WorldWideScience

Sample records for adaptive compact fluidic

  1. Characterization of a tunable astigmatic fluidic lens with adaptive optics correction for compact phoropter application

    Fuh, Yiin-Kuen; Huang, Chieh-Tse

    2014-07-01

    Fluidically controlled lenses which adaptively correct prescribed refractive error without mechanically moving parts are extensively applied in the ophthalmic applications. Capable of variable-focusing properties, however, the associated aberrations due to curvature change and refractive index mismatch can inherently degrade image quality severely. Here we present the experimental study of the aberrations in tunable astigmatic lens and use of adaptive optics to compensate for the wavefront errors. Characterization of the optical properties of the individual lenses is carried out by Shack-Hartmann measurements. An adaptive optics (AO) based scheme is demonstrated for three injected fluidic volumes, resulting in a substantial reduction of the wavefront errors from -0.12, -0.25, -0.32 to 0.01, -0.01, -0.20 μm, respectively, corresponding to the optical power tenability of 0.83 to 1.84 D. Furthermore, an integrated optical phoroptor consisting of adjustable astigmatic lenses and AO correction is demonstrated such that an induced refraction error of -1 D cylinder at 180° of a model eye vision is experimentally corrected.

  2. Compact Fluidic Actuator Arrays for Flow Control Project

    National Aeronautics and Space Administration — The overall objective of the proposed research is to design, develop and demonstrate fluidic actuator arrays for aerodynamic separation control and drag reduction....

  3. Compact Fluidic Actuator Arrays For Flow Control Project

    National Aeronautics and Space Administration — The overall objective of the proposed research is to design, develop and demonstrate fluidic actuator arrays for aerodynamic separation control and drag reduction....

  4. A low-cost compact metric adaptive optics system

    Mansell, Justin D.; Henderson, Brian; Wiesner, Brennen; Praus, Robert; Coy, Steve

    2007-09-01

    The application of adaptive optics has been hindered by the cost, size, and complexity of the systems. We describe here progress we have made toward creating low-cost compact turn-key adaptive optics systems. We describe our new low-cost deformable mirror technology developed using polymer membranes, the associated USB interface drive electronics, and different ways that this technology can be configured into a low-cost compact adaptive optics system. We also present results of a parametric study of the stochastic parallel gradient descent (SPGD) control algorithm.

  5. Holographic opto-fluidic microscopy

    Bishara, Waheb; Zhu, Hongying; Ozcan, Aydogan

    2010-01-01

    Over the last decade microfluidics has created a versatile platform that has significantly advanced the ways in which micro-scale organisms and objects are controlled, processed and investigated, by improving the cost, compactness and throughput aspects of analysis. Microfluidics has also expanded into optics to create reconfigurable and flexible optical devices such as reconfigurable lenses, lasers, waveguides, switches, and on-chip microscopes. Here we present a new opto-fluidic microscopy ...

  6. Adaptive Feature Based Control of Compact Disk Players

    Odgaard, Peter Fogh; Stoustrup, Jakob; Vidal, Enrique Sanchez

    Many have experienced the problem that their Compact Disc players have difficulties playing Compact Discs with surface faults like scratches and fingerprints. The cause of this is due to the two servo control loops used to keep the Optical Pick-up Unit focused and radially on the information track...

  7. Biparametric Adaptive Filter: detection of compact sources in complex microwave backgrounds

    López-Caniego, M.; Vielva, P.

    2012-01-01

    In this article we consider the detection of compact sources in maps of the Cosmic Microwave Background radiation (CMB) following the philosophy behind the Mexican Hat Wavelet Family (MHWn) of linear filters. We present a new analytical filter, the Biparametric Adaptive Filter (BAF), that is able to adapt itself to the statistical properties of the background as well as to the profile of the compact sources, maximizing the amplification and improving the detection process. We have tested the ...

  8. Study on the Fluidic Component of the Complete Fluidic Sprinkler

    Hong Li; Chao Wang; Chao Chen; Zhenhua Shen

    2013-01-01

    The PXH fluidic sprinkler controlled by the outlet clearance is a new type sprinkler which is driven and controlled by the Coanda effect. This paper analyzes the offset jet with control stream in the simplified model. Based on the special design of the fluidic component of the fluidic sprinkler, a control stream coefficient was proposed and the air entrance hole distance was considered as one of the key factors that, influence the offset flow field. Based on the numerical simulations and the ...

  9. Strangely behaving fluidic oscillator

    Tesař, Václav; Peszyński, K.

    Liberec : Technical University of Liberec, 2013 - (Dančová, P.; Novotný, P.) ISBN 978-80-7372-912-7. ISSN 2100-014X. - (EPJ Web of Conferences. 45). [Experimental Fluid Mechanics 2012 /7./. Hradec Králové (CZ), 20.11.2012-23.11.2012] R&D Projects: GA TA ČR TA02020795; GA ČR(CZ) GCP101/11/J019 Institutional research plan: CEZ:AV0Z20760514 Keywords : fluidics * oscillators * strouhal number Subject RIV: BK - Fluid Dynamics http://dx.doi.org/10.1051/epjconf/20134501074

  10. Compact MEMS-based Adaptive Optics Optical Coherence Tomography for Clinical Use

    Chen, D; Olivier, S; Jones, S; Zawadzki, R; Evans, J; Choi, S; Werner, J

    2008-02-04

    We describe a compact MEMS-based adaptive optics (AO) optical coherence tomography system with improved AO performance and ease of clinical use. A typical AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror that measures and corrects the ocular and system aberrations. Because of the limitation on the current deformable mirror technologies, the amount of real-time ocular-aberration compensation is restricted and small in the previous AO-OCT instruments. In this instrument, we proposed to add an optical apparatus to correct the spectacle aberrations of the patients such as myopia, hyperopia and astigmatism. This eliminated the tedious process of the trial lenses in clinical imaging. Different amount of spectacle aberration compensation was achieved by motorized stages and automated with the AO computer for ease of clinical use. In addition, the compact AO-OCT was optimized to have minimum system aberrations to reduce AO registration errors and improve AO performance.

  11. MEMS fluidic actuator

    Kholwadwala, Deepesh K.; Johnston, Gabriel A.; Rohrer, Brandon R.; Galambos, Paul C.; Okandan, Murat

    2007-07-24

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  12. Fluidic angular velocity sensor

    Berdahl, C. M. (Inventor)

    1986-01-01

    A fluidic sensor providing a differential pressure signal proportional to the angular velocity of a rotary input is described. In one embodiment the sensor includes a fluid pump having an impeller coupled to a rotary input. A housing forming a constricting fluid flow chamber is connected to the fluid input of the pump. The housing is provided with a fluid flow restrictive input to the flow chamber and a port communicating with the interior of the flow chamber. The differential pressure signal measured across the flow restrictive input is relatively noise free and proportional to the square of the angular velocity of the impeller. In an alternative embodiment, the flow chamber has a generally cylindrical configuration and plates having flow restrictive apertures are disposed within the chamber downstream from the housing port. In this embodiment, the differential pressure signal is found to be approximately linear with the angular velocity of the impeller.

  13. Adaptive non-uniform B-spline dictionaries on a compact interval

    Rebollo-Neira, Laura

    2009-01-01

    Non-uniform B-spline dictionaries on a compact interval are discussed. For each given partition, dictionaries of B-spline functions for the corresponding spline space are constructed. It is asserted that, by dividing the given partition into subpartitions and joining together the bases for the concomitant subspaces, slightly redundant dictionaries of B-splines functions are obtained. Such dictionaries are proved to span the spline space associated to the given partition. The proposed construction is shown to be potentially useful for the purpose of sparse signal representation. With that goal in mind, spline spaces specially adapted to produce a sparse representation of a given signal are considered.

  14. Integral fluidic generator of microbubbles

    Tesař, Václav; Jílek, Miroslav

    Praha : Ústav termomechaniky AV ČR, v. v. i., 2013 - (Jonáš, P.; Uruba, V.), s. 33-34 ISBN 978-80-87012-48-2. [Colloquium FLUID DYNAMICS 2013. Praha (CZ), 23.10.2013-25.10.2013] R&D Projects: GA TA ČR TA02020795; GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : fluidics * microbubbles * fluidic oscillators Subject RIV: BK - Fluid Dynamics

  15. The UC Softhand: Light Weight Adaptive Bionic Hand with a Compact Twisted String Actuation System

    Mahmoud Tavakoli

    2015-12-01

    Full Text Available In this paper, we present the design and development of the UC-Softhand. The UC Softhand is a low cost, Bionic and adaptive hand that takes advantage of compliant joints. By optimization of the actuation strategy as well as the actuation mechanism, we could develop an anthropomorphic hand that embeds three actuators, transmission mechanisms, controllers and drivers in the palm of the hand, and weighs only 280 g, making it one of the lightest bionic hands that has been created so far. The key aspect of the UC Softhand is utilization of a novel compact twisted string actuation mechanism, that allows a considerable weight and cost reduction compared to its predecessor.

  16. Fluidic Oscillator with Vortical Feedback

    Tesař, Václav

    Tokyo : Tokyo Institute of Technology, 2013, s. 53-61. [International Symposium on Fluid Control, Measurement and Visualization : FLUCOME 2013 /12./. Nara (JP), 18.11.2013-23.11.2013] R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : fluidics * microbubbles * bubbe conjunctions Subject RIV: BK - Fluid Dynamics

  17. Sampling by Fluidics and Microfluidics

    V. Tesař

    2002-01-01

    Selecting one from several available fluid samples is a procedure often performed especially in chemical engineering. It is usually done by an array of valves sequentially opened and closed. Not generally known is an advantageous alternative: fluidic sampling units without moving parts. In the absence of complete pipe closure, cross-contamination between samples cannot be ruled out. This is eliminated by arranging for small protective flows that clear the cavities and remove any contaminated ...

  18. Manipulating fluids: Advances in micro-fluidics, opto-fluidics and fluidic self assembly

    Vyawahare, Saurabh

    This dissertation describes work in three inter-related areas---micro-fluidics, opto-fluidics and fluidic self-assembly. Micro-fluidics has gotten a boost in recent years with the development of multilayered elastomeric devices made of poly (dimethylsiloxane) (PDMS), allowing active elements like valves and pumps. However, while PDMS has many advantages, it is not resistant to organic solvents. New materials and/or new designs are needed for solvent resistance. I describe how novel fluorinated elastomers can replace PDMS when combined with the three dimensional (3-D) solid printing. I also show how another 3-D fabrication method, multilayer photo-lithography, allows for fabrication of devices integrating filters. In general, 3-D fabrications allow new kinds of micro-fluidic devices to be made that would be impossible to emulate with two dimensional chips. In opto-fluidics, I describe a number of experiments with quantum dots both inside and outside chips. Inside chips, I manipulate quantum dots using hydrodynamic focusing to pattern fine lines, like a barcode. Outside chips, I describe our attempts to create quantum dot composites with micro-spheres. I also show how evaporated gold films and chemical passivation can then be used to enhance the emission of quantum dots. Finally, within fluids, self assembly is an attractive way to manipulate materials, and I provide two examples: first, a DNA-based energy transfer molecule that relies on quantum mechanics and self-assembles inside fluids. This kind of molecular photonics mimics parts of the photosynthetic apparatus of plants and bacteria. The second example of self-assembly in fluids describes a new phenomena---the surface tension mediated self assembly of particles like quantum dots and micro-spheres into fine lines. This self assembly by capillary flows can be combined with photo-lithography, and is expected to find use in future nano- and micro-fabrication schemes. In conclusion, advances in fludics, integrating

  19. FLUIDICS DEVICE FOR ASSAY

    2007-01-01

    The present invention relates to a device for use in performing assays on standard laboratory solid supports whereon chemical entities are attached. The invention furthermore relates to the use of such a device and a kit comprising such a device. The device according to the present invention is...... adapted to receive one or more replaceable solid support(s) (40) onto which chemical entities (41) are attached, said device comprising a base (1, 60, 80, 300, 400, 10, 70, 140, 20, 90, 120, 150, 30, 100), one or more inlet(s) (5), one or more outlet(s) (6). The base and the solid support (40) defines......, when operatively connected, one or more chambers (21) comprising the chemical entities (41), the inlet(s) (5) and outlet(s) (6) and chambers (21) being in fluid connection. The device further comprise means for providing differing chemical conditions in each chamber (21)....

  20. Dielectric Elastomers for Fluidic and Biomedical Applications

    McCoul, David James

    other smaller particulate debris into the system. After a channel blockage was confirmed, three actuation attempts successfully cleared the blockage. Further tests indicated that the device were biocompatible with HeLa cells at 3 kV. To our knowledge this is the first pairing of dielectric elastomers with microfluidics in a non-electroosmotic context. Applications may include adaptive microfilters, micro-peristaltic pumps, and reduced-complexity lab-on-a-chip devices. Dielectric elastomers can also be adapted to manipulate fluidic systems on a larger scale. The second part of the dissertation research reports a novel low-profile, biomimetic dielectric elastomer tubular actuator capable of actively controlling hydraulic flow. The tubular actuator has been established as a reliable tunable valve, pinching a secondary silicone tube completely shut in the absence of a fluidic pressure bias or voltage, offering a high degree of resistance against fluidic flow, and able to open and completely remove this resistance to flow with an applied low power actuation voltage. The system demonstrates a rise in pressure of ~3.0 kPa when the dielectric elastomer valve is in the passive, unactuated state, and there is a quadratic fall in this pressure with increasing actuation voltage, until ~0 kPa is reached at 2.4 kV. The device is reliable for at least 2,000 actuation cycles for voltages at or below 2.2 kV. Furthermore, modeling of the actuator and fluidic system yields results consistent with the observed experimental dependence of intrasystem pressure on input flow rate, actuator prestretch, and actuation voltage. To our knowledge, this is the first actuator of its type that can control fluid flow by directly actuating the walls of a tube. Potential applications may include an implantable artificial sphincter, part of a peristaltic pump, or a computerized valve for fluidic or pneumatic control. The final part of the dissertation presents a novel dielectric elastomer band with

  1. Stimuli-responsive materials: developing integrated opto-molecular systems as sensors and actuators in micro-fluidic devices

    Florea, Larisa

    2013-01-01

    Micro-fluidic platforms have been conferred with inherent optical sensing capabilities by coating the walls of micro-fluidic channels or micro-capillaries with stimuli-responsive materials. These adaptive materials respond optically to environmental stimuli, such as changes in pH, solvent polarity, the presence of certain metal ions and light. This approach confers sensing capabilities along the entire length of the coated micro-channel or micro-capillary. Adaptive coatings based on two types...

  2. Opto-mechano-fluidic viscometer

    Han, Kewen, E-mail: khan56@illinois.edu; Zhu, Kaiyuan; Bahl, Gaurav, E-mail: bahl@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W. Green St., Urbana, Illinois 61801 (United States)

    2014-07-07

    The recent development of opto-mechano-fluidic resonators has provided—by harnessing photon radiation pressure—a microfluidics platform for the optical sensing of fluid density and bulk modulus. Here, we show that fluid viscosity can also be determined through optomechanical measurement of the vibrational noise spectrum of the resonator mechanical modes. A linear relationship between the spectral linewidth and root-viscosity is predicted and experimentally verified in the low viscosity regime. Our result is a step towards multi-frequency measurement of viscoelasticity of arbitrary fluids, without sample contamination, using highly sensitive optomechanics techniques.

  3. High-frequency fluidic oscillator

    Tesař, Václav

    2015-01-01

    Roč. 234, October (2015), s. 158-167. ISSN 0924-4247 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : pulsating flow * jet * fluidics Subject RIV: BK - Fluid Dynamics Impact factor: 1.903, year: 2014 http://www.sciencedirect.com/science/article/pii/S0924424715301114/pdfft?md5=42ec4f6f3180151913ceade1e4625d74&pid=1-s2.0-S0924424715301114-main.pdf

  4. Prediction of mechanical properties of a warm compacted molybdenum prealloy using artificial neural network and adaptive neuro-fuzzy models

    Highlights: ► ANNs and ANFIS fairly predicted UTS and YS of warm compacted molybdenum prealloy. ► Effects of composition, temperature, compaction pressure on output were studied. ► ANFIS model was in better agreement with experimental data from published article. ► Sintering temperature had the most significant effect on UTS and YS. -- Abstract: Predictive models using artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) were successfully developed to predict yield strength and ultimate tensile strength of warm compacted 0.85 wt.% molybdenum prealloy samples. To construct these models, 48 different experimental data were gathered from the literature. A portion of the data set was randomly chosen to train both ANN with back propagation (BP) learning algorithm and ANFIS model with Gaussian membership function and the rest was implemented to verify the performance of the trained network against the unseen data. The generalization capability of the networks was also evaluated by applying new input data within the domain covered by the training pattern. To compare the obtained results, coefficient of determination (R2), root mean squared error (RMSE) and average absolute error (AAE) indexes were chosen and calculated for both of the models. The results showed that artificial neural network and adaptive neuro-fuzzy system were both potentially strong for prediction of the mechanical properties of warm compacted 0.85 wt.% molybdenum prealloy; however, the proposed ANFIS showed better performance than the ANN model. Also, the ANFIS model was subjected to a sensitivity analysis to find the significant inputs affecting mechanical properties of the samples.

  5. Adapting a compact Mott spin polarimeter to a large commercial electron energy analyzer for spin-polarized electron spectroscopy

    Huang, Di-Jing; Lee, Jae-Yong; Suen, Jih-Shih; Mulhollan, G. A.; Andrews, A. B.; Erskine, J. L.

    1993-12-01

    A modified Rice University-type compact Mott spin polarimeter operating at 20 kV is adapted to a large commerical hemispherical electron energy analyzer. Normal energy analyzer functions are preserved via a retractable channeltron in the polarimeter acceleration column. In the spin-detection mode, the polarimeter permits analysis of two orthogonal transverse spin-polarization components. Electron trajectory analysis is used to optimize polarimeter lens column voltages in both normal and spin-detection modes. Performance levels are established by experiments and significantly improved spin-detection efficiency is shown to be accessible by changes in the polarimeter collection solid angle.

  6. Fluidics platform and method for sample preparation

    Benner, Henry W.; Dzenitis, John M.

    2016-06-21

    Provided herein are fluidics platforms and related methods for performing integrated sample collection and solid-phase extraction of a target component of the sample all in one tube. The fluidics platform comprises a pump, particles for solid-phase extraction and a particle-holding means. The method comprises contacting the sample with one or more reagents in a pump, coupling a particle-holding means to the pump and expelling the waste out of the pump while the particle-holding means retains the particles inside the pump. The fluidics platform and methods herein described allow solid-phase extraction without pipetting and centrifugation.

  7. A Coupled Cavity Micro Fluidic Dye Ring Laser

    Gersborg-Hansen, M.; Balslev, S.; Mortensen, N. A.; Kristensen, A.

    2004-01-01

    We present a laterally emitting, coupled cavity micro fluidic dye ring laser, suitable for integration into lab-on-a-chip micro systems. The micro-fluidic laser has been successfully designed, fabricated, characterized and modelled. The resonator is formed by a micro-fluidic channel bounded by two isosceles triangle mirrors. The micro-fluidic laser structure is defined using photo lithography in 10 microns thick SU-8 polymer on a glass substrate. The micro fluidic channel is sealed by a glass...

  8. Prediction of Compressive Strength of Self compacting Concrete with Flyash and Rice Husk Ash using Adaptive Neuro-fuzzy Inference System

    S. S, Pathak

    2012-10-01

    Full Text Available Self-compacting concrete is an innovative concrete that does not require vibration for placing and compaction. It is able to flow under its own weight, completely filling formwork and achieving full compaction even in congested reinforcement without segregation and bleeding. In the present study self compacting concrete mixes were developed using blend of fly ash and rice husk ash. Fresh properties of theses mixes were tested by using standards recommended by EFNARC (European Federation for Specialist Construction Chemicals and Concrete system. Compressive strength at 28 days was obtained for these mixes. This paper presents development of Adaptive Neuro-fuzzy Inference System (ANFIS model for predicting compressive strength of self compacting concrete using fly ash and rice husk ash. The input parameters used for model are cement, fly ash, rice husk ash and water content. Output parameter is compressive strength at 28 days. The results show that the implemented model is good at predicting compressive strength.

  9. Topological in-plane polarized piezo actuation for compact adaptive lenses with aspherical correction

    Lemke, Florian; Wallrabe, Ulrike; Wapler, Matthias C

    2016-01-01

    In this contribution, we investigate the effects of using in-plane polarized piezo actuators with topological buckling displacement to drive glass-piezo composite membranes for adaptive lenses with aspherical control. We find that the effects on the focal power and aspherical tuning range are relatively small, whereas the tuning speed is improved significantly with a first resonance of 1 kHz for a 13 mm aperture lens.

  10. A compact, large-aperture tunable lens with adaptive spherical correction

    Wapler, Matthias C; Wallrabe, Ulrike

    2014-01-01

    In this paper, we present the proof of concept of a very fast adaptive glass membrane lens with a large aperture/diameter ratio, spherical aberration correction and integrated actuation. The membrane is directly deformed using two piezo actuators that can tune the focal length and the conical parameter. This operating principle allows for a usable aperture of the whole membrane diameter. Together with the efficient actuation mechanism, the aperture is around 2/3 of the total system diameter - at a thickness of less than 2mm. The response time is a few milliseconds at 12mm aperture, which is fast compared to similar systems.

  11. The UC Softhand: Light Weight Adaptive Bionic Hand with a Compact Twisted String Actuation System

    Mahmoud Tavakoli; Rafael Batista; Lucio Sgrigna

    2015-01-01

    In this paper, we present the design and development of the UC-Softhand. The UC Softhand is a low cost, Bionic and adaptive hand that takes advantage of compliant joints. By optimization of the actuation strategy as well as the actuation mechanism, we could develop an anthropomorphic hand that embeds three actuators, transmission mechanisms, controllers and drivers in the palm of the hand, and weighs only 280 g, making it one of the lightest bionic hands that has been created so far. The key ...

  12. Water oxygenation by fluidic microbubble generator

    Tesař V

    2014-03-01

    Full Text Available Oxygenation of water by standard means in waste water processing, in particular to improve the conditions for the micro-organisms that decompose organic wastes is rather ineffective. The classical approach to improvements – decreasing the size of the aerator exits - have already reached their limits. A recent new idea is to decrease the size of the generated air bubbles by oscillating the supplied air flow using fluidic oscillators. Authors made extensive performance measurements with an unusual high-frequency fluidic oscillator, designed to operate within the submersed aerator body. The performance was evaluated by the dynamic method of recording the oxygen concentration increase to saturation in the aerated water. Experiments proved the fluidic generator can demonstrably increase the aeration efficiency 4.22-times compared with the aeration from a plain end of a submerged air supply tube. Despite this significant improvement, the behaviour of the generator still provides an opportunity for further improvements.

  13. Tuning fluidic resistance via liquid crystal microfluidics.

    Sengupta, Anupam

    2013-01-01

    Flow of molecularly ordered fluids, like liquid crystals, is inherently coupled with the average local orientation of the molecules, or the director. The anisotropic coupling-typically absent in isotropic fluids-bestows unique functionalities to the flowing matrix. In this work, we harness this anisotropy to pattern different pathways to tunable fluidic resistance within microfluidic devices. We use a nematic liquid crystalline material flowing in microchannels to demonstrate passive and active modulation of the flow resistance. While appropriate surface anchoring conditions-which imprint distinct fluidic resistances within microchannels under similar hydrodynamic parameters-act as passive cues, an external field, e.g., temperature, is used to actively modulate the flow resistance in the microfluidic device. We apply this simple concept to fabricate basic fluidic circuits, which can be hierarchically extended to create complex resistance networks, without any additional design or morphological patterning of the microchannels. PMID:24256819

  14. "Master and Slave" fluidic amplifier cascade

    Tesař Václav

    2012-04-01

    Full Text Available No-moving-part fluidics recently found interesting application in generation of gas microbubbles by oscillating the inlet flow of the gas into the aerator. The oscillation frequency has to be high and this calls for small size of the oscillator. On the other hand, most microbubble applications require a large total gas flow. This calls for large fluidic device – a les expensive alternative than “numbering up” (several oscillators in parallel. The contradiction of the large and small scale is solved by the “MASTER & SLAVE” fluidic circuit: large output device controlled by a small oscillator. Paper discusses basic problems encountered in designing the circuit which requires matching the characteristics of the two devices.

  15. Fluidic Elements based on Coanda Effect

    Constantin OLIVOTTO

    2010-12-01

    Full Text Available This paper contains first some definitions and classifications regarding the fluidic elements. Thegeneral current status is presented, nominating the main specific elements based on the Coanda effect developedspecially in Romania. In particularly the development of an original bistable element using industrial compressedair at industrial pressure supply is presented. The function of this element is based on the controlled attachmentof the main jet at a curved wall through the Coanda effect. The methods used for particular calculation andexperiments are nominated. The main application of these elements was to develop a specific execution element:a fluidic step–by-step motor based on the Coanda effect.

  16. Seniority number in spin-adapted spaces and compactness of configuration interaction wave functions.

    Alcoba, Diego R; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E; Oña, Ofelia B

    2013-08-28

    This work extends the concept of seniority number, which has been widely used for classifying N-electron Slater determinants, to wave functions of N electrons and spin S, as well as to N-electron spin-adapted Hilbert spaces. We propose a spin-free formulation of the seniority number operator and perform a study on the behavior of the expectation values of this operator under transformations of the molecular basis sets. This study leads to propose a quantitative evaluation for the convergence of the expansions of the wave functions in terms of Slater determinants. The non-invariant character of the seniority number operator expectation value of a wave function with respect to a unitary transformation of the molecular orbital basis set, allows us to search for a change of basis which minimizes that expectation value. The results found in the description of wave functions of selected atoms and molecules show that the expansions expressed in these bases exhibit a more rapid convergence than those formulated in the canonical molecular orbital bases and even in the natural orbital ones. PMID:24006970

  17. Fluidic interconnections for microfluidic systems: A new integrated fluidic interconnection allowing plug 'n' play functionality

    Perozziello, Gerardo; Bundgaard, Frederik; Geschke, Oliver

    2008-01-01

    A crucial challenge in packaging of microsystems is microfluidic interconnections. These have to seal the ports of the system, and have to provide the appropriate interface to other devices or the external environment. Integrated fluidic interconnections appear to be a good solution for interconn......A crucial challenge in packaging of microsystems is microfluidic interconnections. These have to seal the ports of the system, and have to provide the appropriate interface to other devices or the external environment. Integrated fluidic interconnections appear to be a good solution for...... interconnecting polymer microsystems in terms of cost, space and performance. Following this path we propose a new reversible, integrated fluidic interconnection composed of custom-made cylindrical rings integrated in a polymer house next to the fluidic network. This allows plug 'n' play functionality between...

  18. Atomiser with excitation by a fluidic oscillator

    Tesař, Václav; Hykl, Jiří

    Brno: Brno University of Technology , 2014 - (Fuis, V.), s. 656-659 ISBN 978-80-214-4871-1. ISSN 1805-8248. [Engineering Mechanics 2014 /20./. Svratka (CZ), 12.05.2014-15.05.2014] R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : droplets * atomizer * fluidic oscillator Subject RIV: BK - Fluid Dynamics

  19. Fluidic electrodynamics: Approach to electromagnetic propulsion

    We report on a new methodological approach to electrodynamics based on a fluidic viewpoint. We develop a systematic approach establishing analogies between physical magnitudes and isomorphism (structure-preserving mappings) between systems of equations. This methodological approach allows us to give a general expression for the hydromotive force, thus re-obtaining the Navier-Stokes equation departing from the appropriate electromotive force. From this ground we offer a fluidic approach to different kinds of issues with interest in propulsion, e.g., the force exerted by a charged particle on a body carrying current; the magnetic force between two parallel currents; the Magnus's force. It is shown how the intermingle between the fluid vector fields and electromagnetic fields leads to new insights on their dynamics. The new concepts introduced in this work suggest possible applications to electromagnetic (EM) propulsion devices and the mastery of the principles of producing electric fields of required configuration in plasma medium.

  20. Fluidic Relaxation Oscillators for Microbubble Generation

    Tesař, Václav

    Praha: Institute of Theoretical and Applied Mechanics ASCR, v. v. i, 2015 - (Náprstek, J.; Fischer, C.). s. 324-325 ISBN 978-80-86246-42-0. ISSN 1805-8248 R&D Projects: GA ČR GA13-23046S; GA ČR GA14-08888S Institutional support: RVO:61388998 Keywords : fluidics * oscillators * relaxation Subject RIV: BK - Fluid Dynamics

  1. Superquadratic fluidic restrictors and their applications

    Tesař, Václav

    Southampton : WIT Press, 2012 - (Rahman, M.; Brebbia, C.), s. 507-519 ISBN 978-1-84564-600-4. ISSN 1746-4471. [Advances in Fluid Mechanics /9./. Split (HR), 26.06.2012-28.06.2012] R&D Projects: GA TA ČR(CZ) TA02020795; GA ČR(CZ) GCP101/11/J019 Institutional research plan: CEZ:AV0Z20760514 Keywords : fluidics * flow restrictors * vortex devices Subject RIV: BK - Fluid Dynamics

  2. Micro-fluidic chip for cell sorting

    Šerý, Mojmír; Pilát, Zdeněk; Ježek, Jan; Kaňka, Jan; Zemánek, Pavel

    Munich : EOS, 2015. ISBN 978-952-93-5069-8. [EOS Conferences at the World of Photonics Congress 2015. Munich (DE), 22.06.2015-25.06.2015] R&D Projects: GA MŠk(CZ) LD14069; GA MŠk(CZ) LO1212; GA TA ČR TA03010642; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Micro-fluidic chip * cell sorting Subject RIV: BH - Optics, Masers, Lasers

  3. LITTLE KNOWN PRINCIPLES OF FLUIDIC PUMPING

    Tesař, Václav

    Vol. 1. Liberec : Technical University of Liberec, 2010 - (Vít, T.; Dančová, P.), s. 716-731 ISBN 978-80-7372-670-6. [International Conference Experimental Fluid Mechanics 2010. Liberec (CZ), 24.11.2010-26.11.2010] R&D Projects: GA ČR GA101/07/1499; GA AV ČR IAA200760705 Institutional research plan: CEZ:AV0Z20760514 Keywords : pumps * fluidics * hazardous liquids Subject RIV: BK - Fluid Dynamics

  4. Water oxygenation by fluidic microbubble generator

    Tesař, Václav; Peszyński, K.

    Liberec : Technical University of Liberec, 2013 - (Vít, T.; Dančová, P.; Novotný, P.), s. 544-549 ISBN 978-80-260-5375-0. [Experimental Fluid Mechanics 2013. Kutná hora (CZ), 19.11.2013-22.11.2013] R&D Projects: GA TA ČR TA02020795; GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : fluidics * microbubble generator * oxygenation Subject RIV: BK - Fluid Dynamics

  5. Fluidic Elements based on Coanda Effect

    Constantin OLIVOTTO

    2010-01-01

    This paper contains first some definitions and classifications regarding the fluidic elements. Thegeneral current status is presented, nominating the main specific elements based on the Coanda effect developedspecially in Romania. In particularly the development of an original bistable element using industrial compressedair at industrial pressure supply is presented. The function of this element is based on the controlled attachmentof the main jet at a curved wall through the Coanda effect. T...

  6. Plasma-discharge control in fluidics

    Tesař, Václav; Šonský, Jiří

    Praha: Ústav termomechaniky AV ČR, v. v. i., 2015 - (Šimurda, D.; Bodnár, T.), s. 221-236 ISBN 978-80-87012-55-0. ISSN 2336-5781. [Topical Problems of Fluid Mechanics 2015. Praha (CZ), 11.02.2015-13.02.2015] R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : fluidics * plasma dicharge * dielectric barrier Subject RIV: BK - Fluid Dynamics

  7. Micro-Cavity Fluidic Dye Laser

    Helbo, Bjarne; Kristensen, Anders; Menon, Aric Kumaran

    2003-01-01

    We have successfully designed, fabricated and characterized a micro-cavity fluidic dye laser with metallic mirrors, which can be integrated with polymer based lab-on-a-chip microsystems without further processing steps. A simple rate-equation model is used to predict the average pumping power...... threshold for lasing as function of cavity-mirror reflectance, laser dye concentration and cavity length. The laser device is characterized using the laser dye Rhodamine 6G dissolved in ethanol. Lasing is observed, and the influence of dye concentration is investigated....

  8. Fluidic hydrogen detector production prototype development

    Roe, G. W.; Wright, R. E.

    1976-01-01

    A hydrogen gas sensor that can replace catalytic combustion sensors used to detect leaks in the liquid hydrogen transfer systems at Kennedy Space Center was developed. A fluidic sensor concept, based on the principle that the frequency of a fluidic oscillator is proportional to the square root of the molecular weight of its operating fluid, was utilized. To minimize sensitivity to pressure and temperature fluctuations, and to make the sensor specific for hydrogen, two oscillators are used. One oscillator operates on sample gas containing hydrogen, while the other operates on sample gas with the hydrogen converted to steam. The conversion is accomplished with a small catalytic converter. The frequency difference is taken, and the hydrogen concentration computed with a simple digital processing circuit. The output from the sensor is an analog signal proportional to hydrogen content. The sensor is shown to be accurate and insensitive to severe environmental disturbances. It is also specific for hydrogen, even with large helium concentrations in the sample gas.

  9. DNA Assembly in 3D Printed Fluidics.

    William G Patrick

    Full Text Available The process of connecting genetic parts-DNA assembly-is a foundational technology for synthetic biology. Microfluidics present an attractive solution for minimizing use of costly reagents, enabling multiplexed reactions, and automating protocols by integrating multiple protocol steps. However, microfluidics fabrication and operation can be expensive and requires expertise, limiting access to the technology. With advances in commodity digital fabrication tools, it is now possible to directly print fluidic devices and supporting hardware. 3D printed micro- and millifluidic devices are inexpensive, easy to make and quick to produce. We demonstrate Golden Gate DNA assembly in 3D-printed fluidics with reaction volumes as small as 490 nL, channel widths as fine as 220 microns, and per unit part costs ranging from $0.61 to $5.71. A 3D-printed syringe pump with an accompanying programmable software interface was designed and fabricated to operate the devices. Quick turnaround and inexpensive materials allowed for rapid exploration of device parameters, demonstrating a manufacturing paradigm for designing and fabricating hardware for synthetic biology.

  10. Automation of column-based radiochemical separations. A comparison of fluidic, robotic, and hybrid architectures

    Two automated systems have been developed to perform column-based radiochemical separation procedures. These new systems are compared with past fluidic column separation architectures, with emphasis on using disposable components so that no sample contacts any surface that any other sample has contacted, and setting up samples and columns in parallel for subsequent automated processing. In the first new approach, a general purpose liquid handling robot has been modified and programmed to perform anion exchange separations using 2 mL bed columns in 6 mL plastic disposable column bodies. In the second new approach, a fluidic system has been developed to deliver clean reagents through disposable manual valves to six disposable columns, with a mechanized fraction collector that positions one of four rows of six vials below the columns. The samples are delivered to each column via a manual 3-port disposable valve from disposable syringes. This second approach, a hybrid of fluidic and mechanized components, is a simpler more efficient approach for performing anion exchange procedures for the recovery and purification of plutonium from samples. The automation architectures described can also be adapted to column-based extraction chromatography separations. (orig.)

  11. Stability of flowing open fluidic channels

    Jue Nee Tan

    2013-02-01

    Full Text Available Open fluidic systems have a distinct advantage over enclosed channels in that the fluids exposed nature makes for easy external interaction, this finds uses in introduction of samples by adding liquid droplets or from the surrounding gaseous medium. This work investigates flowing open channels and films, which can potentially make use of the open section of the system as an external interface, before bringing the sample into an enclosed channel. Clearly, in this scenario a key factor is the stability of the flowing open fluid. The open channels investigated include a straight open channel defined by a narrow strip of solid surface, the edges of which allow large contact angle hysteresis, and a wider structure allowing for multiple inputs and outputs. A model is developed for fluid flow, and the findings used to describe the process of failure in both cases.

  12. Fluidic Oscillator Having Decoupled Frequency and Amplitude Control

    Koklu, Mehti (Inventor)

    2016-01-01

    A fluidic oscillator having independent frequency and amplitude control includes a fluidic-oscillator main flow channel having a main flow inlet, a main flow outlet, and first and second control ports disposed at opposing sides thereof. A fluidic-oscillator controller has an inlet and outlet. A volume defined by the main flow channel is greater than the volume defined by the controller. A flow diverter coupled to the outlet of the controller defines a first fluid flow path from the controller's outlet to the first control port and defines a second fluid flow path from the controller's outlet to the second control port.

  13. The Fluidic Obstacle Technique: An Approach for Enhancing Deflagration-to-Detonation Transition in Pulsed Detonation Engines

    Knox, Benjamin W.

    The current research explored the fluidic obstacle technique and obtained relative performance estimates of this new approach for enhancement of de agration-to-detonation transition. Optimization of conventional physical obstacles has comprised the majority of de agration-to-detonation enhancement research but these devices ultimately degrade the performance of a pulsed detonation engine. Therefore, a new approach has been investigated that demonstrates a fluidic obstacle has the potential to maximize turbulence production and enhance the flame acceleration process, leading to successful DDT. A fluidic obstacle is also able to reduce total pressure losses, "heat soaking", and ignition times. A reduction in these variables serves to maximize available thrust. In addition, the fluidic obstacle technique is an active combustion control method capable of adapting to off-design conditions. Steady non-reacting and unsteady reacting flow have been utilized in two facilities, namely the UB Combustion Laboratory and AFRL Detonation Engine Research facility, to provide experimental measurements and observations into the feasibility of this new approach.

  14. Passive fluidic diode for simple fluids using nested nanochannel structures

    Mo, Jingwen; Li, Long; Wang, Jun; Li, Zhigang

    2016-03-01

    In this paper, we propose a moving part-free fluidic diode for simple fluids using nested nanochannels, which contain inner and outer channels of different lengths. Molecular dynamics simulations show that the fluidic diode accepts water flows in the forward direction and blocks flows in the backward direction in a wide range of pressure drops. The anisotropic flow rates are generated by the distinct activation pressures in different directions. In the forward direction, the activation pressure is low, which is determined by the infiltration pressure of the inner channel. In the backward direction, the activation pressure is quite high due to the capillary effects when flows are released from the inner to the outer channel. The pressure drop range for the fluidic diode can be varied by changing the channel size or surface wettability. The fluidic diode offers an alternative way for flow control in integrated micro- and nanofluidic devices.

  15. Fluidic Electrodynamics: a new approach to EM Propulsion

    Martins, Alexandre A.; Pinheiro, Mario J.

    2008-01-01

    We report on a new methodological approach to electrodynamics based on a fluidic viewpoint. We develop a systematic approach establishing analogies between physical magnitudes and isomorphism (structure-preserving mappings) between systems of equations. This methodological approach allows us to give a general expression for the hydromotive force, thus re-obtaining the Navier-Stokes equation departing from the an appropriate electromotive force. From this ground we offer a fluidic approach to ...

  16. Fluidic control of reactor flow—Pressure drop matching

    Tesař, Václav

    2009-01-01

    Roč. 87, č. 6A (2009), s. 817-832. ISSN 0263-8762 R&D Projects: GA AV ČR IAA200760705; GA ČR GA101/07/1499 Institutional research plan: CEZ:AV0Z20760514 Keywords : fluidics * matching of fluidic devices * dissipance Subject RIV: BK - Fluid Dynamics Impact factor: 1.223, year: 2009 http://www. science direct.com/ science

  17. Microbubble generator excited by fluidic oscillator's third harmonic frequency

    Tesař, Václav

    2014-01-01

    Roč. 92, č. 9 (2014), s. 1603-1615. ISSN 0263-8762 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : fluidic oscillator * microbubble generation * fluidic feedback loop Subject RIV: BK - Fluid Dynamics Impact factor: 2.348, year: 2014 http://dx.doi.org/10.1016/j.cherd.2013.12.004

  18. A Coupled Cavity Micro Fluidic Dye Ring Laser

    Gersborg-Hansen, M; Mortensen, N A; Kristensen, A

    2004-01-01

    We present a laterally emitting, coupled cavity micro fluidic dye ring laser, suitable for integration into lab-on-a-chip micro systems. The micro-fluidic laser has been successfully designed, fabricated, characterized and modelled. The resonator is formed by a micro-fluidic channel bounded by two isosceles triangle mirrors. The micro-fluidic laser structure is defined using photo lithography in 10 microns thick SU-8 polymer on a glass substrate. The micro fluidic channel is sealed by a glass lid, using PMMA adhesive bonding. The laser is characterized using the laser dye Rhodamine 6G dissolved in ethanol or ethylene glycol as the active gain medium, which is pumped through the micro-fluidic channel and laser resonator. The dye laser is optically pumped normal to the chip plane at 532 nm by a pulsed, frequency doubled Nd:YAG laser and lasing is observed with a threshold pump pulse energy flux of around 55 micro-Joule/square-milimeter. The lasing is multi-mode, and the laser has switchable output coupling into...

  19. Electroactive nanowells for spectrographic fluidic memory

    Cordovez, Bernardo; Psaltis, Demetri; Erickson, David

    2007-09-01

    Current optical storage devices such as DVDs have their read/write capabilities fundamentally restricted by the diffraction limit of light. We present an optofluidic architecture for storing cocktails of colloidal quantum dots in electroactive nanowell structures. One application of these devices is the development of a fluidic memory approach which could enable the generation, reading and erasing of multiple bit information packages on single light diffraction limited data marks by spectral and intensity multiplexing of quantum dot cocktails. Here we focus on the development of the electroactive nanowell trapping architecture. Briefly, we have shown that by applying an electric potential between a top and bottom Indium Tin Oxide (ITO) electrodes, particles ranging from 5μm polystyrene spheres to 5nm quantum dots suspended in solution can be attracted, stored and rejected from a targeted well structure by electrokinetic actuation. Nanowells 100 nm in diameter and 1 μm deep were fabricated by depositing silicon and a small oxide thin film on top of an ITO cover slip, patterning the wells on electron beam resist followed by a series of dry etching steps that leave the ITO substrate exposed in the well sites. When the quantum dots are electrokinetically transported to their sensing sites, they are then excited by a UV-blue light, and their discrete fluorescent signal is captured by a fiber spectrometer. Data erasure can be selectively performed by reversing the polarity of the field and ejecting the quantum dots from the nanowell data marks.

  20. Tubular astigmatism-tunable fluidic lens.

    Kopp, Daniel; Zappe, Hans

    2016-06-15

    We demonstrate a new means to fabricate three-dimensional liquid lenses which may be tuned in focal length and astigmatism. Using actuation by electrowetting-on-dielectrics, astigmatism in arbitrary directions may be tuned independently, with almost no cross talk between orthogonal orientations. The lens is based on electrodes structured on planar polyimide foils and subsequently rolled, enabling high-resolution patterning of complex electrodes along the azimuthal and radial directions of the lens. Based on a design established through fluidic and optical simulations, the astigmatism tuning is experimentally verified by a change of the corresponding Zernike coefficients measured using a Shack-Hartmann wavefront sensor. It was seen that the back focal length can be tuned by 5 mm and 0° and 45° astigmatism by 3 μm through application of voltages in the range of 50  Vrms. It was observed that the cross talk with other aberrations is very low, suggesting a novel means for astigmatism control in imaging systems. PMID:27304276

  1. Fluidic energy harvesting beams in grid turbulence

    Danesh-Yazdi, A. H.; Goushcha, O.; Elvin, N.; Andreopoulos, Y.

    2015-08-01

    Much of the recent research involving fluidic energy harvesters based on piezoelectricity has focused on excitation through vortex-induced vibration while turbulence-induced excitation has attracted very little attention, and virtually no previous work exists on excitation due to grid-generated turbulence. The present experiments involve placing several piezoelectric cantilever beams of various dimensions and properties in flows where turbulence is generated by passive, active, or semi-passive grids, the latter having a novel design that significantly improves turbulence generation compared to the passive grid and is much less complex than the active grid. We experimentally show for the first time that the average power harvested by a piezoelectric cantilever beam placed in decaying isotropic, homogeneous turbulence depends on mean velocity, velocity and length scales of turbulence as well as the electromechanical properties of the beam. The output power can be modeled as a power law with respect to the distance of the beam from the grid. Furthermore, we show that the rate of decay of this power law closely follows the rate of decay of the turbulent kinetic energy. We also introduce a forcing function used to model approximately the turbulent eddies moving over the cantilever beam and observe that the feedback from the beam motion onto the flow is virtually negligible for most of the cases considered, indicating an effectively one-way interaction for small-velocity fluctuations.

  2. A Surface-Enhanced Raman Scattering Sensor Integrated with Battery-Controlled Fluidic Device for Capture and Detection of Trace Small Molecules

    Qitao Zhou; Guowen Meng; Peng Zheng; Scott Cushing; Nianqiang Wu; Qing Huang; Chuhong Zhu; Zhuo Zhang; Zhiwei Wang

    2015-01-01

    For surface-enhanced Raman scattering (SERS) sensors, one of the important issues is the development of substrates not only with high SERS-activity but also with strong ability to capture analytes. However, it is difficult to achieve the two goals simultaneously especially when detecting small molecules. Herein a compact battery-controlled nanostructure-assembled SERS system has been demonstrated for capture and detection of trace small molecule pollutants in water. In this SERS fluidic syste...

  3. Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio.

    Hattori, Koji; Sugiura, Shinji; Kanamori, Toshiyuki

    2009-06-21

    This paper reports a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio for generating linear concentration profiles as well as logarithmic concentration profiles spanning 3 and 6 orders of magnitude. The microfluidic networks were composed of thin fluidic-resistance microchannels with 160 to 730 microm(2) cross-sectional areas and thick diffusion-mixing microchannels with 3,600 to 17,000 microm(2) cross-sectional areas, and were fabricated from polydimethylsiloxane by multilayer photolithography and replica molding. We proposed a design algorithm of the microfluidic network for an arbitrary monotonic concentration profile by means of a hydrodynamic calculation. Because of the high fluidic-resistance ratio of the fluidic-resistance microchannels to the diffusion-mixing microchannels, appropriate geometry and dimensions of the fluidic-resistance microchannels allowed us to obtain desired concentration profiles. The fabricated microfluidic network was compact, occupying a 8 x 18 to 21.0 x 13.5 mm(2) area on the microchip. Both the linear and the logarithmic concentration profiles were successfully generated with the error less than 15% for the linear concentration profile, 22% and 35% for the logarithmic concentration profiles of 3 and 6 orders of magnitude, respectively. The generated linear concentration profiles of the small molecule, calcein, were independent of the flow rate within the range of 0.009 to 0.23 microL/min. The concentration profiles of the large molecules, dextrans, depended on the flow rate and molecular weight. The required residence time of large molecules in the diffusion-mixing microchannel was correlated with dimensionless diffusion time, Fick number, and was discussed based on the scaling law. These compact, stable serial dilution microfluidic networks are expected to be applied to various integrated on-chip analyses. PMID:19495461

  4. Experimental and analytical investigation of a fluidic power generator

    Sarohia, V.; Bernal, L.; Beauchamp, R. B.

    1981-01-01

    A combined experimental and analytical investigation was performed to understand the various fluid processes associated with the conversion of flow energy into electric power in a fluidic generator. Experiments were performed under flight-simulated laboratory conditions and results were compared with those obtained in the free-flight conditions. It is concluded that the mean mass flow critically controlled the output of the fluidic generator. Cross-correlation of the outputs of transducer data indicate the presence of a standing wave in the tube; the mechanism of oscillation is an acoustic resonance tube phenomenon. A linearized model was constructed coupling the flow behavior of the jet, the jet-layer, the tube, the cavity, and the holes of the fluidic generator. The analytical results also show that the mode of the fluidic power generator is an acoustical resonance phenomenon with the frequency of operation given by f approx = a/4L, where f is the frequency of jet swallowing, a is the average speed of sound in the tube, and L is the length of the tube. Analytical results further indicated that oscillations in the fluidic generator are always damped and consequently there is a forcing of the system in operation.

  5. Numerical Studies of a Fluidic Diverter for Flow Control

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis E.; Raghu, Surya

    2009-01-01

    The internal flow structure in a specific fluidic diverter is studied over a range from low subsonic to sonic inlet conditions by a time-dependent numerical analysis. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The velocity, temperature and pressure fields are calculated for subsonic conditions and the self-induced oscillatory behavior of the flow is successfully predicted. The results of our numerical studies have excellent agreement with our experimental measurements of oscillation frequencies. The acoustic speed in the gaseous medium is determined to be a key factor for up to sonic conditions in governing the mechanism of initiating the oscillations as well as determining its frequency. The feasibility of employing plasma actuation with a minimal perturbation level is demonstrated in steady-state calculations to also produce oscillation frequencies of our own choosing instead of being dependent on the fixed-geometry fluidic device.

  6. Research of Dielectric Breakdown Micro fluidic Sampling Chip

    Micro fluidic chip is mainly driven electrically by external electrode and array electrode, but there are certain disadvantages in both of ways, which affect the promotion and application of micro fluidic technology. This paper discusses a scheme that uses the conductive solution in a microchannel made by PDMS, replacing electrodes and the way of dielectric breakdown to achieve microfluidic chip driver. It could reduce the driving voltage and simplify the chip production process. To prove the feasibility of this method, we produced a micro fluidic chip used in PDMS material with the lithography technology and experimented it. The results showed that using the dielectric breakdown to achieve microfluidic chip driver is feasible, and it has certain application prospect.

  7. Fluidics platform and method for sample preparation and analysis

    Benner, W. Henry; Dzenitis, John M.; Bennet, William J.; Baker, Brian R.

    2014-08-19

    Herein provided are fluidics platform and method for sample preparation and analysis. The fluidics platform is capable of analyzing DNA from blood samples using amplification assays such as polymerase-chain-reaction assays and loop-mediated-isothermal-amplification assays. The fluidics platform can also be used for other types of assays and analyzes. In some embodiments, a sample in a sealed tube can be inserted directly. The following isolation, detection, and analyzes can be performed without a user's intervention. The disclosed platform may also comprises a sample preparation system with a magnetic actuator, a heater, and an air-drying mechanism, and fluid manipulation processes for extraction, washing, elution, assay assembly, assay detection, and cleaning after reactions and between samples.

  8. Prediction of Compressive Strength of Self compacting Concrete with Flyash and Rice Husk Ash using Adaptive Neuro-fuzzy Inference System

    S. S, Pathak; Dr. Sanjay Sharma; Dr. Hemant Sood; 4: Dr. R. K. Khitoliya

    2012-01-01

    Self-compacting concrete is an innovative concrete that does not require vibration for placing and compaction. It is able to flow under its own weight, completely filling formwork and achieving full compaction even in congested reinforcement without segregation and bleeding. In the present study self compacting concrete mixes were developed using blend of fly ash and rice husk ash. Fresh properties of theses mixes were tested by using standards recommended by EFNARC (European Federation for S...

  9. Study on a compact and adaptable Thomson Spectrometer for laser-initiated 11B(p,α)8Be reactions and low-medium energy particle detection

    Consoli, F.; De Angelis, R.; Bonasera, A.; Sura, J.; Andreoli, P.; Cristofari, G.; Cipriani, M.; Di Giorgio, G.; Ingenito, F.; Barbarino, M.; Labaune, C.; Baccou, C.; Depierreux, S.; Goyon, C.; Yahia, V.

    2016-05-01

    Thomson Spectrometers are of primary importance in the discrimination of particles produced by laser-plasma interaction, according to their energy and charge-mass ratio. We describe here a detailed study on a set of Thomson Spectrometers, adaptable to different experimental situations, with the aim of being placed directly within the experimental chamber, rather than in additional extensions, in order to increase the solid angle of observation. These instruments are suitable for detection of low-medium energy particles and can be effectively employed in laser-plasma experiments of 11B(p,α)8Be fusion. They are provided with permanent magnets, have small dimensions and compact design. In these small configurations electric and magnetic fringing fields play a primary role for particle deflection, and their accurate characterization is required. It was accomplished by means of COMSOL electromagnetic solver coupled to an effective analytical model, very suitable for practical use of the spectrometers. Data from experimental measurements of the magnetic fields have been also used. We describe the application of the spectrometers to an experiment of laser-plasma interaction, coupled to Imaging Plate detectors. Data analysis for spectrum and yield of the detected radiation is discussed in detail.

  10. Micro-fluidic module for blood cell separation for gene expression radiobiological assays

    Advances in molecular techniques have improved discovery of biomarkers associated with radiation exposure. Gene expression techniques have been demonstrated as effective tools for biodosimetry, and different assay platforms with different chemistries are now available. One of the main challenges is to integrate the sample preparation processing of these assays into micro-fluidic platforms to be fully automated for point-of-care medical countermeasures in the case of a radiological event. Most of these assays follow the same workflow processing that comprises first the collection of blood samples followed by cellular and molecular sample preparation. The sample preparation is based on the specific reagents of the assay system and depends also on the different subsets of cells population and the type of biomarkers of interest. In this article, the authors present a module for isolation of white blood cells from peripheral blood as a prerequisite for automation of gene expression assays on a micro-fluidic cartridge. For each sample condition, the gene expression platform can be adapted to suit the requirements of the selected assay chemistry (authors)

  11. Adapt

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  12. Fluidic valves for variable-configuration gas treatment

    Tesař, Václav

    2005-01-01

    Roč. 83, A9 (2005), s. 1111-1121. ISSN 0263-8762 Institutional research plan: CEZ:AV0Z20760514 Keywords : fluidics valves * vehicle emissions * variable configuration Subject RIV: BK - Fluid Dynamics Impact factor: 0.792, year: 2005

  13. Topology optimization of flexible micro-fluidic devices

    Kreissl, Sebastian; Pingen, Georg; Evgrafov, Anton;

    2010-01-01

    A multi-objective topology optimization formulation for the design of dynamically tunable fluidic devices is presented. The flow is manipulated via external and internal mechanical actuation, leading to elastic deformations of flow channels. The design objectives characterize the performance in t...

  14. COMPACT OPERATORS

    Charles Swartz

    2009-12-01

    Full Text Available We give a characterization in terms of the transpose operator for a continuous linear operator between locally convex spaces to map bounded sets into relatively weakly compact [relatively compact, precompact] sets. Our results give a known characterization for compact operators between Banach spaces.

  15. Silicon micro-fluidic cooling for NA62 GTK pixel detectors

    Romagnoli, G; Brunel, B; Catinaccio, A; Degrange, J; Mapelli, A; Morel, M; Noel, J; Petagna, P

    2015-01-01

    Silicon micro-channel cooling is being studied for efficient thermal management in application fields such as high power computing and 3D electronic integration. This concept has been introduced in 2010 for the thermal management of silicon pixel detectors in high energy physics experiments. Combining the versatility of standard micro-fabrication processes with the high thermal efficiency typical of micro-fluidics, it is possible to produce effective thermal management devices that are well adapted to different detector configurations. The production of very thin cooling devices in silicon enables a minimization of material of the tracking sensors and eliminates mechanical stresses due to the mismatch of the coefficient of thermal expansion between detectors and cooling systems. The NA62 experiment at CERN will be the first high particle physics experiment that will install a micro-cooling system to perform the thermal management of the three detection planes of its Gigatracker pixel detector.

  16. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot

    Soft robotics offers the unique promise of creating inherently safe and adaptive systems. These systems bring man-made machines closer to the natural capabilities of biological systems. An important requirement to enable self-contained soft mobile robots is an on-board power source. In this paper, we present an approach to create a bio-inspired soft robotic snake that can undulate in a similar way to its biological counterpart using pressure for actuation power, without human intervention. With this approach, we develop an autonomous soft snake robot with on-board actuation, power, computation and control capabilities. The robot consists of four bidirectional fluidic elastomer actuators in series to create a traveling curvature wave from head to tail along its body. Passive wheels between segments generate the necessary frictional anisotropy for forward locomotion. It takes 14 h to build the soft robotic snake, which can attain an average locomotion speed of 19 mm s−1. (paper)

  17. Fluidic Oscillator Array for Synchronized Oscillating Jet Generation

    Koklu, Mehti (Inventor)

    2016-01-01

    A fluidic oscillator array includes a plurality of fluidic-oscillator main flow channels. Each main flow channel has an inlet and an outlet. Each main flow channel has first and second control ports disposed at opposing sides thereof, and has a first and a second feedback ports disposed at opposing sides thereof. The feedback ports are located downstream of the control ports with respect to a direction of a fluid flow through the main flow channel. The system also includes a first fluid accumulator in fluid communication with each first control port and each first feedback port, and a second fluid accumulator in fluid communication with each second control port and each second feedback port.

  18. Fabrication of resonant micro cantilevers with integrated transparent fluidic channel

    Khan, Faheem; Schmid, Silvan; Davis, Zachary James;

    2011-01-01

    of fluids or detect particles suspended in a fluid by sensing the change in total mass of the structure. The 4 × 4 μm2 integrated microfluidic channel makes it possible to flow a fluid through the channel while the cantilevers are resonating. The movement of any particles (present in the fluid) can......Microfabricated cantilevers are proving their potential as excellent tools for analysis applications. In this paper, we describe the design, fabrication and testing of resonant micro cantilevers with integrated transparent fluidic channels. The cantilevers have been devised to measure the density...... be visually observed through the transparent fluidic channel. The resonant frequency of the cantilever is changed by the fluid inside the channel, due to the change in mass. The shift in the resonant frequency can be translated into a density of the fluid or into the presence of macro/micro molecules...

  19. Fluidic Electrodynamics: a new approach to EM Propulsion

    Martins, Alexandre A

    2008-01-01

    We report on a new methodological approach to electrodynamics based on a fluidic viewpoint. We develop a systematic approach establishing analogies between physical magnitudes and isomorphism (structure-preserving mappings) between systems of equations. This methodological approach allows us to give a general expression for the hydromotive force, thus re-obtaining the Navier-Stokes equation departing from the an appropriate electromotive force. From this ground we offer a fluidic approach to different kind of issues with interest in propulsion, e.g., the force exerted by a charged particle on a body carrying current; the magnetic force between two parallel currents; the Magnus's force. It is shown how the intermingle between the fluid vectors fields and electromagnetic fields lead to new insights on their dynamics. The new concepts introduced in this work suggest possible applications to electromagnetic (EM) propulsion devices and the mastery of the principles of producing electric fields of required configur...

  20. Development of a continuous-flow fluidic pump

    A study was made of a fluidic pump which utilizes gas pistons, a venturi-like reverse-flow-diverter, and a planar Y-type flow junction to produce a continuous flow of liquid from a system containing no moving parts. The study included an evaluation of the system performance and of methods for controlling the stability of the fluidic system. A mathematical model of the system was developed for steady-state operation using accepted theories of fluid mechanics. Although more elaborate models are needed for detailed design and optimization of specific systems, the model determined some of the main factors controlling the system performance and will be used in the development of more accurate models. 49 refs., 39 figs., 9 tabs

  1. pH-Sensitive Hydrogel for Micro-Fluidic Valve

    Zhengzhi Yang

    2012-07-01

    Full Text Available The deformation behavior of a pH-sensitive hydrogel micro-fluidic valve system is investigated using inhomogeneous gel deformation theory, in which the fluid-structure interaction (FSI of the gel solid and fluid flow in the pipe is considered. We use a finite element method with a well adopted hydrogel constitutive equation, which is coded in commercial software, ABAQUS, to simulate the hydrogel valve swelling deformation, while FLUENT is adopted to model the fluid flow in the pipe of the hydrogel valve system. The study demonstrates that FSI significantly affects the gel swelling deformed shapes, fluid flow pressure and velocity patterns. FSI has to be considered in the study on fluid flow regulated by hydrogel microfluidic valve. The study provides a more accurate and adoptable model for future design of new pH-sensitive hydrogel valves, and also gives a useful guideline for further studies on hydrogel fluidic applications.

  2. Microfluidic hubs, systems, and methods for interface fluidic modules

    Bartsch, Michael S; Claudnic, Mark R; Kim, Hanyoup; Patel, Kamlesh D; Renzi, Ronald F; Van De Vreugde, James L

    2015-01-27

    Embodiments of microfluidic hubs and systems are described that may be used to connect fluidic modules. A space between surfaces may be set by fixtures described herein. In some examples a fixture may set substrate-to-substrate spacing based on a distance between registration surfaces on which the respective substrates rest. Fluidic interfaces are described, including examples where fluid conduits (e.g. capillaries) extend into the fixture to the space between surfaces. Droplets of fluid may be introduced to and/or removed from microfluidic hubs described herein, and fluid actuators may be used to move droplets within the space between surfaces. Continuous flow modules may be integrated with the hubs in some examples.

  3. Fluidic Analysis in an Annular Centrifugal Contactor for Fuel Reprocessing

    An annular centrifugal contactor (ACC) is a promising device for fuel reprocessing process, because it offers several advantages—a smaller size, a smaller holdup volume, and a higher separation performance—over conventional contactors such as a mixer-settler and a pulse column. Fluid dynamics and dispersion in an ACC, which has a combined mixer/centrifuge structure, are closely related to its separation performance and capacity, and this information is useful in improving equipment design. In this paper, experimental and computational fluid dynamics (CFD) studies were conducted to analyze fluidic and dispersion behavior in ACCs. Multiphase mixing (water/TBP-dodecane/air) in the annular zone was observed by Particle Imaging Velocimetry, and the change in the fluidic and dispersion behavior was ascertained under several operational conditions. The results of the CFD studies, which considered multiphase turbulent flow in the annular and rotor interior zones, were in a good agreement with the experimental data. (author)

  4. Assembly of microsystems for optical and fluidic applications

    Haasl, Sjoerd

    2005-01-01

    This thesis addresses assembly issues encountered in optical and fluidic microsystem applications. In optics, the first subject concerns the active alignment of components in optical fibersystems. A solution for reducing the cost of optical component assembly while retaining submicron accuracy is to integrate the alignment mechanism onto the optical substrate. A polymer V-shaped actuator is presented that can carry the weight of the large components - on a micromechanical scale - and that can...

  5. Micro-fluidic flow cells for studies of electrochemical reactions

    Ingdal, Mats

    2014-01-01

    Micro fluidic flow cells (MFFCs) are a relatively new technique for characterization of electrochemical reactions. This work includes both techniques for manufacturing the cells and electrochemical characterization of them.Improvements to a previously established procedure for the manufacturing MFFCs included change of template for PDMS-masters from glass slides to silicon wafers and the change from electrodes consisting of titanium gold and platinum to only titanium and platinum. The changes...

  6. Mechanisms of fluidic microbubble generation Part II: Suppressing the conjunctions

    Tesař, Václav

    2014-01-01

    Roč. 116, č. 6 (2014), s. 849-856. ISSN 0009-2509 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : bubble coalescence * bubble conjunction * fluidic oscillator Subject RIV: BK - Fluid Dynamics Impact factor: 2.337, year: 2014 http://dx.doi.org/10.1016/j.ces.2014.06.006

  7. Stochastic regimes in very-low-frequency fluidic oscillator

    Tesař, Václav

    Liberec : Polypress s.r.o, 2015 - (Dančová, P.; Veselý, M.), s. 809-816 [Experimental Fluid Mechanics 2015. Praha (CZ), 17.11.2015-20.11.2015] R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : fluidic oscillator * ant-parallel operation * stochastic regimes Subject RIV: BK - Fluid Dynamics

  8. Fluidic Oscillators with Active Devices Operating in Anti-Parallel

    Tesař, Václav

    Praha : Institute of Theoretical and Applied Mechanics ASCR, v. v. i, 2015 - (Náprstek, J.; Fischer, C.). s. 326-327 ISBN 978-80-86246-42-0. ISSN 1805-8248 R&D Projects: GA ČR GA13-23046S; GA ČR GA14-08888S Institutional support: RVO:61388998 Keywords : fluidics * oscillators * anti-parallel operation Subject RIV: BK - Fluid Dynamics

  9. Miniaturized unified imaging system using bio-inspired fluidic lens

    Tsai, Frank S.; Cho, Sung Hwan; Qiao, Wen; Kim, Nam-Hyong; Lo, Yu-Hwa

    2008-08-01

    Miniaturized imaging systems have become ubiquitous as they are found in an ever-increasing number of devices, such as cellular phones, personal digital assistants, and web cameras. Until now, the design and fabrication methodology of such systems have not been significantly different from conventional cameras. The only established method to achieve focusing is by varying the lens distance. On the other hand, the variable-shape crystalline lens found in animal eyes offers inspiration for a more natural way of achieving an optical system with high functionality. Learning from the working concepts of the optics in the animal kingdom, we developed bio-inspired fluidic lenses for a miniature universal imager with auto-focusing, macro, and super-macro capabilities. Because of the enormous dynamic range of fluidic lenses, the miniature camera can even function as a microscope. To compensate for the image quality difference between the central vision and peripheral vision and the shape difference between a solid-state image sensor and a curved retina, we adopted a hybrid design consisting of fluidic lenses for tunability and fixed lenses for aberration and color dispersion correction. A design of the world's smallest surgical camera with 3X optical zoom capabilities is also demonstrated using the approach of hybrid lenses.

  10. Performance verification test for APR1400 fluidic device

    Using the full scale test facility called 'VAPER', five sets of repeatability tests have been carried out to verify the performance of the Fluidic Device which is adopted in the standard design of APR1400. Quality assurance program for the APR1400 Fluidic Device verification test has been developed and applied to each set of repeatability test procedure, and precise calibration for major measuring instruments has been performed. Thus, the highest reliability and integrity of the test results was ensured. Throughout the present tests, the repeatability of the major parameter related with APR1400 Fluidic Device performance has been sufficiently confirmed. Total K factor in the actual plant system would be about 16 at high flow condition and about 105 at low flow condition, which is similar to the design goal (about 17 at high flow condition and about 100 at low flow condition) The results of the present research contributes to the smooth construction of Sin-Kori units 3 and 4, and to the promotion of domestic analytic capability for the LOCA of advanced LWR

  11. FLUIDICS: THE ANSWER TO PROBLEMS OF HANDLING HAZARDOUS FLUIDS – A SURVEY

    Tesař, Václav

    2012-01-01

    Roč. 2, č. 2 (2012), s. 167-183. ISSN 2041-9031 R&D Projects: GA ČR(CZ) GCP101/11/J019; GA TA ČR TA02020795 Institutional research plan: CEZ:AV0Z20760514 Keywords : fluidic pumps * fluidics * fluidic valves Subject RIV: BK - Fluid Dynamics http://journals.witpress.com/journals.asp?iID=78#papers

  12. Fluidics: the answer to problems of handling hazardous fluids

    Tesař, Václav

    Southampton : WIT Press, 2011 - (Brebbia, C.; Guarascio, M.; Reniers, G.), s. 465-477 ISBN 978-1-84564-522-9. ISSN 1746-4498. [ International Conference on Safety and Security Engineering /4./. Antverpy (BE), 04.07.2011-06.07.2011] R&D Projects: GA ČR(CZ) GCP101/11/J019 Institutional research plan: CEZ:AV0Z20760514 Keywords : fluidics * hazardous liquids * coanda effect Subject RIV: BK - Fluid Dynamics http://www.witpress.com/978-1-84564-522-9.html

  13. pH-Sensitive Hydrogel for Micro-Fluidic Valve

    Zhengzhi Yang; Haiyan Miao; Zhiwei Ding; Somsak Swaddiwudhipong; Yan Zhang; Zishun Liu

    2012-01-01

    The deformation behavior of a pH-sensitive hydrogel micro-fluidic valve system is investigated using inhomogeneous gel deformation theory, in which the fluid-structure interaction (FSI) of the gel solid and fluid flow in the pipe is considered. We use a finite element method with a well adopted hydrogel constitutive equation, which is coded in commercial software, ABAQUS, to simulate the hydrogel valve swelling deformation, while FLUENT is adopted to model the fluid flow in the pipe of the hy...

  14. Fluidic vortices generated from optical vortices in a microdroplet cavity

    Bar-David, Daniel; Martin, Leoplodo L; Carmon, Tal

    2016-01-01

    We harness the momentum of light resonating inside a micro-droplet cavity, to experimentally generate micro-flows within the envelope of the drop. We 3D map these optically induced flows by using fluorescent nanoparticles; which reveals circular micro-streams. The flows are parametrically studied and, as expected, exhibit an increase of rotation speed with optical power. The flow is non-circular only when we intentionally break the axial symmetry of the droplet. Besides the fundamental interest in light-flow interactions including in opto-fluidic cavities, the optically controlled flows can serve in bringing analytes into the maximum-power region of the microcavity.

  15. Variable recruitment fluidic artificial muscles: modeling and experiments

    We investigate taking advantage of the lightweight, compliant nature of fluidic artificial muscles to create variable recruitment actuators in the form of artificial muscle bundles. Several actuator elements at different diameter scales are packaged to act as a single actuator device. The actuator elements of the bundle can be connected to the fluidic control circuit so that different groups of actuator elements, much like individual muscle fibers, can be activated independently depending on the required force output and motion. This novel actuation concept allows us to save energy by effectively impedance matching the active size of the actuators on the fly based on the instantaneous required load. This design also allows a single bundled actuator to operate in substantially different force regimes, which could be valuable for robots that need to perform a wide variety of tasks and interact safely with humans. This paper proposes, models and analyzes the actuation efficiency of this actuator concept. The analysis shows that variable recruitment operation can create an actuator that reduces throttling valve losses to operate more efficiently over a broader range of its force–strain operating space. We also present preliminary results of the design, fabrication and experimental characterization of three such bioinspired variable recruitment actuator prototypes. (paper)

  16. Fluidic Force Discrimination Assays: A New Technology for Tetrodotoxin Detection

    Cy R. Tamanaha

    2010-03-01

    Full Text Available Tetrodotoxin (TTX is a low molecular weight (~319 Da neurotoxin found in a number of animal species, including pufferfish. Protection from toxin tainted food stuffs requires rapid, sensitive, and specific diagnostic tests. An emerging technique for the detection of both proteins and nucleic acids is Fluidic Force Discrimination (FFD assays. This simple and rapid method typically uses a sandwich immunoassay format labeled with micrometer-diameter beads and has the novel capability of removing nonspecifically attached beads under controlled, fluidic conditions. This technique allows for near real-time, multiplexed analysis at levels of detection that exceed many of the conventional transduction methods (e.g., ELISAs. In addition, the large linear dynamic range afforded by FFD should decrease the need to perform multiple sample dilutions, a common challenge for food testing. By applying FFD assays to an inhibition immunoassay platform specific for TTX and transduction via low magnification microscopy, levels of detection of ~15 ng/mL and linear dynamic ranges of 4 to 5 orders of magnitude were achieved. The results from these studies on the first small molecule FFD assay, along with the impact to detection of seafood toxins, will be discussed in this manuscript.

  17. Compact Lumps

    Bazeia, D; Menezes, R

    2015-01-01

    We study the presence of lumplike solutions in models described by a single real scalar field with standard kinematics in two-dimensional spacetime. The results show several distinct models that support the presence of bell-shaped, lumplike structures which may live in a compact space.

  18. Magnetohydrodynamic actuation of droplets for millimetric planar fluidic systems

    Ahmadi, A., E-mail: ali.ahmadi@ubc.ca; McDermid, C. M.; Markley, L. [School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7 (Canada)

    2016-01-04

    In this work, a magnetohydrodynamic method is proposed for the actuation of droplets in small-scale planar fluidic systems, providing an alternative to commonly used methods such as electrowetting-on-dielectric. Elementary droplet-based operations, including transport, merging, and mixing, are demonstrated. The forces acting on millimetric droplets are carefully investigated, with a primary focus on the magnetic actuation force and on the unbalanced capillary forces that arise due to hysteresis. A super-hydrophobic channel is 3D printed to guide the droplets, with thin wires installed as contact electrodes and permanent magnets providing a static magnetic field. It is shown that droplet motion is enhanced by increasing the droplet size and minimizing the electrode contact surface. The effects of channel geometry on threshold voltage and minimum moveable droplet volume are characterized. Finally, the presence of electrolysis is investigated and mitigating strategies are discussed.

  19. Development of fluidic device in sit for KNGR design

    The fluidic device (FD) has been introduced in the Safety Injection Tank (SIT) as one of the passive safety features in KNGR design. With the introduction of FD, the flowrate from the SIT is controlled without any moving part. The relatively large initial flowrate is reduced by about 80% during core reflooding stage following LOCA. As a consequence, this device enhances the effective use of borated water by limiting unnecessary water supply during core reflooding stage. Scaled-down model test will be performed to obtain required flow characteristics during flow transition, cavitation, and ingestion of nitrogen gas will be examined through the tests. This paper describes the general layout of the test program and briefly discusses the technical features of FD

  20. Quantum dot conjugates in a sub-micrometer fluidic channel

    Stavis, Samuel M.; Edel, Joshua B.; Samiee, Kevan T.; Craighead, Harold G.

    2010-04-13

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  1. Stochastic regimes in very-low-frequency fluidic oscillator

    Tesař, Václav

    2016-03-01

    Paper discusses interesting unexpected stochastic regimes discovered in a fluidic oscillator designed for operation at very low oscillation frequencies - without the inconvenience of the long feedback loops needed in standard low-frequency oscillator designs. The new oscillator contains a pair of bistable turn-down active valves operating in anti-parallel — essentially analogous to Abraham & Bloch electric "multibrateur" invented in 1919. Three different self-excited oscillation regimes were found. In the order of increasing supplied flow rate, these regimes are characterised by: (A) generation of stochastic-duration multi-pulse packs, (B) generation of individual pulses with a degree of periodicity, and (C) regime with randomly appearing flow pulses separated by intervals of the order of seconds.

  2. Experimental study of fluidic mixing in a cylindrical reactor

    Orfaniotis, A.; Fonade, C.; Lalane, M.; Doubrovine, N. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France)

    1996-04-01

    Fluidic mixing in a cylindrical reactor was studied in an effort to determine the effect of jet disposition and the viscosity of the liquid. The tests were carried out in a a tank using conductimetric probes to measure the mixing time. Results indicated that relative jet positions leading to an impinging flow structure were less efficient than shear flow configurations. When these results were compared with results of earlier work by Simon and Fonade (1993) it was found that they were consistent with the exponent 2/3 obtained by them in experiments with turbulent jets. It was pointed out that these mixing times apply only to mixing in cylindrical reactors. With different geometries, such as basins and lagoons with small liquid depths, a new choice of the reference length included in the expression of the reference time will be needed. 10 refs., 3 tabs., 16 figs.

  3. Fluidic Control of Aerodynamic Forces on an Axisymmetric Body

    Abramson, Philip; Vukasinovic, Bojan; Glezer, Ari

    2007-11-01

    The aerodynamic forces and moments on a wind tunnel model of an axisymmetric bluff body are modified by induced local vectoring of the separated base flow. Control is effected by an array of four integrated aft-facing synthetic jets that emanate from narrow, azimuthally-segmented slots, equally distributed around the perimeter of the circular tail end within a small backward facing step that extends into a Coanda surface. The model is suspended in the wind tunnel by eight thin wires for minimal support interference with the wake. Fluidic actuation results in a localized, segmented vectoring of the separated base flow along the rear Coanda surface and induces asymmetric aerodynamic forces and moments to effect maneuvering during flight. The aerodynamic effects associated with quasi-steady and transitory differential, asymmetric activation of the Coanda effect are characterized using direct force and PIV measurements.

  4. Magnetohydrodynamic actuation of droplets for millimetric planar fluidic systems

    Ahmadi, A.; McDermid, C. M.; Markley, L.

    2016-01-01

    In this work, a magnetohydrodynamic method is proposed for the actuation of droplets in small-scale planar fluidic systems, providing an alternative to commonly used methods such as electrowetting-on-dielectric. Elementary droplet-based operations, including transport, merging, and mixing, are demonstrated. The forces acting on millimetric droplets are carefully investigated, with a primary focus on the magnetic actuation force and on the unbalanced capillary forces that arise due to hysteresis. A super-hydrophobic channel is 3D printed to guide the droplets, with thin wires installed as contact electrodes and permanent magnets providing a static magnetic field. It is shown that droplet motion is enhanced by increasing the droplet size and minimizing the electrode contact surface. The effects of channel geometry on threshold voltage and minimum moveable droplet volume are characterized. Finally, the presence of electrolysis is investigated and mitigating strategies are discussed.

  5. Opto-fluidic flow analysis for monitoring of immunity levels

    Mohan, A.; Bharadwaj, A.,; Marshkole, N.; Saiyed, T.; Prabhakar, A.

    2015-06-01

    We describes the design, development and testing of a cost effective and miniaturized version of a flow analyzer. It is designed to detect fluorescence labeled immunocytes in human blood sample. Availing of advancements in micro fluidics and nanolithographic technique, we fabricated a PDMS based device with integrated micro channels for accommodating the optical fibers. The lensed fibers serves as the waveguides for illumination and collection of laser and scattered signals respectively. As a cell crosses the interrogation point the forward scatter, side scatter and fluorescence are detected. Photomultiplier tubes used in conventional flow cytometers have been replaced here with APDs (avalanche photo detectors) and supplemented with digital signal processing. The prototype was tested with different sized polymer beads as well as the live cells.

  6. Thin-walled compliant plastic structures for mesoscale fluidic systems

    Miles, Robin R.; Schumann, Daniel L.

    1999-06-01

    Thin-walled, compliant plastic structures for meso-scale fluidic systems were fabricated, tested and used to demonstrate valving, pumping, metering and mixing. These structures permit the isolation of actuators and sensors form the working fluid, thereby reducing chemical compatibility issues. The thin-walled, compliant plastic structures can be used in either a permanent, reusable system or as an inexpensive disposable for single-use assay systems. The implementation of valving, pumping, mixing and metering operations involve only an elastic change in the mechanical shape of various portions of the structure. Advantages provided by the thin-walled plastic structures include reduced dead volume and rapid mixing. Five different methods for fabricating the thin-walled plastic structures discussed including laser welding, molding, vacuum forming, thermal heat staking and photolithographic patterning techniques.

  7. Compact NMR

    Bluemich, Bernhard; Haber-Pohlmeier, Sabina; Zia, Wasif [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie (ITMC)

    2014-06-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures, while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue. In both applications, the sample (or patient) is positioned inside a large, superconducting magnet to magnetize the atomic nuclei. Interrogating radio-frequency pulses result in frequency spectra that provide the chemist with molecular information, the medical doctor with anatomic images, and materials scientist with NMR relaxation parameters. Recent advances in magnet technology have led to a variety of small permanent magnets to allow compact and low-cost instruments. The goal of this book is to provide an introduction to the practical use of compact NMR at a level nearly as basic as the operation of a smart phone.

  8. Compact NMR

    Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures, while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue. In both applications, the sample (or patient) is positioned inside a large, superconducting magnet to magnetize the atomic nuclei. Interrogating radio-frequency pulses result in frequency spectra that provide the chemist with molecular information, the medical doctor with anatomic images, and materials scientist with NMR relaxation parameters. Recent advances in magnet technology have led to a variety of small permanent magnets to allow compact and low-cost instruments. The goal of this book is to provide an introduction to the practical use of compact NMR at a level nearly as basic as the operation of a smart phone.

  9. Computation of transient flow rates in passive pumping micro-fluidic systems

    Chen, I-Jane; Eckstein, Eugene C.; Lindner, Ernő

    2008-01-01

    Motion in micro-channels of passive flow micro-fluidic systems can be controlled by proper design and estimated by careful modeling. We report on methods to describe the flow rate as function of time in a passive pump driven micro-fluidic systems. The model considers the surface energy present in small droplets, which prompts their shrinkage and induces flow. The droplet geometries are controlled by the micro-fluidic system geometry and hydrophilicity of the droplet channel contact area so th...

  10. A Programmable MicroFluidic Processor: Integrated and Hybrid Solutions

    Rose, K A

    2002-05-10

    The Programmable Fluidic Processor (PFP), a device conceived of by researchers at MD Anderson Cancer Center, is a reconfigurable and programmable bio-chemical analysis system designed for handheld operation in a variety of applications. Unlike most microfluidic systems which utilize channels to control fluids, the PFP device is a droplet-based system. The device is based on dielectrophoresis; a fluid transport phenomenon that utilizes mismatched polarizability between a droplet and its medium to induce droplet mobility. In the device, sample carrying droplets are polarized by an array of electrodes, individually addressable by subsurface microelectronics. My research focused on the development of a polymer-based microfluidic injection system for injecting these droplets onto the electrode array. The first of two device generations fabricated at LLNL was designed using extensive research and modeling performed by MD Anderson and Coventor. Fabricating the first generation required several iterations and design changes in order to generate an acceptable device for testing. Difficulties in planar fabrication of the fluidic system and a narrow channel design necessitated these changes. The second generation device incorporated modifications of the previous generation and improved on deficiencies discovered during experimentation with the initial device. Extensive modeling of the injection channels and fluid storage chamber also aided in redesigning the device's microfluidic system. A micromolding technique with interlocking features enabled precise alignments and dimensional control, critical requirements for device optimization. Fabrication of a final device will be fully integrated with the polymer-based microfluidics bonded directly to the silicon-based microelectronics. The optimized design and process flow developed in the trial generations will readily transfer to this approach.

  11. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot.

    Onal, Cagdas D; Rus, Daniela

    2013-06-01

    Soft robotics offers the unique promise of creating inherently safe and adaptive systems. These systems bring man-made machines closer to the natural capabilities of biological systems. An important requirement to enable self-contained soft mobile robots is an on-board power source. In this paper, we present an approach to create a bio-inspired soft robotic snake that can undulate in a similar way to its biological counterpart using pressure for actuation power, without human intervention. With this approach, we develop an autonomous soft snake robot with on-board actuation, power, computation and control capabilities. The robot consists of four bidirectional fluidic elastomer actuators in series to create a traveling curvature wave from head to tail along its body. Passive wheels between segments generate the necessary frictional anisotropy for forward locomotion. It takes 14 h to build the soft robotic snake, which can attain an average locomotion speed of 19 mm s(-1). PMID:23524383

  12. A novel simple preparation method of a hydrogel mold for PDMS micro-fluidic device fabrication

    A novel method to prepare a very thick master mold for poly(dimethylsiloxane) (PDMS) casting was investigated by using a hydrogel ultraviolet (UV) curing process through a film mask. A simple process of dispensing of hydrogel, UV curing through a photomask and rinsing enabled the construction of micro-hydrogel structures in a fast manner. These hydrogel structures can be used as a mold for PDMS casting for PDMS fluidic chip fabrication. This method allows the fast construction of very thick micro-structures more than 1 mm. The characterizations about vertical sidewall and adhesion enhancement between the substrate and micro-structures were studied. The application of a PDMS fluidic chip, which was prepared from the hydrogel mold by PDMS casting, to some fluidic flow rate tests was demonstrated. This method is fast and simple to prepare a PDMS casting mold at low cost and can be applied in micro-fabrication of biochemical chips and micro-fluidic devices. (paper)

  13. Portable integrated micro-fluidic platform for the monitoring and detection of nitrite

    Czugala, Monika; Fay, Cormac; O'Connor, Noel E.; Corcoran, Brian; Benito-Lopez, Fernando; Diamond, Dermot

    2013-01-01

    A wireless, portable integrated micro-fluidic platform is proposed and applied for the determination of nitrite anions in water. The colourimetric analysis of nitrite is based on the Griess reagent, and the colour intensity of nitrite Griess reagent complex is detected using a low cost Paired Emitter Detector Diode technique. The micro-fluidic device employed a photoswitchable micro-valve, controlled by white light and generated using a light emitting diode. This low-cost and low-power detect...

  14. Interaction of turbulence with flexible beams in fluidic energy harvesting

    Danesh Yazdi, Amir Hossein

    Advances in the development and fabrication of microelectronics have enhanced the energy efficiency of these devices to such an extent that they can now operate at very low power levels, typically on the order of a few microwatts or less. Batteries are primarily thought of as the most convenient source of power for electronic devices, but in instances where a device needs to be deployed in a difficult-to-access location such as under water, the added weight and especially maintenance of such a power source becomes costly. A solution that avoids this problem and is particularly attractive in a "deploy & forget" setting involves designing a device that continuously harvests energy from the surrounding environment. Piezoelectric energy harvesters, which employ the direct piezoelectric effect to convert mechanical strain into electrical energy, have garnered a great deal of attention in the literature. This work presents an overview of the experimental and analytical results related to fluidic energy extraction from vortex and turbulent flow using piezoelectric cantilever beams. In particular, the development of the FTGF (Fourier Transform-Green's Function) solution approach to the coupled, continuous electromechanical equations governing piezoelectric cantilever beams and the associated TFB (Train of Frozen Boxcars) method, which models the flow of vortices and turbulent eddies over the beams, is discussed. In addition, the behavior of fluidic energy harvesters in decaying isotropic, homogeneous grid turbulence generated by passive, semi-passive and active grids is examined and a novel grid-turbulence forcing model is introduced. An expression for the expected power output of the piezoelectric beam is obtained by utilizing this forcing function model in the single degree-of-freedom electromechanical equations. Furthermore, approximate, closed-form solutions to the theoretical expected power are derived from deterministic turbulence forcing models and are compared with

  15. Performance Verification for Safety Injection Tank with Fluidic Device

    In LBLOCA, the SITs of a conventional nuclear power plant deliver excessive cooling water to the reactor vessel causing the water to flow into the containment atmosphere. In an effort to make it more efficient, Fluidic Device (FD) is installed inside a SIT of Advanced Power Reactor 1400 (APR 1400). FD, a complete passive controller which doesn't require actuating power, controls injection flow rates which are susceptible to a change in the flow resistance inside a vortex chamber of FD. When SIT Emergency Core Cooling (ECC) water level is above the top of the stand pipe, the water enters the vortex chamber through both the top of the stand pipe and the control ports resulting in injection of the water at a large flow rate. When the water level drops below the top of the stand pipe, the water only enters the vortex chamber through the control ports resulting in vortex formation in the vortex chamber and a relatively small flow injection. Performance verification of SIT shall be carried out because SITs play an integral role to mitigate accidents. In this paper, the performance verification method of SIT with FD is presented. In this paper, the equations for calculation of flow resistance coefficient (K) are induced to evaluate on-site performance of APR 1400 SIT with FD. Then, the equations are applied to the performance verification of SIT with FD and good results are obtained

  16. Liquid crystal thermometry for micro-fluidic applications

    Pottebaum, Tait

    2009-11-01

    Liquid crystal thermometry has been implemented in a micro-channel and the performance of the technique quantified. Implementation of the technique is subject to constraints on imaging and illumination configurations similar to the constraints on micro-PIV. In addition, the proximity of the measurements to interfaces and surfaces from which light scatters leads to high noise levels that cannot be reduced by wavelength filtering (such as with fluorescent particles) because the temperature information is contained in the color of the particles. Therefore, circular polarization filtering is used, exploiting the circular dichroism of the thermochromic liquid crystal (TLC). Encapsulated TLC particles were flowed through the micro-channel and subjected to a series of uniform temperatures for calibration. To validate the technique, a temperature gradient was imposed with no flow. Finally, the technique was applied to micro-channel flow with an imposed wall temperature gradient in the flow direction. Liquid crystal thermometry can now be applied to a wide range of micro-fluidic applications.

  17. Performance Verification for Safety Injection Tank with Fluidic Device

    Yune, Seok Jeong; Kim, Da Yong [KEPCO Engineering and Construction Company, Daejeon (Korea, Republic of)

    2014-05-15

    In LBLOCA, the SITs of a conventional nuclear power plant deliver excessive cooling water to the reactor vessel causing the water to flow into the containment atmosphere. In an effort to make it more efficient, Fluidic Device (FD) is installed inside a SIT of Advanced Power Reactor 1400 (APR 1400). FD, a complete passive controller which doesn't require actuating power, controls injection flow rates which are susceptible to a change in the flow resistance inside a vortex chamber of FD. When SIT Emergency Core Cooling (ECC) water level is above the top of the stand pipe, the water enters the vortex chamber through both the top of the stand pipe and the control ports resulting in injection of the water at a large flow rate. When the water level drops below the top of the stand pipe, the water only enters the vortex chamber through the control ports resulting in vortex formation in the vortex chamber and a relatively small flow injection. Performance verification of SIT shall be carried out because SITs play an integral role to mitigate accidents. In this paper, the performance verification method of SIT with FD is presented. In this paper, the equations for calculation of flow resistance coefficient (K) are induced to evaluate on-site performance of APR 1400 SIT with FD. Then, the equations are applied to the performance verification of SIT with FD and good results are obtained.

  18. Experimental Observation of Bohr’s Nonlinear Fluidic Surface Oscillation

    Moon, Songky; Shin, Younghoon; Kwak, Hojeong; Yang, Juhee; Lee, Sang-Bum; Kim, Soyun; An, Kyungwon

    2016-01-01

    Niels Bohr in the early stage of his career developed a nonlinear theory of fluidic surface oscillation in order to study surface tension of liquids. His theory includes the nonlinear interaction between multipolar surface oscillation modes, surpassing the linear theory of Rayleigh and Lamb. It predicts a specific normalized magnitude of 0.416η2 for an octapolar component, nonlinearly induced by a quadrupolar one with a magnitude of η much less than unity. No experimental confirmation on this prediction has been reported. Nonetheless, accurate determination of multipolar components is important as in optical fiber spinning, film blowing and recently in optofluidic microcavities for ray and wave chaos studies and photonics applications. Here, we report experimental verification of his theory. By using optical forward diffraction, we measured the cross-sectional boundary profiles at extreme positions of a surface-oscillating liquid column ejected from a deformed microscopic orifice. We obtained a coefficient of 0.42 ± 0.08 consistently under various experimental conditions. We also measured the resonance mode spectrum of a two-dimensional cavity formed by the cross-sectional segment of the liquid jet. The observed spectra agree well with wave calculations assuming a coefficient of 0.414 ± 0.011. Our measurements establish the first experimental observation of Bohr’s hydrodynamic theory.

  19. Compactly supported multi-wavelets

    Wojciech Banaś

    2012-01-01

    Full Text Available In this paper we show some construction of compactly supported multi-wavelets in \\(L^2(\\mathbb{R}^d\\, \\(d \\geq 2\\ which is based on the one-dimensional case, when \\(d=1\\. We also demonstrate that some methods, which are useful in the construction of wavelets with a compact support at \\(d=1\\, can be adapted to higher-dimensional cases if \\(A \\in M_{d \\times d}(\\mathbb{Z}\\ is an expansive matrix of a special form.

  20. Bacterial adhesion force quantification by fluidic force microscopy

    Potthoff, Eva; Ossola, Dario; Zambelli, Tomaso; Vorholt, Julia A.

    2015-02-01

    Quantification of detachment forces between bacteria and substrates facilitates the understanding of the bacterial adhesion process that affects cell physiology and survival. Here, we present a method that allows for serial, single bacterial cell force spectroscopy by combining the force control of atomic force microscopy with microfluidics. Reversible bacterial cell immobilization under physiological conditions on the pyramidal tip of a microchanneled cantilever is achieved by underpressure. Using the fluidic force microscopy technology (FluidFM), we achieve immobilization forces greater than those of state-of-the-art cell-cantilever binding as demonstrated by the detachment of Escherichia coli from polydopamine with recorded forces between 4 and 8 nN for many cells. The contact time and setpoint dependence of the adhesion forces of E. coli and Streptococcus pyogenes, as well as the sequential detachment of bacteria out of a chain, are shown, revealing distinct force patterns in the detachment curves. This study demonstrates the potential of the FluidFM technology for quantitative bacterial adhesion measurements of cell-substrate and cell-cell interactions that are relevant in biofilms and infection biology.Quantification of detachment forces between bacteria and substrates facilitates the understanding of the bacterial adhesion process that affects cell physiology and survival. Here, we present a method that allows for serial, single bacterial cell force spectroscopy by combining the force control of atomic force microscopy with microfluidics. Reversible bacterial cell immobilization under physiological conditions on the pyramidal tip of a microchanneled cantilever is achieved by underpressure. Using the fluidic force microscopy technology (FluidFM), we achieve immobilization forces greater than those of state-of-the-art cell-cantilever binding as demonstrated by the detachment of Escherichia coli from polydopamine with recorded forces between 4 and 8 nN for many

  1. Manufacture of micro fluidic devices by laser welding using thermal transfer printing techniques

    Klein, R.; Klein, K. F.; Tobisch, T.; Thoelken, D.; Belz, M.

    2016-03-01

    Micro-fluidic devices are widely used today in the areas of medical diagnostics and drug research, as well as for applications within the process, electronics and chemical industry. Microliters of fluids or single cell to cell interactions can be conveniently analyzed with such devices using fluorescence imaging, phase contrast microscopy or spectroscopic techniques. Typical micro-fluidic devices consist of a thermoplastic base component with chambers and channels covered by a hermetic fluid and gas tight sealed lid component. Both components are usually from the same or similar thermoplastic material. Different mechanical, adhesive or thermal joining processes can be used to assemble base component and lid. Today, laser beam welding shows the potential to become a novel manufacturing opportunity for midsize and large scale production of micro-fluidic devices resulting in excellent processing quality by localized heat input and low thermal stress to the device during processing. For laser welding, optical absorption of the resin and laser wavelength has to be matched for proper joining. This paper will focus on a new approach to prepare micro-fluidic channels in such devices using a thermal transfer printing process, where an optical absorbing layer absorbs the laser energy. Advantages of this process will be discussed in combination with laser welding of optical transparent micro-fluidic devices.

  2. A micro-fluidic study of whole blood behaviour on PMMA topographical nanostructures

    Tsud Nataliya

    2008-02-01

    Full Text Available Abstract Background Polymers are attractive materials for both biomedical engineering and cardiovascular applications. Although nano-topography has been found to influence cell behaviour, no established method exists to understand and evaluate the effects of nano-topography on polymer-blood interaction. Results We optimized a micro-fluidic set-up to study the interaction of whole blood with nano-structured polymer surfaces under flow conditions. Micro-fluidic chips were coated with polymethylmethacrylate films and structured by polymer demixing. Surface feature size varied from 40 nm to 400 nm and feature height from 5 nm to 50 nm. Whole blood flow rate through the micro-fluidic channels, platelet adhesion and von Willebrand factor and fibrinogen adsorption onto the structured polymer films were investigated. Whole blood flow rate through the micro-fluidic channels was found to decrease with increasing average surface feature size. Adhesion and spreading of platelets from whole blood and von Willebrand factor adsorption from platelet poor plasma were enhanced on the structured surfaces with larger feature, while fibrinogen adsorption followed the opposite trend. Conclusion We investigated whole blood behaviour and plasma protein adsorption on nano-structured polymer materials under flow conditions using a micro-fluidic set-up. We speculate that surface nano-topography of polymer films influences primarily plasma protein adsorption, which results in the control of platelet adhesion and thrombus formation.

  3. Gravitational waves from compact bodies

    Thorne, K S

    1995-01-01

    A review is given of recent research on gravitational waves from compact bodies and its relevance to the LIGO/VIRGO international network of high-frequency (10 to 10,000 Hz) gravitational-wave detectors, and to the proposed LISA system of low-frequency (0.1 to 0.0001 Hz) detectors. The sources that are reviewed are ordinary binary star systems, binaries made from compact bodies (black holes and neutron stars), the final inspiral and coalescence of compact-body binaries, the inspiral of stars and small black holes into massive black holes, the stellar core collapse that triggers supernovae, and the spin of neutron stars. This paper is adapted from a longer review article entitled ``Gravitational Waves'' (GRP-411) that the author has written for the Proceedings of the Snowmass '94 Summer Study on Particle and Nuclear Astrophysics and Cosmology.

  4. Compact Reactor

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date

  5. Experimental investigation of the noise reduction of supersonic exhaust jets with fluidic inserts

    Powers, Russell William Walter

    The noise produced by the supersonic, high temperature jets that exhaust from military aircraft is becoming a hazard to naval personnel and a disturbance to communities near military bases. Methods to reduce the noise produced from these jets in a practical full-scale environment are difficult. The development and analysis of distributed nozzle blowing for the reduction of radiated noise from supersonic jets is described. Model scale experiments of jets that simulate the exhaust jets from typical low-bypass ratio military jet aircraft engines during takeoff are performed. Fluidic inserts are created that use distributed blowing in the divergent section of the nozzle to simulate mechanical, hardwall corrugations, while having the advantage of being an active control method. This research focuses on model scale experiments to better understand the fluidic insert noise reduction method. Distributed blowing within the divergent section of the military-style convergent divergent nozzle alters the shock structure of the jet in addition to creating streamwise vorticity for the reduction of mixing noise. Enhancements to the fluidic insert design have been performed along with experiments over a large number of injection parameters and core jet conditions. Primarily military-style round nozzles have been used, with preliminary measurements of hardwall corrugations and fluidic inserts in rectangular nozzle geometries also performed. It has been shown that the noise reduction of the fluidic inserts is most heavily dependent upon the momentum flux ratio between the injector and core jet. Maximum reductions of approximately 5.5 dB OASPL have been observed with practical mass flow rates and injection pressures. The first measurements with fluidic inserts in the presence of a forward flight stream have been performed. Optimal noise reduction occurs at similar injector parameters in the presence of forward flight. Fluidic inserts in the presence of a forward flight stream were

  6. Determining DfT Hardware by VHDL-AMS Fault Simulation for Biological Micro-Electronic Fluidic Arrays

    Kerkhoff, H.G.; Zhang, X.; Liu, H.; Richardson, A.; Nouet, P.; Azais, F.

    2005-01-01

    The interest of microelectronic fluidic arrays for biomedical applications, like DNA determination, is rapidly increasing. In order to evaluate these systems in terms of required Design-for-Test structures, fault simulations in both fluidic and electronic domains are necessary. VHDL-AMS can be used

  7. Fabrication of Microbeads with a Controllable Hollow Interior and Porous Wall Using a Capillary Fluidic Device

    Choi, Sung-Wook; Zhang, Yu; Xia, Younan

    2009-01-01

    Poly(d,l-lactide-co-glycolide) (PLGA) microbeads with a hollow interior and porous wall are prepared using a simple fluidic device fabricated with PVC tubes, glass capillaries, and a needle. Using the fluidic device with three flow channels, uniform water-in-oil-in-water (W-O-W) emulsions with a single inner water droplet can be achieved with controllable dimensions by varying the flow rate of each phase. The resultant W-O-W emulsions evolve into PLGA microbeads with a hollow interior and por...

  8. Investigation of combustion control in a dump combustor using the feedback free fluidic oscillator

    Meier, Eric J.

    The feedback free fluidic oscillator uses the unsteady nature of two colliding jets to create a single oscillating outlet jet with a wide sweep angle. These devices have the potential to provide additional combustion control, boundary layer control, thrust vectoring, and industrial flow deflection. Two-dimensional computational fluid dynamics, CFD, was used to analyze the jet oscillation frequency over a range of operating conditions and to determine the effect that geometric changes in the oscillator design have on the frequency. Results presented illustrate the changes in jet oscillation frequency with gas type, gas temperature, operating pressure, pressure ratio across the oscillator, aspect ratio of the oscillator, and the frequency trends with various changes to the oscillator geometry. A fluidic oscillator was designed and integrated into single element rocket combustor with the goal of suppressing longitudinal combustion instabilities. An array of nine fluidic oscillators was tested to mimic modulated secondary oxidizer injection into the dump plane using 15% of the oxidizer flow. The combustor has a coaxial injector that uses gaseous methane and decomposed hydrogen peroxide at an O/F of 11.66. A sonic choke plate on an actuator arm allows for continuous adjustment of the oxidizer post acoustics for studying a variety of instability magnitudes. The fluidic oscillator unsteady outlet jet performance is compared with equivalent steady jet injection and a baseline design with no secondary oxidizer injection. At the most unstable operating conditions, the unsteady outlet jet saw a 60% reduction in the instability pressure oscillation magnitude when compared to the steady jet and baseline data. The results indicate open loop propellant modulation for combustion control can be achieved through fluidic devices that require no moving parts or electrical power to operate. Three-dimensional computational fluid dynamics, 3-D CFD, was conducted to determine the

  9. Development of a Photo-Fluidic Control Valve without Mechanical Moving Parts

    Akagi, Tetsuya; Dohta, Shujiro

    An optical servo system is a new control system which can be used in hazardous environments; such as those with electromagnetic influence, radiation and so on. The purpose of our study is to develop such an optical control system. In our previous study, an optical servo valve in which the output differential pressure was proportional to input optical power had been developed. However, the dynamics of the valve depended on the time required to move the flapper membrane of a fluid booster amplifier using the lower flow rate from the photo-fluidic interface. In addition, the lifetime of the valve depends on that of the fluid booster amplifier that has mechanical moving parts. As a next step, we need to improve the dynamics and to get longer lifetime of the optical servo valve and try to develop another type of optical servo valve whose elements have no mechanical moving parts. In this paper, a photo-fluidic control valve which consists of the photo-fluidic interface and fluid amplifier only using fluidics is proposed. As a result, we found that the tested valve generated output differential pressure of + 80 kPa or -80 kPa according to applied optical power. By driving a pneumatic cylinder whose inner diameter is 16 mm with a stroke of 100 mm using the tested valve, we also confirmed that the tested valve has enough output fluid power to drive a small-sized pneumatic cylinder on the market.

  10. A capability study of micro moulding for nano fluidic system manufacture

    Calaon, Matteo; Hansen, Hans Nørgaard; Tosello, Guido;

    2013-01-01

    With the present paper the authors analysed process capability of ultra-precision moulding used for producing nano crosses with the same critical channels dimensions of a nano fluidic system for optical mapping of genomic length DNA. The process variation focused on product tolerances is quantified...

  11. Fluidic system for long-term in vitro culturing and monitoring of organotypic brain slices

    Bakmand, Tanya; Troels-Smith, Ane R.; Dimaki, Maria;

    2015-01-01

    Brain slice preparations cultured in vitro have long been used as a simplified model for studying brain development, electrophysiology, neurodegeneration and neuroprotection. In this paper an open fluidic system developed for improved long term culturing of organotypic brain slices is presented...... their structure better than the control slices cultured using the standard interface method....

  12. Centrifugal micro-fluidic platform for radiochemistry: Potentialities for the chemical analysis of nuclear spent fuels

    The use of a centrifugal micro-fluidic platform is for the first time reported as an alternative to classical chromatographic procedures for radiochemistry. The original design of the micro-fluidic platform has been thought to fasten and simplify the prototyping process with the use of a circular platform integrating four rectangular microchips made of thermoplastic. The microchips, dedicated to anion-exchange chromatographic separations, integrate a localized monolithic stationary phase as well as injection and collection reservoirs. The results presented here were obtained with a simplified simulated nuclear spent fuel sample composed of non-radioactive isotopes of Europium and Uranium, in proportion usually found for uranium oxide nuclear spent fuel. While keeping the analytical results consistent with the conventional procedure (extraction yield for Europium of ∼97%), the use of the centrifugal micro-fluidic platform allowed to reduce the volume of liquid needed by a factor of ∼250. Thanks to their unique 'easy-to-use' features, centrifugal micro-fluidic platforms are potential successful candidates for the down-scaling of chromatographic separation of radioactive samples (automation, multiplexing, easy integration in glove-boxes environment and low cost of maintenance). (authors)

  13. Picosecond Laser Machining of Metallic and Polymer Substrates for Fluidic Driven Self-Alignment

    Römer, G.R.B.E.; Arnaldo del Cerro, D.; Pohl, R.; Chang, B.; Liimatainen, V.; Zhou, Q.; Huis in 't Veld, A.J.

    2012-01-01

    Fluidic self-alignment of micro-components relies on creating a receptor site that is able to confine a liquid droplet. When a micro-component is brought in contact with the droplet, capillary forces move the component to its final position. A method to stop the advancing of a liquid from a receptor

  14. No-moving-part electro/fluidic transducer based on plasma discharge effect

    Tesař, Václav; Šonský, Jiří

    2015-01-01

    Roč. 232, August (2015), s. 20-29. ISSN 0924-4247 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : transducer * fluidic * plasma discharge Subject RIV: BK - Fluid Dynamics Impact factor: 1.903, year: 2014 http://www.sciencedirect.com/science/article/pii/S092442471500206X

  15. Customizable 3D Printed 'Plug and Play' Millifluidic Devices for Programmable Fluidics.

    Soichiro Tsuda

    Full Text Available Three dimensional (3D printing is actively sought after in recent years as a promising novel technology to construct complex objects, which scope spans from nano- to over millimeter scale. Previously we utilized Fused deposition modeling (FDM-based 3D printer to construct complex 3D chemical fluidic systems, and here we demonstrate the construction of 3D milli-fluidic structures for programmable liquid handling and control of biological samples. Basic fluidic operation devices, such as water-in-oil (W/O droplet generators for producing compartmentalized mono-disperse droplets, sensor-integrated chamber for online monitoring of cellular growth, are presented. In addition, chemical surface treatment techniques are used to construct valve-based flow selector for liquid flow control and inter-connectable modular devices for networking fluidic parts. As such this work paves the way for complex operations, such as mixing, flow control, and monitoring of reaction / cell culture progress can be carried out by constructing both passive and active components in 3D printed structures, which designs can be shared online so that anyone with 3D printers can reproduce them by themselves.

  16. Rapid prototyping tools and methods for all-Topas (R) cyclic olefin copolymer fluidic microsystems

    Bundgaard, Frederik; Perozziello, Gerardo; Geschke, Oliver

    2006-01-01

    , good machinability, and good optical properties. A number of different processes for rapid and low-cost prototyping of all-Topas microfluidic systems, made with desktop machinery, are presented. Among the processes are micromilling of fluidic structures with a width down to 25 p,m and sealing of...

  17. Formation of a vertical MOSFET for charge sensing in a Si micro-fluidic channel

    We have formed a fluidic channel that can be used in micro-fluidic systems and fabricated a 3-dimensional vertical metal-oxide semiconductor field-effect transistor (vertical MOSFET) in the convex corner of a Si micro-fluidic channel by using an anisotropic tetramethyl ammonium hydroxide (TMAH) etching solution. A Au/Cr layer was used for the gate metal and might be useful for detecting charged biomolecules. The electrical characteristics of the vertical MOSFET and its operation as a chemical sensor were investigated. At VDS = -5 V and VGS = -5 V the drain current of the device was -22.5 μA and the threshold voltage was about -1.4 V. A non-planar, non-rectangular vertical MOSFET with a trapezoidal gate was transformed into an equivalent rectangularly based one by using a Schwartz-Christoffel transformation. The LEVEL1 device parameters of the vertical MOSFET were extracted from the measured electrical device characteristics and were used in the SPICE simulation for the vertical MOSFET. The measured and the simulated results for the vertical PMOSFET showed relatively good agreement. When the vertical MOSFET was dipped into a thiol DNA solution, the drain current decreased due to charged biomolecules probably being adsorbed on the gate, which indicates that a vertical MOSFET in a Si micro-fluidic channel might be useful for sensing charged biomolecules.

  18. Combination of Micro-fluidic Chip with Fluorescence Correlation Spectroscopy for Single Molecule Detection

    2006-01-01

    A single molecule detection technique was developed by the combination of a single channel poly (dimethylsiloxane)/glass micro-fluidic chip and fluorescence correlation spectroscopy (FCS). This method was successfully used to determine the proportion of two model components in the mixture containing fluorescein and the rhodamine-green succinimidyl ester.

  19. Micro Machining of Injection Mold Inserts for Fluidic Channel of Polymeric Biochips

    Myeong-Woo Cho

    2007-08-01

    Full Text Available Recently, the polymeric micro-fluidic biochip, often called LOC (lab-on-a-chip, has been focused as a cheap, rapid and simplified method to replace the existing biochemical laboratory works. It becomes possible to form miniaturized lab functionalities on a chip with the development of MEMS technologies. The micro-fluidic chips contain many micro-channels for the flow of sample and reagents, mixing, and detection tasks. Typical substrate materials for the chip are glass and polymers. Typical techniques for micro-fluidic chip fabrication are utilizing various micro pattern forming methods, such as wet-etching, micro-contact printing, and hot-embossing, micro injection molding, LIGA, and micro powder blasting processes, etc. In this study, to establish the basis of the micro pattern fabrication and mass production of polymeric micro-fluidic chips using injection molding process, micro machining method was applied to form micro-channels on the LOC molds. In the research, a series of machining experiments using micro end-mills were performed to determine optimum machining conditions to improve surface roughness and shape accuracy of designed simplified micro-channels. Obtained conditions were used to machine required mold inserts for micro-channels using micro end-mills. Test injection processes using machined molds and COC polymer were performed, and then the results were investigated.

  20. Fluidic generator of microbubbles – oscillator with gas flow reversal for a part of period

    Tesař, Václav

    2015-01-01

    Roč. 9, č. 4 (2015), s. 195-203. ISSN 1898-4088 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : fluidics * oscillators * microbubbles Subject RIV: BK - Fluid Dynamics

  1. Development of fluidic device in SIT for Korean Next Generation Reactor I

    The KNGR is to install a Fluidic Device at the bottom of the inner space of the SIT (Safety Injection Tank) to control the flow rate of safety injection coolant from SIT during LBLOCA. During the past two years, a scale model test to obtain the required flow characteristics of the device under the KNGR specific conditions has been performed using the experience and existing facility of AEA Technology (UK) with appropriate modifications. The performance verification test is to be performed this year to obtain optimum characteristics and design data of full size fluidic device. The purpose of the model test was to check the feasibility of developing the device and to produce a generic flow characteristic data. The test was performed in approximately 1/7 scale in terms of flow rate with full height and pressure. This report presents the details of system performance requirements for the device, design procedure for the fluidic device to be used, test facility and test method. The time dependent flow, pressure and Euler number are presented as characteristics curves and the most stable and the most effective flow control characteristic parameters were recommended through the evaluation. A method to predict the size of the fluidic device is presented. And a sizing algorithm, which can be used to conveniently determine the major geometric data of the device for various operating conditions, and a FORTRAN program to produce the prediction of performance curves have been developed. (author). 32 refs., 15 tabs., 47 figs

  2. Optimal Control of Airfoil Flow Separation using Fluidic Excitation

    Shahrabi, Arireza F.

    This thesis deals with the control of flow separation around a symmetric airfoils with the aid of multiple synthetic jet actuators (SJAs). CFD simulation methods have been implemented to uncover the flow separation regimes and associated properties such as frequencies and momentum ratio. In the first part of the study, the SJA was studied thoroughly. Large Eddy Simulations (LES) were performed for one individual cavity; the time history of SJA of the outlet velocity profile and the net momentum imparted to the flow were analyzed. The studied SJA is asymmetrical and operates with the aid of a piezoelectric (PZT) ceramic circular plate actuator. A three-dimensional mesh for the computational domain of the SJA and the surrounding volume was developed and was used to evaluate the details of the airflow conditions inside the SJA as well as at the outlet. The vibration of the PZT ceramic actuator was used as a boundary condition in the computational model to drive the SJA. Particular attention was given to developing a predictive model of the SJA outlet velocity. Results showed that the SJA velocity output is correlated to the PZT ceramic plate vibration, especially for the first frequency mode. SJAs are a particular class of zero net mass flux (ZNMF) fluidic devices with net imparted momentum to the flow. The net momentum imparted to the flow in the separated region is such that positive enhancement during AFC operations is achieved. Flows around the NACA 0015 airfoil were simulated for a range of operating conditions. Attention was given to the active open and closed loop control solutions for an airfoil with SJA at different angles of attack and flap angles. A large number of simulations using RANS & LES models were performed to study the effects of the momentum ratio (Cμ) in the range of 0 to 11% and of the non-dimensional frequency, F+, in the range of 0 to 2 for the control of flow separation at a practical angle of attack and flap angle. The optimum value of C

  3. Compact balanced tries

    Nicodeme, Pierre

    1991-01-01

    We show how it is possible to split Compact Tries described as bit-lists in a segmented and flexible structure of B-tree type, keeping the compactness advantages of the Compact Tries and recovering all the important properties of B-trees.

  4. Evaluation of a X-ray imaging method in micro-fluidics: the case of T-shaped micro-channels filling up

    X-rays methods assessment in micro-fluidics: case of 'T' shaped microchannels filling. Fluid flows within 'T' or 'Y' shaped microchannels are deeply studied in order to develop adapted modeling approaches and experimental techniques. Our technological choice lies on the attenuation measurement of X-ray in matter. The main advantage of this non-intrusive technique is to be implemented on media opaque to visible light. Moreover, X-rays methods may achieve better spatial resolutions as compared to optical methods because of their much lower wavelength. In order to validate this X-ray method, measurements obtained by this technique are compared with direct measurements carried out on similar microchannels. Finally, experimental results are compared with a theoretical model. (author)

  5. Micro-patterning and actuation of phosphonium-based photo-responsive ionogels for micro-fluidic applications

    Blin, Candice; Byrne, Robert; Diamond, Dermot; Benito-Lopez, Fernando

    2011-01-01

    The concept of “Micro-total-analysis-Systems” or “Lab-on-chip” has emerged over the past 20-years but, despite of the fact their incredible potential to revolutionise analytical science few outputs have reached the market so far[1]. Moreover, important issues like durability, disposability and cost of manufacture slow down the process of the integration of micro-fluidics into commercially relevant analytical products[2]. We believe that the next breakthroughs on micro-fluidic technology will ...

  6. Micro-Fluidic Dye Ring Laser - Experimental Tuning of the Wavelength and Numerical Simulation of the Cavity Modes

    Gersborg-Hansen, Morten; Balslev, Søren; Mortensen, Niels Asger;

    2006-01-01

    We demonstrate wavelength tuning of a micro-fluidic dye ring laser. Wavelength tunability is obtained by controlling the liquid dye concentration. The device performance is modelled by FEM simulations supporting a ray-tracing view.......We demonstrate wavelength tuning of a micro-fluidic dye ring laser. Wavelength tunability is obtained by controlling the liquid dye concentration. The device performance is modelled by FEM simulations supporting a ray-tracing view....

  7. Maintenance Free Fluidic Transfer and Mixing Devices for Highly Radioactive Applications - Design, Development, Deployment and Operational Experience

    Power Fluidics is the generic name for a range of maintenance-free fluid transfer and mixing devices, capable of handling a wide range of highly radioactive fluids, jointly developed by British Nuclear Group, its US-based subsidiary BNG America, and AEA Technology. Power Fluidic devices include Reverse Flow Diverters (RFDs), Vacuum Operated Slug Lifts (VOSLs), and Air Lifts, all of which have an excellent proven record for pumping radioactive liquids and sludges. Variants of the RFD, termed Pulse Jet Mixers (PJMs) are used to agitate and mix tank contents, where maintenance-free equipment is desirable, and where a high degree of homogenization is necessary. The equipment is designed around the common principle of using compressed air to provide the motive force to transfer liquids and sludges. These devices have no moving parts in contact with the radioactive medium and therefore require no maintenance in radioactive areas of processing plants. Once commissioned, Power Fluidic equipment has been demonstrated to operate for the life of the facility. Over 800 fluidic devices continue to operate safely and reliably in British Nuclear Group's nuclear facilities at the Sellafield site in the United Kingdom, and some of these have done so for almost 40 years. More than 400 devices are being supplied by AEA Technology and BNG America for the Waste Treatment Plant (WTP) at the Hanford Site in southeastern Washington State, USA. This paper discusses: - Principles of operation of fluidic pumps and mixers. - Selection criteria and design of fluidic pumps and mixers. - Operational experience of fluidic pumps and mixers in the United Kingdom. - Applications of fluidic pumps and mixers at the U.S. Department of Energy nuclear sites. (authors)

  8. Compact mass flow meter based on a micro Coriolis flow sensor

    Sparreboom, W.; Katerberg, M.R.; Lammerink, T.S.J.; Postma, F.M.; Haneveld, J.; Groenesteijn, J.; Wiegerink, R.J.; Lötters, J.C.

    2012-01-01

    In this paper we present a compact ready-to-use micro Coriolis mass flow meter. The full scale flow is 2 g/h (for water at a pressure drop of 2 bar). It has a zero stability of 2 mg/h and an accuracy of 0.5% reading. The temperature drift between 10 and 50 ºC is below 1 mg/h/ºC. The meter is robust, has standard fluidic connections and can be read out by a PC or laptop via USB. Its performance was tested for several common gases (helium, nitrogen, argon and air) and liquids (water and IPA).

  9. Compact mass flow meter based on a micro coriolis flow sensor

    Remco Wiegerink; Theo Lammerink; Jarno Groenesteijn; Jeroen Haneveld; Ferry Postma; Marcel Katerberg; Wouter Sparreboom; Jan van de Geest; Joost Lötters

    2013-01-01

    In this paper we demonstrate a compact ready-to-use micro Coriolis mass flow meter. The full scale flow is 1 g/h (for water at a pressure drop < 1 bar). It has a zero stability of 2 mg/h and an accuracy of 0.5% reading for both liquids and gases. The temperature drift between 10 and 50 °C is below 1 mg/h/°C. The meter is robust, has standard fluidic connections and can be read out by means of a PC or laptop via USB. Its performance was tested for several common gases (hydrogen, helium, nitrog...

  10. Review on recent and advanced applications of monoliths and related porous polymer gels in micro-fluidic devices

    Vazquez, Mercedes, E-mail: mercedes.vazquez@dcu.ie [Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Dublin (Ireland); Paull, Brett, E-mail: brett.paull@dcu.ie [Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Dublin (Ireland)

    2010-06-04

    This review critically summarises recent novel and advanced achievements in the application of monolithic materials and related porous polymer gels in micro-fluidic devices appearing within the literature over the period of the last 5 years (2005-2010). The range of monolithic materials has developed rapidly over the past decade, with a diverse and highly versatile class of materials now available, with each exhibiting distinct porosities, pore sizes, and a wide variety of surface functionalities. A major advantage of these materials is their ease of preparation in micro-fluidic channels by in situ polymerisation, leading to monolithic materials being increasingly utilised for a larger variety of purposes in micro-fluidic platforms. Applications of porous polymer monoliths, silica-based monoliths and related homogeneous porous polymer gels in the preparation of separation columns, ion-permeable membranes, preconcentrators, extractors, electrospray emitters, micro-valves, electrokinetic pumps, micro-reactors and micro-mixers in micro-fluidic devices are discussed herein. Procedures used in the preparation of monolithic materials in micro-channels, as well as some practical aspects of the micro-fluidic chip fabrication are addressed. Recent analytical/bioanalytical and catalytic applications of the final micro-fluidic devices incorporating monolithic materials are also reviewed.

  11. Review on recent and advanced applications of monoliths and related porous polymer gels in micro-fluidic devices

    This review critically summarises recent novel and advanced achievements in the application of monolithic materials and related porous polymer gels in micro-fluidic devices appearing within the literature over the period of the last 5 years (2005-2010). The range of monolithic materials has developed rapidly over the past decade, with a diverse and highly versatile class of materials now available, with each exhibiting distinct porosities, pore sizes, and a wide variety of surface functionalities. A major advantage of these materials is their ease of preparation in micro-fluidic channels by in situ polymerisation, leading to monolithic materials being increasingly utilised for a larger variety of purposes in micro-fluidic platforms. Applications of porous polymer monoliths, silica-based monoliths and related homogeneous porous polymer gels in the preparation of separation columns, ion-permeable membranes, preconcentrators, extractors, electrospray emitters, micro-valves, electrokinetic pumps, micro-reactors and micro-mixers in micro-fluidic devices are discussed herein. Procedures used in the preparation of monolithic materials in micro-channels, as well as some practical aspects of the micro-fluidic chip fabrication are addressed. Recent analytical/bioanalytical and catalytic applications of the final micro-fluidic devices incorporating monolithic materials are also reviewed.

  12. Numerical Studies of a Supersonic Fluidic Diverter Actuator for Flow Control

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis e.; Raghu, Surya

    2010-01-01

    The analysis of the internal flow structure and performance of a specific fluidic diverter actuator, previously studied by time-dependent numerical computations for subsonic flow, is extended to include operation with supersonic actuator exit velocities. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The self-induced oscillatory behavior of the flow is successfully predicted and the calculated oscillation frequencies with respect to flow rate have excellent agreement with our experimental measurements. The oscillation frequency increases with Mach number, but its dependence on flow rate changes from subsonic to transonic to supersonic regimes. The delay time for the initiation of oscillations depends on the flow rate and the acoustic speed in the gaseous medium for subsonic flow, but is unaffected by the flow rate for supersonic conditions

  13. Induced fluid rotation and bistable fluidic turn-down valves (a survey

    Tesař Václav

    2015-01-01

    Full Text Available Paper surveys engineering applications of an unusual fluidic principle — momentum transfer through a relatively small communicating window into a vortex chamber, where the initially stationary fluid is put into rotation. The transfer is often by shear stress acting in the window plane, but may be enhanced and perhaps even dominated by fluid flow crossing the boundary. The case of zero-time-mean fluid transport through the window has found use in experimental fluid mechanics: non-invasive measurement of wall shear stress on objects by evaluating the induced rotation in the vortex chamber. The case with the non-zero flow through the interface became the starting point in development of fluidic valves combining two otherwise mutually incompatible properties: bistability and flow turning down.

  14. Fluidic Generator Of Microbubbles – Oscillator With Gas Flow Reversal For A Part Of Period

    Tesař Václav

    2015-12-01

    Full Text Available Paper presents a fluidic device developed for generation of small (less than 1 mm in diameter microbubbles in a liquid from gas passing gas through small passages. Until now the bubbles are larger than the size of aerator passage exits so that making the passages smaller did not result in obtaining the desirable microbubbles. Analysis of high-speed camera images (obtained with a special lens of large working distance have shown show that the large bubble size is caused by slow ascent motion of very small bubbles so that they get into mutual contact and grow by conjunction. The solution is to pulsate the supplied gas flow by a no-moving-part fluidic oscillator. The generated small bubble is moved back into the aerator passage where it is for a part of oscillation period protected from the conjunction with other, previously generated microbubbles.

  15. Numerical Simulation of a High-Lift Configuration with Embedded Fluidic Actuators

    Vatsa, Veer N.; Casalino, Damiano; Lin, John C.; Appelbaum, Jason

    2014-01-01

    Numerical simulations have been performed for a vertical tail configuration with deflected rudder. The suction surface of the main element of this configuration is embedded with an array of 32 fluidic actuators that produce oscillating sweeping jets. Such oscillating jets have been found to be very effective for flow control applications in the past. In the current paper, a high-fidelity computational fluid dynamics (CFD) code known as the PowerFLOW(Registered TradeMark) code is used to simulate the entire flow field associated with this configuration, including the flow inside the actuators. The computed results for the surface pressure and integrated forces compare favorably with measured data. In addition, numerical solutions predict the correct trends in forces with active flow control compared to the no control case. Effect of varying yaw and rudder deflection angles are also presented. In addition, computations have been performed at a higher Reynolds number to assess the performance of fluidic actuators at flight conditions.

  16. Evaluation of the threshold trimming method for micro inertial fluidic switch based on electrowetting technology

    Tingting Liu

    2014-03-01

    Full Text Available The switch based on electrowetting technology has the advantages of no moving part, low contact resistance, long life and adjustable acceleration threshold. The acceleration threshold of switch can be fine-tuned by adjusting the applied voltage. This paper is focused on the electrowetting properties of switch and the influence of microchannel structural parameters, applied voltage and droplet volume on acceleration threshold. In the presence of process errors of micro inertial fluidic switch and measuring errors of droplet volume, there is a deviation between test acceleration threshold and target acceleration threshold. Considering the process errors and measuring errors, worst-case analysis is used to analyze the influence of parameter tolerance on the acceleration threshold. Under worst-case condition the total acceleration threshold tolerance caused by various errors is 9.95%. The target acceleration threshold can be achieved by fine-tuning the applied voltage. The acceleration threshold trimming method of micro inertial fluidic switch is verified.

  17. 3D-printed fluidic networks as vasculature for engineered tissue.

    Kinstlinger, Ian S; Miller, Jordan S

    2016-05-24

    Fabrication of vascular networks within engineered tissue remains one of the greatest challenges facing the fields of biomaterials and tissue engineering. Historically, the structural complexity of vascular networks has limited their fabrication in tissues engineered in vitro. Recently, however, key advances have been made in constructing fluidic networks within biomaterials, suggesting a strategy for fabricating the architecture of the vasculature. These techniques build on emerging technologies within the microfluidics community as well as on 3D printing. The freeform fabrication capabilities of 3D printing are allowing investigators to fabricate fluidic networks with complex architecture inside biomaterial matrices. In this review, we examine the most exciting 3D printing-based techniques in this area. We also discuss opportunities for using these techniques to address open questions in vascular biology and biophysics, as well as for engineering therapeutic tissue substitutes in vitro. PMID:27173478

  18. Wind tunnel tests of the dynamic characteristics of the fluidic rudder

    Belsterling, C. A.

    1976-01-01

    The fourth phase is given of a continuing program to develop the means to stabilize and control aircraft without moving parts or a separate source of power. Previous phases have demonstrated the feasibility of (1) generating adequate control forces on a standard airfoil, (2) controlling those forces with a fluidic amplifier and (3) cascading non-vented fluidic amplifiers operating on ram air supply pressure. The foremost objectives of the fourth phase covered under Part I of this report were to demonstrate a complete force-control system in a wind tunnel environment and to measure its static and dynamic control characteristics. Secondary objectives, covered under Part II, were to evaluate alternate configurations for lift control. The results demonstrate an overall response time of 150 msec, confirming this technology as a viable means for implementing low-cost reliable flight control systems.

  19. The laboratory stand for didactic and research of a Fluidic Muscle

    P. Zub

    2007-12-01

    Full Text Available Purpose: The aim of this work was to design and build a laboratory stand dedicated for didactic and research purposes connected with a Fluidic Muscle. The stand is placed at the Electropneumatic and PLC controllers Laboratory [10,11,12] of the Institute of Engineering Processes Automation and Integrated Manufacturing Systems of the Faculty of Mechanical Engineering of the Silesian University of Technology, Gliwice, Poland.Design/methodology/approach: The stand was designed and visualised by utilisation of professional CAD software – CATIA and a fluidic muscle was chosen according to a MuscleSIM programme of FESTO company.Findings: The device integrates the elements which are indispensable determinant of contemporary industry and the main aim of its construction was to bring closer conceptions and ideas connected with the construction and the outworking of the fluidic muscle, problems of proportional pressure control, visualisation and control of the industrial processes as well as making possible of carrying out the investigations and experiments on these elements.Research limitations/implications: The module structure of the research stand gives possibility to make its further development by adding extra modules that can be easily mounted on plates, which will make possible the implementation of series of individual positions controlled by one PLC. Thanks to the applied system of visualisation, switching among synoptic screens is possible. The visualisation represents every separate module of the stand and so, with the help of one operator position, gives possibility to control every chosen module of the whole device.Originality/value: The mechatronic didactic and research device introduced in the paper represents the new approach to the problem of visualisation and control of the fluidic muscle and constitutes the perfect tool of the aided didactic process in the Institute’s laboratory

  20. Fluidic low-frequency oscillator with vortex spin-up time delay

    Tesař, Václav; Smyk, E.

    2015-01-01

    Roč. 90, April (2015), s. 6-15. ISSN 0255-2701 R&D Projects: GA ČR GA13-23046S; GA ČR GA14-08888S Institutional support: RVO:61388998 Keywords : fluidics * oscillator * vortex chamber Subject RIV: BK - Fluid Dynamics Impact factor: 2.071, year: 2014 http://www.sciencedirect.com/science/article/pii/S0255270115000252

  1. Finite-element simulation of cavity modes in a micro-fluidic dye ring laser

    Gersborg-Hansen, M; Mortensen, N A; 10.1088/1464-4258/8/1/003

    2006-01-01

    We consider a recently reported micro-fluidic dye ring laser and study the full wave nature of TE modes in the cavity by means of finite-element simulations. The resonance wave-patterns of the cavity modes support a ray-tracing view and we are also able to explain the spectrum in terms of standing waves with a mode spacing dk = 2pi/L_eff where L_eff is the effective optical path length in the cavity.

  2. Use of fluidic oscillator to measure fuel-air ratios of combustion gases

    Riddlebaugh, S. M.

    1974-01-01

    A fluidic oscillator was investigated for use in measuring fuel-air ratios in hydrocarbon combustion processes. The oscillator was operated with dry exhaust gas from an experimental combustor burning ASTM A-1 fuel. Tests were conducted with fuel-air ratios between 0.015 and 0.031. Fuel-air ratios determined by oscillator frequency were within 0.001 of the values computed from separate flow measurements of the air and fuel.

  3. On the design and simulation of an airlift loop bioreactorwith microbubble generation by fluidic oscillation

    Zimmerman, W. B.; Tesař, Václav; Hewakandamby, B.N.; Bandulasena, H.C.H.; Omotowa, O.A.

    2009-01-01

    Roč. 87, C3 (2009), s. 215-227. ISSN 0960-3085 Institutional research plan: CEZ:AV0Z20760514 Keywords : microbubbles * fluidic oscillators * transport phenomena Subject RIV: BK - Fluid Dynamics Impact factor: 0.952, year: 2009 http://apps.isiknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=V2FDdpCMohHOjGaLDMi&page=1&doc=3&colname=WOS

  4. Fabrication of inorganic-organic hybrid polymer micro and nanostructures for fluidic applications

    Aura, Susanna

    2011-01-01

    Microfluidics is a rapidly developing branch of microtechnology with applications in chemistry, biology, medicine and other sciences. One major trend in fluidics has been the miniaturization of analytical devices. Miniaturization improves performance, mainly speed and sensitivity, and also reduces the required sample volumes. Initially microfluidic devices were fabricated from silicon and glass using microfabrication methods borrowed from the integrated circuits industry. But polymers are gai...

  5. Fabrication of Biochips with Micro Fluidic Channels by Micro End-milling and Powder Blasting

    Dong Sam Park; Tae Il Seo; Dae Jin Yun

    2008-01-01

    For microfabrications of biochips with micro fluidic channels, a large number of microfabrication techniques based on silicon or glass-based Micro-Electro-Mechanical System (MEMS) technologies were proposed in the last decade. In recent years, for low cost and mass production, polymer-based microfabrication techniques by microinjection molding and micro hot embossing have been proposed. These techniques, which require a proper photoresist, mask, UV light exposure, developing, and electroplati...

  6. Research of Confocal Laser Induced Fluorescence Detection System for Micro-fluidic Chip

    FENG Jin-yuan; WANG Xiu-hua; ZHANG Hua-feng

    2007-01-01

    The characteristics such as signal noise ratio(SNR)[1-2] and sensitivity of the fluorescence detection system for micro-fluidic chip influence the performance of the whole system extremely.The confocal laser induced fluorescence detection system is presented.Based on the debugging of optical and circuit modules, the results of detecting the samples are given and analyzed theoretically,and the improved project is put forward.

  7. Characterization of printable cellular micro-fluidic channels for tissue engineering.

    Zhang, Yahui; Yu, Yin; Chen, Howard; Ozbolat, Ibrahim T

    2013-06-01

    Tissue engineering has been a promising field of research, offering hope of bridging the gap between organ shortage and transplantation needs. However, building three-dimensional (3D) vascularized organs remains the main technological barrier to be overcome. One of the major challenges is the inclusion of a vascular network to support cell viability in terms of nutrients and oxygen perfusion. This paper introduces a new approach to the fabrication of vessel-like microfluidic channels that has the potential to be used in thick tissue or organ fabrication in the future. In this research, we investigate the manufacturability of printable micro-fluidic channels, where micro-fluidic channels support mechanical integrity as well as enable fluid transport in 3D. A pressure-assisted solid freeform fabrication platform is developed with a coaxial needle dispenser unit to print hollow hydrogel filaments. The dispensing rheology is studied, and effects of material properties on structural formation of hollow filaments are analyzed. Sample structures are printed through the developed computer-controlled system. In addition, cell viability and gene expression studies are presented in this paper. Cell viability shows that cartilage progenitor cells (CPCs) maintained their viability right after bioprinting and during prolonged in vitro culture. Real-time PCR analysis yielded a relatively higher expression of cartilage-specific genes in alginate hollow filament encapsulating CPCs, compared with monolayer cultured CPCs, which revealed that printable semi-permeable micro-fluidic channels provided an ideal environment for cell growth and function. PMID:23458889

  8. Characterization of printable cellular micro-fluidic channels for tissue engineering

    Tissue engineering has been a promising field of research, offering hope of bridging the gap between organ shortage and transplantation needs. However, building three-dimensional (3D) vascularized organs remains the main technological barrier to be overcome. One of the major challenges is the inclusion of a vascular network to support cell viability in terms of nutrients and oxygen perfusion. This paper introduces a new approach to the fabrication of vessel-like microfluidic channels that has the potential to be used in thick tissue or organ fabrication in the future. In this research, we investigate the manufacturability of printable micro-fluidic channels, where micro-fluidic channels support mechanical integrity as well as enable fluid transport in 3D. A pressure-assisted solid freeform fabrication platform is developed with a coaxial needle dispenser unit to print hollow hydrogel filaments. The dispensing rheology is studied, and effects of material properties on structural formation of hollow filaments are analyzed. Sample structures are printed through the developed computer-controlled system. In addition, cell viability and gene expression studies are presented in this paper. Cell viability shows that cartilage progenitor cells (CPCs) maintained their viability right after bioprinting and during prolonged in vitro culture. Real-time PCR analysis yielded a relatively higher expression of cartilage-specific genes in alginate hollow filament encapsulating CPCs, compared with monolayer cultured CPCs, which revealed that printable semi-permeable micro-fluidic channels provided an ideal environment for cell growth and function. (paper)

  9. Improving acoustic streaming effects in fluidic systems by matching SU-8 and polydimethylsiloxane layers.

    Catarino, S O; Minas, G; Miranda, J M

    2016-07-01

    This paper reports the use of acoustic waves for promoting and improving streaming in tridimensional polymethylmethacrylate (PMMA) cuvettes of 15mm width×14mm height×2.5mm thickness. The acoustic waves are generated by a 28μm thick poly(vinylidene fluoride) - PVDF - piezoelectric transducer in its β phase, actuated at its resonance frequency: 40MHz. The acoustic transmission properties of two materials - SU-8 and polydimethylsiloxane (PDMS) - were numerically compared. It was concluded that PDMS inhibits, while SU-8 allows, the transmission of the acoustic waves to the propagation medium. Therefore, by simulating the acoustic transmission properties of different materials, it is possible to preview the acoustic behavior in the fluidic system, which allows the optimization of the best layout design, saving costs and time. This work also presents a comparison between numerical and experimental results of acoustic streaming obtained with that β-PVDF transducer in the movement and in the formation of fluid recirculation in tridimensional closed domains. Differences between the numerical and experimental results are credited to the high sensitivity of acoustic streaming to the experimental conditions and to limitations of the numerical method. The reported study contributes for the improvement of simulation models that can be extremely useful for predicting the acoustic effects of new materials in fluidic devices, as well as for optimizing the transducers and matching layers positioning in a fluidic structure. PMID:27044029

  10. Self-Compacting Concrete

    Okamura, Hajime; OUCHI, Masahiro

    2003-01-01

    Self-compacting concrete was first developed in 1988 to achieve durable concrete structures. Since then, various investigations have been carried out and this type of concrete has been used in practical structures in Japan, mainly by large construction companies. Investigations for establishing a rational mix-design method and self-compactability testing methods have been carried out from the viewpoint of making self-compacting concrete a standard concrete.

  11. Compact instrument for fluorescence image-guided surgery

    Wang, Xinghua; Bhaumik, Srabani; Li, Qing; Staudinger, V. Paul; Yazdanfar, Siavash

    2010-03-01

    Fluorescence image-guided surgery (FIGS) is an emerging technique in oncology, neurology, and cardiology. To adapt intraoperative imaging for various surgical applications, increasingly flexible and compact FIGS instruments are necessary. We present a compact, portable FIGS system and demonstrate its use in cardiovascular mapping in a preclinical model of myocardial ischemia. Our system uses fiber optic delivery of laser diode excitation, custom optics with high collection efficiency, and compact consumer-grade cameras as a low-cost and compact alternative to open surgical FIGS systems. Dramatic size and weight reduction increases flexibility and access, and allows for handheld use or unobtrusive positioning over the surgical field.

  12. Uniaxial backfill block compaction

    The main parts of the project were: to make a literature survey of the previous uniaxial compaction experiments; do uniaxial compaction tests in laboratory scale; and do industrial scale production tests. Object of the project was to sort out the different factors affecting the quality assurance chain of the backfill block uniaxial production and solve a material sticking to mould problem which appeared during manufacturing the blocks of bentonite and cruched rock mixture. The effect of mineralogical and chemical composition on the long term functionality of the backfill was excluded from the project. However, the used smectite-rich clays have been tested for mineralogical consistency. These tests were done in B and Tech OY according their SOPs. The objective of the Laboratory scale tests was to find right material- and compaction parameters for the industrial scale tests. Direct comparison between the laboratory scale tests and industrial scale tests is not possible because the mould geometry and compaction speed has a big influence for the compaction process. For this reason the selected material parameters were also affected by the previous compaction experiments. The industrial scale tests were done in summer of 2010 in southern Sweden. Blocks were done with uniaxial compaction. A 40 tons of the mixture of bentonite and crushed rock blocks and almost 50 tons of Friedland-clay blocks were compacted. (orig.)

  13. Compact boson stars

    Hartmann, Betti [School of Engineering and Science, Jacobs University, Postfach 750 561, D-28725 Bremen (Germany); Kleihaus, Burkhard; Kunz, Jutta [Institut fuer Physik, Universitaet Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Schaffer, Isabell, E-mail: i.schaffer@jacobs-university.de [School of Engineering and Science, Jacobs University, Postfach 750 561, D-28725 Bremen (Germany)

    2012-07-24

    We consider compact boson stars that arise for a V-shaped scalar field potential. They represent a one parameter family of solutions of the scaled Einstein-Gordon equations. We analyze the physical properties of these solutions and determine their domain of existence. Along their physically relevant branch emerging from the compact Q-ball solution, their mass increases with increasing radius. Employing arguments from catastrophe theory we argue that this branch is stable, until the maximal value of the mass is reached. There the mass and size are on the order of magnitude of the Schwarzschild limit, and thus the spiraling respectively oscillating behaviour, well known for compact stars, sets in.

  14. A first implementation of an automated reel-to-reel fluidic self-assembly machine.

    Park, Se-Chul; Fang, Jun; Biswas, Shantonu; Mozafari, Mahsa; Stauden, Thomas; Jacobs, Heiko O

    2014-09-10

    A first automated reel-to-reel fluidic selfassembly process for macroelectronic applications is reported. This system enables high-speed assembly of semiconductor dies (15 000 chips per hour using a 2.5 cm-wide web) over large-area substrates. The optimization of the system (>99% assembly yield) is based on identification, calculation, and optimization of the relevant forces. As an application, the production of a solid-state lighting panel is discussed, involving a novel approach to apply a conductive layer through lamination. PMID:24975472

  15. Fluidic harvesters in free stream turbulence undergoing flow-induced vibrations or flutter

    Gomez, Joan; Azadeh Ranjbar, Vahid; Goushcha, Oleg; Andreopoulos, Yiannis; Elvin, Niell

    2015-11-01

    In the present experimental work we investigated the performance of fluidic harvesters consisting of cylindrical body mounted of the tip of a flexible beam in the presence of nearly homogeneous and isotropic turbulence. Circular, semi-circular and square shapes have been tested. It was found that turbulence interferes with resonance conditions between the flow and the structure in the case of vortex induced vibrations and has absolutely no effect in flutter dominated case. As a result, turbulence increases the power output of non-linear harvesters subjected to vortex induces vibration and it has no effect in harvester under flutter conditions. Supported by NSF Grant: CBET #1033117.

  16. Picosecond Laser Machining of Metallic and Polymer Substrates for Fluidic Driven Self-Alignment

    Römer, G. R. B. E.; Cerro, D. Arnaldo Del; Pohl, R.; Chang, B.; Liimatainen, V.; Zhou, Q.; Veld, A. J. Huis In `t.

    Fluidic self-alignment of micro-components relies on creating a receptor site that is able to confine a liquid droplet. When a micro-component is brought in contact with the droplet, capillary forces move the component to its final position. A method to stop the advancing of a liquid from a receptor site, consists of creating geometrical features, such as edges around the site. A picosecond pulsed laser source was used to create suitable edges in a metallic and a polyimide substrate. Subsequently, the self-alignment capabilities of these sites were tested. The receptor sites in polyimide showed the highest success rate.

  17. Flow behaviour and drag reduction of fluidic ash-water slurries

    Vlasák, Pavel; Chára, Zdeněk

    Johannesburg : The S.A. Institute of Mining and Metallurgy and BHR Group, 2007, s. 39-55. ISBN 978-1-85598-084-6. - (Symposium Series. S 46). [HYDROTRANSPORT: International Conference on the Hydraulic Transport of Solids /17./. Cape Town (ZA), 08.05.2007-10.05.2007] R&D Projects: GA AV ČR IAA200600503 Institutional research plan: CEZ:AV0Z20600510 Keywords : fluidic ash slurry * laminar flow * turbulent flow * laminar/turbulent transition * drag reduction Subject RIV: BK - Fluid Dynamics

  18. Picosecond Laser Machining of Metallic and Polymer Substrates for Fluidic Driven Self-Alignment

    Römer, G.R.B.E.; Cerro, D. Arnaldo Del; Pohl, R.; Chang, B.; Liimatainen, V.; Q. Zhou; Veld, A.J. Huis In ‘t

    2012-01-01

    Fluidic self-alignment of micro-components relies on creating a receptor site that is able to confine a liquid droplet. When a micro-component is brought in contact with the droplet, capillary forces move the component to its final position. A method to stop the advancing of a liquid from a receptor site, consists of creating geometrical features, such as edges around the site. A picosecond pulsed laser source was used to create suitable edges in a metallic and a polyimide substrate. Subseque...

  19. Roller compaction of theophylline

    Hadzovic, Ervina

    2008-01-01

    1. Summary Direct compaction requires a very good flowability and compressibility of the materials. Those parameters become even more critical if the formulation contains large amount of active substance. To overcome these problems, several alternatives have been used. Roller compaction is a very attractive technology in the pharmaceutical industry. It is a fast and efficient way of producing granules, especially suitable for moisture sensitive materials. The intention of this work was to ...

  20. Proton beam writing of long, arbitrary structures for micro/nano photonics and fluidics applications

    Udalagama, Chammika; Teo, E. J.; Chan, S. F.; Kumar, V. S.; Bettiol, A. A.; Watt, F.

    2011-10-01

    The last decade has seen proton beam writing maturing into a versatile lithographic technique able to produce sub-100 nm, high aspect ratio structures with smooth side walls. However, many applications in the fields of photonics and fluidics require the fabrication of structures with high spatial resolution that extends over several centimetres. This cannot be achieved by purely magnetic or electrostatic beam scanning due to the large off-axis beam aberrations in high demagnification systems. As a result, this has limited us to producing long straight structures using a combination of beam and stage scanning. In this work we have: (1) developed an algorithm to include any arbitrary pattern into the writing process by using a more versatile combination of beam and stage scanning while (2) incorporating the use of the ubiquitous AutoCAD DXF (drawing exchange format) into the design process. We demonstrate the capability of this approach in fabricating structures such as Y-splitters, Mach-Zehnder modulators and microfluidic channels that are over several centimetres in length, in polymer. We also present optimisation of such parameters as scanning speed and scanning loops to improve on the surface roughness of the structures. This work opens up new possibilities of using CAD software in PBW for microphotonics and fluidics device fabrication.

  1. Proton beam writing of long, arbitrary structures for micro/nano photonics and fluidics applications

    Udalagama, Chammika, E-mail: chammika@nus.edu.sg [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore (NUS), 2 Science Drive 3, Singapore 117542 (Singapore); Teo, E.J. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore (NUS), 2 Science Drive 3, Singapore 117542 (Singapore); Chan, S.F. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore (NUS), 2 Science Drive 3, Singapore 117542 (Singapore); NUS Nanoscience and Nanotechnology Initiative, 2 Science Drive 3, 117542 (Singapore); Department of Chemistry, NUS, 3 Science Drive 3, 117543 (Singapore); Kumar, V.S.; Bettiol, A.A.; Watt, F. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore (NUS), 2 Science Drive 3, Singapore 117542 (Singapore)

    2011-10-15

    The last decade has seen proton beam writing maturing into a versatile lithographic technique able to produce sub-100 nm, high aspect ratio structures with smooth side walls. However, many applications in the fields of photonics and fluidics require the fabrication of structures with high spatial resolution that extends over several centimetres. This cannot be achieved by purely magnetic or electrostatic beam scanning due to the large off-axis beam aberrations in high demagnification systems. As a result, this has limited us to producing long straight structures using a combination of beam and stage scanning. In this work we have: (1) developed an algorithm to include any arbitrary pattern into the writing process by using a more versatile combination of beam and stage scanning while (2) incorporating the use of the ubiquitous AutoCAD DXF (drawing exchange format) into the design process. We demonstrate the capability of this approach in fabricating structures such as Y-splitters, Mach-Zehnder modulators and microfluidic channels that are over several centimetres in length, in polymer. We also present optimisation of such parameters as scanning speed and scanning loops to improve on the surface roughness of the structures. This work opens up new possibilities of using CAD software in PBW for microphotonics and fluidics device fabrication.

  2. Fabrication of Biochips with Micro Fluidic Channels by Micro End-milling and Powder Blasting

    Dong Sam Park

    2008-02-01

    Full Text Available For microfabrications of biochips with micro fluidic channels, a large number of microfabrication techniques based on silicon or glass-based Micro-Electro-Mechanical System (MEMS technologies were proposed in the last decade. In recent years, for low cost and mass production, polymer-based microfabrication techniques by microinjection molding and micro hot embossing have been proposed. These techniques, which require a proper photoresist, mask, UV light exposure, developing, and electroplating as a preprocess, are considered to have some problems. In this study, we propose a new microfabrication technology which consists of micro end-milling and powder blasting. This technique could be directly applied to fabricate the metal mold without any preprocesses. The metal mold with micro-channels is machined by micro end-milling, and then, burrs generated in the end-milling process are removed by powder blasting. From the experimental results, micro end-milling combined with powder blasting could be applied effectively for fabrication of the injection mold of biochips with micro fluidic channels.

  3. A microscope automated fluidic system to study bacterial processes in real time.

    Adrien Ducret

    Full Text Available Most time lapse microscopy experiments studying bacterial processes ie growth, progression through the cell cycle and motility have been performed on thin nutrient agar pads. An important limitation of this approach is that dynamic perturbations of the experimental conditions cannot be easily performed. In eukaryotic cell biology, fluidic approaches have been largely used to study the impact of rapid environmental perturbations on live cells and in real time. However, all these approaches are not easily applicable to bacterial cells because the substrata are in all cases specific and also because microfluidics nanotechnology requires a complex lithography for the study of micrometer sized bacterial cells. In fact, in many cases agar is the experimental solid substratum on which bacteria can move or even grow. For these reasons, we designed a novel hybrid micro fluidic device that combines a thin agar pad and a custom flow chamber. By studying several examples, we show that this system allows real time analysis of a broad array of biological processes such as growth, development and motility. Thus, the flow chamber system will be an essential tool to study any process that take place on an agar surface at the single cell level.

  4. Design and simulation of bio fluidic sensor based on photonic crystal

    Rajini Gaddam Kesava Reddy

    2014-03-01

    Full Text Available Photonic crystals are materials patterned with a periodicity in dielectric constant in one, two and three dimensions and associated with Bragg scattering which can create range of forbidden frequencies called Photonic Band Gap (PBG. By optimizing various parameters and creating defects, we will review the design and characterization of waveguides, optical cavities and multi-fluidic channel devices. We have used such waveguides and laser nanocavities as Biosensor, in which field intensity is strongly dependent on the type of biofliud and its refractive index. This design and simulation technique leads to development of a nanophotonic sensor for detection of biofluids.  In this paper, we have simulated sensing of biofliud in various photonic defect structures with the help of a numerical algorithm called Finite Difference Time Domain (FDTD method. The simulation result shows the high sensitivity for the change in the bio-molecular structure. For developing the complete sensor system, we have to use the MEMS technologies to integrate on-chip fluidic transport components with sensing systems. The resulting biofluidic system will have the capability to continuously monitor the concentration of a large number of relevant biological molecules continuously from ambulatory patients.   Keywords: FDTD, Photonic Crystals, Bio fluid Sensor, Optical Cavity.

  5. Thermo-fluidic devices and materials inspired from mass and energy transport phenomena in biological system

    Jian XIAO; Jing LIU

    2009-01-01

    Mass and energy transport consists of one of the most significant physiological processes in nature, which guarantees many amazing biological phenomena and activ-ities. Borrowing such idea, many state-of-the-art thermo-fluidic devices and materials such as artificial kidneys, carrier erythrocyte, blood substitutes and so on have been successfully invented. Besides, new emerging technologies are still being developed. This paper is dedicated to present-ing a relatively complete review of the typical devices and materials in clinical use inspired by biological mass and energy transport mechanisms. Particularly, these artificial thermo-fluidic devices and materials will be categorized into organ transplantation, drug delivery, nutrient transport, micro operation, and power supply. Potential approaches for innovating conventional technologies were discussed, corresponding biological phenomena and physical mechan-isms were interpreted, future promising mass-and-energy-transport-based bionic devices were suggested, and prospects along this direction were pointed out. It is expected that many artificial devices based on biological mass and energy transport principle will appear to better improve vari-ous fields related to human life in the near future.

  6. Assessment of fluid flow characteristics for fluidic device in APR 1400

    New evolutionary light water reactors (LWRs) are being developed all over the world today. Some of those LWRs employ so-called passive safety components that use natural phenomena as the driving force such as expansion of pressurised gas, natural circulation, and so forth. These passive safety components and their systems are applied to improve the safety of nuclear power plants, further achieving not only to simplify the safety system, but also to improve its reliability and to provide a sufficient time margin to enable the operators to cope with accidents. The APR 1400 (Advanced Pressurised Water Reactor), which is a Korean Next Generation Reactor, adopted fluidic device as one of its passive pieces of safety equipment. The fluidic device is installed at the bottom of the inner space of the Safety Injection Tank (SIT) to control the flow rate of emergency cooling water during a large break loss of coolant accident (LBLOCA). During the past two years, a scale model test to obtain the required flow characteristics of the device under the APR 1400 specific conditions has been performed in Korea. The performance verification test was conducted to obtain the optimum characteristics and design data of full fluidic device (FD). In this study, the thermal-hydraulic characteristics for the fluidic device are analysed using SIMPLE algorithm with an aim to develop the assessment and verification guidelines for the APR 1400. To assess the flow characteristics for fluidic device, a three dimensional numerical model is developed and its results are compared with those of experiments. The fluid flow characteristics of the FD, which is passive flow control device in the SIT of APR-1400 are assessed using SIMPLE algorithm using FLUENT code and are compared with the experimental results. In this study, the fluid flow rate and pressure in the FD are predicted on the basis of the boundary condition at the entrance of supply port, control port, and discharge port respectively, so as

  7. Compact Dynamical Foliations

    Carrasco, Pablo D

    2011-01-01

    According to the work of Dennis Sullivan, there exists a smooth flow on the 5-sphere all of whose orbits are periodic although there is no uniform bound on their periods. The question addressed in this article is whether such an example can occur in the partially hyperbolic context. That is, does there exist a partially hyperbolic diffeomorphism of a compact manifold such that all the leaves of its center foliation are compact although there is no uniform bound for their volumes. We will show that the previous question has negative answer under very natural hypothesis as one-dimensional center foliation, transitivity or in the volume preserving case. Moreover we study the dynamical properties of partially hyperbolic maps preserving a compact center foliation. We prove in particular that if the number of center leaves with non-trivial holonomy is finite then the map is plaque expansive.

  8. Fluidic oscillator-mediated microbubble generation to provide cost effective mass transfer and mixing efficiency to the wastewater treatment plants.

    Rehman, Fahad; Medley, Gareth J D; Bandulasena, Hemaka; Zimmerman, William B J

    2015-02-01

    Aeration is one of the most energy intensive processes in the waste water treatment plants and any improvement in it is likely to enhance the overall efficiency of the overall process. In the current study, a fluidic oscillator has been used to produce microbubbles in the order of 100 μm in diameter by oscillating the inlet gas stream to a pair of membrane diffusers. Volumetric mass transfer coefficient was measured for steady state flow and oscillatory flow in the range of 40-100l/min. The highest improvement of 55% was observed at the flow rates of 60, 90 and 100l/min respectively. Standard oxygen transfer rate and efficiency were also calculated. Both standard oxygen transfer rate and efficiency were found to be considerably higher under oscillatory air flow conditions compared to steady state airflow. The bubble size distributions and bubble densities were measured using an acoustic bubble spectrometer and confirmed production of monodisperse bubbles with approximately 100 μm diameters with fluidic oscillation. The higher number density of microbubbles under oscillatory flow indicated the effect of the fluidic oscillation in microbubble production. Visual observations and dissolved oxygen measurements suggested that the bubble cloud generated by the fluidic oscillator was sufficient enough to provide good mixing and to maintain uniform aerobic conditions. Overall, improved mass transfer coefficients, mixing efficiency and energy efficiency of the novel microbubble generation method could offer significant savings to the water treatment plants as well as reduction in the carbon footprint. PMID:25483415

  9. Development of a millimetrically scaled biodiesel transesterification device that relies on droplet-based co-axial fluidics

    Yeh, S. I.; Huang, Y. C.; Cheng, C. H.; Cheng, C. M.; Yang, J. T.

    2016-01-01

    In this study, we investigated a fluidic system that adheres to new concepts of energy production. To improve efficiency, cost, and ease of manufacture, a millimetrically scaled device that employs a droplet-based co-axial fluidic system was devised to complete alkali-catalyzed transesterification for biodiesel production. The large surface-to-volume ratio of the droplet-based system, and the internal circulation induced inside the moving droplets, significantly enhanced the reaction rate of immiscible liquids used here – soybean oil and methanol. This device also decreased the molar ratio between methanol and oil to near the stoichiometric coefficients of a balanced chemical equation, which enhanced the total biodiesel volume produced, and decreased the costs of purification and recovery of excess methanol. In this work, the droplet-based co-axial fluidic system performed better than other methods of continuous-flow production. We achieved an efficiency that is much greater than that of reported systems. This study demonstrated the high potential of droplet-based fluidic chips for energy production. The small energy consumption and low cost of the highly purified biodiesel transesterification system described conforms to the requirements of distributed energy (inexpensive production on a moderate scale) in the world. PMID:27426677

  10. Development of a millimetrically scaled biodiesel transesterification device that relies on droplet-based co-axial fluidics.

    Yeh, S I; Huang, Y C; Cheng, C H; Cheng, C M; Yang, J T

    2016-01-01

    In this study, we investigated a fluidic system that adheres to new concepts of energy production. To improve efficiency, cost, and ease of manufacture, a millimetrically scaled device that employs a droplet-based co-axial fluidic system was devised to complete alkali-catalyzed transesterification for biodiesel production. The large surface-to-volume ratio of the droplet-based system, and the internal circulation induced inside the moving droplets, significantly enhanced the reaction rate of immiscible liquids used here - soybean oil and methanol. This device also decreased the molar ratio between methanol and oil to near the stoichiometric coefficients of a balanced chemical equation, which enhanced the total biodiesel volume produced, and decreased the costs of purification and recovery of excess methanol. In this work, the droplet-based co-axial fluidic system performed better than other methods of continuous-flow production. We achieved an efficiency that is much greater than that of reported systems. This study demonstrated the high potential of droplet-based fluidic chips for energy production. The small energy consumption and low cost of the highly purified biodiesel transesterification system described conforms to the requirements of distributed energy (inexpensive production on a moderate scale) in the world. PMID:27426677

  11. Development of Two Color Fluorescent Imager and Integrated Fluidic System for Nanosatellite Biology Applications

    Wu, Diana Terri; Ricco, Antonio Joseph; Lera, Matthew P.; Timucin, Linda R.; Parra, Macarena P.

    2012-01-01

    Nanosatellites offer frequent, low-cost space access as secondary payloads on launches of larger conventional satellites. We summarize the payload science and technology of the Microsatellite in-situ Space Technologies (MisST) nanosatellite for conducting automated biological experiments. The payload (two fused 10-cm cubes) includes 1) an integrated fluidics system that maintains organism viability and supports growth and 2) a fixed-focus imager with fluorescence and scattered-light imaging capabilities. The payload monitors temperature, pressure and relative humidity, and actively controls temperature. C. elegans (nematode, 50 m diameter x 1 mm long) was selected as a model organism due to previous space science experience, its completely sequenced genome, size, hardiness, and the variety of strains available. Three strains were chosen: two green GFP-tagged strains and one red tdTomato-tagged strain that label intestinal, nerve, and pharyngeal cells, respectively. The integrated fluidics system includes bioanalytical and reservoir modules. The former consists of four 150 L culture wells and a 4x5 mm imaging zone the latter includes two 8 mL fluid reservoirs for reagent and waste storage. The fluidic system is fabricated using multilayer polymer rapid prototyping: laser cutting, precision machining, die cutting, and pressure-sensitive adhesives it also includes eight solenoid-operated valves and one mini peristaltic pump. Young larval-state (L2) nematodes are loaded in C. elegans Maintenance Media (CeMM) in the bioanalytical module during pre-launch assembly. By the time orbit is established, the worms have grown to sufficient density to be imaged and are fed fresh CeMM. The strains are pumped sequentially into the imaging area, imaged, then pumped into waste. Reagent storage utilizes polymer bags under slight pressure to prevent bubble formation in wells or channels. The optical system images green and red fluorescence bands by excitation with blue (473 nm peak

  12. Tachyons in Compact Spaces

    Suyama, T

    2005-01-01

    We discuss condensations of closed string tachyons localized in compact spaces. Time evolution of an on-shell condensation is naturally related to the worldsheet RG flow. Some explicit tachyonic compactifications of Type II string theory is considered, and some of them are shown to decay into supersymmetric theories known as the little string theories.

  13. Limestone compaction: an enigma

    Shinn, Eugene A.; Halley, Robert B.; Hudson, J. Harold; Lidz, Barbara H.

    1977-01-01

    Compression of an undisturbed carbonate sediment core under a pressure of 556 kg/cm2 produced a “rock” with sedimentary structures similar to typical ancient fine-grained limestones. Surprisingly, shells, foraminifera, and other fossils were not noticeably crushed, which indicates that absence of crushed fossils in ancient limestones can no longer be considered evidence that limestones do not compact.

  14. Compact fusion reactors

    Compact, high-power-density approaches to fusion power are proposed to improve economic viability through the use of less-advanced technology in systems of considerably reduced scale. The rationale for and the means by which these systems can be achieved are discussed, as are unique technological problems

  15. High frequency fluidic and microfluidic sensors for contactless dielectric and in vitro cell culture measurement applications

    There is a widespread need for highly-sensitive robust sensors that operate without direct contact to the fluid for analysis of fluids in bioprocess technology. Measuring the variation of dielectric properties (conductivity and permittivity) in the microwave frequency band can be used as an approach to investigate biological and chemical matter and processes such as, cell growth, cell metabolism and the concentration of large aqueous based molecules. In comparison to measurement at lower frequencies, DC conductivity (σ) effects on material properties (permittivity ε) can be neglected with increasing of the frequency. This presentation describes a high frequency sensor, which combines detection in macro- or microfluidic networks with quick and precise analysis. It is composed of a fluidic channel placed contactless between a micro-strip line waveguide combined with resonant properties.

  16. Accelerating a hybrid continuum-atomistic fluidic model with on-the-fly machine learning

    Stephenson, David; Lockerby, Duncan A

    2016-01-01

    We present a hybrid continuum-atomistic scheme which combines molecular dynamics (MD) simulations with on-the-fly machine learning techniques for the accurate and efficient prediction of multiscale fluidic systems. By using a Gaussian process as a surrogate model for the computationally expensive MD simulations, we use Bayesian inference to predict the system behaviour at the atomistic scale, purely by consideration of the macroscopic inputs and outputs. Whenever the uncertainty of this prediction is greater than a predetermined acceptable threshold, a new MD simulation is performed to continually augment the database, which is never required to be complete. This provides a substantial enhancement to the current generation of hybrid methods, which often require many similar atomistic simulations to be performed, discarding information after it is used once. We apply our hybrid scheme to nano-confined unsteady flow through a high-aspect-ratio converging-diverging channel, and make comparisons between the new s...

  17. Fabrication of fluidic devices with 30 nm nanochannels by direct imprinting

    Cuesta, Irene Fernandez; Palmarelli, Anna Laura; Liang, Xiaogan;

    2011-01-01

    In this work, we propose an innovative approach to the fabrication of a complete micro/nano fluidic system, based on direct nanoimprint lithography. The fabricated device consists of nanochannels connected to U-shaped microchannels by triangular tapered inlets, and has four large reservoirs for...... liquid input. A master silicon stamp with the multilevel structures is fabricated first, and then a negative replica is made, to be used as a stamp for ultraviolet nanoimprint lithography (UV-NIL). Afterwards, just one single UV-NIL step is necessary for patterning all the the micro and nanostructures....... Furthermore, the devices are made of all-transparent materials, and the method allows flexibility for the type of substrates used. The active material (an inorganic-organic hybrid polymer) used for the fabrication of the device has been carefully chosen, so it has adequate surface properties (inert and...

  18. Micro-fluidic tools for the liquid-liquid extraction of radionuclides in analytical procedures

    The analyses of radionuclides are in great demand and a cost effective technique for the separation of analytes is required. A micro-scale reactor composed of microchannels fabricated in a microchip was chosen to investigate liquid-liquid extraction reactions driven by three different families of metal extractants: neutral, acidic and ion-pair extractants. The extraction conditions in the micro-fluidic device were considered. These investigations demonstrated that the conventional methodology used for solvent extraction in macro-scale reactors is not directly transposable to micro liquid-liquid extraction systems. However, it is expected that the understanding of the chemical and physical phenomena involved in a reference extraction systems studied in a given selected lab-on-chip will lead us to develop and validate a methodology suitable to miniaturized reactors. (authors)

  19. Fluidic Self-Assembly Using Molten Ga Bumps and Its Application to Resonant Tunneling Diodes

    Nakano, Jun; Shibata, Tomoaki; Morita, Hiroki; Sakamoto, Hiroshi; Mori, Masayuki; Maezawa, Koichi

    2013-11-01

    Fluidic self-assembly (FSA) using molten metal bumps is one of the most promising heterogeneous integration (HI) technologies, which enable us to integrate devices made of various materials on various substrates. We can fabricate the metal bumps using Ga having diameters of 24, 18, 12, and 8 µm with good yield. Using Ga has significant advantages; especially, it includes no toxic metals. These bumps were used for the FSA process of the metal dummy blocks having a diameter of 18 µm, and a good yield of 84% was obtained all over the substrate of about 1×1 cm2. Finally, we applied this method to the resonant tunneling diode (RTD) to verify good electrical, mechanical, and thermal contacts. The RTD device blocks having a diameter of 24 µm have been successfully assembled using the molten Ga bumps. This method is promising for high-performance RTD integration.

  20. Acousto-fluidic system assisting in-liquid self-assembly of microcomponents

    In this paper, we present the theoretical background, design, fabrication and characterization of a micromachined chamber assisting the fluidic self-assembly of micro-electro-mechanical systems in a bulk liquid. Exploiting bubble-induced acoustic microstreaming, several structurally-robust driving modes are excited inside the chamber. The modes promote the controlled aggregation and disaggregation of microcomponents relying on strong and reproducible fluid mixing effects achieved even at low Reynolds numbers. The functionality of the microfluidic chamber is demonstrated through the fast and repeatable geometrical pairing and subsequent unpairing of polymeric microcylinders. Relying only on drag and radiation forces and on the natural hydrophobicity of SU-8 in aqueous solutions, assembly yields of approximately 50% are achieved in no longer than ten seconds of agitation. The system can stochastically control the assembly process and significantly reduce the time-to-assembly of building blocks. (paper)

  1. Design and testing of micro fluidic chemical analysis chip integrated with micro valveless pump

    FU; Xin; XIE; Haibo; YANG; Huayong; JIA; Zhijian; FANG; Qun

    2005-01-01

    A new structure and working principle of the chip integrated with micro valveless pump for capillary electrophoresis was proposed in this paper. The micro valveless pump with plane structure has advantages of simple structure, and the process technology is compatible with existing micro chips for capillary electrophoresis. Based upon the mathematical model, simulation study of micro pump was carried out to investigate the influence of structural parameters on flow characteristics, and the performance of the integrated micro pump was also tested with different control parameters. The simulation results agree with the experimental results. Three samples, which are amino acid, fluorescein and buffer solution, have been examined with this chip. The results of the primary experiments showed that the micro valveless pump was promising in the integration and automatization of miniature integrated fluidic systems.

  2. A Fluidic Cell Embedded Electromagnetic Wave Sensor for Online Indication of Neurological Impairment during Surgical Procedures

    Lactate is known to be an indicator of neurological impairment during aortic aneurysm surgery. It is suggested that cerebrospinal fluid removed during such surgery could provide useful information in this regard. Medical professionals find the prospect of online detection of such analytes exciting, as current practice is time consuming and leads to multiple invasive procedures. Advancing from the current laboratory based analysis techniques to online methods could provide the basis for improved treatment regimes, better quality of care, and enhanced resource efficiency within hospitals. Accordingly, this article considers the use of a low power fluidic system with embedded electromagnetic wave sensor to detect varying lactate concentrations. Results are promising over the physiological range of 0 − 20 mmol/L with a calibration curve demonstrating an R2 value > 0.98.

  3. New Drop Fluidics Enabled by Magnetic-Field-Mediated Elastocapillary Transduction.

    Biswas, Saheli; Pomeau, Yves; Chaudhury, Manoj K

    2016-07-12

    This research introduces a new drop fluidics that uses a deformable and stretchable elastomeric film as the platform instead of the commonly used rigid supports. Such a soft film impregnated with magnetic particles can be modulated with an external electromagnetic field that produces a vast array of topographical landscapes with varying surface curvature, which, in conjunction with capillarity, can direct and control the motion of water droplets efficiently and accurately. When a thin layer of oil is present on this film that is deformed locally, a centrosymmetric wedge is formed. A water droplet placed on this oil-laden film becomes asymmetrically deformed, thus producing a gradient of Laplace pressure within the droplet and setting it in motion. A simple theory is presented that accounts for the droplet speed in terms of such geometric variables as the volume of the droplet and the thickness of the oil film covering the soft elastomeric film as well as material variables such as the viscosity of the oil and the interfacial tension of the oil-water interfaces. Following the verification of the theoretical result using well-controlled model systems, we demonstrate how the electromagnetically controlled elastocapillary force can be used to manipulate the motion of single and/or multiple droplets on the surface of the elastomeric film and how elementary operations such as drop fusion and thermally addressed chemical transformation can be carried out in aqueous droplets. It is expected that the resulting drop fluidics would be suitable for the digital control of drop motion by simply switching on and off the electromagnetic fields applied at different positions underneath the elastomeric film in a Boolean sequence. We anticipate that this method of directing and manipulating water droplets is poised for application in various biochemical reaction engineering situations, an example of which is the polymerase chain reaction (PCR). PMID:27300489

  4. A membrane-based serpentine-shape pneumatic micropump with pumping performance modulated by fluidic resistance

    This paper reports a new membrane-based pneumatic micropump with new serpentine-shape (S-shape) pneumatic channels intended for achieving high-throughput pumping in a microfluidic system at a relatively low pumping rate and a board flow rate range. The key feature of this design is the ability to modulate the pumping rates by fine-tuning the fluidic resistance of injected compressed air in the designed pneumatic microchannels and the chambers of the micropump. In the study, several S-shape pneumatic micropumps with various layouts were designed and fabricated based on thick-film photoresist lithography and polydimethylsiloxane (PDMS) replication processes. To investigate designs with a suitable pumping performance, S-shape pneumatic micropumps with varied lengths (1000, 5000 and 10 000 µm), varied widths (20, 40 and 200 µm) of the pneumatic microchannel bridging two rectangular pneumatic chambers, and different numbers of pneumatic channel bends (two and four U-shape bends) were designed and evaluated experimentally by using high-speed CCD-coupled microscopic observation of the movement of PDMS membrane pulsation and pumping rate measurements. The results revealed that under the experimental conditions studied, the layout of the S-shape pneumatic micropump with three rectangular pneumatic chambers, 5000 µm long and 40 µm wide pneumatic microchannel and four U-shape bends in the pneumatic microchannel was found to be capable of providing a broader pumping rate range from 0 to 539 µl h−1 compared to the other designs. As a whole, the experimental results demonstrate the use of fluidic resistance of injected air in a pneumatic micropump with S-shape layout to control its pumping performance, which largely expands the flexibility of its pumping application in a microfluidic system

  5. In Vivo Imaging of Intraocular Fluidics in Vitrectomized Swine Eyes Using a Digital Fluoroscopy System

    Tandogan, Tamer; Khoramnia, Ramin; Auffarth, Gerd Uwe; Koss, Michael Janusz; Choi, Chul Young

    2016-01-01

    Purpose. To describe the characteristics of intraocular fluidics during cataract surgery in swine eyes with prior vitrectomy. Methods. We prepared three groups of enucleated swine eyes (nonvitrectomized, core, and totally vitrectomized). Irrigation and aspiration were performed (2.7 mm conventional sleeved phacosystem) using a balanced saline solution mixed with a water-soluble radiopaque contrast medium at 1 : 1 ratio. We imaged the eyes using a digital fluoroscopy system (DFS) during phacoemulsification and compared the characteristics of the intraocular fluid dynamics between the groups. Results. The anterior chamber depth (ACD) after the commencement of irrigation differed between groups (2.25 ± 0.06 mm; 2.33 ± 0.06 mm; 3.17 ± 0.11 mm), as well as the height of the fluid flowing from the anterior chamber into the posterior cavity that was identified by lifting up the iris to correct the infusion deviation syndrome (0.00 ± 0.00 mm; 0.41 ± 0.04 mm; 2.19 ± 0.35 mm). Conclusions. DFS demonstrated differences in fluid dynamics during phacoemulsification in swine eyes with or without prior vitrectomy. In completely vitrectomized eyes, the large ACD, which developed during phacoemulsification, could be reduced by lifting the iris and allowing the fluid to shift to the posterior cavity. Recognizing the differences in fluidics of vitrectomized eyes as compared to those of the nonvitrectomized eyes may reduce the frequency of intraoperative complications. PMID:27127645

  6. The United Nations Global Compact

    Rasche, Andreas; Waddock, Sandra; McIntosh, Malcolm

    2013-01-01

    This article reviews the interdisciplinary literature on the UN Global Compact. The review identifies three research perspectives, which scholars have used to study the UN Global Compact so far: a historical perspective discussing the Global Compact in the context of UN-business relations, an ope...

  7. Compact torsatron reactors

    Low-aspect-ratio torsatron configurations could lead to compact stellarator reactors with R0 = 8--11m, roughly one-half to one-third the size of more conventional stellarator reactor designs. Minimum-size torsatron reactors are found using various assumptions. Their size is relatively insensitive to the choice of the conductor parameters and depends mostly on geometrical constraints. The smallest size is obtained by eliminating the tritium breeding blanket under the helical winding on the inboard side and by reducing the radial depth of the superconducting coil. Engineering design issues and reactor performance are examined for three examples to illustrate the feasibility of this approach for compact reactors and for a medium-size (R0 ≅ 4 m,/bar a/ /approx lt/ 1 m) copper-coil ignition experiment. 26 refs., 11 figs., 7 tabs

  8. Compact fusion reactors

    CERN. Geneva

    2015-01-01

    Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.

  9. Compact Spreader Schemes

    Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.

    2014-07-25

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  10. Compactly Generated Domain Theory

    Battenfeld, Ingo; Schröder, Matthias; Simpson, Alexander

    2006-01-01

    We propose compactly generated monotone convergence spaces as a well-behaved topological generalisation of directed-complete partial orders (dcpos). The category of such spaces enjoys the usual properties of categories of 'predomains' in denotational semantics. Moreover, such properties are retained if one restricts to spaces with a countable pseudobase in the sense of E. Michael, a fact that permits connections to be made with computability theory, realizability semantics and recent work on ...

  11. Energy report compact 2015

    The Energy Report compact 2015 from the Ministry of the Environment, Climate Protection and the Energy Sector and the State Office for Statistics Baden-Wuerttemberg provides an overview on the energy sector developments in Baden-Wuerttemberg in 2013. It contains numerous information on the energy consumption in Baden-Wuerttemberg, the energy productivity, the share of renewable energy sources, power generation and the energy-related CO2 emissions.

  12. Compact Quantum Groupoids

    Landsman, N.P.

    1999-01-01

    Quantum groupoids are a joint generalization of groupoids and quantum groups. We propose a definition of a compact quantum groupoid that is based on the theory of C*-algebras and Hilbert bimodules. The essential point is that whenever one has a tensor product over the complex numbers in the theory of quantum groups, one now uses a certain tensor product over the base algebra of the quantum groupoid.

  13. Compact Torsatron configurations

    Low-aspect-ratio stellarator configurations can be realized by using torsatron winding. Plasmas with aspect ratios in the range of 3.5 to 5 can be confined by these Compact Torsatron configurations. Stable operation at high Β should be possible in these devices, if a vertical field coil system is adequately designed to avoid breaking of the magnetic surfaces at finite Β. 17 refs., 21 figs., 1 tab

  14. An Oxidase-Based Electrochemical Fluidic Sensor with High-Sensitivity and Low-Interference by On-Chip Oxygen Manipulation

    Chang-Soo Kim; Jongwon Park; Nitin Radhakrishnan

    2012-01-01

    Utilizing a simple fluidic structure, we demonstrate the improved performance of oxidase-based enzymatic biosensors. Electrolysis of water is utilized to generate bubbles to manipulate the oxygen microenvironment close to the biosensor in a fluidic channel. For the proper enzyme reactions to occur, a simple mechanical procedure of manipulating bubbles was developed to maximize the oxygen level while minimizing the pH change after electrolysis. The sensors show improved sensitivities based on ...

  15. Development of Compact Lenses for Micro Four-Thirds System

    Koiwai, Tamotsu; Akita, Hidenori

    In 2010, "The micro SLR Olympus PEN" of Micro Four Thirds standard won double titles of CAMERA GRAND PRIX .The characteristics of Olympus PEN series are high-quality, compact, lightweight, no feeling of burden/stress and easy to take both still images and movies by SLR quality. Especially, the consciousness of compact and lightweight is taken into the series’ entire system including the body and interchangeable lenses. We have developed the interchangeable lenses by aiming ultimate miniaturization for optical and lens-barrel design along with making the miniaturizing compliance of Micro Four Thirds standard useful. In order to create compact and lightweight interchangeable lenses, a number of technical difficulties, such as realization of thinner design by adapting lens-barrel retraction system, lens-barrel with a high degree of accuracy, quick and silent AF, adaptation of special lenses, thorough trimming of weight, had to be overcome in the developmental process. Here we refer to these miniaturization technologies.

  16. Fluidics: what it is, where it is heading - and how it will change the world we line in

    Tesař, Václav

    Prague: Institute of Thermomechanics, Academy of Sciences of the Czech Republic, v. v. i., 2013 - (Zolotarev, I.), s. 3-12 ISBN 978-80-87012-47-5. ISSN 1805-8256. [ENGINEERING MECHANICS 2013 /19./. Svratka (CZ), 13.05.2013-16.05.2013] R&D Projects: GA TA ČR TA02020795; GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : fluidics * microfluidics * bioengineering Subject RIV: BK - Fluid Dynamics

  17. Fluidic low-frequency oscillator consisting of load-switched diverter and a pair of vortex chambers

    Tesař, Václav; Peszyński, K.; Smyk, E.

    Liberec: Polypress s.r.o, 2015 - (Dančová, P.; Veselý, M.), s. 792-799 [Experimental Fluid Mechanics 2015. Praha (CZ), 17.11.2015-20.11.2015] R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : fluidic oscillator * vortex chamber * load-switched diverter Subject RIV: BK - Fluid Dynamics

  18. Compactly generating all satisfying truth assignments of a Horn formula

    2010-01-01

    As instance of an overarching principle of exclusion an algorithm is presented that compactly (thus not one by one) generates all models of a Horn formula. The principle of exclusion can be adapted to generate only the models of weight $k$. We compare and contrast it with constraint programming, $0,1$ integer programming, and binary decision diagrams.

  19. Compact Mass Flow Meter Based on a Micro Coriolis Flow Sensor

    Remco Wiegerink

    2013-03-01

    Full Text Available In this paper we demonstrate a compact ready-to-use micro Coriolis mass flow meter. The full scale flow is 1 g/h (for water at a pressure drop < 1 bar. It has a zero stability of 2 mg/h and an accuracy of 0.5% reading for both liquids and gases. The temperature drift between 10 and 50 °C is below 1 mg/h/°C. The meter is robust, has standard fluidic connections and can be read out by means of a PC or laptop via USB. Its performance was tested for several common gases (hydrogen, helium, nitrogen, argon and air and liquids (water and isopropanol. As in all Coriolis mass flow meters, the meter is also able to measure the actual density of the medium flowing through the tube. The sensitivity of the measured density is ~1 Hz.m3/kg.

  20. Simulation of the fluidic features for diffuser/nozzle involved in a PZT-based valveless micropump

    HouWensheng; Zheng Xiaolin; Biswajit Das; Jiang Yingtao; Qian Shizhi; Wu Xiaoying; Zheng Zhigao

    2008-01-01

    PZT-based valveless micropump is a microactuator that can be used for controlling and delivering tiny amounts of fluids, and diffuser/nozzle plays an important role when this type of micropump drives the fluid flowing along a specific direction. In this paper, a numerical model of micropump has been proposed, and the fluidic properties of diffuser/nozzle have been simulated with ANSYS. With the method of finite-element analysis, the increased pressure drop between inlet and outlet of diffuser/nozzle induces the increment of flow rate in both diffuser and nozzle simultaneously, but the increasing rate of diffuser is faster than that of nozzle. The L/R, ratio of L (length of cone pipe) and R (radius of minimal cross section of cone pipe) plays an important role in fluidic performance of diffuser and nozzle as well, and the mean flow rate will decrease with increment of L/R. The mean flow rate reaches its peak value when L/R with the value of 10 regardless the divergence angle of diffuser or nozzle. The simulation results indicate that the fluidic properties of diffuser/nozzle can be defined by its geometric structure, and accordingly determine the efficiency of micropump.

  1. Atacama Compact Array Antennas

    Saito, Masao; Inatani, Junji; Nakanishi, Kouichiro; Naoi, Takahiro; Yamada, Masumi; Saito, Hiro; Ikenoue, Bungo; Kato, Yoshihiro; Morita, Kou-ichiro; Mizuno, Norikazu; Iguchi, Satoru

    2011-01-01

    We report major performance test results of the Atacama Compact Array (ACA) 7-m and 12-m antennas of ALMA (Atacama Large Millimeter/submillimeter Array). The four major performances of the ACA antennas are all-sky pointing (to be not more than 2.0 arcsec), offset pointing (to be < 0.6 arcsec) surface accuracy (< 25(20) micrometer for 12(7)m-antenna), stability of path-length (15 micrometer over 3 min), and high servo capability (6 degrees/s for Azimuth and 3 degrees/s for Elevation). The high...

  2. Compact synchrotron radiation source

    A compact 800 MeV synchrotron radiation source is discussed. The storage ring has a circumference of 30.3 m, two 90 degree and four 45 degree bending magnet sections, two long straight sections and four short straight sections. The radius of the bending magnet is 2.224m. The critical wave length is 24A. The injector is a 15 Mev Microtron Electrons are accelerated from 15 Mev to 800 Mev by ramping the field of the ring. The expected stored current will be around 100 ma

  3. Compact Q-balls

    Bazeia, D; Marques, M A; Menezes, R; da Rocha, R

    2016-01-01

    In this work we deal with non-topological solutions of the Q-ball type in two space-time dimensions, in models described by a single complex scalar field that engenders global symmetry. The main novelty is the presence of stable Q-balls solutions that live in a compact interval of the real line and appear from a family of models controlled by two distinct parameters. We find analytical solutions and study their charge and energy, and show how to control the parameters to make the Q-balls classically and quantum mechanically stable.

  4. A universal label-free biosensing platform based on opto-fluidic ring resonators

    Zhu, Hongying; White, Ian M.; Suter, Jonathan D.; Gohring, John; Fan, Xudong

    2009-02-01

    Rapid and accurate detection of biomolecules is important for medical diagnosis, pharmaceuticals, homeland security, food quality control, and environmental protection. A simple, low cost and highly sensitive label-free optical biosensor based on opto-fluidic ring resonator (OFRR) has been developed that naturally integrates microfluidics with ring resonators. The OFRR employs a piece of fused silica capillary with a diameter around 100 micrometers. The circular cross section of the capillary forms the ring resonator and light repeatedly travels along the resonator circumference in the form of whispering gallery modes (WGMs) through total internal reflection. When the capillary wall is as thin as a couple of micrometers (interacts with the sample when it flows through the OFRR. In order to detect the target molecules with high specificity, the OFRR inner surface is functionalized with receptors, such as antibodies, peptide-displayed bacteriophage or oligonucleotide DNA probes. The WGM spectral position shifts when biomolecules bind to the OFRR inner surface and change the local refractive index, which provides quantitative and kinetic information about the biomolecule interaction near the OFRR inner surface. The OFRR has been successfully demonstrated for detection of various types of biomoelcuels. Here, we will first introduce the basic operation principle of the OFRR as a sensor and then application examples of the OFRR in the detection of proteins, disease biomarkers, virus, DNA molecules, and cells with high sensitivities will be presented.

  5. A New Drop Fluidics Enabled by Magnetic Field Mediated Elasto-Capillary Transduction

    Biswas, Saheli; Chaudhury, Manoj K

    2016-01-01

    This research introduces a new drop fluidics, which uses a deformable and stretchable elastomeric film as the platform, instead of the commonly used rigid supports. Such a soft film impregnated with magnetic particles can be modulated with an external electromagnetic field that produces a vast array of topographical landscapes with varying surface curvature, which, in conjunction with capillarity, can direct and control motion of water droplets efficiently and accurately. When a thin layer of oil is present on this film that is deformed locally, a centrosymmetric wedge is formed. A water droplet placed on this oil laden film becomes asymmetrically deformed thus producing a gradient of Laplace pressure within the droplet setting it to motion. A simple theory is presented that accounts for the droplet speed in terms of such geometric variables as the volume of the droplet and the thickness of the oil film covering the soft elastomeric film, as well as such material variables as the viscosity of the oil and inte...

  6. Transient dynamics of the flow around a NACA 0015 airfoil using fluidic vortex generators

    The unsteady activation or deactivation of fluidic vortex generators on a NACA 0015 airfoil is studied to understand the transient dynamics of flow separation control. The Reynolds number is high enough and the boundary layer is tripped, so the boundary layer is fully turbulent prior to separation. Conditional PIV of the airfoil wake is obtained phase-locked to the actuator trigger signal, allowing reconstruction of the transient processes. When the actuators are impulsively turned on, the velocity field in the near wake exhibit a complex transient behavior associated with the formation and shedding of a starting vortex. When actuation is stopped, a more gradual process of the separation dynamics is found. These results are in agreement with those found in the literature in comparable configurations. Proper Orthogonal Decomposition of phase-locked velocity fields reveals low-dimensional transient dynamics for the attachment and separation processes, with 98% of the fluctuation energy captured by the first four modes. The behavior is quantitatively well captured by a four-dimensional dynamical system with the corresponding mode amplitudes. Analysis of the first temporal POD modes accurately determines typical time scales for attachment and separation processes to be respectively t+=10 and 20 in conventional non-dimensional values. This study adds to experimental investigations of this scale with essential insight for the targeted closed-loop control.

  7. Compound-fluidic electrospray:An efficient method for the fabrication of microcapsules with multicompartment structure

    CHEN HongYan; ZHAO Yong; JIANG Lei

    2009-01-01

    Microcapsules with multiple compartments are of significant importance in many applications such as smart drug delivery,microreactor,complicated sensor,end so on. Here we report a novel compound-fluidic electrospray method that could fabricate multicompartment microcapsules in a single step. The as-prepared microcapsules have multiple compartments inside. The compartments are separated from each other by inner walls made from shell materials,and different content can be independently loaded in each of them without any contact. We assemble a hierarchical compound nozzle by inserting certain numbers of metallic inner capillaries separately into a blunt metal needle. The particular configuration of the compound nozzle induces a completely and independently envelope of core fluids by shell fluid,as a result of which mulicomponent microcapsules with multicompartment structure can be obtained. And also,the number of inner compartments and the corresponding encapsulated components can be controlled by rationally designing the configuration of the compound nozzle.This general method can be readily extended to many other functional materials,especially for the effective encapsulation of active ingredients,such as sensitive and reactive materials.

  8. Nanobiomimetic Active Shape Control - Fluidic and Swarm-Intelligence Embodiments for Planetary Exploration

    Santoli, S.

    The concepts of Active Shape Control ( ASC ) and of Generalized Quantum Holography ( GQH ), respectively embodying a closer approach to biomimicry than the current macrophysics-based attempts at bioinspired robotic systems, and realizing a non-connectionistic, life-like kind of information processing that allows increasingly depths of mimicking of the biological structure-function solidarity, which have been formulated in physical terms in previous papers, are here further investigated for application to bioinspired flying or swimming robots for planetary exploration. It is shown that nano-to-micro integration would give the deepest level of biomimicry, and that both low and very low Reynolds number ( Re ) fluidics would involve GQH and Fiber Bundle Topology ( FBT ) for processing information at the various levels of ASC bioinspired robotics. While very low Re flows lend themselves to geometrization of microrobot dynamics and to FBT design, the general design problem is geometrized through GQH , i.e. made independent of dynamic considerations, thus allowing possible problems of semantic dyscrasias in highly complex hierarchical dynamical chains of sensing information processing actuating to be overcome. A roadmap to near- and medium-term nanostructured and nano-to-micro integration realizations is suggested.

  9. An angular fluidic channel for prism-free surface-plasmon-assisted fluorescence capturing

    Nomura, Ken-Ichi; Gopinath, Subash C. B.; Lakshmipriya, Thangavel; Fukuda, Nobuko; Wang, Xiaomin; Fujimaki, Makoto

    2013-12-01

    Surface plasmon excitation provides stronger enhancement of the fluorescence intensity and better sensitivity than other sensing approaches but requires optimal positioning of a prism to ensure optimum output of the incident light. Here we describe a simple, highly sensitive optical sensing system combining surface plasmon excitation and fluorescence to address this limitation. V-shaped fluidic channels are employed to mimic the functions of a prism, sensing plate, and flow channel in a single setup. Superior performance is demonstrated for different biomolecular recognition reactions on a self-assembled monolayer, and the sensitivity reaches 100 fM for biotin-streptavidin interactions. Using an antibody as a probe, we demonstrate the detection of intact influenza viruses at 0.2 HA units ml-1 levels. The convenient sensing system developed here has the advantages of being prism-free and requiring less sample (1-2 μl), making this platform suitable for use in situations requiring low sample volumes.

  10. Transient dynamics of the flow around a NACA 0015 airfoil using fluidic vortex generators

    Siauw, W.L. [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, ENSMA - Teleport 2, 1 Avenue Clement Ader, BP 40109, F-86961 Futuroscope Chasseneuil Cedex (France); Bonnet, J.-P., E-mail: Jean-Paul.Bonnet@univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, CEAT, 43 rue de l' Aerodrome, F-86036 Poitiers Cedex (France); Tensi, J., E-mail: Jean.Tensi@lea.univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, ENSMA - Teleport 2, 1 Avenue Clement Ader, BP 40109, F-86961 Futuroscope Chasseneuil Cedex (France); Cordier, L., E-mail: Laurent.Cordier@univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, CEAT, 43 rue de l' Aerodrome, F-86036 Poitiers Cedex (France); Noack, B.R., E-mail: Bernd.Noack@univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, CEAT, 43 rue de l' Aerodrome, F-86036 Poitiers Cedex (France); Cattafesta, L., E-mail: cattafes@ufl.ed [Florida Center for Advanced Aero-Propulsion (FCAAP), Department of Mechanical and Aerospace Engineering, University of Florida, 231 MAE-A, Gainesville, FL 32611 (United States)

    2010-06-15

    The unsteady activation or deactivation of fluidic vortex generators on a NACA 0015 airfoil is studied to understand the transient dynamics of flow separation control. The Reynolds number is high enough and the boundary layer is tripped, so the boundary layer is fully turbulent prior to separation. Conditional PIV of the airfoil wake is obtained phase-locked to the actuator trigger signal, allowing reconstruction of the transient processes. When the actuators are impulsively turned on, the velocity field in the near wake exhibit a complex transient behavior associated with the formation and shedding of a starting vortex. When actuation is stopped, a more gradual process of the separation dynamics is found. These results are in agreement with those found in the literature in comparable configurations. Proper Orthogonal Decomposition of phase-locked velocity fields reveals low-dimensional transient dynamics for the attachment and separation processes, with 98% of the fluctuation energy captured by the first four modes. The behavior is quantitatively well captured by a four-dimensional dynamical system with the corresponding mode amplitudes. Analysis of the first temporal POD modes accurately determines typical time scales for attachment and separation processes to be respectively t{sup +}=10 and 20 in conventional non-dimensional values. This study adds to experimental investigations of this scale with essential insight for the targeted closed-loop control.

  11. Numerical study of fluidic device in APR1400 using free surface model

    A fluidic device (FD) has been adopted in the safety injection tanks (SITs) of APR1400. A flow control mechanism of the FD was used to vary the flow regime in the vortex chamber corresponding to the SITs water level. The flow regime in the vortex chamber has a different pressure loss from low to high in accordance with the SITs water level. Nitrogen at the top of the SIT could be released owing to inertia of discharge flow when changing from a high flow rate to a low flow rate. This phenomenon is important to design improvement perspective because it can affect the performance of the FD. This paper shows a result of a preliminary numerical study to obtain the transient data related to air release in the flow turn down period using a two fluid free surface model provided from ANSYS CFX 13.0. In conclusion, there is no significant effect on the performance of the FD, though a small quantity of air is released during the flow turn down period

  12. Evaluation of fluidic thrust vectoring nozzle via thrust pitching angle and thrust pitching moment

    Li, L.; Hirota, M.; Ouchi, K.; Saito, T.

    2016-03-01

    Shock vector control (SVC) in a converging-diverging nozzle with a rectangular cross-section is discussed as a fluidic thrust vectoring (FTV) method. The interaction between the primary nozzle flow and the secondary jet is examined using experiments and numerical simulations. The relationships between FTV parameters [nozzle pressure ratio (NPR) and secondary jet pressure ratio (SPR)] and FTV performance (thrust pitching angle and thrust pitching moment) are investigated. The experiments are conducted with an NPR of up to 10 and an SPR of up to 2.7. Numerical simulations of the nozzle flow are performed using a Navier-Stokes solver with input parameters set to match the experimental conditions. The thrust pitching angle and moment computed from the force-moment balance are used to evaluate FTV performance. The experiment and numerical results indicate that the FTV parameters (NPR and SPR) directly affect FTV performance. Conventionally, FTV performance evaluated by the common method using thrust pitching angle is highly dependent on the location of evaluation. Hence, in this study, we show that the thrust pitching moment, a parameter which is independent of the location, is the appropriate figure of merit to evaluate the performance of FTV systems.

  13. Nested, fixed-depth fluidic sampler supplementary testing - AEAT doc 2926-2-002

    This report summarizes the results of cold testing, completed by AEAT, as part of the proof-of-principle testing for a proposed nested, fixed-depth fluidic sampling system. This sampling system will provide waste samples from the PHMC feed tank to support the privatization contract with BNFL. Proof-of-principle tests were completed with 2 wt% and 10 wt% sand/water and 25 wt% kaolin clay/water simulants with a test setup that spanned the 24 ft to 57 ft height required in the feed tank. The tests demonstrated that the system could pump and sample waste materials with low and with high solids content. In addition, the tests demonstrated a need for some design upgrades to the sampling system, as there was material loss when the sample bottle was removed from the sampling needle. These were complementary tests, completed as part of an EM-50 Tank Focus Area (TFA) to develop a sampling system for validating LAW and HLW waste batches for the Privatization Contract

  14. Shear wave attenuation and micro-fluidics in water-saturated sand and glass beads.

    Chotiros, Nicholas P; Isakson, Marcia J

    2014-06-01

    An improvement in the modeling of shear wave attenuation and speed in water-saturated sand and glass beads is introduced. Some dry and water-saturated materials are known to follow a constant-Q model in which the attenuation, expressed as Q(-1), is independent of frequency. The associated loss mechanism is thought to lie within the solid frame. A second loss mechanism in fluid-saturated porous materials is the viscous loss due to relative motion between pore fluid and solid frame predicted by the Biot-Stoll model. It contains a relaxation process that makes the Q(-1) change with frequency, reaching a peak at a characteristic frequency. Examination of the published measurements above 1 kHz, particularly those of Brunson (Ph.D. thesis, Oregon State University, Corvalis, 1983), shows another peak, which is explained in terms of a relaxation process associated with the squirt flow process at the grain-grain contact. In the process of deriving a model for this phenomenon, it is necessary to consider the micro-fluidic effects associated with the flow within a thin film of water confined in the gap at the grain-grain contact and the resulting increase in the effective viscosity of water. The result is an extended Biot model that is applicable over a broad band of frequencies. PMID:24907791

  15. Nested, fixed-depth fluidic sampler supplementary testing - AEAT doc 2926-2-002

    REICH, F.R.

    1999-03-11

    This report summarizes the results of cold testing, completed by AEAT, as part of the proof-of-principle testing for a proposed nested, fixed-depth fluidic sampling system. This sampling system will provide waste samples from the PHMC feed tank to support the privatization contract with BNFL. Proof-of-principle tests were completed with 2 wt% and 10 wt% sand/water and 25 wt% kaolin clay/water simulants with a test setup that spanned the 24 ft to 57 ft height required in the feed tank. The tests demonstrated that the system could pump and sample waste materials with low and with high solids content. In addition, the tests demonstrated a need for some design upgrades to the sampling system, as there was material loss when the sample bottle was removed from the sampling needle. These were complementary tests, completed as part of an EM-50 Tank Focus Area (TFA) to develop a sampling system for validating LAW and HLW waste batches for the Privatization Contract.

  16. Bioengineering bacteriophages to enhance the sensitivity of phage amplification-based paper fluidic detection of bacteria.

    Alcaine, S D; Law, K; Ho, S; Kinchla, A J; Sela, D A; Nugen, S R

    2016-08-15

    Bacteriophage (phage) amplification is an attractive method for the detection of bacteria due to a narrow phage-host specificity, short amplification times, and the phages' ability to differentiate between viable and non-viable bacterial cells. The next step in phage-based bacteria detection is leveraging bioengineered phages to create low-cost, rapid, and easy-to-use detection platforms such as lateral flow assays. Our work establishes the proof-of-concept for the use of bioengineered T7 phage strains to increase the sensitivity of phage amplification-based lateral flow assays. We have demonstrated a greater than 10-fold increase in sensitivity using a phage-based protein reporter, maltose-binding protein, over the detection of replicated T7 phage viron itself, and a greater then 100-fold increase in sensitivity using a phage-based enzymatic reporter, alkaline phosphatase. This increase in sensitivity enabled us to detect 10(3)CFU/mL of Escherichia coli in broth after 7h, and by adding a filter concentration step, the ability to detect a regulatory relevant E. coli concentration of 100CFU/100mL in inoculated river water after 9h, where the current standard requires days for results. The combination of the paper fluidic format with phage-based detection provides a platform for the development of novel diagnostics that are sensitive, rapid, and easy to use. PMID:27031186

  17. Alternative approach in 3D MEMS-IC integration using fluidic self-assembly techniques

    Nowadays, industries are investigating new, original and appropriate solutions to address challenges in 3D MEMS-IC large-scale integration. Self-assembly techniques are among those. We report on an alternative approach inspired from fluidic self-assembly and using the flip-chip method. Here, solder bumps are directly formed onto a MEMS chip using liquid solder solution in a bath. The self-alignment process is operated after surface treatment by plasma deposition to form high and low wettability selective patterns. Finally, MEMS and electronic chips are permanently bonded after low thermal heating without any pressure. Electrical contact is established and electromechanisms of the microsystems are proven. Compared to classic MEMS-IC flip-chip methods, this strategy presents many advantages: it is a low-cost and fast fabrication process requiring no specific equipment for deposition of solder bumps. Furthermore, it can be applied on different substrates and it does not require a specific pressure method during the bonding process. This strategy is also an appropriate fabrication method for large-scale MEMS integration where electronic connection density is high

  18. LES-based characterization of a suction and oscillatory blowing fluidic actuator

    Kim, Jeonglae; Moin, Parviz

    2015-11-01

    Recently, a novel fluidic actuator using steady suction and oscillatory blowing was developed for control of turbulent flows. The suction and oscillatory blowing (SaOB) actuator combines steady suction and pulsed oscillatory blowing into a single device. The actuation is based upon a self-sustained mechanism of confined jets and does not require any moving parts. The control output is determined by a pressure source and the geometric details, and no additional input is needed. While its basic mechanisms have been investigated to some extent, detailed characteristics of internal turbulent flows are not well understood. In this study, internal flows of the SaOB actuator are simulated using large-eddy simulation (LES). Flow characteristics within the actuator are described in detail for a better understanding of the physical mechanisms and improving the actuator design. LES predicts the self-sustained oscillations of the turbulent jet. Switching frequency, maximum velocity at the actuator outlets, and wall pressure distribution are in good agreement with the experimental measurements. The computational results are used to develop simplified boundary conditions for numerical experiments of active flow control. Supported by the Boeing company.

  19. Compaction properties of agricultural soils

    TANG, Anh Minh; CUI, Yu Jun; Eslami, Javad; DEFOSSEZ BERTHOUD, Pauline

    2007-01-01

    The compaction of field soils due to repeated rolling of agricultural vehicles is one of the main reasons for the agricultural soil degradation. A good understanding of the compaction properties of these soils is essential for an optimum organisation of agricultural activities, and therefore for environmental protection in terms of nitrate migrations. In the present work, the compaction properties of agricultural soils from four sites in France are studied after experimental data ...

  20. Soil compaction in forest soils

    TURGUT, Bülent

    2012-01-01

    Soil compaction is a widespread degradation process in forest sites. Soil degradation occurring on the structural formation of a natural soil system by rainfall or mechanical outer forces generally results in soil particles to be rearranged tighter than its previous status. In this case, soil compaction -defined as the increase in bulk density of soil- develops with negative effects on soil-plant-water relations. With the compaction, the density of soil increases while the porosity rate decre...

  1. Advances in compact torus research

    A compact torus is a low aspect ratio, axisymmetric, closed magnetic field line configuration with no vessel wall or magnetic field coils linking the hole in the plasma toroid. This concept offers reactor advantages such as simplicity, high β, and the possibility of translation. Several methods have been used to generate compact toroids, including plasma guns, high energy particle rings, and field-reversed theta pinches. This document summarizes the results of recent work on compact toroids, presented at the first IAEA Technical Committee Meeting on Compact Torus Research held in Sydney, Australia from 4 to 7 March 1985

  2. Compact SPS - Power delivery

    Pospisil, M.; Pospisilova, L.

    1982-09-01

    The power deliverable by a compact solar Space Power Station (SPS) is a function of its outer surface shape. Methods of fitting the power delivery curve of such a system to different patterns of daily power demand are considered that involve the appropriate choice of the number of satellites, their maximal power, height to width ratio and the shift of longitude with respect to the receiving station. Changes in the daily delivery curve can be made by altering the longitudes and orientations of the satellites. Certain limitations to the choice of parameters exist, such as: the height to width ratio should be near 1.2, and the sum of longitude and orientation changes will probably not be greater than 50 deg. The optimization of the peak to average power ratio is also discussed.

  3. Compact acoustic refrigerator

    Bennett, Gloria A.

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  4. Compact semiconductor lasers

    Yu, Siyuan; Lourtioz, Jean-Michel

    2014-01-01

    This book brings together in a single volume a unique contribution by the top experts around the world in the field of compact semiconductor lasers to provide a comprehensive description and analysis of the current status as well as future directions in the field of micro- and nano-scale semiconductor lasers. It is organized according to the various forms of micro- or nano-laser cavity configurations with each chapter discussing key technical issues, including semiconductor carrier recombination processes and optical gain dynamics, photonic confinement behavior and output coupling mechanisms, carrier transport considerations relevant to the injection process, and emission mode control. Required reading for those working in and researching the area of semiconductors lasers and micro-electronics.

  5. Atacama Compact Array Antennas

    Saito, Masao; Nakanishi, Kouichiro; Naoi, Takahiro; Yamada, Masumi; Saito, Hiro; Ikenoue, Bungo; Kato, Yoshihiro; Morita, Kou-ichiro; Mizuno, Norikazu; Iguchi, Satoru

    2011-01-01

    We report major performance test results of the Atacama Compact Array (ACA) 7-m and 12-m antennas of ALMA (Atacama Large Millimeter/submillimeter Array). The four major performances of the ACA antennas are all-sky pointing (to be not more than 2.0 arcsec), offset pointing (to be < 0.6 arcsec) surface accuracy (< 25(20) micrometer for 12(7)m-antenna), stability of path-length (15 micrometer over 3 min), and high servo capability (6 degrees/s for Azimuth and 3 degrees/s for Elevation). The high performance of the ACA antenna has been extensively evaluated at the Site Erection Facility area at an altitude of about 2900 meters. Test results of pointing performance, surface performance, and fast motion capability are demonstrated.

  6. Compact pentaquark structures

    Santopinto, Elena

    2016-01-01

    We study the possibility that at least one of the two pentaquark structures recently reported by LHCb can be described as a compact pentaquark state, and we give predictions for new channels that can be studied by the experimentalists if this hypothesis is correct. We use very general arguments dictated by symmetry considerations, in order to describe the pentaquark states within a group theory approach. A complete classification of all possible states and quantum numbers, that can be useful both to the experimentalists, for new finding, or to theoretical model builders, are given, without the introduction of any particular dynamical model. Some prediction are finally given using a Guersey-Radicati inspired mass formula. We reproduce the mass and the quantum numbers of the lightest pentaquark state reported by LHCb ( 3/2^-), with a parameter free mass formula, fixed on the well established baryons. We predict others pentaquark resonances (giving their masses, and suggesting possible decay channels) which belo...

  7. Compact cryocooler heat exchangers

    Compact heat exchangers are subject to different constraints as a room temperature gas is cooled down by a cold stream returning from a JT valve (or a similar cryoprocess component). In particular, the optimization of exchangers for liquid helium systems has to cover a wide range in temperature and density of the fluid. In the present work we address the following thermodynamic questions: 1. The optimization of intermediate temperatures which optimize stage operation (a stage is assumed to have a constant cross section); 2. The optimum temperature difference available for best overall economic performance values. The results are viewed in the context of porous media concepts applied to rather low speeds of fluid flow in narrow passages. In this paper examples of fluid/solid constraints imposed in this non-classical low temperature area are presented

  8. Compact cosmic objects

    The data are discussed obtained using the method of superfar radiointerferometry. High angular resolution of radiointerferometers with superlong bases has made compact radiosources placed inside and beyond the Galaxy accessable for investigations. Outer galactic objects with extraordinarily active nuclei have been found. Seyfert galaxies 3C84(NGC 1275) in the Perseus constellation and 3C 345 quasar in the Hercules constellation are objects with active nuclei. In the nuclei of separate quasars extraordinarily active processes take place which are accompanied by outflow of clouds of relativistic particles. The velocity of these particles exceeds the light velocity. Measurements with high angular resolution performed in the shortest wave of the centimeter range (1.35 cm) have permitted to find the double nucleus in the Seyfert galaxy NGC 1275. The superfar radiointerferometry has made interesting discoveries when studying gas-dust galactic nebular. Laser sources that emit bright and narrow lines of hydroxyl and water vapour are found in them

  9. An Active Black Hole in a Compact Dwarf

    Kohler, Susanna

    2016-05-01

    A new type of galaxy has just been added to the galaxy zoo: a small, compact, and old elliptical galaxy that shows signs of a monster black hole actively accreting material in its center. What can this unusual discovery tell us about how compact elliptical galaxies form?A New Galactic BeastCompact elliptical galaxies are an extremely rare early-type dwarf galaxy. Consistent with their name, compact ellipticals are small, very compact collections of ancient stars; these galaxies exhibit a high surface brightness and arent actively forming stars.Optical view of the ancient compact elliptical galaxy SDSS J085431.18+173730.5 (center of image) in an SDSS color composite image. [Adapted from Paudel et al. 2016]Most compact ellipticals are found in dense environments, particularly around massive galaxies. This has led astronomers to believe that compact ellipticals might form via the tidal stripping of a once-large galaxy in interactions with another, massive galaxy. In this model, once the original galaxys outer layers are stripped away, the compact inner bulge component would be left behind as a compact elliptical galaxy. Recent discoveries of a few isolated compact ellipticals, however, have strained this model.Now a new galaxy has been found to confuse our classification schemes: the first-ever compact elliptical to also display signs of an active galactic nucleus. Led by Sanjaya Paudel (Korea Astronomy and Space Science Institute), a team of scientists discovered SDSS J085431.18+173730.5 serendipitously in Sloan Digital Sky Survey data. The team used SDSS images and spectroscopy in combination with data from the Canada-France-Hawaii Telescope to learn more about this unique galaxy.Puzzling CharacteristicsSDSS J085431.18+173730.5 presents an interesting conundrum. Ancient compact ellipticals are supposed to be devoid of gas, with no fuel left to trigger nuclear activity. Yet SDSS J085431.18+173730.5 clearly shows the emission lines that indicate active accretion onto

  10. The Finslerian compact star model

    Rahaman, Farook; Paul, Nupur [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); De, S.S. [University of Calcutta, Department of Applied Mathematics, Kolkata (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Jafry, M.A.K. [Shibpur Dinobundhoo Institution, Department of Physics, Howrah, West Bengal (India)

    2015-11-15

    We construct a toy model for compact stars based on the Finslerian structure of spacetime. By assuming a particular mass function, we find an exact solution of the Finsler-Einstein field equations with an anisotropic matter distribution. The solutions are revealed to be physically interesting and pertinent for the explanation of compact stars. (orig.)