doses under large anatomical changes but are insufficient in achieving clinically acceptable target doses and generate unacceptably sizeable hot spots. Adaptive planning methods for proton

  20. Focusing adaptive-optics for neutron spectroscopy at extreme conditions

    Simeoni, G. G.; Valicu, R. G.; Borchert, G.; Böni, P.; Rasmussen, N. G.; Yang, F.; Kordel, T.; Holland-Moritz, D.; Kargl, F.; Meyer, A.

    2015-12-01

    Neutron Spectroscopy employing extreme-conditions sample environments is nowadays a crucial tool for the understanding of fundamental scientific questions as well as for the investigation of materials and chemical-physical properties. For all these kinds of studies, an increased neutron flux over a small sample area is needed. The prototype of a focusing neutron guide component, developed and produced completely at the neutron source FRM II in Garching (Germany), has been installed at the time-of-flight (TOF) disc-chopper neutron spectrometer TOFTOF and came into routine-operation. The design is based on the compressed Archimedes' mirror concept for finite-size divergent sources. It represents a unique device combining the supermirror technology with Adaptive Optics, suitable for broad-bandwidth thermal-cold TOF neutron spectroscopy (here optimized for 1.4-10 Å). It is able to squeeze the beam cross section down to a square centimeter, with a more than doubled signal-to-background ratio, increased efficiency at high scattering angles, and improved symmetry of the elastic resolution function. We present a comparison between the simulated and measured beam cross sections, as well as the performance of the instrument within real experiments. This work intends to show the unprecedented opportunities achievable at already existing instruments, along with useful guidelines for the design and construction of next-generation neutron spectrometers.

  1. Adaptive optics images. III. 87 Kepler objects of interest

    Dressing, Courtney D.; Dupree, Andrea K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Adams, Elisabeth R. [Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, AZ 85719 (United States); Kulesa, Craig; McCarthy, Don, E-mail: cdressing@cfa.harvard.edu [Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2014-11-01

    The Kepler mission has revolutionized our understanding of exoplanets, but some of the planet candidates identified by Kepler may actually be astrophysical false positives or planets whose transit depths are diluted by the presence of another star. Adaptive optics images made with ARIES at the MMT of 87 Kepler Objects of Interest place limits on the presence of fainter stars in or near the Kepler aperture. We detected visual companions within 1'' for 5 stars, between 1'' and 2'' for 7 stars, and between 2'' and 4'' for 15 stars. For those systems, we estimate the brightness of companion stars in the Kepler bandpass and provide approximate corrections to the radii of associated planet candidates due to the extra light in the aperture. For all stars observed, we report detection limits on the presence of nearby stars. ARIES is typically sensitive to stars approximately 5.3 Ks magnitudes fainter than the target star within 1'' and approximately 5.7 Ks magnitudes fainter within 2'', but can detect stars as faint as ΔKs = 7.5 under ideal conditions.

  2. Focusing adaptive-optics for neutron spectroscopy at extreme conditions

    Neutron Spectroscopy employing extreme-conditions sample environments is nowadays a crucial tool for the understanding of fundamental scientific questions as well as for the investigation of materials and chemical-physical properties. For all these kinds of studies, an increased neutron flux over a small sample area is needed. The prototype of a focusing neutron guide component, developed and produced completely at the neutron source FRM II in Garching (Germany), has been installed at the time-of-flight (TOF) disc-chopper neutron spectrometer TOFTOF and came into routine-operation. The design is based on the compressed Archimedes' mirror concept for finite-size divergent sources. It represents a unique device combining the supermirror technology with Adaptive Optics, suitable for broad-bandwidth thermal-cold TOF neutron spectroscopy (here optimized for 1.4–10 Å). It is able to squeeze the beam cross section down to a square centimeter, with a more than doubled signal-to-background ratio, increased efficiency at high scattering angles, and improved symmetry of the elastic resolution function. We present a comparison between the simulated and measured beam cross sections, as well as the performance of the instrument within real experiments. This work intends to show the unprecedented opportunities achievable at already existing instruments, along with useful guidelines for the design and construction of next-generation neutron spectrometers

  3. Micron narrowband adaptive optics imaging in the arches cluster

    Blum, R D; Pasquali, A; Heydari-Malayeri, M; Conti, P S; Schmutz, W

    2001-01-01

    Canada-France-Hawaii-Telescope adaptive optics bonnette images through narrow-band filters in the $K-$band are presented for the Arches cluster. Continuum fluxes, line fluxes, and equivalent widths are derived from high angular resolution images, some near diffraction limited, for the well known massive stars in the Arches cluster. Images were obtained in the lines of \\ion{He}{1} 2.06 \\mic, \\ion{H}{1} Br$\\gamma$ (2.17 \\mic), and \\ion{He}{2} 2.19 \\mic as well as continuum positions at 2.03 \\mic, 2.14 \\mic, and 2.26 \\mic. In addition, fluxes are presented for \\ion{H}{1} P$\\alpha$ (1.87 \\mic) and a nearby continuum position (1.90 \\mic) from Hubble Space Telescope archival data. The 2 \\mic and P$\\alpha$ data reveal two new emission-line stars and three fainter candidate emission-line objects. Indications for a spectral change of one object between earlier observations in 1992/1993 and our data from 1999 are found. The ratio of \\ion{He}{2} 2.19 \\mic to Br$\\gamma$ emission exhibits a narrow distribution among the s...

  4. Adaptive optics for ultra short pulsed lasers in UHV environment

    Deneuville, Francois; Ropert, Laurent; Sauvageot, Paul; Theis, Sébastien

    2015-02-01

    ISP SYSTEM has developed an electro-mechanical deformable mirror compatible with Ultra High Vacuum environment, suitable for ultra short pulsed lasers. The design of the MD-AME deformable mirror is based on force application on numerous locations. μ-AME actuators are driven by stepper motors, and their patented special design allows controlling the force with a very high accuracy. Materials and assembly method have been adapted to UHV constraints and the performances were evaluated on a first application for a beam with a diameter of 250mm. A Strehl ratio above 0.9 was reached for this application. Optical aberrations up to Zernike order 5 can be corrected with a very low residual error as for standard MD-AME mirror. Amplitude can reach up to several hundreds of μm for low order corrections. Hysteresis is lower than 0.1% and linearity better than 99%. Contrary to piezo-electric actuators, the μ-AME actuators avoid print-through effects and they permit to keep the mirror shape stable even unpowered, providing a high resistance to electro-magnetic pulses. The deformable mirror design allows changing easily an actuator or even the membrane if needed, in order to improve the facility availability. They are designed for circular, square or elliptical aperture from 30mm up to 500mm or more, with incidence angle from 0° to 45°. They can be equipped with passive or active cooling for high power lasers with high repetition rate.

  5. Improvement in the performance of solar adaptive optics

    Adaptive optics (AO), which provides diffraction limited imaging over a field-of-view (FOV), is a powerful technique for solar observation. In the tomographic approach, each wavefront sensor (WFS) is looking at a single reference that acts as a guide star. This allows a 3D reconstruction of the distorted wavefront to be made. The correction is applied by one or more deformable mirrors (DMs). This technique benefits from information about atmospheric turbulence at different layers, which can be used to reconstruct the wavefront extremely well. With the assistance of the MAOS software package, we consider the tomography errors and WFS aliasing errors, and focus on how the performance of a solar telescope (pointing toward zenith) is related to atmospheric anisoplanatism. We theoretically quantify the performance of the tomographic solar AO system. The results indicate that the tomographic AO system can improve the average Strehl ratio of a solar telescope in a 10″ – 80″ diameter FOV by only employing one DM conjugated to the telescope pupil. Furthermore, we discuss the effects of DM conjugate altitude on the correction achievable by the AO system by selecting two atmospheric models that differ mainly in terms of atmospheric properties at ground level, and present the optimum DM conjugate altitudes for different observation sites

  6. Adaptive Optics Images of Kepler Objects of Interest

    Adams, Elisabeth R; Dupree, Andrea K; Gautier, T Nick; Kulesa, Craig; McCarthy, Don

    2012-01-01

    All transiting planets are at risk of contamination by blends with nearby, unresolved stars. Blends dilute the transit signal, causing the planet to appear smaller than it really is, or produce a false positive detection when the target star is blended with eclipsing binary stars. This paper reports on high spatial-resolution adaptive optics images of 90 Kepler planetary candidates. Companion stars are detected as close as 0.1 arcsec from the target star. Images were taken in the near-infrared (J and Ks bands) with ARIES on the MMT and PHARO on the Palomar Hale 200-inch. Most objects (60%) have at least one star within 6 arcsec separation and a magnitude difference of 9. Eighteen objects (20%) have at least one companion within 2 arcsec of the target star; 6 companions (7%) are closer than 0.5 arcsec. Most of these companions were previously unknown, and the associated planetary candidates should receive additional scrutiny. Limits are placed on the presence of additional companions for every system observed,...

  7. Focusing adaptive-optics for neutron spectroscopy at extreme conditions

    Simeoni, G. G., E-mail: ggsimeoni@outlook.com [Heinz Maier-Leibnitz Zentrum (MLZ), FRM II, Technical University of Munich, D-85748 Garching (Germany); Physics Department E13, Technical University of Munich, D-85748 Garching (Germany); Valicu, R. G. [Heinz Maier-Leibnitz Zentrum (MLZ), FRM II, Technical University of Munich, D-85748 Garching (Germany); Physics Department E13, Technical University of Munich, D-85748 Garching (Germany); Physics Department E21, Technical University of Munich, D-85748 Garching (Germany); Borchert, G. [Heinz Maier-Leibnitz Zentrum (MLZ), FRM II, Technical University of Munich, D-85748 Garching (Germany); Böni, P. [Physics Department E21, Technical University of Munich, D-85748 Garching (Germany); Rasmussen, N. G. [Nanoscience Center, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen (Denmark); Yang, F.; Kordel, T.; Holland-Moritz, D.; Kargl, F.; Meyer, A. [Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt, D-51170 Köln (Germany)

    2015-12-14

    Neutron Spectroscopy employing extreme-conditions sample environments is nowadays a crucial tool for the understanding of fundamental scientific questions as well as for the investigation of materials and chemical-physical properties. For all these kinds of studies, an increased neutron flux over a small sample area is needed. The prototype of a focusing neutron guide component, developed and produced completely at the neutron source FRM II in Garching (Germany), has been installed at the time-of-flight (TOF) disc-chopper neutron spectrometer TOFTOF and came into routine-operation. The design is based on the compressed Archimedes' mirror concept for finite-size divergent sources. It represents a unique device combining the supermirror technology with Adaptive Optics, suitable for broad-bandwidth thermal-cold TOF neutron spectroscopy (here optimized for 1.4–10 Å). It is able to squeeze the beam cross section down to a square centimeter, with a more than doubled signal-to-background ratio, increased efficiency at high scattering angles, and improved symmetry of the elastic resolution function. We present a comparison between the simulated and measured beam cross sections, as well as the performance of the instrument within real experiments. This work intends to show the unprecedented opportunities achievable at already existing instruments, along with useful guidelines for the design and construction of next-generation neutron spectrometers.

  8. New challenges for Adaptive Optics Extremely Large Telescopes

    Le Louarn, M; Sarazin, M; Tokovinin, A

    2000-01-01

    The performance of an adaptive optics (AO) system on a 100m diameter ground based telescope working in the visible range of the spectrum is computed using an analytical approach. The target Strehl ratio of 60% is achieved at 0.5um with a limiting magnitude of the AO guide source near R~10, at the cost of an extremely low sky coverage. To alleviate this problem, the concept of tomographic wavefront sensing in a wider field of view using either natural guide stars (NGS) or laser guide stars (LGS) is investigated. These methods use 3 or 4 reference sources and up to 3 deformable mirrors, which increase up to 8-fold the corrected field size (up to 60\\arcsec at 0.5 um). Operation with multiple NGS is limited to the infrared (in the J band this approach yields a sky coverage of 50% with a Strehl ratio of 0.2). The option of open-loop wavefront correction in the visible using several bright NGS is discussed. The LGS approach involves the use of a faint (R ~22) NGS for low-order correction, which results in a sky cov...

  9. A Tuning Fork with a Short Fibre Probe Sensor for a Near-FieldScanning Optical Microscope

    王沛; 鲁拥华; 章江英; 明海; 谢建平; 黄建文; 高宗圣; 蔡定平

    2002-01-01

    We report on a tapping-mode tuning fork with a short fibre probe sensor for a near-field scanning optical microscope. The method demonstrates how to fabricate the short fibre probe. This tapping-mode tuning fork with a short fibre probe can provide stable and high Q at the tapping frequency of the tuning fork, and can give high-quality near-field scanning optical microscope and atomic force microscope images of samples. We present the results of using the tapping-mode tuning fork with a short fibre probe sensor for a near-field scanning optical microscope performed on an eight-channel silica waveguide.

  10. Multimodal ophthalmic imaging using swept source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography

    Malone, Joseph D.; El-Haddad, Mohamed T.; Tye, Logan A.; Majeau, Lucas; Godbout, Nicolas; Rollins, Andrew M.; Boudoux, Caroline; Tao, Yuankai K.

    2016-03-01

    Scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) benefit clinical diagnostic imaging in ophthalmology by enabling in vivo noninvasive en face and volumetric visualization of retinal structures, respectively. Spectrally encoding methods enable confocal imaging through fiber optics and reduces system complexity. Previous applications in ophthalmic imaging include spectrally encoded confocal scanning laser ophthalmoscopy (SECSLO) and a combined SECSLO-OCT system for image guidance, tracking, and registration. However, spectrally encoded imaging suffers from speckle noise because each spectrally encoded channel is effectively monochromatic. Here, we demonstrate in vivo human retinal imaging using a swept source spectrally encoded scanning laser ophthalmoscope and OCT (SSSESLO- OCT) at 1060 nm. SS-SESLO-OCT uses a shared 100 kHz Axsun swept source, shared scanner and imaging optics, and are detected simultaneously on a shared, dual channel high-speed digitizer. SESLO illumination and detection was performed using the single mode core and multimode inner cladding of a double clad fiber coupler, respectively, to preserve lateral resolution while improving collection efficiency and reducing speckle contrast at the expense of confocality. Concurrent en face SESLO and cross-sectional OCT images were acquired with 1376 x 500 pixels at 200 frames-per-second. Our system design is compact and uses a shared light source, imaging optics, and digitizer, which reduces overall system complexity and ensures inherent co-registration between SESLO and OCT FOVs. En face SESLO images acquired concurrent with OCT cross-sections enables lateral motion tracking and three-dimensional volume registration with broad applications in multivolume OCT averaging, image mosaicking, and intraoperative instrument tracking.

  11. Are integral controllers adapted to the new era of ELT adaptive optics?

    Conan, J.-M.; Raynaud, H.-F.; Kulcsár, C.; Meimon, S.

    2011-09-01

    With ELTs we are now entering a new era in adaptive optics developments. Meeting unprecedented level of performance with incredibly complex systems implies reconsidering AO concepts at all levels, including controller design. Concentrating mainly on temporal aspects, one may wonder if integral controllers remain an adequate solution. This question is all the more important that, with ever larger degrees of freedom, one may be tempted to discard more sophisticated approaches because they are deemed too complex to implement. The respective performance of integrator versus LQG control should therefore be carefully evaluated in the ELT context. We recall for instance the impressive correction improvement brought by such controllers for the rejection of windshake and vibration components. LQG controller significantly outperforms the integrator because its disturbance rejection transfer function closely matches the energy concentration, respectively at low temporal frequencies for windshake, and around localized resonant peaks for vibrations. The application to turbulent modes should also be investigated, especially for very low spatial frequencies now explored on the huge ELT pupil. The questions addressed here are: 1/ How do integral and LQG controllers compare in terms of performance for a given sampling frequency and noise level?; 2/ Could we relax sampling frequency with LQG control?; 3/ Does a mode to mode adaptation of temporal rejection bring significant performance improvement?; 4/ Which modes particularly benefit from this fine tuning of the rejection transfer function? Based on a simplified ELT AO configuration, and through a simple analytical formulation, performance is evaluated for several control approaches. Various assumptions concerning the perturbation parameters (seeing and outer-scale value, windshake amplitude) are considered. Bode's integral theorem allows intuitive understanding of the results. Practical implementation and computation complexity

  12. Coherence gated wavefront sensorless adaptive optics for two photon excited fluorescence retinal imaging (Conference Presentation)

    Jian, Yifan; Cua, Michelle; Bonora, Stefano; Pugh, Edward N.; Zawadzki, Robert J.; Sarunic, Marinko V.

    2016-03-01

    We present a novel system for adaptive optics two photon imaging. We utilize the bandwidth of the femtosecond excitation beam to perform coherence gated imaging (OCT) of the sample. The location of the focus is directly observable in the cross sectional OCT images, and adjusted to the desired depth plane. Next, using real time volumetric OCT, we perform Wavefront Sensorless Adaptive Optics (WSAO) aberration correction using a multi-element adaptive lens capable of correcting up to 4th order Zernike polynomials. The aberration correction is performed based on an image quality metric, for example intensity. The optimization time is limited only by the OCT acquisition rate, and takes ~30s. Following aberration correction, two photon fluorescence images are acquired, and compared to results without adaptive optics correction. This technique is promising for multiphoton imaging in multi-layered, scattering samples such as eye and brain, in which traditional wavefront sensing and guide-star sensorless adaptive optics approaches may not be suitable.

  13. On application of constrained receding horizon control in astronomical adaptive optics

    Konnik, Mikhail V.; De Doná, José; Welsh, James Stuart

    2012-07-01

    Control system design for adaptive optics is becoming more complex and sophisticated with increasing demands on the compensation of atmospheric turbulence. Contemporary controllers used in adaptive optics systems are optimised in the sense of a cost function (linear quadratic regulators) or to a worst case scenario (robust H∞ controllers). Prediction, to some extent, can be incorporated into the controllers using the Kalman filter and a model of the atmospheric turbulence. Despite the growing number of publications on adaptive optics control systems, only the unconstrained case is usually considered. Accounting for the physical constraints of the adaptive optics system components, such as limited actuator stroke, still represents a problem. As a possible solution, one can consider constrained receding horizon control (RHC), also known as Model Predictive Control (MPC). The ability of RHC to handle constraints and make predictions of the future control signals makes it attractive for application in astronomical adaptive optics. The main potential difficulty with the application of RHC is its heavy computational load. This paper presents preliminary results on numerical simulations of an adaptive optics system controlled by constrained RHC. In particular, the case of output disturbance rejection is considered. The results of numerical simulations are provided. Finally, methods for improving the computational performance of constrained receding horizon controllers in adaptive optics are also discussed.

  14. Spectroscopy of single emitters using a scanning optical microscope in a dilution refrigerator

    Ghosh, Saikat; Heikes, Colin; Wise, Frank; Gaeta, Alexander; Ralph, Dan

    2010-03-01

    We report the design and implementation of a fiber-based optical scanning microscope, capable of operating at temperatures down to 20 mK and in magnetic fields in excess of 9 Tesla, with sub-micron spatial resolution and ultra-low light levels. A home-made modular, piezo-based scanning head is at the heart of the design, with optical fibers coupling light in and out of a commercial dilution refrigerator. The microscope can be operated both in transmission and reflection modes. In the transmission mode, we can analyze the polarization of the light transmitted through the sample down to femto-Watt light levels, using detectors and polarizers integrated with the scanning head inside the refrigerator. In the reflection mode, the instrument can be operated in a confocal geometry in conjunction with single photon counting modules to measure anti-bunching and the decay times of fluorescent photons. We are using this microscope to study individual nano- emitters, focusing initially on spin dynamics in semiconductor quantum dots.

  15. Marginal adaptation analysis performed with en face optical coherence tomography in fixed partial dentures

    Sinescu, Cosmin; Negrutiu, Meda Lavinia; Antonie, Sergiu; Dobre, George; Bradu, Adrian; Hughes, Michael; Rominu, Mihai; Podoleanu, Adrian Gh.

    2009-02-01

    Frameworks for fixed partial denture made out of dental alloys thought classic techniques currently involve many errors like marginal and internal gaps. The aim of this study is to present alternative technologies in making frameworks from dental alloys using selective laser sintering/ selective laser melting (SLS/ SLM) and to investigate the marginal adaptation of the fixed dental prostheses using the en face optical coherence tomography. These procedures imply the use of a scanning device PROBIS, SMART OPTICS with the help of 3D Dental Scanner software. For digitizing the 3D model we used the Dental Wings Kunde Software. The files obtained were sent to a SLS/ SLM machine, Hint-Els rapidPro, where the CoCr powder was sintered/melt by selectively consolidating successive layers of powder material on top of each other, using thermal energy supplied by a focused and computer controlled laser beam. Through this technique can be produced up to 80 pieces in only one step. A parallel between the classic casting technique and this new technology reveal the least has several advantages: fast finishing time, excellent marginal and internal fit, biocompatibility and superior chemical properties. SLS/ SLM proved to be a promising technology that may overcome the classic ones, because of the superior marginal fit of the fixed dental prostheses to the teeth.

  16. First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes

    Gómez-Vieyra, Armando; Dubra, Alfredo; Williams, David R.; Malacara-Hernández, Daniel

    2009-09-01

    Scanning laser ophthalmoscopes (SLOs) and optical coherence tomographs are the state-of-the-art retinal imaging instruments, and are essential for early and reliable diagnosis of eye disease. Recently, with the incorporation of adaptive optics (AO), these instruments have started to deliver near diffraction-limited performance in both humans and animal models, enabling the resolution of the retinal ganglion cell bodies, their processes, the cone photoreceptor and the retinal pigment epithelial cells mosaics. Unfortunately, these novel instruments have not delivered consistent performance across human subjects and animal models. One of the limitations of current instruments is the astigmatism in the pupil and imaging planes, which degrades image quality, by preventing the wavefront sensor from measuring aberrations with high spatial content. This astigmatism is introduced by the sequence of off-axis reflective elements, typically spherical mirrors, used for relaying pupil and imaging planes. Expressions for minimal astigmatism on the image and pupil planes in off-axis reflective afocal telescopes formed by pairs of spherical mirrors are presented. The formulas, derived from the marginal ray fans equation, are valid for small angles of incidence (systems. An example related to this last application is discussed.

  17. Adaptive Airborne Doppler Wind Lidar Beam Scanning Patterns for Complex Terrain and Small Scale Organized Atmospheric Structure Observations

    Emmitt, G.; O'Handley, C.; de Wekker, S. F.

    2008-12-01

    The conical scan is the traditional pattern used to obtain vertical profiles of the wind field with an airborne Doppler wind lidar. Nadir or zenith pointing scanning wedges are ideal for this type of scan. A bi-axis scanner has been operated on a Navy Twin Otter for more than 6 years and has been recently installed on a Navy P3 for use in a field experiment to study typhoons. The bi-axis scanner enables a broad range of scanning patterns. A subset of the possible patterns is critical to obtaining useful wind profiles in the presence of complex terrain or small (~ 100's of meters) organized atmospheric structures (rolls, updrafts, waves, etc). Several scanning strategies have been tested in flights over the Monterey Peninsula and within tropical cyclones. Combined with Google Earth (on-board) and satellite imagery overlays, new realtime adaptive scanning algorithms are being developed and tested. The results of these tests (both real and simulated) will be presented in the form of case studies.

  18. Reconstruction of optical properties of phantom and breast lesion in vivo from paraxial scanning data

    We report on the reconstruction of absorption and reduced scattering coefficients of breast tissue in vivo of a patient with mastopathic disease. Distributions of times of flight of photons through the compressed breast were recorded by paraxial scanning. From data measured at four different source-detector offsets optical properties were reconstructed within the linear Rytov approximation by a fast inverse Fourier space method. Low-pass filtering in Fourier space was employed to remove excessive noise from high spatial frequency components and to reduce the computational efforts by a factor of 3, typically. The mammograms displaying reconstructed absorption and reduced scattering coefficients were compared with projection mammograms either obtained by time-window analysis of experimental data or based on average absorption and reduced scattering coefficients which were derived from measured temporal point spread functions within a simple homogeneous model. All inhomogeneities which were visible in the projection mammograms and which could be associated with specific breast tissue compartments could be correlated with inhomogeneities in the reconstructed absorption coefficient. In particular, the mastopathic disease was detected in the reconstructed absorption mammogram. In order to assess reliability of optical properties reconstructed from data obtained by paraxial scanning, corresponding phantom experiments and reconstructions of phantom optical properties were carried out. Because of the limited angular range sampled by the in vivo and phantom measurements, considerable blurring of the absorption coefficient occurs along the compression direction, compromising longitudinal resolution

  19. The optical design of a visible adaptive optics system for the Magellan Telescope

    Kopon, Derek

    The Magellan Adaptive Optics system will achieve first light in November of 2012. This AO system contains several subsystems including the 585-actuator concave adaptive secondary mirror, the Calibration Return Optic (CRO) alignment and calibration system, the CLIO 1-5 microm IR science camera, the movable guider camera and active optics assembly, and the W-Unit, which contains both the Pyramid Wavefront Sensor (PWFS) and the VisAO visible science camera. In this dissertation, we present details of the design, fabrication, assembly, alignment, and laboratory performance of the VisAO camera and its optical components. Many of these components required a custom design, such as the Spectral Differential Imaging Wollaston prisms and filters and the coronagraphic spots. One component, the Atmospheric Dispersion Corrector (ADC), required a unique triplet design that had until now never been fabricated and tested on sky. We present the design, laboratory, and on-sky results for our triplet ADC. We also present details of the CRO test setup and alignment. Because Magellan is a Gregorian telescope, the ASM is a concave ellipsoidal mirror. By simulating a star with a white light point source at the far conjugate, we can create a double-pass test of the whole system without the need for a real on-sky star. This allows us to test the AO system closed loop in the Arcetri test tower at its nominal design focal length and optical conjugates. The CRO test will also allow us to calibrate and verify the system off-sky at the Magellan telescope during commissioning and periodically thereafter. We present a design for a possible future upgrade path for a new visible Integral Field Spectrograph. By integrating a fiber array bundle at the VisAO focal plane, we can send light to a pre-existing facility spectrograph, such as LDSS3, which will allow 20 mas spatial sampling and R˜1,800 spectra over the band 0.6-1.05 microm. This would be the highest spatial resolution IFU to date, either

  20. Handheld scanning probes for optical coherence tomography: developments, applications, and perspectives

    Duma, V.-F.; Demian, D.; Sinescu, C.; Cernat, R.; Dobre, G.; Negrutiu, M. L.; Topala, F. I.; Hutiu, Gh.; Bradu, A.; Podoleanu, A. G.

    2016-03-01

    We present the handheld scanning probes that we have recently developed in our current project for biomedical imaging in general and for Optical Coherence Tomography (OCT) in particular. OCT is an established, but dynamic imagistic technique based on laser interferometry, which offers micrometer resolutions and millimeters penetration depths. With regard to existing devices, the newly developed handheld probes are simple, light and relatively low cost. Their design is described in detail to allow for the reproduction in any lab, including for educational purposes. Two probes are constructed almost entirely from off-the-shelf components, while a third, final variant is constructed with dedicated components, in an ergonomic design. The handheld probes have uni-dimensional (1D) galvanometer scanners therefore they achieve transversal sections through the biological sample investigated - in contrast to handheld probes equipped with bi-dimensional (2D) scanners that can also achieve volumetric (3D) reconstructions of the samples. These latter handheld probes are therefore also discussed, as well as the possibility to equip them with galvanometer 2D scanners or with Risley prisms. For galvanometer scanners the optimal scanning functions studied in a series of previous works are pointed out; these functions offer a higher temporal efficiency/duty cycle of the scanning process, as well as artifact-free OCT images. The testing of the handheld scanning probes in dental applications is presented, for metal ceramic prosthesis and for teeth.

  1. Characterization of Line Nanopatterns on Positive Photoresist Produced by Scanning Near-Field Optical Microscope

    Sadegh Mehdi Aghaei

    2015-01-01

    Full Text Available Line nanopatterns are produced on the positive photoresist by scanning near-field optical microscope (SNOM. A laser diode with a wavelength of 450 nm and a power of 250 mW as the light source and an aluminum coated nanoprobe with a 70 nm aperture at the tip apex have been employed. A neutral density filter has been used to control the exposure power of the photoresist. It is found that the changes induced by light in the photoresist can be detected by in situ shear force microscopy (ShFM, before the development of the photoresist. Scanning electron microscope (SEM images of the developed photoresist have been used to optimize the scanning speed and the power required for exposure, in order to minimize the final line width. It is shown that nanometric lines with a minimum width of 33 nm can be achieved with a scanning speed of 75 µm/s and a laser power of 113 mW. It is also revealed that the overexposure of the photoresist by continuous wave laser generated heat can be prevented by means of proper photoresist selection. In addition, the effects of multiple exposures of nanopatterns on their width and depth are investigated.

  2. Polymer-based micro-deformable mirror for adaptive optics

    Liotard, Arnaud; Zamkotsian, Frederic; Conedera, Veronique; Fabre, Norbert; Lanzoni, Patrick; Camon, Henri; Chazallet, Frederic

    2006-01-01

    Highly performing adaptive optical (AO) systems are mandatory for next generation giant telescopes as well as next generation instrumentation for 10m-class telescopes, for studying new fields like circumstellar disks and extra-solar planets. These systems require deformable mirrors with very challenging parameters, including number of actuators up to 250 000 and inter-actuator spacing around 500μm. MOEMS-based devices are promising for future deformable mirrors. We are currently developing a micro-deformable mirror (MDM) based on an array of electrostatic actuators with attachment posts to a continuous mirror on top. In order to reach large stroke for low driving voltage, the originality of our approach lies in the elaboration of a sacrificial layer and of a structural layer made of polymer materials. We have developed the first polymer piston-motion actuator: a 10μm thick mobile plate with four springs attached to the substrate, and with an air gap of 10μm exhibits a piston motion of 2μm for 30V, and measured resonance frequency of 6.5kHz is well suited for AO systems. The electrostatic force provides a non-linear actuation, while AO systems are based on linear matrices operations. We have successfully developed a dedicated 14-bit electronics in order to "linearize" the actuation. Actual location of the actuator versus expected location of the actuator is obtained with a standard deviation of 21 nm. Comparison with FEM models shows very good agreement, and design of a complete polymer-based MDM has been done.

  3. Ultrahigh-speed ultrahigh-resolution adaptive optics: optical coherence tomography system for in-vivo small animal retinal imaging

    Jian, Yifan; Xu, Jing; Zawadzki, Robert J.; Sarunic, Marinko V.

    2013-03-01

    Small animal models of human retinal diseases are a critical component of vision research. In this report, we present an ultrahigh-resolution ultrahigh-speed adaptive optics optical coherence tomography (AO-OCT) system for small animal retinal imaging (mouse, fish, etc.). We adapted our imaging system to different types of small animals in accordance with the optical properties of their eyes. Results of AO-OCT images of small animal retinas acquired with AO correction are presented. Cellular structures including nerve fiber bundles, capillary networks and detailed double-cone photoreceptors are visualized.

  4. Observation of nanostructure by scanning near-field optical microscope with small sphere probe

    Yasushi Oshikane, Toshihiko Kataoka, Mitsuru Okuda, Seiji Hara, Haruyuki Inoue and Motohiro Nakano

    2007-01-01

    Full Text Available Step and terrace structure has been observed in an area of 1 μm×1 μm on the cleaved surface of KCl–KBr solid-solution single crystal by scanning near-field optical microscope (SNOM with a small sphere probe of 500 nm diameter. Lateral spatial resolution of the SNOM system was estimated to be 20 nm from the observation of step width and the scanning-step interval. Vertical spatial resolution was estimated to be 5–2 nm from the observation of step height and noise level of photomultiplier tube (PMT. With applying a dielectric dipole radiation model to the probe surface, the reason why such a high spatial resolution was obtained in spite of the 500 nm sphere probe, was understood as the effect of the near-field term appeared in the radiation field equations.

  5. SU-E-J-78: Adaptive Planning Workflow in a Pencil Beam Scanning Proton Therapy Center

    Purpose: The susceptibility of proton therapy to changes in patient setup and anatomy necessitates an adaptive planning process. With the right planning tools and clinical workflow, an adaptive plan can be created in a timely manner without adding significant workload to the treatment planning staff. Methods: In our center, a weekly QA CT is performed on most patients to assess setup, anatomy change, and tumor response. The QA CT is fused to the treatment planning CT, the contours are transferred via deformable registration, and the plan dose is recalculated on the QA CT. A physicist assesses the dose distribution, and an adaptive plan is requested based on tumor coverage or OAR dose changes. After the physician confirms or alters the deformed contours, a dosimetrist develops an adaptive plan using our TPS adaptation module. The plan is assessed for robustness and is then reviewed by the physician. Patient QA is performed within three days following the first adapted treatment. Results: Of the patients who received QA CTs, 19% required at least one adaptive plan (18.5% H&N, 18.5% brain, 11.1% breast, 14.8% chestwall, 14.8% lung, 18.5% pelvis and 3.8% abdomen). Of these patients, 14% went on a break, while the remainder was treated with the previous plan during the re-planning process. Adaptive plans were performed based on tumor shrinkage, anatomy change or positioning uncertainties for 37.9%, 44.8%, and 17.3% of the patients, respectively. On average, 3 full days are required between the QA CT and the first adapted plan treatment. Conclusion: Adaptive planning is a crucial component of proton therapy and should be applied to any site when the QA CT shows significant deviation from the plan. With an efficient workflow, an adaptive plan can be applied without delaying patient treatment or burdening the dosimetry and medical physics team

  6. Optical scanning of dusty 3D-structures formed in a glow discharge

    Karasev, V. Yu.; Dzlieva, E. S.; Ivanov, A. Yu.; Éĭkhval'D, A. I.; Golubev, M. V.

    2009-06-01

    3D-quasi-crystals formed in strata of a glow discharge are scanned in the optical range with the help of a moving laser knife and high-speed videorecording. The spatial positions of dusty grains are determined. The ordering of structures and the type of arrangement of particles are determined from a comparison of pair correlation functions constructed for the structures under study with correlation functions corresponding to ideal crystalline structures. Several types of unit cells are found through the visual collation of separate parts of structures. As compared to data from the literature on experiments in a high-frequency discharge, the structures under study have a clearly pronounced anisotropy.

  7. Optical identification of 4U1907+09 using the HEAO-1 scanning modulation collimator position

    We report an optical identification of 4U1907+09 with a m/sub v/=16.4 stellar object in the location determined by the scanning modulation collimator experiment on the first High Energy Astronomy Observatory (HEAO-1). The identification is based on the presence of very strong and broad Hα emission. The optical data constrain the distance to be 2--13 kpc, and this gives a range of uncertainty to the typical 2--10 keV luminosity of (1 x 1035--3 x 1036) erg s-1. We report on the x-ray spectrum and variability. We apply the hypothesis that the object is an OB supergiant, although its faintness in the blue makes precise spectral classification impossible. We suggest that this system is an example of a luminous, massive primary emitting a stellar wind which is accreted on the compact object

  8. Initial experience with optical-CT scanning of RadBall Dosimeters

    The RadBall dosimeter is a novel device for providing 3-D information on the magnitude and distribution of contaminant sources of unknown radiation in a given hot cell, glovebox, or contaminated room. The device is presently under evaluation by the National Nuclear Lab (NNL, UK) and the Savannah River National Laboratory (SRNL, US), for application as a diagnostic device for such unknown contaminants in the nuclear industry. A critical component of the technique is imaging the dose distribution recorded in the RadBall using optical-CT scanning. Here we present our initial investigations using the Duke Mid-sized Optical-CT Scanner (DMOS) to image dose distributions deposited in RadBalls exposed to a variety of radiation treatments.

  9. Initial experience with optical-CT scanning of RadBall Dosimeters

    Oldham, M.; Clift, C.; Thomas, A.; Farfan, E.; Foley, T.; Jannik, T.; Adamovics J.; Holmes, C.; Stanley, S.

    2010-11-01

    The RadBall dosimeter is a novel device for providing 3-D information on the magnitude and distribution of contaminant sources of unknown radiation in a given hot cell, glovebox, or contaminated room. The device is presently under evaluation by the National Nuclear Lab (NNL, UK) and the Savannah River National Laboratory (SRNL, US), for application as a diagnostic device for such unknown contaminants in the nuclear industry. A critical component of the technique is imaging the dose distribution recorded in the RadBall using optical-CT scanning. Here we present our initial investigations using the Duke Mid-sized Optical-CT Scanner (DMOS) to image dose distributions deposited in RadBalls exposed to a variety of radiation treatments.

  10. In vivo integrated photoacoustic ophthalmoscopy, optical coherence tomography, and scanning laser ophthalmoscopy for retinal imaging

    Song, Wei; Zhang, Rui; Zhang, Hao F.; Wei, Qing; Cao, Wenwu

    2012-12-01

    The physiological and pathological properties of retina are closely associated with various optical contrasts. Hence, integrating different ophthalmic imaging technologies is more beneficial in both fundamental investigation and clinical diagnosis of several blinding diseases. Recently, photoacoustic ophthalmoscopy (PAOM) was developed for in vivo retinal imaging in small animals, which demonstrated the capability of imaging retinal vascular networks and retinal pigment epithelium (RPE) at high sensitivity. We combined PAOM with traditional imaging modalities, such as fluorescein angiography (FA), spectral-domain optical coherence tomography (SD-OCT), and auto-fluorescence scanning laser ophthalmoscopy (AF-SLO), for imaging rats and mice. The multimodal imaging system provided more comprehensive evaluation of the retina based on the complementary imaging contrast mechanisms. The high-quality retinal images show that the integrated ophthalmic imaging system has great potential in the investigation of blinding disorders.

  11. Anisotropic optical flow algorithm based on self-adaptive cellular neural network

    Zhang, Congxuan; Chen, Zhen; Li, Ming; Sun, Kaiqiong

    2013-01-01

    An anisotropic optical flow estimation method based on self-adaptive cellular neural networks (CNN) is proposed. First, a novel optical flow energy function which contains a robust data term and an anisotropic smoothing term is projected. Next, the CNN model which has the self-adaptive feedback operator and threshold is presented according to the Euler-Lagrange partial differential equations of the proposed optical flow energy function. Finally, the elaborate evaluation experiments indicate the significant effects of the various proposed strategies for optical flow estimation, and the comparison results with the other methods show that the proposed algorithm has better performance in computing accuracy and efficiency.

  12. Implant adaptation of stock abutments versus CAD/CAM abutments: a radiographic and Scanning Electron Microscopy study

    Apicella, Davide; Veltri, Mario; Chieffi, Nicoletta; Polimeni, Antonella; Giovannetti, Agostino; Ferrari, Marco

    2011-01-01

    Summary Introduction The study evaluated a null-hypothesis of no differences of fit between stock abutments and CAD/CAM titanium, gold sputtered and zirconia abutments when examined for radiographic adaptation and Scanning Electron Microcopy (SEM) at their inner aspect. The agreement between microscopic and radiographic fit was also assessed. Methods Implants (Osseospeed, Astra Tech, Mölndal, Sweden) were connected to titanium abutments (Ti-design, Astra Tech, Mölndal, Sweden) (control group n=12), to stock zirconia abutments (Zir-design, Astra Tech) (group 1 n=12) and to third party zirconia abutments (Aadva Zr abutment, GC, Tokyo, Japan) as observed under SEM (JEOL JSM-6060LV, Tokyo, Japan). Two independent operators blindly evaluated the images, according to a three-score scale: perfect adaptation, no complete adaptation, and clear evidence of no adaptation. A Kruskal-Wallis test was applied to assess significant differences in adaptation scores between the groups. Results All specimens showed precise SEM adaptation at all tested interfaces and no radiographically apparent gaps. No significant differences were found and therefore the null-hypothesis tested was accepted. Radiographic and SEM scores were in agreement. Discussion CAD/CAM titanium, gold sputtered and zirconia abutments and third-part CAD/CAM zirconia abutments show an adaptation to Astra Tech implants that is comparable to that of stock titanium and zirconia abutments. Clinicians might be able to verify such adaptation with an x-ray. In-vivo studies would be needed to evaluate the clinical outcome of CAD/CAM abutments. PMID:22238709

  13. Design and testing of prototype handheld scanning probes for optical coherence tomography.

    Demian, Dorin; Duma, Virgil-Florin; Sinescu, Cosmin; Negrutiu, Meda Lavinia; Cernat, Ramona; Topala, Florin Ionel; Hutiu, Gheorghe; Bradu, Adrian; Podoleanu, Adrian Gh

    2014-08-01

    Three simple and low-cost configurations of handheld scanning probes for optical coherence tomography have been developed. Their design and testing for dentistry applications are presented. The first two configurations were built exclusively from available off-the-shelf optomechanical components, which, to the best of our knowledge, are the first designs of this type. The third configuration includes these components in an optimized and ergonomic probe. All the designs are presented in detail to allow for their duplication in any laboratory with a minimum effort, for applications that range from educational to high-end clinical investigations. Requirements that have to be fulfilled to achieve configurations which are reliable, ergonomic-for clinical environments, and easy to build are presented. While a range of applications is possible for the prototypes developed, in this study the handheld probes are tested ex vivo with a spectral domain optical coherence tomography system built in-house, for dental constructs. A previous testing with a swept source optical coherence tomography system has also been performed both in vivo and ex vivo for ear, nose, and throat-in a medical environment. The applications use the capability of optical coherence tomography to achieve real-time, high-resolution, non-contact, and non-destructive interferometric investigations with micrometer resolutions and millimeter penetration depth inside the sample. In this study, testing the quality of the material of one of the most used types of dental prosthesis, metalo-ceramic is thus demonstrated. PMID:25107512

  14. Scattering-type scanning near-field optical microscopy with reconstruction of vertical interaction

    Wang, Le; Xu, Xiaoji G.

    2015-11-01

    Scattering-type scanning near-field optical microscopy provides access to super-resolution spectroscopic imaging of the surfaces of a variety of materials and nanostructures. In addition to chemical identification, it enables observations of nano-optical phenomena, such as mid-infrared plasmons in graphene and phonon polaritons in boron nitride. Despite the high lateral spatial resolution, scattering-type near-field optical microscopy is not able to provide characteristics of near-field responses in the vertical dimension, normal to the sample surface. Here, we present an accurate and fast reconstruction method to obtain vertical characteristics of near-field interactions. For its first application, we investigated the bound electromagnetic field component of surface phonon polaritons on the surface of boron nitride nanotubes and found that it decays within 20 nm with a considerable phase change in the near-field signal. The method is expected to provide characterization of the vertical field distribution of a wide range of nano-optical materials and structures.

  15. Experimental Adaptive Digital Performance Monitoring for Optical DP-QPSK Coherent Receiver

    Borkowski, Robert; Zhang, Xu; Zibar, Darko;

    2011-01-01

    We report on a successful experimental demonstration of a digital optical performance monitoring (OPM) yielding satisfactory estimation accuracy along with adaptive impairment equalization. No observable penalty is measured when equalizer is driven by monitoring module....

  16. The numerical simulation tool for the MAORY multiconjugate adaptive optics system

    Arcidiacono, Carmelo; Bregoli, Giovanni; Diolaiti, Emiliano; Foppiani, Italo; Agapito, Guido; Puglisi, Alfio; Xompero, Marco; Oberti, Sylvain; Cosentino, Giuseppe; Lombini, Matteo; Butler, Chris R; Ciliegi, Paolo; Cortecchia, Fausto; Patti, Mauro; Esposito, Simone; Feautrier, Philippe

    2016-01-01

    The Multiconjugate Adaptive Optics RelaY (MAORY) is and Adaptive Optics module to be mounted on the ESO European-Extremely Large Telescope (E-ELT). It is a hybrid Natural and Laser Guide System that will perform the correction of the atmospheric turbulence volume above the telescope feeding the Multi-AO Imaging Camera for Deep Observations Near Infrared spectro-imager (MICADO). We developed an end-to-end Monte- Carlo adaptive optics simulation tool to investigate the performance of a the MAORY and the calibration, acquisition, operation strategies. MAORY will implement Multiconjugate Adaptive Optics combining Laser Guide Stars (LGS) and Natural Guide Stars (NGS) measurements. The simulation tool implements the various aspect of the MAORY in an end to end fashion. The code has been developed using IDL and uses libraries in C++ and CUDA for efficiency improvements. Here we recall the code architecture, we describe the modeled instrument components and the control strategies implemented in the code.

  17. Adaptive Integrated Optical Bragg Grating in Semiconductor Waveguide Suitable for Optical Signal Processing

    Moniem, T. A.

    2016-05-01

    This article presents a methodology for an integrated Bragg grating using an alloy of GaAs, AlGaAs, and InGaAs with a controllable refractive index to obtain an adaptive Bragg grating suitable for many applications on optical processing and adaptive control systems, such as limitation and filtering. The refractive index of a Bragg grating is controlled by using an external electric field for controlling periodic modulation of the refractive index of the active waveguide region. The designed Bragg grating has refractive indices programmed by using that external electric field. This article presents two approaches for designing the controllable refractive indices active region of a Bragg grating. The first approach is based on the modification of a planar micro-strip structure of the iGaAs traveling wave as the active region, and the second is based on the modification of self-assembled InAs/GaAs quantum dots of an alloy from GaAs and InGaAs with a GaP traveling wave. The overall design and results are discussed through numerical simulation by using the finite-difference time-domain, plane wave expansion, and opto-wave simulation methods to confirm its operation and feasibility.

  18. Fixation light hue bias revisited: implications for using adaptive optics to study color vision

    Hofer, H. J.; Blaschke, J.; Patolia, J.; Koenig, D. E.

    2012-01-01

    Current vision science adaptive optics systems use near infrared wavefront sensor ‘beacons’ that appear as red spots in the visual field. Colored fixation targets are known to influence the perceived color of macroscopic visual stimuli(Jameson, D. and Hurvich, L. M., 1967. Fixation-light bias: an unwanted by-product of fixation control. Vis. Res. 7, 805 – 809.), suggesting that the wavefront sensor beacon may also influence perceived color for stimuli displayed with adaptive optics. Despite i...

  19. Laboratory Testing the Layer Oriented Wavefront Sensor for the Multiconjugate Adaptive optics Demonstrator

    Arcidiacono, Carmelo; Lombini, Matteo; Diolaiti, Emiliano; Farinato, Jacopo; Ragazzoni, Roberto

    2009-01-01

    The Multiconjugate Adaptive optics Demonstrator (MAD) for ESO-Very Large Telescopes (VLT) will demonstrate on sky the MultiConjugate Adaptive Optics (MCAO) technique. In this paper the laboratory tests relative to the first preliminary acceptance in Europe of the Layer Oriented (LO) Wavefront Sensor (WFS) for MAD will be described: the capabilities of the LO approach have been checked and the ability of the WFS to measure phase screens positioned at different altitudes has been experimented. ...

  20. Adaptative Multigrid and Variable Parameterization for Optical-flow Estimation

    Memin, Etienne; Pérez, Patrick

    1997-01-01

    We investigate the use of adaptative multigrid minimization algorithms for the estimation of the apparent motion field. The proposed approach provides a coherent and efficient framework for estimating piecewise smooth flow fields for different parameterizations relative to adaptative partitions of the image. The performances of the resulting algorithms are demonstrated in the difficult context of a non convex global energy formulation.

  1. Analysis of the dynamics and frequency spectrum synthesis of an optical-mechanical scanning device

    Andryushkevichyus, A. I.; Kumpikas, A. L.; Kumpikas, K. L.

    1973-01-01

    A two-coordinate optical-mechanical scanning device (OMSD), the operating unit of which is a scanning disk, with directional and focusing optics and a board, on which the data carrier is placed, is examined. The disk and board are kinematically connected by a transmission mechanism, consisting of a worm and complex gear drive and a tightening screw-nut with correcting device, and it is run by a synchronous type motor. The dynamic errors in the system depend, first, on irregularities in rotation of the disk, fluctuations in its axis and vibrations of the table in the plane parallel to the plane of the disk. The basic sources of the fluctuations referred to above are residual disbalance of the rotor and other rotating masses, the periodic component of the driving torque of the synchronous motor, variability in the resistance, kinematic errors in the drive and other things. The fluctuations can be transmitted to the operating units through the kinematic link as a flexural-torsional system, as well as through vibrations of the housing of the device.

  2. Adaptive optics-assisted optical coherence tomography for imaging of patients with age related macular degeneration

    Sudo, Kenta; Cense, Barry

    2013-03-01

    We developed an optical coherence tomography (OCT) prototype with a sample arm that uses a 3.4 mm beam, which is considerably larger than the 1.2 to 1.5 mm beam that is used in commercialized OCT systems. The system is equipped with adaptive optics (AO), and to distinguish it from traditional AO-OCT systems with a larger 6 mm beam we have coined this concept AO-assisted OCT. Compared to commercialized OCT systems, the 3.4 mm aperture combined with AO improves light collection efficiency and imaging lateral resolution. In this paper, the performance of the AOa-OCT system was compared to a standard OCT system and demonstrated for imaging of age-related macular degeneration (AMD). Measurements were performed on the retinas of three human volunteers with healthy eyes and on one eye of a patient diagnosed with AMD. The AO-assisted OCT system imaged retinal structures of healthy human eyes and a patient eye affected by AMD with higher lateral resolution and a 9° by 9° field of view. This combination of a large isoplanatic patch and high lateral resolution can be expected to fill a gap between standard OCT with a 1.2 mm beam and conventional AO-OCT with a 6 mm beam and a 1.5° by 1.5° isoplanatic patch.

  3. Modeling a Miniaturized Scanning Electron Microscope Focusing Column - Lessons Learned in Electron Optics Simulation

    Loyd, Jody; Gregory, Don; Gaskin, Jessica

    2016-01-01

    This presentation discusses work done to assess the design of a focusing column in a miniaturized Scanning Electron Microscope (SEM) developed at the NASA Marshall Space Flight Center (MSFC) for use in-situ on the Moon-in particular for mineralogical analysis. The MSFC beam column design uses purely electrostatic fields for focusing, because of the severe constraints on mass and electrical power consumption imposed by the goals of lunar exploration and of spaceflight in general. The resolution of an SEM ultimately depends on the size of the focused spot of the scanning beam probe, for which the stated goal here is a diameter of 10 nanometers. Optical aberrations are the main challenge to this performance goal, because they blur the ideal geometrical optical image of the electron source, effectively widening the ideal spot size of the beam probe. In the present work the optical aberrations of the mini SEM focusing column were assessed using direct tracing of non-paraxial rays, as opposed to mathematical estimates of aberrations based on paraxial ray-traces. The geometrical ray-tracing employed here is completely analogous to ray-tracing as conventionally understood in the realm of photon optics, with the major difference being that in electron optics the lens is simply a smoothly varying electric field in vacuum, formed by precisely machined electrodes. Ray-tracing in this context, therefore, relies upon a model of the electrostatic field inside the focusing column to provide the mathematical description of the "lens" being traced. This work relied fundamentally on the boundary element method (BEM) for this electric field model. In carrying out this research the authors discovered that higher accuracy in the field model was essential if aberrations were to be reliably assessed using direct ray-tracing. This led to some work in testing alternative techniques for modeling the electrostatic field. Ultimately, the necessary accuracy was attained using a BEM

  4. Sensorless adaptive optics and the effect of field of view in biological second harmonic generation microscopy

    Vandendriessche, Stefaan; Vanbel, Maarten K.; Verbiest, Thierry

    2014-05-01

    In light of the population aging in many developed countries, there is a great economical interest in improving the speed and cost-efficiency of healthcare. Clinical diagnosis tools are key to these improvements, with biophotonics providing a means to achieve them. Standard optical microscopy of in vitro biological samples has been an important diagnosis tool since the invention of the microscope, with well known resolution limits. Nonlinear optical imaging improves on the resolution limits of linear microscopy, while providing higher contrast images and a greater penetration depth due to the red-shifted incident light compared to standard optical microscopy. It also provides information on molecular orientation and chirality. Adaptive optics can improve the quality of nonlinear optical images. We analyzed the effect of sensorless adaptive optics on the quality of the nonlinear optical images of biological samples. We demonstrate that care needs to be taken when using a large field of view. Our findings provide information on how to improve the quality of nonlinear optical imaging, and can be generalized to other in vitro biological samples. The image quality improvements achieved by adaptive optics should help speed up clinical diagnostics in vitro, while increasing their accuracy and helping decrease detection limits. The same principles apply to in vivo biological samples, and in the future it may be possible to extend these findings to other nonlinear optical effects used in biological imaging.

  5. Genome-wide scans for candidate genes involved in the aquatic adaptation of dolphins.

    Sun, Yan-Bo; Zhou, Wei-Ping; Liu, He-Qun; Irwin, David M; Shen, Yong-Yi; Zhang, Ya-Ping

    2013-01-01

    Since their divergence from the terrestrial artiodactyls, cetaceans have fully adapted to an aquatic lifestyle, which represents one of the most dramatic transformations in mammalian evolutionary history. Numerous morphological and physiological characters of cetaceans have been acquired in response to this drastic habitat transition, such as thickened blubber, echolocation, and ability to hold their breath for a long period of time. However, knowledge about the molecular basis underlying these adaptations is still limited. The sequence of the genome of Tursiops truncates provides an opportunity for a comparative genomic analyses to examine the molecular adaptation of this species. Here, we constructed 11,838 high-quality orthologous gene alignments culled from the dolphin and four other terrestrial mammalian genomes and screened for positive selection occurring in the dolphin lineage. In total, 368 (3.1%) of the genes were identified as having undergone positive selection by the branch-site model. Functional characterization of these genes showed that they are significantly enriched in the categories of lipid transport and localization, ATPase activity, sense perception of sound, and muscle contraction, areas that are potentially related to cetacean adaptations. In contrast, we did not find a similar pattern in the cow, a closely related species. We resequenced some of the positively selected sites (PSSs), within the positively selected genes, and showed that most of our identified PSSs (50/52) could be replicated. The results from this study should have important implications for our understanding of cetacean evolution and their adaptations to the aquatic environment. PMID:23246795

  6. Three-dimensional imaging of intracochlear tissue by scanning laser optical tomography (SLOT)

    Tinne, N.; Nolte, L.; Antonopoulos, G. C.; Schulze, J.; Andrade, J.; Heisterkamp, A.; Meyer, H.; Warnecke, A.; Majdani, O.; Ripken, T.

    2016-02-01

    The presented study focuses on the application of scanning laser optical tomography (SLOT) for non-destructive visualization of anatomical structures inside the human cochlea ex vivo. SLOT is a laser-based highly efficient microscopy technique, which allows for tomographic imaging of the internal structure of transparent large-scale specimens (up to 1 cm3). Thus, in the field of otology this technique is best convenient for an ex vivo study of the inner ear anatomy. For this purpose, the preparation before imaging comprises mechanically assisted decalcification, dehydration as well as optical clearing of the cochlea samples. Here, we demonstrate results of SLOT visualizing hard and soft tissue structures of the human cochlea with an optical resolution in the micrometer range using absorption and autofluorescence as contrast mechanisms. Furthermore, we compare our results with the method of X-ray micro tomography (micro-CT, μCT) as clinical gold standard which is based only on absorption. In general, SLOT can provide the advantage of covering all contrast mechanisms known from other light microscopy techniques, such as fluorescence or scattering. For this reason, a protocol for antibody staining has been developed, which additionally enables selective mapping of cellular structures within the cochlea. Thus, we present results of SLOT imaging rodent cochleae showing specific anatomical structures such as hair cells and neurofilament via fluorescence. In conclusion, the presented study has shown that SLOT is an ideally suited tool in the field of otology for in toto visualization of the inner ear microstructure.

  7. Adaptive Optical Phase Estimation Using Time-Symmetric Quantum Smoothing

    Wheatley, T A; Yonezawa, H; Nakane, D; Arao, H; Pope, D T; Ralph, T C; Wiseman, H M; Furusawa, A; Huntington, E H

    2009-01-01

    Quantum parameter estimation has many applications, from gravitational wave detection to quantum key distribution. We present the first experimental demonstration of the time-symmetric technique of quantum smoothing. We consider both adaptive and non-adaptive quantum smoothing, and show that both are better than their well-known time-asymmetric counterparts (quantum filtering). For the problem of estimating a stochastically varying phase shift on a coherent beam, our theory predicts that adaptive quantum smoothing (the best scheme) gives an estimate with a mean-square error up to $2\\sqrt{2}$ times smaller than that from non-adaptive quantum filtering (the standard quantum limit). The experimentally measured improvement is $2.24 \\pm 0.14$.

  8. Principle of adaptive optical current transducer on independent variables and its test

    LU Zhong-feng; GUO Zhi-zhong

    2008-01-01

    In order to improve the measurement precision of the optical current transducer (OCT), the adaptive optical transducing principle on independent variables is presented in this paper. And one of the adaptive opti-cal current transducer(AOCT) on the independent variables of the output of the electricmegnet current trans-ducer is introduced. According to IEC660044-8, the performance of AOCT was examined roundly applying the standard testing system authenticated by the state authority. The results indicate that the measurement precision of the AOCT has already reached 0.2 class under the temperature from -40℃ to 60℃,which proves the feasi-bility of the method.

  9. Adaptive image content-based exposure control for scanning applications in radiography

    H. Schulerud; J. Thielemann; T. Kirkhus; K. Kaspersen; J.M. Østby; M.G. Metaxas; G.J. Royle; J. Griffiths; E. Cook; C. Esbrand; S. Pani; C. Venanzi; P.F. van der Stelt; G. Li; R. Turchetta; A. Fant; S. Theodoridis; H. Georgiou; G. Hall; M. Noy; J. Jones; J. Leaver; F. Triantis; A. Asimidis; N. Manthos; R. Longo; A. Bergamaschi; R.D. Speller

    2007-01-01

    I-ImaS (Intelligent Imaging Sensors) is a European project which has designed and developed a new adaptive X-ray imaging system using on-line exposure control, to create locally optimized images. The I-ImaS system allows for real-time image analysis during acquisition, thus enabling real-time exposu

  10. Whole-Genome Scans Provide Evidence of Adaptive Evolution in Malawian Plasmodium falciparum Isolates

    Ocholla, Harold; Preston, Mark D; Mipando, Mwapatsa;

    2014-01-01

    BACKGROUND:  Selection by host immunity and antimalarial drugs has driven extensive adaptive evolution in Plasmodium falciparum and continues to produce ever-changing landscapes of genetic variation. METHODS:  We performed whole-genome sequencing of 69 P. falciparum isolates from Malawi and used ...

  11. High-Resolution Adaptive Optics Test-Bed for Vision Science

    Wilks, S C; Thomspon, C A; Olivier, S S; Bauman, B J; Barnes, T; Werner, J S

    2001-09-27

    We discuss the design and implementation of a low-cost, high-resolution adaptive optics test-bed for vision research. It is well known that high-order aberrations in the human eye reduce optical resolution and limit visual acuity. However, the effects of aberration-free eyesight on vision are only now beginning to be studied using adaptive optics to sense and correct the aberrations in the eye. We are developing a high-resolution adaptive optics system for this purpose using a Hamamatsu Parallel Aligned Nematic Liquid Crystal Spatial Light Modulator. Phase-wrapping is used to extend the effective stroke of the device, and the wavefront sensing and wavefront correction are done at different wavelengths. Issues associated with these techniques will be discussed.

  12. Adaptive optics for deeper imaging of biological samples.

    Girkin, John M; Poland, Simon; Wright, Amanda J

    2009-02-01

    Optical microscopy has been a cornerstone of life science investigations since its first practical application around 400 years ago with the goal being subcellular resolution, three-dimensional images, at depth, in living samples. Nonlinear microscopy brought this dream a step closer, but as one images more deeply the material through which you image can greatly distort the view. By using optical devices, originally developed for astronomy, whose optical properties can be changed in real time, active compensation for sample-induced aberrations is possible. Submicron resolution images are now routinely recorded from depths over 1mm into tissue. Such active optical elements can also be used to keep conventional microscopes, both confocal and widefield, in optimal alignment. PMID:19272766

  13. Imaging human retinal pigment epithelium cells using adaptive optics optical coherence tomography

    Liu, Zhuolin; Kocaoglu, Omer P.; Turner, Timothy L.; Miller, Donald T.

    2016-03-01

    Retinal pigment epithelium (RPE) cells are vital to health of the outer retina, but are often compromised in ageing and major ocular diseases that lead to blindness. Early manifestation of RPE disruption occurs at the cellular level, and while biomarkers at this scale hold considerable promise, RPE cells have proven extremely challenging to image in the living human eye. We present a novel method based on optical coherence tomography (OCT) equipped with adaptive optics (AO) that overcomes the associated technical obstacles. The method takes advantage of the 3D resolution of AO-OCT, but more critically sub-cellular segmentation and registration that permit organelle motility to be used as a novel contrast mechanism. With this method, we successfully visualized RPE cells and characterized their 3D reflectance profile in every subject and retinal location (3° and 7° temporal to the fovea) imaged to date. We have quantified RPE packing geometry in terms of cell density, cone-to-RPE ratio, and number of nearest neighbors using Voronoi and power spectra analyses. RPE cell density (cells/mm2) showed no significant difference between 3° (4,892+/-691) and 7° (4,780+/-354). In contrast, cone-to- RPE ratio was significantly higher at 3° (3.88+/-0.52:1) than 7° (2.31+/- 0.23:1). Voronoi analysis also showed most RPE cells have six nearest neighbors, which was significantly larger than the next two most prevalent associations: five and seven. Averaged across the five subjects, prevalence of cells with six neighbors was 51.4+/-3.58% at 3°, and 54.58+/-3.01% at 7°. These results are consistent with histology and in vivo studies using other imaging modalities.

  14. A simplified free-space adaptive optics system against atmospheric turbulence

    Sharma, Sanjay

    2012-03-01

    Optical free-space communications have the distinct advantages over conventional radio frequency and microwave systems in terms of information capacity and increased security. However, optical carrier frequencies drastically suffer due to atmospheric turbulence. This effect is a random process and time-varying process; therefore, it is very difficult to overcome the effect. Adaptive optics is the technology used to mitigate chaotic optical wave-front distortions in real time by measuring the wave-front distortion with the help of a sensor and then adapting the wave-front corrector to lessen the phase distortions and ultimately to recover a closely approximated signal to its original counterpart. But these systems are too expensive and large. This study employs the various aspects of Adaptive Optics system, such as wave-front corrector, wave-front sensors and analytical analysis of open and closed-loop systems using loop equations, in order to make free-space optics communication links more vulnerable against atmospheric turbulence and wave-front phase distributions. The purpose of this study is to investigate a wave-front sensorless adaptive optics system, which would provide reduced complexity, size and cost.

  15. A long-range scanning probe microscope for automotive reflector optical quality inspection

    A long-range scanning probe microscope (SPM) designed for the measurement of micro- and nanoscale forms, roughness and surface defects was constructed. It is based on commercial crossed roller bearing stages combined with piezoceramic actuators used to compensate the imperfections of the bearing mechanism. Three interferometers are used for all three-axis translation monitoring and feedback. For stage rotation monitoring (axis normal to the sample surface), an autocollimator is used. For nonplanarity compensation and two more axis rotation compensations (axes parallel to sample surface), an optical quality reference plane and a set of tunneling current sensors are used. The developed system enables us to perform large-scale measurements of the surface form with no influence of positioning system non-planarities and piezoceramic component hysteresis. In contrast to specialized metrology systems, e.g. using a six-axis interferometer for stage motion monitoring and feedback, this approach enables a more compact and much cheaper metrology SPM construction

  16. Measurements of nonlinear optical properties of PVDF/ZnO using Z-scan technique

    Shanshool, Haider Mohammed, E-mail: haidshan62@gmail.com [Ministry of Science and Technology, Baghdad (Iraq); Yahaya, Muhammad [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor (Malaysia); Yunus, Wan Mahmood Mat [Department of Physics, Faculty of Science, University Putra Malaysia, Serdang (Malaysia); Abdullah, Ibtisam Yahya [Department of Physics, College of Science, University of Mosul, Mosul (Iraq)

    2015-10-15

    The nonlinear optical properties of ZnO nanoparticles dispersed in poly (vinylidene fluoride) (PVDF) polymer are investigated. PVDF/ZnO nanocomposites were prepared by mixing different concentrations of ZnO nanoparticles, as the filler, with PVDF, as the polymer matrix, using casting method. Acetone was used as a solvent for the polymer. FTIR spectra of the samples were analyzed thus confirming the formation of α and β phases. The absorbance spectra of the samples were obtained, thereby showing high absorption in the UV region. The linear absorption coefficient was calculated. The single-beam Z-scan technique was used to measure the nonlinear refractive index and the nonlinear absorption coefficient of the PVDF/ZnO nanocomposite samples. We observed that the nonlinear refractive index is in the order of 10{sup -13} cm{sup 2}/W with the negative sign, whereas the nonlinear absorption coefficient is in the order of 10{sup -8} cm/W. (author)

  17. Polarization Properties in Apertureless-Type Scanning Near-Field Optical Microscopy.

    Ishibashi, Takayuki; Cai, Yongfu

    2015-12-01

    Polarization properties of apertureless-type scanning near-field optical microscopy (a-SNOM) were measured experimentally and were also analyzed using a finite-difference time-domain (FDTD) simulation. Our study reveals that the polarization properties in the a-SNOM are maintained and the a-SNOM works as a wave plate expressed by a Jones matrix. The measured signals obtained by the lock-in detection technique could be decomposed into signals scattered from near-field region and background signals reflected by tip and sample. Polarization images measured by a-SNOM with an angle resolution of 1° are shown. FDTD analysis also reveals the polarization properties of light in the area between a tip and a sample are p-polarization in most of cases. PMID:26415540

  18. Investigation of nonlinear optical properties of various organic materials by the Z-scan method

    Ganeev, R. A.; Boltaev, G. S.; Tugushev, R. I.; Usmanov, T.

    2012-06-01

    We have studied the nonlinear optical properties of various organic materials (vegetable oil, juice, wine, cognac, Coca-Cola and Fanta drinks, Nescafé coffee, tea, gasoline, clock oil, glycerol, and polyphenyl ether) that are used in everyday life. Their nonlinearities have been studied by the Z-scan method in the near-IR and visible spectral ranges. We have shown that the majority of samples possess a nonlinear absorption; however, some of the studied materials show a strong saturated absorption and nonlinear refraction. Red wine and glycerol proved to be the most interesting materials. For these samples, we have observed a change in the sign of the nonlinear absorption with increasing laser intensity, which was attributed to the competition between two-photon absorption and saturated absorption.

  19. Widely tuneable scattering-type scanning near-field optical microscopy using pulsed quantum cascade lasers

    Yoxall, Edward, E-mail: edward.yoxall@imperial.ac.uk; Rahmani, Mohsen; Maier, Stefan A.; Phillips, Chris C. [The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Navarro-Cía, Miguel [Optical and Semiconductor Devices Group, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2BT (United Kingdom)

    2013-11-18

    We demonstrate the use of a pulsed quantum cascade laser, wavelength tuneable between 6 and 10 μm, with a scattering-type scanning near-field optical microscope (s-SNOM). A simple method for calculating the signal-to-noise ratio (SNR) of the s-SNOM measurement is presented. For pulsed lasers, the SNR is shown to be highly dependent on the degree of synchronization between the laser pulse and the sampling circuitry; in measurements on a gold sample, the SNR is 26 with good synchronization and less than 1 without. Simulations and experimental s-SNOM images, with a resolution of 100 nm, corresponding to λ/80, and an acquisition time of less than 90 s, are presented as proof of concept. They show the change in the field profile of plasmon-resonant broadband antennas when they are excited with wavelengths of 7.9 and 9.5 μm.

  20. Widely tuneable scattering-type scanning near-field optical microscopy using pulsed quantum cascade lasers

    We demonstrate the use of a pulsed quantum cascade laser, wavelength tuneable between 6 and 10 μm, with a scattering-type scanning near-field optical microscope (s-SNOM). A simple method for calculating the signal-to-noise ratio (SNR) of the s-SNOM measurement is presented. For pulsed lasers, the SNR is shown to be highly dependent on the degree of synchronization between the laser pulse and the sampling circuitry; in measurements on a gold sample, the SNR is 26 with good synchronization and less than 1 without. Simulations and experimental s-SNOM images, with a resolution of 100 nm, corresponding to λ/80, and an acquisition time of less than 90 s, are presented as proof of concept. They show the change in the field profile of plasmon-resonant broadband antennas when they are excited with wavelengths of 7.9 and 9.5 μm

  1. Scanning laser optical tomography resolves structural plasticity during regeneration in an insect brain.

    René Eickhoff

    Full Text Available BACKGROUND: Optical Projection Tomography (OPT is a microscopic technique that generates three dimensional images from whole mount samples the size of which exceeds the maximum focal depth of confocal laser scanning microscopes. As an advancement of conventional emission-OPT, Scanning Laser Optical Tomography (SLOTy allows simultaneous detection of fluorescence and absorbance with high sensitivity. In the present study, we employ SLOTy in a paradigm of brain plasticity in an insect model system. METHODOLOGY: We visualize and quantify volumetric changes in sensory information procession centers in the adult locust, Locusta migratoria. Olfactory receptor neurons, which project from the antenna into the brain, are axotomized by crushing the antennal nerve or ablating the entire antenna. We follow the resulting degeneration and regeneration in the olfactory centers (antennal lobes and mushroom bodies by measuring their size in reconstructed SLOTy images with respect to the untreated control side. Within three weeks post treatment antennal lobes with ablated antennae lose as much as 60% of their initial volume. In contrast, antennal lobes with crushed antennal nerves initially shrink as well, but regain size back to normal within three weeks. The combined application of transmission-and fluorescence projections of Neurobiotin labeled axotomized fibers confirms that recovery of normal size is restored by regenerated afferents. Remarkably, SLOTy images reveal that degeneration of olfactory receptor axons has a trans-synaptic effect on second order brain centers and leads to size reduction of the mushroom body calyx. CONCLUSIONS: This study demonstrates that SLOTy is a suitable method for rapid screening of volumetric plasticity in insect brains and suggests its application also to vertebrate preparations.

  2. Combining supine MRI and 3D optical scanning for improved surgical planning of breast conserving surgeries

    Pallone, Matthew J.; Poplack, Steven P.; Barth, Richard J., Jr.; Paulsen, Keith D.

    2012-02-01

    Image-guided wire localization is the current standard of care for the excision of non-palpable carcinomas during breast conserving surgeries (BCS). The efficacy of this technique depends upon the accuracy of wire placement, maintenance of the fixed wire position (despite patient movement), and the surgeon's understanding of the spatial relationship between the wire and tumor. Notably, breast shape can vary significantly between the imaging and surgical positions. Despite this method of localization, re-excision is needed in approximately 30% of patients due to the proximity of cancer to the specimen margins. These limitations make wire localization an inefficient and imprecise procedure. Alternatively, we investigate a method of image registration and finite element (FE) deformation which correlates preoperative supine MRIs with 3D optical scans of the breast surface. MRI of the breast can accurately define the extents of very small cancers. Furthermore, supine breast MR reduces the amount of tissue deformation between the imaging and surgical positions. At the time of surgery, the surface contour of the breast may be imaged using a handheld 3D laser scanner. With the MR images segmented by tissue type, the two scans are approximately registered using fiducial markers present in both acquisitions. The segmented MRI breast volume is then deformed to match the optical surface using a FE mechanical model of breast tissue. The resulting images provide the surgeon with 3D views and measurements of the tumor shape, volume, and position within the breast as it appears during surgery which may improve surgical guidance and obviate the need for wire localization.

  3. Genome-Wide Scans for Candidate Genes Involved in the Aquatic Adaptation of Dolphins

    Sun, Yan-Bo; Zhou, Wei-Ping; Liu, He-Qun; Irwin, David M; Shen, Yong-Yi; Zhang, Ya-Ping

    2012-01-01

    Since their divergence from the terrestrial artiodactyls, cetaceans have fully adapted to an aquatic lifestyle, which represents one of the most dramatic transformations in mammalian evolutionary history. Numerous morphological and physiological characters of cetaceans have been acquired in response to this drastic habitat transition, such as thickened blubber, echolocation, and ability to hold their breath for a long period of time. However, knowledge about the molecular basis underlying the...

  4. Signal of microstrip scanning near-field optical microscope in far- and near-field zones.

    Morozov, Yevhenii M; Lapchuk, Anatoliy S

    2016-05-01

    An analytical model of interference between an electromagnetic field of fundamental quasi-TM(EH)00-mode and an electromagnetic field of background radiation at the apex of a near-field probe based on an optical plasmon microstrip line (microstrip probe) has been proposed. The condition of the occurrence of electromagnetic energy reverse flux at the apex of the microstrip probe was obtained. It has been shown that the nature of the interference depends on the length of the probe. Numerical simulation of the sample scanning process was conducted in illumination-reflection and illumination-collection modes. Results of numerical simulation have shown that interference affects the scanning signal in both modes. However, in illumination-collection mode (pure near-field mode), the signal shape and its polarity are practically insensible to probe length change; only signal amplitude (contrast) is slightly changed. However, changing the probe length strongly affects the signal amplitude and shape in the illumination-reflection mode (the signal formed in the far-field zone). Thus, we can conclude that even small background radiation can significantly influence the signal in the far-field zone and has practically no influence on a pure near-field signal. PMID:27140358

  5. Quality evaluation of adaptive optical image based on DCT and Rényi entropy

    Xu, Yuannan; Li, Junwei; Wang, Jing; Deng, Rong; Dong, Yanbing

    2015-04-01

    The adaptive optical telescopes play a more and more important role in the detection system on the ground, and the adaptive optical images are so many that we need find a suitable method of quality evaluation to choose good quality images automatically in order to save human power. It is well known that the adaptive optical images are no-reference images. In this paper, a new logarithmic evaluation method based on the use of the discrete cosine transform(DCT) and Rényi entropy for the adaptive optical images is proposed. Through the DCT using one or two dimension window, the statistical property of Rényi entropy for images is studied. The different directional Rényi entropy maps of an input image containing different information content are obtained. The mean values of different directional Rényi entropy maps are calculated. For image quality evaluation, the different directional Rényi entropy and its standard deviation corresponding to region of interest is selected as an indicator for the anisotropy of the images. The standard deviation of different directional Rényi entropy is obtained as the quality evaluation value for adaptive optical image. Experimental results show the proposed method that the sorting quality matches well with the visual inspection.

  6. Fluorescent nanoscale detection of biotin-streptavidin interaction using near-field scanning optical microscopy

    Park, Hyun Kyu; Chung, Bong Hyun [BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong, Daejeon 305-806 (Korea, Republic of); Gokarna, Anisha [Department of Physics, Chungbuk National University, Gaesin-dong, Heungduk-gu, Cheongju 361-763 (Korea, Republic of); Hulme, John P [Gachon Bio-Nano Institute, Kyungwon University, Seongnam-Si 461-701 (Korea, Republic of); Park, Hyun Gyu [Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)], E-mail: chungbh@kribb.re.kr, E-mail: hgpark@kaist.ac.kr

    2008-06-11

    We describe a nanoscale strategy for detecting biotin-streptavidin binding using near-field scanning optical microscopy (NSOM) that exploits the fluorescence properties of single polydiacetylene (PDA) liposomes. NSOM is more useful to observe nanomaterials having optical properties with the help of topological information. We synthesized amine-terminated 10,12-pentacosadiynoic acid (PCDA) monomer (PCDA-NH{sub 2}) and used this derivatized monomer to prepare PCDA liposomes. PCDA-NH{sub 2} liposomes were immobilized on an aldehyde-functionalized glass surface followed by photopolymerization by using a 254 nm light source. To measure the biotin-streptavidin binding, we conjugated photoactivatable biotin to immobilized PCDA-NH{sub 2} liposomes by UV irradiation (365 nm) and subsequently allowed them to interact with streptavidin. We analyzed the fluorescence using a fluorescence scanner and observed single liposomes using NSOM. The average height and NSOM signal observed in a single liposome after binding were {approx}31.3 to 8.5 {+-} 0.5 nm and 0.37 to 0.16 {+-} 0.6 kHz, respectively. This approach, which has the advantage of not requiring a fluorescent label, could prove highly beneficial for single molecule detection technology.

  7. Fluorescent nanoscale detection of biotin-streptavidin interaction using near-field scanning optical microscopy

    We describe a nanoscale strategy for detecting biotin-streptavidin binding using near-field scanning optical microscopy (NSOM) that exploits the fluorescence properties of single polydiacetylene (PDA) liposomes. NSOM is more useful to observe nanomaterials having optical properties with the help of topological information. We synthesized amine-terminated 10,12-pentacosadiynoic acid (PCDA) monomer (PCDA-NH2) and used this derivatized monomer to prepare PCDA liposomes. PCDA-NH2 liposomes were immobilized on an aldehyde-functionalized glass surface followed by photopolymerization by using a 254 nm light source. To measure the biotin-streptavidin binding, we conjugated photoactivatable biotin to immobilized PCDA-NH2 liposomes by UV irradiation (365 nm) and subsequently allowed them to interact with streptavidin. We analyzed the fluorescence using a fluorescence scanner and observed single liposomes using NSOM. The average height and NSOM signal observed in a single liposome after binding were ∼31.3 to 8.5 ± 0.5 nm and 0.37 to 0.16 ± 0.6 kHz, respectively. This approach, which has the advantage of not requiring a fluorescent label, could prove highly beneficial for single molecule detection technology

  8. Magnetic smart material application to adaptive x-ray optics

    Ulmer, M. P.; Graham, Michael E.; Vaynman, Semyon; Cao, J.; Takacs, Peter Z.

    2010-09-01

    We discuss a technique of shape modification that can be applied to thin walled ({100-400 micron thickness) electroformed replicated optics or slumped glass optics to improve the near net shape of the mirror as well as the midfrequency ripple. The process involves sputter deposition of a magnetic smart material (MSM) film onto a permanently magnetic material. The MSM material exhibits strains about 400 times stronger than ordinary ferromagnetic materials. The deformation process involves a magnetic write head which traverses the surface, and under the guidance of active metrology feedback, locally magnetizes the surface to impart strain where needed. Designs and basic concepts as applied to space borne X-ray optics will be described.

  9. An evaluation of a combined scanning probe and optical microscope for lunar regolith studies

    Yang, S.; Pike, W. T.; Staufer, U.; Claus, D.; Rodenburg, J. M.

    2011-12-01

    The microscopic properties of the lunar regolith such as the shape, the surface texture and the size distribution are required for an understanding of both past surface processes and potential hazards for future human exploration [1]. To reveal the particle morphology at the sub micrometer scale, scanning-probe microscopy (SPM), first used on the 2008 Phoenix mission [1], is a proven approach; however, there are two main challenges for the measurement of lunar particles. Firstly, the SPM tip is liable to move particles during scanning, even when using the lower contact forces of the dynamic-mode imaging. Hence the particles need to be stabilised during imaging. Secondly, typically the AFM tip extends about 10 μm from its cantilever, so larger particles protruding more than this height above their substrates cannot be scanned completely. To immobilize particles and eliminate large particles during SPM scanning, micromachined Si substrates, which have been successfully applied in the Phoenix project for Mars investigation in 2008 [2], have been investigated for lunar analogue material. On these substrates micrometer pits are patterned and serve as traps to enhance the stability of the AFM scanning by grasping the particles. In addition, the diameter of pits can determine the size of dusts to be captured and reduce the adhesion for the larger dust and so eliminate the oversized particles. To extend the imaging range and assist in selecting scan areas for the SPM, we use a type of lensless optical imaging (LOM) which uses ptychographic diffractive imaging [3] to eliminate the restrictions and performance limitations of conventional focusing devices. As a reference, scanning electron microscopy (SEM) which minimizes particle-probe interactions and has the advantage of an extended depth of field, is employed to image the same particle fields at resolutions covering both the SPM and LOM. By comparing the differences and the similarities between SEM and LOM images, the

  10. Packetisation in Optical Packet Switch Fabrics using adaptive timeout values

    Mortensen, Brian Bach

    2006-01-01

    either because the timer reaches a specific timeout value, or because the optical packet is completely filled with segments. Only two distinct values of the timeout value are used. Which of the two timeout values to use, is selected by 3 different control thresholds. The first threshold level applies to...... the inter arrival rate at the individual VOQs. The remaining thresholds applies to the optical slot level inter arrival rate at the input and output line cards. If any measurements are beyond a given threshold, the higher timeout value is used. The proposed method can be used to make a trade...

  11. Three-dimensional dosimetry of small megavoltage radiation fields using radiochromic gels and optical CT scanning

    Babic, Steven; Battista, Jerry; Jordan, Kevin [Department of Physics and Engineering, London Regional Cancer Program at London Health Sciences Centre, 790 Commissioners Road East, London, Ontario N6 A 4L6 (Canada); McNiven, Andrea [Princess Margret Hospital/University Health Network, Toronto, Ontario (Canada)], E-mail: steven.babic@lhsc.on.ca

    2009-04-21

    The dosimetry of small fields as used in stereotactic radiotherapy, radiosurgery and intensity-modulated radiation therapy can be challenging and inaccurate due to partial volume averaging effects and possible disruption of charged particle equilibrium. Consequently, there exists a need for an integrating, tissue equivalent dosimeter with high spatial resolution to avoid perturbing the radiation beam and artificially broadening the measured beam penumbra. In this work, radiochromic ferrous xylenol-orange (FX) and leuco crystal violet (LCV) micelle gels were used to measure relative dose factors (RDFs), percent depth dose profiles and relative lateral beam profiles of 6 MV x-ray pencil beams of diameter 28.1, 9.8 and 4.9 mm. The pencil beams were produced via stereotactic collimators mounted on a Varian 2100 EX linear accelerator. The gels were read using optical computed tomography (CT). Data sets were compared quantitatively with dosimetric measurements made with radiographic (Kodak EDR2) and radiochromic (GAFChromic (registered) EBT) film, respectively. Using a fast cone-beam optical CT scanner (Vista(TM)), corrections for diffusion in the FX gel data yielded RDFs that were comparable to those obtained by minimally diffusing LCV gels. Considering EBT film-measured RDF data as reference, cone-beam CT-scanned LCV gel data, corrected for scattered stray light, were found to be in agreement within 0.5% and -0.6% for the 9.8 and 4.9 mm diameter fields, respectively. The validity of the scattered stray light correction was confirmed by general agreement with RDF data obtained from the same LCV gel read out with a laser CT scanner that is less prone to the acceptance of scattered stray light. Percent depth dose profiles and lateral beam profiles were found to agree within experimental error for the FX gel (corrected for diffusion), LCV gel (corrected for scattered stray light), and EBT and EDR2 films. The results from this study reveal that a three-dimensional dosimetry

  12. Three-dimensional dosimetry of small megavoltage radiation fields using radiochromic gels and optical CT scanning

    Babic, Steven; McNiven, Andrea; Battista, Jerry; Jordan, Kevin

    2009-04-01

    The dosimetry of small fields as used in stereotactic radiotherapy, radiosurgery and intensity-modulated radiation therapy can be challenging and inaccurate due to partial volume averaging effects and possible disruption of charged particle equilibrium. Consequently, there exists a need for an integrating, tissue equivalent dosimeter with high spatial resolution to avoid perturbing the radiation beam and artificially broadening the measured beam penumbra. In this work, radiochromic ferrous xylenol-orange (FX) and leuco crystal violet (LCV) micelle gels were used to measure relative dose factors (RDFs), percent depth dose profiles and relative lateral beam profiles of 6 MV x-ray pencil beams of diameter 28.1, 9.8 and 4.9 mm. The pencil beams were produced via stereotactic collimators mounted on a Varian 2100 EX linear accelerator. The gels were read using optical computed tomography (CT). Data sets were compared quantitatively with dosimetric measurements made with radiographic (Kodak EDR2) and radiochromic (GAFChromic® EBT) film, respectively. Using a fast cone-beam optical CT scanner (Vista™), corrections for diffusion in the FX gel data yielded RDFs that were comparable to those obtained by minimally diffusing LCV gels. Considering EBT film-measured RDF data as reference, cone-beam CT-scanned LCV gel data, corrected for scattered stray light, were found to be in agreement within 0.5% and -0.6% for the 9.8 and 4.9 mm diameter fields, respectively. The validity of the scattered stray light correction was confirmed by general agreement with RDF data obtained from the same LCV gel read out with a laser CT scanner that is less prone to the acceptance of scattered stray light. Percent depth dose profiles and lateral beam profiles were found to agree within experimental error for the FX gel (corrected for diffusion), LCV gel (corrected for scattered stray light), and EBT and EDR2 films. The results from this study reveal that a three-dimensional dosimetry method

  13. Scanning pupil approach to aspheric surface slope error tolerancing in head-up display optics

    Sivokon, V. P.

    2015-09-01

    We present a novel approach to tolerancing slope errors of aspheric surfaces in relay optics of typical avionics head-up displays (HUD). In these systems, a beamlet entering the pilot eye occupies only a tiny fraction of HUD entrance pupil/eyebox with a typical diameter of 125mm. Consequently the beam footprint on any HUD optical surface is a small fraction of its clear aperture. This presents challenges to HUD tolerancing which is typically based on parallax (angular difference in line of sight between left and right eyes) analysis. Aspheric surfaces manufactured by sub-aperture grinding/polishing techniques add another source of error - surface slope error. This type of error not only degrades image quality of observed HUD symbology but also leads to its "waviness" and "floating" especially noticeable when a pilot moves his head within the HUD eyebox. The suggested approach allows aspheric surface slope error tolerancing that ensures an acceptable level of symbology "waviness". A narrow beamlet is traced from a pilot eye position backwards through the HUD optics until it hits the light source. Due to the small beamlet size, slope error of the aspheric surface acts primarily as an overall tilt/wedge that deviates the beam and causes it to shift. The slope error is acceptable when this shift is not resolved by a pilot eye. The beamlet is scanned over entire eyebox and field of view and the slope error tolerance is established for several zones in the aspheric surface clear aperture. The procedure is then repeated for each aspheric surface.

  14. Nonlinear optical properties of carboxymethyl starch nanocomposite by Z-scan technique using a Nd-YAG laser

    Naderali, R.; Jafari, A.; Motiei, H.

    2015-09-01

    In this paper, the third-order nonlinear optical properties of modified nanocomposite carboxymethyl starch are presented. The nanocomposite of carboxymethyl starch has been synthesized by a chemical technique. X-ray diffraction and scanning electron microscopy were used to study its crystal structure. Linear optical response of this sample was studied by using UV-Visible spectroscopy. Nonlinear refraction and absorption coefficients of the nanocomposite were measured in two different solvents, dimethylformamide and N-methylpyrrolidone, by Z-scan method using a continuous wave Nd-YAG laser at 532 nm. The measured values of nonlinear refraction in both of the solutions were from the order of.

  15. Scanning electron microscopy of Antarctophthirus microchir (Phthiraptera: Anoplura: Echinophthiriidae): studying morphological adaptations to aquatic life.

    Leonardi, María Soledad; Crespo, Enrique A; Raga, Juan Antonio; Fernández, Mercedes

    2012-09-01

    The members of the Family Echinophthiriidae (Phthiraptera: Anoplura) are unique among insects because they infest hosts with an amphibious lifestyle. During their evolution they developed morphological traits that are reflected in unique features. The SEM is a helpful tool to analyze them. Knowing in detail the external structure of these lice is the first step to understand the whole process that derived from the co-adaptation of lice and pinnipeds to the marine environment. For the first time, we studied the external structure of all stages of an echinophthiriid louse. The results are discussed in the light of their evolutionary, functional, and ecological implications. PMID:22503484

  16. Development of a scalable generic platform for adaptive optics real time control

    Surendran, Avinash; Ramaprakash, A N; Parihar, Padmakar

    2015-01-01

    The main objective of the present project is to explore the viability of an adaptive optics control system based exclusively on Field Programmable Gate Arrays (FPGAs), making strong use of their parallel processing capability. In an Adaptive Optics (AO) system, the generation of the Deformable Mirror (DM) control voltages from the Wavefront Sensor (WFS) measurements is usually through the multiplication of the wavefront slopes with a predetermined reconstructor matrix. The ability to access several hundred hard multipliers and memories concurrently in an FPGA allows performance far beyond that of a modern CPU or GPU for tasks with a well defined structure such as Adaptive Optics control. The target of the current project is to generate a signal for a real time wavefront correction, from the signals coming from a Wavefront Sensor, wherein the system would be flexible to accommodate all the current Wavefront Sensing techniques and also the different methods which are used for wavefront compensation. The system ...

  17. Extreme Adaptive Optics Testbed: Performance and Characterization of a 1024 Deformable Mirror

    Evans, J W; Morzinski, K; Severson, S; Poyneer, L; Macintosh, B; Dillon, D; REza, L; Gavel, D; Palmer, D

    2005-10-30

    We have demonstrated that a microelectrical mechanical systems (MEMS) deformable mirror can be flattened to < 1 nm RMS within controllable spatial frequencies over a 9.2-mm aperture making it a viable option for high-contrast adaptive optics systems (also known as Extreme Adaptive Optics). The Extreme Adaptive Optics Testbed at UC Santa Cruz is being used to investigate and develop technologies for high-contrast imaging, especially wavefront control. A phase shifting diffraction interferometer (PSDI) measures wavefront errors with sub-nm precision and accuracy for metrology and wavefront control. Consistent flattening, required testing and characterization of the individual actuator response, including the effects of dead and low-response actuators. Stability and repeatability of the MEMS devices was also tested. An error budget for MEMS closed loop performance will summarize MEMS characterization.

  18. An adaptive optics system for solid-state laser systems used in inertial confinement fusion

    Using adaptive optics the authors have obtained nearly diffraction-limited 5 kJ, 3 nsec output pulses at 1.053 microm from the Beamlet demonstration system for the National Ignition Facility (NIF). The peak Strehl ratio was improved from 0.009 to 0.50, as estimated from measured wavefront errors. They have also measured the relaxation of the thermally induced aberrations in the main beam line over a period of 4.5 hours. Peak-to-valley aberrations range from 6.8 waves at 1.053 microm within 30 minutes after a full system shot to 3.9 waves after 4.5 hours. The adaptive optics system must have enough range to correct accumulated thermal aberrations from several shots in addition to the immediate shot-induced error. Accumulated wavefront errors in the beam line will affect both the design of the adaptive optics system for NIF and the performance of that system

  19. Adaptive optics for control of the laser welding process

    Mrňa, Libor; Šarbort, Martin; Řeřucha, Šimon; Jedlička, Petr

    Vol. 48. Liberec : EDP Sciences, 2013, 00017:1-6. ISBN 9781632661944. [OaM 2012 International Conference on Optics and Measurement. Liberec (CZ), 16.10.2012-18.10.2012] R&D Projects: GA MPO 2A-3TP1/113; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Fresnel absorption * multiple reflections * keyhole * evolution Subject RIV: JB - Sensors, Measurment, Regulation

  20. Silicon carbide deformable mirror with 37 actuators for adaptive optics

    Ahn, Kyohoon; Rhee, Hyug-Gyo; Yang, Ho-Soon; Kihm, Hagyong

    2015-11-01

    We present a prototype of a silicon carbide (SiC) deformable mirror (DM) for high power laser applications. The DM has a continuous SiC faceplate, the diameter and the thickness of which are 100 mm and 2 mm, respectively, and 37 stack-type piezoelectric actuators arranged in a rectangular grid. Compared with the glass faceplates used for conventional DMs, SiC has a high thermal diffusivity that effectively minimizes mirror distortions due to thermal gradients. The faceplate is thick enough for possible integration with monolithic cooling channels inside the faceplate. The faceplate without cooling channels presented in this paper has a high bending stiffness compared with glass DMs, but the proposed actuator configuration has flexure supports to reduce the shear stress at the adhesive while preserving optical performances. To examine the characteristics of the SiC DM, we simulated influence functions (IFs) by using a finite element analysis and then compared these results with the IF measured by using an optical interferometer. The optical performance of the DM was verified by generating Zernike polynomial modes based on the measured IF.

  1. Axial range of conjugate adaptive optics in two-photon microscopy

    Paudel, Hari P; Mertz, Jerome; Bifano, Thomas

    2015-01-01

    We describe an adaptive optics technique for two-photon microscopy in which the deformable mirror used for aberration compensation is positioned in a plane conjugate to the plane of the aberration. We demonstrate in a proof-of-principle experiment that this technique yields a large field of view advantage in comparison to standard pupil-conjugate adaptive optics. Further, we show that the extended field of view in conjugate AO is maintained over a relatively large axial translation of the deformable mirror with respect to the conjugate plane. We conclude with a discussion of limitations and prospects for the conjugate AO technique in two-photon biological microscopy.

  2. A Phase-Shifting Zernike Wavefront Sensor for the Palomar P3K Adaptive Optics System

    Wallace, J. Kent; Crawford, Sam; Loya, Frank; Moore, James

    2012-01-01

    A phase-shifting Zernike wavefront sensor has distinct advantages over other types of wavefront sensors. Chief among them are: 1) improved sensitivity to low-order aberrations and 2) efficient use of photons (hence reduced sensitivity to photon noise). We are in the process of deploying a phase-shifting Zernike wavefront sensor to be used with the realtime adaptive optics system for Palomar. Here we present the current state of the Zernike wavefront sensor to be integrated into the high-order adaptive optics system at Mount Palomar's Hale Telescope.

  3. Investigation of Power8 processors for astronomical adaptive optics real-time control

    Basden, Alastair

    2015-01-01

    The forthcoming Extremely Large Telescopes all require adaptive optics systems for their successful operation. The real-time control for these systems becomes computationally challenging, in part limited by the memory bandwidths required for wavefront reconstruction. We investigate new POWER8 processor technologies applied to the problem of real-time control for adaptive optics. These processors have a large memory bandwidth, and we show that they are suitable for operation of first-light ELT instrumentation, and propose some potential real-time control system designs. A CPU-based real-time control system significantly reduces complexity, improves maintainability, and leads to increased longevity for the real-time control system.

  4. An adaptive optics approach to the reduction of misalignments and beam jitters in gravitational wave interferometers

    We describe a study and the preliminary experimental results on the possibility of using adaptive optics systems for the reduction of geometrical fluctuations of input laser beams in long baseline interferometric detectors of gravitational waves. The experimental tests aimed to test the efficiency of Hermite-Gauss versus Shack-Hartmann wavefront reconstruction and feedback diagonalization. These preliminary results seem to indicate that the adaptive optics systems may be integrated in the near future as stabilization stages before a passive mode cleaner cavity, provided that the operational band of the mirror is increased together with the efficiency of the control system

  5. Modelling of multi-conjugate adaptive optics for spatially variant aberrations in microscopy

    Adaptive optics has been implemented in a range of high-resolution microscopes in order to overcome the problems of specimen-induced aberrations. Most implementations have used a single aberration correction across the imaged field. It is known, however, that aberrations often vary across the field of view, so a single correction setting cannot compensate all aberrations. Multi-conjugate adaptive optics (MCAO) has been suggested as a possible method for correction of these spatially variant aberrations. MCAO is modelled to simulate the correction of aberrations, both for simple model specimens and using real aberration data from a biological specimen. (special issue article)

  6. AVES-IMCO: an adaptive optics visible spectrograph and imager/coronograph for NAOS

    Beuzit, Jean-Luc; Lagrange, A.-M.; Mouillet, D.; Chauvin, G.; Stadler, E.; Charton, J.; Lacombe, F.; AVES-IMCO Team

    2001-05-01

    The NAOS adaptive optics system will very soon provide diffraction-limited images on the VLT, down to the visible wavelengths (0.020 arcseconds at 0.83 micron for instance). At the moment, the only instrument dedicated to NAOS is the CONICA spectro-imager, operating in the near-infrared from 1 to 5 microns. We are now proposing to ESO, in collaboration with an Italian group, the development of a visible spectrograph/imager/coronograph, AVES-IMCO (Adaptive Optics Visual Echelle Spectrograph and IMager/COronograph). We present here the general concept of the new instrument as well as its expected performances in the different modes.

  7. An adaptive optics approach for laser beam correction in turbulence utilizing a modified plenoptic camera

    Ko, Jonathan; Wu, Chensheng; Davis, Christopher C.

    2015-09-01

    Adaptive optics has been widely used in the field of astronomy to correct for atmospheric turbulence while viewing images of celestial bodies. The slightly distorted incoming wavefronts are typically sensed with a Shack-Hartmann sensor and then corrected with a deformable mirror. Although this approach has proven to be effective for astronomical purposes, a new approach must be developed when correcting for the deep turbulence experienced in ground to ground based optical systems. We propose the use of a modified plenoptic camera as a wavefront sensor capable of accurately representing an incoming wavefront that has been significantly distorted by strong turbulence conditions (C2n distortions. After the large distortions have been corrected, a secondary mode utilizing more traditional adaptive optics algorithms can take over to fine tune the wavefront correction. This two-stage algorithm can find use in free space optical communication systems, in directed energy applications, as well as for image correction purposes.

  8. Fuzzy-Based Adaptive Hybrid Burst Assembly Technique for Optical Burst Switched Networks

    Abubakar Muhammad Umaru; Muhammad Shafie Abd Latiff; Yahaya Coulibaly

    2014-01-01

    The optical burst switching (OBS) paradigm is perceived as an intermediate switching technology for future all-optical networks. Burst assembly that is the first process in OBS is the focus of this paper. In this paper, an intelligent hybrid burst assembly algorithm that is based on fuzzy logic is proposed. The new algorithm is evaluated against the traditional hybrid burst assembly algorithm and the fuzzy adaptive threshold (FAT) burst assembly algorithm via simulation. Simulation results sh...

  9. Implantable collamer lens and femtosecond laser for myopia: comparison using an adaptive optics visual simulator

    Cari Pérez-Vives; César Albarrán-Diego; Santiago García-Lázaro; Teresa Ferrer-Blasco; Robert Montés-Micó

    2014-01-01

    Purpose: To compare optical and visual quality of implantable collamer lens (ICL) implantation and femtosecond laser in situ keratomileusis (F-LASIK) for myopia. Methods: The CRX1 adaptive optics visual simulator (Imagine Eyes, Orsay, France) was used to simulate the wavefront aberration pattern after the two surgical procedures for -3-diopter (D) and -6-D myopia. Visual acuity at different contrasts and contrast sensitivities at 10, 20, and 25 cycles/degree (cpd) were measured for 3-mm an...

  10. Adaptive micro-optical phase modulators based on liquid crystal technology

    Algorri Genaro, José Francisco

    2015-01-01

    This thesis began with the project “Advanced Devices of Liquid Crystal and Electroluminescent Organic Diodes. Hybrid Applications for 3D Vision” funded by the Spanish government. The goal of this project was the development of optical devices to achieve 3D vision in portable devices without glasses or external elements. In order to achieve the goals of this project, solutions based on liquid crystal are considered. Specifically, adaptive micro-optical phase modulators based on liquid crystal ...

  11. High-sensitivity piezoelectric tube sensor for shear-force detection in scanning near-field optical microscopy

    Lindfors, K.; Kapulainen, M.; Ryytty, P.; Kaivola, M.

    2004-11-01

    An easy-to-implement non-optical shear-force detection setup for tip-sample distance regulation in scanning near-field optical microscopy is demonstrated. The detection method is based on attaching the near-field probe to a piezoelectric tube resulting in excellent mechanical contact between tip and detector. The main advantages of the method are good signal-to-background contrast and thus potential for high sensitivity. The method is demonstrated by obtaining approach curves of silicon surfaces. The suitability for optical experiments is further shown by measuring the near-field intensity distribution of the emission of a semiconductor laser.

  12. Homonymous Hemianopic Hyporeflective Retinal Abnormality on Infrared Confocal Scanning Laser Photography: A Novel Sign of Optic Tract Lesion.

    Monteiro, Mario L R; Araújo, Rafael B; Suzuki, Ana C F; Cunha, Leonardo P; Preti, Rony C

    2016-03-01

    Infrared confocal scanning laser photography of a patient with long-standing optic tract lesion revealed a homonymous hemianopic hyporeflective image contralateral to the visual field defect. Spectral domain optical coherence tomography showed thinning of the retinal nerve fiber and retinal ganglion cell layer and thickening of the inner nuclear layer (with microcystic degeneration) in the macular area, matching the infrared image. Hyporeflective image on infrared laser photography is associated with retinal degeneration secondary to anterior visual pathway disease and, when located in homonymous hemianopic retinas, may represent a new sign of an optic tract lesion. PMID:26172159

  13. Optical detection of metastatic cancer cells using a scanned laser pico-projection system

    Metastasis is responsible for 90% of all cancer-related deaths in humans. As a result, reliable techniques for detecting metastatic cells are urgently required. Although various techniques have been proposed for metastasis detection, they are generally capable of detecting metastatic cells only once migration has already occurred. Accordingly, the present study proposes an optical method for physical characterization of metastatic cancer cells using a scanned laser pico-projection system (SLPP). The validity of the proposed method is demonstrated using five pairs of cancer cell lines and two pairs of non-cancer cell lines treated by IPTG induction in order to mimic normal cells with an overexpression of oncogene. The results show that for all of the considered cell lines, the SLPP speckle contrast of the high-metastatic cells is significantly higher than that of the low-metastatic cells. As a result, the speckle contrast measurement provides a reliable means of distinguishing quantitatively between low- and high-metastatic cells of the same origin. Compared to existing metastasis detection methods, the proposed SLPP approach has many advantages, including a higher throughput, a lower cost, a larger sample size and a more reliable diagnostic performance. As a result, it provides a highly promising solution for physical characterization of metastatic cancer cells in vitro. (letter)

  14. Towards optically-integrated scanning tunneling microscopy studies of defects in semiconductors

    Benjamin, Anne; Lang, Evan; Werner, Kevin; Chowdhury, Enam; Gupta, Jay

    As electronic devices approach the nanoscale, their function is increasingly dependent on the local environment of individual defects. We are developing a combination of optical illumination and scanning tunneling microscopy techniques to study how the properties of individual defects depend on aspects of the local environment, such surface or defect proximity, applied electric fields, and illumination. Here we present studies of individual Zn and Er impurities in GaAs(110).We use controlled motion of the STM tip during voltage sweeps to resolve previously hidden in-gap states of Zn acceptors and probe Zn further from the surface than previously accessible. We discovered two classes of Zn acceptors, one with defect states that did not shift with tip-induced band bending (TIBB), and one with states that do. Similar behavior was observed for above-gap illumination, consistent with the surface photovoltage effect (SPV). For Er on GaAs(110), we discovered three different adsorption states sharing two different sites. We found defect states near the conduction band edge, which shifted with TIBB as well as IR illumination resonant with the Er f-shell transitions.

  15. Feasibility of fiber optic displacement sensor scanning system for imaging of dental cavity

    Rahman, Husna Abdul; Che Ani, Adi Izhar; Harun, Sulaiman Wadi; Yasin, Moh.; Apsari, Retna; Ahmad, Harith

    2012-07-01

    The purpose of this study is to investigate the potential of intensity modulated fiber optic displacement sensor scanning system for the imaging of dental cavity. Here, we discuss our preliminary results in the imaging of cavities on various teeth surfaces, as well as measurement of the diameter of the cavities which are represented by drilled holes on the teeth surfaces. Based on the analysis of displacement measurement, the sensitivities and linear range for the molar, canine, hybrid composite resin, and acrylic surfaces are obtained at 0.09667 mV/mm and 0.45 mm 0.775 mV/mm and 0.4 mm 0.5109 mV/mm and 0.5 mm and 0.25 mV/mm and 0.5 mm, respectively, with a good linearity of more than 99%. The results also show a clear distinction between the cavity and surrounding tooth region. The stability, simplicity of design, and low cost of fabrication make it suitable for restorative dentistry.

  16. Development of a scanning nearfield optical microscope for low-temperature investigations of semiconductor nanostructures

    In the present work the electronic structure of MOCVD-grown InGaAs/GaAs and InAs/GaAs quantum dots which are characterized by a particularly low ground state transition energy, was investigated using Scanning Nearfield Optical Microscopy (SNOM). The pivotal question of the presented investigations is, which influence the interaction of the confined carriers has on the energy states of the biexcitons and the multiexcitons in a quantum dot. Therefore, photoluminescence spectra of single quantum dots were investigated under varying excitation intensity at different temperatures between 5 K and 300 K. The construction of a novel scanning nearfield microscope especially for low temperatures allowed the investigation of single quantum dots. Due to significant improvements of the positioning technology and the shear-force distance control between the sample and the nearfield probe a stable scanning of the quantum dot samples at 5 K could be demonstrated, showing a lateral optical resolution of 200 nm. This way, in the photoluminescence spectroscopy of single quantum dots the thermal linewidth broadening of the detected light was reduced down to a value of less than 1 meV, which allowed the identification of the transitions of biexcitons and multiexcitons. On the basis of the performed measurements, for the InGaAs/GaAs quantum dots a biexciton state was identified, with variable binding energies of 2-7 meV. Furthermore, a positively charged trion state with a binding energy of 11 meV was observed, showing high emission intensity, which can be assigned to the sample doping. Accordingly, for the positively charged biexciton state a binding energy of 11 meV can be announced. For the investigated InAs/GaAs quantum dots a biexciton state with binding energies of 3-4 meV was found. Some of the investigated InAs/GaAs quantum dots showed the formation of positively charged states, in particular of a trion state with a binding energy of 3 meV, and of the positively charged

  17. Development of a scanning nearfield optical microscope for low-temperature investigations of semiconductor nanostructures

    Hodeck, Kai Friedrich

    2009-02-19

    In the present work the electronic structure of MOCVD-grown InGaAs/GaAs and InAs/GaAs quantum dots which are characterized by a particularly low ground state transition energy, was investigated using Scanning Nearfield Optical Microscopy (SNOM). The pivotal question of the presented investigations is, which influence the interaction of the confined carriers has on the energy states of the biexcitons and the multiexcitons in a quantum dot. Therefore, photoluminescence spectra of single quantum dots were investigated under varying excitation intensity at different temperatures between 5 K and 300 K. The construction of a novel scanning nearfield microscope especially for low temperatures allowed the investigation of single quantum dots. Due to significant improvements of the positioning technology and the shear-force distance control between the sample and the nearfield probe a stable scanning of the quantum dot samples at 5 K could be demonstrated, showing a lateral optical resolution of 200 nm. This way, in the photoluminescence spectroscopy of single quantum dots the thermal linewidth broadening of the detected light was reduced down to a value of less than 1 meV, which allowed the identification of the transitions of biexcitons and multiexcitons. On the basis of the performed measurements, for the InGaAs/GaAs quantum dots a biexciton state was identified, with variable binding energies of 2-7 meV. Furthermore, a positively charged trion state with a binding energy of 11 meV was observed, showing high emission intensity, which can be assigned to the sample doping. Accordingly, for the positively charged biexciton state a binding energy of 11 meV can be announced. For the investigated InAs/GaAs quantum dots a biexciton state with binding energies of 3-4 meV was found. Some of the investigated InAs/GaAs quantum dots showed the formation of positively charged states, in particular of a trion state with a binding energy of 3 meV, and of the positively charged

  18. Scanned ion beam therapy for prostate carcinoma. Comparison of single plan treatment and daily plan-adapted treatment

    Intensity-modulated particle therapy (IMPT) for tumors showing interfraction motion is a topic of current research. The purpose of this work is to compare three treatment strategies for IMPT to determine potential advantages and disadvantages of ion prostate cancer therapy. Simulations for three treatment strategies, conventional one-plan radiotherapy (ConvRT), image-guided radiotherapy (IGRT), and online adaptive radiotherapy (ART) were performed employing a dataset of 10 prostate cancer patients with six CT scans taken at one week intervals. The simulation results, using a geometric margin concept (7-2 mm) as well as patient-specific internal target volume definitions for IMPT were analyzed by target coverage and exposure of critical structures on single fraction dose distributions. All strategies led to clinically acceptable target coverage in patients exhibiting small prostate motion (mean displacement < 4 mm), but IGRT and especially ART led to significant sparing of the rectum. In 20 % of the patients, prostate motion exceeded 4 mm causing insufficient target coverage for ConvRT (V95mean = 0.86, range 0.63-0.99) and IGRT (V95mean = 0.91, range 0.68-1.00), while ART maintained acceptable target coverage. IMPT of prostate cancer demands consideration of rectal sparing and adaptive treatment replanning for patients exhibiting large prostate motion. (orig.)

  19. Adaptive PMD Compensation in 10 Gbit/s RZ Optical Communication System

    Yu; Li; Zhang; Xiaoguang; Zhou; Guangtao; Shen; Yu; Zheng; Yuan; Li; Chaoyang; Liu; Yumin; Chen; Lin; Yang; Bojun

    2003-01-01

    We report an experiment of adaptive compensation for polarization mode dispersion (PMD) in 10Gbit/s return zero (RZ) optical communication system. The quasi-real-time PMD compensation is realized. The algorithm so-called particle swarm optimization (PSO) is used to control feedback compensation system.

  20. Placing Limits on Extragalactic Substructure with Gravitational Lenses and Adaptive Optics

    Lagattuta, David J.; Vegetti, S.; Auger, M. W.; Fassnacht, C. D.; Koopmans, L. V. E.; McKean, J. P.

    2011-01-01

    We present the first results from a systematic search for extragalactic substructure, using high resolution Adaptive Optics (AO) images of known strong gravitational lenses. In particular we focus on two lens systems, B0128+437 and B1939+666, placing limits on both luminous and dark matter substruct

  1. Using 50-mm electrostatic membrane deformable mirror in astronomical adaptive optics

    Tokovinin, A.; Thomas, S.; Vdovin, G.

    2004-01-01

    Membrane micro-machined deformable mirrors (MMDM) feature low cost, low power consumption, small size and absence of hysteresis. Interested in using such a device for the adaptive optics system at the SOAR 4.1-m telescope, we evaluated the performance of a 79-channel 50-mm (pupil size 35mm) MMDM fro

  2. Local optical absorption spectra of h-BN–MoS2 van der Waals heterostructure revealed by scanning near-field optical microscopy

    Nozaki, Junji; Kobayashi, Yu; Miyata, Yasumitsu; Maniwa, Yutaka; Watanabe, Kenji; Taniguchi, Takashi; Yanagi, Kazuhiro

    2016-06-01

    Van der Waals (vdW) heterostructures, in which different two-dimensional layered materials are stacked, can exhibit unprecedented optical properties. Development of a technique to clarify local optical properties of vdW heterostructures is of great importance for the correct understanding of their backgrounds. Here, we examined local optical absorption spectra of h-BN–MoS2 vdW heterostructures by scanning near-field microscopy measurements with a spatial resolution of 100 nm. In an as-grown sample, there was almost no site dependence of their optical absorption spectra. However, in a degraded sample where defects and deformations were artificially induced, a significant site-dependence of optical absorption spectra was observed.

  3. Operation of the adaptive optics system at the Large Binocular Telescope Observatory

    Miller, Douglas L.; Guerra, Juan Carlos; Boutsia, Konstantina; Fini, Luca; Argomedo, Javier; Biddick, Chris; Agapito, Guido; Arcidiacono, Carmelo; Briguglio, Runa; Brusa, Guido; Busoni, Lorenzo; Esposito, Simone; Hill, John; Kulesa, Craig; McCarthy, Don; Pinna, Enrico; Puglisi, Alfio T.; Quiros-Pacheco, Fernando; Riccardi, Armando; Xompero, Marco

    2012-07-01

    The Adaptive Optics System at the Large Binocular Telescope Observatory consists of two Adaptive Secondary (ASM) mirrors and two Pyramid Wavefront sensors. The first ASM/Pyramid pair has been commissioned and is being used for science operation using the NIR camera PISCES on the right side of the binocular telescope. The left side ASM/Pyramid system is currently being commissioned, with completion scheduled for the Fall of 2012. We will discuss the operation of the first Adaptive Optics System at the LBT Observatory including interactions of the AO system with the telescope and its TCS, observational modes, user interfaces, observational scripting language, time requirement for closed loop and offsets and observing efficiency.

  4. Adaptive optics imaging of the outer retinal tubules in Bietti's crystalline dystrophy.

    Battu, R; Akkali, M C; Bhanushali, D; Srinivasan, P; Shetty, R; Berendschot, T T J M; Schouten, J S A G; Webers, C A

    2016-05-01

    PurposeTo study the outer retinal tubules using spectral domain optical coherence tomography and adaptive optics and in patients with Bietti's crystalline dystrophy.MethodsTen eyes of five subjects from five independent families with Bietti's crystalline Dystrophy (BCD) were characterized with best-corrected visual acuity (BCVA), full-field electroretinography, and fundus autofluorescence (FAF). High-resolution images were obtained with the spectral domain optical coherence tomography (SD-OCT) and adaptive optics (AO).ResultsSD-OCT showed prominent outer retinal layer loss and outer retinal tubulations at the margin of outer retinal loss. AO images displayed prominent macrotubules and microtubules with characteristic features in eight out of the 10 eyes. Crystals were present in all ten eyes. There was a reduction in the cone count in all eyes in the area outside the outer retinal tubules (ORT).ConclusionsThis study describes the morphology of the outer retinal tubules when imaged enface on the adaptive optics in patients with BCD. These findings provide insight into the macular structure of these patients. This may have prognostic implications and refine the study on the pathogenesis of BCD. PMID:26915747

  5. Characterization of a tunable astigmatic fluidic lens with adaptive optics correction for compact phoropter application

    Fuh, Yiin-Kuen; Huang, Chieh-Tse

    2014-07-01

    Fluidically controlled lenses which adaptively correct prescribed refractive error without mechanically moving parts are extensively applied in the ophthalmic applications. Capable of variable-focusing properties, however, the associated aberrations due to curvature change and refractive index mismatch can inherently degrade image quality severely. Here we present the experimental study of the aberrations in tunable astigmatic lens and use of adaptive optics to compensate for the wavefront errors. Characterization of the optical properties of the individual lenses is carried out by Shack-Hartmann measurements. An adaptive optics (AO) based scheme is demonstrated for three injected fluidic volumes, resulting in a substantial reduction of the wavefront errors from -0.12, -0.25, -0.32 to 0.01, -0.01, -0.20 μm, respectively, corresponding to the optical power tenability of 0.83 to 1.84 D. Furthermore, an integrated optical phoroptor consisting of adjustable astigmatic lenses and AO correction is demonstrated such that an induced refraction error of -1 D cylinder at 180° of a model eye vision is experimentally corrected.

  6. Freeform metrology using swept-source optical coherence tomography with custom pupil-relay precision scanning configuration

    Yao, Jianing; Xu, Di; Zhao, Nan; Rolland, Jannick P.

    2015-10-01

    The recent advances in the optics manufacturing industry to achieve the capability of fabricating rotationally nonsymmetric optical quality surfaces have considerably stimulated the optical designs with freeform components. This opens up new horizons for novel optical systems with larger fields of view and higher performance, or significantly more compact in volume at equal performance compared to conventional systems. A bottleneck to the broad industrial applications of freeform optics remains the lack of a high performance optical metrology tool capable of measuring significant surface departures and slopes of the parts. To address this issue, we have developed a fiber-based swept-source optical coherence tomography (SS-OCT) system for point-cloud freeform metrology, where two-axis galvanometer scanners are leveraged for high-speed lateral scans. We specifically designed a custom all-reflective achromatic pupil relay system to achieve a diffraction-limited scanning configuration. Coupled with a large field-of-view (FOV) telecentric scan lens, the imaging covers 28.9 mm × 28.9 mm FOV with 35 μm lateral resolution and more than 600 μm depth of focus. Freeform metrology is demonstrated for an Alvarez surface of 400 μm surface sag. The high sensitivity of the SS-OCT system allows for capturing the slope variations of the part up to the maximum slope that is 5 degrees in this case. Specific surface reconstruction, rendering and fitting algorithms were developed to evaluate the metrology results and investigate the accuracy and precision of the measurements.

  7. KNOW THE STAR, KNOW THE PLANET. I. ADAPTIVE OPTICS OF EXOPLANET HOST STARS

    The results of an adaptive optics survey of exoplanet host stars for stellar companions are presented. We used the Advanced Electro-Optical System telescope and its adaptive optics system to collect deep images of the stars in the I band. Sixty-two exoplanet host stars were observed and fifteen multiple star systems were resolved. Of these eight are known multiples, while seven are new candidate binaries. For all binaries, we measured the relative astrometry of the pair and the differential magnitude in the I band. We improved the orbits of HD 19994 and τ Boo. These observations will provide improved statistics on the duplicity of exoplanet host stars and provide an increased understanding of the dynamics of known binary star exoplanet hosts.

  8. Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy.

    Esslinger, M; Dorfmüller, J; Khunsin, W; Vogelgesang, R; Kern, K

    2012-03-01

    We present advances in experimental techniques of apertureless scanning near-field optical microscopy (aSNOM). The rational alignment procedure we outline is based upon a phase singularity that occurs while scanning polarizers around the nominal cross-polarized configuration of s-polarized excitation and p-polarized detection. We discuss the theoretical origin of this topological feature of the setup, which is robust against small deviations, such as minor tip misalignment or shape variations. Setting the polarizers to this singular configuration point eliminates all background signal, allowing for reproducible plasmonic eigenmode mapping with optimal signal-to-noise ratio. PMID:22462926

  9. High-speed polarization sensitive optical coherence tomography scan engine based on Fourier domain mode locked laser

    Bonesi, Marco; Sattmann, Harald; Torzicky, Teresa; Zotter, Stefan; Baumann, Bernhard; Pircher, Michael; Götzinger, Erich; Eigenwillig, Christoph; Wieser, Wolfgang; Huber, Robert; Hitzenberger, Christoph K.

    2012-01-01

    We report on a new swept source polarization sensitive optical coherence tomography scan engine that is based on polarization maintaining (PM) fiber technology. The light source is a Fourier domain mode locked laser with a PM cavity that operates in the 1300 nm wavelength regime. It is equipped with a PM buffer stage that doubles the fundamental sweep frequency of 54.5 kHz. The fiberization allows coupling of the scan engine to different delivery probes. In a first demonstration, we use the s...

  10. Comparison of Adaptive Optics and Phase-Conjugate Mirrors for Correction of Aberrations in Double-Pass Amplifiers

    Jackel, Steven; Moshe, Inon; Lavi, Raphy

    2003-02-01

    Correction of birefringence-induced effects (depolarization and bipolar focusing) were achieved in double-pass amplifiers by use of a Faraday rotator between the laser rod and the retroreflecting optic. A necessary condition was ray retrace. Retrace was limited by imperfect conjugate-beam fidelity and by nonreciprocal refractive indices. We compared various retroreflectors: stimulated-Brillouin-scatter phase-conjugate mirrors (PCMs), PCMs with rod-to-PCM relay imaging (IPCM), IPCMs with astigmatism-correcting adaptive optics, and all-adaptive-optics imaging variable-radius mirrors. Results with flash-lamp-pumped, Nd:Cr:GSGG double-pass amplifiers showed the superiority of adaptive optics over nonlinear optics retroreflectors in terms of maximum average power, improved beam quality, and broader oscillator pulse duration /bandwidth operating range. Hybrid PCM-adaptive optics retroreflectors yielded intermediate power /beam-quality results.

  11. Fiber Optic Adaptive Probe as a Cuvette Substitution for UV-Vis Spectrophotometer (Genesis 10S

    Fredy Kurniawan

    2014-04-01

    Full Text Available Fiber optic adaptive probe UV-Vis for Genesis 10S has been fabricated to substitute cuvette for real time analysis. Most of standard spectrophotometers UV-Vis (the common type use cuvette to place sample which is being analyzed. The light pass through the sample in the cuvette to detector then the intensity of the absorption of the solution is measured. Most of the cuvette system requires to transferring sample solution to cuvette from its original vessel, so the real time analysis cannot be conducted. The probe with special design using fiber optic cable FT-Au tonics 420-10 has been made to substitute the cuvette system. The light from the source moved inside fiber optic cable, which has been cut in the middle of the cable (the sample can passes through at this gap, to the detector. The end (entrance and exit of the fiber optic was designed so that it fit to the compartment of the Genesis 10S spectrophotometer without any modification from the standard instrument condition. The spectrum results from the probe in varies gap, in the range 0.2 – 1 cm, was observed. The gap in the middle of the fiber optic was equal to the length of the pathway in the cuvette system. Rhoda mine B was used as the sample with variation concentration 4.175 × 10-5 M, 3.34 × 10-5 M, 2.5 × 10-5 M, and 1.67 × 10-5 M. The spectrum result of adaptive fiber optic probe was compared to the spectrum of standard cuvette system. The optimum result was provided using 0.2 cm gap. The maximum wavelength absorbance of adaptive fiber optic probe was at 533 nm which similar to the cuvette system.

  12. Axial-Stereo 3-D Optical Metrology for Inner Profile of Pipes Using a Scanning Laser Endoscope

    Gong, Yuanzheng; Johnston, Richard S.; Melville, C. David; Seibel, Eric J.

    2015-07-01

    As the rapid progress in the development of optoelectronic components and computational power, 3-D optical metrology becomes more and more popular in manufacturing and quality control due to its flexibility and high speed. However, most of the optical metrology methods are limited to external surfaces. This article proposed a new approach to measure tiny internal 3-D surfaces with a scanning fiber endoscope and axial-stereo vision algorithm. A dense, accurate point cloud of internally machined threads was generated to compare with its corresponding X-ray 3-D data as ground truth, and the quantification was analyzed by Iterative Closest Points algorithm.

  13. Determination of pigments in colour layers on walls of some selected historical buildings using optical and scanning electron microscopy

    For successful restoration of painted walls and painted coloured finishing coats it is necessary to determine the composition of the original colour layers. Identification of the pigments used in The Cistercian Abbey of Sticna and The Manor of Novo Celje was carried out using optical and scanning electron microscopy. Selected samples of wall paintings were inspected by the combined application of an optical microscope and a low-vacuum Scanning Electron Microscope to determine their colour and structural features and to identify the position of individual pigment grains. Energy dispersive spectroscopy was used to determine the elemental distribution on selected surfaces and elemental composition of individual pigments. It was found that the most abundantly used pigments were iron oxide red, cinnabar, green earth, umber, calcium carbonate white, ultramarine, yellow ochre and carbon black. These identifications have allowed us to compare the use of various pigments in buildings from different historical periods

  14. Femtosecond terahertz time-domain spectroscopy at 36 kHz scan rate using an acousto-optic delay

    Urbanek, B.; Möller, M.; Eisele, M.; Baierl, S.; Kaplan, D.; Lange, C.; Huber, R.

    2016-03-01

    We present a rapid-scan, time-domain terahertz spectrometer employing femtosecond Er:fiber technology and an acousto-optic delay with attosecond precision, enabling scanning of terahertz transients over a 12.4-ps time window at a waveform refresh rate of 36 kHz, and a signal-to-noise ratio of 1.7 × 105 / √{ H z } . Our approach enables real-time monitoring of dynamic THz processes at unprecedented speeds, which we demonstrate through rapid 2D thickness mapping of a spinning teflon disc at a precision of 10 nm/ √{ H z } . The compact, all-optical design ensures alignment-free operation even in harsh environments.

  15. Femtosecond THz time domain spectroscopy at 36 kHz scan rate using an acousto-optic delay

    Urbanek, B; Eisele, M; Baierl, S; Kaplan, D; Lange, C; Huber, R

    2016-01-01

    We present a rapid-scan, time-domain terahertz spectrometer employing femtosecond Er:fiber technology and an acousto-optic delay with attosecond precision, enabling scanning of terahertz transients over a 12.4 ps time window at a waveform refresh rate of 36 kHz, and a signal-to-noise ratio of $1.7 \\times 10^5/\\sqrt{\\rm Hz}$. Our approach enables real-time monitoring of dynamic THz processes at unprecedented speeds, which we demonstrate through rapid 2D thickness mapping of a spinning teflon disc at a precision of $10\\,\\rm nm/\\sqrt{\\rm Hz}$. The compact, all-optical design ensures alignment-free operation even in harsh environments.

  16. Optimal control techniques for the adaptive optics system of the LBT

    Agapito, G.; Quiros-Pacheco, F.; Tesi, P.; Esposito, S.; Xompero, M.

    2008-07-01

    In this paper we will discuss the application of different optimal control techniques for the adaptive optics system of the LBT telescope which comprises a pyramid wavefront sensor and an adaptive secondary mirror. We have studied the application of both the Kalman and the H∞ filter to estimate the temporal evolution of the phase perturbations due to the atmospheric turbulence and the telescope vibrations. We have evaluated the performance of these control techniques with numerical simulations in preparation of the laboratory tests that will be carried out in the Arcetri laboratories.

  17. Length-adaptive graph search for automatic segmentation of pathological features in optical coherence tomography images

    Keller, Brenton; Cunefare, David; Grewal, Dilraj S.; Mahmoud, Tamer H.; Izatt, Joseph A.; Farsiu, Sina

    2016-07-01

    We introduce a metric in graph search and demonstrate its application for segmenting retinal optical coherence tomography (OCT) images of macular pathology. Our proposed "adjusted mean arc length" (AMAL) metric is an adaptation of the lowest mean arc length search technique for automated OCT segmentation. We compare this method to Dijkstra's shortest path algorithm, which we utilized previously in our popular graph theory and dynamic programming segmentation technique. As an illustrative example, we show that AMAL-based length-adaptive segmentation outperforms the shortest path in delineating the retina/vitreous boundary of patients with full-thickness macular holes when compared with expert manual grading.

  18. Adaptive Bit Rate Video Streaming Through an RF/Free Space Optical Laser Link

    A. Akbulut

    2010-06-01

    Full Text Available This paper presents a channel-adaptive video streaming scheme which adjusts video bit rate according to channel conditions and transmits video through a hybrid RF/free space optical (FSO laser communication system. The design criteria of the FSO link for video transmission to 2.9 km distance have been given and adaptive bit rate video streaming according to the varying channel state over this link has been studied. It has been shown that the proposed structure is suitable for uninterrupted transmission of videos over the hybrid wireless network with reduced packet delays and losses even when the received power is decreased due to weather conditions.

  19. Development of an ultra-lightweight scanning mirror for the optical imager of the second generation METEOSAT (MSG)

    Harnisch, Bernd; Pradier, A.; Deyerler, Michael; Kunkel, Bernd P.; Papenburg, U.

    1994-09-01

    A new material designated C/SiC is the basis for a current ultra-lightweight scan mirror (ULSM) ESA/ESTEC technology development contract for the METEOSAT Second Generation (MSG) Program (Ref. {1}). It consists of random- oriented carbon fibers as 'greenbody' which is shaped to the designed configuration, and is infiltrated in the liquid phase with Si resulting in a SiC enriched surface layer, with a CVD grown SiC optical polishing layer. The reflective coating finally is silver under a dedicated protection layer. The requirements for this mirror are rather stringent: during 7 years in a geostationary orbit of life it will permantly be exposed to centrifugal forces induced by the satellite spinning at 100 rpm. Due to high image quality requirements for the imager - designated SEVIRI (Spinning Enhanced Visible IR Imager) - the MTF degradation caused by the scan mirror alone are defined to EQ 3%, resulting in rather high surface quality requirements. The main contribution is the spin induced mirror tip deflection which turned out to be the design driver. The technologically most challenging requirement is to develop a scan mirror with 800 X 500 mm(superscript 2) effective aperture and a central cutout - the telescope is a Gregory concept - to withstand tight environmental requirements at a mass which was specified as coating will be rendered to ESA. Since this contract is a technology contract, applications beyond the MSG scan mirror are borne in mind, including higher optical surface qualities such as (lambda) /30 or curved surfaces, also aspheric mirrors of possibly even larger diameters. The manufacturing and optical process implement subcontractors which are not listed among the authors, i.e. SGL Carbon/Meitingen, FRG, for the Si infiltration; Schunk Kohlenstofftechnik/GieBen, FRG, for the CVD SiC coating; REOSC Optique, Ballainvilliers, France for the optical polishing, and Jenoptik, Jena, FRG, for the silver and protection coating.

  20. Optical techniques: using coarse and detailed scans for the preventive acquisition of fingerprints with chromatic white-light sensors

    Hildebrandt, Mario; Dittmann, Jana; Vielhauer, Claus; Leich, Marcus

    2011-11-01

    The preventive application of automated latent fingerprint acquisition devices can enhance the Homeland Defence, e.g. by improving the border security. Here, contact-less optical acquisition techniques for the capture of traces are subject to research; chromatic white light sensors allow for multi-mode operation using coarse or detailed scans. The presence of potential fingerprints could be detected using fast coarse scans. Those Regions-of- Interest can be acquired afterwards with high-resolution detailed scans to allow for a verification or identification of individuals. An acquisition and analysis of fingerprint traces on different objects that are imported or pass borders might be a great enhancement for security. Additionally, if suspicious objects require a further investigation, an initial securing of potential fingerprints could be very useful. In this paper we show current research results for the coarse detection of fingerprints to prepare the detailed acquisition from various surface materials that are relevant for preventive applications.

  1. Scanned ion beam therapy for prostate carcinoma. Comparison of single plan treatment and daily plan-adapted treatment

    Hild, Sebastian [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Department of Biophysics, Darmstadt (Germany); University Clinic Erlangen and Friedrich- Alexander-University Erlangen-Nuernberg (FAU), Department of Radiation Oncology, Erlangen (Germany); Graeff, Christian [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Department of Biophysics, Darmstadt (Germany); Rucinski, Antoni [University Clinic Heidelberg, Heidelberg Ion-Beam Therapy Center (HIT) and Department of Radiation Oncology, Heidelberg (Germany); Sapienza Universit' a di Roma, Dipartimento di Scienze di Base e Applicate per Ingegneria, Roma (Italy); INFN, Roma (Italy); Zink, Klemens [University of Applied Sciences, Institute for Medical Physics and Radiation Protection, Giessen (Germany); University Medical Center Giessen-Marburg, Department of Radiotherapy and Radiooncology, Marburg (Germany); Habl, Gregor [University Clinic Heidelberg, Heidelberg Ion-Beam Therapy Center (HIT) and Department of Radiation Oncology, Heidelberg (Germany); Klinikum rechts der Isar, Technische Universitaet Muenchen (TUM), Department of Radiation Oncology, Munich (Germany); Durante, Marco [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Department of Biophysics, Darmstadt (Germany); Technische Universitaet Darmstadt, Faculty of Physics, Darmstadt (Germany); Herfarth, Klaus [University Clinic Heidelberg, Heidelberg Ion-Beam Therapy Center (HIT) and Department of Radiation Oncology, Heidelberg (Germany); Bert, Christoph [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Department of Biophysics, Darmstadt (Germany); University Clinic Erlangen and Friedrich- Alexander-University Erlangen-Nuernberg (FAU), Department of Radiation Oncology, Erlangen (Germany); University Hospital Erlangen, Radiation Oncology, Erlangen (Germany)

    2016-02-15

    Intensity-modulated particle therapy (IMPT) for tumors showing interfraction motion is a topic of current research. The purpose of this work is to compare three treatment strategies for IMPT to determine potential advantages and disadvantages of ion prostate cancer therapy. Simulations for three treatment strategies, conventional one-plan radiotherapy (ConvRT), image-guided radiotherapy (IGRT), and online adaptive radiotherapy (ART) were performed employing a dataset of 10 prostate cancer patients with six CT scans taken at one week intervals. The simulation results, using a geometric margin concept (7-2 mm) as well as patient-specific internal target volume definitions for IMPT were analyzed by target coverage and exposure of critical structures on single fraction dose distributions. All strategies led to clinically acceptable target coverage in patients exhibiting small prostate motion (mean displacement < 4 mm), but IGRT and especially ART led to significant sparing of the rectum. In 20 % of the patients, prostate motion exceeded 4 mm causing insufficient target coverage for ConvRT (V95{sub mean} = 0.86, range 0.63-0.99) and IGRT (V95{sub mean} = 0.91, range 0.68-1.00), while ART maintained acceptable target coverage. IMPT of prostate cancer demands consideration of rectal sparing and adaptive treatment replanning for patients exhibiting large prostate motion. (orig.) [German] Adaptive Therapieansaetze fuer sich interfraktionell bewegende Zielvolumina in der intensitaetsmodulierten Partikeltherapie (IMPT) befinden sich zurzeit in der Entwicklung. In dieser Arbeit werden drei Behandlungsstrategien auf moegliche Vor- und Nachteile in der IMPT des Prostatakarzinoms hin untersucht. Auf Basis eines anonymisierten Datensatzes aus 10 Patienten mit Prostatakarzinom wurden die drei Bestrahlungsstrategien, konventionelle Ein-Plan-Strahlentherapie (ConvRT), bildunterstuetzte Strahlentherapie (IGRT) und tagesaktuelle Strahlentherapie (adaptive radiotherapy,ART), simuliert

  2. Scanning electron microscopy analysis of marginal adaptation of composite resines to enamel after using of standard and gradual photopolimerization

    Dačić Stefan

    2014-01-01

    Full Text Available Introduction. Bonding between composite and hard dental tissue is most commonly assessed by measuring bonding strength or absence of marginal gap along the restoration interface. Marginal index (MI is a significant indicator of the efficiency of the bond between material and dental tissue because it also shows the values of width and length of marginal gap. Objective. The aim of this investigation was to estimate quantitative and qualitative features of the bond between composite resin and enamel and to determine the values of MI in enamel after application of two techniques of photopolymerization with two composite systems. Methods. Forty Class V cavities on extracted teeth were prepared and restored for scanning electron microscope (SEM analysis of composite bonding to enamel. Adhesion to enamel was achieved by Adper Single Bond 2 - ASB (3M ESPE, or by Adper Easy One - AEO (3M ESPE. Photopolymerization of Filtek Ultimate - FU (3M ESPE was performed using constant halogen light (HIP or soft start program (SOF. Results. Quantitative and qualitative analysis, showed better mikromorphological bonding with SOF photopolymerization and ASB/FU composite system. Differences in MI between different photopolymerization techniques (HIP: 0.6707; SOF: 0.2395 were statistically significant (p<0.001, as well as differences between the composite systems (ASB/FU: 0.0470; AEO/ FU: 0.8651 (p<0.001 by two-way ANOVA test. Conclusion. Better marginal adaptation of composite to enamel was obtained with SOF photopolymerization in both composite systems.

  3. Investigation of optical nanostructures for photovoltaics with near-field scanning microscopy; Untersuchung optischer Nanostrukturen fuer die Photovoltaik mit Nahfeldmikroskopie

    Beckers, Thomas

    2011-09-26

    Textured and rough surfaces are known to increase light trapping in solar cells significantly. The development and optimization of these nano-structures is essential to improve the energy conversion efficiency of thin-film solar cells. In the past, first research approaches covered classical and macroscopic investigations, e.g. determining the haze or angularly resolved scattering. These methods do not provide precise explanation for the optical improvement of the devices, because layer thicknesses and structure sizes in thin-film solar cells are smaller than the wavelength of visible light. The impact of local nano-structures and their contribution to the local absorption enhancement is not resolved by macroscopic measurements. In this thesis, near-field scanning optical microscopy is introduced as first near-field investigations of nano-structures for photovoltaics. This provides an insight into local optical effects for relevant surfaces of photovoltaic devices. Investigating the distribution of the electric fields in layer stacks is crucial to understand the absorption in solar cells. Evanescent fields, which occur due to total internal reflection at the interfaces, are measurable by near-field scanning optical microscopy and yield important information about local light trapping. Within the framework of this thesis, correlations between local surface structures and optical near-field effects are shown. In this case structure features of randomly textured surfaces, which optimize local light trapping, are identified. It paves the way to connect microscopic optical effects on the surface with the macroscopic performance of thin-film solar cells. Moreover, the measurement yields a 3D illustration of the electric field distribution over the sample surface. It is an important criterion to prove the results of rigorous diffraction theory. An excellent agreement between experiment and simulation is found. The simulations provide an insight into the material, which is

  4. Laboratory testing the layer oriented wavefront sensor for the multiconjugate adaptive optics demonstrator

    Arcidiacono, Carmelo; Lombini, Matteo; Diolaiti, Emiliano; Farinato, Jacopo; Ragazzoni, Roberto

    2006-06-01

    The Multiconjugate Adaptive optics Demonstrator (MAD) for ESO-Very Large Telescopes (VLT) will demonstrate on sky the MultiConjugate Adaptive Optics (MCAO) technique. In this paper the laboratory tests relative to the first preliminary acceptance in Europe of the Layer Oriented (LO) Wavefront Sensor (WFS) for MAD will be described: the capabilities of the LO approach have been checked and the ability of the WFS to measure phase screens positioned at different altitudes has been experimented. The LO WFS was opto-mechanically integrated and aligned in INAF - Astrophysical Observatory of Arcetri before the delivering to ESO (Garching) to be installed on the final optical bench. The LO WFS looks for up to 8 reference stars on a 2arcmin Field of View and up to 8 pyramids can be positioned where the focal spot images of the reference stars form, splitting the light in four beams. Then two objectives conjugated at different altitudes simultaneously produce a quadruple pupil image of each reference star. An optical bench setup and transparent plastic screens have been used to simulate telescope and static atmospheric layers at different altitudes and a set of optical fibers as (white) light source. The plastic screens set has been characterized using an inteferometer and the wave-front measurements compared to the LO WFS ones have shown correlation up to ~95%.

  5. Experience with wavefront sensor and deformable mirror interfaces for wide-field adaptive optics systems

    Basden, A G; Bharmal, N A; Bitenc, U; Brangier, M; Buey, T; Butterley, T; Cano, D; Chemla, F; Clark, P; Cohen, M; Conan, J -M; de Cos, F J; Dickson, C; Dipper, N A; Dunlop, C N; Feautrier, P; Fusco, T; Gach, J L; Gendron, E; Geng, D; Goodsell, S J; Gratadour, D; Greenaway, A H; Guesalaga, A; Guzman, C D; Henry, D; Holck, D; Hubert, Z; Huet, J M; Kellerer, A; Kulcsar, C; Laporte, P; Roux, B Le; Looker, N; Longmore, A J; Marteaud, M; Martin, O; Meimon, S; Morel, C; Morris, T J; Myers, R M; Osborn, J; Perret, D; Petit, C; Raynaud, H; Reeves, A P; Rousset, G; Lasheras, F Sanchez; Rodriguez, M Sanchez; Santos, J D; Sevin, A; Sivo, G; Stadler, E; Stobie, B; Talbot, G; Todd, S; Vidal, F; Younger, E J

    2016-01-01

    Recent advances in adaptive optics (AO) have led to the implementation of wide field-of-view AO systems. A number of wide-field AO systems are also planned for the forthcoming Extremely Large Telescopes. Such systems have multiple wavefront sensors of different types, and usually multiple deformable mirrors (DMs). Here, we report on our experience integrating cameras and DMs with the real-time control systems of two wide-field AO systems. These are CANARY, which has been operating on-sky since 2010, and DRAGON, which is a laboratory adaptive optics real-time demonstrator instrument. We detail the issues and difficulties that arose, along with the solutions we developed. We also provide recommendations for consideration when developing future wide-field AO systems.

  6. On distributed wavefront reconstruction for large-scale adaptive optics systems.

    de Visser, Cornelis C; Brunner, Elisabeth; Verhaegen, Michel

    2016-05-01

    The distributed-spline-based aberration reconstruction (D-SABRE) method is proposed for distributed wavefront reconstruction with applications to large-scale adaptive optics systems. D-SABRE decomposes the wavefront sensor domain into any number of partitions and solves a local wavefront reconstruction problem on each partition using multivariate splines. D-SABRE accuracy is within 1% of a global approach with a speedup that scales quadratically with the number of partitions. The D-SABRE is compared to the distributed cumulative reconstruction (CuRe-D) method in open-loop and closed-loop simulations using the YAO adaptive optics simulation tool. D-SABRE accuracy exceeds CuRe-D for low levels of decomposition, and D-SABRE proved to be more robust to variations in the loop gain. PMID:27140879

  7. Recent Results and Perspectives for Precision Astrometry and Photometry with Adaptive Optics

    Lu, Jessica R; Yelda, Sylvana; Do, Tuan; Clarkson, Will; McCrady, Nate; Morris, Mark R

    2010-01-01

    Large ground-based telescopes equipped with adaptive optics (AO) systems have ushered in a new era of high-resolution infrared photometry and astrometry. Relative astrometric accuracies of <0.2 mas have already been demonstrated from infrared images with spatial resolutions of 55-95 mas resolution over 10-20'' fields of view. Relative photometric accuracies of 3% and absolute photometric accuracies of 5%-20% are also possible. I will review improvements and current limitations in astrometry and photometry with adaptive optics of crowded stellar fields. These capabilities enable experiments such as measuring orbits for brown dwarfs and exoplanets, studying our Galaxy's supermassive black hole and its environment, and identifying individual stars in young star clusters, which can be used test the universality of the initial mass function.

  8. Gemini multi-conjugate adaptive optics system review I: Design, trade-offs and integration

    Rigaut, Francois; Boccas, Maxime; d'Orgeville, Céline; Vidal, Fabrice; van Dam, Marcos A; Arriagada, Gustavo; Fesquet, Vincent; Galvez, Ramon L; Gausachs, Gaston; Cavedoni, Chad; Ebbers, Angelic W; Karewicz, Stan; James, Eric; Lührs, Javier; Montes, Vanessa; Perez, Gabriel; Rambold, William N; Rojas, Roberto; Walker, Shane; Bec, Matthieu; Trancho, Gelys; Sheehan, Michael; Irarrazaval, Benjamin; Boyer, Corinne; Ellerbroek, Brent L; Flicker, Ralf; Gratadour, Damien; Garcia-Rissmann, Aurea; Daruich, Felipe

    2013-01-01

    The Gemini Multi-conjugate adaptive optics System (GeMS) at the Gemini South telescope in Cerro Pach{\\'o}n is the first sodium-based multi-Laser Guide Star (LGS) adaptive optics system. It uses five LGSs and two deformable mirrors to measure and compensate for atmospheric distortions. The GeMS project started in 1999, and saw first light in 2011. It is now in regular operation, producing images close to the diffraction limit in the near infrared, with uniform quality over a field of view of two square arcminutes. The present paper (I) is the first one in a two-paper review of GeMS. It describes the system, explains why and how it was built, discusses the design choices and trade-offs, and presents the main issues encountered during the course of the project. Finally, we briefly present the results of the system first light.

  9. The Robo-AO KOI Survey: laser adaptive optics imaging of every Kepler exoplanet candidate

    Ziegler, Carl; Baranec, Christoph; Morton, Tim; Riddle, Reed; Atkinson, Dani; Nofi, Larissa

    2016-01-01

    The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star (KOI) with laser adaptive optics imaging to hunt for blended nearby stars which may be physically associated companions. With the unparalleled efficiency provided by the first fully robotic adaptive optics system, we perform the critical search for nearby stars (0.15" to 4.0" separation with contrasts up to 6 magnitudes) that dilute the observed planetary transit signal, contributing to inaccurate planetary characteristics or astrophysical false positives. We present 3313 high resolution observations of Kepler planetary hosts from 2012-2015, discovering 479 nearby stars. We measure an overall nearby star probability rate of 14.5\\pm0.8%. With this large data set, we are uniquely able to explore broad correlations between multiple star systems and the properties of the planets which they host, providing insight into the formation and evolution of planetary systems in our galaxy. Several KOIs of particular interest...

  10. Neptune’s zonal winds from near-IR Keck adaptive optics imaging in August 2001

    Martin, S.C.; De Pater, I.; Marcus, P.

    2011-01-01

    We present H-band (1.4–1.8 μm) images of Neptune with a spatial resolution of ∼0.06″, taken with the W.M. Keck II telescope using the slit-viewing camera (SCAM) of the NIRSPEC instrument backed with Adaptive Optics. Images with 60-second integration times span 4 hours each on UT 20 and 21 August, 20

  11. Optical Digital Imitation Painting Design Based on Self-Adaptive Image Feature

    Zhu Liyan; Qin Jianfei; Qu Liyong; Song Shuwei; Xu Weidong

    2016-01-01

    Based on the study of existing digital imitation camouflage technology, we propose a kind of optical digital imitation camouflage design algorithm which is based on the characteristic of self-adaptive image. Picking main color feature of the background by using K-means clustering algorithm, counting the shape characteristics of each main color spots by separating layers, we generated digital camouflage pattern automatically by segmenting the background region characteristics and fill the back...

  12. Ferrofluid Based Deformable Mirrors - a New Approach to Adaptive Optics Using Liquid Mirrors

    Laird, P.; Bergamasco, R.; Berube, V.; Borra, E. F.; Ritcey, A.; Rioux, M.; Robitaille, N.; Thibault, S.; Silva Jr, L. Vieira da; Yockell-Lelievre, H.

    2002-01-01

    The trend towards ever larger telescopes and more advanced adaptive optics systems is driving the need for deformable mirrors with a large number of low cost actuators. Liquid mirrors have long been recognized a potential low cost alternative to conventional solid mirrors. By using a water or oil based ferrofluid we are able to benefit from a stronger magnetic response than is found in magnetic liquid metal amalgams and avoid the difficulty of passing a uniform current through a liquid. Depos...

  13. Adaptive Optics Parameters connection to wind speed at the Teide Observatory

    Garcia-Lorenzo, B.; Eff-Darwich, A.; J. J. Fuensalida; Castro-Almazan, J.

    2009-01-01

    Current projects for large telescopes demand a proper knowledge of atmospheric turbulence to design efficient adaptive optics systems in order to reach large Strehl ratios. However, the proper characterization of the turbulence above a particular site requires long-term monitoring. Due to the lack of long-term information on turbulence, high-altitude winds (in particular winds at the 200 mbar pressure level) were proposed as a parameter for estimating the total turbulence at a particular site...

  14. Registration of adaptive optics corrected retinal nerve fiber layer (RNFL) images

    Ramaswamy, Gomathy; Lombardo, Marco; Devaney, Nicholas

    2014-01-01

    Glaucoma is the leading cause of preventable blindness in the western world. Investigation of high-resolution retinal nerve fiber layer (RNFL) images in patients may lead to new indicators of its onset. Adaptive optics (AO) can provide diffraction-limited images of the retina, providing new opportunities for earlier detection of neuroretinal pathologies. However, precise processing is required to correct for three effects in sequences of AO-assisted, flood-illumination images: uneven illumina...

  15. The Effect of Aberrations and Scatter on Image Resolution Assessed by Adaptive Optics Retinal Section Imaging

    Wanek, Justin; Mori, Marek; Shahidi, Mahnaz

    2007-01-01

    The effect of increased high order wavefront aberrations on image resolution was investigated and the performance of adaptive optics (AO) for correcting wavefront error in the presence of increased light scatter was assessed in a model eye. An AO section imaging system provided an oblique view of a simulated model eye retina and incorporated a wavefront sensor and deformable mirror for measurement and compensation of wavefront aberrations. Image resolution was quantified by the width of a Lor...

  16. Observer-Based Control Techniques for the LBT Adaptive Optics under Telescope Vibrations

    Agapito, Guido; Quirós-Pacheco, Fernando; Tesi, Pietro; Riccardi, Armando; Esposito, Simone

    2011-01-01

    This paper addresses the application of observer-based control techniques for the adaptive optics system of the LBT telescope. In such a context, attention is focused on the use of Kalman and H∞ filters to estimate the temporal evolution of phase perturbations due to the atmospheric turbulence and the telescope vibrations acting on tip/tilt modes. We shall present preliminary laboratory experiments carried out at the Osservatorio Astrofisico di Arcetri using the Kalman filter.

  17. Prediction of wavefronts in adaptive optics to reduce servo lag errors using data mining

    Vyas, Akondi; Roopashree, M. B.; Prasad, B Raghavendra

    2009-01-01

    Servo lag errors in adaptive optics lead to inaccurate compensation of wavefront distortions. An attempt has been made to predict future wavefronts using data mining on wavefronts of the immediate past to reduce these errors. Monte Carlo simulations were performed on experimentally obtained data that closely follows Kolmogorov phase characteristics. An improvement of 6% in wavefront correction is reported after data mining is performed. Data mining is performed in three steps (a) Data cube Se...

  18. Progressive Prediction of Turbulence Using Wave-Front Sensor Data in Adaptive Optics Using Data Mining

    Vyas, Akondi; Roopashree, M. B.; Prasad, B Raghavendra

    2009-01-01

    Nullifying the servo bandwidth errors improves the strehl ratio by a substantial quantity in adaptive optics systems. An effective method for predicting atmospheric turbulence to reduce servo bandwidth errors in real time closed loop correction systems is presented using data mining. Temporally evolving phase screens are simulated using Kolmogorov statistics and used for data analysis. A data cube is formed out of the simulated time series. Partial data is used to predict the subsequent phase...

  19. Adaptive synchronization in chaotic laser diodes subject to optical feedback(s)

    In this paper a proposal is made of an adaptive coupling function for achieving synchronization between two lasers subject to optical feedback. Such a control scheme requires knowledge of the systems' parameters. For the first time we demonstrate that when these parameters are not available on-line parameter estimation can be applied. Generalization of the approach to the multi-feedback systems is also presented. (author)

  20. Validation Through Simulations of a Cn2 Profiler for the ESO/VLT Adaptive Optics Facility

    Garcia-Rissmann, A; Kolb, J; Louarn, M Le; Madec, P -Y; Neichel, B

    2015-01-01

    The Adaptive Optics Facility (AOF) project envisages transforming one of the VLT units into an adaptive telescope and providing its ESO (European Southern Observatory) second generation instruments with turbulence corrected wavefronts. For MUSE and HAWK-I this correction will be achieved through the GALACSI and GRAAL AO modules working in conjunction with a 1170 actuators Deformable Secondary Mirror (DSM) and the new Laser Guide Star Facility (4LGSF). Multiple wavefront sensors will enable GLAO and LTAO capabilities, whose performance can greatly benefit from a knowledge about the stratification of the turbulence in the atmosphere. This work, totally based on end-to-end simulations, describes the validation tests conducted on a Cn2 profiler adapted for the AOF specifications. Because an absolute profile calibration is strongly dependent on a reliable knowledge of turbulence parameters r0 and L0, the tests presented here refer only to normalized output profiles. Uncertainties in the input parameters inherent t...

  1. Practical High-Order Adaptive Optics Systems For Extrasolar Planet Searches

    Macintosh, B A; Olivier, S; Bauman, B; Brase, J; Carr, E; Carrano, C J; Gavel, D; Max, C E; Patience, J

    2001-08-29

    Direct detection of photons emitted or reflected by an extrasolar planet is an extremely difficult but extremely exciting application of adaptive optics. Typical contrast levels for an extrasolar planet would be 10{sup 9}-Jupiter is a billion times fainter than the sun. Current adaptive optics systems can only achieve contrast levels of 10{sup 6}, but so-called ''extreme'' adaptive optics systems with 10{sup 4}-10{sup 5} degrees of freedom could potentially detect extrasolar planets. We explore the scaling laws defining the performance of these systems, first set out by Angel (1994), and derive a different definition of an optimal system. Our sensitivity predictions are somewhat more pessimistic than the original paper, due largely to slow decorrelation timescales for some noise sources, though choosing to site an ExAO system at a location with exceptional r{sub 0} (e.g. Mauna Kea) can offset this. We also explore the effects of segment aberrations in a Keck-like telescope on ExAO; although the effects are significant, they can be mitigated through Lyot coronagraphy.

  2. High-resolution Imaging of Living Retina through Optic Adaptive Retinal Imaging System

    Chunhui Jiang; Wenji Wang; Ning Ling; Gezhi Xu; Xuejun Rao; Xinyang Li; Yudong Zhang

    2002-01-01

    Purpose: To evaluate the possibility as well as the usage of adaptive optics in high-resolution retinal imaging.Methods:From March to November 2001, the fundus of 25 adults were checked by using Optic Adaptive Retinal Imaging System (OAS). The age of the subjects varied from 18~48 years. All had normal visual acuity from 0.9 to 1.0. No abnormality was found in the ocular examination, and their medical as well as ocular history was unremarkable. Results: High-resolution images of the retinal cells, photoreceptor and bipolar cell, were analysed. In these images, the cells are clearly resolved. The density of the photoreceptor at area 1.5 degree from the foveloa is around 40 000~50 000/mm2. At area 3 degree, it drops to less than 30 000/mm2.Conclusion:Optic Adaptive Retinal Imaging System (AOS) is able to get high-resolution image of retinal cells in living human eyes. It may be widely used in ophthalmology experimentally and clinically.

  3. MAD Adaptive Optics Imaging of High Luminosity Quasars: A Pilot Project

    Liuzzo, E; Paiano, S; Treves, A; Uslenghi, M; Arcidiacono, C; Baruffolo, A; Diolaiti, E; Farinato, J; Lombini, M; Moretti, A; Ragazzoni, R; Brast, R; Donaldson, R; Kolb, J; Marchetti, E; Tordo, S

    2016-01-01

    We present near-IR images of five luminous quasars at z~2 and one at z~4 obtained with an experimental adaptive optics instrument at the ESO Very Large Telescope. The observations are part of a program aimed at demonstrating the capabilities of multi-conjugated adaptive optics imaging combined with the use of natural guide stars for high spatial resolution studies on large telescopes. The observations were mostly obtained under poor seeing conditions but in two cases. In spite of these non optimal conditions, the resulting images of point sources have cores of FWHM ~0.2 arcsec. We are able to characterize the host galaxy properties for 2 sources and set stringent upper limits to the galaxy luminosity for the others. We also report on the expected capabilities for investigating the host galaxies of distant quasars with adaptive optics systems coupled with future Extremely Large Telescopes. Detailed simulations show that it will be possible to characterize compact (2-3 kpc) quasar host galaxies for QSOs at z = ...

  4. Ship detection for high resolution optical imagery with adaptive target filter

    Ju, Hongbin

    2015-10-01

    Ship detection is important due to both its civil and military use. In this paper, we propose a novel ship detection method, Adaptive Target Filter (ATF), for high resolution optical imagery. The proposed framework can be grouped into two stages, where in the first stage, a test image is densely divided into different detection windows and each window is transformed to a feature vector in its feature space. The Histograms of Oriented Gradients (HOG) is accumulated as a basic feature descriptor. In the second stage, the proposed ATF highlights all the ship regions and suppresses the undesired backgrounds adaptively. Each detection window is assigned a score, which represents the degree of the window belonging to a certain ship category. The ATF can be adaptively obtained by the weighted Logistic Regression (WLR) according to the distribution of backgrounds and targets of the input image. The main innovation of our method is that we only need to collect positive training samples to build the filter, while the negative training samples are adaptively generated by the input image. This is different to other classification method such as Support Vector Machine (SVM) and Logistic Regression (LR), which need to collect both positive and negative training samples. The experimental result on 1-m high resolution optical images shows the proposed method achieves a desired ship detection performance with higher quality and robustness than other methods, e.g., SVM and LR.

  5. Status update and closed-loop performance of the Magellan adaptive optics VisAO camera

    Kopon, Derek; Close, Laird M.; Males, Jared; Gasho, Victor; Morzinski, Katie; Follette, Katherine

    2012-07-01

    We present laboratory results of the closed-loop performance of the Magellan Adaptive Optics (AO) Adaptive Secondary Mirror (ASM), pyramid wavefront sensor (PWFS), and VisAO visible adaptive optics camera. The Magellan AO system is a 585-actuator low-emissivity high-throughput system scheduled for first light on the 6.5 meter Magellan Clay telescope in November 2012. Using a dichroic beamsplitter near the telescope focal plane, the AO system will be able to simultaneously perform visible (500-1000 nm) AO science with our VisAO camera and either 10 μm or 3-5 μm science using either the BLINC/MIRAC4 or CLIO cameras, respectively. The ASM, PWS, and VisAO camera have undergone final system tests in the solar test tower at the Arcetri Institute in Florence, Italy, reaching Strehls of 37% in i'-band with 400 modes and simulated turbulence of 14 cm ro at v-band. We present images and test results of the assembled VisAO system, which includes our prototype advanced Atmospheric Dispersion Corrector (ADC), prototype calcite Wollaston prisms for SDI imaging, and a suite of beamsplitters, filters, and other optics. Our advanced ADC performs in the lab as designed and is a 58% improvement over conventional ADC designs. We also present images and results of our unique Calibration Return Optic (CRO) test system and the ASM, which has successfully run in closedloop at 1kHz. The CRO test is a retro reflecting optical test that allows us to test the ASM off-sky in close-loop using an artificial star formed by a fiber source.

  6. Adaptive Optics at Optical Wavelengths: Test Observations of Kyoto 3DII Connected to Subaru Telescope AO188

    Matsubayashi, K.; Sugai, H.; Shimono, A.; Akita, A.; Hattori, T.; Hayano, Y.; Minowa, Y.; Takeyama, N.

    2016-09-01

    Adaptive optics (AO) enables us to observe objects with high spatial resolution, which is important in most astrophysical observations. Most AO systems are operational at near-infrared wavelengths but not in the optical range, because optical observations require a much higher performance to obtain the same Strehl ratio as near-infrared observations. Therefore, to enable AO-assisted observations at optical wavelengths, we connected the Kyoto Tridimensional Spectrograph II (Kyoto 3DII), which can perform integral field spectroscopy, to the second generation AO system of the Subaru Telescope (AO188). We developed a new beam-splitter that reflects light below 594 nm for the wavefront sensors of AO188 and transmits above 644 nm for Kyoto 3DII. We also developed a Kyoto 3DII mount at the Nasmyth focus of the Subaru Telescope. In test observations, the spatial resolution of the combined AO188–Kyoto 3DII was higher than that in natural seeing conditions, even at 6500 Å. The full width at half maximum of an undersampled (1.5 spaxels) bright guide star (7.0 mag in the V-band) was 0.″12.

  7. Optical device for producing color line scan display from monochrome oscilloscope traces

    Kopia, L. P.

    1972-01-01

    Novel device allows generation of simultaneous color line scan from the face of a monochrome cathode ray tube. Device consists of four dichroic beam splitters, two each of red reflectance (cyan transmittance) and blue reflectance (yellow transmittance).

  8. Retinal axial focusing and multi-layer imaging with a liquid crystal adaptive optics camera

    With the help of adaptive optics (AO) technology, cellular level imaging of living human retina can be achieved. Aiming to reduce distressing feelings and to avoid potential drug induced diseases, we attempted to image retina with dilated pupil and froze accommodation without drugs. An optimized liquid crystal adaptive optics camera was adopted for retinal imaging. A novel eye stared system was used for stimulating accommodation and fixating imaging area. Illumination sources and imaging camera kept linkage for focusing and imaging different layers. Four subjects with diverse degree of myopia were imaged. Based on the optical properties of the human eye, the eye stared system reduced the defocus to less than the typical ocular depth of focus. In this way, the illumination light can be projected on certain retina layer precisely. Since that the defocus had been compensated by the eye stared system, the adopted 512 × 512 liquid crystal spatial light modulator (LC-SLM) corrector provided the crucial spatial fidelity to fully compensate high-order aberrations. The Strehl ratio of a subject with −8 diopter myopia was improved to 0.78, which was nearly close to diffraction-limited imaging. By finely adjusting the axial displacement of illumination sources and imaging camera, cone photoreceptors, blood vessels and nerve fiber layer were clearly imaged successfully. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  9. Adaptive coded spreading OFDM signal for dynamic-λ optical access network

    Liu, Bo; Zhang, Lijia; Xin, Xiangjun

    2015-12-01

    This paper proposes and experimentally demonstrates a novel adaptive coded spreading (ACS) orthogonal frequency division multiplexing (OFDM) signal for dynamic distributed optical ring-based access network. The wavelength can be assigned to different remote nodes (RNs) according to the traffic demand of optical network unit (ONU). The ACS can provide dynamic spreading gain to different signals according to the split ratio or transmission length, which offers flexible power budget for the network. A 10×13.12 Gb/s OFDM access with ACS is successfully demonstrated over two RNs and 120 km transmission in the experiment. The demonstrated method may be viewed as one promising for future optical metro access network.

  10. Fast binarized time-reversed adapted-perturbation (b-TRAP) optical focusing inside scattering media

    Ma, Cheng; Liu, Yan; Wang, Lihong V

    2015-01-01

    Light scattering inhibits high-resolution optical imaging, manipulation and therapy deep inside biological tissue by preventing focusing. To form deep foci, wavefront-shaping and time-reversal techniques that break the optical diffusion limit have been developed. For in vivo applications, such focusing must provide high gain, high speed, and a large number of spatial modes. However, none of the previous techniques meet these requirements simultaneously. Here, we overcome this challenge by rapidly measuring the perturbed optical field within a single camera exposure followed by adaptively time-reversing the phase-binarized perturbation. Consequently, a phase-conjugated wavefront is synthesized within a millisecond, two orders of magnitude shorter than the digitally achieved record. We demonstrated real-time focusing in dynamic scattering media, and extended laser speckle contrast imaging to new depths. The unprecedented combination of fast response, high gain, and large mode count makes this work a major strid...

  11. Mission to Mars: Adaptive Identifier for the Solution of Inverse Optical Metrology Tasks

    Krapivin, Vladimir F.; Varotsos, Costas A.; Christodoulakis, John

    2016-04-01

    A human mission to Mars requires the solution of many problems that mainly linked to the safety of life, the reliable operational control of drinking water as well as health care. The availability of liquid fuels is also an important issue since the existing tools cannot fully provide the required liquid fuels quantities for the mission return journey. This paper presents the development of new methods and technology for reliable, operational, and with high availability chemical analysis of liquid solutions of various types. This technology is based on the employment of optical sensors (such as the multi-channel spectrophotometers or spectroellipsometers and microwave radiometers) and the development of a database of spectral images for typical liquid solutions that could be the objects of life on Mars. This database exploits the adaptive recognition of optical images of liquids using specific algorithms that are based on spectral analysis, cluster analysis and methods for solving the inverse optical metrology tasks.

  12. High-Contrast Imaging using Adaptive Optics for Extrasolar Planet Detection

    Evans, J W

    2006-08-18

    Direct imaging of extrasolar planets is an important, but challenging, next step in planetary science. Most planets identified to date have been detected indirectly--not by emitted or reflected light but through the effect of the planet on the parent star. For example, radial velocity techniques measure the doppler shift in the spectrum of the star produced by the presence of a planet. Indirect techniques only probe about 15% of the orbital parameter space of our solar system. Direct methods would probe new parameter space, and the detected light can be analyzed spectroscopically, providing new information about detected planets. High contrast adaptive optics systems, also known as Extreme Adaptive Optics (ExAO), will require contrasts of between 10{sup -6} and 10{sup -7} at angles of 4-24 {lambda}/D on an 8-m class telescope to image young Jupiter-like planets still warm with the heat of formation. Contrast is defined as the intensity ratio of the dark wings of the image, where a planet might be, to the bright core of the star. Such instruments will be technically challenging, requiring high order adaptive optics with > 2000 actuators and improved diffraction suppression. Contrast is ultimately limited by residual static wavefront errors, so an extrasolar planet imager will require wavefront control with an accuracy of better than 1 nm rms within the low- to mid-spatial frequency range. Laboratory demonstrations are critical to instrument development. The ExAO testbed at the Laboratory for Adaptive Optics was designed with low wavefront error and precision optical metrology, which is used to explore contrast limits and develop the technology needed for an extrasolar planet imager. A state-of-the-art, 1024-actuator micro-electrical-mechanical-systems (MEMS) deformable mirror was installed and characterized to provide active wavefront control and test this novel technology. I present 6.5 x 10{sup -8} contrast measurements with a prolate shaped pupil and flat mirror

  13. Nonlinear optical properties of cobalt and iron doped CdSe nanoparticles using Z-scan technique

    The present work aims at the synthesis of pure, Cobalt (Co) and Iron (Fe) doped CdSe nanoparticles by the wet chemical method. The optical properties of synthesized nanoparticles have been characterized by X-ray diffraction (XRD), UV–vis spectroscopy to find the optical direct band gap and estimation of particle size by using Debye–Scherrer formula and HRTEM. The nonlinear optical properties such as nonlinear absorption co-efficient, nonlinear refraction co-efficient and third order nonlinear susceptibility χ(3) are investigated. The calculations have been performed with the help of Z-scan experimental set-up using Nd: YAG laser emitting 532 nm, 5 ns laser pulses with intensity maintained at 2.296 TW/cm2. The nanoparticles clearly exhibit a negative value of nonlinear refraction, which is attributed to the two photon absorption and free carrier absorption. Further the optical limiting behavior is determined (figure of merit (FOM)). The presence of RSA in these nanoparticles makes them a potential material for the development of optical limiter

  14. Nonlinear optical properties of cobalt and iron doped CdSe nanoparticles using Z-scan technique

    Gaur, Poonam, E-mail: poonam.gaur612@gmail.com [Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Sonipat 131001, Haryana (India); Malik, B.P. [Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Sonipat 131001, Haryana (India); Gaur, Arun [Department of Physics, Hindu College, Sonipat 131001, Haryana (India)

    2015-01-15

    The present work aims at the synthesis of pure, Cobalt (Co) and Iron (Fe) doped CdSe nanoparticles by the wet chemical method. The optical properties of synthesized nanoparticles have been characterized by X-ray diffraction (XRD), UV–vis spectroscopy to find the optical direct band gap and estimation of particle size by using Debye–Scherrer formula and HRTEM. The nonlinear optical properties such as nonlinear absorption co-efficient, nonlinear refraction co-efficient and third order nonlinear susceptibility χ{sup (3)} are investigated. The calculations have been performed with the help of Z-scan experimental set-up using Nd: YAG laser emitting 532 nm, 5 ns laser pulses with intensity maintained at 2.296 TW/cm{sup 2}. The nanoparticles clearly exhibit a negative value of nonlinear refraction, which is attributed to the two photon absorption and free carrier absorption. Further the optical limiting behavior is determined (figure of merit (FOM)). The presence of RSA in these nanoparticles makes them a potential material for the development of optical limiter.

  15. Investigation of third-order optical nonlinearity in KBe2BO3F2 crystal by Z-scan

    Li, F.-Q.; Zong, N.; Zhang, F.-F.; Yang, J.; Yang, F.; Peng, Q.-J.; Cui, D.-F.; Zhang, J.-Y.; Wang, X.-Y.; Chen, C.-T.; Xu, Z.-Y.

    2012-08-01

    The third-order optical nonlinearity of deep-ultraviolet (DUV) nonlinear optical (NLO) crystal KBe2BO3F2 (KBBF) was investigated using single-beam Z-scan technique for the first time. The Z-scans were performed on a c-cut KBBF crystal and a KBBF prism-coupling device (PCD) with picosecond pulses at 355 nm. No two-photon absorption was observed in the experiment. The measured nonlinear refraction index n 2 showed positive signs, indicating self-focusing Kerr effects. The n 2 values were estimated to be (1.75±0.35)×10-15 cm2/W with the c-cut sample and (1.85±0.37)×10-15 cm2/W with the PCD, corresponding to the third-order nonlinear optical susceptibilities χ_{eff}^{(3)} of (0.99±0.20)×10-13 esu and (0.94±0.19)×10-13 esu, respectively. The results are expected to promote the investigation of frequency conversion processes with ultra-short laser in KBBF crystal.

  16. Commissioning of the Adaptive Optics System NAOS-CONICA for the VLT : the way to First Light

    Hartung, Markus

    2003-01-01

    In October 2002 NAOS-CONICA, one of the most powerful adaptive optics systems was offered to the astronomical community. The instrument is installed at the Very Large Telescope in Chile and operated by the European Southern Observatory. The adaptive optics system NAOS corrects for atmospheric turbulence and provides the near-infrared multi-mode camera and spectrograph CONICA with diffraction limited images. Development of NAOS was achieved by a French consortium, while CONICA was developed ...

  17. Guided access cavity preparation using cone-beam computed tomography and optical surface scans - an ex vivo study

    Buchgreitz, J; Buchgreitz, M; Mortensen, D;

    2016-01-01

    AIM: To evaluate ex vivo, the accuracy of a preparation procedure planned for teeth with pulp canal obliteration (PCO) using a guide rail concept based on a cone-beam computed tomography (CBCT) scan merged with an optical surface scan. METHODOLOGY: A total of 48 teeth were mounted in acrylic blocks....... An apical canal preparation was created to simulate remnants of an apical root canal that acted as the target for a drill path. The test blocks were surface scanned, and merged with a CBCT scan, and a guide rail was made. A pathway for the bur was created through a metal sleeve within the guide rail...... into dentine. The distance was measured between the centres of the performed drill path and the apical target by two examiners. A maximum distance of 0.7 mm was defined based on the radius of the bur (0.6 mm) and the radius of a root canal just visible on a radiograph (0.1 mm). The t-test was used for...

  18. Millimeter-wave imaging with frequency scanning antenna and optical arrayed waveguide gratings

    He, Yuntao; Yu, Guoxin; Fu, Xinyu; Jiang, Yuesong

    2012-12-01

    The principle of a novel passive millimeter-wave (MMW) imaging method using frequency scanning antenna (FSA) and arrayed waveguide grating (AWG) is analyzed theoretically. The imaging processes are divided to three stages and discussed respectively. Then the FSA with 33~ 43GHz frequency scanning range is designed carefully with a field of view of +/-25°for the MMW imaging system. An AWG of 1×24 is then simply designed with a channel spacing of 0.5GHz. The designing and simulating demonstrated the feasibility to build such an imaging system which is progressing.

  19. An optical scanning system for spectroscopic impurity flux investigations inside the ASDEX tokamak

    A scanning mirror system was developed to resolve impurity flux sources spatially across about 2/3 of the ASDEX surface by using visible spectroscopy. A totally computer-controlled layout allows wide-range spatial scanning during a discharge. Spectra over a range of ∝ 150 A are recorded with an integration time down to 20 ms. The versatility of this new system is illustrated by means of first observations of ASDEX discharges with additional heating (NI, LH, ICRH) and modulated gas puffing experiments. (orig.)

  20. A low temperature ultrahigh vacuum scanning tunneling microscope with high-NA optics to probe optical interactions at the atomic scale

    Zhang, Haigang; Smerdon, Joseph; Suzer, Ozgun; Kersell, Heath; Guest, Jeffrey

    2015-03-01

    The optical and photophysical properties of single molecules/atoms, defects, and nanoscale structures at surfaces hinge on structure at the atomic scale. In order to characterize and control this structure and unravel these correlations, we are developing a low temperature (LT) laser-coupled ultrahigh vacuum (UHV) scanning tunneling microscope (LT Laser UHV STM) based on the Pan-style STM scanner with integrated high-numerical-aperture (NA) optics for single particle spectroscopy measurements under the STM tip. Using slip-stick inertial piezo steppers, the sample stage can be coarsely translated in X and Y directions. For optical measurements, high-NA optics behind and above the sample focus laser excitation on and collect photons emitted from the tip-sample junction. The STM is cooled by a liquid helium bath surrounded by a liquid nitrogen jacket for operation near 5 K; two separate ultrahigh vacuum chambers are used for sample preparation and STM measurements, respectively. We will describe our progress in demonstrating this instrument and plans for experiments studying the correlation between structure and optical function in nanoscale systems. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  1. Status Update and Closed-Loop Performance of the Magellan Adaptive Optics VisAO Camera

    Kopon, Derek; Males, Jared; Gasho, Victor; Morzinski, Katie; Follette, Katherine

    2014-01-01

    We present laboratory results of the closed-loop performance of the Magellan Adaptive Optics (AO) Adaptive Secondary Mirror (ASM), pyramid wavefront sensor (PWFS), and VisAO visible adaptive optics camera. The Magellan AO system is a 585-actuator low-emissivity high-throughput system scheduled for first light on the 6.5 meter Magellan Clay telescope in November 2012. Using a dichroic beamsplitter near the telescope focal plane, the AO system will be able to simultaneously perform visible (500-1000 nm) AO science with our VisAO camera and either 10 micron or 3-5 micron science using either the BLINC/MIRAC4 or CLIO cameras, respectively. The ASM, PWS, and VisAO camera have undergone final system tests in the solar test tower at the Arcetri Institute in Florence, Italy, reaching Strehls of 37% in i'-band with 400 modes and simulated turbulence of 14 cm ro at v-band. We present images and test results of the assembled VisAO system, which includes our prototype advanced Atmospheric Dispersion Corrector (ADC), prot...

  2. Adaptive cancellation of light relative intensity noise for fiber optic gyroscope

    Zhong xiao Ji

    2013-07-01

    Full Text Available In order to reduce the relative intensity noise (RIN in the interferometric signal of the fiber optic gyroscope (FOG, an adaptive noise subtraction method is presented, which aims to overcome to the drawbacks that the fixed delay time and gain of the digital noise subtraction method. The drawbacks will make the performance of FOG to be degraded greatly in the changing environment. In the paper the adaptive noise subtraction system based on the recursive least squares algorithm (RLS is formed in FPGA, in which the interferometric signal is regarded as the signal source, and RIN in the free end of the optical fiber coupler of FOG is looked as the noise reference signal. The two critical parameters that minimum delay time and its varying range result from measuring the minimum and maximum delay times of the interferometric signal in a certain temperature range. The off-line and on-line temperature experimental results verify the capability of adapting to the environmental temperature.

  3. Adaptive Cancellation of Light Relative Intensity Noise for Fiber Optic Gyroscope

    Zhongxiao Ji

    2013-07-01

    Full Text Available In order to reduce the relative intensity noise (RIN in the interferometric signal of the fiber optic gyroscope (FOG, an adaptive noise subtraction method is presented, which aims to overcome to the drawbacks that the fixed delay time and gain of the digital noise subtraction method. The drawbacks will make the performance of FOG to be degraded greatly in the changing environment. In the paper the adaptive noise subtraction system based on the recursive least squares algorithm (RLS is formed in FPGA, in which the interferometric signal is regarded as the signal source, and RIN in the free end of the optical fiber coupler of FOG is looked as the noise reference signal. The two critical parameters that minimum delay time and its varying range result from measuring the minimum and maximum delay times of the interferometric signal in a certain temperature range. The off-line and on-line temperature experimental results verify the capability of adapting to the environmental temperature.      

  4. Development of active/adaptive lightweight optics for the next generation of telescopes

    Ghigo, M.; Basso, S.; Citterio, O.; Mazzoleni, F.; Vernani, D.

    2006-02-01

    The future large optical telescopes will have such large dimensions to require innovative technical solutions either in the engineering and optical fields. Their optics will have dimensions ranging from 30 to 100 m. and will be segmented. It is necessary to develop a cost effective industrial process, fast and efficient, to create the thousands of segments neeededs to assemble the mirrors of these instruments. INAF-OAB (Astronomical Observatory of Brera) is developing with INAF-Arcetri (Florence Astronomical Observatory) a method of production of lightweight glass optics that is suitable for the manufacturing of these segments. These optics will be also probably active and therefore the segments have to be thin, light and relatively flexible. The same requirements are valid also for the secondary adaptive mirrors foreseen for these telescopes and that therefore will benefit from the same technology. The technique under investigation foresees the thermal slumping of thin glass segments using a high quality ceramic mold (master). The sheet of glass is placed onto the mold and then, by means of a suitable thermal cycle, the glass is softened and its shape is changed copying the master shape. At the end of the slumping the correction of the remaining errors will be performed using the Ion Beam Figuring technique, a non-contact deterministic technique. To reduce the time spent for the correction it will be necessary to have shape errors on the segments as small as possible. A very preliminary series of experiments already performed on reduced size segments have shown that it is possible to copy a master shape with high accuracy (few microns PV) and it is very likely that copy accuracies of 1 micron or less are possible. The paper presents in detail the concepts of the proposed process and describes our current efforts that are aimed at the production of a scaled demonstrative adaptive segment of 50 cm of diameter.

  5. Generalization of the optical scanning holography%光学扫描全息术的推广

    刘守渔; 梁万国; 谢敬辉; 赵达尊

    2001-01-01

    The optical scanning holography is given as the following: at the recording sta ge, a real time Fresnel Zone Plate (FZP) is used to scan an object to make the i ntensity distribution of the FZP convolute with the intensity transmissivity of the object, then a photodetector detects the convolution and converts it to dig ital data, the holographic information, to be stored in the computer. At the re co nstruction stage, another FZP signal generated by the computer convolutes with t he stored holographic data resulting in the reconstructed information of the obj ect at a particular crosssection corresponding to the parameters of the second F ZP. A generalizing optical scanning holography is proposed, which says that any real-time optical intensity distribution function can be acted as the optical field to scan the object for obtaining the holographie information, if it has t he following characterics:(1) it is the function of x,y, z with circle symme try of z;(2) for a given z, its autocorrelation is a δ function.%给出了光学扫描全息术的基本原理。 记录时用实时FZP与物体强度透射率发生卷积从而产 生扫描全息图;再现时用与记录时相对应的FZP与全息图信号发生卷积即可再现出物体的信 息。 推广了光学扫描全息术,提出只要某一实时的光场强度分布函数具有如下性质:(l)该函数中含有x,y,z参量且相对于z参量具有圆对称性;(2) 对于某一确定的z参量 ,该函数的自相关是δ函数,就可以把该光场作为光学扫描全息术中的照明光场对物体进行扫描记录以得到扫描全息图。

  6. Description of spermatheca and eggs of Eurygaster austriaca (Schrank, 1778) (Heteroptera: Scutelleridae),based on optical and scanning electron microscopy

    CANDAN, Selami; Suludere, Zekiye; GÜLLÜ, Mustafa

    2011-01-01

    Spermatheca and egg morphology of Eurygaster austriaca (Schrank, 1778) were studied by optical and scanning electron microscopy (SEM). The spermatheca of E. austriaca is characterized by a spermathecal bulb, a pumping region, distal and proximal flanges and ducts, and a genital chamber. Each female was shown to deposit 14 green eggs on average in mass. The spherical eggs averaged 1.05 ± 0.05 mm in diameter. The first external evidence of embryonic development was the appearance of 2 red eye s...

  7. A Proposal to Localize Fermi GBM GRBs Through Coordinated Scanning of the GBM Error Circle via Optical Telescopes

    Ukwatta, T. N.; Linnemann, J. T.; Tollefson, K.; Abeysekara, A. U.; Bhat, P. N.; Sonbas, E.; Gehrels, N.

    2011-01-01

    We investigate the feasibility of implementing a system that will coordinate ground-based optical telescopes to cover the Fermi GBM Error Circle (EC). The aim of the system is to localize GBM detected GRBs and facilitate multi-wavelength follow-up from space and ground. This system will optimize the observing locations in the GBM EC based on individual telescope location, Field of View (FoV) and sensitivity. The proposed system will coordinate GBM EC scanning by professional as well as amateur astronomers around the world. The results of a Monte Carlo simulation to investigate the feasibility of the project are presented.

  8. A Proposal to Localize Fermi GBM GRBs Through Coordinated Scanning of the GBM Error Circle via Optical Telescopes

    Ukwatta, T. N.; Linnemann, J. T.; Tollefson, K.; Abeysekara, A. U.; Bhat, P. N.; Sonbas, E.; Gehrels, N.

    2011-01-01

    We investigate the feasibility of implementing a system that will coordinate ground-based optical telescopes to cover the Fermi GBM Error Circle (EC). The aim of the system is to localize GBM detected GRBs and facilitate multi-wavelength follow-up from space and ground. This system will optimize the observing locations in the GBM EC based on individual telescope location, Field of View (FoV) and sensitivity. The proposed system will coordinate GBM EC scanning by professional as well as amateu...

  9. A Scanning Multi-Axis Differential Optical Absorption Spectroscopy System for Measurement of Tropospheric NO2 in Beijing

    LI Ang; XIE Pin-Hua; LIU Cheng; LIU Jian-Guo; LIU Wen-Qing

    2007-01-01

    A scanning multi-axis differential optical absorption spectroscopy (DOAS) system is developed for monitoring tropospheric NO2 abundance. Measurements at different viewing angles near the horizon can be performed sequentially with one telescope collecting scattered sunlight reflected by a moving mirror. Tropospheric NO2 diurnal variations can be derived from slant column densities (SCDs) of different elevation angles. The result from a field campaign in Beijing in summer of 2005 reveals potential possibility for the monitoring of tropospheric NO2 by multi-axis DOAS technique.

  10. Bases for time-resolved probing of transient carrier dynamics by optical pump-probe scanning tunneling microscopy

    Yokota, Munenori; Yoshida, Shoji; Mera, Yutaka; Takeuchi, Osamu; Oigawa, Haruhiro; Shigekawa, Hidemi

    2013-09-01

    The tangled mechanism that produces optical pump-probe scanning tunneling microscopy spectra from semiconductors was analyzed by comparing model simulation data with experimental data. The nonlinearities reflected in the spectra, namely, the excitations generated by paired laser pulses with a delay time, the logarithmic relationship between carrier density and surface photovoltage (SPV), and the effect of the change in tunneling barrier height depending on SPV, were examined along with the delay-time-dependent integration process used in measurement. The optimum conditions required to realize reliable measurement, as well as the validity of the microscopy technique, were demonstrated for the first time.

  11. Adaptive neuro-fuzzy prediction of modulation transfer function of optical lens system

    Petković, Dalibor; Shamshirband, Shahaboddin; Anuar, Nor Badrul; Md Nasir, Mohd Hairul Nizam; Pavlović, Nenad T.; Akib, Shatirah

    2014-07-01

    The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the adaptive neuro-fuzzy (ANFIS) estimator is designed and adapted to predict MTF value of the actual optical system. Neural network in ANFIS adjusts parameters of membership function in the fuzzy logic of the fuzzy inference system. The back propagation learning algorithm is used for training this network. This intelligent estimator is implemented using MATLAB/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.

  12. Modulation transfer function estimation of optical lens system by adaptive neuro-fuzzy methodology

    Petković, Dalibor; Shamshirband, Shahaboddin; Pavlović, Nenad T.; Anuar, Nor Badrul; Kiah, Miss Laiha Mat

    2014-07-01

    The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the adaptive neuro-fuzzy (ANFIS) estimator is designed and adapted to estimate MTF value of the actual optical system. Neural network in ANFIS adjusts parameters of membership function in the fuzzy logic of the fuzzy inference system. The back propagation learning algorithm is used for training this network. This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.

  13. Wavefront detection method of a single-sensor based adaptive optics system.

    Wang, Chongchong; Hu, Lifa; Xu, Huanyu; Wang, Yukun; Li, Dayu; Wang, Shaoxin; Mu, Quanquan; Yang, Chengliang; Cao, Zhaoliang; Lu, Xinghai; Xuan, Li

    2015-08-10

    In adaptive optics system (AOS) for optical telescopes, the reported wavefront sensing strategy consists of two parts: a specific sensor for tip-tilt (TT) detection and another wavefront sensor for other distortions detection. Thus, a part of incident light has to be used for TT detection, which decreases the light energy used by wavefront sensor and eventually reduces the precision of wavefront correction. In this paper, a single Shack-Hartmann wavefront sensor based wavefront measurement method is presented for both large amplitude TT and other distortions' measurement. Experiments were performed for testing the presented wavefront method and validating the wavefront detection and correction ability of the single-sensor based AOS. With adaptive correction, the root-mean-square of residual TT was less than 0.2 λ, and a clear image was obtained in the lab. Equipped on a 1.23-meter optical telescope, the binary stars with angle distance of 0.6″ were clearly resolved using the AOS. This wavefront measurement method removes the separate TT sensor, which not only simplifies the AOS but also saves light energy for subsequent wavefront sensing and imaging, and eventually improves the detection and imaging capability of the AOS. PMID:26367988

  14. Ultrahigh-Resolution Combined Coronal Optical Coherence Tomography Confocal Scanning Ophthalmoscope (OCT/SLO): a pilot study

    To evaluate clinical images from a prototype ultrahigh resolution (UHR) combined coronal optical coherence tomography/confocal scanning ophthalmoscope (OCT/SLO) and to compare them to standard-resolution OCT/SLO images on the same patients. Cross-sectional pilot-study. Sixty-six eyes of 42 patients with various macular pathologies, such as age-related macular degeneration, macular edema, macular hole, central serous retinopathy, epiretinal membrane and posterior vitreous traction syndrome. Each subject was first scanned with a standard-resolution OCT/SLO that has an axial resolution of ∼ 10 micron. Immediately following, patients were scanned with the prototype UHR OCT/SLO device. The UHR system employs a compact super luminescent diode (SLD) with a 150 nm bandwidth centered at 890 nm, which allows imaging of the retina with an axial resolution of 3 microns. Both coronal and longitudinal OCT scans were acquired with each system, and compared side-by-side. Scan quality was assessed for the observer's ability to visualize the vitreo-retinal interface and retinal layers - in particular of the outer retina/RPE/choroidal interface, increased discrimination of pathological changes, and better signal intensity. Ultrahigh and standard-resolution coronal and longitudinal OCT/SLO images of macular pathologies. In the side-by-side comparison with the commercial standard-resolution OCT/SLO images, the scans in the Ultrahigh resolution OCT/SLO images were superior in 85 % of cases. Relatively poor quality images were attributed to lower signal-to-noise ratio, limited focusing, or media opacities. Several images that had a better signal intensity in the standard-resolution OCT/SLO system were found to show more retinal detail in the UHR system. In general, intraretinal layers in the UHR OCT/SLO images were better delineated in both coronal and longitudinal scans. Enhanced details were also seen in the outer retina/RPE/choroidal complex. The UHR OCT/SLO system produced better

  15. Diffraction-unlimited optical imaging of unstained living cells in liquid by electron beam scanning of luminescent environmental cells.

    Miyazaki, Hideki T; Kasaya, Takeshi; Takemura, Taro; Hanagata, Nobutaka; Yasuda, Takeshi; Miyazaki, Hiroshi

    2013-11-18

    An environmental cell with a 50-nm-thick cathodoluminescent window was attached to a scanning electron microscope, and diffraction-unlimited near-field optical imaging of unstained living human lung epithelial cells in liquid was demonstrated. Electrons with energies as low as 0.8 - 1.2 kV are sufficiently blocked by the window without damaging the specimens, and form a sub-wavelength-sized illumination light source. A super-resolved optical image of the specimen adhered to the opposite window surface was acquired by a photomultiplier tube placed below. The cells after the observation were proved to stay alive. The image was formed by enhanced dipole radiation or energy transfer, and features as small as 62 nm were resolved. PMID:24514332

  16. Nano-scale imaging of chromosomes and DNA by scanning near-field optical/atomic force microscopy

    Yoshino, Tomoyuki; Sugiyama, Shigeru; Hagiwara, Shoji; Fukushi, Daisuke; Shichiri, Motoharu; Nakao, Hidenobu; Kim, J.-M.; Hirose, Tamaki; Muramatsu, Hiroshi; Ohtani, Toshio

    2003-10-15

    Nano-scale structures of the YOYO-1-stained barley chromosomes and lambda-phage DNA were investigated by scanning near-field optical/atomic force microscopy (SNOM/AFM). This technique enabled precise analysis of fluorescence structural images in relation to the morphology of the biomaterials. The results suggested that the fluorescence intensity does not always correspond to topographic height of the chromosomes, but roughly reflects the local amount and/or density of DNA. Various sizes of the bright fluorescence spots were clearly observed in fluorescence banding-treated chromosomes. Furthermore, fluorescence-stained lambda-phage DNA analysis by SNOM/AFM demonstrated the possibility of nanometer-scale imaging for a novel technique termed nano-fluorescence in situ hybridization (nano-FISH). Thus, SNOM/AFM is a powerful tool for analyzing the structure and the function of biomaterials with higher resolution than conventional optical microscopes.

  17. Performance Investigation on Scan-On-Receive and Adaptive Digital Beam-Forming for High-Resolution Wide-Swath Synthetic Aperture Radar

    Bordoni, Federica; Younis, Marwan; Makhoul Varona, Eduardo; Gebert, Nicolas; Krieger, Gerhard

    2009-01-01

    The work investigates the performance of the Smart Multi-Aperture Radar Technique (SMART) Synthetic Aperture Radar (SAR) system for high-resolution wide-swath imaging based on Scan-on-Receive (SCORE) algorithm for receive beam steering. SCORE algorithm works under model mismatch conditions in presence of topographic height. A study on the potentiality of an adaptive approach for receive beam steering based on spatial spectral estimation is presented. The impact of topographic height on SCORE ...

  18. Contrast enhancement in microscopy of human thyroid tumors by means of acousto-optic adaptive spatial filtering

    Yushkov, Konstantin B.; Molchanov, Vladimir Y.; Belousov, Pavel V.; Abrosimov, Aleksander Y.

    2016-01-01

    We report a method for edge enhancement in the images of transparent samples using analog image processing in coherent light. The experimental technique is based on adaptive spatial filtering with an acousto-optic tunable filter in a telecentric optical system. We demonstrate processing of microscopic images of unstained and stained histological sections of human thyroid tumor with improved contrast.

  19. woptic: Optical conductivity with Wannier functions and adaptive k-mesh refinement

    Assmann, E.; Wissgott, P.; Kuneš, J.; Toschi, A.; Blaha, P.; Held, K.

    2016-05-01

    We present an algorithm for the adaptive tetrahedral integration over the Brillouin zone of crystalline materials, and apply it to compute the optical conductivity, dc conductivity, and thermopower. For these quantities, whose contributions are often localized in small portions of the Brillouin zone, adaptive integration is especially relevant. Our implementation, the woptic package, is tied into the WIEN2WANNIER framework and allows including a local many-body self energy, e.g. from dynamical mean-field theory (DMFT). Wannier functions and dipole matrix elements are computed with the DFT package WIEN2k and Wannier90. For illustration, we show DFT results for fcc-Al and DMFT results for the correlated metal SrVO3.

  20. woptic: optical conductivity with Wannier functions and adaptive k-mesh refinement

    Assmann, E; Kuneš, J; Toschi, A; Blaha, P; Held, K

    2015-01-01

    We present an algorithm for the adaptive tetrahedral integration over the Brillouin zone of crystalline materials, and apply it to compute the optical conductivity, dc conductivity, and thermopower. For these quantities, whose contributions are often localized in small portions of the Brillouin zone, adaptive integration is especially relevant. Our implementation, the woptic package, is tied into the wien2wannier framework and allows including a many-body self energy, e.g. from dynamical mean-field theory (DMFT). Wannier functions and dipole matrix elements are computed with the DFT package Wien2k and Wannier90. For illustration, we show DFT results for fcc-Al and DMFT results for the correlated metal SrVO$_3$.

  1. Efficient wave function simulations in nonlinear quantum optics using an adaptive coherent state basis

    Full text: We show that a suitable set of coherent basis states placed on a discrete hexagonal grid can be used to numerically very accurately represent general quantum states in a memory efficient way. Adding an algorithm for dynamic basis adaptation allows highly accurate Quantum Monte Carlo wave function simulations with small basis sets. At the example of the intricate nonlinear dynamics of an optical parametric oscillator around threshold, we demonstrate that this approach yields accurate time dependent solutions with a substantially smaller basis sets than required for a photon number basis. Above threshold the adaptive basis splits into localized subsets allowing efficient representation of bimodal or even more complex phase space distributions and directly yields an intuitive physical picture of the ongoing dynamics. (author)

  2. Wavefront sensorless adaptive optics fluorescence biomicroscope for in vivo retinal imaging in mice.

    Wahl, Daniel J; Jian, Yifan; Bonora, Stefano; Zawadzki, Robert J; Sarunic, Marinko V

    2016-01-01

    Cellular-resolution in vivo fluorescence imaging is a valuable tool for longitudinal studies of retinal function in vision research. Wavefront sensorless adaptive optics (WSAO) is a developing technology that enables high-resolution imaging of the mouse retina. In place of the conventional method of using a Shack-Hartmann wavefront sensor to measure the aberrations directly, WSAO uses an image quality metric and a search algorithm to drive the shape of the adaptive element (i.e. deformable mirror). WSAO is a robust approach to AO and it is compatible with a compact, low-cost lens-based system. In this report, we demonstrated a hill-climbing algorithm for WSAO with a variable focus lens and deformable mirror for non-invasive in vivo imaging of EGFP (enhanced green fluorescent protein) labelled ganglion cells and microglia cells in the mouse retina. PMID:26819812

  3. Adaptive Sensor Optimization and Cognitive Image Processing Using Autonomous Optical Neuroprocessors; TOPICAL

    Measurement and signal intelligence demands has created new requirements for information management and interoperability as they affect surveillance and situational awareness. Integration of on-board autonomous learning and adaptive control structures within a remote sensing platform architecture would substantially improve the utility of intelligence collection by facilitating real-time optimization of measurement parameters for variable field conditions. A problem faced by conventional digital implementations of intelligent systems is the conflict between a distributed parallel structure on a sequential serial interface functionally degrading bandwidth and response time. In contrast, optically designed networks exhibit the massive parallelism and interconnect density needed to perform complex cognitive functions within a dynamic asynchronous environment. Recently, all-optical self-organizing neural networks exhibiting emergent collective behavior which mimic perception, recognition, association, and contemplative learning have been realized using photorefractive holography in combination with sensory systems for feature maps, threshold decomposition, image enhancement, and nonlinear matched filters. Such hybrid information processors depart from the classical computational paradigm based on analytic rules-based algorithms and instead utilize unsupervised generalization and perceptron-like exploratory or improvisational behaviors to evolve toward optimized solutions. These systems are robust to instrumental systematics or corrupting noise and can enrich knowledge structures by allowing competition between multiple hypotheses. This property enables them to rapidly adapt or self-compensate for dynamic or imprecise conditions which would be unstable using conventional linear control models. By incorporating an intelligent optical neuroprocessor in the back plane of an imaging sensor, a broad class of high-level cognitive image analysis problems including geometric

  4. Simply scan--optical methods for elemental carbon measurement in diesel exhaust particulate.

    Forder, James A

    2014-08-01

    This article describes a performance assessment of three optical methods, a Magee Scientific OT21 Transmissometer, a Hach-Lange Microcolor II difference gloss meter, and a combination of an office scanner with Adobe Photoshop software. The optical methods measure filter staining as a proxy for elemental carbon in diesel exhaust particulate (DEP) exposure assessment and the suitability of each as a replacement for the existing Bosch meter optical method. Filters loaded with DEP were produced from air in a non-coal mine and the exhaust gases from a mobile crane. These were measured with each apparatus and then by combustion to obtain a reference elemental carbon value. The results from each apparatus were then plotted against both the Bosch number and reference elemental carbon values. The equations of the best fit lines for these plots were derived, and these gave functions for elemental carbon and Bosch number from the output of each new optical method. For each optical method, the range of DEP loadings which can be measured has been determined, and conversion equations for elemental carbon and Bosch number have been obtained. All three optical methods studied will effectively quantify blackness as a measure of elemental carbon. Of these the Magee Scientific OT21 transmissometer has the best performance. The Microcolor II and scanner/photoshop methods will in addition allow conversion to Bosch number which may be useful if historical Bosch data are available and functions for this are described. The scanner/photoshop method demonstrates a technique to obtain measurements of DEP exposure without the need to purchase specialized instrumentation. PMID:24939982

  5. DESIGN ISSUES FOR BIT RATE-ADAPTIVE 3R O/E/OTRANSPONDER IN INTELLIGENT OPTICAL NETWORKS

    朱栩; 曾庆济; 杨旭东; 刘逢清; 肖石林

    2002-01-01

    This paper reported the design and implementation of a bit rate-adaptive Optical-Electronic-Optical (O/E/O) transponder accomplishing almost full data rate transparency up to 2.5 Gb/s with 3R (Reamplifying, Reshaping and Retiming) processing in electronic domain. Based on the chipsets performing clock recovery in several continuous bit rate ranges, a clock and data regenerating circuit self-adaptive to the bit rate of input signal was developed. Key design issues were presented, laying stress on the functional building blocks and scheme for the bit rate-adaptive retiming circuit. The experimental results show a good scalability performance.

  6. Optical nonlinearity of organic dyes as studied by Z-scan and transient grating techniques

    Umakanta Tripathy; R Justin Rajesh; Prem B Bisht; A Subrahamanyam

    2002-12-01

    The excited state absorption cross-section of 5,5′-dichloro-11-diphenylamino- 3,3′-diethyl-10,12-ethylinethiatricarbocyanine perchlorate (IR140) have been measured by using a single beam transmission technique. Z-scan experiments have been used to find out a few nonlinear parameters. The excited state relaxation times have also been measured by using laser induced transient grating (LITG) technique.

  7. VLT/NACO infrared adaptive optics images of small scale structures in OMC1

    Lacombe, F; Rouan, D; Clénet, Y; Lemaire, J L; Lagrange, A M; Mouillet, D; Rousset, G; Marlot, C; Feautrier, P; Gustafsson, M; Field, D; Lacombe, Francois; Gendron, Eric; Rouan, Daniel; Clenet, Yann; Lemaire, Jean-Louis; Lagrange, Anne-Marie; Mouillet, David; Rousset, Gerard; Marlot, Claude; Feautrier, Philippe; Field, David; Proxy, Bernard Servan; ccsd-00000915, ccsd

    2003-01-01

    Near-infrared observations of line emission from excited H2 and in the continuum are reported in the direction of the Orion molecular cloud OMC1, using the European Southern Observatory Very Large Telescope UT4, equipped with the NAOS adaptive optics system and the CONICA infrared array camera. Spatial resolution has been achieved at close to the diffraction limit of the telescope (0.08" - 0.12") and images show a wealth of morphological detail. Structure is not fractal but shows two preferred scale sizes of 2.4" (1100 AU) and 1.2" (540 AU), where the larger scale may be associated with star formation.

  8. Fast Fourier and Wavelet Transforms for Wavefront Reconstruction in Adaptive Optics

    Dowla, F U; Brase, J M; Olivier, S S

    2000-07-28

    Wavefront reconstruction techniques using the least-squares estimators are computationally quite expensive. We compare wavelet and Fourier transforms techniques in addressing the computation issues of wavefront reconstruction in adaptive optics. It is shown that because the Fourier approach is not simply a numerical approximation technique unlike the wavelet method, the Fourier approach might have advantages in terms of numerical accuracy. However, strictly from a numerical computations viewpoint, the wavelet approximation method might have advantage in terms of speed. To optimize the wavelet method, a statistical study might be necessary to use the best basis functions or ''approximation tree.''

  9. The Subaru Coronagraphic Extreme Adaptive Optics Imager: First Results and On-Sky Performance

    Currie, Thayne; Martinache, Frantz; Clergeon, Christophe; McElwain, Michael; Thalmann, Christian; Jovanovic, Nemanja; Singh, Garima; Kudo, Tomoyuki

    2013-01-01

    We present new on-sky results for the Subaru Coronagraphic Extreme Adaptive Optics imager (SCExAO) verifying and quantifying the contrast gain enabled by key components: the closed-loop coronagraphic low-order wavefront sensor (CLOWFS) and focal plane wavefront control ("speckle nulling"). SCExAO will soon be coupled with a high-order, Pyramid wavefront sensor which will yield > 90% Strehl ratio and enable 10^6--10^7 contrast at small angular separations allowing us to image gas giant planets at solar system scales. Upcoming instruments like VAMPIRES, FIRST, and CHARIS will expand SCExAO's science capabilities.

  10. Object-oriented software design for the Mt. Wilson 100-inch Hooker telescope adaptive optics system

    Schneider, Thomas G.

    2000-06-01

    The object oriented software design paradigm has been instrumented in the development of the Adoptics software used in the Hooker telescope's ADOPT adaptive optics system. The software runs on a Pentium-class PC host and eight DSP processors connected to the host's motherboard bus. C++ classes were created to implement most of the host software's functionality, with the object oriented features of inheritance, encapsulation and abstraction being the most useful. Careful class design at the inception of the project allowed for the rapid addition of features without comprising the integrity of the software. Base class implementations include the DSP system, real-time graphical displays and opto-mechanical actuator control.

  11. Clock recovering characteristics of adaptive finite-impulse-response filters in digital coherent optical receivers.

    Kikuchi, Kazuro

    2011-03-14

    We analyze the clock-recovery process based on adaptive finite-impulse-response (FIR) filtering in digital coherent optical receivers. When the clock frequency is synchronized between the transmitter and the receiver, only five taps in half-symbol-spaced FIR filters can adjust the sampling phase of analog-to-digital conversion optimally, enabling bit-error rate performance independent of the initial sampling phase. Even if the clock frequency is not synchronized between them, the clock-frequency misalignment can be adjusted within an appropriate block interval; thus, we can achieve an asynchronous clock mode of operation of digital coherent receivers with block processing of the symbol sequence. PMID:21445201

  12. Precise Astrometry of Visual Binaries with Adaptive Optics. A Way for Finding Exoplanets?

    Hełminiak, Krzysztof

    2008-01-01

    We present the results of our study of astrometric stability of 200-in Hale (Mt. Palomar) and 10-m Keck II (Mauna Kea) telescopes, both with Adaptive Optics (AO) facilities. A group of nearby visual binaries and multiples was observed in near infrared, relative separations and position angles measured. We have also checked the influence of some systematic effects (e.g. atmospherical refraction, varying plate scale factor) on result and precision of astrometric measurements. We conclude that in visual binaries astrometrical observations it is possible to achieve much better precision than 1 miliarcsecond, which in many cases allows detection of the astrometrical signal produced by planetary-mass object.

  13. Titan imagery with Keck adaptive optics during and after probe entry

    De Pater, Imke; Ádámkovics, Máte; Bouchez, Antonin H.; Brown, Michael E.; Gibbard, Seran G.; Marchis, Franck; Roe, Henry G.; Schaller, Emily L.; Young, Eliot

    2006-01-01

    We present adaptive optics data from the Keck telescope, taken while the Huygens probe descended through Titan's atmosphere and on the days following touchdown. No probe entry signal was detected. Our observations span a solar phase angle range from 0.05° up to 0.8°, with the Sun in the west. Contrary to expectations, the east side of Titan's stratosphere was usually brightest. Compiling images obtained with Keck and Gemini over the past few years reveals that the east-west asymmetry can be e...

  14. Progress with multi-conjugate adaptive optics at the Big Bear Solar Observatory

    Schmidt, Dirk; Gorceix, Nicolas; Marino, Jose; Zhang, Xianyu; Berkefeld, Thomas; Rimmele, Thomas R.; Goode, Philip R.

    2016-05-01

    The MCAO system at BBSO is the pathfinder system for a future system at the 4-meter DKIST. It deploys three DMs, one in the pupil and two in higher altitudes. The design allows to move the latter independently to adapt to the turbulence profile within about 2-9 km.The optical path has been improved in 2015, and has shown satisfying solar images. The MCAO loop was able to improve the wavefront error across the field slightly compared to classical AO.We will report on the latest improvements, on-Sun results and motivate the design of the system.

  15. Bi-photon propagation control with optimized wavefront by means of Adaptive Optics

    Minozzi, M; Sergienko, A V; Vallone, G; Villoresi, P

    2012-01-01

    We present an efficient method to control the spatial modes of entangled photons produced through SPDC process. Bi-photon beam propagation is controlled by a deformable mirror, that shapes a 404nm CW diode laser pump interacting with a nonlinear BBO type-I crystal. Thanks to adaptive optical system, the propagation of 808nm SPDC light produced is optimized over a distance of 2m. The whole system optimization is carried out by a feedback between deformable mirror action and entangled photon coincidence counts. We also demonstrated the improvement of the two-photon coupling into single mode fibers.

  16. Bi-photon propagation control with optimized wavefront by means of Adaptive Optics

    Minozzi, M.; Bonora, S.; Sergienko, A. V.; G. Vallone; Villoresi, P.

    2012-01-01

    We present an efficient method to control the spatial modes of entangled photons produced through SPDC process. Bi-photon beam propagation is controlled by a deformable mirror, that shapes a 404nm CW diode laser pump interacting with a nonlinear BBO type-I crystal. Thanks to adaptive optical system, the propagation of 808nm SPDC light produced is optimized over a distance of 2m. The whole system optimization is carried out by a feedback between deformable mirror action and entangled photon co...

  17. LBT adaptive secondary mirrors: chopping procedures and optical calibration on the test bench

    Briguglio, Runa; Xompero, Marco; Riccardi, Armando

    2012-07-01

    In this paper we will describe the chopping capabilities of the Large Binocular Telescope adaptive secondary mirrors. The chopping testing procedure has been implemented at the Arcetri Test Tower in Florence, Italy, together with the optical testing set-up. The deformable mirror static figuring error, after the flattening calibration at both chopping positions (+/- 25 μm tilt with respect to the nominal position), is measured to be compatible to the figuring at the zero tilt position, i.e. 30 nm RMS. The figuring error measured at a +25 μm tilted position, while the mirror was chopping at 10Hz, is within requirements for seeing limited mode observations.

  18. Using optically scanned 3D data in the restoration of Michelangelo's David

    Scopigno, Roberto; Cignoni, Paolo; Callieri, Marco; Ganovelli, Fabio; Impoco, G.; Pingi, P.; Ponchio, F.

    2003-10-01

    Modern 3D scanning technologies allow to reconstruct 3D digital representations of Cultural Heritage artifacts in a semi-automatic way, characterized by very high accuracy and wealth of details. The availability of an accurate digital representation opens several possibilities of utilization to experts (restorers, archivists, museum curators), or to ordinary people (students, museum visitors). 3D scanned data are commonly used for the production of animations, interactive visualizations, or virtual reality applications. A much more exciting opportunity is to use these data in the restoration of Cultural Heritage artworks. The integration between 3D graphic and restoration represents an open research field where many new supporting tools are required; the David restoration project has given several starting points and guidelines to the definition and development of innovative solutions. Digital 3D models can be used in two different but not subsidiary modes: as an instrument for the execution of specific investigations and as a supporting media for the archival and integration of all the restoration-related information, gathered with the different studies and analysis performed on the artwork. In this paper we present some recent work done in the framework of the Michelangelo's David restoration project. A 3D model of the David was reconstructed by the Digital Michelangelo Project, using laser-based 3D scanning technology. We have developed some tools to make those data accessible and useful in the restoration. Preliminary results are reported here together with some directions for further research.

  19. Recovery Management in All Optical Networks Using Biologically-Inspired Complex Adaptive System

    Inadyuti Dutt

    2013-01-01

    Full Text Available All-Optical Networks have the ability to display varied advantages like performance efficiency, throughput etc but their efficiency depends on their survivability as they are attack prone. These attacks can be categorised as active or passive because they try to access information within the network or alter the information in the network. The attack once detected has to be recovered by formulating back-up or alternative paths. The proposed heuristic uses biologically inspired Complex Adaptive System, inspired by Natural Immune System. The study shows that natural immune system exhibit unique behaviour of detecting foreign bodies in our body and removing them on their first occurrences. This phenomenon is being utilised in the proposed heuristic for recovery management in All-optical Network

  20. Adaptive information interchange system of the fiber-optic measuring networks with the computer

    Denisov, Igor V.; Drozdov, Roman S.; Sedov, Victor A.

    2005-06-01

    In the present paper the characteristics and opportunities of application of the system of parallel input-output of information from the fiber-optical measuring network into computer are considered. The system consists of two pars: on manframe and several expansion blocks. The first part is internal, is connected directly in the socket of the motherboard of the personal computer. It is designed for buffering system signals and development of cojmands of controlling by the system for input-output of signals into personal computer and signals generation onto expansion blocks. The second part is external, connects to the mainframe by means of cables. It designed for transformation of information from the fiber-optical measuring network into signalsof rthe mainframe and instrument settings adaptation. The analysis of speed of procesing of analog and digital data by system is presented. The possible schemes of use of the system for processing quasistationary and dynamic fields are considered.

  1. Stochastic parallel gradient descent based adaptive optics used for high contrast imaging coronagraph

    Dong, Bing; Zhang, Xi

    2011-01-01

    An adaptive optics (AO) system based on stochastic parallel gradient descent (SPGD) algorithm is proposed to reduce the speckle noises in the optical system of stellar coronagraph in order to further improve the contrast. The principle of SPGD algorithm is described briefly and a metric suitable for point source imaging optimization is given. The feasibility and good performance of SPGD algorithm is demonstrated by experimental system featured with a 140-actuators deformable mirror (DM) and a Hartmann- Shark wavefront sensor. Then the SPGD based AO is applied to a liquid crystal array (LCA) based coronagraph. The LCA can modulate the incoming light to generate a pupil apodization mask in any pattern. A circular stepped pattern is used in our preliminary experiment and the image contrast shows improvement from 10^-3 to 10^-4.5 at angular distance of 2{\\lambda}/D after corrected by SPGD based AO.

  2. Ferrofluid Based Deformable Mirrors - a New Approach to Adaptive Optics Using Liquid Mirrors

    Laird, P; Berube, V; Borra, E F; Ritcey, A; Rioux, M; Robitaille, N; Thibault, S; Yockell-Lelievre, H

    2002-01-01

    The trend towards ever larger telescopes and more advanced adaptive optics systems is driving the need for deformable mirrors with a large number of low cost actuators. Liquid mirrors have long been recognized a potential low cost alternative to conventional solid mirrors. By using a water or oil based ferrofluid we are able to benefit from a stronger magnetic response than is found in magnetic liquid metal amalgams and avoid the difficulty of passing a uniform current through a liquid. Depositing a thin silver colloid known as a metal liquid-like film (MELLF) on the ferrofluid surface solves the problem of low reflectivity of pure ferrofluids. This combination provides a liquid optical surface that can be precisely shaped in a magnetic field. We present experimental results obtained with a prototype deformable liquid mirror based on this combination.

  3. Ferrofluid based deformable mirrors: a new approach to adaptive optics using liquid mirrors

    Laird, Phil R.; Bergamasco, R.; Bérubé, Vincent; Borra, Ermanno F.; Gingras, Julie; Ritcey, Anna-Marie R.; Rioux, Myriam; Robitaille, Nathalie; Thibault, Simon; Vieira da Silva, L., Jr.; Yockell-Lelièvre, Helene

    2003-02-01

    The trend towards ever larger telescopes and more advanced adaptive optics systems is driving the need for deformable mirrors with a large number of low cost actuators. Liquid mirrors have long been recognized a potential low cost alternative to conventional solid mirrors. By using a water or oil based ferrofluid we are able to benefit from a stronger magnetic response than is found in magnetic liquid metal amalgams and avoid the difficulty of passing a uniform current through a liquid. Depositing a thin silver colloid known as a metal liquid like film (MELLF) on the ferrofluid surface solves the problem of low reflectivity of pure ferrofluids. This combination provides a liquid optical surface that can be precisely shaped in a magnetic field. We present experimental results obtained with a prototype deformable liquid mirror based on this combination.

  4. Combinational-deformable-mirror adaptive optics system for compensation of high-order modes of wavefront

    Huafeng Yang; Guilin Liu; Changhui Rao; Yudong Zhang; Wenhan Jiang

    2007-01-01

    A new kind of adaptive optics (AO) system, in which several low spatial frequency deformable mirrors(DMs) with optical conjugation relationship are combined to correct high-order aberrations, is proposed.The phase compensation principle and the control method of the combinational AO system are introduced.The numerical simulations for the AO system with two 60-element DMs are presented. The results indicate that the combinational DM in the AO system can correct different aberrations effectively as one single DM with more actuators, and there is no change of control method. This technique can be applied to a large telescope AO system to improve the spatial compensation capability for wavefront by using current DM.

  5. Numerical control matrix rotation for the LINC-NIRVANA Multi-Conjugate Adaptive Optics system

    Arcidiacono, Carmelo; Ragazzoni, Roberto; Farinato, Jacopo; Esposito, Simone; Riccardi, Armando; Pinna, Enrico; Puglisi, Alfio; Fini, Luca; Xompero, Marco; Busoni, Lorenzo; Quiros-Pacheco, Fernando; Briguglio, Runa; 10.1117/12.857347

    2010-01-01

    LINC-NIRVANA will realize the interferometric imaging focal station of the Large Binocular Telescope. A double Layer Oriented multi-conjugate adaptive optics system assists the two arms of the interferometer, supplying high order wave-front correction. In order to counterbalance the field rotation, mechanical derotation for the two ground wave-front sensors, and optical derotators for the mid-high layers sensors fix the positions of the focal planes with respect to the pyramids aboard the wave-front sensors. The derotation introduces pupil images rotation on the wavefront sensors: the projection of the deformable mirrors on the sensor consequently change. The proper adjustment of the control matrix will be applied in real-time through numerical computation of the new matrix. In this paper we investigate the temporal and computational aspects related to the pupils rotation, explicitly computing the wave-front errors that may be generated.

  6. Adaptive Optics Imaging of Lyman Break Galaxies as Progenitors of Spheroids in the Local Universe

    Akiyama, M; Kobayashi, N; Ohta, K; Iwata, I

    2007-01-01

    In order to reveal the stellar mass distribution of z~3 galaxies, we are conducting deep imaging observations of U-dropout Lyman Break Galaxies (LBGs) with Adaptive Optics (AO) systems in K-band, which corresponds to rest-frame V-band of z~3 galaxies. The results of the Subaru intensive-program observations with AO36/NGS/IRCS indicate that 1) the K-band peaks of some of the LBGs brighter than K=22.0 mag show significant offset from those in the optical images, 2) the z~3 Mv* LBGs and serendipitously observed Distant Red Galaxies (DRGs) have flat profiles similar to disk galaxies in the local universe (i.e., Sersic with n2 systems among the luminous z~3 LBGs and DRGs, and their strong spatial clustering, we infer that the dense n2 spheroids of nearby galaxies through relaxations due to major merger events.

  7. An Eye-adapted Beamforming for Axial B-scans Free from Crystalline Lens Aberration: In vitro and ex vivo Results with a 20 MHz Linear Array

    Matéo, Tony; Mofid, Yassine; Grégoire, Jean-Marc; Ossant, Frédéric

    In ophtalmic ultrasonography, axial B-scans are seriously deteriorated owing to the presence of the crystalline lens. This strongly aberrating medium affects both spatial and contrast resolution and causes important distortions. To deal with this issue, an adapted beamforming (BF) has been developed and experimented with a 20 MHz linear array working with a custom US research scanner. The adapted BF computes focusing delays that compensate for crystalline phase aberration, including refraction effects. This BF was tested in vitro by imaging a wire phantom through an eye phantom consisting of a synthetic gelatin lens, shaped according to the unaccommodated state of an adult human crystalline lens, anatomically set up in an appropriate liquid (turpentine) to approach the in vivo velocity ratio. Both image quality and fidelity from the adapted BF were assessed and compared with conventional delay-and-sum BF over the aberrating medium. Results showed 2-fold improvement of the lateral resolution, greater sensitivity and 90% reduction of the spatial error (from 758 μm to 76 μm) with adapted BF compared to conventional BF. Finally, promising first ex vivo axial B-scans of a human eye are presented.

  8. Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy

    Plasmonic nano-antennas have proven the outstanding ability of sensing chemical and physical processes down to the nanometer scale. Sensing is usually achieved within the highly confined optical fields generated resonantly by the nano-antennas, i.e., in contact to the nanostructures. In this paper, we demonstrate the sensing capability of nano-antennas to their larger scale environment, well beyond their plasmonic confinement volume, leading to the concept of “remote” (non contact) sensing on the nanometer scale. On the basis of a bowtie-aperture nano-antenna (BNA) integrated at the apex of a SNOM (Scanning Near-field Optical Microscopy) fiber tip, we introduce an ultra-compact, moveable, and background-free optical nanosensor for the remote sensing of a silicon surface (up to distance of 300 nm). Sensitivity of the BNA to its large scale environment is high enough to expect the monitoring and control of the spacing between the nano-antenna and a silicon surface with sub-nanometer accuracy. This work paves the way towards an alternative class of nanopositioning techniques, based on the monitoring of diffraction-free plasmon resonance, that are alternative to nanomechanical and diffraction-limited optical interference-based devices

  9. Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy

    Atie, Elie M.; Xie, Zhihua; El Eter, Ali; Salut, Roland; Baida, Fadi I.; Grosjean, Thierry, E-mail: thierry.grosjean@univ-fcomte.fr [Institut FEMTO-ST, UMR CNRS 6174, Université de Franche-Comté, Département d' Optique P.M. Duffieux, 15B avenue des Montboucons, 25030 Besançon cedex (France); Nedeljkovic, Dusan [Lovalite s.a.s., 7 rue Xavier Marmier, 25000 Besançon (France); Tannous, Tony [Department of Physics, University of Balamand, P.O. Box 100 Tripoli (Lebanon)

    2015-04-13

    Plasmonic nano-antennas have proven the outstanding ability of sensing chemical and physical processes down to the nanometer scale. Sensing is usually achieved within the highly confined optical fields generated resonantly by the nano-antennas, i.e., in contact to the nanostructures. In this paper, we demonstrate the sensing capability of nano-antennas to their larger scale environment, well beyond their plasmonic confinement volume, leading to the concept of “remote” (non contact) sensing on the nanometer scale. On the basis of a bowtie-aperture nano-antenna (BNA) integrated at the apex of a SNOM (Scanning Near-field Optical Microscopy) fiber tip, we introduce an ultra-compact, moveable, and background-free optical nanosensor for the remote sensing of a silicon surface (up to distance of 300 nm). Sensitivity of the BNA to its large scale environment is high enough to expect the monitoring and control of the spacing between the nano-antenna and a silicon surface with sub-nanometer accuracy. This work paves the way towards an alternative class of nanopositioning techniques, based on the monitoring of diffraction-free plasmon resonance, that are alternative to nanomechanical and diffraction-limited optical interference-based devices.

  10. Traceability of Height Measurements on Green Sand Molds using Optical 3D Scanning

    Mohaghegh, K.; Yazdanbakhsh, S.A.; Tiedje, N. S.;

    2016-01-01

    (CMM) which is traceable to the meter unit. Optical scanners are increasingly used for dimensional metrology without the risk of damaging the surface, but lack of international standards makes it difficult to establish traceability of their measurements and compare them to tactile instruments...

  11. A high sensitivity optically stimulated luminescence scanning system for measurement of single sand-sized grains

    Duller, G.A.T.; Bøtter-Jensen, L.; Kohsiek, P.;

    1999-01-01

    An instrument has been designed for the routine analysis of the optically stimulated luminescence signal from single grains of sand. The system is capable of analysing over 3000 individual grains in a single measurement sequence, and the OSL signal from each grain can be read in less than 3 s. The...

  12. Wave Optical Calculation of Probe Size in Low Energy Scanning Electron Microscope

    Radlička, Tomáš

    Brno: Institute of Scientific Instruments AS CR, v. v. i, 2014. s. 26. ISBN 978-80-87441-11-4. [International Conference on Charged Parrticle Optics /9./. 31.08.2014-05.09.2014, Brno] Institutional support: RVO:68081731 Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  13. Investigation on a replica step gauge for optical 3D scanning of micro parts

    Cantatore, Angela; De Chiffre, Leonardo; Carmignato, S.

    2010-01-01

    . The stability over time of the step gauge was evaluated by repetitive measurement campaigns over a period of eight months, using measurements taken with a tactile CMM and with an optical scanner. Surface cooperativeness was investigated by measuring artefact grooves and pitch and comparing results...

  14. Optical nonlinearity of CdSe-PMMA hybrid nanocomposite investigated via Z-scan technique and semi-empirical relations

    Kaur, Ramneek; Tripathi, S. K.

    2016-04-01

    CdSe-PMMA nanocomposite has been synthesized by ex-situ technique. The effect of different Ag doping concentrations on its structural and optical properties has been studied. X-ray diffraction reveals the hexagonal wurtzite structure of the polymer nanocomposites with preferential growth of the nanocrystals along (1 0 0) direction. Transmission electron micrograph shows the spherical CdSe nanoparticles embedded in polymer matrix. The nonlinear refractive index of the nanocomposites has been calculated using Tichy & Ticha semi-empirical relations and Z-scan technique. Z-scan results disclose the two photon absorption process in the hybrid nanocomposites with self focussing behaviour. With Ag doping, the nonlinearity is found to be increased up to 0.2% Ag doping concentration due to the confined effect of Surface Plasmon, Quantum confinement and thermal lensing. Above 0.2% Ag concentration, its value decreases due to the declined linear refractive index of the nanocomposites. Maximum two photon figure of merit is 76 for 0.2% Ag doped CdSe-PMMA hybrid nanocomposite. The present results accentuate the possibility of tuning the optical non-linearity of CdSe-PMMA hybrid nanocomposite by adjusting the doping concentration.

  15. Adaptive optics correction into single mode fiber for a low Earth orbiting space to ground optical communication link using the OPALS downlink.

    Wright, Malcolm W; Morris, Jeffery F; Kovalik, Joseph M; Andrews, Kenneth S; Abrahamson, Matthew J; Biswas, Abhijit

    2015-12-28

    An adaptive optics (AO) testbed was integrated to the Optical PAyload for Lasercomm Science (OPALS) ground station telescope at the Optical Communications Telescope Laboratory (OCTL) as part of the free space laser communications experiment with the flight system on board the International Space Station (ISS). Atmospheric turbulence induced aberrations on the optical downlink were adaptively corrected during an overflight of the ISS so that the transmitted laser signal could be efficiently coupled into a single mode fiber continuously. A stable output Strehl ratio of around 0.6 was demonstrated along with the recovery of a 50 Mbps encoded high definition (HD) video transmission from the ISS at the output of the single mode fiber. This proof of concept demonstration validates multi-Gbps optical downlinks from fast slewing low-Earth orbiting (LEO) spacecraft to ground assets in a manner that potentially allows seamless space to ground connectivity for future high data-rates network. PMID:26832033

  16. Noiseless imaging detector for adaptive optics with kHz frame rates

    Vallerga, John V.; McPhate, Jason; Mikulec, Bettina; Tremsin, Anton; Clark, Allan; Siegmund, Oswald

    2004-10-01

    A new hybrid optical detector is described that has many of the attributes desired for the next generation AO wavefront sensors. The detector consists of a proximity focused MCP read out by four multi-pixel application specific integrated circuit (ASIC) chips developed at CERN ("Medipix2") with individual pixels that amplify, discriminate and count input events. The detector has 512 x 512 pixels, zero readout noise (photon counting) and can be read out at 1kHz frame rates. The Medipix2 readout chips can be electronically shuttered down to a temporal window of a few microseconds with an accuracy of 10 nanoseconds. When used in a Shack-Hartman style wavefront sensor, it should be able to centroid approximately 5000 spots using 7 x 7 pixel sub-apertures resulting in very linear, off-null error correction terms. The quantum efficiency depends on the optical photocathode chosen for the bandpass of interest. A three year development effort for this detector technology has just been funded as part of the first Adaptive Optics Development Program managed by the National Optical Astronomy Observatory.

  17. Real-time optical scanning system for measurement of chest volume changes during anesthesia

    Duffy, Neil D.; Drummond, Gordon D.; McGowan, Steve; Dessesard, Pascal

    1991-04-01

    A low cost real time method of measuring the movement of the ribcage and abdomen during anaesthesia is described. The equipment comprises a scanning light stripe system video pre-processing electronics and a personal computer. Selected chest surface contours are measured at the rate of 2Oms per contour. Linear interpolation is used to provide contour area estimates between contour sample periods to allow chest volume to be calculated at 2Oms intervals. Results using test objects show that the equipment is able to measure volume to an accuracy of beuer than 1 with reproducibility to within 0. 3

  18. High-resolution three-dimensional scanning optical image system for intrinsic and extrinsic contrast agents in tissue

    Gu, Yueqing; Qian, Zhiyu; Chen, Jinxian; Blessington, Dana; Ramanujam, Nimmi; Chance, Britton

    2002-01-01

    This article presents the theory and development of a three-dimensional (3D) imaging instrument capable of determining the biochemical properties of tissue by measuring the absorption or fluorescence of different intrinsic and extrinsic agents simultaneously. A bifurcated optical fiber bundle, serving to deliver the excitation light and collect the emission or reflection light, scans over the flat tissue surface retrieving optical signals in each pixel. Two-dimensional (2D) images of a series of subsequent sections are obtained after signal conversion and processing to yield a 3D image. Manipulation of the scanning step and diameter size of the fibers within the bundle, the spatial resolution of the instrument attains a maximum of 40 × 40 × 10 μm3. The wavelength range is extended from ultraviolet to the near infrared (NIR) through specialized optical design, typically employed for the NIR extrinsic contrast agents study. The instrument is most applicable in situations involving the measurement of fluorescence or absorption at any specific wavelength within the spectrum range. Flavoprotein and nicotinamide adeine dinucleotide are the two typical intrinsic agents indicating the oxidization and reduction status of the tissue sample, with their fluorescence detected at wavelengths of 540 and 440 nm, respectively. Oxy and deoxy hemoglobin are two other significant intrinsic agents for evaluating the blood oxygenation saturation by recording their absorptions at two different wavelengths of 577 and 546 nm. These intrinsic agents were measured in this study for comparison of biochemical properties of rat liver in different gas inhalation treatments. Indocyanine green, a NIR extrinsic contrast agent measured at wavelengths of 780 nm/830 nm as excitation/emission can indicate blood pooling by displaying the distribution of blood vessels within a 9 L tumor. The advantage of high sensitivity, spatial resolution, and broad applied potentiality were demonstrated by the

  19. Nonlinear Optical Properties of Novel Polymeric Rare Earth Phthalocyanine Studied Using Picosecond Z-Scan Technique

    ZHAO Peng; XU Song; LI Zhong-Yu; ZHANG Fu-Shi

    2008-01-01

    Three novel tri-dimensional phthalocyanine polymers, with lanthanum (LaPPc), gadolinium (GdPPc) and ytter-bium (YbPPc) as centric atoms, have been synthesized from a tetranuclear phthalonitrile. Third-order optical nonlinearities of these compounds in DMF solution are measured by a picosecond Z-sacn technique at 532nm. It is found that all the compounds show reverse saturation absorption and nonlinear self-focus refraction effect. The second-order molecular hyperpolarizabilities are calculated to be 1.82×10-29, 1.48×10-29 and 1.45×10-29 esu for LaPPc, GdPPc and YbPPc, respectively. The differences among their nonlinear optical properties are attributed to the special tri-dimensional structure and the variation in rare earth atoms.

  20. Measurement of abrasion of artificial cotyles using 3D optical scanning topography

    Mandát, Dušan; Nožka, Libor; Hrabovský, Miroslav; Bartoněk, L.

    Zagreb: Croatian Society of Mechanics, 2004 - (Jecic, S.; Semenski, D.), s. 92-93 ISBN 953-96243-6-3. [DANUBIA-ADRIA Symposium on Experimental Methods in Solid Mechanics /21./. Brijuni - Pula (HR), 29.09.2004-02.10.2004] R&D Projects: GA MŠk LN00A015 Grant ostatní: GA-(CZ) FRVŠ48/2004 Keywords : profilometry * 3D topography * cotyle * VRML language Subject RIV: BH - Optics, Masers, Lasers