WorldWideScience

Sample records for adaptive immune responses

  1. Epigenetics and the Adaptive Immune Response

    Kondilis-Mangum, Hrisavgi D.; Wade, Paul A.

    2012-01-01

    Cells of the adaptive immune response undergo dynamic epigenetic changes as they develop and respond to immune challenge. Plasticity is a necessary prerequisite for the chromosomal dynamics of lineage specification, development, and the immune effector function of the mature cell types. The alterations in DNA methylation and histone modification that characterize activation may be integral to the generation of immunologic memory, thereby providing an advantage on secondary exposure to pathoge...

  2. Adaptive immune responses of legumin nanoparticles.

    Mirshahi, T; Irache, J M; Nicolas, C; Mirshahi, M; Faure, J P; Gueguen, J; Hecquet, C; Orecchioni, A M

    2002-12-01

    Legumin is one of the main storage proteins in the pea seeds (Pisum sativum L.) and the molecules of this protein have the capacity of binding together to form nanoparticles after aggregation and chemical cross-linkage with glutaraldehyde. The aim of this work was to study the adaptive immune response of legumin nanoparticles in rats. Following intradermal immunisation with the native protein legumin and legumin nanoparticles of about 250 nm, the humoral and cell-mediated immune responses were analysed in rats. The humoral responses against legumin and legumin nanoparticles were examined by western blot and ELISA analysis. Both techniques clearly showed that sera from rats immunised with legumin strongly expressed antibodies against this protein. On the contrary, serum samples from rats inoculated with legumin nanoparticles did not contain detectable amounts of antibodies. These results may be explained by a reduction on the antigenic epitopes of the protein induced by the glutaraldehyde used during the cross-linking step. Concerning the cell-mediated response, neither legumin nor legumin nanoparticles stimulated an immunogenic response. This absence of response of spleen lymphocytes for legumin and legumin nanoparticles may be explained by a cytostatic effect of legumin which was corroborated by the evaluation of the middle phase of cell apoptose. In fact, both legumin and legumin nanoparticles are potent inductors of a cytostatic phenomenon and showed a significant increase of the chromatin condensation (p < 0.05) as compared with control. PMID:12683667

  3. Proteasome function shapes innate and adaptive immune responses.

    Kammerl, Ilona E; Meiners, Silke

    2016-08-01

    The proteasome system degrades more than 80% of intracellular proteins into small peptides. Accordingly, the proteasome is involved in many essential cellular functions, such as protein quality control, transcription, immune responses, cell signaling, and apoptosis. Moreover, degradation products are loaded onto major histocompatibility class I molecules to communicate the intracellular protein composition to the immune system. The standard 20S proteasome core complex contains three distinct catalytic active sites that are exchanged upon stimulation with inflammatory cytokines to form the so-called immunoproteasome. Immunoproteasomes are constitutively expressed in immune cells and have different proteolytic activities compared with standard proteasomes. They are rapidly induced in parenchymal cells upon intracellular pathogen infection and are crucial for priming effective CD8(+) T-cell-mediated immune responses against infected cells. Beyond shaping these adaptive immune reactions, immunoproteasomes also regulate the function of immune cells by degradation of inflammatory and immune mediators. Accordingly, they emerge as novel regulators of innate immune responses. The recently unraveled impairment of immunoproteasome function by environmental challenges and by genetic variations of immunoproteasome genes might represent a currently underestimated risk factor for the development and progression of lung diseases. In particular, immunoproteasome dysfunction will dampen resolution of infections, thereby promoting exacerbations, may foster autoimmunity in chronic lung diseases, and possibly contributes to immune evasion of tumor cells. Novel pharmacological tools, such as site-specific inhibitors of the immunoproteasome, as well as activity-based probes, however, hold promises as innovative therapeutic drugs for respiratory diseases and biomarker profiling, respectively. PMID:27343191

  4. Control of the adaptive immune response by tumor vasculature

    Laetitia eMauge

    2014-03-01

    Full Text Available The endothelium is nowadays described as an entire organ that regulates various processes: vascular tone, coagulation, inflammation, and immune cell trafficking, depending on the vascular site and its specific microenvironment as well as on endothelial cell-intrinsic mechanisms like epigenetic changes. In this review, we will focus on the control of the adaptive immune response by the tumor vasculature. In physiological conditions, the endothelium acts as a barrier regulating cell trafficking by specific expression of adhesion molecules enabling adhesion of immune cells on the vessel, and subsequent extravasation. This process is also dependent on chemokine and integrin expression, and on the type of junctions defining the permeability of the endothelium. Endothelial cells can also regulate immune cell activation. In fact, the endothelial layer can constitute immunological synapses due to its close interactions with immune cells, and the delivery of co-stimulatory or co-inhibitory signals. In tumor conditions, the vasculature is characterized by abnormal vessel structure and permeability, and by specific phenotype of endothelial cells. All these abnormalities lead to a modulation of intratumoral immune responses and contribute to the development of intratumoral immunosuppression, which is a major mechanism for promoting the development, progression and treatment resistance of tumors. The in-depth analysis of these various abnormalities will help defining novel targets for the development of antitumoral treatments. Furthermore, eventual changes of the endothelial cell phenotype identified by plasma biomarkers could secondarily be selected to monitor treatment efficacy.

  5. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    Sun, Jun; Deem, Michael

    2006-03-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross-reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system a balance has evolved between binding affinity and specificity in the mechanism for searching the amino acid sequence space of antibodies. Our model predicts that chronic infection may lead to autoimmune disease as well due to cross-reactivity and suggests a broad distribution for the time of onset of autoimmune disease due to chronic exposure. The slow search of antibody sequence space by point mutation leads to the broad of distribution times.

  6. Complement Activation Pathways: A Bridge between Innate and Adaptive Immune Responses in Asthma

    Wills-Karp, Marsha

    2007-01-01

    Although it is widely accepted that allergic asthma is driven by T helper type 2 (Th2)-polarized immune responses to innocuous environmental allergens, the mechanisms driving these aberrant immune responses remain elusive. Recent recognition of the importance of innate immune pathways in regulating adaptive immune responses have fueled investigation into the role of innate immune pathways in the pathogenesis of asthma. The phylogenetically ancient innate immune system, the complement system, ...

  7. Chemical Tools To Monitor and Manipulate Adaptive Immune Responses.

    Doran, Todd M; Sarkar, Mohosin; Kodadek, Thomas

    2016-05-18

    Methods to monitor and manipulate the immune system are of enormous clinical interest. For example, the development of vaccines represents one of the earliest and greatest accomplishments of the biomedical research enterprise. More recently, drugs capable of "reawakening" the immune system to cancer have generated enormous excitement. But, much remains to be done. All drugs available today that manipulate the immune system cannot distinguish between "good" and "bad" immune responses and thus drive general and systemic immune suppression or activation. Indeed, with the notable exception of vaccines, our ability to monitor and manipulate antigen-specific immune responses is in its infancy. Achieving this finer level of control would be highly desirable. For example, it might allow the pharmacological editing of pathogenic immune responses without restricting the ability of the immune system to defend against infection. On the diagnostic side, a method to comprehensively monitor the circulating, antigen-specific antibody population could provide a treasure trove of clinically useful biomarkers, since many diseases expose the immune system to characteristic molecules that are deemed foreign and elicit the production of antibodies against them. This Perspective will discuss the state-of-the-art of this area with a focus on what we consider seminal opportunities for the chemistry community to contribute to this important field. PMID:27115249

  8. Nanoparticles for nasal delivery of vaccines : monitoring adaptive immune responses

    Keijzer, C.

    2013-01-01

    The continuous emergence of new pathogens and growing drug resistance of microorganisms asks for innovative vaccination strategies. An alternative to conventional multiple injection vaccines is the nasal route of vaccine delivery. The immune response induced following nasal antigen delivery depends

  9. Origins of adaptive immunity.

    Liongue, Clifford; John, Liza B; Ward, Alister

    2011-01-01

    Adaptive immunity, involving distinctive antibody- and cell-mediated responses to specific antigens based on "memory" of previous exposure, is a hallmark of higher vertebrates. It has been argued that adaptive immunity arose rapidly, as articulated in the "big bang theory" surrounding its origins, which stresses the importance of coincident whole-genome duplications. Through a close examination of the key molecules and molecular processes underpinning adaptive immunity, this review suggests a less-extreme model, in which adaptive immunity emerged as part of longer evolutionary journey. Clearly, whole-genome duplications provided additional raw genetic materials that were vital to the emergence of adaptive immunity, but a variety of other genetic events were also required to generate some of the key molecules, whereas others were preexisting and simply co-opted into adaptive immunity. PMID:21395512

  10. New concepts in immunity to Neisseria gonorrhoeae: innate responses and suppression of adaptive immunity favor the pathogen, not the host

    Yingru eLiu

    2011-03-01

    Full Text Available It is well known that gonorrhea can be acquired repeatedly with no apparent development of protective immunity arising from previous episodes of infection. Symptomatic infection is characterized by a purulent exudate, but the host response mechanisms are poorly understood. While the remarkable antigenic variability displayed by Neisseria gonorrhoeae and its capacity to inhibit complement activation allow it to evade destruction by the host’s immune defenses, we propose that it also has the capacity to avoid inducing specific immune responses. In a mouse model of vaginal gonococcal infection, N. gonorrhoeae elicits Th17-driven inflammatory- immune responses, which recruit innate defense mechanisms including an influx of neutrophils. Concomitantly, N. gonorrhoeae suppresses Th1- and Th2-dependent adaptive immunity, including specific antibody responses, through a mechanism involving TGF-β and regulatory T cells. Blockade of TGF-β alleviates the suppression of specific anti-gonococcal responses and allows Th1 and Th2 responses to emerge with the generation of immune memory and protective immunity. Genital tract tissues are naturally rich in TGF-β, which fosters an immunosuppressive environment that is important in reproduction. In exploiting this niche, N. gonorrhoeae exemplifies a well-adapted pathogen that proactively elicits from its host innate responses that it can survive and concomitantly suppresses adaptive immunity. Comprehension of these mechanisms of gonococcal pathogenesis should allow the development of novel approaches to therapy and facilitate the development of an effective vaccine.

  11. New concepts in immunity to Neisseria gonorrhoeae: innate responses and suppression of adaptive immunity favor the pathogen, not the host.

    Liu, Yingru; Feinen, Brandon; Russell, Michael W

    2011-01-01

    It is well-known that gonorrhea can be acquired repeatedly with no apparent development of protective immunity arising from previous episodes of infection. Symptomatic infection is characterized by a purulent exudate, but the host response mechanisms are poorly understood. While the remarkable antigenic variability displayed by Neisseria gonorrhoeae and its capacity to inhibit complement activation allow it to evade destruction by the host's immune defenses, we propose that it also has the capacity to avoid inducing specific immune responses. In a mouse model of vaginal gonococcal infection, N. gonorrhoeae elicits Th17-driven inflammatory-immune responses, which recruit innate defense mechanisms including an influx of neutrophils. Concomitantly, N. gonorrhoeae suppresses Th1- and Th2-dependent adaptive immunity, including specific antibody responses, through a mechanism involving TGF-β and regulatory T cells. Blockade of TGF-β alleviates the suppression of specific anti-gonococcal responses and allows Th1 and Th2 responses to emerge with the generation of immune memory and protective immunity. Genital tract tissues are naturally rich in TGF-β, which fosters an immunosuppressive environment that is important in reproduction. In exploiting this niche, N. gonorrhoeae exemplifies a well-adapted pathogen that proactively elicits from its host innate responses that it can survive and concomitantly suppresses adaptive immunity. Comprehension of these mechanisms of gonococcal pathogenesis should allow the development of novel approaches to therapy and facilitate the development of an effective vaccine. PMID:21833308

  12. Anaphylatoxins coordinate innate and adaptive immune responses in allergic asthma.

    Schmudde, Inken; Laumonnier, Yves; Köhl, Jörg

    2013-02-01

    Allergic asthma is a chronic disease of the airways in which maladaptive Th2 and Th17 immune responses drive airway hyperresponsiveness (AHR), eosinophilic and neutrophilic airway inflammation and mucus overproduction. Airway epithelial and pulmonary vascular endothelial cells in concert with different resident and monocyte-derived dendritic cells (DC) play critical roles in allergen sensing and consecutive activation of TH cells and their differentiation toward TH2 and TH17 effector or regulatory T cells (Treg). Further, myeloid-derived regulatory cells (MDRC) act on TH cells and either suppress or enhance their activation. The complement-derived anaphylatoxins (AT) C3a and C5a are generated during initial antigen encounter and regulate the development of maladaptive immunity at allergen sensitization. Here, we will review the complex role of ATs in activation and modulation of different DC populations, MDRCs and CD4⁺ TH cells. We will also discuss the potential impact of ATs on the regulation of the pulmonary stromal compartment as an important means to regulate DC functions. PMID:23694705

  13. Chemokine-guided cell positioning in the lymph node orchestrates the generation of adaptive immune responses.

    Lian, Jeffrey; Luster, Andrew D

    2015-10-01

    The generation of adaptive immune responses occurs in the lymph node (LN) and requires that lymphocytes locate and interact with cognate antigen-bearing dendritic cells. This process requires the coordinated movement of both innate and adaptive immune cells, and is orchestrated by the chemokine family of chemotactic cytokines. Upon initiation of inflammation, the LN undergoes dramatic changes that include the marked induction of specific chemokines in distinct regions of the reactive LN. These chemokine rich domains establish LN niches that facilitate the differentiation of CD4+ T cells into effector cell subsets and the rapid activation of memory CD8+ T cells. This review will focus on recent advances highlighting the importance of LN chemokines for shaping adaptive immune responses by controlling immune cell migration, positioning, and interactions in the reactive LN. PMID:26067148

  14. Once Upon a Time: The Adaptive Immune Response in Atherosclerosis—a Fairy Tale No More

    Le Borgne, Marie; Caligiuri, Giuseppina; Nicoletti, Antonino

    2015-01-01

    Extensive research has been carried out to decipher the function of the adaptive immune response in atherosclerosis, with the expectation that it will pave the road for the design of immunomodulatory therapies that will prevent or reverse the progression of the disease. All this work has led to the concept that some T- and B-cell subsets are proatherogenic, whereas others are atheroprotective. In addition to the immune response occurring in the spleen and lymph nodes, it has been shown that l...

  15. Complement activation pathways: a bridge between innate and adaptive immune responses in asthma.

    Wills-Karp, Marsha

    2007-07-01

    Although it is widely accepted that allergic asthma is driven by T helper type 2 (Th2)-polarized immune responses to innocuous environmental allergens, the mechanisms driving these aberrant immune responses remain elusive. Recent recognition of the importance of innate immune pathways in regulating adaptive immune responses have fueled investigation into the role of innate immune pathways in the pathogenesis of asthma. The phylogenetically ancient innate immune system, the complement system, is no exception. The emerging paradigm is that C3a production at the airway surface serves as a common pathway for the induction of Th2-mediated inflammatory responses to a variety of environmental triggers of asthma (i.e., allergens, pollutants, viral infections, cigarette smoke). In contrast, C5a plays a dual immunoregulatory role by protecting against the initial development of a Th2-polarized adaptive immune response via its ability to induce tolerogenic dendritic cell subsets. On the other hand, C5a drives type 2-mediated inflammatory responses once inflammation ensues. Thus, alterations in the balance of generation of the various components of the complement pathway either due to environmental exposure changes or genetic alterations in genes of the complement cascade may underlie the recent rise in asthma prevalence in westernized countries. PMID:17607007

  16. Dysregulation of adaptive immune responses in complement C3-deficient patients

    Pekkarinen, Pirkka T.; Heikkila, Nelli; Kisand, Kai; Peterson, Paert; Botto, Marina; Daha, Mohamed R.; Drouet, Christian; Isaac, Lourdes; Helminen, Merja; Haahtela, Tari; Meri, Seppo; Jarva, Hanna; Arstila, T. Petteri

    2015-01-01

    In addition to its effector functions, complement is an important regulator of adaptive immune responses. Murine studies suggest that complement modulates helper T-cell differentiation, and Th1 responses in particular are impaired in the absence of functional complement. Here, we have studied humora

  17. Role of SHIP-1 in the adaptive immune responses to aeroallergen in the airway.

    Sukit Roongapinun

    Full Text Available BACKGROUND: Th2-dominated inflammatory response in the airway is an integral component in the pathogenesis of allergic asthma. Accumulating evidence supports the notion that the phosphoinositide 3-kinase (PI3K pathway is involved in the process. We previously reported that SHIP-1, a negative regulator of the PI3K pathway, is essential in maintaining lung immunohomeostasis, potentially through regulation of innate immune cells. However, the function of SHIP-1 in adaptive immune response in the lung has not been defined. We sought to determine the role of SHIP-1 in adaptive immunity in response to aeroallergen stimulation in the airway. METHODOLOGY/PRINCIPAL FINDINGS: SHIP-1 knockout (SHIP-1-/- mice on BALB/c background were immunized with ovalbumin (OVA plus aluminum hydroxide, a strong Th2-inducing immunization, and challenged with OVA. Airway and lung inflammation, immunoglobulin response, Th2 cytokine production and lymphocyte response were analyzed and compared with wild type mice. Even though there was mild spontaneous inflammation in the lung at baseline, SHIP-1-/- mice showed altered responses, including less cell infiltration around the airways but more in the parenchyma, less mucus production, decreased Th2 cytokine production, and diminished serum OVA-specific IgE, IgG1, but not IgG2a. Naïve and OVA sensitized SHIP-1-/- T cells produced a lower amount of IL-4. In vitro differentiated SHIP-1-/- Th2 cells produced less IL-4 compared to wild type Th2 cells upon T cell receptor stimulation. CONCLUSIONS/SIGNIFICANCE: These findings indicate that, in contrast to its role as a negative regulator in the innate immune cells, SHIP-1 acts as a positive regulator in Th2 cells in the adaptive immune response to aeroallergen. Thus any potential manipulation of SHIP-1 activity should be adjusted according to the specific immune response.

  18. DMPD: ITAM-based signaling beyond the adaptive immune response. [Dynamic Macrophage Pathway CSML Database

    Full Text Available AM-based signaling beyond the adaptive immune response. PubmedID 16332394 Title ITAM-based signaling beyond...16332394 ITAM-based signaling beyond the adaptive immune response. Fodor S, Jakus Z..., Mocsai A. Immunol Lett. 2006 Apr 15;104(1-2):29-37. Epub 2005 Nov 28. (.png) (.svg) (.html) (.csml) Show IT...e (.html) CSML File (.csml) Open .csml file with CIOPlayer Open .csml file with CIOPlayer - ※CIO Playerのご利用上の注意 Open .csml file with CIO Open .csml file with CIO - ※CIOのご利用上の注意 ...

  19. Occupational exposure alters innate and adaptive immune responses

    Sahlander, Karin

    2010-01-01

    The farming environment is contaminated with high levels of organic dust. Especially pig barn facilities are highly polluted with airborne inhalable organic dust containing high amounts of molecular patterns from bacteria and fungi known to activate cells of the innate immunity through pattern recognition receptors (PRRs). Some hours of exposure in pig barn environment leads to an intensive upper and lower airway inflammation with systemic influences in previously unexposed ...

  20. Adaptive and innate immune reactions regulating mast cell activation: from receptor-mediated signaling to responses

    Tkaczyk, Christine; Jensen, Bettina M; Iwaki, Shoko; Gilfillan, Alasdair M

    2006-01-01

    In this article, we have described studies that have demonstrated that mast cells can be activated as a consequence of adaptive and innate immune reactions and that these responses can be modified by ligands for other receptors expressed on the surface of mast cells. These various stimuli differe...

  1. Innate and adaptive immune responses to in utero infection with bovine viral diarrhea virus

    Infection of pregnant cows with noncytopathic (ncp) BVDV induces rapid innate and adaptive immune responses resulting in clearance of the virus in less than 3 weeks. Seven to 14 days after inoculation of the cow, ncpBVDV crosses the placenta and induces a fetal viremia. Establishment of persistent ...

  2. Adaptation of the immune system as a response to pregnancy

    Milašinović Ljubomir; Bulatović Sanja; Ilić Đorđe; Ivanović Ljiljana; Županski Mirjana

    2002-01-01

    Introduction Pregnancy is an intriguing immunologic phenomenon. In spite of genetic differences, maternal and fetal cells are in close contact over the whole course of pregnancy with no evidence of either humoral and/or cellular immunologic response of mother to fetus as an allotransplant. The general opinion is that the fundamental protective mechanism must be located locally at the contact-plate, between the maternal and fetal tissues. Immunologic investigations proved the presence of speci...

  3. A cascade reaction network mimicking the basic functional steps of adaptive immune response

    Han, Da; Wu, Cuichen; You, Mingxu; Zhang, Tao; Wan, Shuo; Chen, Tao; Qiu, Liping; Zheng, Zheng; Liang, Hao; Tan, Weihong

    2015-10-01

    Biological systems use complex ‘information-processing cores’ composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS that we call an adaptive immune response simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system that responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner that is superficially similar to the most basic responses of the vertebrate AIS, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices.

  4. Innate and adaptive immune responses in migrating spring-run adult chinook salmon, Oncorhynchus tshawytscha

    Dolan, Brian P.; Fisher, Kathleen M.; Colvin, Michael E.; Benda, Susan E.; Peterson, James T.; Kent, Michael L.; Schreck, Carl B.

    2016-01-01

    Adult Chinook salmon (Oncorhynchus tshawytscha) migrate from salt water to freshwater streams to spawn. Immune responses in migrating adult salmon are thought to diminish in the run up to spawning, though the exact mechanisms for diminished immune responses remain unknown. Here we examine both adaptive and innate immune responses as well as pathogen burdens in migrating adult Chinook salmon in the Upper Willamette River basin. Messenger RNA transcripts encoding antibody heavy chain molecules slightly diminish as a function of time, but are still present even after fish have successfully spawned. In contrast, the innate anti-bacterial effector proteins present in fish plasma rapidly decrease as spawning approaches. Fish also were examined for the presence and severity of eight different pathogens in different organs. While pathogen burden tended to increase during the migration, no specific pathogen signature was associated with diminished immune responses. Transcript levels of the immunosuppressive cytokines IL-10 and TGF beta were measured and did not change during the migration. These results suggest that loss of immune functions in adult migrating salmon are not due to pathogen infection or cytokine-mediated immune suppression, but is rather part of the life history of Chinook salmon likely induced by diminished energy reserves or hormonal changes which accompany spawning.

  5. Can We Translate Vitamin D Immunomodulating Effect on Innate and Adaptive Immunity to Vaccine Response?

    Pierre Olivier Lang

    2015-03-01

    Full Text Available Vitamin D (VitD, which is well known for its classic role in the maintenance of bone mineral density, has now become increasingly studied for its extra-skeletal roles. It has an important influence on the body’s immune system and modulates both innate and adaptive immunity and regulates the inflammatory cascade. In this review our aim was to describe how VitD might influence immune responsiveness and its potential modulating role in vaccine immunogenicity. In the first instance, we consider the literature that may provide molecular and genetic support to the idea that VitD status may be related to innate and/or adaptive immune response with a particular focus on vaccine immunogenicity and then discuss observational studies and controlled trials of VitD supplementation conducted in humans. Finally, we conclude with some knowledge gaps surrounding VitD and vaccine response, and that it is still premature to recommend “booster” of VitD at vaccination time to enhance vaccine response.

  6. Once Upon a Time: The Adaptive Immune Response in Atherosclerosis--a Fairy Tale No More.

    Le Borgne, Marie; Caligiuri, Giuseppina; Nicoletti, Antonino

    2015-01-01

    Extensive research has been carried out to decipher the function of the adaptive immune response in atherosclerosis, with the expectation that it will pave the road for the design of immunomodulatory therapies that will prevent or reverse the progression of the disease. All this work has led to the concept that some T- and B-cell subsets are proatherogenic, whereas others are atheroprotective. In addition to the immune response occurring in the spleen and lymph nodes, it has been shown that lymphoid neo-genesis takes place in the adventitia of atherosclerotic vessels, leading to the formation of tertiary lymphoid organs where an adaptive immune response can be mounted. Whereas the mechanisms orchestrating the formation of these organs are becoming better understood, their impact on atherosclerosis progression remains unclear. Several potential therapeutic strategies against atherosclerosis, such as protective vaccination against atherosclerosis antigens or inhibiting the activation of proatherogenic B cells, have been proposed based on our improving knowledge of the role of the immune system in atherosclerosis. These strategies have shown success in preclinical studies, giving hope that they will lead to clinical applications. PMID:26605642

  7. Tamoxifen persistently disrupts the humoral adaptive immune response of gilthead seabream (Sparus aurata L.).

    Rodenas, M C; Cabas, I; Abellán, E; Meseguer, J; Mulero, V; García-Ayala, A

    2015-12-01

    There is increasing concern about the possible effect of pharmaceutical compounds may have on the fish immune system. Bath exposition of 17α-ethynylestradiol (EE2), a synthetic estrogen used in oral contraceptives, altered the immune response of the gilthead seabream (Sparus aurata L.), a marine hermaphrodite teleost. Tamoxifen (Tmx) is a selective estrogen-receptor modulator used in hormone replacement therapy, the effects of which are unknown in fish immunity. This study aims to investigate the effects of dietary administration of EE2 (5 μg/g food) and Tmx (100 μg/g food) on the immune response of gilthead seabream, and the capacity of the immune system to recover its functionality after a recovery period. The results show for the first time the reversibility of the effect of EE2 and Tmx on the fish immune response. Tmx promoted a transient alteration in hepatic vitellogenin gene expression of a different magnitude to that produced by EE2. Both, EE2 and Tmx inhibited the induction of interleukin-1β gene expression while reversed the inhibition of ROI production in leukocytes following vaccination. However, none of these effects were observed after ceasing EE2 and Tmx exposure. EE2 and Tmx stimulated the antibody response of vaccinated fish although Tmx, but not EE2, altered the antibody response and modulated the percentage of IgM(+) B lymphocytes of vaccinated fish during the recovery phase. Taken together, our results suggest that EE2 and Tmx might alter the capacity of fish to appropriately respond to infection and show that Tmx has a long-lasting effect on humoral adaptive immunity. PMID:26234710

  8. Endotoxemia is associated with altered innate and adaptive immune responses in untreated HIV-1 infected individuals.

    Anne Roslev Bukh

    Full Text Available BACKGROUND: Microbial translocation may contribute to the immunopathogenesis in HIV infection. We investigated if microbial translocation and inflammation were associated with innate and adaptive immune responses in adults with HIV. METHODOLOGY/PRINCIPAL FINDINGS: This was an observational cohort study. Sera from HIV-infected and HIV-uninfected individuals were analyzed for microbial translocation (soluble CD14, lipopolysaccharides [LPS], endotoxin core antibody, and anti-α-galactosyl antibodies and inflammatory markers (high sensitivity C-reactive protein, IL-6, IL-1 receptor antagonist, soluble tumor necrosis factor receptor II, and IL-10 with enzyme-linked immunosorbent assays. Peripheral blood mononuclear cells (PBMC from HIV-infected persons and healthy controls (primed with single-stranded HIV-1-derived RNA were stimulated with LPS, and cytokine production was measured. Finally, HIV-infected patients were immunized with Prevnar 7vPnC±CpG 7909 followed by Pneumo Novum PPV-23. Effects of microbial translocation and inflammation on immunization were analyzed in a predictive regression model. We included 96 HIV-infected individuals, 76 on highly active antiretroviral therapy (HAART, 20 HAART-naive, and 50 healthy controls. Microbial translocation and inflammatory markers were higher among HIV-infected persons than controls. Cytokine levels following LPS stimulation were increased in PBMCs from HAART-naive compared to HAART-treated HIV-infected persons. Further, RNA-priming of PBMCs from controls acted synergistically with LPS to augment cytokine responses. Finally, high serum LPS levels predicted poor vaccine responses among HAART-naive, but not among HAART-treated HIV-infected individuals. CONCLUSIONS/SIGNIFICANCE: LPS acts synergistically with HIV RNA to stimulate innate immune responses in vitro and increasing serum LPS levels seem to predict poor antibody responses after vaccination among HAART-naive HIV-infected persons. Thus, our

  9. Risk factors that may modify the innate and adaptive immune responses in periodontal diseases.

    Knight, Ellie T; Liu, Jenny; Seymour, Gregory J; Faggion, Clovis M; Cullinan, Mary P

    2016-06-01

    Plaque-induced periodontal diseases occur in response to the accumulation of dental plaque. Disease manifestation and progression is determined by the nature of the immune response to the bacterial complexes in plaque. In general, predisposing factors for these periodontal diseases can be defined as those factors which retain or hinder the removal of plaque and, depending upon the nature of the immune response to this plaque, the disease will either remain stable and not progress or it may progress and result in chronic periodontitis. In contrast, modifying factors can be defined as those factors that alter the nature or course of the inflammatory lesion. These factors do not cause the disease but rather modify the chronic inflammatory response, which, in turn, is determined by the nature of the innate and adaptive immune responses and the local cytokine and inflammatory mediator networks. Chronic inflammation is characterized by vascular, cellular and repair responses within the tissues. This paper will focus on how common modifying factors, such as smoking, stress, hormonal changes, diabetes, metabolic syndrome and HIV/AIDS, influence each of these responses, together with treatment implications. As treatment planning in periodontics requires an understanding of the etiology and pathogenesis of the disease, it is important for all modifying factors to be taken into account. For some of these, such as smoking, stress and diabetic control, supportive health behavior advice within the dental setting should be an integral component for overall patient management. PMID:27045429

  10. Immune-inflammatory responses in atherosclerosis: Role of an adaptive immunity mainly driven by T and B cells.

    Chistiakov, Dimitry A; Orekhov, Alexander N; Bobryshev, Yuri V

    2016-09-01

    Adaptive immune response plays an important role in atherogenesis. In atherosclerosis, the proinflammatory immune response driven by Th1 is predominant but the anti-inflammatory response mediated mainly by regulatory T cells is also present. The role of Th2 and Th17 cells in atherogenesis is still debated. In the plaque, other T helper cells can be observed such as Th9 and Th22 but is little is known about their impact in atherosclerosis. Heterogeneity of CD4(+) T cell subsets presented in the plaque may suggest for plasticity of T cell that can switch the phenotype dependening on the local microenvironment and activating/blocking stimuli. Effector T cells are able to recognize self-antigens released by necrotic and apoptotic vascular cells and induce a humoral immune reaction. Tth cells resided in the germinal centers help B cells to switch the antibody class to the production of high-affinity antibodies. Humoral immunity is mediated by B cells that release antigen-specific antibodies. A variety of B cell subsets were found in human and murine atherosclerotic plaques. In mice, B1 cells could spontaneously produce atheroprotective natural IgM antibodies. Conventional B2 lymphocytes secrete either proatherogenic IgG, IgA, and IgE or atheroprotective IgG and IgM antibodies reactive with oxidation-specific epitopes on atherosclerosis-associated antigens. A small population of innate response activator (IRA) B cells, which is phenotypically intermediate between B1 and B2 cells, produces IgM but possesses proatherosclerotic properties. Finally, there is a minor subset of splenic regulatory B cells (Bregs) that protect against atherosclerotic inflammation through support of generation of Tregs and production of anti-inflammatory cytokines IL-10 and TGF-β and proapoptotic molecules. PMID:27262513

  11. A Comparison of the Adaptive Immune Response between Recovered Anthrax Patients and Individuals Receiving Three Different Anthrax Vaccines

    Thomas R. Laws; Tinatin Kuchuloria; Nazibriola Chitadze; Little, Stephen F.; Webster, Wendy M.; Debes, Amanda K; Salome Saginadze; Nikoloz Tsertsvadze; Mariam Chubinidze; Robert G Rivard; Shota Tsanava; Dyson, Edward H.; Andrew J H Simpson; Hepburn, Matthew J; Nino Trapaidze

    2016-01-01

    Several different human vaccines are available to protect against anthrax. We compared the human adaptive immune responses generated by three different anthrax vaccines or by previous exposure to cutaneous anthrax. Adaptive immunity was measured by ELISPOT to count cells that produce interferon (IFN)-γ in response to restimulation ex vivo with the anthrax toxin components PA, LF and EF and by measuring circulating IgG specific to these antigens. Neutralising activity of antisera against anthr...

  12. Control of Dichotomic Innate and Adaptive Immune Responses by Artery Tertiary Lymphoid Organs in Atherosclerosis

    Falk eWeih

    2012-07-01

    Full Text Available Tertiary lymphoid organs (TLOs emerge in tissues in response to nonresolving inflammation such as chronic infection, graft rejection, and autoimmune disease. We identified artery TLOs (ATLOs in the adventitia adjacent to atherosclerotic plaques of aged hyperlipidemic ApoE-/- mice. ATLOs are structured into T cell areas harboring conventional dendritic cells (cDCs and monocyte-derived DCs (mDCs; B cell follicles containing follicular dendritic cells (FDCs within activated germinal centers; and peripheral niches of plasma cells. ATLOs also show extensive neoangiogenesis, aberrant lymphangiogenesis, and high endothelial venule (HEV neogenesis. Newly formed conduit networks connect the external lamina of the artery with HEVs in T cell areas. ATLOs recruit and generate lymphocyte subsets with opposing activities including activated CD4+ and CD8+ effector T cells, natural and induced CD4+ T regulatory cells (nTregs; iTregs as well as B-1 and B-2 cells at different stages of differentiation. These data indicate that ATLOs organize dichotomic innate and adaptive immune responses in atherosclerosis. In this review we discuss the novel concept that dichotomic immune responses towards atherosclerosis-specific antigens are carried out by ATLOs in the adventitia of the arterial wall and that malfunction of the tolerogenic arm of ATLO immunity triggers transition from silent autoimmune reactivity to clinically overt disease.

  13. Clearance of low levels of HCV viremia in the absence of a strong adaptive immune response

    Manns Michael P

    2007-06-01

    Full Text Available Abstract Spontaneous clearance of hepatitis C virus (HCV has frequently been associated with the presence of HCV-specific cellular immunity. However, there had been also reports in chimpanzees demonstrating clearance of HCV-viremia in the absence of significant levels of detectable HCV-specific cellular immune responses. We here report seven asymptomatic acute hepatitis C cases with peak HCV-RNA levels between 300 and 100.000 copies/ml who all cleared HCV-RNA spontaneously. Patients were identified by a systematic screening of 1176 consecutive new incoming offenders in a German young offender institution. Four of the seven patients never developed anti-HCV antibodies and had normal ALT levels throughout follow-up. Transient weak HCV-specific CD4+ T cell responses were detectable in five individuals which did not differ in strength and breadth from age- and sex-matched patients with chronic hepatitis C and long-term recovered patients. In contrast, HCV-specific MHC-class-I-tetramer-positive cells were found in 3 of 4 HLA-A2-positive patients. Thus, these cases highlight that clearance of low levels of HCV viremia is possible in the absence of a strong adaptive immune response which might explain the low seroconversion rate after occupational exposure to HCV.

  14. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter

    Emerging epidemiological evidence suggests that exposure to particulate matter (PM) air pollution increases the risk of cardiovascular events but the exact mechanism by which PM has adverse effects is still unclear. Alveolar macrophages (AM) play a major role in clearing and processing inhaled PM. This comprehensive review of research findings on immunological interactions between AM and PM provides potential pathophysiological pathways that interconnect PM exposure with adverse cardiovascular effects. Coarse particles (10 μm or less, PM10) induce innate immune responses via endotoxin-toll-like receptor (TLR) 4 pathway while fine (2.5 μm or less, PM2.5) and ultrafine particles (0.1 μm or less, UFP) induce via reactive oxygen species generation by transition metals and/or polyaromatic hydrocarbons. The innate immune responses are characterized by activation of transcription factors [nuclear factor (NF)-κB and activator protein-1] and the downstream proinflammatory cytokine [interleukin (IL)-1β, IL-6, and tumor necrosis factor-α] production. In addition to the conventional opsonin-dependent phagocytosis by AM, PM can also be endocytosed by an opsonin-independent pathway via scavenger receptors. Activation of scavenger receptors negatively regulates the TLR4-NF-κB pathway. Internalized particles are subsequently subjected to adaptive immunity involving major histocompatibility complex class II (MHC II) expression, recruitment of costimulatory molecules, and the modulation of the T helper (Th) responses. AM show atypical antigen presenting cell maturation in which phagocytic activity decreases while both MHC II and costimulatory molecules remain unaltered. PM drives AM towards a Th1 profile but secondary responses in a Th1- or Th-2 up-regulated milieu drive the response in favor of a Th2 profile.

  15. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter

    Miyata, Ryohei; Eeden, Stephan F. van, E-mail: Stephan.vanEeden@hli.ubc.ca

    2011-12-15

    Emerging epidemiological evidence suggests that exposure to particulate matter (PM) air pollution increases the risk of cardiovascular events but the exact mechanism by which PM has adverse effects is still unclear. Alveolar macrophages (AM) play a major role in clearing and processing inhaled PM. This comprehensive review of research findings on immunological interactions between AM and PM provides potential pathophysiological pathways that interconnect PM exposure with adverse cardiovascular effects. Coarse particles (10 {mu}m or less, PM{sub 10}) induce innate immune responses via endotoxin-toll-like receptor (TLR) 4 pathway while fine (2.5 {mu}m or less, PM{sub 2.5}) and ultrafine particles (0.1 {mu}m or less, UFP) induce via reactive oxygen species generation by transition metals and/or polyaromatic hydrocarbons. The innate immune responses are characterized by activation of transcription factors [nuclear factor (NF)-{kappa}B and activator protein-1] and the downstream proinflammatory cytokine [interleukin (IL)-1{beta}, IL-6, and tumor necrosis factor-{alpha}] production. In addition to the conventional opsonin-dependent phagocytosis by AM, PM can also be endocytosed by an opsonin-independent pathway via scavenger receptors. Activation of scavenger receptors negatively regulates the TLR4-NF-{kappa}B pathway. Internalized particles are subsequently subjected to adaptive immunity involving major histocompatibility complex class II (MHC II) expression, recruitment of costimulatory molecules, and the modulation of the T helper (Th) responses. AM show atypical antigen presenting cell maturation in which phagocytic activity decreases while both MHC II and costimulatory molecules remain unaltered. PM drives AM towards a Th1 profile but secondary responses in a Th1- or Th-2 up-regulated milieu drive the response in favor of a Th2 profile.

  16. Metainflammation in Diabetic Coronary Artery Disease: Emerging Role of Innate and Adaptive Immune Responses.

    Aravindhan, Vivekanandhan; Madhumitha, Haridoss

    2016-01-01

    Globally, noncommunicable chronic diseases such as Type-2 Diabetes Mellitus (T2DM) and Coronary Artery Disease (CAD) are posing a major threat to the world. T2DM is known to potentiate CAD which had led to the coining of a new clinical entity named diabetic CAD (DM-CAD), leading to excessive morbidity and mortality. The synergistic interaction between these two comorbidities is through sterile inflammation which is now being addressed as metabolic inflammation or metainflammation, which plays a pivotal role during both early and late stages of T2DM and also serves as a link between T2DM and CAD. This review summarises the current concepts on the role played by both innate and adaptive immune responses in setting up metainflammation in DM-CAD. More specifically, the role played by innate pattern recognition receptors (PRRs) like Toll-like receptors (TLRs), NOD1-like receptors (NLRs), Rig-1-like receptors (RLRs), and C-type lectin like receptors (CLRs) and metabolic endotoxemia in fuelling metainflammation in DM-CAD would be discussed. Further, the role played by adaptive immune cells (Th1, Th2, Th17, and Th9 cells) in fuelling metainflammation in DM-CAD will also be discussed. PMID:27610390

  17. The Role of Plasmacytoid Dendritic Cells in Innate and Adaptive Immune Responses against Alpha Herpes Virus Infections

    Philipp Schuster

    2011-01-01

    Full Text Available In 1999, two independent groups identified plasmacytoid dendritic cells (PDC as major type I interferon- (IFN- producing cells in the blood. Since then, evidence is accumulating that PDC are a multifunctional cell population effectively coordinating innate and adaptive immune responses. This paper focuses on the role of different immune cells and their interactions in the surveillance of alpha herpes virus infections, summarizes current knowledge on PDC surface receptors and their role in direct cell-cell contacts, and develops a risk factor model for the clinical implications of herpes simplex and varicella zoster virus reactivation. Data from studies involving knockout mice and cell-depletion experiments as well as human studies converge into a “spider web”, in which the direct and indirect crosstalk between many cell populations tightly controls acute, latent, and recurrent alpha herpes virus infections. Notably, cells involved in innate immune regulations appear to shape adaptive immune responses more extensively than previously thought.

  18. Active chinese mistletoe lectin-55 enhances colon cancer surveillance through regulating innate and adaptive immune responses

    Yan-Hui Ma; Wei-Zhi Cheng; Fang Gong; An-Lun Ma; Qi-Wen Yu; Ji-Ying Zhang; Chao-Ying Hu; Xue-Hua Chen; Dong-Qing Zhang

    2008-01-01

    AIM:To investigate the potential role of Active Chinese mistletoe lectin-55 (ACML-55) in tumor immune surveillance.METHODS:In this study,an experimental model was established by hypodermic inoculating the colon cancer cell line CT26 (5×105 cells) into BALB/c mice.The experimental treatment was orally administered with ACML-55 or PBS,followed by the inoculation of colon cancer cell line CT26.Intracellular cytokine staining was used to detect IFN-y production by tumor antigen specific CD8+ T cells.FACS analysis was employed to profile composition and activation of CD4+,CD8+,γδ T and NK cells.RESULTS:Our results showed,compared to PBS treated mice,ACML-55 treatment significantly delayed colon cancer development in colon cancer-bearing Balb/c mice in vivo.Treatment with ACML-55 enhanced both Ag specific activation and proliferation of CD4+ and CD8+ T cells,and increased the number of tumor Ag specific CD8+ T cells,it was more important to increase the frequency of tumor Ag specific IFN-γ producing-CD8+ T cells.Interestingly,ACML-55 treatment also showed increased cell number of NK,and γδT cells,indicating the role of ACML-55 in activation of innate lymphooltes.CONCLUSION:Our results demonstrate that ACML-55therapy can enhance function in immune surveillance in colon cancer-bearing mice through regulating both innate and adaptive immune responses.

  19. Physical Model of the Immune Response of Bacteria Against Bacteriophage Through the Adaptive CRISPR-Cas Immune System

    Han, Pu; Niestemski, Liang Ren; Barrick, Jeffrey E.; Deem, Michael W.

    2014-01-01

    Bacteria and archaea have evolved an adaptive, heritable immune system that recognizes and protects against viruses or plasmids. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences, called ‘spacers’ into its CRISPR system. Spacers in the CRISPR system provide a record of the history of bacteria and phage coevolution. We use a physical model to study the dynamics of this coevolution as it evolves stochastically over time....

  20. Combination Therapy With Reovirus and Anti-PD-1 Blockade Controls Tumor Growth Through Innate and Adaptive Immune Responses.

    Rajani, Karishma; Parrish, Christopher; Kottke, Timothy; Thompson, Jill; Zaidi, Shane; Ilett, Liz; Shim, Kevin G; Diaz, Rosa-Maria; Pandha, Hardev; Harrington, Kevin; Coffey, Matt; Melcher, Alan; Vile, Richard

    2016-02-01

    Oncolytic reovirus can be delivered both systemically and intratumorally, in both preclinical models and in early phase clinical trials. Reovirus has direct oncolytic activity against a variety of tumor types and antitumor activity is directly associated with immune activation by virus replication in tumors. Immune mechanisms of therapy include both innate immune activation against virally infected tumor cells, and the generation of adaptive antitumor immune responses as a result of in vivo priming against tumor-associated antigens. We tested the combination of local oncolytic reovirus therapy with systemic immune checkpoint inhibition. We show that treatment of subcutaneous B16 melanomas with a combination of intravenous (i.v.) anti-PD-1 antibody and intratumoral (i.t.) reovirus significantly enhanced survival of mice compared to i.t. reovirus (P cells to kill reovirus-infected tumor cells, reduced T(reg) activity, and increased the adaptive CD8(+) T-cell-dependent antitumor T-cell response. PD-1 blockade also enhanced the antiviral immune response but through effector mechanisms which overlapped with but also differed from those affecting the antitumor response. Therefore, combination with checkpoint inhibition represents a readily translatable next step in the clinical development of reovirus viroimmunotherapy. PMID:26310630

  1. NEW EMBO MEMBER’S REVIEW: Dendritic cell regulation of immune responses: a new role for interleukin 2 at the intersection of innate and adaptive immunity

    Granucci, Francesca; Zanoni, Ivan; Feau, Sonia; Ricciardi-Castagnoli, Paola

    2003-01-01

    Dendritic cells are professional antigen-presenting cells able to initiate innate and adaptive immune responses against invading pathogens. In response to external stimuli dendritic cells undergo a complete genetic reprogramming that allows them to become, soon after activation, natural killer cell activators and subsequently T cell stimulators. The recent observation that dendritic cells produce interleukin 2 following microbial stimulation opens new possibilities for understanding the effic...

  2. Cellular adaptive immune response against porcine circovirus type 2 in subclinically infected pigs

    Gerber Heidi

    2009-12-01

    Full Text Available Abstract Background Porcine circovirus type 2 (PCV2 is a dominant causative agent of postweaning multisystemic wasting syndrome (PMWS, a multifactorial disease complex with putative immunosuppressive characteristics. Little is known about adaptive PCV2-specific immune responses in infected pigs. Therefore, the T and B cell responses following PCV2 infection in 3-week old SPF piglets infected with PCV2 or PCV2 plus porcine parvovirus (PPV were studied. Results All animals were asymptomatically infected. At 7 days post infection (d p.i., B lymphocyte and T lymphocyte numbers decreased in the dual infected, but not in the single infected piglets. At this time point a transient PCV2 viraemia was noted in the PCV2 infected groups. Antibodies against the infecting virus were detectable at day 24-28 p.i. for anti-PCV2 antibodies and at day 10 p.i. for anti-PPV antibodies, with no apparent influence of PCV2 on the early PPV antibody development. In the animals infected with PPV alone, IFN-γ secreting cells (SC that were not specific for PCV2 were detected by ELISPOT assay at day 7 p.i. Interestingly, this response was absent in the PCV2/PPV dual infected animals. PCV2-specific IFN-γ SC were observed in the PCV2/PPV infected group at 7 d p.i. and in the PCV2 single infected group at 21 d p.i. A reduction in the numbers of IFN-γ SC was observed following anti-CD4 and anti-CD8 antibody treatment, suggesting roles for both CD4+ and CD8+ T cells in the response against PCV2 infection. This was supported by an observed increase in the percentage of IFN-γ positive CD8hi cytotoxic T cells as well as IFN-γ positive CD8-/low helper T cells after PCV2 in vitro re-stimulation. Conclusions Infection of weaned SPF piglets with PCV2 alone or combined with PPV does not induce disease and in both cases a relatively slow anti-PCV2 antibody response and weak T lymphocyte responses were found. Knowledge on such immunological characteristics is important for both PCV2

  3. A Comparison of the Adaptive Immune Response between Recovered Anthrax Patients and Individuals Receiving Three Different Anthrax Vaccines.

    Laws, Thomas R; Kuchuloria, Tinatin; Chitadze, Nazibriola; Little, Stephen F; Webster, Wendy M; Debes, Amanda K; Saginadze, Salome; Tsertsvadze, Nikoloz; Chubinidze, Mariam; Rivard, Robert G; Tsanava, Shota; Dyson, Edward H; Simpson, Andrew J H; Hepburn, Matthew J; Trapaidze, Nino

    2016-01-01

    Several different human vaccines are available to protect against anthrax. We compared the human adaptive immune responses generated by three different anthrax vaccines or by previous exposure to cutaneous anthrax. Adaptive immunity was measured by ELISPOT to count cells that produce interferon (IFN)-γ in response to restimulation ex vivo with the anthrax toxin components PA, LF and EF and by measuring circulating IgG specific to these antigens. Neutralising activity of antisera against anthrax toxin was also assayed. We found that the different exposures to anthrax antigens promoted varying immune responses. Cutaneous anthrax promoted strong IFN-γ responses to all three antigens and antibody responses to PA and LF. The American AVA and Russian LAAV vaccines induced antibody responses to PA only. The British AVP vaccine produced IFN-γ responses to EF and antibody responses to all three antigens. Anti-PA (in AVA and LAAV vaccinees) or anti-LF (in AVP vaccinees) antibody titres correlated with toxin neutralisation activities. Our study is the first to compare all three vaccines in humans and show the diversity of responses against anthrax antigens. PMID:27007118

  4. A Comparison of the Adaptive Immune Response between Recovered Anthrax Patients and Individuals Receiving Three Different Anthrax Vaccines.

    Thomas R Laws

    Full Text Available Several different human vaccines are available to protect against anthrax. We compared the human adaptive immune responses generated by three different anthrax vaccines or by previous exposure to cutaneous anthrax. Adaptive immunity was measured by ELISPOT to count cells that produce interferon (IFN-γ in response to restimulation ex vivo with the anthrax toxin components PA, LF and EF and by measuring circulating IgG specific to these antigens. Neutralising activity of antisera against anthrax toxin was also assayed. We found that the different exposures to anthrax antigens promoted varying immune responses. Cutaneous anthrax promoted strong IFN-γ responses to all three antigens and antibody responses to PA and LF. The American AVA and Russian LAAV vaccines induced antibody responses to PA only. The British AVP vaccine produced IFN-γ responses to EF and antibody responses to all three antigens. Anti-PA (in AVA and LAAV vaccinees or anti-LF (in AVP vaccinees antibody titres correlated with toxin neutralisation activities. Our study is the first to compare all three vaccines in humans and show the diversity of responses against anthrax antigens.

  5. A Comparison of the Adaptive Immune Response between Recovered Anthrax Patients and Individuals Receiving Three Different Anthrax Vaccines

    Laws, Thomas R.; Kuchuloria, Tinatin; Chitadze, Nazibriola; Little, Stephen F.; Webster, Wendy M.; Debes, Amanda K.; Saginadze, Salome; Tsertsvadze, Nikoloz; Chubinidze, Mariam; Rivard, Robert G.; Tsanava, Shota; Dyson, Edward H.; Simpson, Andrew J. H.; Hepburn, Matthew J.; Trapaidze, Nino

    2016-01-01

    Several different human vaccines are available to protect against anthrax. We compared the human adaptive immune responses generated by three different anthrax vaccines or by previous exposure to cutaneous anthrax. Adaptive immunity was measured by ELISPOT to count cells that produce interferon (IFN)-γ in response to restimulation ex vivo with the anthrax toxin components PA, LF and EF and by measuring circulating IgG specific to these antigens. Neutralising activity of antisera against anthrax toxin was also assayed. We found that the different exposures to anthrax antigens promoted varying immune responses. Cutaneous anthrax promoted strong IFN-γ responses to all three antigens and antibody responses to PA and LF. The American AVA and Russian LAAV vaccines induced antibody responses to PA only. The British AVP vaccine produced IFN-γ responses to EF and antibody responses to all three antigens. Anti-PA (in AVA and LAAV vaccinees) or anti-LF (in AVP vaccinees) antibody titres correlated with toxin neutralisation activities. Our study is the first to compare all three vaccines in humans and show the diversity of responses against anthrax antigens. PMID:27007118

  6. Standardized extract of Tinospora crispa stimulates innate and adaptive immune responses in Balb/c mice.

    Ahmad, Waqas; Jantan, Ibrahim; Kumolosasi, Endang; Bukhari, Syed Nasir Abbas

    2016-03-01

    Standardized extract of Tinospora crispa has been shown to exhibit immunostimulatory effects on innate immune responses in Wistar-Kyoto rats by enhancing neutrophil and T cell-mediated immunity. In this study the immunostimulatory effects of T. crispa were further investigated on the cellular immune response by determining its effect on nitric oxide (NO) production ability, peritoneal macrophage phagocytosis and delayed type hypersensitivity (DTH), whereas the humoral immune response was evaluated through the measurement of serum immunoglobulins (IgG and IgM) and serum lysozyme levels. Male Balb/c mice were immunized with 200 μL of 5 × 10(9) sheep red blood cells (sRBCs) per mL on day 0 and orally administered with 50, 100 and 200 mg per kg of ethanol extract of T. crispa for 14 days. Syringin and magnoflorine were qualitatively and quantitatively analyzed in the extract as chemical markers by using a validated reversed-phase high performance liquid chromatography method. T. crispa extract (TCE) considerably improved the peritoneal macrophages' ability to engulf FITC-labeled E. coli in a dose-dependent manner. TCE also dose-dependently promoted NO production in peritoneal macrophages activated by a lipopolysaccharide (LPS) and markedly potentiated the sRBS-induced swelling rate of the mice paw in DTH. The extract significantly enhanced the level of serum immunoglobulins, showing maximum activity at 100 mg kg(-1). Compared to the control groups, the serum lysozyme level and myeloperoxidase (MPO) activity were significantly higher in extract-treated groups. These findings suggest that T. crispa possesses strong immunostimulatory activities and might act as a natural immunomodulator as well as a potential nutraceutical for the modulation of the immune response. PMID:26839149

  7. Physical model of the immune response of bacteria against bacteriophage through the adaptive CRISPR-Cas immune system

    Bacteria and archaea have evolved an adaptive, heritable immune system that recognizes and protects against viruses or plasmids. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences, called ‘spacers’ into its CRISPR system. Spacers in the CRISPR system provide a record of the history of bacteria and phage coevolution. We use a physical model to study the dynamics of this coevolution as it evolves stochastically over time. We focus on the impact of mutation and recombination on bacteria and phage evolution and evasion. We discuss the effect of different spacer deletion mechanisms on the coevolutionary dynamics. We make predictions about bacteria and phage population growth, spacer diversity within the CRISPR locus, and spacer protection against the phage population. (paper)

  8. Physical model of the immune response of bacteria against bacteriophage through the adaptive CRISPR-Cas immune system

    Han, Pu; Niestemski, Liang Ren; Barrick, Jeffrey E.; Deem, Michael W.

    2013-04-01

    Bacteria and archaea have evolved an adaptive, heritable immune system that recognizes and protects against viruses or plasmids. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences, called ‘spacers’ into its CRISPR system. Spacers in the CRISPR system provide a record of the history of bacteria and phage coevolution. We use a physical model to study the dynamics of this coevolution as it evolves stochastically over time. We focus on the impact of mutation and recombination on bacteria and phage evolution and evasion. We discuss the effect of different spacer deletion mechanisms on the coevolutionary dynamics. We make predictions about bacteria and phage population growth, spacer diversity within the CRISPR locus, and spacer protection against the phage population.

  9. Self-adjuvanted mRNA vaccines induce local innate immune responses that lead to a potent and boostable adaptive immunity.

    Kowalczyk, Aleksandra; Doener, Fatma; Zanzinger, Kai; Noth, Janine; Baumhof, Patrick; Fotin-Mleczek, Mariola; Heidenreich, Regina

    2016-07-19

    mRNA represents a new platform for the development of therapeutic and prophylactic vaccines with high flexibility with respect to production and application. We have previously shown that our two component self-adjuvanted mRNA-based vaccines (termed RNActive® vaccines) induce balanced immune responses comprising both humoral and cellular effector as well as memory responses. Here, we evaluated the early events upon intradermal application to gain more detailed insights into the underlying mode of action of our mRNA-based vaccine. We showed that the vaccine is taken up in the skin by both non-leukocytic and leukocytic cells, the latter being mostly represented by antigen presenting cells (APCs). mRNA was then transported to the draining lymph nodes (dLNs) by migratory dendritic cells. Moreover, the encoded protein was expressed and efficiently presented by APCs within the dLNs as shown by T cell proliferation and immune cell activation, followed by the induction of the adaptive immunity. Importantly, the immunostimulation was limited to the injection site and lymphoid organs as no proinflammatory cytokines were detected in the sera of the immunized mice indicating a favorable safety profile of the mRNA-based vaccines. Notably, a substantial boostability of the immune responses was observed, indicating that mRNA can be used effectively in repetitive immunization schedules. The evaluation of the immunostimulation following prime and boost vaccination revealed no signs of exhaustion as demonstrated by comparable levels of cytokine production at the injection site and immune cell activation within dLNs. In summary, our data provide mechanistic insight into the mode of action and a rational for the use of mRNA-based vaccines as a promising immunization platform. PMID:27269061

  10. Immune response

    ... Cellular and Molecular Immunology. 8th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 1. Craft J. The adaptive ... eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap 46. Crow MK. The innate ...

  11. MALT1 Protease Activity Is Required for Innate and Adaptive Immune Responses.

    Jong W Yu

    Full Text Available CARMA-BCL10-MALT1 signalosomes play important roles in antigen receptor signaling and other pathways. Previous studies have suggested that as part of this complex, MALT1 functions as both a scaffolding protein to activate NF-κB through recruitment of ubiquitin ligases, and as a protease to cleave and inactivate downstream inhibitory signaling proteins. However, our understanding of the relative importance of these two distinct MALT1 activities has been hampered by a lack of selective MALT1 protease inhibitors with suitable pharmacologic properties. To fully investigate the role of MALT1 protease activity, we generated mice homozygous for a protease-dead mutation in MALT1. We found that some, but not all, MALT1 functions in immune cells were dependent upon its protease activity. Protease-dead mice had defects in the generation of splenic marginal zone and peritoneal B1 B cells. CD4+ and CD8+ T cells displayed decreased T cell receptor-stimulated proliferation and IL-2 production while B cell receptor-stimulated proliferation was partially dependent on protease activity. In dendritic cells, stimulation of cytokine production through the Dectin-1, Dectin-2, and Mincle C-type lectin receptors was also found to be partially dependent upon protease activity. In vivo, protease-dead mice had reduced basal immunoglobulin levels, and showed defective responses to immunization with T-dependent and T-independent antigens. Surprisingly, despite these decreased responses, MALT1 protease-dead mice, but not MALT1 null mice, developed mixed inflammatory cell infiltrates in multiple organs, suggesting MALT1 protease activity plays a role in immune homeostasis. These findings highlight the importance of MALT1 protease activity in multiple immune cell types, and in integrating immune responses in vivo.

  12. 5-Lipoxygenase Deficiency Impairs Innate and Adaptive Immune Responses during Fungal Infection

    Adriana Secatto; Lilian Cataldi Rodrigues; Carlos Henrique Serezani; Simone Gusmão Ramos; Marcelo Dias-Baruffi; Lúcia Helena Faccioli; Medeiros, Alexandra I.

    2012-01-01

    5-Lipoxygenase-derived products have been implicated in both the inhibition and promotion of chronic infection. Here, we sought to investigate the roles of endogenous 5-lipoxygenase products and exogenous leukotrienes during Histoplasma capsulatum infection in vivo and in vitro. 5-LO deficiency led to increased lung CFU, decreased nitric oxide production and a deficient primary immune response during active fungal infection. Moreover, H. capsulatum-infected 5-LO(-/-) mice showed an intense in...

  13. Brucella evasion of adaptive immunity.

    Martirosyan, Anna; Gorvel, Jean-Pierre

    2013-02-01

    The complex immune system of mammals is the result of evolutionary forces that include battles against pathogens, as sensing and defeating intruders is a prerequisite to host survival. On the other hand, microorganisms have evolved multiple mechanisms to evade both arms of immunity: the innate and the adaptive immune systems. The successful pathogenic intracellular bacterium Brucella is not an exception to the rule: Brucella displays mechanisms that allow evasion of immune surveillance in order to establish persistent infections in mammals. In this review, we highlight some key mechanisms that pathogenic Brucella use to evade the adaptive immune system. PMID:23374122

  14. Immunomodulatory effects and adaptive immune response to daratumumab in multiple myeloma

    Krejcik, Jakub; Casneuf, T.; Nijhof, I.;

    2015-01-01

    assays. T-cell subpopulation counts were modelled over time with linear mixed modelling. Two group comparisons were performed using non-parametric Wilcoxon rank sum tests. Results: Data from 148 patients receiving 16 mg/kg DARA in GEN501 (n = 42) and Sirius (n = 106) were analyzed for changes in immune......Introduction: Daratumumab (DARA) is a novel human monoclonal antibody that targets CD38, a protein that is highly expressed on multiple myeloma (MM) cells. DARA acts through multiple immune effector-mediated mechanisms, including complement-dependent cytotoxicity, antibody-dependent cell......-mediated cytotoxicity, and antibody-dependent cellular phagocytosis. In two clinical studies (NCT00574288 [GEN501] and NCT01985126 [Sirius]) of DARA monotherapy in patients with relapsed and refractory MM, overall response rates were 36% and 29%, respectively. CD38 is highly expressed in myeloma cells but also...

  15. Topical CpG Oligodeoxynucleotide Adjuvant Enhances the Adaptive Immune Response against Influenza A Infections.

    Cheng, Wing Ki; Plumb, Adam William; Lai, Jacqueline Cheuk-Yan; Abraham, Ninan; Dutz, Jan Peter

    2016-01-01

    Current influenza vaccines generate humoral immunity, targeting highly variable epitopes and thus fail to achieve long-term protection. T cells recognize and respond to several highly conserved epitopes across influenza serotypes. A strategy of raising strong cytotoxic T cell memory responses to epitopes conserved across serotypes would provide cross serotype protection, eliminating the need for annual vaccination. We explored the adjuvant potential of epicutaneous (ec) and subcutaneous (sc) delivery of CpG oligodeoxynucleotide in conjunction with sc protein immunization to improve protection against influenza A virus (IAV) infections using a mouse model. We found enhanced long-term protection with epicutaneous CpG ODN (ecCpG) compared to subcutaneous CpG ODN (scCpG) as demonstrated by reduced viral titers in the lungs. This correlated with increased antigen-specific CD8 T cells in the airways and the lungs. The memory T cell response after immunization with ecCpG adjuvant was comparable to memory response by priming with IAV infection in the lungs. In addition, ecCpG was more efficient than scCpG in inducing the generation of IFN-γ producing CD4 T cells. The adjuvant effect of ecCpG was accompanied with its ability to modulate tissue-homing molecules on T cells that may direct them to the site of infection. Together, this work provides evidence for using ecCpG to induce strong antibody and memory T cell responses to confer protection against IAV infection. PMID:27524984

  16. The colitis-associated transcriptional profile of commensal Bacteroides thetaiotaomicron enhances adaptive immune responses to a bacterial antigen.

    Jonathan J Hansen

    Full Text Available BACKGROUND: Inflammatory bowel diseases (IBD may be caused in part by aberrant immune responses to commensal intestinal microbes including the well-characterized anaerobic gut commensal Bacteroides thetaiotaomicron (B. theta. Healthy, germ-free HLA-B27 transgenic (Tg rats develop chronic colitis when colonized with complex gut commensal bacteria whereas non-transgenic (nTg rats remain disease-free. However, the role of B. theta in causing disease in Tg rats is unknown nor is much known about how gut microbes respond to host inflammation. METHODS: Tg and nTg rats were monoassociated with a human isolate of B. theta. Colonic inflammation was assessed by histologic scoring and tissue pro-inflammatory cytokine measurement. Whole genome transcriptional profiling of B. theta recovered from ceca was performed using custom GeneChips and data analyzed using dChip, Significance Analysis of Microarrays, and Gene Set Enrichment Analysis (GSEA software. Western Blots were used to determine adaptive immune responses to a differentially expressed B. theta gene. RESULTS: B. theta monoassociated Tg rats, but not nTg or germ-free controls, developed chronic colitis. Transcriptional profiles of cecal B. theta were significantly different in Tg vs. nTg rats. GSEA revealed that genes in KEGG canonical pathways involved in bacterial growth and metabolism were downregulated in B. theta from Tg rats with colitis though luminal bacterial concentrations were unaffected. Bacterial genes in the Gene Ontology molecular function "receptor activity", most of which encode nutrient binding proteins, were significantly upregulated in B. theta from Tg rats and include a SusC homolog that induces adaptive immune responses in Tg rats. CONCLUSIONS: B. theta induces colitis in HLA-B27 Tg rats, which is associated with regulation of bacterial genes in metabolic and nutrient binding pathways that may affect host immune responses. These studies of the host-microbial dialogue may lead to

  17. Peripheral dendritic cells are essential for both the innate and adaptive antiviral immune responses in the central nervous system

    Intranasal application of vesicular stomatitis virus (VSV) causes acute infection of the central nervous system (CNS). However, VSV encephalitis is not invariably fatal, suggesting that the CNS may contain a professional antigen-presenting cell (APC) capable of inducing or propagating a protective antiviral immune response. To examine this possibility, we first characterized the cellular elements that infiltrate the brain as well as the activation status of resident microglia in the brains of normal and transgenic mice acutely ablated of peripheral dendritic cells (DCs) in vivo. VSV encephalitis was characterized by a pronounced infiltrate of myeloid cells (CD45highCD11b+) and CD8+ T cells containing a subset that was specific for the immunodominant VSV nuclear protein epitope. This T cell response correlated temporally with a rapid and sustained upregulation of MHC class I expression on microglia, whereas class II expression was markedly delayed. Ablation of peripheral DCs profoundly inhibited the inflammatory response as well as infiltration of virus-specific CD8+ T cells. Unexpectedly, the VSV-induced interferon-gamma (IFN-γ) response in the CNS remained intact in DC-deficient mice. Thus, both the inflammatory and certain components of the adaptive primary antiviral immune response in the CNS are dependent on peripheral DCs in vivo.

  18. Characterization of homologous and heterologous adaptive immune responses in porcine reproductive and respiratory syndrome virus infection.

    Díaz, Ivan; Gimeno, Mariona; Darwich, Laila; Navarro, Nuria; Kuzemtseva, Liudmila; López, Sergio; Galindo, Ivan; Segalés, Joaquim; Martín, Margarita; Pujols, Joan; Mateu, Enric

    2012-01-01

    The present study characterized the homologous and heterologous immune response in type-I porcine reproductive and respiratory syndrome virus (PRRSV) infection. Two experiments were conducted: in experiment 1, eight pigs were inoculated with PRRSV strain 3262 and 84 days post-inoculation (dpi) they were challenged with either strain 3262 or strain 3267 and followed for the next 14 days (98 dpi). In experiment 2, eight pigs were inoculated with strain 3267 and challenged at 84 dpi as above. Clinical course, viremia, humoral response (neutralizing and non-neutralizing antibodies, NA) and virus-specific IFN-γ responses (ELISPOT) were evaluated all throughout the study. Serum levels of IL-1, IL-6, IL-8, TNF-α and TGF-β were determined (ELISA) after the second challenge. In experiment 1 primo-inoculation with strain 3262 induced viremia of ≤ 28 days, low titres of homologous NA but strong IFN-γ responses. In contrast, strain 3267 induced longer viremias (up to 56 days), higher NA titres (≤ 6 log2) and lower IFN-γ responses. Inoculation with 3267 produced higher serum IL-8 levels. After the re-challenge at 84 dpi, pigs in experiment 1 developed mostly a one week viremia regardless of the strain used. In experiment 2, neither the homologous nor the heterologous challenge resulted in detectable viremia although PRRSV was present in tonsils of some animals. Homologous re-inoculation with 3267 produced elevated TGF-β levels in serum for 7-14 days but this did not occur with the heterologous re-inoculation. In conclusion, inoculation with different PRRSV strains result in different virological and immunological outcomes and in different degrees of homologous and heterologous protection. PMID:22515169

  19. Characterization of homologous and heterologous adaptive immune responses in porcine reproductive and respiratory syndrome virus infection

    Díaz Ivan

    2012-04-01

    Full Text Available Abstract The present study characterized the homologous and heterologous immune response in type-I porcine reproductive and respiratory syndrome virus (PRRSV infection. Two experiments were conducted: in experiment 1, eight pigs were inoculated with PRRSV strain 3262 and 84 days post-inoculation (dpi they were challenged with either strain 3262 or strain 3267 and followed for the next 14 days (98 dpi. In experiment 2, eight pigs were inoculated with strain 3267 and challenged at 84 dpi as above. Clinical course, viremia, humoral response (neutralizing and non-neutralizing antibodies, NA and virus-specific IFN-γ responses (ELISPOT were evaluated all throughout the study. Serum levels of IL-1, IL-6, IL-8, TNF-α and TGF-β were determined (ELISA after the second challenge. In experiment 1 primo-inoculation with strain 3262 induced viremia of ≤ 28 days, low titres of homologous NA but strong IFN-γ responses. In contrast, strain 3267 induced longer viremias (up to 56 days, higher NA titres (≤ 6 log2 and lower IFN-γ responses. Inoculation with 3267 produced higher serum IL-8 levels. After the re-challenge at 84 dpi, pigs in experiment 1 developed mostly a one week viremia regardless of the strain used. In experiment 2, neither the homologous nor the heterologous challenge resulted in detectable viremia although PRRSV was present in tonsils of some animals. Homologous re-inoculation with 3267 produced elevated TGF-β levels in serum for 7–14 days but this did not occur with the heterologous re-inoculation. In conclusion, inoculation with different PRRSV strains result in different virological and immunological outcomes and in different degrees of homologous and heterologous protection.

  20. Acute adaptive immune response correlates with late radiation-induced pulmonary fibrosis in mice

    The lung response to radiation exposure can involve an immediate or early reaction to the radiation challenge, including cell death and an initial immune reaction, and can be followed by a tissue injury response, of pneumonitis or fibrosis, to this acute reaction. Herein, we aimed to determine whether markers of the initial immune response, measured within days of radiation exposure, are correlated with the lung tissue injury responses occurring weeks later. Inbred strains of mice known to be susceptible (KK/HIJ, C57BL/6J, 129S1/SvImJ) or resistant (C3H/HeJ, A/J, AKR/J) to radiation-induced pulmonary fibrosis and to vary in time to onset of respiratory distress post thoracic irradiation (from 10–23 weeks) were studied. Mice were untreated (controls) or received 18 Gy whole thorax irradiation and were euthanized at 6 h, 1d or 7 d after radiation treatment. Pulmonary CD4+ lymphocytes, bronchoalveolar cell profile & cytokine level, and serum cytokine levels were assayed. Thoracic irradiation and inbred strain background significantly affected the numbers of CD4+ cells in the lungs and the bronchoalveolar lavage cell differential of exposed mice. At the 7 day timepoint greater numbers of pulmonary Th1 and Th17 lymphocytes and reduced lavage interleukin17 and interferonγ levels were significant predictors of late stage fibrosis. Lavage levels of interleukin-10, measured at the 7 day timepoint, were inversely correlated with fibrosis score (R = −0.80, p = 0.05), while serum levels of interleukin-17 in control mice significantly correlated with post irradiation survival time (R = 0.81, p = 0.04). Lavage macrophage, lymphocyte or neutrophil counts were not significantly correlated with either of fibrosis score or time to respiratory distress in the six mouse strains. Specific cytokine and lymphocyte levels, but not strain dependent lavage cell profiles, were predictive of later radiation-induced lung injury in this panel of inbred strains. The online version of this

  1. MAP Kinases in Immune Responses

    Yongliang Zhang; Chen Dong

    2005-01-01

    MAP kinases are evolutionarily conserved signaling regulators from budding yeast to mammals and play essential roles in both innate and adaptive immune responses. There are three main families of MAPKs in mammals. Each of them has its own activators, inactivators, substrates and scaffolds, which altogether form a fine signaling network in response to different extracellular or intracellular stimulation. In this review, we summarize recent advances in understanding of the regulation of MAP kinases and the roles of MAP kinases in innate and adaptive immune responses.

  2. Alternative adaptive immunity in invertebrates

    Kurtz, Joachim; Armitage, Sophie Alice Octavia

    2006-01-01

    Vertebrate adaptive immunity is characterized by challenge-specific long-term protection. This specific memory is achieved through the vast diversity of somatically rearranged immunological receptors such as antibodies. Whether or not invertebrates are capable of a comparable phenotypic plasticit...... and memory has long been a matter of debate. A recent study on Anopheles gambiae mosquitoes now establishes Down syndrome cell adhesion molecule (Dscam) as a key immune surveillance factor with characteristics analogous to antibodies....

  3. Enhancement of human adaptive immune responses by administration of a high-molecular-weight polysaccharide extract from the cyanobacterium Arthrospira platensis

    Pedersen, Morten Løbner; Walsted, Anette; Larsen, Rune;

    2008-01-01

    The effect of consumption of Immulina, a high-molecular-weight polysaccharide extract from the cyanobacterium Arthrospira platensis, on adaptive immune responses was investigated by evaluation of changes in leukocyte responsiveness to two foreign recall antigens, Candida albicans (CA) and tetanus...

  4. Soluble metals in residual oil fly ash alter innate and adaptive pulmonary immune responses to bacterial infection in rats

    The soluble metals of the pollutant, residual oil fly ash (ROFA), have been shown to alter pulmonary bacterial clearance in rats. The goal of this study was to determine the potential effects on both the innate and adaptive lung immune responses after bacterial infection in rats pre-exposed to the soluble metals in ROFA. Sprague-Dawley rats were intratracheally dosed (i.t.) at day 0 with ROFA (R-Total) (1.0 mg/100 g body weight), the soluble fraction of ROFA (R-Soluble), the soluble sample subject to a chelator (R-Chelex), or phosphate-buffered saline (Saline). On day 3, rats were administered an i.t. dose of 5 x 104 Listeria monocytogenes. On days 6, 8, and 10, bacterial pulmonary clearance was monitored and bronchoalveolar lavage (BAL) was performed on days 3 (pre-infection), 6, 8, and 10. A concentrated first fraction of lavage fluid was retained for analysis of lactate dehydrogenase and albumin to assess lung injury. BAL cell number, phenotype, and production of reactive oxygen (ROS) and nitrogen species (RNS) were assessed, and a variety of cytokines were measured in the BAL fluid. Rats pre-treated with R-Soluble showed elevated lung injury/cytotoxicity and increased cellular influx into the lungs. R-Soluble-treatment also altered ROS, RNS, and cytokine levels, and caused a degree of macrophage and T cell inhibition. These effects of R-Soluble result in increased pulmonary bacterial burden after infection. The results suggest that soluble metals in ROFA increase lung injury and inflammation, and alter both innate and adaptive pulmonary immune responses

  5. Thymus involvement in immune system adaptive response to fractionated low-level γ-radiation

    In experiments with normal and thymoctomized rats it has been revealed that exposure of normal animals to 0.35 Gy of γ-radiation induces changes in blood cells subsets, depression of NK functional activity, decrease in polymorphonuclear leukocyte basal chemiluminescence level, supression of the delayed type of hypersensitivity reaction and stimulation of local IgE-synthesis in respiratory organs. At the same time irradiation of adult thymectomized animals did not resulted in significant fluctuations in cellular and humoral immunity indices as well as blood cells functional activity level. Some mechanisms of radiation-induced immune system disturbances mediate via thymus are discussed

  6. Influence of Phthalates on in vitro Innate and Adaptive Immune Responses

    Hansen, Juliana Frohnert; Nielsen, Claus Henrik; Brorson, Marianne Møller; Frederiksen, Hanne; Hartoft-Nielsen, Marie-Louise; Rasmussen, Åse Krogh; Bendtzen, Klaus; Feldt-Rasmussen, Ulla

    2015-01-01

    Phthalates are a group of endocrine disrupting chemicals, suspected to influence the immune system. The aim of this study was to investigate the influence of phthalates on cytokine secretion from human peripheral blood mononuclear cells. Escherichia coli lipopolysaccharide and phytohemagglutinin-P were used for stimulation of monocytes/macrophages and T cells, respectively. Cells were exposed for 20 to 22 hours to either di-ethyl, di-n-butyl or mono-n-butyl phthalate at two different concentr...

  7. Immune responses to improving welfare.

    Berghman, L R

    2016-09-01

    The relationship between animal welfare and the immune status of an animal has a complex nature. Indeed, the intuitive notion that "increased vigilance of the immune system is by definition better" because it is expected to better keep the animal healthy, does not hold up under scrutiny. This is mostly due to the fact that the immune system consists of 2 distinct branches, the innate and the adaptive immune system. While they are intimately intertwined and synergistic in the living organism, they are profoundly different in their costs, both in terms of performance and wellbeing. In contrast to the adaptive immune system, the action of the innate immune system has a high metabolic cost as well as undesirable behavioral consequences. When a pathogen breaches the first line of defense (often a mucosal barrier), that organism's molecular signature is recognized by resident macrophages. The macrophages respond by releasing a cocktail of pro-inflammatory cytokines (including interleukin-1 and -6) that signal the brain via multiple pathways (humoral as well as neural) of the ongoing peripheral innate immune response. The behavioral response to the release of proinflammatory cytokines, known as "sickness behavior," includes nearly all the behavioral aspects that are symptomatic for clinical depression in humans. Hence, undesired innate immune activity, such as chronic inflammation, needs to be avoided by the industry. From an immunological standpoint, one of the most pressing poultry industry needs is the refinement of our current veterinary vaccine arsenal. The response to a vaccine, especially to a live attenuated vaccine, is often a combination of innate and adaptive immune activities, and the desired immunogenicity comes at the price of high reactogenicity. The morbidity, albeit limited and transient, caused by live vaccines against respiratory diseases and coccidiosis are good examples. Thankfully, the advent of various post-genomics technologies, such as DNA

  8. Inhibition of adaptive immune responses leads to a fatal clinical outcome in SIV-infected pigtailed macaques but not vervet African green monkeys.

    Jörn E Schmitz

    2009-12-01

    Full Text Available African green monkeys (AGM and other natural hosts for simian immunodeficiency virus (SIV do not develop an AIDS-like disease following SIV infection. To evaluate differences in the role of SIV-specific adaptive immune responses between natural and nonnatural hosts, we used SIV(agmVer90 to infect vervet AGM and pigtailed macaques (PTM. This infection results in robust viral replication in both vervet AGM and pigtailed macaques (PTM but only induces AIDS in the latter species. We delayed the development of adaptive immune responses through combined administration of anti-CD8 and anti-CD20 lymphocyte-depleting antibodies during primary infection of PTM (n = 4 and AGM (n = 4, and compared these animals to historical controls infected with the same virus. Lymphocyte depletion resulted in a 1-log increase in primary viremia and a 4-log increase in post-acute viremia in PTM. Three of the four PTM had to be euthanized within 6 weeks of inoculation due to massive CMV reactivation and disease. In contrast, all four lymphocyte-depleted AGM remained healthy. The lymphocyte-depleted AGM showed only a trend toward a prolongation in peak viremia but the groups were indistinguishable during chronic infection. These data show that adaptive immune responses are critical for controlling disease progression in pathogenic SIV infection in PTM. However, the maintenance of a disease-free course of SIV infection in AGM likely depends on a number of mechanisms including non-adaptive immune mechanisms.

  9. Control of Dichotomic Innate and Adaptive Immune Responses by Artery Tertiary Lymphoid Organs in Atherosclerosis

    Falk eWeih; Rolf eGräbner; Desheng eHu; Michael eBeer; Andreas Johann Habenicht

    2012-01-01

    Tertiary lymphoid organs (TLOs) emerge in tissues in response to nonresolving inflammation such as chronic infection, graft rejection, and autoimmune disease. We identified artery TLOs (ATLOs) in the adventitia adjacent to atherosclerotic plaques of aged hyperlipidemic ApoE-/- mice. ATLOs are structured into T cell areas harboring conventional dendritic cells (cDCs) and monocyte-derived DCs (mDCs); B cell follicles containing follicular dendritic cells (FDCs) within activated germinal centers...

  10. Sequential immune responses: The weapons of immunity

    Mills, Charles; Ley, Klaus; Buchmann, Kurt; Canton, Jonathan

    2015-01-01

    Sequential immune responses (SIR) is a new model that describes what ‘immunity’ means in higher animals. Existing models, such as self/nonself discrimination or danger, focus on how immune responses are initiated. However, initiation is not protection. SIR describes the actual immune responses that provide protection. SIR resulted from a comprehensive analysis of the evolution of immune systems that revealed that several very different types of host innate responses occur (and at different te...

  11. Regulation of the adaptive immune system by innate lymphoid cells

    Hepworth, Matthew R.; Sonnenberg, Gregory F.

    2014-01-01

    Innate lymphoid cells (ILCs) are a group of lymphocytes that promote rapid cytokine-dependent innate immunity, inflammation and tissue repair. In addition, a growing body of evidence suggests ILCs can influence adaptive immune cell responses. During fetal development a subset of ILCs orchestrate the generation and maturation of secondary lymphoid tissues. Following birth, ILCs continue to modulate adaptive immune cell responses indirectly through interactions with stromal cells in lymphoid ti...

  12. Plasmacytoid Dendritic Cells Act as the Most Competent Cell Type in Linking Antiviral Innate and Adaptive Immune Responses

    Zheng Zhang; Fu-Sheng Wang

    2005-01-01

    Appropriate in vivo control of plasmacytoid dendritic cell (pDC) recruitment and activation is a fundamental requirement for defense against viral infection. During this process, a pivotal event that influences the outcome of viral infection is the production of high levels of type I interferon by pDCs. In particular, recent research findings showed that pDCs not only shape the nature of innate resistance, but are also responsible for the successful transition from innate to adaptive immunity for viral resistance. In addition, pDCs can differentiate into antigen presenting cells that may regulate tolerance to a given pathogen. Importantly, in a series of recent clinical studies,pDCs appeared to be defective in number and function in conditions of chronic viral diseases such as infected with HIV-1, HBV or HCV. pDC-associated clinical antiviral therapy is also emerging. This review describes research findings exanining the functional and antiviral properties of in vivo pDC plasticity.

  13. iNKT-cell help to B cells: a cooperative job between innate and adaptive immune responses.

    Dellabona, Paolo; Abrignani, Sergio; Casorati, Giulia

    2014-08-01

    T-cell help to B lymphocytes is one of the most important events in adaptive immune responses in health and disease. It is generally delivered by cognate CD4(+) T follicular helper (T(FH)) cells via both cell-to-cell contacts and soluble mediators, and it is essential for both the clonal expansion of antibody (Ab)-secreting B cells and memory B-cell formation. CD1d-restricted invariant natural killer T (iNKT) cells are a subset of innate-like T lymphocytes that rapidly respond to stimulation with specific lipid antigens (Ags) that are derived from infectious pathogens or stressed host cells. Activated iNKT cells produce a wide range of cytokines and upregulate costimulatory molecules that can promote activation of dendritic cells (DCs), natural killer (NK) cells, and T cells. A decade ago, we discovered that iNKT cells can help B cells to proliferate and to produce IgG Abs in vitro and in vivo. This adjuvant-like function of Ag-activated iNKT cells provides a flexible set of helper mechanisms that expand the current paradigm of T-cell-B-cell interaction and highlights the potential of iNKT-cell targeting vaccine formulations. PMID:24782127

  14. Crosstalk between innate and adaptive immune responses to infectious bronchitis virus after vaccination and challenge of chickens varying in serum mannose-binding lectin concentrations

    Juul-Madsen, Helle R.; Norup, Liselotte R.; Jørgensen, Poul Henrik;

    2011-01-01

    . Serum MBL levels also influenced IBV vaccine-induced changes in circulating T-cell populations. Moreover, addition of mannose to an IBV vaccine altered both vaccine-induced changes in circulating T-cell populations and IBV specific vaccine and infection-induced antibody responses in chickens with high...... serum MBL levels. These data demonstrate that MBL is involved in the regulation of the adaptive immune response to IBV....

  15. The aging of the adaptive immune system

    Grubeck-Loebenstein, B.; Weinberger, B.; Herndler-Brandstetter, D.; Weiskopf, D.; Pfister, G.

    2011-01-01

    Adaptive immune responses are severely affected by the aging process as reflected by an increased morbidity and mortality from infectious diseases and a low efficacy of vaccination in elderly persons. Age-related changes within the bone marrow and thymus lead to an impaired generation of new T and B cells severely compromising the maintenance of a diverse and balanced T and B cell repertoire in old age. The maintenance of a balanced T cell repertoire is further challenged by latent persistent...

  16. Mathematical Modelling of Immune Response in Tissues

    Su, B; Zhou, W; K. S. Dorman; Jones, D. E.

    2009-01-01

    We have developed a spatial–temporal mathematical model (PDE) to capture fundamental aspects of the immune response to antigen. We have considered terms that broadly describe intercellular communication, cell movement, and effector function (activation or inhibition). The PDE model is robust to variation in antigen load and it can account for (1) antigen recognition, (2) an innate immune response, (3) an adaptive immune response, (4) the elimination of antigen and subsequent resolution of the...

  17. Adaptive Immunity against Streptococcus pyogenes in Adults Involves Increased IFN-gamma and IgG3 Responses Compared with Children

    Mortensen, Rasmus; Nissen, Thomas Norrelykke; Blauenfeldt, Thomas;

    2015-01-01

    Each year, millions of people are infected with Streptococcus pyogenes, leading to an estimated 500,000 annual deaths worldwide. For unknown reasons, school-aged children have substantially higher infection rates than adults. The goal for this study was to provide, to our knowledge, the first...... detailed characterization of the human adaptive immune response against S. pyogenes in both children and adults. We report that all adults in our study, as well as most children, showed immunity against the two conserved group A streptococci (GAS) Ags, streptococcal C5a peptidase and immunogenic secreted...... significantly with IFN-γ, but not with IL-5, IL-13, IL-17, or TNF-α. Interestingly, children showed a similar pattern of Ag-specific cytokine release, but displayed significantly lower levels of IgG3 and IFN-γ compared with adults. Thus, human immune responses against S. pyogenes consist of a robust Th1...

  18. Multi-metal contamination with uranium trend impact on aquatic environment and consequences for fish immune system and adaptive responses

    Le Guernic, A.; Gagnaire, B. [IRSN/PRP-ENV/SERIS/LECO (France); Sanchez, W. [Institut national de l' environnement industriel et des risques - INERIS (France); Betoulle, S. [Champagne Ardenne University (France)

    2014-07-01

    Human activities have conducted to an increase of concentrations of various metals in aquatic ecosystems, including uranium. Its extraction and use have been rapidly magnified because of its role in the nuclear fuel cycle. These activities have led to high concentrations of uranium in the aquatic environment and thus a potential risk to exposed organisms, including fish. Consequences can be observed through metabolic and physiological responses, called biomarkers. Some biomarkers are interesting in order to evaluate the effects of metal contamination, among other immunotoxicity markers, antioxidant defenses and genotoxicity. The aims of this study are: i) to investigate the effects of a multi-metal contamination on a fish, the three-spined stickleback, Gasterosteus aculeatus, and ii) to observe the adaptive capacity of fish due to a combination of stress (chemical stress and biological stress). To meet the first objective, six water bodies (ponds and lakes) located in two departments (Cantal and Haute-Vienne, France) were chosen according to their proximity to old uranium mines and to their levels of metal contamination related to chemical processes appeared during extraction. 240 three-spined sticklebacks were caged for 28 days in the six selected sites. A battery of biomarkers was measured in fish sampled after 14 and 28 of caging. The results for the Haute-Vienne department showed that caged fish in the pond with the highest uranium concentration (20 μg.L{sup -1}) presented the most DNA damage after 14 days of caging. Leukocyte phagocytosis (marker of immunotoxicity) of caged fish in this pond was lower at 14 days and greater at 28 days compared to other ponds without uranium. The multi-metal contamination negatively affected other parameters such as the condition index, oxidative activity, viability of lysosomal membrane and leukocytes distribution. In order to study the response of fish to a combined stress (chemical + biological) (objective ii), a second

  19. Multi-metal contamination with uranium trend impact on aquatic environment and consequences for fish immune system and adaptive responses

    Human activities have conducted to an increase of concentrations of various metals in aquatic ecosystems, including uranium. Its extraction and use have been rapidly magnified because of its role in the nuclear fuel cycle. These activities have led to high concentrations of uranium in the aquatic environment and thus a potential risk to exposed organisms, including fish. Consequences can be observed through metabolic and physiological responses, called biomarkers. Some biomarkers are interesting in order to evaluate the effects of metal contamination, among other immunotoxicity markers, antioxidant defenses and genotoxicity. The aims of this study are: i) to investigate the effects of a multi-metal contamination on a fish, the three-spined stickleback, Gasterosteus aculeatus, and ii) to observe the adaptive capacity of fish due to a combination of stress (chemical stress and biological stress). To meet the first objective, six water bodies (ponds and lakes) located in two departments (Cantal and Haute-Vienne, France) were chosen according to their proximity to old uranium mines and to their levels of metal contamination related to chemical processes appeared during extraction. 240 three-spined sticklebacks were caged for 28 days in the six selected sites. A battery of biomarkers was measured in fish sampled after 14 and 28 of caging. The results for the Haute-Vienne department showed that caged fish in the pond with the highest uranium concentration (20 μg.L-1) presented the most DNA damage after 14 days of caging. Leukocyte phagocytosis (marker of immunotoxicity) of caged fish in this pond was lower at 14 days and greater at 28 days compared to other ponds without uranium. The multi-metal contamination negatively affected other parameters such as the condition index, oxidative activity, viability of lysosomal membrane and leukocytes distribution. In order to study the response of fish to a combined stress (chemical + biological) (objective ii), a second

  20. Blurring Borders: Innate Immunity with Adaptive Features

    K. Kvell

    2007-01-01

    Full Text Available Adaptive immunity has often been considered the penultimate of immune capacities. That system is now being deconstructed to encompass less stringent rules that govern its initiation, actual effector activity, and ambivalent results. Expanding the repertoire of innate immunity found in all invertebrates has greatly facilitated the relaxation of convictions concerning what actually constitutes innate and adaptive immunity. Two animal models, incidentally not on the line of chordate evolution (C. elegans and Drosophila, have contributed enormously to defining homology. The characteristics of specificity and memory and whether the antigen is pathogenic or nonpathogenic reveal considerable information on homology, thus deconstructing the more fundamentalist view. Senescence, cancer, and immunosuppression often associated with mammals that possess both innate and adaptive immunity also exist in invertebrates that only possess innate immunity. Strict definitions become blurred casting skepticism on the utility of creating rigid definitions of what innate and adaptive immunity are without considering overlaps.

  1. Role of the effector and regulatory arms of the adaptative immune response in the pathophysiology of experimental asthma

    Amor Carro, Óscar

    2014-01-01

    Classic murine models of experimental asthma based on intraperitoneal sensitization followed by airway challenge do not reflect the way in which humans acquire allergic disease to airborne allergens. The interaction of the airway mucosa with the allergens may be essential for the triggering of the subsequent immune response. In the present work, we developed a murine model of allergic disease based on primary airway exposure to antigen followed by continuous airway challenge. Foll...

  2. The origins of vertebrate adaptive immunity

    Litman, Gary W.; Rast, Jonathan P.; Fugmann, Sebastian D.

    2010-01-01

    Adaptive immunity is mediated through numerous genetic and cellular processes that generate favourable somatic variants of antigen-binding receptors under evolutionary selection pressure by pathogens and other factors. Advances in our understanding of immunity in mammals and other model organisms are revealing the underlying basis and complexity of this remarkable system. Although the evolution of adaptive immunity has been considered to occur by acquisition of novel molecular capabilities, a...

  3. Innate and Adaptive Immune Response to Pneumonia Virus of Mice in a Resistant and a Susceptible Mouse Strain

    Ellen R. T. Watkiss

    2013-01-01

    Full Text Available Respiratory syncytial virus (RSV is the leading cause of infant bronchiolitis. The closely related pneumonia virus of mice (PVM causes a similar immune-mediated disease in mice, which allows an analysis of host factors that lead to severe illness. This project was designed to compare the immune responses to lethal and sublethal doses of PVM strain 15 in Balb/c and C57Bl/6 mice. Balb/c mice responded to PVM infection with an earlier and stronger innate response that failed to control viral replication. Production of inflammatory cyto- and chemokines, as well as infiltration of neutrophils and IFN-γ secreting natural killer cells into the lungs, was more predominant in Balb/c mice. In contrast, C57Bl/6 mice were capable of suppressing both viral replication and innate inflammatory responses. After a sublethal infection, PVM-induced IFN-γ production by splenocytes was stronger early during infection and weaker at late time points in C57Bl/6 mice when compared to Balb/c mice. Furthermore, although the IgG levels were similar and the mucosal IgA titres lower, the virus neutralizing antibody titres were higher in C57Bl/6 mice than in Balb/c mice. Overall, the difference in susceptibility of these two strains appeared to be related not to an inherent T helper bias, but to the capacity of the C57Bl/6 mice to control both viral replication and the immune response elicited by PVM.

  4. Immune responses to infectious laryngotracheitis virus.

    Coppo, Mauricio J C; Hartley, Carol A; Devlin, Joanne M

    2013-11-01

    Infectious laryngotracheitis (ILT) is an upper respiratory tract disease in chickens caused by infectious laryngotracheitis virus (ILTV), an alphaherpesvirus. Despite the extensive use of attenuated, and more recently recombinant, vaccines for the control of this disease, ILT continues to affect the intensive poultry industries worldwide. Innate and cell-mediated, rather than humoral immune responses, have been identified as responsible for protection against disease. This review examines the current understandings in innate and adaptive immune responses towards ILTV, as well as the role of ILTV glycoprotein G in modulating the host immune response towards infection. Protective immunity induced by ILT vaccines is also examined. The increasing availability of tools and reagents for the characterisation of avian innate and cell-mediated immune responses are expected to further our understanding of immunity against ILTV and drive the development of new generation vaccines towards enhanced control of this disease. PMID:23567343

  5. From Innate to Adaptive Immune Response in Muscular Dystrophies and Skeletal Muscle Regeneration: The Role of Lymphocytes

    Luca Madaro

    2014-01-01

    Full Text Available Skeletal muscle is able to restore contractile functionality after injury thanks to its ability to regenerate. Following muscle necrosis, debris is removed by macrophages, and muscle satellite cells (MuSCs, the muscle stem cells, are activated and subsequently proliferate, migrate, and form muscle fibers restoring muscle functionality. In most muscle dystrophies (MDs, MuSCs fail to properly proliferate, differentiate, or replenish the stem cell compartment, leading to fibrotic deposition. However, besides MuSCs, interstitial nonmyogenic cells and inflammatory cells also play a key role in orchestrating muscle repair. A complete understanding of the complexity of these mechanisms should allow the design of interventions to attenuate MDs pathology without disrupting regenerative processes. In this review we will focus on the contribution of immune cells in the onset and progression of MDs, with particular emphasis on Duchenne muscular dystrophy (DMD. We will briefly summarize the current knowledge and recent advances made in our understanding of the involvement of different innate immune cells in MDs and will move on to critically evaluate the possible role of cell populations within the acquired immune response. Revisiting previous observations in the light of recent evidence will likely change our current view of the onset and progression of the disease.

  6. From Innate to Adaptive Immune Response in Muscular Dystrophies and Skeletal Muscle Regeneration: The Role of Lymphocytes

    Madaro, Luca; Bouché, Marina

    2014-01-01

    Skeletal muscle is able to restore contractile functionality after injury thanks to its ability to regenerate. Following muscle necrosis, debris is removed by macrophages, and muscle satellite cells (MuSCs), the muscle stem cells, are activated and subsequently proliferate, migrate, and form muscle fibers restoring muscle functionality. In most muscle dystrophies (MDs), MuSCs fail to properly proliferate, differentiate, or replenish the stem cell compartment, leading to fibrotic deposition. However, besides MuSCs, interstitial nonmyogenic cells and inflammatory cells also play a key role in orchestrating muscle repair. A complete understanding of the complexity of these mechanisms should allow the design of interventions to attenuate MDs pathology without disrupting regenerative processes. In this review we will focus on the contribution of immune cells in the onset and progression of MDs, with particular emphasis on Duchenne muscular dystrophy (DMD). We will briefly summarize the current knowledge and recent advances made in our understanding of the involvement of different innate immune cells in MDs and will move on to critically evaluate the possible role of cell populations within the acquired immune response. Revisiting previous observations in the light of recent evidence will likely change our current view of the onset and progression of the disease. PMID:25028653

  7. Rabies Virus Expressing Dendritic Cell-Activating Molecules Enhances the Innate and Adaptive Immune Response to Vaccination ▿

    Wen, Yongjun; Wang, Hualei; Wu, Hua; Yang, Fuhe; Tripp, Ralph A.; Hogan, Robert J.; Fu, Zhen F.

    2010-01-01

    Our previous studies indicated that recruitment and/or activation of dendritic cells (DCs) is important in enhancing the protective immune responses against rabies virus (RABV) (L. Zhao, H. Toriumi, H. Wang, Y. Kuang, X. Guo, K. Morimoto, and Z. F. Fu, J. Virol. 84:9642-9648). To address the importance of DC activation for RABV vaccine efficacy, the genes for several DC recruitment and/or activation molecules, e.g., granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage-derived...

  8. Macrophages Subvert Adaptive Immunity to Urinary Tract Infection.

    Gabriela Mora-Bau

    2015-07-01

    Full Text Available Urinary tract infection (UTI is one of the most common bacterial infections with frequent recurrence being a major medical challenge. Development of effective therapies has been impeded by the lack of knowledge of events leading to adaptive immunity. Here, we establish conclusive evidence that an adaptive immune response is generated during UTI, yet this response does not establish sterilizing immunity. To investigate the underlying deficiency, we delineated the naïve bladder immune cell compartment, identifying resident macrophages as the most populous immune cell. To evaluate their impact on the establishment of adaptive immune responses following infection, we measured bacterial clearance in mice depleted of either circulating monocytes, which give rise to macrophages, or bladder resident macrophages. Surprisingly, mice depleted of resident macrophages, prior to primary infection, exhibited a nearly 2-log reduction in bacterial burden following secondary challenge compared to untreated animals. This increased bacterial clearance, in the context of a challenge infection, was dependent on lymphocytes. Macrophages were the predominant antigen presenting cell to acquire bacteria post-infection and in their absence, bacterial uptake by dendritic cells was increased almost 2-fold. These data suggest that bacterial uptake by tissue macrophages impedes development of adaptive immune responses during UTI, revealing a novel target for enhancing host responses to bacterial infection of the bladder.

  9. Innate Response to Human Cancer Cells with or without IL-2 Receptor Common γ-Chain Function in NOD Background Mice Lacking Adaptive Immunity.

    Nishime, Chiyoko; Kawai, Kenji; Yamamoto, Takehiro; Katano, Ikumi; Monnai, Makoto; Goda, Nobuhito; Mizushima, Tomoko; Suemizu, Hiroshi; Nakamura, Masato; Murata, Mitsuru; Suematsu, Makoto; Wakui, Masatoshi

    2015-08-15

    Immunodeficient hosts exhibit high acceptance of xenogeneic or neoplastic cells mainly due to lack of adaptive immunity, although it still remains to be elucidated how innate response affects the engraftment. IL-2R common γ-chain (IL-2Rγc) signaling is required for development of NK cells and a subset of dendritic cells producing IFN-γ. To better understand innate response in the absence of adaptive immunity, we examined amounts of metastatic foci in the livers after intrasplenic transfer of human colon cancer HCT116 cells into NOD/SCID versus NOD/SCID/IL-2Rγc (null) (NOG) hosts. The intravital microscopic imaging of livers in the hosts depleted of NK cells and/or macrophages revealed that IL-2Rγc function critically contributes to elimination of cancer cells without the need for NK cells and macrophages. In the absence of IL-2Rγc, macrophages play a role in the defense against tumors despite the NOD Sirpa allele, which allows human CD47 to bind to the encoded signal regulatory protein α to inhibit macrophage phagocytosis of human cells. Analogous experiments using human pancreas cancer MIA PaCa-2 cells provided findings roughly similar to those from the experiments using HCT116 cells except for lack of suppression of metastases by macrophages in NOG hosts. Administration of mouse IFN-γ to NOG hosts appeared to partially compensate lack of IL-2Rγc-dependent elimination of transferred HCT116 cells. These results provide insights into the nature of innate response in the absence of adaptive immunity, aiding in developing tumor xenograft models in experimental oncology. PMID:26170385

  10. Intranasal Immunization with Influenza Virus-Like Particles Containing Membrane-Anchored Cholera Toxin B or Ricin Toxin B Enhances Adaptive Immune Responses and Protection against an Antigenically Distinct Virus

    Ji, Xianliang; Ren, Zhiguang; Xu, Na; Meng, Lingnan; Yu, Zhijun; Feng, Na; Sang, Xiaoyu; Li, Shengnan; Li, Yuanguo; Wang, Tiecheng; Zhao, Yongkun; Wang, Hualei; Zheng, Xuexing; Jin, Hongli; Li, Nan; Yang, Songtao; Cao, Jinshan; Liu, Wensen; Gao, Yuwei; Xia, Xianzhu

    2016-01-01

    Vaccination is the most effective means to prevent influenza virus infection, although current approaches are associated with suboptimal efficacy. Here, we generated virus-like particles (VLPs) composed of the hemagglutinin (HA), neuraminidase (NA) and matrix protein (M1) of A/Changchun/01/2009 (H1N1) with or without either membrane-anchored cholera toxin B (CTB) or ricin toxin B (RTB) as molecular adjuvants. The intranasal immunization of mice with VLPs containing membrane-anchored CTB or RTB elicited stronger humoral and cellular immune responses when compared to mice immunized with VLPs alone. Administration of VLPs containing CTB or RTB significantly enhanced virus-specific systemic and mucosal antibody responses, hemagglutination inhibiting antibody titers, virus neutralizing antibody titers, and the frequency of virus-specific IFN-γ and IL-4 secreting splenocytes. VLPs with and without CTB or RTB conferred complete protection against lethal challenge with a mouse-adapted homologous virus. When challenged with an antigenically distinct H1N1 virus, all mice immunized with VLPs containing CTB or RTB survived whereas mice immunized with VLPs alone showed only partial protection (80% survival). Our results suggest that membrane-anchored CTB and RTB possess strong adjuvant properties when incorporated into an intranasally-delivered influenza VLP vaccine. Chimeric influenza VLPs containing CTB or RTB may represent promising vaccine candidates for improved immunological protection against homologous and antigenically distinct influenza viruses. PMID:27110810

  11. Mecanismos adaptativos do sistema imunológico em resposta ao treinamento físico Adaptative mechanisms of the immune system in response to physical training

    Carol Góis Leandro

    2007-10-01

    Full Text Available O treinamento físico, de intensidade moderada, melhora os sistemas de defesa, enquanto que o treinamento intenso causa imunossupressão. Os mecanismos subjacentes estão associados à comunicação entre os sistemas nervoso, endócrino e imunológico, sugerindo vias autonômicas e modulação da resposta imune. Células do sistema imune, quando expostas a pequenas cargas de estresse, desenvolvem mecanismo de tolerância. Em muitos tecidos tem-se demonstrado que a resposta a situações agressivas parece ser atenuada pelo treinamento físico aplicado previamente, isto é, o treinamento induz tolerância para situações agressivas/estressantes. Nesta revisão são relatados estudos sugerindo os mecanismos adaptativos do sistema imunológico em resposta ao treinamento físico.Moderate physical training enhances the defense mechanisms, while intense physical training induces to immune suppression. The underlying mechanisms are associated with the link between nervous, endocrine, and immune systems. It suggests autonomic patterns and modulation of immune response. Immune cells, when exposed to regular bouts of stress, develop a mechanism of tolerance. In many tissues, it has been demonstrated that the response to aggressive conditions is attenuated by moderate physical training. Thus, training can induce tolerance to aggressive/stressful situations. In this review, studies suggesting the adaptation mechanisms of the immune system in response to physical training will be reported.

  12. Synergistic innate and adaptive immune response to combination immunotherapy with anti-tumor antigen antibodies and extended serum half-life IL-2.

    Zhu, Eric F; Gai, Shuning A; Opel, Cary F; Kwan, Byron H; Surana, Rishi; Mihm, Martin C; Kauke, Monique J; Moynihan, Kelly D; Angelini, Alessandro; Williams, Robert T; Stephan, Matthias T; Kim, Jacob S; Yaffe, Michael B; Irvine, Darrell J; Weiner, Louis M; Dranoff, Glenn; Wittrup, K Dane

    2015-04-13

    Cancer immunotherapies under development have generally focused on either stimulating T cell immunity or driving antibody-directed effector functions of the innate immune system such as antibody-dependent cell-mediated cytotoxicity (ADCC). We find that a combination of an anti-tumor antigen antibody and an untargeted IL-2 fusion protein with delayed systemic clearance induces significant tumor control in aggressive isogenic tumor models via a concerted innate and adaptive response involving neutrophils, NK cells, macrophages, and CD8(+) T cells. This combination therapy induces an intratumoral "cytokine storm" and extensive lymphocyte infiltration. Adoptive transfer of anti-tumor T cells together with this combination therapy leads to robust cures of established tumors and development of immunological memory. PMID:25873172

  13. Crosstalk between innate and adaptive immunity inhepatitis B virus infection

    2015-01-01

    Hepatitis B virus (HBV) infection is a major public health problem worldwide. HBV is not directly cytotoxic toinfected hepatocytes; the clinical outcome of infectionresults from complicated interactions between the virusand the host immune system. In acute HBV infection,initiation of a broad, vigorous immune response is responsiblefor viral clearance and self-limited inflammatoryliver disease. Effective and coordinated innate andadaptive immune responses are critical for viral clearanceand the development of long-lasting immunity. Chronichepatitis B patients fail to mount efficient innate andadaptive immune responses to the virus. In particular,HBV-specific cytotoxic T cells, which are crucial for HBVclearance, are hyporesponsiveness to HBV infection.Accumulating experimental evidence obtained fromthe development of animal and cell line models hashighlighted the importance of innate immunity in theearly control of HBV spread. The virus has evolvedimmune escape strategies, with higher HBV loads andHBV protein concentrations associated with increasingimpairment of immune function. Therefore, treatmentof HBV infection requires inhibition of HBV replicationand protein expression to restore the suppressedhost immunity. Complicated interactions exist notonly between innate and adaptive responses, but alsoamong innate immune cells and different components ofadaptive responses. Improved insight into these complexinteractions are important in designing new therapeuticstrategies for the treatment HBV infection. In thisreview, we summarize the current knowledge regardingthe cross-talk between the innate and adaptive immuneresponses and among different immunocytes in HBVinfection.

  14. Adaptive Immune Responses in a Multiple Sclerosis Patient with Acute Varicella-Zoster Virus Reactivation during Treatment with Fingolimod

    Andrea Harrer

    2015-09-01

    Full Text Available Fingolimod, an oral sphingosine 1-phosphate (S1P receptor modulator, is approved for the treatment of relapsing forms of multiple sclerosis (MS. The interference with S1P signaling leads to retention particularly of chemokine receptor-7 (CCR7 expressing T cells in lymph nodes. The immunological basis of varicella zoster virus (VZV infections during fingolimod treatment is unclear. Here, we studied the dynamics of systemic and intrathecal immune responses associated with symptomatic VZV reactivation including cessation of fingolimod and initiation of antiviral therapy. Key features in peripheral blood were an about two-fold increase of VZV-specific IgG at diagnosis of VZV reactivation as compared to the previous months, a relative enrichment of effector CD4+ T cells (36% versus mean 12% in controls, and an accelerated reconstitution of absolute lymphocytes counts including a normalized CD4+/CD8+ ratio and reappearance of CCR7+ T cells. In cerebrospinal fluid (CSF the lymphocytic pleocytosis and CD4+/CD8+ ratios at diagnosis of reactivation and after nine days of fingolimod discontinuation remained unchanged. During this time CCR7+ T cells were not observed in CSF. Further research into fingolimod-associated VZV reactivation and immune reconstitution is mandatory to prevent morbidity and mortality associated with this potentially life-threatening condition.

  15. Micronutrients influencing the immune response in leprosy

    Cecília Maria Passos Vázquez

    2014-01-01

    Full Text Available Leprosy is a chronic infectious disease caused by Mycobacterium leprae, an intracellular bacillus of airborne transmission. The disease affects the skin and peripheral nerves and can cause neurological sequelae. The bacillus multiplies slowly in the host and the disease probably occurs due to malfunctioning in host immune response. This review addresses the role of some specific micronutrients in the immune response, such as Vitamins A, D, E, C, Zinc and Selenium, detailing their mechanisms of actions in infectious diseases, and in leprosy. The immune response to pathogens releases harmful substances, which lead to tissue damage. This review discusses how a decreased level of antioxidants may contribute to an increased oxidative stress and complications of infectious diseases and leprosy. As the nutrients have a regulatory effect in the innate and adaptative immune responses, a perfect balance in their concentrations is important to improve the immune response against the pathogens.

  16. Adaptive social immunity in leaf-cutting ants

    Walker, Tom N.; Hughes, William O. H.

    2009-01-01

    Social insects have evolved a suite of sophisticated defences against parasites. In addition to the individual physiological immune response, social insects also express ‘social immunity’ consisting of group-level defences and behaviours that include allogrooming. Here we investigate whether the social immune response of the leaf-cutting ant Acromyrmex echinatior reacts adaptively to the virulent fungal parasite, Metarhizium anisopliae. We ‘immunized’ mini-nests of the ants by exposing them t...

  17. The origins of vertebrate adaptive immunity.

    Litman, Gary W; Rast, Jonathan P; Fugmann, Sebastian D

    2010-08-01

    Adaptive immunity is mediated through numerous genetic and cellular processes that generate favourable somatic variants of antigen-binding receptors under evolutionary selection pressure by pathogens and other factors. Advances in our understanding of immunity in mammals and other model organisms are revealing the underlying basis and complexity of this remarkable system. Although the evolution of adaptive immunity has been thought to occur by the acquisition of novel molecular capabilities, an increasing amount of information from new model systems suggest that co-option and redirection of pre-existing systems are the main source of innovation. We combine evidence from a wide range of organisms to obtain an integrated view of the origins and patterns of divergence in adaptive immunity. PMID:20651744

  18. INNATE, ADAPTIVE AND INTRINSIC IMMUNITY IN HUMAN IMMUNODEFICIENCY VIRUS INFECTION

    Suneth S. Perera

    2012-01-01

    Full Text Available The first line of defence of the innate immune system functions by recognizing highly conserved sets of molecular structures specific to the microbes, termed pathogen-associated molecular patterns, or PAMPs via the germ line-encoded receptors Pattern-Recognition Receptors (PRRs. In addition to the innate immune system, the vertebrates have also evolved a second line of defence termed adaptive immune system, which uses a diverse set of somatically rearranged receptors T-Cell Receptors (TCRs and B Cell Receptors (BCRs, which have the inherent ability to effectively recognise diverse antigens. The innate and adaptive immune systems are functionally tied in with the intrinsic immunity, which comprises of endogenous antiviral factors. Thus, this effective response to diverse microbial infections, including HIV, requires a coordinated interaction at several functional levels between innate, adaptive and intrinsic immune systems. This review provides a snapshot of roles played by the innate, adaptive and the intrinsic immune systems during HIV-infection, along with discussing recent developments highlighting the genomic basis of these responses and their regulation by micro-RNA (miRNAs.

  19. Splenectomy inhibits non-small cell lung cancer growth by modulating anti-tumor adaptive and innate immune response

    Levy, Liran; Mishalian, Inbal; Bayuch, Rachel; Zolotarov, Lida; Michaeli, Janna; Fridlender, Zvi G.

    2015-01-01

    It has been shown that inhibitors of the immune system reside in the spleen and inhibit the endogenous antitumor effects of the immune system. We hypothesized that splenectomy would inhibit the growth of relatively large non-small lung cancer (NSCLC) tumors by modulating the systemic inhibition of the immune system, and in particular Myeloid Derived Suppressor Cells (MDSC). The effect of splenectomy was evaluated in several murine lung cancer models. We found that splenectomy reduces tumor gr...

  20. Adaptive Immune Evolutionary Algorithms Based on Immune Network Regulatory Mechanism

    HE Hong; QIAN Feng

    2007-01-01

    Based on immune network regulatory mechanism, a new adaptive immune evolutionary algorithm (AIEA) is proposed to improve the performance of genetic algorithms (GA) in this paper. AIEA adopts novel selection operation according to the stimulation level of each antibody. A memory base for good antibodies is devised simultaneously to raise the convergent rapidity of the algorithm and adaptive adjusting strategy of antibody population is used for preventing the loss of the population adversity. The experiments show AIFA has better convergence performance than standard genetic algorithm and is capable of maintaining the adversity of the population and solving function optimization problems in an efficient and reliable way.

  1. Sterile inflammation induced by Carbopol elicits robust adaptive immune responses in the absence of pathogen-associated molecular patterns

    Gartlan, Kate H.; Krashias, George; Wegmann, Frank; Hillson, William R.; Scherer, Erin M.; Greenberg, Philip D.; Eisenbarth, Stephanie C.; Moghaddam, Amin E.; Sattentau, Quentin J.

    2016-01-01

    Carbopol is a polyanionic carbomer used in man for topical application and drug delivery purposes. However parenteral administration of Carbopol in animal models results in systemic adjuvant activity including strong pro-inflammatory type-1 T-cell (Th1) polarization. Here we investigated potential pathways of immune activation by Carbopol by comparison with other well-characterized adjuvants. Carbopol administration triggered rapid and robust leukocyte recruitment, pro-inflammatory cytokine secretion and antigen capture largely by inflammatory monocytes. The induction of antigen specific Th1 cells by Carbopol was found to occur via a non-canonical pathway, independent of MyD88/TRIF signaling and in the absence of pattern-recognition-receptor (PRR) activation typically associated with Th1/Ig2a induction. Using multispectral fluorescence imaging (Imagestream) and electron microscopy we demonstrated that phagocytic uptake of Carbopol particles followed by entry into the phagosomal/lysosomal pathway elicited conformational changes to the polymer and reactive oxygen species (ROS) production. We therefore conclude that Carbopol may mediate its adjuvant activity via novel mechanisms of antigen presenting cell activation and Th1 induction, leading to enhanced IgG2a responses independent of microbial pattern recognition. PMID:27005810

  2. An adaptive immune response driven by mature, antigen-experienced T and B cells within the microenvironment of oral squamous cell carcinoma.

    Quan, Hongzhi; Fang, Liangjuan; Pan, Hao; Deng, Zhiyuan; Gao, Shan; Liu, Ousheng; Wang, Yuehong; Hu, Yanjia; Fang, Xiaodan; Yao, Zhigang; Guo, Feng; Lu, Ruohuang; Xia, Kun; Tang, Zhangui

    2016-06-15

    Lymphocyte infiltrates have been observed in the microenvironment of oral cancer; however, little is known about whether the immune response of the lymphocyte infiltrate affects tumor biology. For a deeper understanding of the role of the infiltrating-lymphocytes in oral squamous cell carcinoma (OSCC), we characterized the lymphocyte infiltrate repertoires and defined their features. Immunohistochemistry revealed considerable T and B cell infiltrates and lymphoid follicles with germinal center-like structures within the tumor microenvironment. Flow cytometry demonstrated that populations of antigen-experienced CD4+ and CD8+ cells were present, as well as an enrichment of regulatory T cells; and T cells expressing programmed death-1 (PD-1) and T cell Ig and mucin protein-3 (Tim-3), indicative of exhaustion, within the tumor microenvironment. Characterization of tumor-infiltrating B cells revealed clear evidence of antigen exposure, in that the cardinal features of an antigen-driven B cell response were present, including somatic mutation, clonal expansion, intraclonal variation and isotype switching. Collectively, our results point to an adaptive immune response occurring within the OSCC microenvironment, which may be sustained by the expression of specific antigens in the tumor. PMID:26815146

  3. Aging of the Immune System: How Much Can the Adaptive Immune System Adapt?

    Weng, Nan-ping

    2006-01-01

    The competency of the adaptive immune function decreases with age, primarily because of the decline in production of naïve lymphocytes in the bone marrow and thymus as well as the expansion of incompetent memory lymphocytes. Here I discuss the recent progress on age-associated changes in lymphocytes and their effect on the adaptive immune system.

  4. Use of genetically modified bacteria to modulate adaptive immunity.

    Bueno, Susan M; González, Pablo A; Kalergis, Alexis M

    2009-06-01

    Infectious diseases caused by virulent bacteria are a significant cause of morbidity and mortality worldwide, especially in developing countries. However, attenuated strains derived from pathogenic bacteria, such as Salmonella, are highly immunogenic and can be used as vaccines to promote immunity against parental pathogenic bacteria strains. Further, they can be genetically manipulated to either express foreign antigens or deliver exogenous DNA, in order to induce immunity against other pathogens or antigens. Contrarily, specific structural modifications in attenuated Salmonella have allowed the generation of strains that can be well tolerated by the immune system and reduce inflammatory responses. It is thought that those strains could be considered as vectors to promote specific immune tolerance for certain auto-antigens or allergens and reduce unwanted or self-reactive immune responses. In addition, some structural features of Salmonella can contribute to defining the nature and type of polarization of the adaptive immune response induced after immunization, which can be considered as a tool to modulate antigen-specific immunity. In this article we discuss recent advances in the understanding of immune system modulation by molecular components of bacteria and their exploitation for the rational induction of pathogen immunity or antigen-specific tolerance. PMID:19519362

  5. This paper is the winner of an SFB Award in the Hospital Intern, Residency category: Peptide biomaterials raising adaptive immune responses in wound healing contexts.

    Vigneswaran, Yalini; Han, Huifang; De Loera, Roberto; Wen, Yi; Zhang, Xing; Sun, Tao; Mora-Solano, Carolina; Collier, Joel H

    2016-08-01

    Biomaterials used in the context of tissue engineering or wound repair are commonly designed to be "nonimmunogenic." However, previously it has been observed that self-assembled peptide nanofiber materials are noninflammatory despite their immunogenicity, suggesting that they may be appropriate for use in wound-healing contexts. To test this hypothesis, mice were immunized with epitope-containing peptide self-assemblies until they maintained high antibody titers against the material, then gels of the same peptide assemblies were applied within full-thickness dermal wounds. In three different murine dermal-wounding models with different baseline healing rates, even significantly immunogenic peptide assemblies did not delay healing. Conversely, adjuvanted peptide assemblies, while raising similar antibody titers to unadjuvanted assemblies, did delay wound healing. Analysis of the healing wounds indicated that compared to adjuvanted peptide assemblies, the unadjuvanted assemblies exhibited a progression of the dominant T-cell subset from CD4(+) to CD8(+) cells in the wound, and CD4(+) cell populations displayed a more Th2-slanted response. These findings illustrate an example of a significant antibiomaterial adaptive immune response that does not adversely affect wound healing despite ongoing antibody production. This material would thus be considered "immunologically compatible" in this specific context rather than "nonimmunogenic," a designation that is expected to apply to a range of other protein- and peptide-based biomaterials in wound-healing and tissue-engineering applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1853-1862, 2016. PMID:27129604

  6. CRISPR adaptive immune systems of Archaea

    Vestergaard, Gisle; Garrett, Roger A.; Shah, Shiraz A.

    2014-01-01

    CRISPR adaptive immune systems were analyzed for all available completed genomes of archaea, which included representatives of each of the main archaeal phyla. Initially, all proteins encoded within, and proximal to, CRISPR-cas loci were clustered and analyzed using a profile–profile approach. Then cas genes were assigned to gene cassettes and to functional modules for adaptation and interference. CRISPR systems were then classified primarily on the basis of their concatenated Cas protein seq...

  7. Monocyte-derived dendritic cells in innate and adaptive immunity.

    León, Beatriz; Ardavín, Carlos

    2008-01-01

    Monocytes have been classically considered essential elements in relation with innate immune responses against pathogens, and inflammatory processes caused by external aggressions, infection and autoimmune disease. However, although their potential to differentiate into dendritic cells (DCs) was discovered 14 years ago, their functional relevance with regard to adaptive immune responses has only been uncovered very recently. Studies performed over the last years have revealed that monocyte-derived DCs play an important role in innate and adaptive immunity, due to their microbicidal potential, capacity to stimulate CD4(+) and CD8(+) T-cell responses and ability to regulate Immunoglobulin production by B cells. In addition, monocyte-derived DCs not only constitute a subset of DCs formed at inflammatory foci, as previously thought, but also comprise different subsets of DCs located in antigen capture areas, such as the skin and the intestinal, respiratory and reproductive tracts. PMID:18362945

  8. Remune. Immune Response.

    Lai, Derhsing; Jones, Taff

    2002-03-01

    The Immune Response Corp (IRC) is developing Remune, a potential HIV therapeutic vaccine. Remune is based on the Salk Immunogen, which is derived from an HIV isolate which has been inactivated by chemical depletion of glycoprotein 120 (gp120). Preliminary data suggested that Remune, in combination with antiviral drug therapy, results in undetectable levels of HIV. Phase III trials commenced in May 1997 and it was initially expected that registration filings would be made in 1999. However, following interim analysis of the 2500-patient, multicenter, double-blind, pivotal phase III study (study 806) in May 1999, an independent panel recommended concluding the clinical endpoint trial and IRC and licensee, Agouron, decided to pursue alternative regulatory strategies, including initiating two additional phase III surrogate marker trials. Despite this, Agouron gave IRC notice of termination of its continued development in July 2001. In August 2001, IRC informed Agouron that, due to the total number of endpoints to date falling short of that previously assumed by Agouron, it did not intend to continue Agouron's Study 202 of Remune. In July 2001, licensee Trinity Medical Group filed an NDA with the governing health authorities in Thailand for Remune. The Thai FDA certified Immune Response's Remune manufacturing facility as being in compliance with GMP standards, following an on site inspection by Thai officials in November 2001 that was performed as a requirement of Trinity's Thai NDA. As a result of this certification, Trinity expected that a "timely determination" could be made by the Thai FDA. Rhĵne-Poulenc Rorer discontinued its part in the development of Remune, with all manufacturing, marketing and distribution rights reverting to IRC. After Agouron returned rights to Remune in July 2001, IRC heldfull rights in the US, Europe and Japan, while collaborating with its partners Trinity Medical Group and Roemmers Laboratory in the Southeast Asian and Latin American

  9. The influence of dietary β-glucans on the adaptive and innate immune responses of European sea bass (Dicentrarchus labrax vaccinated against vibriosis

    Pier Paolo Gatta

    2010-01-01

    Full Text Available The effects of feeding 1,3/1,6 β-glucans on the innate and the adaptive immune responses of European sea bass (Dicentrarchus labrax was investigated. Two experiments were carried out during the study. In the first, a number of non-specific immune parameters were examined at 4, 7, 10, 14, 21 and 25 days of feeding fish with a semipurified diet containing Macrogard ©, a commercially available form of 1,3/1,6 β-glucans. The respiratory burst activity of head kidney macrophages isolated from the different groups of fish fed the immunostimulant peaked and subsequently decreased at different times during the experiment. Head kidney macrophages from fish fed 250 ppm β-glucans had a statistically higher level of respiratory burst activity at Day 21 of feeding compared with fish fed no immunostimulant. No statistical differences were observed in lyzozyme activity during this trial. In the second experiment, the effect of feeding 1,3/1,6 β-glucans on the immune response of fish to an alginate-encapsulated Vibrio vaccine administered orally was examined. Respiratory burst of head kidney macrophages and serum lysozyme activity decreased in all fish over the course of the trial, while serum lysozyme activity was considerably lower than values obtained in the first experiment. Fish vaccinated orally had significant increases in antibody response by Week 2 post-vaccination, but β-glucans did not appear to affect these levels. Vaccination may have resulted in activating the immune system as a whole, thus masking any difference in immunostimulation by the β-glucans. It may be that the optimal doses and timing of β-glucans administration is different when the immunostimulant is administered alone or in combination with the vaccine. In conclusion, European sea bass can be immunomodulated with oral administration of β-glucan. Optimal doses and administration times have been established when β-glucans are fed alone, although further studies are needed to

  10. Functional demonstration of adaptive immunity in zebrafish using DNA vaccination

    Lorenzen, Niels; Lorenzen, Ellen; Einer-Jensen, Katja; Rasmussen, Jesper Skou; Kjær, Torben Egil; Vesely, Thomas

    Due to the well characterized genome, overall highly synteny with the human genome and its suitability for functional genomics studies, the zebrafish is considered to be an ideal animal model for basic studies of mechanisms of diseases and immunity in vertebrates including humans. While several...... studies have documented existence of a classical innate immune response, there is mainly indirect evidence of functional adaptive immunity. To address this aspect, groups of zebrafish were vaccinated with DNA-vaccines against the rhabdoviruses VHSV, IHNV and SVCV. Seven weeks later, the fish were...... challenged with SVCV by immersion. Despite some variability between replicate aquaria, there was a protective effect of the homologous vaccine and no effect of the heterologous vaccines. The results therefore confirm the existence of not only a well developed but also a fully functional adaptive immune...

  11. Adaptive immunity to rhinoviruses: sex and age matter

    Pritchard Antonia L

    2010-12-01

    Full Text Available Abstract Background Rhinoviruses (RV are key triggers in acute asthma exacerbations. Previous studies suggest that men suffer from infectious diseases more frequently and with greater severity than women. Additionally, the immune response to most infections and vaccinations decreases with age. Most immune function studies do not account for such differences, therefore the aim of this study was to determine if the immune response to rhinovirus varies with sex or age. Methods Blood mononuclear cells were isolated from 63 healthy individuals and grouped by sex and age (≤50 years old and ≥52 years old. Cells were cultured with rhinovirus 16 at a multiplicity of infection of 1. The chemokine IP-10 was measured at 24 h as an index of innate immunity while IFNγ and IL-13 were measured at 5 days as an index of adaptive immunity. Results Rhinovirus induced IFNγ and IL-13 was significantly higher in ≤50 year old women than in age matched men (p 0.005. There was no sex or age based difference in rhinovirus induced IP-10 expression. Both IFNγ and IL-13 were negatively correlated with age in women but not in men. Conclusions This study suggests that pre-menopausal women have a stronger adaptive immune response to rhinovirus infection than men and older people, though the mechanisms responsible for these differences remain to be determined. Our findings highlight the importance of gender and age balance in clinical studies and in the development of new treatments and vaccines.

  12. Human neutrophil elastase inhibitors in innate and adaptive immunity.

    Fitch, P M; Roghanian, A; Howie, S E M; Sallenave, J-M

    2006-04-01

    Recent evidence shows that human neutrophil elastase inhibitors can be synthesized locally at mucosal sites. In addition to efficiently targeting bacterial and host enzymes, they can be released in the interstitium and in the lumen of mucosa, where they have been shown to have antimicrobial activities, and to activate innate immune responses. This review will address more particularly the pleiotropic functions of low-molecular-mass neutrophil elastase inhibitors [SLPI (secretory leucocyte proteinase inhibitor) and elafin] and, more specifically, their role in the development of the adaptive immune response. PMID:16545094

  13. Immune Response in Thyroid Cancer: Widening the Boundaries

    Laura Sterian Ward

    2014-01-01

    The association between thyroid cancer and thyroid inflammation has been repeatedly reported and highly debated in the literature. In fact, both molecular and epidemiological data suggest that these diseases are closely related and this association reinforces that the immune system is important for thyroid cancer progression. Innate immunity is the first line of defensive response. Unlike innate immune responses, adaptive responses are highly specific to the particular antigen that induced th...

  14. De novo assembly of the Indo-Pacific humpback dolphin leucocyte transcriptome to identify putative genes involved in the aquatic adaptation and immune response.

    Duan Gui

    Full Text Available BACKGROUND: The Indo-Pacific humpback dolphin (Sousa chinensis, a marine mammal species inhabited in the waters of Southeast Asia, South Africa and Australia, has attracted much attention because of the dramatic decline in population size in the past decades, which raises the concern of extinction. So far, this species is poorly characterized at molecular level due to little sequence information available in public databases. Recent advances in large-scale RNA sequencing provide an efficient approach to generate abundant sequences for functional genomic analyses in the species with un-sequenced genomes. PRINCIPAL FINDINGS: We performed a de novo assembly of the Indo-Pacific humpback dolphin leucocyte transcriptome by Illumina sequencing. 108,751 high quality sequences from 47,840,388 paired-end reads were generated, and 48,868 and 46,587 unigenes were functionally annotated by BLAST search against the NCBI non-redundant and Swiss-Prot protein databases (E-value<10(-5, respectively. In total, 16,467 unigenes were clustered into 25 functional categories by searching against the COG database, and BLAST2GO search assigned 37,976 unigenes to 61 GO terms. In addition, 36,345 unigenes were grouped into 258 KEGG pathways. We also identified 9,906 simple sequence repeats and 3,681 putative single nucleotide polymorphisms as potential molecular markers in our assembled sequences. A large number of unigenes were predicted to be involved in immune response, and many genes were predicted to be relevant to adaptive evolution and cetacean-specific traits. CONCLUSION: This study represented the first transcriptome analysis of the Indo-Pacific humpback dolphin, an endangered species. The de novo transcriptome analysis of the unique transcripts will provide valuable sequence information for discovery of new genes, characterization of gene expression, investigation of various pathways and adaptive evolution, as well as identification of genetic markers.

  15. Genetic adaptation of the antibacterial human innate immunity network

    Lazarus Ross

    2011-07-01

    Full Text Available Abstract Background Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Results Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. Conclusions We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response.

  16. Cold-Adapted Pandemic 2009 H1N1 Influenza Virus Live Vaccine Elicits Cross-Reactive Immune Responses against Seasonal and H5 Influenza A Viruses

    Jang, Yo Han; Byun, Young Ho; Lee, Yoon Jae; Lee, Yun Ha; Lee, Kwang-Hee; Seong, Baik Lin

    2012-01-01

    The rapid transmission of the pandemic 2009 H1N1 influenza virus (pH1N1) among humans has raised the concern of a potential emergence of reassortment between pH1N1 and highly pathogenic influenza strains, especially the avian H5N1 influenza virus. Here, we report that the cold-adapted pH1N1 live attenuated vaccine (CApH1N1) elicits cross-reactive immunity to seasonal and H5 influenza A viruses in the mouse model. Immunization with CApH1N1 induced both systemic and mucosal antibodies with broa...

  17. Radio-adaptive response

    An adaptive response to radiation stress was found as a suppressed induction of chromosomal damage including micronuclei and sister chromatid exchanges in cultured Chinese hamster V79 cells pre-exposed to very low doses of ionizing radiations. The mechanism underlying this novel chromosomal response, called 'radio-adaptive response (RAR)' has been studied progressively. The following results were obtained in recent experiments. 1. Low doses of β-rays from tritiated water (HTO) as well as tritium-thymidine can cause RAR. 2. Thermal neutrons, a high LET radiation, can not act as tritium β-rays or γ-rays. 3. The RAR expression is suppressed not only by the treatment with an inhibitor of protein synthesis but also by RNA synthesis inhibition. 4. Several proteins are newly synthesized concurrently with the RAR expression after the adapting doses, viewed by two-dimensional electrophoresis of cellular proteins. These results suggests that the RAR might be a cellular stress response to a signal produced preferentially by very low doses of low LET radiation under restricted conditions, accompany the inducible specific gene expression. (author)

  18. Regulation of intestinal homeostasis by innate and adaptive immunity.

    Kayama, Hisako; Takeda, Kiyoshi

    2012-11-01

    The intestine is a unique tissue where an elaborate balance is maintained between tolerance and immune responses against a variety of environmental factors such as food and the microflora. In a healthy individual, the microflora stimulates innate and adaptive immune systems to maintain gut homeostasis. However, the interaction of environmental factors with particular genetic backgrounds can lead to dramatic changes in the composition of the microflora (i.e. dysbiosis). Many of the specific commensal-bacterial products and the signaling pathways they trigger have been characterized. The role of T(h)1, T(h)2 and T(h)17 cells in inflammatory bowel disease has been widely investigated, as has the contribution of epithelial cells and subsets of dendritic cells and macrophages. To date, multiple regulatory cells in adaptive immunity, such as regulatory T cells and regulatory B cells, have been shown to maintain gut homeostasis by preventing inappropriate innate and adaptive immune responses to commensal bacteria. Additionally, regulatory myeloid cells have recently been identified that prevent intestinal inflammation by inhibiting T-cell proliferation. An increasing body of evidence has shown that multiple regulatory mechanisms contribute to the maintenance of gut homeostasis. PMID:22962437

  19. Diverse Roles of Inhibitor of Differentiation 2 in Adaptive Immunity

    Lucille Rankin

    2011-01-01

    Full Text Available The helix-loop-helix (HLH transcription factor inhibitor of DNA binding 2 (Id2 has been implicated as a regulator of hematopoiesis and embryonic development. While its role in early lymphopoiesis has been well characterized, new roles in adaptive immune responses have recently been uncovered opening exciting new directions for investigation. In the innate immune system, Id2 is required for the development of mature natural killer (NK cells, lymphoid tissue-inducer (LTi cells, and the recently identified interleukin (IL-22 secreting nonconventional innate lymphocytes found in the gut. In addition, Id2 has been implicated in the development of specific dendritic cell (DC subsets, decisions determining the formation of αβ and γδ T-cell development, NK T-cell behaviour, and in the maintenance of effector and memory CD8+ T cells in peripheral tissues. Here, we review the current understanding of the role of Id2 in lymphopoiesis and in the development of the adaptive immune response required for maintaining immune homeostasis and immune protection.

  20. Studies of Immune Responses in Candida vaginitis.

    De Bernardis, Flavia; Arancia, Silvia; Sandini, Silvia; Graziani, Sofia; Norelli, Sandro

    2015-01-01

    The widespread occurrence of vaginal candidiasis and the development of resistance against anti-fungal agents has stimulated interest in understanding the pathogenesis of this disease. The aim of our work was to characterize, in an animal model of vaginal candidiasis, the mechanisms that play a role in the induction of mucosal immunity against C. albicans and the interaction between innate and adaptive immunity. Our studies evidenced the elicitation of cell-mediated immunity (CMIs) and antibody (Abs)-mediated immunity with a Th1 protective immunity. An immune response of this magnitude in the vagina was very encouraging to identify the proper targets for new strategies for vaccination or immunotherapy of vaginal candidiasis. Overall, our data provide clear evidence that it is possible to prevent C. albicans vaginal infection by active intravaginal immunization with aspartyl proteinase expressed as recombinant protein. This opens the way to a modality for anti-Candida protection at the mucosa. The recombinant protein Sap2 was assembled with virosomes, and a vaccine PEVION7 (PEV7) was obtained. The results have given evidence that the vaccine, constituted of virosomes and Secretory aspartyl proteinase 2 (Sap2) (PEV7), has an encouraging therapeutic potential for the treatment of recurrent vulvovaginal candidiasis. PMID:26473934

  1. Studies of Immune Responses in Candida vaginitis

    Flavia De Bernardis

    2015-10-01

    Full Text Available The widespread occurrence of vaginal candidiasis and the development of resistance against anti-fungal agents has stimulated interest in understanding the pathogenesis of this disease. The aim of our work was to characterize, in an animal model of vaginal candidiasis, the mechanisms that play a role in the induction of mucosal immunity against C. albicans and the interaction between innate and adaptive immunity. Our studies evidenced the elicitation of cell-mediated immunity (CMIs and antibody (Abs-mediated immunity with a Th1 protective immunity. An immune response of this magnitude in the vagina was very encouraging to identify the proper targets for new strategies for vaccination or immunotherapy of vaginal candidiasis. Overall, our data provide clear evidence that it is possible to prevent C. albicans vaginal infection by active intravaginal immunization with aspartyl proteinase expressed as recombinant protein. This opens the way to a modality for anti-Candida protection at the mucosa. The recombinant protein Sap2 was assembled with virosomes, and a vaccine PEVION7 (PEV7 was obtained. The results have given evidence that the vaccine, constituted of virosomes and Secretory aspartyl proteinase 2 (Sap2 (PEV7, has an encouraging therapeutic potential for the treatment of recurrent vulvovaginal candidiasis.

  2. Studies of Immune Responses in Candida vaginitis

    De Bernardis, Flavia; Arancia, Silvia; Sandini, Silvia; Graziani, Sofia; Norelli, Sandro

    2015-01-01

    The widespread occurrence of vaginal candidiasis and the development of resistance against anti-fungal agents has stimulated interest in understanding the pathogenesis of this disease. The aim of our work was to characterize, in an animal model of vaginal candidiasis, the mechanisms that play a role in the induction of mucosal immunity against C. albicans and the interaction between innate and adaptive immunity. Our studies evidenced the elicitation of cell-mediated immunity (CMIs) and antibody (Abs)-mediated immunity with a Th1 protective immunity. An immune response of this magnitude in the vagina was very encouraging to identify the proper targets for new strategies for vaccination or immunotherapy of vaginal candidiasis. Overall, our data provide clear evidence that it is possible to prevent C. albicans vaginal infection by active intravaginal immunization with aspartyl proteinase expressed as recombinant protein. This opens the way to a modality for anti-Candida protection at the mucosa. The recombinant protein Sap2 was assembled with virosomes, and a vaccine PEVION7 (PEV7) was obtained. The results have given evidence that the vaccine, constituted of virosomes and Secretory aspartyl proteinase 2 (Sap2) (PEV7), has an encouraging therapeutic potential for the treatment of recurrent vulvovaginal candidiasis. PMID:26473934

  3. Immune response to H pylori

    Giovanni Suarez; Victor E Reyes; Ellen J Beswick

    2006-01-01

    The gastric mucosa separates the underlying tissue from the vast array of antigens that traffic through the stomach lumen. While the extreme pH of this environment is essential in aiding the activation of enzymes and food digestion, it also renders the gastric epithelium free from bacterial colonization, with the exception of one important human pathogen, H pylori. This bacterium has developed mechanisms to survive the harsh environment of the stomach, actively move through the mucosal layer,attach to the epithelium, evade immune responses, and achieve persistent colonization. While a hallmark of this infection is a marked inflammatory response with the infiltration of various immune cells into the infected gastric mucosa, the host immune response is unable to clear the infection and may actually contribute to the associated pathogenesis. Here, we review the host responses involved during infection with H pylori and how they are influenced by this bacterium.

  4. Immune Response After Measles Vaccination

    Bhardwaj A.K

    1991-01-01

    Full Text Available Measles immunization of 192 under 5 years of age children was undertaken and the overall seroconversion was 76.0%. Seroconversion rate in the age group of 9-12 months was 70.9% and it was 100% after one year. Immune response in malnourished children was more as compared to normal children. There were negligible side reactions after measles vaccination, and this vaccine passed normal potency tests under field conditions.

  5. Activation of the reward system boosts innate and adaptive immunity.

    Ben-Shaanan, Tamar L; Azulay-Debby, Hilla; Dubovik, Tania; Starosvetsky, Elina; Korin, Ben; Schiller, Maya; Green, Nathaniel L; Admon, Yasmin; Hakim, Fahed; Shen-Orr, Shai S; Rolls, Asya

    2016-08-01

    Positive expectations contribute to the clinical benefits of the placebo effect. Such positive expectations are mediated by the brain's reward system; however, it remains unknown whether and how reward system activation affects the body's physiology and, specifically, immunity. Here we show that activation of the ventral tegmental area (VTA), a key component of the reward system, strengthens immunological host defense. We used 'designer receptors exclusively activated by designer drugs' (DREADDs) to directly activate dopaminergic neurons in the mouse VTA and characterized the subsequent immune response after exposure to bacteria (Escherichia coli), using time-of-flight mass cytometry (CyTOF) and functional assays. We found an increase in innate and adaptive immune responses that were manifested by enhanced antibacterial activity of monocytes and macrophages, reduced in vivo bacterial load and a heightened T cell response in the mouse model of delayed-type hypersensitivity. By chemically ablating the sympathetic nervous system (SNS), we showed that the reward system's effects on immunity are, at least partly, mediated by the SNS. Thus, our findings establish a causal relationship between the activity of the VTA and the immune response to bacterial infection. PMID:27376577

  6. Two separate mechanisms of enforced viral replication balance innate and adaptive immune activation.

    Shaabani, Namir; Khairnar, Vishal; Duhan, Vikas; Zhou, Fan; Tur, Rita Ferrer; Häussinger, Dieter; Recher, Mike; Tumanov, Alexei V; Hardt, Cornelia; Pinschewer, Daniel; Christen, Urs; Lang, Philipp A; Honke, Nadine; Lang, Karl S

    2016-02-01

    The induction of innate and adaptive immunity is essential for controlling viral infections. Limited or overwhelming innate immunity can negatively impair the adaptive immune response. Therefore, balancing innate immunity separately from activating the adaptive immune response would result in a better antiviral immune response. Recently, we demonstrated that Usp18-dependent replication of virus in secondary lymphatic organs contributes to activation of the innate and adaptive immune responses. Whether specific mechanisms can balance innate and adaptive immunity separately remains unknown. In this study, using lymphocytic choriomeningitis virus (LCMV) and replication-deficient single-cycle LCMV vectors, we found that viral replication of the initial inoculum is essential for activating virus-specific CD8(+) T cells. In contrast, extracellular distribution of virus along the splenic conduits is necessary for inducing systemic levels of type I interferon (IFN-I). Although enforced virus replication is driven primarily by Usp18, B cell-derived lymphotoxin beta contributes to the extracellular distribution of virus along the splenic conduits. Therefore, lymphotoxin beta regulates IFN-I induction independently of CD8(+) T-cell activity. We found that two separate mechanisms act together in the spleen to guarantee amplification of virus during infection, thereby balancing the activation of the innate and adaptive immune system. PMID:26553386

  7. Immune responses in space flight

    Sonnenfeld, G.

    1998-01-01

    Space flight has been shown to have profound effects on immunological parameters of humans, monkeys and rodents. These studies have been carried out by a number of different laboratories. Among the parameters affected are leukocyte blastogenesis, natural killer cell activity, leukocyte subset distribution, cytokine production - including interferons and interleukins, and macrophage maturation and activity. These changes start to occur only after a few days space flight, and some changes continue throughout long-term space flight. Antibody responses have received only very limited study, and total antibody levels have been shown to be increased after long-term space flight. Several factors could be involved in inducing these changes. These factors could include microgravity, lack of load-bearing, stress, acceleration forces, and radiation. The mechanism(s) for space flight-induced changes in immune responses remain(s) to be established. Certainly, there can be direct effects of microgravity, or other factors, on cells that play a fundamental role in immune responses. However, it is now clear that there are interactions between the immune system and other physiological systems that could play a major role. For example, changes occurring in calcium use in the musculoskeletal system induced by microgravity or lack of use could have great impact on the immune system. Most of the changes in immune responses have been observed using samples taken immediately after return from space flight. However, there have been two recent studies that have used in-flight testing. Delayed-type hypersensitivity responses to common recall antigens of astronauts and cosmonauts have been shown to be decreased when tested during space flights. Additionally, natural killer cell and blastogenic activities are inhibited in samples taken from rats during space flight. Therefore, it is now clear that events occurring during space flight itself can affect immune responses. The biological

  8. Vaccine-associated enhanced respiratory disease does not interfere with the adaptive immune response following challenge with pandemic A/H1N1 2009

    Background. The implications of sequential prime and challenge with mismatched influenza A viruses is a concern in mammals including humans. We evaluated the ability of pigs affected with vaccine associated enhanced respiratory disease (VAERD) to generate a humoral immune response against the hetero...

  9. Hidden talents of natural killers: NK cells in innate and adaptive immunity

    Cooper, Megan A.; Colonna, Marco; Yokoyama, Wayne M.

    2009-01-01

    Natural killer (NK) cells are innate immune lymphocytes capable of killing target cells and producing immunoregulatory cytokines. Herein, we discuss recent studies that indicate that NK cells span the conventional boundaries between innate and adaptive immunity. For example, it was recently discovered that NK cells have the capacity for memory-like responses, a property that was previously thought to be limited to adaptive immunity. NK cells have also been identified in multiple tissues, and ...

  10. Filoviruses and the balance of innate, adaptive, and inflammatory responses.

    Mohamadzadeh, Mansour; Chen, Lieping; Olinger, Gene G; Pratt, William D; Schmaljohn, Alan L

    2006-01-01

    The Filoviruses Marburg virus and Ebola virus are among the deadliest of human pathogens, causing fulminant hemorrhagic fevers typified by overmatched specific immune responses and profuse inflammatory responses. Keys to both vaccination and treatment may reside, first, in the understanding of immune dysfunctions that parallel Filoviral disease and, second, in devising ways to redirect and restore normal immune function as well as to mitigate inflammation. Here, we describe how Filoviral infections may subvert innate immune responses through perturbances of dendritic cells and neutrophils, with particular emphasis on the downstream effects on adaptive immunity and inflammation. We suggest that pivotal events may be subject to therapeutic intervention as Filoviruses encounter immune processes. PMID:17201655

  11. Apolipophorins and insects immune response

    A Zdybicka-Barabas

    2013-08-01

    Full Text Available Insect lipoproteins, called lipophorins, are non-covalent assemblies of lipids and proteins serving as lipid transport vehicles. The protein moiety of lipophorin comprises two glycosylated apolipoproteins, apolipophorin I (apoLp-I and apolipophorin II (apoLp-II, constantly present in a lipophorin particle, and an exchangeable protein, apolipophorin III (apoLp-III. ApoLp-III is an abundant protein occurring in hemolymph in lipid-free and lipid-bound state and playing an important role in lipid transport and insect innate immunity. In immune response apoLp-III serves as a pattern recognition molecule. It binds and detoxifies microbial cell wall components, i.e., lipopolysaccharide, lipoteichoic acid, and β-1,3-glucan. ApoLp-III activates expression of antimicrobial peptides and proteins, stimulates their antimicrobial activity, participates in regulation of the phenoloxidase system and in hemolymph clotting. In addition, the protein is involved in cellular immune response, influencing hemocyte adhesion, phagocytosis and nodule formation, and in gut immunity. Although apoLp-III is the best studied apolipophorin in insect immunity so far, a literature review suggests that all the three apolipoproteins, apoLp-I, apoLp-II and apoLp-III, function together in a coordinated defense against pathogens

  12. Chronic infection and the origin of adaptive immune system

    Usharauli, David

    2010-01-01

    It has been speculated that the rise of the adaptive immune system in jawed vertebrates some 400 million years ago gave them a superior protection to detect and defend against pathogens that became more elusive and/or virulent to the host that had only innate immune system. First, this line of thought implies that adaptive immune system was a new, more sophisticated layer of host defense that operated independently of the innate immune system. Second, the natural consequence of this scenario ...

  13. Vaccines against Human Carcinomas: Strategies to Improve Antitumor Immune Responses

    Claudia Palena

    2010-01-01

    Full Text Available Multiple observations in preclinical and clinical studies support a role for the immune system in controlling tumor growth and progression. Various components of the innate and adaptive immune response are able to mediate tumor cell destruction; however, certain immune cell populations can also induce a protumor environment that favors tumor growth and the development of metastasis. Moreover, tumor cells themselves are equipped with various mechanisms that allow them to evade surveillance by the immune system. The goal of cancer vaccines is to induce a tumor-specific immune response that ultimately will reduce tumor burden by tipping the balance from a protumor to an antitumor immune environment. This review discusses common mechanisms that govern immune cell activation and tumor immune escape, and some of the current strategies employed in the field of cancer vaccines aimed at enhancing activation of tumor-specific T-cells with concurrent reduction of immunosuppression.

  14. Heavy metal pollution disturbs immune response in wild ant populations

    Sorvari, Jouni [Section of Ecology, Department of Biology, University of Turku, FIN-20014 Turku (Finland)]. E-mail: jouni.sorvari@utu.fi; Rantala, Liisa M. [Department of Biological and Environmental Science, University of Jyvaeskylae, P.O. Box 35, FIN-40351 Jyvaeskylae (Finland); Rantala, Markus J. [Section of Ecology, Department of Biology, University of Turku, FIN-20014 Turku (Finland); Department of Biology, University of California, Riverside, CA 92521 USA (United States); Hakkarainen, Harri [Section of Ecology, Department of Biology, University of Turku, FIN-20014 Turku (Finland); Eeva, Tapio [Section of Ecology, Department of Biology, University of Turku, FIN-20014 Turku (Finland)

    2007-01-15

    Concern about the effects of environmental contaminants on immune function in both humans and wildlife is growing and practically nothing is known about this impact on terrestrial invertebrates, even though they are known to easily accumulate pollutants. We studied the effect of industrial heavy metal contamination on immune defense of a free-living wood ant (Formica aquilonia). To find out whether ants show an adapted immune function in a polluted environment, we compared encapsulation responses between local and translocated colonies. Local colonies showed higher heavy metal levels than the translocated ones but the encapsulation response was similar between the two groups, indicating that the immune system of local ants has not adapted to high contamination level. The encapsulation response was elevated in moderate whereas suppressed in high heavy metal levels suggesting higher risk for infections in heavily polluted areas. - Heavy metal pollution affects immune function in ants.

  15. Heavy metal pollution disturbs immune response in wild ant populations

    Concern about the effects of environmental contaminants on immune function in both humans and wildlife is growing and practically nothing is known about this impact on terrestrial invertebrates, even though they are known to easily accumulate pollutants. We studied the effect of industrial heavy metal contamination on immune defense of a free-living wood ant (Formica aquilonia). To find out whether ants show an adapted immune function in a polluted environment, we compared encapsulation responses between local and translocated colonies. Local colonies showed higher heavy metal levels than the translocated ones but the encapsulation response was similar between the two groups, indicating that the immune system of local ants has not adapted to high contamination level. The encapsulation response was elevated in moderate whereas suppressed in high heavy metal levels suggesting higher risk for infections in heavily polluted areas. - Heavy metal pollution affects immune function in ants

  16. Innate and Adaptive Immunity Synergize to Trigger Inflammation in the Mammary Gland

    Rainard, Pascal; Cunha, Patricia; Gilbert, Florence B.

    2016-01-01

    The mammary gland is able to detect and react to bacterial intrusion through innate immunity mechanisms, but mammary inflammation can also result from antigen-specific adaptive immunity. We postulated that innate and adaptive immune responses could synergize to trigger inflammation in the mammary gland. To test this hypothesis, we immunized cows with the model antigen ovalbumin and challenged the sensitized animals with either Escherichia coli lipopolysaccharide (LPS) as innate immunity agonist, ovalbumin as adaptive immunity agonist, or both agonists in three different udder quarters of lactating cows. There was a significant amplification of the initial milk leukocytosis in the quarters challenged with the two agonists compared to leukocytosis in quarters challenged with LPS or ovalbumin alone. This synergistic response occurred only with the cows that developed the ovalbumin-specific inflammatory response, and there were significant correlations between milk leukocytosis and production of IL-17A and IFN-γ in a whole-blood ovalbumin stimulation assay. The antigen-specific response induced substantial concentrations of IL-17A and IFN-γ in milk contrary to the response to LPS. Such a synergy at the onset of the reaction of the mammary gland suggests that induction of antigen-specific immune response with bacterial antigens could improve the initial immune response to infection, hence reducing the bacterial load and contributing to protection. PMID:27100324

  17. L-Arginine supplementation inhibits the growth of breast cancer by enhancing innate and adaptive immune responses mediated by suppression of MDSCs in vivo

    Cao, Yu; Feng, Yonghui; Zhang, Yanjun; Zhu, Xiaotong; Jin, Feng

    2016-01-01

    Background L-Arg is involved in many biological activities, including the activation of T cells. In breast cancer patients, L-Arg is depleted by nitric oxide synthase 2 (NOS2) and arginase 1 (ARG-1) produced by myeloid-derived suppressor cells (MDSCs). Our aim was to test whether L-Arg supplementation could enhance antitumor immune response and improve survivorship in a rodent model of mammary tumor. Methods Tumor volumes in control and L-Arg treated 4 T1 tumor bearing (TB) BALB/c mice were m...

  18. Characterization of recombinant B. abortus strain RB51SOD towards understanding the uncorrelated innate and adaptive immune responses induced by RB51SOD compared to its parent vaccine strain RB51

    Jianguo eZhu

    2011-11-01

    Full Text Available Brucella abortus is a Gram-negative, facultative intracellular pathogen for several mammals, including humans. Live attenuated B. abortus strain RB51 is currently the official vaccine used against bovine brucellosis in the United States and several other countries. Overexpression of protective B. abortus antigen Cu/Zn superoxide dismutase (SOD in a recombinant strain of RB51 (strain RB51SOD significantly increases its vaccine efficacy against virulent B. abortus challenge in a mouse model. An attempt has been made to better understand the mechanism of the enhanced protective immunity of RB51SOD compared to its parent strain RB51. We previously reported that RB51SOD stimulated enhanced Th1 immune response. In this study, we further found that T effector cells derived from RB51SOD-immunized mice exhibited significantly higher cytotoxic T lymphocyte (CTL activity than T effector cells derived from RB51-immunized mice against virulent B. abortus-infected target cells. Meanwhile, the macrophage responses to these two strains were also studied. Compared to RB51, RB51SOD cells had a lower survival rate in macrophages and induced lower levels of macrophage apoptosis and necrosis. The decreased survival of RB51SOD cells correlates with the higher sensitivity of RB51SOD, compared to RB51, to the bactericidal action of either Polymyxin B or sodium dodecyl sulfate (SDS. Furthermore, a physical damage to the outer membrane of RB51SOD was observed by electron microscopy. Possibly due to the physical damage, overexpressed Cu/Zn SOD in RB51SOD was found to be released into the bacterial cell culture medium. Therefore, the stronger adaptive immunity induced by RB51SOD did not correlate with the low level of innate immunity induced by RB51SOD compared to RB51. This unique and apparently contradictory profile is likely associated with the differences in outer membrane integrity and Cu/Zn SOD release.

  19. A genetic inference on cancer immune responsiveness

    Wang, Ena; Uccellini, Lorenzo; Marincola, Francesco M.

    2012-01-01

    A cancer immune signature implicating good prognosis and responsiveness to immunotherapy was described that is observed also in other aspects of immune-mediated, tissue-specific destruction (TSD). Its determinism remains, however, elusive. Based on limited but unique clinical observations, we propose a multifactorial genetic model of human cancer immune responsiveness.

  20. Tilapia show immunization response against Ich

    This study compares the immune response of Nile tilapia and red tilapia against parasite Ichthyophthirius multifiliis (Ich) using a cohabitation challenge model. Both Nile and red tilapia showed strong immune response post immunization with live Ich theronts by IP injection or immersion. Blood serum...

  1. Genes of the adaptive immune system are expressed early in zebrafish larval development following lipopolysaccharide stimulation

    LI Fengling; ZHANG Shicui; WANG Zhiping; LI Hongyan

    2011-01-01

    Information regarding immunocompetence of the adaptive immune system (AIS) in zebrafish Danio rerio remains limited. Here, we stimulated an immune response in fish embryos,larvae and adults using lipopolysaccharide (LPS) and measured the upregulation of a number of AIS-related genes (Rag2, AID, TCRAC, IgLC-1, mIg, sIg, IgZ and DAB) 3 and 18 h later. We found that all of the genes evaluated were strongly induced following LPS stimulation, with most of them responding at 8 d post fertilization. This confirms that a functional adaptive immune response is present in D. rerio larvae, and provides a window for further functional analyses.

  2. Genes of the adaptive immune system are expressed early in zebrafish larval development following lipopolysaccharide stimulation

    Li, Fengling; Zhang, Shicui; Wang, Zhiping; Li, Hongyan

    2011-03-01

    Information regarding immunocompetence of the adaptive immune system (AIS) in zebrafish Danio rerio remains limited. Here, we stimulated an immune response in fish embryos, larvae and adults using lipopolysaccharide (LPS) and measured the upregulation of a number of AIS-related genes ( Rag2, AID, TCRAC, IgLC-1, mIg, sIg, IgZ and DAB) 3 and 18 h later. We found that all of the genes evaluated were strongly induced following LPS stimulation, with most of them responding at 8 d post fertilization. This confirms that a functional adaptive immune response is present in D. rerio larvae, and provides a window for further functional analyses.

  3. Scale-free dynamics of somatic adaptability in immune system

    Saito, Shiro

    2009-01-01

    The long-time dynamics of somatic adaptability in immune system is simulated by a simple physical model. The immune system described by the model exhibits a scale free behavior as is observed in living systems. The balance between the positive and negative feedbacks of the model leads to a robust immune system where the positive one corresponds to the formation of memory cells and the negative one to immunosuppression. Also the immunosenescence of the system is discussed based on the time-dependence of the epigenetic landscape of the adaptive immune cells in the shape space.

  4. Delayed adaptive immunity is related to higher MMR vaccine-induced antibody titers in children

    Strömbeck, Anna; Lundell, Anna-Carin; Nordström, Inger; Andersson, Kerstin; Adlerberth, Ingegerd; Wold, Agnes E.; Rudin, Anna

    2016-01-01

    There are notable inter-individual variations in vaccine-specific antibody responses in vaccinated children. The aim of our study was to investigate whether early-life environmental factors and adaptive immune maturation prior and close to measles–mumps–rubella (MMR) immunization relate to magnitudes of vaccine-specific antibody titers. In the FARMFLORA birth cohort, including both farming and non-farming families, children were immunized with the MMR vaccine at 18 months of age. MMR vaccine-...

  5. The Immune Response to Acute Focal Cerebral Ischemia and Associated Post-stroke Immunodepression: A Focused Review

    Famakin, Bolanle M.

    2014-01-01

    It is currently well established that the immune system is activated in response to transient or focal cerebral ischemia. This acute immune activation occurs in response to damage, and injury, to components of the neurovascular unit and is mediated by the innate and adaptive arms of the immune response. The initial immune activation is rapid, occurs via the innate immune response and leads to inflammation. The inflammatory mediators produced during the innate immune response in turn lead to r...

  6. Variants at multiple loci implicated in both innate and adaptive immune responses are associated with Sjögren’s syndrome

    Lessard, Christopher J.; Li, He; Adrianto, Indra; Ice, John A.; Rasmussen, Astrid; Grundahl, Kiely M.; Kelly, Jennifer A.; Dozmorov, Mikhail G.; Miceli-Richard, Corinne; Bowman, Simon; Lester, Sue; Eriksson, Per; Eloranta, Maija-Leena; Brun, Johan G.; Gøransson, Lasse G.; Harboe, Erna; Guthridge, Joel M.; Kaufman, Kenneth M.; Kvarnström, Marika; Jazebi, Helmi; Graham, Deborah S. Cunninghame; Grandits, Martha E.; Nazmul-Hossain, Abu N. M.; Patel, Ketan; Adler, Adam J.; Maier-Moore, Jacen S.; Farris, A. Darise; Brennan, Michael T.; Lessard, James A.; Chodosh, James; Gopalakrishnan, Rajaram; Hefner, Kimberly S.; Houston, Glen D.; Huang, Andrew J.W.; Hughes, Pamela J.; Lewis, David M.; Radfar, Lida; Rohrer, Michael D.; Stone, Donald U.; Wren, Jonathan D.; Vyse, Timothy J.; Gaffney, Patrick M.; James, Judith A.; Omdal, Roald; Wahren-Herlenius, Marie; Illei, Gabor G.; Witte, Torsten; Jonsson, Roland; Rischmueller, Maureen; Rönnblom, Lars; Nordmark, Gunnel; Ng, Wan-Fai; Mariette, Xavier; Anaya, Juan-Manuel; Rhodus, Nelson L.; Segal, Barbara M.; Scofield, R. Hal; Montgomery, Courtney G.; Harley, John B.; Sivils, Kathy L. Moser

    2013-01-01

    Sjögren’s syndrome is a common autoimmune disease (~0.7% of European Americans) typically presenting as keratoconjunctivitis sicca and xerostomia. In addition to strong association within the HLA region at 6p21 (Pmeta=7.65×10−114), we establish associations with IRF5-TNPO3 (Pmeta=2.73×10−19), STAT4 (Pmeta=6.80×10−15), IL12A (Pmeta =1.17×10−10), FAM167A-BLK (Pmeta=4.97×10−10), DDX6-CXCR5 (Pmeta=1.10×10−8), and TNIP1 (Pmeta=3.30×10−8). Suggestive associations with Pmeta<5×10−5 were observed with 29 regions including TNFAIP3, PTTG1, PRDM1, DGKQ, FCGR2A, IRAK1BP1, ITSN2, and PHIP amongst others. These results highlight the importance of genes involved in both innate and adaptive immunity in Sjögren’s syndrome. PMID:24097067

  7. Diversity of immune strategies explained by adaptation to pathogen statistics.

    Mayer, Andreas; Mora, Thierry; Rivoire, Olivier; Walczak, Aleksandra M

    2016-08-01

    Biological organisms have evolved a wide range of immune mechanisms to defend themselves against pathogens. Beyond molecular details, these mechanisms differ in how protection is acquired, processed, and passed on to subsequent generations-differences that may be essential to long-term survival. Here, we introduce a mathematical framework to compare the long-term adaptation of populations as a function of the pathogen dynamics that they experience and of the immune strategy that they adopt. We find that the two key determinants of an optimal immune strategy are the frequency and the characteristic timescale of the pathogens. Depending on these two parameters, our framework identifies distinct modes of immunity, including adaptive, innate, bet-hedging, and CRISPR-like immunities, which recapitulate the diversity of natural immune systems. PMID:27432970

  8. Innate and adaptive immunity in inflammatory bowel disease

    Britta Siegmund; Martin Zeitz

    2011-01-01

    Inflammatory bowel diseases are the consequence of a dysregulated mucosal immune system. The mucosal immune system consists of two arms, innate and adaptive immunity, that have been studied separately for a long time. Functional studies from in vivo models of intestinal inflammation as well as results from genome-wide association studies strongly suggest a cross-regulation of both arms. The present review will illustrate this interaction by selecting examples from innate immunity and adaptive immunity, and their direct impact on each other. Broadening our view by focusing on the cross-regulated areas of the mucosal immune system will not only facilitate our understanding of disease, but furthermore will allow identification of future therapeutic targets.

  9. Innate and adaptive immunity in inflammatory bowel disease

    BrittaSiegmund; MartinZeitz

    2011-01-01

    Inflammatory bowel diseases are the consequence of a dysregulated mucosal immune system. The mucosal immune system consists of two arms, innate and adaptive immunity, that have been studied separately for a long time. Functional studies from in vivo models of intestinal inflammation as well as results from genome-wide association studies strongly suggest a crossregulation of both arms. The present review will illustrate this interaction by selecting examples from innate immunity and adaptive immunity, and their direct impact on each other. Broadening our view by focusing on the cross-regulated areas of the mucosal immune system will not only facilitate our understanding of disease, but furthermore will allow identification of future therapeutic targets.

  10. Mosquito immune responses to arbovirus infections

    Carol D. Blair; Olson, Ken E

    2014-01-01

    The principal mosquito innate immune response to virus infections, RNA interference (RNAi), differs substantially from the immune response to bacterial and fungal infections. The exo-siRNA pathway constitutes the major anti-arboviral RNAi response and its essential genetic components have been identified. Recent research has also implicated the Piwi-interacting RNA pathway in mosquito anti-arboviral immunity, but Piwi gene-family components involved are not well-defined. Arboviruses must evad...

  11. Immune cellular response to HPV: current concepts

    Maria Alice Guimarães Gonçalves

    2004-02-01

    Full Text Available Although cellular immunity is essential for the elimination of human papillomavirus (HPV, the mechanisms involved are still poorly understood. We summarize the main mechanisms involved in cellular immune response to infections caused by HPV. Immunotherapies for HPV-related cancers require the disruption of T-cell response control mechanisms, associated with the stimulation of the Th1 cytokine response.

  12. Role of nutrients in the development of neonatal immune response.

    Cunningham-Rundles, Susanna; Lin, Hong; Ho-Lin, Deborah; Dnistrian, Ann; Cassileth, Barrie R; Perlman, Jeffrey M

    2009-11-01

    Nutrients exert unique regulatory effects in the perinatal period that mold the developing immune system. The interactions of micronutrients and microbial and environmental antigens condition the post-birth maturation of the immune system, influencing reactions to allergens, fostering tolerance towards the emerging gastrointestinal flora and ingested antigens, and defining patterns of host defense against potential pathogens. The shared molecular structures that are present on microbes or certain plants, but not expressed by human cells, are recognized by neonatal innate immune receptors. Exposure to these activators in the environment through dietary intake in early life can modify the immune response to allergens and prime the adaptive immune response towards pathogens that express the corresponding molecular structures. PMID:19906219

  13. CRISPR-Based Adaptive Immune Systems

    Terns, Michael P.; Terns, Rebecca M.

    2011-01-01

    CRISPR-Cas systems are recently discovered, RNA-based immune systems that control invasions of viruses and plasmids in archaea and bacteria. Prokaryotes with CRISPR-Cas immune systems capture short invader sequences within the CRISPR loci in their genomes, and small RNAs produced from the CRISPR loci (CRISPR (cr)RNAs) guide Cas proteins to recognize and degrade (or otherwise silence) the invading nucleic acids. There are multiple variations of the pathway found among prokaryotes, each mediate...

  14. Phylogeny, longevity and evolution of adaptive immunity

    Vinkler, Michal; Albrecht, Tomáš

    2011-01-01

    Roč. 60, č. 3 (2011), s. 277-282. ISSN 0139-7893 R&D Projects: GA ČR GA206/08/0640; GA ČR GA206/08/1281; GA ČR GAP505/10/1871 Institutional research plan: CEZ:AV0Z60930519 Keywords : acquired immunity * evolutionary immunology * immunological priming * innate immunity * invertebrates Subject RIV: EG - Zoology Impact factor: 0.554, year: 2011

  15. Connecting the innate and adaptive immune responses in mouse choroidal neovascularization via the anaphylatoxin C5a and γδT-cells

    Coughlin, Beth; Schnabolk, Gloriane; Joseph, Kusumam; Raikwar, Himanshu; Kunchithapautham, Kannan; Johnson, Krista; Moore, Kristi; Wang, Yi; Rohrer, Bärbel

    2016-01-01

    Neovascular age-related macular degeneration (AMD) is characterized by choroidal neovascularization (CNV). An overactive complement system is associated with AMD pathogenesis, and serum pro-inflammatory cytokines, including IL-17, are elevated in AMD patients. IL-17 is produced by complement C5a-receptor-expressing T-cells. In murine CNV, infiltrating γδT- rather than Th17-cells produce the IL-17 measurable in lesioned eyes. Here we asked whether C5a generated locally in response to CNV recruits IL-17-producing T-cells to the eye. CNV lesions were generated using laser photocoagulation and quantified by imaging; T-lymphocytes were characterized by QRT-PCR. CNV resulted in an increase in splenic IL-17-producing γδT- and Th17-cells; yet in the CNV eye, only elevated levels of γδT-cells were observed. Systemic administration of anti-C5- or anti-C5a-blocking antibodies blunted the CNV-induced production of splenic Th17- and γδT-cells, reduced CNV size and eliminated ocular γδT-cell infiltration. In ARPE-19 cell monolayers, IL-17 triggered a pro-inflammatory state; and splenocyte proliferation was elevated in response to ocular proteins. Thus, we demonstrated that CNV lesions trigger a systemic immune response, augmenting local ocular inflammation via the infiltration of IL-17-producing γδT-cells, which are presumably recruited to the eye in a C5a-dependent manner. Understanding the complexity of complement-mediated pathological mechanisms will aid in the development of an AMD treatment. PMID:27029558

  16. Low dose effects. Adaptive response

    The purpose of this work was to evaluate if there are disturbancies in adaptive response when lymphocytes of people living on the polluted with radionuclides area after Chernobyl disaster and liquidators suffered from accident have been investigated. The level of lymphocytes with micronuclei have been scored in Moscow donors and people living in Bryansk region with the degree of contamination 15 - 40 Ci/km. The doses that liquidators have been obtained were not higher then 25 cGy. The mean spontaneous level of MN in control people and people from Chernobyl zones does't differ significantly but the individual variability in the mean value between two populations does not differ significantly too. And in this case it seems that persons of exposed areas. Then another important fact in lymphocytes of people living on polluted areas the chronic low dose irradiation does not induce the adaptive response. In Moscow people in most cases (≅ 59 %) the adaptive response is observed and in some cases the demonstration of adaptive response is not significant (≅1%). In Chernobyl population exposed to chronic low level, low dose rate irradiation there are fewer people here with distinct adaptive response (≅38%). And there appear beings with increased radiosensitivity after conditioned dose. Such population with enhanced radiosensitivity have not observed in Moscow. In liquidators the same types of effects have been registered. These results have been obtained on adults. Adaptive response in children 8 - 14 old population living in Moscow and in Chernobyl zone have been investigated too. In this case the spontaneous level of MN is higher in children living in polluted areas, after the 1.0 Gy irradiation the individual variability is very large. Only 5 % of children have distinct is very large. Only 5 % of children have distinct adaptive response, the enhancement of radiosensitivity after conditioned dose is observed. (authors)

  17. Hypothalamic neurohormones and immune responses

    Quintanar, J. Luis; Guzmán-Soto, Irene

    2013-01-01

    The aim of this review is to provide a comprehensive examination of the current literature describing the neural-immune interactions, with emphasis on the most recent findings of the effects of neurohormones on immune system. Particularly, the role of hypothalamic hormones such as Thyrotropin-releasing hormone (TRH), Corticotropin-releasing hormone (CRH) and Gonadotropin-releasing hormone (GnRH). In the past few years, interest has been raised in extrapituitary actions of these neurohormones due to their receptors have been found in many non-pituitary tissues. Also, the receptors are present in immune cells, suggesting an autocrine or paracrine role within the immune system. In general, these neurohormones have been reported to exert immunomodulatory effects on cell proliferation, immune mediators release and cell function. The implications of these findings in understanding the network of hypothalamic neuropeptides and immune system are discussed. PMID:23964208

  18. Role of DNA repair in host immune response and inflammation.

    Fontes, Fabrícia Lima; Pinheiro, Daniele Maria Lopes; Oliveira, Ana Helena Sales de; Oliveira, Rayssa Karla de Medeiros; Lajus, Tirzah Braz Petta; Agnez-Lima, Lucymara Fassarella

    2015-01-01

    In recent years, the understanding of how DNA repair contributes to the development of innate and acquired immunity has emerged. The DNA damage incurred during the inflammatory response triggers the activation of DNA repair pathways, which are required for host-cell survival. Here, we reviewed current understanding of the mechanism by which DNA repair contributes to protection against the oxidized DNA damage generated during infectious and inflammatory diseases and its involvement in innate and adaptive immunity. We discussed the functional role of DNA repair enzymes in the immune activation and the relevance of these processes to: transcriptional regulation of cytokines and other genes involved in the inflammatory response; V(D)J recombination; class-switch recombination (CSR); and somatic hypermutation (SHM). These three last processes of DNA damage repair are required for effective humoral adaptive immunity, creating genetic diversity in developing T and B cells. Furthermore, viral replication is also dependent on host DNA repair mechanisms. Therefore, the elucidation of the pathways of DNA damage and its repair that activate innate and adaptive immunity will be important for a better understanding of the immune and inflammatory disorders and developing new therapeutic interventions for treatment of these diseases and for improving their outcome. PMID:25795123

  19. Immune response to Encephalitozoon cuniculi infection

    Khan, Imtiaz A.; Moretto, Magali; Weiss, Louis M.

    2001-01-01

    Microsporidia are obligate intracellular parasites, which can cause complications in immunocompromised individuals. Very little is known about the host immune response generated against these infectious agents. Encephalitozoon cuniculi is the best studied microsporidian and the protective immune response against this parasite is mediated by cytotoxic CD8+ T cells.

  20. Immune genes undergo more adaptive evolution than non-immune system genes in Daphnia pulex

    McTaggart Seanna J

    2012-05-01

    Full Text Available Abstract Background Understanding which parts of the genome have been most influenced by adaptive evolution remains an unsolved puzzle. Some evidence suggests that selection has the greatest impact on regions of the genome that interact with other evolving genomes, including loci that are involved in host-parasite co-evolutionary processes. In this study, we used a population genetic approach to test this hypothesis by comparing DNA sequences of 30 putative immune system genes in the crustacean Daphnia pulex with 24 non-immune system genes. Results In support of the hypothesis, results from a multilocus extension of the McDonald-Kreitman (MK test indicate that immune system genes as a class have experienced more adaptive evolution than non-immune system genes. However, not all immune system genes show evidence of adaptive evolution. Additionally, we apply single locus MK tests and calculate population genetic parameters at all loci in order to characterize the mode of selection (directional versus balancing in the genes that show the greatest deviation from neutral evolution. Conclusions Our data are consistent with the hypothesis that immune system genes undergo more adaptive evolution than non-immune system genes, possibly as a result of host-parasite arms races. The results of these analyses highlight several candidate loci undergoing adaptive evolution that could be targeted in future studies.

  1. Oxazolone-induced contact hypersensitivity reduces lymphatic drainage but enhances the induction of adaptive immunity.

    David Aebischer

    Full Text Available Contact hypersensitivity (CHS induced by topical application of haptens is a commonly used model to study dermal inflammatory responses in mice. Several recent studies have indicated that CHS-induced skin inflammation triggers lymphangiogenesis but may negatively impact the immune-function of lymphatic vessels, namely fluid drainage and dendritic cell (DC migration to draining lymph nodes (dLNs. On the other hand, haptens have been shown to exert immune-stimulatory activity by inducing DC maturation. In this study we investigated how the presence of pre-established CHS-induced skin inflammation affects the induction of adaptive immunity in dLNs. Using a mouse model of oxazolone-induced skin inflammation we observed that lymphatic drainage was reduced and DC migration from skin to dLNs was partially compromised. At the same time, a significantly stronger adaptive immune response towards ovalbumin (OVA was induced when immunization had occurred in CHS-inflamed skin as compared to uninflamed control skin. In fact, immunization with sterile OVA in CHS-inflamed skin evoked a delayed-type hypersensitivity (DTH response comparable to the one induced by conventional immunization with OVA and adjuvant in uninflamed skin. Striking phenotypic and functional differences were observed when comparing DCs from LNs draining uninflamed or CHS-inflamed skin. DCs from LNs draining CHS-inflamed skin expressed higher levels of co-stimulatory molecules and MHC molecules, produced higher levels of the interleukin-12/23 p40 subunit (IL-12/23-p40 and more potently induced T cell activation in vitro. Immunization experiments revealed that blockade of IL-12/23-p40 during the priming phase partially reverted the CHS-induced enhancement of the adaptive immune response. Collectively, our findings indicate that CHS-induced skin inflammation generates an overall immune-stimulatory milieu, which outweighs the potentially suppressive effect of reduced lymphatic vessel function.

  2. Adaptive immune-genetic algorithm for global optimization to multivariable function

    2007-01-01

    An adaptive immune-genetic algorithm(AIGA)is proposed to avoid premature convergence and guarantee the diversity of the population.Rapid immune response (secondary response),adaptive mutation and density operators in the AIGA are emphatically designed to improve the searching ability,greatly increase the converging speed,and decrease locating the local maxima due to the premature convergence.The simulation results obtained from the global optimization to four multivariable and multi-extreme functions show that AIGA converges rapidly,guarantees the diversity,stability and good searching ability.

  3. Dendritic Cells under Hypoxia: How Oxygen Shortage Affects the Linkage between Innate and Adaptive Immunity

    Sandra Winning

    2016-01-01

    Full Text Available Dendritic cells (DCs are considered as one of the main regulators of immune responses. They collect antigens, process them, and present typical antigenic structures to lymphocytes, thereby inducing an adaptive immune response. All these processes take place under conditions of oxygen shortage (hypoxia which is often not considered in experimental settings. This review highlights how deeply hypoxia modulates human as well as mouse immature and mature dendritic cell functions. It tries to link in vitro results to actual in vivo studies and outlines how hypoxia-mediated shaping of dendritic cells affects the activation of (innate immunity.

  4. Characteristics of immune response to protozoan infections

    Arsić-Arsenijević Valentina S.; Džamić Aleksandar M.; Mitrović Sanja M.; Radonjić Ivana V.; Kranjčić-Zec Ivana F.

    2003-01-01

    Introduction When protozoa enter the blood stream or tissues they can often survive and replicate because they adapt to the resisting natural host defenses. The interaction of immune system with infectious organisms is a dynamic interplay of host mechanisms aimed at eliminating infections and microbial strategies designed to permit survival in the face of powerful effectors mechanisms. Protozoa cause chronic and persistent infections, because natural immunity against them is weak and because ...

  5. Enhancement of human adaptive immune responses by administration of a high-molecular-weight polysaccharide extract from the cyanobacterium Arthrospira platensisTumor necrosis factor-alpha binding capacity and anti-infliximab antibodies measured by fluid-phase radioimmunoassays as predictors of clinical efficacy of infliximab in Crohn's disease

    Lobner, M.; Walsted, A.; Larsen, R.;

    2008-01-01

    The effect of consumption of Immulina, a high-molecular-weight polysaccharide extract from the cyanobacterium Arthrospira platensis, on adaptive immune responses was investigated by evaluation of changes in leukocyte responsiveness to two foreign recall antigens, Candida albicans (CA) and tetanus...

  6. Quantifying adaptive evolution in the Drosophila immune system.

    Darren J Obbard

    2009-10-01

    Full Text Available It is estimated that a large proportion of amino acid substitutions in Drosophila have been fixed by natural selection, and as organisms are faced with an ever-changing array of pathogens and parasites to which they must adapt, we have investigated the role of parasite-mediated selection as a likely cause. To quantify the effect, and to identify which genes and pathways are most likely to be involved in the host-parasite arms race, we have re-sequenced population samples of 136 immunity and 287 position-matched non-immunity genes in two species of Drosophila. Using these data, and a new extension of the McDonald-Kreitman approach, we estimate that natural selection fixes advantageous amino acid changes in immunity genes at nearly double the rate of other genes. We find the rate of adaptive evolution in immunity genes is also more variable than other genes, with a small subset of immune genes evolving under intense selection. These genes, which are likely to represent hotspots of host-parasite coevolution, tend to share similar functions or belong to the same pathways, such as the antiviral RNAi pathway and the IMD signalling pathway. These patterns appear to be general features of immune system evolution in both species, as rates of adaptive evolution are correlated between the D. melanogaster and D. simulans lineages. In summary, our data provide quantitative estimates of the elevated rate of adaptive evolution in immune system genes relative to the rest of the genome, and they suggest that adaptation to parasites is an important force driving molecular evolution.

  7. The immune response to surgery and infection

    Dąbrowska, Aleksandra M.; Słotwiński, Robert

    2014-01-01

    Surgical trauma affects both the innate and acquired immunity. The severity of immune disorders is proportional to the extent of surgical trauma and depends on a number of factors, including primarily the basic disease requiring surgical treatment (e.g. cancer), often coexisting infections and impaired nutritional status. Disorder of the immune response following surgical trauma may predispose to septic complications burdened with the highest mortality rate. Extensive surgery in cancer patien...

  8. The role of metalloproteinase ADAM17 in regulating ICOS ligand-mediated humoral immune responses

    Marczynska, Joanna; Ozga, Aleksandra; Wlodarczyk, Agnieszka;

    2014-01-01

    Immune cells regulate cell surface receptor expression during their maturation, activation, and motility. Although many of these receptors are regulated largely at the level of expression, protease-mediated ectodomain shedding represents an alternative means of refashioning the surface of immune ...... suggest a functional link between ADAM17 and ICOSL in controlling adaptive immune responses....

  9. Host adaptive immunity deficiency in severe pandemic influenza

    Bermejo-Martin, Jesus F; Martin-Loeches, Ignacio; Rello, Jordi; Antón, Andres; Almansa, Raquel; Xu, Luoling; Lopez-Campos, Guillermo; Pumarola, Tomás; Ran, Longsi; Ramirez, Paula; Banner, David; Cheuk Ng, Derek; Socias, Lorenzo; Loza, Ana; Andaluz, David

    2010-01-01

    Introduction Pandemic A/H1N1/2009 influenza causes severe lower respiratory complications in rare cases. The association between host immune responses and clinical outcome in severe cases is unknown. Methods We utilized gene expression, cytokine profiles and generation of antibody responses following hospitalization in 19 critically ill patients with primary pandemic A/H1N1/2009 influenza pneumonia for identifying host immune responses associated with clinical outcome. Ingenuity pathway analy...

  10. Innate immune responses to Pseudomonas aeruginosa infection

    Lavoie, Elise G.; Wangdi, Tamding; Kazmierczak, Barbara I.

    2011-01-01

    Innate immune responses play a critical role in controlling acute infections due to Pseudomonas aeruginosa in both mice and in humans. In this review we focus on innate immune recognition and clearance mechanisms that are important for controlling P. aeruginosa in the mammalian lung, with particular attention to those that influence the outcome of in vivo infection in murine models.

  11. Effects of recombinant bovine somatotropin during the periparturient period on innate and adaptive immune responses, systemic inflammation, and metabolism of dairy cows.

    Silva, P R B; Machado, K S; Da Silva, D N Lobão; Moraes, J G N; Keisler, D H; Chebel, R C

    2015-07-01

    The aim of this experiment was to determine effects of treating peripartum dairy cows with body condition score ≥3.75 with recombinant bovine somatotropin (rbST) on immune, inflammatory, and metabolic responses. Holstein cows (253±1d of gestation) were assigned randomly to 1 of 3 treatments: untreated control (n=53), rbST87.5 (n=56; 87.5mg of rbST), and rbST125 (n=57; 125mg of rbST). Cows in the rbST87.5 and rbST125 treatments received rbST weekly from -21 to 28d relative to calving. Growth hormone, insulin-like growth factor 1, haptoglobin, tumor necrosis factor α, nonesterified fatty acids, β-hydroxybutyrate, glucose, and cortisol concentrations were determined weekly from -21 to 21d relative to calving. Blood sampled weekly from -14 to 21d relative to calving was used for hemogram and polymorphonuclear leukocyte (PMNL) expression of adhesion molecules, phagocytosis, and oxidative burst. Cows were vaccinated with ovalbumin at -21, -7, and 7d relative to calving, and blood was collected weekly from -21 to 21d relative to calving to determine IgG anti-ovalbumin concentrations. A subsample of cows had liver biopsied -21, -7, and 7d relative to calving to determine total lipids, triglycerides, and glycogen content. Growth hormone concentrations prepartum (control=11.0±1.2, rbST87.5=14.1±1.2, rbST125=15.1±1.3ng/mL) and postpartum (control=14.4±1.1, rbST87.5=17.8±1.2, rbST125=21.8±1.1ng/mL) were highest for rbST125 cows. Cows treated with rbST had higher insulin-like growth factor 1 concentrations than control cows (control=110.5±4.5, rbST87.5=126.2±4.5, rbST125=127.2±4.5ng/mL) only prepartum. Intensity of L-selectin expression was higher for rbST125 than for control and rbST87.5 cows [control=3,590±270, rbST87.5=3,279±271, rbST125=4,371±279 geometric mean fluorescence intensity (GMFI)] in the prepartum period. The PMNL intensities of phagocytosis (control=3,131±130, rbST87.5=3,391±133, rbST125=3,673±137 GMFI) and oxidative burst (control=9,588±746

  12. H. pylori exploits and manipulates innate and adaptive immune cell signaling pathways to establish persistent infection

    Arnold Isabelle C

    2011-11-01

    Full Text Available Abstract Persistent infection with the gastric bacterial pathogen Helicobacter pylori causes gastritis and predisposes carriers to a high gastric cancer risk, but has also been linked to protection from allergic, chronic inflammatory and autoimmune diseases. In the course of tens of thousands of years of co-existence with its human host, H. pylori has evolved elaborate adaptations that allow it to persist in the hostile environment of the stomach in the face of a vigorous innate and adaptive immune response. For this review, we have identified several key immune cell types and signaling pathways that appear to be preferentially targeted by the bacteria to establish and maintain persistent infection. We explore the mechanisms that allow the bacteria to avoid detection by innate immune cells via their pattern recognition receptors, to escape T-cell mediated adaptive immunity, and to reprogram the immune system towards tolerance rather than immunity. The implications of the immunomodulatory properties of the bacteria for the prevention of allergic and auto-immune diseases in chronically infected individuals are also discussed.

  13. Kicking off adaptive immunity: the discovery of dendritic cells

    Katsnelson, Alla

    2006-01-01

    In 1973, Ralph Steinman and Zanvil Cohn discovered an unusual looking population of cells with an unprecedented ability to activate naive T cells. Dubbed “dendritic cells,” these cells are now known as the primary instigators of adaptive immunity.

  14. Immune responses and protection in bovine anaplasmosis and babesiosis

    For many decades there was a consensus of opinion that an induction of effective protective immunity against bovine anaplasmosis and babesiosis requires prior exposure of the host to live, preferably replicating, causative agents of these diseases. A procedure for inducing protective immunity by infection and treatment, known as premunization, is the oldest one. Since then, safer immunization procedures have been developed by altering the virulence of the immunizing organism by fast serial passages in splenectomized calves (B. bovis), exposure of the infective blood to irradiation (B. bigemina), and selection of a mutant (A. marginale) by adapting the organism to growth in an atypical host (sheep). The immune response to live immunogens includes both humoral and cell-mediated components (CMI). Some antibodies appear to be protective; however, the exact mechanism of humoral protection and that of parasite killing by the CMI system are not known. Use of live immunogens under field conditions (whole blood) has met with serious obstacles. Apart from difficulties of maintenance and field dispensation of blood-derived vaccines, there were reports of reversion to virulence of the immunizing agent, and actual broadening of the source of infectious agent for the disease vector. In addition, immunization by infection frequently sets forth a series of host-parasite interacting processes that exert an excessive demand on the host's immune system, leading to immunosuppression and interference with selective anti-parasitic action. (author)

  15. Exosomes in the Immune Response and Tolerance

    修方明; 曹雪涛

    2004-01-01

    Exosomes, secreted by many live cells, are small non-cell vesicles with nanoparticle-grade size. In addition to the original function of discarding the uselessful membrane molecules, exosomes are involved in a range of immunoregulatory functions. Dendritic cell-derived exosomes and tumor-derived exosomes are the best characterized vesicles with potent antitumor effect by efficienfly inducing immune response. Down-regtdation of immune response or induction of immune tolerance is another interesting function of exosomes, Further functional studies of the exosomes will shed light on the application of exosomes。

  16. Immune Response to Giardia duodenalis

    Faubert, Gaétan

    2000-01-01

    The intestinal protozoan Giardia duodenalis is a widespread opportunistic parasite of humans and animals. This parasite inhabits the upper part of the small intestine and has a direct life cycle. After ingestion of cysts, which are the infective stage, the trophozoites emerge from the cysts in the duodenum and attach to the small intestinal mucosa of the host. Since the migration of trophozoites from the lumen of the intestine into surrounding tissues is an unusual occurrence, the immune resp...

  17. Multifaceted interactions between adaptive immunity and the central nervous system.

    Kipnis, Jonathan

    2016-08-19

    Neuroimmunologists seek to understand the interactions between the central nervous system (CNS) and the immune system, both under homeostatic conditions and in diseases. Unanswered questions include those relating to the diversity and specificity of the meningeal T cell repertoire; the routes taken by immune cells that patrol the meninges under healthy conditions and invade the parenchyma during pathology; the opposing effects (beneficial or detrimental) of these cells on CNS function; the role of immune cells after CNS injury; and the evolutionary link between the two systems, resulting in their tight interaction and interdependence. This Review summarizes the current standing of and challenging questions related to interactions between adaptive immunity and the CNS and considers the possible directions in which these aspects of neuroimmunology will be heading over the next decade. PMID:27540163

  18. Protective immune responses in lawsonia intracellularis infections

    Cordes, Henriette; Riber, Ulla; Boutrup, Torsten; Jensen, Tim Kåre; Nguyen, Lien Thi Minh; Jungersen, Gregers

    increase in acute phase response after challenge with a pathogenic isolate. Here we show results from measurements of serology as well as cell-mediated immune responses from this experiment. We found that Lawsonia-specific IgA peaked in serum around day 17-24 after a primary infection in experimentally...... exhibited a high, but short-lasting peak after re-infection. Specific IFN responses were also measured using a whole blood IFN-γ assay. These were very high in challenge infected and re-infected animals as compared to controls. These specific immune responses may contribute to the explanation of mechanisms...

  19. The Adaptive Immune System of Haloferax volcanii

    Lisa-Katharina Maier

    2015-02-01

    Full Text Available To fight off invading genetic elements, prokaryotes have developed an elaborate defence system that is both adaptable and heritable—the CRISPR-Cas system (CRISPR is short for: clustered regularly interspaced short palindromic repeats and Cas: CRISPR associated. Comprised of proteins and multiple small RNAs, this prokaryotic defence system is present in 90% of archaeal and 40% of bacterial species, and enables foreign intruders to be eliminated in a sequence-specific manner. There are three major types (I–III and at least 14 subtypes of this system, with only some of the subtypes having been analysed in detail, and many aspects of the defence reaction remaining to be elucidated. Few archaeal examples have so far been analysed. Here we summarize the characteristics of the CRISPR-Cas system of Haloferax volcanii, an extremely halophilic archaeon originally isolated from the Dead Sea. It carries a single CRISPR-Cas system of type I-B, with a Cascade like complex composed of Cas proteins Cas5, Cas6b and Cas7. Cas6b is essential for CRISPR RNA (crRNA maturation but is otherwise not required for the defence reaction. A systematic search revealed that six protospacer adjacent motif (PAM sequences are recognised by the Haloferax defence system. For successful invader recognition, a non-contiguous seed sequence of 10 base-pairs between the crRNA and the invader is required.

  20. Modulating immune responses with probiotic bacteria.

    Matsuzaki, T; Chin, J

    2000-02-01

    For many years, probiotic bacteria have been known to confer health benefits to the consumer. One possible mechanism for this may be the ability of probiotic bacteria to modulate immune responses. Oral administration of Lactobacillus casei strain Shirota (LcS) has been found to enhance innate immunity by stimulating the activity of splenic NK cells. Oral feeding with killed LcS was able to stimulate the production of Th1 cytokines, resulting in repressed production of IgE antibodies against Ovalbumin in experimental mice. The ability to switch mucosal immune responses towards Th1 with probiotic bacteria provides a strategy for treatment of allergic disorders. Growth of Meth A tumour cells in the lungs was also inhibited by intrapleural injection of LcS. Oral administration of other probiotic bacteria, such as Streptococcus thermophilus (St), Lactobacillus fermentum (Lf) and yeast (Y), elicited different immune responses. Mice that were prefed yeast or Lf followed by feeding with ovalbumin (OVA) responded better to vaccination with OVA than mice not given either probiotic or OVA or mice that had been prefed only OVA. However, antibody responses were significantly suppressed in response to vaccination with OVA in mice that had been prefed yeast followed by yeast and OVA as well as mice prefed Lf followed by Lf and OVA. Prefeeding St followed by OVA feeding enhanced cellular immune responses against ovalbumin. In contrast, mice prefed St followed by St + OVA were hyporesponsive against OVA. While antigen feeding alone appears to prime for an immune response, cofeeding antigen with probiotic bacteria can suppress both antibody and cellular immune responses and may provide an efficacious protocol to attenuate autoimmune diseases, such as experimental allergic encephalomyelitis, by jointly dosing with myelin basic protein and probiotic bacteria. PMID:10651931

  1. Reprogramming immune responses via microRNA modulation

    Cubillos-Ruiz, Juan R.; Rutkowski, Melanie R; Tchou, Julia; Conejo-Garcia, Jose R.

    2013-01-01

    It is becoming increasingly clear that there are unique sets of miRNAs that have distinct governing roles in several aspects of both innate and adaptive immune responses. In addition, new tools allow selective modulation of the expression of individual miRNAs, both in vitro and in vivo. Here, we summarize recent advances in our understanding of how miRNAs drive the activity of immune cells, and how their modulation in vivo opens new avenues for diagnostic and therapeutic interventions in multiple diseases, from immunodeficiency to cancer. PMID:25285232

  2. Plasticity of immunity in response to eating.

    Luoma, Rachel L; Butler, Michael W; Stahlschmidt, Zachary R

    2016-07-01

    Following a meal, an animal can exhibit dramatic shifts in physiology and morphology, as well as a substantial increase in metabolic rate associated with the energetic costs of processing a meal (i.e. specific dynamic action, SDA). However, little is known about the effects of digestion on another important physiological and energetically costly trait: immune function. Thus, we tested two competing hypotheses. (1) Digesting animals up-regulate their immune systems (putatively in response to the increased microbial exposure associated with ingested food). (2) Digesting animals down-regulate their immune systems (presumably to allocate energy to the breakdown of food). We assayed innate immunity (lytic capacity and agglutination) in cornsnakes (Pantherophis guttatus) during and after meal digestion. Lytic capacity was higher in females, and (in support of our first hypothesis) agglutination was higher during absorption. Given its potential energetic cost, immune up-regulation may contribute to SDA. PMID:27099367

  3. Immune responses in multiple myeloma: role of the natural immune surveillance and potential of immunotherapies.

    Guillerey, Camille; Nakamura, Kyohei; Vuckovic, Slavica; Hill, Geoffrey R; Smyth, Mark J

    2016-04-01

    Multiple myeloma (MM) is a tumor of terminally differentiated B cells that arises in the bone marrow. Immune interactions appear as key determinants of MM progression. While myeloid cells foster myeloma-promoting inflammation, Natural Killer cells and T lymphocytes mediate protective anti-myeloma responses. The profound immune deregulation occurring in MM patients may be involved in the transition from a premalignant to a malignant stage of the disease. In the last decades, the advent of stem cell transplantation and new therapeutic agents including proteasome inhibitors and immunoregulatory drugs has dramatically improved patient outcomes, suggesting potentially key roles for innate and adaptive immunity in disease control. Nevertheless, MM remains largely incurable for the vast majority of patients. A better understanding of the complex interplay between myeloma cells and their immune environment should pave the way for designing better immunotherapies with the potential of very long term disease control. Here, we review the immunological microenvironment in myeloma. We discuss the role of naturally arising anti-myeloma immune responses and their potential corruption in MM patients. Finally, we detail the numerous promising immune-targeting strategies approved or in clinical trials for the treatment of MM. PMID:26801219

  4. The genetic regulation of infant immune responses to vaccination

    Melanie eNewport

    2015-02-01

    Full Text Available A number of factors are recognised to influence immune responses to vaccinations including age, gender, the dose and quality of the antigen used, the number of doses given, the route of administration and the nutritional status of the recipient. Additionally, several immunogenetic studies have identified associations between polymorphisms in genes encoding immune response proteins, both innate and adaptive, and variation in responses to vaccines. Variants in the genes encoding Toll-like receptors, HLA molecules, cytokines, cytokine receptors have associated with heterogeneity of responses to a wide range of vaccines including measles, hepatitis B, influenza A, BCG, Haemophilus influenzae type b and certain Neisseria meningitidis serotypes, amongst others. However, the vast majority of these studies have been conducted in older children and adults and there are very few data available from studies conducted in infants. This paper reviews the evidence to date that host genes influencing vaccines responses in these older population and identifies a large gap in our understanding of the genetic regulation of responses in early life. . Given the high mortality from infection in early life and the challenges of developing vaccines that generate effective immune responses in the context of the developing immune system further research on infant populations is required.

  5. 5-Lipoxygenase Pathway, Dendritic Cells, and Adaptive Immunity

    Hedi Harizi

    2004-01-01

    Full Text Available 5-lipoxygenase (5-LO pathway is the major source of potent proinflammatory leukotrienes (LTs issued from the metabolism of arachidonic acid (AA, and best known for their roles in the pathogenesis of asthma. These lipid mediators are mainly released from myeloid cells and may act as physiological autocrine and paracrine signalling molecules, and play a central role in regulating the interaction between innate and adaptive immunity. The biological actions of LTs including their immunoregulatory and proinflammatory effects are mediated through extracellular specific G-protein-coupled receptors. Despite their role in inflammatory cells, such as neutrophils and macrophages, LTs may have important effects on dendritic cells (DC-mediated adaptive immunity. Several lines of evidence show that DC not only are important source of LTs, but also become targets of their actions by producing other lipid mediators and proinflammatory molecules. This review focuses on advances in 5-LO pathway biology, the production of LTs from DC and their role on various cells of immune system and in adaptive immunity.

  6. FEATURES OF THE IMMUNE RESPONSE DURING VIRAL INFECTION

    G. A. Borisov

    2015-06-01

    Full Text Available The aim of the investigation was to select using cluster analysis and comparatively characterize immune disorders types in acute and chronic viral infections. Patients with acute and chronic viral infections (n = 896 were examined: 77 patients with acute viral hepatitis B, 94 — chronic viral hepatitis B, 119 — chronic hepatitis C, 531 — recurrent herpes, 75 — human papillomavirus infection. Healthy persons (n = 466 were examined as control. The research of blood lymphocyte phenotype was performed by flow cytometry. Four-color immunophenotyping were used in the following panels: Т-lymphocytes (CD3+CD19–CD16/56–CD45+, Т-helpers (CD3+CD4+CD45+, cytotoxic Т-cells (CD3+CD8+CD45+, NKcells (CD3–CD16/56+CD45+, B-lymphocytes (CD3–CD19+CD16/56+CD45+. Absolute values were obtained on a dualplatform technology using the results of haematological analysis. The immunoglobulin concentrations were determined by ELISA. The clustering was performed by a single linkage method. The number of clusters was determined on the basis of calculating the values of the Euclidean distance between the mean group values. It was found that the parameters, characterizing the functional state of the various parts of the immune system in acute and chronic viral infections, considerable diversity values. Custer analysis allows to allocate 6 immunotypes defined different states of innate and adaptive immunity: characterized by activation of the innate (increasing the number of neutrophils and NK-cells and adaptive immunity humoral response (increasing the concentration of IgG, characterized by hyperreaction of adaptive immunity (a significant increase in the concentration of IgG, discoordinated (multidirectional changes in the values of immunological parameters, immunodeficiency and unresponsiveness (did not differ from the control parameters immunotypes. It is proved that in patients with viral infections most often determined by the

  7. Distinct signatures of the immune responses in low risk versus high risk neuroblastoma

    Wang Ena

    2011-10-01

    Full Text Available Abstract Background Over 90% of low risk (LR neuroblastoma patients survive whereas less than 30% of high risk (HR patients are long term survivors. Age (children younger than 18 months old is associated with LR disease. Considering that adaptive immune system is well developed in older children, and that T cells were shown to be involved in tumor escape and progression of cancers, we sought to determine whether HR patients may tend to show a signature of adaptive immune responses compared to LR patients who tend to have diminished T-cell responses but an intact innate immune response. Methods We performed microarray analysis of RNA extracted from the tumor specimens of HR and LR patients. Flow cytometry was performed to determine the cellular constituents in the blood while multiplex cytokine array was used to detect the cytokine profile in patients' sera. A HR tumor cell line, SK-N-SH, was also used for detecting the response to IL-1β, a cytokines which is involved in the innate immune responses. Results Distinct patterns of gene expression were detected in HR and LR patients indicating an active T-cell response and a diminished adaptive immune response, respectively. A diminished adaptive immune response in LR patients was evident by higher levels of IL-10 in the sera. In addition, HR patients had lower levels of circulating myeloid derived suppressor cells (MDSC compared with a control LR patient. LR patients showed slightly higher levels of cytokines of the innate immune responses. Treatment of the HR tumor line with IL-1β induced expression of cytokines of the innate immune responses. Conclusions This data suggests that adaptive immune responses may play an important role in the progression of HR disease whereas innate immune responses may be active in LR patients.

  8. Changes in macrophage phenotype as the immune response evolves

    Lichtnekert, Julia; Kawakami, Takahisa; Parks, William C.; Duffield, Jeremy S.

    2013-01-01

    Mononuclear phagocytic cells, including macrophages and dendritic cells, are widely distributed throughout our organs where they perform important homeostatic, surveillance and regenerative tasks. In response to infection or injury, the composition and number of mononuclear phagocytic cells changes remarkably, in part due to the recruitment of inflammatory monocytes from bone marrow. In infection or injury, macrophages and dendritic cells perform important innate and adaptive immune roles fro...

  9. Effect of cellular mobility on immune response

    Pandey, R. B.; Mannion, R.; Ruskin, H. J.

    2000-08-01

    Mobility of cell types in our HIV immune response model is subject to an intrinsic mobility and an explicit directed mobility, which is governed by Pmob. We investigate how restricting the explicit mobility, while maintaining the innate mobility of a viral-infected cell, affects the model's results. We find that increasing the explicit mobility of the immune system cells leads to viral dominance for certain levels of viral mutation. We conclude that increasing immune system cellular mobility indirectly increases the virus’ inherent mobility.

  10. The immune responses of the coral

    C Toledo-Hernández; CP Ruiz-Diaz

    2014-01-01

    Corals are among the most ancient extant animals on earth. Currently, coral viability is threatened, due in part to the increased number of diseases affecting them in recent decades. Understanding how the innate immune systems of corals function is important if we want to predict the fate of corals and their response to the environmental and biological changes they face. In this review we discuss the latest findings regarding the innate immune systems of corals. The review is organized follow...

  11. A specific primed immune response in Drosophila is dependent on phagocytes.

    Linh N Pham

    2007-03-01

    Full Text Available Drosophila melanogaster, like other invertebrates, relies solely on its innate immune response to fight invading microbes; by definition, innate immunity lacks adaptive characteristics. However, we show here that priming Drosophila with a sublethal dose of Streptococcus pneumoniae protects against an otherwise-lethal second challenge of S. pneumoniae. This protective effect exhibits coarse specificity for S. pneumoniae and persists for the life of the fly. Although not all microbial challenges induced this specific primed response, we find that a similar specific protection can be elicited by Beauveria bassiana, a natural fly pathogen. To characterize this primed response, we focused on S. pneumoniae-induced protection. The mechanism underlying this protective effect requires phagocytes and the Toll pathway. However, activation of the Toll pathway is not sufficient for priming-induced protection. This work contradicts the paradigm that insect immune responses cannot adapt and will promote the search for similar responses overlooked in organisms with an adaptive immune response.

  12. The immune responses of the coral

    C Toledo-Hernández

    2014-11-01

    Full Text Available Corals are among the most ancient extant animals on earth. Currently, coral viability is threatened, due in part to the increased number of diseases affecting them in recent decades. Understanding how the innate immune systems of corals function is important if we want to predict the fate of corals and their response to the environmental and biological changes they face. In this review we discuss the latest findings regarding the innate immune systems of corals. The review is organized following the chronology of steps taken by corals from the initial encounter with a potential pathogen and recognition of threats to the orchestration of a response. We begin with the literature describing the repertory of immune-related receptors involved in the recognition of threats and the subsequent pathways leading to an immune response. We then review the effector responses that eliminate the threats described for corals. Finally, we acknowledge the literature of coral microbiology to access the potential role of microbes as an essential constituent of the coral immune system.

  13. Immune Response to Ebola Virus Infection

    Alain Alonso Remedios

    2016-06-01

    Full Text Available Ebola virus belongs to the family Filoviridae and causes a highly lethal hemorrhagic fever. Affected patients show an impaired immune response as a result of the evasion mechanisms employed by the virus. Cathepsin is an enzyme present in the granules of phagocytes which cleaves viral surface glycoproteins, allowing virus entry into the host cell. In addition, this virus is resistant to the antiviral effects of type I interferon, promotes the synthesis of proinflammatory cytokines and induces apoptosis of monocytes and lymphocytes. It also induces an incomplete activation of dendritic cells, thus avoiding the presentation of viral antigens. Although specific antibodies are produced after the first week, their neutralizing capacity is doubtful. The virus evades the immune response and replicates uncontrollably in the host. This paper aims to summarize the main characteristics of the immune response to Ebola virus infection.

  14. Antimicrobial peptides in innate immune responses

    Sorensen, O.E.; Borregaard, N.; Cole, A.M.

    2008-01-01

    novo synthesis or by proteolytic cleavage from antimicrobially inactive proproteins. Studies of human diseases and animal studies have given important clues to the in vivo role of AMPs. It is now evident that dysregulation of the generation of AMPs in innate immune responses plays a role in certain......Antimicrobial peptides (AMPs) are ancient effector molecules in the innate immune response of eukaryotes. These peptides are important for the antimicrobial efficacy of phagocytes and for the innate immune response mounted by epithelia of humans and other mammals. AMPs are generated either by de...... diseases like Crohn's disease and atopic dermatitis. AMPs are attractive candidates for development of novel antibiotics due to their in vivo activity profile and some peptides may serve as templates for further drug development Udgivelsesdato: 2008...

  15. Viral Diversity Threshold for Adaptive Immunity in Prokaryotes

    Ariel D Weinberger; Wolf, Yuri I.; Lobkovsky, Alexander E; Gilmore, Michael S.; Eugene V Koonin

    2012-01-01

    ABSTRACT Bacteria and archaea face continual onslaughts of rapidly diversifying viruses and plasmids. Many prokaryotes maintain adaptive immune systems known as clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (Cas). CRISPR-Cas systems are genomic sensors that serially acquire viral and plasmid DNA fragments (spacers) that are utilized to target and cleave matching viral and plasmid DNA in subsequent genomic invasions, offering critical immunologi...

  16. Was the evolutionary road towards adaptive immunity paved with endothelium?

    van Niekerk, Gustav; Davis, Tanja; Engelbrecht, Anna-Mart

    2015-01-01

    Background The characterization of a completely novel adaptive immune system (AIS) in jawless vertebrates (hagfish and lampreys) presents an excellent opportunity for exploring similarities and differences in design principles. It also highlights a somewhat neglected question: Why did vertebrates, representing only 5 % of all animals, evolve a system as complex as an AIS twice, whereas invertebrates failed to do so? A number of theories have been presented in answer to this question. However,...

  17. Acute psychological stress induces short-term variable immune response.

    Breen, Michael S; Beliakova-Bethell, Nadejda; Mujica-Parodi, Lilianne R; Carlson, Joshua M; Ensign, Wayne Y; Woelk, Christopher H; Rana, Brinda K

    2016-03-01

    In spite of advances in understanding the cross-talk between the peripheral immune system and the brain, the molecular mechanisms underlying the rapid adaptation of the immune system to an acute psychological stressor remain largely unknown. Conventional approaches to classify molecular factors mediating these responses have targeted relatively few biological measurements or explored cross-sectional study designs, and therefore have restricted characterization of stress-immune interactions. This exploratory study analyzed transcriptional profiles and flow cytometric data of peripheral blood leukocytes with physiological (endocrine, autonomic) measurements collected throughout the sequence of events leading up to, during, and after short-term exposure to physical danger in humans. Immediate immunomodulation to acute psychological stress was defined as a short-term selective up-regulation of natural killer (NK) cell-associated cytotoxic and IL-12 mediated signaling genes that correlated with increased cortisol, catecholamines and NK cells into the periphery. In parallel, we observed down-regulation of innate immune toll-like receptor genes and genes of the MyD88-dependent signaling pathway. Correcting gene expression for an influx of NK cells revealed a molecular signature specific to the adrenal cortex. Subsequently, focusing analyses on discrete groups of coordinately expressed genes (modules) throughout the time-series revealed immune stress responses in modules associated to immune/defense response, response to wounding, cytokine production, TCR signaling and NK cell cytotoxicity which differed between males and females. These results offer a spring-board for future research towards improved treatment of stress-related disease including the impact of stress on cardiovascular and autoimmune disorders, and identifies an immune mechanism by which vulnerabilities to these diseases may be gender-specific. PMID:26476140

  18. Asthma as a chronic disease of the innate and adaptive immune systems responding to viruses and allergens

    Holtzman, Michael J.

    2012-01-01

    Research on the pathogenesis of asthma has traditionally concentrated on environmental stimuli, genetic susceptibilities, adaptive immune responses, and end-organ alterations (particularly in airway mucous cells and smooth muscle) as critical steps leading to disease. The focus of this cascade has been the response to allergic stimuli. An alternative scheme suggests that respiratory viruses and the consequent response of the innate immune system also drives the development of asthma as well a...

  19. Injury-induced immune responses in Hydra.

    Wenger, Yvan; Buzgariu, Wanda; Reiter, Silke; Galliot, Brigitte

    2014-08-01

    The impact of injury-induced immune responses on animal regenerative processes is highly variable, positive or negative depending on the context. This likely reflects the complexity of the innate immune system that behaves as a sentinel in the transition from injury to regeneration. Early-branching invertebrates with high regenerative potential as Hydra provide a unique framework to dissect how injury-induced immune responses impact regeneration. A series of early cellular events likely require an efficient immune response after amputation, as antimicrobial defence, epithelial cell stretching for wound closure, migration of interstitial progenitors toward the wound, cell death, phagocytosis of cell debris, or reconstruction of the extracellular matrix. The analysis of the injury-induced transcriptomic modulations of 2636 genes annotated as immune genes in Hydra identified 43 genes showing an immediate/early pulse regulation in all regenerative contexts examined. These regulations point to an enhanced cytoprotection via ROS signaling (Nrf, C/EBP, p62/SQSMT1-l2), TNFR and TLR signaling (TNFR16-like, TRAF2l, TRAF5l, jun, fos-related, SIK2, ATF1/CREB, LRRC28, LRRC40, LRRK2), proteasomal activity (p62/SQSMT1-l1, Ced6/Gulf, NEDD8-conjugating enzyme Ubc12), stress proteins (CRYAB1, CRYAB2, HSP16.2, DnaJB9, HSP90a1), all potentially regulating NF-κB activity. Other genes encoding immune-annotated proteins such as NPYR4, GTPases, Swap70, the antiproliferative BTG1, enzymes involved in lipid metabolism (5-lipoxygenase, ACSF4), secreted clotting factors, secreted peptidases are also pulse regulated upon bisection. By contrast, metalloproteinases and antimicrobial peptide genes largely follow a context-dependent regulation, whereas the protease inhibitor α2macroglobulin gene exhibits a sustained up-regulation. Hence a complex immune response to injury is linked to wound healing and regeneration in Hydra. PMID:25086685

  20. Optically Triggered Immune Response through Photocaged Oligonucleotides

    Govan, Jeane M.; Young, Douglas D.; Lively, Mark O.

    2015-01-01

    Bacterial and viral CpG oligonculeotides are unmethylated cytosine-phosphate-guanosine dinucleotide sequences and trigger an innate immune response through activation of the toll-like receptor 9 (TLR9). We have developed synthetic photocaged CpGs via site-specific incorporation of nitropiperonyloxymethyl (NPOM)-caged thymidine residues. These oligonucleotides enable the optical control of TLR9 function and thereby provide light-activation of an immune response. We provide a proof-of-concept model by applying a reporter assay in live cells and by quantification of endogenous production of interleukin 6. PMID:26034339

  1. IL-17A in Human Respiratory Diseases: Innate or Adaptive Immunity? Clinical Implications

    Dominique M. A. Bullens

    2013-01-01

    Full Text Available Since the discovery of IL-17 in 1995 as a T-cell cytokine, inducing IL-6 and IL-8 production by fibroblasts, and the report of a separate T-cell lineage producing IL-17(A, called Th17 cells, in 2005, the role of IL-17 has been studied in several inflammatory diseases. By inducing IL-8 production and subsequent neutrophil attraction towards the site of inflammation, IL-17A can link adaptive and innate immune responses. More specifically, its role in respiratory diseases has intensively been investigated. We here review its role in human respiratory diseases and try to unravel the question whether IL-17A only provides a link between the adaptive and innate respiratory immunity or whether this cytokine might also be locally produced by innate immune cells. We furthermore briefly discuss the possibility to reduce local IL-17A production as a treatment option for respiratory diseases.

  2. Immune response from a resource allocation perspective

    Wendy Mercedes Rauw

    2012-12-01

    Full Text Available The immune system is a life history trait that can be expected to trade off against other life history traits. Whether or not a trait is considered to be a life history trait has consequences for the expectation on how it responds to natural selection and evolution; in addition, it may have consequences for the outcome of artificial selection when included in the breeding objective. The immune system involved in pathogen resistance comprises multiple mechanisms that define a host’s defensive capacity. Immune resistance involves employing mechanisms that either prevent pathogens from invading or eliminate the pathogens when they do invade. On the other hand, tolerance involves limiting the damage that is caused by the infection. Both tolerance and resistance traits require (reallocation of resources and carry physiological costs. Examples of trade-offs between immune function and growth, reproduction and stress response are provided in this review, in addition to consequences of selection for increased production on immune function and vice versa. Reaction norms are used to deal with questions of immune resistance versus tolerance to pathogens that relate host health to infection intensity. In essence, selection for immune tolerance in livestock is a particular case of selection for animal robustness. Since breeding goals that include robustness traits are required in the implementation of more sustainable agricultural production systems, it is of interest to investigate whether immune tolerance is a robustness trait that is positively correlated with overall animal robustness. Considerably more research is needed to estimate the shapes of the cost functions of different immune strategies, and investigate trade-offs and cross-over benefits of selection for disease resistance and/or disease tolerance in livestock production.

  3. Delayed adaptive immunity is related to higher MMR vaccine-induced antibody titers in children.

    Strömbeck, Anna; Lundell, Anna-Carin; Nordström, Inger; Andersson, Kerstin; Adlerberth, Ingegerd; Wold, Agnes E; Rudin, Anna

    2016-04-01

    There are notable inter-individual variations in vaccine-specific antibody responses in vaccinated children. The aim of our study was to investigate whether early-life environmental factors and adaptive immune maturation prior and close to measles-mumps-rubella (MMR) immunization relate to magnitudes of vaccine-specific antibody titers. In the FARMFLORA birth cohort, including both farming and non-farming families, children were immunized with the MMR vaccine at 18 months of age. MMR vaccine-induced antibody titers were measured in plasma samples obtained at 36 months of age. Infants' blood samples obtained at birth, 3-5 days and at 4 and 18 months of age were analyzed for T- and B-cell numbers, proportions of naive and memory T and B cells, and fractions of putative regulatory T cells. Multivariate factor analyses show that higher anti-MMR antibody titers were associated with a lower degree of adaptive immune maturation, that is, lower proportions of memory T cells and a lower capacity of mononuclear cells to produce cytokines, but with higher proportions of putative regulatory T cells. Further, children born by cesarean section (CS) had significantly higher anti-measles titers than vaginally-born children; and CS was found to be associated with delayed adaptive immunity. Also, girls presented with significantly higher anti-mumps and anti-rubella antibody levels than boys at 36 months of age. These results indicate that delayed adaptive immune maturation before and in close proximity to immunization seems to be advantageous for the ability of children to respond with higher anti-MMR antibody levels after vaccination. PMID:27195118

  4. Modulation of cell proliferation, survival and gene expression by RAGE and TLR signaling in cells of the innate and adaptive immune response: role of p38 MAPK and NF-KB

    de MEDEIROS, Marcell Costa; FRASNELLI, Sabrina Cruz Tfaile; BASTOS, Alliny de Souza; ORRICO, Silvana Regina Perez; ROSSA JUNIOR, Carlos

    2014-01-01

    Objective The aim of this study was to evaluate a possible synergism between AGE-RAGE and TLR4 signaling and the role of p38 MAPK and NF-kB signaling pathways on the modulation of the expression of inflammatory cytokines and proliferation of cells from the innate and adaptive immune response. Material and Methods T lymphocyte (JM) and monocyte (U937) cell lines were stimulated with LPS and AGE-BSA independently and associated, both in the presence and absence of p38 MAPK and NF-kB inhibitors. Proliferation was assessed by direct counting and viability was assessed by a biochemical assay of mitochondrial function. Cytokine gene expression for RAGe, CCL3, CCR5, IL-6 and TNF-α was studied by RT-PCR and RT-qPCR. Results RAGE mRNA expression was detected in both cell lines. LPS and AGE-BSA did not influence cell proliferation and viability of either cell line up to 72 hours. LPS and LPS associated with AGE induced expression of IL-6 and TNF-α in monocytes and T cells, respectively. Conclusions There is no synergistic effect between RAGE and TLR signaling on the expression of IL-6, TNF-α , RAGE, CCR5 and CCL3 by monocytes and lymphocytes. Activation of RAGE associated or not with TLR signaling also had no effect on cell proliferation and survival of these cell types. PMID:25025559

  5. Platelets in Pulmonary Immune Responses and Inflammatory Lung Diseases.

    Middleton, Elizabeth A; Weyrich, Andrew S; Zimmerman, Guy A

    2016-10-01

    Platelets are essential for physiological hemostasis and are central in pathological thrombosis. These are their traditional and best known activities in health and disease. In addition, however, platelets have specializations that broaden their functional repertoire considerably. These functional capabilities, some of which are recently discovered, include the ability to sense and respond to infectious and immune signals and to act as inflammatory effector cells. Human platelets and platelets from mice and other experimental animals can link the innate and adaptive limbs of the immune system and act across the immune continuum, often also linking immune and hemostatic functions. Traditional and newly recognized facets of the biology of platelets are relevant to defensive, physiological immune responses of the lungs and to inflammatory lung diseases. The emerging view of platelets as blood cells that are much more diverse and versatile than previously thought further predicts that additional features of the biology of platelets and of megakaryocytes, the precursors of platelets, will be discovered and that some of these will also influence pulmonary immune defenses and inflammatory injury. PMID:27489307

  6. Tactics used by HIV-1 to evade host innate, adaptive, and intrinsic immunities

    LU Lu; YU Fei; DU Lan-ying; XU Wei; JIANG Shi-bo

    2013-01-01

    Objective To review the mechanisms by which HIV evades different components of the host immune system.Data sources This review is based on data obtained from published articles from 1991 to 2012.To perform the PubMed literature search,the following key words were input:HIV and immune evasion.Study selection Articles containing information related to HIV immune evasion were selected.Results Although HIV is able to induce vigorous antiviral immune responses,viral replication cannot be fully controlled,and neither pre-existing infected cells nor latent HIV infection can be completely eradicated.Like many other enveloped viruses,HIV can escape recognition by the innate and adaptive immune systems.Recent findings have demonstrated that HIV can also successfully evade host restriction factors,the components of intrinsic immune system,such as APOBEC3G (apolipoprotein B mRNA-editing enzyme,catalytic polypeptide-like 3G),TRIM5α (tripartite motif 5-α),tetherin,and SAMHD1 (SAM-domain HD-domain containing protein).Conclusions HIV immune evasion plays an important role in HIV pathcgenesis.Fully understanding the tactics deployed by HIV to evade various components of the host immune systems will allow for the development of novel strategies aimed toward the prevention and cure of HIV/AIDS.

  7. The 3 major types of innate and adaptive cell-mediated effector immunity.

    Annunziato, Francesco; Romagnani, Chiara; Romagnani, Sergio

    2015-03-01

    The immune system has tailored its effector functions to optimally respond to distinct species of microbes. Based on emerging knowledge on the different effector T-cell and innate lymphoid cell (ILC) lineages, it is clear that the innate and adaptive immune systems converge into 3 major kinds of cell-mediated effector immunity, which we propose to categorize as type 1, type 2, and type 3. Type 1 immunity consists of T-bet(+) IFN-γ-producing group 1 ILCs (ILC1 and natural killer cells), CD8(+) cytotoxic T cells (TC1), and CD4(+) TH1 cells, which protect against intracellular microbes through activation of mononuclear phagocytes. Type 2 immunity consists of GATA-3(+) ILC2s, TC2 cells, and TH2 cells producing IL-4, IL-5, and IL-13, which induce mast cell, basophil, and eosinophil activation, as well as IgE antibody production, thus protecting against helminthes and venoms. Type 3 immunity is mediated by retinoic acid-related orphan receptor γt(+) ILC3s, TC17 cells, and TH17 cells producing IL-17, IL-22, or both, which activate mononuclear phagocytes but also recruit neutrophils and induce epithelial antimicrobial responses, thus protecting against extracellular bacteria and fungi. On the other hand, type 1 and 3 immunity mediate autoimmune diseases, whereas type 2 responses can cause allergic diseases. PMID:25528359

  8. Enhancing Immune Responses for Cancer Therapy

    Shao-An Xue; Hans J Stauss

    2007-01-01

    Although the immune system possesses the means to respond to cancer, it often fails to control the spread of malignancy. Nonetheless, equipping endogenous immunity to release a strong antitumor response has significant advantages over conventional therapies. This review explores some of the options available to accomplish this,focusing first on vaccinations with tumor antigens to stimulate the immune system and empower stronger antitumor responses. We then compare and contrast the so-far limited clinical success of vaccination with the well-documented curative potential of adoptive therapy using T lymphocytes transfer. Finally, we highlight novel approaches using T cell receptor (TCR) gene transfer strategy to exploit allogeneic T cell repertoires in conjunction with receptors selected in vitro for defined MHC/peptide combinations, as a basis for antigen-specific gene therapy of cancers.

  9. Graphene Oxides Decorated with Carnosine as an Adjuvant To Modulate Innate Immune and Improve Adaptive Immunity in Vivo.

    Meng, Chunchun; Zhi, Xiao; Li, Chao; Li, Chuanfeng; Chen, Zongyan; Qiu, Xusheng; Ding, Chan; Ma, Lijun; Lu, Hongmin; Chen, Di; Liu, Guangqing; Cui, Daxiang

    2016-02-23

    Current studies have revealed the immune effects of graphene oxide (GO) and have utilized them as vaccine carriers and adjuvants. However, GO easily induces strong oxidative stress and inflammatory reaction at the site of injection. It is very necessary to develop an alternative adjuvant based on graphene oxide derivatives for improving immune responses and decreasing side effects. Carnosine (Car) is an outstanding and safe antioxidant. Herein, the feasibility and efficiency of ultrasmall graphene oxide decorated with carnosine as an alternative immune adjuvant were explored. OVA@GO-Car was prepared by simply mixing ovalbumin (OVA, a model antigen) with ultrasmall GO covalently modified with carnosine (GO-Car). We investigated the immunological properties of the GO-Car adjuvant in model mice. Results show that OVA@GO-Car can promote robust and durable OVA-specific antibody response, increase lymphocyte proliferation efficiency, and enhance CD4(+) T and CD8(+) T cell activation. The presence of Car in GO also probably contributes to enhancing the antigen-specific adaptive immune response through modulating the expression of some cytokines, including IL-6, CXCL1, CCL2, and CSF3. In addition, the safety of GO-Car as an adjuvant was evaluated comprehensively. No symptoms such as allergic response, inflammatory redness swelling, raised surface temperatures, physiological anomalies of blood, and remarkable weight changes were observed. Besides, after modification with carnosine, histological damages caused by GO-Car in lung, muscle, kidney, and spleen became weaken significantly. This study sufficiently suggest that GO-Car as a safe adjuvant can effectively enhance humoral and innate immune responses against antigens in vivo. PMID:26766427

  10. Immune Response in Mussels To Environmental Pollution.

    Pryor, Stephen C.; Facher, Evan

    1997-01-01

    Describes the use of mussels in measuring the extent of chemical contamination and its variation in different coastal regions. Presents an experiment to introduce students to immune response and the effects of environmental pollution on marine organisms. Contains 14 references. (JRH)

  11. Phagocytosis, a cellular immune response in insects

    C Rosales

    2011-06-01

    Full Text Available Insects like many other organisms are exposed to a wide range of infectious agents. Defense against these agents is provided by innate immune systems, which include physical barriers, humoral responses, and cellular responses. The humoral responses are characterized by the production of antimicrobial peptides, while the cellular defense responses include nodulation, encapsulation, melanization and phagocytosis. The phagocytic process, whereby cells ingest large particles, is of fundamental importance for insects’ development and survival. Phagocytic cells recognize foreign particles through a series of receptors on their cell membrane for pathogen-associated molecules. These receptors in turn initiate a series of signaling pathways that instruct the cell to ingest and eventually destroy the foreign particle. This review describes insect innate humoral and cellular immune functions with emphasis on phagocytosis. Recent advances in our understanding of the phagocytic cell types in various insect species; the receptors involved and the signaling pathways activated during phagocytosis are discussed.

  12. Ovine model for studying pulmonary immune responses

    Joel, D.D.; Chanana, A.D.

    1984-11-25

    Anatomical features of the sheep lung make it an excellent model for studying pulmonary immunity. Four specific lung segments were identified which drain exclusively to three separate lymph nodes. One of these segments, the dorsal basal segment of the right lung, is drained by the caudal mediastinal lymph node (CMLN). Cannulation of the efferent lymph duct of the CMLN along with highly localized intrabronchial instillation of antigen provides a functional unit with which to study factors involved in development of pulmonary immune responses. Following intrabronchial immunization there was an increased output of lymphoblasts and specific antibody-forming cells in efferent CMLN lymph. Continuous divergence of efferent lymph eliminated the serum antibody response but did not totally eliminate the appearance of specific antibody in fluid obtained by bronchoalveolar lavage. In these studies localized immunization of the right cranial lobe served as a control. Efferent lymphoblasts produced in response to intrabronchial antigen were labeled with /sup 125/I-iododeoxyuridine and their migrational patterns and tissue distribution compared to lymphoblasts obtained from the thoracic duct. The results indicated that pulmonary immunoblasts tend to relocate in lung tissue and reappear with a higher specific activity in pulmonary lymph than in thoracic duct lymph. The reverse was observed with labeled intestinal lymphoblasts. 35 references, 2 figures, 3 tables.

  13. Ovine model for studying pulmonary immune responses

    Anatomical features of the sheep lung make it an excellent model for studying pulmonary immunity. Four specific lung segments were identified which drain exclusively to three separate lymph nodes. One of these segments, the dorsal basal segment of the right lung, is drained by the caudal mediastinal lymph node (CMLN). Cannulation of the efferent lymph duct of the CMLN along with highly localized intrabronchial instillation of antigen provides a functional unit with which to study factors involved in development of pulmonary immune responses. Following intrabronchial immunization there was an increased output of lymphoblasts and specific antibody-forming cells in efferent CMLN lymph. Continuous divergence of efferent lymph eliminated the serum antibody response but did not totally eliminate the appearance of specific antibody in fluid obtained by bronchoalveolar lavage. In these studies localized immunization of the right cranial lobe served as a control. Efferent lymphoblasts produced in response to intrabronchial antigen were labeled with 125I-iododeoxyuridine and their migrational patterns and tissue distribution compared to lymphoblasts obtained from the thoracic duct. The results indicated that pulmonary immunoblasts tend to relocate in lung tissue and reappear with a higher specific activity in pulmonary lymph than in thoracic duct lymph. The reverse was observed with labeled intestinal lymphoblasts. 35 references, 2 figures, 3 tables

  14. Inflammation and Immune Response in COPD: Where Do We Stand?

    Nikoletta Rovina

    2013-01-01

    Full Text Available Increasing evidence indicates that chronic inflammatory and immune responses play key roles in the development and progression of COPD. Recent data provide evidence for a role in the NLRP3 inflammasome in the airway inflammation observed in COPD. Cigarette smoke activates innate immune cells by triggering pattern recognition receptors (PRRs to release “danger signal”. These signals act as ligands to Toll-like receptors (TLRs, triggering the production of cytokines and inducing innate inflammation. In smokers who develop COPD there appears to be a specific pattern of inflammation in the airways and parenchyma as a result of both innate and adaptive immune responses, with the predominance of CD8+ and CD4+ cells, and in the more severe disease, with the presence of lymphoid follicles containing B lymphocytes and T cells. Furthermore, viral and bacterial infections interfere with the chronic inflammation seen in stable COPD and exacerbations via pathogen-associated molecular patterns (PAMPs. Finally, autoimmunity is another novel aspect that may play a critical role in the pathogenesis of COPD. This review is un update of the currently discussed roles of inflammatory and immune responses in the pathogenesis of COPD.

  15. Cell signalling in the immune response of mussel hemocytes

    L Canesi

    2006-05-01

    Full Text Available In this work data on immune cell signallling in the circulating hemocytes of the edible bivalve, themussel Mytilus spp, are summarized. Studies with different bacterial species and strains, heterologouscytokines and natural hormones, as well as with organic environmental chemicals, led to theidentification of the role of conserved components of kinase-mediated transduction pathways,including cytosolic kinases (such as MAPKs and PKC and kinase-activated transcription factors (suchas STATs, CREB, NF-kB, in the immune response. From these data a general scenario emergedindicating that close similarities exist in the signalling pathways involved in cell mediated immunity inbivalve and mammalian immunocytes. In particular, the results indicate that both the extent andduration of activation of components of kinase-mediated cascades are crucial in determining thehemocyte response to extracellular stimuli. The identification of the basic mechanisms of immunityand its modulation in mussels can give important information for the possible utilization of thesespecies as an invertebrate model for studies on innate immunity. Moreover, the application of thisknowledge to the understanding of the actual adaptive responses of bivalves when exposed to microorganismsin their natural environment can represent significant ecological, economical and publichealth-related interest.

  16. The Effect of Radiation on the Immune Response to Cancers

    Bonggoo Park

    2014-01-01

    Full Text Available In cancer patients undergoing radiation therapy, the beneficial effects of radiation can extend beyond direct cytotoxicity to tumor cells. Delivery of localized radiation to tumors often leads to systemic responses at distant sites, a phenomenon known as the abscopal effect which has been attributed to the induction and enhancement of the endogenous anti-tumor innate and adaptive immune response. The mechanisms surrounding the abscopal effect are diverse and include trafficking of lymphocytes into the tumor microenvironment, enhanced tumor recognition and killing via up-regulation of tumor antigens and antigen presenting machinery and, induction of positive immunomodulatory pathways. Here, we discuss potential mechanisms of radiation-induced enhancement of the anti-tumor response through its effect on the host immune system and explore potential combinational immune-based strategies such as adoptive cellular therapy using ex vivo expanded NK and T cells as a means of delivering a potent effector population in the context of radiation-enhanced anti-tumor immune environment.

  17. Immune adaptive Gaussian mixture par ticle filter for state estimation

    Wenlong Huang; Xiaodan Wang; Yi Wang; Guohong Li

    2015-01-01

    The particle filter (PF) is a flexible and powerful sequen-tial Monte Carlo (SMC) technique capable of modeling nonlinear, non-Gaussian, and nonstationary dynamical systems. However, the generic PF suffers from particle degeneracy and sample im-poverishment, which greatly affects its performance for nonlinear, non-Gaussian tracking problems. To deal with those issues, an improved PF is proposed. The algorithm consists of a PF that uses an immune adaptive Gaussian mixture model (IAGM) based immune algorithm to re-approximate the posterior density. At the same time, three immune antibody operators are embed in the new filter. Instead of using a resample strategy, the newest obser-vation and conditional likelihood are integrated into those immune antibody operators to update the particles, which can further im-prove the diversity of particles, and drive particles toward their close local maximum of the posterior probability. The improved PF algorithm can produce a closed-form expression for the posterior state distribution. Simulation results show the proposed algorithm can maintain the effectiveness and diversity of particles and avoid sample impoverishment, and its performance is superior to several PFs and Kalman filters.

  18. Policing of gut microbiota by the adaptive immune system.

    Dollé, Laurent; Tran, Hao Q; Etienne-Mesmin, Lucie; Chassaing, Benoit

    2016-01-01

    The intestinal microbiota is a large and diverse microbial community that inhabits the intestine, containing about 100 trillion bacteria of 500-1000 distinct species that, collectively, provide benefits to the host. The human gut microbiota composition is determined by a myriad of factors, among them genetic and environmental, including diet and medication. The microbiota contributes to nutrient absorption and maturation of the immune system. As reciprocity, the host immune system plays a central role in shaping the composition and localization of the intestinal microbiota. Secretory immunoglobulins A (sIgAs), component of the adaptive immune system, are important player in the protection of epithelium, and are known to have an important impact on the regulation of microbiota composition. A recent study published in Immunity by Fransen and colleagues aimed to mechanistically decipher the interrelationship between sIgA and microbiota diversity/composition. This commentary will discuss these important new findings, as well as how future therapies can ultimately benefit from such discovery. PMID:26867587

  19. Changes in macrophage phenotype as the immune response evolves

    Lichtnekert, Julia; Kawakami, Takahisa; Parks, William C.; Duffield, Jeremy S.

    2013-01-01

    Mononuclear phagocytic cells, including macrophages and dendritic cells, are widely distributed throughout our organs where they perform important homeostatic, surveillance and regenerative tasks. In response to infection or injury, the composition and number of mononuclear phagocytic cells changes remarkably, in part due to the recruitment of inflammatory monocytes from bone marrow. In infection or injury, macrophages and dendritic cells perform important innate and adaptive immune roles from the initial insult through repair and regeneration of the tissue and resolution of inflammation. Evidence from mouse models of disease has shown increasing complexity and subtlety to the mononuclear phagocytic system, which will be reviewed here. New studies show that in addition to monocytes, the resident populations of mononuclear phagocytes expand in disease states and play distinct but important roles in the immune response. Finally, new insights into these functionally diverse cells are now translating into therapeutics to treat human disease. PMID:23747023

  20. An overview of HCV molecular biology, replication and immune responses

    Nawaz Zafar

    2011-04-01

    Full Text Available Abstract Hepatitis C virus (HCV causes acute and chronic hepatitis which can eventually lead to permanent liver damage, hepatocellular carcinoma and death. Currently, there is no vaccine available for prevention of HCV infection due to high degree of strain variation. The current treatment of care, Pegylated interferon α in combination with ribavirin is costly, has significant side effects and fails to cure about half of all infections. In this review, we summarize molecular virology, replication and immune responses against HCV and discussed how HCV escape from adaptive and humoral immune responses. This advance knowledge will be helpful for development of vaccine against HCV and discovery of new medicines both from synthetic chemistry and natural sources.

  1. Vitamin E, immune response, and disease resistance.

    Tengerdy, R P

    1989-01-01

    Vitamin E as a dietary supplement or as part of an adjuvant vaccine formulation increases humoral and cell-mediated immunity and disease resistance in laboratory animals, farm animals, and humans. Adjuvant administration has far greater effect than dietary supplementation. Vitamin E as an antioxidant protects the cells of the immune response from peroxidative damage; possibly through a modulation of lipoxygenation of arachidonic acid, vitamin E alters cell membrane functions and cell-cell interactions. The most pronounced effect of vitamin E is on immune phagocytosis. Dietary supplementation is beneficial to animals, especially under stress, in decreasing susceptibility to infections. Vitamin E adjuvant vaccines have provided greater immunoprotection against enterotoxemia and epididymitis in sheep than conventional vaccines. PMID:2698109

  2. Dynamics of adaptive immunity against phage in bacterial populations

    Bradde, Serena; Tesileanu, Tiberiu; Balasubramanian, Vijay

    2015-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeats) mechanism allows bacteria to adaptively defend against phages by acquiring short genomic sequences (spacers) that target specific sequences in the viral genome. We propose a population dynamical model where immunity can be both acquired and lost. The model predicts regimes where bacterial and phage populations can co-exist, others where the populations oscillate, and still others where one population is driven to extinction. Our model considers two key parameters: (1) ease of acquisition and (2) spacer effectiveness in conferring immunity. Analytical calculations and numerical simulations show that if spacers differ mainly in ease of acquisition, or if the probability of acquiring them is sufficiently high, bacteria develop a diverse population of spacers. On the other hand, if spacers differ mainly in their effectiveness, their final distribution will be highly peaked, akin to a "winner-take-all" scenario, leading to a specialized spacer ...

  3. The microbiota in adaptive immune homeostasis and disease.

    Honda, Kenya; Littman, Dan R

    2016-07-01

    In the mucosa, the immune system's T cells and B cells have position-specific phenotypes and functions that are influenced by the microbiota. These cells play pivotal parts in the maintenance of immune homeostasis by suppressing responses to harmless antigens and by enforcing the integrity of the barrier functions of the gut mucosa. Imbalances in the gut microbiota, known as dysbiosis, can trigger several immune disorders through the activity of T cells that are both near to and distant from the site of their induction. Elucidation of the mechanisms that distinguish between homeostatic and pathogenic microbiota-host interactions could identify therapeutic targets for preventing or modulating inflammatory diseases and for boosting the efficacy of cancer immunotherapy. PMID:27383982

  4. Regulatory T cells in cutaneous immune responses.

    Honda, Tetsuya; MIYACHI, YOSHIKI; Kabashima, Kenji

    2011-01-01

    Regulatory T cells (Treg) are a subset of T cells with strong immunosuppressive activity. In the skin, it has recently been revealed that Treg play important roles not only in the maintenance of skin homeostasis but also in the regulation of the immune responses, such as contact hypersensitivity and atopic dermatitis. Furthermore, the skin plays important roles in the induction of Treg in the periphery. In this review, we will provide an overview of the mechanism of Treg-mediated immunosuppre...

  5. ELISpot for measuring human immune responses to vaccines

    Slota, Meredith; Lim, Jong-Baeck; Dang, Yushe; Disis, Mary L

    2011-01-01

    The enzyme-linked immunosorbent spot (ELISpot) assay is one of the most commonly used methods to measure antigen-specific T cells in both mice and humans. Some of the primary reasons for the popularity of the method are that ELISpot is highly quantitative, can measure a broad range of magnitudes of response and is capable of assessing critical cellular immune-related activities such as IFN-γ secretion and granzyme B release. Furthermore, ELISpot is adaptable not only to the evaluation of a va...

  6. Augmented Designs to Assess Immune Response in Vaccine Trials

    Follmann, Dean

    2006-01-01

    This article introduces methods for use in vaccine clinical trials to help determine whether the immune response to a vaccine is actually causing a reduction in the infection rate. This is not easy because immune response to the (say HIV) vaccine is only observed in the HIV vaccine arm. If we knew what the HIV-specific immune response in placebo recipients would have been, had they been vaccinated, this immune response could be treated essentially like a baseline covariate and an interaction ...

  7. Protective immune responses in lawsonia intracellularis infections

    Cordes, Henriette; Riber, Ulla; Boutrup, Torsten;

    primary L. intracellularis experimental infection in pigs protects against re-colonisation (re-infection) with a virulent L. intracellularis isolate. After re-infection the animals had reduced L. intracellularis colonisation of the intestinal mucosa compared to controls, no bacterial shedding and no...... exhibited a high, but short-lasting peak after re-infection. Specific IFN responses were also measured using a whole blood IFN-γ assay. These were very high in challenge infected and re-infected animals as compared to controls. These specific immune responses may contribute to the explanation of mechanisms...... behind the observed protection against re-infection with L. intracellularis....

  8. Regulation of immune cell responses by semaphorins and their receptors

    Takamatsu, Hyota; Okuno, Tatsusada; Kumanogoh, Atsushi

    2010-01-01

    Semaphorins were originally identified as axon guidance factors involved in the development of the neuronal system. However, accumulating evidence indicates that several members of semaphorins, so-called ‘immune semaphorins', are crucially involved in various phases of immune responses. These semaphorins regulate both immune cell interactions and immune cell trafficking during physiological and pathological immune responses. Here, we review the following two functional aspects of semaphorins ...

  9. Flavobacterium psychrophilum - Experimental challenge and immune response

    Henriksen, Maya Maria Mihályi

    the immune system of the fry is not fully developed. Theoretically, the infection pressure could be subdued by vaccinating larger fish, but no commercial vaccine is yet available. Diagnostic methods are well described and the disease is treated with antibiotics. To prevent disease outbreaks and...... periods without disease. The main purpose and focus of the present thesis was to increase knowledge of the immune response following infection with F. psychrophilum, which may contribute to the future development of vaccines and other preventive measures. The project consisted of three main tasks: 1......The disease rainbow trout fry syndrome (RTFS) is caused by the bacterial fish pathogen Flavobacterium psychrophilum. It has been the cause of great losses of rainbow trout in aquacultures both in Denmark and around the world. It was estimated that RTFS resulted in the death of 88 million fry in...

  10. Asthma as a chronic disease of the innate and adaptive immune systems responding to viruses and allergens.

    Holtzman, Michael J

    2012-08-01

    Research on the pathogenesis of asthma has traditionally concentrated on environmental stimuli, genetic susceptibilities, adaptive immune responses, and end-organ alterations (particularly in airway mucous cells and smooth muscle) as critical steps leading to disease. The focus of this cascade has been the response to allergic stimuli. An alternative scheme suggests that respiratory viruses and the consequent response of the innate immune system also drives the development of asthma as well as related inflammatory diseases. This conceptual shift raises the possibility that sentinel cells such as airway epithelial cells, DCs, NKT cells, innate lymphoid cells, and macrophages also represent critical components of asthma pathogenesis as well as new targets for therapeutic discovery. A particular challenge will be to understand and balance the innate as well as the adaptive immune responses to defend the host against acute infection as well as chronic inflammatory disease. PMID:22850884

  11. FDG-PET response-adapted therapy

    Hutchings, Martin

    2014-01-01

    Fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) is the most accurate tool for staging, treatment monitoring, and response evaluation in Hodgkin lymphoma (HL). Early determination of treatment sensitivity by FDG-PET is the best tool to guide individualized......, response-adapted treatment. Several ongoing or recently completed trials have investigated the use of FDG-PET/CT for early response-adapted HL therapy. The results are encouraging, but the data are immature, and PET response-adapted HL therapy is discouraged outside the setting of clinical trials. PET...

  12. Potential for Cell-Mediated Immune Responses in Mouse Models of Pelizaeus-Merzbacher Disease

    Southwood, Cherie M.; Bozena Fykkolodziej; Fabien Dachet; Alexander Gow

    2013-01-01

    Although activation of the innate and adaptive arms of the immune system are undoubtedly involved in the pathophysiology of neurodegenerative diseases, it is unclear whether immune system activation is a primary or secondary event. Increasingly, published studies link primary metabolic stress to secondary inflammatory responses inside and outside of the nervous system. In this study, we show that the metabolic stress pathway known as the unfolded protein response (UPR) leads to secondary acti...

  13. Influence of Immune Responses in Gene/Stem Cell Therapies for Muscular Dystrophies

    Andrea Farini

    2014-01-01

    Full Text Available Muscular dystrophies (MDs are a heterogeneous group of diseases, caused by mutations in different components of sarcolemma, extracellular matrix, or enzymes. Inflammation and innate or adaptive immune response activation are prominent features of MDs. Various therapies under development are directed toward rescuing the dystrophic muscle damage using gene transfer or cell therapy. Here we discussed current knowledge about involvement of immune system responses to experimental therapies in MDs.

  14. Immune Responses to Virulent and Vaccine Strains of Infectious Bronchitis Viruses in Chickens.

    Chhabra, Rajesh; Chantrey, Julian; Ganapathy, Kannan

    2015-11-01

    Infectious bronchitis (IB) is an acute and highly contagious chicken viral disease, causing severe economic losses to poultry producers worldwide. In the last few decades, infectious bronchitis virus (IBV) has been extensively studied, but knowledge of immune responses to virulent or vaccine strains of IBVs remains limited. This review focuses on fundamental aspects of immune responses against IBV, including the role of pattern recognition receptors (PRRs) in identification of conserved viral structures and the role of different components of innate immunity (e.g., heterophils, macrophages, dendritic cells, acute phase protein, and cytokines). Studies on adaptive immune activation and the role of humoral and cellular immunity in IBV clearance are also reviewed. Multiple interlinking immune responses are essential for protection against virulent IBVs, including passive, innate, adaptive, and effector T cells active at mucosal surfaces. Although the development of approaches for chicken transcriptome and proteome analyses have greatly helped the understanding of the underlying genetic mechanisms for immunity, there are still major knowledge gaps, such as the role of mucosal and cellular responses to IBVs. In view of recent reports of emergent IBV variants in many countries, there is renewed interest in a more complete understanding of poultry immune responses to both virulent and vaccine strains of IBVs. This will be critical for developing new vaccine or vaccination strategies and other intervention programs. PMID:26301315

  15. Anti-tumor immune response after photodynamic therapy

    Mroz, Pawel; Castano, Ana P.; Wu, Mei X.; Kung, Andrew L.; Hamblin, Michael R.

    2009-06-01

    Anti-tumor immunity is stimulated after PDT due a number of factors including: the acute inflammatory response caused by PDT, release of antigens from PDT-damaged tumor cells, priming of the adaptive immune system to recognize tumor-associated antigens (TAA), and induction of heat-shock proteins. The induction of specific CD8+ T-lymphocyte cells that recognize major histocompatibility complex class I (MHC-I) restricted epitopes of TAAs is a highly desirable goal in cancer therapy as it would allow the treatment of tumors that may have already metastasized. The PDT killed tumor cells may be phagocytosed by dendritic cells (DC) that then migrate to draining lymph nodes and prime naÃve T-cells that recognize TAA epitopes. We have carried out in vivo PDT with a BPD-mediated vascular regimen using a pair of BALB/c mouse colon carcinomas: CT26 wild type expressing the naturally occurring retroviral antigen gp70 and CT26.CL25 additionally expressing beta-galactosidase (b-gal) as a model tumor rejection antigen. PDT of CT26.CL25 cured 100% of tumors but none of the CT26WT tumors (all recurred). Cured CT26.CL25 mice were resistant to rechallenge. Moreover mice with two bilateral CT26.CL25 tumors that had only one treated with PDT demonstrated spontaneous regression of 70% of untreated contralateral tumors. T-lymphocytes were isolated from lymph nodes of PDT cured mice that recognized a particular peptide specific to b-gal antigen. T-lymphocytes from LN were able to kill CT26.CL25 target cells in vitro but not CT26WT cells as shown by a chromium release assay. CT26.CL25 tumors treated with PDT and removed five days later had higher levels of Th1 cytokines than CT26 WT tumors showing a higher level of immune response. When mice bearing CT26WT tumors were treated with a regimen of low dose cyclophosphamide (CY) 2 days before, PDT led to 100% of cures (versus 0% without CY) and resistance to rechallenge. Low dose CY is thought to deplete regulatory T-cells (Treg, CD4+CD25+foxp

  16. Adaptive immunity against gut microbiota enhances apoE-mediated immune regulation and reduces atherosclerosis and western-diet-related inflammation.

    Saita, Diego; Ferrarese, Roberto; Foglieni, Chiara; Esposito, Antonio; Canu, Tamara; Perani, Laura; Ceresola, Elisa Rita; Visconti, Laura; Burioni, Roberto; Clementi, Massimo; Canducci, Filippo

    2016-01-01

    Common features of immune-metabolic and inflammatory diseases such as metabolic syndrome, diabetes, obesity and cardiovascular diseases are an altered gut microbiota composition and a systemic pro-inflammatory state. We demonstrate that active immunization against the outer membrane protein of bacteria present in the gut enhances local and systemic immune control via apoE-mediated immune-modulation. Reduction of western-diet-associated inflammation was obtained for more than eighteen weeks after immunization. Immunized mice had reduced serum cytokine levels, reduced insulin and fasting glucose concentrations; and gene expression in both liver and visceral adipose tissue confirmed a reduced inflammatory steady-state after immunization. Moreover, both gut and atherosclerotic plaques of immunized mice showed reduced inflammatory cells and an increased M2 macrophage fraction. These results suggest that adaptive responses directed against microbes present in our microbiota have systemic beneficial consequences and demonstrate the key role of apoE in this mechanism that could be exploited to treat immune-metabolic diseases. PMID:27383250

  17. Dynamics of adaptive immunity against phage in bacterial populations

    Bradde, Serena; Vucelja, Marija; Tesileanu, Tiberiu; Balasubramanian, Vijay

    The CRISPR (clustered regularly interspaced short palindromic repeats) mechanism allows bacteria to adaptively defend against phages by acquiring short genomic sequences (spacers) that target specific sequences in the viral genome. We propose a population dynamical model where immunity can be both acquired and lost. The model predicts regimes where bacterial and phage populations can co-exist, others where the populations oscillate, and still others where one population is driven to extinction. Our model considers two key parameters: (1) ease of acquisition and (2) spacer effectiveness in conferring immunity. Analytical calculations and numerical simulations show that if spacers differ mainly in ease of acquisition, or if the probability of acquiring them is sufficiently high, bacteria develop a diverse population of spacers. On the other hand, if spacers differ mainly in their effectiveness, their final distribution will be highly peaked, akin to a ``winner-take-all'' scenario, leading to a specialized spacer distribution. Bacteria can interpolate between these limiting behaviors by actively tuning their overall acquisition rate.

  18. Immune Response of Amebiasis and Immune Evasion by Entamoeba histolytica

    Nakada-Tsukui, Kumiko; Nozaki, Tomoyoshi

    2016-01-01

    Entamoeba histolytica is a protozoan parasite and the causative agent of amebiasis. It is estimated approximately 1% of humans are infected with E. histolytica, resulting in an estimate of 100,000 deaths annually. Clinical manifestations of amebic infection range widely from asymptomatic to severe symptoms, including dysentery and extra-intestinal abscesses. Like other infectious diseases, it is assumed that only ~20% of infected individuals develop symptoms, and genetic factors of both the parasite and humans as well as the environmental factors, e.g., microbiota, determine outcome of infection. There are multiple essential steps in amebic infection: degradation of and invasion into the mucosal layer, adherence to the intestinal epithelium, invasion into the tissues, and dissemination to other organs. While the mechanisms of invasion and destruction of the host tissues by the amebae during infection have been elucidated at the molecular levels, it remains largely uncharacterized how the parasite survive in the host by evading and attacking host immune system. Recently, the strategies for immune evasion by the parasite have been unraveled, including immunomodulation to suppress IFN-γ production, elimination of immune cells and soluble immune mediators, and metabolic alterations against reactive oxygen and nitrogen species to fend off the attack from immune system. In this review, we summarized the latest knowledge on immune reaction and immune evasion during amebiasis. PMID:27242782

  19. Immune Response of Amebiasis and Immune Evasion by Entamoeba histolytica.

    Nakada-Tsukui, Kumiko; Nozaki, Tomoyoshi

    2016-01-01

    Entamoeba histolytica is a protozoan parasite and the causative agent of amebiasis. It is estimated approximately 1% of humans are infected with E. histolytica, resulting in an estimate of 100,000 deaths annually. Clinical manifestations of amebic infection range widely from asymptomatic to severe symptoms, including dysentery and extra-intestinal abscesses. Like other infectious diseases, it is assumed that only ~20% of infected individuals develop symptoms, and genetic factors of both the parasite and humans as well as the environmental factors, e.g., microbiota, determine outcome of infection. There are multiple essential steps in amebic infection: degradation of and invasion into the mucosal layer, adherence to the intestinal epithelium, invasion into the tissues, and dissemination to other organs. While the mechanisms of invasion and destruction of the host tissues by the amebae during infection have been elucidated at the molecular levels, it remains largely uncharacterized how the parasite survive in the host by evading and attacking host immune system. Recently, the strategies for immune evasion by the parasite have been unraveled, including immunomodulation to suppress IFN-γ production, elimination of immune cells and soluble immune mediators, and metabolic alterations against reactive oxygen and nitrogen species to fend off the attack from immune system. In this review, we summarized the latest knowledge on immune reaction and immune evasion during amebiasis. PMID:27242782

  20. The early antitumor immune response is necessary for tumor growth

    Parmiani, Giorgio; Maccalli, Cristina

    2012-01-01

    Early events responsible of tumor growth in patients with a normal immune system are poorly understood. Here, we discuss, in the context of human melanoma, the Prehn hypothesis according to which a weak antitumor immune response may be required for tumor growth before weakly or non-immunogenic tumor cell subpopulations are selected by the immune system.

  1. Th17 cells confer long-term adaptive immunity to oral mucosal Candida albicans infections.

    Hernández-Santos, N; Huppler, A R; Peterson, A C; Khader, S A; McKenna, K C; Gaffen, S L

    2013-09-01

    Oropharyngeal candidiasis (OPC) is an opportunistic infection caused by Candida albicans. Despite its prevalence, little is known about C. albicans-specific immunity in the oral mucosa. Vaccines against Candida generate both T helper type 1 (Th1) and Th17 responses, and considerable evidence implicates interleukin (IL)-17 in immunity to OPC. However, IL-17 is also produced by innate immune cells that are remarkably similar to Th17 cells, expressing the same markers and localizing to similar mucosal sites. To date, the relative contribution(s) of Th1, Th17, and innate IL-17-producing cells in OPC have not been clearly defined. Here, we sought to determine the nature and function of adaptive T-cell responses to OPC, using a new recall infection model. Mice subjected to infection and re-challenge with Candida mounted a robust and stable antigen-specific IL-17 response in CD4+ but not CD8+ T cells. There was little evidence for Th1 or Th1/Th17 responses. The Th17 response promoted accelerated fungal clearance, and Th17 cells could confer protection in Rag1-/- mice upon adoptive transfer. Surprisingly, CD4 deficiency did not cause OPC but was instead associated with compensatory IL-17 production by Tc17 and CD3+CD4-CD8- cells. Therefore, classic CD4+Th17 cells protect from OPC but can be compensated by other IL-17-producing cells in CD4-deficient hosts. PMID:23250275

  2. Neuroendocrine and Immune System Responses with Spaceflights

    Tipton, Charles M.; Greenleaf, John E.; Jackson, Catherine G. R.

    1996-01-01

    Despite the fact that the first human was in space during 1961 and individuals have existed in a microgravity environment for more than a year, there are limited spaceflight data available on the responses of the neuroendocrine and immune systems. Because of mutual interactions between these respective integrative systems, it is inappropriate to assume that the responses of one have no impact on functions of the other. Blood and plasma volume consistently decrease with spaceflight; hence, blood endocrine and immune constituents will be modified by both gravitational and measurement influences. The majority of the in-flight data relates to endocrine responses that influence fluids and electrolytes during the first month in space. Adrenocorticotropin (ACTH), aldo-sterone. and anti-diuretic hormone (ADH) appear to be elevated with little change in the atrial natriuretic peptides (ANP). Flight results longer than 60 d show increased ADH variability with elevations in angiotensin and cortisol. Although post-flight results are influenced by reentry and recovery events, ACTH and ADH appear to be consistently elevated with variable results being reported for the other hormones. Limited in-flight data on insulin and growth hormone levels suggest they are not elevated to counteract the loss in muscle mass. Post-flight results from short- and long-term flights indicate that thyroxine and insulin are increased while growth hormone exhibits minimal change. In-flight parathyroid hormone (PTH) levels are variable for several weeks after which they remain elevated. Post-flight PTH was increased on missions that lasted either 7 or 237 d, whereas calcitonin concentrations were increased after 1 wk but decreased after longer flights. Leukocytes are elevated in flights of various durations because of an increase in neutrophils. The majority of post-flight data indicates immunoglobulin concentrations are not significantly changed from pre-flight measurements. However, the numbers of T

  3. Rotavirus Antagonism of the Innate Immune Response

    Michelle M. Arnold

    2009-11-01

    Full Text Available Rotavirus is a primary cause of severe dehydrating gastroenteritis in infants and young children. The virus is sensitive to the antiviral effects triggered by the interferon (IFN-signaling pathway, an important component of the host cell innate immune response. To counteract these effects, rotavirus encodes a nonstructural protein (NSP1 that induces the degradation of proteins involved in regulating IFN expression, such as members of the IFN regulatory factor (IRF family. In some instances, NSP1 also subverts IFN expression by causing the degradation of a component of the E3 ubiquitin ligase complex responsible for activating NF-κB. By antagonizing multiple components of the IFN-induction pathway, NSP1 aids viral spread and contributes to rotavirus pathogenesis.

  4. Suppression of adaptive immunity to heterologous antigens during Plasmodium infection through hemozoin-induced failure of dendritic cell function

    Phillips R

    2006-04-01

    Full Text Available Abstract Background Dendritic cells (DCs are central to the initiation and regulation of the adaptive immune response during infection. Modulation of DC function may therefore allow evasion of the immune system by pathogens. Significant depression of the host's systemic immune response to both concurrent infections and heterologous vaccines has been observed during malaria infection, but the mechanisms underlying this immune hyporesponsiveness are controversial. Results Here, we demonstrate that the blood stages of malaria infection induce a failure of DC function in vitro and in vivo, causing suboptimal activation of T cells involved in heterologous immune responses. This effect on T-cell activation can be transferred to uninfected recipients by DCs isolated from infected mice. Significantly, T cells activated by these DCs subsequently lack effector function, as demonstrated by a failure to migrate to lymphoid-organ follicles, resulting in an absence of B-cell responses to heterologous antigens. Fractionation studies show that hemozoin, rather than infected erythrocyte (red blood cell membranes, reproduces the effect of intact infected red blood cells on DCs. Furthermore, hemozoin-containing DCs could be identified in T-cell areas of the spleen in vivo. Conclusion Plasmodium infection inhibits the induction of adaptive immunity to heterologous antigens by modulating DC function, providing a potential explanation for epidemiological studies linking endemic malaria with secondary infections and reduced vaccine efficacy.

  5. Adaptive response of Peruvian Hake to overfishing

    Mendo, C.W.; Carrasco, R.G.

    2000-01-01

    Compensatory mechanisms of the Peruvian hake population (Merluccius gayi peruanus) in response to heavy exploitation and changes in species interaction are discussed. Changes in the rate of cannibalism, diet composition, maximization of fecundity and behavioral adaptation are noted.

  6. Enhancement of adaptive immunity to Neisseria gonorrhoeae by local intravaginal administration of microencapsulated interleukin 12.

    Liu, Yingru; Egilmez, Nejat K; Russell, Michael W

    2013-12-01

    Gonorrhea remains one of the most frequent infectious diseases, and Neisseria gonorrhoeae is emerging as resistant to most available antibiotics, yet it does not induce a state of specific protective immunity against reinfection. Our recent studies have demonstrated that N. gonorrhoeae proactively suppresses host T-helper (Th) 1/Th2-mediated adaptive immune responses, which can be manipulated to generate protective immunity. Here we show that intravaginally administered interleukin 12 (IL-12) encapsulated in sustained-release polymer microspheres significantly enhanced both Th1 and humoral immune responses in a mouse model of genital gonococcal infection. Treatment of mice with IL-12 microspheres during gonococcal challenge led to faster clearance of infection and induced resistance to reinfection, with the generation of gonococcus-specific circulating immunoglobulin G and vaginal immunoglobulin A and G antibodies. These results suggest that local administration of microencapsulated IL-12 can serve as a novel therapeutic and prophylactic strategy against gonorrhea, with implications for the development of an effective vaccine. PMID:24048962

  7. Preserved antiviral adaptive immunity following polyclonal antibody immunotherapy for severe murine influenza infection

    Stevens, Natalie E.; Hatjopolous, Antoinette; Fraser, Cara K.; Alsharifi, Mohammed; Diener, Kerrilyn R.; Hayball, John D.

    2016-01-01

    Passive immunotherapy may have particular benefits for the treatment of severe influenza infection in at-risk populations, however little is known of the impact of passive immunotherapy on the formation of memory responses to the virus. Ideally, passive immunotherapy should attenuate the severity of infection while still allowing the formation of adaptive responses to confer protection from future exposure. In this study, we sought to determine if administration of influenza-specific ovine polyclonal antibodies could inhibit adaptive immune responses in a murine model of lethal influenza infection. Ovine polyclonal antibodies generated against recombinant PR8 (H1N1) hemagglutinin exhibited potent prophylactic capacity and reduced lethality in an established influenza infection, particularly when administered intranasally. Surviving mice were also protected against reinfection and generated normal antibody and cytotoxic T lymphocyte responses to the virus. The longevity of ovine polyclonal antibodies was explored with a half-life of over two weeks following a single antibody administration. These findings support the development of an ovine passive polyclonal antibody therapy for treatment of severe influenza infection which does not affect the formation of subsequent acquired immunity to the virus. PMID:27380890

  8. Preserved antiviral adaptive immunity following polyclonal antibody immunotherapy for severe murine influenza infection.

    Stevens, Natalie E; Hatjopolous, Antoinette; Fraser, Cara K; Alsharifi, Mohammed; Diener, Kerrilyn R; Hayball, John D

    2016-01-01

    Passive immunotherapy may have particular benefits for the treatment of severe influenza infection in at-risk populations, however little is known of the impact of passive immunotherapy on the formation of memory responses to the virus. Ideally, passive immunotherapy should attenuate the severity of infection while still allowing the formation of adaptive responses to confer protection from future exposure. In this study, we sought to determine if administration of influenza-specific ovine polyclonal antibodies could inhibit adaptive immune responses in a murine model of lethal influenza infection. Ovine polyclonal antibodies generated against recombinant PR8 (H1N1) hemagglutinin exhibited potent prophylactic capacity and reduced lethality in an established influenza infection, particularly when administered intranasally. Surviving mice were also protected against reinfection and generated normal antibody and cytotoxic T lymphocyte responses to the virus. The longevity of ovine polyclonal antibodies was explored with a half-life of over two weeks following a single antibody administration. These findings support the development of an ovine passive polyclonal antibody therapy for treatment of severe influenza infection which does not affect the formation of subsequent acquired immunity to the virus. PMID:27380890

  9. Molecular immune response of channel catfish immunized with live theronts of Ichthyophthirius multifiliis.

    Xu, De-Hai; Zhang, Qi-Zhong; Shoemaker, Craig A; Zhang, Dunhua; Moreira, Gabriel S A

    2016-07-01

    The parasite Ichthyophthirius multifiliis (Ich) has been reported in various freshwater fishes worldwide and results in severe losses to both food and aquarium fish production. The fish surviving natural infections or immunized with live theronts develop strong specific and non-specific immune responses. Little is known about how these immune genes are induced or how they interact and lead to specific immunity against Ichthyophthirius multifiliis in channel catfish Ictalurus punctatus. This study evaluated the differential expression of immune-related genes, including immunoglobulin, immune cell receptor, cytokine, complement factor and toll-like receptors in head kidney from channel catfish at different time points after immunization with live theronts of I. multifiliis. The immunized fish showed significantly higher anti-Ich antibody expressed as immobilization titer and ELISA titer than those of control fish. The vast majority of immunized fish (95%) survived theront challenge. Expression of IgM and IgD heavy chain genes exhibited a rapid increase from 4 hour (h4) to 2 days (d2) post immunization. Expression of immune cell receptor genes (CD4, CD8-α, MHC I, MHC II β, TcR-α, and TcR-β) showed up-regulation from h4 to d6 post immunization, indicating that different immune cells were actively involved in cellular immune response. Cytokine gene expression (IL-1βa, IL-1βb, IFN-γ and TNF-α) increased rapidly at h4 post immunization and were at an up-regulated level until d2 compared to the bovine serum albumin control. Expression of complement factor and toll-like receptor genes exhibited a rapid increase from h4 to d2 post immunization. Results of this study demonstrated differential expression of genes involved in the specific or non-specific immune response post immunization and that the vaccination against Ich resulted in protection against infection by I. multifiliis. PMID:27044331

  10. Age-Dependent Cell Trafficking Defects in Draining Lymph Nodes Impair Adaptive Immunity and Control of West Nile Virus Infection.

    Justin M Richner

    2015-07-01

    Full Text Available Impaired immune responses in the elderly lead to reduced vaccine efficacy and increased susceptibility to viral infections. Although several groups have documented age-dependent defects in adaptive immune priming, the deficits that occur prior to antigen encounter remain largely unexplored. Herein, we identify novel mechanisms for compromised adaptive immunity that occurs with aging in the context of infection with West Nile virus (WNV, an encephalitic flavivirus that preferentially causes disease in the elderly. An impaired IgM and IgG response and enhanced vulnerability to WNV infection during aging was linked to delayed germinal center formation in the draining lymph node (DLN. Adoptive transfer studies and two-photon intravital microscopy revealed a decreased trafficking capacity of donor naïve CD4+ T cells from old mice, which manifested as impaired T cell diapedesis at high endothelial venules and reduced cell motility within DLN prior to antigen encounter. Furthermore, leukocyte accumulation in the DLN within the first few days of WNV infection or antigen-adjuvant administration was diminished more generally in old mice and associated with a second aging-related defect in local cytokine and chemokine production. Thus, age-dependent cell-intrinsic and environmental defects in the DLN result in delayed immune cell recruitment and antigen recognition. These deficits compromise priming of early adaptive immune responses and likely contribute to the susceptibility of old animals to acute WNV infection.

  11. Wolbachia symbiosis and insect immune response

    Stefanos Siozios; Panagiotis Sapountzis; Panagiotis Ioannidis; Kostas Bourtzis

    2008-01-01

    Bacterial intracellular symbiosis is very common in insects, having significant consequences in promoting the evolution of life and biodiversity. The bacterial group that has recently attracted particular attention is Wolbachia pipientis which probably represents the most ubiquitous endosymbiont on the planet. W. pipientis is a Gram-negative obligatory intracellular and maternally transmitted α-proteobacterium, that is able to establish symbiotic associations with arthropods and nematodes. In arthropods, Wolbachia pipientis infections have been described in Arachnida, in Isopoda and mainly in Insecta. They have been reported in almost all major insect orders including Diptera, Coleoptera, Hemiptera,Hymenoptera, Orthoptera and Lepidoptera. To enhance its transmission, W. pipientis can manipulate host reproduction by inducing parthenogenesis, feminization, male killing and cytoplasmic incompatibility. Several polymerase chain reaction surveys have indicated that up to 70% of all insect species may be infected with W. pipientis. How does W. pipientis manage to get established in diverse insect host species? How is this intracellular bacterial symbiont species so successful in escaping the host immune response? The present review presents recent advances and ongoing scientific efforts in the field. The current body of knowledge in the field is summarized, revelations from the available genomic information are presented and as yet unanswered questions are discussed in an attempt to present a comprehensive picture of the unique ability of W. pipientis to establish symbiosis and to manipulate reproduction while evading the host's immune system.

  12. Nanomaterial Induced Immune Responses and Cytotoxicity.

    Ali, Ashraf; Suhail, Mohd; Mathew, Shilu; Shah, Muhammad Ali; Harakeh, Steve M; Ahmad, Sultan; Kazmi, Zulqarnain; Alhamdan, Mohammed Abdul Rahman; Chaudhary, Adeel; Damanhouri, Ghazi Abdullah; Qadri, Ishtiaq

    2016-01-01

    Nanomaterials are utilized in a wide array of end user products such as pharmaceuticals, electronics, clothes and cosmetic products. Due to its size (< 100 nm), nanoparticles have the propensity to enter through the airway and skin, making its path perilous with the potential to cause damages of varying severity. Once within the body, these particles have unconstrained access to different tissues and organs including the brain, liver, and kidney. As a result, nanomaterials may cause the perturbation of the immune system eliciting an inflammatory response and cytotoxicity. This potential role is dependent on many factors such as the characteristics of the nanomaterials, presence or absence of diseases, and genetic predisposition. Cobalt and nickel nanoparticles, for example, were shown to have inflammogenic properties, while silver nanoparticles were shown to reduce allergic inflammation. Just as asbestos fibers, carbon nanotubes were shown to cause lungs damage. Some nanomaterials were shown, based on animal studies, to result in cell damage, leading to the formation of pre-cancerous lesions. This review highlights the impact of nanomaterials on immune system and its effect on human health with toxicity consideration. It recommends the development of suitable animal models to study the toxicity and bio-clearance of nanomaterials and propose safety guidelines. PMID:27398432

  13. Malaria vaccines and human immune responses.

    Long, Carole A; Zavala, Fidel

    2016-08-01

    Despite reductions in malaria episodes and deaths over the past decade, there is still significant need for more effective tools to combat this serious global disease. The positive results with the Phase III trial of RTS,S directed to the circumsporozoite protein of Plasmodium falciparum have established that a vaccine against malaria can provide partial protection to children in endemic areas, but its limited efficacy and relatively short window of protection mandate that new generations of more efficacious vaccines must be sought. Evidence shows that anti-parasite immune responses can control infection against other stages as well, but translating these experimental findings into vaccines for blood stages has been disappointing and clinical efforts to test a transmission blocking vaccine are just beginning. Difficulties include the biological complexity of the organism with a large array of stage-specific genes many of which in the erythrocytic stages are antigenically diverse. In addition, it appears necessary to elicit high and long-lasting antibody titers, address the redundant pathways of merozoite invasion, and still seek surrogate markers of protective immunity. Most vaccine studies have focused on a single or a few antigens with an apparent functional role, but this is likely to be too restrictive, and broad, multi-antigen, multi-stage vaccines need further investigation. Finally, novel tools and biological insights involving parasite sexual stages and the mosquito vector will provide new avenues for reducing or blocking malaria transmission. PMID:27262417

  14. Local Immune Response in Helicobacter pylori Infection.

    Kivrak Salim, Derya; Sahin, Mehmet; Köksoy, Sadi; Adanir, Haydar; Süleymanlar, Inci

    2016-05-01

    There have been few studies concerning the cytokine profiles in gastric mucosa of Helicobacter pylori-infected patients with normal mucosa, chronic gastritis, and gastric carcinoma (GAC).In the present study, we aimed to elucidate the genomic expression levels and immune pathological roles of cytokines-interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-4, IL-6, IL-10, transforming growth factor (TGF)-β, IL-17A, IL-32-in H pylori-infected patients with normal gastric mucosa (NGM; control), chronic active gastritis (CAG), and GAC. Genomic expression levels of these cytokines were assayed by real-time PCR analysis in gastric biopsy specimens obtained from 93 patients.We found that the genomic expression levels of IFN-γ, TNF-α, IL-6, IL-10, IL-17A mRNA were increased in the CAG group and those of TNF-α, IL-6, IL-10, IL-17A, TGF-β mRNA were increased in the GAC group with reference to H pylori-infected NGM group.This study is on the interest of cytokine profiles in gastric mucosa among individuals with normal, gastritis, or GAC. Our findings suggest that the immune response of gastric mucosa to infection of H pylori differs from patient to patient. For individual therapy, levels of genomic expression of IL-6 or other cytokines may be tracked in patients. PMID:27196487

  15. Essential oil of clove (Eugenia caryophyllata) augments the humoral immune response but decreases cell mediated immunity.

    Halder, Sumita; Mehta, Ashish K; Mediratta, Pramod K; Sharma, Krishna K

    2011-08-01

    The present study was undertaken to explore the effect of the essential oil isolated from the buds of Eugenia caryophyllata on some immunological parameters. Humoral immunity was assessed by measuring the hemagglutination titre to sheep red blood cells and delayed type hypersensitivity was assessed by measuring foot pad thickness. Clove oil administration produced a significant increase in the primary as well as secondary humoral immune response. In addition, it also produced a significant decrease in foot pad thickness compared with the control group. Thus, these results suggest that clove oil can modulate the immune response by augmenting humoral immunity and decreasing cell mediated immunity. PMID:21796701

  16. Local immune response and protection in the guinea pig keratoconjunctivitis model following immunization with Shigella vaccines.

    Hartman, A B; Van De Verg, L L; Collins, H H; Tang, D B; Bendiuk, N O; Taylor, D N; Powell, C J

    1994-01-01

    This study used the guinea pig keratoconjunctivitis model to examine the importance of route of administration (mucosal versus parenteral), frequency and timing of immunization (primary versus boosting immunization), and form of antigen given (live attenuated vaccine strain versus O-antigen-protein conjugate) on the production of protective immunity against Shigella infection. Since local immune response to the lipopolysaccharide (LPS) O-antigen of Shigella spp. is thought to be important for...

  17. Lack of immune deficiency in sarcoidosis: compartmentalisation of the immune response.

    Hudspith, B N; Flint, K C; Geraint-James, D; Brostoff, J; Johnson, N. M.

    1987-01-01

    The original findings of peripheral anergy in sarcoidosis led to the conclusion that sarcoidosis was a disease associated with immune deficiency, but patients with sarcoidosis do not appear to suffer from repeated infections suggestive of immune suppression. With the technique of bronchoalveolar lavage it is now possible to examine the local immune response within the lung, the most commonly affected organ in sarcoidosis. In this study three different indices of cell mediated immunity (lympho...

  18. CIP2A Promotes T-Cell Activation and Immune Response to Listeria monocytogenes Infection

    Cvrljevic, Anna; Khan, Mohd Moin; Treise, Irina; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Au-Yeung, Byron; Sittig, Eleonora; Laajala, Teemu Daniel; Chen, Yiling; Oeder, Sebastian; Calzada-Wack, Julia; Horsch, Marion; Aittokallio, Tero; Busch, Dirk H.; Ollert, Markus W.; Neff, Frauke; Beckers, Johannes; Gailus-Durner, Valerie; Fuchs, Helmut; de Angelis, Martin Hrabě; Chen, Zhi; Lahesmaa, Riitta; Westermarck, Jukka

    2016-01-01

    The oncoprotein Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) is overexpressed in most malignancies and is an obvious candidate target protein for future cancer therapies. However, the physiological importance of CIP2A-mediated PP2A inhibition is largely unknown. As PP2A regulates immune responses, we investigated the role of CIP2A in normal immune system development and during immune response in vivo. We show that CIP2A-deficient mice (CIP2AHOZ) present a normal immune system development and function in unchallenged conditions. However when challenged with Listeria monocytogenes, CIP2AHOZ mice display an impaired adaptive immune response that is combined with decreased frequency of both CD4+ T-cells and CD8+ effector T-cells. Importantly, the cell autonomous effect of CIP2A deficiency for T-cell activation was confirmed. Induction of CIP2A expression during T-cell activation was dependent on Zap70 activity. Thus, we reveal CIP2A as a hitherto unrecognized mediator of T-cell activation during adaptive immune response. These results also reveal CIP2AHOZ as a possible novel mouse model for studying the role of PP2A activity in immune regulation. On the other hand, the results also indicate that CIP2A targeting cancer therapies would not cause serious immunological side-effects. PMID:27100879

  19. Meeting report VLPNPV: Session 3: Immune responses.

    Morrison, Trudy G

    2014-01-01

    Virus-like particles (VLPs) and nano-particles (NP) are increasingly considered for both prophylactic and therapeutic vaccines for a wide variety of human and animal diseases. Indeed, 2 VLPs have already been licensed for use in humans, the human papilloma virus vaccine and the hepatitis B virus vaccine. (1) Reflecting this increased interest, a second international conference with a specific focus on VLPs and NP was held at the Salk Institute for Biological Studies in La Jolla, California, in June 2014. Approximately 100 attendees, hailing from many nations, came from academic institutions, research institutes, and biotech companies. A wide variety of topics were discussed, ranging from development and characterization of specific VLP and NP vaccine candidates to methods of production of these particles. Session three was focused on the general question of immune responses to VLPs. PMID:25529229

  20. Immune Responses Against Classical Swine Fever Virus: Between Ignorance and Lunacy

    Summerfield, Artur; Ruggli, Nicolas

    2015-01-01

    Classical swine fever virus infection of pigs causes disease courses from life-threatening to asymptomatic, depending on the virulence of the virus strain and the immunocompetence of the host. The virus targets immune cells, which are central in orchestrating innate and adaptive immune responses such as macrophages and conventional and plasmacytoid dendritic cells. Here, we review current knowledge and concepts aiming to explain the immunopathogenesis of the disease at both the host and the c...

  1. Impaired Antigen-Specific Immune Response to Vaccines in Children with Antibody Production Defects

    Szczawinska-Poplonyk, Aleksandra; Breborowicz, Anna; Samara, Husam; Ossowska, Lidia; Dworacki, Grzegorz

    2015-01-01

    The impaired synthesis of antigen-specific antibodies, which is indispensable for an adaptive immune response to infections, is a fundamental pathomechanism that leads to clinical manifestations in children with antibody production defects. The aim of this study was to evaluate the synthesis of antigen-specific antibodies following immunization in relation to peripheral blood B cell subsets in young children with hypogammaglobulinemia. Twenty-two children, aged from 8 to 61 months, with a def...

  2. Population-expression models of immune response

    The immune response to a pathogen has two basic features. The first is the expansion of a few pathogen-specific cells to form a population large enough to control the pathogen. The second is the process of differentiation of cells from an initial naive phenotype to an effector phenotype which controls the pathogen, and subsequently to a memory phenotype that is maintained and responsible for long-term protection. The expansion and the differentiation have been considered largely independently. Changes in cell populations are typically described using ecologically based ordinary differential equation models. In contrast, differentiation of single cells is studied within systems biology and is frequently modeled by considering changes in gene and protein expression in individual cells. Recent advances in experimental systems biology make available for the first time data to allow the coupling of population and high dimensional expression data of immune cells during infections. Here we describe and develop population-expression models which integrate these two processes into systems biology on the multicellular level. When translated into mathematical equations, these models result in non-conservative, non-local advection-diffusion equations. We describe situations where the population-expression approach can make correct inference from data while previous modeling approaches based on common simplifying assumptions would fail. We also explore how model reduction techniques can be used to build population-expression models, minimizing the complexity of the model while keeping the essential features of the system. While we consider problems in immunology in this paper, we expect population-expression models to be more broadly applicable. (paper)

  3. Population-expression models of immune response

    Stromberg, Sean P.; Antia, Rustom; Nemenman, Ilya

    2013-06-01

    The immune response to a pathogen has two basic features. The first is the expansion of a few pathogen-specific cells to form a population large enough to control the pathogen. The second is the process of differentiation of cells from an initial naive phenotype to an effector phenotype which controls the pathogen, and subsequently to a memory phenotype that is maintained and responsible for long-term protection. The expansion and the differentiation have been considered largely independently. Changes in cell populations are typically described using ecologically based ordinary differential equation models. In contrast, differentiation of single cells is studied within systems biology and is frequently modeled by considering changes in gene and protein expression in individual cells. Recent advances in experimental systems biology make available for the first time data to allow the coupling of population and high dimensional expression data of immune cells during infections. Here we describe and develop population-expression models which integrate these two processes into systems biology on the multicellular level. When translated into mathematical equations, these models result in non-conservative, non-local advection-diffusion equations. We describe situations where the population-expression approach can make correct inference from data while previous modeling approaches based on common simplifying assumptions would fail. We also explore how model reduction techniques can be used to build population-expression models, minimizing the complexity of the model while keeping the essential features of the system. While we consider problems in immunology in this paper, we expect population-expression models to be more broadly applicable.

  4. Immune response markers in sentinel nodes may predict melanoma progression

    Rodolfo, Monica; Castelli, Chiara; Rivoltini, Licia

    2014-01-01

    We recently reported that variable expression of immune-response genes distinguishes tumor positive sentinel nodes in melanoma patients with malignant progression from those with non-progressing disease. Our results depict sentinel nodes as sites in which immune functions are associated with metastatic disease and identify CD30 as a host immune-related cancer prognostic marker and potential therapeutic target.

  5. An Act of Balance Between Adaptive and Maladaptive Immunity in Depression: a Role for T Lymphocytes.

    Toben, Catherine; Baune, Bernhard T

    2015-12-01

    Historically the monoaminergic neurotransmitter system, in particular the serotonergic system, was seen as being responsible for the pathophysiology of major depressive disorder (MDD). With the advent of psychoneuroimmunology an important role of the immune system in the interface between the central nervous systems (CNS) and peripheral organ systems has emerged. In addition to the well-characterised neurobiological activities of cytokines, T cell function in the context of depression has been neglected so far. In this review we will investigate the biological roles of T cells in depression. Originally it was thought that the adaptive immune arm including T lymphocytes was excluded from the CNS. It is now clear that peripheral naïve T cells not only carry out continuous surveillance within the brain but also maintain neural plasticity. Furthermore animal studies demonstrate that regulatory T lymphocytes can provide protection against maladaptive behavioural responses associated with depression. Psychogenic stress as a major inducer of depression can lead to transient trafficking of T lymphocytes into the brain stimulating the secretion of certain neurotrophic factors and cytokines. The separate and combined mechanism of CD4 and CD8 T cell activation is likely to determine the response pattern of CNS specific neurokines and neurotrophins. Under chronic stress-induced neuroinflammatory conditions associated with depression, T cell responses may become maladaptive and can be involved in neurodegeneration. Additionally, intracellular adhesion and MHC molecule expression as well as glucocorticoid receptor expression within the brain may play a role in determining T lymphocyte functionality in depression. Taken together, T lymphocyte mechanisms, which confer susceptibility or resilience to MDD, are not yet fully understood. Further insight into the cellular and molecular mechanisms which balance the adaptive and maladaptive roles of T lymphocytes may provide a better

  6. The host immune response in respiratory virus infection: balancing virus clearance and immunopathology.

    Newton, Amy H; Cardani, Amber; Braciale, Thomas J

    2016-07-01

    The respiratory tract is constantly exposed to the external environment, and therefore, must be equipped to respond to and eliminate pathogens. Viral clearance and resolution of infection requires a complex, multi-faceted response initiated by resident respiratory tract cells and innate immune cells and ultimately resolved by adaptive immune cells. Although an effective immune response to eliminate viral pathogens is essential, a prolonged or exaggerated response can damage the respiratory tract. Immune-mediated pulmonary damage is manifested clinically in a variety of ways depending on location and extent of injury. Thus, the antiviral immune response represents a balancing act between the elimination of virus and immune-mediated pulmonary injury. In this review, we highlight major components of the host response to acute viral infection and their role in contributing to mitigating respiratory damage. We also briefly describe common clinical manifestations of respiratory viral infection and morphological correlates. The continuing threat posed by pandemic influenza as well as the emergence of novel respiratory viruses also capable of producing severe acute lung injury such as SARS-CoV, MERS-CoV, and enterovirus D68, highlights the need for an understanding of the immune mechanisms that contribute to virus elimination and immune-mediated injury. PMID:26965109

  7. Adaptive Modeling for Security Infrastructure Fault Response

    CUI Zhong-jie; YAO Shu-ping; HU Chang-zhen

    2008-01-01

    Based on the analysis of inherent limitations in existing security response decision-making systems, a dynamic adaptive model of fault response is presented. Several security fault levels were founded, which comprise the basic level, equipment level and mechanism level. Fault damage cost is calculated using the analytic hierarchy process. Meanwhile, the model evaluates the impact of different responses upon fault repair and normal operation. Response operation cost and response negative cost are introduced through quantitative calculation. This model adopts a comprehensive response decision of security fault in three principles-the maximum and minimum principle, timeliness principle, acquiescence principle, which assure optimal response countermeasure is selected for different situations. Experimental results show that the proposed model has good self-adaptation ability, timeliness and cost-sensitiveness.

  8. Spaceflight and immune responses of rhesus monkeys

    Sonnenfeld, Gerald; Morton, Darla S.; Swiggett, Jeanene P.; Hakenewerth, Anne M.; Fowler, Nina A.

    1995-01-01

    The effects of restraint on immunological parameters was determined in an 18 day ARRT (adult rhesus restraint test). The monkeys were restrained for 18 days in the experimental station for the orbiting primate (ESOP), the chair of choice for Space Shuttle experiments. Several immunological parameters were determined using peripheral blood, bone marrow, and lymph node specimens from the monkeys. The parameters included: response of bone marrow cells to GM-CSF (granulocyte-macrophage colony stimulating factor), leukocyte subset distribution, and production of IFN-a (interferon-alpha) and IFN-gamma (interferon-gamma). The only parameter changed after 18 days of restraint was the percentage of CD8+ T cells. No other immunological parameters showed changes due to restraint. Handling and changes in housing prior to the restraint period did apparently result in some restraint-independent immunological changes. Handling must be kept to a minimum and the animals allowed time to recover prior to flight. All experiments must be carefully controlled. Restraint does not appear to be a major issue regarding the effects of space flight on immune responses.

  9. Persistence and Adaptation in Immunity: T Cells Balance the Extent and Thoroughness of Search.

    G Matthew Fricke

    2016-03-01

    Full Text Available Effective search strategies have evolved in many biological systems, including the immune system. T cells are key effectors of the immune response, required for clearance of pathogenic infection. T cell activation requires that T cells encounter antigen-bearing dendritic cells within lymph nodes, thus, T cell search patterns within lymph nodes may be a crucial determinant of how quickly a T cell immune response can be initiated. Previous work suggests that T cell motion in the lymph node is similar to a Brownian random walk, however, no detailed analysis has definitively shown whether T cell movement is consistent with Brownian motion. Here, we provide a precise description of T cell motility in lymph nodes and a computational model that demonstrates how motility impacts T cell search efficiency. We find that both Brownian and Lévy walks fail to capture the complexity of T cell motion. Instead, T cell movement is better described as a correlated random walk with a heavy-tailed distribution of step lengths. Using computer simulations, we identify three distinct factors that contribute to increasing T cell search efficiency: 1 a lognormal distribution of step lengths, 2 motion that is directionally persistent over short time scales, and 3 heterogeneity in movement patterns. Furthermore, we show that T cells move differently in specific frequently visited locations that we call "hotspots" within lymph nodes, suggesting that T cells change their movement in response to the lymph node environment. Our results show that like foraging animals, T cells adapt to environmental cues, suggesting that adaption is a fundamental feature of biological search.

  10. Within-host co-evolution of chronic viruses and the adaptive immune system

    Nourmohammad, Armita

    We normally think of evolution occurring in a population of organisms, in response to their external environment. Rapid evolution of cellular populations also occurs within our bodies, as the adaptive immune system works to eliminate infection. Some pathogens, such as HIV, are able to persist in a host for extended periods of time, during which they also evolve to evade the immune response. In this talk I will introduce an analytical framework for the rapid co-evolution of B-cell and viral populations, based on the molecular interactions between them. Since the co-evolution of antibodies and viruses is perpetually out of equilibrium, I will show how to quantify the amount of adaptation in each of the two populations by analysis of their co-evolutionary history. I will discuss the consequences of competition between lineages of antibodies, and characterize the fate of a given lineage dependent on the state of the antibody and viral populations. In particular, I will discuss the conditions for emergence of highly potent broadly neutralizing antibodies, which are now recognized as critical for designing an effective vaccine against HIV.

  11. Vibrational response of adaptive composites

    Parlinska, M.; Michaud, V.; Gotthardt, R. [EPFL, Lausanne (Switzerland). Inst. de Genie Atomique; Balta, J.A.; Maanson, J.A. [EPFL, Lausanne (Switzerland). Inst. de Genie Atomique; EPFL, Lausanne (Switzerland). Lab. de Technologie des Composites et Polymeres, Dept. des Materiaux; Bidaux, J.E. [EPFL, Lausanne (Switzerland). Inst. de Genie Atomique; Ecole d' Ingenieurs du Valais, Sion (Switzerland). Groupe Materiaux et Conception

    2001-11-01

    Composite laminates containing pre-deformed NiTiCu wires embedded in an epoxy matrix reinforced with Kevlar fibres were manufactured and tested. These materials change their properties, for example vibration resonance frequency or modulus in response to a temperature variation. When heated by direct electrical current above the transformation temperature, the pre-deformed shape memory alloy (SMA) wires try to recover their shape and since they are restrained by a stiff matrix and clamping, a stress is created. As a result, a change in the resonance frequency of the composite occurs. The magnitude of the recovery stress and corresponding resonance frequency shift was found to increase with the SMA wire volume fraction and to decrease with the thickness of the host composite layers between the wires and the constraining grips. (orig.)

  12. Seasonal changes in human immune responses to malaria

    Hviid, L; Theander, T G

    1993-01-01

    Cellular as well as humorol immune responses to malaria antigens fluctuate in time in individuals living in molono-endemic areas, particularly where malaria transmission is seasonal. The most pronounced changes are seen in association with clinical attacks, but osymptomatic infection can also lead...... to apparent immune depression. However, recent data have shown that seasonal variation in cellular immune responses may occur even in the absence of detectable porositaemia. Here, Lars Hviid and Thor G. Theonder review the seasonal variation in human immune responses to malaria, and discuss its...

  13. The unfolded protein response in immunity and inflammation.

    Grootjans, Joep; Kaser, Arthur; Kaufman, Randal J; Blumberg, Richard S

    2016-08-01

    The unfolded protein response (UPR) is a highly conserved pathway that allows the cell to manage endoplasmic reticulum (ER) stress that is imposed by the secretory demands associated with environmental forces. In this role, the UPR has increasingly been shown to have crucial functions in immunity and inflammation. In this Review, we discuss the importance of the UPR in the development, differentiation, function and survival of immune cells in meeting the needs of an immune response. In addition, we review current insights into how the UPR is involved in complex chronic inflammatory diseases and, through its role in immune regulation, antitumour responses. PMID:27346803

  14. Effects of interferon-alpha on the immune response to porcine reproductive and respiratory syndrome virus

    Porcine reproductive and respiratory syndrome (PRRS) is one of the most devastating and costly diseases to the swine industry world-wide. Overall, the adaptive immune response to PRRS virus (PRRSV) is weak and results in delayed elimination of virus from the host and inferior vaccine protection. PR...

  15. Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm

    Zu Yun-Xiao; Zhou Jie

    2012-01-01

    Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed,and a fitness function is provided.Simulations are conducted using the adaptive niche immune genetic algorithm,the simulated annealing algorithm,the quantum genetic algorithm and the simple genetic algorithm,respectively.The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation,and has quick convergence speed and strong global searching capability,which effectively reduces the system power consumption and bit error rate.

  16. Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm

    Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed, and a fitness function is provided. Simulations are conducted using the adaptive niche immune genetic algorithm, the simulated annealing algorithm, the quantum genetic algorithm and the simple genetic algorithm, respectively. The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation, and has quick convergence speed and strong global searching capability, which effectively reduces the system power consumption and bit error rate. (geophysics, astronomy, and astrophysics)

  17. Endocrine Factors Modulating Immune Responses in Pregnancy

    Schumacher, Anne; Costa, Serban-Dan; Zenclussen, Ana Claudia

    2014-01-01

    How the semi-allogeneic fetus is tolerated by the maternal immune system remains a fascinating phenomenon. Despite extensive research activity in this field, the mechanisms underlying fetal tolerance are still not well understood. However, there are growing evidences that immune–immune interactions as well as immune–endocrine interactions build up a complex network of immune regulation that ensures fetal survival within the maternal uterus. In the present review, we aim to summarize emerging ...

  18. Immune response inhibits associative learning in insects.

    Mallon, Eamonn B.; Brockmann, Axel; Schmid-Hempel, Paul

    2003-01-01

    In vertebrates, it is well established that there are many intricate interactions between the immune system and the nervous system, and vice versa. Regarding insects, until now little has been known about the link between these two systems. Here, we present behavioural evidence indicating a link between the immune system and the nervous system in insects. We show that otherwise non-infected honeybees whose immune systems are challenged by a non-pathogenic immunogenic elicitor lipopolysacchari...

  19. Activation and Regulation of DNA-Driven Immune Responses

    Paludan, Søren R

    2015-01-01

    The innate immune system provides early defense against infections and also plays a key role in monitoring alterations of homeostasis in the body. DNA is highly immunostimulatory, and recent advances in this field have led to the identification of the innate immune sensors responsible for the recognition of DNA as well as the downstream pathways that are activated. Moreover, information on how cells regulate DNA-driven immune responses to avoid excessive inflammation is now emerging. Finally,...

  20. Respons imun humoral pada pulpitis (Humoral immune response on pulpitis)

    Trijoedani Widodo

    2005-01-01

    Pulpitis is an inflammation process on dental pulp tissue, and usually as the continuous of caries. The microorganism in the caries is a potential immunogenic triggering the immune respons, both humoral and celluler immune responses. The aim of this research is to explain the humoral immune response changes in the dental pulp tissues of pulpitis. This research was done on three group samples: Irreversible pulpitis, Reversible pulpitis and sound teeth as the control group. The result showed th...

  1. Induction of Innate Immune Response Genes by Sin Nombre Hantavirus Does Not Require Viral Replication

    Prescott, Joseph; Ye, Chunyan; Sen, Ganes; Hjelle, Brian

    2005-01-01

    Maladaptive immune responses are considered to be important factors in the pathogenesis of the two diseases caused by hantaviruses, hemorrhagic fever with renal syndrome and hantavirus cardiopulmonary syndrome (HCPS). While the intensity of adaptive antiviral T-cell responses seems to correlate with the severity of HCPS, there is increasing evidence that innate antiviral responses by endothelial cells, the native targets for hantavirus infection in vivo, are induced within hours of exposure t...

  2. Regulatory T Cells Control Immune Responses through Their Non-Redundant Tissue Specific Features

    Lehtimäki, Sari; Lahesmaa, Riitta

    2013-01-01

    Regulatory T cells (Treg) are needed in the control of immune responses and to maintain immune homeostasis. Of this subtype of regulatory lymphocytes, the most potent are Foxp3 expressing CD4+ T cells, which can be roughly divided into two main groups; natural Treg cells (nTreg), developing in the thymus, and induced or adaptive Treg cells (iTreg), developing in the periphery from naïve, conventional T cells. Both nTreg cells and iTreg cells have their own, non-redundant roles in the immune s...

  3. Regulatory T cells control immune responses through their nonredundant tissue specific features

    Sari eLehtimäki; Riitta eLahesmaa

    2013-01-01

    Regulatory T cells (Treg) are needed to control immune responses and to maintain immune homeostasis. Most potent regulators are Foxp3 expressing CD4+ T cells which can be roughly divided in to two main groups, natural Treg cells (nTreg) developing in the thymus and induced or adaptive Treg cells (iTreg) developing in the periphery from naïve, conventional T cells. Both nTreg cells and iTreg cells have their own, nonredundant roles in the immune system, with nTreg cells mainly maintaining...

  4. Innate lymphoid cells: models of plasticity for immune homeostasis and rapid responsiveness in protection.

    Almeida, F F; Belz, G T

    2016-09-01

    Innate lymphoid cells (ILCs) have stormed onto the immune landscape as "newly discovered" cell types. These tissue-resident sentinels are enriched at mucosal surfaces and engage in complex cross talk with elements of the adaptive immune system and microenvironment to orchestrate immune homeostasis. Many parallels exist between innate cells and T cells leading to the initial partitioning of ILCs into rather rigid subsets that reflect their "adaptive-like" effector cytokines profiles. ILCs themselves, however, have unique attributes that are only just beginning to be elucidated. These features result in complementarity with, rather than complete duplication of, functions of the adaptive immune system. Key transcription factors determine the pathway of differentiation of progenitors towards an ILC1, ILC2, or ILC3 subset. Once formed, flexibility in the responses of these subsets to stimuli unexpectedly allows transdifferentation between the different subsets and the acquisition of altered phenotypes and function. This provides a mechanism for rapid innate immune responsiveness. Here, we discuss the models of differentiation for maintenance and activation of tissue-resident ILCs in maintaining immune homeostasis and protection. PMID:27484190

  5. Innate immune response development in nestling tree swallows

    Stambaugh, T.; Houdek, B.J.; Lombardo, M.P.; Thorpe, P.A.; Caldwell, Hahn D.

    2011-01-01

    We tracked the development of innate immunity in nestling Tree Swallows (Tachycineta bicolor) and compared it to that of adults using blood drawn from nestlings during days 6, 12, and 18 of the ???20-day nestling period and from adults. Innate immunity was characterized using an in vitro assay of the ability of whole blood to kill Escherichia coli. The ability of whole blood to kill E. coli increased as nestlings matured. Neither this component of innate immunity nor right wing chord length on day18 were as developed as in adults indicating that development of the innate immune system and growth both continued after fledging. Narrow sense heritability analyses suggest that females with strong immune responses produced nestlings with strong immune responses. These data suggest nestling Tree Swallows allocated sufficient energy to support rapid growth to enable fledging by day 18, but that further development of innate immunity occurred post-fledging. ?? 2011 by the Wilson Ornithological Society.

  6. A New Mechanism to Curb Over-reactive Immune Responses

    2006-01-01

    @@ The human immune system is a truly amazing constellation of responses to attacks from the outside. It could defend you against millions of bacteria, microbes, viruses, toxins and parasites that would invade your body. However, there are cases where the immune response to innocuous substances is inappropriate and over-reactive, leading to diseases such as allergies and arthritis.

  7. Murine major histocompatibility complex and immune response to Eimeria falciformis.

    Mahrt, J L; Shi, Y F

    1988-01-01

    The genetics of the immune response to Eimeria falciformis were investigated in three inbred and six congenic strains of mice. There were significant differences among strains in oocyst production and age-related mortality from parasitic infection. Genes within the H-2 complex and also non-H-2 genes share in the immune response to eimerian infection.

  8. Kinetics of the early adaptive response and adaptation threshold dose

    The expression kinetics of the adaptive response (RA) in mouse leukocytes in vivo and the minimum dose of gamma radiation that induces it was determined. The mice were exposed 0.005 or 0.02 Gy of 137 Cs like adaptation and 1h later to the challenge dose (1.0 Gy), another group was only exposed at 1.0 Gy and the damage is evaluated in the DNA with the rehearsal it makes. The treatment with 0. 005 Gy didn't induce RA and 0. 02 Gy causes a similar effect to the one obtained with 0.01 Gy. The RA was show from an interval of 0.5 h being obtained the maximum expression with 5.0 h. The threshold dose to induce the RA is 0.01 Gy and in 5.0 h the biggest quantity in molecules is presented presumably that are related with the protection of the DNA. (Author)

  9. Monitoring adaptive genetic responses to environmental change

    Hansen, M.M.; Olivieri, I.; Waller, D.M.;

    2012-01-01

    Widespread environmental changes including climate change, selective harvesting and landscape alterations now greatly affect selection regimes for most organisms. How animals and plants can adapt to these altered environments via contemporary evolution is thus of strong interest. We discuss how...... for selection and establishing clear links between genetic and environmental change. We then review a few exemplary studies that explore adaptive responses to climate change in Drosophila, selective responses to hunting and fishing, and contemporary evolution in Daphnia using resurrected resting eggs. We...... further review a broader set of 44 studies to assess how well they meet the proposed criteria, and conclude that only 23% fulfill all criteria. Approximately half (43%) of these studies failed to rule out the alternative hypothesis of replacement by a different, better-adapted population. Likewise, 34...

  10. Adaptive Filters for Muscle Response Suppression

    Sennels, Søren; Biering-Soerensen, Fin; Hansen, Steffen Duus;

    1996-01-01

    are proposed, based on the observation that the shape of the muscle responses only exhibits moderate changes during a time window of up to 300 ms. The filters are derived and compared with a conventional fixed comb filter on both simulated and real data. For variations in amplitude of the muscle responses......To be able to use the voluntary EMG-signal from an electrically stimulated muscle as control signal for FES-applications, it is necessary to eliminate the muscle response evoked by the stimulation. The muscle response is a non-stationary signal, therefore a set of linear adaptive prediction filters...

  11. Potential for Cell-Mediated Immune Responses in Mouse Models of Pelizaeus-Merzbacher Disease

    Cherie M. Southwood

    2013-09-01

    Full Text Available Although activation of the innate and adaptive arms of the immune system are undoubtedly involved in the pathophysiology of neurodegenerative diseases, it is unclear whether immune system activation is a primary or secondary event. Increasingly, published studies link primary metabolic stress to secondary inflammatory responses inside and outside of the nervous system. In this study, we show that the metabolic stress pathway known as the unfolded protein response (UPR leads to secondary activation of the immune system. First, we observe innate immune system activation in autopsy specimens from Pelizaeus-Merzbacher disease (PMD patients and mouse models stemming from PLP1 gene mutations. Second, missense mutations in mildly- and severely-affected Plp1-mutant mice exhibit immune-associated expression profiles with greater disease severity causing an increasingly proinflammatory environment. Third, and unexpectedly, we find little evidence for dysregulated expression of major antioxidant pathways, suggesting that the unfolded protein and oxidative stress responses are separable. Together, these data show that UPR activation can precede innate and/or adaptive immune system activation and that neuroinflammation can be titrated by metabolic stress in oligodendrocytes. Whether or not such activation leads to autoimmune disease in humans is unclear, but the case report of steroid-mitigated symptoms in a PMD patient initially diagnosed with multiple sclerosis lends support.

  12. Immunization with Immune Complexes Modulates the Fine Specificity of Antibody Responses to a Flavivirus Antigen

    Tsouchnikas, Georgios; Zlatkovic, Juergen; Jarmer, Johanna; Strauß, Judith; Vratskikh, Oksana; Kundi, Michael; Stiasny, Karin; Heinz, Franz X.

    2015-01-01

    The antibody response to proteins may be modulated by the presence of preexisting antigen-specific antibodies and the formation of immune complexes (ICs). Effects such as a general increase or decrease of the response as well as epitope-specific phenomena have been described. In this study, we investigated influences of IC immunization on the fine specificity of antibody responses in a structurally well-defined system, using the envelope (E) protein of tick-borne encephalitis (TBE) virus as a...

  13. The antimicrobial/elastase inhibitor elafin regulates lung dendritic cells and adaptive immunity.

    Roghanian, Ali; Williams, Steven E; Sheldrake, Tara A; Brown, Tom I; Oberheim, Karen; Xing, Zhou; Howie, Sarah E M; Sallenave, Jean-Michel

    2006-05-01

    Infections with bacteria and viruses such as adenovirus are a feature of chronic lung diseases such as chronic obstructive pulmonary diseases (COPD), and may be instrumental in the generation of disease exacerbations. We have previously shown in acute models that elafin (a lung natural chemotactic molecule for macrophages and neutrophils, with potent antimicrobial and neutrophil elastase inhibitor activity) is upregulated in infection and modulates innate immunity. Here we present data using two independent systems of elafin overexpression in vivo (recombinant adenovirus [Ad-elafin] and an elafin transgenic mouse line) to examine the function of elafin in adaptive immunity. We show that elafin increases the number (immunofluorescence) and activation status (flow cytometric measurement) of CD11c+/MHCII+ lung dendritic cells in vivo. Analysis of cytokines produced by spleen and lung cells, and of antibodies measured in serum and bronchoalveolar lavage fluid, shows that the immunity induced is biased toward a type 1 response (production of IL-12, IFN-gamma, and IgG2a). Furthermore, elafin overexpression protected mice against further challenge with Ad-LacZ, as assessed by antibody levels and neutralization titer, as well as LacZ expression in lung tissue. Thus, the pleiotropic molecule elafin has significant potential in modulating antigen-presenting cell numbers and activity, and could be beneficial in mucosal protective strategies. PMID:16424380

  14. Evolutionary Dynamics of the Prokaryotic Adaptive Immunity System CRISPR-Cas in an Explicit Ecological Context

    Iranzo, Jaime; Lobkovsky, Alexander E; Wolf, Yuri I; Koonin, Eugene V

    2013-01-01

    A stochastic, agent-based mathematical model of the coevolution of the archaeal and bacterial adaptive immunity system, CRISPR-Cas, and lytic viruses shows that CRISPR-Cas immunity can stabilize the virus-host coexistence rather than leading to the extinction of the virus. In the model, CRISPR-Cas immunity does not specifically promote viral diversity, presumably because the selection pressure on each single proto-spacer is too weak. However, the overall virus diversity in the presence of CRI...

  15. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity

    Charpentier, Emmanuelle; Richter, Hagen; Oost, van der John; White, Malcolm F.

    2015-01-01

    CRISPR-Cas is an RNA-mediated adaptive immune system that defends bacteria and archaea against mobile genetic elements. Short mature CRISPR RNAs (crRNAs) are key elements in the interference step of the immune pathway. A CRISPR array composed of a series of repeats interspaced by spacer sequences

  16. Senescence of the adaptive immune system in health and aging-associated autoimmune disease

    van der Geest, Kornelis Stephan Mario

    2015-01-01

    Aging of the immune system may contribute to the development of aging-associated autoimmune diseases, such as giant cell arteritis, polymyalgia rheumatica and rheumatoid arthritis. The aim of this thesis was to identify aging-dependent changes of the adaptive immune system that promote autoimmunity

  17. Obligate brood parasites show more functionally effective innate immune responses: an eco-immunological hypothesis

    Hahn, D. Caldwell; Summers, Scott G.; Genovese, Kenneth J.; He, Haiqi; Kogut, Michael H.

    2013-01-01

    Immune adaptations of obligate brood parasites attracted interest when three New World cowbird species (Passeriformes, Icteridae, genus Molothrus) proved unusually resistant to West Nile virus. We have used cowbirds as models to investigate the eco-immunological hypothesis that species in parasite-rich environments characteristically have enhanced immunity as a life history adaptation. As part of an ongoing program to understand the cowbird immune system, in this study we measured degranulation and oxidative burst, two fundamental responses of the innate immune system. Innate immunity provides non-specific, fast-acting defenses against a variety of invading pathogens, and we hypothesized that innate immunity experiences particularly strong selection in cowbirds, because their life history strategy exposes them to diverse novel and unpredictable parasites. We compared the relative effectiveness of degranulation and oxidative burst responses in two cowbird species and one related, non-parasitic species. Both innate immune defenses were significantly more functionally efficient in the two parasitic cowbird species than in the non-parasitic red-winged blackbird (Icteridae, Agelaius phoeniceus). Additionally, both immune defenses were more functionally efficient in the brown-headed cowbird (M. ater), an extreme host-generalist brood parasite, than in the bronzed cowbird (M. aeneus), a moderate host-specialist with lower exposure to other species and their parasites. Thus the relative effectiveness of these two innate immune responses corresponds to the diversity of parasites in the niche of each species and to their relative resistance to WNV. This study is the first use of these two specialized assays in a comparative immunology study of wild avian species.

  18. Humanized Mouse Models to Study Cell-Mediated Immune Responses to Liver-Stage Malaria Vaccines.

    Good, Michael F; Hawkes, Michael T; Yanow, Stephanie K

    2015-11-01

    Malaria vaccine development is hampered by the lack of small animal models that recapitulate human immune responses to Plasmodium falciparum. We review the burgeoning literature on humanized mice for P. falciparum infection, including challenges in engraftment of human immune cells, hepatocytes, and erythrocytes. Recent advances in immune-compromised mouse models and stem cell technology have already enabled proof of concept that the entire parasite life cycle can be sustained in a murine model and that adaptive human immune responses to several parasite stages can be measured. Nonetheless, optimization is needed to achieve a reproducible and relevant murine model for malaria vaccine development. This review is focused on the complexities of T cell development in a mouse humanized with both a lymphoid system and hepatocytes. An understanding of this will facilitate the use of humanized mice in the development of liver-stage vaccines. PMID:26458783

  19. Endocrine factors modulating immune responses in pregnancy.

    Schumacher, Anne; Costa, Serban-Dan; Zenclussen, Ana Claudia

    2014-01-01

    How the semi-allogeneic fetus is tolerated by the maternal immune system remains a fascinating phenomenon. Despite extensive research activity in this field, the mechanisms underlying fetal tolerance are still not well understood. However, there are growing evidences that immune-immune interactions as well as immune-endocrine interactions build up a complex network of immune regulation that ensures fetal survival within the maternal uterus. In the present review, we aim to summarize emerging research data from our and other laboratories on immune modulating properties of pregnancy hormones with a special focus on progesterone, estradiol, and human chorionic gonadotropin. These pregnancy hormones are critically involved in the successful establishment, maintenance, and termination of pregnancy. They suppress detrimental maternal alloresponses while promoting tolerance pathways. This includes the reduction of the antigen-presenting capacity of dendritic cells (DCs), monocytes, and macrophages as well as the blockage of natural killer cells, T and B cells. Pregnancy hormones also support the proliferation of pregnancy supporting uterine killer cells, retain tolerogenic DCs, and efficiently induce regulatory T (Treg) cells. Furthermore, they are involved in the recruitment of mast cells and Treg cells into the fetal-maternal interface contributing to a local accumulation of pregnancy-protective cells. These findings highlight the importance of endocrine factors for the tolerance induction during pregnancy and encourage further research in the field. PMID:24847324

  20. Endocrine factors modulating immune responses in pregnancy

    Anne eSchumacher

    2014-05-01

    Full Text Available How the semi-allogeneic fetus is tolerated by the maternal immune system remains a fascinating phenomenon. Despite extensive research activity in this field the mechanisms underlying fetal tolerance are still not well understood. However, there are growing evidences that immune-immune interactions as well as immune-endocrine interactions build up a complex network of immune regulation that ensures fetal survival within the maternal uterus. In the present review, we aim to summarize emerging research data from our and other laboratories on immune modulating properties of pregnancy hormones with a special focus on progesterone, estradiol and human Chorionic Gonadotropin. These pregnancy hormones are critically involved in the successful establishment, maintenance and termination of pregnancy. They suppress detrimental maternal alloresponses while promoting tolerance pathways. This includes the reduction of the antigen-presenting capacity of dendritic cells, monocytes and macrophages as well as the blockage of natural killer cells, T and B cells. Pregnancy hormones also support the proliferation of pregnancy supporting uterine killer cells, retain tolerogenic dendritic cells and efficiently induce regulatory T cells. Furthermore, they are involved in the recruitment of mast cells and regulatory T cells into the fetal-maternal interface contributing to a local accumulation of pregnancy-protective cells. These findings highlight the importance of endocrine factors for the tolerance induction during pregnancy and encourage further research in the field.

  1. Enhancing antibody: a novel component of the immune response.

    Nemazee, D A; Sato, V L

    1982-01-01

    Current descriptions of the immune response identify two classes of antigenic stimuli that result in the production of specific antibody: (i) exogenous antigens and (ii) endogenous variable-region determinants of the immune system. We expand this scheme to include a third class of antigenic stimulus--new determinants created by the binding of antibody to antigen. This paper describes a set of monoclonal antibodies which arose after repeated immunization with antigen alone but which bound anti...

  2. The innate immune response during urinary tract infection and pyelonephritis

    Spencer, John David; Schwaderer, Andrew L.; Becknell, Brian; Watson, Joshua; Hains, David S.

    2013-01-01

    Despite its proximity to the fecal flora, the urinary tract is considered sterile. The precise mechanisms by which the urinary tract maintains sterility are not well understood. Host immune responses are critically important in the antimicrobial defense of the urinary tract. During recent years, considerable advances have been made in our understanding of the mechanisms underlying immune homeostasis of the kidney and urinary tract. Dysfunctions in these immune mechanisms may result in acute d...

  3. Innate immune responses of Drosophila melanogaster are altered by spaceflight.

    Oana Marcu

    Full Text Available Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways.

  4. The adaptive immune system restrains Alzheimer's disease pathogenesis by modulating microglial function.

    Marsh, Samuel E; Abud, Edsel M; Lakatos, Anita; Karimzadeh, Alborz; Yeung, Stephen T; Davtyan, Hayk; Fote, Gianna M; Lau, Lydia; Weinger, Jason G; Lane, Thomas E; Inlay, Matthew A; Poon, Wayne W; Blurton-Jones, Mathew

    2016-03-01

    The innate immune system is strongly implicated in the pathogenesis of Alzheimer's disease (AD). In contrast, the role of adaptive immunity in AD remains largely unknown. However, numerous clinical trials are testing vaccination strategies for AD, suggesting that T and B cells play a pivotal role in this disease. To test the hypothesis that adaptive immunity influences AD pathogenesis, we generated an immune-deficient AD mouse model that lacks T, B, and natural killer (NK) cells. The resulting "Rag-5xfAD" mice exhibit a greater than twofold increase in β-amyloid (Aβ) pathology. Gene expression analysis of the brain implicates altered innate and adaptive immune pathways, including changes in cytokine/chemokine signaling and decreased Ig-mediated processes. Neuroinflammation is also greatly exacerbated in Rag-5xfAD mice as indicated by a shift in microglial phenotype, increased cytokine production, and reduced phagocytic capacity. In contrast, immune-intact 5xfAD mice exhibit elevated levels of nonamyloid reactive IgGs in association with microglia, and treatment of Rag-5xfAD mice or microglial cells with preimmune IgG enhances Aβ clearance. Last, we performed bone marrow transplantation studies in Rag-5xfAD mice, revealing that replacement of these missing adaptive immune populations can dramatically reduce AD pathology. Taken together, these data strongly suggest that adaptive immune cell populations play an important role in restraining AD pathology. In contrast, depletion of B cells and their appropriate activation by T cells leads to a loss of adaptive-innate immunity cross talk and accelerated disease progression. PMID:26884167

  5. Immune responses to cancer: are they potential biomarkers of prognosis?

    Theresa L Whiteside

    2013-05-01

    Full Text Available Recent technical improvements in evaluations of immune cells in situ and immune monitoring of patients with cancer have provided a wealth of new data confirming that immune cells play a key role in human cancer progression. This, in turn, has revived the expectation that immune endpoints might serve as reliable biomarkers of outcome or response to therapy in cancer. The recent successes in linking the T-cell signature in human colorectal carcinoma (CRC with prognosis have provided a strong motive for searching for additional immune biomarkers that could serve as intermediate endpoints of response to therapy and outcome in human cancers. A number of potentially promising immune biomarkers have emerged, but most remain to be validated. Among them, the B-cell signature, as exemplified by expression of the immunoglobulin G kappa chain (IGKC in tumor-infiltrating lymphocytes (TIL, has been validated as a biomarker of response to adjuvant therapy and better survival in patients with breast carcinoma and several other types of human solid tumors. Additional immune endpoints are being currently tested as potentially promising biomarkers in cancer. In view of currently growing use of immune cancer therapies, the search for immune biomarkers of prognosis are critically important for identifying patients who would benefit the most from adjuvant immunotherapy.

  6. The Role of the Immune Response in Merkel Cell Carcinoma

    Triozzi, Pierre L., E-mail: triozzp@ccf.org [Taussig Cancer Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 (United States); Fernandez, Anthony P. [Departments of Dermatology and Anatomic Pathology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 (United States)

    2013-02-28

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer. The Merkel cell polyomavirus (MCPyV) is implicated in its pathogenesis. Immune mechanisms are also implicated. Patients who are immunosuppressed have an increased risk. There is evidence that high intratumoral T-cell counts and immune transcripts are associated with favorable survival. Spontaneous regressions implicate immune effector mechanisms. Immunogenicity is also supported by observation of autoimmune paraneoplastic syndromes. Case reports suggest that immune modulation, including reduction of immune suppression, can result in tumor regression. The relationships between MCPyV infection, the immune response, and clinical outcome, however, remain poorly understood. Circulating antibodies against MCPyV antigens are present in most individuals. MCPyV-reactive T cells have been detected in both MCC patients and control subjects. High intratumoral T-cell counts are also associated with favorable survival in MCPyV-negative MCC. That the immune system plays a central role in preventing and controlling MCC is supported by several observations. MCCs often develop, however, despite the presence of humoral and cellular immune responses. A better understanding on how MCPyV and MCC evade the immune response will be necessary to develop effective immunotherapies.

  7. The Role of the Immune Response in Merkel Cell Carcinoma

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer. The Merkel cell polyomavirus (MCPyV) is implicated in its pathogenesis. Immune mechanisms are also implicated. Patients who are immunosuppressed have an increased risk. There is evidence that high intratumoral T-cell counts and immune transcripts are associated with favorable survival. Spontaneous regressions implicate immune effector mechanisms. Immunogenicity is also supported by observation of autoimmune paraneoplastic syndromes. Case reports suggest that immune modulation, including reduction of immune suppression, can result in tumor regression. The relationships between MCPyV infection, the immune response, and clinical outcome, however, remain poorly understood. Circulating antibodies against MCPyV antigens are present in most individuals. MCPyV-reactive T cells have been detected in both MCC patients and control subjects. High intratumoral T-cell counts are also associated with favorable survival in MCPyV-negative MCC. That the immune system plays a central role in preventing and controlling MCC is supported by several observations. MCCs often develop, however, despite the presence of humoral and cellular immune responses. A better understanding on how MCPyV and MCC evade the immune response will be necessary to develop effective immunotherapies

  8. Identification and molecular characterization of oat peptides implicated on coeliac immune response

    Comino, Isabel; Bernardo, David; Bancel, Emmanuelle; Moreno, María de Lourdes; Sánchez, Borja; Barro, Francisco; Šuligoj, Tanja; Ciclitira, Paul J; Cebolla, Ángel; Knight, Stella C.; Branlard, Gérard; Sousa, Carolina

    2016-01-01

    Background: Oats provide important nutritional and pharmacological properties, although their safety in coeliac patients remains controversial. Previous studies have confirmed that the reactivity of the anti-33-mer monoclonal antibody with different oat varieties is proportional to the immune responses in terms of T-cell proliferation. Although the impact of these varieties on the adaptive response has been studied, the role of the dendritic cells (DC) is still poorly understood. The aim of t...

  9. Controlled release strategies for modulating immune responses to promote tissue regeneration.

    Dumont, Courtney M; Park, Jonghyuck; Shea, Lonnie D

    2015-12-10

    Advances in the field of tissue engineering have enhanced the potential of regenerative medicine, yet the efficacy of these strategies remains incomplete, and is limited by the innate and adaptive immune responses. The immune response associated with injury or disease combined with that mounted to biomaterials, transplanted cells, proteins, and gene therapies vectors can contribute to the inability to fully restore tissue function. Blocking immune responses such as with anti-inflammatory or immunosuppressive agents are either ineffective, as the immune response contributes significantly to regeneration, or have significant side effects. This review describes targeted strategies to modulate the immune response in order to limit tissue damage following injury, promote an anti-inflammatory environment that leads to regeneration, and induce antigen (Ag)-specific tolerance that can target degenerative diseases that destroy tissues and promote engraftment of transplanted cells. Focusing on targeted immuno-modulation, we describe local delivery techniques to sites of inflammation as well as systemic approaches that preferentially target subsets of immune populations. PMID:26264833

  10. Immune response induction in the central nervous system

    Owens, Trevor; Babcock, Alicia

    2002-01-01

    The primary function of the immune response is protection of the host against infection with pathogens, including viruses. Since viruses can infect any tissue of the body, including the central nervous system (CNS), it is logical that cells of the immune system should equally have access to all...... tissues. Nevertheless, the brain and spinal cord are noted for their lack of immune presence. Relative to other organ systems, the CNS appears immunologically privileged. Furthermore, when immune responses do occur in the CNS, they are frequently associated with deleterious effects such as inflammatory...... and/or demyelinating pathology. This article will review the molecular and cellular dynamics of immune responses in the CNS, with particular emphasis on autoimmune inflammation, as has been studied in the authors' laboratory....

  11. Paradoxical acclimation responses in the thermal performance of insect immunity.

    Ferguson, Laura V; Heinrichs, David E; Sinclair, Brent J

    2016-05-01

    Winter is accompanied by multiple stressors, and the interactions between cold and pathogen stress potentially determine the overwintering success of insects. Thus, it is necessary to explore the thermal performance of the insect immune system. We cold-acclimated spring field crickets, Gryllus veletis, to 6 °C for 7 days and measured the thermal performance of potential (lysozyme and phenoloxidase activity) and realised (bacterial clearance and melanisation) immune responses. Cold acclimation decreased the critical thermal minimum from -0.5 ± 0.25 to -2.1 ± 0.18 °C, and chill coma recovery time after 72 h at -2 °C from 16.8 ± 4.9 to 5.2 ± 2.0 min. Measures of both potential and realised immunity followed a typical thermal performance curve, decreasing with decreasing temperature. However, cold acclimation further decreased realised immunity at low, but not high, temperatures; effectively, immune activity became paradoxically specialised to higher temperatures. Thus, cold acclimation induced mismatched thermal responses between locomotor and immune systems, as well as within the immune system itself. We conclude that cold acclimation in insects appears to preferentially improve cold tolerance over whole-animal immune performance at low temperatures, and that the differential thermal performance of physiological responses to multiple pressures must be considered when predicting ectotherms' response to climate change. PMID:26846428

  12. Altered Allogeneic Immune Responses in Middle-Aged Mice

    YiminSun; HanhanLi; AlanN.Langnas

    2004-01-01

    It is well known that leukocyte composition, T cell phenotypes and immune function change in aged mice and humans. However, limited and conflicting results on the age-related immune changes in middle-aged mice were reported. Identification of the characteristics of allogeneic immune responses in aging mice may offer important information for transplantation immunology. The major age-related changes in the immune cell phenotypes and function of 12 months old mice include: 1) the significantly decreased CD4+ cell population in the peripheral blood, the major peripheral CD4+ cells is CD45RBlowCD62Llow memory phenotype; 2) the in vitro responses to alloantigens and Con A of splenocytes markedly reduced; 3) the in vivo secondary humoral immune responses to alloantigens significantly declined; 4) the age-related alteration in the thymus mainly occurred in CD4/CD8 double positive (DP) stage; and 5) increased CD80+ and MHC class II+ cell population in spleens. Thus, the major age-related immune changes in 12 months old mice occurred in CD4+ T cells in the periphery and DP stage in the thymus, which may subsequently lead to the decreased allogeneic immune responses and the different sensitivity to immunosuppressive drugs and treatments. Further studies on the characteristics of allogeneic immunity in aging individuals may help to determine the appropriated treatment for transplant aging individuals. Cellular & Molecular Immunology. 2004;1(6):440-446.

  13. Altered Allogeneic Immune Responses in Middle-Aged Mice

    Yimin Sun; Hanhan Li; Alan N. Langnas; Yong Zhao

    2004-01-01

    It is well known that leukocyte composition, T cell phenotypes and immune function change in aged mice and humans. However, limited and conflicting results on the age-related immune changes in middle-aged mice were reported. Identification of the characteristics of allogeneic immune responses in aging mice may offer important information for transplantation immunology. The major age-related changes in the immune cell phenotypes and function of 12 months old mice include: 1) the significantly decreased CD4+ cell population in the peripheral blood, the major peripheral CD4+ cells is CD45RBlowCD62Llow memory phenotype; 2) the in vitro responses to alloantigens and Con A of splenocytes markedly reduced; 3) the in vivo secondary humoral immune responses to alloantigens significantly declined; 4) the age-related alteration in the thymus mainly occurred in CD4/CD8 double positive (DP) stage; and 5) increased CD80+ and MHC class Ⅱ+ cell population in spleens. Thus, the major age-related immune changes in 12 months old mice occurred in CD4+ T cells in the periphery and DP stage in the thymus, which may subsequently lead to the decreased allogeneic immune responses and the different sensitivity to immunosuppressive drugs and treatments. Further studies on the characteristics of allogeneic immunity in aging individuals may help to determine the appropriated treatment for transplant aging individuals. Cellular & Molecular Immunology. 2004; 1(6) :440-446.

  14. Measuring antigen-specific immune responses: 2008 Update

    J.W. Gratama (Jan-Willem); F. Kern (Florian); F. Manca (Fabrizio); M. Roederer (Mario)

    2008-01-01

    textabstractOverall, the last 10 years have seen an explosion in the field of antigen-specific immune response monitoring. As summarized in this issue of Cytometry and at the MASIR conferences, these technologies have provided new insights into the basic biology of the immune system and are beginnin

  15. The specificity of targeted vaccines for APC surface molecules influences the immune response phenotype.

    Gunnveig Grødeland

    Full Text Available Different diseases require different immune responses for efficient protection. Thus, prophylactic vaccines should prime the immune system for the particular type of response needed for protection against a given infectious agent. We have here tested fusion DNA vaccines which encode proteins that bivalently target influenza hemagglutinins (HA to different surface molecules on antigen presenting cells (APC. We demonstrate that targeting to MHC class II molecules predominantly induced an antibody/Th2 response, whereas targeting to CCR1/3/5 predominantly induced a CD8(+/Th1 T cell response. With respect to antibodies, the polarizing effect was even more pronounced upon intramuscular (i.m delivery as compared to intradermal (i.d. vaccination. Despite these differences in induced immune responses, both vaccines protected against a viral challenge with influenza H1N1. Substitution of HA with ovalbumin (OVA demonstrated that polarization of immune responses, as a consequence of APC targeting specificity, could be extended to other antigens. Taken together, the results demonstrate that vaccination can be tailor-made to induce a particular phenotype of adaptive immune responses by specifically targeting different surface molecules on APCs.

  16. Sublingual nucleotides and immune response to exercise

    Ostojic Sergej M

    2012-07-01

    Full Text Available Abstract Evidence exists regarding the potential role of exogenous nucleotides as regulators of the immune function in physically active humans, yet the potential use of nucleotides has been hindered by their low bioavailability after oral administration. We conducted a double-blind, placebo-controlled, randomized trial to assess the effect of sublingual nucleotides (50 mg/day on salivary and serum immunity indicators as compared to placebo, both administered to healthy males aged 20 to 25 years for 14 days. Sublingual administration of nucleotides for 14 days increased serum immunoglobulin A, natural killer cells count and cytotoxic activity, and offset the post-exercise drop of salivary immunoglobulins and lactoferrin (P  0.05. It seems that sublingual administration of nucleotides for two weeks considerably affected immune function in healthy males.

  17. Host Immune Response to Histophilus somni.

    Corbeil, Lynette B

    2016-01-01

    Histophilus somni is known to cause several overlapping syndromes or to be found in genital or upper respiratory carrier states in ruminants. Vaccines have been used for decades, yet efficacy is controversial and mechanisms of protective immunity are not well understood. Since H. somni survives phagocytosis, it has sometimes been considered to be a facultative intercellular parasite, implying that cell-mediated immunity would be critical in protection. However, H. somni not only inhibits phagocyte function, but also is cytotoxic for macrophages. Therefore, it does not live for long periods in healthy phagocytes. Protection of calves against H. somni pneumonia by passive immunization is also evidence that H. somni is more like an extracellular pathogen than an intracellular pathogen. Several studies showed that bovine IgG2 antibodies are more protective than IgG1 antibodies. Even the IgG2 allotypes tend to vary in protection. Of course, antigenic specificity also determines protection. So far, there is most evidence for protection by a 40 K outer membrane protein and by Immunoglobulin binding protein A fibrils. Serology and immunohistochemistry have both been used for immunodiagnosis. Many evasive mechanisms by H. somni have been defined, including decreased phagocyte function, antibodies bound by shed antigens, decreased immune stimulation, and antigenic variation. Interaction of H. somni with other bovine respiratory disease organisms is another layer of pathogenesis. Studies of bovine respiratory syncytial virus (BRSV) and H. somni in calfhood pneumonia revealed an increase in IgE antibodies to H. somni, which were associated with more severe disease of longer duration than with either agent alone. Innate immune mechanisms at the epithelial cell level are also affected by dual infection by BRSV and H. somni as compared to either pathogen alone. Although much more work needs to be done, the complex mechanisms of H. somni immunity are becoming clearer. PMID

  18. The Immunobiology of Prostanoid Receptor Signaling in Connecting Innate and Adaptive Immunity

    Hedi Harizi

    2013-01-01

    Full Text Available Prostanoids, including prostaglandins (PGs, thromboxanes (TXs, and prostacyclins, are synthesized from arachidonic acid (AA by the action of Cyclooxygenase (COX enzymes. They are bioactive inflammatory lipid mediators that play a key role in immunity and immunopathology. Prostanoids exert their effects on immune and inflammatory cells by binding to membrane receptors that are widely expressed throughout the immune system and act at multiple levels in innate and adaptive immunity. The immunoregulatory role of prostanoids results from their ability to regulate cell-cell interaction, antigen presentation, cytokine production, cytokine receptor expression, differentiation, survival, apoptosis, cell-surface molecule levels, and cell migration in both autocrine and paracrine manners. By acting on immune cells of both systems, prostanoids and their receptors have great impact on immune regulation and play a pivotal role in connecting innate and adaptive immunity. This paper focuses on the immunobiology of prostanoid receptor signaling because of their potential clinical relevance for various disorders including inflammation, autoimmunity, and tumorigenesis. We mainly discuss the effects of major COX metabolites, PGD2, PGE2, their signaling during dendritic cell (DC-natural killer (NK reciprocal crosstalk, DC-T cell interaction, and subsequent consequences on determining crucial aspects of innate and adaptive immunity in normal and pathological settings.

  19. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    Hennings, Leah; Artaud, Cecile; Jousheghany, Fariba; Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Kieber-Emmons, Thomas, E-mail: tke@uams.edu [Winthrop P. Rockefeller Cancer Institute and Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2011-11-11

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses.

  20. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses

  1. Adaptive Acid Tolerance Response of Streptococcus sobrinus

    Nascimento, Marcelle M.; Lemos, José A. C.; Abranches, Jacqueline; Gonçalves, Reginaldo B.; Burne, Robert A.

    2004-01-01

    Streptococcus mutans and Streptococcus sobrinus are the bacteria most commonly associated with human dental caries. A major virulence attribute of these and other cariogenic bacteria is acid tolerance. The acid tolerance mechanisms of S. mutans have begun to be investigated in detail, including the adaptive acid tolerance response (ATR), but this is not the case for S. sobrinus. An analysis of the ATR of two S. sobrinus strains was conducted with cells grown to steady state in continuous chem...

  2. The adaptive immune system restrains Alzheimer’s disease pathogenesis by modulating microglial function

    Abud, Edsel M.; Lakatos, Anita; Karimzadeh, Alborz; Yeung, Stephen T.; Davtyan, Hayk; Fote, Gianna M.; Lau, Lydia; Weinger, Jason G.; Lane, Thomas E.; Inlay, Matthew A.; Poon, Wayne W.; Blurton-Jones, Mathew

    2016-01-01

    The innate immune system is strongly implicated in the pathogenesis of Alzheimer’s disease (AD). In contrast, the role of adaptive immunity in AD remains largely unknown. However, numerous clinical trials are testing vaccination strategies for AD, suggesting that T and B cells play a pivotal role in this disease. To test the hypothesis that adaptive immunity influences AD pathogenesis, we generated an immune-deficient AD mouse model that lacks T, B, and natural killer (NK) cells. The resulting “Rag-5xfAD” mice exhibit a greater than twofold increase in β-amyloid (Aβ) pathology. Gene expression analysis of the brain implicates altered innate and adaptive immune pathways, including changes in cytokine/chemokine signaling and decreased Ig-mediated processes. Neuroinflammation is also greatly exacerbated in Rag-5xfAD mice as indicated by a shift in microglial phenotype, increased cytokine production, and reduced phagocytic capacity. In contrast, immune-intact 5xfAD mice exhibit elevated levels of nonamyloid reactive IgGs in association with microglia, and treatment of Rag-5xfAD mice or microglial cells with preimmune IgG enhances Aβ clearance. Last, we performed bone marrow transplantation studies in Rag-5xfAD mice, revealing that replacement of these missing adaptive immune populations can dramatically reduce AD pathology. Taken together, these data strongly suggest that adaptive immune cell populations play an important role in restraining AD pathology. In contrast, depletion of B cells and their appropriate activation by T cells leads to a loss of adaptive–innate immunity cross talk and accelerated disease progression. PMID:26884167

  3. Virus-like nanostructures for tuning immune response

    Mammadov, Rashad; Cinar, Goksu; Gunduz, Nuray; Goktas, Melis; Kayhan, Handan; Tohumeken, Sehmus; Topal, Ahmet E.; Orujalipoor, Ilghar; Delibasi, Tuncay; Dana, Aykutlu; Ide, Semra; Tekinay, Ayse B.; Guler, Mustafa O.

    2015-11-01

    Synthetic vaccines utilize viral signatures to trigger immune responses. Although the immune responses raised against the biochemical signatures of viruses are well characterized, the mechanism of how they affect immune response in the context of physical signatures is not well studied. In this work, we investigated the ability of zero- and one-dimensional self-assembled peptide nanostructures carrying unmethylated CpG motifs (signature of viral DNA) for tuning immune response. These nanostructures represent the two most common viral shapes, spheres and rods. The nanofibrous structures were found to direct immune response towards Th1 phenotype, which is responsible for acting against intracellular pathogens such as viruses, to a greater extent than nanospheres and CpG ODN alone. In addition, nanofibers exhibited enhanced uptake into dendritic cells compared to nanospheres or the ODN itself. The chemical stability of the ODN against nuclease-mediated degradation was also observed to be enhanced when complexed with the peptide nanostructures. In vivo studies showed that nanofibers promoted antigen-specific IgG production over 10-fold better than CpG ODN alone. To the best of our knowledge, this is the first report showing the modulation of the nature of an immune response through the shape of the carrier system.

  4. Adaptive immune neuroprotection in G93A-SOD1 amyotrophic lateral sclerosis mice.

    Rebecca Banerjee

    Full Text Available BACKGROUND: Innate neuroimmune dysfunction is a pathobiological feature of amyotrophic lateral sclerosis (ALS. However, links, if any, between disease and adaptive immunity are poorly understood. Thus, the role of T cell immunity in disease was investigated in human G93A superoxide dismutase 1 (SOD1 transgenic (Tg mice and subsequently in ALS patients. METHODS AND FINDINGS: Quantitative and qualitative immune deficits in lymphoid cell and T cell function were seen in G93A-SOD1 Tg mice. Spleens of Tg animals showed reductions in size, weight, lymphocyte numbers, and morphological deficits at terminal stages of disease compared to their wild-type (Wt littermates. Spleen sizes and weights of pre-symptomatic Tg mice were unchanged, but deficits were readily seen in T cell proliferation coincident with increased annexin-V associated apoptosis and necrosis of lymphocytes. These lymphoid deficits paralleled failure of Copolymer-1 (COP-1 immunization to affect longevity. In addition, among CD4(+ T cells in ALS patients, levels of CD45RA(+ (naïve T cells were diminished, while CD45RO(+ (memory T cells were increased compared to age-matched caregivers. In attempts to correct mutant SOD1 associated immune deficits, we reconstituted SOD1 Tg mice with unfractionated naïve lymphocytes or anti-CD3 activated CD4(+CD25(+ T regulatory cells (Treg or CD4(+CD25(- T effector cells (Teff from Wt donor mice. While naive lymphocytes failed to enhance survival, both polyclonal-activated Treg and Teff subsets delayed loss of motor function and extended survival; however, only Treg delayed neurological symptom onset, whereas Teff increased latency between disease onset and entry into late stage. CONCLUSIONS: A profound and progressive immunodeficiency is operative in G93A-SOD1 mice and is linked to T cell dysfunction and the failure to elicit COP-1 neuroprotective immune responses. In preliminary studies T cell deficits were also observed in human ALS. These findings

  5. Quantitation of the Dynamic Profiles of the Innate Immune Response Using Multiplex Selected Reaction Monitoring–Mass Spectrometry*

    Zhao, Yingxin; Tian, Bing; Edeh, Chukwudi B.; Allan R. Brasier

    2013-01-01

    The innate immune response (IIR) is a coordinated intracellular signaling network activated by the presence of pathogen-associated molecular patterns that limits pathogen spread and induces adaptive immunity. Although the precise temporal activation of the various arms of the IIR is a critical factor in the outcome of a disease, currently there are no quantitative multiplex methods for its measurement. In this study, we investigate the temporal activation pattern of the IIR in response to int...

  6. Effect of mycotoxins on swine in immune responses

    Fornalés Pallàs, Clara

    2014-01-01

    Póster Mycotoxins are secondary metabolites of fungi, hazardous to human and animal health. Their effect has been mostly studied in medium or half doses. It has been stated that, at lower, subclinical doses, mycotoxins may alter immune response, thus predisposing the appearance of diseases. Swine are a good model for studying the effect of mycotoxins to extrapolate to humans. This review is focused on the effect of most common mycotoxins on Swine immune response.

  7. Immune response to measles vaccine in Peruvian children.

    Bautista-López Norma L.; Vaisberg Abraham; Kanashiro Rosa; Hernández Herminio; Ward Brian J.

    2001-01-01

    OBJECTIVE: To evaluate the immune response in Peruvian children following measles vaccination. METHODS: Fifty-five Peruvian children received Schwarz measles vaccine (about 10(3) plaque forming units) at about 9 months of age. Blood samples were taken before vaccination, then twice after vaccination: one sample at between 1 and 4 weeks after vaccination and the final sample 3 months post vaccination for evaluation of immune cell phenotype and lymphoproliferative responses to measles and non-m...

  8. A preliminary study to evaluate the immune responses induced by immunization of dogs with inactivated Ehrlichia canis organisms

    Sunita Mahan

    2005-09-01

    Full Text Available Ehrlichia canis is an intracellular pathogen that causes canine monocytic ehrlichiosis. Although the role of antibody responses cannot be discounted, control of this intracellular pathogen is expected to be by cell mediated immune responses. The immune responses in dogs immunized with inactivated E. canis organisms in combination with Quil A were evaluated. Immunization provoked strong humoral and cellular immune responses, which were demonstrable by Western blotting and lymphocyte proliferation assays. By Western blotting antibodies to several immunodominant E. canis proteins were detected in serum from immunized dogs and antibody titres increased after each immunization. The complement of immunogenic proteins recognized by the antisera were similar to those recognized in serum from infected dogs. Upon challenge with live E. canis, rapid anamnestic humoral responses were detected in the serum of immunized dogs and primary antibody responses were detected in the serum from control dogs. Following immunization, a lymphocyte proliferative response (cellular immunity was detected in peripheral blood mononuclear cells (PBMNs of immunized dogs upon stimulation with E. canis antigens. These responses were absent from non-immunized control dogs until after infection with live E. canis, when antigen specific-lymphocyte proliferation responses were also detected in the PBMNs of the control dogs. It can be thus concluded that immunization against canine monocytic ehrlichiosis may be feasible. However, the immunization regimen needs to be optimized and a detailed investigation needs to be done to determine if this regimen can prevent development of acute and chronic disease.

  9. Adaptive Response of T and B Cells in Atherosclerosis.

    Ketelhuth, Daniel F J; Hansson, Göran K

    2016-02-19

    Atherosclerosis is a chronic inflammatory disease that is initiated by the retention and accumulation of cholesterol-containing lipoproteins, particularly low-density lipoprotein, in the artery wall. In the arterial intima, lipoprotein components that are generated through oxidative, lipolytic, and proteolytic activities lead to the formation of several danger-associated molecular patterns, which can activate innate immune cells as well as vascular cells. Moreover, self- and non-self-antigens, such as apolipoprotein B-100 and heat shock proteins, can contribute to vascular inflammation by triggering the response of T and B cells locally. This process can influence the initiation, progression, and stability of plaques. Substantial clinical and experimental data support that the modulation of adaptive immune system may be used for treating and preventing atherosclerosis. This may lead to the development of more selective and less harmful interventions, while keeping host defense mechanisms against infections and tumors intact. Approaches such as vaccination might become a realistic option for cardiovascular disease, especially if they can elicit regulatory T and B cells and the secretion of atheroprotective antibodies. Nevertheless, difficulties in translating certain experimental data into new clinical therapies remain a challenge. In this review, we discuss important studies on the function of T- and B-cell immunity in atherosclerosis and their manipulation to develop novel therapeutic strategies against cardiovascular disease. PMID:26892965

  10. Respons imun humoral pada pulpitis (Humoral immune response on pulpitis

    Trijoedani Widodo

    2005-06-01

    Full Text Available Pulpitis is an inflammation process on dental pulp tissue, and usually as the continuous of caries. The microorganism in the caries is a potential immunogenic triggering the immune respons, both humoral and celluler immune responses. The aim of this research is to explain the humoral immune response changes in the dental pulp tissues of pulpitis. This research was done on three group samples: Irreversible pulpitis, Reversible pulpitis and sound teeth as the control group. The result showed that there were three pulpitis immunopathologic patterns: the sound teeth immunopathologic pattern showing a low humoral immune response, in a low level of IgG, IgA and IgM, the reversible pulpitis pattern showing that in a higher humoral immune response, IgG and IgA decreased but IgM increased, the irreversible pulpitis pattern showing that IgG and IgM increased, but it couldn't be repaired although it has highly immunity, and it showed an unusually low level of IgA. This low level of IgA meant that irreversible pulpitis had a low mucosal immunity.

  11. Modeling the interactions between pathogenic bacteria, bacteriophage and immune response

    Leung, Chung Yin (Joey); Weitz, Joshua S.

    The prevalence of antibiotic-resistant strains of pathogenic bacteria has led to renewed interest in the use of bacteriophage (phage), or virus that infects bacteria, as a therapeutic agent against bacterial infections. However, little is known about the theoretical mechanism by which phage therapy may work. In particular, interactions between the bacteria, the phage and the host immune response crucially influences the outcome of the therapy. Few models of phage therapy have incorporated all these three components, and existing models suffer from unrealistic assumptions such as unbounded growth of the immune response. We propose a model of phage therapy with an emphasis on nonlinear feedback arising from interactions with bacteria and the immune response. Our model shows a synergistic effect between the phage and the immune response which underlies a possible mechanism for phage to catalyze the elimination of bacteria even when neither the immune response nor phage could do so alone. We study the significance of this effect for different parameters of infection and immune response, and discuss its implications for phage therapy.

  12. On the evolutionary origin of the adaptive immune system--the adipocyte hypothesis.

    van Niekerk, Gustav; Engelbrecht, Anna-Mart

    2015-04-01

    Jawless vertebrates utilize a form of adaptive immunity that is functionally based on molecular effectors that are completely different from those of vertebrates. This observation raises an intriguing question: why did vertebrates, representing only 5% of all animals, twice evolve a system as complex as adaptive immunity? Theories aimed at identifying a selective pressure that would 'drive' the development of an adaptive immune system (AIS) fail to explain why invertebrates would not similarly develop an AIS. We argue that an AIS can only be implemented in a certain physiological context, i.e., that an AIS represents an unevolvable trait for invertebrates. The immune system is functionally integrated with other systems; therefore a preexisting physiological innovation unique to vertebrates may have acted as the prerequisite infrastructure that allowed the development of an AIS. We propose that future efforts should be directed toward identifying the evolutionary release that allowed the development of an adaptive immune system in vertebrates. In particular, the advent of specialized adipocytes might have expanded the metabolic scope of vertebrates, allowing the opportunistic incorporation of an AIS. However, physiological innovations, unique to (or more developed in) vertebrates, support the implementation of an AIS. Thus, understanding the interaction between systems (e.g. neural-immune-adipose connection) may illuminate our understanding regarding the perplexing immunological dimorphism within the animal kingdom. PMID:25698354

  13. Evaluation of mucosal and systemic immune responses elicited by GPI-0100- adjuvanted influenza vaccine delivered by different immunization strategies.

    Heng Liu

    Full Text Available Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN or the intrapulmonary (IPL route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses.

  14. Evaluation of Mucosal and Systemic Immune Responses Elicited by GPI-0100- Adjuvanted Influenza Vaccine Delivered by Different Immunization Strategies

    Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke

    2013-01-01

    Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN) or the intrapulmonary (IPL) route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses. PMID:23936066

  15. Chemical agents and the immune response.

    Luster, M I; Rosenthal, G J

    1993-01-01

    Our desire to understand the potential adverse human health effects of environmental chemical exposure has coincided with an increased understanding of the immune system and an appreciation of its complex regulatory network. This has spawned a broad interest in the area of immunotoxicology within the scientific community as well as certain concerns in the public sector regarding chemical-induced hypersensitivity and immunosuppression. The incidence of alleged human sensitization to chemicals ...

  16. Legionella secreted effectors and innate immune responses

    Luo, Zhao-Qing

    2011-01-01

    Legionella pneumophila is a facultative intracellular pathogen capable of replicating in a wide spectrum of cells. Successful infection by Legionella requires the Dot/Icm type IV secretion system, which translocates a large number of effector proteins into infected cells. By co-opting numerous host cellular processes, these proteins function to establish a specialized organelle that allows bacterial survival and proliferation. Even within the vacuole, L. pneumophila triggers robust immune res...

  17. The role of lysosomal cysteine proteases in crustacean immune response

    FL Garcia-Carreño

    2014-04-01

    Full Text Available Over the long course of evolution and under the selective pressure exerted by pathogens and parasites, animals have selectively fixed a number of defense mechanisms against the constant attack of intruders. The immune response represents a key component to optimize the biological fitness of individuals. Two decades ago, prevention and control of diseases in crustacean aquaculture systems were considered priorities in most shrimp-producing countries, but knowledge was scarce and various pathogens have severely affected aquaculture development around the world. Scientific contributions have improved our understanding of the crustacean immune response. Several studies confirm the central role played by proteases in the immune response of animals, and the cooperative interaction of these enzymes in a wide variety of organisms is well known. This review summarizes the current information regarding the role of cysteine proteases in the immune system of Crustacea and points to aspects that are needed to provide a better integration of our knowledge.

  18. Regulated cell death and adaptive stress responses.

    Galluzzi, Lorenzo; Bravo-San Pedro, José Manuel; Kepp, Oliver; Kroemer, Guido

    2016-06-01

    Eukaryotic cells react to potentially dangerous perturbations of the intracellular or extracellular microenvironment by activating rapid (transcription-independent) mechanisms that attempt to restore homeostasis. If such perturbations persist, cells may still try to cope with stress by activating delayed and robust (transcription-dependent) adaptive systems, or they may actively engage in cellular suicide. This regulated form of cell death can manifest with various morphological, biochemical and immunological correlates, and constitutes an ultimate attempt of stressed cells to maintain organismal homeostasis. Here, we dissect the general organization of adaptive cellular responses to stress, their intimate connection with regulated cell death, and how the latter operates for the preservation of organismal homeostasis. PMID:27048813

  19. Resistance Training: Physiological Responses and Adaptations (Part 3 of 4).

    Fleck, Steven J.; Kraemer, William J.

    1988-01-01

    The physiological responses and adaptations which occur as a result of resistance training, such as cardiovascular responses, serum lipid count, body composition, and neural adaptations are discussed. Changes in the endocrine system are also described. (JL)

  20. The role of idiotypic interactions in the adaptive immune system: a belief-propagation approach

    Bartolucci, Silvia; Mozeika, Alexander; Annibale, Alessia

    2016-08-01

    In this work we use belief-propagation techniques to study the equilibrium behaviour of a minimal model for the immune system comprising interacting T and B clones. We investigate the effect of the so-called idiotypic interactions among complementary B clones on the system’s activation. Our results show that B–B interactions increase the system’s resilience to noise, making clonal activation more stable, while increasing the cross-talk between different clones. We derive analytically the noise level at which a B clone gets activated, in the absence of cross-talk, and find that this increases with the strength of idiotypic interactions and with the number of T cells sending signals to the B clones. We also derive, analytically and numerically, via population dynamics, the critical line where clonal cross-talk arises. Our approach allows us to derive the B clone size distribution, which can be experimentally measured and gives important information about the adaptive immune system response to antigens and vaccination.

  1. Integrating Innate and Adaptive Immunity for Intrusion Detection

    Tedesco, Gianni; Aickelin, Uwe

    2010-01-01

    Network Intrusion Detection Systems (NDIS) monitor a network with the aim of discerning malicious from benign activity on that network. While a wide range of approaches have met varying levels of success, most IDS's rely on having access to a database of known attack signatures which are written by security experts. Nowadays, in order to solve problems with false positive alters, correlation algorithms are used to add additional structure to sequences of IDS alerts. However, such techniques are of no help in discovering novel attacks or variations of known attacks, something the human immune system (HIS) is capable of doing in its own specialised domain. This paper presents a novel immune algorithm for application to an intrusion detection problem. The goal is to discover packets containing novel variations of attacks covered by an existing signature base.

  2. The placenta in toxicology. Part II: Systemic and local immune adaptations in pregnancy.

    Svensson-Arvelund, Judit; Ernerudh, Jan; Buse, Eberhard; Cline, J Mark; Haeger, Jan-Dirk; Dixon, Darlene; Markert, Udo R; Pfarrer, Christiane; De Vos, Paul; Faas, Marijke M

    2014-01-01

    During pregnancy, the maternal immune system is challenged by the semiallogeneic fetus, which must be tolerated without compromising fetal or maternal health. This review updates the systemic and local immune changes taking place during human pregnancy, including some examples in rodents. Systemic changes are induced by contact of maternal blood with placental factors and include enhanced innate immunity with increased activation of granulocytes and nonclassical monocytes. Although a bias toward T helper (Th2) and regulatory T cell (Treg) immunity has been associated with healthy pregnancy, the relationship between different circulating Th cell subsets is not straightforward. Instead, these adaptations appear most evidently at the fetal-maternal interface, where for instance Tregs are enriched and promote fetal tolerance. Also innate immune cells, that is, natural killer cells and macrophages, are enriched, constituting the majority of decidual leukocytes. These cells not only contribute to immune regulation but also aid in establishing the placenta by promoting trophoblast recruitment and angiogenesis. Thus, proper interaction between leukocytes and placental trophoblasts is necessary for normal placentation and immune adaptation. Consequently, spontaneous maladaptation or interference of the immune system with toxic substances may be important contributing factors for the development of pregnancy complications such as preeclampsia, preterm labor, and recurrent miscarriages. PMID:23531796

  3. THE ROLE OF VITAMIN D IN THE IMMUNE RESPONSE AND ALLERGIC DISEASES

    Meza-Torres Catherine

    2015-12-01

    Full Text Available Introduction: vitamin D is one of the most pleiotropic molecules. It is very important in calcium metabolism, pulmonary health and in the immune system. Epidemiological studies have linked vitamin D deficiency with asthma and atopic dermatitis. In addition, some genetic studies including genome scan report association between vitamin D receptor (VDR and asthma. Objective: to identify the role of vitamin D in immune responses and allergic diseases. Methods: electronic search was carried out in the databases, PubMed, Science Direct, Protein Data Bank, NCBI, Blackwell Synergy Wiley Online Library. Results: 120 articles were selected for full review and 77 and 2 abstracts of them were chosen. Conclusion: epidemiological and genetics studies have linked vitamin D and its receptor (VDR with the development of allergic diseases. This evidence is extensive and sometimes contradictory. The apparent contradiction may be explained by the differential recruitment of coactivators RV-VDR-RXR complex. However, experimental studies in vitro and in vivo show that vitamin D has a modulatory effect on various types of cells of the innate and adaptive immune system, as well as the cells involved in the immune response Th1, Th2, Treg and Th17 , concluding that this vitamin plays a key role on innate and adaptive immune system and in the development of allergic diseases. Rev.cienc.biomed. 2015;6(2:319-332 KEYWORDS Vitamin D; Allergy; Asthma; Allergic rhinitis; Atopic dermatitis.

  4. Contradictory Immune Response in Post Liver Transplantation Hepatitis B and C

    Akinobu Takaki

    2014-01-01

    Full Text Available Hepatitis B and C often progress to decompensated liver cirrhosis requiring orthotopic liver transplantation (OLT. After OLT, hepatitis B recurrence is clinically controlled with a combination of hepatitis B immunoglobulin (HBIG and nucleos(tide analogues. Another approach is to induce self-producing anti-hepatitis B virus (HBV antibodies using a HBV envelope antigen vaccine. Patients who had not been HBV carriers such as acutely infected liver failure or who received liver from HBV self-limited donor are good candidate. For chronic HBV carrier patients, a successful response can only be achieved in selected patients such as those treated with experimentally reduced immunosuppression protocols or received an anti-HBV adaptive memory carrying donor liver. Hepatitis C virus (HCV reinfects transplanted livers at a rate of >90%. HCV reinfected patients show different severities of hepatitis, from mild and slowly progressing to severe and rapidly progressing, possibly resulting from different adaptive immune responses. More than half the patients require interferon treatment, although the success rate is low and carries risks for leukocytopenia and rejection. Managing the immune response has an important role in controlling recurrent hepatitis C. This study aimed to review the adaptive immune response in post-OLT hepatitis B and C.

  5. Evidence of the adaptive evolution of immune genes in chicken

    Cormican Paul; Downing Tim; O'Farrelly Cliona; Bradley Daniel G; Lloyd Andrew T

    2009-01-01

    Abstract The basis for understanding the characteristics of gene functional categories in chicken has been enhanced by the ongoing sequencing of the zebra finch genome, the second bird species to be extensively sequenced. This sequence provides an avian context for examining how variation in chicken has evolved since its divergence from its common ancestor with zebra finch as well as well as a calibrating point for studying intraspecific diversity within chicken. Immune genes have been subjec...

  6. Modulation of systemic immune responses through commensal gastrointestinal microbiota.

    Kyle M Schachtschneider

    Full Text Available Colonization of the gastrointestinal (GI tract is initiated during birth and continually seeded from the individual's environment. Gastrointestinal microorganisms play a central role in developing and modulating host immune responses and have been the subject of investigation over the last decades. Animal studies have demonstrated the impact of GI tract microbiota on local gastrointestinal immune responses; however, the full spectrum of action of early gastrointestinal tract stimulation and subsequent modulation of systemic immune responses is poorly understood. This study explored the utility of an oral microbial inoculum as a therapeutic tool to affect porcine systemic immune responses. For this study a litter of 12 pigs was split into two groups. One group of pigs was inoculated with a non-pathogenic oral inoculum (modulated, while another group (control was not. DNA extracted from nasal swabs and fecal samples collected throughout the study was sequenced to determine the effects of the oral inoculation on GI and respiratory microbial communities. The effects of GI microbial modulation on systemic immune responses were evaluated by experimentally infecting with the pathogen Mycoplasma hyopneumoniae. Coughing levels, pathology, toll-like receptors 2 and 6, and cytokine production were measured throughout the study. Sequencing results show a successful modulation of the GI and respiratory microbiomes through oral inoculation. Delayed type hypersensitivity responses were stronger (p = 0.07, and the average coughing levels and respiratory TNF-α variance were significantly lower in the modulated group (p<0.0001 and p = 0.0153, respectively. The M. hyopneumoniae infection study showed beneficial effects of the oral inoculum on systemic immune responses including antibody production, severity of infection and cytokine levels. These results suggest that an oral microbial inoculation can be used to modulate microbial communities, as well as

  7. CRISPR-Cas adaptive immune systems of the sulfolobales

    Garrett, Roger Antony; Shah, Shiraz Ali; Erdmann, Susanne;

    2015-01-01

    The Sulfolobales have provided good model organisms for studying CRISPR-Cas systems of the crenarchaeal kingdom of the archaea. These organisms are infected by a wide range of exceptional archaea-specific viruses and conjugative plasmids, and their CRISPR-Cas systems generally exhibit extensive...... structural and functional diversity. They carry large and multiple CRISPR loci and often multiple copies of diverse Type I and Type III interference modules as well as more homogeneous adaptation modules. These acidothermophilic organisms have recently provided seminal insights into both the adaptation...... process, the diverse modes of interference, and their modes of regulation. The functions of the adaptation and interference modules tend to be loosely coupled and the stringency of the crRNA-DNA sequence matching during DNA interference is relatively low, in contrast to some more streamlined CRISPR...

  8. Earlier infantile immune maturation is related to higher DTP vaccine responses in children

    Strömbeck, Anna; Lundell, Anna-Carin; Nordström, Inger; Andersson, Kerstin; Adlerberth, Ingegerd; Wold, Agnes E.; Rudin, Anna

    2016-01-01

    There are large inter-individual variations in vaccine-specific antibody responses in children. We sought to investigate whether early-life environmental factors and/or adaptive immune maturation were related to diphtheria–tetanus–pertussis (DTP) vaccine-specific antibody levels at 18 months of age. In the prospective FARMFLORA birth-cohort, including both farming and non-farming families, children were immunized with DTP vaccine at 3, 5 and 12 months of age. DTP vaccine-induced antibody leve...

  9. Trappin-2/Elafin Modulate Innate Immune Responses of Human Endometrial Epithelial Cells to PolyI∶C

    Drannik, Anna G.; Kakon Nag; Xiao-Dan Yao; Henrick, Bethany M.; Jean-Michel Sallenave; Rosenthal, Kenneth L

    2012-01-01

    BACKGROUND: Upon viral recognition, innate and adaptive antiviral immune responses are initiated by genital epithelial cells (ECs) to eradicate or contain viral infection. Such responses, however, are often accompanied by inflammation that contributes to acquisition and progression of sexually transmitted infections (STIs). Hence, interventions/factors enhancing antiviral protection while reducing inflammation may prove beneficial in controlling the spread of STIs. Serine antiprotease trappin...

  10. Inhomogeneous DNA replication kinetics is associated with immune system response

    Bechhoefer, John; Gauthier, Michel G.; Norio, Paolo

    2013-03-01

    In eukaryotic organisms, DNA replication is initiated at ``origins,'' launching ``forks'' that spread bidirectionally to replicate the genome. The distribution and firing rate of these origins and the fork progression velocity form the ``replication program.'' Previous models of DNA replication in eukaryotes have assumed firing rates and replication fork velocities to be homogeneous across the genome. But large variations in origin activity and fork velocity do occur. Here, we generalize our replication model to allow for arbitrary spatial variation of initiation rates and fork velocities in a given region of the genome. We derive and solve rate equations for the forks and replication probability, to obtain the mean-field replication program. After testing the model on simulations, we analyze the changes in replication program that occur during B cell development in the mouse. B cells play a major role in the adaptive immune system by producing the antibodies. We show that the process of cell differentiation is associated with a change in replication program, where the zones of high origin initiation rates located in the immunoglobulin heavy-chain locus shift their position as the locus prepares to undergo the recombination events responsible for generating antibody specificity. This work was funded by HSFP and NSERC-Canada (MGG and JB) and by NIH-NIGMS grant R01GM080606 (PN).

  11. Improving Adaptive Learning Technology through the Use of Response Times

    Mettler, Everett; Massey, Christine M.; Kellman, Philip J.

    2011-01-01

    Adaptive learning techniques have typically scheduled practice using learners' accuracy and item presentation history. We describe an adaptive learning system (Adaptive Response Time Based Sequencing--ARTS) that uses both accuracy and response time (RT) as direct inputs into sequencing. Response times are used to assess learning strength and…

  12. Immune system responses and fitness costs associated with consumption of bacteria in larvae of Trichoplusia ni

    Heckel David G

    2007-12-01

    Full Text Available Abstract Background Insects helped pioneer, and persist as model organisms for, the study of specific aspects of immunity. Although they lack an adaptive immune system, insects possess an innate immune system that recognizes and destroys intruding microorganisms. Its operation under natural conditions has not been well studied, as most studies have introduced microbes to laboratory-reared insects via artificial mechanical wounding. One of the most common routes of natural exposure and infection, however, is via food; thus, the role of dietary microbial communities in herbivorous insect immune system evolution invites study. Here, we examine the immune system response and consequences of exposing a lepidopteran agricultural pest to non-infectious microorganisms via simple oral consumption. Results Immune system response was compared between Trichoplusia ni larvae reared on diets with or without non-pathogenic bacteria (Escherichia coli and Micrococcus luteus. Two major immune response-related enzymatic activities responded to diets differently – phenoloxidase activity was inhibited in the bacteria-fed larvae, whereas general antibacterial activity was enhanced. Eight proteins were highly expressed in the hemolymph of the bacteria fed larvae, among them immune response related proteins arylphorin, apolipophorin III and gloverin. Expression response among 25 putative immune response-related genes were assayed via RT-qPCR. Seven showed more than fivefold up regulation in the presence of bacterial diet, with 22 in total being differentially expressed, among them apolipophorin III, cecropin, gallerimycin, gloverin, lysozyme, and phenoloxidase inhibiting enzyme. Finally, potential life-history trade-offs were studied, with pupation time and pupal mass being negatively affected in bacteria fed larvae. Conclusion The presence of bacteria in food, even if non-pathogenic, can trigger an immune response cascade with life history tradeoffs. Trichoplusia ni

  13. [Effect of anabolic steroid on immune response].

    Yamagishi, H; Kobayashi, M; Konosu, H; Kurioka, H; Naito, K; Sonoyama, T; Nishimoto, T; Hashimoto, I

    1984-03-01

    Using lymphocyte, monocyte and eosinophil counts of the peripheral blood, PHA-blastoid transformation, immunoglobulin and beta 2-microglobulin, the influence of anabolic steroid on the immune reactivity of the host was dissected by administration of Deca-Durabolin ( nandrolone decanoate) to both tumor-bearing host and tumor-free host after operation for alimentary tract. The number of peripheral lymphocytes and monocytes, the PHA-blastoid transformation of peripheral lymphocytes and the IgG level were increased, and the beta 2-microglobulin level showed the tendency of decrease after the administration of Deca-Durabolin. PMID:6367663

  14. Genetic immunization in the lung induces potent local and systemic immune responses.

    Song, Kaimei; Bolton, Diane L; Wei, Chih-Jen; Wilson, Robert L; Camp, Jeremy V; Bao, Saran; Mattapallil, Joseph J; Herzenberg, Leonore A; Herzenberg, Leonard A; Andrews, Charla A; Sadoff, Jerald C; Goudsmit, Jaap; Pau, Maria Grazia; Seder, Robert A; Kozlowski, Pamela A; Nabel, Gary J; Roederer, Mario; Rao, Srinivas S

    2010-12-21

    Successful vaccination against respiratory infections requires elicitation of high levels of potent and durable humoral and cellular responses in the lower airways. To accomplish this goal, we used a fine aerosol that targets the entire lung surface through normal respiration to deliver replication-incompetent recombinant adenoviral vectors expressing gene products from several infectious pathogens. We show that this regimen induced remarkably high and stable lung T-cell responses in nonhuman primates and that it also generated systemic and respiratory tract humoral responses of both IgA and IgG isotypes. Moreover, strong immunogenicity was achieved even in animals with preexisting antiadenoviral immunity, overcoming a critical hurdle to the use of these vectors in humans, who commonly are immune to adenoviruses. The immunogenicity profile elicited with this regimen, which is distinct from either intramuscular or intranasal delivery, has highly desirable properties for protection against respiratory pathogens. We show that it can be used repeatedly to generate mucosal humoral, CD4, and CD8 T-cell responses and as such may be applicable to other mucosally transmitted pathogens such as HIV. Indeed, in a lethal challenge model, we show that aerosolized recombinant adenoviral immunization completely protects ferrets against H5N1 highly pathogenic avian influenza virus. Thus, genetic immunization in the lung offers a powerful platform approach to generating protective immune responses against respiratory pathogens. PMID:21135247

  15. Adaptive Response Surface Techniques in Reliability Estimation

    Enevoldsen, I.; Faber, M. H.; Sørensen, John Dalsgaard

    1993-01-01

    Problems in connection with estimation of the reliability of a component modelled by a limit state function including noise or first order discontinuitics are considered. A gradient free adaptive response surface algorithm is developed. The algorithm applies second order polynomial surfaces...... determined from central composite designs. In a two phase algorithm the second order surface is adjusted to the domain of the most likely failure point and both FORM and SORM estimates are obtained. The algorithm is implemented as a safeguard algorithm so non-converged solutions are avoided. Furthermore, a...

  16. Adaptive response to pneumonectomy in puppies.

    Thurlbeck, W. M.; Galaugher, W; Mathers, J.

    1981-01-01

    When left pneumonectomy was performed on 9-week-old puppies, the right lung increased in weight, volume, surface area, and number of alveoli so that at age 20 weeks these variables were the same as those of both lungs of control animals and significantly larger than those of the right lung of control animals. The adaptive response of the right lung after pneumonectomy was greater in the lower lobe than in the middle or cardiac lobes. The number of alveoli per ml and the average interalveolar ...

  17. Immunomodulator-based enhancement of anti smallpox immune responses.

    Osmarie Martínez

    Full Text Available The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists, and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein.We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation.The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections.These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.

  18. Signaling molecules involved in immune responses in mussels

    S Koutsogiannaki

    2010-01-01

    Full Text Available Immune system of molluscs is constituted by hemocytes and humoral factors that cooperate for the protection of the organism, triggering a wide range of immune responses. In molluscs, immune responses include phagocytosis, encapsulation, respiratory burst leading to reactive oxygen species (ROS production and nitric oxide (NO synthesis, release of antimicrobial molecules and the activation of phenoloxidase system. These responses are mediated firstly by a variety of hemocyte receptors binding to ligands that results to a cascade of signaling events. The processes of hemocytes adhesion to and migration through extracellular matrix (ECM proteins play a crucial role in cell immunity. Results suggest that cadmium and oxidants induce adhesion to and migration through ECM proteins in Mytilus gallorovincialis hemocytes with the involvement of Na+/H+ exchanger (NHE, phosphatidylinositol-3 kinase (PI-3K, protein kinase C (PKC, NADPH oxidase, ROS and NO as well as with α2 integrin subunit. Furthermore, the data so far suggests the involvement of additional signaling molecules such as mitogen-activated protein kinases (MAPKs, signal transducers and activators of transcription (STATs, c-Jun N-terminal kinase (JNK, extracellular signal-regulated kinase (ERK, cyclic adenosine monophosphate (cAMP, responsive element binding protein (CREB and nuclear factor kappa B (NF-kB in molluscs immunity. Further research in mollusc immune system may lead to a more sufficient protection and to a better control of these economically important organisms.

  19. Indigenous enteric eosinophils control DCs to initiate a primary Th2 immune response in vivo.

    Chu, Derek K; Jimenez-Saiz, Rodrigo; Verschoor, Christopher P; Walker, Tina D; Goncharova, Susanna; Llop-Guevara, Alba; Shen, Pamela; Gordon, Melissa E; Barra, Nicole G; Bassett, Jennifer D; Kong, Joshua; Fattouh, Ramzi; McCoy, Kathy D; Bowdish, Dawn M; Erjefält, Jonas S; Pabst, Oliver; Humbles, Alison A; Kolbeck, Roland; Waserman, Susan; Jordana, Manel

    2014-07-28

    Eosinophils natively inhabit the small intestine, but a functional role for them there has remained elusive. Here, we show that eosinophil-deficient mice were protected from induction of Th2-mediated peanut food allergy and anaphylaxis, and Th2 priming was restored by reconstitution with il4(+/+) or il4(-/-) eosinophils. Eosinophils controlled CD103(+) dendritic cell (DC) activation and migration from the intestine to draining lymph nodes, events necessary for Th2 priming. Eosinophil activation in vitro and in vivo led to degranulation of eosinophil peroxidase, a granule protein whose enzymatic activity promoted DC activation in mice and humans in vitro, and intestinal and extraintestinal mouse DC activation and mobilization to lymph nodes in vivo. Further, eosinophil peroxidase enhanced responses to ovalbumin seen after immunization. Thus, eosinophils can be critical contributors to the intestinal immune system, and granule-mediated shaping of DC responses can promote both intestinal and extraintestinal adaptive immunity. PMID:25071163

  20. Immune responses against classical swine fever virus: between ignorance and lunacy

    Artur eSummerfield

    2015-05-01

    Full Text Available Classical swine fever virus infection of pigs causes disease courses from life-threatening to asymptomatic, depending on the virulence of the virus strain and the immunocompetence of the host. The virus targets immune cells which are central in orchestrating innate and adaptive immune responses such as macrophages and conventional and plasmacytoid dendritic cells. Here we review current knowledge and concepts aiming to explain the immunopathogenesis of the disease at both the host and the cellular level. We propose that the interferon type I system and in particular the interaction of the virus with plasmacytoid dendritic cells and macrophages is crucial to understand elements governing the induction of protective rather than pathogenic immune responses. The review also concludes that despite the knowledge available many aspects of classical swine fever immunopathogenesis are still puzzling.

  1. Immune system adaptations during competition period in female cross-country skiers

    Stenholm, Johanna

    2011-01-01

    Stenholm, Johanna. Immune system adaptations during competition period in female cross-country skiers. Master’s Thesis in Exercise Physiology, Department of Biology of Physical Activity. University of Jyväskylä. 95pp. Purpose. This study was undertaken to characterize the extent of immune and endocrine changes in competition period and related to two competition weekends in well trained athletes in different parts of the competition period. An additional purpose was to evaluate if the cha...

  2. Individual differences in response conflict adaptations

    DorisKeye

    2013-12-01

    Full Text Available Conflict-monitoring theory argues for a general cognitive mechanism that monitors for con-flicts in information-processing. If that mechanism detects conflict, it engages cognitive con-trol to resolve it. A slow-down in response to incongruent trials (conflict effect, and a modu-lation of the conflict effect by the congruence of the preceding trial (Gratton or context effect have been taken as indicators of such a monitoring system. The present study (N = 157 investigated individual differences in the conflict and the context effect in a horizontal and a vertical Simon task, and their correlation with working memory capacity. Strength of conflict was varied by proportion of congruent trials. Coherent factors could be formed representing individual differences in speeded performance, conflict adaptation, and context adaptation. Conflict and context factors were not associated with each other. Contrary to theories assuming a close relation between working memory and cognitive control, working memory capacity showed no relation with any factors representing adaptation to conflict.

  3. Innate and adaptive immunity at Mucosal Surfaces of the Female Reproductive Tract: Stratification and Integration of Immune Protection against the Transmission of Sexually Transmitted Infections

    Hickey, DK; Patel, MV; Fahey, JV; Wira, CR

    2011-01-01

    This review examines the multiple levels of pre-existing immunity in the upper and lower female reproductive tract. In addition, we highlight the need for further research of innate and adaptive immune protection of mucosal surfaces in the female reproductive tract. Innate mechanisms include the mucus lining, a tight epithelial barrier and the secretion of antimicrobial peptides and cytokines by epithelial and innate immune cells. Stimulation of the innate immune system also serves to bridge ...

  4. Immune Responses of Specific-Pathogen-Free Mice to Chronic Helicobacter pylori (Strain SS1) Infection

    Ferrero, Richard L.; Thiberge, Jean-Michel; Huerre, Michel; Labigne, Agnès

    1998-01-01

    A model permitting the establishment of persistent Helicobacter pylori infection in mice was recently described. To evaluate murine immune responses to H. pylori infection, specific-pathogen-free Swiss mice (n = 50) were intragastrically inoculated with 1.2 × 107 CFU of a mouse-adapted H. pylori isolate (strain SS1). Control animals (n = 10) received sterile broth medium alone. Animals were sacrificed at various times, from 3 days to 16 weeks postinoculation (p.i.). Quantitative culture of ga...

  5. Balancing immune protection and immune pathology by CD8+ T cell responses to influenza infection

    Susu eDuan

    2016-02-01

    Full Text Available Influenza A virus (IAV is a significant human pathogen causing annual epidemics and periodic pandemics. CD8+ cytotoxic T lymphocyte (CTL-mediated immunity contributes to clearance of virus-infected cells; CTL immunity targeting the conserved internal proteins of IAVs is a key protection mechanism when neutralizing antibodies are absent during heterosubtypic IAV infection. However, CTL infiltration into the airways, their cytotoxicity, and the effects of produced pro-inflammatory cytokines can cause severe lung tissue injury, thereby contributing to immunopathology. Studies have discovered complicated and exquisite stimulatory and inhibitory mechanisms that regulate CTL magnitude and effector activities during IAV infection. Here, we review the state of knowledge on the roles of IAV-specific CTLs in immune protection and immunopathology during IAV infection in animal models, highlighting the key findings of various requirements and constraints regulating the balance of immune protection and pathology involved in CTL immunity. We also discuss the evidence of cross-reactive CTL immunity as a positive correlate of cross-subtype protection during secondary IAV infection in both animal and human studies. We argue that the effects of CTL immunity on protection and immunopathology depend on multiple layers of host and viral factors, including complex host mechanisms to regulate CTL magnitude and effector activity, the pathogenic nature of the IAV, the innate response milieu, and the host historical immune context of influenza infection. Future efforts are needed to further understand these key host and viral factors, especially to differentiate those that constrain optimally effective CTL anti-viral immunity from those necessary to restrain CTL-mediated nonspecific immunopathology in the various contexts of IAV infection, in order to develop better vaccination and therapeutic strategies for modifying protective CTL immunity.

  6. CD8+ T cell activation predominate early immune responses to hypercholesterolemia in Apoe-/- mice

    Björkbacka Harry

    2010-12-01

    Full Text Available Abstract Background It is well established that adaptive immune responses induced by hypercholesterolemia play an important role in the development of atherosclerosis, but the pathways involved remain to be fully characterized. In the present study we assessed immune responses to hypercholesterolemia induced by feeding Apoe-/- mice a high-fat diet for 4 or 8 weeks. Results The primary immune response in lymph nodes draining the aortic root was an increased expression of interferon (IFN-γ in CD8+CD28+ T cells, while an activation of IFN-γ expression in CD4+ T cells was observed only after 8 weeks of high-fat diet. Contrarily, spleen CD4+ T cells responded with a higher expression of IL-10. Spleen CD8+ T cells expressed both IFN-γ and IL-10 and showed enhanced proliferation when exposed to Concanavalin A. Plasma levels of IgG and IgM against oxidized LDL did not change, but the level of apolipoprotein B/IgM immune complexes was increased. Conclusion Hypercholesterolemia leads to unopposed activation of Th1 immune responses in lymph nodes draining atherosclerotic lesions, whereas Th1 activation in the spleen is balanced by a concomitant activation of Th2 cells. The activation of CD8+ T cells implies that hypercholesterolemia is associated with formation of cell autoantigens.

  7. [Bone marrow stromal damage mediated by immune response activity].

    Vojinović, J; Kamenov, B; Najman, S; Branković, Lj; Dimitrijević, H

    1994-01-01

    The aim of this work was to estimate influence of activated immune response on hematopoiesis in vitro, using the experimental model of BCG immunized BALB/c mice and in patients with chronic immunoactivation: long-lasting infections, autoimmunity or malignancy. We correlated changes in long term bone marrow cultures (Dexter) and NBT reduction with appearance of anemia in patients and experimental model of immunization by BCG. Increased spontaneous NBT reduction pointed out role of macrophage activation in bone marrow stroma damage. Long-term bone marrow cultures showed reduced number of hematopoietic cells, with predomination of fibroblasts and loss of fat cells. This results correlated with anemia and leucocytosis with stimulated myelopoiesis in peripheral blood. Activation of immune response, or acting of any agent that directly changes extracellular matrix and cellularity of bone marrow, may result in microenviroment bone marrow damage that modify hematopoiesis. PMID:18173180

  8. Innate lymphoid cell function in the context of adaptive immunity.

    Bando, Jennifer K; Colonna, Marco

    2016-06-21

    Innate lymphoid cells (ILCs) are a family of innate immune cells that have diverse functions during homeostasis and disease. Subsets of ILCs have phenotypes that mirror those of polarized helper T cell subsets in their expression of core transcription factors and effector cytokines. Given the similarities between these two classes of lymphocytes, it is important to understand which functions of ILCs are specialized and which are redundant with those of T cells. Here we discuss genetic mouse models that have been used to delineate the contributions of ILCs versus those of T cells and review the current understanding of the specialized in vivo functions of ILCs. PMID:27328008

  9. GATA-3 Function in Innate and Adaptive Immunity.

    Tindemans, Irma; Serafini, Nicolas; Di Santo, James P.; Hendriks, Rudi W

    2014-01-01

    : The zinc-finger transcription factor GATA-3 has received much attention as a master regulator of T helper 2 (Th2) cell differentiation, during which it controls interleukin-4 (IL-4), IL-5, and IL-13 expression. More recently, GATA-3 was shown to contribute to type 2 immunity through regulation of group 2 innate lymphoid cell (ILC2) development and function. Furthermore, during thymopoiesis, GATA-3 represses B cell potential in early T cell precursors, activates TCR signaling in pre-T cells,...

  10. Lipid motif of a bacterial antigen mediates immune responses via TLR2 signaling.

    Amit A Lugade

    Full Text Available The cross-talk between the innate and the adaptive immune system is facilitated by the initial interaction of antigen with dendritic cells. As DCs express a large array of TLRs, evidence has accumulated that engagement of these molecules contributes to the activation of adaptive immunity. We have evaluated the immunostimulatory role of the highly-conserved outer membrane lipoprotein P6 from non-typeable Haemophilus influenzae (NTHI to determine whether the presence of the lipid motif plays a critical role on its immunogenicity. We undertook a systematic analysis of the role that the lipid motif plays in the activation of DCs and the subsequent stimulation of antigen-specific T and B cells. To facilitate our studies, recombinant P6 protein that lacked the lipid motif was generated. Mice immunized with non-lipidated rP6 were unable to elicit high titers of anti-P6 Ig. Expression of the lipid motif on P6 was also required for proliferation and cytokine secretion by antigen-specific T cells. Upregulation of T cell costimulatory molecules was abrogated in DCs exposed to non-lipidated rP6 and in TLR2(-/- DCs exposed to native P6, thereby resulting in diminished adaptive immune responses. Absence of either the lipid motif on the antigen or TLR2 expression resulted in diminished cytokine production from stimulated DCs. Collectively, our data suggest that the lipid motif of the lipoprotein antigen is essential for triggering TLR2 signaling and effective stimulation of APCs. Our studies establish the pivotal role of a bacterial lipid motif on activating both innate and adaptive immune responses to an otherwise poorly immunogenic protein antigen.

  11. The Impact of Ultraviolet Radiation on Immune Responses (invited paper)

    In addition to its genotoxic and mutagenic effects, UV has the capacity to suppress immune responses. The mechanism involved is complex, beginning with chromophores located in the skin which absorb UV, this leading in turn to changes in the production of a range of immune mediators locally and systemically which then induce phenotypic and functional alterations in antigen presentation. The cascade ends with the promotion of a subset of T-cells downregulating cell-mediated immunity. The possible consequences of this immunomodulation for the control of tumours and infectious diseases require careful evaluation from laboratory and human studies. (author)

  12. Modulation of Immune Response Using Engineered Nanoparticle Surfaces.

    Moyano, Daniel F; Liu, Yuanchang; Peer, Dan; Rotello, Vincent M

    2016-01-01

    Nanoparticles (NPs) coated with a monolayer of ligands can be recognized by different components of the immune system, opening new doors for the modulation of immunological responses. By the use of different physical or chemical properties at the NP surface (such as charge, functional groups, and ligand density), NPs can be designed to have distinct cellular uptake, cytokine secretion, and immunogenicity, factors that influence the distribution and clearance of these particles. Understanding these immunological responses is critical for the development of new NP-based carriers for the delivery of therapeutic molecules, and as such several studies have been performed to understand the relationships between immune responses and NP surface functionality. In this review, we will discuss recent reports of these structure-activity relationships, and explore how these motifs can be controlled to elicit therapeutically useful immune responses. PMID:26618755

  13. The adaptor CARD9 is required for adaptive but not innate immunity to oral mucosal Candida albicans infections.

    Bishu, Shrinivas; Hernández-Santos, Nydiaris; Simpson-Abelson, Michelle R; Huppler, Anna R; Conti, Heather R; Ghilardi, Nico; Mamo, Anna J; Gaffen, Sarah L

    2014-03-01

    Oropharyngeal candidiasis (OPC [thrush]) is an opportunistic infection caused by the commensal fungus Candida albicans. OPC is common in individuals with HIV/AIDS, infants, patients on chemotherapy, and individuals with congenital immune defects. Immunity to OPC is strongly dependent on the interleukin-23 (IL-23)/IL-17R axis, as mice and humans with defects in IL-17R signaling (IL17F, ACT1, IL-17RA) or in genes that direct Th17 differentiation (STAT3, STAT1, CARD9) are prone to mucocutaneous candidiasis. Conventional Th17 cells are induced in response to C. albicans infection via signals from C-type lectin receptors, which signal through the adaptor CARD9, leading to production of Th17-inducing cytokines such as IL-6, IL-1β, and IL-23. Recent data indicate that IL-17 can also be made by numerous innate cell subsets. These innate "type 17" cells resemble conventional Th17 cells, but they can be activated without need for prior antigen exposure. Because C. albicans is not a commensal organism in rodents and mice are thus naive to this fungus, we had the opportunity to assess the role of CARD9 in innate versus adaptive responses using an OPC infection model. As expected, CARD9(-/-) mice failed to mount an adaptive Th17 response following oral Candida infection. Surprisingly, however, CARD9(-/-) mice had preserved innate IL-17-dependent responses to Candida and were almost fully resistant to OPC. Thus, CARD9 is important primarily for adaptive immunity to C. albicans, whereas alternate recognition systems appear to be needed for effective innate responses. PMID:24379290

  14. The Immune Response and Its Therapeutic Modulation in Bronchiectasis

    Massoud Daheshia; Prahl, James D.; Carmichael, Jacob J.; Parrish, John S.; Gilbert Seda

    2012-01-01

    Bronchiectasis (BC) is a chronic pulmonary disease with tremendous morbidity and significant mortality. As pathogen infection has been advocated as a triggering insult in the development of BC, a central role for the immune response in this process seems obvious. Inflammatory cells are present in both the airways as well as the lung parenchyma, and multiple mediators of immune cells including proteases and cytokines or their humoral products are increased locally or in the periphery. Interest...

  15. Interactions between dietary chicory, gut microbiota and immune responses

    Liu, Haoyu

    2013-01-01

    This thesis provides a better understanding of interactions between diet, gut microbiota, and immune responses to a specific dietary fiber source, chicory (Cichorium intybus L). This was achieved by examining the impact of chicory fiber on animal performance, digestibility, gut development, commensal bacteria community structure in small and large intestine, and follow-up reactions with specific immune components, cytoprotective heat shock protein (HSP) 27 and 72, in vivo and in vitro. T...

  16. Extracellular Adenosine Mediates a Systemic Metabolic Switch during Immune Response

    Lazzaro, Brian P.

    2015-01-01

    Life history theory predicts that trait evolution should be constrained by competing physiological demands on an organism. Immune defense provides a classic example in which immune responses are presumed to be costly and therefore come at the expense of other traits related to fitness. One strategy for mitigating the costs of expensive traits is to render them inducible, such that the cost is paid only when the trait is utilized. In the current issue of PLOS Biology, Bajgar and colleagues ele...

  17. A Humoral Immune Response Confers Protection against Haemophilus ducreyi Infection

    Cole, Leah E.; Toffer, Kristen L.; Fulcher, Robert A.; San Mateo, Lani R; Orndorff, Paul E.; Kawula, Thomas H.

    2003-01-01

    Haemophilus ducreyi is the etiologic agent of the sexually transmitted genital ulcer disease chancroid. Neither naturally occurring chancroid nor experimental infection with H. ducreyi results in protective immunity. Likewise, a single inoculation of H. ducreyi does not protect pigs against subsequent infection. Accordingly, we used the swine model of chancroid infection to examine the impact of multiple inoculations on a host's immune response. After three successive inoculations with H. duc...

  18. Bovine anaplasmosis with emphasis on immune responses and protection

    Anaplasmosis is an infectious and transmissible disease manifested by progressive anaemia and the appearance of other characteristic disease symptoms. It is a world-wide tick-borne disease of cattle and some wild ruminants caused by the rickettsia Anaplasma marginale. By drawing on information obtained from studies of plasmodial cell cultures, a method has recently been developed for short-term in vitro cultivation of A. marginale. An attenuated Anaplasma organism capable of growth in both ovine and bovine erythrocytes was used to demonstrate that the in vitro system provided the necessary requirements for active transfer of the organism from cell to cell. Organismal antigens are found in the erythrocytes of infected animals, whereas soluble antigens are derived from their erythrocytes and serum. Serums from convalescing animals interact with these antigens in agglutination, complement fixation, fluorescent antibody and precipitation tests. Passive transfer of sera from immune to susceptible cattle, however, does not seem to confer protection against the infection and development of the disease. Studies that employed various tests for measuring cell-mediated immune (CMI) responses (leukocyte migration inhibition, blast transformation and cytotoxicity), in association with information collected simultaneously on antibody activity, have shown that both humoral and cellular immune responses are needed for the development of protective immunity in anaplasmosis. It was further shown that an active replication of Anaplasma is essential for induction of these two types of immune responses. Consequently, live virulent and attenuated immunogens fulfil requirements for induction of protective immunity. With the virulent agent, however, development of protective immunity is preceded by induction of auto-immune responses apparently associated with pathogenesis of anaemia in anaplasmosis. Inactivated immunogens derived from blood of infected cattle and used in combination with

  19. Scaling of immune responses against intracellular bacterial infection

    Abdullah, Zeinab; Knolle, Percy A.

    2014-01-01

    Macrophages detect bacterial infection through pattern recognition receptors (PRRs) localized at the cell surface, in intracellular vesicles or in the cytosol. Discrimination of viable and virulent bacteria from non-virulent bacteria (dead or viable) is necessary to appropriately scale the anti-bacterial immune response. Such scaling of anti-bacterial immunity is necessary to control the infection, but also to avoid immunopathology or bacterial persistence. PRR-mediated detection of bacterial...

  20. ENDOCANNABINOIDS AND EICOSAMOIDS: BIOSYNTHESIS AND INTERACTIONS WITH IMMUNE RESPONSE

    Yu. K. Karaman

    2014-07-01

    Full Text Available The review is dedicated to modern concepts of arachidonic acid metabolites, i.e., endocannabinoids and eicosanoids, their biosynthetic pathways, cross-talk mechanisms and participation in immune response. New information from literature and own results include data concerning overlapping enzymatic pathways controlling biosynthesis of endocannabinoids and eicosanoids. Impact of synthetic cannabinoid receptor ligands upon production rates of proinflammatory cytokines and eicosanoids is discussed, as like as relationships among immune system reactivity and expression levels of cannabinoid receptors.

  1. Ageing and the humoral immune response in mice

    The study presented in this thesis is concerned with changes in the humoral immune system as a function of age in different inbred mouse strains. Their capacity to develop humoral immune responses to experimentally given thymus-dependent and thymus-independent antigens under various conditions is compared. Furthermore, experiments employing thymus transplantation and thymic humoral factors which are directed at the restoration of the diminished T cell functions in old age are reported. (Auth.)

  2. The immune response to sand fly salivary proteins and its influence on Leishmania immunity

    Regis eGomes

    2012-05-01

    Full Text Available Leishmaniasis is a vector-borne disease transmitted by bites of phlebotomine sand flies. During Leishmania transmission, sand fly saliva is co-inoculated with parasites into the skin of the mammalian host. Sand fly saliva consists of roughly thirty different salivary proteins, many with known roles linked to blood feeding facilitation. Apart from the anti-hemostatic capacity of saliva, several sand fly salivary proteins have been shown to be immunogenic upon multiple contacts with a mammalian host. Immunization with single immunogenic salivary proteins or exposure to uninfected bites can produce protective immune responses against leishmaniasis. These sand fly salivary proteins induce cellular immune responses and/or antibodies. Antibodies to saliva are not required for protection in a mouse model against leishmaniasis. A strong body of evidence points to the role for saliva-specific T cells producing IFN-γ in the form of a delayed-type hypersensitivity reaction at the bite site as the main protective response. Herein, we review immunity to sand fly salivary proteins in the context of its vector-parasite-host combinations and vaccine potential, as well as some recent advances to shed light on the mechanism of how an immune response to sand fly saliva protects against leishmaniasis.

  3. Innate Immune Response to Intramammary Mycoplasma bovis Infection

    Mastitis caused by Mycoplasma bovis is a growing concern for the dairy industry. M. bovis intramammary infection commonly results in an untreatable case of chronic mastitis. The innate immune system is responsible for initial recognition of, and immediate host responses to, infectious pathogens. ...

  4. Th17 cells confer long term adaptive immunity to oral mucosal Candida albicans infections

    Hernández-Santos, Nydiaris; Huppler, Anna R; Peterson, Alanna C.; Khader, Shabaana A.; McKenna, Kyle C.; Sarah L Gaffen

    2012-01-01

    Oropharyngeal candidiasis (OPC) is an opportunistic infection caused by Candida albicans. Despite its prevalence, little is known about C. albicans-specific immunity in the oral mucosa. Vaccines against Candida generate both Th1 and Th17 responses, and considerable evidence implicates IL-17 in immunity to OPC. However, IL-17 is also produced by innate immune cells that are remarkably similar to Th17 cells, expressing the same markers and localizing to similar mucosal sites. To date, the relat...

  5. Selective estrogen receptor modulators differentially alter the immune response of gilthead seabream juveniles.

    Rodenas, M C; Cabas, I; García-Alcázar, A; Meseguer, J; Mulero, V; García-Ayala, A

    2016-05-01

    17α-ethynylestradiol (EE2), a synthetic estrogen used in oral contraceptives and hormone replacement therapy, tamoxifen (Tmx), a selective estrogen-receptor modulator used in hormone replacement therapy, and G1, a G protein-coupled estrogen receptor (GPER) selective agonist, differentially increased the hepatic vitellogenin (vtg) gene expression and altered the immune response in adult gilthead seabream (Sparus aurata L.) males. However, no information exists on the effects of these compounds on the immune response of juveniles. This study aims, for the first time, to investigate the effects of the dietary intake of EE2, Tmx or G1 on the immune response of gilthead seabream juveniles and the capacity of the immune system of the specimens to recover its functionality after ceasing exposures (recovery period). The specimens were immunized with hemocyanin in the presence of aluminium adjuvant 1 (group A) or 120 (group B) days after the treatments ceased (dpt). The results indicate that EE2 and Tmx, but not G1, differentially promoted a transient alteration in hepatic vtg gene expression. Although all three compounds did not affect the production of reactive oxygen intermediates, they inhibited the induction of interleukin-1β (il1b) gene expression after priming. Interestingly, although Tmx increased the percentage of IgM-positive cells in both head kidney and spleen during the recovery period, the antibody response of vaccinated fish varied depending on the compound used and when the immunization was administered. Taken together, our results suggest that these compounds differentially alter the capacity of fish to respond to infection during ontogeny and, more interestingly, that the adaptive immune response remained altered to an extent that depends on the compound. PMID:27012396

  6. Flavobacterium psychrophilum, prevention and immune response

    Henriksen, Maya Maria Mihályi; Dalsgaard, Inger

    The fish pathogen Flavobacterium psychrophilum is one of the main causes of mortality in farmed rainbow trout and other salmonid fish. The disease following infection is often called bacterial coldwater disease (BCWD) in USA or rainbow trout fry syndrome (RTFS) in Europe. An infected farm can...... expect mortality rates around 50-60% in fry and 2-10% in juvenile fish within few weeks, which causes significant economical losses worldwide. Presently no commercial vaccine exists, and fish farmers control the disease with antibiotics. The project is currently in its preliminary phase but the overall...... goal is to examine gene expression and location of transcription products in rainbow trout fry, in order to optimize vaccination or immune-stimulation. The presentation will focus on the future plans for the project, since no data have yet been obtained....

  7. Modulation of immune responses in stress by Yoga

    Arora Sarika

    2008-01-01

    Full Text Available Stress is a constant factor in today′s fastpaced life that can jeopardize our health if left unchecked. It is only in the last half century that the role of stress in every ailment from the common cold to AIDS has been emphasized, and the mechanisms involved in this process have been studied. Stress influences the immune response presumably through the activation of the hypothalamic-pituitary adrenal axis, hypothalamic pituitary-gonadal axis, and the sympathetic-adrenal-medullary system. Various neurotransmitters, neuropeptides, hormones, and cytokines mediate these complex bidirectional interactions between the central nervous system (CNS and the immune system. The effects of stress on the immune responses result in alterations in the number of immune cells and cytokine dysregulation. Various stress management strategies such as meditation, yoga, hypnosis, and muscle relaxation have been shown to reduce the psychological and physiological effects of stress in cancers and HIV infection. This review aims to discuss the effect of stress on the immune system and examine how relaxation techniques such as Yoga and meditation could regulate the cytokine levels and hence, the immune responses during stress.

  8. Characterization of the immune response of domestic fowl following immunization with proteins extracted from Dermanyssus gallinae.

    Harrington, David; Din, Hatem Mohi El; Guy, Jonathan; Robinson, Karen; Sparagano, Olivier

    2009-03-23

    Dermanyssus gallinae is the most significant ectoparasite of European poultry egg laying production systems due to high costs of control and associated production losses as well as adverse effects on bird welfare. In this study, soluble proteins were extracted from unfed D. gallinae (DGE) using a urea-based detergent and ultra-filtration, passed through a 0.22 microm filter and blended aseptically with adjuvant. One group of laying hens was immunized with DGE and adjuvant (Montanide ISA 50 V) whilst another group (Control) received physiological saline and adjuvant. All birds were immunized on two occasions, 21 days apart. Antibody response to immunization was determined by ELISA and western blotting using immunoglobulins (Igs) extracted from egg yolk. DGE immunization of hens resulted in a significant (P<0.05) IgY response compared to controls, although there was no significant difference in IgM response between treatments. A number of proteins were identified by western blotting using IgY antibodies from DGE immunized birds, most prominently at 40 and 230kDa. Analysis of proteins from approximately corresponding bands on SDS-PAGE confirmed the identity of tropomyosin, whilst other proteins showed high sequence homology with myosin and actin from other arachnid and insect species. Immunization of hens with DGE resulted in a 50.6% increase in mite mortality (P<0.001) 17h after feeding when tested by an in vitro mite feeding model. Data in this study demonstrate that somatic antigens from D. gallinae can be used to stimulate a protective immune response in laying hens. Further work is needed to identify other proteins of interest that could confer higher protection against D. gallinae, as well as optimization of the vaccination and in vitro testing protocol. PMID:19091480

  9. LIGHT May Improve Immune Checkpoint Blockade Response.

    2016-06-01

    A new study suggests that insufficient T-cell infiltration may explain why a majority of patients do not respond to immunotherapy. Combining PD-L1 inhibitors with antibody-guided LIGHT, a protein that recruits tumor-infiltrating lymphocytes, increased antitumor response in mice, and may have the potential to improve patient response rates to immunotherapy. PMID:27080334

  10. Comparing the Primary and Recall Immune Response Induced by a New EV71 Vaccine Using Systems Biology Approaches

    Wu, Xing; Mao, Qunying; Chen, Pan; Zhu, Fengcai; Xu, Miao; Kong, Wei; Liang, Zhenglun; Wang, Junzhi

    2015-01-01

    Three inactivated EV71 whole-virus vaccines have completed Phase III clinical trials in mainland China, with high efficacy, satisfactory safety, and sustained immunogenicity. However, the molecular mechanisms how this new vaccine elicit potent immune response remain poorly understood. To characterize the primary and recall responses to EV71 vaccines, PBMC from 19 recipients before and after vaccination with EV71 vaccine are collected and their gene expression signatures after stimulation with EV71 antigen were compared. The results showed that primary and recall response to EV71 antigen have both activated an IRF7 regulating type I interferon and antiviral immune response network. However, up-regulated genes involved in T cell activation regulated by IRF1, inflammatory response, B-cell activation and humoral immune response were only observed in recall response. The specific secretion of IL-10 in primary response and IL-2,IP-10,CCL14a, CCL21 in recall response was consistent with the activation of immune response process found in genes. Furthermore, the expression of MX1 and secretion of IP-10 in recall response were strongly correlated with NTAb level at 180d after vaccination (r = 0.81 and 0.99). In summary, inflammatory response, adaptive immune response and a stronger antiviral response were indentified in recall response. PMID:26465882

  11. Adenosine can thwart antitumor immune responses elicited by radiotherapy. Therapeutic strategies alleviating protumor ADO activities

    By studying the bioenergetic status we could show that the development of tumor hypoxia is accompanied, apart from myriad other biologically relevant effects, by a substantial accumulation of adenosine (ADO). ADO has been shown to act as a strong immunosuppressive agent in tumors by modulating the innate and adaptive immune system. In contrast to ADO, standard radiotherapy (RT) can either stimulate or abrogate antitumor immune responses. Herein, we present ADO-mediated mechanisms that may thwart antitumor immune responses elicited by RT. An overview of the generation, accumulation, and ADO-related multifaceted inhibition of immune functions, contrasted with the antitumor immune effects of RT, is provided. Upon hypoxic stress, cancer cells release ATP into the extracellular space where nucleotides are converted into ADO by hypoxia-sensitive, membrane-bound ectoenzymes (CD39/CD73). ADO actions are mediated upon binding to surface receptors, mainly A2A receptors on tumor and immune cells. Receptor activation leads to a broad spectrum of strong immunosuppressive properties facilitating tumor escape from immune control. Mechanisms include (1) impaired activity of CD4 + T and CD8 + T, NK cells and dendritic cells (DC), decreased production of immuno-stimulatory lymphokines, and (2) activation of Treg cells, expansion of MDSCs, promotion of M2 macrophages, and increased activity of major immunosuppressive cytokines. In addition, ADO can directly stimulate tumor proliferation and angiogenesis. ADO mechanisms described can thwart antitumor immune responses elicited by RT. Therapeutic strategies alleviating tumor-promoting activities of ADO include respiratory hyperoxia or mild hyperthermia, inhibition of CD39/CD73 ectoenzymes or blockade of A2A receptors, and inhibition of ATP-release channels or ADO transporters. (orig.)

  12. A New Method for Fastening the Convergence of Immune Algorithms Using an Adaptive Mutation Approach

    Ahmad F. Al-Ajlouni; Nabil Sabor; Sabah M. Ahmed; Mohammed Abo-Zahhad

    2012-01-01

    This paper presents a new adaptive mutation approach for fastening the convergence of immune algorithms (IAs). This method is adopted to realize the twin goals of maintaining diversity in the population and sustaining the convergence capacity of the IA. In this method, the mutation rate (pm) is adaptively varied depending on the fitness values of the solutions. Solutions of high fitness are protected, while solutions with sub-average fitness are total...

  13. Effects of inhalation of 239PuO2 on immune responses following lung immunization

    Results of this study indicated that the number of antibody-forming cells in lung-associated lymph nodes after intratracheal immunization was significantly lower in animals exposed to 239PuO2. Only a few antibody-forming cells were found in spleen and cervical lymph nodes. Thus, 239PuO2 exposure suppressed immune responses in lung-associated lymph nodes, although their filtering capacity was unaffected and antigen did not translocate to the spleen. Changes in immunologic responses were observed as the animals aged and the number of antibody-forming cells gradually decreased in the lung-associated lymph nodes and increased in the spleen

  14. Formation and Regulation of Adaptive Response in Nematode Caenorhabditis elegans

    Y.-L. Zhao

    2012-01-01

    Full Text Available All organisms respond to environmental stresses (e.g., heavy metal, heat, UV irradiation, hyperoxia, food limitation, etc. with coordinated adjustments in order to deal with the consequences and/or injuries caused by the severe stress. The nematode Caenorhabditis elegans often exerts adaptive responses if preconditioned with low concentrations of agents or stressor. In C. elegans, three types of adaptive responses can be formed: hormesis, cross-adaptation, and dietary restriction. Several factors influence the formation of adaptive responses in nematodes, and some mechanisms can explain their response formation. In particular, antioxidation system, heat-shock proteins, metallothioneins, glutathione, signaling transduction, and metabolic signals may play important roles in regulating the formation of adaptive responses. In this paper, we summarize the published evidence demonstrating that several types of adaptive responses have converged in C. elegans and discussed some possible alternative theories explaining the adaptive response control.

  15. Studies on kinetics of radio adaptive responses in BALB/c mice

    Radio adaptive response is a phenomenon by which exposure to sub-lethal doses of ionizing radiation, known as conditioning or priming dose (PD), leads to increased resistance to a subsequent exposure to a higher dose, known as challenge dose (CD). The characterization of radio adaptive response exhibited by immune cells is of prime importance as it can directly influence various biological mechanisms like immune response against antigen, neoplastic growth and auto immunity. In this study, we have investigated radio adaptive response following whole body radiation of BALB/c mice. Mice were irradiated with 10 cGy PD, 2 Gy CD and priming and challenging dose (P+CD) with an interval of 4 hr. Unirradiated mice served as controls. Mice were sacrificed immediately; 24 h or 72 h after challenging dose, and single cell suspension of splenocytes were prepared. The cells were cultured in presence of concanavalin A (Con A) to assess apoptosis (propidium iodide staining), expression of early activation markers, CD71 and CD69 (flow cytometry), cytokine secretion (IL-2 and IFN-γ, ELISA) and proliferation (CFSE dilution and 3H thymidine incorporation). A three fold increase in apoptosis was observed in CD and P+CD groups compared to control or PD when mice were sacrificed immediately or 24 h after CD. Twenty four hours after CD, a significant increase was found in the expression of CD69 and CD71 in P+CD as compared to CD. Similar results were obtained in terms of proliferation response and secretion of IL-2 and IFN-γ, suggesting radio adaptive response. This was observed 72 h after CD also but not immediately after CD. This pattern of radio-adaptive response was obtained in six week old mice and was different in 4-6 month old mice. In conclusion, these results demonstrate the narrow window of radio adaptive response in splenocytes of BALB/c mice following exposure to whole body irradiation. (author)

  16. Bacterial Outer Membrane Vesicles Induce Plant Immune Responses.

    Bahar, Ofir; Mordukhovich, Gideon; Luu, Dee Dee; Schwessinger, Benjamin; Daudi, Arsalan; Jehle, Anna Kristina; Felix, Georg; Ronald, Pamela C

    2016-05-01

    Gram-negative bacteria continuously pinch off portions of their outer membrane, releasing membrane vesicles. These outer membrane vesicles (OMVs) are involved in multiple processes including cell-to-cell communication, biofilm formation, stress tolerance, horizontal gene transfer, and virulence. OMVs are also known modulators of the mammalian immune response. Despite the well-documented role of OMVs in mammalian-bacterial communication, their interaction with plants is not well studied. To examine whether OMVs of plant pathogens modulate the plant immune response, we purified OMVs from four different plant pathogens and used them to treat Arabidopsis thaliana. OMVs rapidly induced a reactive oxygen species burst, medium alkalinization, and defense gene expression in A. thaliana leaf discs, cell cultures, and seedlings, respectively. Western blot analysis revealed that EF-Tu is present in OMVs and that it serves as an elicitor of the plant immune response in this form. Our results further show that the immune coreceptors BAK1 and SOBIR1 mediate OMV perception and response. Taken together, our results demonstrate that plants can detect and respond to OMV-associated molecules by activation of their immune system, revealing a new facet of plant-bacterial interactions. PMID:26926999

  17. Impaired Antigen-Specific Immune Response to Vaccines in Children with Antibody Production Defects.

    Szczawinska-Poplonyk, Aleksandra; Breborowicz, Anna; Samara, Husam; Ossowska, Lidia; Dworacki, Grzegorz

    2015-08-01

    The impaired synthesis of antigen-specific antibodies, which is indispensable for an adaptive immune response to infections, is a fundamental pathomechanism that leads to clinical manifestations in children with antibody production defects. The aim of this study was to evaluate the synthesis of antigen-specific antibodies following immunization in relation to peripheral blood B cell subsets in young children with hypogammaglobulinemia. Twenty-two children, aged from 8 to 61 months, with a deficiency in one or more major immunoglobulin classes participated in the study. Postvaccination antibodies against tetanus and diphtheria toxoids, the surface antigen of the hepatitis B virus, and the capsular Haemophilus influenzae type b polysaccharide antigen were assessed along with an immunophenotypic evaluation of peripheral blood B lymph cell maturation. A deficiency of antibodies against the tetanus toxoid was assessed in 73% of cases and that against the diphtheria toxoid was assessed in 68% of cases, whereas a deficiency of antibodies against the surface antigen of the hepatitis B virus was revealed in 59% of the children included in the study. A defective response to immunization with a conjugate vaccine with the Haemophilus influenzae type b polysaccharide antigen was demonstrated in 55% of hypogammaglobulinemic patients. Increased proportions of transitional B lymph cells and an accumulation of plasmablasts accompanied antibody deficiencies. The defective response to vaccine protein and polysaccharide antigens is a predominating disorder of humoral immunity in children with hypogammaglobulinemia and may result from a dysfunctional state of the cellular elements of the immune system. PMID:26018535

  18. Genome-wide RNAi Screen Reveals a New Role of a WNT/CTNNB1 Signaling Pathway as Negative Regulator of Virus-induced Innate Immune Responses

    Baril, Martin; Es-Saad, Salwa; Chatel-Chaix, Laurent; Fink, Karin; Pham, Tram; Raymond, Valérie-Ann; Audette, Karine; Guenier, Anne-Sophie; Duchaine, Jean; Servant, Marc; Bilodeau, Marc; Cohen, Éric; Grandvaux, Nathalie; Lamarre, Daniel

    2013-01-01

    Author Summary The innate immune system is the first line of defense for organisms that possess an adaptive immune system. It allows a rapid immune response upon viral infections, in addition to propagating an antiviral state in neighboring cells. In an attempt to identify new proteins that are involved in antiviral responses, we completed the first genome-wide RNA interference (RNAi) screen by individually silencing the expression of 15,000 human genes to assess their role in the induction o...

  19. Plant Cell Adaptive Responses to Microgravity

    Kordyum, Elizabeth; Kozeko, Liudmyla; Talalaev, Alexandr

    simulated microgravity and temperature elevation have different effects on the small HSP genes belonging to subfamilies with different subcellular localization: cytosol/nucleus - PsHSP17.1-СІІ and PsHSP18.1-СІ, cloroplasts - PsHSP26.2-Cl, endoplasmatic reticulum - PsHSP22.7-ER and mitochondria - PsHSP22.9-M: unlike high temperature, clinorotation does not cause denaturation of cell proteins, that confirms the sHSP chaperone function. Dynamics of investigated gene expression in pea seedlings growing 5 days after seed germination under clinorotation was similar to that in the stationary control. Similar patterns in dynamics of sHSP gene expression in the stationary control and under clinorotation may be one of mechanisms providing plant adaptation to simulated microgravity. It is pointed that plant cell responses in microgravity and under clinorotation vary according to growth phase, physiological state, and taxonomic position of the object. At the same time, the responses have, to some degree, a similar character reflecting the changes in cell organelle functional load. Thus, next certain changes in the structure and function of plant cells may be considered as adaptive: 1) an increase in the unsaturated fatty acid content in the plasmalemma, 2) rearrangements of organelle ultrastructure and an increase in their functional load, 3) an increase in cortical F-actin under destabilization of tubulin microtubules, 4) the level of gene expression and synthesis of heat shock proteins, 5) alterations of the enzyme and antioxidant system activity. The dynamics of these patterns demonstrated that the adaptation occurs on the principle of self-regulating systems in the limits of physiological norm reaction. The very importance of changed expression of genes involved in different cellular processes, especially HSP genes, in cell adaptation to altered gravity is discussed.

  20. Radio-Adaptive Responses of Mouse Myocardiocytes

    Seawright, John W.; Westby, Christian M.

    2011-01-01

    One of the most significant occupational hazards to an astronaut is the frequent exposure to radiation. Commonly associated with increased risk for cancer related morbidity and mortality, radiation is also known to increase the risk for cardiovascular related disorders including: pericarditis, hypertension, and heart failure. It is believed that these radiation-induced disorders are a result of abnormal tissue remodeling. It is unknown whether radiation exposure promotes remodeling through fibrotic changes alone or in combination with programmed cell death. Furthermore, it is not known whether it is possible to mitigate the hazardous effects of radiation exposure. As such, we assessed the expression and mechanisms of radiation-induced tissue remodeling and potential radio-adaptive responses of p53-mediated apoptosis and fibrosis pathways along with markers for oxidative stress and inflammation in mice myocardium. 7 week old, male, C57Bl/6 mice were exposed to 6Gy (H) or 5cGy followed 24hr later with 6Gy (LH) Cs-137 gamma radiation. Mice were sacrificed and their hearts extirpated 4, 24, or 72hr after final irradiation. Real Time - Polymerase Chain Reaction was used to evaluate target genes. Pro-apoptotic genes Bad and Bax, pro-cell survival genes Bcl2 and Bcl2l2, fibrosis gene Vegfa, and oxidative stress genes Sod2 and GPx4 showed a reduced fold regulation change (Bad,-6.18; Bax,-6.94; Bcl2,-5.09; Bcl2l2,-4.03; Vegfa, -11.84; Sod2,-5.97; GPx4*,-28.72; * = Bonferroni adjusted p-value . 0.003) 4hr after H, but not after 4hr LH when compared to control. Other p53-mediated apoptosis genes Casp3, Casp9, Trp53, and Myc exhibited down-regulation but did not achieve a notable level of significance 4hr after H. 24hr after H, genetic down-regulation was no longer present compared to 24hr control. These data suggest a general reduction in genetic expression 4hrs after a high dose of gamma radiation. However, pre-exposure to 5cGy gamma radiation appears to facilitate a radio-adaptive

  1. Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids

    Geiger, Anne; Bossard, Géraldine; Sereno, Denis; Pissarra, Joana; Lemesre, Jean-Loup; Vincendeau, Philippe; Holzmuller, Philippe

    2016-01-01

    The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, Trypanosoma cruzi, and Leishmania spp. are important human pathogens causing human African trypanosomiasis (HAT or sleeping sickness), Chagas’ disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs, or sandflies, and affect millions of people worldwide. In humans, extracellular African trypanosomes (T. brucei) evade the hosts’ immune defenses, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host’s immune response. This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite–host interactions and will focus on: clinical and epidemiological importance of diseases; life cycles: parasites–hosts–vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen-presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation. PMID:27303406

  2. Mitochondrial DNA in the regulation of innate immune responses.

    Fang, Chunju; Wei, Xiawei; Wei, Yuquan

    2016-01-01

    Mitochondrion is known as the energy factory of the cell, which is also a unique mammalian organelle and considered to be evolved from aerobic prokaryotes more than a billion years ago. Mitochondrial DNA, similar to that of its bacterial ancestor’s, consists of a circular loop and contains significant number of unmethylated DNA as CpG islands. The innate immune system plays an important role in the mammalian immune response. Recent research has demonstrated that mitochondrial DNA (mtDNA) activates several innate immune pathways involving TLR9, NLRP3 and STING signaling, which contributes to the signaling platforms and results in effector responses. In addition to facilitating antibacterial immunity and regulating antiviral signaling, mounting evidence suggests that mtDNA contributes to inflammatory diseases following cellular damage and stress. Therefore, in addition to its well-appreciated roles in cellular metabolism and energy production,mtDNA appears to function as a key member in the innate immune system. Here, we highlight the emerging roles of mtDNA in innate immunity. PMID:26498951

  3. Danger signals activating the immune response after trauma

    Stefanie Hirsiger; Hans-Peter Simmen; Werner, Clément M. L.; Wanner, Guido A; Daniel Rittirsch

    2012-01-01

    Sterile injury can cause a systemic inflammatory response syndrome (SIRS) that resembles the host response during sepsis. The inflammatory response following trauma comprises various systems of the human body which are cross-linked with each other within a highly complex network of inflammation. Endogenous danger signals (danger-associated molecular patterns; DAMPs; alarmins) as well as exogenous pathogen-associated molecular patterns (PAMPs) play a crucial role in the initiation of the immun...

  4. Nanotechnology, neuromodulation & the immune response: discourse, materiality & ethics.

    Fins, Joseph J

    2015-04-01

    Drawing upon the American Pragmatic tradition in philosophy and the more recent work of philosopher Karen Barad, this paper examines how scientific problems are both obscured, and resolved by our use of language describing the natural world. Using the example of the immune response engendered by neural implants inserted in the brain, the author explains how this discourse has been altered by the advent of nanotechnology methods and devices which offer putative remedies that might temper the immune response in the central nervous system. This emergent nanotechnology has altered this problem space and catalyzed one scientific community to acknowledge a material reality that was always present, if not fully acknowledged. PMID:25681046

  5. Adaptive immunity alters distinct host feeding pathways during nematode induced inflammation, a novel mechanism in parasite expulsion.

    John J Worthington

    2013-01-01

    Full Text Available Gastrointestinal infection is often associated with hypophagia and weight loss; however, the precise mechanisms governing these responses remain poorly defined. Furthermore, the possibility that alterations in feeding during infection may be beneficial to the host requires further study. We used the nematode Trichinella spiralis, which transiently inhabits the small intestine before migrating to skeletal muscle, as a biphasic model of infection to determine the cellular and molecular pathways controlling feeding during enteric and peripheral inflammation. Through the infection of genetically modified mice lacking cholecystokinin, Tumor necrosis factor α receptors and T and B-cells, we observed a biphasic hypophagic response to infection resulting from two separate immune-driven mechanisms. The enteroendocrine I-cell derived hormone cholecystokinin is an essential mediator of initial hypophagia and is induced by CD4+ T-cells during enteritis. In contrast, the second hypophagic response is extra-intestinal and due to the anorectic effects of TNFα during peripheral infection of the muscle. Moreover, via maintaining naive levels of the adipose secreted hormone leptin throughout infection we demonstrate a novel feedback loop in the immunoendocrine axis. Immune driven I-cell hyperplasia and resultant weight loss leads to a reduction in the inflammatory adipokine leptin, which in turn heightens protective immunity during infection. These results characterize specific immune mediated mechanisms which reduce feeding during intestinal or peripheral inflammation. Importantly, the molecular mediators of each phase are entirely separate. The data also introduce the first evidence that I-cell hyperplasia is an adaptively driven immune response that directly impinges on the outcome to infection.

  6. Photodynamic therapy for cancer and activation of immune response

    Mroz, Pawel; Huang, Ying-Ying; Hamblin, Michael R.

    2010-02-01

    Anti-tumor immunity is stimulated after PDT for cancer due to the acute inflammatory response, exposure and presentation of tumor-specific antigens, and induction of heat-shock proteins and other danger signals. Nevertheless effective, powerful tumor-specific immune response in both animal models and also in patients treated with PDT for cancer, is the exception rather than the rule. Research in our laboratory and also in others is geared towards identifying reasons for this sub-optimal immune response and discovering ways of maximizing it. Reasons why the immune response after PDT is less than optimal include the fact that tumor-antigens are considered to be self-like and poorly immunogenic, the tumor-mediated induction of CD4+CD25+foxP3+ regulatory T-cells (T-regs), that are able to inhibit both the priming and the effector phases of the cytotoxic CD8 T-cell anti-tumor response and the defects in dendritic cell maturation, activation and antigen-presentation that may also occur. Alternatively-activated macrophages (M2) have also been implicated. Strategies to overcome these immune escape mechanisms employed by different tumors include combination regimens using PDT and immunostimulating treatments such as products obtained from pathogenic microorganisms against which mammals have evolved recognition systems such as PAMPs and toll-like receptors (TLR). This paper will cover the use of CpG oligonucleotides (a TLR9 agonist found in bacterial DNA) to reverse dendritic cell dysfunction and methods to remove the immune suppressor effects of T-regs that are under active study.

  7. Immune responses in DNA vaccine formulated with PMMA following immunization and after challenge with Leishmania major.

    Zarrati, Somayeh; Mahdavi, Mehdi; Tabatabaie, Fatemeh

    2016-06-01

    Leishmaniasis is a major infectious disease caused by protozoan parasites of the genus Leishmania. Despite of many efforts toward vaccine against Leishmania no effective vaccine has been approved yet. DNA vaccines can generate more powerful and broad immune responses than conventional vaccines. In order to increase immunity, the DNA vaccine has been supplemented with adjuvant. In this study a new nano-vaccine containing TSA recombinant plasmid and poly(methylmethacrylate) nanoparticles (act as adjuvant) was designed and its immunogenicity tested on BALB/c mouse. After three intramuscular injection of nano-vaccine (100 μg), the recombinant TSA protein (20 μg) was injected subcutaneously. Finally as a challenge animals were infected by Leishmania major. After the last injection of nano-vaccine, after protein booster injection, and also after challenge, cellular immune and antibody responses were evaluated by ELISA method. The findings of this study showed the new nano-vaccine was capable of induction both cytokines secretion and specific antibody responses, but predominant Th1 immune response characterized by IFN-γ production compared to control groups. Moreover, results revealed that nano-vaccine was effective in reducing parasite burden in the spleen of Leishmania major-infected BALB/c mice. Base on results, current candidate vaccine has potency for further studies. PMID:27413316

  8. The host immune response to gastrointestinal nematode infection in sheep.

    McRae, K M; Stear, M J; Good, B; Keane, O M

    2015-12-01

    Gastrointestinal nematode infection represents a major threat to the health, welfare and productivity of sheep populations worldwide. Infected lambs have a reduced ability to absorb nutrients from the gastrointestinal tract, resulting in morbidity and occasional mortality. The current chemo-dominant approach to nematode control is considered unsustainable due to the increasing incidence of anthelmintic resistance. In addition, there is growing consumer demand for food products from animals not subjected to chemical treatment. Future mechanisms of nematode control must rely on alternative, sustainable strategies such as vaccination or selective breeding of resistant animals. Such strategies take advantage of the host's natural immune response to nematodes. The ability to resist gastrointestinal nematode infection is considered to be dependent on the development of a protective acquired immune response, although the precise immune mechanisms involved in initiating this process remain to be fully elucidated. In this study, current knowledge on the innate and acquired host immune response to gastrointestinal nematode infection in sheep and the development of immunity is reviewed. PMID:26480845

  9. Effect of produced water on cod (Gadus morhua) immune responses

    Hamoutene, D.; Mabrouk, G.; Samuelson, S.; Mansour, A.; Lee, K. [Fisheries and Oceans Canada, Dartmouth, NS (Canada). Maritimes Region, Ocean Sciences Division; Volkoff, H.; Parrish, C. [Memorial Univ. of Newfoundland, St. John' s, NL (Canada); Mathieu, A. [Oceans Ltd., St. John' s, NL (Canada)

    2007-07-01

    Studies have shown that produced water (PW) discharged from North Sea offshore platforms affects the biota at greater distances from operational platforms than originally presumed. According to PW dispersion simulations, dilution by at least 240 times occurs within 50-100 m, and up to 9000 times by 20 km from the discharge. In this study, the effect of PW on cod immunity was investigated by exposing fish to 0, 100 ppm (x 10,000 dilution) or 200 ppm (x 500) of PW for 76 days. Immune responses were evaluated at the end of the exposure. Fish from the 3 groups were injected with Aeromonas salmonicida lipopolysaccharides (LPS). Blood cell observation and flow cytometry were used to investigate the serum cortisol levels and gill histology along with ratios and respiratory burst (RB) responses of both circulating and head-kidney white blood cells (WBCs). The study revealed that baseline immunity and stress response were not affected by PW, other than an irritant-induced change in gill cells found in treated cod. In all groups, LPS injection resulted in a pronounced decrease in RB of head-kidney cells and an increase in serum cortisol and protein levels. However, the group exposed to 200 ppm of PW exhibited the most significant changes. LPS injection was also shown to influence WBC ratios, but further studies are needed to determine if this impact is stronger in fish exposed to PW. This study suggested an effect of PW on cod immunity after immune challenge with LPS.

  10. Effect of produced water on cod (Gadus morhua) immune responses

    Studies have shown that produced water (PW) discharged from North Sea offshore platforms affects the biota at greater distances from operational platforms than originally presumed. According to PW dispersion simulations, dilution by at least 240 times occurs within 50-100 m, and up to 9000 times by 20 km from the discharge. In this study, the effect of PW on cod immunity was investigated by exposing fish to 0, 100 ppm (x 10,000 dilution) or 200 ppm (x 500) of PW for 76 days. Immune responses were evaluated at the end of the exposure. Fish from the 3 groups were injected with Aeromonas salmonicida lipopolysaccharides (LPS). Blood cell observation and flow cytometry were used to investigate the serum cortisol levels and gill histology along with ratios and respiratory burst (RB) responses of both circulating and head-kidney white blood cells (WBCs). The study revealed that baseline immunity and stress response were not affected by PW, other than an irritant-induced change in gill cells found in treated cod. In all groups, LPS injection resulted in a pronounced decrease in RB of head-kidney cells and an increase in serum cortisol and protein levels. However, the group exposed to 200 ppm of PW exhibited the most significant changes. LPS injection was also shown to influence WBC ratios, but further studies are needed to determine if this impact is stronger in fish exposed to PW. This study suggested an effect of PW on cod immunity after immune challenge with LPS

  11. Verification of immune response optimality through cybernetic modeling.

    Batt, B C; Kompala, D S

    1990-02-01

    An immune response cascade that is T cell independent begins with the stimulation of virgin lymphocytes by antigen to differentiate into large lymphocytes. These immune cells can either replicate themselves or differentiate into plasma cells or memory cells. Plasma cells produce antibody at a specific rate up to two orders of magnitude greater than large lymphocytes. However, plasma cells have short life-spans and cannot replicate. Memory cells produce only surface antibody, but in the event of a subsequent infection by the same antigen, memory cells revert rapidly to large lymphocytes. Immunologic memory is maintained throughout the organism's lifetime. Many immunologists believe that the optimal response strategy calls for large lymphocytes to replicate first, then differentiate into plasma cells and when the antigen has been nearly eliminated, they form memory cells. A mathematical model incorporating the concept of cybernetics has been developed to study the optimality of the immune response. Derived from the matching law of microeconomics, cybernetic variables control the allocation of large lymphocytes to maximize the instantaneous antibody production rate at any time during the response in order to most efficiently inactivate the antigen. A mouse is selected as the model organism and bacteria as the replicating antigen. In addition to verifying the optimal switching strategy, results showing how the immune response is affected by antigen growth rate, initial antigen concentration, and the number of antibodies required to eliminate an antigen are included. PMID:2338827

  12. Elevated EBNA1 Immune Responses Predict Conversion to Multiple Sclerosis

    Lünemann, Jan D.; Tintoré, Mar; Messmer, Brady; Strowig, Till; Rovira, Álex; Perkal, Héctor; Caballero, Estrella; Münz, Christian; Montalban, Xavier; Comabella, Manuel

    2009-01-01

    Objective The aims of the study were to determine the immune responses to candidate viral triggers of multiple sclerosis (MS) in patients with clinically isolated syndromes (CIS), and to evaluate their potential value in predicting conversion to MS. Methods Immune responses to Epstein-Barr virus (EBV), human herpesvirus 6, cytomegalovirus (HCMV), and measles were determined in a cohort of 147 CIS patients with a mean follow-up of 7 years and compared with 50 demographically matched controls. Results Compared to controls, CIS patients showed increased humoral (p<0.0001) and cellular (p=0.007) immune responses to the EBV-encoded nuclear antigen-1 (EBNA1), but not to other EBV-derived proteins. IgG responses to other virus antigens and frequencies of T cells specific for HCMV and influenza virus gene products were unchanged in CIS patients. EBNA1 was the only viral antigen towards which immune responses correlated with number of T2 lesions (p=0.006) and number of Barkhof criteria (p=0.001) at baseline, and with number of T2 lesions (p=0.012 both at 1 and 5 years), presence of new T2 lesions (p=0.003 and p=0.028 at 1 and 5 years), and EDSS (p=0.015 and p=0.010 at 1 and 5 years) during follow-up. In a univariate Cox regression model, increased EBNA1-specific IgG responses predicted conversion to MS based on McDonald criteria [hazard ratio (95% confidence interval), 2.2 (1.2–4.3); p=0.003]. Interpretation Our results indicate that elevated immune responses towards EBNA1 are selectively increased in CIS patients and suggest that EBNA1-specific IgG titers could be used as a prognostic marker for disease conversion and disability progression. PMID:20225269

  13. The role of complement in the acquired immune response

    Nielsen, C H; Fischer, E M; Leslie, R G

    2000-01-01

    specific T cells; the activation of a CD21/CD19 complex-mediated signalling pathway in B cells, which provides a stimulus synergistic to that induced by antigen interaction with the B-cell receptor (BCR); and promotion of the interaction between B cells and FDC, where C3d-bearing immune complexes......Studies over the past three decades have clearly established a central role for complement in the promotion of a humoral immune response. The primary function of complement, in this regard, is to opsonize antigen or immune complexes for uptake by complement receptor type 2 (CR2, CD21) expressed on...... B cells, follicular dendritic cells (FDC) and some T cells. A variety of mechanisms appear to be involved in complement-mediated promotion of the humoral response. These include: enhancement of antigen (Ag) uptake and processing by both Ag-specific and non-specific B cells for presentation to...

  14. Review: Adjuvant effects of saponins on animal immune responses

    RAJPUT Zahid Iqbal; HU Song-hua; XIAO Chen-wen; ARIJO Abdullah G.

    2007-01-01

    Vaccines require optimal adjuvants including immunopotentiator and delivery systems to offer long term protection from infectious diseases in animals and man. Initially it was believed that adjuvants are responsible for promoting strong and sustainable antibody responses. Now it has been shown that adjuvants influence the isotype and avidity of antibody and also affect the properties of cell-mediated immunity. Mostly oil emulsions, lipopolysaccharides, polymers, saponins, liposomes, cytokines,ISCOMs (immunostimulating complexes), Freund's complete adjuvant, Freund's incomplete adjuvant, alums, bacterial toxins etc.,are common adjuvants under investigation. Saponin based adjuvants have the ability to stimulate the cell mediated immune system as well as to enhance antibody production and have the advantage that only a low dose is needed for adjuvant activity. In the present study the importance of adjuvants, their role and the effect of saponin in immune system is reviewed.

  15. Durable and sustained immune tolerance to ERT in Pompe disease with entrenched immune responses

    Kazi, Zoheb B.; Prater, Sean N.; Kobori, Joyce A.; Viskochil, David; Bailey, Carrie; Gera, Renuka; Stockton, David W.; McIntosh, Paul; Rosenberg, Amy S.; Kishnani, Priya S.

    2016-01-01

    BACKGROUND Enzyme replacement therapy (ERT) has prolonged survival and improved clinical outcomes in patients with infantile Pompe disease (IPD), a rapidly progressive neuromuscular disorder. Yet marked interindividual variability in response to ERT, primarily attributable to the development of antibodies to ERT, remains an ongoing challenge. Immune tolerance to ongoing ERT has yet to be described in the setting of an entrenched immune response. METHODS Three infantile Pompe patients who developed high and sustained rhGAA IgG antibody titers (HSAT) and received a bortezomib-based immune tolerance induction (ITI) regimen were included in the study and were followed longitudinally to monitor the long-term safety and efficacy. A trial to taper the ITI protocol was attempted to monitor if true immune tolerance was achieved. RESULTS Bortezomib-based ITI protocol was safely tolerated and led to a significant decline in rhGAA antibody titers with concomitant sustained clinical improvement. Two of the 3 IPD patients were successfully weaned off all ITI protocol medications and continue to maintain low/no antibody titers. ITI protocol was significantly tapered in the third IPD patient. B cell recovery was observed in all 3 IPD patients. CONCLUSION This is the first report to our knowledge on successful induction of long-term immune tolerance in patients with IPD and HSAT refractory to agents such as cyclophosphamide, rituximab, and methotrexate, based on an approach using the proteasome inhibitor bortezomib. As immune responses limit the efficacy and cost-effectiveness of therapy for many conditions, proteasome inhibitors may have new therapeutic applications. FUNDING This research was supported by a grant from the Genzyme Corporation, a Sanofi Company (Cambridge, Massachusetts, USA), and in part by the Lysosomal Disease Network, a part of NIH Rare Diseases Clinical Research Network (RDCRN).

  16. Toward a molecular understanding of adaptive immunity:A chronology, Part II

    Kendall A Smith

    2012-11-01

    Full Text Available By 1980 it was obvious that to more fully understand adaptive immunity, one needed to somehow reduce the tremendous complexity of antigen recognition by T cell populations. Thus, there were two developments that resulted in a paradigm shift in immunology, one being the generation of monoclonal antibodies, and the other the development of monoclonal functional antigen-specific T cell lines. For the first time, the cellular reagents became available to ask new questions as to how individual cells comprising the complex cell populations recognize and respond to changes in their molecular environments. The first successful generation of monoclonal T cells depended upon the understanding that antigen renders cells responsive to the antigen non-specific T cell growth factor that came to be termed interleukin-2 (IL-2, which could then be used in propagating large numbers of the progeny of single cells, which in turn could then be used for molecular analyses. Monoclonal functional human T cells were used to immunize mice to generate clone-specific (clonotypic monoclonal antibodies, which then permitted the first biochemical characterizations of the antigen recognition elements of the T cell antigen receptor complex. Moreover, the use of monoclonal cytolytic and helper/inducer human T cell clones essentially proved that the T cell-specific molecules T4 and T8 functioned as accessory molecules in antigen recognition by defining MHC class II or class I restriction respectively. As well, the expression of the T3 molecules, found to be common to all T cells, were shown further to be obligatory for functional antigen-specific T cell signaling. The monoclonal IL-2-dependent T cells were also instrumental in the isolation and purification of the IL-2 molecule to homogeneity, the first interleukin molecule to be identified and characterized. These advances then led to the generation of pure radiolabeled IL-2 molecules that were used to identify the first

  17. A Drosophila immune response against Ras-induced overgrowth

    Thomas Hauling

    2014-03-01

    Full Text Available Our goal is to characterize the innate immune response against the early stage of tumor development. For this, animal models where genetic changes in specific cells and tissues can be performed in a controlled way have become increasingly important, including the fruitfly Drosophila melanogaster. Many tumor mutants in Drosophila affect the germline and, as a consequence, also the immune system itself, making it difficult to ascribe their phenotype to a specific tissue. Only during the past decade, mutations have been induced systematically in somatic cells to study the control of tumorous growth by neighboring cells and by immune cells. Here we show that upon ectopic expression of a dominant-active form of the Ras oncogene (RasV12, both imaginal discs and salivary glands are affected. Particularly, the glands increase in size, express metalloproteinases and display apoptotic markers. This leads to a strong cellular response, which has many hallmarks of the granuloma-like encapsulation reaction, usually mounted by the insect against larger foreign objects. RNA sequencing of the fat body reveals a characteristic humoral immune response. In addition we also identify genes that are specifically induced upon expression of RasV12. As a proof-of-principle, we show that one of the induced genes (santa-maria, which encodes a scavenger receptor, modulates damage to the salivary glands. The list of genes we have identified provides a rich source for further functional characterization. Our hope is that this will lead to a better understanding of the earliest stage of innate immune responses against tumors with implications for mammalian immunity.

  18. Adaptive responses to antibody based therapy.

    Rodems, Tamara S; Iida, Mari; Brand, Toni M; Pearson, Hannah E; Orbuch, Rachel A; Flanigan, Bailey G; Wheeler, Deric L

    2016-02-01

    Receptor tyrosine kinases (RTKs) represent a large class of protein kinases that span the cellular membrane. There are 58 human RTKs identified which are grouped into 20 distinct families based upon their ligand binding, sequence homology and structure. They are controlled by ligand binding which activates intrinsic tyrosine-kinase activity. This activity leads to the phosphorylation of distinct tyrosines on the cytoplasmic tail, leading to the activation of cell signaling cascades. These signaling cascades ultimately regulate cellular proliferation, apoptosis, migration, survival and homeostasis of the cell. The vast majority of RTKs have been directly tied to the etiology and progression of cancer. Thus, using antibodies to target RTKs as a cancer therapeutic strategy has been intensely pursued. Although antibodies against the epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) have shown promise in the clinical arena, the development of both intrinsic and acquired resistance to antibody-based therapies is now well appreciated. In this review we provide an overview of the RTK family, the biology of EGFR and HER2, as well as an in-depth review of the adaptive responses undertaken by cells in response to antibody based therapies directed against these receptors. A greater understanding of these mechanisms and their relevance in human models will lead to molecular insights in overcoming and circumventing resistance to antibody based therapy. PMID:26808665

  19. Systems biology of neutrophil differentiation and immune response

    Theilgaard-Mönch, Kim; Porse, Bo T; Borregaard, Niels

    2005-01-01

    Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies. These...

  20. Polysaccharides isolated from Acai fruit induce innate immune responses.

    Jeff Holderness

    Full Text Available The Açaí (Acai fruit is a popular nutritional supplement that purportedly enhances immune system function. These anecdotal claims are supported by limited studies describing immune responses to the Acai polyphenol fraction. Previously, we characterized γδ T cell responses to both polyphenol and polysaccharide fractions from several plant-derived nutritional supplements. Similar polyphenol and polysaccharide fractions are found in Acai fruit. Thus, we hypothesized that one or both of these fractions could activate γδ T cells. Contrary to previous reports, we did not identify agonist activity in the polyphenol fraction; however, the Acai polysaccharide fraction induced robust γδ T cell stimulatory activity in human, mouse, and bovine PBMC cultures. To characterize the immune response to Acai polysaccharides, we fractionated the crude polysaccharide preparation and tested these fractions for activity in human PBMC cultures. The largest Acai polysaccharides were the most active in vitro as indicated by activation of myeloid and γδ T cells. When delivered in vivo, Acai polysaccharide induced myeloid cell recruitment and IL-12 production. These results define innate immune responses induced by the polysaccharide component of Acai and have implications for the treatment of asthma and infectious disease.

  1. Primary immune response to blood group antigens in burned children.

    Bacon, N; Patten, E; Vincent, J

    1991-01-01

    Delayed hemolytic transfusion reactions (DHTRs) are generally attributed to an anamnestic immune response. Case reports of DHTRs due to a primary immune response are rare. Transfusion reactions occurring in patients on the pediatric burn unit from 1981 to September 1988 were reviewed, and additional information was obtained for patients for whom a DHTR was documented. Of 62 transfusion reactions, 11 were classified as a primary immune response (DHTR), with either a positive antibody screen, a positive direct antiglobulin test (DAT), or both. None of the 11 patients included in the study had been previously tranfused or pregnant. The average number of units transfused prior to antibody identification was 19. The average time elapsed between the first transfusion and antibody identification was 3.6 weeks. Anti-K and anti-E were the most frequently identified. Three patients had a decrease in hemoglobin (average 1.5 g/dL) and hematocrit at the time that a positive DAT was detected. Such changes could not be demonstrated for the remaining eight patients. The conclusion was that a DHTR may he caused by a primary immune response in burned children more often than expected, but DHTR signs and symptoms are often not apparent due to the complications of burn trauma. PMID:15946011

  2. HTLV-1, Immune Response and Autoimmunity.

    Quaresma, Juarez A S; Yoshikawa, Gilberto T; Koyama, Roberta V L; Dias, George A S; Fujihara, Satomi; Fuzii, Hellen T

    2016-01-01

    Human T-lymphotropic virus type-1 (HTLV-1) infection is associated with adult T-cell leukemia/lymphoma (ATL). Tropical spastic paraparesis/HTLV-1-associated myelopathy (PET/HAM) is involved in the development of autoimmune diseases including Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus (SLE), and Sjögren's Syndrome (SS). The development of HTLV-1-driven autoimmunity is hypothesized to rely on molecular mimicry, because virus-like particles can trigger an inflammatory response. However, HTLV-1 modifies the behavior of CD4⁺ T cells on infection and alters their cytokine production. A previous study showed that in patients infected with HTLV-1, the activity of regulatory CD4⁺ T cells and their consequent expression of inflammatory and anti-inflammatory cytokines are altered. In this review, we discuss the mechanisms underlying changes in cytokine release leading to the loss of tolerance and development of autoimmunity. PMID:26712781

  3. Leishmania major infection in humanized mice induces systemic infection and provokes a nonprotective human immune response.

    Anja Kathrin Wege

    Full Text Available BACKGROUND: Leishmania (L. species are the causative agent of leishmaniasis. Due to the lack of efficient vaccine candidates, drug therapies are the only option to deal with cutaneous leishmaniasis. Unfortunately, chemotherapeutic interventions show high toxicity in addition to an increased risk of dissemination of drug-resistant parasites. An appropriate laboratory animal based model is still missing which allows testing of new drug strategies in the context of human immune cells in vivo. METHODOLOGY/PRINCIPAL FINDINGS: Humanized mice were infected subcutaneously with stationary phase promastigote L. major into the footpad. The human immune response against the pathogen and the parasite host interactions were analyzed. In addition we proved the versatility of this new model to conduct drug research studies by the inclusion of orally given Miltefosine. We show that inflammatory human macrophages get infected with Leishmania parasites at the site of infection. Furthermore, a Leishmania-specific human-derived T cell response is initiated. However, the human immune system is not able to prevent systemic infection. Thus, we treated the mice with Miltefosine to reduce the parasitic load. Notably, this chemotherapy resulted in a reduction of the parasite load in distinct organs. Comparable to some Miltefosine treated patients, humanized mice developed severe side effects, which are not detectable in the classical murine model of experimental leishmaniasis. CONCLUSIONS/SIGNIFICANCE: This study describes for the first time L. major infection in humanized mice, characterizes the disease development, the induction of human adaptive and innate immune response including cytokine production and the efficiency of Miltefosine treatment in these animals. In summary, humanized mice might be beneficial for future preclinical chemotherapeutic studies in systemic (visceral leishmaniasis allowing the investigation of human immune response, side effects of the drug

  4. The influence of quartz and surfactant on immune responses

    Zetterberg, Göran

    1998-01-01

    Pulmonary surfactant is a mixture of lipids and proteins that embeds the alveolar cells, has surface tension reducing properties but also influences the immune response. To further investigate this, quartz was used to initiate an inflammatory response in two different models. Firstly, in vitro exposures of resting and activated human leukocytes to combinations of quartz and surfactant were done, and secondly in vivo exposures of rats to instilled quartz were performed. W...

  5. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    Godina-Nava, J. J.; Segura, M. A. Rodríguez; Cadena, S. Reyes; Sierra, L. C. Gaitán

    2008-08-01

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.

  6. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen

  7. Modulation of immune responses by histone deacetylase inhibitors.

    Schotterl, Sonja; Brennenstuhl, Heiko; Naumann, Ulrike

    2015-01-01

    Recent studies have demonstrated that histone deacetylase (HDAC) inhibitors (HDACi) have potential immunomodulatory activity since they affect the immune surveillance by regulating the production of cytokines, alter the activity and function of macrophages and dendritic cells (DC), regulate the transcription of a variety of immune-stimulating genes, and can modulate the activity of immune effector cells of both the innate and adaptive immune system. Besides their immunostimulatory activity, HDACi can induce growth arrest and cell death, and modulate a subset of cellular functions such as cell motility or differentiation. This makes HDACi interesting therapeutic candidates for the treatment of a variety of human diseases like cancer, autoimmune, and graft versus host diseases. Besides these, HDACs have been shown to be involved in virus replication and pathogenesis, and it was recently shown that HDACi provide therapeutic effects in the treatment of oncogenic virus infections and associated malignancies. This review will further give information about the different families of HDACs and their opponents, the histone acetylases (HATs), about the classes and function of specific HDACi, and their use in the treatment of human diseases. PMID:25746108

  8. Effect of doxycycline on immune response in mice.

    Bellahsene, A; Forsgren, A

    1985-01-01

    The effect of doxycycline on immune response has been studied in mice, cell-mediated immunity being evaluated with the split heart allograft technique. Survival duration of heart transplants in animals treated with 2.5 mg of doxycycline per kg per day from the day of transplantation until rejection was slightly but significantly longer than in untreated animals, 18.8 days (P less than 0.05) as compared with 14.5 days. In doxycycline-treated animals, both agglutinating and hemolytic antibody r...

  9. Mechanisms of immune response regulation in lung cancer

    Domagala-Kulawik, Joanna; Osinska, Iwona; Hoser, Grazyna

    2014-01-01

    Lung cancer is a leading cause of cancer deaths. As a solid tumor with low antigenicity and heterogenic phenotype lung cancer evades host immune defense. The cytotoxic anticancer effect is suppressed by a complex mechanism in tumor microenvironment. The population of regulatory T cells (Tregs) plays a crucial role in this inhibition of immune response. Tregs are defined by presence of forkhead box P3 (Foxp3) molecule. The high expression of Foxp3 was found in lung cancer cells and in tumor in...

  10. Immunization with Brucella VirB proteins reduces organ colonization in mice through a Th1-type immune response and elicits a similar immune response in dogs.

    Pollak, Cora N; Wanke, María Magdalena; Estein, Silvia M; Delpino, M Victoria; Monachesi, Norma E; Comercio, Elida A; Fossati, Carlos A; Baldi, Pablo C

    2015-03-01

    VirB proteins from Brucella spp. constitute the type IV secretion system, a key virulence factor mediating the intracellular survival of these bacteria. Here, we assessed whether a Th1-type immune response against VirB proteins may protect mice from Brucella infection and whether this response can be induced in the dog, a natural host for Brucella. Splenocytes from mice immunized with VirB7 or VirB9 responded to their respective antigens with significant and specific production of gamma interferon (IFN-γ), whereas interleukin-4 (IL-4) was not detected. Thirty days after an intraperitoneal challenge with live Brucella abortus, the spleen load of bacteria was almost 1 log lower in mice immunized with VirB proteins than in unvaccinated animals. As colonization reduction seemed to correlate with a Th1-type immune response against VirB proteins, we decided to assess whether such a response could be elicited in the dog. Peripheral blood mononuclear cells (PBMCs) from dogs immunized with VirB proteins (three subcutaneous doses in QuilA adjuvant) produced significantly higher levels of IFN-γ than cells from control animals upon in vitro stimulation with VirB proteins. A skin test to assess specific delayed-type hypersensitivity was positive in 4 out of 5 dogs immunized with either VirB7 or VirB9. As both proteins are predicted to locate in the outer membrane of Brucella organisms, the ability of anti-VirB antibodies to mediate complement-dependent bacteriolysis of B. canis was assessed in vitro. Sera from dogs immunized with either VirB7 or VirB9, but not from those receiving phosphate-buffered saline (PBS), produced significant bacteriolysis. These results suggest that VirB-specific responses that reduce organ colonization by Brucella in mice can be also elicited in dogs. PMID:25540276

  11. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity

    Charpentier, Emmanuelle; Richter, Hagen; van der Oost, John; White, Malcolm F

    2015-01-01

    CRISPR-Cas is an RNA-mediated adaptive immune system that defends bacteria and archaea against mobile genetic elements. Short mature CRISPR RNAs (crRNAs) are key elements in the interference step of the immune pathway. A CRISPR array composed of a series of repeats interspaced by spacer sequences acquired from invading mobile genomes is transcribed as a precursor crRNA (pre-crRNA) molecule. This pre-crRNA undergoes one or two maturation steps to generate the mature crRNAs that guide CRISPR-as...

  12. HIV-1 Adaptation to Antigen Processing Results in Population-Level Immune Evasion and Affects Subtype Diversification

    Stefan Tenzer

    2014-04-01

    Full Text Available The recent HIV-1 vaccine failures highlight the need to better understand virus-host interactions. One key question is why CD8+ T cell responses to two HIV-Gag regions are uniquely associated with delayed disease progression only in patients expressing a few rare HLA class I variants when these regions encode epitopes presented by ∼30 more common HLA variants. By combining epitope processing and computational analyses of the two HIV subtypes responsible for ∼60% of worldwide infections, we identified a hitherto unrecognized adaptation to the antigen-processing machinery through substitutions at subtype-specific motifs. Multiple HLA variants presenting epitopes situated next to a given subtype-specific motif drive selection at this subtype-specific position, and epitope abundances correlate inversely with the HLA frequency distribution in affected populations. This adaptation reflects the sum of intrapatient adaptations, is predictable, facilitates viral subtype diversification, and increases global HIV diversity. Because low epitope abundance is associated with infrequent and weak T cell responses, this most likely results in both population-level immune evasion and inadequate responses in most people vaccinated with natural HIV-1 sequence constructs. Our results suggest that artificial sequence modifications at subtype-specific positions in vitro could refocus and reverse the poor immunogenicity of HIV proteins.

  13. HIF-mediated innate immune responses: cell signaling and therapeutic implications

    Harris AJ

    2014-05-01

    Full Text Available Alison J Harris, AA Roger Thompson, Moira KB Whyte, Sarah R Walmsley Academic Unit of Respiratory Medicine, Department of Infection and Immunity, University of Sheffield, Sheffield, UK Abstract: Leukocytes recruited to infected, damaged, or inflamed tissues during an immune response must adapt to oxygen levels much lower than those in the circulation. Hypoxia inducible factors (HIFs are key mediators of cellular responses to hypoxia and, as in other cell types, HIFs are critical for the upregulation of glycolysis, which enables innate immune cells to produce adenosine triphosphate anaerobically. An increasing body of evidence demonstrates that hypoxia also regulates many other innate immunological functions, including cell migration, apoptosis, phagocytosis of pathogens, antigen presentation and production of cytokines, chemokines, and angiogenic and antimicrobial factors. Many of these functions are mediated by HIFs, which are not only stabilized posttranslationally by hypoxia, but also transcriptionally upregulated by inflammatory signals. Here, we review the role of HIFs in the responses of innate immune cells to hypoxia, both in vitro and in vivo, with a particular focus on myeloid cells, on which the majority of studies have so far been carried out. Keywords: hypoxia, neutrophils, monocytes, macrophages

  14. Toll-like receptors: cellular signal transducers for exogenous molecular patterns causing immune responses.

    Kirschning, C J; Bauer, S

    2001-09-01

    Innate immunity initiates protection of the host organism against invasion and subsequent multiplication of microbes by specific recognition. Germ line-encoded receptors have been identified for microbial products such as mannan, lipopeptide, peptidoglycan (PGN), lipoteichoic acid (LTA), lipopolysaccharide (LPS), and CpG-DNA. The Drosophila Toll protein has been shown to be involved in innate immune response of the adult fruitfly. Members of the family of Toll-like receptors (TLRs) in vertebrates have been implicated as pattern recognition receptors (PRRs). Ten TLRs are known and six of these have been demonstrated to mediate cellular activation by distinct microbial products. TLR4 has been implicated as activator of adaptive immunity, and analysis of systemic LPS responses in mice led to the identification of LPS-resistant strains instrumental in its identification as a transmembrane LPS signal transducer. Structural similarities between TLRs and receptor molecules involved in immune responses such as CD14 and the IL-1 receptors (IL-1Rs), as well as functional analysis qualified TLR2 as candidate receptor for LPS and other microbial products. Targeted disruption of the TLR9 gene in mice led to identification of TLR9 as CpG-DNA signal transducer. Involvement of TLR5 in cell activation by bacterial flagellin has been demonstrated. Further understanding of recognition and cellular signaling activated through the ancient host defense system represented by Toll will eventually lead to means for its therapeutic modulation. PMID:11680785

  15. Enhanced innate immune responses in a brood parasitic cowbird species: degranulation and oxidative burst

    Hahn, D. Caldwell; Summers, Scott G.; Genovese, Kenneth J.; He, Haiqi; Kogut, Michael H.

    2013-01-01

    We examined the relative effectiveness of two innate immune responses in two species of New World blackbirds (Passeriformes, Icteridae) that differ in resistance to West Nile virus (WNV). We measured degranulation and oxidative burst, two fundamental components of phagocytosis, and we predicted that the functional effectiveness of these innate immune responses would correspond to the species' relative resistance to WNV. The brown-headed cowbird (Molothrus ater), an obligate brood parasite, had previously shown greater resistance to infection with WNV, lower viremia and faster recovery when infected, and lower subsequent antibody titers than the red-winged blackbird (Agelaius phoeniceus), a close relative that is not a brood parasite. We found that cowbird leukocytes were significantly more functionally efficient than those of the blackbird leukocytes and 50% more effective at killing the challenge bacteria. These results suggest that further examination of innate immunity in the cowbird may provide insight into adaptations that underlie its greater resistance to WNV. These results support an eco-immunological interpretation that species like the cowbird, which inhabit ecological niches with heightened exposure to parasites, experience evolutionary selection for more effective immune responses.

  16. Development and regulation of immune responses to food antigens in pre- and postnatal life.

    Renz, Harald; Pfefferle, Petra Ina; Teich, René; Garn, Holger

    2009-01-01

    Food antigens are harmless environmental components. The physiological response is the development of clinical and immunological tolerance. It is now well appreciated that tolerance development is the result of active immunoregulation and depends on a close interaction between the innate and adaptive immune system resulting in the development of tolerance-mediating T-cell responses. Programming of the immune system, particularly with regard to tolerance development, already starts before birth and stays under close control of the maternal immune system. Therefore, the pre-and postnatal period represents an important 'window of opportunity' for immunoprogramming. Underlying mechanisms include maternal cell transmission, antibody transfer, transfer of mediates/cytokines, and transmission of antigens and allergens. Immunoprogramming is fostered and augmented in the context of microbial components. Recently, several microbes have been identified which possess the capacity of immunoprogramming early in life. Epigenetic regulation represents an important novel mechanism in this regard. This concept opens new avenues for the development of preventive strategies to avoid inappropriate immune responses against food antigens. PMID:19710520

  17. Immunization with avian metapneumovirus harboring chicken Fc induces higher immune responses.

    Paudel, Sarita; Easwaran, Maheswaran; Jang, Hyun; Jung, Ho-Kyoung; Kim, Joo-Hun; Shin, Hyun-Jin

    2016-07-15

    In this study, we evaluated the immune responses of avian metapneumovirus harboring chicken Fc molecule. Stable Vero cells expressing chicken Fc chimera on its surface (Vero-cFc) were established, and we confirmed that aMPV grown in Vero-cFc incorporated host derived chimera Fc into the aMPV virions. Immunization of chicken with aMPV-cFc induced higher level of antibodies and inflammatory cytokines; (Interferon (IFN)-γ and Interleukin (IL)-1β) compared to those of aMPV. The increased levels of antibodies and inflammatory cytokines in chicken immunized with aMPV-cFc were statistically significantly (p<0.05) to that of aMPV and control. The aMPV-cFc group also generated the highest neutralizing antibody response. After challenges, chickens immunized with aMPV-cFc showed much less pathological signs in nasal turbinates and trachea so that we could confirm aMPV-cFc induced higher protection than that of aMPV. The greater ability of aMPV harboring chicken Fc to that of aMPV presented it as a possible vaccine candidate. PMID:27130629

  18. PAMP-triggered immune responses in barley and susceptibility to powdery mildew.

    Hückelhoven, Ralph; Seidl, Anna

    2016-07-01

    Pathogen-associated molecular pattern-triggered immunity (PTI) builds one of the first layers of plant disease resistance. In susceptible plants, PTI is overcome by adapted pathogens. This can be achieved by suppression of PTI with the help of pathogen virulence effectors. However, effectors may also contribute to modification of host metabolism or cell architecture to ensure successful pathogenesis. Barley responds to treatment with the pathogen-associated molecular patterns flg22 or chitin with phosphorylation of mitogen-activated protein kinases and an oxidative burst. RAC/ROP GTPases can act as positive or negative modulators of these plant immune responses. The RAC/ROP GTPase RACB is a powdery mildew susceptibility factor of barley. However, RACB apparently does not negatively control early PTI responses but functions in polar cell development during invasion of the pathogen into living host epidermal cells. Here, we further discuss the incomplete picture of PTI in Triticeae. PMID:27348336

  19. Cell mediated immune response in human antirabies revaccination

    Débora Regina Veiga

    1987-04-01

    Full Text Available The occurrence of secondary cell mediated immune response (CMI in human antirabies immunization was studied. The Puenzalida & Palácios vaccine was used because it is routinely used in Brazil. CMI was evaluated by lymphoblastic transformation indices obtained in whole blood culture in the presence of rabies and control (nervous tissue antigens. Eleven volunteers submitted to revaccination constituted the group under study, while three other volunteers submitted primo vaccination were utilized as control group. A clear secondary CMI to rabies antigen was detected in all the revaccinated volunteers who showed earlier and more intense response than the control group. Response to the control antigen, however, present in all the components of the first group was not detectable in two out of the three primovaccinated and very low in the third one.

  20. Functional characterization of Foxp3-specific spontaneous immune responses

    Larsen, Susanne Købke; Munir, S; Andersen, Anders Woetmann;

    2013-01-01

    Tumor-infiltrating CD4+CD25+ regulatory T cells (Tregs) are associated with an impaired prognosis in several cancers. The transcription factor forkhead box P3 (Foxp3) is generally expressed in Tregs. Here, we identify and characterize spontaneous cytotoxic immune responses to Foxp3-expressing cells...... Foxp3 protein indicating that this protein was indeed internalized, processed and cross-presented in the context of HLA-A2. More importantly, however, Foxp3-specific T cells were able to specifically recognize Tregs. Similarly, Foxp3+ malignant T cells established from a Cutaneous T-cell lymphomas...... (CTCL) patient were readily killed by the Foxp3-specific cytotoxic T lymphocytes. The spontaneous presence of Foxp3-specific cytotoxic T-cell responses suggest a general role of such T cells in the complex network of immune regulation as such responses may eliminate Tregs, that is, suppression of the...

  1. Immune responses to Mycoplasma bovis proteins formulated with different adjuvants.

    Prysliak, Tracy; Perez-Casal, Jose

    2016-06-01

    Most vaccines for protection against Mycoplasma bovis disease are made of bacterins, and they offer varying degrees of protection. Our focus is on the development of a subunit-based protective vaccine, and to that end, we have identified 10 novel vaccine candidates. After formulation of these candidates with TriAdj, an experimental tri-component novel vaccine adjuvant developed at VIDO-InterVac, we measured humoral and cell-mediated immune responses in vaccinated animals. In addition, we compared the immune responses after formulation with TriAdj with the responses measured in animals vaccinated with a mix of a commercial adjuvant (Emulsigen™) and 2 of the components of the TriAdj, namely polyinosinic:polycytidylic acid (poly I:C) and the cationic innate defense regulator (IDR) peptide 1002 (VQRWLIVWRIRK). In this latter trial, we detected significant IgG1 humoral immune responses to 8 out of 10 M. bovis proteins, and IgG2 responses to 7 out of 10 proteins. Thus, we concluded that the commercial adjuvant formulated with poly I:C and the IDR peptide 1002 is the best formulation for the experimental vaccine. PMID:27105454

  2. No apparent cost of evolved immune response in Drosophila melanogaster.

    Gupta, Vanika; Venkatesan, Saudamini; Chatterjee, Martik; Syed, Zeeshan A; Nivsarkar, Vaishnavi; Prasad, Nagaraj G

    2016-04-01

    Maintenance and deployment of the immune system are costly and are hence predicted to trade-off with other resource-demanding traits, such as reproduction. We subjected this longstanding idea to test using laboratory experimental evolution approach. In the present study, replicate populations of Drosophila melanogaster were subjected to three selection regimes-I (Infection with Pseudomonas entomophila), S (Sham-infection with MgSO4 ), and U (Unhandled Control). After 30 generations of selection flies from the I regime had evolved better survivorship upon infection with P. entomophila compared to flies from U and S regimes. However, contrary to expectations and previous reports, we did not find any evidence of trade-offs between immunity and other life history related traits, such as longevity, fecundity, egg hatchability, or development time. After 45 generations of selection, the selection was relaxed for a set of populations. Even after 15 generations, the postinfection survivorship of populations under relaxed selection regime did not decline. We speculate that either there is a negligible cost to the evolved immune response or that trade-offs occur on traits such as reproductive behavior or other immune mechanisms that we have not investigated in this study. Our research suggests that at least under certain conditions, life-history trade-offs might play little role in maintaining variation in immunity. PMID:26932243

  3. Persistence of the immune response induced by BCG vaccination

    Blitz Rose

    2008-01-01

    Full Text Available Abstract Background Although BCG vaccination is recommended in most countries of the world, little is known of the persistence of BCG-induced immune responses. As novel TB vaccines may be given to boost the immunity induced by neonatal BCG vaccination, evidence concerning the persistence of the BCG vaccine-induced response would help inform decisions about when such boosting would be most effective. Methods A randomised control study of UK adolescents was carried out to investigate persistence of BCG immune responses. Adolescents were tested for interferon-gamma (IFN-γ response to Mycobacterium tuberculosis purified protein derivative (M.tb PPD in a whole blood assay before, 3 months, 12 months (n = 148 and 3 years (n = 19 after receiving teenage BCG vaccination or 14 years after receiving infant BCG vaccination (n = 16. Results A gradual reduction in magnitude of response was evident from 3 months to 1 year and from 1 year to 3 years following teenage vaccination, but responses 3 years after vaccination were still on average 6 times higher than before vaccination among vaccinees. Some individuals (11/86; 13% failed to make a detectable antigen-specific response three months after vaccination, or lost the response after 1 (11/86; 13% or 3 (3/19; 16% years. IFN-γ response to Ag85 was measured in a subgroup of adolescents and appeared to be better maintained with no decline from 3 to 12 months. A smaller group of adolescents were tested 14 years after receiving infant BCG vaccination and 13/16 (81% made a detectable IFN-γ response to M.tb PPD 14 years after infant vaccination as compared to 6/16 (38% matched unvaccinated controls (p = 0.012; teenagers vaccinated in infancy were 19 times more likely to make an IFN-γ response of > 500 pg/ml than unvaccinated teenagers. Conclusion BCG vaccination in infancy and adolescence induces immunological memory to mycobacterial antigens that is still present and measurable for at least 14 years in the

  4. Immune markers and correlates of protection for vaccine induced immune responses

    Thakur, Aneesh; Pedersen, Lasse Eggers; Jungersen, Gregers

    2012-01-01

    Vaccines have been a major innovation in the history of mankind and still have the potential to address the challenges posed by chronic intracellular infections including tuberculosis, HIV and malaria which are leading causes of high morbidity and mortality across the world. Markers of an...... appropriate humoral response currently remain the best validated correlates of protective immunity after vaccination. Despite advancements in the field of immunology over the past few decades currently there are, however, no sufficiently validated immune correlates of vaccine induced protection against...... chronic infections in neither human nor veterinary medicine. Technological and conceptual advancements within cell-mediated immunology have led to a number of new immunological read-outs with the potential to emerge as correlates of vaccine induced protection. For TH1 type responses, antigen...

  5. [Immune response in experimental animals immunized with Burkholderia pseudomallei surface antigens].

    Avrorova, I V; Piven', N N; Zhukova, S I; Viktorov, D V; Khrapova, N P; Popov, S F

    2004-01-01

    The influence of the chromatographic fractions of B. pseudomallei surface antigenic complex (C, C1, D, H) on immune response in white rats and white mice was under study. These antigenic complexes were noted to produce perceptible stimulating effect on the immune system of white rats, in contrast to that of white mice. The immunization of the mice the above-mentioned fractions suppressed the phagocytic activity of peritoneal macrophages (PM) and slightly enhanced cell-mediated immunity. In experiments on white rats, fraction C induced the growth of specific antibody titers and stimulated the phagocytic activity of PM, as well as the indices of delayed hypersensitivity (DH). Fraction D showed a lower level of the induction of the phagocytic activity of PM and was inactive in the manifestation of cell-mediated immunity, but induced a high level of humoral immunity. Antigenic complexes C1 and H increased the phagocytic activity of PM and DH characteristics with a low level of antibody production. The studied fractions of the causative agent of melioidosis decreased the content of bactericidal cationic proteins (BCP) in rat blood neutrophils, and in mice a decreased content of BCP in phagocytes was registered. The fractions increased the activity of myeloperoxidase in blood neutrophils in mice and rats. As revealed with the use of immunoelectrophoresis, SDS PAAG electrophoresis and immunoblotting, the surface antigenic complex contained proteins of 18, 22, 39 kD and glycoproteins 42, 55, 90 kD. The latter glycoprotein was found in all the fractions under study, having protective properties. PMID:15554321

  6. Oropharyngeal Candidiasis in HIV Infection: Analysis of Impaired Mucosal Immune Response to Candida albicans in Mice Expressing the HIV-1 Transgene

    Louis de Repentigny; Mathieu Goupil; Paul Jolicoeur

    2015-01-01

    IL-17-producing Th17 cells are of critical importance in host defense against oropharyngeal candidiasis (OPC). Speculation about defective Th17 responses to oral C. albicans infection in the context of HIV infection prompted an investigation of innate and adaptive immune responses to Candida albicans in transgenic mice expressing the genome of HIV-1 in immune cells and displaying an AIDS-like disease. Defective IL-17 and IL-22-dependent mucosal responses to C. albicans were found to determin...

  7. DMPD: Innate immune responses during infection. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 15576198 Innate immune responses during infection. Ulevitch RJ, Mathison JC, da Sil...va Correia J. Vaccine. 2004 Dec 6;22 Suppl 1:S25-30. (.png) (.svg) (.html) (.csml) Show Innate immune response...s during infection. PubmedID 15576198 Title Innate immune responses during infection. Authors Ulevitch RJ,

  8. Myeloid IKKβ promotes antitumor immunity by modulating CCL11 and the innate immune response.

    Yang, Jinming; Hawkins, Oriana E; Barham, Whitney; Gilchuk, Pavlo; Boothby, Mark; Ayers, Gregory D; Joyce, Sebastian; Karin, Michael; Yull, Fiona E; Richmond, Ann

    2014-12-15

    Myeloid cells are capable of promoting or eradicating tumor cells and the nodal functions that contribute to their different roles are still obscure. Here, we show that mice with myeloid-specific genetic loss of the NF-κB pathway regulatory kinase IKKβ exhibit more rapid growth of cutaneous and lung melanoma tumors. In a BRAF(V600E/PTEN(-/-)) allograft model, IKKβ loss in macrophages reduced recruitment of myeloid cells into the tumor, lowered expression of MHC class II molecules, and enhanced production of the chemokine CCL11, thereby negatively regulating dendritic-cell maturation. Elevated serum and tissue levels of CCL11 mediated suppression of dendritic-cell differentiation/maturation within the tumor microenvironment, skewing it toward a Th2 immune response and impairing CD8(+) T cell-mediated tumor cell lysis. Depleting macrophages or CD8(+) T cells in mice with wild-type IKKβ myeloid cells enhanced tumor growth, where the myeloid cell response was used to mediate antitumor immunity against melanoma tumors (with less dependency on a CD8(+) T-cell response). In contrast, myeloid cells deficient in IKKβ were compromised in tumor cell lysis, based on their reduced ability to phagocytize and digest tumor cells. Thus, mice with continuous IKKβ signaling in myeloid-lineage cells (IKKβ(CA)) exhibited enhanced antitumor immunity and reduced melanoma outgrowth. Collectively, our results illuminate new mechanisms through which NF-κB signaling in myeloid cells promotes innate tumor surveillance. PMID:25336190

  9. Inhibition of the immune response to experimental fresh osteoarticular allografts

    The immune response to osteoarticular allografts is capable of destroying the cartilage--a tissue that has antigens on its cells identical to those on the bone and marrow cells. Osteoarticular allografts of the distal femur were performed in rats using various methods to attempt to temporarily inhibit the antibody response. The temporary systemic immunosuppressant regimens investigated were cyclophosphamide, azathioprine and prednisolone, cyclosporine A, and total lymphoid irradiation. The most successful appeared to be cyclosporine A, but significant side effects were observed. To specifically inhibit the immune response in the allograft antigens without systemically inhibiting the entire immune system, passive enhancement and preadministration of donor blood were tried. Neither was as effective as coating the donor bone with biodegradable cements, a method previously found to be successful. Cyclosporine A was investigated in dogs in a preliminary study of medial compartmental knee allografts and was found to be successful in inhibiting the antibody response and in producing a more successful graft; however, some significant side effects were similarly observed

  10. Inhibition of the immune response to experimental fresh osteoarticular allografts

    Rodrigo, J.J.; Schnaser, A.M.; Reynolds, H.M. Jr.; Biggart, J.M. 3d.; Leathers, M.W.; Chism, S.E.; Thorson, E.; Grotz, T.; Yang, Q.M. (Univ. of California, Davis, Sacramento (USA))

    1989-06-01

    The immune response to osteoarticular allografts is capable of destroying the cartilage--a tissue that has antigens on its cells identical to those on the bone and marrow cells. Osteoarticular allografts of the distal femur were performed in rats using various methods to attempt to temporarily inhibit the antibody response. The temporary systemic immunosuppressant regimens investigated were cyclophosphamide, azathioprine and prednisolone, cyclosporine A, and total lymphoid irradiation. The most successful appeared to be cyclosporine A, but significant side effects were observed. To specifically inhibit the immune response in the allograft antigens without systemically inhibiting the entire immune system, passive enhancement and preadministration of donor blood were tried. Neither was as effective as coating the donor bone with biodegradable cements, a method previously found to be successful. Cyclosporine A was investigated in dogs in a preliminary study of medial compartmental knee allografts and was found to be successful in inhibiting the antibody response and in producing a more successful graft; however, some significant side effects were similarly observed.

  11. The Two Sides of Complement C3d: Evolution of Electrostatics in a Link between Innate and Adaptive Immunity

    Kieslich, Chris A.; Dimitrios Morikis

    2012-01-01

    The interaction between complement fragment C3d and complement receptor 2 (CR2) is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor compl...

  12. Shades of grey-the blurring view of innate and adaptive immunity

    Lanier, LL

    2013-01-01

    This special issue of Nature Reviews Immunology focuses on the types of lymphocyte that blur the traditional boundaries between the innate and adaptive immune systems. The development and functional properties of 'innate-like' B and T cells and natural killer (NK) cells are reviewed and the emerging understanding of newly discovered innate lymphoid cells (ILCs) is considered. © 2013 Macmillan Publishers Limited. All rights reserved.

  13. Immune responses of Helicoverpa armigera to different kinds of pathogens

    Zhao Xiao-Fan

    2010-03-01

    Full Text Available Abstract Background Insects react against pathogens through innate immunity. The cotton bollworm Helicoverpa armigera (H. armigera is an important defoliator and an extremely destructive pest insect of many crops. The elucidation of the mechanism of the immune response of H. armigera to various pathogens can provide a theoretical basis for new approaches to biologically control this pest. Results Four kinds of pathogens Bacillus thuringiensis, Klebsiella pneumoniae, Candida albicans, and Autographa californica multiple nucleocapsid nucleopolyhedrovirus harbored green fluorescence protein and polyhedron (AcMNPV-GFP were used to challenge the insect. The cellular and humoral immune responses to the pathogens were analyzed in the challenged H. armigera. The results show that in the five kinds of haemocytes, only granulocytes phagocytized the Gram-negative and Gram-positive bacteria and fungi. All haemocytes can be infected by AcMNPV. Fourteen immune-related genes including pattern recognition receptors (PRRs such as peptidoglycan recognition proteins (HaPGRP and HaPGRP C and Gram-Negative Bacteria-Binding Protein (HaGNBP, and antimicrobial peptides (AMPs such as cecropin-1, 2 and 3 (HaCec-1, 2 and 3, lysozyme (HaLys, attacin (HaAtt, gallerimycin-like (HaGall, gloverin-like (HaGlo, moricin-like (HaMor, cobatoxin-like (HaCob, galiomicin-like (HaGali, and immune inducible protein (HaIip appeared in different expression profiles to different pathogen infections. The transcripts of 13 immune related genes (except HaPGRPC are obviously up-regulated by Gram-positive bacteria. HaCec-1 and 3, HaMor, HaAtt, HaLys, HaIip, HaPGRP and HaGNBP are greatly up-regulated after fungal infection. HaGNBP, HaCec-2, HaGall, HaGlo, HaMor, HaCob, HaGali obviously increased in Gram-negative bacterial infection. Only five genes, HaGNBP, HaCec-1, HaGali, HaGlo, and HaLys, are weakly up-regulated after viral infection. The AMP transcripts had higher expression levels than the

  14. How Language Supports Adaptive Teaching through a Responsive Learning Culture

    Johnston, Peter; Dozier, Cheryl; Smit, Julie

    2016-01-01

    For students to learn optimally, teachers must design classrooms that are responsive to the full range of student development. The teacher must be adaptive, but so must each student and the learning culture itself. In other words, adaptive teaching means constructing a responsive learning culture that accommodates and even capitalizes on diversity…

  15. Molecular mechanism of adaptive response to low dose radiation

    Adaptive response is a term used to describe the ability of a low, priming dose of ionizing radiation to modify the effects of a subsequent higher, challenge dose. Molecular mechanism of adaptive response to low dose radiation is involved in signal transduction pathway, reactive oxygen species, DNA damage repair

  16. Responsive immunization and intervention for infectious diseases in social networks

    Wu, Qingchu; Zhang, Haifeng; Zeng, Guanghong

    2014-06-01

    By using the microscopic Markov-chain approximation approach, we investigate the epidemic spreading and the responsive immunization in social networks. It is assumed that individual vaccination behavior depends on the local information of an epidemic. Our results suggest that the responsive immunization has negligible impact on the epidemic threshold and the critical value of initial epidemic outbreak, but it can effectively inhibit the outbreak of epidemic. We also analyze the influence of the intervention on the disease dynamics, where the vaccination is available only to those individuals whose number of neighbors is greater than a certain value. Simulation analysis implies that the intervention strategy can effectively reduce the vaccine use under the epidemic control.

  17. Curcumin prevents human dendritic cell response to immune stimulants

    Shirley, Shawna A.; Montpetit, Alison J.; Lockey, R.F.; Mohapatra, Shyam S.

    2012-01-01

    Curcumin, a compound found in the Indian spice turmeric, has anti-inflammatory and immunomodulatory properties, though the mechanism remains unclear. Dendritic cells (DCs) are important to generating an immune response and the effect of curcumin on human DCs has not been explored. The role curcumin in the DC response to bacterial and viral infection was investigated in vitro using LPS and Poly I:C as models of infection. CD14+ monocytes, isolated from human peripheral blood, were cultured in GM-CSF- and IL-4-supplemented medium to generate immature DCs. Cultures were incubated with curcumin, stimulated with LPS or Poly I:C and functional assays were performed. Curcumin prevents DCs from responding to immunostimulants and inducing naïve CD4+ T cell proliferation by blocking maturation marker, cytokine and chemokine expression and reducing both migration and endocytosis. These data suggest a therapeutic role for curcumin as an immune suppressant. PMID:18639521

  18. Curcumin prevents human dendritic cell response to immune stimulants

    Curcumin, a compound found in the Indian spice turmeric, has anti-inflammatory and immunomodulatory properties, though the mechanism remains unclear. Dendritic cells (DCs) are important to generating an immune response and the effect of curcumin on human DCs has not been explored. The role curcumin in the DC response to bacterial and viral infection was investigated in vitro using LPS and Poly I:C as models of infection. CD14+ monocytes, isolated from human peripheral blood, were cultured in GM-CSF- and IL-4-supplemented medium to generate immature DCs. Cultures were incubated with curcumin, stimulated with LPS or Poly I:C and functional assays were performed. Curcumin prevents DCs from responding to immunostimulants and inducing CD4+ T cell proliferation by blocking maturation marker, cytokine and chemokine expression and reducing both migration and endocytosis. These data suggest a therapeutic role for curcumin as an immune suppressant

  19. Modulation of immune responses in stress by Yoga

    Arora Sarika; Bhattacharjee Jayashree

    2008-01-01

    Stress is a constant factor in today′s fastpaced life that can jeopardize our health if left unchecked. It is only in the last half century that the role of stress in every ailment from the common cold to AIDS has been emphasized, and the mechanisms involved in this process have been studied. Stress influences the immune response presumably through the activation of the hypothalamic-pituitary adrenal axis, hypothalamic pituitary-gonadal axis, and the sympathetic-adrenal-medullary syste...

  20. Immune response to racotumomab in a child with relapsed neuroblastoma

    CLAUDIAVANESASAMPOR

    2012-12-01

    Full Text Available Immunotherapy targeting ganglioside antigens is a powerful tool for the treatment of high risk neuroblastoma. However, only treatment with anti-GD2 antibodies has been used in clinical practice and other options may be pursued. We report the use of racotumomab, an anti-idiotype vaccine against N-glycolyl neuraminic acid (NeuGc- containing gangliosides, eliciting an immune response in a child with relapsed neuroblastoma expressing the NeuGcGM3 ganglioside.

  1. Regional tissue immune responses after sciatic nerve injury in rats

    Chen, Yu-ming; Shen, Ruo-Wu; Zhang, Bei; Zhang, Wei-Ning

    2015-01-01

    Inflammatory cells play a critical role during nerve regeneration following peripheral nerve injury. In this study, we investigated immune responses in rat sciatic nerve after injury. Wistar rats were randomly divided into the sciatic nerve injury (model) group and control group. The right sciatic nerve of rats in the model group was transected and sutured end-to-end. Our results showed that rats in the model group functionally recovered following sciatic nerve injury. We detected inflammator...

  2. Healthcare Worker Occupation and Immune Response to Pneumocystis jirovecii

    Tipirneni, Renuka; Daly, Kieran R.; Leah G Jarlsberg; Koch, Judy V.; Swartzman, Alexandra; Roth, Brenna M.; Walzer, Peter D.; Huang, Laurence

    2009-01-01

    The reservoir and mode of transmission of Pneumocystis jirovecii remain uncertain. We conducted a cross-sectional study of 126 San Francisco General Hospital staff in clinical (n = 103) and nonclinical (n = 23) occupations to assess whether occupational exposure was associated with immune responses to P. jirovecii. We examined antibody levels by ELISA for 3 overlapping fragments that span the P. jirovecii major surface glycoprotein (Msg): MsgA, MsgB, and MsgC1. Clinical occupation participant...

  3. Dynamics of immune response and drug resistance in malaria infection

    Gurarie David; McKenzie F Ellis

    2006-01-01

    Abstract Background Malaria parasites that concurrently infect a host compete on the basis of their intrinsic growth rates and by stimulating cross-reactive immune responses that inhibit each others' growth. If the phenotypes also show different drug sensitivities ('sensitive' vs. 'resistant' strains), drug treatment can change their joint dynamics and the long-term outcome of the infection: most obviously, persistent drug pressure can permit the more resistant, but otherwise competitively-in...

  4. Suppression of Hyperactive Immune Responses Protects against Nitrogen Mustard Injury

    Au, Liemin; Meisch, Jeffrey P.; Das, Lopa M; Binko, Amy M; Boxer, Rebecca S.; Wen, Amy M.; Steinmetz, Nicole F.; Lu, Kurt Q.

    2015-01-01

    DNA alkylating agents like nitrogen mustard (NM) are easily absorbed through the skin and exposure to such agents manifest not only in direct cellular death but also in triggering inflammation. We show that toxicity resulting from topical mustard exposure is mediated in part by initiating exaggerated host innate immune responses. Using an experimental model of skin exposure to NM we observe activation of inflammatory dermal macrophages that exacerbate local tissue damage in an inducible nitri...

  5. Mutants of rabies viruses in skunks: immune response and pathogenicity.

    Tolson, N D; Charlton, K M; Stewart, R B; Casey, G A; Webster, W A; Mackenzie, K.; Campbell, J. B.; Lawson, K. F.

    1990-01-01

    In studies to develop an oral rabies vaccine for wildlife, the immune response to and pathogenicity of two types of mutants of rabies viruses were examined. Forty-five small plaque mutants were selected from cultures of ERA rabies virus treated with 8-azaguanine or 5-fluorouracil and tested for pathogenicity in mice. Two of these mutants AZA 1 and AZA 2 (low pathogenicity in mice) were given to skunks by oral (bait), intestinal (endoscope) and intramuscular routes. Additionally, challenge vir...

  6. Adaptive Queue Management with Restraint on Non-Responsive Flows

    Lan Li

    2003-12-01

    Full Text Available This paper proposes an adaptive queue management scheme (adaptive RED to improve Random Early Detection (RED on restraining non-responsive flows. Due to a lack of flow control mechanism, non-responsive flows can starve responsive flows for buffer and bandwidth at the gateway. In order to solve the disproportionate resource problem, RED framework is modified in this way: on detecting when the non-responsive flows starve the queue, packet-drop intensity (Max_p in RED can be adaptively adjusted to curb non-responsive flows for resource fair-sharing, such as buffer and bandwidth fair-sharing. Based on detection of traffic behaviors, intentionally restraining nonresponsive flows is to increase the throughput and decrease the drop rate of responsive flows. Our experimental results based on adaptive RED shows that the enhancement of responsive traffic and the better sharing of buffer and bandwidth can be achieved under a variety of traffic scenarios.

  7. Radiation-induced preventive bystander response and adaptive response

    Radiation-induced bystander response (BR) is a phenomenon not observed in cells irradiated directly but in cells nearby. Recently, the relationship between BR and adaptive response (AR) has been studied and BR is suggested to be one of important mechanisms involved in AR induction through key molecules like reactive oxygen (RO) and nitrogen species. In this paper, the possible contribution of BR to AR is discussed on recent findings including author's ones. Many biological responses in bystander cells, cultured tissues and mice by cell-cell communication molecules such as cytokines and nitrogen oxide (NO) have been elucidated for BR to involve the cell death, sister chromatid exchange, chromosome instability, mutation, increased/ decreased p53 level, etc. However, BR has been recently found to contain biologically favorable events like the increase of radio-resistance and of cellular take rate and decrease of micronucleus formation through NO by X-ray and HIMAC C-ion. AR is observed in irradiated cell population with previous exposure to low dose and involves the above mentioned biologically favorable responses, which having lead to the possible interrelationship between BR and AR. Together with findings obtained hitherto, hypothesized is that AR is induced in bystander cells through a sequence of signals of evoked radicals like RO/ NO by pre-irradiation, and of consequent intermediating molecules like transforming growth factor (TGF)-1, tumor necrosis factor (TNF), interleukin (IL)-1 and estrogen to activate NF-KB for inducing COX-2 and NO synthase, which resulting in stimulation of damaged DNA repairing mechanism and of mitogen-activated protein kinase (MAPK) cascade that constructs the signaling between plasma membrane and nucleus. (K.T.)

  8. Assessing humoral and cell-mediated immune response in Hawaiian green turtles, Chelonia mydas

    Work, T.M.; Balazs, G.H.; Rameyer, R.A.; Chang, S.P.; Berestecky, J.

    2000-01-01

    Seven immature green turtles, Chelonia mydas, captured from Kaneohe Bay on the island of Oahu were used to evaluate methods for assessing their immune response. Two turtles each were immunized intramuscularly with egg white lysozyme (EWL) in Freunda??s complete adjuvant, Gerbu, or ISA-70; a seventh turtle was immunized with saline only and served as a control. Humoral immune response was measured with an indirect enzyme linked immunosorbent assay (ELISA). Cell-mediated immune response was measured using in vitro cell proliferation assays (CPA) using whole blood or peripheral blood mononuclear cells (PBM) cultured with concanavalin A (ConA), phytohaemagglutinin (PHA), or soluble egg EWL antigen. All turtles, except for one immunized with Gerbu and the control, produced a detectable humoral immune response by 6 weeks which persisted for at least 14 weeks after a single immunization. All turtles produced an anamnestic humoral immune response after secondary immunization. Antigen specific cell-mediated immune response in PBM was seen in all turtles either after primary or secondary immunization, but it was not as consistent as humoral immune response; antigen specific cell-mediated immune response in whole blood was rarely seen. Mononuclear cells had significantly higher stimulation indices than whole blood regardless of adjuvant, however, results with whole blood had lower variability. Both Gerbu and ISA-70 appeared to potentiate the cell-mediated immune response when PBM or whole blood were cultured with PHA. This is the first time cell proliferation assays have been compared between whole blood and PBM for reptiles. This is also the first demonstration of antigen specific cell-mediated response in reptiles. Cell proliferation assays allowed us to evaluate the cell-mediated immune response of green turtles. However, CPA may be less reliable than ELISA for detecting antigen specific immune response. Either of the three adjuvants appears suitable to safely elicit a

  9. Further characterization of the immune response in mice to inactivated and live rabies vaccines expressing Ebola virus glycoprotein.

    Papaneri, Amy B; Wirblich, Christoph; Cooper, Kurt; Jahrling, Peter B; Schnell, Matthias J; Blaney, Joseph E

    2012-09-21

    We have previously developed (a) replication-competent, (b) replication-deficient, and (c) chemically inactivated rabies virus (RABV) vaccines expressing Ebola virus (EBOV) glycoprotein (GP) that induce humoral immunity against each virus and confer protection from both lethal RABV and mouse-adapted EBOV challenge in mice. Here, we expand our investigation of the immunogenic properties of these bivalent vaccines in mice. Both live and killed vaccines induced primary EBOV GP-specific T-cells and a robust recall response as measured by interferon-γ ELISPOT assay. In addition to cellular immunity, an effective filovirus vaccine will likely require a multivalent humoral immune response against multiple virus species. As a proof-of-principle experiment, we demonstrated that inactivated RV-GP could be formulated with another inactivated RABV vaccine expressing the nontoxic fragment of botulinum neurotoxin A heavy chain (HC50) without a reduction in immunity to each component. Finally, we demonstrated that humoral immunity to GP could be induced by immunization of mice with inactivated RV-GP in the presence of pre-existing immunity to RABV. The ability of these novel vaccines to induce strong humoral and cellular immunity indicates that they should be further evaluated in additional animal models of infection. PMID:22884661

  10. Adaptive Filtering for Aeroservoelastic Response Suppression Project

    National Aeronautics and Space Administration — CSA Engineering proposes the design of an adaptive aeroelastic mode suppression for advanced fly-by-wire aircraft, which will partition the modal suppression...

  11. Protective and pathologic immune responses in human tegumentary leishmaniasis.

    Carvalho, Lucas P; Passos, Sara; Schriefer, Albert; Carvalho, Edgar M

    2012-01-01

    Studies in the recent years have advanced the knowledge of how host and parasite factors contribute to the pathogenesis of human tegumentary leishmaniasis. Polymorphism within populations of Leishmania from the same species has been documented; indicating that infection with different strains may lead to distinct clinical pictures and can also interfere in the response to treatment. Moreover, detection of parasite genetic tags for the precise identification of strains will improve diagnostics and therapy against leishmaniasis. On the host side, while a predominant Th1 type immune response is important to control parasite growth, it does not eradicate Leishmania and, in some cases, does not prevent parasite dissemination. Evidence has accumulated showing the participation of CD4(+) and CD8(+) T cells, as well as macrophages, in the pathology associated with L. braziliensis, L. guayanensis, and L. major infection. The discovery that a large percentage of individuals that are infected with Leishmania do not develop disease will help to understand how the host controls Leishmania infection. As these individuals have a weaker type 1 immune response than patients with cutaneous leishmaniasis, it is possible that control of parasite replication in these individuals is dependent, predominantly, on innate immunity, and studies addressing the ability of neutrophils, macrophages, and NK cells to kill Leishmania should be emphasized. PMID:23060880

  12. Evolutionary immune response to conserved domains in parasites and aeroallergens.

    Bielory, Brett Phillip; Mainardi, Timothy; Rottem, Menachem

    2013-01-01

    The immune response based on immunoglobulin E (IgE) evolved as a defense against specific parasitic infections. In the absence of active helminthic infections, the immune system has redirected its IgE epitopes toward innocuous environmental antigens. Helminths and aeroallergens have a similar stereotypical IgE response to unique antigens that can not be explained by chance alone. This study was designed to evaluate potential homology between conserved protein domains embedded in parasitic organisms and aeroallergens. Search and retrieval systems for nucleotide and protein sequences (Entrez, BLAST, and National Center for Biotechnology Information) were searched to identify conserved domains between allergens and certain parasites. A total score was developed that correlated positively with homology between compared sequences. Over 2000 domains were examined. We found matches with a high total score (>100) that signified a strong positive correlation between sequences in allergens (n = 30) and parasites (n = 13). Multiple shared conserved domains were identified between parasites and allergens. Parasite-allergen combinations with the most significant homology (greatest total score) were Plasmodium falciparum enolase and Hev b9 (total score, 612), Schistosoma mansoni albumin and Fel d 2 (total score, 991), Ascaris lumbricoides tropomyosin and Ani s3 (total score, 531), and Wuchereria bancrofti trypsin and Blo t3 (138). Homologous conserved domains exist in specific parasites and allergens, consistent with the theory that the human IgE-eosinophil immune response to common allergens is a direct consequence of stimulation by parasitic organisms. PMID:23406942

  13. Modulation of the Post-Ischemic Immune Response to Improve Stroke Outcome

    Becker, Kyra J.

    2010-01-01

    Recent advances in understanding how the post-stroke immune response may contribute to ischemic brain injury are discussed. In particular, the potential of modulating the post-ischemic immune response to improve stroke outcome is explored.

  14. Immune Response to Hepatitis B Vaccine among Dental Students

    HR Abdolsamadi

    2009-06-01

    Full Text Available "nBackground: Hepatitis B infection is a major public health problem worldwide. Dental students who are frequently in contact with body fluids like blood and saliva are still at high risk for HBV exposure. The aim of this study was to evaluate the effectiveness of HBV vaccine and personal factors associated with serologic evidence of the immune response."nMethods: A descriptive-cross sectional study was carried out using data from Hamadan dental school students that received just three doses of HBV vaccine. The serum sample of 86 dental clinical students were examined in order to determine hepatitis B surface antigen and the level of anti-HBs using IEMA method. Logistic regression models were used to assess the relationship of vaccine response to the variables Sex, age weight, smoking status and the time lasting from the third dose of vaccine injection."nResults: Ninety-three percent had positive anti-HBs response and 7% were non-responders. No one showed HBsAg. Vaccine response was most strongly associated with age, smoking status, sex and weight. The time lasting from the third dose was unrelated to vaccine response."nConclusion: Clinical dental students had desirable immune response to the HBV vaccine nevertheless recommended num­ber of doses, standard protocol and early vaccination are critical to adequate protection against hepatitis infection among all health care workers, in particular dental students and dentists who are often exposed to blood and other body fluids.

  15. Survive an innate immune response through XBP1

    Arthur Kaser; Richard S Blumberg

    2010-01-01

    Endoplasmic reticulum (ER) stress occurs upon the accumulation of un-folded or misfolded proteins, and induces adaptive mechanisms, termed the unfolded protein response (UPR), aimed at resolving ER stress and hence preventing potentially dysfunctional proteins from impairing proper cell function.

  16. Control of the immune response by proangiogenic factors

    MagaliTERME

    2014-04-01

    Full Text Available The progressive conversion of normal cells into cancer cells is characterized by the acquisition of eight hallmarks. Among these criteria, the capability of the cancer cell to avoid the immune destruction is found. Thus, tumors develop mechanisms to become invisible to the immune system, such as the induction of immunosuppressive cells which are able to inhibit the development of an efficient immune response. Molecules produced in the tumor microenvironment are involved in the occurrence of an immunosuppressive microenvironment. Recently, it has been shown that Vascular Endothelial Growth Factor -A (VEGF-A exhibits immunosuppressive properties in addition to its proangiogenic activities. VEGF-A can induce the accumulation of immature dendritic cells, myeloid derived suppressor cells, regulatory T cells and inhibit the migration of T lymphocytes to the tumor. Other proangiogenic factors such as Placental Growth Factor (PlGF could also participate in tumor-induced immunosuppression, but only few works have been performed on this point. Here, we review the impact of proangiogenic factors (especially VEGF-A on immune cells. Anti-angiogenic molecules, which target VEGF-A/VEGFR axis, have been developed in the last decades and are commonly used to treat cancer patients. These drugs have anti-angiogenic properties but can also counteract the tumor-induced immunosuppression. Based on these immunomodulatory properties, anti-angiogenic molecules could be efficiently associated with immunotherapeutic strategies in preclinical models. These combinations are currently under investigation in cancer patients.

  17. Effect of host nutrition on immunity and local immune response of rabbits to Obeliscoides cuniculi

    In a series of experiments carried out on young and adult rabbits the effect of isocaloric low protein diets containing 4% or 8% protein compared with a diet containing 21% protein on Obeliscoides cuniculi infection was studied. The pathogenesis, resistance and local immunity were assessed after single infections with 10,000 larvae or reinfection with 5000 larvae. Live weight gain was reduced in young and adult rabbits fed the low protein diets, but the establishment of parasites was not substantially influenced by protein deprivation. However, development of worms in the histotrophic phase and parasite fecundity were impaired in association with the low protein diet. Moreover, mild anaemia as well as changes in the mucosal immune response as a result of infection were related to the level of dietary protein. (author). 30 refs, 6 figs, 5 tabs

  18. Alterations in immune responses in prenatally irradiated dogs

    Immunologic responses were studied in beagle dogs following prenatal (35 days gestation) irradiation to evaluate the effects of ionizing radiation on the developing immune system. Each dog received 1.5 Gy 60Co gamma irradiation or sham irradiation. Prenatally irradiated dogs exhibited a significant reduction in primary humoral antibody responses to inoculated sheep red blood cells, a T-dependent antigen, and a concurrent decrease in T-helper lymphocyte subpopulations in the peripheral blood at 3 to 4 months of age. Similarly, irradiated fetuses have been shown to have defects in epitheliostromal development of the thymus. It is suggested that the postnatal immunologic deficits may relate to the prenatal thymic injury

  19. Impact on allergic immune response after treatment with vitamin A

    Matheu, Victor; Berggård, Karin; Barrios, Yvelise;

    2009-01-01

    ABSTRACT: BACKGROUND: Vitamin A may have some influence on the immune system, but the role in allergy modulation is still unclear. OBJECTIVE: To clarify whether high levels of retinoic acid (RA) affects allergic response in vivo, we used a murine experimental model of airway allergic disease...... in the group treated with 2,500 ug compared to the other 2 groups (50 and 500 ug). Finally, total lung resistance was decreased in group treated with 2,500 ug compared to non-treated mice. CONCLUSION: Our results suggest that retinoic acid directly enhances allergic response in vivo, but in higher...

  20. Immunity to rhabdoviruses in rainbow trout: the antibody response

    Lorenzen, Niels; Lapatra, S.E.

    1999-01-01

    occasional detrimental effect on rainbow trout farming. Research efforts have been focused on understanding the mechanisms involved in protective immunity. Several specific and nonspecific cellular and humoral parameters are believed to be involved, but only the antibody response has been characterised in......, have demonstrated that rainbow trout can produce specific and highly functional antibodies that are able to neutralise virus pathogenicity in vitro as well as in vivo. The apparently more restricted antibody response to IHNV and VHSV antigens in fish compared to mammals could possibly be explained by...

  1. SEX DIFFERENCES AND ESTROGEN MODULATION OF THE CELLULAR IMMUNE RESPONSE AFTER INJURY

    Bird, Melanie D.; Karavitis, John; Kovacs, Elizabeth J

    2008-01-01

    Cell-mediated immunity is extremely important for resolution of infection and for proper healing from injury. However, the cellular immune response is dysregulated following injuries such as burn and hemorrhage. Sex hormones are known to regulate immunity, and a well-documented dichotomy exists in the immune response to injury between the sexes. This disparity is caused by differences in immune cell activation, infiltration, and cytokine production during and after injury. Estrogen and testos...

  2. Transition between immune and disease states in a cellular automaton model of clonal immune response

    Bezzi, M; Ruffo, S; Seiden, P E; Bezzi, Michele; Celada, Franco; Ruffo, Stefano; Seiden, Philip E.

    1997-01-01

    In this paper we extend the Celada-Seiden (CS) model of the humoral immune response to include infectious virus and cytotoxic T lymphocytes (cellular response). The response of the system to virus involves a competition between the ability of the virus to kill the host cells and the host's ability to eliminate the virus. We find two basins of attraction in the dynamics of this system, one is identified with disease and the other with the immune state. There is also an oscillating state that exists on the border of these two stable states. Fluctuations in the population of virus or antibody can end the oscillation and drive the system into one of the stable states. The introduction of mechanisms of cross-regulation between the two responses can bias the system towards one of them. We also study a mean field model, based on coupled maps, to investigate virus-like infections. This simple model reproduces the attractors for average populations observed in the cellular automaton. All the dynamical behavior connect...

  3. Genome complexity in the coelacanth is reflected in its adaptive immune system

    Saha, Nil Ratan; Ota, Tatsuya; Litman, Gary W.; Hansen, John; Parra, Zuly; Hsu, Ellen; Buonocore, Francesco; Canapa, Adriana; Cheng, Jan-Fang; Amemiya, Chris T.

    2014-01-01

    We have analyzed the available genome and transcriptome resources from the coelacanth in order to characterize genes involved in adaptive immunity. Two highly distinctive IgW-encoding loci have been identified that exhibit a unique genomic organization, including a multiplicity of tandemly repeated constant region exons. The overall organization of the IgW loci precludes typical heavy chain class switching. A locus encoding IgM could not be identified either computationally or by using several different experimental strategies. Four distinct sets of genes encoding Ig light chains were identified. This includes a variant sigma-type Ig light chain previously identified only in cartilaginous fishes and which is now provisionally denoted sigma-2. Genes encoding α/β and γ/δ T-cell receptors, and CD3, CD4, and CD8 co-receptors also were characterized. Ig heavy chain variable region genes and TCR components are interspersed within the TCR α/δ locus; this organization previously was reported only in tetrapods and raises questions regarding evolution and functional cooption of genes encoding variable regions. The composition, organization and syntenic conservation of the major histocompatibility complex locus have been characterized. We also identified large numbers of genes encoding cytokines and their receptors, and other genes associated with adaptive immunity. In terms of sequence identity and organization, the adaptive immune genes of the coelacanth more closely resemble orthologous genes in tetrapods than those in teleost fishes, consistent with current phylogenomic interpretations. Overall, the work reported described herein highlights the complexity inherent in the coelacanth genome and provides a rich catalog of immune genes for future investigations.

  4. The role of lipopeptidophosphoglycan in the immune response to Entamoeba histolytica.

    Wong-Baeza, Isabel; Alcántara-Hernández, Marcela; Mancilla-Herrera, Ismael; Ramírez-Saldívar, Itzmel; Arriaga-Pizano, Lourdes; Ferat-Osorio, Eduardo; López-Macías, Constantino; Isibasi, Armando

    2010-01-01

    The sensing of Pathogen Associated Molecular Patterns (PAMPs) by innate immune receptors, such as Toll-like receptors (TLRs), is the first step in the inflammatory response to pathogens. Entamoeba histolytica, the etiological agent of amebiasis, has a surface molecule with the characteristics of a PAMP. This molecule, which was termed lipopeptidophosphoglycan (LPPG), is recognized through TLR2 and TLR4 and leads to the release of cytokines from human monocytes, macrophages, and dendritic cells; LPPG-activated dendritic cells have increased expression of costimulatory molecules. LPPG activates NKT cells in a CD1d-dependent manner, and this interaction limits amebic liver abscess development. LPPG also induces antibody production, and anti-LPPG antibodies prevent disease development in animal models of amebiasis. Because LPPG is recognized by both the innate and the adaptive immune system (it is a "Pamptigen"), it may be a good candidate to develop a vaccine against E. histolytica infection and an effective adjuvant. PMID:20145703

  5. DMPD: Innate immune responses: crosstalk of signaling and regulation of genetranscription. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 16753195 Innate immune responses: crosstalk of signaling and regulation of genetran...l) (.csml) Show Innate immune responses: crosstalk of signaling and regulation of genetranscription. PubmedI...D 16753195 Title Innate immune responses: crosstalk of signaling and regulation o

  6. DMPD: Innate immune response to viral infection. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 18694646 Innate immune response to viral infection. Koyama S, Ishii KJ, Coban C, Ak...ira S. Cytokine. 2008 Sep;43(3):336-41. Epub 2008 Aug 9. (.png) (.svg) (.html) (.csml) Show Innate immune response... to viral infection. PubmedID 18694646 Title Innate immune response to viral infection. Authors Koyama

  7. DMPD: Cytosolic DNA recognition for triggering innate immune responses. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 18280611 Cytosolic DNA recognition for triggering innate immune responses. Takaoka ...) Show Cytosolic DNA recognition for triggering innate immune responses. PubmedID 18280611 Title Cytosolic D...NA recognition for triggering innate immune responses. Authors Takaoka A, Taniguc

  8. Multi-scale modeling of the CD8 immune response

    Barbarroux, Loic; Michel, Philippe; Adimy, Mostafa; Crauste, Fabien

    2016-06-01

    During the primary CD8 T-Cell immune response to an intracellular pathogen, CD8 T-Cells undergo exponential proliferation and continuous differentiation, acquiring cytotoxic capabilities to address the infection and memorize the corresponding antigen. After cleaning the organism, the only CD8 T-Cells left are antigen-specific memory cells whose role is to respond stronger and faster in case they are presented this very same antigen again. That is how vaccines work: a small quantity of a weakened pathogen is introduced in the organism to trigger the primary response, generating corresponding memory cells in the process, giving the organism a way to defend himself in case it encounters the same pathogen again. To investigate this process, we propose a non linear, multi-scale mathematical model of the CD8 T-Cells immune response due to vaccination using a maturity structured partial differential equation. At the intracellular scale, the level of expression of key proteins is modeled by a delay differential equation system, which gives the speeds of maturation for each cell. The population of cells is modeled by a maturity structured equation whose speeds are given by the intracellular model. We focus here on building the model, as well as its asymptotic study. Finally, we display numerical simulations showing the model can reproduce the biological dynamics of the cell population for both the primary response and the secondary responses.

  9. Host recognition of Clostridium difficile and the innate immune response.

    Cowardin, Carrie A; Petri, William A

    2014-12-01

    Clostridium difficile is a Gram-positive, spore forming bacillus and the most common cause of antibiotic-associated diarrhea in the United States. Clinical outcomes of C. difficile infection (CDI) range from asymptomatic colonization to pseudomembranous colitis, sepsis and death. Disease is primarily mediated by the action of the Rho-glucosylating toxins A and B, which induce potent pro-inflammatory signaling within the host. The role of this inflammatory response during infection is just beginning to be appreciated, with recent data suggesting inflammatory markers correlate closely with disease severity. In addition to the toxins, multiple innate immune signaling pathways have been implicated in establishing an inflammatory response during infection. In intoxication-based models of disease, inflammation typically enhances pathogenesis, while protection from infection seems to require some level of inflammatory response. Thus, the host immune response plays a key role in shaping the course of infection and a balanced inflammatory response which eradicates infection without damaging host tissues is likely required for successful resolution of disease. PMID:25223264

  10. Effects of anti-schistosomal chemotherapy on immune responses, protection and immunity. II. Concomitant immunity and immunization with irradiated cercariae

    Tawfik, A.F.; Colley, D.G.

    1986-01-01

    Resistance of mice to challenge infections of Schistosoma mansoni was evaluated before and after elimination of their primary, established S. mansoni infections with the chemotherapeutic drug praziquantel. Mice treated after either 10 or 20 weeks of primary infection were challenged 6 or 10 weeks after treatment. Mice infected for for 10 weeks prior to treatment expressed progressively less resistance 6 and 10 weeks after treatment. By 10 weeks after treatment significant levels of protection were no longer observed. Resistance waned more slowly if mice were treated 20 weeks after infection, and there was still significant expression of resistance to challenge 10 weeks after treatment. A separate set of experiments evaluated the use of highly irradiated cercariae as a vaccine in mice that had been previously infected with S. mansoni and cured with praziquantel. It was observed that effective immunizations were possible in previously infected mice. These studies demonstrate that established resistance waned after treatment and the rate of loss of protection was dependent upon the duration of infection prior to treatment. Furthermore, the irradiated cercarial vaccine studies indicate that in the murine model induction of immunological resistance was feasible following chemotherapeutic treatment of infected populations.

  11. Effects of anti-schistosomal chemotherapy on immune responses, protection and immunity. II. Concomitant immunity and immunization with irradiated cercariae

    Resistance of mice to challenge infections of Schistosoma mansoni was evaluated before and after elimination of their primary, established S. mansoni infections with the chemotherapeutic drug praziquantel. Mice treated after either 10 or 20 weeks of primary infection were challenged 6 or 10 weeks after treatment. Mice infected for for 10 weeks prior to treatment expressed progressively less resistance 6 and 10 weeks after treatment. By 10 weeks after treatment significant levels of protection were no longer observed. Resistance waned more slowly if mice were treated 20 weeks after infection, and there was still significant expression of resistance to challenge 10 weeks after treatment. A separate set of experiments evaluated the use of highly irradiated cercariae as a vaccine in mice that had been previously infected with S. mansoni and cured with praziquantel. It was observed that effective immunizations were possible in previously infected mice. These studies demonstrate that established resistance waned after treatment and the rate of loss of protection was dependent upon the duration of infection prior to treatment. Furthermore, the irradiated cercarial vaccine studies indicate that in the murine model induction of immunological resistance was feasible following chemotherapeutic treatment of infected populations

  12. Dynamics of immune response and drug resistance in malaria infection

    Gurarie David

    2006-10-01

    Full Text Available Abstract Background Malaria parasites that concurrently infect a host compete on the basis of their intrinsic growth rates and by stimulating cross-reactive immune responses that inhibit each others' growth. If the phenotypes also show different drug sensitivities ('sensitive' vs. 'resistant' strains, drug treatment can change their joint dynamics and the long-term outcome of the infection: most obviously, persistent drug pressure can permit the more resistant, but otherwise competitively-inferior, strains to dominate. Methods Here a mathematical model is developed to analyse how these and more subtle effects of antimalarial drug use are modulated by immune response, repeated re-inoculation of parasites, drug pharmacokinetic parameters, dose and treatment frequency. Results The model quantifies possible effects of single and multiple (periodic treatment on the outcome of parasite competition. In the absence of further inoculation, the dosage and/or treatment frequency required for complete clearance can be estimated. With persistent superinfection, time-average parasite densities can be derived in terms of the basic immune-regulating parameters, the drug efficacy and treatment regimen. Conclusion The functional relations in the model are applicable to a wide range of conditions and transmission environments, allowing predictions to be made on both the individual and the community levels, and, in particular, transitions from drug-sensitive to drug-resistant parasite dominance to be projected on both levels.

  13. Chemotactic response and adaptation dynamics in Escherichia coli.

    Diana Clausznitzer

    2010-05-01

    Full Text Available Adaptation of the chemotaxis sensory pathway of the bacterium Escherichia coli is integral for detecting chemicals over a wide range of background concentrations, ultimately allowing cells to swim towards sources of attractant and away from repellents. Its biochemical mechanism based on methylation and demethylation of chemoreceptors has long been known. Despite the importance of adaptation for cell memory and behavior, the dynamics of adaptation are difficult to reconcile with current models of precise adaptation. Here, we follow time courses of signaling in response to concentration step changes of attractant using in vivo fluorescence resonance energy transfer measurements. Specifically, we use a condensed representation of adaptation time courses for efficient evaluation of different adaptation models. To quantitatively explain the data, we finally develop a dynamic model for signaling and adaptation based on the attractant flow in the experiment, signaling by cooperative receptor complexes, and multiple layers of feedback regulation for adaptation. We experimentally confirm the predicted effects of changing the enzyme-expression level and bypassing the negative feedback for demethylation. Our data analysis suggests significant imprecision in adaptation for large additions. Furthermore, our model predicts highly regulated, ultrafast adaptation in response to removal of attractant, which may be useful for fast reorientation of the cell and noise reduction in adaptation.

  14. Innate immunity to dengue virus infection and subversion of antiviral responses.

    Green, Angela M; Beatty, P Robert; Hadjilaou, Alexandros; Harris, Eva

    2014-03-20

    Dengue is a major public health issue in tropical and subtropical regions worldwide. The four serotypes of dengue virus (DENV1-DENV4) are spread primarily by Aedes aegypti and Aedes albopictus mosquitoes, whose geographic range continues to expand. Humans are the only host for epidemic strains of DENV, and the virus has developed sophisticated mechanisms to evade human innate immune responses. The host cell's first line of defense begins with an intracellular signaling cascade resulting in production of interferon α/β (IFN-α/β), which promotes intracellular antiviral responses and helps initiates the adaptive response during the course of DENV infection. In response, DENV has developed numerous ways to subvert these intracellular antiviral responses and directly inhibit cellular signaling cascades. Specifically, DENV manipulates the unfolded protein response and autophagy to counter cellular stress and delay apoptosis. The DENV non-structural protein NS4B and subgenomic flavivirus RNA interfere with the RNA interference pathway by inhibiting the RNase Dicer. During heterotypic secondary DENV infection, subneutralizing antibodies can enable viral uptake through Fcγ receptors and down-regulate signaling cascades initiated via the pattern recognition receptors TLR-3 and MDA5/RIG-I, thus reducing the antiviral state of the cell. The DENV NS2B/3 protein cleaves human STING/MITA, interfering with induction of IFN-α/β. Finally, DENV NS2A, NS4A, and NS4B complex together to block STAT1 phosphorylation, while NS5 binds and promotes degradation of human STAT2, thus preventing formation of the STAT1/STAT2 heterodimer and its transcriptional induction of interferon stimulating genes. Here, we discuss the host innate immune response to DENV and the mechanisms of immune evasion that DENV has developed to manipulate cellular antiviral responses. PMID:24316047

  15. The role of radiotherapy for the induction of antitumor immune responses; Die Rolle der Strahlentherapie bei der Induktion von Antitumor-Immunantworten

    Multhoff, G. [Technische Univ. Muenchen, Klinikum rechts der Isar (Germany). Klinik fuer Strahlentherapie und Radiologische Onkologie, Experimentelle Radioonkologie; Helmholtz-Zentrum Muenchen (HMGU) (Germany). Klinische Kooperationsgruppe: ' Angeborene Immunantwort in der Tumorbiologie' ; Gaipl, U.S. [Universitaetsklinikum Erlangen (Germany). Strahlenklinik/Radioonkologie, Strahlen-Immunbiologie; Niedermann, G. [Universitaetsklinikum Freiburg (Germany). Klinik fuer Strahlenheilkunde, Sektion fuer Klinische und Experimentelle Strahlenbiologie

    2012-11-15

    Effective radiotherapy is aimed to control the growth of the primary carcinoma and to induce a long-term specific antitumor immune response against the primary tumor, recurrence and metastases. The contribution covers the following issues: T cells and tumor specific immune responses, dendritic cells (DCs) start adaptive immune responses, NK (natural killer) cells for HLA independent tumor control, abscopal effects of radiotherapy, combination of radiotherapy and immune therapy, radiotherapy contribution to the induction of immunogenic cell death, combinability of radiotherapy and DC activation, combinability of radiotherapy and NK cell therapy. It turns out that the combination of radio-chemotherapy and immune therapy can change the microenvironment initiating antitumor immune reactions that inhibit the recurrence risk and the development of metastases.

  16. The Immune Response to Skin Trauma Is Dependent on the Etiology of Injury in a Mouse Model of Burn and Excision.

    Valvis, Samantha M; Waithman, Jason; Wood, Fiona M; Fear, Mark W; Fear, Vanessa S

    2015-08-01

    Skin trauma has many different causes including incision, blunt force, and burn. All of these traumas trigger an immune response. However, it is currently unclear whether the immune response is specific to the etiology of the injury. This study was established to determine whether the immune response to excision and burn injury of equivalent extent was the same. Using a mouse model of a full-thickness 19 mm diameter excision or 19 mm diameter full-thickness burn injury, we examined the innate immune response at the level of serum cytokine induction, whole-blood lymphocyte populations, dendritic cell function/phenotype, and the ensuing adaptive immune responses of CD4 and CD8 T-cell populations. Strikingly, both the innate and adaptive immune system responses differed between the burn and excision injuries. Acute cytokine induction was faster and different in profile to that of excision injury, leading to changes in systemic monocyte and neutrophil levels. Differences in the immune profile between burn and excision were also noted up to day 84 post injury, suggesting that the etiology of injury leads to sustained changes in the response. This may in part underlie clinical observations of differences in patient morbidity and mortality in response to different skin injury types. PMID:25826422

  17. Clinical evaluation of systemic and local immune responses in cancer: time for integration

    Gutkin, Dmitriy W.; Shurin, Michael R.

    2013-01-01

    The immune system has a dual role in cancer development and progression. On the one hand, it can eradicate emerging malignant cells, but on the other hand, it can actively promote growth of malignant cells, their invasive capacities and their ability to metastasize. Immune cells with predominantly anti-tumor functionality include cells of the innate immune system, such as natural killer cells, and cells of adaptive immunity, such as conventional dendritic cells and cytotoxic T lymphocytes. Im...

  18. Danger Signals Activating the Immune Response after Trauma

    Stefanie Hirsiger

    2012-01-01

    Full Text Available Sterile injury can cause a systemic inflammatory response syndrome (SIRS that resembles the host response during sepsis. The inflammatory response following trauma comprises various systems of the human body which are cross-linked with each other within a highly complex network of inflammation. Endogenous danger signals (danger-associated molecular patterns; DAMPs; alarmins as well as exogenous pathogen-associated molecular patterns (PAMPs play a crucial role in the initiation of the immune response. With popularization of the “danger theory,” numerous DAMPs and PAMPs and their corresponding pathogen-recognition receptors have been identified. In this paper, we highlight the role of the DAMPs high-mobility group box protein 1 (HMGB1, interleukin-1α (IL-1α, and interleukin-33 (IL-33 as unique dual-function mediators as well as mitochondrial danger signals released upon cellular trauma and necrosis.

  19. Lymphocytes and the Adventitial Immune Response in Atherosclerosis

    Campbell, Kirsti A.; Lipinski, Michael J.; Doran, Amanda C.; Skaflen, Marcus D.; Fuster, Valentin; McNamara, Coleen A.

    2012-01-01

    Though much of the research on atherosclerosis has focused on the intimal accumulation of lipids and inflammatory cells, there is an increasing amount of interest in the role of the adventitia in coordinating the immune response in atherosclerosis. In this review of the contributions of the adventitia and adventitial lymphocytes to the development of atherosclerosis, we discuss recent research on the formation and structural nature of adventitial immune aggregates, potential mechanisms of crosstalk between the intima, media, and adventitia, specific contributions of B lymphocytes and T lymphocytes, and the role of the vasa vasorum and surrounding perivascular adipose tissue (PVAT). Furthermore, we highlight techniques for the imaging of lymphocytes in the vasculature. PMID:22427326

  20. Immunity

    2008-01-01

    2008254 Prokaryotic expression and immunogenicity of Fba,a novel fibronectin-binding protein of group A streptococcus.MA Cuiqing(马翠柳),et al.Dept Immunol,Basic Med Coll,Hebei Med Univ,Shijiazhuang 050017.Chin J Infect Dis 2008;26(3):146-150.Objective To express the novel fibronectin-binding protein Fba ofgroupAstreptococcus(GAS)and analyze its immunogenicity,so to evaluate the immune responses to GAS infection.Methods fbagene was amplified by