WorldWideScience

Sample records for adaptive neuro-fuzzy inference

  1. Seizure prediction using adaptive neuro-fuzzy inference system.

    Rabbi, Ahmed F; Azinfar, Leila; Fazel-Rezai, Reza

    2013-01-01

    In this study, we present a neuro-fuzzy approach of seizure prediction from invasive Electroencephalogram (EEG) by applying adaptive neuro-fuzzy inference system (ANFIS). Three nonlinear seizure predictive features were extracted from a patient's data obtained from the European Epilepsy Database, one of the most comprehensive EEG database for epilepsy research. A total of 36 hours of recordings including 7 seizures was used for analysis. The nonlinear features used in this study were similarity index, phase synchronization, and nonlinear interdependence. We designed an ANFIS classifier constructed based on these features as input. Fuzzy if-then rules were generated by the ANFIS classifier using the complex relationship of feature space provided during training. The membership function optimization was conducted based on a hybrid learning algorithm. The proposed method achieved highest sensitivity of 80% with false prediction rate as low as 0.46 per hour. PMID:24110134

  2. Adaptive neuro fuzzy inference system modeling to predict damage level of non-reshaped berm breakwater

    Harish, N.; Mandal, S.; Rao, S.; Lokesha

    The Adaptive Neuro Fuzzy Inference System (ANFIS) model is constructed using experimental data set to predict the damage level of berm breakwater. Experimental data for non-reshaped berm breakwater are collected from Marine Structures Laboratory...

  3. Adaptive neuro-fuzzy inference system based automatic generation control

    Hosseini, S.H.; Etemadi, A.H. [Department of Electrical Engineering, Sharif University of Technology, Tehran (Iran)

    2008-07-15

    Fixed gain controllers for automatic generation control are designed at nominal operating conditions and fail to provide best control performance over a wide range of operating conditions. So, to keep system performance near its optimum, it is desirable to track the operating conditions and use updated parameters to compute control gains. A control scheme based on artificial neuro-fuzzy inference system (ANFIS), which is trained by the results of off-line studies obtained using particle swarm optimization, is proposed in this paper to optimize and update control gains in real-time according to load variations. Also, frequency relaxation is implemented using ANFIS. The efficiency of the proposed method is demonstrated via simulations. Compliance of the proposed method with NERC control performance standard is verified. (author)

  4. Fault diagnosis of induction motor based on decision trees and adaptive neuro-fuzzy inference

    Tran, Tung; Yang, Bo-Suk; Oh, Myung-Suck; Tan, Andy Chit Chiow

    2009-01-01

    This paper presents a fault diagnosis method based on adaptive neuro-fuzzy inference system (ANFIS) in combination with decision trees. Classification and regression tree (CART) which is one of the decision tree methods is used as a feature selection procedure to select pertinent features from data set. The crisp rules obtained from the decision tree are then converted to fuzzy if-then rules that are employed to identify the structure of ANFIS classifier. The hybrid of back-propagation and le...

  5. Adaptive-Neuro Fuzzy Inference System for Human Posture Classification Using a Simplified Shock Graph

    Shahbudin, S.; Hussain, A.; El-Shafie, Ahmed; Tahir, N. M.; Samad, S. A.

    In this paper, a neuro-fuzzy technique known as the Adaptive-Neuro Fuzzy Inference System (ANFIS) has been used to highlight the application of ANFIS to perform human posture classification task using the new simplified shock graph (SSG) representation. Basically, a shock graph is a shape abstraction that decomposed a shape into a set of hierarchically organized primitive parts. The shock graph that represents the silhouette of an object in terms of a set of qualitatively defined parts and organized in a hierarchical, directed acyclic graph is used as a powerful representation of human shape in our work. The SSG feature provides a compact, unique and simple way of representing human shape and has been tested with several classifiers. As such, in this paper we intend to test its efficacy with another classifier, that is, the ANFIS classifier system. The result showed that the proposed ANFIS model can be used in classifying various human postures.

  6. Application of Adaptive Neuro-Fuzzy Inference System for Information Secuirty

    Sureswaran Ramadass

    2012-01-01

    Full Text Available Problem statement: Computer networks are expanding at very fast rate and the number of network users is increasing day by day, for full utilization of networks it need to be secured against many threats including malware, which is harmful software with the capability to damage data and systems. Fuzzy rule based classification systems considered as an active research area in recent years, due to their unique capability of classifying. Approach: This study presents a neural fuzzy classifier based on Adaptive Neuro-Fuzzy Inference System (ANFIS for malware detection. Firstly, the malware exe files was analyzed and the most important API calls were selected and used as training and testing datasets, using the training data set the ANFIS classifier learned how to detect the malware in the test dataset. Results and Conclusion: The performances of the Neuro fuzzy classifier were evaluated based on the performance of training and accuracy of classification, the results show that the proposed Neuro fuzzy classifier can detect the malware exe files effectively.

  7. Phase inductance estimation for switched reluctance motor using adaptive neuro-fuzzy inference system

    Daldaban, Ferhat [Erciyes University, Faculty of Engineering, Department of Electronic Engineering, 38039 Kayseri (Turkey); Ustkoyuncu, Nurettin [Erciyes University, Faculty of Engineering, Department of Electronic Engineering, 38039 Kayseri (Turkey); Guney, Kerim [Erciyes University, Faculty of Engineering, Department of Electronic Engineering, 38039 Kayseri (Turkey)]. E-mail: kguney@erciyes.edu.tr

    2006-03-15

    A new method based on an adaptive neuro-fuzzy inference system (ANFIS) for estimating the phase inductance of switched reluctance motors (SRMs) is presented. The ANFIS has the advantages of expert knowledge of the fuzzy inference system and the learning capability of neural networks. A hybrid learning algorithm, which combines the least square method and the back propagation algorithm, is used to identify the parameters of the ANFIS. The rotor position and the phase current of the 6/4 pole SRM are used to predict the phase inductance. The phase inductance results predicted by the ANFIS are in excellent agreement with the results of the finite element method.

  8. Using Adaptive Neuro-Fuzzy Inference System in Alert Management of Intrusion Detection Systems

    Zahra Atashbar Orang

    2012-10-01

    Full Text Available By ever increase in using computer network and internet, using Intrusion Detection Systems (IDS has been more important. Main problems of IDS are the number of generated alerts, alert failure as well as identifying the attack type of alerts. In this paper a system is proposed that uses Adaptive Neuro-Fuzzy Inference System to classify IDS alerts reducing false positive alerts and also identifying attack types of true positive ones. By the experimental results on DARPA KDD cup 98, the system can classify alerts, leading a reduction of false positive alerts considerably and identifying attack types of alerts in low slice of time.

  9. Adaptive Neuro-Fuzzy Inference System Models for Force Prediction of a Mechatronic Flexible Structure

    Achiche, S.; Shlechtingen, M.; Raison, M.;

    2016-01-01

    This paper presents the results obtained from a research work investigating the performance of different Adaptive Neuro-Fuzzy Inference System (ANFIS) models developed to predict excitation forces on a dynamically loaded flexible structure. For this purpose, a flexible structure is equipped with...... influence of the sampling frequency and sensor location on the model performance is investigated. The results obtained in this paper show that ANFIS models can be used to set up reliable force predictors for dynamical loaded flexible structures, when a certain degree of inaccuracy is accepted. Furthermore...

  10. Design of uav robust autopilot based on adaptive neuro-fuzzy inference system

    Mohand Achour Touat

    2008-04-01

    Full Text Available  This paper is devoted to the application of adaptive neuro-fuzzy inference systems to the robust control of the UAV longitudinal motion. The adaptive neore-fuzzy inference system model needs to be trained by input/output data. This data were obtained from the modeling of a ”crisp” robust control system. The synthesis of this system is based on the separation theorem, which defines the structure and parameters of LQG-optimal controller, and further - robust optimization of this controller, based on the genetic algorithm. Such design procedure can define the rule base and parameters of fuzzyfication and defuzzyfication algorithms of the adaptive neore-fuzzy inference system controller, which ensure the robust properties of the control system. Simulation of the closed loop control system of UAV longitudinal motion with adaptive neore-fuzzy inference system controller demonstrates high efficiency of proposed design procedure.

  11. Adaptive Neuro Fuzzy Inference System Based DTC Control for Matrix Converter

    Venugopal Chitra

    2012-04-01

    Full Text Available In this study an Adaptive Neuro Fuzzy Inference System is introduced to select the switching states of Matrix Converters. Matrix converters have received more attention in research and industrial application due its advantages like four quadrant operation, sinusoidal input and output waveforms, controllable displacement factor, less number of switches etc., Matrix Converters are efficient in speed control of Induction motors than the conventional converters. There are two different control techniques namely field oriented control and Direct Torque Control systems available for closed loop operation of induction motors. The Direct Torque Control technique provides control of torque and flux directly. The major drawback of Direct Torque Control technique is the presence of ripples in torque and flux curves. This due to the presence of two level and three level hysteresis controllers in torque and flux control stages respectively. Also the conventional space vector and look up table method of switching state selection reduces the accuracy of switch state selection in the appropriate time width. This reduces the speed control performance of the motor. Also in this paper the hysteresis controllers are replaced by fuzzy controllers. the complete ANFIS based DTC for Matrix Converter is simulated in MATLAB/SIMULINK and the results shows that the use of Adaptive neuro fuzzy inference in Matrix Converter system increases the speed control performance of Induction Motor.

  12. UAV Controller Based on Adaptive Neuro-Fuzzy Inference System and PID

    Ali Moltajaei Farid

    2013-01-01

    Full Text Available ANFIS is combining a neural network with a fuzzy system results in a hybrid neuro-fuzzy system, capable of reasoning and learning in an uncertain and imprecise environment. In this paper, an adaptive neuro-fuzzy inference system (ANFIS is employed to control an unmanned aircraft vehicle (UAV.  First, autopilots structure is defined, and then ANFIS controller is applied, to control UAVs lateral position. The results of ANFIS and PID lateral controllers are compared, where it shows the two controllers have similar results. ANFIS controller is capable to adaptation in nonlinear conditions, while PID has to be tuned to preserves proper control in some conditions. The simulation results generated by Matlab using Aerosim Aeronautical Simulation Block Set, which provides a complete set of tools for development of six degree-of-freedom. Nonlinear Aerosonde unmanned aerial vehicle model with ANFIS controller is simulated to verify the capability of the system. Moreover, the results are validated by FlightGear flight simulator.

  13. Fracture density estimation from petrophysical log data using the adaptive neuro-fuzzy inference system

    Fractures as the most common and important geological features have a significant share in reservoir fluid flow. Therefore, fracture detection is one of the important steps in fractured reservoir characterization. Different tools and methods are introduced for fracture detection from which formation image logs are considered as the common and effective tools. Due to the economical considerations, image logs are available for a limited number of wells in a hydrocarbon field. In this paper, we suggest a model to estimate fracture density from the conventional well logs using an adaptive neuro-fuzzy inference system. Image logs from two wells of the Asmari formation in one of the SW Iranian oil fields are used to verify the results of the model. Statistical data analysis indicates good correlation between fracture density and well log data including sonic, deep resistivity, neutron porosity and bulk density. The results of this study show that there is good agreement (correlation coefficient of 98%) between the measured and neuro-fuzzy estimated fracture density

  14. Multiple Adaptive Neuro-Fuzzy Inference System with Automatic Features Extraction Algorithm for Cervical Cancer Recognition

    Mohammad Subhi Al-batah

    2014-01-01

    Full Text Available To date, cancer of uterine cervix is still a leading cause of cancer-related deaths in women worldwide. The current methods (i.e., Pap smear and liquid-based cytology (LBC to screen for cervical cancer are time-consuming and dependent on the skill of the cytopathologist and thus are rather subjective. Therefore, this paper presents an intelligent computer vision system to assist pathologists in overcoming these problems and, consequently, produce more accurate results. The developed system consists of two stages. In the first stage, the automatic features extraction (AFE algorithm is performed. In the second stage, a neuro-fuzzy model called multiple adaptive neuro-fuzzy inference system (MANFIS is proposed for recognition process. The MANFIS contains a set of ANFIS models which are arranged in parallel combination to produce a model with multi-input-multioutput structure. The system is capable of classifying cervical cell image into three groups, namely, normal, low-grade squamous intraepithelial lesion (LSIL and high-grade squamous intraepithelial lesion (HSIL. The experimental results prove the capability of the AFE algorithm to be as effective as the manual extraction by human experts, while the proposed MANFIS produces a good classification performance with 94.2% accuracy.

  15. Multiple adaptive neuro-fuzzy inference system with automatic features extraction algorithm for cervical cancer recognition.

    Al-batah, Mohammad Subhi; Isa, Nor Ashidi Mat; Klaib, Mohammad Fadel; Al-Betar, Mohammed Azmi

    2014-01-01

    To date, cancer of uterine cervix is still a leading cause of cancer-related deaths in women worldwide. The current methods (i.e., Pap smear and liquid-based cytology (LBC)) to screen for cervical cancer are time-consuming and dependent on the skill of the cytopathologist and thus are rather subjective. Therefore, this paper presents an intelligent computer vision system to assist pathologists in overcoming these problems and, consequently, produce more accurate results. The developed system consists of two stages. In the first stage, the automatic features extraction (AFE) algorithm is performed. In the second stage, a neuro-fuzzy model called multiple adaptive neuro-fuzzy inference system (MANFIS) is proposed for recognition process. The MANFIS contains a set of ANFIS models which are arranged in parallel combination to produce a model with multi-input-multioutput structure. The system is capable of classifying cervical cell image into three groups, namely, normal, low-grade squamous intraepithelial lesion (LSIL) and high-grade squamous intraepithelial lesion (HSIL). The experimental results prove the capability of the AFE algorithm to be as effective as the manual extraction by human experts, while the proposed MANFIS produces a good classification performance with 94.2% accuracy. PMID:24707316

  16. Gas composition modeling in a reformed Methanol Fuel Cell system using adaptive Neuro-Fuzzy Inference Systems

    Justesen, Kristian Kjær; Andreasen, Søren Juhl; Shaker, Hamid Reza;

    2013-01-01

    This work presents a method for modeling the gas composition in a Reformed Methanol Fuel Cell system. The method is based on Adaptive Neuro-Fuzzy-Inference-Systems which are trained on experimental data. The developed models are of the H2, CO2, CO and CH3OH mass flows of the reformed gas. The ANFIS...

  17. Design of a biped locomotion controller based on adaptive neuro-fuzzy inference systems

    This paper proposes a method for the design of a biped locomotion controller based on the ANFIS (Adaptive Neuro-Fuzzy Inference System) inverse learning model. In the model developed here, an integrated ANFIS structure is trained to function as the system identifier for the modeling of the inverse dynamics of a biped robot. The parameters resulting from the modeling process are duplicated and integrated as those of the biped locomotion controller to provide favorable control action. As the simulation results show, the proposed controller is able to generate a stable walking cycle for a biped robot. Moreover, the experimental results demonstrate that the performance of the proposed controller is satisfactory under conditions when the robot stands in different postures or moves on a rugged surface

  18. Identification of the Control Chart Patterns Using the Optimized Adaptive Neuro-Fuzzy Inference System

    Abdolhakim Nikpey

    2014-07-01

    Full Text Available Unnatural patterns in the control charts can be associated with a specific set of assignable causes for process variation. Hence pattern recognition is very useful in identifying process problem. This paper presents a novel hybrid intelligent method for recognition of common types of control chart patterns (CCPs. The proposed method includes three main modules: the feature extraction module, the classifier module and the optimization module. In the feature extraction module, a proper set of the shape features and statistical features is proposed as the efficient characteristic of the patterns. In the classifier module adaptive neuro-fuzzy inference system (ANFIS is investigated. In ANFIS training, the vector of radius has very important role for its recognition accuracy. Therefore, in the optimization module, cuckoo optimization algorithm (COA is proposed for finding of optimum vector of radius. Simulation results show that the proposed system has high recognition accuracy.

  19. APPLICATION OF ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM IN INTEREST RATES EFFECTS ON STOCK RETURNS

    ELEFTHERIOS GIOVANIS

    2011-02-01

    Full Text Available In the current study we examine the effects of interest rate changes on common stock returns of Greek banking sector. We examine theGeneralized Autoregressive Heteroskedasticity (GARCH process and an Adaptive Neuro-Fuzzy Inference System (ANFIS. The conclusions of our findings are that the changes of interest rates, based on GARCH model, are insignificant on common stock returns during the period we examine. On the other hand, with ANFIS we can get the rules and in each case we can have positive or negative effects depending on the conditions and the firing rules of inputs, which information is not possible to be retrieved with the traditional econometric modelling. Furthermore we examine the forecasting performance of both models and we conclude that ANFIS outperforms GARCH model in both in-sample and out-of-sample periods.

  20. Adaptive Neuro-fuzzy Inference System as Cache Memory Replacement Policy

    CHUNG, Y. M.

    2014-02-01

    Full Text Available To date, no cache memory replacement policy that can perform efficiently for all types of workloads is yet available. Replacement policies used in level 1 cache memory may not be suitable in level 2. In this study, we focused on developing an adaptive neuro-fuzzy inference system (ANFIS as a replacement policy for improving level 2 cache performance in terms of miss ratio. The recency and frequency of referenced blocks were used as input data for ANFIS to make decisions on replacement. MATLAB was employed as a training tool to obtain the trained ANFIS model. The trained ANFIS model was implemented on SimpleScalar. Simulations on SimpleScalar showed that the miss ratio improved by as high as 99.95419% and 99.95419% for instruction level 2 cache, and up to 98.04699% and 98.03467% for data level 2 cache compared with least recently used and least frequently used, respectively.

  1. Modeling of a HTPEM fuel cell using Adaptive Neuro-Fuzzy Inference Systems

    Justesen, Kristian Kjær; Andreasen, Søren Juhl; Sahlin, Simon Lennart

    2015-01-01

    In this work an Adaptive Neuro-Fuzzy Inference System (ANFIS) model of the voltage of a fuel cell is developed. The inputs of this model are the fuel cell temperature, current density and the carbon monoxide concentration of the anode supply gas. First an identification experiment which spans the...... expected operating range of the fuel cell is performed in a test station. The data from this experiment is then used to train ANFIS models with 2, 3, 4 and 5 membership functions. The performance of these models is then compared and it is found that using 3 membership functions provides the best compromise...... between performance and fast model evaluation. This model has a mean absolute error of 0.70%. It is concluded that the developed ANFIS model is suitable for optimization of fuel cell systems and as the steady state component in larger dynamic system models....

  2. Design of a biped locomotion controller based on adaptive neuro-fuzzy inference systems

    Shieh, M-Y; Chang, K-H [Department of E. E., Southern Taiwan University, 1 Nantai St., YungKang City, Tainan County 71005, Taiwan (China); Lia, Y-S [Executive Director Office, ITRI, Southern Taiwan Innovation Park, Tainan County, Taiwan (China)], E-mail: myshieh@mail.stut.edu.tw

    2008-02-15

    This paper proposes a method for the design of a biped locomotion controller based on the ANFIS (Adaptive Neuro-Fuzzy Inference System) inverse learning model. In the model developed here, an integrated ANFIS structure is trained to function as the system identifier for the modeling of the inverse dynamics of a biped robot. The parameters resulting from the modeling process are duplicated and integrated as those of the biped locomotion controller to provide favorable control action. As the simulation results show, the proposed controller is able to generate a stable walking cycle for a biped robot. Moreover, the experimental results demonstrate that the performance of the proposed controller is satisfactory under conditions when the robot stands in different postures or moves on a rugged surface.

  3. REPLACEMENT SPARE PART INVENTORY MONITORING USING ADAPTIVE NEURO FUZZY INFERENCE SYSTEM

    Hartono Hartono

    2016-01-01

    Full Text Available Abstract   The amount of inventory is determined on the basis of the demand. So that users can know the demand forecasts need to be done on the request. This study uses the data to implement a replacement parts on the electronic module production equipment in the telecommunications transmission systems, switching, access and power, ie by replacing the electronic module in the system is trouble  or damaged parts of a good electronic module spare parts inventory, while the faulty electronic modules shipped to the Repair Center for repaired again, so that the results of these improvements can replenish spare part  inventory. Parameters speed on improvement process of electronic module broken (repaired, in the form of an average repair time at the repair centers, in order to get back into the electronic module that is ready for used as spare parts in compliance with the safe supply inventory  warehouse.  This research using the method  of  Adaptive Neuro Fuzzy Inference System (ANFIS in developing a decision support system for inventory control of spare parts available in Warehouse Inventory taking into account several parameters supporters, namely demand, improvement and fulfillment of spare parts and repair time. This study uses a recycling input parameter repair faulty electronic module of the customer to immediately replace the module in inventory warehouse,  do improvements in the Repair Center. So the acceleration restoration factor is very influential as the input spare parts inventory supply in the warehouse and using the Adaptive Neuro-Fuzzy Inference System (ANFIS method.   Keywords: ANFIS, inventory control, replacement

  4. Modeling hourly dissolved oxygen concentration (DO) using two different adaptive neuro-fuzzy inference systems (ANFIS): a comparative study.

    Heddam, Salim

    2014-01-01

    This article presents a comparison of two adaptive neuro-fuzzy inference systems (ANFIS)-based neuro-fuzzy models applied for modeling dissolved oxygen (DO) concentration. The two models are developed using experimental data collected from the bottom (USGS station no: 420615121533601) and top (USGS station no: 420615121533600) stations at Klamath River at site KRS12a nr Rock Quarry, Oregon, USA. The input variables used for the ANFIS models are water pH, temperature, specific conductance, and sensor depth. Two ANFIS-based neuro-fuzzy systems are presented. The two neuro-fuzzy systems are: (1) grid partition-based fuzzy inference system, named ANFIS_GRID, and (2) subtractive-clustering-based fuzzy inference system, named ANFIS_SUB. In both models, 60 % of the data set was randomly assigned to the training set, 20 % to the validation set, and 20 % to the test set. The ANFIS results are compared with multiple linear regression models. The system proposed in this paper shows a novelty approach with regard to the usage of ANFIS models for DO concentration modeling. PMID:24057665

  5. Adaptive Neuro-Fuzzy Inference System Applied QSAR with Quantum Chemical Descriptors for Predicting Radical Scavenging Activities of Carotenoids

    Changho Jhin; Keum Taek Hwang

    2015-01-01

    One of the physiological characteristics of carotenoids is their radical scavenging activity. In this study, the relationship between radical scavenging activities and quantum chemical descriptors of carotenoids was determined. Adaptive neuro-fuzzy inference system (ANFIS) applied quantitative structure-activity relationship models (QSAR) were also developed for predicting and comparing radical scavenging activities of carotenoids. Semi-empirical PM6 and PM7 quantum chemical calculations were...

  6. Respiratory motion prediction by using the adaptive neuro fuzzy inference system (ANFIS)

    The quality of radiation therapy delivered for treating cancer patients is related to set-up errors and organ motion. Due to the margins needed to ensure adequate target coverage, many breast cancer patients have been shown to develop late side effects such as pneumonitis and cardiac damage. Breathing-adapted radiation therapy offers the potential for precise radiation dose delivery to a moving target and thereby reduces the side effects substantially. However, the basic requirement for breathing-adapted radiation therapy is to track and predict the target as precisely as possible. Recent studies have addressed the problem of organ motion prediction by using different methods including artificial neural network and model based approaches. In this study, we propose to use a hybrid intelligent system called ANFIS (the adaptive neuro fuzzy inference system) for predicting respiratory motion in breast cancer patients. In ANFIS, we combine both the learning capabilities of a neural network and reasoning capabilities of fuzzy logic in order to give enhanced prediction capabilities, as compared to using a single methodology alone. After training ANFIS and checking for prediction accuracy on 11 breast cancer patients, it was found that the RMSE (root-mean-square error) can be reduced to sub-millimetre accuracy over a period of 20 s provided the patient is assisted with coaching. The average RMSE for the un-coached patients was 35% of the respiratory amplitude and for the coached patients 6% of the respiratory amplitude

  7. Respiratory motion prediction by using the adaptive neuro fuzzy inference system (ANFIS)

    Kakar, Manish [Department of Radiation Biology, Norwegian Radium Hospital, Montebello, 0310 Oslo (Norway); Nystroem, Haakan [Department of Radiation Oncology, The Finsen Centre, Rigshospitalet, Copenhagen (Denmark); Aarup, Lasse Rye [Department of Radiation Oncology, The Finsen Centre, Rigshospitalet, Copenhagen (Denmark); Noettrup, Trine Jakobi [Department of Radiation Oncology, The Finsen Centre, Rigshospitalet, Copenhagen (Denmark); Olsen, Dag Rune [Department of Radiation Biology, Norwegian Radium Hospital, Montebello, 0310 Oslo (Norway); Department of Medical Physics and Technology, Norwegian Radium Hospital, Oslo (Norway); Department of Physics, University of Oslo (Norway)

    2005-10-07

    The quality of radiation therapy delivered for treating cancer patients is related to set-up errors and organ motion. Due to the margins needed to ensure adequate target coverage, many breast cancer patients have been shown to develop late side effects such as pneumonitis and cardiac damage. Breathing-adapted radiation therapy offers the potential for precise radiation dose delivery to a moving target and thereby reduces the side effects substantially. However, the basic requirement for breathing-adapted radiation therapy is to track and predict the target as precisely as possible. Recent studies have addressed the problem of organ motion prediction by using different methods including artificial neural network and model based approaches. In this study, we propose to use a hybrid intelligent system called ANFIS (the adaptive neuro fuzzy inference system) for predicting respiratory motion in breast cancer patients. In ANFIS, we combine both the learning capabilities of a neural network and reasoning capabilities of fuzzy logic in order to give enhanced prediction capabilities, as compared to using a single methodology alone. After training ANFIS and checking for prediction accuracy on 11 breast cancer patients, it was found that the RMSE (root-mean-square error) can be reduced to sub-millimetre accuracy over a period of 20 s provided the patient is assisted with coaching. The average RMSE for the un-coached patients was 35% of the respiratory amplitude and for the coached patients 6% of the respiratory amplitude.

  8. Predicting Packet Transmission Data over IP Networks Using Adaptive Neuro-Fuzzy Inference Systems

    Samira Chabaa

    2009-01-01

    Full Text Available Problem statement: The statistical modeling for predicting network traffic has now become a major tool used for network and is of significant interest in many domains: Adaptive application, congestion and admission control, wireless, network management and network anomalies. To comprehend the properties of IP-network traffic and system conditions, many kinds of reports based on measured network traffic data have been reported by several researchers. The goal of the present contribution was to complement these previous researches by predicting network traffic data. Approach: The Adaptive Neuro-Fuzzy Inference System (ANFIS was realized by an appropriate combination of fuzzy systems and neural networks. It was applied in different applications which have been increased in recent years and have multidisciplinary in several domains with a high accuracy. For this reason, we used a set of input and output data of packet transmission over Internet Protocol (IP networks as input and output of ANFIS to develop a model for predicting data. Results: ANFIS was compared with some existing model based on Volterra system with Laguerre functions. The obtained results demonstrate that the sequences of generated values have the same statistical characteristics as those really observed. Furthermore, the relative error using ANFIS model was better than this obtained by Volterra system model. Conclusion: The developed model fits well real data and can be used for predicting purpose with a high accuracy.

  9. Intelligent Control for Self-erecting Inverted Pendulum Via Adaptive Neuro-fuzzy Inference System

    A. A. Saifizul

    2006-01-01

    Full Text Available A self-erecting single inverted pendulum (SESIP is one of typical nonlinear systems. The control scheme running the SESIP consists of two main control loops. Namely, these control loops are swing-up controller and stabilization controller. A swing-up controller of an inverted pendulum system must actuate the pendulum from the stable position. While a stabilization controller must stand the pendulum in the unstable position. To deal with this system, a lot of control techniques have been used on the basis of linearized or nonlinear model. In real-time implementation, a real inverted pendulum system has state constraints and limited amplitude of input. These problems make it difficult to design a swing-up and a stabilization controller. In this paper, first, the mathematical models of cart and single inverted pendulum system are presented. Then, the Position-Velocity controller is designed to swing-up the pendulum considering physical behavior. For stabilizing the inverted pendulum, a Takagi-Sugeno fuzzy controller with Adaptive Neuro-Fuzzy Inference System (ANFIS architecture is used to guarantee stability at unstable equilibrium position. Experimental results are given to show the effectiveness of these controllers.

  10. Designing a Battlefield Fire Support System Using Adaptive Neuro-Fuzzy Inference System Based Model

    Kerim Goztepe

    2013-09-01

    Full Text Available Fire support of the maneuver operation is a continuous process. It begins with the receiving the task by the maneuver commander and continues until the mission is completed. Yet it is a key issue in combat in the way gain success. Therefore, a real-time mannered solution to fire support problem is a vital component of tactical warfare to the sequence that auxiliary forces or logistic support arrives at the theatre. A new method for deciding on combat fire support is proposed using adaptive neuro-fuzzy inference system (ANFIS in this paper. This study addresses the design of an ANFIS as an efficient tool for real-time decision-making in order to produce the best fire support plan in battlefield. Initially, criteria that are determined for the problem are formed by applying ANFIS method. Then, the ANFIS structure is built up by using the data related to selected criteria. The proposed method is illustrated by a sample fire support planning in combat. Results showed us that ANFIS is valid especially for small unit fire support planning and is useful to decrease the decision time in battlefield.Defence Science Journal, 2013, 63(5, pp.497-501, DOI:http://dx.doi.org/10.14429/dsj.63.3716

  11. FPGA BASED ADAPTIVE NEURO FUZZY INFERENCE CONTROLLER FOR FULL VEHICLE NONLINEAR ACTIVE SUSPENSION SYSTEMS

    Weiji Wang

    2010-10-01

    Full Text Available A Field Programmable Gate Array (FPGA is proposed to build an Adaptive Neuro Fuzzy Inference System(ANFIS for controlling a full vehicle nonlinear active suspension system. A Very High speed integratedcircuit Hardware Description Language (VHDL has been used to implement the proposed controller. Anoptimal Fraction Order PIlDμ (FOPID controller is designed for a full vehicle nonlinear activesuspension system. Evolutionary Algorithm (EA has been applied to modify the five parameters of theFOPID controller (i.e. proportional constant Kp, integral constant Ki, derivative constant Kd, integralorder l and derivative order μ. The data obtained from the FOPID controller are used as a reference todesign the ANFIS model as a controller for the controlled system. A hybrid approach is introduced to trainthe ANFIS. A Matlab Program has been used to design and simulate the proposed controller. The ANFIScontrol parameters obtained from the Matlab program are used to write the VHDL codes. Hardwareimplementation of the FPGA is dependent on the configuration file obtained from the VHDL program. Theexperimental results have proved the efficiency and robustness of the hardware implementation for theproposed controller. It provides a novel technique to be used to design NF controller for full vehiclenonlinear active suspension systems with hydraulic actuators.

  12. FPGA Based Adaptive Neuro Fuzzy Inference Controller for Full Vehicle Nonlinear Active Suspension Systems

    Ammar A. Aldair

    2010-10-01

    Full Text Available A Field Programmable Gate Array (FPGA is proposed to build an Adaptive Neuro Fuzzy Inference System (ANFIS for controlling a full vehicle nonlinear active suspension system. A Very High speed integrated circuit Hardware Description Language (VHDL has been used to implement the proposed controller. An optimal Fraction Order PIλ D µ (FOPID controller is designed for a full vehicle nonlinear active suspension system. Evolutionary Algorithm (EA has been applied to modify the five parameters of the FOPID controller (i.e. proportional constant Kp, integral constant Ki , derivative constant Kd, integral order λ and derivative order µ. The data obtained from the FOPID controller are used as a reference to design the ANFIS model as a controller for the controlled system. A hybrid approach is introduced to train the ANFIS. A Matlab Program has been used to design and simulate the proposed controller. The ANFIS control parameters obtained from the Matlab program are used to write the VHDL codes. Hardware implementation of the FPGA is dependent on the configuration file obtained from the VHDL program. The experimental results have proved the efficiency and robustness of the hardware implementation for the proposed controller. It provides a novel technique to be used to design NF controller for full vehicle nonlinear active suspension systems with hydraulic actuators.

  13. FPGA Implementation of Adaptive Neuro-Fuzzy Inference Systems Controller for Greenhouse Climate

    Charaf eddine LACHOURI

    2016-01-01

    Full Text Available This paper describes a Field-programmable Gate Array (FPGA implementation of Adaptive Neuro-fuzzy Inferences Systems (ANFIS using Very High-Speed Integrated Circuit Hardware-Description Language (VHDL for controlling temperature and humidity inside a tomato greenhouse. The main advantages of using the HDL approach are rapid prototyping and allowing usage of powerful synthesis controller through the use of the VHDL code. The use of hardware description language (HDL in the application is suitable for implementation into an Application Specific Integrated Circuit (ASIC and Field tools such as Quartus II 8.1. A set of six inputs meteorological and control actuators parameters that have a major impact on the greenhouse climate was chosen to represent the growing process of tomato plants. In this contribution, we discussed the construction of an ANFIS system that seeks to provide a linguistic model for the estimation of greenhouse climate from the meteorological data and control actuators during 48 days of seedlings growth embedded in the trained neural network and optimized using the backpropagation and the least square algorithm with 500 iterations. The simulation results have shown the efficiency of the implemented controller.

  14. Adaptive Neuro-Fuzzy Inference System for Dynamic Load Balancing in 3GPP LTE

    Aderemi A Atayero

    2012-04-01

    Full Text Available ANFIS is applicable in modeling of key parameters when investigating the performance and functionality of wireless networks. The need to save both capital and operational expenditure in the management of wireless networks cannot be over-emphasized. Automation of network operations is a veritable means of achieving the necessary reduction in CAPEX and OPEX. To this end, next generations networks such WiMAX and 3GPP LTE and LTE-Advanced provide support for self-optimization, self-configuration and self-healing to minimize human-to-system interaction and hence reap the attendant benefits of automation. One of the most important optimization tasks is load balancing as it affects network operation right from planning through the lifespan of the network. Several methods for load balancing have been proposed. While some of them have a very buoyant theoretical basis, they are not practically implementable at the current state of technology. Furthermore, most of the techniques proposed employ iterative algorithm, which in itself is not computationally efficient. This paper proposes the use of soft computing, precisely adaptive neuro-fuzzy inference system for dynamic QoS-aware load balancing in 3GPP LTE. Three key performance indicators (i.e. number of satisfied user, virtual load and fairness distribution index are used to adjust hysteresis task of load balancing.

  15. Prediction of antimicrobial peptides based on the adaptive neuro-fuzzy inference system application.

    Fernandes, Fabiano C; Rigden, Daniel J; Franco, Octavio L

    2012-01-01

    Antimicrobial peptides (AMPs) are widely distributed defense molecules and represent a promising alternative for solving the problem of antibiotic resistance. Nevertheless, the experimental time required to screen putative AMPs makes computational simulations based on peptide sequence analysis and/or molecular modeling extremely attractive. Artificial intelligence methods acting as simulation and prediction tools are of great importance in helping to efficiently discover and design novel AMPs. In the present study, state-of-the-art published outcomes using different prediction methods and databases were compared to an adaptive neuro-fuzzy inference system (ANFIS) model. Data from our study showed that ANFIS obtained an accuracy of 96.7% and a Matthew's Correlation Coefficient (MCC) of0.936, which proved it to be an efficient model for pattern recognition in antimicrobial peptide prediction. Furthermore, a lower number of input parameters were needed for the ANFIS model, improving the speed and ease of prediction. In summary, due to the fuzzy nature ofAMP physicochemical properties, the ANFIS approach presented here can provide an efficient solution for screening putative AMP sequences and for exploration of properties characteristic of AMPs. PMID:23193592

  16. Static security-based available transfer capability using adaptive neuro fuzzy inference system

    Venkaiah, C.; Vinod Kumar, D.M.

    2010-07-01

    In a deregulated power system, power transactions between a seller and a buyer can only be scheduled when there is sufficient available transfer capability (ATC). Internet-based, open access same-time information systems (OASIS) provide market participants with ATC information that is continuously updated in real time. Static security-based ATC can be computed for the base case system as well as for the critical line outages of the system. Since critical line outages are based on static security analysis, the computation of static security based ATC using conventional methods is both tedious and time consuming. In this study, static security-based ATC was computed for real-time applications using 3 artificial intelligent methods notably the back propagation algorithm (BPA), the radial basis function (RBF) neural network, and the adaptive neuro fuzzy inference system (ANFIS). An IEEE 24-bus reliability test system (RTS) and 75-bus practical system were used to test these 3 different intelligent methods. The results were compared with the conventional full alternating current (AC) load flow method for different transactions.

  17. Estimation of Loose Status of Jigging Bed Based on Adaptive Neuro-Fuzzy Inference System

    CHENG Jian; GUO Yi-nan; QIAN Jian-sheng

    2006-01-01

    In the separation process with a jig washer, an accurate on-line measurement of loose status of a jigging bed is essential for a successful control of coal quality and loose status is difficult to measure on-line directly in industrial process situations. So a soft-sensor technology is needed for this purpose. The soft-sensor model is developed in the experiment by an adaptive neuro-fuzzy inference system (ANFIS) which has a remarkable ability of learning and generalization. Based on the analysis of the technologic mechanism of jigging bed, the structure of the ANFIS is established to build the soft-sensor model of loose status estimation. The ANFIS is trained by a hybrid learning algorithm. Finally, the simulation results and comparison analysis are presented, which indicate that the ANFIS has better abilities of learning and generalization than the RBF and the BP networks. Thus, it is possible that the loose status of the jigging bed can be estimated on-line by using ANFIS.

  18. Classifying work rate from heart rate measurements using an adaptive neuro-fuzzy inference system.

    Kolus, Ahmet; Imbeau, Daniel; Dubé, Philippe-Antoine; Dubeau, Denise

    2016-05-01

    In a new approach based on adaptive neuro-fuzzy inference systems (ANFIS), field heart rate (HR) measurements were used to classify work rate into four categories: very light, light, moderate, and heavy. Inter-participant variability (physiological and physical differences) was considered. Twenty-eight participants performed Meyer and Flenghi's step-test and a maximal treadmill test, during which heart rate and oxygen consumption (VO2) were measured. Results indicated that heart rate monitoring (HR, HRmax, and HRrest) and body weight are significant variables for classifying work rate. The ANFIS classifier showed superior sensitivity, specificity, and accuracy compared to current practice using established work rate categories based on percent heart rate reserve (%HRR). The ANFIS classifier showed an overall 29.6% difference in classification accuracy and a good balance between sensitivity (90.7%) and specificity (95.2%) on average. With its ease of implementation and variable measurement, the ANFIS classifier shows potential for widespread use by practitioners for work rate assessment. PMID:26851475

  19. Using adaptive neuro fuzzy inference system (ANFIS) for proton exchange membrane fuel cell (PEMFC) performance modeling

    Rezazadeh, S.; Mirzaee, I. [Urmia Univ., Urmia (Iran, Islamic Republic of); Mehrabi, M. [University of Pretoria, Pretoria (South Africa)

    2012-11-15

    In this paper, an adaptive neuro fuzzy inference system (ANFIS) is used for modeling proton exchange membrane fuel cell (PEMFC) performance using some numerically investigated and compared with those to experimental results for training and test data. In this way, current density I (A/cm{sup 2}) is modeled to the variation of pressure at the cathode side P{sup C} (atm), voltage V (V), membrane thickness (mm), Anode transfer coefficient {alpha}{sup an}, relative humidity of inlet fuel RH{sup a} and relative humidity of inlet air RH{sup c} which are defined as input (design) variables. Then, we divided these data into train and test sections to do modeling. We instructed ANFIS network by 80% of numerical validated data. 20% of primary data which had been considered for testing the appropriateness of the models was entered ANFIS network models and results were compared by three statistical criterions. Considering the results, it is obvious that our proposed modeling by ANFIS is efficient and valid and it can be expanded for more general states.

  20. Designing a Battlefield Fire Support System Using Adaptive Neuro-Fuzzy Inference System Based Model

    Kerim Goztepe

    2014-07-01

    Full Text Available Fire support of the maneuver operation is a continuous process. It begins with the receiving the task by the maneuver commander and continues until the mission is completed. Yet it is a key issue in combat in the way gain success. Therefore, a real-time mannered solution to fire support problem is a vital component of tactical warfare to the sequence that auxiliary forces or logistic support arrives at the theatre. A new method for deciding on combat fire support is proposed using adaptive neuro-fuzzy inference system (ANFIS in this paper. This study addresses the design of an ANFIS as an efficient tool for real-time decision-making in order to produce the best fire support plan in battlefield. Initially, criteria that are determined for the problem are formed by applying ANFIS method. Then, the ANFIS structure is built up by using the data related to selected criteria. The proposed method is illustrated by a sample fire support planning in combat. Results showed us that ANFIS is valid especially for small unit fire support planning and is useful to decrease the decision time in battlefield.

  1. Adaptive neuro-fuzzy inference system for real-time monitoring of integrated-constructed wetlands.

    Dzakpasu, Mawuli; Scholz, Miklas; McCarthy, Valerie; Jordan, Siobhán; Sani, Abdulkadir

    2015-01-01

    Monitoring large-scale treatment wetlands is costly and time-consuming, but required by regulators. Some analytical results are available only after 5 days or even longer. Thus, adaptive neuro-fuzzy inference system (ANFIS) models were developed to predict the effluent concentrations of 5-day biochemical oxygen demand (BOD5) and NH4-N from a full-scale integrated constructed wetland (ICW) treating domestic wastewater. The ANFIS models were developed and validated with a 4-year data set from the ICW system. Cost-effective, quicker and easier to measure variables were selected as the possible predictors based on their goodness of correlation with the outputs. A self-organizing neural network was applied to extract the most relevant input variables from all the possible input variables. Fuzzy subtractive clustering was used to identify the architecture of the ANFIS models and to optimize fuzzy rules, overall, improving the network performance. According to the findings, ANFIS could predict the effluent quality variation quite strongly. Effluent BOD5 and NH4-N concentrations were predicted relatively accurately by other effluent water quality parameters, which can be measured within a few hours. The simulated effluent BOD5 and NH4-N concentrations well fitted the measured concentrations, which was also supported by relatively low mean squared error. Thus, ANFIS can be useful for real-time monitoring and control of ICW systems. PMID:25607665

  2. A novel power swing blocking scheme using adaptive neuro-fuzzy inference system

    Zadeh, Hassan Khorashadi; Li, Zuyi [Illinois Institute of Technology, Department of Electrical and Computer Engineering, 3301 S. Dearborn Street, Chicago, IL 60616 (United States)

    2008-07-15

    A power swing may be caused by any sudden change in the configuration or the loading of an electrical network. During a power swing, the impedance locus moves along an impedance circle with possible encroachment into the distance relay zone, which may cause an unnecessary tripping. In order to prevent the distance relay from tripping under such condition, a novel power swing blocking (PSB) scheme is proposed in this paper. The proposed scheme uses an adaptive neuro-fuzzy inference systems (ANFIS) for preventing distance relay from tripping during power swings. The input signals to ANFIS, include the change of positive sequence impedance, positive and negative sequence currents, and power swing center voltage. Extensive tests show that the proposed PSB has two distinct features that are advantageous over existing schemes. The first is that the proposed scheme is able to detect various kinds of power swings thus block distance relays during power swings, even if the power swings are fast or the power swings occur during single pole open conditions. The second distinct feature is that the proposed scheme is able to clear the blocking if faults occur within the relay trip zone during power swings, even if the faults are high resistance faults, or the faults occur at the power swing center, or the faults occur when the power angle is close to 180 . (author)

  3. Adaptive neuro-fuzzy inference system for temperature and humidity profile retrieval from microwave radiometer observations

    Ramesh, K.; Kesarkar, A. P.; Bhate, J.; Venkat Ratnam, M.; Jayaraman, A.

    2015-01-01

    The retrieval of accurate profiles of temperature and water vapour is important for the study of atmospheric convection. Recent development in computational techniques motivated us to use adaptive techniques in the retrieval algorithms. In this work, we have used an adaptive neuro-fuzzy inference system (ANFIS) to retrieve profiles of temperature and humidity up to 10 km over the tropical station Gadanki (13.5° N, 79.2° E), India. ANFIS is trained by using observations of temperature and humidity measurements by co-located Meisei GPS radiosonde (henceforth referred to as radiosonde) and microwave brightness temperatures observed by radiometrics multichannel microwave radiometer MP3000 (MWR). ANFIS is trained by considering these observations during rainy and non-rainy days (ANFIS(RD + NRD)) and during non-rainy days only (ANFIS(NRD)). The comparison of ANFIS(RD + NRD) and ANFIS(NRD) profiles with independent radiosonde observations and profiles retrieved using multivariate linear regression (MVLR: RD + NRD and NRD) and artificial neural network (ANN) indicated that the errors in the ANFIS(RD + NRD) are less compared to other retrieval methods. The Pearson product movement correlation coefficient (r) between retrieved and observed profiles is more than 92% for temperature profiles for all techniques and more than 99% for the ANFIS(RD + NRD) technique Therefore this new techniques is relatively better for the retrieval of temperature profiles. The comparison of bias, mean absolute error (MAE), RMSE and symmetric mean absolute percentage error (SMAPE) of retrieved temperature and relative humidity (RH) profiles using ANN and ANFIS also indicated that profiles retrieved using ANFIS(RD + NRD) are significantly better compared to the ANN technique. The analysis of profiles concludes that retrieved profiles using ANFIS techniques have improved the temperature retrievals substantially; however, the retrieval of RH by all techniques considered in this paper (ANN, MVLR and

  4. Modelling a ground-coupled heat pump system using adaptive neuro-fuzzy inference systems

    Esen, Hikmet; Esen, Mehmet [Department of Mechanical Education, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey); Inalli, Mustafa [Department of Mechanical Engineering, Faculty of Engineering, Firat University, 23279 Elazig (Turkey); Sengur, Abdulkadir [Department of Electronic and Computer Science, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey)

    2008-01-15

    The aim of this study is to demonstrate the usefulness of an adaptive neuro-fuzzy inference system (ANFIS) for the modelling of ground-coupled heat pump (GCHP) system. The GCHP system connected to a test room with 16.24 m{sup 2} floor area in Firat University, Elazig (38.41 N, 39.14 E), Turkey, was designed and constructed. The heating and cooling loads of the test room were 2.5 and 3.1 kW at design conditions, respectively. The system was commissioned in November 2002 and the performance tests have been carried out since then. The average performance coefficients of the system (COPS) for horizontal ground heat exchanger (GHE) in the different trenches, at 1 and 2 m depths, were obtained to be 2.92 and 3.2, respectively. Experimental performances were performed to verify the results from the ANFIS approach. In order to achieve the optimal result, several computer simulations have been carried out with different membership functions and various number of membership functions. The most suitable membership function and number of membership functions are found as Gauss and 2, respectively. For this number level, after the training, it is found that root-mean squared (RMS) value is 0.0047, and absolute fraction of variance (R{sup 2}) value is 0.9999 and coefficient of variation in percent (cov) value is 0.1363. This paper shows that the values predicted with the ANFIS, especially with the hybrid learning algorithm, can be used to predict the performance of the GCHP system quite accurately. (author)

  5. Prediction of Scour Depth around Bridge Piers using Adaptive Neuro-Fuzzy Inference Systems (ANFIS)

    Valyrakis, Manousos; Zhang, Hanqing

    2014-05-01

    Earth's surface is continuously shaped due to the action of geophysical flows. Erosion due to the flow of water in river systems has been identified as a key problem in preserving ecological health of river systems but also a threat to our built environment and critical infrastructure, worldwide. As an example, it has been estimated that a major reason for bridge failure is due to scour. Even though the flow past bridge piers has been investigated both experimentally and numerically, and the mechanisms of scouring are relatively understood, there still lacks a tool that can offer fast and reliable predictions. Most of the existing formulas for prediction of bridge pier scour depth are empirical in nature, based on a limited range of data or for piers of specific shape. In this work, the application of a Machine Learning model that has been successfully employed in Water Engineering, namely an Adaptive Neuro-Fuzzy Inference System (ANFIS) is proposed to estimate the scour depth around bridge piers. In particular, various complexity architectures are sequentially built, in order to identify the optimal for scour depth predictions, using appropriate training and validation subsets obtained from the USGS database (and pre-processed to remove incomplete records). The model has five variables, namely the effective pier width (b), the approach velocity (v), the approach depth (y), the mean grain diameter (D50) and the skew to flow. Simulations are conducted with data groups (bed material type, pier type and shape) and different number of input variables, to produce reduced complexity and easily interpretable models. Analysis and comparison of the results indicate that the developed ANFIS model has high accuracy and outstanding generalization ability for prediction of scour parameters. The effective pier width (as opposed to skew to flow) is amongst the most relevant input parameters for the estimation.

  6. A Combined Methodology of Adaptive Neuro-Fuzzy Inference System and Genetic Algorithm for Short-term Energy Forecasting

    KAMPOUROPOULOS, K.

    2014-02-01

    Full Text Available This document presents an energy forecast methodology using Adaptive Neuro-Fuzzy Inference System (ANFIS and Genetic Algorithms (GA. The GA has been used for the selection of the training inputs of the ANFIS in order to minimize the training result error. The presented algorithm has been installed and it is being operating in an automotive manufacturing plant. It periodically communicates with the plant to obtain new information and update the database in order to improve its training results. Finally the obtained results of the algorithm are used in order to provide a short-term load forecasting for the different modeled consumption processes.

  7. A new battery capacity indicator for lithium-ion battery powered electric vehicles using adaptive neuro-fuzzy inference system

    This paper describes a new adaptive neuro-fuzzy inference system (ANFIS) model to estimate accurately the battery residual capacity (BRC) of the lithium-ion (Li-ion) battery for modern electric vehicles (EVs). The key to this model is to adopt newly both the discharged/regenerative capacity distributions and the temperature distributions as the inputs and the state of available capacity (SOAC) as the output, which represents the BRC. Moreover, realistic EV discharge current profiles are newly used to formulate the proposed model. The accuracy of the estimated SOAC obtained from the model is verified by experiments under various EV discharge current profiles

  8. Prediction of Rotor Spun Yarn Strength Using Adaptive Neuro-fuzzy Inference System and Linear Multiple Regression Methods

    NURWAHA Deogratias; WANG Xin-hou

    2008-01-01

    This paper presents a comparison study of two models for predicting the strength of rotor spun cotton yarns from fiber properties. The adaptive neuro-fuzzy system inference (ANFIS) and Multiple Linear Regression models are used to predict the rotor spun yarn strength. Fiber properties and yarn count are used as inputs to train the two models and the count-strength-product (CSP) was the target. The predictive performances of the two models are estimated and compared. We found that the ANFIS has a better predictive power in comparison with linear multipleregression model. The impact of each fiber property is also illustrated.

  9. Adaptive Neuro-Fuzzy Inference Systems as a Strategy for Predicting and Controling the Energy Produced from Renewable Sources

    Otilia Elena Dragomir

    2015-11-01

    Full Text Available The challenge for our paper consists in controlling the performance of the future state of a microgrid with energy produced from renewable energy sources. The added value of this proposal consists in identifying the most used criteria, related to each modeling step, able to lead us to an optimal neural network forecasting tool. In order to underline the effects of users’ decision making on the forecasting performance, in the second part of the article, two Adaptive Neuro-Fuzzy Inference System (ANFIS models are tested and evaluated. Several scenarios are built by changing: the prediction time horizon (Scenario 1 and the shape of membership functions (Scenario 2.

  10. A new battery capacity indicator for lithium-ion battery powered electric vehicles using adaptive neuro-fuzzy inference system

    Chau, K.T.; Wu, K.C.; Chan, C.C. [University of Hong Kong (China). Dept. of Electrical and Electronic Engineering

    2004-07-01

    This paper describes a new adaptive neuro-fuzzy inference system (ANFIS) model to estimate accurately the battery residual capacity (BRC) of the lithium-ion (Li-ion) battery for modern electric vehicles (EVs). The key to this model is to adopt newly both the discharged/regenerative capacity distributions and the temperature distributions as the inputs and the state of available capacity (SOAC) as the output, which represents the BRC. Moreover, realistic EV discharge current profiles are newly used to formulate the proposed model. The accuracy of the estimated SOAC obtained from the model is verified by experiments under various EV discharge current profiles. (author)

  11. Adaptive neuro-fuzzy inference system for acoustic analysis of 4-channel phonocardiograms using empirical mode decomposition.

    Becerra, Miguel A; Orrego, Diana A; Delgado-Trejos, Edilson

    2013-01-01

    The heart's mechanical activity can be appraised by auscultation recordings, taken from the 4-Standard Auscultation Areas (4-SAA), one for each cardiac valve, as there are invisible murmurs when a single area is examined. This paper presents an effective approach for cardiac murmur detection based on adaptive neuro-fuzzy inference systems (ANFIS) over acoustic representations derived from Empirical Mode Decomposition (EMD) and Hilbert-Huang Transform (HHT) of 4-channel phonocardiograms (4-PCG). The 4-PCG database belongs to the National University of Colombia. Mel-Frequency Cepstral Coefficients (MFCC) and statistical moments of HHT were estimated on the combination of different intrinsic mode functions (IMFs). A fuzzy-rough feature selection (FRFS) was applied in order to reduce complexity. An ANFIS network was implemented on the feature space, randomly initialized, adjusted using heuristic rules and trained using a hybrid learning algorithm made up by least squares and gradient descent. Global classification for 4-SAA was around 98.9% with satisfactory sensitivity and specificity, using a 50-fold cross-validation procedure (70/30 split). The representation capability of the EMD technique applied to 4-PCG and the neuro-fuzzy inference of acoustic features offered a high performance to detect cardiac murmurs. PMID:24109851

  12. Prediction analysis and comparison between agriculture and mining stocks in Indonesia by using adaptive neuro-fuzzy inference system (ANFIS)

    Mahandrio, Irsantyo; Budi, Andriantama; Liong, The Houw; Purqon, Acep

    2015-09-01

    The growing patterns in cultural and mining sectors are interesting particularly in developed country such as in Indonesia. Here, we investigate the local characteristics of stocks between the sectors of agriculture and mining which si representing two leading companies and two common companies in these sectors. We analyze the prediction by using Adaptive Neuro Fuzzy Inference System (ANFIS). The type of Fuzzy Inference System (FIS) is Sugeno type with Generalized Bell membership function (Gbell). Our results show that ANFIS is a proper method to predicting the stock market with the RMSE : 0.14% for AALI and 0.093% for SGRO representing the agriculture sectors, meanwhile, 0.073% for ANTM and 0.1107% for MDCO representing the mining sectors.

  13. Estimating oxygen consumption from heart rate using adaptive neuro-fuzzy inference system and analytical approaches.

    Kolus, Ahmet; Dubé, Philippe-Antoine; Imbeau, Daniel; Labib, Richard; Dubeau, Denise

    2014-11-01

    In new approaches based on adaptive neuro-fuzzy systems (ANFIS) and analytical method, heart rate (HR) measurements were used to estimate oxygen consumption (VO2). Thirty-five participants performed Meyer and Flenghi's step-test (eight of which performed regeneration release work), during which heart rate and oxygen consumption were measured. Two individualized models and a General ANFIS model that does not require individual calibration were developed. Results indicated the superior precision achieved with individualized ANFIS modelling (RMSE = 1.0 and 2.8 ml/kg min in laboratory and field, respectively). The analytical model outperformed the traditional linear calibration and Flex-HR methods with field data. The General ANFIS model's estimates of VO2 were not significantly different from actual field VO2 measurements (RMSE = 3.5 ml/kg min). With its ease of use and low implementation cost, the General ANFIS model shows potential to replace any of the traditional individualized methods for VO2 estimation from HR data collected in the field. PMID:24793823

  14. Dynamic Modeling of a Reformed Methanol Fuel Cell System using Empirical Data and Adaptive Neuro-Fuzzy Inference System Models

    Justesen, Kristian Kjær; Andreasen, Søren Juhl; Shaker, Hamid Reza

    2013-01-01

    In this work, a dynamic MATLAB Simulink model of a H3-350 Reformed Methanol Fuel Cell (RMFC) stand-alone battery charger produced by Serenergy is developed on the basis of theoretical and empirical methods. The advantage of RMFC systems is that they use liquid methanol as a fuel instead of gaseous...... hydrogen, which is difficult and energy consuming to store and transport. The models include thermal equilibrium models of the individual components of the system. Models of the heating and cooling of the gas flows between components are also modeled and Adaptive Neuro-Fuzzy Inference System models of the...... reforming process are implemented. Models of the cooling flow of the blowers for the fuel cell and the burner which supplies process heat for the reformer are made. The two blowers have a common exhaust, which means that the two blowers influence each other’s output. The models take this into account using...

  15. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM-PARTICLE SWARM OPTIMIZATION BASED STABILITY MAINTENANCE OF POWER SYSTEM NETWORKS

    R. Latha

    2013-01-01

    Full Text Available During faulty condition voltage instability is one of the major crisis in power system networks. This study proposes a hybrid learning algorithm to improve the stability performance of a power system with Distributed Generations (DGs. Here the distribution system stability is maintained with reduced power loss using an Adaptive Neuro-Fuzzy Inference Systems (ANFIS and Particle Swarm Optimization (PSO techniques. In this study distributed generations is considered as several types of DGS connected together which is called as Microgrid (MG. Initially ANFIS is trained by instability parameters to give the optimal power capacity of the microgrid and then PSO algorithm is applied to find the optimum bus for connecting microgrid in the system. The effective improvements in voltage profile and reduction in power loss of the proposed ANFIS-PSO controller is tested on IEEE-30 bus system and has been presented with few comparative results.

  16. Sizing of rock fragmentation modeling due to bench blasting using adaptive neuro-fuzzy inference system (ANFIS)

    Karami Alireza; Afiuni-Zadeh Somaieh

    2013-01-01

    One of the most important characters of blasting, a basic step of surface mining, is rock fragmentation because it directly effects on the costs of drilling and economics of the subsequent operations of loading, hauling and crushing in mines. Adaptive neuro-fuzzy inference system (ANFIS) and radial basis function (RBF) show potentials for modeling the behavior of complex nonlinear processes such as those involved in fragmentation due to blasting of rocks. We developed ANFIS and RBF methods for modeling of sizing of rock fragmentation due to bench blasting by estimation of 80%passing size (K80) of Golgohar iron mine of Sirjan, Iran. Comparing the results of ANFIS and RBF models shows that although the statistical parame-ters RBF model is acceptable but ANFIS proposed model is superior and also simpler because ANFIS model is constructed using only two input parameters while seven input parameters used for construction of RBF model.

  17. Adaptive Neuro-Fuzzy Inference System for Classification of Background EEG Signals from ESES Patients and Controls

    Zhixian Yang

    2014-01-01

    Full Text Available Background electroencephalography (EEG, recorded with scalp electrodes, in children with electrical status epilepticus during slow-wave sleep (ESES syndrome and control subjects has been analyzed. We considered 10 ESES patients, all right-handed and aged 3–9 years. The 10 control individuals had the same characteristics of the ESES ones but presented a normal EEG. Recordings were undertaken in the awake and relaxed states with their eyes open. The complexity of background EEG was evaluated using the permutation entropy (PE and sample entropy (SampEn in combination with the ANOVA test. It can be seen that the entropy measures of EEG are significantly different between the ESES patients and normal control subjects. Then, a classification framework based on entropy measures and adaptive neuro-fuzzy inference system (ANFIS classifier is proposed to distinguish ESES and normal EEG signals. The results are promising and a classification accuracy of about 89% is achieved.

  18. Adaptive neuro-fuzzy inference system for classification of background EEG signals from ESES patients and controls.

    Yang, Zhixian; Wang, Yinghua; Ouyang, Gaoxiang

    2014-01-01

    Background electroencephalography (EEG), recorded with scalp electrodes, in children with electrical status epilepticus during slow-wave sleep (ESES) syndrome and control subjects has been analyzed. We considered 10 ESES patients, all right-handed and aged 3-9 years. The 10 control individuals had the same characteristics of the ESES ones but presented a normal EEG. Recordings were undertaken in the awake and relaxed states with their eyes open. The complexity of background EEG was evaluated using the permutation entropy (PE) and sample entropy (SampEn) in combination with the ANOVA test. It can be seen that the entropy measures of EEG are significantly different between the ESES patients and normal control subjects. Then, a classification framework based on entropy measures and adaptive neuro-fuzzy inference system (ANFIS) classifier is proposed to distinguish ESES and normal EEG signals. The results are promising and a classification accuracy of about 89% is achieved. PMID:24790547

  19. Analysis prediction of Indonesian banks (BCA, BNI, MANDIRI) using adaptive neuro-fuzzy inference system (ANFIS) and investment strategies

    Trianto, Andriantama Budi; Hadi, I. M.; Liong, The Houw; Purqon, Acep

    2015-09-01

    Indonesian economical development is growing well. It has effect for their invesment in Banks and the stock market. In this study, we perform prediction for the three blue chips of Indonesian bank i.e. BCA, BNI, and MANDIRI by using the method of Adaptive Neuro-Fuzzy Inference System (ANFIS) with Takagi-Sugeno rules and Generalized bell (Gbell) as the membership function. Our results show that ANFIS perform good prediction with RMSE for BCA of 27, BNI of 5.29, and MANDIRI of 13.41, respectively. Furthermore, we develop an active strategy to gain more benefit. We compare between passive strategy versus active strategy. Our results shows that for the passive strategy gains 13 million rupiah, while for the active strategy gains 47 million rupiah in one year. The active investment strategy significantly shows gaining multiple benefit than the passive one.

  20. Adaptive neuro-fuzzy controller of switched reluctance motor

    Tahour Ahmed

    2007-01-01

    Full Text Available This paper presents an application of adaptive neuro-fuzzy (ANFIS control for switched reluctance motor (SRM speed. The ANFIS has the advantages of expert knowledge of the fuzzy inference system and the learning capability of neural networks. An adaptive neuro-fuzzy controller of the motor speed is then designed and simulated. Digital simulation results show that the designed ANFIS speed controller realizes a good dynamic behaviour of the motor, a perfect speed tracking with no overshoot and a good rejection of impact loads disturbance. The results of applying the adaptive neuro-fuzzy controller to a SRM give better performance and high robustness than those obtained by the application of a conventional controller (PI.

  1. ADAPTIVE NEURO-FUZZY BASED INFERENCE SYSTEM FOR LOAD FREQUENCY CONTROL OF HYDROTHERMAL SYSTEM UNDER DEREGULATED ENVIRONMENT

    C.SRINIVASA RAO

    2010-12-01

    Full Text Available This paper presents the analysis of Load Frequency Control (LFC of a two-area hydrothermal system under deregulated environment by considering Adaptive Neuro-Fuzzy Inference System (ANFIS. Fixed gaincontrollers for LFC are designed at nominal operating conditions and fail to provide best control performance over a wide range of operating conditions. So, in order to keep system performance near its optimum, it is desirable to track the operating conditions and use updated parameters to compute control gains. Open transmission access and the evolving of more socialized companies for generation, transmission and distribution affects the formulation of AGC problem. So the traditional LFC two-area system is modified to take into account the effect of bilateral contracts on the dynamics. A control scheme based on ANFIS, which is trained by the results of off-line studies obtained using genetic algorithm, is proposed in this paper to optimize and update control gains in real-time according to load variations. The efficiency of the proposed method is demonstratedthrough computer simulations.

  2. Accurate prediction of sour gas hydrate equilibrium dissociation conditions by using an adaptive neuro fuzzy inference system

    Highlights: ► An ANFIS model is developed for predicting sour gas hydrate dissociation conditions. ► It can be used over wide ranges of operating conditions. ► At all H2S concentrations, the developed model outperforms the thermodynamic models. ► The presented model is useful for design of industrial sour gas handling systems. - Abstract: An adaptive neuro fuzzy inference system (ANFIS) has been proposed for predicting the sour gas hydrate equilibrium dissociation conditions. The proposed model predictions have been compared with those of the available thermodynamic models at different operating conditions. It is found that at all H2S concentrations especially at the concentrations higher than 10 mol%, the developed ANFIS model outperforms the existing thermodynamic models with the average absolute deviation of 2.18%. The proposed ANFIS model can be used for accurate and reliable predictions of sour gas hydrate equilibrium conditions over wide ranges of temperatures and acid gas concentrations and is a useful tool for proper design of sour natural gas flow assurance systems and gas hydrate energy storage processes in oil and gas industries.

  3. Neuro-fuzzy controller of low head hydropower plants using adaptive-network based fuzzy inference system

    Djukanovic, M.B. [Inst. Nikola Tesla, Belgrade (Yugoslavia). Dept. of Power Systems; Calovic, M.S. [Univ. of Belgrade (Yugoslavia). Dept. of Electrical Engineering; Vesovic, B.V. [Inst. Mihajlo Pupin, Belgrade (Yugoslavia). Dept. of Automatic Control; Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1997-12-01

    This paper presents an attempt of nonlinear, multivariable control of low-head hydropower plants, by using adaptive-network based fuzzy inference system (ANFIS). The new design technique enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near optimal manner. The controller has flexibility for accepting more sensory information, with the main goal to improve the generator unit transients, by adjusting the exciter input, the wicket gate and runner blade positions. The developed ANFIS controller whose control signals are adjusted by using incomplete on-line measurements, can offer better damping effects to generator oscillations over a wide range of operating conditions, than conventional controllers. Digital simulations of hydropower plant equipped with low-head Kaplan turbine are performed and the comparisons of conventional excitation-governor control, state-feedback optimal control and ANFIS based output feedback control are presented. To demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired neuro-fuzzy controller, the controller has been implemented on a complex high-order non-linear hydrogenerator model.

  4. Sizing of rock fragmentation modeling due to bench blasting using adaptive neuro-fuzzy inference system and radial basis function

    Karami Alireza; Afiuni-Zadeh Somaieh

    2012-01-01

    One of the most important characters of blasting,a basic step of surface mining,is rock fragmentation.It directly effects on the costs of drilling and economics of the subsequent operations of loading,hauling and crushing in mines.Adaptive neuro-fuzzy inference system (ANFIS) and radial basis function (RBF)show potentials for modeling the behavior of complex nonlinear processes such as those involved in fragmentation due to blasting of rocks.In this paper we developed ANFIS and RBF methods for modeling of sizing of rock fragmentation due to bench blasting by estimation of 80% passing size (K80) of Golgohar iron ore mine of Sir jan,Iran.Comparing the results of ANFIS and RBF models shows that although the statistical parameters RBF model is acceptable but the ANFIS proposed model is superior and also simpler because the ANFIS model is constructed using only two input parameters while seven input parameters used for construction of the RBF model.

  5. Adaptive Neuro-Fuzzy Inference System Applied QSAR with Quantum Chemical Descriptors for Predicting Radical Scavenging Activities of Carotenoids.

    Changho Jhin

    Full Text Available One of the physiological characteristics of carotenoids is their radical scavenging activity. In this study, the relationship between radical scavenging activities and quantum chemical descriptors of carotenoids was determined. Adaptive neuro-fuzzy inference system (ANFIS applied quantitative structure-activity relationship models (QSAR were also developed for predicting and comparing radical scavenging activities of carotenoids. Semi-empirical PM6 and PM7 quantum chemical calculations were done by MOPAC. Ionisation energies of neutral and monovalent cationic carotenoids and the product of chemical potentials of neutral and monovalent cationic carotenoids were significantly correlated with the radical scavenging activities, and consequently these descriptors were used as independent variables for the QSAR study. The ANFIS applied QSAR models were developed with two triangular-shaped input membership functions made for each of the independent variables and optimised by a backpropagation method. High prediction efficiencies were achieved by the ANFIS applied QSAR. The R-square values of the developed QSAR models with the variables calculated by PM6 and PM7 methods were 0.921 and 0.902, respectively. The results of this study demonstrated reliabilities of the selected quantum chemical descriptors and the significance of QSAR models.

  6. Adaptive Neuro-Fuzzy Inference System Approach for the Automatic Screening of Diabetic Retinopathy in Fundus Images

    S. Kavitha

    2011-01-01

    Full Text Available Problem statement: Diabetic retinopathy is one of the most significant factors contributing to blindness and so early diagnosis and timely treatment is particularly important to prevent visual loss. Approach: An integrated approach for extraction of blood vessels and exudates detection was proposed to screen diabetic retinopathy. An automated classifier was developed based on Adaptive Neuro-Fuzzy Inference System (ANFIS to differentiate between normal and nonproliferative eyes from the quantitative assessment of monocular fundus images. Feature extraction was performed on the preprocessed fundus images. Structure of Blood vessels was extracted using Multiscale analysis. Hard Exudates were detected using CIE Color channel transformation, Entropy Thresholding and Improved Connected Component Analysis from the fundus images. Features like Wall to Lumen ratio in blood vessels, Texture, Homogeneity properties and area occupied by Hard Exudates, were given as input to ANFIS.ANFIS was trained with Back propagation in combination with the least squares method. Proposed method was evaluated on 200 real time images comprising 70 normal and 130 retinopathic eyes. Results and Conclusion: All of the results were validated with ground truths obtained from expert ophthalmologists. Quantitative performance of the method, detected exudates with an accuracy of 99.5%. Receiver operating characteristic curve evaluated for real time images produced better results compared to the other state of the art methods. ANFIS provides best classification and can be used as a screening tool in the analysis and diagnosis of retinal images.

  7. Comparative analysis of an evaporative condenser using artificial neural network and adaptive neuro-fuzzy inference system

    Metin Ertunc, H. [Department of Mechatronics Engineering, Kocaeli University, Umuttepe, 41380 Kocaeli (Turkey); Hosoz, Murat [Department of Mechanical Education, Kocaeli University, Umuttepe, 41380 Kocaeli (Turkey)

    2008-12-15

    This study deals with predicting the performance of an evaporative condenser using both artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) techniques. For this aim, an experimental evaporative condenser consisting of a copper tube condensing coil along with air and water circuit elements was developed and equipped with instruments used for temperature, pressure and flow rate measurements. After the condenser was connected to an R134a vapour-compression refrigeration circuit, it was operated at steady state conditions, while varying both dry and wet bulb temperatures of the air stream entering the condenser, air and water flow rates as well as pressure, temperature and flow rate of the entering refrigerant. Using some of the experimental data for training, ANN and ANFIS models for the evaporative condenser were developed. These models were used for predicting the condenser heat rejection rate, refrigerant temperature leaving the condenser along with dry and wet bulb temperatures of the leaving air stream. Although it was observed that both ANN and ANFIS models yielded a good statistical prediction performance in terms of correlation coefficient, mean relative error, root mean square error and absolute fraction of variance, the accuracies of ANFIS predictions were usually slightly better than those of ANN predictions. This study reveals that, having an extended prediction capability compared to ANN, the ANFIS technique can also be used for predicting the performance of evaporative condensers. (author)

  8. Prediction of radical scavenging activities of anthocyanins applying adaptive neuro-fuzzy inference system (ANFIS) with quantum chemical descriptors.

    Jhin, Changho; Hwang, Keum Taek

    2014-01-01

    Radical scavenging activity of anthocyanins is well known, but only a few studies have been conducted by quantum chemical approach. The adaptive neuro-fuzzy inference system (ANFIS) is an effective technique for solving problems with uncertainty. The purpose of this study was to construct and evaluate quantitative structure-activity relationship (QSAR) models for predicting radical scavenging activities of anthocyanins with good prediction efficiency. ANFIS-applied QSAR models were developed by using quantum chemical descriptors of anthocyanins calculated by semi-empirical PM6 and PM7 methods. Electron affinity (A) and electronegativity (χ) of flavylium cation, and ionization potential (I) of quinoidal base were significantly correlated with radical scavenging activities of anthocyanins. These descriptors were used as independent variables for QSAR models. ANFIS models with two triangular-shaped input fuzzy functions for each independent variable were constructed and optimized by 100 learning epochs. The constructed models using descriptors calculated by both PM6 and PM7 had good prediction efficiency with Q-square of 0.82 and 0.86, respectively. PMID:25153627

  9. Adaptive Neuro-Fuzzy Inference System Applied QSAR with Quantum Chemical Descriptors for Predicting Radical Scavenging Activities of Carotenoids.

    Jhin, Changho; Hwang, Keum Taek

    2015-01-01

    One of the physiological characteristics of carotenoids is their radical scavenging activity. In this study, the relationship between radical scavenging activities and quantum chemical descriptors of carotenoids was determined. Adaptive neuro-fuzzy inference system (ANFIS) applied quantitative structure-activity relationship models (QSAR) were also developed for predicting and comparing radical scavenging activities of carotenoids. Semi-empirical PM6 and PM7 quantum chemical calculations were done by MOPAC. Ionisation energies of neutral and monovalent cationic carotenoids and the product of chemical potentials of neutral and monovalent cationic carotenoids were significantly correlated with the radical scavenging activities, and consequently these descriptors were used as independent variables for the QSAR study. The ANFIS applied QSAR models were developed with two triangular-shaped input membership functions made for each of the independent variables and optimised by a backpropagation method. High prediction efficiencies were achieved by the ANFIS applied QSAR. The R-square values of the developed QSAR models with the variables calculated by PM6 and PM7 methods were 0.921 and 0.902, respectively. The results of this study demonstrated reliabilities of the selected quantum chemical descriptors and the significance of QSAR models. PMID:26474167

  10. Bridge Performance Assessment Based on an Adaptive Neuro-Fuzzy Inference System with Wavelet Filter for the GPS Measurements

    Mosbeh R. Kaloop

    2015-10-01

    Full Text Available This study describes the performance assessment of the Huangpu Bridge in Guangzhou, China based on long-term monitoring in real-time by the kinematic global positioning system (RTK-GPS technique. Wavelet transformde-noising is applied to filter the GPS measurements, while the adaptive neuro-fuzzy inference system (ANFIS time series output-only model is used to predict the deformations of GPS-bridge monitoring points. In addition, GPS and accelerometer monitoring systems are used to evaluate the bridge oscillation performance. The conclusions drawn from investigating the numerical results show that: (1the wavelet de-noising of the GPS measurements of the different recording points on the bridge is a suitable tool to efficiently eliminate the signal noise and extract the different deformation components such as: semi-static and dynamic displacements; (2 the ANFIS method with two multi-input single output model is revealed to powerfully predict GPS movement measurements and assess the bridge deformations; and (3 The installed structural health monitoring system and the applied ANFIS movement prediction performance model are solely sufficient to assure bridge safety based on the analyses of the different filtered movement components.

  11. Mechanical fault diagnostics for induction motor with variable speed drives using Adaptive Neuro-fuzzy Inference System

    Ye, Z. [Department of Electrical & amp; Computer Engineering, Queen' s University, Kingston, Ont. (Canada K7L 3N6); Sadeghian, A. [Department of Computer Science, Ryerson University, Toronto, Ont. (Canada M5B 2K3); Wu, B. [Department of Electrical & amp; Computer Engineering, Ryerson University, Toronto, Ont. (Canada M5B 2K3)

    2006-06-15

    A novel online diagnostic algorithm for mechanical faults of electrical machines with variable speed drive systems is presented in this paper. Using Wavelet Packet Decomposition (WPD), a set of feature coefficients, represented with different frequency resolutions, related to the mechanical faults is extracted from the stator current of the induction motors operating over a wide range of speeds. A new integrated diagnostic system for electrical machine mechanical faults is then proposed using multiple Adaptive Neuro-fuzzy Inference Systems (ANFIS). This paper shows that using multiple ANFIS units significantly reduces the scale and complexity of the system and speeds up the training of the network. The diagnostic algorithm is validated on a three-phase induction motor drive system, and it is proven to be capable of detecting rotor bar breakage and air gap eccentricity faults with high accuracy. The algorithm is applicable to a variety of industrial applications where either continuous on-line monitoring or off-line fault diagnostics is required. (author)

  12. Studies of relationships between free swelling index (FSI) and coal quality by regression and adaptive neuro fuzzy inference system

    Khorami, M. Tayebi [Department of Mining Engineering, Science and Research Branch, Islamic Azad University, Poonak, Hesarak Tehran (Iran, Islamic Republic of); Chelgani, S. Chehreh [Surface Science Western, Research Park, University of Western Ontario, London (Canada); Hower, James C. [Center for Applied Energy Research, University of Kentucky, Kexington (United States); Jorjani, E. [Department of Mining Engineering, Science and Research Branch, Islamic Azad University, Poonak, Hesarak Tehran (Iran, Islamic Republic of)

    2011-01-01

    The results of proximate, ultimate, and petrographic analysis for a wide range of Kentucky coal samples were used to predict Free Swelling Index (FSI) using multivariable regression and Adaptive Neuro Fuzzy Inference System (ANFIS). Three different input sets: (a) moisture, ash, and volatile matter; (b) carbon, hydrogen, nitrogen, oxygen, sulfur, and mineral matter; and (c) group-maceral analysis, mineral matter, moisture, sulfur, and R{sub max} were applied for both methods. Non-linear regression achieved the correlation coefficients (R{sup 2}) of 0.38, 0.49, and 0.70 for input sets (a), (b), and (c), respectively. By using the same input sets, ANFIS predicted FSI with higher R{sup 2} of 0.46, 0.82 and 0.95, respectively. Results show that input set (c) is the best predictor of FSI in both prediction methods, and ANFIS significantly can be used to predict FSI when regression results do not have appropriate accuracy. (author)

  13. Integration of Adaptive Neuro-Fuzzy Inference System, Neural Networks and Geostatistical Methods for Fracture Density Modeling

    Ja’fari A.

    2014-01-01

    Full Text Available Image logs provide useful information for fracture study in naturally fractured reservoir. Fracture dip, azimuth, aperture and fracture density can be obtained from image logs and have great importance in naturally fractured reservoir characterization. Imaging all fractured parts of hydrocarbon reservoirs and interpreting the results is expensive and time consuming. In this study, an improved method to make a quantitative correlation between fracture densities obtained from image logs and conventional well log data by integration of different artificial intelligence systems was proposed. The proposed method combines the results of Adaptive Neuro-Fuzzy Inference System (ANFIS and Neural Networks (NN algorithms for overall estimation of fracture density from conventional well log data. A simple averaging method was used to obtain a better result by combining results of ANFIS and NN. The algorithm applied on other wells of the field to obtain fracture density. In order to model the fracture density in the reservoir, we used variography and sequential simulation algorithms like Sequential Indicator Simulation (SIS and Truncated Gaussian Simulation (TGS. The overall algorithm applied to Asmari reservoir one of the SW Iranian oil fields. Histogram analysis applied to control the quality of the obtained models. Results of this study show that for higher number of fracture facies the TGS algorithm works better than SIS but in small number of fracture facies both algorithms provide approximately same results.

  14. Investigation of the robustness of adaptive neuro-fuzzy inference system for tracking moving tumors in external radiotherapy.

    Torshabi, Ahmad Esmaili

    2014-12-01

    In external radiotherapy of dynamic targets such as lung and breast cancers, accurate correlation models are utilized to extract real time tumor position by means of external surrogates in correlation with the internal motion of tumors. In this study, a correlation method based on the neuro-fuzzy model is proposed to correlate the input external motion data with internal tumor motion estimation in real-time mode, due to its robustness in motion tracking. An initial test of the performance of this model was reported in our previous studies. In this work by implementing some modifications it is resulted that ANFIS is still robust to track tumor motion more reliably by reducing the motion estimation error remarkably. After configuring new version of our ANFIS model, its performance was retrospectively tested over ten patients treated with Synchrony Cyberknife system. In order to assess the performance of our model, the predicted tumor motion as model output was compared with respect to the state of the art model. Final analyzed results show that our adaptive neuro-fuzzy model can reduce tumor tracking errors more significantly, as compared with ground truth database and even tumor tracking methods presented in our previous works. PMID:25412886

  15. Computation of Magnetic Field Distribution by Using an Adaptive Neuro-Fuzzy Inference System

    P. Dhana Lakshmi

    2012-04-01

    Full Text Available This paper proposes a set of mathematical models presenting magnetic fields caused by operations of an extra high voltage (EHV transmission line under normal loading and short-circuit condi t ions . The mathematical model s are expressed in second-order partial differential equations derived by analyzing magnetic field distribution around a 500- kV power transmission line. The problem of study is intentionally two-dimensional due to the property of long line field distribution. To verify its use, i single-circuit and ii double-circuit, 500-kV power transmission lines have been employed for test. Finite element methods (FEM for solving wave equations have been exploited. The computer simulation based on the use of the FEM has been developed in MATLAB programming environment. This paper presents novel approach based on the use of adaptive network-based fuzzy inference system (ANFIS to estimate magnetic fields around an overhead power transmission lines. The ANFIS approach learns the rules and membership functions from training data. The hybrid system is tested by the use of the validation data. From all test cases, the calculation line of 1.0m above the ground level is set to investigate the magnetic fields acting on a human in c o m p a r a t i v e with ICNIRP standard.

  16. Comparison of adaptive neuro-fuzzy inference system and artificial neutral networks model to categorize patients in the emergency department.

    Azeez, Dhifaf; Ali, Mohd Alauddin Mohd; Gan, Kok Beng; Saiboon, Ismail

    2013-01-01

    Unexpected disease outbreaks and disasters are becoming primary issues facing our world. The first points of contact either at the disaster scenes or emergency department exposed the frontline workers and medical physicians to the risk of infections. Therefore, there is a persuasive demand for the integration and exploitation of heterogeneous biomedical information to improve clinical practice, medical research and point of care. In this paper, a primary triage model was designed using two different methods: an adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN).When the patient is presented at the triage counter, the system will capture their vital signs and chief complains beside physiology stat and general appearance of the patient. This data will be managed and analyzed in the data server and the patient's emergency status will be reported immediately. The proposed method will help to reduce the queue time at the triage counter and the emergency physician's burden especially duringdisease outbreak and serious disaster. The models have been built with 2223 data set extracted from the Emergency Department of the Universiti Kebangsaan Malaysia Medical Centre to predict the primary triage category. Multilayer feed forward with one hidden layer having 12 neurons has been used for the ANN architecture. Fuzzy subtractive clustering has been used to find the fuzzy rules for the ANFIS model. The results showed that the RMSE, %RME and the accuracy which evaluated by measuring specificity and sensitivity for binary classificationof the training data were 0.14, 5.7 and 99 respectively for the ANN model and 0.85, 32.00 and 96.00 respectively for the ANFIS model. As for unseen data the root mean square error, percentage the root mean square error and the accuracy for ANN is 0.18, 7.16 and 96.7 respectively, 1.30, 49.84 and 94 respectively for ANFIS model. The ANN model was performed better for both training and unseen data than ANFIS model in

  17. Modeling and Simulation of An Adaptive Neuro-Fuzzy Inference System (ANFIS) for Mobile Learning

    Al-Hmouz, A.; Shen, Jun; Al-Hmouz, R.; Yan, Jun

    2012-01-01

    With recent advances in mobile learning (m-learning), it is becoming possible for learning activities to occur everywhere. The learner model presented in our earlier work was partitioned into smaller elements in the form of learner profiles, which collectively represent the entire learning process. This paper presents an Adaptive Neuro-Fuzzy…

  18. Designing a Battlefield Fire Support System Using Adaptive Neuro-Fuzzy Inference System Based Model

    Kerim Goztepe

    2013-01-01

    Fire support of the maneuver operation is a continuous process. It begins with the receiving the task by the maneuver commander and continues until the mission is completed. Yet it is a key issue in combat in the way gain success. Therefore, a real-time mannered solution to fire support problem is a vital component of tactical warfare to the sequence that auxiliary forces or logistic support arrives at the theatre. A new method for deciding on combat fire support is proposed using adaptive ne...

  19. Using adaptive neuro-fuzzy inference system technique for crosstalk correction in simultaneous 99mTc/201Tl SPECT imaging: A Monte Carlo simulation study

    This work presents a simulation based study by Monte Carlo which uses two adaptive neuro-fuzzy inference systems (ANFIS) for cross talk compensation of simultaneous 99mTc/201Tl dual-radioisotope SPECT imaging. We have compared two neuro-fuzzy systems based on fuzzy c-means (FCM) and subtractive (SUB) clustering. Our approach incorporates eight energy-windows image acquisition from 28 keV to 156 keV and two main photo peaks of 201Tl (77±10% keV) and 99mTc (140±10% keV). The Geant4 application in emission tomography (GATE) is used as a Monte Carlo simulator for three cylindrical and a NURBS Based Cardiac Torso (NCAT) phantom study. Three separate acquisitions including two single-isotopes and one dual isotope were performed in this study. Cross talk and scatter corrected projections are reconstructed by an iterative ordered subsets expectation maximization (OSEM) algorithm which models the non-uniform attenuation in the projection/back-projection. ANFIS-FCM/SUB structures are tuned to create three to sixteen fuzzy rules for modeling the photon cross-talk of the two radioisotopes. Applying seven to nine fuzzy rules leads to a total improvement of the contrast and the bias comparatively. It is found that there is an out performance for the ANFIS-FCM due to its acceleration and accurate results

  20. Using adaptive neuro-fuzzy inference system technique for crosstalk correction in simultaneous 99mTc/201Tl SPECT imaging: A Monte Carlo simulation study

    Heidary, Saeed; Setayeshi, Saeed

    2015-01-01

    This work presents a simulation based study by Monte Carlo which uses two adaptive neuro-fuzzy inference systems (ANFIS) for cross talk compensation of simultaneous 99mTc/201Tl dual-radioisotope SPECT imaging. We have compared two neuro-fuzzy systems based on fuzzy c-means (FCM) and subtractive (SUB) clustering. Our approach incorporates eight energy-windows image acquisition from 28 keV to 156 keV and two main photo peaks of 201Tl (77±10% keV) and 99mTc (140±10% keV). The Geant4 application in emission tomography (GATE) is used as a Monte Carlo simulator for three cylindrical and a NURBS Based Cardiac Torso (NCAT) phantom study. Three separate acquisitions including two single-isotopes and one dual isotope were performed in this study. Cross talk and scatter corrected projections are reconstructed by an iterative ordered subsets expectation maximization (OSEM) algorithm which models the non-uniform attenuation in the projection/back-projection. ANFIS-FCM/SUB structures are tuned to create three to sixteen fuzzy rules for modeling the photon cross-talk of the two radioisotopes. Applying seven to nine fuzzy rules leads to a total improvement of the contrast and the bias comparatively. It is found that there is an out performance for the ANFIS-FCM due to its acceleration and accurate results.

  1. Using adaptive neuro-fuzzy inference system technique for crosstalk correction in simultaneous {sup 99m}Tc/{sup 201}Tl SPECT imaging: A Monte Carlo simulation study

    Heidary, Saeed, E-mail: saeedheidary@aut.ac.ir; Setayeshi, Saeed, E-mail: setayesh@aut.ac.ir

    2015-01-11

    This work presents a simulation based study by Monte Carlo which uses two adaptive neuro-fuzzy inference systems (ANFIS) for cross talk compensation of simultaneous {sup 99m}Tc/{sup 201}Tl dual-radioisotope SPECT imaging. We have compared two neuro-fuzzy systems based on fuzzy c-means (FCM) and subtractive (SUB) clustering. Our approach incorporates eight energy-windows image acquisition from 28 keV to 156 keV and two main photo peaks of {sup 201}Tl (77±10% keV) and {sup 99m}Tc (140±10% keV). The Geant4 application in emission tomography (GATE) is used as a Monte Carlo simulator for three cylindrical and a NURBS Based Cardiac Torso (NCAT) phantom study. Three separate acquisitions including two single-isotopes and one dual isotope were performed in this study. Cross talk and scatter corrected projections are reconstructed by an iterative ordered subsets expectation maximization (OSEM) algorithm which models the non-uniform attenuation in the projection/back-projection. ANFIS-FCM/SUB structures are tuned to create three to sixteen fuzzy rules for modeling the photon cross-talk of the two radioisotopes. Applying seven to nine fuzzy rules leads to a total improvement of the contrast and the bias comparatively. It is found that there is an out performance for the ANFIS-FCM due to its acceleration and accurate results.

  2. Prediction of Compressive Strength of Self compacting Concrete with Flyash and Rice Husk Ash using Adaptive Neuro-fuzzy Inference System

    S. S, Pathak

    2012-10-01

    Full Text Available Self-compacting concrete is an innovative concrete that does not require vibration for placing and compaction. It is able to flow under its own weight, completely filling formwork and achieving full compaction even in congested reinforcement without segregation and bleeding. In the present study self compacting concrete mixes were developed using blend of fly ash and rice husk ash. Fresh properties of theses mixes were tested by using standards recommended by EFNARC (European Federation for Specialist Construction Chemicals and Concrete system. Compressive strength at 28 days was obtained for these mixes. This paper presents development of Adaptive Neuro-fuzzy Inference System (ANFIS model for predicting compressive strength of self compacting concrete using fly ash and rice husk ash. The input parameters used for model are cement, fly ash, rice husk ash and water content. Output parameter is compressive strength at 28 days. The results show that the implemented model is good at predicting compressive strength.

  3. Application of Adaptive Neuro-Fuzzy Inference System for Prediction of Neutron Yield of IR-IECF Facility in High Voltages

    Adineh-Vand, A.; Torabi, M.; Roshani, G. H.; Taghipour, M.; Feghhi, S. A. H.; Rezaei, M.; Sadati, S. M.

    2013-09-01

    This paper presents a soft computing based artificial intelligent technique, adaptive neuro-fuzzy inference system (ANFIS) to predict the neutron production rate (NPR) of IR-IECF device in wide discharge current and voltage ranges. A hybrid learning algorithm consists of back-propagation and least-squares estimation is used for training the ANFIS model. The performance of the proposed ANFIS model is tested using the experimental data using four performance measures: correlation coefficient, mean absolute error, mean relative error percentage (MRE%) and root mean square error. The obtained results show that the proposed ANFIS model has achieved good agreement with the experimental results. In comparison to the experimental data the proposed ANFIS model has MRE% <1.53 and 2.85 % for training and testing data respectively. Therefore, this model can be used as an efficient tool to predict the NPR in the IR-IECF device.

  4. A new battery capacity indicator for nickel-metal hydride battery powered electric vehicles using adaptive neuro-fuzzy inference system

    This paper describes a new approach to estimate accurately the battery residual capacity (BRC) of the nickel-metal hydride (Ni-MH) battery for modern electric vehicles (EVs). The key to this approach is to model the Ni-MH battery in EVs by using the adaptive neuro-fuzzy inference system (ANFIS) with newly defined inputs and output. The inputs are the temperature and the discharged capacity distribution describing the discharge current profile, while the output is the state of available capacity (SOAC) representing the BRC. The estimated SOAC from ANFIS model and the measured SOAC from experiments are compared, and the results confirm that the proposed approach can provide an accurate estimation of the SOAC under variable discharge currents

  5. Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers

    The subject of FDD (fault detection and diagnosis) has gained widespread industrial interest in machine condition monitoring applications. This is mainly due to the potential advantage to be achieved from reduced maintenance costs, improved productivity and increased machine availability. This paper presents a new FDD scheme for condition machinery of an industrial steam turbine using a data fusion methodology. Fusion of a SVM (support vector machine) classifier with an ANFIS (adaptive neuro-fuzzy inference system) classifier, integrated into a common framework, is utilized to enhance the fault detection and diagnostic tasks. For this purpose, a multi-attribute data is fused into aggregated values of a single attribute by OWA (ordered weighted averaging) operators. The simulation studies indicate that the resulting fusion-based scheme outperforms the individual SVM and ANFIS systems to detect and diagnose incipient steam turbine faults.

  6. Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers

    Salahshoor, Karim [Department of Instrumentation and Automation, Petroleum University of Technology, Tehran (Iran, Islamic Republic of); Kordestani, Mojtaba; Khoshro, Majid S. [Department of Control Engineering, Islamic Azad University South Tehran branch (Iran, Islamic Republic of)

    2010-12-15

    The subject of FDD (fault detection and diagnosis) has gained widespread industrial interest in machine condition monitoring applications. This is mainly due to the potential advantage to be achieved from reduced maintenance costs, improved productivity and increased machine availability. This paper presents a new FDD scheme for condition machinery of an industrial steam turbine using a data fusion methodology. Fusion of a SVM (support vector machine) classifier with an ANFIS (adaptive neuro-fuzzy inference system) classifier, integrated into a common framework, is utilized to enhance the fault detection and diagnostic tasks. For this purpose, a multi-attribute data is fused into aggregated values of a single attribute by OWA (ordered weighted averaging) operators. The simulation studies indicate that the resulting fusion-based scheme outperforms the individual SVM and ANFIS systems to detect and diagnose incipient steam turbine faults. (author)

  7. A new battery capacity indicator for nickel-metal hydride battery powered electric vehicles using adaptive neuro-fuzzy inference system

    Chau, K T; Chan, C C; Shen, W X

    2003-01-01

    This paper describes a new approach to estimate accurately the battery residual capacity (BRC) of the nickel-metal hydride (Ni-MH) battery for modern electric vehicles (EVs). The key to this approach is to model the Ni-MH battery in EVs by using the adaptive neuro-fuzzy inference system (ANFIS) with newly defined inputs and output. The inputs are the temperature and the discharged capacity distribution describing the discharge current profile, while the output is the state of available capacity (SOAC) representing the BRC. The estimated SOAC from ANFIS model and the measured SOAC from experiments are compared, and the results confirm that the proposed approach can provide an accurate estimation of the SOAC under variable discharge currents.

  8. A new battery capacity indicator for nickel-metal hydride battery powered electric vehicles using adaptive neuro-fuzzy inference system

    Chau, K.T. E-mail: ktchau@eee.hku.hk; Wu, K.C.; Chan, C.C.; Shen, W.X

    2003-08-01

    This paper describes a new approach to estimate accurately the battery residual capacity (BRC) of the nickel-metal hydride (Ni-MH) battery for modern electric vehicles (EVs). The key to this approach is to model the Ni-MH battery in EVs by using the adaptive neuro-fuzzy inference system (ANFIS) with newly defined inputs and output. The inputs are the temperature and the discharged capacity distribution describing the discharge current profile, while the output is the state of available capacity (SOAC) representing the BRC. The estimated SOAC from ANFIS model and the measured SOAC from experiments are compared, and the results confirm that the proposed approach can provide an accurate estimation of the SOAC under variable discharge currents.

  9. An Adaptive Neuro-Fuzzy Inference System Based Modeling for Corrosion-Damaged Reinforced HSC Beams Strengthened with External Glass Fibre Reinforced Polymer Laminates

    P. N. Raghunath

    2012-01-01

    Full Text Available Problem statement: This study presents the results of ANFIS based model proposed for predicting the performance characteristics of reinforced HSC beams subjected to different levels of corrosion damage and strengthened with externally bonded glass fibre reinforced polymer laminates. Approach: A total of 21 beams specimens of size 150, 250×3000 mm were cast and tested. Results: Out of the 21 specimens, 7 specimens were tested without any corrosion damage (R-Series, 7 after inducing 10% corrosion damage (ASeries and another 7 after inducing 25% corrosion damage (B-Series. Out of the seven specimens in each series, one was tested without any laminate, three specimens were tested after applying 3 mm thick CSM, UDC and WR laminates and another three specimens after applying 5mm thick CSM, UDC and WR laminates. Conclusion/Recommendations: The test results show that the beams strengthened with externally bonded GFRP laminates exhibit increased strength, stiffness, ductility and composite action until failure. An Adaptive Neuro-Fuzzy Inference System (ANFIS model is developed for predicting the study parameters for input values lying within the range of this experimental study.

  10. Use of an adaptive neuro-fuzzy inference system to obtain the correspondence among balance, gait, and depression for Parkinson's disease

    Woo, Youngkeun; Lee, Juwon; Hwang, Sujin; Hong, Cheol Pyo

    2013-03-01

    The purpose of this study was to investigate the associations between gait performance, postural stability, and depression in patients with Parkinson's disease (PD) by using an adaptive neuro-fuzzy inference system (ANFIS). Twenty-two idiopathic PD patients were assessed during outpatient physical therapy by using three clinical tests: the Berg balance scale (BBS), Dynamic gait index (DGI), and Geriatric depression scale (GDS). Scores were determined from clinical observation and patient interviews, and associations among gait performance, postural stability, and depression in this PD population were evaluated. The DGI showed significant positive correlation with the BBS scores, and negative correlation with the GDS score. We assessed the relationship between the BBS score and the DGI results by using a multiple regression analysis. In this case, the GDS score was not significantly associated with the DGI, but the BBS and DGI results were. Strikingly, the ANFIS-estimated value of the DGI, based on the BBS and the GDS scores, significantly correlated with the walking ability determined by using the DGI in patients with Parkinson's disease. These findings suggest that the ANFIS techniques effectively reflect and explain the multidirectional phenomena or conditions of gait performance in patients with PD.

  11. Extraction of fetal electrocardiogram (ECG) by extended state Kalman filtering and adaptive neuro-fuzzy inference system (ANFIS) based on single channel abdominal recording

    D Panigrahy; P K Sahu

    2015-06-01

    Fetal electrocardiogram (ECG) gives information about the health status of fetus and so, an early diagnosis of any cardiac defect before delivery increases the effectiveness of appropriate treatment. In this paper, authors investigate the use of adaptive neuro-fuzzy inference system (ANFIS) with extended Kalman filter for fetal ECG extraction from one ECG signal recorded at the abdominal areas of the mother’s skin. The abdominal ECG is considered to be composite as it contains both mother’s and fetus’ ECG signals. We use extended Kalman filter framework to estimate the maternal component from abdominal ECG. The maternal component in the abdominal ECG signal is a nonlinear transformed version of maternal ECG. ANFIS network has been used to identify this nonlinear relationship, and to align the estimated maternal ECG signal with the maternal component in the abdominal ECG signal. Thus, we extract the fetal ECG component by subtracting the aligned version of the estimated maternal ECG from the abdominal signal. Our results demonstrate the effectiveness of the proposed technique in extracting the fetal ECG component from abdominal signal at different noise levels. The proposed technique is also validated on the extraction of fetal ECG from both actual abdominal recordings and synthetic abdominal recording.

  12. Adaptive neuro-fuzzy inference systems with k-fold cross-validation for energy expenditure predictions based on heart rate.

    Kolus, Ahmet; Imbeau, Daniel; Dubé, Philippe-Antoine; Dubeau, Denise

    2015-09-01

    This paper presents a new model based on adaptive neuro-fuzzy inference systems (ANFIS) to predict oxygen consumption (V˙O2) from easily measured variables. The ANFIS prediction model consists of three ANFIS modules for estimating the Flex-HR parameters. Each module was developed based on clustering a training set of data samples relevant to that module and then the ANFIS prediction model was tested against a validation data set. Fifty-eight participants performed the Meyer and Flenghi step-test, during which heart rate (HR) and V˙O2 were measured. Results indicated no significant difference between observed and estimated Flex-HR parameters and between measured and estimated V˙O2 in the overall HR range, and separately in different HR ranges. The ANFIS prediction model (MAE = 3 ml kg(-1) min(-1)) demonstrated better performance than Rennie et al.'s (MAE = 7 ml kg(-1) min(-1)) and Keytel et al.'s (MAE = 6 ml kg(-1) min(-1)) models, and comparable performance with the standard Flex-HR method (MAE = 2.3 ml kg(-1) min(-1)) throughout the HR range. The ANFIS model thus provides practitioners with a practical, cost- and time-efficient method for V˙O2 estimation without the need for individual calibration. PMID:25959320

  13. An exploratory investigation of an adaptive neuro fuzzy inference system (ANFIS) for estimating hydrometeors from TRMM/TMI in synergy with TRMM/PR

    Islam, Tanvir; Srivastava, Prashant K.; Rico-Ramirez, Miguel A.; Dai, Qiang; Han, Dawei; Gupta, Manika

    2014-08-01

    The authors have investigated an adaptive neuro fuzzy inference system (ANFIS) for the estimation of hydrometeors from the TRMM microwave imager (TMI). The proposed algorithm, named as Hydro-Rain algorithm, is developed in synergy with the TRMM precipitation radar (PR) observed hydrometeor information. The method retrieves rain rates by exploiting the synergistic relations between the TMI and PR observations in twofold steps. First, the fundamental hydrometeor parameters, liquid water path (LWP) and ice water path (IWP), are estimated from the TMI brightness temperatures. Next, the rain rates are estimated from the retrieved hydrometeor parameters (LWP and IWP). A comparison of the hydrometeor retrievals by the Hydro-Rain algorithm is done with the TRMM PR 2A25 and GPROF 2A12 algorithms. The results reveal that the Hydro-Rain algorithm has good skills in estimating hydrometeor paths LWP and IWP, as well as surface rain rate. An examination of the Hydro-Rain algorithm is also conducted on a super typhoon case, in which the Hydro-Rain has shown very good performance in reproducing the typhoon field. Nevertheless, the passive microwave based estimate of hydrometeors appears to suffer in high rain rate regimes, and as the rain rate increases, the discrepancies with hydrometeor estimates tend to increase as well.

  14. Adaptive neuro-fuzzy inference systems (ANFIS) application to investigate potential use of natural ventilation in new building designs in Turkey

    Ayata, Tahir; Cam, Ertugrul; Yildiz, Osman [Kirikkale University, Faculty of Engineering, 71451, Campus, Kirikkale (Turkey)

    2007-05-15

    Natural ventilation in living and working places provides both circulation of clear air and a decrease of indoor temperature, especially during hot summer days. In addition to openings, the dimension ratio and position of buildings play a significant role to obtain a uniform indoor air velocity distribution. In this study, the potential use of natural ventilation as a passive cooling system in new building designs in Kayseri, a midsize city in Turkey, was investigated. First, indoor air velocity distributions with respect to changing wind direction and magnitude were simulated by the FLUENT package program, which employs finite element methods. Then, an adaptive neuro-fuzzy inference systems (ANFIS) model was employed to predict indoor average and maximum air velocities using the simulated data by FLUENT. The simulation results suggest that natural ventilation can be used to provide a thermally comfortable indoor environment during the summer season in the study area. Also, the ANFIS model can be proposed for estimation of indoor air velocity values in such studies. (author)

  15. Genetic algorithm-artificial neural network and adaptive neuro-fuzzy inference system modeling of antibacterial activity of annatto dye on Salmonella enteritidis.

    Yolmeh, Mahmoud; Habibi Najafi, Mohammad B; Salehi, Fakhreddin

    2014-01-01

    Annatto is commonly used as a coloring agent in the food industry and has antimicrobial and antioxidant properties. In this study, genetic algorithm-artificial neural network (GA-ANN) and adaptive neuro-fuzzy inference system (ANFIS) models were used to predict the effect of annatto dye on Salmonella enteritidis in mayonnaise. The GA-ANN and ANFIS were fed with 3 inputs of annatto dye concentration (0, 0.1, 0.2 and 0.4%), storage temperature (4 and 25°C) and storage time (1-20 days) for prediction of S. enteritidis population. Both models were trained with experimental data. The results showed that the annatto dye was able to reduce of S. enteritidis and its effect was stronger at 25°C than 4°C. The developed GA-ANN, which included 8 hidden neurons, could predict S. enteritidis population with correlation coefficient of 0.999. The overall agreement between ANFIS predictions and experimental data was also very good (r=0.998). Sensitivity analysis results showed that storage temperature was the most sensitive factor for prediction of S. enteritidis population. PMID:24566279

  16. Bee algorithm and adaptive neuro-fuzzy inference system as tools for QSAR study toxicity of substituted benzenes to Tetrahymena pyriformis.

    Zarei, Kobra; Atabati, Morteza; Kor, Kamalodin

    2014-06-01

    A quantitative structure-activity relationship (QSAR) was developed to predict the toxicity of substituted benzenes to Tetrahymena pyriformis. A set of 1,497 zero- to three-dimensional descriptors were used for each molecule in the data set. A major problem of QSAR is the high dimensionality of the descriptor space; therefore, descriptor selection is one of the most important steps. In this paper, bee algorithm was used to select the best descriptors. Three descriptors were selected and used as inputs for adaptive neuro-fuzzy inference system (ANFIS). Then the model was corrected for unstable compounds (the compounds that can be ionized in the aqueous solutions or can easily metabolize under some conditions). Finally squared correlation coefficients were obtained as 0.8769, 0.8649 and 0.8301 for training, test and validation sets, respectively. The results showed bee-ANFIS can be used as a powerful model for prediction of toxicity of substituted benzenes to T. pyriformis. PMID:24638918

  17. Adaptive Neuro-fuzzy approach in friction identification

    Zaiyad Muda @ Ismail, Muhammad

    2016-05-01

    Friction is known to affect the performance of motion control system, especially in terms of its accuracy. Therefore, a number of techniques or methods have been explored and implemented to alleviate the effects of friction. In this project, the Artificial Intelligent (AI) approach is used to model the friction which will be then used to compensate the friction. The Adaptive Neuro-Fuzzy Inference System (ANFIS) is chosen among several other AI methods because of its reliability and capabilities of solving complex computation. ANFIS is a hybrid AI-paradigm that combines the best features of neural network and fuzzy logic. This AI method (ANFIS) is effective for nonlinear system identification and compensation and thus, being used in this project.

  18. Propose a Model for Customer Purchase Decision in B2C Websites Using Adaptive Neuro-Fuzzy Inference System

    Mehrbakhsh Nilashi, Mohammad Fathian, Mohammad Reza Gholamian, Othman bin Ibrahim

    2011-08-01

    Full Text Available If companies are to enjoy long-term success in the Internet marketplace, they must effectivelymanage the complex, multidimensional process of building online consumer trust. The onlineenvironment and the quality and usability of websites help the browser and consumer to beattracted and accessible to the information and the product and services available online. In thisPaper a new model would be suggested based on neuro-fuzzy System which depicts some of thehidden relationships between the critical factors such as security, familiarity, and designing in aB2C commercial website on other hand, and the competitive factor to other competitors on otherhand. Then, the impacts of these factors on purchasing decision of consumers in B2Ccommercial websites are extracted. We are going to find the impact of these factors on thedecision-making process of people to buy through the B2C commercial websites, and we also willanalyze how these factors influence the results of the B2C trading. The study also provides adevice for sellers to improve their commercial websites. Two questionnaires were used in thisstudy. The first questionnaire was developed for e-commerce experts, and the second one wasdesigned for the customers of commercial websites. Also, Expert Choice is used to determine thepriority of factors in the first questionnaire, and MATLAB and Excel are used for developing theFuzzy rules. Finally, the Fuzzy logical kit was use to analyze the generated factors in the model.

  19. Application of adaptive neuro-fuzzy inference system techniques and artificial neural networks to predict solid oxide fuel cell performance in residential microgeneration installation

    Entchev, Evgueniy; Yang, Libing [Integrated Energy Systems Laboratory, CANMET Energy Technology Centre, 1 Haanel Dr., Ottawa, Ontario (Canada)

    2007-06-30

    This study applies adaptive neuro-fuzzy inference system (ANFIS) techniques and artificial neural network (ANN) to predict solid oxide fuel cell (SOFC) performance while supplying both heat and power to a residence. A microgeneration 5 kW{sub el} SOFC system was installed at the Canadian Centre for Housing Technology (CCHT), integrated with existing mechanical systems and connected in parallel to the grid. SOFC performance data were collected during the winter heating season and used for training of both ANN and ANFIS models. The ANN model was built on back propagation algorithm as for ANFIS model a combination of least squares method and back propagation gradient decent method were developed and applied. Both models were trained with experimental data and used to predict selective SOFC performance parameters such as fuel cell stack current, stack voltage, etc. The study revealed that both ANN and ANFIS models' predictions agreed well with variety of experimental data sets representing steady-state, start-up and shut-down operations of the SOFC system. The initial data set was subjected to detailed sensitivity analysis and statistically insignificant parameters were excluded from the training set. As a result, significant reduction of computational time was achieved without affecting models' accuracy. The study showed that adaptive models can be applied with confidence during the design process and for performance optimization of existing and newly developed solid oxide fuel cell systems. It demonstrated that by using ANN and ANFIS techniques SOFC microgeneration system's performance could be modelled with minimum time demand and with a high degree of accuracy. (author)

  20. Prediction of ground vibrations resulting from the blasting operations in an open-pit mine by adaptive neuro-fuzzy inference system

    Iphar, Melih; Yavuz, Mahmut; Ak, Hakan

    2008-11-01

    The aim of this study is to predict the peak particle velocity (PPV) values from both presently constructed simple regression model and fuzzy-based model. For this purpose, vibrations induced by bench blasting operations were measured in an open-pit mine operated by the most important magnesite producing company (MAS) in Turkey. After gathering the ordered pairs of distance and PPV values, the site-specific parameters were determined using traditional regression method. Also, an attempt has been made to investigate the applicability of a relatively new soft computing method called as the adaptive neuro-fuzzy inference system (ANFIS) to predict PPV. To achieve this objective, data obtained from the blasting measurements were evaluated by constructing an ANFIS-based prediction model. The distance from the blasting site to the monitoring stations and the charge weight per delay were selected as the input parameters of the constructed model, the output parameter being the PPV. Valid for the site, the PPV prediction capability of the constructed ANFIS-based model has proved to be successful in terms of statistical performance indices such as variance account for (VAF), root mean square error (RMSE), standard error of estimation, and correlation between predicted and measured PPV values. Also, using these statistical performance indices, a prediction performance comparison has been made between the presently constructed ANFIS-based model and the classical regression-based prediction method, which has been widely used in the literature. Although the prediction performance of the regression-based model was high, the comparison has indicated that the proposed ANFIS-based model exhibited better prediction performance than the classical regression-based model.

  1. Adaptive neuro-fuzzy inference system (ANFIS) to predict CI engine parameters fueled with nano-particles additive to diesel fuel

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive neuro-fuzzy inference system (ANFIS) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For ANFIS modelling, Gaussian curve membership function (gaussmf) and 200 training epochs (iteration) were found to be optimum choices for training process. The results demonstrate that ANFIS is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve combustion of the fuel and reduce the exhaust emissions significantly.

  2. Estimation of Flow Duration Curve for Ungauged Catchments using Adaptive Neuro-Fuzzy Inference System and Map Correlation Method: A Case Study from Turkey

    Kentel, E.; Dogulu, N.

    2015-12-01

    In Turkey the experience and data required for a hydrological model setup is limited and very often not available. Moreover there are many ungauged catchments where there are also many planned projects aimed at utilization of water resources including development of existing hydropower potential. This situation makes runoff prediction at locations with lack of data and ungauged locations where small hydropower plants, reservoirs, etc. are planned an increasingly significant challenge and concern in the country. Flow duration curves have many practical applications in hydrology and integrated water resources management. Estimation of flood duration curve (FDC) at ungauged locations is essential, particularly for hydropower feasibility studies and selection of the installed capacities. In this study, we test and compare the performances of two methods for estimating FDCs in the Western Black Sea catchment, Turkey: (i) FDC based on Map Correlation Method (MCM) flow estimates. MCM is a recently proposed method (Archfield and Vogel, 2010) which uses geospatial information to estimate flow. Flow measurements of stream gauging stations nearby the ungauged location are the only data requirement for this method. This fact makes MCM very attractive for flow estimation in Turkey, (ii) Adaptive Neuro-Fuzzy Inference System (ANFIS) is a data-driven method which is used to relate FDC to a number of variables representing catchment and climate characteristics. However, it`s ease of implementation makes it very useful for practical purposes. Both methods use easily collectable data and are computationally efficient. Comparison of the results is realized based on two different measures: the root mean squared error (RMSE) and the Nash-Sutcliffe Efficiency (NSE) value. Ref: Archfield, S. A., and R. M. Vogel (2010), Map correlation method: Selection of a reference streamgage to estimate daily streamflow at ungaged catchments, Water Resour. Res., 46, W10513, doi:10.1029/2009WR008481.

  3. Adaptive Neuro-Fuzzy Extended Kalman Filtering for Robot Localization

    Havangi, Ramazan; Teshnehlab, Mohammad

    2010-01-01

    Extended Kalman Filter (EKF) has been a popular approach to localization a mobile robot. However, the performance of the EKF and the quality of the estimation depends on the correct a priori knowledge of process and measurement noise covariance matrices (Qk and Rk, respectively). Imprecise knowledge of these statistics can cause significant degradation in performance. This paper proposed the development of an Adaptive Neuro- Fuzzy Extended Kalman Filtering (ANFEKF) for localization of robot. The Adaptive Neuro-Fuzzy attempts to estimate the elements of Qk and Rk matrices of the EKF algorithm, at each sampling instant when measurement update step is carried out. The ANFIS supervises the performance of the EKF with the aim of reducing the mismatch between the theoretical and actual covariance of the innovation sequences. The free parameters of ANFIS are trained using the steepest gradient descent (SD) to minimize the differences of the actual value of the covariance of the residual with its theoretical value as...

  4. Modelizing a non-linear system: a computational effcient adaptive neuro-fuzzy system tool based on matlab

    Guillermo Bosque

    2014-01-01

    Full Text Available In a great diversity of knowledge areas, the variables that are involved in the behavior of a complex system, perform normally, a non-linear system. The search of a function that express those behavior, requires techniques as mathematics optimization techniques or others. The new paradigms introduced in the soft computing, as fuzzy logic, neuronal networks, genetics algorithms and the fusion of them like the neuro-fuzzy systems, and so on, represent a new point of view to deal this kind of problems due to the approximation properties of those systems (universal approximators.This work shows a methodology to develop a tool based on a neuro-fuzzy system of ANFIS (Adaptive Neuro-Fuzzy Inference System type with piecewise multilinear (PWM behaviour (introducing some restrictions on the membership functions -triangular- chosen in the ANFIS system. The obtained tool is named PWM-ANFIS Tool, that allows modelize a n-dimensional system with one output and, also, permits a comparison between the neuro-fuzzy system modelized, a purely PWM-ANFIS model, with a generic ANFIS (Gaussian membership functions modelized with the same tool. The proposed tool is an efficient tool to deal non-linearly complicated systems.Keywords: ANFIS model, Function approximation, Matlab environment, Neuro-Fuzzy CAD tool, Neuro-Fuzzy modelling.

  5. A New Neuro-Fuzzy Adaptive Genetic Algorithm

    ZHU Lili; ZHANG Huanchun; JING Yazhi

    2003-01-01

    Novel neuro-fuzzy techniques are used to dynamically control parameter settings of genetic algorithms (GAs). The benchmark routine is an adaptive genetic algorithm (AGA) that uses a fuzzy knowledge-based system to control GA parameters. The self-learning ability of the cerebellar model ariculation controller(CMAC) neural network makes it possible for on-line learning the knowledge on GAs throughout the run. Automatically designing and tuning the fuzzy knowledge-base system, neurofuzzy techniques based on CMAC can find the optimized fuzzy system for AGA by the renhanced learning method. The Results from initial experiments show a Dynamic Parametric AGA system designed by the proposed automatic method and indicate the general applicability of the neuro-fuzzy AGA to a wide range of combinatorial optimization.

  6. Adaptive neuro-fuzzy modeling of battery residual capacity for electric vehicles

    Shen, WX; Chan, CC; Lo, EWC; Chau, KT

    2002-01-01

    This paper proposes and implements a new method for the estimation of the battery residual capacity (BRC) for electric vehicles (EVs). The key of the proposed method is to model the EV battery by using the adaptive neuro-fuzzy inference system. Different operating profiles of the EV battery are investigated, including the constant current discharge and the random current discharge as well as the standard EV driving cycles in Europe, the U.S., and Japan. The estimated BRCs are directly compare...

  7. Adaptive neuro-fuzzy modeling of transient heat transfer in circular duct air flow

    Hasiloglu, Abdulsamet [Department of Electronics and Telecommunications Engineering, Engineering Faculty, Ataturk University, Erzurum (Turkey); Yilmaz, Mehmet; Comakli, Omer [Department of Mechanical Engineering, Engineering Faculty, Ataturk University, Erzurum (Turkey); Ekmekci, Ismail [Department of Mechanical Engineering, Engineering Faculty, Sakarya University, Sakarya (Turkey)

    2004-11-01

    The aim of this study is to demonstrate the usefulness of an adaptive neuro-fuzzy inference system (ANFIS) for the prediction of transient heat transfer. An ANFIS has been applied for the transient heat transfer in thermally and simultaneously developing circular duct flow, subjected to a sinusoidally varying inlet temperature. The experiments covered Reynolds numbers in the 2528{<=}Re{<=}4265 range and inlet heat input in the 0.01{<=}{beta}{<=}0.96 Hz frequency range. The accuracy of predictions and the adaptability of the ANFIS were examined, and good predictions were achieved for the temperature amplitudes of the transient heat transfer in thermally and simultaneously developing circular duct flow. The results show that the neuro-fuzzy can be used for modeling transient heat transfer in ducts. The results obtained with the ANFIS are also compared to those of a multiple linear regression and a neural network with a multi-layered feed-forward back-propagation algorithm. (authors)

  8. The Identification Level of Security, usability and Transparency Effects on Trust in B2C Commercial Websites Using Adaptive Neuro Fuzzy Inference System (ANFIS

    Mehrbakhsh Nilashi, Mohammad Fathian, Mohammad Reza Gholamian, Othman Bin Ibrahim, Alireza Khoshraftar

    2011-08-01

    Full Text Available With the rapid development of Internet, the number of online customers is growing fast. Thisgrowth is supported by spreading of Internet usage around the globe. However, the questionof security and trust within e-commerce has always been in doubt. This study generatesgeneral knowledge about e-commerce. This study specifically gives an overview tounderstand different factors about security and trust between companies and theirconsumers. In order to Three e-stores and their websites were examined based on the modelproposed .This study also mentions that security and trust work parallel and close to eachother. If a consumer feels that an online deal is secured and they can trust the seller, it leadsto a confident e-commerce’s trade. The main focus of this study is to find out a suitable wayto resolve security and trust issues that make e-commerce an uncertain market place for allparties. The findings of this study indicate that, character of security is regarded as the mostimportant to building trust of B2C websites. The proposed model applies Adaptive Neuro-Fuzzy model to get the desired results. Two questionnaires were used in this study. The firstquestionnaire was developed for e-commerce experts, and the second one was designed forthe customers of commercial websites. Also, Expert Choice is used to determine the priorityof factors in the first questionnaire, and MATLAB and Excel are used for developing theFuzzy rules. Finally, the Fuzzy logical kit was used to analyze the generated factors in themodel.

  9. Adaptive Neuro-Fuzzy Extended Kalman Filtering for Robot Localization

    Ramazan Havangi

    2010-03-01

    Full Text Available Extended Kalman Filter (EKF has been a popular approach to localization a mobile robot. However, the performance of the EKF and the quality of the estimation depends on the correct a priori knowledge of process and measurement noise covariance matrices (Qk and Rk , respectively. Imprecise knowledge of these statistics can cause significant degradation in performance. This paper proposed the development of an Adaptive Neuro- Fuzzy Extended Kalman Filtering (ANFEKF for localization of robot. The Adaptive Neuro-Fuzzy attempts to estimate the elements of Qk and Rk matrices of the EKF algorithm, at each sampling instant when measurement update step is carried out. The ANFIS supervises the performance of the EKF with the aim of reducing the mismatch between the theoretical and actual covariance of the innovation sequences. The free parameters of ANFIS are trained using the steepest gradient descent (SD to minimize the differences of the actual value of the covariance of the residual with its theoretical value as much possible. The simulation results show the effectiveness of the proposed algorithm.

  10. Students Classification With Adaptive Neuro Fuzzy

    Mohammad Saber Iraji

    2012-07-01

    Full Text Available Identifying exceptional students for scholarships is an essential part of the admissions process in undergraduate and postgraduate institutions, and identifying weak students who are likely to fail is also important for allocating limited tutoring resources. In this article, we have tried to design an intelligent system which can separate and classify student according to learning factor and performance. a system is proposed through Lvq networks methods, anfis method to separate these student on learning factor . In our proposed system, adaptive fuzzy neural network(anfis has less error and can be used as an effective alternative system for classifying students

  11. Adaptive neuro-fuzzy optimization of wind farm project net profit

    Highlights: • Analyzing of wind farm project investment. • Net present value (NPV) maximization of the wind farm project. • Adaptive neuro-fuzzy (ANFIS) optimization of the number of wind turbines to maximize NPV. • The impact of the variation in the wind farm parameters. • Adaptive neuro fuzzy application. - Abstract: A wind power plant which consists of a group of wind turbines at a specific location is also known as wind farm. To maximize the wind farm net profit, the number of turbines installed in the wind farm should be different in depend on wind farm project investment parameters. In this paper, in order to achieve the maximal net profit of a wind farm, an intelligent optimization scheme based on the adaptive neuro-fuzzy inference system (ANFIS) is applied. As the net profit measures, net present value (NPV) and interest rate of return (IRR) are used. The NPV and IRR are two of the most important criteria for project investment estimating. The general approach in determining the accept/reject/stay in different decision for a project via NPV and IRR is to treat the cash flows as known with certainty. However, even small deviations from the predetermined values may easily invalidate the decision. In the proposed model the ANFIS estimator adjusts the number of turbines installed in the wind farm, for operating at the highest net profit point. The performance of proposed optimizer is confirmed by simulation results. Some outstanding properties of this new estimator are online implementation capability, structural simplicity and its robustness against any changes in wind farm parameters. Based on the simulation results, the effectiveness of the proposed optimization strategy is verified

  12. Adaptive neuro-fuzzy inference system multi-objective optimization using the genetic algorithm/singular value decomposition method for modelling the discharge coefficient in rectangular sharp-crested side weirs

    Khoshbin, Fatemeh; Bonakdari, Hossein; Hamed Ashraf Talesh, Seyed; Ebtehaj, Isa; Zaji, Amir Hossein; Azimi, Hamed

    2016-06-01

    In the present article, the adaptive neuro-fuzzy inference system (ANFIS) is employed to model the discharge coefficient in rectangular sharp-crested side weirs. The genetic algorithm (GA) is used for the optimum selection of membership functions, while the singular value decomposition (SVD) method helps in computing the linear parameters of the ANFIS results section (GA/SVD-ANFIS). The effect of each dimensionless parameter on discharge coefficient prediction is examined in five different models to conduct sensitivity analysis by applying the above-mentioned dimensionless parameters. Two different sets of experimental data are utilized to examine the models and obtain the best model. The study results indicate that the model designed through GA/SVD-ANFIS predicts the discharge coefficient with a good level of accuracy (mean absolute percentage error = 3.362 and root mean square error = 0.027). Moreover, comparing this method with existing equations and the multi-layer perceptron-artificial neural network (MLP-ANN) indicates that the GA/SVD-ANFIS method has superior performance in simulating the discharge coefficient of side weirs.

  13. Comparison of an adaptive neuro-fuzzy inference system and an artificial neural network in the cross-talk correction of simultaneous 99 m Tc / 201Tl SPECT imaging using a GATE Monte-Carlo simulation

    Heidary, Saeed; Setayeshi, Saeed; Ghannadi-Maragheh, Mohammad

    2014-09-01

    The aim of this study is to compare the adaptive neuro-fuzzy inference system (ANFIS) and the artificial neural network (ANN) to estimate the cross-talk contamination of 99 m Tc / 201 Tl image acquisition in the 201 Tl energy window (77 ± 15% keV). GATE (Geant4 Application in Emission and Tomography) is employed due to its ability to simulate multiple radioactive sources concurrently. Two kinds of phantoms, including two digital and one physical phantom, are used. In the real and the simulation studies, data acquisition is carried out using eight energy windows. The ANN and the ANFIS are prepared in MATLAB, and the GATE results are used as a training data set. Three indications are evaluated and compared. The ANFIS method yields better outcomes for two indications (Spearman's rank correlation coefficient and contrast) and the two phantom results in each category. The maximum image biasing, which is the third indication, is found to be 6% more than that for the ANN.

  14. Prediction of contact forces of underactuated finger by adaptive neuro fuzzy approach

    Petković, Dalibor; Shamshirband, Shahaboddin; Abbasi, Almas; Kiani, Kourosh; Al-Shammari, Eiman Tamah

    2015-12-01

    To obtain adaptive finger passive underactuation can be used. Underactuation principle can be used to adapt shapes of the fingers for grasping objects. The fingers with underactuation do not require control algorithm. In this study a kinetostatic model of the underactuated finger mechanism was analyzed. The underactuation is achieved by adding the compliance in every finger joint. Since the contact forces of the finger depend on contact position of the finger and object, it is suitable to make a prediction model for the contact forces in function of contact positions of the finger and grasping objects. In this study prediction of the contact forces was established by a soft computing approach. Adaptive neuro-fuzzy inference system (ANFIS) was applied as the soft computing method to perform the prediction of the finger contact forces.

  15. Prediction of ultrasonic pulse velocity for enhanced peat bricks using adaptive neuro-fuzzy methodology.

    Motamedi, Shervin; Roy, Chandrabhushan; Shamshirband, Shahaboddin; Hashim, Roslan; Petković, Dalibor; Song, Ki-Il

    2015-08-01

    Ultrasonic pulse velocity is affected by defects in material structure. This study applied soft computing techniques to predict the ultrasonic pulse velocity for various peats and cement content mixtures for several curing periods. First, this investigation constructed a process to simulate the ultrasonic pulse velocity with adaptive neuro-fuzzy inference system. Then, an ANFIS network with neurons was developed. The input and output layers consisted of four and one neurons, respectively. The four inputs were cement, peat, sand content (%) and curing period (days). The simulation results showed efficient performance of the proposed system. The ANFIS and experimental results were compared through the coefficient of determination and root-mean-square error. In conclusion, use of ANFIS network enhances prediction and generation of strength. The simulation results confirmed the effectiveness of the suggested strategies. PMID:25957464

  16. Adaptive Neuro-Fuzzy Modeling of UH-60A Pilot Vibration

    Kottapalli, Sesi; Malki, Heidar A.; Langari, Reza

    2003-01-01

    Adaptive neuro-fuzzy relationships have been developed to model the UH-60A Black Hawk pilot floor vertical vibration. A 200 point database that approximates the entire UH-60A helicopter flight envelope is used for training and testing purposes. The NASA/Army Airloads Program flight test database was the source of the 200 point database. The present study is conducted in two parts. The first part involves level flight conditions and the second part involves the entire (200 point) database including maneuver conditions. The results show that a neuro-fuzzy model can successfully predict the pilot vibration. Also, it is found that the training phase of this neuro-fuzzy model takes only two or three iterations to converge for most cases. Thus, the proposed approach produces a potentially viable model for real-time implementation.

  17. Risk Mapping of Cutaneous Leishmaniasis via a Fuzzy C Means-based Neuro-Fuzzy Inference System

    Akhavan, P.; Karimi, M.; Pahlavani, P.

    2014-10-01

    Finding pathogenic factors and how they are spread in the environment has become a global demand, recently. Cutaneous Leishmaniasis (CL) created by Leishmania is a special parasitic disease which can be passed on to human through phlebotomus of vector-born. Studies show that economic situation, cultural issues, as well as environmental and ecological conditions can affect the prevalence of this disease. In this study, Data Mining is utilized in order to predict CL prevalence rate and obtain a risk map. This case is based on effective environmental parameters on CL and a Neuro-Fuzzy system was also used. Learning capacity of Neuro-Fuzzy systems in neural network on one hand and reasoning power of fuzzy systems on the other, make it very efficient to use. In this research, in order to predict CL prevalence rate, an adaptive Neuro-fuzzy inference system with fuzzy inference structure of fuzzy C Means clustering was applied to determine the initial membership functions. Regarding to high incidence of CL in Ilam province, counties of Ilam, Mehran, and Dehloran have been examined and evaluated. The CL prevalence rate was predicted in 2012 by providing effective environmental map and topography properties including temperature, moisture, annual, rainfall, vegetation and elevation. Results indicate that the model precision with fuzzy C Means clustering structure rises acceptable RMSE values of both training and checking data and support our analyses. Using the proposed data mining technology, the pattern of disease spatial distribution and vulnerable areas become identifiable and the map can be used by experts and decision makers of public health as a useful tool in management and optimal decision-making.

  18. Risk Mapping of Cutaneous Leishmaniasis via a Fuzzy C Means-based Neuro-Fuzzy Inference System

    P. Akhavan

    2014-10-01

    Full Text Available Finding pathogenic factors and how they are spread in the environment has become a global demand, recently. Cutaneous Leishmaniasis (CL created by Leishmania is a special parasitic disease which can be passed on to human through phlebotomus of vector-born. Studies show that economic situation, cultural issues, as well as environmental and ecological conditions can affect the prevalence of this disease. In this study, Data Mining is utilized in order to predict CL prevalence rate and obtain a risk map. This case is based on effective environmental parameters on CL and a Neuro-Fuzzy system was also used. Learning capacity of Neuro-Fuzzy systems in neural network on one hand and reasoning power of fuzzy systems on the other, make it very efficient to use. In this research, in order to predict CL prevalence rate, an adaptive Neuro-fuzzy inference system with fuzzy inference structure of fuzzy C Means clustering was applied to determine the initial membership functions. Regarding to high incidence of CL in Ilam province, counties of Ilam, Mehran, and Dehloran have been examined and evaluated. The CL prevalence rate was predicted in 2012 by providing effective environmental map and topography properties including temperature, moisture, annual, rainfall, vegetation and elevation. Results indicate that the model precision with fuzzy C Means clustering structure rises acceptable RMSE values of both training and checking data and support our analyses. Using the proposed data mining technology, the pattern of disease spatial distribution and vulnerable areas become identifiable and the map can be used by experts and decision makers of public health as a useful tool in management and optimal decision-making.

  19. Long-range forecast of all India summer monsoon rainfall using adaptive neuro-fuzzy inference system: skill comparison with CFSv2 model simulation and real-time forecast for the year 2015

    Chaudhuri, S.; Das, D.; Goswami, S.; Das, S. K.

    2016-02-01

    All India summer monsoon rainfall (AISMR) characteristics play a vital role for the policy planning and national economy of the country. In view of the significant impact of monsoon system on regional as well as global climate systems, accurate prediction of summer monsoon rainfall has become a challenge. The objective of this study is to develop an adaptive neuro-fuzzy inference system (ANFIS) for long range forecast of AISMR. The NCEP/NCAR reanalysis data of temperature, zonal and meridional wind at different pressure levels have been taken to construct the input matrix of ANFIS. The membership of the input parameters for AISMR as high, medium or low is estimated with trapezoidal membership function. The fuzzified standardized input parameters and the de-fuzzified target output are trained with artificial neural network models. The forecast of AISMR with ANFIS is compared with non-hybrid multi-layer perceptron model (MLP), radial basis functions network (RBFN) and multiple linear regression (MLR) models. The forecast error analyses of the models reveal that ANFIS provides the best forecast of AISMR with minimum prediction error of 0.076, whereas the errors with MLP, RBFN and MLR models are 0.22, 0.18 and 0.73 respectively. During validation with observations, ANFIS shows its potency over the said comparative models. Performance of the ANFIS model is verified through different statistical skill scores, which also confirms the aptitude of ANFIS in forecasting AISMR. The forecast skill of ANFIS is also observed to be better than Climate Forecast System version 2. The real-time forecast with ANFIS shows possibility of deficit (65-75 cm) AISMR in the year 2015.

  20. Artificial neural networks and neuro-fuzzy inference systems as virtual sensors for hydrogen safety prediction

    Karri, Vishy; Ho, Tien [School of Engineering, University of Tasmania, GPO Box 252-65, Hobart, Tasmania 7001 (Australia); Madsen, Ole [Department of Production, Aalborg University, Fibigerstraede 16, DK-9220 Aalborg (Denmark)

    2008-06-15

    Hydrogen is increasingly investigated as an alternative fuel to petroleum products in running internal combustion engines and as powering remote area power systems using generators. The safety issues related to hydrogen gas are further exasperated by expensive instrumentation required to measure the percentage of explosive limits, flow rates and production pressure. This paper investigates the use of model based virtual sensors (rather than expensive physical sensors) in connection with hydrogen production with a Hogen 20 electrolyzer system. The virtual sensors are used to predict relevant hydrogen safety parameters, such as the percentage of lower explosive limit, hydrogen pressure and hydrogen flow rate as a function of different input conditions of power supplied (voltage and current), the feed of de-ionized water and Hogen 20 electrolyzer system parameters. The virtual sensors are developed by means of the application of various Artificial Intelligent techniques. To train and appraise the neural network models as virtual sensors, the Hogen 20 electrolyzer is instrumented with necessary sensors to gather experimental data which together with MATLAB neural networks toolbox and tailor made adaptive neuro-fuzzy inference systems (ANFIS) were used as predictive tools to estimate hydrogen safety parameters. It was shown that using the neural networks hydrogen safety parameters were predicted to less than 3% of percentage average root mean square error. The most accurate prediction was achieved by using ANFIS. (author)

  1. Optimization of alkali catalyst for transesterification of jatropha curcus using adaptive neuro-fuzzy modeling

    Vipan K Sohpal

    2014-06-01

    Full Text Available Transesterification of Jatropha curcus for biodiesel production is a kinetic control process, which is complex in nature and controlled by temperature, the molar ratio, mixing intensity and catalyst process parameters. A precise choice of catalyst is required to improve the rate of transesterification and to simulate the kinetic study in a batch reactor. The present paper uses an Adaptive Neuro-Fuzzy Inference System (ANFIS approach to model and simulate the butyl ester production using alkaline catalyst (NaOH. The amounts of catalyst and time for reaction have been used as the model’s input parameters. The model is a combination of fuzzy inference and artificial neural network, including a set of fuzzy rules which have been developed directly from experimental data. The proposed modeling approach has been verified by comparing the expected results with the practical results which were observed and obtained through a batch reactor operation. The application of the ANFIS test shows which amount of catalyst predicted by the proposed model is suitable and in compliance with the experimental values at 0.5% level of significance.

  2. An adaptive neuro fuzzy model for estimating the reliability of component-based software systems

    Kirti Tyagi

    2014-01-01

    Full Text Available Although many algorithms and techniques have been developed for estimating the reliability of component-based software systems (CBSSs, much more research is needed. Accurate estimation of the reliability of a CBSS is difficult because it depends on two factors: component reliability and glue code reliability. Moreover, reliability is a real-world phenomenon with many associated real-time problems. Soft computing techniques can help to solve problems whose solutions are uncertain or unpredictable. A number of soft computing approaches for estimating CBSS reliability have been proposed. These techniques learn from the past and capture existing patterns in data. The two basic elements of soft computing are neural networks and fuzzy logic. In this paper, we propose a model for estimating CBSS reliability, known as an adaptive neuro fuzzy inference system (ANFIS, that is based on these two basic elements of soft computing, and we compare its performance with that of a plain FIS (fuzzy inference system for different data sets.

  3. Adaptive neuro-fuzzy prediction of modulation transfer function of optical lens system

    Petković, Dalibor; Shamshirband, Shahaboddin; Anuar, Nor Badrul; Md Nasir, Mohd Hairul Nizam; Pavlović, Nenad T.; Akib, Shatirah

    2014-07-01

    The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the adaptive neuro-fuzzy (ANFIS) estimator is designed and adapted to predict MTF value of the actual optical system. Neural network in ANFIS adjusts parameters of membership function in the fuzzy logic of the fuzzy inference system. The back propagation learning algorithm is used for training this network. This intelligent estimator is implemented using MATLAB/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.

  4. Modulation transfer function estimation of optical lens system by adaptive neuro-fuzzy methodology

    Petković, Dalibor; Shamshirband, Shahaboddin; Pavlović, Nenad T.; Anuar, Nor Badrul; Kiah, Miss Laiha Mat

    2014-07-01

    The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the adaptive neuro-fuzzy (ANFIS) estimator is designed and adapted to estimate MTF value of the actual optical system. Neural network in ANFIS adjusts parameters of membership function in the fuzzy logic of the fuzzy inference system. The back propagation learning algorithm is used for training this network. This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.

  5. Adaptive Neuro-Fuzzy Model Tuning for Early-Warning of Financial Crises

    Erika SZTOJANOV; Stamatescu, Grigore

    2015-01-01

    The paper introduces an early-warning method using multiple financial crises indicators which outputs relevant alerts compared to a precise indication of crisis inception, serving as an effective tool for decision makers. By leveraging fuzzy logic techniques, we design a multi-level fuzzy decision support system based on the evolution of credit growth, housing prices and GDP gap. A neuro-fuzzy approach allows fine tuning of the individual fuzzy sub-systems towards adaptive structures which ca...

  6. Training Hybrid Neuro-Fuzzy System to Infer Permeability in Wells on Maracaibo Lake, Venezuela

    Hurtado, Nuri; Torres, Julio

    2014-01-01

    The high accuracy on inferrring of rocks properties, such as permeability ($k$), is a very useful study in the analysis of wells. This has led to development and use of empirical equations like Tixier, Timur, among others. In order to improve the inference of permeability we used a hybrid Neuro-Fuzzy System (NFS). The NFS allowed us to infer permeability of well, from data of porosity ($\\phi$) and water saturation ($Sw$). The work was performed with data from wells VCL-1021 (P21) and VCL-950 (P50), Block III, Maracaibo Lake, Venezuela. We evaluated the NFS equations ($k_{P50,i}(\\phi_i,Sw_i)$) with neighboring well data ($P21$), in order to verify the validity of the equations in the area. We have used ANFIS in MatLab.

  7. Adaptive neuro-fuzzy methodology for noise assessment of wind turbine.

    Shahaboddin Shamshirband

    Full Text Available Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS. This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.

  8. Adaptive neuro-fuzzy methodology for noise assessment of wind turbine.

    Shamshirband, Shahaboddin; Petković, Dalibor; Hashim, Roslan; Motamedi, Shervin

    2014-01-01

    Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD) could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method. PMID:25075621

  9. Artificial neural networks and adaptive neuro-fuzzy assessments for ground-coupled heat pump system

    Esen, Hikmet; Esen, Mehmet [Department of Mechanical Education, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey); Inalli, Mustafa [Department of Mechanical Engineering, Faculty of Engineering, Firat University, 23279 Elazig (Turkey); Sengur, Abdulkadir [Department of Electronic and Computer Science, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey)

    2008-07-01

    This article present a comparison of artificial neural network (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) applied for modelling a ground-coupled heat pump system (GCHP). The aim of this study is predicting system performance related to ground and air (condenser inlet and outlet) temperatures by using desired models. Performance forecasting is the precondition for the optimal design and energy-saving operation of air-conditioning systems. So obtained models will help the system designer to realize this precondition. The most suitable algorithm and neuron number in the hidden layer are found as Levenberg-Marquardt (LM) with seven neurons for ANN model whereas the most suitable membership function and number of membership functions are found as Gauss and two, respectively, for ANFIS model. The root-mean squared (RMS) value and the coefficient of variation in percent (cov) value are 0.0047 and 0.1363, respectively. The absolute fraction of variance (R{sup 2}) is 0.9999 which can be considered as very promising. This paper shows the appropriateness of ANFIS for the quantitative modeling of GCHP systems. (author)

  10. 基于EMD和ANFIS的自适应噪声消除研究%STUDY ON AN ADAPTIVE NOISE CANCELLATION BASED ON EMD (EMPIRICAL MODE DECOMPOSITION) AND ANFIS (ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM)

    徐春生; 王太勇

    2009-01-01

    对于混入色噪声的混合信号,如果可以通过测量得到产生色噪声的白噪声,对白噪声进行非线性训练即可逼近色噪声,达到非线性滤波的目的.自适应模糊推理系统(adaptive neuro-fuzzy unference system,ANFIS)可以实现上述非线性逼近.文中在上述算法的基础上,提出一种EMD(empirical mode decomposition)-ANFIS的自适应色噪声消除方法,首先对混合信号进行EMD分解,得到各个内禀模态函数分量(intrinsic mode function, IMF),然后对分解得到的内禀模态分量进行ANFIS模糊消噪,最后对消噪后的各个分量信号进行叠加.由于所得内禀模态函数为近似平稳信号,且图形越来越趋于平缓,减小了ANFIS方法的逼近难度.在混合信号信噪比为2.840 7 dB时,经过EMD-ANFIS消噪后的估计误差比只经过ANFIS消噪后的估计误差减少11.74 dB,证明EMD-ANFIS方法的有效性.

  11. A neuro-fuzzy inference system tuned by particle swarm optimization algorithm for sensor monitoring

    Oliveira, Mauro Vitor de [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil). Div. de Instrumentacao e Confiabilidade Humana]. E-mail: mvitor@ien.gov.br; Schirru, Roberto [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Lab. de Monitoracao de Processos

    2005-07-01

    A neuro-fuzzy inference system (ANFIS) tuned by particle swarm optimization (PSO) algorithm has been developed for monitor the relevant sensor in a nuclear plant using the information of other sensors. The antecedent parameters of the ANFIS that estimates the relevant sensor signal are optimized by a PSO algorithm and consequent parameters use a least-squares algorithm. The proposed sensor-monitoring algorithm was demonstrated through the estimation of the nuclear power value in a pressurized water reactor using as input to the ANFIS six other correlated signals. The obtained results are compared to two similar ANFIS using one gradient descendent (GD) and other genetic algorithm (GA), as antecedent parameters training algorithm. (author)

  12. Comparative Evaluation of Adaptive Filter and Neuro-Fuzzy Filter in Artifacts Removal From Electroencephalogram Signal

    Paulchamy Balaiah

    2012-01-01

    Full Text Available Problem statement: This study presents an effective method for removing mixed artifacts (EOG-Electro-ocular gram, ECG-Electrocardiogram, EMG-Electromyogram from the EEG-Electroencephalogram records. The noise sources increases the difficulty in analyzing the EEG and obtaining clinical information. EEG signals are multidimensional, non-stationary (i.e., statistical properties are not invariant in time, time domain biological signals, which are not reproducible. It is supposed to contain information about what is going on in the ensemble of excitatory pyramidal neuron level, at millisecond temporal resolution scale. Since scalp EEG contains considerable amount of noise and artifacts and exactly where it is coming from is poorly determined, extracting information from it is extremely challenging. For this reason it is necessary to design specific filters to decrease such artifacts in EEG records. Approach: Some of the other methods that are really appealing are artifact removal through Independent Component Analysis (ICA, Wavelet Transforms, Linear filtering and Artificial Neural Networks. ICA method could be used in situations, where large numbers of noises need to be distinguished, but it is not suitable for on-line real time application like Brain Computer Interface (BCI. Wavelet transforms are suitable for real-time application, but there all success lies in the selection of the threshold function. Linear filtering is best when; the frequency of noises does not interfere or overlap with each other. In this study we proposed adaptive filtering and neuro-fuzzy filtering method to remove artifacts from EEG. Adaptive filter performs linear filtering. Neuro-fuzzy approaches are very promising for non-linear filtering of noisy image. The multiple-output structure is based on recursive processing. It is able to adapt the filtering action to different kinds of corrupting noise. Fuzzy reasoning embedded into the network structure aims at reducing errors

  13. Adaptive Traffic Signalization Model using Neuro-Fuzzy Controllers

    Devesh Batra; Pragya Verma

    2014-01-01

    Current traffic lights are pre-programmed and use daily signal timing schedules, which contribute to traffic congestion and delay. Thus, with the increase in the number of vehicles on road, need for adaptive signal technology arises which has the potential to adjust the timing of red, yellow and green lights in order to accommodate changing traffic patterns and ease traffic congestion. In this paper, we present a model for adaptive traffic signalization, which uses fuzzy neura...

  14. Prediction of mechanical properties of a warm compacted molybdenum prealloy using artificial neural network and adaptive neuro-fuzzy models

    Highlights: ► ANNs and ANFIS fairly predicted UTS and YS of warm compacted molybdenum prealloy. ► Effects of composition, temperature, compaction pressure on output were studied. ► ANFIS model was in better agreement with experimental data from published article. ► Sintering temperature had the most significant effect on UTS and YS. -- Abstract: Predictive models using artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) were successfully developed to predict yield strength and ultimate tensile strength of warm compacted 0.85 wt.% molybdenum prealloy samples. To construct these models, 48 different experimental data were gathered from the literature. A portion of the data set was randomly chosen to train both ANN with back propagation (BP) learning algorithm and ANFIS model with Gaussian membership function and the rest was implemented to verify the performance of the trained network against the unseen data. The generalization capability of the networks was also evaluated by applying new input data within the domain covered by the training pattern. To compare the obtained results, coefficient of determination (R2), root mean squared error (RMSE) and average absolute error (AAE) indexes were chosen and calculated for both of the models. The results showed that artificial neural network and adaptive neuro-fuzzy system were both potentially strong for prediction of the mechanical properties of warm compacted 0.85 wt.% molybdenum prealloy; however, the proposed ANFIS showed better performance than the ANN model. Also, the ANFIS model was subjected to a sensitivity analysis to find the significant inputs affecting mechanical properties of the samples.

  15. Appraisal of adaptive neuro-fuzzy computing technique for estimating anti-obesity properties of a medicinal plant.

    Kazemipoor, Mahnaz; Hajifaraji, Majid; Radzi, Che Wan Jasimah Bt Wan Mohamed; Shamshirband, Shahaboddin; Petković, Dalibor; Mat Kiah, Miss Laiha

    2015-01-01

    This research examines the precision of an adaptive neuro-fuzzy computing technique in estimating the anti-obesity property of a potent medicinal plant in a clinical dietary intervention. Even though a number of mathematical functions such as SPSS analysis have been proposed for modeling the anti-obesity properties estimation in terms of reduction in body mass index (BMI), body fat percentage, and body weight loss, there are still disadvantages of the models like very demanding in terms of calculation time. Since it is a very crucial problem, in this paper a process was constructed which simulates the anti-obesity activities of caraway (Carum carvi) a traditional medicine on obese women with adaptive neuro-fuzzy inference (ANFIS) method. The ANFIS results are compared with the support vector regression (SVR) results using root-mean-square error (RMSE) and coefficient of determination (R(2)). The experimental results show that an improvement in predictive accuracy and capability of generalization can be achieved by the ANFIS approach. The following statistical characteristics are obtained for BMI loss estimation: RMSE=0.032118 and R(2)=0.9964 in ANFIS testing and RMSE=0.47287 and R(2)=0.361 in SVR testing. For fat loss estimation: RMSE=0.23787 and R(2)=0.8599 in ANFIS testing and RMSE=0.32822 and R(2)=0.7814 in SVR testing. For weight loss estimation: RMSE=0.00000035601 and R(2)=1 in ANFIS testing and RMSE=0.17192 and R(2)=0.6607 in SVR testing. Because of that, it can be applied for practical purposes. PMID:25453384

  16. Adaptive Traffic Signalization Model using Neuro-Fuzzy Controllers

    Devesh Batra*

    2014-07-01

    Full Text Available Current traffic lights are pre-programmed and use daily signal timing schedules, which contribute to traffic congestion and delay. Thus, with the increase in the number of vehicles on road, need for adaptive signal technology arises which has the potential to adjust the timing of red, yellow and green lights in order to accommodate changing traffic patterns and ease traffic congestion. In this paper, we present a model for adaptive traffic signalization, which uses fuzzy neural network for designing traffic signal controller. The controllers use vehicle detectors in order to detect the number of incoming vehicles. Based on the number of approaching vehicles, the current signal phase is either extended or terminated. The traffic volume at one particular region in an intersection is compared with that in the competing regions of the same intersection. The decision made is thus robust and results in less congestion and delays.

  17. Determination of Number of Broken Rotor Bars in Squirrel-Cage Induction Motors Using Adaptive Neuro-Fuzzy Interface System

    Mehran Amani Juneghani

    2012-09-01

    Full Text Available For determination the number of broken rotor bars in squirrel-cage induction motors when these motors are working, this study presents a new method based on an intelligent processing of the stator transient starting current. In light load condition, distinguishing between safe and faulty rotors is difficult, because the characteristic frequencies of rotor with broken bars are very close to the fundamental component and their amplitudes are small in comparison. In this study, an advanced technique based on the Wavelet Adaptive Neuro-Fuzzy Interface System is suggested for processing the starting current of induction motors. In order to increase the efficiency of the proposed method, the results of the wavelet analysis, before applying to the Adaptive Neuro-Fuzzy Interface System, are processed by Principal Component Analysis (PCA. Then the outcome results are supposed as Adaptive Neuro-Fuzzy Interface System's training and testing data set. The trained Adaptive Neuro-Fuzzy Interface Systems undertake of determining the number of broken rotor bars. The given statistical results, announce the proposed method’s high ability to determine the number of broken rotor bars. The proposed method is independent from loading conditions of machine and it is useable even when the motor is unloaded.

  18. Neuro-Fuzzy DC Motor Speed Control Using Particle Swarm Optimization

    Boumediene ALLAOUA; Abdellah LAOUFI; Gasbaoui, Brahim; Abdessalam ABDERRAHMANI

    2009-01-01

    This paper presents an application of Adaptive Neuro-Fuzzy Inference System (ANFIS) control for DC motor speed optimized with swarm collective intelligence. First, the controller is designed according to Fuzzy rules such that the systems are fundamentally robust. Secondly, an adaptive Neuro-Fuzzy controller of the DC motor speed is then designed and simulated; the ANFIS has the advantage of expert knowledge of the Fuzzy inference system and the learning capability of neural networks. Finally,...

  19. Adaptive Neuro-Fuzzy Controller Experimental Design for DC Motor Connected to Unbalanced Load

    Reza Nejati

    2007-09-01

    Full Text Available In two recent decades, fuzzy controllers have been used in controlling different systems successfully. In this article, a new method is given for controlling of permanent magnetic DC motor connected to unbalanced load. Imbalance of load leads to machine vibrations, fluctuation of power, making exhaustion in machine shaft, and equipment depreciation. In this article neuro-fuzzy controllers are used for controlling unbalanced load. Because of non-linear nature of load and machine, machine fluctuations are different in various speeds. For making controller adaptive with machine, using an artificial neural network, the input-output coefficients are be updated in any speed. Optimized coefficients obtained by using of direct search method, and with these coefficients, artificial neural network trained with Lauvenberg-Marcoardet method. Operational results obtained from developed system, shows the efficiency of given method.

  20. Ozone levels in the Empty Quarter of Saudi Arabia--application of adaptive neuro-fuzzy model.

    Rahman, Syed Masiur; Khondaker, A N; Khan, Rouf Ahmad

    2013-05-01

    In arid regions, primary pollutants may contribute to the increase of ozone levels and cause negative effects on biotic health. This study investigates the use of adaptive neuro-fuzzy inference system (ANFIS) for ozone prediction. The initial fuzzy inference system is developed by using fuzzy C-means (FCM) and subtractive clustering (SC) algorithms, which determines the important rules, increases generalization capability of the fuzzy inference system, reduces computational needs, and ensures speedy model development. The study area is located in the Empty Quarter of Saudi Arabia, which is considered as a source of huge potential for oil and gas field development. The developed clustering algorithm-based ANFIS model used meteorological data and derived meteorological data, along with NO and NO₂ concentrations and their transformations, as inputs. The root mean square error and Willmott's index of agreement of the FCM- and SC-based ANFIS models are 3.5 ppbv and 0.99, and 8.9 ppbv and 0.95, respectively. Based on the analysis of the performance measures and regression error characteristic curves, it is concluded that the FCM-based ANFIS model outperforms the SC-based ANFIS model. PMID:23111771

  1. Adaptive neuro-fuzzy based inferential sensor model for estimating the average air temperature in space heating systems

    Jassar, S.; Zhao, L. [Department of Electrical and Computer Engineering, Ryerson University, 350 Victoria Street, Toronto, ON (Canada); Liao, Z. [Department of Architectural Science, Ryerson University (Canada)

    2009-08-15

    The heating systems are conventionally controlled by open-loop control systems because of the absence of practical methods for estimating average air temperature in the built environment. An inferential sensor model, based on adaptive neuro-fuzzy inference system modeling, for estimating the average air temperature in multi-zone space heating systems is developed. This modeling technique has the advantage of expert knowledge of fuzzy inference systems (FISs) and learning capability of artificial neural networks (ANNs). A hybrid learning algorithm, which combines the least-square method and the back-propagation algorithm, is used to identify the parameters of the network. This paper describes an adaptive network based inferential sensor that can be used to design closed-loop control for space heating systems. The research aims to improve the overall performance of heating systems, in terms of energy efficiency and thermal comfort. The average air temperature results estimated by using the developed model are strongly in agreement with the experimental results. (author)

  2. Adaptive Neuro-Fuzzy Determination of the Effect of Experimental Parameters on Vehicle Agent Speed Relative to Vehicle Intruder

    Shamshirband, Shahaboddin; Banjanovic-Mehmedovic, Lejla; Bosankic, Ivan; Kasapovic, Suad; Abdul Wahab, Ainuddin Wahid Bin

    2016-01-01

    Intelligent Transportation Systems rely on understanding, predicting and affecting the interactions between vehicles. The goal of this paper is to choose a small subset from the larger set so that the resulting regression model is simple, yet have good predictive ability for Vehicle agent speed relative to Vehicle intruder. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data resulting from these measurements. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of agent speed relative to intruder. This process includes several ways to discover a subset of the total set of recorded parameters, showing good predictive capability. The ANFIS network was used to perform a variable search. Then, it was used to determine how 9 parameters (Intruder Front sensors active (boolean), Intruder Rear sensors active (boolean), Agent Front sensors active (boolean), Agent Rear sensors active (boolean), RSSI signal intensity/strength (integer), Elapsed time (in seconds), Distance between Agent and Intruder (m), Angle of Agent relative to Intruder (angle between vehicles °), Altitude difference between Agent and Intruder (m)) influence prediction of agent speed relative to intruder. The results indicated that distance between Vehicle agent and Vehicle intruder (m) and angle of Vehicle agent relative to Vehicle Intruder (angle between vehicles °) is the most influential parameters to Vehicle agent speed relative to Vehicle intruder. PMID:27219539

  3. Adaptive Neuro-Fuzzy Determination of the Effect of Experimental Parameters on Vehicle Agent Speed Relative to Vehicle Intruder.

    Shamshirband, Shahaboddin; Banjanovic-Mehmedovic, Lejla; Bosankic, Ivan; Kasapovic, Suad; Abdul Wahab, Ainuddin Wahid Bin

    2016-01-01

    Intelligent Transportation Systems rely on understanding, predicting and affecting the interactions between vehicles. The goal of this paper is to choose a small subset from the larger set so that the resulting regression model is simple, yet have good predictive ability for Vehicle agent speed relative to Vehicle intruder. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data resulting from these measurements. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of agent speed relative to intruder. This process includes several ways to discover a subset of the total set of recorded parameters, showing good predictive capability. The ANFIS network was used to perform a variable search. Then, it was used to determine how 9 parameters (Intruder Front sensors active (boolean), Intruder Rear sensors active (boolean), Agent Front sensors active (boolean), Agent Rear sensors active (boolean), RSSI signal intensity/strength (integer), Elapsed time (in seconds), Distance between Agent and Intruder (m), Angle of Agent relative to Intruder (angle between vehicles °), Altitude difference between Agent and Intruder (m)) influence prediction of agent speed relative to intruder. The results indicated that distance between Vehicle agent and Vehicle intruder (m) and angle of Vehicle agent relative to Vehicle Intruder (angle between vehicles °) is the most influential parameters to Vehicle agent speed relative to Vehicle intruder. PMID:27219539

  4. Clustering of tethered satellite system simulation data by an adaptive neuro-fuzzy algorithm

    Mitra, Sunanda; Pemmaraju, Surya

    1992-01-01

    Recent developments in neuro-fuzzy systems indicate that the concepts of adaptive pattern recognition, when used to identify appropriate control actions corresponding to clusters of patterns representing system states in dynamic nonlinear control systems, may result in innovative designs. A modular, unsupervised neural network architecture, in which fuzzy learning rules have been embedded is used for on-line identification of similar states. The architecture and control rules involved in Adaptive Fuzzy Leader Clustering (AFLC) allow this system to be incorporated in control systems for identification of system states corresponding to specific control actions. We have used this algorithm to cluster the simulation data of Tethered Satellite System (TSS) to estimate the range of delta voltages necessary to maintain the desired length rate of the tether. The AFLC algorithm is capable of on-line estimation of the appropriate control voltages from the corresponding length error and length rate error without a priori knowledge of their membership functions and familarity with the behavior of the Tethered Satellite System.

  5. Design of neuro fuzzy fault tolerant control using an adaptive observer

    New methodologies and concepts are developed in the control theory to meet the ever-increasing demands in industrial applications. Fault detection and diagnosis of technical processes have become important in the course of progressive automation in the operation of groups of electric drives. When a group of electric drives is under operation, fault tolerant control becomes complicated. For multiple motors in operation, fault detection and diagnosis might prove to be difficult. Estimation of all states and parameters of all drives is necessary to analyze the actuator and sensor faults. To maintain system reliability, detection and isolation of failures should be performed quickly and accurately, and hardware should be properly integrated. Luenberger full order observer can be used for estimation of the entire states in the system for the detection of actuator and sensor failures. Due to the insensitivity of the Luenberger observer to the system parameter variations, state estimation becomes inaccurate under the varying parameter conditions of the drives. Consequently, the estimation performance deteriorates, resulting in ordinary state observers unsuitable for fault detection technique. Therefore an adaptive observe, which can estimate the system states and parameter and detect the faults simultaneously, is designed in our paper. For a Group of D C drives, there may be parameter variations for some of the drives, and for other drives, there may not be parameter variations depending on load torque, friction, etc. So, estimation of all states and parameters of all drives is carried out using an adaptive observer. If there is any deviation with the estimated values, it is understood that fault has occurred and the nature of the fault, whether sensor fault or actuator fault, is determined by neural fuzzy network, and fault tolerant control is reconfigured. Experimental results with neuro fuzzy system using adaptive observer-based fault tolerant control are good, so as

  6. Potential of adaptive neuro-fuzzy system for prediction of daily global solar radiation by day of the year

    Highlights: • ANFIS technique is applied to propose a model for daily global radiation estimation. • Day of the year (nday) is utilized as a sole input element. • The potential of ANFIS model is compared with day of the year-based (DYB) models. • ANFIS model enjoys high accuracy and outperforms DYB models. • Applying ANFIS to estimate daily global radiation by nday is really appealing. - Abstract: Estimating the horizontal global solar radiation by day of the year (nday) is particularly appealing since there is no need to any specific meteorological input data or even pre-calculation analysis. In this study, an intelligent optimization scheme based upon the adaptive neuro-fuzzy inference system (ANFIS) was applied to develop a model for estimation of daily horizontal global solar radiation using nday as the only input. The chief goal was identifying the suitability of ANFIS technique for this aim. Long-term measured data for Iranian city of Tabass was used to train and test the ANFIS model. The statistical results verified that the ANFIS model provides accurate and reliable predictions. Making comparisons with the predictions of six day of the year-based empirical models revealed the superiority of ANFIS model. For the ANFIS model, the mean absolute percentage error, mean absolute bias error, root mean square error and correlation coefficient were 3.9569%, 0.6911 MJ/m2, 0.8917 MJ/m2 and 0.9908, respectively. Also, the daily bias errors between the ANFIS predictions and measured data fell in the favorable range of –3 to 3 MJ/m2. In a nutshell, the survey results highly encouraged the application of ANFIS to estimate daily horizontal global solar radiation using only nday

  7. Sistemas adaptativos de inferencia neurodifusa con errores heterocedásticos para el modelado de series financieras Sistemas adaptativos de inferência em neuro difusão com erros heterecedásticos para o modelado de séries financeiras Adaptive neuro-fuzzy inference systems with heteroscedastic errors for financial series modeling

    Elizabeth Catalina Zapata Gómez

    2008-12-01

    utiliza-se comummente como referente na literatura de séries de tempo. Os resultados indicam que o modelo desenvolvido representa melhor que outros modelos de características similares a dinâmica da série estudada.This paper proposes a new kind of non-linear hybrid model. In the proposed model, mean non-linearity is represented by using an adaptive neuro-fuzzy inference system (ANFIS whereas variance is represented using a conditional self-regressive heteroscedastic component. The mathematical formula for this type of model is shown and a method to estimate it is proposed. In addition, a specification strategy is developed for the proposed model, based on a battery of statistical soft transaction regression (STR tests and on verosimility radius testing. As a case study, the IBM stock closing price series dynamics were modeled, which is commonly used as a benchmark in the literature on time series. Results indicate that the model developed represents the dynamics of the studied series better than other models with similar characteristics.

  8. Estimation of the most influential factors on the laser cutting process heat affected zone (HAZ) by adaptive neuro-fuzzy technique

    Petković, Dalibor; Nikolić, Vlastimir; Milovančević, Miloš; Lazov, Lyubomir

    2016-07-01

    Heat affected zone (HAZ) of the laser cutting process may be developed on the basis on combination of different factors. In this investigation was analyzed the HAZ forecasting based on the different laser cutting parameters. The main aim in this article was to analyze the influence of three inputs on the HAZ of the laser cutting process. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data in order to select the most influential factors for HAZ forecasting. Three inputs are considered: laser power, cutting speed and gas pressure. According the results the cutting speed has the highest influence on the HAZ forecasting (RMSE: 0.0553). Gas pressure has the smallest influence on the HAZ forecasting (RMSE: 0.0801). The results can be used in order to simplify HAZ prediction and analyzing.

  9. Design of an expert system based on neuro-fuzzy inference analyzer for on-line microstructural characterization using magnetic NDT method

    Tracing microstructural evolution has a significant importance and priority in manufacturing lines of dual-phase steels. In this paper, an artificial intelligence method is presented for on-line microstructural characterization of dual-phase steels. A new method for microstructure characterization based on the theory of magnetic Barkhausen noise nondestructive testing method is introduced using adaptive neuro-fuzzy inference system (ANFIS). In order to predict the accurate martensite volume fraction of dual-phase steels while eliminating the effect and interference of frequency on the magnetic Barkhausen noise outputs, the magnetic responses were fed into the ANFIS structure in terms of position, height and width of the Barkhausen profiles. The results showed that ANFIS approach has the potential to detect and characterize microstructural evolution while the considerable effect of the frequency on magnetic outputs is overlooked. In fact implementing multiple outputs simultaneously enables ANFIS to approach to the accurate results using only height, position and width of the magnetic Barkhausen noise peaks without knowing the value of the used frequency. - Highlights: • New NDT system for microstructural evaluation based on MBN using ANFIS modeling. • Sensitivity of magnetic Barkhausen noise to microstructure changes of the DP steels. • Accurate prediction of martensite by feeding multiple MBN outputs simultaneously. • Obtaining the modeled output without knowing the amount of the used frequency

  10. Design of an expert system based on neuro-fuzzy inference analyzer for on-line microstructural characterization using magnetic NDT method

    Ghanei, S., E-mail: Sadegh.Ghanei@yahoo.com [Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square, Mashhad (Iran, Islamic Republic of); Vafaeenezhad, H. [Centre of Excellence for High Strength Alloys Technology (CEHSAT), School of Metallurgical and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran (Iran, Islamic Republic of); Kashefi, M. [Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square, Mashhad (Iran, Islamic Republic of); Eivani, A.R. [Centre of Excellence for High Strength Alloys Technology (CEHSAT), School of Metallurgical and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran (Iran, Islamic Republic of); Mazinani, M. [Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square, Mashhad (Iran, Islamic Republic of)

    2015-04-01

    Tracing microstructural evolution has a significant importance and priority in manufacturing lines of dual-phase steels. In this paper, an artificial intelligence method is presented for on-line microstructural characterization of dual-phase steels. A new method for microstructure characterization based on the theory of magnetic Barkhausen noise nondestructive testing method is introduced using adaptive neuro-fuzzy inference system (ANFIS). In order to predict the accurate martensite volume fraction of dual-phase steels while eliminating the effect and interference of frequency on the magnetic Barkhausen noise outputs, the magnetic responses were fed into the ANFIS structure in terms of position, height and width of the Barkhausen profiles. The results showed that ANFIS approach has the potential to detect and characterize microstructural evolution while the considerable effect of the frequency on magnetic outputs is overlooked. In fact implementing multiple outputs simultaneously enables ANFIS to approach to the accurate results using only height, position and width of the magnetic Barkhausen noise peaks without knowing the value of the used frequency. - Highlights: • New NDT system for microstructural evaluation based on MBN using ANFIS modeling. • Sensitivity of magnetic Barkhausen noise to microstructure changes of the DP steels. • Accurate prediction of martensite by feeding multiple MBN outputs simultaneously. • Obtaining the modeled output without knowing the amount of the used frequency.

  11. Design of an expert system based on neuro-fuzzy inference analyzer for on-line microstructural characterization using magnetic NDT method

    Ghanei, S.; Vafaeenezhad, H.; Kashefi, M.; Eivani, A. R.; Mazinani, M.

    2015-04-01

    Tracing microstructural evolution has a significant importance and priority in manufacturing lines of dual-phase steels. In this paper, an artificial intelligence method is presented for on-line microstructural characterization of dual-phase steels. A new method for microstructure characterization based on the theory of magnetic Barkhausen noise nondestructive testing method is introduced using adaptive neuro-fuzzy inference system (ANFIS). In order to predict the accurate martensite volume fraction of dual-phase steels while eliminating the effect and interference of frequency on the magnetic Barkhausen noise outputs, the magnetic responses were fed into the ANFIS structure in terms of position, height and width of the Barkhausen profiles. The results showed that ANFIS approach has the potential to detect and characterize microstructural evolution while the considerable effect of the frequency on magnetic outputs is overlooked. In fact implementing multiple outputs simultaneously enables ANFIS to approach to the accurate results using only height, position and width of the magnetic Barkhausen noise peaks without knowing the value of the used frequency.

  12. Drought prediction using co-active neuro-fuzzy inference system, validation, and uncertainty analysis (case study: Birjand, Iran)

    Memarian, Hadi; Pourreza Bilondi, Mohsen; Rezaei, Majid

    2015-06-01

    This work aims to assess the capability of co-active neuro-fuzzy inference system (CANFIS) for drought forecasting of Birjand, Iran through the combination of global climatic signals with rainfall and lagged values of Standardized Precipitation Index (SPI) index. Using stepwise regression and correlation analyses, the signals NINO 1 + 2, NINO 3, Multivariate Enso Index, Tropical Southern Atlantic index, Atlantic Multi-decadal Oscillation index, and NINO 3.4 were recognized as the effective signals on the drought event in Birjand. Based on the results from stepwise regression analysis and regarding the processor limitations, eight models were extracted for further processing by CANFIS. The metrics P-factor and D-factor were utilized for uncertainty analysis, based on the sequential uncertainty fitting algorithm. Sensitivity analysis showed that for all models, NINO indices and rainfall variable had the largest impact on network performance. In model 4 (as the model with the lowest error during training and testing processes), NINO 1 + 2(t-5) with an average sensitivity of 0.7 showed the highest impact on network performance. Next, the variables rainfall, NINO 1 + 2(t), and NINO 3(t-6) with the average sensitivity of 0.59, 0.28, and 0.28, respectively, could have the highest effect on network performance. The findings based on network performance metrics indicated that the global indices with a time lag represented a better correlation with El Niño Southern Oscillation (ENSO). Uncertainty analysis of the model 4 demonstrated that 68 % of the observed data were bracketed by the 95PPU and D-Factor value (0.79) was also within a reasonable range. Therefore, the fourth model with a combination of the input variables NINO 1 + 2 (with 5 months of lag and without any lag), monthly rainfall, and NINO 3 (with 6 months of lag) and correlation coefficient of 0.903 (between observed and simulated SPI) was selected as the most accurate model for drought forecasting using CANFIS

  13. Drought prediction using co-active neuro-fuzzy inference system, validation, and uncertainty analysis (case study: Birjand, Iran)

    Memarian, Hadi; Pourreza Bilondi, Mohsen; Rezaei, Majid

    2016-08-01

    This work aims to assess the capability of co-active neuro-fuzzy inference system (CANFIS) for drought forecasting of Birjand, Iran through the combination of global climatic signals with rainfall and lagged values of Standardized Precipitation Index (SPI) index. Using stepwise regression and correlation analyses, the signals NINO 1 + 2, NINO 3, Multivariate Enso Index, Tropical Southern Atlantic index, Atlantic Multi-decadal Oscillation index, and NINO 3.4 were recognized as the effective signals on the drought event in Birjand. Based on the results from stepwise regression analysis and regarding the processor limitations, eight models were extracted for further processing by CANFIS. The metrics P-factor and D-factor were utilized for uncertainty analysis, based on the sequential uncertainty fitting algorithm. Sensitivity analysis showed that for all models, NINO indices and rainfall variable had the largest impact on network performance. In model 4 (as the model with the lowest error during training and testing processes), NINO 1 + 2(t-5) with an average sensitivity of 0.7 showed the highest impact on network performance. Next, the variables rainfall, NINO 1 + 2(t), and NINO 3(t-6) with the average sensitivity of 0.59, 0.28, and 0.28, respectively, could have the highest effect on network performance. The findings based on network performance metrics indicated that the global indices with a time lag represented a better correlation with El Niño Southern Oscillation (ENSO). Uncertainty analysis of the model 4 demonstrated that 68 % of the observed data were bracketed by the 95PPU and D-Factor value (0.79) was also within a reasonable range. Therefore, the fourth model with a combination of the input variables NINO 1 + 2 (with 5 months of lag and without any lag), monthly rainfall, and NINO 3 (with 6 months of lag) and correlation coefficient of 0.903 (between observed and simulated SPI) was selected as the most accurate model for drought forecasting using CANFIS

  14. Selection of the most influential factors on the water-jet assisted underwater laser process by adaptive neuro-fuzzy technique

    Nikolić, Vlastimir; Petković, Dalibor; Lazov, Lyubomir; Milovančević, Miloš

    2016-07-01

    Water-jet assisted underwater laser cutting has shown some advantages as it produces much less turbulence, gas bubble and aerosols, resulting in a more gentle process. However, this process has relatively low efficiency due to different losses in water. It is important to determine which parameters are the most important for the process. In this investigation was analyzed the water-jet assisted underwater laser cutting parameters forecasting based on the different parameters. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data in order to select the most influential factors for water-jet assisted underwater laser cutting parameters forecasting. Three inputs are considered: laser power, cutting speed and water-jet speed. The ANFIS process for variable selection was also implemented in order to detect the predominant factors affecting the forecasting of the water-jet assisted underwater laser cutting parameters. According to the results the combination of laser power cutting speed forms the most influential combination foe the prediction of water-jet assisted underwater laser cutting parameters. The best prediction was observed for the bottom kerf-width (R2 = 0.9653). The worst prediction was observed for dross area per unit length (R2 = 0.6804). According to the results, a greater improvement in estimation accuracy can be achieved by removing the unnecessary parameter.

  15. Application of adaptive neuro-fuzzy interference system models for prediction of forest fires in the usa on the basis of solar activity

    Radovanović Milan M.

    2015-01-01

    Full Text Available In this research we search for a functional dependence between the occurrence of forest fires in the USA and the factors which characterize the solar activity. For this purpose we used several methods (R/S analysis, Hurst index to establish potential links between the influx of some parameters from the sun and the occurrence of forest fires with lag of several days. We found evidence for a connection and developed a prognostic scenario based on the Adaptive neuro-fuzzy interference system (ANFIS technique. This scenario allows the prediction between 79-93% of forest fires. [Projekat Ministarstva nauke Republike Srbije, br. III47007

  16. VLSI design of universal approximator neuro-fuzzy systems

    Baturone, I.; Sánchez-Solano, Santiago; Barriga, Angel; Jiménez Fernández, Carlos Jesús; Senhadji, Raouf; D. R. López

    2001-01-01

    Neuro-fuzzy systems can theoretically solve any problem since they are universal approximators. Besides, they combine the advantages of the neuro and fuzzy paradigms. This paper describes and compares the different strategies that can be adopted to implement the learning and inference mechanisms involved in a neuro-fuzzy system. CAD tools, most of them integrated into the fuzzy system development environment Xfuzzy 2.0, have been developed to assist the designer in the implementation of ne...

  17. Neuro-Fuzzy DC Motor Speed Control Using Particle Swarm Optimization

    Boumediene ALLAOUA

    2009-12-01

    Full Text Available This paper presents an application of Adaptive Neuro-Fuzzy Inference System (ANFIS control for DC motor speed optimized with swarm collective intelligence. First, the controller is designed according to Fuzzy rules such that the systems are fundamentally robust. Secondly, an adaptive Neuro-Fuzzy controller of the DC motor speed is then designed and simulated; the ANFIS has the advantage of expert knowledge of the Fuzzy inference system and the learning capability of neural networks. Finally, the ANFIS is optimized by Swarm Intelligence. Digital simulation results demonstrate that the deigned ANFIS-Swarm speed controller realize a good dynamic behavior of the DC motor, a perfect speed tracking with no overshoot, give better performance and high robustness than those obtained by the ANFIS alone.

  18. Nonlinear Adaptive NeuroFuzzy Wavelet Based Damping Control Paradigm for SSSC

    BADAR, R.

    2012-08-01

    Full Text Available Static Synchronous Series Compensator (SSSC is a series compensating Flexible AC Transmission System (FACTS controller with primary objective of power flow control on a line by injecting a voltage in series with transmission line. However, it can efficiently be used for improving the system stability by using a supplementary damping control system. In this work, Adaptive Neurofuzzy Wavelet Control (ANFWC paradigm for SSSC supplementary damping control system has been proposed and successfully applied to a Single Machine Infinite Bus (SMIB power system. Gradient descent based back propagation algorithm, being simple with sufficient efficiency, has been used to update the controller parameters. The robustness of the proposed control strategy has been validated using nonlinear time domain simulations for different faults and various operating conditions of power system. Finally, the results have been compared with Conventional Adaptive Takagi-Sugino Controller (CATC on the basis of different performance indices.

  19. Clustering of noisy image data using an adaptive neuro-fuzzy system

    Pemmaraju, Surya; Mitra, Sunanda

    1992-01-01

    Identification of outliers or noise in a real data set is often quite difficult. A recently developed adaptive fuzzy leader clustering (AFLC) algorithm has been modified to separate the outliers from real data sets while finding the clusters within the data sets. The capability of this modified AFLC algorithm to identify the outliers in a number of real data sets indicates the potential strength of this algorithm in correct classification of noisy real data.

  20. Adaptive Critic Based Neuro-Fuzzy Tracker for Improving Conversion Efficiency in PV Solar Cells

    Halimeh Rashidi; Saeed Niazi; Jamshid Khorshidi

    2012-01-01

    The output power of photovoltaic systems is directly related to the amount of solar energy collected by the system and it is therefore necessary to track the sun’s position with high accuracy. This study proposes multi-agent adaptive critic based nero fuzzy solar tracking system dedicated to PV panels. The proposed tracker ensures the optimal conversion of solar energy into electricity by properly adjusting the PV panels according to the position of the sun. To evaluate the usefulness of the ...

  1. Adaptive Four-Channel Neuro-Fuzzy Control of a Master-Slave Robot

    Watcharin Po-Ngaen

    2013-03-01

    Full Text Available In bilateral control of tele‐manipulation based on a conventional approach, there are deficiencies in stability robustness and manoeuvrability against variations in the dynamics of the master input device and the task environment. In this study, an adaptive four‐channel neuro‐fuzzy bilateral control scheme is proposed. To evaluate whether the proposed algorithm is a suitable technique for improving the robustness and manoeuvrability of tele‐robot implementation, four‐channel neuro‐fuzzy and classical bilateral control frameworks have been investigated in a simulation experiment. Distinct bilateral control schemes in the form of four‐channel intelligent control and the classic form of position–force and position‐position have been implemented and compared using a one degree of freedom (DOF master‐slave system. The experimental results show that the application of a four‐channel neuro‐fuzzy control strategy effectively improves the overall performance.

  2. Adaptive Critic Based Neuro-Fuzzy Tracker for Improving Conversion Efficiency in PV Solar Cells

    Halimeh Rashidi

    2012-08-01

    Full Text Available The output power of photovoltaic systems is directly related to the amount of solar energy collected by the system and it is therefore necessary to track the sun’s position with high accuracy. This study proposes multi-agent adaptive critic based nero fuzzy solar tracking system dedicated to PV panels. The proposed tracker ensures the optimal conversion of solar energy into electricity by properly adjusting the PV panels according to the position of the sun. To evaluate the usefulness of the proposed method, some computer simulations are performed and compared with fuzzy PD controller. Obtained results show the proposed control strategy is very robust, flexible and could be used to get the desired performance levels. The response time is also very fast. Simulation results that have been compared with fuzzy PD controller show that our method has the better control performance than fuzzy PD controller.

  3. Auto-adaptative Robot-aided Therapy based in 3D Virtual Tasks controlled by a Supervised and Dynamic Neuro-Fuzzy System

    Luis Daniel Lledó

    2015-03-01

    Full Text Available This paper presents an application formed by a classification method based on the architecture of ART neural network (Adaptive Resonance Theory and the Fuzzy Set Theory to classify physiological reactions in order to automatically and dynamically adapt a robot-assisted rehabilitation therapy to the patient needs, using a three-dimensional task in a virtual reality system. Firstly, the mathematical and structural model of the neuro-fuzzy classification method is described together with the signal and training data acquisition. Then, the virtual designed task with physics behavior and its development procedure are explained. Finally, the general architecture of the experimentation for the auto-adaptive therapy is presented using the classification method with the virtual reality exercise.

  4. A neuro-fuzzy model for prediction of the indoor temperature in typical Australian residential buildings

    Alasha' ary, Haitham; Moghtaderi, Behdad; Page, Adrian; Sugo, Heber [Priority Research Centre for Energy, Chemical Engineering, School of Engineering, Faculty of Engineering and Built Environment, the University of Newcastle, Callaghan, Newcastle, NSW 2308 (Australia)

    2009-07-15

    The Masonry Research Group at The University of Newcastle, Australia has embarked on an extensive research program to study the thermal performance of common walling systems in Australian residential buildings by studying the thermal behaviour of four representative purpose-built thermal test buildings (referred to as 'test modules' or simply 'modules' hereafter). The modules are situated on the university campus and are constructed from brick veneer (BV), cavity brick (CB) and lightweight (LW) constructions. The program of study has both experimental and analytical strands, including the use of a neuro-fuzzy approach to predict the thermal behaviour. The latter approach employs an experimental adaptive neuro-fuzzy inference system (ANFIS) which is used in this study to predict the room (indoor) temperatures of the modules under a range of climatic conditions pertinent to Newcastle (NSW, Australia). The study shows that this neuro-fuzzy model is capable of accurately predicting the room temperature of such buildings; thus providing a potential computationally efficient and inexpensive predictive tool for the more effective thermal design of housing. (author)

  5. Forecasting seasonality in prices of potatoes and onions: challenge between geostatistical models, neuro fuzzy approach and Winter method

    Amiri, Arshia; Bakhshoodeh, Mohamad; Najafi, Bahaeddin

    2011-01-01

    This paper, we studied the ability of geostatistical models (ordinary kriging (OK) and Inverse distance weighting (IDW)), adaptive neuro-fuzzy inference system (ANFIS) and Winter method for prediction of seasonality in prices of potatoes and onions in Iran over the seasonal period 1986_2001. Results show that the best estimators in order are winter method, ANFIS and geostatistical methods. The results indicate that Winter and ANFIS had powerful results for prediction the prices while geostati...

  6. Neuro-fuzzy models in pattern recognition

    Mitra, Sunanda; Kim, Yong Soo

    1993-12-01

    Research in the last decade emphasized the potential of designing adaptive pattern recognition classifiers based on algorithms using multi-layered artificial neural nets. The greatest potential in such endeavors was anticipated to be not only in the adaptivity but also in the high-speed processing through massively parallel VLSI implementation and optical computing. Computational advantages of such algorithms have been demonstrated in a number of papers. Neural networks particularly the self-organizing types have been found quite suitable crisp pattern for clustering of unlabeled datasets. The generalization of Kohonen-type learning vector quantization (LVQ) clustering algorithm to fuzzy LVQ clustering algorithm and its equivalence to fuzzy c-means has been clearly demonstrated recently. On the other hand, Carpenter/Grossberg's ART-type self organizing neural networks have been modified to perform fuzzy clustering by a number of researches in the past few years. The performance of such neuro-fuzzy models in clustering unlabeled data patterns is addressed in this paper. A recent development of a new similarity measure and a new learning rule for updating the centroid of the winning cluster in a fuzzy ART-type neural network is also described. The capability of the above neuro-fuzzy model in better partitioning of datasets into clusters of any shape is demonstrated.

  7. Neuro-fuzzy soft-switching hybrid filter for impulsive noisy environments

    ÖZER, Şaban; ZORLU, Hasan

    2011-01-01

    In this study, a new soft-switching hybrid filter based on a neuro-fuzzy network for impulsive noisy environments is proposed. The hybrid filter was built by combining an adaptive finite impulse response (FIR) filter, an adaptive weighted myriad (WMy) filter, and a soft-switching mechanism based on a neuro-fuzzy (NF) network. Performance of the hybrid filter was tested in a-stable noisy situations and compared with adaptive FIR, WMy, and weighted median (WMd) filter performances. Acc...

  8. Adaptive neuro-fuzzy interface system for gap acceptance behavior of right-turning vehicles at partially controlled T-intersections

    Jayant P. Sangole; Gopal R. Patil

    2014-01-01

    Gap acceptance theory is broadly used for evaluating unsignalized intersections in developed coun-tries. Intersections with no specific priority to any move-ment, known as uncontrolled intersections, are common in India. Limited priority is observed at a few intersections, where priorities are perceived by drivers based on geom-etry, traffic volume, and speed on the approaches of intersection. Analyzing such intersections is complex because the overall traffic behavior is the result of drivers, vehicles, and traffic flow characteristics. Fuzzy theory has been widely used to analyze similar situations. This paper describes the application of adaptive neuro-fuzzy interface system (ANFIS) to the modeling of gap acceptance behavior of right-turning vehicles at limited priority T-intersections (in India, vehicles are driven on the left side of a road). Field data are collected using video cameras at four T-intersections having limited priority. The data extracted include gap/lag, subject vehicle type, conflicting vehicle type, and driver’s decision (accepted/rejected). ANFIS models are developed by using 80% of the extracted data (total data observations for major road right-turning vehicles are 722 and 1,066 for minor road right-turning vehicles) and remaining are used for model vali-dation. Four different combinations of input variables are considered for major and minor road right turnings sepa-rately. Correct prediction by ANFIS models ranges from 75.17% to 82.16% for major road right turning and 87.20% to 88.62% for minor road right turning. The models developed in this paper can be used in the dynamic estimation of gap acceptance in traffic simulation models.

  9. Position control of ionic polymer metal composite actuator based on neuro-fuzzy system

    Nguyen, Truong-Thinh; Yang, Young-Soo; Oh, Il-Kwon

    2009-07-01

    This paper describes the application of Neuro-Fuzzy techniques for controlling an IPMC cantilever configuration under water to improve tracking ability for an IPMC actuator. The controller was designed using an Adaptive Neuro-Fuzzy Controller (ANFC). The measured input data based including the tip-displacements and electrical signals have been recorded for generating the training in the ANFC. These data were used for training the ANFC to adjust the membership functions in the fuzzy control algorithm. The comparison between actual and reference values obtained from the ANFC gave satisfactory results, which showed that Adaptive Neuro-Fuzzy algorithm is reliable in controlling IPMC actuator. In addition, experimental results show that the ANFC performed better than the pure fuzzy controller (PFC). Present results show that the current adaptive neuro-fuzzy controller can be successfully applied to the real-time control of the ionic polymer metal composite actuator for which the performance degrades under long-term actuation.

  10. Modeling of Turbine Cycles Using a Neuro-Fuzzy Based Approach to Predict Turbine-Generator Output for Nuclear Power Plants

    Yea-Kuang Chan; Jyh-Cherng Gu

    2012-01-01

    Due to the very complex sets of component systems, interrelated thermodynamic processes and seasonal change in operating conditions, it is relatively difficult to find an accurate model for turbine cycle of nuclear power plants (NPPs). This paper deals with the modeling of turbine cycles to predict turbine-generator output using an adaptive neuro-fuzzy inference system (ANFIS) for Unit 1 of the Kuosheng NPP in Taiwan. Plant operation data obtained from Kuosheng NPP between 2006 and 2011 were ...

  11. System identification of smart structures using a wavelet neuro-fuzzy model

    Mitchell, Ryan; Kim, Yeesock; El-Korchi, Tahar

    2012-11-01

    This paper proposes a complex model of smart structures equipped with magnetorheological (MR) dampers. Nonlinear behavior of the structure-MR damper systems is represented by the use of a wavelet-based adaptive neuro-fuzzy inference system (WANFIS). The WANFIS is developed through the integration of wavelet transforms, artificial neural networks, and fuzzy logic theory. To evaluate the effectiveness of the WANFIS model, a three-story building employing an MR damper under a variety of natural hazards is investigated. An artificial earthquake is used for training the input-output mapping of the WANFIS model. The artificial earthquake is generated such that the characteristics of a variety of real recorded earthquakes are included. It is demonstrated that this new WANFIS approach is effective in modeling nonlinear behavior of the structure-MR damper system subjected to a variety of disturbances while resulting in shorter training times in comparison with an adaptive neuro-fuzzy inference system (ANFIS) model. Comparison with high fidelity data proves the viability of the proposed approach in a structural health monitoring setting, and it is validated using known earthquake signals such as El-Centro, Kobe, Northridge, and Hachinohe.

  12. Methanol Reformer System Modeling and Control using an Adaptive Neuro-Fuzzy Inference System approach

    Justesen, Kristian Kjær; Ehmsen, Mikkel Præstholm; Andersen, John;

    2012-01-01

    charger. The advantages of using a HTPEM methanol reformer is that the high quality waste heat can be used as a system heat input to heat and evaporate the input methanol/water mixture which afterwards is catalytically converted into a hydrogen rich gas usable in the high CO tolerant HTPEM fuel cells....... Creating a fuel cell system able to use a well known and easily distributable liquid fuel such as methanol is a good choice in some applications such as range extenders for electric vehicles as an alternative to compressed hydrogen. This work presents a control strategy called Current Correction......This work presents the experimental study and modelling of a methanol reformer system for a high temperature polymer electrolyte membrane (HTPEM) fuel cell stack. The analyzed system is a fully integrated HTPEM fuel cell system with a DC/DC control output able to be used as e.g. a mobile battery...

  13. Intelligent Control for Self-erecting Inverted Pendulum Via Adaptive Neuro-fuzzy Inference System

    Saifizul, A. A.; Z. Zainon; N. A.B. Osman; C. A. Azlan; U. F.S.U. Ibrahim

    2006-01-01

    A self-erecting single inverted pendulum (SESIP) is one of typical nonlinear systems. The control scheme running the SESIP consists of two main control loops. Namely, these control loops are swing-up controller and stabilization controller. A swing-up controller of an inverted pendulum system must actuate the pendulum from the stable position. While a stabilization controller must stand the pendulum in the unstable position. To deal with this system, a lot of control techniques have been used...

  14. Hourly Load Forecasting of Electricity in Bali, Indonesia using Adaptive Neuro Fuzzy Inference System

    R.S. Hartati; Linawati; Widia Meindra S.

    2015-01-01

    Today electricity has been basic need for economical growth. One of measurement to identify electricity capacity in an area or a country is electricity consumption index per capita. The index in Bali, Indonesia is still lower than other developing countries in Asia. Therefore load forecasting of electricity in Bali is required to yield good electricity capacity planning. Thus this paper investigates accuracy of ANFIS implementation on forecasting electricity consumption hourly. The accuracy i...

  15. Modelling electrical conductivity of groundwater using an adaptive neuro-fuzzy inference system

    B. Tutmez (Bulent); Z. Hatipoglu (Z.); U. Kaymak (Uzay)

    2006-01-01

    textabstractElectrical conductivity is an important indicator for water quality assessment. Since the composition of mineral salts affects the electrical conductivity of groundwater, it is important to understand the relationships between mineral salt composition and electrical conductivity. In this

  16. Temperature dependent estimator for load cells using an adaptive neuro-fuzzy inference system

    Lee, K-C [Department of Automation Engineering, National Formosa University, Huwei, Yunlin 63208, Taiwan (China)

    2005-01-01

    Accurate weighting of pieces in various temperature environments for load cells is a key feature in many industrial applications. This paper proposes a method to achieve high-precision {+-}0.56/3000 grams for a load-cell-based weighting system by using ANFIS. ANFIS is used to model the relationship between the reading of load cells and the actual weight of samples considering temperature-varying effect and nonlinearity of the load cells. The model of the load-cell-based weighting system can accurately estimate the weight of test samples from the load cell reading. The proposed ANFIS-based method is convenient for use and can improve the precision of digital load cell measurement systems. Experiments demonstrate the validity and effectiveness of fuzzy neural networks for modeling of load cells and the results show that the proposed ANFIS-based method outperforms some existing methods in terms of modeling and prediction accuracy.

  17. Fuzzy Logic and Neuro-fuzzy Systems: A Systematic Introduction

    Yue Wu

    2011-05-01

    Full Text Available Fuzzy logic is a rigorous mathematical field, and it provides an effective vehicle for modeling the uncertainty in human reasoning. In fuzzy logic, the knowledge of experts is modeled by linguistic rules represented in the form of IF-THEN logic. Like neural network models such as the multilayer perceptron (MLP and the radial basis function network (RBFN, some fuzzy inference systems (FISs have the capability of universal approximation. Fuzzy logic can be used in most areas where neural networks are applicable. In this paper, we first give an introduction to fuzzy sets and logic. We then make a comparison between FISs and some neural network models. Rule extraction from trained neural networks or numerical data is then described. We finally introduce the synergy of neural and fuzzy systems, and describe some neuro-fuzzy models as well. Some circuits implementations of neuro-fuzzy systems are also introduced. Examples are given to illustrate the cocepts of neuro-fuzzy systems.

  18. Neuro-fuzzy controller to navigate an unmanned vehicle.

    Selma, Boumediene; Chouraqui, Samira

    2013-12-01

    A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Controller can very well describe the desired system behavior with simple "if-then" relations owing the designer to derive "if-then" rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). In this paper, an artificial neural network fuzzy inference system (ANFIS) controller is described and implemented to navigate the autonomous vehicle. Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous methods like Artificial Neural Network (ANN). PMID:23705105

  19. Alzheimer’s Disease Classification Using Hybrid Neuro Fuzzy Runge-Kutta (HNFRK Classifier

    R. Sampath

    2015-05-01

    Full Text Available Alzheimer’s Disease (AD exists more prior to the over appearance of clinical symptoms and is characterized by brain changes. In this study, Functional Magnetic Resonance Imaging (FMRI offers considerable promise as a tool for detecting brain changes in Alzheimer disease pretentious patients. Therefore, FMRI may offer the unique ability to detention of the dynamic state of change in the collapsing brain. Improve the accuracy of brain FMRI image segmentation, a robust Spatial Fuzzy C-Means (SFCM is utilized and a combination of Adaptive Neuro Fuzzy Inference System and Runge-Kutta Learning Algorithm called Hybrid Neuro Fuzzy Runge-Kutta (HNFRK classifier is used for prediction of Alzheimer’s Disease (AD. The performance of the proposed classifier is compared with SVM and ANFIS classifier. The results show that the sensitivity and specificity of HNFRK classifier is more compared to the SVM and ANFIS. The sensitivity and specificity of HNFRK is above 90% which is below 90% in case of SVM and ANFIS classifier. Thus it can be shown that HNFRK performs accurate classification than SVM and ANFIS.

  20. Potential of neuro-fuzzy methodology to estimate noise level of wind turbines

    Nikolić, Vlastimir; Petković, Dalibor; Por, Lip Yee; Shamshirband, Shahaboddin; Zamani, Mazdak; Ćojbašić, Žarko; Motamedi, Shervin

    2016-01-01

    Wind turbines noise effect became large problem because of increasing of wind farms numbers since renewable energy becomes the most influential energy sources. However, wind turbine noise generation and propagation is not understandable in all aspects. Mechanical noise of wind turbines can be ignored since aerodynamic noise of wind turbine blades is the main source of the noise generation. Numerical simulations of the noise effects of the wind turbine can be very challenging task. Therefore in this article soft computing method is used to evaluate noise level of wind turbines. The main goal of the study is to estimate wind turbine noise in regard of wind speed at different heights and for different sound frequency. Adaptive neuro-fuzzy inference system (ANFIS) is used to estimate the wind turbine noise levels.

  1. Analysis, Interpretation, and Recognition of Facial Action Units and Expressions Using Neuro-Fuzzy Modeling

    Khademi, Mahmoud; Manzuri-Shalmani, Mohammad T; Kiaei, Ali A

    2010-01-01

    In this paper an accurate real-time sequence-based system for representation, recognition, interpretation, and analysis of the facial action units (AUs) and expressions is presented. Our system has the following characteristics: 1) employing adaptive-network-based fuzzy inference systems (ANFIS) and temporal information, we developed a classification scheme based on neuro-fuzzy modeling of the AU intensity, which is robust to intensity variations, 2) using both geometric and appearance-based features, and applying efficient dimension reduction techniques, our system is robust to illumination changes and it can represent the subtle changes as well as temporal information involved in formation of the facial expressions, and 3) by continuous values of intensity and employing top-down hierarchical rule-based classifiers, we can develop accurate human-interpretable AU-to-expression converters. Extensive experiments on Cohn-Kanade database show the superiority of the proposed method, in comparison with support vect...

  2. Quantification of sand fraction from seismic attributes using Neuro-Fuzzy approach

    Verma, Akhilesh K.; Chaki, Soumi; Routray, Aurobinda; Mohanty, William K.; Jenamani, Mamata

    2014-12-01

    In this paper, we illustrate the modeling of a reservoir property (sand fraction) from seismic attributes namely seismic impedance, seismic amplitude, and instantaneous frequency using Neuro-Fuzzy (NF) approach. Input dataset includes 3D post-stacked seismic attributes and six well logs acquired from a hydrocarbon field located in the western coast of India. Presence of thin sand and shale layers in the basin area makes the modeling of reservoir characteristic a challenging task. Though seismic data is helpful in extrapolation of reservoir properties away from boreholes; yet, it could be challenging to delineate thin sand and shale reservoirs using seismic data due to its limited resolvability. Therefore, it is important to develop state-of-art intelligent methods for calibrating a nonlinear mapping between seismic data and target reservoir variables. Neural networks have shown its potential to model such nonlinear mappings; however, uncertainties associated with the model and datasets are still a concern. Hence, introduction of Fuzzy Logic (FL) is beneficial for handling these uncertainties. More specifically, hybrid variants of Artificial Neural Network (ANN) and fuzzy logic, i.e., NF methods, are capable for the modeling reservoir characteristics by integrating the explicit knowledge representation power of FL with the learning ability of neural networks. In this paper, we opt for ANN and three different categories of Adaptive Neuro-Fuzzy Inference System (ANFIS) based on clustering of the available datasets. A comparative analysis of these three different NF models (i.e., Sugeno-type fuzzy inference systems using a grid partition on the data (Model 1), using subtractive clustering (Model 2), and using Fuzzy c-means (FCM) clustering (Model 3)) and ANN suggests that Model 3 has outperformed its counterparts in terms of performance evaluators on the present dataset. Performance of the selected algorithms is evaluated in terms of correlation coefficients (CC), root

  3. Neuro-Fuzzy Phasing of Segmented Mirrors

    Olivier, Philip D.

    1999-01-01

    A new phasing algorithm for segmented mirrors based on neuro-fuzzy techniques is described. A unique feature of this algorithm is the introduction of an observer bank. Its effectiveness is tested in a very simple model with remarkable success. The new algorithm requires much less computational effort than existing algorithms and therefore promises to be quite useful when implemented on more complex models.

  4. Neuro-fuzzy models for systems identification applied to the operation of nuclear power plants

    A nuclear power plant has a myriad of complex system and sub-systems that, working cooperatively, make the control of the whole plant. Nevertheless their operation be automatic most of the time, the integral understanding of their internal- logic can be away of the comprehension of even experienced operators because of the poor interpretability those controls offer. This difficulty does not happens only in nuclear power plants but in almost every a little more complex control system. Neuro-fuzzy models have been used for the last years in a attempt of suppress these difficulties because of their ability of modelling in linguist form even a system which behavior is extremely complex. This is a very intuitive human form of interpretation and neuro-fuzzy model are gathering increasing acceptance. Unfortunately, neuro-fuzzy models can grow up to become of hard interpretation because of the complexity of the systems under modelling. In general, that growing occurs in function of redundant rules or rules that cover a very little domain of the problem. This work presents an identification method for neuro-fuzzy models that not only allows models grow in function of the existent complexity but that beforehand they try to self-adapt to avoid the inclusion of new rules. This form of construction allowed to arrive to highly interpretative neuro-fuzzy models even of very complex systems. The use of this kind of technique in modelling the control of the pressurizer of a PWR nuclear power plant allowed verify its validity and how neuro-fuzzy models so built can be useful in understanding the automatic operation of a nuclear power plant. (author)

  5. Neuro-fuzzy predictive control for nonlinear application

    CHEN Dong-xiang; WANG Gang; LV Shi-xia

    2008-01-01

    Aiming at the unsatisfactory dynamic performances of conventional model predictive control (MPC) in a highly nonlinear process, a scheme employed the fuzzy neural network to realize the nonlinear process is proposed. The neuro-fuzzy predictor has the capability of achieving high predictive accuracy due to its nonlinear mapping and interpolation features, and adaptively updating network parameters by a learning procedure to re-duce the model errors caused by changes of the process under control. To cope with the difficult problem of non-linear optimization, Pepanaqi method was applied to search the optimal or suboptimal solution. Comparisons were made among the objective function values of alternatives in initial space. The search was then confined to shrink the smaller region according to results of comparisons. The convergent point was finally approached to be considered as the optimal or suboptimal solution. Experimental results of the neuro-fuzzy predictive control for drier application reveal that the proposed control scheme has less tracking errors and can smooth control actions, which is applicable to changes of drying condition.

  6. DEVELOPMENT OF NEURO FUZZY CONTROLLER ALGORITHM FOR AIR CONDITIONING SYSTEM

    AMRIT KAUR; ARSHDEEP KAUR

    2012-01-01

    The paper presents the neuro-fuzzy controller algorithm for air conditioning system. Neuro-fuzzy control combines the learning capabilities of neural networks and control capabilities of fuzzy logic control. The neurofuzzy controller for air conditioning system takes two inputs from temperature and humidity sensors and controls the compressor speed. The experimental results of the developed system are also shown.

  7. DEVELOPMENT OF NEURO FUZZY CONTROLLER ALGORITHM FOR AIR CONDITIONING SYSTEM

    AMRIT KAUR

    2012-04-01

    Full Text Available The paper presents the neuro-fuzzy controller algorithm for air conditioning system. Neuro-fuzzy control combines the learning capabilities of neural networks and control capabilities of fuzzy logic control. The neurofuzzy controller for air conditioning system takes two inputs from temperature and humidity sensors and controls the compressor speed. The experimental results of the developed system are also shown.

  8. Neuro-fuzzy estimation of passive robotic joint safe velocity with embedded sensors of conductive silicone rubber

    Al-Shammari, Eiman Tamah; Petković, Dalibor; Danesh, Amir Seyed; Shamshirband, Shahaboddin; Issa, Mirna; Zentner, Lena

    2016-05-01

    Robotic operations need to be safe for unpredictable contacts. Joints with passive compliance with springs can be used for soft robotic contacts. However the joints cannot measure external collision forces. In this investigation was developed one passive compliant joint which have soft contacts with external objects and measurement capabilities. To ensure it, conductive silicone rubber was used as material for modeling of the compliant segments of the robotic joint. These compliant segments represent embedded sensors. The conductive silicone rubber is electrically conductive by deformations. The main task was to obtain elastic absorbers for the external collision forces. These absorbers can be used for measurement in the same time. In other words, the joint has an internal measurement system. Adaptive neuro fuzzy inference system (ANFIS) was used to estimate the safety level of the robotic joint by head injury criteria (HIC).

  9. A Neuro-Fuzzy Technique for Implementing the Half-Adder Circuit Using the CANFIS Model

    Lakra, Sachin; Prasad, T. V.; Sharma, Deepak; Atrey, Shree Harsh; Sharma, Anubhav

    2012-01-01

    A Neural Network, in general, is not considered to be a good solver of mathematical and binary arithmetic problems. However, networks have been developed for such problems as the XOR circuit. This paper presents a technique for the implementation of the Half-adder circuit using the CoActive Neuro-Fuzzy Inference System (CANFIS) Model and attempts to solve the problem using the NeuroSolutions 5 Simulator. The paper gives the experimental results along with the interpretations and possible appl...

  10. Neuro-fuzzy models for systems identification applied to the operation of nuclear power plants; Sistemas neuro-fuzzy para identificacao de sistemas aplicados a operacao de centrais nucleares

    Alves, Antonio Carlos Pinto Dias

    2000-09-01

    A nuclear power plant has a myriad of complex system and sub-systems that, working cooperatively, make the control of the whole plant. Nevertheless their operation be automatic most of the time, the integral understanding of their internal- logic can be away of the comprehension of even experienced operators because of the poor interpretability those controls offer. This difficulty does not happens only in nuclear power plants but in almost every a little more complex control system. Neuro-fuzzy models have been used for the last years in a attempt of suppress these difficulties because of their ability of modelling in linguist form even a system which behavior is extremely complex. This is a very intuitive human form of interpretation and neuro-fuzzy model are gathering increasing acceptance. Unfortunately, neuro-fuzzy models can grow up to become of hard interpretation because of the complexity of the systems under modelling. In general, that growing occurs in function of redundant rules or rules that cover a very little domain of the problem. This work presents an identification method for neuro-fuzzy models that not only allows models grow in function of the existent complexity but that beforehand they try to self-adapt to avoid the inclusion of new rules. This form of construction allowed to arrive to highly interpretative neuro-fuzzy models even of very complex systems. The use of this kind of technique in modelling the control of the pressurizer of a PWR nuclear power plant allowed verify its validity and how neuro-fuzzy models so built can be useful in understanding the automatic operation of a nuclear power plant. (author)

  11. Dynamic Modeling of a Reformed Methanol Fuel Cell System using Empirical Data and Adaptive Neuro-Fuzzy Inference System Models

    Justesen, Kristian Kjær; Andreasen, Søren Juhl; Shaker, Hamid Reza

    2014-01-01

    In this work, a dynamic MATLAB Simulink model of a H3-350 Reformed Methanol Fuel Cell (RMFC) stand-alone battery charger produced by Serenergy is developed on the basis of theoretical and empirical methods. The advantage of RMFC systems is that they use liquid methanol as a fuel instead of gaseou...

  12. Design of a Neuro-Fuzzy Controller for Speed Control Applied to DC Servo Motor

    Kim, S.H.; Kang, Y.H.; Kim, L.K. [Konkuk University, Seoul (Korea); Ko, B.W. [Cheju College of Technology, Cheju (Korea)

    2002-02-01

    In this study, a neuro-fuzzy controller which has the characteristic of fuzzy control and artificial neural network is designed. A fuzzy rule to be applied is automatically selected by the allocated neurons. The neurons correspond to fuzzy rules are created by an expert. To adapt the more precise model is implemented by error back-propagation learning algorithm to adjust the link-weight of fuzzy membership function in the neuro-fuzzy controller. The more classified fuzzy rule is used to include the property of dual mode method. In order to verify the effectiveness of the proposed algorithm designed above, an operating characteristic of a DC servo motor with variable load is investigated. (author). 10 refs., 12 figs., 9 tabs.

  13. CENTRIC MANAGEMENT SYSTEM BASED ON NEURO - FUZZY TOPOLOGY

    Shumkov Y. A.

    2014-11-01

    Full Text Available The article describes the network-centric approach to a building control system based on the "inner teacher" neuro - fuzzy topology, which uses the principles of reinforcement learning

  14. NEURO-FUZZY NETWORKS IN CAPP

    2000-01-01

    The neuro-fuzzy network (NFN) is used to model the rules and experience of the process planner.NFN is to select the manufacturing operations sequences for the part features. A detailed description of the NFN system development is given. The rule structure utilizes sigmoid functions to fuzzify the inputs, multiplication to combine the if part of the rules and summation to integrate the fired rules. Expert knowledge from previous process plans is used in determining the initial network structure and parameters of the membership functions. A back-propagation (BP) training algorithm was developed to fine tune the knowledge to company standards using the input-output data from executions of previous plans. The method is illustrated by an industrial example.

  15. A comparative study for the concrete compressive strength estimation using neural network and neuro-fuzzy modelling approaches

    Bilgehan, Mahmut

    2011-03-01

    In this paper, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN) model have been successfully used for the evaluation of relationships between concrete compressive strength and ultrasonic pulse velocity (UPV) values using the experimental data obtained from many cores taken from different reinforced concrete structures having different ages and unknown ratios of concrete mixtures. A comparative study is made using the neural nets and neuro-fuzzy (NF) techniques. Statistic measures were used to evaluate the performance of the models. Comparing of the results, it is found that the proposed ANFIS architecture with Gaussian membership function is found to perform better than the multilayer feed-forward ANN learning by backpropagation algorithm. The final results show that especially the ANFIS modelling may constitute an efficient tool for prediction of the concrete compressive strength. Architectures of the ANFIS and neural network established in the current study perform sufficiently in the estimation of concrete compressive strength, and particularly ANFIS model estimates closely follow the desired values. Both ANFIS and ANN techniques can be used in conditions where too many structures are to be examined in a restricted time. The presented approaches enable to practically find concrete strengths in the existing reinforced concrete structures, whose records of concrete mixture ratios are not available or present. Thus, researchers can easily evaluate the compressive strength of concrete specimens using UPV and density values. These methods also contribute to a remarkable reduction in the computational time without any significant loss of accuracy. A comparison of the results clearly shows that particularly the NF approach can be used effectively to predict the compressive strength of concrete using UPV and density values. In addition, these model architectures can be used as a nondestructive procedure for health monitoring of

  16. PORTFOLIO OPTIMIZATION USING NEURO FUZZY SYSTEM IN INDIAN STOCK MARKET

    Guna Sekar

    2012-01-01

    This paper describes a portfolio optimization system by using Neuro-Fuzzy framework in order to manage stock portfolio. It is great importance to stock investors and applied researchers. The proposed portfolio optimization approach Neuro-Fuzzy System reasoning in order to make a more yields from the stock portfolio, and hence maximize return and minimize risk of a stock portfolio through diversification and right investment allocation to the particular stock under uncertainty. To evaluate the...

  17. Neuro-fuzzy generalized predictive control of boiler steam temperature

    Chan, CW; Liu, XJ

    2006-01-01

    Reliable control of superheated steam temperature is necessary to ensure high efficiency and high load-following capability in the operation of modern power plant. This is often difficult to achieve using conventional PI controllers, as power plants are nonlinear and contain many uncertainties. A nonlinear generalized predictive controller based on neuro-fuzzy network (NFGPC) is proposed in this paper, which consists of local GPCs designed using the local linear models of the neuro-fuzzy netw...

  18. Soil temperature modeling at different depths using neuro-fuzzy, neural network, and genetic programming techniques

    Kisi, Ozgur; Sanikhani, Hadi; Cobaner, Murat

    2016-05-01

    The applicability of artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS), and genetic programming (GP) techniques in estimating soil temperatures (ST) at different depths is investigated in this study. Weather data from two stations, Mersin and Adana, Turkey, were used as inputs to the applied models in order to model monthly STs. The first part of the study focused on comparison of ANN, ANFIS, and GP models in modeling ST of two stations at the depths of 10, 50, and 100 cm. GP was found to perform better than the ANN and ANFIS-SC in estimating monthly ST. The effect of periodicity (month of the year) on models' accuracy was also investigated. Including periodicity component in models' inputs considerably increased their accuracies. The root mean square error (RMSE) of ANN models was respectively decreased by 34 and 27 % for the depths of 10 and 100 cm adding the periodicity input. In the second part of the study, the accuracies of the ANN, ANFIS, and GP models were compared in estimating ST of Mersin Station using the climatic data of Adana Station. The ANN models generally performed better than the ANFIS-SC and GP in modeling ST of Mersin Station without local climatic inputs.

  19. NEURO FUZZY BASED PERFORMANCE ANALYSIS OF MULTIBAND ULTRA WIDE BAND ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING SYSTEM

    G. Joselin Retna Kumar

    2014-01-01

    Full Text Available This study proposes an efficient channel-estimation scheme for Multiband (MB Orthogonal Frequency Division Multiplexing (OFDM-based Ultra Wide Band (UWB communication systems. One of the challenges in wireless system is the frequency selective fading caused due to multipath channel between the transmitter and receiver. The signal bandwidth in broad band cellular wireless systems typically exceeds the coherence bandwidth of the multipath channel. To overcome such a multipath fading environment with low complexity and to increase the performance, UWB OFDM system is used. To practically realize MB-OFDM UWB, one needs to cope with numerous design challenges, particularly in receiver designs such as symbol timing, Carrier Frequency Offset (CFO and sampling frequency offset compensation, as well as Channel Frequency Response (CFR estimation. A channel estimation scheme using a Takagi-Sugeno (T-S fuzzy based neural network under the time varying velocity of the mobile station in a UWB OFDM system is proposed in this study. In our proposal, by utilizing the learning capability of Adaptive Neuro-Fuzzy Inference System (ANFIS, the ANFIS is trained with correct channel state information then the trained network is used as a channel estimator. To validate the performance of our proposed method, simulation results are given and found that it gives more accurate prediction of channel coefficients as compared with fuzzy channel estimator under various highly noisy multipath channel conditions.

  20. Design of Synthetic Optimizing Neuro Fuzzy Temperature Controller for Dual Screw Profile Plastic Extruder Using Labview

    Ravi Samikannu

    2011-01-01

    Full Text Available Problem statement: The temperature control in plastic extrusion machine is an important factor to produce high quality plastic products. The first order temperature control system in plastic extrusion comprises of coupling effects, long delay time and large time constants. Controlling temperature is very difficult as the process is multistage process and the system coupled with each other. In order to conquer this problem the system is premeditated with neuro fuzzy controller using LabVIEW. Approach: The existing technique involved is conventional PID controller, Neural controller, mamdani type Fuzzy Logic Controller and the proposed method is neuro fuzzy controller. Results: Manifest feature of the proposed method is smoothing of undesired control signal of conventional PID, neural controller and mamdani type FLC controller. The software incorporated the LabVIEW graphical programming language and MATLAB toolbox were used to design temperature control in plastic extrusion system. Hence neuro fuzzy controller is most powerful approach to retrieve the adaptiveness in the case of nonlinear system. Conclusion: The tuning of the controller was synchronized with the controlled variable and allowing the process at its desired operating condition. The results indicated that the use of proposed controller improve the process in terms of time domain specification, set point tracking and also reject disturbances with optimum stability.

  1. Neuro-fuzzy modeling in bankruptcy prediction

    Vlachos D.

    2003-01-01

    Full Text Available For the past 30 years the problem of bankruptcy prediction had been thoroughly studied. From the paper of Altman in 1968 to the recent papers in the '90s, the progress of prediction accuracy was not satisfactory. This paper investigates an alternative modeling of the system (firm, combining neural networks and fuzzy controllers, i.e. using neuro-fuzzy models. Classical modeling is based on mathematical models that describe the behavior of the firm under consideration. The main idea of fuzzy control, on the other hand, is to build a model of a human control expert who is capable of controlling the process without thinking in a mathematical model. This control expert specifies his control action in the form of linguistic rules. These control rules are translated into the framework of fuzzy set theory providing a calculus, which can stimulate the behavior of the control expert and enhance its performance. The accuracy of the model is studied using datasets from previous research papers.

  2. A Temporal Neuro-Fuzzy Monitoring System to Manufacturing Systems

    Mahdaoui, Rafik; Mouss, Mohamed Djamel; Chouhal, Ouahiba

    2011-01-01

    Fault diagnosis and failure prognosis are essential techniques in improving the safety of many manufacturing systems. Therefore, on-line fault detection and isolation is one of the most important tasks in safety-critical and intelligent control systems. Computational intelligence techniques are being investigated as extension of the traditional fault diagnosis methods. This paper discusses the Temporal Neuro-Fuzzy Systems (TNFS) fault diagnosis within an application study of a manufacturing system. The key issues of finding a suitable structure for detecting and isolating ten realistic actuator faults are described. Within this framework, data-processing interactive software of simulation baptized NEFDIAG (NEuro Fuzzy DIAGnosis) version 1.0 is developed. This software devoted primarily to creation, training and test of a classification Neuro-Fuzzy system of industrial process failures. NEFDIAG can be represented like a special type of fuzzy perceptron, with three layers used to classify patterns and failures....

  3. PORTFOLIO OPTIMIZATION USING NEURO FUZZY SYSTEM IN INDIAN STOCK MARKET

    Guna Sekar

    2012-05-01

    Full Text Available This paper describes a portfolio optimization system by using Neuro-Fuzzy framework in order to manage stock portfolio. It is great importance to stock investors and applied researchers. The proposed portfolio optimization approach Neuro-Fuzzy System reasoning in order to make a more yields from the stock portfolio, and hence maximize return and minimize risk of a stock portfolio through diversification and right investment allocation to the particular stock under uncertainty. To evaluate the performance of forecasting and optimization system, BSE Sensex index of India considered as benchmarks in this study to measure efficient forecasting models. The results show that the proposed Neuro Fuzzy system produces much higher accuracy when compared to other portfolio models.

  4. Combination of Neuro-Fuzzy Network Models with Biological Knowledge for Reconstructing Gene Regulatory Networks

    Guixia Liu; Lei Liu; Chunyu Liu; Ming Zheng; Lanying Su; Chunguang Zhou

    2011-01-01

    Inferring gene regulatory networks from large-scale expression data is an important topic in both cellular systems and computational biology. The inference of regulators might be the core factor for understanding actual regulatory conditions in gene regulatory networks, especially when strong regulators do work significantly, in this paper, we propose a novel approach based on combining neuro-fuzzy network models with biological knowledge to infer strong regulators and interrelated fuzzy rules. The hybrid neuro-fuzzy architecture can not only infer the fuzzy rules, which are suitable for describing the regulatory conditions in regulatory networks, but also explain the meaning of nodes and weight value in the neural network. It can get useful rules automatically without factitious judgments. At the same time, it does not add recursive layers to the model, and the model can also strengthen the relationships among genes and reduce calculation. We use the proposed approach to reconstruct a partial gene regulatory network of yeast. The results show that this approach can work effectively.

  5. A neuro-fuzzy approach as medical diagnostic interface

    Brause, Rüdiger W.; Friedrich, F.

    2010-01-01

    In contrast to the symbolic approach, neural networks seldom are designed to explain what they have learned. This is a major obstacle for its use in everyday life. With the appearance of neuro-fuzzy systems which use vague, human-like categories the situation has changed. Based on the well-known mechanisms of learning for RBF networks, a special neuro-fuzzy interface is proposed in this paper. It is especially useful in medical applications, using the notation and habits of physicians and oth...

  6. Neuro-fuzzy modelling of hydro unit efficiency

    This paper presents neuro-fuzzy method for modeling of the hydro unit efficiency. The proposed method uses the characteristics of the fuzzy systems as universal function approximates, as well the abilities of the neural networks to adopt the parameters of the membership's functions and rules in the consequent part of the developed fuzzy system. Developed method is practically applied for modeling of the efficiency of unit which will be installed in the hydro power plant Kozjak. Comparison of the performance of the derived neuro-fuzzy method with several classical polynomials models is also performed. (Author)

  7. Neuro-fuzzy and neural network techniques for forecasting sea level in Darwin Harbor, Australia

    Karimi, Sepideh; Kisi, Ozgur; Shiri, Jalal; Makarynskyy, Oleg

    2013-03-01

    Accurate predictions of sea level with different forecast horizons are important for coastal and ocean engineering applications, as well as in land drainage and reclamation studies. The methodology of tidal harmonic analysis, which is generally used for obtaining a mathematical description of the tides, is data demanding requiring processing of tidal observation collected over several years. In the present study, hourly sea levels for Darwin Harbor, Australia were predicted using two different, data driven techniques, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN). Multi linear regression (MLR) technique was used for selecting the optimal input combinations (lag times) of hourly sea level. The input combination comprises current sea level as well as five previous level values found to be optimal. For the ANFIS models, five different membership functions namely triangular, trapezoidal, generalized bell, Gaussian and two Gaussian membership function were tested and employed for predicting sea level for the next 1 h, 24 h, 48 h and 72 h. The used ANN models were trained using three different algorithms, namely, Levenberg-Marquardt, conjugate gradient and gradient descent. Predictions of optimal ANFIS and ANN models were compared with those of the optimal auto-regressive moving average (ARMA) models. The coefficient of determination, root mean square error and variance account statistics were used as comparison criteria. The obtained results indicated that triangular membership function was optimal for predictions with the ANFIS models while adaptive learning rate and Levenberg-Marquardt were most suitable for training the ANN models. Consequently, ANFIS and ANN models gave similar forecasts and performed better than the developed for the same purpose ARMA models for all the prediction intervals.

  8. Comparison between genetic fuzzy system and neuro fuzzy system to select oil wells for hydraulic fracturing; Comparacao entre genetic fuzzy system e neuro fuzzy system para selecao de pocos de petroleo para fraturamento hidraulico

    Castro, Antonio Orestes de Salvo [PETROBRAS, Rio de Janeiro, RJ (Brazil); Ferreira Filho, Virgilio Jose Martins [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2004-07-01

    The hydraulic fracture operation is wide used to increase the oil wells production and to reduce formation damage. Reservoir studies and engineer analysis are made to select the wells for this kind of operation. As the reservoir parameters have some diffuses characteristics, Fuzzy Inference Systems (SIF) have been tested for this selection processes in the last few years. This paper compares the performance of a neuro fuzzy system and a genetic fuzzy system used for hydraulic Fracture well selection, with knowledge acquisition from an operational data base to set the SIF membership functions. The training data and the validation data used were the same for both systems. We concluded that, in despite of the genetic fuzzy system would be a younger process, it got better results than the neuro fuzzy system. Another conclusion was that, as the genetic fuzzy system can work with constraints, the membership functions setting kept the consistency of variables linguistic values. (author)

  9. Selection of meteorological parameters affecting rainfall estimation using neuro-fuzzy computing methodology

    Hashim, Roslan; Roy, Chandrabhushan; Motamedi, Shervin; Shamshirband, Shahaboddin; Petković, Dalibor; Gocic, Milan; Lee, Siew Cheng

    2016-05-01

    Rainfall is a complex atmospheric process that varies over time and space. Researchers have used various empirical and numerical methods to enhance estimation of rainfall intensity. We developed a novel prediction model in this study, with the emphasis on accuracy to identify the most significant meteorological parameters having effect on rainfall. For this, we used five input parameters: wet day frequency (dwet), vapor pressure (e̅a), and maximum and minimum air temperatures (Tmax and Tmin) as well as cloud cover (cc). The data were obtained from the Indian Meteorological Department for the Patna city, Bihar, India. Further, a type of soft-computing method, known as the adaptive-neuro-fuzzy inference system (ANFIS), was applied to the available data. In this respect, the observation data from 1901 to 2000 were employed for testing, validating, and estimating monthly rainfall via the simulated model. In addition, the ANFIS process for variable selection was implemented to detect the predominant variables affecting the rainfall prediction. Finally, the performance of the model was compared to other soft-computing approaches, including the artificial neural network (ANN), support vector machine (SVM), extreme learning machine (ELM), and genetic programming (GP). The results revealed that ANN, ELM, ANFIS, SVM, and GP had R2 of 0.9531, 0.9572, 0.9764, 0.9525, and 0.9526, respectively. Therefore, we conclude that the ANFIS is the best method among all to predict monthly rainfall. Moreover, dwet was found to be the most influential parameter for rainfall prediction, and the best predictor of accuracy. This study also identified sets of two and three meteorological parameters that show the best predictions.

  10. Classification of EEG Signals by Radial Neuro-Fuzzy Systems

    Coufal, David

    2006-01-01

    Roč. 5, č. 2 (2006), s. 415-423. ISSN 1109-2777 R&D Projects: GA MŠk ME 701 Institutional research plan: CEZ:AV0Z10300504 Keywords : neuro-fuzzy systems * radial fuzzy systems * data mining * hybrid systems Subject RIV: BA - General Mathematics

  11. Stock trading using RSPOP: a novel rough set-based neuro-fuzzy approach.

    Ang, Kai Keng; Quek, Chai

    2006-09-01

    This paper investigates the method of forecasting stock price difference on artificially generated price series data using neuro-fuzzy systems and neural networks. As trading profits is more important to an investor than statistical performance, this paper proposes a novel rough set-based neuro-fuzzy stock trading decision model called stock trading using rough set-based pseudo outer-product (RSPOP) which synergizes the price difference forecast method with a forecast bottleneck free trading decision model. The proposed stock trading with forecast model uses the pseudo outer-product based fuzzy neural network using the compositional rule of inference [POPFNN-CRI(S)] with fuzzy rules identified using the RSPOP algorithm as the underlying predictor model and simple moving average trading rules in the stock trading decision model. Experimental results using the proposed stock trading with RSPOP forecast model on real world stock market data are presented. Trading profits in terms of portfolio end values obtained are benchmarked against stock trading with dynamic evolving neural-fuzzy inference system (DENFIS) forecast model, the stock trading without forecast model and the stock trading with ideal forecast model. Experimental results showed that the proposed model identified rules with greater interpretability and yielded significantly higher profits than the stock trading with DENFIS forecast model and the stock trading without forecast model. PMID:17001989

  12. Hydrological modeling using a dynamic neuro-fuzzy system with on-line and local learning algorithm

    Hong, Yoon-Seok Timothy; White, Paul A.

    2009-01-01

    This paper introduces the dynamic neuro-fuzzy local modeling system (DNFLMS) that is based on a dynamic Takagi-Sugeno (TS) type fuzzy inference system with on-line and local learning algorithm for complex dynamic hydrological modeling tasks. Our DNFLMS is aimed to implement a fast training speed with the capability of on-line simulation where model adaptation occurs at the arrival of each new item of hydrological data. The DNFLMS applies an on-line, one-pass, training procedure to create and update fuzzy local models dynamically. The extended Kalman filtering algorithm is then implemented to optimize the parameters of the consequence part of each fuzzy model during the training phase. Local generalization in the DNFLMS is employed to optimize the parameters of each fuzzy model separately, region-by-region, using subsets of training data rather than all training data. The proposed DNFLMS is applied to develop a model to forecast the flow of Waikoropupu Springs, located in the Takaka Valley, South Island, New Zealand, and the influence of the operation of the 32 Megawatt Cobb hydropower station on spring flow. It is demonstrated that the proposed DNFLMS is superior in terms of model complexity and computational efficiency when compared with models that adopt global generalization such as a multi-layer perceptron (MLP) trained with the back propagation learning algorithm and the well-known adaptive neural-fuzzy system (ANFIS).

  13. Hybrid clustering based fuzzy structure for vibration control - Part 1: A novel algorithm for building neuro-fuzzy system

    Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok

    2015-01-01

    This paper presents a new algorithm for building an adaptive neuro-fuzzy inference system (ANFIS) from a training data set called B-ANFIS. In order to increase accuracy of the model, the following issues are executed. Firstly, a data merging rule is proposed to build and perform a data-clustering strategy. Subsequently, a combination of clustering processes in the input data space and in the joint input-output data space is presented. Crucial reason of this task is to overcome problems related to initialization and contradictory fuzzy rules, which usually happen when building ANFIS. The clustering process in the input data space is accomplished based on a proposed merging-possibilistic clustering (MPC) algorithm. The effectiveness of this process is evaluated to resume a clustering process in the joint input-output data space. The optimal parameters obtained after completion of the clustering process are used to build ANFIS. Simulations based on a numerical data, 'Daily Data of Stock A', and measured data sets of a smart damper are performed to analyze and estimate accuracy. In addition, convergence and robustness of the proposed algorithm are investigated based on both theoretical and testing approaches.

  14. Development of a neuro-fuzzy technique for automated parameter optimization of inverse treatment planning

    Parameter optimization in the process of inverse treatment planning for intensity modulated radiation therapy (IMRT) is mainly conducted by human planners in order to create a plan with the desired dose distribution. To automate this tedious process, an artificial intelligence (AI) guided system was developed and examined. The AI system can automatically accomplish the optimization process based on prior knowledge operated by several fuzzy inference systems (FIS). Prior knowledge, which was collected from human planners during their routine trial-and-error process of inverse planning, has first to be 'translated' to a set of 'if-then rules' for driving the FISs. To minimize subjective error which could be costly during this knowledge acquisition process, it is necessary to find a quantitative method to automatically accomplish this task. A well-developed machine learning technique, based on an adaptive neuro fuzzy inference system (ANFIS), was introduced in this study. Based on this approach, prior knowledge of a fuzzy inference system can be quickly collected from observation data (clinically used constraints). The learning capability and the accuracy of such a system were analyzed by generating multiple FIS from data collected from an AI system with known settings and rules. Multiple analyses showed good agreements of FIS and ANFIS according to rules (error of the output values of ANFIS based on the training data from FIS of 7.77 ± 0.02%) and membership functions (3.9%), thus suggesting that the 'behavior' of an FIS can be propagated to another, based on this process. The initial experimental results on a clinical case showed that ANFIS is an effective way to build FIS from practical data, and analysis of ANFIS and FIS with clinical cases showed good planning results provided by ANFIS. OAR volumes encompassed by characteristic percentages of isodoses were reduced by a mean of between 0 and 28%. The study demonstrated a feasible way

  15. Automatic 3D object recognition and reconstruction based on neuro-fuzzy modelling

    Samadzadegan, Farhad; Azizi, Ali; Hahn, Michael; Lucas, Curo

    Three-dimensional object recognition and reconstruction (ORR) is a research area of major interest in computer vision and photogrammetry. Virtual cities, for example, is one of the exciting application fields of ORR which became very popular during the last decade. Natural and man-made objects of cities such as trees and buildings are complex structures and automatic recognition and reconstruction of these objects from digital aerial images but also other data sources is a big challenge. In this paper a novel approach for object recognition is presented based on neuro-fuzzy modelling. Structural, textural and spectral information is extracted and integrated in a fuzzy reasoning process. The learning capability of neural networks is introduced to the fuzzy recognition process by taking adaptable parameter sets into account which leads to the neuro-fuzzy approach. Object reconstruction follows recognition seamlessly by using the recognition output and the descriptors which have been extracted for recognition. A first successful application of this new ORR approach is demonstrated for the three object classes 'buildings', 'cars' and 'trees' by using aerial colour images of an urban area of the town of Engen in Germany.

  16. Assessment of arsenic concentration in stream water using neuro fuzzy networks with factor analysis.

    Chang, Fi-John; Chung, Chang-Han; Chen, Pin-An; Liu, Chen-Wuing; Coynel, Alexandra; Vachaud, Georges

    2014-10-01

    We propose a systematical approach to assessing arsenic concentration in a river through: important factor extraction by a nonlinear factor analysis; arsenic concentration estimation by the neuro-fuzzy network; and impact assessment of important factors on arsenic concentration by the membership degrees of the constructed neuro-fuzzy network. The arsenic-contaminated Huang Gang Creek in northern Taiwan is used as a study case. Results indicate that rainfall, nitrite nitrogen and temperature are important factors and the proposed estimation model (ANFIS(GT)) is superior to the two comparative models, in which 50% and 52% improvements in RMSE are made over ANFIS(CC) and ANFIS(all), respectively. Results reveal that arsenic concentration reaches the highest in an environment of lower temperature, higher nitrite nitrogen concentration and larger one-month antecedent rainfall; while it reaches the lowest in an environment of higher temperature, lower nitrite nitrogen concentration and smaller one-month antecedent rainfall. It is noted that these three selected factors are easy-to-collect. We demonstrate that the proposed methodology is a useful and effective methodology, which can be adapted to other similar settings to reliably model water quality based on parameters of interest and/or study areas of interest for universal usage. The proposed methodology gives a quick and reliable way to estimate arsenic concentration, which makes good contribution to water environment management. PMID:25046611

  17. A Genetic Based Neuro-Fuzzy Controller System

    Recently, the mobile robots have great importance in the manufacturing processes. They are widely used for assembling processes, handling the dangerous components, moving the weighted things, etc. Designing the controller of the mobile robot is a very complex task. Many simple control systems used the neuro-fuzzy controller in the mobile robots. But, they faced with great complexity when moving in unstructured and dynamic environments. The proposed system introduces the uses of the genetic algorithm for optimizing the parameters of the neuro-fuzzy controller. So, the proposed system can improve the performance of the mobile robots. It has applied for a mobile robot used for moving the dangerous and critical materials in unstructured environment. Its results are compared with other traditional controller systems. The suggested system has proved its success for the real-time applications

  18. Neuro-Fuzzy Support of Knowledge Management in Social Regulation

    Petrovic-Lazarevic, Sonja; Coghill, Ken; Abraham, Ajith

    2002-09-01

    The aim of the paper is to demonstrate the neuro-fuzzy support of knowledge management in social regulation. Knowledge could be understood for social regulation purposes as explicit and tacit. Explicit knowledge relates to the community culture indicating how things work in the community based on social policies and procedures. Tacit knowledge is ethics and norms of the community. The former could be codified, stored and transferable in order to support decision making, while the latter being based on personal knowledge, experience and judgments is difficult to codify and store. Tacit knowledge expressed through linguistic information can be stored and used to support knowledge management in social regulation through the application of fuzzy and neuro-fuzzy logic.

  19. A Temporal Neuro-Fuzzy Monitoring System to Manufacturing Systems

    Rafik Mahdaoui; Mouss Leila-Hayet; Mohamed Djamel Mouss; Ouahiba Chouhal

    2011-01-01

    Fault diagnosis and failure prognosis are essential techniques in improving the safety of many manufacturing systems. Therefore, on-line fault detection and isolation is one of the most important tasks in safety-critical and intelligent control systems. Computational intelligence techniques are being investigated as extension of the traditional fault diagnosis methods. This paper discusses the Temporal Neuro-Fuzzy Systems (TNFS) fault diagnosis within an application study of a manufacturing s...

  20. SECURE ADHOC ROUTING FOR DATA TRANSFER USING NEURO FUZZY

    Suganya; Nagarajan Srinivasan

    2013-01-01

    In the present world the security vulnerabilities are highly challenging in MANET. To get the maximum security and minimum threat there is lots of work going on. To effectively isolate the malicious node this paper proposes a Neuro fuzzy algorithm. By using fuzzy logic we can further improve the security level by identifying the malicious node more accurately. The concept behind the paper is as inreal life scenario, trust and sharing. Here in this paper we use the concept of trusting supporte...

  1. DIAGNOSTICS IN HOMEOPATHIC SYSTEM USING NEURO-FUZZY NETWORKS

    K.L. Kar; Rajiv Pathak

    2012-01-01

    The principle of Homeopathic system is to select a singlemedicine by priority of the symptoms not by the diseasesfor any patient. Neuro-Fuzzy logic networks can solves theproblem of the diagnostic in Homeopath System.Homeopathic software we suppose the neural networks forsolution the problem of the diagnostic in HomeopathSystem and consider the algorithms of the training. Neuralnetworks will adjust the wet value as symptoms. Usingintuitionistic fuzzy set theory medical diagnosis has beenappli...

  2. Neuro-fuzzy controller to navigate an unmanned vehicle

    Selma, Boumediene; Chouraqui, Samira

    2013-01-01

    A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Contro...

  3. A Temporal Neuro-Fuzzy Monitoring System to Manufacturing Systems

    Rafik Mahdaoui

    2011-05-01

    Full Text Available Fault diagnosis and failure prognosis are essential techniques in improving the safety of many manufacturing systems. Therefore, on-line fault detection and isolation is one of the most important tasks in safety-critical and intelligent control systems. Computational intelligence techniques are being investigated as extension of the traditional fault diagnosis methods. This paper discusses the Temporal Neuro-Fuzzy Systems (TNFS fault diagnosis within an application study of a manufacturing system. The key issues of finding a suitable structure for detecting and isolating ten realistic actuator faults are described. Within this framework, data-processing interactive software of simulation baptized NEFDIAG (NEuro Fuzzy DIAGnosis version 1.0 is developed. This software devoted primarily to creation, training and test of a classification Neuro-Fuzzy system of industrial process failures. NEFDIAG can be represented like a special type of fuzzy perceptron, with three layers used to classify patterns and failures. The system selected is the workshop of SCIMAT clinker, cement factory in Algeria.

  4. Active Head Motion Compensation of TMS Robotic System Using Neuro-Fuzzy Estimation

    Wan Zakaria W.N.

    2016-01-01

    Full Text Available Transcranial Magnetic Stimulation (TMS allows neuroscientist to study human brain behaviour and also become an important technique for changing the activity of brain neurons and the functions they sub serve. However, conventional manual procedure and robotized TMS are currently unable to precisely position the TMS coil because of unconstrained subject’s head movement and excessive contact force between the coil and subject’s head. This paper addressed this challenge by proposing an adaptive neuro-fuzzy force control to enable low contact force with a moving target surface. A learning and adaption mechanism is included in the control scheme to improve position disturbance estimation. The results show the ability of the proposed force control scheme to compensate subject’s head motions while maintaining desired contact force, thus allowing for more accurate and repeatable TMS procedures.

  5. A hybrid adaptive control strategy for a smart prosthetic hand

    Chen, Cheng-Hung; Naidu, D. Subbaram; Perez-Gracia, Alba; Schoen, Marco P.

    2009-01-01

    This paper presents a hybrid of a soft computing technique of adaptive neuro-fuzzy inference system (ANFIS) and a hard computing technique of adaptive control for a two- dimensional movement of a prosthetic hand with a thumb and index finger. In particular, ANFIS is used for inverse kinematics, and the adaptive control is used for linearized dynamics to minimize tracking error. The simulations of this hybrid controller, when compared with the proportional-integral-derivative (PID) controller s...

  6. Ant colony optimization algorithm and its application to Neuro-Fuzzy controller design

    2007-01-01

    An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information.The algorithm can keep good balance between accelerating convergence and averting precocity and stagnation.The results of function optimization show that the algorithm has good searching ability and high convergence speed.The algorithm is employed to design a neuro-fuzzy controller for real-time control of an inverted pendulum.In order to avoid the combinatorial explosion of fuzzy.rules due to multivariable inputs,a state variable synthesis scheme is emploved to reduce the number of fuzzy rules greatly.The simulation results show that the designed controller can control the inverted pendulum successfully.

  7. Application of Neuro-Fuzzy Techniques for Solar Radiation

    W. A. Rahoma

    2011-01-01

    Full Text Available Problem statement: The prediction is very useful in solar energy applications because it permits to estimate solar data for locations where measurements are not available. The developed artificial intelligence models predict the solar radiation time series more effectively compared to the conventional procedures based on the clearness index. Approach: The forecasting ability of some models could be further enhanced with the use of additional meteorological parameters. After having simulated many different structures of neural networks and trained using measurements as training data, the best structures were selected in order to evaluate their performance in relation with the performance of a neuro-fuzzy system. As the alternative system, ANFIS neuro-fuzzy system was considered, because it combines fuzzy logic and neural network techniques that are used in order to gain more efficiency. ANFIS is trained with the same data. Results: The comparison and the evaluation of both of the systems were done according to their predictions, using several error metrics. Fuzzy model was trained using data of daily solar radiation recorded on a horizontal surface in National Research Institute of Astronomy and Geophysics, Helwan, Egypt (NARIG at ten years (1991-2000. Conclusion: The predicting conclusion indicated that the TS fuzzy model gave a good accuracy of approximately 96% and a root mean square error lower than 6%.

  8. NEURO-FUZZY MODELLING OF BLENDING PROCESS IN CEMENT PLANT

    Dauda Olarotimi Araromi

    2015-11-01

    Full Text Available The profitability of a cement plant depends largely on the efficient operation of the blending stage, therefore, there is a need to control the process at the blending stage in order to maintain the chemical composition of the raw mix near or at the desired value with minimum variance despite variation in the raw material composition. In this work, neuro-fuzzy model is developed for a dynamic behaviour of the system to predict the total carbonate content in the raw mix at different clay feed rates. The data used for parameter estimation and model validation was obtained from one of the cement plants in Nigeria. The data was pre-processed to remove outliers and filtered using smoothening technique in order to reveal its dynamic nature. Autoregressive exogenous (ARX model was developed for comparison purpose. ARX model gave high root mean square error (RMSE of 5.408 and 4.0199 for training and validation respectively. Poor fit resulting from ARX model is an indication of nonlinear nature of the process. However, both visual and statistical analyses on neuro-fuzzy (ANFIS model gave a far better result. RMSE of training and validation are 0.28167 and 0.7436 respectively, and the sum of square error (SSE and R-square are 39.6692 and 0.9969 respectively. All these are an indication of good performance of ANFIS model. This model can be used for control design of the process.

  9. Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area

    Oh, Hyun-Joo; Pradhan, Biswajeet

    2011-09-01

    This paper presents landslide-susceptibility mapping using an adaptive neuro-fuzzy inference system (ANFIS) using a geographic information system (GIS) environment. In the first stage, landslide locations from the study area were identified by interpreting aerial photographs and supported by an extensive field survey. In the second stage, landslide-related conditioning factors such as altitude, slope angle, plan curvature, distance to drainage, distance to road, soil texture and stream power index (SPI) were extracted from the topographic and soil maps. Then, landslide-susceptible areas were analyzed by the ANFIS approach and mapped using landslide-conditioning factors. In particular, various membership functions (MFs) were applied for the landslide-susceptibility mapping and their results were compared with the field-verified landslide locations. Additionally, the receiver operating characteristics (ROC) curve for all landslide susceptibility maps were drawn and the areas under curve values were calculated. The ROC curve technique is based on the plotting of model sensitivity — true positive fraction values calculated for different threshold values, versus model specificity — true negative fraction values, on a graph. Landslide test locations that were not used during the ANFIS modeling purpose were used to validate the landslide susceptibility maps. The validation results revealed that the susceptibility maps constructed by the ANFIS predictive models using triangular, trapezoidal, generalized bell and polynomial MFs produced reasonable results (84.39%), which can be used for preliminary land-use planning. Finally, the authors concluded that ANFIS is a very useful and an effective tool in regional landslide susceptibility assessment.

  10. Estimativa da produtividade de trigo em função da adubação nitrogenada utilizando modelagem neuro fuzzy

    Aldo A. V. da Silva

    2014-02-01

    Full Text Available Atualmente, novas técnicas de processamento de dados, tais como redes neurais, lógica nebulosa (fuzzy e sistemas híbridos, são utilizadas para elaborar modelos de predição em sistemas complexos e estimar parâmetros desejados. Neste artigo investigou-se a habilidade de se desenvolver um modelo de inferência adaptativo neuro fuzzy para estimação da produtividade de trigo utilizando-se uma base de dados da combinação dos seguintes tratamentos: cinco doses de N (0, 50, 100, 150 e 200 kg ha-1; três fontes (Entec, sulfato de amônio e ureia; duas épocas de aplicação de N (na semeadura ou em cobertura e dois cultivares de trigo (E21 e IAC 370, avaliados durante dois anos, em Selvíria, MS. Através dos dados de entrada e saída o sistema de inferência neuro fuzzy adaptativo apreende e posteriormente pode estimar um novo valor de produção de trigo com base em doses diferenciadas de N. O erro de predição da produtividade de trigo em função das cinco doses de N, obtido com o sistema neuro fuzzy, foi menor que o valor obtido utilizando-se uma aproximação quadrática. Os resultados mostraram que o sistema neuro fuzzy é viável para desenvolver um modelo de predição visando estimar a produtividade de trigo em função da dose de N.

  11. New concept of direct torque neuro-fuzzy control for induction motor drives. Simulation study

    Grabowski, P.Z. [Institute of Control and Industrial Electronics, Warsaw University of Technology, Warsaw (Poland)

    1997-12-31

    This paper presents a new control strategy in the discrete Direct Torque Control (DTC) based on neuro-fuzzy structure. Two schemes are proposed: neuro-fuzzy switching times calculator and neuro-fuzzy incremental controller with space vector modulator. These control strategies guarantee very good dynamic and steady-states characteristics, with very low sampling time and constant switching frequency. The proposed techniques are verified by simulation study of the whole drive system and results are compared with conventional discrete Direct Torque Control method. (orig.) 18 refs.

  12. Using an Adaptative Fuzzy-Logic System to Optimize the Performances and the Reduction of Chattering Phenomenon in the Control of Induction Motor

    M. M. Krishan

    2010-01-01

    Full Text Available Problem statement: Neural networks and fuzzy inference systems are becoming well-recognized tools of designing an identifier/controller capable of perceiving the operating environment and imitating a human operator with high performance. Also, by combining these two features, more versatile and robust models, called neuro-fuzzy architectures have been developed. The mo Approach: Motivation behind the use of neuro-fuzzy approaches was based on the complexity of real life systems, ambiguities on sensory information or time-varying nature of the system under investigation. In this way, the present contribution concerns the application of neuro-fuzzy approach in order to perform the responses of the speed regulation, ensure more robustness of the overall system and to reduce the chattering phenomenon introduced by sliding mode control which is very harmful to the actuators in our case and may excite the unmodeled dynamics of the system. Results: In fact, the aim of such a research consists first in simplifying the control of the motor by decoupling between two principles variables which provoque the torque in the motor by using the feedback linearization method. Then, using sliding mode controllers to give our process more robustness towards the variation of different parameters of the motor. However, the latter technique of control called sliding mode control caused an indesirable phenomenon which harmful and could leads to the deterioration of the inverters components called chattering. So, here the authors propose to use neuro-fuzzy systems to reduce this phenomenon and perform the performances of the adopted control process. The type of the neuro-fuzzy system used here is called: Adaptive Neuro Fuzzy Inference System (ANFIS. This neuro-fuzzy is destined to replace the speed fuzzy sliding mode controller after its training process. Conclusion: Therefore, from a control design consideration, the adopted neuro-fuzzy system has opened up a new

  13. Prediction of Compressive Strength of Self compacting Concrete with Flyash and Rice Husk Ash using Adaptive Neuro-fuzzy Inference System

    S. S, Pathak; Dr. Sanjay Sharma; Dr. Hemant Sood; 4: Dr. R. K. Khitoliya

    2012-01-01

    Self-compacting concrete is an innovative concrete that does not require vibration for placing and compaction. It is able to flow under its own weight, completely filling formwork and achieving full compaction even in congested reinforcement without segregation and bleeding. In the present study self compacting concrete mixes were developed using blend of fly ash and rice husk ash. Fresh properties of theses mixes were tested by using standards recommended by EFNARC (European Federation for S...

  14. Sub-module Short Circuit Fault Diagnosis in Modular Multilevel Converter Based on Wavelet Transform and Adaptive Neuro Fuzzy Inference System

    Liu, Hui; Loh, Poh Chiang; Blaabjerg, Frede

    2015-01-01

    by employing wavelet transform under different fault conditions. Then the fuzzy logic rules are automatically trained based on the fuzzified fault features to diagnose the different faults. Neither additional sensor nor the capacitor voltages are needed in the proposed method. The high accuracy, good...

  15. Adaptive neuro-fuzzy inference system model for adsorption of 1,3,4-thiadiazole-2,5-dithiol onto gold nanoparticales-activated carbon.

    Ghaedi, M; Hosaininia, R; Ghaedi, A M; Vafaei, A; Taghizadeh, F

    2014-10-15

    In this research, a novel adsorbent gold nanoparticle loaded on activated carbon (Au-NP-AC) was synthesized by ultrasound energy as a low cost routing protocol. Subsequently, this novel material characterization and identification followed by different techniques such as scanning electron microscope(SEM), Brunauer-Emmett-Teller(BET) and transmission electron microscopy (TEM) analysis. Unique properties such as high BET surface area (>1229.55m(2)/g) and low pore size (ANFIS), and multiple linear regression (MLR) models, have been applied for prediction of removal of 1,3,4-thiadiazole-2,5-dithiol using gold nanoparticales-activated carbon (Au-NP-AC) in a batch study. The input data are included adsorbent dosage (g), contact time (min) and pollutant concentration (mg/l). The coefficient of determination (R(2)) and mean squared error (MSE) for the training data set of optimal ANFIS model were achieved to be 0.9951 and 0.00017, respectively. These results show that ANFIS model is capable of predicting adsorption of 1,3,4-thiadiazole-2,5-dithiol using Au-NP-AC with high accuracy in an easy, rapid and cost effective way. PMID:24858196

  16. Adaptive neuro-fuzzy inference system model for adsorption of 1,3,4-thiadiazole-2,5-dithiol onto gold nanoparticales-activated carbon

    Ghaedi, M.; Hosaininia, R.; Ghaedi, A. M.; Vafaei, A.; Taghizadeh, F.

    2014-10-01

    In this research, a novel adsorbent gold nanoparticle loaded on activated carbon (Au-NP-AC) was synthesized by ultrasound energy as a low cost routing protocol. Subsequently, this novel material characterization and identification followed by different techniques such as scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET) and transmission electron microscopy (TEM) analysis. Unique properties such as high BET surface area (>1229.55 m2/g) and low pore size (ANFIS), and multiple linear regression (MLR) models, have been applied for prediction of removal of 1,3,4-thiadiazole-2,5-dithiol using gold nanoparticales-activated carbon (Au-NP-AC) in a batch study. The input data are included adsorbent dosage (g), contact time (min) and pollutant concentration (mg/l). The coefficient of determination (R2) and mean squared error (MSE) for the training data set of optimal ANFIS model were achieved to be 0.9951 and 0.00017, respectively. These results show that ANFIS model is capable of predicting adsorption of 1,3,4-thiadiazole-2,5-dithiol using Au-NP-AC with high accuracy in an easy, rapid and cost effective way.

  17. Intelligent multiagent coordination based on reinforcement hierarchical neuro-fuzzy models.

    Mendoza, Leonardo Forero; Vellasco, Marley; Figueiredo, Karla

    2014-12-01

    This paper presents the research and development of two hybrid neuro-fuzzy models for the hierarchical coordination of multiple intelligent agents. The main objective of the models is to have multiple agents interact intelligently with each other in complex systems. We developed two new models of coordination for intelligent multiagent systems, which integrates the Reinforcement Learning Hierarchical Neuro-Fuzzy model with two proposed coordination mechanisms: the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with a market-driven coordination mechanism (MA-RL-HNFP-MD) and the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with graph coordination (MA-RL-HNFP-CG). In order to evaluate the proposed models and verify the contribution of the proposed coordination mechanisms, two multiagent benchmark applications were developed: the pursuit game and the robot soccer simulation. The results obtained demonstrated that the proposed coordination mechanisms greatly improve the performance of the multiagent system when compared with other strategies. PMID:25406641

  18. DIAGNOSTICS IN HOMEOPATHIC SYSTEM USING NEURO-FUZZY NETWORKS

    K.L. Kar

    2012-06-01

    Full Text Available The principle of Homeopathic system is to select a singlemedicine by priority of the symptoms not by the diseasesfor any patient. Neuro-Fuzzy logic networks can solves theproblem of the diagnostic in Homeopath System.Homeopathic software we suppose the neural networks forsolution the problem of the diagnostic in HomeopathSystem and consider the algorithms of the training. Neuralnetworks will adjust the wet value as symptoms. Usingintuitionistic fuzzy set theory medical diagnosis has beenapplied to the problem of selection of single remedy fromhomeopathic repertorization. Two types of compositions ofIFRs and three types of selection indices have beendiscussed. We also propose a new repertory exploiting thebenefits of sof-intelligence.

  19. NEURO FUZZY LINK BASED CLASSIFIER FOR THE ANALYSIS OF BEHAVIOR MODELS IN SOCIAL NETWORKS

    Indira Priya Ponnuvel; Ghosh Dalim Kumar; Kannan Arputharaj; Ganapathy Sannasi

    2014-01-01

    In this study, a new link based classifier using neuro fuzzy logic has been proposed for analyzing the social behavior based on Weblog dataset. In this system, data are processed using a multistage structure. This system provides a diagnosis using a neuro fuzzy link based classifier that analyses the user’s behavior to specific diagnostic categories based on their cluster category in social networks. It uses random walks method to organize the labels. Since the links present in the soci...

  20. Neuro-fuzzy computing for vibration-based damage localization and severity estimation in an experimental wind turbine blade with superimposed operational effects

    Hoell, Simon; Omenzetter, Piotr

    2016-04-01

    Fueled by increasing demand for carbon neutral energy, erections of ever larger wind turbines (WTs), with WT blades (WTBs) with higher flexibilities and lower buckling capacities lead to increasing operation and maintenance costs. This can be counteracted with efficient structural health monitoring (SHM), which allows scheduling maintenance actions according to the structural state and preventing dramatic failures. The present study proposes a novel multi-step approach for vibration-based structural damage localization and severity estimation for application in operating WTs. First, partial autocorrelation coefficients (PACCs) are estimated from vibrational responses. Second, principal component analysis is applied to PACCs from the healthy structure in order to calculate scores. Then, the scores are ranked with respect to their ability to differentiate different damage scenarios. This ranking information is used for constructing hierarchical adaptive neuro-fuzzy inference systems (HANFISs), where cross-validation is used to identify optimal numbers of hierarchy levels. Different HANFISs are created for the purposes of structural damage localization and severity estimation. For demonstrating the applicability of the approach, experimental data are superimposed with signals from numerical simulations to account for characteristics of operational noise. For the physical experiments, a small scale WTB is excited with a domestic fan and damage scenarios are introduced non-destructively by attaching small masses. Numerical simulations are also performed for a representative fully functional small WT operating in turbulent wind. The obtained results are promising for future applications of vibration-based SHM to facilitate improved safety and reliability of WTs at lower costs.

  1. Comparison of Gene Expression Programming with neuro-fuzzy and neural network computing techniques in estimating daily incoming solar radiation in the Basque Country (Northern Spain)

    Highlights: ► Solar radiation estimation based on Gene Expression Programming is unexplored. ► This approach is evaluated for the first time in this study. ► Other artificial intelligence models (ANN and ANFIS) are also included in the study. ► New alternatives for solar radiation estimation based on temperatures are provided. - Abstract: Surface incoming solar radiation is a key variable for many agricultural, meteorological and solar energy conversion related applications. In absence of the required meteorological sensors for the detection of global solar radiation it is necessary to estimate this variable. Temperature based modeling procedures are reported in this study for estimating daily incoming solar radiation by using Gene Expression Programming (GEP) for the first time, and other artificial intelligence models such as Artificial Neural Networks (ANNs), and Adaptive Neuro-Fuzzy Inference System (ANFIS). A comparison was also made among these techniques and traditional temperature based global solar radiation estimation equations. Root mean square error (RMSE), mean absolute error (MAE) RMSE-based skill score (SSRMSE), MAE-based skill score (SSMAE) and r2 criterion of Nash and Sutcliffe criteria were used to assess the models’ performances. An ANN (a four-input multilayer perceptron with 10 neurons in the hidden layer) presented the best performance among the studied models (2.93 MJ m−2 d−1 of RMSE). The ability of GEP approach to model global solar radiation based on daily atmospheric variables was found to be satisfactory.

  2. A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff

    Aqil, Muhammad; Kita, Ichiro; Yano, Akira; Nishiyama, Soichi

    2007-04-01

    SummaryModeling of rainfall-runoff dynamics is one of the most studied topics in hydrology due to its essential application to water resources management. Recently, artificial intelligence has gained much popularity for calibrating the nonlinear relationships inherent in the rainfall-runoff process. In this study, the advantages of artificial neural networks and neuro-fuzzy system in continuous modeling of the daily and hourly behaviour of runoff were examined. Three different adaptive techniques were constructed and examined namely, Levenberg-Marquardt feed forward neural network, Bayesian regularization feed forward neural network, and neuro-fuzzy. In addition, the effects of data transformation on model performance were also investigated. This was done by examining the performance of the three network architectures and training algorithms using both raw and transformed data. Through inspection of the results it was found that although the model built on transformed data outperforms the model built on raw data, no significant differences were found between the forecast accuracies of the three examined models. A detailed comparison of the overall performance indicated that the neuro-fuzzy model performed better than both the Levenberg-Marquardt-FFNN and the Bayesian regularization-FFNN. In order to enable users to process the data easily, a graphic user interface (GUI) was developed. This program allows users to process the rainfall-runoff data, to train/test the model using various input options and to visualize results.

  3. Neuro Fuzzy based Techniques for Predicting Stock Trends

    Hemanth Kumar P.

    2012-07-01

    Full Text Available In this paper we discuss about Prediction of stock market returns.Artificial neural networks (ANNs have been popularly applied to finance problems such as stock exchange index prediction, bankruptcy prediction and corporate bond classification. An ANN model essentially mimics the learning capability of the human brain. A Fuzzy system can uniformly approximate any real continuous function on a compact domain to any degree of accuracy. HereNeuro Fuzzy approaches for predicting financial time series are investigated and shown to perform well in the context of various trading strategies involving stocks. The horizon of prediction is typically a few days and trading strategies are examined using historical data. Methodologies are presented wherein neural predictors are used to anticipate the general behavior of financial indexes in the context of stocks and options trading. The methodologies are tested with actual financial data and shown considerable promise as a decision making and planning tool. In this paper methods are designed to predict 10-15 days of stock returns in advance.

  4. SECURE ADHOC ROUTING FOR DATA TRANSFER USING NEURO FUZZY

    Suganya

    2013-04-01

    Full Text Available In the present world the security vulnerabilities are highly challenging in MANET. To get the maximum security and minimum threat there is lots of work going on. To effectively isolate the malicious node this paper proposes a Neuro fuzzy algorithm. By using fuzzy logic we can further improve the security level by identifying the malicious node more accurately. The concept behind the paper is as inreal life scenario, trust and sharing. Here in this paper we use the concept of trusting supporters, sharing the companion list and routing through data. In order to get a secure high trust level, fuzzy logic is applied for evaluating routing response and isolates the malicious node. Trusted route is evaluated in sequence of operation and data is transferred at a most trusted level. Trust values are computed to each node by setting verge values. The values of each node is checked with the verge value. If the value higherthan the verge value mark it as high trusted node or else low trusted node.The fuzzy logic is implemented using aarmp routing protocol. Thus the level of trust is increased to obtain accuracy of identification. The goal of getting a robust route without any malicious node is achieved.

  5. A Multitarget Tracking Video System Based on Fuzzy and Neuro-Fuzzy Techniques

    Besada Juan A

    2005-01-01

    Full Text Available Automatic surveillance of airport surface is one of the core components of advanced surface movement, guidance, and control systems (A-SMGCS. This function is in charge of the automatic detection, identification, and tracking of all interesting targets (aircraft and relevant ground vehicles in the airport movement area. This paper presents a novel approach for object tracking based on sequences of video images. A fuzzy system has been developed to ponder update decisions both for the trajectories and shapes estimated for targets from the image regions extracted in the images. The advantages of this approach are robustness, flexibility in the design to adapt to different situations, and efficiency for operation in real time, avoiding combinatorial enumeration. Results obtained in representative ground operations show the system capabilities to solve complex scenarios and improve tracking accuracy. Finally, an automatic procedure, based on neuro-fuzzy techniques, has been applied in order to obtain a set of rules from representative examples. Validation of learned system shows the capability to learn the suitable tracker decisions.

  6. Automatic Assessing of Tremor Severity Using Nonlinear Dynamics, Artificial Neural Networks and Neuro-Fuzzy Classifier

    GEMAN, O.

    2014-02-01

    Full Text Available Neurological diseases like Alzheimer, epilepsy, Parkinson's disease, multiple sclerosis and other dementias influence the lives of patients, their families and society. Parkinson's disease (PD is a neurodegenerative disease that occurs due to loss of dopamine, a neurotransmitter and slow destruction of neurons. Brain area affected by progressive destruction of neurons is responsible for controlling movements, and patients with PD reveal rigid and uncontrollable gestures, postural instability, small handwriting and tremor. Commercial activity-promoting gaming systems such as the Nintendo Wii and Xbox Kinect can be used as tools for tremor, gait or other biomedical signals acquisitions. They also can aid for rehabilitation in clinical settings. This paper emphasizes the use of intelligent optical sensors or accelerometers in biomedical signal acquisition, and of the specific nonlinear dynamics parameters or fuzzy logic in Parkinson's disease tremor analysis. Nowadays, there is no screening test for early detection of PD. So, we investigated a method to predict PD, based on the image processing of the handwriting belonging to a candidate of PD. For classification and discrimination between healthy people and PD people we used Artificial Neural Networks (Radial Basis Function - RBF and Multilayer Perceptron - MLP and an Adaptive Neuro-Fuzzy Classifier (ANFC. In general, the results may be expressed as a prognostic (risk degree to contact PD.

  7. Temperature based daily incoming solar radiation modeling based on gene expression programming, neuro-fuzzy and neural network computing techniques.

    Landeras, G.; López, J. J.; Kisi, O.; Shiri, J.

    2012-04-01

    The correct observation/estimation of surface incoming solar radiation (RS) is very important for many agricultural, meteorological and hydrological related applications. While most weather stations are provided with sensors for air temperature detection, the presence of sensors necessary for the detection of solar radiation is not so habitual and the data quality provided by them is sometimes poor. In these cases it is necessary to estimate this variable. Temperature based modeling procedures are reported in this study for estimating daily incoming solar radiation by using Gene Expression Programming (GEP) for the first time, and other artificial intelligence models such as Artificial Neural Networks (ANNs), and Adaptive Neuro-Fuzzy Inference System (ANFIS). Traditional temperature based solar radiation equations were also included in this study and compared with artificial intelligence based approaches. Root mean square error (RMSE), mean absolute error (MAE) RMSE-based skill score (SSRMSE), MAE-based skill score (SSMAE) and r2 criterion of Nash and Sutcliffe criteria were used to assess the models' performances. An ANN (a four-input multilayer perceptron with ten neurons in the hidden layer) presented the best performance among the studied models (2.93 MJ m-2 d-1 of RMSE). A four-input ANFIS model revealed as an interesting alternative to ANNs (3.14 MJ m-2 d-1 of RMSE). Very limited number of studies has been done on estimation of solar radiation based on ANFIS, and the present one demonstrated the ability of ANFIS to model solar radiation based on temperatures and extraterrestrial radiation. By the way this study demonstrated, for the first time, the ability of GEP models to model solar radiation based on daily atmospheric variables. Despite the accuracy of GEP models was slightly lower than the ANFIS and ANN models the genetic programming models (i.e., GEP) are superior to other artificial intelligence models in giving a simple explicit equation for the

  8. Spacecraft attitude control using neuro-fuzzy approximation of the optimal controllers

    Kim, Sung-Woo; Park, Sang-Young; Park, Chandeok

    2016-01-01

    In this study, a neuro-fuzzy controller (NFC) was developed for spacecraft attitude control to mitigate large computational load of the state-dependent Riccati equation (SDRE) controller. The NFC was developed by training a neuro-fuzzy network to approximate the SDRE controller. The stability of the NFC was numerically verified using a Lyapunov-based method, and the performance of the controller was analyzed in terms of approximation ability, steady-state error, cost, and execution time. The simulations and test results indicate that the developed NFC efficiently approximates the SDRE controller, with asymptotic stability in a bounded region of angular velocity encompassing the operational range of rapid-attitude maneuvers. In addition, it was shown that an approximated optimal feedback controller can be designed successfully through neuro-fuzzy approximation of the optimal open-loop controller.

  9. Efficient neuro-fuzzy system and its Memristor Crossbar-based Hardware Implementation

    Merrikh-Bayat, Farnood

    2011-01-01

    In this paper a novel neuro-fuzzy system is proposed where its learning is based on the creation of fuzzy relations by using new implication method without utilizing any exact mathematical techniques. Then, a simple memristor crossbar-based analog circuit is designed to implement this neuro-fuzzy system which offers very interesting properties. In addition to high connectivity between neurons and being fault-tolerant, all synaptic weights in our proposed method are always non-negative and there is no need to precisely adjust them. Finally, this structure is hierarchically expandable and can compute operations in real time since it is implemented through analog circuits. Simulation results show the efficiency and applicability of our neuro-fuzzy computing system. They also indicate that this system can be a good candidate to be used for creating artificial brain.

  10. A Neuro-Fuzzy Approach in the Classification of Students’ Academic Performance

    Quang Hung Do

    2013-01-01

    Full Text Available Classifying the student academic performance with high accuracy facilitates admission decisions and enhances educational services at educational institutions. The purpose of this paper is to present a neuro-fuzzy approach for classifying students into different groups. The neuro-fuzzy classifier used previous exam results and other related factors as input variables and labeled students based on their expected academic performance. The results showed that the proposed approach achieved a high accuracy. The results were also compared with those obtained from other well-known classification approaches, including support vector machine, Naive Bayes, neural network, and decision tree approaches. The comparative analysis indicated that the neuro-fuzzy approach performed better than the others. It is expected that this work may be used to support student admission procedures and to strengthen the services of educational institutions.