WorldWideScience

Sample records for adaptive compact fluidic

  1. Application of fluidic lens technology to an adaptive holographic optical element see-through autophoropter

    Science.gov (United States)

    Chancy, Carl H.

    A device for performing an objective eye exam has been developed to automatically determine ophthalmic prescriptions. The closed loop fluidic auto-phoropter has been designed, modeled, fabricated and tested for the automatic measurement and correction of a patient's prescriptions. The adaptive phoropter is designed through the combination of a spherical-powered fluidic lens and two cylindrical fluidic lenses that are orientated 45o relative to each other. In addition, the system incorporates Shack-Hartmann wavefront sensing technology to identify the eye's wavefront error and corresponding prescription. Using the wavefront error information, the fluidic auto-phoropter nulls the eye's lower order wavefront error by applying the appropriate volumes to the fluidic lenses. The combination of the Shack-Hartmann wavefront sensor the fluidic auto-phoropter allows for the identification and control of spherical refractive error, as well as cylinder error and axis; thus, creating a truly automated refractometer and corrective system. The fluidic auto-phoropter is capable of correcting defocus error ranging from -20D to 20D and astigmatism from -10D to 10D. The transmissive see-through design allows for the observation of natural scenes through the system at varying object planes with no additional imaging optics in the patient's line of sight. In this research, two generations of the fluidic auto-phoropter are designed and tested; the first generation uses traditional glass optics for the measurement channel. The second generation of the fluidic auto-phoropter takes advantage of the progress in the development of holographic optical elements (HOEs) to replace all the traditional glass optics. The addition of the HOEs has enabled the development of a more compact, inexpensive and easily reproducible system without compromising its performance. Additionally, the fluidic lenses were tested during a National Aeronautics Space Administration (NASA) parabolic flight campaign, to

  2. Hybrid Macro-Micro Fluidics System for a Chip-Based Biosensor

    National Research Council Canada - National Science Library

    Tamanaha, C. R; Whitman, L. J; Colton, R.J

    2002-01-01

    We describe the engineering of a hybrid fluidics platform for a chip-based biosensor system that combines high-performance microfluidics components with powerful, yet compact, millimeter-scale pump and valve actuators...

  3. Fluidic sampling

    International Nuclear Information System (INIS)

    Houck, E.D.

    1992-01-01

    This paper covers the development of the fluidic sampler and its testing in a fluidic transfer system. The major findings of this paper are as follows. Fluidic jet samples can dependably produce unbiased samples of acceptable volume. The fluidic transfer system with a fluidic sampler in-line will transfer water to a net lift of 37.2--39.9 feet at an average ratio of 0.02--0.05 gpm (77--192 cc/min). The fluidic sample system circulation rate compares very favorably with the normal 0.016--0.026 gpm (60--100 cc/min) circulation rate that is commonly produced for this lift and solution with the jet-assisted airlift sample system that is normally used at ICPP. The volume of the sample taken with a fluidic sampler is dependant on the motive pressure to the fluidic sampler, the sample bottle size and on the fluidic sampler jet characteristics. The fluidic sampler should be supplied with fluid having the motive pressure of the 140--150 percent of the peak vacuum producing motive pressure for the jet in the sampler. Fluidic transfer systems should be operated by emptying a full pumping chamber to nearly empty or empty during the pumping cycle, this maximizes the solution transfer rate

  4. Fluidic optics

    Science.gov (United States)

    Whitesides, George M.; Tang, Sindy K. Y.

    2006-09-01

    Fluidic optics is a new class of optical system with real-time tunability and reconfigurability enabled by the introduction of fluidic components into the optical path. We describe the design, fabrication, operation of a number of fluidic optical systems, and focus on three devices, liquid-core/liquid-cladding (L2) waveguides, microfluidic dye lasers, and diffraction gratings based on flowing, crystalline lattices of bubbles, to demonstrate the integration of microfluidics and optics. We fabricate these devices in poly(dimethylsiloxane) (PDMS) with soft-lithographic techniques. They are simple to construct, and readily integrable with microanalytical or lab-on-a-chip systems.

  5. Adaptive Feature Based Control of Compact Disk Players

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Vidal, Enrique Sanchez

    2005-01-01

    Many have experienced the problem that their Compact Disc players have difficulties playing Compact Discs with surface faults like scratches and fingerprints. The cause of this is due to the two servo control loops used to keep the Optical Pick-up Unit focused and radially on the information track...... of the Compact Disc. The problem is to design servo controllers which are well suited for handling surface faults which disturb the position measurement and still react sufficiently against normal disturbances like mechanical shocks. In previous work of the same authors a feature based control scheme for CD......-players playing CDs with surface fault is derived and described. This feature based control scheme uses precomputed base to remove the surface fault influence from the position measurements. In this paper an adaptive version of the feature based control scheme is proposed and described. This adaptive scheme can...

  6. Fluidic origami cellular structure -- combining the plant nastic movements with paper folding art

    Science.gov (United States)

    Li, Suyi; Wang, K. W.

    2015-04-01

    By combining the physical principles behind the nastic plant movements and the rich designs of paper folding art, we propose a new class of multi-functional adaptive structure called fluidic origami cellular structure. The basic elements of this structure are fluid filled origami "cells", made by connecting two compatible Miura-Ori stripes along their crease lines. These cells are assembled seamlessly into a three dimensional topology, and their internal fluid pressure or volume are strategically controlled just like in plants for nastic movements. Because of the unique geometry of the Miura-Ori, the relationships among origami folding, internal fluid properties, and the crease bending are intricate and highly nonlinear. Fluidic origami can exploit such relationships to provide multiple adaptive functions concurrently and effectively. For example, it can achieve actuation or morphing by actively changing the internal fluid volume, and stillness tuning by constraining the fluid volume. Fluidic origami can also be bistable because of the nonlinear correlation between folding and crease material bending, and such bistable character can be altered significantly by fluid pressurization. These functions are natural and essential companions with respect to each other, so that fluidic origami can holistically exhibit many attractive characteristics of plants and deliver rapid and efficient actuation/morphing while maintaining a high structural stillness. The purpose of this paper is to introduce the design and working principles of the fluidic origami, as well as to explore and demonstrate its performance potential.

  7. Diffusion dynamics in micro-fluidic dye lasers

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Balslev, Søren; Mortensen, Niels Asger

    2007-01-01

    We have investigated the bleaching dynamics that occur in opto-fluidic dye lasers, where the liquid laser dye in a channel is locally bleached due to optical pumping. Our studies suggest that for micro-fluidic devices, the dye bleaching may be compensated through diffusion of dye molecules alone....... By relying on diffusion rather than convection to generate the necessary dye replenishment, our observation potentially allows for a significant simplification of opto-fluidic dye laser device layouts, omitting the need for cumbersome and costly external fluidic handling or on-chip micro-fluidic pumping...

  8. Opto-fluidics based microscopy and flow cytometry on a cell phone for blood analysis.

    Science.gov (United States)

    Zhu, Hongying; Ozcan, Aydogan

    2015-01-01

    Blood analysis is one of the most important clinical tests for medical diagnosis. Flow cytometry and optical microscopy are widely used techniques to perform blood analysis and therefore cost-effective translation of these technologies to resource limited settings is critical for various global health as well as telemedicine applications. In this chapter, we review our recent progress on the integration of imaging flow cytometry and fluorescent microscopy on a cell phone using compact, light-weight and cost-effective opto-fluidic attachments integrated onto the camera module of a smartphone. In our cell-phone based opto-fluidic imaging cytometry design, fluorescently labeled cells are delivered into the imaging area using a disposable micro-fluidic chip that is positioned above the existing camera unit of the cell phone. Battery powered light-emitting diodes (LEDs) are butt-coupled to the sides of this micro-fluidic chip without any lenses, which effectively acts as a multimode slab waveguide, where the excitation light is guided to excite the fluorescent targets within the micro-fluidic chip. Since the excitation light propagates perpendicular to the detection path, an inexpensive plastic absorption filter is able to reject most of the scattered light and create a decent dark-field background for fluorescent imaging. With this excitation geometry, the cell-phone camera can record fluorescent movies of the particles/cells as they are flowing through the microchannel. The digital frames of these fluorescent movies are then rapidly processed to quantify the count and the density of the labeled particles/cells within the solution under test. With a similar opto-fluidic design, we have recently demonstrated imaging and automated counting of stationary blood cells (e.g., labeled white blood cells or unlabeled red blood cells) loaded within a disposable cell counting chamber. We tested the performance of this cell-phone based imaging cytometry and blood analysis platform

  9. Fluidic origami with embedded pressure dependent multi-stability: a plant inspired innovation.

    Science.gov (United States)

    Li, Suyi; Wang, K W

    2015-10-06

    Inspired by the impulsive movements in plants, this research investigates the physics of a novel fluidic origami concept for its pressure-dependent multi-stability. In this innovation, fluid-filled tubular cells are synthesized by integrating different Miura-Ori sheets into a three-dimensional topological system, where the internal pressures are strategically controlled similar to the motor cells in plants. Fluidic origami incorporates two crucial physiological features observed in nature: one is distributed, pressurized cellular organization, and the other is embedded multi-stability. For a single fluidic origami cell, two stable folding configurations can coexist due to the nonlinear relationships among folding, crease material deformation and internal volume change. When multiple origami cells are integrated, additional multi-stability characteristics could occur via the interactions between pressurized cells. Changes in the fluid pressure can tailor the existence and shapes of these stable folding configurations. As a result, fluidic origami can switch between being mono-stable, bistable and multi-stable with pressure control, and provide a rapid 'snap-through' type of shape change based on the similar principles as in plants. The outcomes of this research could lead to the development of new adaptive materials or structures, and provide insights for future plant physiology studies at the cellular level. © 2015 The Author(s).

  10. Comparison of cumulative dissipated energy delivered by active-fluidic pressure control phacoemulsification system versus gravity-fluidics.

    Science.gov (United States)

    Gonzalez-Salinas, Roberto; Garza-Leon, Manuel; Saenz-de-Viteri, Manuel; Solis-S, Juan C; Gulias-Cañizo, Rosario; Quiroz-Mercado, Hugo

    2017-08-22

    To compare the cumulative dissipated energy (CDE), aspiration time and estimated aspiration fluid utilized during phacoemulsification cataract surgery using two phacoemulsification systems . A total of 164 consecutive eyes of 164 patients undergoing cataract surgery, 82 in the active-fluidics group and 82 in the gravity-fluidics group were enrolled in this study. Cataracts graded NII to NIII using LOCS II were included. Each subject was randomly assigned to one of the two platforms with a specific configuration: the active-fluidics Centurion ® phacoemulsification system or the gravity-fluidics Infiniti ® Vision System. CDE, aspiration time (AT) and the mean estimated aspiration fluid (EAF) were registered and compared. A mean age of 68.3 ± 9.8 years was found (range 57-92 years), and no significant difference was evident between both groups. A positive correlation between the CDE values obtained by both platforms was verified (r = 0.271, R 2  = 0.073, P = 0.013). Similarly, a significant correlation was evidenced for the EAF (r = 0.334, R 2  = 0.112, P = 0.046) and AT values (r = 0.156, R 2  = 0.024, P = 0.161). A statistically significantly lower CDE count, aspiration time and estimated fluid were obtained using the active-fluidics configuration when compared to the gravity-fluidics configuration by 19.29, 12.10 and 9.29%, respectively (P = 0.001, P Infiniti ® IP system for NII and NIII cataracts.

  11. Separation control with fluidic oscillators in water

    Science.gov (United States)

    Schmidt, H.-J.; Woszidlo, R.; Nayeri, C. N.; Paschereit, C. O.

    2017-08-01

    The present study assesses the applicability of fluidic oscillators for separation control in water. The first part of this work evaluates the properties of the fluidic oscillators including frequency, cavitation effects, and exerted thrust. Derived from the governing internal dynamics, the oscillation frequency is found to scale directly with the jet's exit velocity and the size of the fluidic oscillator independent of the working fluid. Frequency data from various experiments collapse onto a single curve. The occurrence of cavitation is examined by visual inspection and hydrophone measurements. The oscillation frequency is not affected by cavitation because it does not occur inside the oscillators. The spectral information obtained with the hydrophone provide a reliable indicator for the onset of cavitation at the exit. The performance of the fluidic oscillators for separation control on a bluff body does not seem to be affected by the presence of cavitation. The thrust exerted by an array of fluidic oscillators with water as the working fluid is measured to be even larger than theoretically estimated values. The second part of the presented work compares the performance of fluidic oscillators for separation control in water with previous results in air. The array of fluidic oscillators is installed into the rear end of a bluff body model. The drag improvements based on force balance measurements agree well with previous wind tunnel experiments on the same model. The flow field is examined by pressure measurements and with particle image velocimetry. Similar performance and flow field characteristics are observed in both water and air.

  12. Hybrid macro-micro fluidics system for a chip-based biosensor

    Science.gov (United States)

    Tamanaha, C. R.; Whitman, L. J.; Colton, R. J.

    2002-03-01

    We describe the engineering of a hybrid fluidics platform for a chip-based biosensor system that combines high-performance microfluidics components with powerful, yet compact, millimeter-scale pump and valve actuators. The microfluidics system includes channels, valveless diffuser-based pumps, and pinch-valves that are cast into a poly(dimethylsiloxane) (PDMS) membrane and packaged along with the sensor chip into a palm-sized plastic cartridge. The microfluidics are driven by pump and valve actuators contained in an external unit (with a volume ~30 cm3) that interfaces kinematically with the PDMS microelements on the cartridge. The pump actuator is a simple-lever, flexure-hinge displacement amplifier that increases the motion of a piezoelectric stack. The valve actuators are an array of cantilevers operated by shape memory alloy wires. All components can be fabricated without the need for complex lithography or micromachining, and can be used with fluids containing micron-sized particulates. Prototypes have been modeled and tested to ensure the delivery of microliter volumes of fluid and the even dispersion of reagents over the chip sensing elements. With this hybrid approach to the fluidics system, the biochemical assay benefits from the many advantages of microfluidics yet we avoid the complexity and unknown reliability of immature microactuator technologies.

  13. Integration of fluidic jet actuators in composite structures

    Science.gov (United States)

    Schueller, Martin; Lipowski, Mathias; Schirmer, Eckart; Walther, Marco; Otto, Thomas; Geßner, Thomas; Kroll, Lothar

    2015-04-01

    Fluidic Actuated Flow Control (FAFC) has been introduced as a technology that influences the boundary layer by actively blowing air through slots or holes in the aircraft skin or wind turbine rotor blade. Modern wing structures are or will be manufactured using composite materials. In these state of the art systems, AFC actuators are integrated in a hybrid approach. The new idea is to directly integrate the active fluidic elements (such as SJAs and PJAs) and their components in the structure of the airfoil. Consequently, the integration of such fluidic devices must fit the manufacturing process and the material properties of the composite structure. The challenge is to integrate temperature-sensitive active elements and to realize fluidic cavities at the same time. The transducer elements will be provided for the manufacturing steps using roll-to-roll processes. The fluidic parts of the actuators will be manufactured using the MuCell® process that provides on the one hand the defined reproduction of the fluidic structures and, on the other hand, a high light weight index. Based on the first design concept, a demonstrator was developed in order to proof the design approach. The output velocity on the exit was measured using a hot-wire anemometer.

  14. Fluidics platform and method for sample preparation

    Science.gov (United States)

    Benner, Henry W.; Dzenitis, John M.

    2016-06-21

    Provided herein are fluidics platforms and related methods for performing integrated sample collection and solid-phase extraction of a target component of the sample all in one tube. The fluidics platform comprises a pump, particles for solid-phase extraction and a particle-holding means. The method comprises contacting the sample with one or more reagents in a pump, coupling a particle-holding means to the pump and expelling the waste out of the pump while the particle-holding means retains the particles inside the pump. The fluidics platform and methods herein described allow solid-phase extraction without pipetting and centrifugation.

  15. Fluidic interconnections for microfluidic systems: A new integrated fluidic interconnection allowing plug 'n' play functionality

    DEFF Research Database (Denmark)

    Perozziello, Gerardo; Bundgaard, Frederik; Geschke, Oliver

    2008-01-01

    A crucial challenge in packaging of microsystems is microfluidic interconnections. These have to seal the ports of the system, and have to provide the appropriate interface to other devices or the external environment. Integrated fluidic interconnections appear to be a good solution for interconn...... external metal ferrules and the system. Theoretical calculations are made to dimension and model the integrated fluidic interconnection. Leakage tests are performed on the interconnections, in order to experimentally confirm the model, and detect its limits....

  16. Using the Bootstrap Concept to Build an Adaptable and Compact Subversion Artifice

    National Research Council Canada - National Science Library

    Lack, Lindsey

    2003-01-01

    .... Early tiger teams recognized the possibility of this design and compared it to the two-card bootstrap loader used in mainframes since both exhibit the characteristics of compactness and adaptability...

  17. Fusion-bonded fluidic interconnects

    International Nuclear Information System (INIS)

    Fazal, I; Elwenspoek, M C

    2008-01-01

    A new approach to realize fluidic interconnects based on the fusion bonding of glass tubes with silicon is presented. Fusion bond strength analyses have been carried out. Experiments with plain silicon wafers and coated with silicon oxide and silicon nitride are performed. The obtained results are discussed in terms of the homogeneity and strength of fusion bond. High pressure testing shows that the bond strength is large enough for most applications of fluidic interconnects. The bond strength for 525 µm thick silicon, with glass tubes having an outer diameter of 6 mm and with a wall thickness of 2 mm, is more than 60 bars after annealing at a temperature of 800 °C

  18. Measurement of microchannel fluidic resistance with a standard voltage meter

    International Nuclear Information System (INIS)

    Godwin, Leah A.; Deal, Kennon S.; Hoepfner, Lauren D.; Jackson, Louis A.; Easley, Christopher J.

    2013-01-01

    Highlights: ► Standard voltage meter used to measure fluidic resistance. ► Manual measurement takes a few seconds, akin to electrical resistance measurements. ► Measurement error is reduced compared to other approaches. ► Amenable to dynamic measurement of fluidic resistance. - Abstract: A simplified method for measuring the fluidic resistance (R fluidic ) of microfluidic channels is presented, in which the electrical resistance (R elec ) of a channel filled with a conductivity standard solution can be measured and directly correlated to R fluidic using a simple equation. Although a slight correction factor could be applied in this system to improve accuracy, results showed that a standard voltage meter could be used without calibration to determine R fluidic to within 12% error. Results accurate to within 2% were obtained when a geometric correction factor was applied using these particular channels. When compared to standard flow rate measurements, such as meniscus tracking in outlet tubing, this approach provided a more straightforward alternative and resulted in lower measurement error. The method was validated using 9 different fluidic resistance values (from ∼40 to 600 kPa s mm −3 ) and over 30 separately fabricated microfluidic devices. Furthermore, since the method is analogous to resistance measurements with a voltage meter in electrical circuits, dynamic R fluidic measurements were possible in more complex microfluidic designs. Microchannel R elec was shown to dynamically mimic pressure waveforms applied to a membrane in a variable microfluidic resistor. The variable resistor was then used to dynamically control aqueous-in-oil droplet sizes and spacing, providing a unique and convenient control system for droplet-generating devices. This conductivity-based method for fluidic resistance measurement is thus a useful tool for static or real-time characterization of microfluidic systems.

  19. Automation of column-based radiochemical separations. A comparison of fluidic, robotic, and hybrid architectures

    Energy Technology Data Exchange (ETDEWEB)

    Grate, J.W.; O' Hara, M.J.; Farawila, A.F.; Ozanich, R.M.; Owsley, S.L. [Pacific Northwest National Laboratory, Richland, WA (United States)

    2011-07-01

    Two automated systems have been developed to perform column-based radiochemical separation procedures. These new systems are compared with past fluidic column separation architectures, with emphasis on using disposable components so that no sample contacts any surface that any other sample has contacted, and setting up samples and columns in parallel for subsequent automated processing. In the first new approach, a general purpose liquid handling robot has been modified and programmed to perform anion exchange separations using 2 mL bed columns in 6 mL plastic disposable column bodies. In the second new approach, a fluidic system has been developed to deliver clean reagents through disposable manual valves to six disposable columns, with a mechanized fraction collector that positions one of four rows of six vials below the columns. The samples are delivered to each column via a manual 3-port disposable valve from disposable syringes. This second approach, a hybrid of fluidic and mechanized components, is a simpler more efficient approach for performing anion exchange procedures for the recovery and purification of plutonium from samples. The automation architectures described can also be adapted to column-based extraction chromatography separations. (orig.)

  20. A characteristic analysis of the fluidic muscle cylinder

    Science.gov (United States)

    Kim, Dong-Soo; Bae, Sang-Kyu; Hong, Sung-In

    2005-12-01

    The fluidic muscle cylinder consists of an air bellows tube, flanges and lock nuts. It's features are softness of material and motion, simplicity of structure, low production cost and high power efficiency. Recently, unlikely the pneumatic cylinder, the fluidic muscle cylinder without air leakage, stick slip, friction, and seal was developed as a new concept actuator. It has the characteristics such as light weight, low price, high response, durable design, long life, high power, high contraction, which is innovative product fulfilling RT(Robot Technology) which is one of the nation-leading next generation strategy technologies 6T as well as cleanness technology. The application fields of the fluidic muscle cylinder are so various like fatigue tester, brake, accelerator, high technology testing device such as driving simulator, precise position, velocity, intelligent servo actuator under special environment such as load controlling system, and intelligent robot. In this study, we carried out the finite element modeling and analysis about the main design variables such as contraction ration and force, diameter increment of fluidic muscle cylinder. On the basis of finite element analysis, the prototype of fluidic muscle cylinder was manufactured and tested. Finally, we compared the results between the test and the finite element analysis.

  1. FLUIDIC AC AMPLIFIERS.

    Science.gov (United States)

    Several fluidic tuned AC Amplifiers were designed and tested. Interstage tuning and feedback designs are considered. Good results were obtained...corresponding Q’s as high as 12. Element designs and test results of one, two, and three stage amplifiers are presented. AC Modulated Carrier Systems

  2. Fluidic pumping system

    International Nuclear Information System (INIS)

    Wilson, P.D.

    1995-01-01

    A fluidic pumping system comprises two charge vessels which communicate with a liquid inlet and a liquid outlet through a fluidic bridge rectifier. A pressurising and depressurising arrangement for alternately pressurising and depressurising the charge vessels comprises a chamber containing a piston and being in communication with the charge vessels. Drive means not mechanically connected to the piston are provided for causing reciprocatory movement of the piston. Movement of the piston in one direction causes pressurisation of one charge vessel to discharge a liquid therefrom through the liquid outlet. Simultaneously, the other charge vessel is depressurised to draw liquid from the liquid inlet into the depressurised charge vessel. Preferably, the drive means for the piston comprises an external solenoid winding at each end of a horizontally arranged chamber. Alternatively, the chamber may be vertically disposed with an external solenoid winding at the upper end of the chamber to effect upward movement of the piston, the piston then falling under gravity upon de-energisation of the winding. (UK)

  3. Research of Dielectric Breakdown Micro fluidic Sampling Chip

    International Nuclear Information System (INIS)

    Jiang, F.; Lei, Y.; Yu, J.

    2013-01-01

    Micro fluidic chip is mainly driven electrically by external electrode and array electrode, but there are certain disadvantages in both of ways, which affect the promotion and application of micro fluidic technology. This paper discusses a scheme that uses the conductive solution in a microchannel made by PDMS, replacing electrodes and the way of dielectric breakdown to achieve microfluidic chip driver. It could reduce the driving voltage and simplify the chip production process. To prove the feasibility of this method, we produced a micro fluidic chip used in PDMS material with the lithography technology and experimented it. The results showed that using the dielectric breakdown to achieve microfluidic chip driver is feasible, and it has certain application prospect.

  4. Measurement of microchannel fluidic resistance with a standard voltage meter.

    Science.gov (United States)

    Godwin, Leah A; Deal, Kennon S; Hoepfner, Lauren D; Jackson, Louis A; Easley, Christopher J

    2013-01-03

    A simplified method for measuring the fluidic resistance (R(fluidic)) of microfluidic channels is presented, in which the electrical resistance (R(elec)) of a channel filled with a conductivity standard solution can be measured and directly correlated to R(fluidic) using a simple equation. Although a slight correction factor could be applied in this system to improve accuracy, results showed that a standard voltage meter could be used without calibration to determine R(fluidic) to within 12% error. Results accurate to within 2% were obtained when a geometric correction factor was applied using these particular channels. When compared to standard flow rate measurements, such as meniscus tracking in outlet tubing, this approach provided a more straightforward alternative and resulted in lower measurement error. The method was validated using 9 different fluidic resistance values (from ∼40 to 600kPa smm(-3)) and over 30 separately fabricated microfluidic devices. Furthermore, since the method is analogous to resistance measurements with a voltage meter in electrical circuits, dynamic R(fluidic) measurements were possible in more complex microfluidic designs. Microchannel R(elec) was shown to dynamically mimic pressure waveforms applied to a membrane in a variable microfluidic resistor. The variable resistor was then used to dynamically control aqueous-in-oil droplet sizes and spacing, providing a unique and convenient control system for droplet-generating devices. This conductivity-based method for fluidic resistance measurement is thus a useful tool for static or real-time characterization of microfluidic systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Quasi-static analysis and control of planer and spatial bending fluidic actuator

    OpenAIRE

    Chang, Benjamin Che-Ming

    2011-01-01

    This work presents a novel silicone-based millimetre scale bending fluidic actuator. Two designs of the bending fluidic actuator are studied: a planer actuator that bends about one axis; and a spatial actuator able to bend about two orthogonal axes. The unique parallel micro-channel design of the fluidic actuators enables operation at low working pressures, while at the same time having a very limited thickness expansion during pressurization. The fluidic actuators can be easily scaled to des...

  6. Fluidic control of reactor flow—Pressure drop matching

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2009-01-01

    Roč. 87, č. 6A (2009), s. 817-832 ISSN 0263-8762 R&D Projects: GA AV ČR IAA200760705; GA ČR GA101/07/1499 Institutional research plan: CEZ:AV0Z20760514 Keywords : fluidics * matching of fluidic devices * dissipance Subject RIV: BK - Fluid Dynamics Impact factor: 1.223, year: 2009 http://www.sciencedirect.com/science

  7. Fluidic-Based Virtual Aerosurface Shaping

    National Research Council Canada - National Science Library

    Glezer, Ari

    2004-01-01

    Recent work on a novel approach to the control of the aerodynamic performance of lifting surfaces by fluidic modification of their apparent aerodynamic shape, or virtual aerosurface shaping is reviewed...

  8. Micro-fluidic module for blood cell separation for gene expression radiobiological assays

    International Nuclear Information System (INIS)

    Brengues, Muriel; Gu, Jian; Zenhausern, Frederic

    2015-01-01

    Advances in molecular techniques have improved discovery of biomarkers associated with radiation exposure. Gene expression techniques have been demonstrated as effective tools for biodosimetry, and different assay platforms with different chemistries are now available. One of the main challenges is to integrate the sample preparation processing of these assays into micro-fluidic platforms to be fully automated for point-of-care medical countermeasures in the case of a radiological event. Most of these assays follow the same workflow processing that comprises first the collection of blood samples followed by cellular and molecular sample preparation. The sample preparation is based on the specific reagents of the assay system and depends also on the different subsets of cells population and the type of biomarkers of interest. In this article, the authors present a module for isolation of white blood cells from peripheral blood as a prerequisite for automation of gene expression assays on a micro-fluidic cartridge. For each sample condition, the gene expression platform can be adapted to suit the requirements of the selected assay chemistry (authors)

  9. Dielectric Elastomers for Fluidic and Biomedical Applications

    Science.gov (United States)

    McCoul, David James

    other smaller particulate debris into the system. After a channel blockage was confirmed, three actuation attempts successfully cleared the blockage. Further tests indicated that the device were biocompatible with HeLa cells at 3 kV. To our knowledge this is the first pairing of dielectric elastomers with microfluidics in a non-electroosmotic context. Applications may include adaptive microfilters, micro-peristaltic pumps, and reduced-complexity lab-on-a-chip devices. Dielectric elastomers can also be adapted to manipulate fluidic systems on a larger scale. The second part of the dissertation research reports a novel low-profile, biomimetic dielectric elastomer tubular actuator capable of actively controlling hydraulic flow. The tubular actuator has been established as a reliable tunable valve, pinching a secondary silicone tube completely shut in the absence of a fluidic pressure bias or voltage, offering a high degree of resistance against fluidic flow, and able to open and completely remove this resistance to flow with an applied low power actuation voltage. The system demonstrates a rise in pressure of ~3.0 kPa when the dielectric elastomer valve is in the passive, unactuated state, and there is a quadratic fall in this pressure with increasing actuation voltage, until ~0 kPa is reached at 2.4 kV. The device is reliable for at least 2,000 actuation cycles for voltages at or below 2.2 kV. Furthermore, modeling of the actuator and fluidic system yields results consistent with the observed experimental dependence of intrasystem pressure on input flow rate, actuator prestretch, and actuation voltage. To our knowledge, this is the first actuator of its type that can control fluid flow by directly actuating the walls of a tube. Potential applications may include an implantable artificial sphincter, part of a peristaltic pump, or a computerized valve for fluidic or pneumatic control. The final part of the dissertation presents a novel dielectric elastomer band with

  10. Fusion-bonded fluidic interconnects

    NARCIS (Netherlands)

    Fazal, I.; Elwenspoek, Michael Curt

    2008-01-01

    A new approach to realize fluidic interconnects based on the fusion bonding of glass tubes with silicon is presented. Fusion bond strength analyses have been carried out. Experiments with plain silicon wafers and coated with silicon oxide and silicon nitride are performed. The obtained results are

  11. FLUIDICS: THE ANSWER TO PROBLEMS OF HANDLING HAZARDOUS FLUIDS – A SURVEY

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2012-01-01

    Roč. 2, č. 2 (2012), s. 167-183 ISSN 2041-9031 R&D Projects: GA ČR(CZ) GCP101/11/J019; GA TA ČR TA02020795 Institutional research plan: CEZ:AV0Z20760514 Keywords : fluidic pumps * fluidics * fluidic valves Subject RIV: BK - Fluid Dynamics http://journals.witpress.com/journals.asp?iID=78#papers

  12. Fluidic Elements based on Coanda Effect

    Directory of Open Access Journals (Sweden)

    Constantin OLIVOTTO

    2010-12-01

    Full Text Available This paper contains first some definitions and classifications regarding the fluidic elements. Thegeneral current status is presented, nominating the main specific elements based on the Coanda effect developedspecially in Romania. In particularly the development of an original bistable element using industrial compressedair at industrial pressure supply is presented. The function of this element is based on the controlled attachmentof the main jet at a curved wall through the Coanda effect. The methods used for particular calculation andexperiments are nominated. The main application of these elements was to develop a specific execution element:a fluidic step–by-step motor based on the Coanda effect.

  13. Fluidics platform and method for sample preparation and analysis

    Science.gov (United States)

    Benner, W. Henry; Dzenitis, John M.; Bennet, William J.; Baker, Brian R.

    2014-08-19

    Herein provided are fluidics platform and method for sample preparation and analysis. The fluidics platform is capable of analyzing DNA from blood samples using amplification assays such as polymerase-chain-reaction assays and loop-mediated-isothermal-amplification assays. The fluidics platform can also be used for other types of assays and analyzes. In some embodiments, a sample in a sealed tube can be inserted directly. The following isolation, detection, and analyzes can be performed without a user's intervention. The disclosed platform may also comprises a sample preparation system with a magnetic actuator, a heater, and an air-drying mechanism, and fluid manipulation processes for extraction, washing, elution, assay assembly, assay detection, and cleaning after reactions and between samples.

  14. Microbubble generator excited by fluidic oscillator's third harmonic frequency

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2014-01-01

    Roč. 92, č. 9 (2014), s. 1603-1615 ISSN 0263-8762 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : fluidic oscillator * microbubble generation * fluidic feedback loop Subject RIV: BK - Fluid Dynamics Impact factor: 2.348, year: 2014 http://dx.doi.org/10.1016/j.cherd.2013.12.004

  15. Configurations of Fluidic Actuators for Generation of Hybrid-Synthetic Jets

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2007-01-01

    Roč. 138, - (2007), s. 213-220 ISSN 0924-4247 R&D Projects: GA ČR GA101/07/1499 Institutional research plan: CEZ:AV0Z20760514 Keywords : synthetic jets * fluidics * fluidic alternators Subject RIV: BK - Fluid Dynamics Impact factor: 1.348, year: 2007

  16. Dynamics of fluidic devices with applications to rotor pitch links

    Science.gov (United States)

    Scarborough, Lloyd H., III

    Coupling a Fluidic Flexible Matrix Composite (F2MC) to an air-pressurized fluid port produces a fundamentally new class of tunable vibration isolator. This fluidlastic device provides significant vibration reduction at an isolation frequency that can be tuned over a broad frequency range. The material properties and geometry of the F2MC element, as well as the port inertance, determine the isolation frequency. A unique feature of this device is that the port inertance depends on pressure so the isolation frequency can be adjusted by changing the air pressure. For constant port inertance, the isolation frequency is largely independent of the isolated mass so the device is robust to changes in load. A nonlinear model is developed to predict isolator length and port inertance. The model is linearized and the frequency response calculated. Experiments agree with theory, demonstrating a tunable isolation range from 9 Hz to 36 Hz and transmitted force reductions of up to 60 dB at the isolation frequency. Replacing rigid pitch links on rotorcraft with coupled fluidic devices has the potential to reduce the aerodynamic blade loads transmitted through the pitch links to the swashplate. Analytical models of two fluidic devices coupled with three different fluidic circuits are derived. These passive fluidlastic systems are tuned, by varying the fluid inertances and capacitances of each fluidic circuit, to reduce the transmitted pitch-link loads. The different circuit designs result in transmitted pitch link loads reduction at up to three main rotor harmonics. The simulation results show loads reduction at the targeted out-of-phase and in-phase harmonics of up to 88% and 93%, respectively. Experimental validation of two of the fluidic circuits demonstrates loads reduction of up to 89% at the out-of-phase isolation frequencies and up to 81% at the in-phase isolation frequencies. Replacing rigid pitch links on rotorcraft with fluidic pitch links changes the blade torsional

  17. New Fluidic-Oscillator Concept for Flow-Separation Control

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Zhong, S.; Rasheed, F.

    2013-01-01

    Roč. 51, č. 2 (2013), s. 397-405 ISSN 0001-1452 R&D Projects: GA ČR(CZ) GCP101/11/J019; GA TA ČR TA02020795; GA ČR GA13-23046S Institutional research plan: CEZ:AV0Z20760514 Institutional support: RVO:61388998 Keywords : fluidics * fluidic oscillator * resonator Subject RIV: BK - Fluid Dynamics Impact factor: 1.165, year: 2013 http://arc.aiaa.org/doi/abs/10.2514/1.J051791?journalCode=aiaaj

  18. Pulsatile fluidic pump demonstration and predictive model application

    International Nuclear Information System (INIS)

    Morgan, J.G.; Holland, W.D.

    1986-04-01

    Pulsatile fluidic pumps were developed as a remotely controlled method of transferring or mixing feed solutions. A test in the Integrated Equipment Test facility demonstrated the performance of a critically safe geometry pump suitable for use in a 0.1-ton/d heavy metal (HM) fuel reprocessing plant. A predictive model was developed to calculate output flows under a wide range of external system conditions. Predictive and experimental flow rates are compared for both submerged and unsubmerged fluidic pump cases

  19. Fluidic pumps

    International Nuclear Information System (INIS)

    Priestman, G.H.

    1990-01-01

    A fluidic pump has primary and secondary vessels connected by a pipe, a displacement vessel having liquid to be delivered through a pipe via a rectifier provided with a feed tank. A drive unit delivers pressure fluid to a line to raise liquid and compress trapped gas or liquid in the space, including the pipe between the liquids in the two vessels and thus drive liquid out of the displacement vessel. The driving gas is therefore separated by the barrier liquid and the trapped gas or liquid from the liquid to be pumped which liquid could be e.g. radioactive. (author)

  20. APR1400 Fluidic Device Sensitivity Test

    International Nuclear Information System (INIS)

    Choi, Nam Hyun; Chu, In Cheol; Min, Kyong Ho; Song, Chul Hwa

    2005-12-01

    In the safety injection tank at the emergency core cooling system of APR1400, a new safety design feature, passive fluidic device is equipped which includes no active driving system. It is essential to evaluate the new design feature with various experiments. For this reason, three categories of sensitivity tests have been performed in the present study. As the first sensitivity experiment, the effect of the height of the stand pipe was investigated. The second sensitivity test was conducted with removing the insert plate gasket to examine its effect. The effect of the expansion of the control nozzle width was ascertained from the third sensitivity test. The results of each test showed that the passive fluidic device which will be equipped in the SIT tank of APR1400 has great integrity and repeatability

  1. Compressible flow in fluidic oscillators

    Science.gov (United States)

    Graff, Emilio; Hirsch, Damian; Gharib, Mory

    2013-11-01

    We present qualitative observations on the internal flow characteristics of fluidic oscillator geometries commonly referred to as sweeping jets in active flow control applications. We also discuss the effect of the geometry on the output jet in conditions from startup to supersonic exit velocity. Supported by the Boeing Company.

  2. CFD Analysis of the Safety Injection Tank and Fluidic Device

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Oan; Nietiadi, Yohanes Setiawan; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Addad, Yacine [KUSTAR, Abu Dhabi (United Arab Emirates)

    2016-05-15

    One of the most important components in the ECCS is the safety injection tank (SIT). Inside the SIT, a fluidic device is installed, which passively controls the mass flow of the safety injection and eliminates the need for low pressure safety injection pumps. As more passive safety mechanisms are being pursued, it has become more important to understand flow structure and the loss mechanism within the fluidic device. Current computational fluid dynamics (CFD) calculations have had limited success in predicting the fluid flow accurately. This study proposes to find a more exact result using CFD and more realistic modeling to predict the performance during accident scenarios more accurately. The safety injection tank with fluidic device was analyzed thoroughly using CFD. The preliminary calculation used 60,000 meshes for the initial test calculation. The results fit the experimental results surprisingly despite its coarse grid. Nonetheless, the mesh resolution was increased to capture the vortex in the fluidic device precisely. Once a detailed CFD computation is finished, a small-scale experiment will be conducted for the given conditions. Using the experimental results and the CFD model, physical models can be improved to fit the results more accurately.

  3. Optimum design of A fluidic micro-oscillator

    International Nuclear Information System (INIS)

    Noh, Yoojeong; Youn, Sungkie; Kim, Moonuhn

    2002-01-01

    A fluidic micro-oscillator is used to control a linear tool as generating an oscillating fluid jet at its two output ports. The linear tool is a linear actuator that transforms the fluidic energy into mechanical energy via a double acting piston placed in linear actuator housing. Together the two devices form a dynamic microsystem that can be used in medical application. In this paper, we intend to optimize the geometry of the fluidic micro-oscillator. A basic oscillator design is varied in terms of supply nozzle geometry, length of the feedback channels, wall angle, control port width and etc. It was found that characteristics parameters such as frequency, volume flow and output pressure depends strongly on above mentioned design parameters. According to above the observations, we can determine an object function and design variables. Since we eventually have to maximize force to drive and steer a cutting tool, the output pressure difference is chosen as an object function and nozzle width, feedback channel, control port width, distance between splitter and nozzle can be chosen as the design variables. As a result of such design optimization, we can obtain the maximum force. At this time we maximize the output pressure difference using shape optimization

  4. Water based fluidic radio frequency metamaterials

    Science.gov (United States)

    Cai, Xiaobing; Zhao, Shaolin; Hu, Mingjun; Xiao, Junfeng; Zhang, Naibo; Yang, Jun

    2017-11-01

    Electromagnetic metamaterials offer great flexibility for wave manipulation and enable exceptional functionality design, ranging from negative refraction, anomalous reflection, super-resolution imaging, transformation optics to cloaking, etc. However, demonstration of metamaterials with unprecedented functionalities is still challenging and costly due to the structural complexity or special material properties. Here, we demonstrate for the first time the versatile fluidic radio frequency metamaterials with negative refraction using a water-embedded and metal-coated 3D architecture. Effective medium analysis confirms that metallic frames create an evanescent environment while simultaneously water cylinders produce negative permeability under Mie resonance. The water-metal coupled 3D architectures and the accessory devices for measurement are fabricated by 3D printing with post electroless deposition. Our study also reveals the great potential of fluidic metamaterials and versatility of the 3D printing process in rapid prototyping of customized metamaterials.

  5. Numerical Studies of a Fluidic Diverter for Flow Control

    Science.gov (United States)

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis E.; Raghu, Surya

    2009-01-01

    The internal flow structure in a specific fluidic diverter is studied over a range from low subsonic to sonic inlet conditions by a time-dependent numerical analysis. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The velocity, temperature and pressure fields are calculated for subsonic conditions and the self-induced oscillatory behavior of the flow is successfully predicted. The results of our numerical studies have excellent agreement with our experimental measurements of oscillation frequencies. The acoustic speed in the gaseous medium is determined to be a key factor for up to sonic conditions in governing the mechanism of initiating the oscillations as well as determining its frequency. The feasibility of employing plasma actuation with a minimal perturbation level is demonstrated in steady-state calculations to also produce oscillation frequencies of our own choosing instead of being dependent on the fixed-geometry fluidic device.

  6. Development of a continuous-flow fluidic pump

    International Nuclear Information System (INIS)

    Robinson, S.M.

    1985-08-01

    A study was made of a fluidic pump which utilizes gas pistons, a venturi-like reverse-flow-diverter, and a planar Y-type flow junction to produce a continuous flow of liquid from a system containing no moving parts. The study included an evaluation of the system performance and of methods for controlling the stability of the fluidic system. A mathematical model of the system was developed for steady-state operation using accepted theories of fluid mechanics. Although more elaborate models are needed for detailed design and optimization of specific systems, the model determined some of the main factors controlling the system performance and will be used in the development of more accurate models. 49 refs., 39 figs., 9 tabs

  7. Dampers, fluidics and the failsafe fallacy [fire protection

    International Nuclear Information System (INIS)

    Dann, M.; Hodgson, T.

    1989-01-01

    The fire protection practices adopted at nuclear power stations generally follow the well established principles used throughout industry. Unfortunately, there is one particular area - the interaction with heating, ventilation and air conditioning (HVAC) services - where nuclear power stations pose a seemingly insoluble conflict: that between the need to contain and the need to ventilate. Now, however, solid state fire dampers using power fluidics may promise a solution. One of the key characteristics of a fluidic device is that it is 'solid state', i.e. it has no moving parts. Because of this, its inherent reliability is orders of magnitude greater than a mechanical device. (U.K.)

  8. High-frequency fluidic oscillator

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2015-01-01

    Roč. 234, October (2015), s. 158-167 ISSN 0924-4247 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : pulsating flow * jet * fluidics Subject RIV: BK - Fluid Dynamics Impact factor: 2.201, year: 2015 http://www.sciencedirect.com/science/article/pii/S0924424715301114/pdfft?md5=42ec4f6f3180151913ceade1e4625d74&pid=1-s2.0-S0924424715301114-main.pdf

  9. A micro-fluidic study of whole blood behaviour on PMMA topographical nanostructures

    Directory of Open Access Journals (Sweden)

    Tsud Nataliya

    2008-02-01

    Full Text Available Abstract Background Polymers are attractive materials for both biomedical engineering and cardiovascular applications. Although nano-topography has been found to influence cell behaviour, no established method exists to understand and evaluate the effects of nano-topography on polymer-blood interaction. Results We optimized a micro-fluidic set-up to study the interaction of whole blood with nano-structured polymer surfaces under flow conditions. Micro-fluidic chips were coated with polymethylmethacrylate films and structured by polymer demixing. Surface feature size varied from 40 nm to 400 nm and feature height from 5 nm to 50 nm. Whole blood flow rate through the micro-fluidic channels, platelet adhesion and von Willebrand factor and fibrinogen adsorption onto the structured polymer films were investigated. Whole blood flow rate through the micro-fluidic channels was found to decrease with increasing average surface feature size. Adhesion and spreading of platelets from whole blood and von Willebrand factor adsorption from platelet poor plasma were enhanced on the structured surfaces with larger feature, while fibrinogen adsorption followed the opposite trend. Conclusion We investigated whole blood behaviour and plasma protein adsorption on nano-structured polymer materials under flow conditions using a micro-fluidic set-up. We speculate that surface nano-topography of polymer films influences primarily plasma protein adsorption, which results in the control of platelet adhesion and thrombus formation.

  10. Fluidic electrodynamics: Approach to electromagnetic propulsion

    International Nuclear Information System (INIS)

    Martins, Alexandre A.; Pinheiro, Mario J.

    2009-01-01

    We report on a new methodological approach to electrodynamics based on a fluidic viewpoint. We develop a systematic approach establishing analogies between physical magnitudes and isomorphism (structure-preserving mappings) between systems of equations. This methodological approach allows us to give a general expression for the hydromotive force, thus re-obtaining the Navier-Stokes equation departing from the appropriate electromotive force. From this ground we offer a fluidic approach to different kinds of issues with interest in propulsion, e.g., the force exerted by a charged particle on a body carrying current; the magnetic force between two parallel currents; the Magnus's force. It is shown how the intermingle between the fluid vector fields and electromagnetic fields leads to new insights on their dynamics. The new concepts introduced in this work suggest possible applications to electromagnetic (EM) propulsion devices and the mastery of the principles of producing electric fields of required configuration in plasma medium.

  11. Customizable 3D Printed 'Plug and Play' Millifluidic Devices for Programmable Fluidics.

    Science.gov (United States)

    Tsuda, Soichiro; Jaffery, Hussain; Doran, David; Hezwani, Mohammad; Robbins, Phillip J; Yoshida, Mari; Cronin, Leroy

    2015-01-01

    Three dimensional (3D) printing is actively sought after in recent years as a promising novel technology to construct complex objects, which scope spans from nano- to over millimeter scale. Previously we utilized Fused deposition modeling (FDM)-based 3D printer to construct complex 3D chemical fluidic systems, and here we demonstrate the construction of 3D milli-fluidic structures for programmable liquid handling and control of biological samples. Basic fluidic operation devices, such as water-in-oil (W/O) droplet generators for producing compartmentalized mono-disperse droplets, sensor-integrated chamber for online monitoring of cellular growth, are presented. In addition, chemical surface treatment techniques are used to construct valve-based flow selector for liquid flow control and inter-connectable modular devices for networking fluidic parts. As such this work paves the way for complex operations, such as mixing, flow control, and monitoring of reaction / cell culture progress can be carried out by constructing both passive and active components in 3D printed structures, which designs can be shared online so that anyone with 3D printers can reproduce them by themselves.

  12. Manufacture of micro fluidic devices by laser welding using thermal transfer printing techniques

    Science.gov (United States)

    Klein, R.; Klein, K. F.; Tobisch, T.; Thoelken, D.; Belz, M.

    2016-03-01

    Micro-fluidic devices are widely used today in the areas of medical diagnostics and drug research, as well as for applications within the process, electronics and chemical industry. Microliters of fluids or single cell to cell interactions can be conveniently analyzed with such devices using fluorescence imaging, phase contrast microscopy or spectroscopic techniques. Typical micro-fluidic devices consist of a thermoplastic base component with chambers and channels covered by a hermetic fluid and gas tight sealed lid component. Both components are usually from the same or similar thermoplastic material. Different mechanical, adhesive or thermal joining processes can be used to assemble base component and lid. Today, laser beam welding shows the potential to become a novel manufacturing opportunity for midsize and large scale production of micro-fluidic devices resulting in excellent processing quality by localized heat input and low thermal stress to the device during processing. For laser welding, optical absorption of the resin and laser wavelength has to be matched for proper joining. This paper will focus on a new approach to prepare micro-fluidic channels in such devices using a thermal transfer printing process, where an optical absorbing layer absorbs the laser energy. Advantages of this process will be discussed in combination with laser welding of optical transparent micro-fluidic devices.

  13. Customizable 3D Printed 'Plug and Play' Millifluidic Devices for Programmable Fluidics.

    Directory of Open Access Journals (Sweden)

    Soichiro Tsuda

    Full Text Available Three dimensional (3D printing is actively sought after in recent years as a promising novel technology to construct complex objects, which scope spans from nano- to over millimeter scale. Previously we utilized Fused deposition modeling (FDM-based 3D printer to construct complex 3D chemical fluidic systems, and here we demonstrate the construction of 3D milli-fluidic structures for programmable liquid handling and control of biological samples. Basic fluidic operation devices, such as water-in-oil (W/O droplet generators for producing compartmentalized mono-disperse droplets, sensor-integrated chamber for online monitoring of cellular growth, are presented. In addition, chemical surface treatment techniques are used to construct valve-based flow selector for liquid flow control and inter-connectable modular devices for networking fluidic parts. As such this work paves the way for complex operations, such as mixing, flow control, and monitoring of reaction / cell culture progress can be carried out by constructing both passive and active components in 3D printed structures, which designs can be shared online so that anyone with 3D printers can reproduce them by themselves.

  14. Solenoid Driven Pressure Valve System: Toward Versatile Fluidic Control in Paper Microfluidics.

    Science.gov (United States)

    Kim, Taehoon H; Hahn, Young Ki; Lee, Jungmin; van Noort, Danny; Kim, Minseok S

    2018-02-20

    As paper-based diagnostics has become predominantly driven by more advanced microfluidic technology, many of the research efforts are still focused on developing reliable and versatile fluidic control devices, apart from improving sensitivity and reproducibility. In this work, we introduce a novel and robust paper fluidic control system enabling versatile fluidic control. The system comprises a linear push-pull solenoid and an Arduino Uno microcontroller. The precisely controlled pressure exerted on the paper stops the flow. We first determined the stroke distance of the solenoid to obtain a constant pressure while examining the fluidic time delay as a function of the pressure. Results showed that strips of grade 1 chromatography paper had superior reproducibility in fluid transport. Next, we characterized the reproducibility of the fluidic velocity which depends on the type and grade of paper used. As such, we were able to control the flow velocity on the paper and also achieve a complete stop of flow with a pressure over 2.0 MPa. Notably, after the actuation of the pressure driven valve (PDV), the previously pressed area regained its original flow properties. This means that, even on a previously pressed area, multiple valve operations can be successfully conducted. To the best of our knowledge, this is the first demonstration of an active and repetitive valve operation in paper microfluidics. As a proof of concept, we have chosen to perform a multistep detection system in the form of an enzyme-linked immunosorbent assay with mouse IgG as the target analyte.

  15. Fluidic load control for wind turbines blades

    NARCIS (Netherlands)

    Boeije, C.S.; Vries, de H.; Cleine, I.; Emden, van E.; Zwart, G.G.M.; Stobbe, H.; Hirschberg, A.; Hoeijmakers, H.W.M.; Maureen Hand, xx

    2009-01-01

    This paper describes the initial steps into the investigation of the possibility of reducing fatigue loads on wind turbine blades by the application of fluidic jets. This investigation involves static pressure measurements as well as numerical simulations for a non-rotating NACA-0018 airfoil. The

  16. 3D printed fluidics with embedded analytic functionality for automated reaction optimisation

    OpenAIRE

    Andrew J. Capel; Andrew Wright; Matthew J. Harding; George W. Weaver; Yuqi Li; Russell A. Harris; Steve Edmondson; Ruth D. Goodridge; Steven D. R. Christie

    2017-01-01

    Additive manufacturing or ‘3D printing’ is being developed as a novel manufacturing process for the production of bespoke micro and milli-scale fluidic devices. When coupled with online monitoring and optimisation software, this offers an advanced, customised method for performing automated chemical synthesis. This paper reports the use of two additive manufacturing processes, stereolithography and selective laser melting, to create multi-functional fluidic devices with embedded reaction moni...

  17. Microfluidic hubs, systems, and methods for interface fluidic modules

    Science.gov (United States)

    Bartsch, Michael S; Claudnic, Mark R; Kim, Hanyoup; Patel, Kamlesh D; Renzi, Ronald F; Van De Vreugde, James L

    2015-01-27

    Embodiments of microfluidic hubs and systems are described that may be used to connect fluidic modules. A space between surfaces may be set by fixtures described herein. In some examples a fixture may set substrate-to-substrate spacing based on a distance between registration surfaces on which the respective substrates rest. Fluidic interfaces are described, including examples where fluid conduits (e.g. capillaries) extend into the fixture to the space between surfaces. Droplets of fluid may be introduced to and/or removed from microfluidic hubs described herein, and fluid actuators may be used to move droplets within the space between surfaces. Continuous flow modules may be integrated with the hubs in some examples.

  18. Review on recent and advanced applications of monoliths and related porous polymer gels in micro-fluidic devices

    International Nuclear Information System (INIS)

    Vazquez, Mercedes; Paull, Brett

    2010-01-01

    This review critically summarises recent novel and advanced achievements in the application of monolithic materials and related porous polymer gels in micro-fluidic devices appearing within the literature over the period of the last 5 years (2005-2010). The range of monolithic materials has developed rapidly over the past decade, with a diverse and highly versatile class of materials now available, with each exhibiting distinct porosities, pore sizes, and a wide variety of surface functionalities. A major advantage of these materials is their ease of preparation in micro-fluidic channels by in situ polymerisation, leading to monolithic materials being increasingly utilised for a larger variety of purposes in micro-fluidic platforms. Applications of porous polymer monoliths, silica-based monoliths and related homogeneous porous polymer gels in the preparation of separation columns, ion-permeable membranes, preconcentrators, extractors, electrospray emitters, micro-valves, electrokinetic pumps, micro-reactors and micro-mixers in micro-fluidic devices are discussed herein. Procedures used in the preparation of monolithic materials in micro-channels, as well as some practical aspects of the micro-fluidic chip fabrication are addressed. Recent analytical/bioanalytical and catalytic applications of the final micro-fluidic devices incorporating monolithic materials are also reviewed.

  19. Development of an opto-fluidic micro-system dedicated to chemical analysis in a nuclear environment

    Energy Technology Data Exchange (ETDEWEB)

    Geoffray, F.; Canto, F.; Couston, L. [CEA, Centre de Marcoule, Nuclear Energy Division, RadioChemistry and Processes Department, SERA/LAMM, F-30207 Bagnols-sur-Ceze (France); Allenet, T.; Bucci, D.; Broquin, J.E. [IMEP-LaHC, Universite de Grenoble Alpes, UMR 5130 CNRS, Minatec-Grenoble-INP, CS 50257, 38016 Grenoble (France); Jardinier, E. [CEA, Centre de Marcoule, Nuclear Energy Division, RadioChemistry and Processes Department, SERA/LAMM, F-30207 Bagnols-sur-Ceze (France); IMEP-LaHC, Universite de Grenoble Alpes, UMR 5130 CNRS, Minatec-Grenoble-INP, CS 50257, 38016 Grenoble (France)

    2016-07-01

    Micromachining techniques enable the fabrication of innovative lab-on-a-chip. Following the trend in chemical and biological analysis, the use of microsystems also appears compelling in the nuclear industry. The volume reduction of radioactive solutions is especially attractive in order to reduce the workers radiation exposition in the context of off-line analysis in spent nuclear fuel reprocessing plants. We hence present the development of an opto-fluidic sensor combining micro-fluidic channels for fluid transportation and integrated optics for detection. With the aim of achieving automated microanalysis with reduced response time the sensor is made compatible with a commercial micro-fluidic holder. Therefore the chip is connected to computer controlled pumps and electro-valves thanks to capillary tubing. In this paper we emphasis on the fluid handling capacities of the opto-fluidic sensor. (authors)

  20. Micro Machining of Injection Mold Inserts for Fluidic Channel of Polymeric Biochips

    Directory of Open Access Journals (Sweden)

    Myeong-Woo Cho

    2007-08-01

    Full Text Available Recently, the polymeric micro-fluidic biochip, often called LOC (lab-on-a-chip, has been focused as a cheap, rapid and simplified method to replace the existing biochemical laboratory works. It becomes possible to form miniaturized lab functionalities on a chip with the development of MEMS technologies. The micro-fluidic chips contain many micro-channels for the flow of sample and reagents, mixing, and detection tasks. Typical substrate materials for the chip are glass and polymers. Typical techniques for micro-fluidic chip fabrication are utilizing various micro pattern forming methods, such as wet-etching, micro-contact printing, and hot-embossing, micro injection molding, LIGA, and micro powder blasting processes, etc. In this study, to establish the basis of the micro pattern fabrication and mass production of polymeric micro-fluidic chips using injection molding process, micro machining method was applied to form micro-channels on the LOC molds. In the research, a series of machining experiments using micro end-mills were performed to determine optimum machining conditions to improve surface roughness and shape accuracy of designed simplified micro-channels. Obtained conditions were used to machine required mold inserts for micro-channels using micro end-mills. Test injection processes using machined molds and COC polymer were performed, and then the results were investigated.

  1. Silicon micro-fluidic cooling for NA62 GTK pixel detectors

    CERN Document Server

    Romagnoli, G; Brunel, B; Catinaccio, A; Degrange, J; Mapelli, A; Morel, M; Noel, J; Petagna, P

    2015-01-01

    Silicon micro-channel cooling is being studied for efficient thermal management in application fields such as high power computing and 3D electronic integration. This concept has been introduced in 2010 for the thermal management of silicon pixel detectors in high energy physics experiments. Combining the versatility of standard micro-fabrication processes with the high thermal efficiency typical of micro-fluidics, it is possible to produce effective thermal management devices that are well adapted to different detector configurations. The production of very thin cooling devices in silicon enables a minimization of material of the tracking sensors and eliminates mechanical stresses due to the mismatch of the coefficient of thermal expansion between detectors and cooling systems. The NA62 experiment at CERN will be the first high particle physics experiment that will install a micro-cooling system to perform the thermal management of the three detection planes of its Gigatracker pixel detector.

  2. Rapid development of paper-based fluidic diagnostic devices

    CSIR Research Space (South Africa)

    Smith, S

    2014-11-01

    Full Text Available We present a method for rapid and low-cost development of microfluidic diagnostic devices using paper-based techniques. Specifically, the implementation of fluidic flow paths and electronics on paper are demonstrated, with the goal of producing...

  3. Micro fluidic System for Culturing and Monitoring of Neuronal Cells and Tissue

    DEFF Research Database (Denmark)

    Bakmand, Tanya; Waagepetersen, Helle S.

    The aim of this Ph.D. project was to combine experience within cell and tissue culturing, electrochemistry and microfabrication in order to develop an in vivo-like fluidic culturing platform, challenging the traditional culturing methods. The first goal was to develope a fluidic system for cultur...... with mass production. The last part of this thesis also includes perspectives on how to expand the latest designed device to facilitate culturing of tissue and co-culturing of cells....

  4. Determining DfT Hardware by VHDL-AMS Fault Simulation for Biological Micro-Electronic Fluidic Arrays

    NARCIS (Netherlands)

    Kerkhoff, Hans G.; Zhang, X.; Liu, H.; Richardson, A.; Nouet, P.; Azais, F.

    2005-01-01

    The interest of microelectronic fluidic arrays for biomedical applications, like DNA determination, is rapidly increasing. In order to evaluate these systems in terms of required Design-for-Test structures, fault simulations in both fluidic and electronic domains are necessary. VHDL-AMS can be used

  5. MEMS fluidic actuator

    Science.gov (United States)

    Kholwadwala, Deepesh K [Albuquerque, NM; Johnston, Gabriel A [Trophy Club, TX; Rohrer, Brandon R [Albuquerque, NM; Galambos, Paul C [Albuquerque, NM; Okandan, Murat [Albuquerque, NM

    2007-07-24

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  6. Optofluidic Approaches for Enhanced Microsensor Performances

    Directory of Open Access Journals (Sweden)

    Genni Testa

    2014-12-01

    Full Text Available Optofluidics is a relatively young research field able to create a tight synergy between optics and micro/nano-fluidics. The high level of integration between fluidic and optical elements achievable by means of optofluidic approaches makes it possible to realize an innovative class of sensors, which have been demonstrated to have an improved sensitivity, adaptability and compactness. Many developments in this field have been made in the last years thanks to the availability of a new class of low cost materials and new technologies. This review describes the Italian state of art on optofluidic devices for sensing applications and offers a perspective for further future advances. We introduce the optofluidic concept and describe the advantages of merging photonic and fluidic elements, focusing on sensor developments for both environmental and biomedical monitoring.

  7. DNA Assembly in 3D Printed Fluidics.

    Directory of Open Access Journals (Sweden)

    William G Patrick

    Full Text Available The process of connecting genetic parts-DNA assembly-is a foundational technology for synthetic biology. Microfluidics present an attractive solution for minimizing use of costly reagents, enabling multiplexed reactions, and automating protocols by integrating multiple protocol steps. However, microfluidics fabrication and operation can be expensive and requires expertise, limiting access to the technology. With advances in commodity digital fabrication tools, it is now possible to directly print fluidic devices and supporting hardware. 3D printed micro- and millifluidic devices are inexpensive, easy to make and quick to produce. We demonstrate Golden Gate DNA assembly in 3D-printed fluidics with reaction volumes as small as 490 nL, channel widths as fine as 220 microns, and per unit part costs ranging from $0.61 to $5.71. A 3D-printed syringe pump with an accompanying programmable software interface was designed and fabricated to operate the devices. Quick turnaround and inexpensive materials allowed for rapid exploration of device parameters, demonstrating a manufacturing paradigm for designing and fabricating hardware for synthetic biology.

  8. Micro-Cavity Fluidic Dye Laser

    DEFF Research Database (Denmark)

    Helbo, Bjarne; Kristensen, Anders; Menon, Aric Kumaran

    2003-01-01

    We have successfully designed, fabricated and characterized a micro-cavity fluidic dye laser with metallic mirrors, which can be integrated with polymer based lab-on-a-chip microsystems without further processing steps. A simple rate-equation model is used to predict the average pumping power...... threshold for lasing as function of cavity-mirror reflectance, laser dye concentration and cavity length. The laser device is characterized using the laser dye Rhodamine 6G dissolved in ethanol. Lasing is observed, and the influence of dye concentration is investigated....

  9. An Evaluation of Power Fluidics Mixing and Pumping for Application in the Single Shell Tank (SST) Retrieval Program

    International Nuclear Information System (INIS)

    CRASS, D.W.

    2001-01-01

    This document is being released for information only. It provides an explanation of fluidics pumping and mixing technology and explores the feasibility of using fluidics technology for the retrieval of S102. It concludes that there are no obvious flaws that would prevent deploying the technology and recommends further development of fluidics technology as a retrieval option. The configuration described herein does not represent the basis for project definition

  10. Impinging jets controlled by fluidic input signal

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Trávníček, Zdeněk; Peszyński, K.

    2016-01-01

    Roč. 249, October (2016), s. 85-92 ISSN 0924-4247 R&D Projects: GA ČR GA13-23046S; GA ČR GA14-08888S Institutional support: RVO:61388998 Keywords : fluidics * jets * impinging jets * coanda effect Subject RIV: BK - Fluid Dynamics Impact factor: 2.499, year: 2016 http://www.sciencedirect.com/science/article/pii/S0924424716303880

  11. pH-Sensitive Hydrogel for Micro-Fluidic Valve

    Directory of Open Access Journals (Sweden)

    Zhengzhi Yang

    2012-07-01

    Full Text Available The deformation behavior of a pH-sensitive hydrogel micro-fluidic valve system is investigated using inhomogeneous gel deformation theory, in which the fluid-structure interaction (FSI of the gel solid and fluid flow in the pipe is considered. We use a finite element method with a well adopted hydrogel constitutive equation, which is coded in commercial software, ABAQUS, to simulate the hydrogel valve swelling deformation, while FLUENT is adopted to model the fluid flow in the pipe of the hydrogel valve system. The study demonstrates that FSI significantly affects the gel swelling deformed shapes, fluid flow pressure and velocity patterns. FSI has to be considered in the study on fluid flow regulated by hydrogel microfluidic valve. The study provides a more accurate and adoptable model for future design of new pH-sensitive hydrogel valves, and also gives a useful guideline for further studies on hydrogel fluidic applications.

  12. Effects on LOCA mass and energy release of the SIT Fluidic device for SKN 3 and 4

    International Nuclear Information System (INIS)

    Song, Jeung Hyo; Kim, Tae Yoon; Choi, Han Rim; Choi, Chul Jin; Seo, Jong Tae

    2003-01-01

    A fluidic device is employed for the control of safety injection tank flow during a large break loss of coolant accident in Shin Kori Nuclear power plant Unit 3 and 4. It is installed in the safety injection tank and provides two stages of safety injection tank flow injection, initially high flow injection and then low flow injection after the reactor vessel downcomer annulus full. This allows a more effective use of safety injection tank water inventory during a loss of coolant accident. However, the fluidic device may have an adverse impact on the mass and energy release during the accident. That is, the steam mass and energy release will be increased by a considerable amount because the safety injection tank low flow injection via fluidic device is not credited to condense the steam flows through intact cold legs. The increased mass and energy releases have an impact on the peak pressure and temperature of the containment. This effect of the fluidic device is analyzed on the mass and energy release and the peak pressure and temperature of the containment. The calculation has been done using the CEFLASH-4A, the FLOOD3 with some modifications for the fluidic device and the CONTEMPT-LT code. The results show that the mass and energy release and the peak pressure and temperature were considerably increased when compared with the case without the fluidic device. However, the results satisfy the required design margin

  13. Effects on LOCA mass and energy release of the SIT Fluidic device for SKN 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jeung Hyo; Kim, Tae Yoon; Choi, Han Rim; Choi, Chul Jin; Seo, Jong Tae [Korea Power Engineering Company, Daejon (Korea, Republic of)

    2003-07-01

    A fluidic device is employed for the control of safety injection tank flow during a large break loss of coolant accident in Shin Kori Nuclear power plant Unit 3 and 4. It is installed in the safety injection tank and provides two stages of safety injection tank flow injection, initially high flow injection and then low flow injection after the reactor vessel downcomer annulus full. This allows a more effective use of safety injection tank water inventory during a loss of coolant accident. However, the fluidic device may have an adverse impact on the mass and energy release during the accident. That is, the steam mass and energy release will be increased by a considerable amount because the safety injection tank low flow injection via fluidic device is not credited to condense the steam flows through intact cold legs. The increased mass and energy releases have an impact on the peak pressure and temperature of the containment. This effect of the fluidic device is analyzed on the mass and energy release and the peak pressure and temperature of the containment. The calculation has been done using the CEFLASH-4A, the FLOOD3 with some modifications for the fluidic device and the CONTEMPT-LT code. The results show that the mass and energy release and the peak pressure and temperature were considerably increased when compared with the case without the fluidic device. However, the results satisfy the required design margin.

  14. Prediction of mechanical properties of a warm compacted molybdenum prealloy using artificial neural network and adaptive neuro-fuzzy models

    International Nuclear Information System (INIS)

    Zare, Mansour; Vahdati Khaki, Jalil

    2012-01-01

    Highlights: ► ANNs and ANFIS fairly predicted UTS and YS of warm compacted molybdenum prealloy. ► Effects of composition, temperature, compaction pressure on output were studied. ► ANFIS model was in better agreement with experimental data from published article. ► Sintering temperature had the most significant effect on UTS and YS. -- Abstract: Predictive models using artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) were successfully developed to predict yield strength and ultimate tensile strength of warm compacted 0.85 wt.% molybdenum prealloy samples. To construct these models, 48 different experimental data were gathered from the literature. A portion of the data set was randomly chosen to train both ANN with back propagation (BP) learning algorithm and ANFIS model with Gaussian membership function and the rest was implemented to verify the performance of the trained network against the unseen data. The generalization capability of the networks was also evaluated by applying new input data within the domain covered by the training pattern. To compare the obtained results, coefficient of determination (R 2 ), root mean squared error (RMSE) and average absolute error (AAE) indexes were chosen and calculated for both of the models. The results showed that artificial neural network and adaptive neuro-fuzzy system were both potentially strong for prediction of the mechanical properties of warm compacted 0.85 wt.% molybdenum prealloy; however, the proposed ANFIS showed better performance than the ANN model. Also, the ANFIS model was subjected to a sensitivity analysis to find the significant inputs affecting mechanical properties of the samples.

  15. 3D printed fluidics with embedded analytic functionality for automated reaction optimisation.

    Science.gov (United States)

    Capel, Andrew J; Wright, Andrew; Harding, Matthew J; Weaver, George W; Li, Yuqi; Harris, Russell A; Edmondson, Steve; Goodridge, Ruth D; Christie, Steven D R

    2017-01-01

    Additive manufacturing or '3D printing' is being developed as a novel manufacturing process for the production of bespoke micro- and milliscale fluidic devices. When coupled with online monitoring and optimisation software, this offers an advanced, customised method for performing automated chemical synthesis. This paper reports the use of two additive manufacturing processes, stereolithography and selective laser melting, to create multifunctional fluidic devices with embedded reaction monitoring capability. The selectively laser melted parts are the first published examples of multifunctional 3D printed metal fluidic devices. These devices allow high temperature and pressure chemistry to be performed in solvent systems destructive to the majority of devices manufactured via stereolithography, polymer jetting and fused deposition modelling processes previously utilised for this application. These devices were integrated with commercially available flow chemistry, chromatographic and spectroscopic analysis equipment, allowing automated online and inline optimisation of the reaction medium. This set-up allowed the optimisation of two reactions, a ketone functional group interconversion and a fused polycyclic heterocycle formation, via spectroscopic and chromatographic analysis.

  16. 3D printed fluidics with embedded analytic functionality for automated reaction optimisation

    Directory of Open Access Journals (Sweden)

    Andrew J. Capel

    2017-01-01

    Full Text Available Additive manufacturing or ‘3D printing’ is being developed as a novel manufacturing process for the production of bespoke micro- and milliscale fluidic devices. When coupled with online monitoring and optimisation software, this offers an advanced, customised method for performing automated chemical synthesis. This paper reports the use of two additive manufacturing processes, stereolithography and selective laser melting, to create multifunctional fluidic devices with embedded reaction monitoring capability. The selectively laser melted parts are the first published examples of multifunctional 3D printed metal fluidic devices. These devices allow high temperature and pressure chemistry to be performed in solvent systems destructive to the majority of devices manufactured via stereolithography, polymer jetting and fused deposition modelling processes previously utilised for this application. These devices were integrated with commercially available flow chemistry, chromatographic and spectroscopic analysis equipment, allowing automated online and inline optimisation of the reaction medium. This set-up allowed the optimisation of two reactions, a ketone functional group interconversion and a fused polycyclic heterocycle formation, via spectroscopic and chromatographic analysis.

  17. 3D printed fluidics with embedded analytic functionality for automated reaction optimisation

    Science.gov (United States)

    Capel, Andrew J; Wright, Andrew; Harding, Matthew J; Weaver, George W; Li, Yuqi; Harris, Russell A; Edmondson, Steve; Goodridge, Ruth D

    2017-01-01

    Additive manufacturing or ‘3D printing’ is being developed as a novel manufacturing process for the production of bespoke micro- and milliscale fluidic devices. When coupled with online monitoring and optimisation software, this offers an advanced, customised method for performing automated chemical synthesis. This paper reports the use of two additive manufacturing processes, stereolithography and selective laser melting, to create multifunctional fluidic devices with embedded reaction monitoring capability. The selectively laser melted parts are the first published examples of multifunctional 3D printed metal fluidic devices. These devices allow high temperature and pressure chemistry to be performed in solvent systems destructive to the majority of devices manufactured via stereolithography, polymer jetting and fused deposition modelling processes previously utilised for this application. These devices were integrated with commercially available flow chemistry, chromatographic and spectroscopic analysis equipment, allowing automated online and inline optimisation of the reaction medium. This set-up allowed the optimisation of two reactions, a ketone functional group interconversion and a fused polycyclic heterocycle formation, via spectroscopic and chromatographic analysis. PMID:28228852

  18. Performance Analysis of a Fluidic Axial Oscillation Tool for Friction Reduction with the Absence of a Throttling Plate

    Directory of Open Access Journals (Sweden)

    Xinxin Zhang

    2017-04-01

    Full Text Available An axial oscillation tool is proved to be effective in solving problems associated with high friction and torque in the sliding drilling of a complex well. The fluidic axial oscillation tool, based on an output-fed bistable fluidic oscillator, is a type of axial oscillation tool which has become increasingly popular in recent years. The aim of this paper is to analyze the dynamic flow behavior of a fluidic axial oscillation tool with the absence of a throttling plate in order to evaluate its overall performance. In particular, the differences between the original design with a throttling plate and the current default design are profoundly analyzed, and an improvement is expected to be recorded for the latter. A commercial computational fluid dynamics code, Fluent, was used to predict the pressure drop and oscillation frequency of a fluidic axial oscillation tool. The results of the numerical simulations agree well with corresponding experimental results. A sufficient pressure pulse amplitude with a low pressure drop is desired in this study. Therefore, a relative pulse amplitude of pressure drop and displacement are introduced in our study. A comparison analysis between the two designs with and without a throttling plate indicates that when the supply flow rate is relatively low or higher than a certain value, the fluidic axial oscillation tool with a throttling plate exhibits a better performance; otherwise, the fluidic axial oscillation tool without a throttling plate seems to be a preferred alternative. In most of the operating circumstances in terms of the supply flow rate and pressure drop, the fluidic axial oscillation tool performs better than the original design.

  19. Development of fluidic device in SIT for Korean Next Generation Reactor I

    International Nuclear Information System (INIS)

    Cho, Bong Hyun; Lee, Joon; Bae, Yoon Young; Park, Jong Kyun

    1999-07-01

    The KNGR is to install a Fluidic Device at the bottom of the inner space of the SIT (Safety Injection Tank) to control the flow rate of safety injection coolant from SIT during LBLOCA. During the past two years, a scale model test to obtain the required flow characteristics of the device under the KNGR specific conditions has been performed using the experience and existing facility of AEA Technology (UK) with appropriate modifications. The performance verification test is to be performed this year to obtain optimum characteristics and design data of full size fluidic device. The purpose of the model test was to check the feasibility of developing the device and to produce a generic flow characteristic data. The test was performed in approximately 1/7 scale in terms of flow rate with full height and pressure. This report presents the details of system performance requirements for the device, design procedure for the fluidic device to be used, test facility and test method. The time dependent flow, pressure and Euler number are presented as characteristics curves and the most stable and the most effective flow control characteristic parameters were recommended through the evaluation. A method to predict the size of the fluidic device is presented. And a sizing algorithm, which can be used to conveniently determine the major geometric data of the device for various operating conditions, and a FORTRAN program to produce the prediction of performance curves have been developed. (author). 32 refs., 15 tabs., 47 figs

  20. Centrifugal micro-fluidic platform for radiochemistry: Potentialities for the chemical analysis of nuclear spent fuels

    International Nuclear Information System (INIS)

    Bruchet, Anthony; Mariet, Clarisse; Taniga, Velan; Descroix, Stephanie; Malaquin, Laurent; Goutelard, Florence

    2013-01-01

    The use of a centrifugal micro-fluidic platform is for the first time reported as an alternative to classical chromatographic procedures for radiochemistry. The original design of the micro-fluidic platform has been thought to fasten and simplify the prototyping process with the use of a circular platform integrating four rectangular microchips made of thermoplastic. The microchips, dedicated to anion-exchange chromatographic separations, integrate a localized monolithic stationary phase as well as injection and collection reservoirs. The results presented here were obtained with a simplified simulated nuclear spent fuel sample composed of non-radioactive isotopes of Europium and Uranium, in proportion usually found for uranium oxide nuclear spent fuel. While keeping the analytical results consistent with the conventional procedure (extraction yield for Europium of ∼97%), the use of the centrifugal micro-fluidic platform allowed to reduce the volume of liquid needed by a factor of ∼250. Thanks to their unique 'easy-to-use' features, centrifugal micro-fluidic platforms are potential successful candidates for the down-scaling of chromatographic separation of radioactive samples (automation, multiplexing, easy integration in glove-boxes environment and low cost of maintenance). (authors)

  1. Formation of a vertical MOSFET for charge sensing in a Si micro-fluidic channel

    International Nuclear Information System (INIS)

    Lyu, Hong-Kun; Kim, Dong-Sun; Shin, Jang-Kyoo; Choi, Pyung; Lee, Jong-Hyun; Park, Hey-Jung; Park, Chin-Sung; Lim, Geun-Bae

    2004-01-01

    We have formed a fluidic channel that can be used in micro-fluidic systems and fabricated a 3-dimensional vertical metal-oxide semiconductor field-effect transistor (vertical MOSFET) in the convex corner of a Si micro-fluidic channel by using an anisotropic tetramethyl ammonium hydroxide (TMAH) etching solution. A Au/Cr layer was used for the gate metal and might be useful for detecting charged biomolecules. The electrical characteristics of the vertical MOSFET and its operation as a chemical sensor were investigated. At V DS = -5 V and V GS = -5 V the drain current of the device was -22.5 μA and the threshold voltage was about -1.4 V. A non-planar, non-rectangular vertical MOSFET with a trapezoidal gate was transformed into an equivalent rectangularly based one by using a Schwartz-Christoffel transformation. The LEVEL1 device parameters of the vertical MOSFET were extracted from the measured electrical device characteristics and were used in the SPICE simulation for the vertical MOSFET. The measured and the simulated results for the vertical PMOSFET showed relatively good agreement. When the vertical MOSFET was dipped into a thiol DNA solution, the drain current decreased due to charged biomolecules probably being adsorbed on the gate, which indicates that a vertical MOSFET in a Si micro-fluidic channel might be useful for sensing charged biomolecules.

  2. Characterization of printable cellular micro-fluidic channels for tissue engineering

    International Nuclear Information System (INIS)

    Zhang, Yahui; Chen, Howard; Ozbolat, Ibrahim T; Yu, Yin

    2013-01-01

    Tissue engineering has been a promising field of research, offering hope of bridging the gap between organ shortage and transplantation needs. However, building three-dimensional (3D) vascularized organs remains the main technological barrier to be overcome. One of the major challenges is the inclusion of a vascular network to support cell viability in terms of nutrients and oxygen perfusion. This paper introduces a new approach to the fabrication of vessel-like microfluidic channels that has the potential to be used in thick tissue or organ fabrication in the future. In this research, we investigate the manufacturability of printable micro-fluidic channels, where micro-fluidic channels support mechanical integrity as well as enable fluid transport in 3D. A pressure-assisted solid freeform fabrication platform is developed with a coaxial needle dispenser unit to print hollow hydrogel filaments. The dispensing rheology is studied, and effects of material properties on structural formation of hollow filaments are analyzed. Sample structures are printed through the developed computer-controlled system. In addition, cell viability and gene expression studies are presented in this paper. Cell viability shows that cartilage progenitor cells (CPCs) maintained their viability right after bioprinting and during prolonged in vitro culture. Real-time PCR analysis yielded a relatively higher expression of cartilage-specific genes in alginate hollow filament encapsulating CPCs, compared with monolayer cultured CPCs, which revealed that printable semi-permeable micro-fluidic channels provided an ideal environment for cell growth and function. (paper)

  3. Transient Characteristics of a Fluidic Device for Circulatory Jet Flow.

    Science.gov (United States)

    Phan, Hoa Thanh; Dinh, Thien Xuan; Bui, Phong Nhu; Dau, Van Thanh

    2018-03-13

    In this paper, we report on the design, simulation, and experimental analysis of a miniaturized device that can generate multiple circulated jet flows. The device is actuated by a lead zirconate titanate (PZT) diaphragm. The flows in the device were studied using three-dimensional transient numerical simulation with the programmable open source OpenFOAM and was comparable to the experimental result. Each flow is verified by two hotwires mounted at two positions inside each consisting chamber. The experiment confirmed that the flow was successfully created, and it demonstrated good agreement with the simulation. In addition, a prospective application of the device as an angular rate sensor is also demonstrated. The device is robust, is minimal in size, and can contribute to the development of multi-axis fluidic inertial sensors, fluidic amplifiers, gas mixing, coupling, and analysis.

  4. Induced fluid rotation and bistable fluidic turn-down valves (a survey

    Directory of Open Access Journals (Sweden)

    Tesař Václav

    2015-01-01

    Full Text Available Paper surveys engineering applications of an unusual fluidic principle — momentum transfer through a relatively small communicating window into a vortex chamber, where the initially stationary fluid is put into rotation. The transfer is often by shear stress acting in the window plane, but may be enhanced and perhaps even dominated by fluid flow crossing the boundary. The case of zero-time-mean fluid transport through the window has found use in experimental fluid mechanics: non-invasive measurement of wall shear stress on objects by evaluating the induced rotation in the vortex chamber. The case with the non-zero flow through the interface became the starting point in development of fluidic valves combining two otherwise mutually incompatible properties: bistability and flow turning down.

  5. Fabrication of resonant micro cantilevers with integrated transparent fluidic channel

    DEFF Research Database (Denmark)

    Khan, Faheem; Schmid, Silvan; Davis, Zachary James

    2011-01-01

    Microfabricated cantilevers are proving their potential as excellent tools for analysis applications. In this paper, we describe the design, fabrication and testing of resonant micro cantilevers with integrated transparent fluidic channels. The cantilevers have been devised to measure the density...

  6. Development of a millimetrically scaled biodiesel transesterification device that relies on droplet-based co-axial fluidics

    Science.gov (United States)

    Yeh, S. I.; Huang, Y. C.; Cheng, C. H.; Cheng, C. M.; Yang, J. T.

    2016-07-01

    In this study, we investigated a fluidic system that adheres to new concepts of energy production. To improve efficiency, cost, and ease of manufacture, a millimetrically scaled device that employs a droplet-based co-axial fluidic system was devised to complete alkali-catalyzed transesterification for biodiesel production. The large surface-to-volume ratio of the droplet-based system, and the internal circulation induced inside the moving droplets, significantly enhanced the reaction rate of immiscible liquids used here - soybean oil and methanol. This device also decreased the molar ratio between methanol and oil to near the stoichiometric coefficients of a balanced chemical equation, which enhanced the total biodiesel volume produced, and decreased the costs of purification and recovery of excess methanol. In this work, the droplet-based co-axial fluidic system performed better than other methods of continuous-flow production. We achieved an efficiency that is much greater than that of reported systems. This study demonstrated the high potential of droplet-based fluidic chips for energy production. The small energy consumption and low cost of the highly purified biodiesel transesterification system described conforms to the requirements of distributed energy (inexpensive production on a moderate scale) in the world.

  7. Room temperature vortex fluidic synthesis of monodispersed amorphous proto-vaterite.

    Science.gov (United States)

    Peng, Wenhong; Chen, Xianjue; Zhu, Shenmin; Guo, Cuiping; Raston, Colin L

    2014-10-11

    Monodispersed particles of amorphous calcium carbonate (ACC) 90 to 200 nm in diameter are accessible at room temperature in ethylene glycol and water using a vortex fluidic device (VFD). The ACC material is stable for at least two weeks under ambient conditions.

  8. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot

    International Nuclear Information System (INIS)

    Onal, Cagdas D; Rus, Daniela

    2013-01-01

    Soft robotics offers the unique promise of creating inherently safe and adaptive systems. These systems bring man-made machines closer to the natural capabilities of biological systems. An important requirement to enable self-contained soft mobile robots is an on-board power source. In this paper, we present an approach to create a bio-inspired soft robotic snake that can undulate in a similar way to its biological counterpart using pressure for actuation power, without human intervention. With this approach, we develop an autonomous soft snake robot with on-board actuation, power, computation and control capabilities. The robot consists of four bidirectional fluidic elastomer actuators in series to create a traveling curvature wave from head to tail along its body. Passive wheels between segments generate the necessary frictional anisotropy for forward locomotion. It takes 14 h to build the soft robotic snake, which can attain an average locomotion speed of 19 mm s −1 . (paper)

  9. Continuous fabrication of polymeric vesicles and nanotubes with fluidic channe

    NARCIS (Netherlands)

    Peng, F.; Deng, N.-N.; Tu, Y.; van Hest, J.C.M.; Wilson, D.A.

    2017-01-01

    Fluidic channels were employed to induce the self-assembly of poly(ethylene glycol)-b-polystyrene into polymeric vesicles and nanotubes. The laminar flow in the device enables controlled diffusion of two miscible liquids at the phase boundary, leading to the formation of homogeneous polymeric

  10. Packaged integrated opto-fluidic solution for harmful fluid analysis

    Science.gov (United States)

    Allenet, T.; Bucci, D.; Geoffray, F.; Canto, F.; Couston, L.; Jardinier, E.; Broquin, J.-E.

    2016-02-01

    Advances in nuclear fuel reprocessing have led to a surging need for novel chemical analysis tools. In this paper, we present a packaged lab-on-chip approach with co-integration of optical and micro-fluidic functions on a glass substrate as a solution. A chip was built and packaged to obtain light/fluid interaction in order for the entire device to make spectral measurements using the photo spectroscopy absorption principle. The interaction between the analyte solution and light takes place at the boundary between a waveguide and a fluid micro-channel thanks to the evanescent part of the waveguide's guided mode that propagates into the fluid. The waveguide was obtained via ion exchange on a glass wafer. The input and the output of the waveguides were pigtailed with standard single mode optical fibers. The micro-scale fluid channel was elaborated with a lithography procedure and hydrofluoric acid wet etching resulting in a 150+/-8 μm deep channel. The channel was designed with fluidic accesses, in order for the chip to be compatible with commercial fluidic interfaces/chip mounts. This allows for analyte fluid in external capillaries to be pumped into the device through micro-pipes, hence resulting in a fully packaged chip. In order to produce this co-integrated structure, two substrates were bonded. A study of direct glass wafer-to-wafer molecular bonding was carried-out to improve detector sturdiness and durability and put forward a bonding protocol with a bonding surface energy of γ>2.0 J.m-2. Detector viability was shown by obtaining optical mode measurements and detecting traces of 1.2 M neodymium (Nd) solute in 12+/-1 μL of 0.01 M and pH 2 nitric acid (HNO3) solvent by obtaining an absorption peak specific to neodymium at 795 nm.

  11. Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics.

    Science.gov (United States)

    Lutz, Barry; Liang, Tinny; Fu, Elain; Ramachandran, Sujatha; Kauffman, Peter; Yager, Paul

    2013-07-21

    Lateral flow tests (LFTs) are an ingenious format for rapid and easy-to-use diagnostics, but they are fundamentally limited to assay chemistries that can be reduced to a single chemical step. In contrast, most laboratory diagnostic assays rely on multiple timed steps carried out by a human or a machine. Here, we use dissolvable sugar applied to paper to create programmable flow delays and present a paper network topology that uses these time delays to program automated multi-step fluidic protocols. Solutions of sucrose at different concentrations (10-70% of saturation) were added to paper strips and dried to create fluidic time delays spanning minutes to nearly an hour. A simple folding card format employing sugar delays was shown to automate a four-step fluidic process initiated by a single user activation step (folding the card); this device was used to perform a signal-amplified sandwich immunoassay for a diagnostic biomarker for malaria. The cards are capable of automating multi-step assay protocols normally used in laboratories, but in a rapid, low-cost, and easy-to-use format.

  12. Modeling and Analysis of an Opto-Fluidic Sensor for Lab-on-a-Chip Applications

    Directory of Open Access Journals (Sweden)

    Venkatesha Muniswamy

    2018-03-01

    Full Text Available In this work modeling and analysis of an integrated opto-fluidic sensor, with a focus on achievement of single mode optical confinement and continuous flow of microparticles in the microfluidic channel for lab-on-a-chip (LOC sensing application is presented. This sensor consists of integrated optical waveguides, microfluidic channel among other integrated optical components. A continuous flow of microparticles in a narrow fluidic channel is achieved by maintaining the two sealed chambers at different temperatures and by maintaining a constant pressure of 1 Pa at the centroid of narrow fluidic channel geometry. The analysis of silicon on insulator (SOI integrated optical waveguide at an infrared wavelength of 1550 nm for single mode sensing operation is presented. The optical loss is found to be 5.7 × 10−4 dB/cm with an effective index of 2.3. The model presented in this work can be effectively used to detect the nature of microparticles and continuous monitoring of pathological parameters for sensing applications.

  13. Numerical Studies of a Supersonic Fluidic Diverter Actuator for Flow Control

    Science.gov (United States)

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis e.; Raghu, Surya

    2010-01-01

    The analysis of the internal flow structure and performance of a specific fluidic diverter actuator, previously studied by time-dependent numerical computations for subsonic flow, is extended to include operation with supersonic actuator exit velocities. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The self-induced oscillatory behavior of the flow is successfully predicted and the calculated oscillation frequencies with respect to flow rate have excellent agreement with our experimental measurements. The oscillation frequency increases with Mach number, but its dependence on flow rate changes from subsonic to transonic to supersonic regimes. The delay time for the initiation of oscillations depends on the flow rate and the acoustic speed in the gaseous medium for subsonic flow, but is unaffected by the flow rate for supersonic conditions

  14. Automated micro fluidic system for PCR applications in the monitoring of drinking water quality

    International Nuclear Information System (INIS)

    Soria Soria, E.; Yanez Amoros, A.; Murtula Corbi, R.; Catalan Cuenca, V.; Martin-Cisneros, C. S.; Ymbern, O.; Alonso-Chamorro, J.

    2009-01-01

    Microbiological laboratories present a growing interest in automated, simple and user-friendly methodologies able to perform simultaneous analysis of a high amount of samples. Analytical tools based on micro-fluidic could play an important role in this field. In this work, the development of an automated micro fluidic system for PCR applications and aimed to monitoring of drinking water quality is presented. The device will be able to determine, simultaneously, fecal pollution indicators and water-transmitted pathogens. Further-more, complemented with DNA pre-concentration and extraction modules, the device would present a highly integrated solution for microbiological diagnostic laboratories. (Author) 13 refs.

  15. Variable recruitment fluidic artificial muscles: modeling and experiments

    International Nuclear Information System (INIS)

    Bryant, Matthew; Meller, Michael A; Garcia, Ephrahim

    2014-01-01

    We investigate taking advantage of the lightweight, compliant nature of fluidic artificial muscles to create variable recruitment actuators in the form of artificial muscle bundles. Several actuator elements at different diameter scales are packaged to act as a single actuator device. The actuator elements of the bundle can be connected to the fluidic control circuit so that different groups of actuator elements, much like individual muscle fibers, can be activated independently depending on the required force output and motion. This novel actuation concept allows us to save energy by effectively impedance matching the active size of the actuators on the fly based on the instantaneous required load. This design also allows a single bundled actuator to operate in substantially different force regimes, which could be valuable for robots that need to perform a wide variety of tasks and interact safely with humans. This paper proposes, models and analyzes the actuation efficiency of this actuator concept. The analysis shows that variable recruitment operation can create an actuator that reduces throttling valve losses to operate more efficiently over a broader range of its force–strain operating space. We also present preliminary results of the design, fabrication and experimental characterization of three such bioinspired variable recruitment actuator prototypes. (paper)

  16. Micro-Fluidic Dye Ring Laser - Experimental Tuning of the Wavelength and Numerical Simulation of the Cavity Modes

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Balslev, Søren; Mortensen, Niels Asger

    2006-01-01

    We demonstrate wavelength tuning of a micro-fluidic dye ring laser. Wavelength tunability is obtained by controlling the liquid dye concentration. The device performance is modelled by FEM simulations supporting a ray-tracing view.......We demonstrate wavelength tuning of a micro-fluidic dye ring laser. Wavelength tunability is obtained by controlling the liquid dye concentration. The device performance is modelled by FEM simulations supporting a ray-tracing view....

  17. Fast-responsive hydrogel as an injectable pump for rapid on-demand fluidic flow control.

    Science.gov (United States)

    Luo, Rongcong; Dinh, Ngoc-Duy; Chen, Chia-Hung

    2017-05-01

    Chemically synthesized functional hydrogels have been recognized as optimized soft pumps for on-demand fluidic regulation in micro-systems. However, the challenges regarding the slow responses of hydrogels have very much limited their application in effective fluidic flow control. In this study, a heterobifunctional crosslinker (4-hydroxybutyl acrylate)-enabled two-step hydrothermal phase separation process for preparing a highly porous hydrogel with fast response dynamics was investigated for the fabrication of novel microfluidic functional units, such as injectable valves and pumps. The cylinder-shaped hydrogel, with a diameter of 9 cm and a height of 2.5 cm at 25 °C, achieved a size reduction of approximately 70% in less than 30 s after the hydrogels were heated at 40 °C. By incorporating polypyrrole nanoparticles as photothermal transducers, a photo-responsive composite hydrogel was approached and exhibited a remotely triggerable fluidic regulation and pumping ability to generate significant flows, showing on-demand water-in-oil droplet generation by laser switching, whereby the droplet size could be tuned by adjusting the laser intensity and irradiation period with programmable manipulation.

  18. An automatic holographic adaptive phoropter

    Science.gov (United States)

    Amirsolaimani, Babak; Peyghambarian, N.; Schwiegerling, Jim; Bablumyan, Arkady; Savidis, Nickolaos; Peyman, Gholam

    2017-08-01

    Phoropters are the most common instrument used to detect refractive errors. During a refractive exam, lenses are flipped in front of the patient who looks at the eye chart and tries to read the symbols. The procedure is fully dependent on the cooperation of the patient to read the eye chart, provides only a subjective measurement of visual acuity, and can at best provide a rough estimate of the patient's vision. Phoropters are difficult to use for mass screenings requiring a skilled examiner, and it is hard to screen young children and the elderly etc. We have developed a simplified, lightweight automatic phoropter that can measure the optical error of the eye objectively without requiring the patient's input. The automatic holographic adaptive phoropter is based on a Shack-Hartmann wave front sensor and three computercontrolled fluidic lenses. The fluidic lens system is designed to be able to provide power and astigmatic corrections over a large range of corrections without the need for verbal feedback from the patient in less than 20 seconds.

  19. Fabrication of fluidic devices with 30 nm nanochannels by direct imprinting

    DEFF Research Database (Denmark)

    Cuesta, Irene Fernandez; Palmarelli, Anna Laura; Liang, Xiaogan

    2011-01-01

    In this work, we propose an innovative approach to the fabrication of a complete micro/nano fluidic system, based on direct nanoimprint lithography. The fabricated device consists of nanochannels connected to U-shaped microchannels by triangular tapered inlets, and has four large reservoirs for l...

  20. Evaluation of a X-ray imaging method in micro-fluidics: the case of T-shaped micro-channels filling up

    International Nuclear Information System (INIS)

    Vabre, A.; Legoupil, S.; Manach, E.; Gal, O.; Colin, St.; Geoffroy, S.; Gue, A.M.

    2006-01-01

    X-rays methods assessment in micro-fluidics: case of 'T' shaped microchannels filling. Fluid flows within 'T' or 'Y' shaped microchannels are deeply studied in order to develop adapted modeling approaches and experimental techniques. Our technological choice lies on the attenuation measurement of X-ray in matter. The main advantage of this non-intrusive technique is to be implemented on media opaque to visible light. Moreover, X-rays methods may achieve better spatial resolutions as compared to optical methods because of their much lower wavelength. In order to validate this X-ray method, measurements obtained by this technique are compared with direct measurements carried out on similar microchannels. Finally, experimental results are compared with a theoretical model. (author)

  1. Compact instrument for fluorescence image-guided surgery

    Science.gov (United States)

    Wang, Xinghua; Bhaumik, Srabani; Li, Qing; Staudinger, V. Paul; Yazdanfar, Siavash

    2010-03-01

    Fluorescence image-guided surgery (FIGS) is an emerging technique in oncology, neurology, and cardiology. To adapt intraoperative imaging for various surgical applications, increasingly flexible and compact FIGS instruments are necessary. We present a compact, portable FIGS system and demonstrate its use in cardiovascular mapping in a preclinical model of myocardial ischemia. Our system uses fiber optic delivery of laser diode excitation, custom optics with high collection efficiency, and compact consumer-grade cameras as a low-cost and compact alternative to open surgical FIGS systems. Dramatic size and weight reduction increases flexibility and access, and allows for handheld use or unobtrusive positioning over the surgical field.

  2. A GENERIC PACKAGING TECHNIQUE USING FLUIDIC ISOLATION FOR LOW-DRIFT IMPLANTABLE PRESSURE SENSORS.

    Science.gov (United States)

    Kim, A; Powell, C R; Ziaie, B

    2015-06-01

    This paper reports on a generic packaging method for reducing drift in implantable pressure sensors. The described technique uses fluidic isolation by encasing the pressure sensor in a liquid-filled medical-grade polyurethane balloon; thus, isolating it from surrounding aqueous environment that is the major source of baseline drift. In-vitro tests using commercial micromachined piezoresistive pressure sensors show an average baseline drift of 0.006 cmH 2 O/day (0.13 mmHg/month) for over 100 days of saline soak test, as compared to 0.101 cmH 2 O/day (2.23 mmHg/month) for a non-fluidic-isolated one soaked for 18 days. To our knowledge, this is the lowest reported drift for an implantable pressure sensor.

  3. Fluidic low-frequency oscillator with vortex spin-up time delay

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Smyk, E.

    2015-01-01

    Roč. 90, April (2015), s. 6-15 ISSN 0255-2701 R&D Projects: GA ČR GA13-23046S; GA ČR GA14-08888S Institutional support: RVO:61388998 Keywords : fluidics * oscillator * vortex chamber Subject RIV: BK - Fluid Dynamics Impact factor: 2.154, year: 2015 http://www.sciencedirect.com/science/article/pii/S0255270115000252

  4. The UC Softhand: Light Weight Adaptive Bionic Hand with a Compact Twisted String Actuation System

    Directory of Open Access Journals (Sweden)

    Mahmoud Tavakoli

    2015-12-01

    Full Text Available In this paper, we present the design and development of the UC-Softhand. The UC Softhand is a low cost, Bionic and adaptive hand that takes advantage of compliant joints. By optimization of the actuation strategy as well as the actuation mechanism, we could develop an anthropomorphic hand that embeds three actuators, transmission mechanisms, controllers and drivers in the palm of the hand, and weighs only 280 g, making it one of the lightest bionic hands that has been created so far. The key aspect of the UC Softhand is utilization of a novel compact twisted string actuation mechanism, that allows a considerable weight and cost reduction compared to its predecessor.

  5. Adaptive repetitive control of a compact disc mechanism

    NARCIS (Netherlands)

    Dötsch, H.G.M.; Smakman, H.T.; Hof, Van den P.M.J.; Steinbuch, M.

    1995-01-01

    Radial track following of a compact disc player servo mechanism is severely exposed to periodic disturbances, induced by the eccentric rotation of the disc. The period of this disturbance is not available for measurement and varies slowly in time. Periodic disturbances can be adequately attenuated

  6. No-moving-part electro/fluidic transducer based on plasma discharge effect

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Šonský, Jiří

    2015-01-01

    Roč. 232, August (2015), s. 20-29 ISSN 0924-4247 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : transducer * fluidic * plasma discharge Subject RIV: BK - Fluid Dynamics Impact factor: 2.201, year: 2015 http://www.sciencedirect.com/science/article/pii/S092442471500206X

  7. An Oxidase-Based Electrochemical Fluidic Sensor with High-Sensitivity and Low-Interference by On-Chip Oxygen Manipulation

    Directory of Open Access Journals (Sweden)

    Chang-Soo Kim

    2012-06-01

    Full Text Available Utilizing a simple fluidic structure, we demonstrate the improved performance of oxidase-based enzymatic biosensors. Electrolysis of water is utilized to generate bubbles to manipulate the oxygen microenvironment close to the biosensor in a fluidic channel. For the proper enzyme reactions to occur, a simple mechanical procedure of manipulating bubbles was developed to maximize the oxygen level while minimizing the pH change after electrolysis. The sensors show improved sensitivities based on the oxygen dependency of enzyme reaction. In addition, this oxygen-rich operation minimizes the ratio of electrochemical interference signal by ascorbic acid during sensor operation (i.e., amperometric detection of hydrogen peroxide. Although creatinine sensors have been used as the model system in this study, this method is applicable to many other biosensors that can use oxidase enzymes (e.g., glucose, alcohol, phenol, etc. to implement a viable component for in-line fluidic sensor systems.

  8. Adaptive Optics System with Deformable Composite Mirror and High Speed, Ultra-Compact Electronics

    Science.gov (United States)

    Chen, Peter C.; Knowles, G. J.; Shea, B. G.

    2006-06-01

    We report development of a novel adaptive optics system for optical astronomy. Key components are very thin Deformable Mirrors (DM) made of fiber reinforced polymer resins, subminiature PMN-PT actuators, and low power, high bandwidth electronics drive system with compact packaging and minimal wiring. By using specific formulations of fibers, resins, and laminate construction, we are able to fabricate mirror face sheets that are thin (2 KHz. By utilizing QorTek’s proprietary synthetic impendence power supply technology, all the power, control, and signal extraction for many hundreds to 1000s of actuators and sensors can be implemented on a single matrix controller printed circuit board co-mounted with the DM. The matrix controller, in turn requires only a single serial bus interface, thereby obviating the need for massive wiring harnesses. The technology can be scaled up to multi-meter aperture DMs with >100K actuators.

  9. Modeling and testing of a knitted-sleeve fluidic artificial muscle

    Science.gov (United States)

    Ball, Erick J.; Meller, Michael A.; Chipka, Jordan B.; Garcia, Ephrahim

    2016-11-01

    The knitted-sleeve fluidic muscle is similar in design to a traditional McKibben muscle, with a separate bladder and sleeve. However, in place of a braided sleeve, it uses a tubular-knit sleeve made from a thin strand of flexible but inextensible yarn. When the bladder is pressurized, the sleeve expands by letting the loops of fiber slide past each other, changing the dimensions of the rectangular cells in the stitch pattern. Ideally, the internal volume of the sleeve would reach a maximum when its length has contracted by 2/3 from its maximum length, and although this is not reachable in practice, preliminary tests show that free contraction greater than 50% is achievable. The motion relies on using a fiber with a low coefficient of friction in order to reduce hysteresis to an acceptable level. In addition to increased stroke length, potential advantages of this technique include slower force drop-off during the stroke, more useable energy in certain applications, and greater similarity to the force-length relationship of skeletal muscle. Its main limitation is its potentially greater effect from friction compared to other fluidic muscle designs.

  10. On the synthesis of a bio-inspired dual-cellular fluidic flexible matrix composite adaptive structure based on a non-dimensional dynamics model

    International Nuclear Information System (INIS)

    Li, Suyi; Wang, K W

    2013-01-01

    A recent study investigated the dynamic characteristics of an adaptive structure concept featuring dual fluidic flexible matrix composite (F 2 MC) cells inspired by the configuration of plant cells and cell walls. This novel bio-inspired system consists of two F 2 MC cells with different fiber angles connected through internal fluid circuits. It was discovered that the dual F 2 MC cellular structure can be characterized as a two degree of freedom damped mass–spring oscillator, and can be utilized as a vibration absorber or an enhanced actuator under different operation conditions. These results demonstrated that the concept is promising and further investigations are needed to develop methodologies for synthesizing future multi-cellular F 2 MC structural systems. While interesting, the previous study focused on specific case studies and analysis. That is, the outcome did not provide insight that could be generalized, or tools for synthesizing a multiple F 2 MC cellular structure. This paper attempts to address this important issue by developing a non-dimensional dynamic model, which reveals good physical insights as well as identifying crucial constitutive parameters for F 2 MC cellular design. Working with these parameters, rather than physical variables, can greatly simplify the mathematics involved in the study. A synthesis tool is then developed for the dual-cellular structure, and it is found that for each set of achievable target poles and zero, there exist multiple F 2 MC cellular designs, forming a design space. The presented physical insights and synthesis tool for the dual-cellular structure will be the building blocks for future investigation on cellular structures with a larger number of cells. (paper)

  11. The thermal-hydraulic for the new technologies: the micro-fluidics

    International Nuclear Information System (INIS)

    Crecy, F. de; Gruss, A.; Bricard, A.; Excoffon, J.

    2000-01-01

    The micro-fluidics can be defined as the fluid flow in little canals. This scale offers a great interest for the biotechnology type. In this paper, the authors present this fluids form and detail the researches performed at the Department of Physics and Thermal-hydraulics of the CEA, in the domain of the physical properties characterization and of the numerical two-phase direct simulation. (A.L.B.)

  12. Low voltage electroosmotic pump for high density integration into microfabricated fluidic systems

    NARCIS (Netherlands)

    Heuck, F.C.A.; Staufer, U.

    2011-01-01

    A low voltage electroosmotic (eo) pump suitable for high density integration into microfabricated fluidic systems has been developed. The high density integration of the eo pump required a small footprint as well as a specific on-chip design to ventilate the electrolyzed gases emerging at the

  13. Compact Mass Flow Meter Based on a Micro Coriolis Flow Sensor

    Directory of Open Access Journals (Sweden)

    Remco Wiegerink

    2013-03-01

    Full Text Available In this paper we demonstrate a compact ready-to-use micro Coriolis mass flow meter. The full scale flow is 1 g/h (for water at a pressure drop < 1 bar. It has a zero stability of 2 mg/h and an accuracy of 0.5% reading for both liquids and gases. The temperature drift between 10 and 50 °C is below 1 mg/h/°C. The meter is robust, has standard fluidic connections and can be read out by means of a PC or laptop via USB. Its performance was tested for several common gases (hydrogen, helium, nitrogen, argon and air and liquids (water and isopropanol. As in all Coriolis mass flow meters, the meter is also able to measure the actual density of the medium flowing through the tube. The sensitivity of the measured density is ~1 Hz.m3/kg.

  14. Numerical simulations on increasing turbojet engines exhaust mixture ratio using fluidic chevrons

    Directory of Open Access Journals (Sweden)

    Adrian GRUZEA

    2017-06-01

    Full Text Available This paper refers to some aspects regarding the terms “chevron” and “fluidic chevron” and to the process of increasing the jet engines exhaust mixing rate towards achieving noise reduction. One of the noise reduction methods consists in covering the high velocity main flow with a secondary one, having a much lower velocity, similar to the turbofan engines. The fluidic chevrons try to accomplish these requirements, being used just in particular moments of the flight. This study will be based on numerical simulations carried using the commercial software ANSYS. The geometry used will the based on the micro jet engine JetCat P80, equipping the turbines laboratory from the Faculty of Aerospace Engineering. A research based on the measured geometric, gasodynamic and cinematic parameters will be carried varying the mass flow and keeping the immersion angle constant. As a result of these simulations we’ll observe the influence of the mentioned parameters on the jet’s flow field.

  15. A Recipe for Soft Fluidic Elastomer Robots.

    Science.gov (United States)

    Marchese, Andrew D; Katzschmann, Robert K; Rus, Daniela

    2015-03-01

    This work provides approaches to designing and fabricating soft fluidic elastomer robots. That is, three viable actuator morphologies composed entirely from soft silicone rubber are explored, and these morphologies are differentiated by their internal channel structure, namely, ribbed, cylindrical, and pleated. Additionally, three distinct casting-based fabrication processes are explored: lamination-based casting, retractable-pin-based casting, and lost-wax-based casting. Furthermore, two ways of fabricating a multiple DOF robot are explored: casting the complete robot as a whole and casting single degree of freedom (DOF) segments with subsequent concatenation. We experimentally validate each soft actuator morphology and fabrication process by creating multiple physical soft robot prototypes.

  16. Phase-locked 3D3C-MRV measurements in a bi-stable fluidic oscillator

    Science.gov (United States)

    Wassermann, Florian; Hecker, Daniel; Jung, Bernd; Markl, Michael; Seifert, Avi; Grundmann, Sven

    2013-03-01

    In this work, the phase-resolved internal flow of a bi-stable fluidic oscillator was measured using phase-locked three-dimensional three-components magnetic resonance velocimetry (3D3C-MRV), also termed as 4D-MRV. A bi-stable fluidic oscillator converts a continuous inlet-mass flow into a jet alternating between two outlet channels and, as a consequence provides an unsteady, periodic flow. This actuator can therefore be used as flow-control actuator. Since data acquisition in a 3D volume takes up to several minutes, only a small portion of the data is acquired in each flow cycle for every time point of the flow cycle. The acquisition of the entire data set is segmented over many cycles of the periodic flow. This procedure allows to measure phase-averaged 3D3C velocity fields with a certain temporal resolution. However, the procedure requires triggering to the periodic nature of the flow. Triggering the MR scanner precisely on each flow cycle is one of the key issues discussed in this manuscript. The 4D-MRV data are compared to data measured using phase-locked laser Doppler anemometry and good agreement between the results is found. The validated 4D-MRV data is analyzed and the fluid-mechanic features and processes inside the fluidic oscillator are investigated and described, providing a detailed description of the internal jet-switching mechanism.

  17. Adaptive silicone-membrane lenses: planar vs. shaped membrane

    CSIR Research Space (South Africa)

    Schneider, F

    2009-08-01

    Full Text Available Engineering, Georges-Koehler-Allee 102, Freiburg 79110, Germany florian.schneider@imtek.uni-freiburg.de ABSTRACT We compare the performance and optical quality of two types of adaptive fluidic silicone-membrane lenses. The membranes feature either a...-membrane lenses: planar vs. shaped membrane Florian Schneider1,2, Philipp Waibel2 and Ulrike Wallrabe2 1 CSIR, Materials Science and Manufacturing, PO Box 395, Pretoria 0001, South Africa 2 University of Freiburg – IMTEK, Department of Microsystems...

  18. Accurate and versatile multivariable arbitrary piecewise model regression of nonlinear fluidic muscle behavior

    NARCIS (Netherlands)

    Veale, A.J.; Xie, Sheng Quan; Anderson, Iain Alexander

    2017-01-01

    Wearable exoskeletons and soft robots require actuators with muscle-like compliance. These actuators can benefit from the robust and effective interaction that biological muscles' compliance enables them to have in the uncertainty of the real world. Fluidic muscles are compliant but difficult to

  19. Fluidic system for long-term in vitro culturing and monitoring of organotypic brain slices

    DEFF Research Database (Denmark)

    Bakmand, Tanya; Troels-Smith, Ane R.; Dimaki, Maria

    2015-01-01

    Brain slice preparations cultured in vitro have long been used as a simplified model for studying brain development, electrophysiology, neurodegeneration and neuroprotection. In this paper an open fluidic system developed for improved long term culturing of organotypic brain slices is presented....... The positive effect of continuous flow of growth medium, and thus stability of the glucose concentration and waste removal, is simulated and compared to the effect of stagnant medium that is most often used in tissue culturing. Furthermore, placement of the tissue slices in the developed device was studied...... by numerical simulations in order to optimize the nutrient distribution. The device was tested by culturing transverse hippocampal slices from 7 days old NMRI mice for a duration of 14 days. The slices were inspected visually and the slices cultured in the fluidic system appeared to have preserved...

  20. Fluidic Sampler. Tanks Focus Area. OST Reference No. 2007

    International Nuclear Information System (INIS)

    1999-01-01

    Problem Definition; Millions of gallons of radioactive and hazardous wastes are stored in underground tanks across the U.S. Department of Energy (DOE) complex. To manage this waste, tank operators need safe, cost-effective methods for mixing tank material, transferring tank waste between tanks, and collecting samples. Samples must be collected at different depths within storage tanks containing various kinds of waste including salt, sludge, and supernatant. With current or baseline methods, a grab sampler or a core sampler is inserted into the tank, waste is maneuvered into the sample chamber, and the sample is withdrawn from the tank. The mixing pumps in the tank, which are required to keep the contents homogeneous, must be shut down before and during sampling to prevent airborne releases. These methods are expensive, require substantial hands-on labor, increase the risk of worker exposure to radiation, and often produce nonrepresentative and unreproducible samples. How It Works: The Fluidic Sampler manufactured by AEA Technology Engineering Services, Inc., enables tank sampling to be done remotely with the mixing pumps in operation. Remote operation minimizes the risk of exposure to personnel and the possibility of spills, reducing associated costs. Sampling while the tank contents are being agitated yields consistently homogeneous, representative samples and facilitates more efficient feed preparation and evaluation of the tank contents. The above-tank portion of the Fluidic Sampler and the replacement plug and pipework that insert through the tank top are shown.

  1. Impact of fluidic agitation on human pluripotent stem cells in stirred suspension culture.

    Science.gov (United States)

    Nampe, Daniel; Joshi, Ronak; Keller, Kevin; Zur Nieden, Nicole I; Tsutsui, Hideaki

    2017-09-01

    The success of human pluripotent stem cells (hPSCs) as a source of future cell therapies hinges, in part, on the availability of a robust and scalable culture system that can readily produce a clinically relevant number of cells and their derivatives. Stirred suspension culture has been identified as one such promising platform due to its ease of use, scalability, and widespread use in the pharmaceutical industry (e.g., CHO cell-based production of therapeutic proteins) among others. However, culture of undifferentiated hPSCs in stirred suspension is a relatively new development within the past several years, and little is known beyond empirically optimized culture parameters. In particular, detailed characterizations of different agitation rates and their influence on the propagation of hPSCs are often not reported in the literature. In the current study, we systematically investigated various agitation rates to characterize their impact on cell yield, viability, and the maintenance of pluripotency. Additionally, we closely examined the distribution of cell aggregates and how the observed culture outcomes are attributed to their size distribution. Overall, our results showed that moderate agitation maximized the propagation of hPSCs to approximately 38-fold over 7 days by keeping the cell aggregates below the critical size, beyond which the cells are impacted by the diffusion limit, while limiting cell death caused by excessive fluidic forces. Furthermore, we observed that fluidic agitation could regulate not only cell aggregation, but also expression of some key signaling proteins in hPSCs. This indicates a new possibility to guide stem cell fate determination by fluidic agitation in stirred suspension cultures. Biotechnol. Bioeng. 2017;114: 2109-2120. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. A High-Voltage SOI CMOS Exciter Chip for a Programmable Fluidic Processor System.

    Science.gov (United States)

    Current, K W; Yuk, K; McConaghy, C; Gascoyne, P R C; Schwartz, J A; Vykoukal, J V; Andrews, C

    2007-06-01

    A high-voltage (HV) integrated circuit has been demonstrated to transport fluidic droplet samples on programmable paths across the array of driving electrodes on its hydrophobically coated surface. This exciter chip is the engine for dielectrophoresis (DEP)-based micro-fluidic lab-on-a-chip systems, creating field excitations that inject and move fluidic droplets onto and about the manipulation surface. The architecture of this chip is expandable to arrays of N X N identical HV electrode driver circuits and electrodes. The exciter chip is programmable in several senses. The routes of multiple droplets may be set arbitrarily within the bounds of the electrode array. The electrode excitation waveform voltage amplitude, phase, and frequency may be adjusted based on the system configuration and the signal required to manipulate a particular fluid droplet composition. The voltage amplitude of the electrode excitation waveform can be set from the minimum logic level up to the maximum limit of the breakdown voltage of the fabrication technology. The frequency of the electrode excitation waveform can also be set independently of its voltage, up to a maximum depending upon the type of droplets that must be driven. The exciter chip can be coated and its oxide surface used as the droplet manipulation surface or it can be used with a top-mounted, enclosed fluidic chamber consisting of a variety of materials. The HV capability of the exciter chip allows the generated DEP forces to penetrate into the enclosed chamber region and an adjustable voltage amplitude can accommodate a variety of chamber floor thicknesses. This demonstration exciter chip has a 32 x 32 array of nominally 100 V electrode drivers that are individually programmable at each time point in the procedure to either of two phases: 0deg and 180deg with respect to the reference clock. For this demonstration chip, while operating the electrodes with a 100-V peak-to-peak periodic waveform, the maximum HV electrode

  3. Rheostatic control of tryptic digestion in a microscale fluidic system

    International Nuclear Information System (INIS)

    Percy, Andrew J.; Schriemer, David C.

    2010-01-01

    Integrated fluidic systems that unite bottom-up and top-down proteomic approaches have the potential to deliver complete protein characterization. To circumvent fraction collection, as is conducted in current blended approaches, a technique to regulate digestion efficiency in a flow-through system is required. The present study examined the concept of regulating tryptic digestion in an immobilized enzyme reactor (IMER), incorporating mixed solvent systems for digestion acceleration. Using ovalbumin, cytochrome c, and myoglobin as protein standards, we demonstrate that tryptic digestion can be efficiently regulated between complete digestion and no digestion extremes by oscillating between 45 and 0% acetonitrile in the fluid stream. Solvent composition was tuned using programmable solvent waveforms in a closed system consisting of the IMER, a sample delivery stream, a dual gradient pumping system and a mass spectrometer. Operation in this rheostatic digestion mode provides access to novel peptide mass maps (due to substrate unfolding hysteresis) as well as the intact protein, in a reproducible and stable fashion. Although cycle times were on the order of 90 s for testing purposes, we show that regulated digestion is sufficiently rapid to be limited by solvent switching efficiency and kinetics of substrate unfolding/folding. Thus, regulated digestion should be useful in blending bottom-up and top-down proteomics in a single closed fluidic system.

  4. Recent results of the investigation of a micro-fluidic sampling chip and sampling system for hot cell aqueous processing streams

    International Nuclear Information System (INIS)

    Tripp, J.; Smith, T.; Law, J.

    2013-01-01

    A Fuel Cycle Research and Development project has investigated an innovative sampling method that could evolve into the next generation sampling and analysis system for metallic elements present in aqueous processing streams. Initially sampling technologies were evaluated and micro-fluidic sampling chip technology was selected and tested. A conceptual design for a fully automated microcapillary-based system was completed and a robotic automated sampling system was fabricated. The mechanical and sampling operation of the completed sampling system was investigated. Different sampling volumes have been tested. It appears that the 10 μl volume has produced data that had much smaller relative standard deviations than the 2 μl volume. In addition, the production of a less expensive, mass produced sampling chip was investigated to avoid chip reuse thus increasing sampling reproducibility/accuracy. The micro-fluidic-based robotic sampling system's mechanical elements were tested to ensure analytical reproducibility and the optimum robotic handling of micro-fluidic sampling chips. (authors)

  5. Compact nuclear reactor

    International Nuclear Information System (INIS)

    Juric, S.I.

    1975-01-01

    A compact nuclear reactor of the pressurized-water variety is described which has two separate parts separably engageable for ease of inspection, maintenance and repair. One of the parts is a pressure vessel having an active core and the other of the parts is a closure adapted on its lower surface with an integral steam generator. An integral pump, external pressurizer and control rods are provided which communicate with the active core when engaged to form a total unit. (U.S.)

  6. Mass transport enhancement in redox flow batteries with corrugated fluidic networks

    Science.gov (United States)

    Lisboa, Kleber Marques; Marschewski, Julian; Ebejer, Neil; Ruch, Patrick; Cotta, Renato Machado; Michel, Bruno; Poulikakos, Dimos

    2017-08-01

    We propose a facile, novel concept of mass transfer enhancement in flow batteries based on electrolyte guidance in rationally designed corrugated channel systems. The proposed fluidic networks employ periodic throttling of the flow to optimally deflect the electrolytes into the porous electrode, targeting enhancement of the electrolyte-electrode interaction. Theoretical analysis is conducted with channels in the form of trapezoidal waves, confirming and detailing the mass transport enhancement mechanism. In dilute concentration experiments with an alkaline quinone redox chemistry, a scaling of the limiting current with Re0.74 is identified, which compares favourably against the Re0.33 scaling typical of diffusion-limited laminar processes. Experimental IR-corrected polarization curves are presented for high concentration conditions, and a significant performance improvement is observed with the narrowing of the nozzles. The adverse effects of periodic throttling on the pumping power are compared with the benefits in terms of power density, and an improvement of up to 102% in net power density is obtained in comparison with the flow-by case employing straight parallel channels. The proposed novel concept of corrugated fluidic networks comes with facile fabrication and contributes to the improvement of the transport characteristics and overall performance of redox flow battery systems.

  7. Large-area fluidic assembly of single-walled carbon nanotubes through dip-coating and directional evaporation

    Science.gov (United States)

    Kim, Pilnam; Kang, Tae June

    2017-12-01

    We present a simple and scalable fluidic-assembly approach, in which bundles of single-walled carbon nanotubes (SWCNTs) are selectively aligned and deposited by directionally controlled dip-coating and solvent evaporation processes. The patterned surface with alternating regions of hydrophobic polydimethyl siloxane (PDMS) (height 100 nm) strips and hydrophilic SiO2 substrate was withdrawn vertically at a constant speed ( 3 mm/min) from a solution bath containing SWCNTs ( 0.1 mg/ml), allowing for directional evaporation and subsequent selective deposition of nanotube bundles along the edges of horizontally aligned PDMS strips. In addition, the fluidic assembly was applied to fabricate a field effect transistor (FET) with highly oriented SWCNTs, which demonstrate significantly higher current density as well as high turn-off ratio (T/O ratio 100) as compared to that with randomly distributed carbon nanotube bundles (T/O ratio <10).

  8. Rapid prototyping tools and methods for all-Topas (R) cyclic olefin copolymer fluidic microsystems

    DEFF Research Database (Denmark)

    Bundgaard, Frederik; Perozziello, Gerardo; Geschke, Oliver

    2006-01-01

    , good machinability, and good optical properties. A number of different processes for rapid and low-cost prototyping of all-Topas microfluidic systems, made with desktop machinery, are presented. Among the processes are micromilling of fluidic structures with a width down to 25 p,m and sealing...

  9. Fluidic oscillator-mediated microbubble generation to provide cost effective mass transfer and mixing efficiency to the wastewater treatment plants.

    Science.gov (United States)

    Rehman, Fahad; Medley, Gareth J D; Bandulasena, Hemaka; Zimmerman, William B J

    2015-02-01

    Aeration is one of the most energy intensive processes in the waste water treatment plants and any improvement in it is likely to enhance the overall efficiency of the overall process. In the current study, a fluidic oscillator has been used to produce microbubbles in the order of 100 μm in diameter by oscillating the inlet gas stream to a pair of membrane diffusers. Volumetric mass transfer coefficient was measured for steady state flow and oscillatory flow in the range of 40-100l/min. The highest improvement of 55% was observed at the flow rates of 60, 90 and 100l/min respectively. Standard oxygen transfer rate and efficiency were also calculated. Both standard oxygen transfer rate and efficiency were found to be considerably higher under oscillatory air flow conditions compared to steady state airflow. The bubble size distributions and bubble densities were measured using an acoustic bubble spectrometer and confirmed production of monodisperse bubbles with approximately 100 μm diameters with fluidic oscillation. The higher number density of microbubbles under oscillatory flow indicated the effect of the fluidic oscillation in microbubble production. Visual observations and dissolved oxygen measurements suggested that the bubble cloud generated by the fluidic oscillator was sufficient enough to provide good mixing and to maintain uniform aerobic conditions. Overall, improved mass transfer coefficients, mixing efficiency and energy efficiency of the novel microbubble generation method could offer significant savings to the water treatment plants as well as reduction in the carbon footprint. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Fabrication of Biochips with Micro Fluidic Channels by Micro End-milling and Powder Blasting

    Directory of Open Access Journals (Sweden)

    Dong Sam Park

    2008-02-01

    Full Text Available For microfabrications of biochips with micro fluidic channels, a large number of microfabrication techniques based on silicon or glass-based Micro-Electro-Mechanical System (MEMS technologies were proposed in the last decade. In recent years, for low cost and mass production, polymer-based microfabrication techniques by microinjection molding and micro hot embossing have been proposed. These techniques, which require a proper photoresist, mask, UV light exposure, developing, and electroplating as a preprocess, are considered to have some problems. In this study, we propose a new microfabrication technology which consists of micro end-milling and powder blasting. This technique could be directly applied to fabricate the metal mold without any preprocesses. The metal mold with micro-channels is machined by micro end-milling, and then, burrs generated in the end-milling process are removed by powder blasting. From the experimental results, micro end-milling combined with powder blasting could be applied effectively for fabrication of the injection mold of biochips with micro fluidic channels.

  11. Design and fabrication of a micro fluidic circuit for the separation of micron sized particles

    CSIR Research Space (South Africa)

    Khumalo, F

    2009-07-01

    Full Text Available The development of a micro fluidic circuit for the separation of micro particles is being investigated. There are a wide range of available separation techniques such as acoustic, laminar flow, split flow, optical trapping and centrifugal forces...

  12. Fluidic Manufacture of Star-Shaped Gold Nanoparticles.

    Science.gov (United States)

    Silvestri, Alessandro; Lay, Luigi; Psaro, Rinaldo; Polito, Laura; Evangelisti, Claudio

    2017-07-21

    Star-shaped gold nanoparticles (StarAuNPs) are extremely attractive nanomaterials, characterized by localized surface plasmon resonance which could be potentially employed in a large number of applications. However, the lack of a reliable and reproducible synthetic protocols for the production of StarAuNPs is the major limitation to their spreading. For the first time, here we present a robust protocol to manufacture reproducible StarAuNPs by exploiting a fluidic approach. Star-shaped AuNPs have been synthesized by means of a seed-less protocol, employing ascorbic acid as reducing agent at room temperature. Moreover, the versatility of the bench-top microfluidic protocol has been exploited to afford hydrophilic, hydrophobic and solid-supported engineered StarAuNPs, by avoiding intermediate NP purifications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Two-dimensional FIR compaction filter design

    NARCIS (Netherlands)

    Vijayakumar, N.; Prabhu, K.M.M.

    2001-01-01

    The design of signal-adapted multirate filter banks has been an area of research interest. The authors present the design of a 2-D finite impulse response (FIR) compaction filter followed by a 2-D FIR filter bank that packs the maximum energy of the input process into a few subbands. The energy

  14. Integrated optics nano-opto-fluidic sensor based on whispering gallery modes for picoliter volume refractometry

    NARCIS (Netherlands)

    Gilardi, G.; Beccherelli, R.

    2013-01-01

    We propose and numerically investigate an integrated optics refractometric nano-opto-fluidic sensor based on whispering gallery modes in sapphire microspheres. A measurand fluid is injected in a micromachined reservoir defined in between the microsphere and an optical waveguide. The wavelength shift

  15. Evaluation of the threshold trimming method for micro inertial fluidic switch based on electrowetting technology

    Directory of Open Access Journals (Sweden)

    Tingting Liu

    2014-03-01

    Full Text Available The switch based on electrowetting technology has the advantages of no moving part, low contact resistance, long life and adjustable acceleration threshold. The acceleration threshold of switch can be fine-tuned by adjusting the applied voltage. This paper is focused on the electrowetting properties of switch and the influence of microchannel structural parameters, applied voltage and droplet volume on acceleration threshold. In the presence of process errors of micro inertial fluidic switch and measuring errors of droplet volume, there is a deviation between test acceleration threshold and target acceleration threshold. Considering the process errors and measuring errors, worst-case analysis is used to analyze the influence of parameter tolerance on the acceleration threshold. Under worst-case condition the total acceleration threshold tolerance caused by various errors is 9.95%. The target acceleration threshold can be achieved by fine-tuning the applied voltage. The acceleration threshold trimming method of micro inertial fluidic switch is verified.

  16. An Active Black Hole in a Compact Dwarf

    Science.gov (United States)

    Kohler, Susanna

    2016-05-01

    A new type of galaxy has just been added to the galaxy zoo: a small, compact, and old elliptical galaxy that shows signs of a monster black hole actively accreting material in its center. What can this unusual discovery tell us about how compact elliptical galaxies form?A New Galactic BeastCompact elliptical galaxies are an extremely rare early-type dwarf galaxy. Consistent with their name, compact ellipticals are small, very compact collections of ancient stars; these galaxies exhibit a high surface brightness and arent actively forming stars.Optical view of the ancient compact elliptical galaxy SDSS J085431.18+173730.5 (center of image) in an SDSS color composite image. [Adapted from Paudel et al. 2016]Most compact ellipticals are found in dense environments, particularly around massive galaxies. This has led astronomers to believe that compact ellipticals might form via the tidal stripping of a once-large galaxy in interactions with another, massive galaxy. In this model, once the original galaxys outer layers are stripped away, the compact inner bulge component would be left behind as a compact elliptical galaxy. Recent discoveries of a few isolated compact ellipticals, however, have strained this model.Now a new galaxy has been found to confuse our classification schemes: the first-ever compact elliptical to also display signs of an active galactic nucleus. Led by Sanjaya Paudel (Korea Astronomy and Space Science Institute), a team of scientists discovered SDSS J085431.18+173730.5 serendipitously in Sloan Digital Sky Survey data. The team used SDSS images and spectroscopy in combination with data from the Canada-France-Hawaii Telescope to learn more about this unique galaxy.Puzzling CharacteristicsSDSS J085431.18+173730.5 presents an interesting conundrum. Ancient compact ellipticals are supposed to be devoid of gas, with no fuel left to trigger nuclear activity. Yet SDSS J085431.18+173730.5 clearly shows the emission lines that indicate active accretion onto

  17. A capability study of micro moulding for nano fluidic system manufacture

    DEFF Research Database (Denmark)

    Calaon, Matteo; Hansen, Hans Nørgaard; Tosello, Guido

    2013-01-01

    With the present paper the authors analysed process capability of ultra-precision moulding used for producing nano crosses with the same critical channels dimensions of a nano fluidic system for optical mapping of genomic length DNA. The process variation focused on product tolerances is quantified...... through AFM measurements. Uncertainty assessment of measurements on polymer objects is described and quality control results of sub-micro injection moulded crosses are shown in respect of the tolerance range specified by the end user as limit value for functional design....

  18. Advanced fluidic handling and use of two-phase flow for high throughput structural investigation of proteins on a microfluidic sample preparation platform

    DEFF Research Database (Denmark)

    Lafleur, Josiane P.; Snakenborg, Detlef; Møller, M.

    2010-01-01

    Research on the structure of proteins can bring forth a wealth of information about biological function and can be used to better understand the processes in living cells. This paper reports a new microfluidic sample preparation system for the structural investigation of proteins by Small Angle X......-ray Scattering (SAXS). The system includes hardware and software features for precise fluidic control, synchrotron beamline control, UV absorbance measurements and automated data analysis. The precise fluidic handling capabilities are used to transport and precisely position samples as small as 500 n...

  19. Accommodation of repetitive sensor faults - applied to surface faults on compact discs

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle

    2008-01-01

    Surface defects such as scratches and fingerprints on compact discs (CDs) can cause CD players to lose focus and tracking on the discs. A scheme for handling these defects has previously been proposed. In this brief, adaptive and predictive versions of this scheme are developed. The adaptive sche...

  20. Performance characteristics of a continuous-flow fluidic pump

    International Nuclear Information System (INIS)

    Robinson, S.M.; Counce, R.M.; Smith, G.V.

    1987-01-01

    The fluidic pump is a type of positive-displacement pump in which basic fluid mechanics phenomena are utilized to eliminate valves and other moving parts that are exposed to the fluid being transferred. The version described in this article is powered by gas pressure serving as gas pistons and is virtually maintenance-free. It utilizes two displacement vessels and is designed to produce a steady and continuous liquid flow. This type of pump may be very useful for the transfer of radioactive or hazardous liquids where mechanical maintenance may be difficult or exposure of personnel to the fluid is undesirable. This paper presents experimental and model-predicted characteristics of such systems. The effects of several geometric parameters and operating conditions on the performance of the pump are briefly discussed

  1. Methodology for designing and manufacturing complex biologically inspired soft robotic fluidic actuators: prosthetic hand case study.

    Science.gov (United States)

    Thompson-Bean, E; Das, R; McDaid, A

    2016-10-31

    We present a novel methodology for the design and manufacture of complex biologically inspired soft robotic fluidic actuators. The methodology is applied to the design and manufacture of a prosthetic for the hand. Real human hands are scanned to produce a 3D model of a finger, and pneumatic networks are implemented within it to produce a biomimetic bending motion. The finger is then partitioned into material sections, and a genetic algorithm based optimization, using finite element analysis, is employed to discover the optimal material for each section. This is based on two biomimetic performance criteria. Two sets of optimizations using two material sets are performed. Promising optimized material arrangements are fabricated using two techniques to validate the optimization routine, and the fabricated and simulated results are compared. We find that the optimization is successful in producing biomimetic soft robotic fingers and that fabrication of the fingers is possible. Limitations and paths for development are discussed. This methodology can be applied for other fluidic soft robotic devices.

  2. The mathematics of the compact disc (Chapter 2)

    NARCIS (Netherlands)

    van Lint, J.H.; Aigner, M.; Behrends, E.

    2010-01-01

    Everyone uses compact discs nowadays. But why is the musical transfer to a CD purer than that of the traditional vinyl disc? The answer, to adapt a popular slogan, is: There is mathematics inside! More precisely, a branch of discrete mathematics, namely the theory of error correcting codes. This

  3. Thermo-fluidic devices and materials inspired from mass and energy transport phenomena in biological system

    Institute of Scientific and Technical Information of China (English)

    Jian XIAO; Jing LIU

    2009-01-01

    Mass and energy transport consists of one of the most significant physiological processes in nature, which guarantees many amazing biological phenomena and activ-ities. Borrowing such idea, many state-of-the-art thermo-fluidic devices and materials such as artificial kidneys, carrier erythrocyte, blood substitutes and so on have been successfully invented. Besides, new emerging technologies are still being developed. This paper is dedicated to present-ing a relatively complete review of the typical devices and materials in clinical use inspired by biological mass and energy transport mechanisms. Particularly, these artificial thermo-fluidic devices and materials will be categorized into organ transplantation, drug delivery, nutrient transport, micro operation, and power supply. Potential approaches for innovating conventional technologies were discussed, corresponding biological phenomena and physical mechan-isms were interpreted, future promising mass-and-energy-transport-based bionic devices were suggested, and prospects along this direction were pointed out. It is expected that many artificial devices based on biological mass and energy transport principle will appear to better improve vari-ous fields related to human life in the near future.

  4. Highly sensitive miniature fluidic flowmeter based on an FBG heated by Co2+-doped fiber

    NARCIS (Netherlands)

    Liu, Z.; Htein, L.; Cheng, L.K.; Martina, Q.; Jansen, R.; Tam, H.Y.

    2017-01-01

    In this paper, we present a miniature fluidic flow sensor based on a short fiber Bragg grating inscribed in a single mode fiber and heated by Co2+-doped multimode fibers. The proposed flow sensor was employed to measure the flow rates of oil and water, showing good sensitivity of 0.339 nm/(m/s) and

  5. Dielectric elastomer strain and pressure sensing enable reactive soft fluidic muscles

    Science.gov (United States)

    Veale, Allan J.; Anderson, Iain A.; Xie, Sheng Q.

    2016-04-01

    Wearable assistive devices are the future of rehabilitation therapy and bionic limb technologies. Traditional electric, hydraulic, and pneumatic actuators can provide the precise and powerful around-the-clock assistance that therapists cannot deliver. However, they do so in the confines of highly controlled factory environments, resulting in actuators too rigid, heavy, and immobile for wearable applications. In contrast, biological skeletal muscles have been designed and proven in the uncertainty of the real world. Bioinspired artificial muscle actuators aim to mimic the soft, slim, and self-sensing abilities of natural muscle that make them tough and intelligent. Fluidic artificial muscles are a promising wearable assistive actuation candidate, sharing the high-force, inherent compliance of their natural counterparts. Until now, they have not been able to self-sense their length, pressure, and force in an entirely soft and flexible system. Their use of rigid components has previously been a requirement for the generation of large forces, but reduces their reliability and compromises their ability to be comfortably worn. We present the unobtrusive integration of dielectric elastomer (DE) strain and pressure sensors into a soft Peano fluidic muscle, a planar alternative to the relatively bulky McKibben muscle. Characterization of these DE sensors shows they can measure the full operating range of the Peano muscle: strains of around 18% and pressures up to 400 kPa with changes in capacitance of 2.4 and 10.5 pF respectively. This is a step towards proprioceptive artificial muscles, paving the way for wearable actuation that can truly feel its environment.

  6. Means, methods and performances of the AREVA's HTR compact controls

    International Nuclear Information System (INIS)

    Banchet, J.; Guillermier, P.; Tisseur, D.; Vitali, M. P.

    2008-01-01

    In the AREVA's HTR development program, the reactor plant is composed of a prismatic core containing graphite cylindrical fuel elements, called compacts, where TRISO particles are dispersed. Starting from its past compacting process, the latter being revamped through the use of state of the art equipments, CERCA, 100% AREVA NP's subsidiary, was able to recover the quality of past compacts production. The recovered compacting process is composed of the following manufacturing steps: graphite matrix granulation, mix between the obtained granulates and particles, compacting and calcining at low pressure and temperature. To adapt this past process to new manufacturing equipments, non destructive examination tests were carried out to assess the compact quality, the latter being assessed via in house developed equipments and methods at each step of the design of experiments. As for the manufacturing process, past quality control methods were revamped to measure compact dimensional features (diameter, perpendicularity and cone effect), visual aspect, SiC layer failure fraction (via anodic disintegration and burn leach test) and homogeneity via 2D radiography coupled to ceramography. Although meeting quality requirements, 2D radiography method could not provide a quantified specification for compact homogeneity characterization. This limitation yielded the replacement of this past technique by a method based on X-Ray tomography. Development was conducted on this new technique to enable the definition of a criterion to quantify compact homogeneity, as well as to provide information about the distances in between particles. This study also included a comparison between simulated and real compacts to evaluate the accuracy of the technique as well as the influence of particle packing fraction on compact homogeneity. The developed quality control methods and equipments guided the choices of manufacturing parameters adjustments at the development stage and are now applied for

  7. Sub-micrometer fluidic channel for measuring photon emitting entities

    Science.gov (United States)

    Stavis, Samuel M; Edel, Joshua B; Samiee, Kevan T; Craighead, Harold G

    2014-11-18

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  8. Quantum dot conjugates in a sub-micrometer fluidic channel

    Science.gov (United States)

    Stavis, Samuel M.; Edel, Joshua B.; Samiee, Kevan T.; Craighead, Harold G.

    2010-04-13

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  9. Quantum dot conjugates in a sub-micrometer fluidic channel

    Science.gov (United States)

    Stavis, Samuel M [Ithaca, NY; Edel, Joshua B [Brookline, MA; Samiee, Kevan T [Ithaca, NY; Craighead, Harold G [Ithaca, NY

    2008-07-29

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  10. Resealable, optically accessible, PDMS-free fluidic platform for ex vivo interrogation of pancreatic islets.

    Science.gov (United States)

    Lenguito, Giovanni; Chaimov, Deborah; Weitz, Jonathan R; Rodriguez-Diaz, Rayner; Rawal, Siddarth A K; Tamayo-Garcia, Alejandro; Caicedo, Alejandro; Stabler, Cherie L; Buchwald, Peter; Agarwal, Ashutosh

    2017-02-28

    We report the design and fabrication of a robust fluidic platform built out of inert plastic materials and micromachined features that promote optimized convective fluid transport. The platform is tested for perfusion interrogation of rodent and human pancreatic islets, dynamic secretion of hormones, concomitant live-cell imaging, and optogenetic stimulation of genetically engineered islets. A coupled quantitative fluid dynamics computational model of glucose stimulated insulin secretion and fluid dynamics was first utilized to design device geometries that are optimal for complete perfusion of three-dimensional islets, effective collection of secreted insulin, and minimization of system volumes and associated delays. Fluidic devices were then fabricated through rapid prototyping techniques, such as micromilling and laser engraving, as two interlocking parts from materials that are non-absorbent and inert. Finally, the assembly was tested for performance using both rodent and human islets with multiple assays conducted in parallel, such as dynamic perfusion, staining and optogenetics on standard microscopes, as well as for integration with commercial perfusion machines. The optimized design of convective fluid flows, use of bio-inert and non-absorbent materials, reversible assembly, manual access for loading and unloading of islets, and straightforward integration with commercial imaging and fluid handling systems proved to be critical for perfusion assay, and particularly suited for time-resolved optogenetics studies.

  11. Proton beam writing of long, arbitrary structures for micro/nano photonics and fluidics applications

    International Nuclear Information System (INIS)

    Udalagama, Chammika; Teo, E.J.; Chan, S.F.; Kumar, V.S.; Bettiol, A.A.; Watt, F.

    2011-01-01

    The last decade has seen proton beam writing maturing into a versatile lithographic technique able to produce sub-100 nm, high aspect ratio structures with smooth side walls. However, many applications in the fields of photonics and fluidics require the fabrication of structures with high spatial resolution that extends over several centimetres. This cannot be achieved by purely magnetic or electrostatic beam scanning due to the large off-axis beam aberrations in high demagnification systems. As a result, this has limited us to producing long straight structures using a combination of beam and stage scanning. In this work we have: (1) developed an algorithm to include any arbitrary pattern into the writing process by using a more versatile combination of beam and stage scanning while (2) incorporating the use of the ubiquitous AutoCAD DXF (drawing exchange format) into the design process. We demonstrate the capability of this approach in fabricating structures such as Y-splitters, Mach-Zehnder modulators and microfluidic channels that are over several centimetres in length, in polymer. We also present optimisation of such parameters as scanning speed and scanning loops to improve on the surface roughness of the structures. This work opens up new possibilities of using CAD software in PBW for microphotonics and fluidics device fabrication.

  12. Proton beam writing of long, arbitrary structures for micro/nano photonics and fluidics applications

    Science.gov (United States)

    Udalagama, Chammika; Teo, E. J.; Chan, S. F.; Kumar, V. S.; Bettiol, A. A.; Watt, F.

    2011-10-01

    The last decade has seen proton beam writing maturing into a versatile lithographic technique able to produce sub-100 nm, high aspect ratio structures with smooth side walls. However, many applications in the fields of photonics and fluidics require the fabrication of structures with high spatial resolution that extends over several centimetres. This cannot be achieved by purely magnetic or electrostatic beam scanning due to the large off-axis beam aberrations in high demagnification systems. As a result, this has limited us to producing long straight structures using a combination of beam and stage scanning. In this work we have: (1) developed an algorithm to include any arbitrary pattern into the writing process by using a more versatile combination of beam and stage scanning while (2) incorporating the use of the ubiquitous AutoCAD DXF (drawing exchange format) into the design process. We demonstrate the capability of this approach in fabricating structures such as Y-splitters, Mach-Zehnder modulators and microfluidic channels that are over several centimetres in length, in polymer. We also present optimisation of such parameters as scanning speed and scanning loops to improve on the surface roughness of the structures. This work opens up new possibilities of using CAD software in PBW for microphotonics and fluidics device fabrication.

  13. Proton beam writing of long, arbitrary structures for micro/nano photonics and fluidics applications

    Energy Technology Data Exchange (ETDEWEB)

    Udalagama, Chammika, E-mail: chammika@nus.edu.sg [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore (NUS), 2 Science Drive 3, Singapore 117542 (Singapore); Teo, E.J. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore (NUS), 2 Science Drive 3, Singapore 117542 (Singapore); Chan, S.F. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore (NUS), 2 Science Drive 3, Singapore 117542 (Singapore); NUS Nanoscience and Nanotechnology Initiative, 2 Science Drive 3, 117542 (Singapore); Department of Chemistry, NUS, 3 Science Drive 3, 117543 (Singapore); Kumar, V.S.; Bettiol, A.A.; Watt, F. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore (NUS), 2 Science Drive 3, Singapore 117542 (Singapore)

    2011-10-15

    The last decade has seen proton beam writing maturing into a versatile lithographic technique able to produce sub-100 nm, high aspect ratio structures with smooth side walls. However, many applications in the fields of photonics and fluidics require the fabrication of structures with high spatial resolution that extends over several centimetres. This cannot be achieved by purely magnetic or electrostatic beam scanning due to the large off-axis beam aberrations in high demagnification systems. As a result, this has limited us to producing long straight structures using a combination of beam and stage scanning. In this work we have: (1) developed an algorithm to include any arbitrary pattern into the writing process by using a more versatile combination of beam and stage scanning while (2) incorporating the use of the ubiquitous AutoCAD DXF (drawing exchange format) into the design process. We demonstrate the capability of this approach in fabricating structures such as Y-splitters, Mach-Zehnder modulators and microfluidic channels that are over several centimetres in length, in polymer. We also present optimisation of such parameters as scanning speed and scanning loops to improve on the surface roughness of the structures. This work opens up new possibilities of using CAD software in PBW for microphotonics and fluidics device fabrication.

  14. Analysis of laboratory compaction methods of roller compacted concrete

    Science.gov (United States)

    Trtík, Tomáš; Chylík, Roman; Bílý, Petr; Fládr, Josef

    2017-09-01

    Roller-Compacted Concrete (RCC) is an ordinary concrete poured and compacted with machines typically used for laying of asphalt road layers. One of the problems connected with this technology is preparation of representative samples in the laboratory. The aim of this work was to analyse two methods of preparation of RCC laboratory samples with bulk density as the comparative parameter. The first method used dynamic compaction by pneumatic hammer. The second method of compaction had a static character. The specimens were loaded by precisely defined force in laboratory loading machine to create the same conditions as during static rolling (in the Czech Republic, only static rolling is commonly used). Bulk densities obtained by the two compaction methods were compared with core drills extracted from real RCC structure. The results have shown that the samples produced by pneumatic hammer tend to overestimate the bulk density of the material. For both compaction methods, immediate bearing index test was performed to verify the quality of compaction. A fundamental difference between static and dynamic compaction was identified. In static compaction, initial resistance to penetration of the mandrel was higher, after exceeding certain limit the resistance was constant. This means that the samples were well compacted just on the surface. Specimens made by pneumatic hammer actively resisted throughout the test, the whole volume was uniformly compacted.

  15. Developing and Analysing sub-10 µm Fluidic Systems with Integrated Electrodes for Pumping and Sensing in Nanotechnology Applications

    NARCIS (Netherlands)

    Heuck, F.C.A.

    2010-01-01

    In this thesis, sub-10 µm fluidic systems with integrated electrodes for pumping and sensing in nanotechnology applications were developed and analyzed. This work contributes to the development of the scanning ion pipette (SIP), a tool to investigate surface changes on the nanometer scale induced by

  16. Fluidic Vectoring of a Planar Incompressible Jet Flow

    Science.gov (United States)

    Mendez, Miguel Alfonso; Scelzo, Maria Teresa; Enache, Adriana; Buchlin, Jean-Marie

    2018-06-01

    This paper presents an experimental, a numerical and a theoretical analysis of the performances of a fluidic vectoring device for controlling the direction of a turbulent, bi-dimensional and low Mach number (incompressible) jet flow. The investigated design is the co-flow secondary injection with Coanda surface, which allows for vectoring angles up to 25° with no need of moving mechanical parts. A simple empirical model of the vectoring process is presented and validated via experimental and numerical data. The experiments consist of flow visualization and image processing for the automatic detection of the jet centerline; the numerical simulations are carried out solving the Unsteady Reynolds Average Navier- Stokes (URANS) closed with the k - ω SST turbulence model, using the PisoFoam solver from OpenFOAM. The experimental validation on three different geometrical configurations has shown that the model is capable of providing a fast and reliable evaluation of the device performance as a function of the operating conditions.

  17. Development of Two Color Fluorescent Imager and Integrated Fluidic System for Nanosatellite Biology Applications

    Science.gov (United States)

    Wu, Diana Terri; Ricco, Antonio Joseph; Lera, Matthew P.; Timucin, Linda R.; Parra, Macarena P.

    2012-01-01

    Nanosatellites offer frequent, low-cost space access as secondary payloads on launches of larger conventional satellites. We summarize the payload science and technology of the Microsatellite in-situ Space Technologies (MisST) nanosatellite for conducting automated biological experiments. The payload (two fused 10-cm cubes) includes 1) an integrated fluidics system that maintains organism viability and supports growth and 2) a fixed-focus imager with fluorescence and scattered-light imaging capabilities. The payload monitors temperature, pressure and relative humidity, and actively controls temperature. C. elegans (nematode, 50 m diameter x 1 mm long) was selected as a model organism due to previous space science experience, its completely sequenced genome, size, hardiness, and the variety of strains available. Three strains were chosen: two green GFP-tagged strains and one red tdTomato-tagged strain that label intestinal, nerve, and pharyngeal cells, respectively. The integrated fluidics system includes bioanalytical and reservoir modules. The former consists of four 150 L culture wells and a 4x5 mm imaging zone the latter includes two 8 mL fluid reservoirs for reagent and waste storage. The fluidic system is fabricated using multilayer polymer rapid prototyping: laser cutting, precision machining, die cutting, and pressure-sensitive adhesives it also includes eight solenoid-operated valves and one mini peristaltic pump. Young larval-state (L2) nematodes are loaded in C. elegans Maintenance Media (CeMM) in the bioanalytical module during pre-launch assembly. By the time orbit is established, the worms have grown to sufficient density to be imaged and are fed fresh CeMM. The strains are pumped sequentially into the imaging area, imaged, then pumped into waste. Reagent storage utilizes polymer bags under slight pressure to prevent bubble formation in wells or channels. The optical system images green and red fluorescence bands by excitation with blue (473 nm peak

  18. Phononic fluidics: acoustically activated droplet manipulations

    Science.gov (United States)

    Reboud, Julien; Wilson, Rab; Bourquin, Yannyk; Zhang, Yi; Neale, Steven L.; Cooper, Jonathan M.

    2011-02-01

    Microfluidic systems have faced challenges in handling real samples and the chip interconnection to other instruments. Here we present a simple interface, where surface acoustic waves (SAWs) from a piezoelectric device are coupled into a disposable acoustically responsive microfluidic chip. By manipulating droplets, SAW technologies have already shown their potential in microfluidics, but it has been limited by the need to rely upon mixed signal generation at multiple interdigitated electrode transducers (IDTs) and the problematic resulting reflections, to allow complex fluid operations. Here, a silicon chip was patterned with phononic structures, engineering the acoustic field by using a full band-gap. It was simply coupled to a piezoelectric LiNbO3 wafer, propagating the SAW, via a thin film of water. Contrary to the use of unstructured superstrates, phononic metamaterials allowed precise spatial control of the acoustic energy and hence its interaction with the liquids placed on the surface of the chip, as demonstrated by simulations. We further show that the acoustic frequency influences the interaction between the SAW and the phononic lattice, providing a route to programme complex fluidic manipulation onto the disposable chip. The centrifugation of cells from a blood sample is presented as a more practical demonstration of the potential of phononic crystals to realize diagnostic systems.

  19. Fractal modeling of fluidic leakage through metal sealing surfaces

    Science.gov (United States)

    Zhang, Qiang; Chen, Xiaoqian; Huang, Yiyong; Chen, Yong

    2018-04-01

    This paper investigates the fluidic leak rate through metal sealing surfaces by developing fractal models for the contact process and leakage process. An improved model is established to describe the seal-contact interface of two metal rough surface. The contact model divides the deformed regions by classifying the asperities of different characteristic lengths into the elastic, elastic-plastic and plastic regimes. Using the improved contact model, the leakage channel under the contact surface is mathematically modeled based on the fractal theory. The leakage model obtains the leak rate using the fluid transport theory in porous media, considering that the pores-forming percolation channels can be treated as a combination of filled tortuous capillaries. The effects of fractal structure, surface material and gasket size on the contact process and leakage process are analyzed through numerical simulations for sealed ring gaskets.

  20. Adaptive control of the radial servo system of a compact disc player

    NARCIS (Netherlands)

    Draijer, W.; Steinbuch, M.; Bosgra, O.H.

    1992-01-01

    The radial servo system of a compact disc player has to cope with large gain variations which are due to disc dependent optical characteristics, tolerances in mechanical and electrical components and nonlinearity in the generation of the position index. In current players this problem has been

  1. Sample handling in surface sensitive chemical and biological sensing: a practical review of basic fluidics and analyte transport.

    Science.gov (United States)

    Orgovan, Norbert; Patko, Daniel; Hos, Csaba; Kurunczi, Sándor; Szabó, Bálint; Ramsden, Jeremy J; Horvath, Robert

    2014-09-01

    This paper gives an overview of the advantages and associated caveats of the most common sample handling methods in surface-sensitive chemical and biological sensing. We summarize the basic theoretical and practical considerations one faces when designing and assembling the fluidic part of the sensor devices. The influence of analyte size, the use of closed and flow-through cuvettes, the importance of flow rate, tubing length and diameter, bubble traps, pressure-driven pumping, cuvette dead volumes, and sample injection systems are all discussed. Typical application areas of particular arrangements are also highlighted, such as the monitoring of cellular adhesion, biomolecule adsorption-desorption and ligand-receptor affinity binding. Our work is a practical review in the sense that for every sample handling arrangement considered we present our own experimental data and critically review our experience with the given arrangement. In the experimental part we focus on sample handling in optical waveguide lightmode spectroscopy (OWLS) measurements, but the present study is equally applicable for other biosensing technologies in which an analyte in solution is captured at a surface and its presence is monitored. Explicit attention is given to features that are expected to play an increasingly decisive role in determining the reliability of (bio)chemical sensing measurements, such as analyte transport to the sensor surface; the distorting influence of dead volumes in the fluidic system; and the appropriate sample handling of cell suspensions (e.g. their quasi-simultaneous deposition). At the appropriate places, biological aspects closely related to fluidics (e.g. cellular mechanotransduction, competitive adsorption, blood flow in veins) are also discussed, particularly with regard to their models used in biosensing. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Self-compacting concrete: the role of the particle size distribution

    NARCIS (Netherlands)

    Brouwers, J.J.H.; Radix, H.J.

    2005-01-01

    This paper addresses experiments and theories on Self-Compacting Concrete. The “Chinese Method”, as developed by Su et al. [1] and Su and Miao [2] and adapted to European circumstances, serves as a basis for the development of new concrete mixes. Mixes, consisting of slag blended cement, gravel

  3. The smart Peano fluidic muscle: a low profile flexible orthosis actuator that feels pain

    Science.gov (United States)

    Veale, Allan J.; Anderson, Iain A.; Xie, Shane Q.

    2015-03-01

    Robotic orthoses have the potential to provide effective rehabilitation while overcoming the availability and cost constraints of therapists. These orthoses must be characterized by the naturally safe, reliable, and controlled motion of a human therapist's muscles. Such characteristics are only possible in the natural kingdom through the pain sensing realized by the interaction of an intelligent nervous system and muscles' embedded sensing organs. McKibben fluidic muscles or pneumatic muscle actuators (PMAs) are a popular orthosis actuator because of their inherent compliance, high force, and muscle-like load-displacement characteristics. However, the circular cross-section of PMA increases their profile. PMA are also notoriously unreliable and difficult to control, lacking the intelligent pain sensing systems of their biological muscle counterparts. Here the Peano fluidic muscle, a new low profile yet high-force soft actuator is introduced. This muscle is smart, featuring bioinspired embedded pressure and soft capacitive strain sensors. Given this pressure and strain feedback, experimental validation shows that a lumped parameter model based on the muscle geometry and material parameters can be used to predict its force for quasistatic motion with an average error of 10 - 15N. Combining this with a force threshold pain sensing algorithm sets a precedent for flexible orthosis actuation that uses embedded sensors to prevent damage to the actuator and its environment.

  4. Fluidic Logic Used in a Systems Approach to Enable Integrated Single-cell Functional Analysis

    Directory of Open Access Journals (Sweden)

    Naveen Ramalingam

    2016-09-01

    Full Text Available The study of single cells has evolved over the past several years to include expression and genomic analysis of an increasing number of single cells. Several studies have demonstrated wide-spread variation and heterogeneity within cell populations of similar phenotype. While the characterization of these populations will likely set the foundation for our understanding of genomic- and expression-based diversity, it will not be able to link the functional differences of a single cell to its underlying genomic structure and activity. Currently, it is difficult to perturb single cells in a controlled environment, monitor and measure the response due to perturbation, and link these response measurements to downstream genomic and transcriptomic analysis. In order to address this challenge, we developed a platform to integrate and miniaturize many of the experimental steps required to study single-cell function. The heart of this platform is an elastomer-based Integrated Fluidic Circuit (IFC that uses fluidic logic to select and sequester specific single cells based on a phenotypic trait for downstream experimentation. Experiments with sequestered cells that have been performed include on-chip culture, exposure to a variety of stimulants, and post-exposure image-based response analysis, followed by preparation of the mRNA transcriptome for massively parallel sequencing analysis. The flexible system embodies experimental design and execution that enable routine functional studies of single cells.

  5. Compacting biomass waste materials for use as fuel

    Science.gov (United States)

    Zhang, Ou

    conducted in a stoke boiler. A separate burning test was also carried out by burning biomass logs alone in an outdoor hot-water furnace for heating a building. Based on a previous coal compaction study, the process of biomass compaction was studied numerically by use of a non-linear finite element code. A constitutive model with sufficient generality was adapted for biomass material to deal with pore contraction during compaction. A contact node algorithm was applied to implement the effect of mold wall friction into the finite element program. Numerical analyses were made to investigate the pressure distribution in a die normal to the axis of compaction, and to investigate the density distribution in a biomass log after compaction. The results of the analyses gave generally good agreement with theoretical analysis of coal log compaction, although assumptions had to be made about the variation in the elastic modulus of the material and the Poisson's ratio during the compaction cycle.

  6. A transient ischemic environment induces reversible compaction of chromatin.

    Science.gov (United States)

    Kirmes, Ina; Szczurek, Aleksander; Prakash, Kirti; Charapitsa, Iryna; Heiser, Christina; Musheev, Michael; Schock, Florian; Fornalczyk, Karolina; Ma, Dongyu; Birk, Udo; Cremer, Christoph; Reid, George

    2015-11-05

    Cells detect and adapt to hypoxic and nutritional stress through immediate transcriptional, translational and metabolic responses. The environmental effects of ischemia on chromatin nanostructure were investigated using single molecule localization microscopy of DNA binding dyes and of acetylated histones, by the sensitivity of chromatin to digestion with DNAseI, and by fluorescence recovery after photobleaching (FRAP) of core and linker histones. Short-term oxygen and nutrient deprivation of the cardiomyocyte cell line HL-1 induces a previously undescribed chromatin architecture, consisting of large, chromatin-sparse voids interspersed between DNA-dense hollow helicoid structures 40-700 nm in dimension. The chromatin compaction is reversible, and upon restitution of normoxia and nutrients, chromatin transiently adopts a more open structure than in untreated cells. The compacted state of chromatin reduces transcription, while the open chromatin structure induced upon recovery provokes a transitory increase in transcription. Digestion of chromatin with DNAseI confirms that oxygen and nutrient deprivation induces compaction of chromatin. Chromatin compaction is associated with depletion of ATP and redistribution of the polyamine pool into the nucleus. FRAP demonstrates that core histones are not displaced from compacted chromatin; however, the mobility of linker histone H1 is considerably reduced, to an extent that far exceeds the difference in histone H1 mobility between heterochromatin and euchromatin. These studies exemplify the dynamic capacity of chromatin architecture to physically respond to environmental conditions, directly link cellular energy status to chromatin compaction and provide insight into the effect ischemia has on the nuclear architecture of cells.

  7. Porous PDMS structures for the storage and release of aqueous solutions into fluidic environments.

    Science.gov (United States)

    Thurgood, Peter; Baratchi, Sara; Szydzik, Crispin; Mitchell, Arnan; Khoshmanesh, Khashayar

    2017-07-11

    Typical microfluidic systems take advantage of multiple storage reservoirs, pumps and valves for the storage, driving and release of buffers and other reagents. However, the fabrication, integration, and operation of such components can be difficult. In particular, the reliance of such components on external off-chip equipment limits their utility for creating self-sufficient, stand-alone microfluidic systems. Here, we demonstrate a porous sponge made of polydimethylsiloxane (PDMS), which is fabricated by templating microscale water droplets using a T-junction microfluidic structure. High-resolution microscopy reveals that this sponge contains a network of pores, interconnected by small holes. This unique structure enables the sponge to passively release stored solutions very slowly. Proof-of-concept experiments demonstrate that the sponge can be used for the passive release of stored solutions into narrow channels and circular well plates, with the latter used for inducing intracellular calcium signalling of immobilised endothelial cells. The release rate of stored solutions can be controlled by varying the size of interconnecting holes, which can be easily achieved by changing the flow rate of the water injected into the T-junction. We also demonstrate the active release of stored liquids into a fluidic channel upon the manual compression of the sponge. The developed PDMS sponge can be easily integrated into complex micro/macro fluidic systems and prepared with a wide array of reagents, representing a new building block for self-sufficient microfluidic systems.

  8. Mouse Embryo Compaction.

    Science.gov (United States)

    White, M D; Bissiere, S; Alvarez, Y D; Plachta, N

    2016-01-01

    Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo. © 2016 Elsevier Inc. All rights reserved.

  9. Encapsulation of Fluidic Tubing and Microelectrodes in Microfluidic Devices: Integrating Off-Chip Process and Coupling Conventional Capillary Electrophoresis with Electrochemical Detection.

    Science.gov (United States)

    Becirovic, Vedada; Doonan, Steven R; Martin, R Scott

    2013-08-21

    In this paper, an approach to fabricate epoxy or polystyrene microdevices with encapsulated tubing and electrodes is described. Key features of this approach include a fixed alignment between the fluidic tubing and electrodes, the ability to polish the device when desired, and the low dead volume nature of the fluidic interconnects. It is shown that a variety of tubing can be encapsulated with this approach, including fused silica capillary, polyetheretherketone (PEEK), and perfluoroalkoxy (PFA), with the resulting tubing/microchip interface not leading to significant band broadening or plug dilution. The applicability of the devices with embedded tubing is demonstrated by integrating several off-chip analytical methods to the microchip. This includes droplet transfer, droplet desegmentation, and microchip-based flow injection analysis. Off-chip generated droplets can be transferred to the microchip with minimal coalescence, while flow injection studies showed improved peak shape and sensitivity when compared to the use of fluidic interconnects with an appreciable dead volume. Importantly, it is shown that this low dead volume approach can be extended to also enable the integration of conventional capillary electrophoresis (CE) with electrochemical detection. This is accomplished by embedding fused silica capillary along with palladium (for grounding the electrophoresis voltage) and platinum (for detection) electrodes. With this approach, up to 128,000 theoretical plates for dopamine was possible. In all cases, the tubing and electrodes are housed in a rigid base; this results in extremely robust devices that will be of interest to researchers wanting to develop microchips for use by non-experts.

  10. Detection of mitochondrial DNA with the compact bead array sensor system (cBASS)

    Science.gov (United States)

    Mulvaney, Shawn P.; Ibe, Carol N.; Caldwell, Jane M.; Levine, Jay F.; Whitman, Lloyd J.; Tamanaha, Cy R.

    2009-02-01

    Enteric pathogens are a significant contaminant in surface waters used for recreation, fish and shellfish harvesting, crop irrigation, and human consumption. The need for water monitoring becomes more pronounced when industrial, agricultural, and residential lands are found in close proximity. Fecal contamination is particularly problematic and identification of the pollution source essential to remediation efforts. Standard monitoring for fecal contamination relies on indicator organisms, but the technique is too broad to identify the source of contamination. Instead, real-time PCR of mitochondrial DNA (mtDNA) is an emerging method for identification of the contamination source. Presented herein, we evaluate an alternative technology, the compact Bead Array Sensor System (cBASS®) and its assay approach Fluidic Force Discrimination (FFD), for the detection of mtDNA. Previously, we achieved multiplexed, attomolar detection of toxins and femtomolar detection of nucleic acids in minutes with FFD assays. More importantly, FFD assays are compatible with a variety of complex matrices and therefore potentially applicable for samples where the matrix would interfere with PCR amplification. We have designed a triplex assay for the NADH gene found in human, swine, and bovine mtDNA and demonstrated the specific detection of human mtDNA spiked into a waste water sample.

  11. Polymer Coatings in 3D-Printed Fluidic Device Channels for Improved Cellular Adherence Prior to Electrical Lysis.

    Science.gov (United States)

    Gross, Bethany C; Anderson, Kari B; Meisel, Jayda E; McNitt, Megan I; Spence, Dana M

    2015-06-16

    This paper describes the design and fabrication of a polyjet-based three-dimensional (3D)-printed fluidic device where poly(dimethylsiloxane) (PDMS) or polystyrene (PS) were used to coat the sides of a fluidic channel within the device to promote adhesion of an immobilized cell layer. The device was designed using computer-aided design software and converted into an .STL file prior to printing. The rigid, transparent material used in the printing process provides an optically transparent path to visualize endothelial cell adherence and supports integration of removable electrodes for electrical cell lysis in a specified portion of the channel (1 mm width × 0.8 mm height × 2 mm length). Through manipulation of channel geometry, a low-voltage power source (500 V max) was used to selectively lyse adhered endothelial cells in a tapered region of the channel. Cell viability was maintained on the device over a 5 day period (98% viable), though cell coverage decreased after day 4 with static media delivery. Optimal lysis potentials were obtained for the two fabricated device geometries, and selective cell clearance was achieved with cell lysis efficiencies of 94 and 96%. The bottleneck of unknown surface properties from proprietary resin use in fabricating 3D-printed materials is overcome through techniques to incorporate PDMS and PS.

  12. Development of the RF cavity for the SKKUCY-9 compact cyclotron

    International Nuclear Information System (INIS)

    Shin, Seungwook; Lee, Jongchul; LEE, Byeong-No; Ha, Donghyup; Namgoong, Ho; Chai, Jongseo

    2015-01-01

    A 9 MeV compact cyclotron, named SKKUCY-9, for a radiopharmaceutical compound especially fludeoxyglucose (FDG) production for a positron emission tomography (PET) machine was developed at Sungkyunkwan University. H − ions which are produced from a Penning Ionization Gauge(PIG) ion source, travel through a normal conducting radio frequency (RF) cavity which operates at 83.2 MHz for an acceleration and electro-magnet for a beam focusing until the ions acquire energy of about 9 MeV. For installation at a small local hospital, our SKKUCY-9 cyclotron is developed to be compact and light-weight, comparable to conventional medical purpose cyclotrons. For compactness, we adapted a deep valley and large angle hill type for the electro-magnet design. Normally a RF cavity is installed inside of the empty space of the magnet valley region, which is extremely small in our case. We faced problems such as difficulties of installing the RF cavity, low Q-value. Despite of those difficulties, a compact RF cavity and its system including a RF power coupler to feed amplified RF power to the RF cavity and a fine tuner to compensate RF frequency variations was successfully developed and tested

  13. Development of the RF cavity for the SKKUCY-9 compact cyclotron

    Science.gov (United States)

    Shin, Seungwook; Lee, Jongchul; LEE, Byeong-No; Ha, Donghyup; Namgoong, Ho; Chai, Jongseo

    2015-09-01

    A 9 MeV compact cyclotron, named SKKUCY-9, for a radiopharmaceutical compound especially fludeoxyglucose (FDG) production for a positron emission tomography (PET) machine was developed at Sungkyunkwan University. H- ions which are produced from a Penning Ionization Gauge(PIG) ion source, travel through a normal conducting radio frequency (RF) cavity which operates at 83.2 MHz for an acceleration and electro-magnet for a beam focusing until the ions acquire energy of about 9 MeV. For installation at a small local hospital, our SKKUCY-9 cyclotron is developed to be compact and light-weight, comparable to conventional medical purpose cyclotrons. For compactness, we adapted a deep valley and large angle hill type for the electro-magnet design. Normally a RF cavity is installed inside of the empty space of the magnet valley region, which is extremely small in our case. We faced problems such as difficulties of installing the RF cavity, low Q-value. Despite of those difficulties, a compact RF cavity and its system including a RF power coupler to feed amplified RF power to the RF cavity and a fine tuner to compensate RF frequency variations was successfully developed and tested.

  14. A microfluidic device for simultaneous measurement of viscosity and flow rate of blood in a complex fluidic network

    OpenAIRE

    Jun Kang, Yang; Yeom, Eunseop; Lee, Sang-Joon

    2013-01-01

    Blood viscosity has been considered as one of important biophysical parameters for effectively monitoring variations in physiological and pathological conditions of circulatory disorders. Standard previous methods make it difficult to evaluate variations of blood viscosity under cardiopulmonary bypass procedures or hemodialysis. In this study, we proposed a unique microfluidic device for simultaneously measuring viscosity and flow rate of whole blood circulating in a complex fluidic network i...

  15. A microfluidic device for simultaneous measurement of viscosity and flow rate of blood in a complex fluidic network.

    Science.gov (United States)

    Jun Kang, Yang; Yeom, Eunseop; Lee, Sang-Joon

    2013-01-01

    Blood viscosity has been considered as one of important biophysical parameters for effectively monitoring variations in physiological and pathological conditions of circulatory disorders. Standard previous methods make it difficult to evaluate variations of blood viscosity under cardiopulmonary bypass procedures or hemodialysis. In this study, we proposed a unique microfluidic device for simultaneously measuring viscosity and flow rate of whole blood circulating in a complex fluidic network including a rat, a reservoir, a pinch valve, and a peristaltic pump. To demonstrate the proposed method, a twin-shaped microfluidic device, which is composed of two half-circular chambers, two side channels with multiple indicating channels, and one bridge channel, was carefully designed. Based on the microfluidic device, three sequential flow controls were applied to identify viscosity and flow rate of blood, with label-free and sensorless detection. The half-circular chamber was employed to achieve mechanical membrane compliance for flow stabilization in the microfluidic device. To quantify the effect of flow stabilization on flow fluctuations, a formula of pulsation index (PI) was analytically derived using a discrete fluidic circuit model. Using the PI formula, the time constant contributed by the half-circular chamber is estimated to be 8 s. Furthermore, flow fluctuations resulting from the peristaltic pumps are completely removed, especially under periodic flow conditions within short periods (T viscosity with respect to varying flow rate conditions [(a) known blood flow rate via a syringe pump, (b) unknown blood flow rate via a peristaltic pump]. As a result, the flow rate and viscosity of blood can be simultaneously measured with satisfactory accuracy. In addition, the proposed method was successfully applied to identify the viscosity of rat blood, which circulates in a complex fluidic network. These observations confirm that the proposed method can be used for

  16. A fluidic device for the controlled formation and real-time monitoring of soft membranes self-assembled at liquid interfaces.

    Science.gov (United States)

    Mendoza-Meinhardt, Arturo; Botto, Lorenzo; Mata, Alvaro

    2018-02-13

    Membrane materials formed at the interface between two liquids have found applications in a large variety of technologies, from sensors to drug-delivery and catalysis. However, studying the formation of these membranes in real-time presents considerable challenges, owing to the difficulty of prescribing the location and instant of formation of the membrane, the difficulty of observing time-dependent membrane shape and thickness, and the poor reproducibility of results obtained using conventional mixing procedures. Here we report a fluidic device that facilitates characterisation of the time-dependent thickness, morphology and mass transport properties of materials self-assembled at fluid-fluid interfaces. In the proposed device the membrane forms from the controlled coalescence of two liquid menisci in a linear open channel. The linear geometry and controlled mixing of the solutions facilitate real-time visualisation, manipulation and improve reproducibility. Because of its small dimensions, the device can be used in conjunction with standard microscopy methods and reduces the required volumes of potentially expensive reagents. As an example application to tissue engineering, we use the device to characterise interfacial membranes formed by supra-molecular self-assembly of peptide-amphiphiles with either an elastin-like-protein or hyaluronic acid. The device can be adapted to study self-assembling membranes for applications that extend beyond bioengineering.

  17. Technical benefit and risk analysis on cement clinkering process with compact internal burning of carbon

    International Nuclear Information System (INIS)

    Chen, Hanmin

    2015-01-01

    This article demonstrates the potential technical benefit and risk for cement clinkering process with compact internal burning of carbon, a laboratory-phase developing technique, from 9 aspects, including the heat consumption of clinkering and exhaust heat utilization, clinker quality, adaptability to alternative fuels, the disposal ability of industrial offal and civil garbage, adaptability to the raw materials and fuels with high content of chlorine, sulphur and alkali, the feasibility of process scale up, the briquetting process of the coal-containing cement raw meal pellet, NO x emission and the capital cost and benefit of conversion project. It is concluded that it will be able to replace the modern precalciner rotary kiln process and to become the main stream technique of cement clinkering process in low carbon economy times. - Highlights: • Compact internal burning of carbon enables cement shaft kiln to run stably. • Compact internal burning of carbon enables cement shaft kiln to scale up. • New process triples energy efficiency with excellent environmental performance. • It will be able to compete with and replace the existing precalciner kiln process. • It will become the mainstream clinkering process in low carbon economy

  18. Compact Polarimetry Potentials

    Science.gov (United States)

    Truong-Loi, My-Linh; Dubois-Fernandez, Pascale; Pottier, Eric

    2011-01-01

    The goal of this study is to show the potential of a compact-pol SAR system for vegetation applications. Compact-pol concept has been suggested to minimize the system design while maximize the information and is declined as the ?/4, ?/2 and hybrid modes. In this paper, the applications such as biomass and vegetation height estimates are first presented, then, the equivalence between compact-pol data simulated from full-pol data and compact-pol data processed from raw data as such is shown. Finally, a calibration procedure using external targets is proposed.

  19. Compaction of FGD-gypsum

    NARCIS (Netherlands)

    Stoop, B.T.J.; Larbi, J.A.; Heijnen, W.M.M.

    1996-01-01

    It is shown that it is possible to produce compacted gypsum with a low porosity and a high strength on a laboratory scale by uniaxial compaction of flue gas desulphurization (FGD-) gypsum powder. Compacted FGD-gypsum cylinders were produced at a compaction pres-sure between 50 and 500 MPa yielding

  20. (U) Influence of Compaction Model Form on Planar and Cylindrical Compaction Geometries

    Energy Technology Data Exchange (ETDEWEB)

    Fredenburg, David A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carney, Theodore Clayton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fichtl, Christopher Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ramsey, Scott D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-05

    The dynamic compaction response of CeO2 is examined within the frameworks of the Ramp and P-a compaction models. Hydrocode calculations simulating the dynamic response of CeO2 at several distinct pressures within the compaction region are investigated in both planar and cylindrically convergent geometries. Findings suggest additional validation of the compaction models is warranted under complex loading configurations.

  1. Adaptation and Preadaptation of Salmonella enterica to Bile

    Science.gov (United States)

    Hernández, Sara B.; Cota, Ignacio; Ducret, Adrien; Aussel, Laurent; Casadesús, Josep

    2012-01-01

    Bile possesses antibacterial activity because bile salts disrupt membranes, denature proteins, and damage DNA. This study describes mechanisms employed by the bacterium Salmonella enterica to survive bile. Sublethal concentrations of the bile salt sodium deoxycholate (DOC) adapt Salmonella to survive lethal concentrations of bile. Adaptation seems to be associated to multiple changes in gene expression, which include upregulation of the RpoS-dependent general stress response and other stress responses. The crucial role of the general stress response in adaptation to bile is supported by the observation that RpoS− mutants are bile-sensitive. While adaptation to bile involves a response by the bacterial population, individual cells can become bile-resistant without adaptation: plating of a non-adapted S. enterica culture on medium containing a lethal concentration of bile yields bile-resistant colonies at frequencies between 10−6 and 10−7 per cell and generation. Fluctuation analysis indicates that such colonies derive from bile-resistant cells present in the previous culture. A fraction of such isolates are stable, indicating that bile resistance can be acquired by mutation. Full genome sequencing of bile-resistant mutants shows that alteration of the lipopolysaccharide transport machinery is a frequent cause of mutational bile resistance. However, selection on lethal concentrations of bile also provides bile-resistant isolates that are not mutants. We propose that such isolates derive from rare cells whose physiological state permitted survival upon encountering bile. This view is supported by single cell analysis of gene expression using a microscope fluidic system: batch cultures of Salmonella contain cells that activate stress response genes in the absence of DOC. This phenomenon underscores the existence of phenotypic heterogeneity in clonal populations of bacteria and may illustrate the adaptive value of gene expression fluctuations. PMID:22275872

  2. The thermal-hydraulic for the new technologies: the micro-fluidics; La thermohydraulique au service des nouvelles technologies: la microfluidique

    Energy Technology Data Exchange (ETDEWEB)

    Crecy, F. de; Gruss, A.; Bricard, A.; Excoffon, J

    2000-07-01

    The micro-fluidics can be defined as the fluid flow in little canals. This scale offers a great interest for the biotechnology type. In this paper, the authors present this fluids form and detail the researches performed at the Department of Physics and Thermal-hydraulics of the CEA, in the domain of the physical properties characterization and of the numerical two-phase direct simulation. (A.L.B.)

  3. Integrated electronics and fluidic MEMS for bioengineering

    Science.gov (United States)

    Fok, Ho Him Raymond

    Microelectromechanical systems (MEMS) and microelectronics have become enabling technologies for many research areas. This dissertation presents the use of fluidic MEMS and microelectronics for bioengineering applications. In particular, the versatility of MEMS and microelectronics is highlighted by the presentation of two different applications, one for in-vitro study of nano-scale dynamics during cell division and one for in-vivo monitoring of biological activities at the cellular level. The first application of an integrated system discussed in this dissertation is to utilize fluidic MEMS for studying dynamics in the mitotic spindle, which could lead to better chemotherapeutic treatments for cancer patients. Previous work has developed the use of electrokinetic phenomena on the surface of a glass-based platform to assemble microtubules, the building blocks of mitotic spindles. Nevertheless, there are two important limitations of this type of platform. First, an unconventional microfabrication process is necessary for the glass-based platform, which limits the utility of this platform. In order to overcome this limitation, in this dissertation a convenient microfluidic system is fabricated using a negative photoresist called SU-8. The fabrication process for the SU-8-based system is compatible with other fabrication techniques used in developing microelectronics, and this compatibility is essential for integrating electronics for studying dynamics in the mitotic spindle. The second limitation of the previously-developed glass-based platform is its lack of bio-compatibility. For example, microtubules strongly interact with the surface of the glass-based platform, thereby hindering the study of dynamics in the mitotic spindle. This dissertation presents a novel approach for assembling microtubules away from the surface of the platform, and a fabrication process is developed to assemble microtubules between two self-aligned thin film electrodes on thick SU-8

  4. Label-free tracking of single extracellular vesicles in a nano-fluidic optical fiber (Conference Presentation)

    Science.gov (United States)

    van der Pol, Edwin; Weidlich, Stefan; Lahini, Yoav; Coumans, Frank A. W.; Sturk, Auguste; Nieuwland, Rienk; Schmidt, Markus A.; Faez, Sanli; van Leeuwen, Ton G.

    2016-03-01

    Background: Extracellular vesicles, such as exosomes, are abundantly present in human body fluids. Since the size, concentration and composition of these vesicles change during disease, vesicles have promising clinical applications, including cancer diagnosis. However, since ~70% of the vesicles have a diameter <70 nm, detection of single vesicles remains challenging. Thus far, vesicles <70 nm have only be studied by techniques that require the vesicles to be adhered to a surface. Consequently, the majority of vesicles have never been studied in their physiological environment. We present a novel label-free optical technique to track single vesicles <70 nm in suspension. Method: Urinary vesicles were contained within a single-mode light-guiding silica fiber containing a 600 nm nano-fluidic channel. Light from a diode laser (660 nm wavelength) was coupled to the fiber, resulting in a strongly confined optical mode in the nano-fluidic channel, which continuously illuminated the freely diffusing vesicles inside the channel. The elastic light scattering from the vesicles, in the direction orthogonal to the fiber axis, was collected using a microscope objective (NA=0.95) and imaged with a home-built microscope. Results: We have tracked single urinary vesicles as small as 35 nm by elastic light scattering. Please note that vesicles are low-refractive index (n<1.4) particles, which we confirmed by combining data on thermal diffusion and light scattering cross section. Conclusions: For the first time, we have studied vesicles <70 nm freely diffusing in suspension. The ease-of-use and performance of this technique support its potential for vesicle-based clinical applications.

  5. Design and fabrication of a micro PZT cantilever array actuator for applications in fluidic systems

    DEFF Research Database (Denmark)

    Kim, H.; In, C.; Yoon, Gil Ho

    2005-01-01

    In this article, a micro cantilever array actuated by PZT films is designed and fabricated for micro fluidic systems. The design features for maximizing tip deflections and minimizing fluid leakage are described. The governing equation of the composite PZT cantilever is derived and the actuating......, dielectric constant, and dielectric loss. Tip deflections of 12 mu m at 5 V are measured, which agreed well with the predicted value. The 18 mu l/s leakage rate of air was observed at a pressure difference of 1000 Pa. Micro cooler is introduced, and its possible application to micro compressor is discussed....

  6. Diffusion through statically compacted clay

    International Nuclear Information System (INIS)

    Ho, C.L.; Shebl, M.A.A.

    1994-01-01

    This paper presents experimental work on the effect of compaction on contaminant flow through clay liners. The experimental program included evaluation of soil properties, compaction, permeability and solute diffusion. A permeameter was built of non reactive materials to test samples compacted at different water contents and compactive efforts. The flow of a permeating solute, LiCl, was monitored. Effluent samples were collected for solute concentration measurements. The concentrations were measured by performing atomic adsorption tests. The analyzed results showed different diffusion characteristics when compaction conditions changed. At each compactive effort, permeability decreased as molding water content increased. Consequently, transit time (measured at relative concentration 50%) increased and diffusivity decreased. As compactive effort increased for soils compacted dry of optimum, permeability and diffusion decreased. On the other hand, as compactive effort increased for soils compacted wet of optimum, permeability and diffusivity increased. Tortuosity factor was indirectly measured from the diffusion and retardation rate. Tortuosity factor also decreased as placement water content was increased from dry of optimum to wet of optimum. Then decreases were more pronounced for low compactive effort tests. 27 refs., 7 figs., 5 tabs

  7. Self-Compacting Concrete

    OpenAIRE

    Okamura, Hajime; Ouchi, Masahiro

    2003-01-01

    Self-compacting concrete was first developed in 1988 to achieve durable concrete structures. Since then, various investigations have been carried out and this type of concrete has been used in practical structures in Japan, mainly by large construction companies. Investigations for establishing a rational mix-design method and self-compactability testing methods have been carried out from the viewpoint of making self-compacting concrete a standard concrete.

  8. Compaction of Ti–6Al–4V powder using high velocity compaction technique

    International Nuclear Information System (INIS)

    Khan, Dil Faraz; Yin, Haiqing; Li, He; Qu, Xuanhui; Khan, Matiullah; Ali, Shujaat; Iqbal, M. Zubair

    2013-01-01

    Highlights: • We compacted Ti–6Al–4V powder by HVC technique. • As impact force rises up, the green density of the compacts increases gradually. • At impact force 1.857 kN relative sintered density of the compacts reaches 99.88%. • Spring back of the green compact’s decreases gradually with increasing impact force. • Mechanical properties of the samples increases with increasing impact force. - Abstract: High velocity compaction technique was applied to the compaction of pre-alloyed, hydride–dehydride Ti–6Al–4V powder. The powder was pressed in single stroke with a compaction speed of 7.10–8.70 ms −1 . When the speed was 8.70 ms −1 , the relative density of the compacts reaches up to 85.89% with a green density of 3.831 g cm −3 . The green samples were sintered at 1300 °C in Ar-gas atmosphere. Scanning electron microscope (SEM) was used to examine the surface of the sintered samples. Density and mechanical properties such as Vickers micro hardness and bending strength of the powder samples were investigated. Experimental results indicated that with the increase in impact force, the density and mechanical properties of the compacts increased. The sintered compacts exhibited a maximum relative density of 99.88% with a sintered density of 4.415 g cm −3 , hardness of 364–483 HV and the bending strength in the range of 103–126.78 MPa. The springback of the compacts decreased with increasing impact force

  9. Sobolev Spaces on Locally Compact Abelian Groups: Compact Embeddings and Local Spaces

    Directory of Open Access Journals (Sweden)

    Przemysław Górka

    2014-01-01

    Full Text Available We continue our research on Sobolev spaces on locally compact abelian (LCA groups motivated by our work on equations with infinitely many derivatives of interest for string theory and cosmology. In this paper, we focus on compact embedding results and we prove an analog for LCA groups of the classical Rellich lemma and of the Rellich-Kondrachov compactness theorem. Furthermore, we introduce Sobolev spaces on subsets of LCA groups and study its main properties, including the existence of compact embeddings into Lp-spaces.

  10. Stabilization of compactible waste

    International Nuclear Information System (INIS)

    Franz, E.M.; Heiser, J.H. III; Colombo, P.

    1990-09-01

    This report summarizes the results of series of experiments performed to determine the feasibility of stabilizing compacted or compactible waste with polymers. The need for this work arose from problems encountered at disposal sites attributed to the instability of this waste in disposal. These studies are part of an experimental program conducted at Brookhaven National Laboratory (BNL) investigating methods for the improved solidification/stabilization of DOE low-level wastes. The approach taken in this study was to perform a series of survey type experiments using various polymerization systems to find the most economical and practical method for further in-depth studies. Compactible dry bulk waste was stabilized with two different monomer systems: styrene-trimethylolpropane trimethacrylate (TMPTMA) and polyester-styrene, in laboratory-scale experiments. Stabilization was accomplished by wetting or soaking compactible waste (before or after compaction) with monomers, which were subsequently polymerized. Three stabilization methods are described. One involves the in-situ treatment of compacted waste with monomers in which a vacuum technique is used to introduce the binder into the waste. The second method involves the alternate placement and compaction of waste and binder into a disposal container. In the third method, the waste is treated before compaction by wetting the waste with the binder using a spraying technique. A series of samples stabilized at various binder-to-waste ratios were evaluated through water immersion and compression testing. Full-scale studies were conducted by stabilizing two 55-gallon drums of real compacted waste. The results of this preliminary study indicate that the integrity of compacted waste forms can be readily improved to ensure their long-term durability in disposal environments. 9 refs., 10 figs., 2 tabs

  11. Quantitative FLIM-FRET Microscopy to Monitor Nanoscale Chromatin Compaction In Vivo Reveals Structural Roles of Condensin Complexes

    Directory of Open Access Journals (Sweden)

    David Llères

    2017-02-01

    Full Text Available How metazoan genomes are structured at the nanoscale in living cells and tissues remains unknown. Here, we adapted a quantitative FRET (Förster resonance energy transfer-based fluorescence lifetime imaging microscopy (FLIM approach to assay nanoscale chromatin compaction in living organisms. Caenorhabditis elegans was chosen as a model system. By measuring FRET between histone-tagged fluorescent proteins, we visualized distinct chromosomal regions and quantified the different levels of nanoscale compaction in meiotic cells. Using RNAi and repetitive extrachromosomal array approaches, we defined the heterochromatin state and showed that its architecture presents a nanoscale-compacted organization controlled by Heterochromatin Protein-1 (HP1 and SETDB1 H3-lysine-9 methyltransferase homologs in vivo. Next, we functionally explored condensin complexes. We found that condensin I and condensin II are essential for heterochromatin compaction and that condensin I additionally controls lowly compacted regions. Our data show that, in living animals, nanoscale chromatin compaction is controlled not only by histone modifiers and readers but also by condensin complexes.

  12. Precedent Research on Compact Laser-plasma based Gantry for Cancer Therapy

    International Nuclear Information System (INIS)

    Hee, Park Seong; Jeong, Young Uk; Lee, Ki Tae; Kim, Kyung Nam; Cha, Young Ho

    2012-03-01

    This is the precedent R and D to develop the technology of next generation compact particle cancer treatment system based on laser-plasma interaction and to deduce a big project. The subject of this project are the survey of application technology of laser-plasma based particle beam and the design of compact laser-plasma based gantry. The survey of characteristic of particle beam for cancer therapy and present status can be adapted to develop new system. The comparison between particle beams from the existing system and new one based on laser-plasma acceleration will be important to new design and design optimization. The project includes design of multi-dimensional laser transfer beamline, minimization of laser-plasma acceleration chamber, design of effective energy separation/selection system, and radiation safety and local shielding

  13. Oil Motion Control by an Extra Pinning Structure in Electro-Fluidic Display.

    Science.gov (United States)

    Dou, Yingying; Tang, Biao; Groenewold, Jan; Li, Fahong; Yue, Qiao; Zhou, Rui; Li, Hui; Shui, Lingling; Henzen, Alex; Zhou, Guofu

    2018-04-06

    Oil motion control is the key for the optical performance of electro-fluidic displays (EFD). In this paper, we introduced an extra pinning structure (EPS) into the EFD pixel to control the oil motion inside for the first time. The pinning structure canbe fabricated together with the pixel wall by a one-step lithography process. The effect of the relative location of the EPS in pixels on the oil motion was studied by a series of optoelectronic measurements. EPS showed good control of oil rupture position. The properly located EPS effectively guided the oil contraction direction, significantly accelerated switching on process, and suppressed oil overflow, without declining in aperture ratio. An asymmetrically designed EPS off the diagonal is recommended. This study provides a novel and facile way for oil motion control within an EFD pixel in both direction and timescale.

  14. Uniaxial backfill block compaction

    International Nuclear Information System (INIS)

    Koskinen, V.

    2012-05-01

    The main parts of the project were: to make a literature survey of the previous uniaxial compaction experiments; do uniaxial compaction tests in laboratory scale; and do industrial scale production tests. Object of the project was to sort out the different factors affecting the quality assurance chain of the backfill block uniaxial production and solve a material sticking to mould problem which appeared during manufacturing the blocks of bentonite and cruched rock mixture. The effect of mineralogical and chemical composition on the long term functionality of the backfill was excluded from the project. However, the used smectite-rich clays have been tested for mineralogical consistency. These tests were done in B and Tech OY according their SOPs. The objective of the Laboratory scale tests was to find right material- and compaction parameters for the industrial scale tests. Direct comparison between the laboratory scale tests and industrial scale tests is not possible because the mould geometry and compaction speed has a big influence for the compaction process. For this reason the selected material parameters were also affected by the previous compaction experiments. The industrial scale tests were done in summer of 2010 in southern Sweden. Blocks were done with uniaxial compaction. A 40 tons of the mixture of bentonite and crushed rock blocks and almost 50 tons of Friedland-clay blocks were compacted. (orig.)

  15. Characterization of ceramic powder compacts

    International Nuclear Information System (INIS)

    Yanai, K.; Ishimoto, S.; Kubo, T.; Ito, K.; Ishikawa, T.; Hayashi, H.

    1995-01-01

    UO 2 and Al 2 O 3 powder packing structures in cylindrical powder compacts are observed by scanning electron microscopy using polished cross sections of compacts fixed by low viscosity epoxy resin. Hard aggregates which are not destroyed during powder compaction are observed in some of the UO 2 powder compacts. A technique to measure local density in powder compacts is developed based on counting characteristic X-ray intensity by energy dispersive X-ray analysis (EDX). The local density of the corner portion of the powder compact fabricated by double-acting dry press is higher than that of the inner portion. ((orig.))

  16. Topology optimization of adaptive fluid-actuated cellular structures with arbitrary polygonal motor cells

    International Nuclear Information System (INIS)

    Lv, Jun; Tang, Liang; Li, Wenbo; Liu, Lei; Zhang, Hongwu

    2016-01-01

    This paper mainly focuses on the fast and efficient design method for plant bioinspired fluidic cellular materials and structures composed of polygonal motor cells. Here we developed a novel structural optimization method with arbitrary polygonal coarse-grid elements based on multiscale finite element frameworks. The fluidic cellular structures are meshed with irregular polygonal coarse-grid elements according to their natural size and the shape of the imbedded motor cells. The multiscale base functions of solid displacement and hydraulic pressure are then constructed to bring the small-scale information of the irregular motor cells to the large-scale simulations on the polygonal coarse-grid elements. On this basis, a new topology optimization method based on the resulting polygonal coarse-grid elements is proposed to determine the optimal distributions or number of motor cells in the smart cellular structures. Three types of optimization problems are solved according to the usages of the fluidic cellular structures. Firstly, the proposed optimization method is utilized to minimize the system compliance of the load-bearing fluidic cellular structures. Second, the method is further extended to design biomimetic compliant actuators of the fluidic cellular materials due to the fact that non-uniform volume expansions of fluid in the cells can induce elastic action. Third, the optimization problem focuses on the weight minimization of the cellular structure under the constraints for the compliance of the whole system. Several representative examples are investigated to validate the effectiveness of the proposed polygon-based topology optimization method of the smart materials. (paper)

  17. Induced movement of the magnetic beads and DNA-based dumbbell in a micro fluidic channel

    Science.gov (United States)

    Babić, B.; Ghai, R.; Dimitrov, K.

    2007-12-01

    We have explored controlled movement of magnetic beads and a dumbbell structure composed of DNA, a magnetic and a non-magnetic bead in a micro fluidic channel. Movement of the beads and dumbbells is simulated assuming that a net force is described as a superposition between the magnetic and hydrodynamic drag forces. Trajectories of beads and dumbbells are observed with optical light microscopy. The experimentally measured data show a good agreement with the simulations. This dynamical approach offers the prospect to stretch the DNA within the dumbbell and investigate its conformational changes. Further on, we demonstrate that short sonication can reduce multiple attachments of DNA to the beads.

  18. MECHANICS OF DYNAMIC POWDER COMPACTION PROCESS

    OpenAIRE

    Nurettin YAVUZ

    1996-01-01

    In recent years, interest in dynamic compaction methods of metal powders has increased due to the need to improve compaction properties and to increase production rates of compacts. In this paper, review of dynamic and explosive compaction of metal powders are given. An attempt is made to get a better understanding of the compaction process with the mechanicis of powder compaction.

  19. Formation of coherent structures in 3D laminar mixing flows

    NARCIS (Netherlands)

    Speetjens, M.F.M.; Clercx, H.J.H.

    2009-01-01

    Mixing under laminar flow conditions is key to a wide variety of industrial systems of size extending from microns to meters. Examples range from the traditional (and still very relevant) mixing of viscous fluids via compact processing equipment down to emerging micro-fluidics applications. Profound

  20. Fluidic actuators for active flow control on airframe

    Science.gov (United States)

    Schueller, M.; Weigel, P.; Lipowski, M.; Meyer, M.; Schlösser, P.; Bauer, M.

    2016-04-01

    One objective of the European Projects AFLoNext and Clean Sky 2 is to apply Active Flow Control (AFC) on the airframe in critical aerodynamic areas such as the engine/wing junction or the outer wing region for being able to locally improve the aerodynamics in certain flight conditions. At the engine/wing junction, AFC is applied to alleviate or even eliminate flow separation at low speeds and high angle of attacks likely to be associated with the integration of underwing- mounted Ultra High Bypass Ratio (UHBR) engines and the necessary slat-cut-outs. At the outer wing region, AFC can be used to allow more aggressive future wing designs with improved performance. A relevant part of the work on AFC concepts for airframe application is the development of suitable actuators. Fluidic Actuated Flow Control (FAFC) has been introduced as a Flow Control Technology that influences the boundary layer by actively blowing air through slots or holes out of the aircraft skin. FAFC actuators can be classified by their Net Mass Flux and accordingly divided into ZNMF (Zero Net Mass Flux) and NZNMF (Non Zero Net-Mass-Flux) actuators. In the frame of both projects, both types of the FAFC actuator concepts are addressed. In this paper, the objectives of AFC on the airframe is presented and the actuators that are used within the project are discussed.

  1. Fast and automated DNA assays on a compact disc (CD)-based microfluidic platform

    Science.gov (United States)

    Jia, Guangyao

    Nucleic acid-based molecular diagnostics offers enormous potential for the rapid and accurate diagnosis of infectious diseases. However, most of the existing commercial tests are time-consuming and technically complicated, and are thus incompatible with the need for rapid identification of infectious agents. We have successfully developed a CD-based microfluidic platform for fast and automated DNA array hybridization and a low cost, disposable plastic microfluidic platform for polymerase chain reaction (PCR). These platforms have proved to be a promising approach to meet the requirements in terms of detection speed and operational convenience in diagnosis of infectious diseases. In the CD-based microfluidic platform for DNA hybridization, convection is introduced to the system to enhance mass transport so as to accelerate the hybridization rate since DNA hybridization is a diffusion limited reaction. Centrifugal force is utilized for sample propulsion and surface force is used for liquid gating. Standard microscope glass slides are used as the substrates for capture probes owing to their compatibility with commercially available instrumentation (e.g. laser scanners) for detection. Microfabricated polydimethylsiloxane (PDMS) structures are used to accomplish the fluidic functions required by the protocols for DNA hybridization. The assembly of the PDMS structure and the glass slide forms a flow-through hybridization unit that can be accommodated onto the CD platform for reagent manipulation. The above scheme has been validated with oligonucleotides as the targets using commercially available enzyme-labeled fluorescence (ELF 97) for detection of the hybridization events, and tested with amplicons of genomic staphylococcus DNA labeled with Cy dye. In both experiments, significantly higher fluorescence intensities were observed in the flow-through hybridization unit compared to the passive assays. The CD fluidic scheme was also adapted to the immobilization of

  2. A compact quadrupole ion filter for helium detection

    International Nuclear Information System (INIS)

    Pereira, E.B.

    1981-01-01

    A compact quadrupole ion filter was conceived and constructed for optimum performance at the mass four region of the mass spectra. It was primarely designed for geological applications in the measurements of helium of soil-gases. The whole ion filter structure is 15 cm long by 3.5 cm diameter, including ion source and collecting plate. The sensitivity to helium is of the order of 10 - 2 A.torr - 1 measured at a total pressure of 6x10 - 6 torr and resolution 6. The system can be easily adapted to work as a dynamic residual gas analyser for other purposes. (Author) [pt

  3. Clastic compaction unit classification based on clay content and integrated compaction recovery using well and seismic data

    Directory of Open Access Journals (Sweden)

    Zhong Hong

    2016-11-01

    Full Text Available Abstract Compaction correction is a key part of paleo-geomorphic recovery methods. Yet, the influence of lithology on the porosity evolution is not usually taken into account. Present methods merely classify the lithologies as sandstone and mudstone to undertake separate porosity-depth compaction modeling. However, using just two lithologies is an oversimplification that cannot represent the compaction history. In such schemes, the precision of the compaction recovery is inadequate. To improve the precision of compaction recovery, a depth compaction model has been proposed that involves both porosity and clay content. A clastic lithological compaction unit classification method, based on clay content, has been designed to identify lithological boundaries and establish sets of compaction units. Also, on the basis of the clastic compaction unit classification, two methods of compaction recovery that integrate well and seismic data are employed to extrapolate well-based compaction information outward along seismic lines and recover the paleo-topography of the clastic strata in the region. The examples presented here show that a better understanding of paleo-geomorphology can be gained by applying the proposed compaction recovery technology.

  4. Development task of compact reactor

    International Nuclear Information System (INIS)

    Kurushima, Morihiro

    1982-01-01

    In the Ministry of International Trade and Industry, studies proceed on the usage of compact medium and small LWRs. As such, the reactors from 100 to 200 MW may meet varieties of demands in scale and kind in view of the saving of petroleum and the economy of nuclear power. In this case, the technology of light water reactors with already established safety will be suitable for the development of compact reactors. The concept of ''nuclear power community'' using the compact reactors in local society and industrial zones was investigated. The following matters are described: need for the introduction of compact reactors, the survey on the compact reactor systems, and the present status and future problems for compact reactor usage. (J.P.N.)

  5. The precise self-assembly of individual carbon nanotubes using magnetic capturing and fluidic alignment

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Joon S; Rust, Michael J; Do, Jaephil; Ahn, Chong H [Department of Electrical and Computer Engineering, Microsystems and BioMEMS Laboratory, University of Cincinnati, Cincinnati, OH 45221 (United States); Yun, Yeo-Heung; Schulz, Mark J [Department of Mechanical Engineering, University of Cincinnati, 45221 (United States); Shanov, Vesselin, E-mail: chong.ahn@uc.ed [Department of Chemical and Materials Engineering, University of Cincinnati, 45221 (United States)

    2009-08-12

    A new method for the self-assembly of a carbon nanotube (CNT) using magnetic capturing and fluidic alignment has been developed and characterized in this work. In this new method, the residual iron (Fe) catalyst positioned at one end of the CNT was utilized as a self-assembly driver to attract and position the CNT, while the assembled CNT was aligned by the shear force induced from the fluid flow through the assembly channel. The self-assembly procedures were successfully developed and the electrical properties of the assembled multi-walled carbon nanotube (MWNT) and single-walled carbon nanotube (SWNT) were fully characterized. The new assembly method developed in this work shows its feasibility for the precise self-assembly of parallel CNTs for electronic devices and nanobiosensors.

  6. Detached-Eddy Simulation of a Fluidic Device for a Prediction of Pressure Loss Characteristics in a Low Flow Mode

    International Nuclear Information System (INIS)

    Lim, Sang Gyu; Lee, Suk Ho; Kim, Han Gon

    2010-01-01

    The Advanced Power Reactor 1400(APR1400) adopts a passive flow controller in Safety Injection Tanks (SITs) as one of Advanced Design Features (ADFs). This device, called a 'Fluidic Device (FD)', controls the flow rate of safety injection water in a passive manner. A flow control mechanism varies the flow resistance in the vortex chamber corresponding to the SIT water level hence the flow rate can be adjusted by the specific flow resistance in a specific flow regime. A full-scale test was performed and the test results met the design requirement of APR1400. To enhance the performance of the FD more effectively, a series of CFD analysis were implemented and remedy of design modification was proposed on the basis of a series of CFD analysis. The results of CFD analysis showed that total discharge time of the fluidic device is to be increased by enhancing the K-factor in consequence of changing the control nozzle angle. However, a tendency of a pressure loss was under-estimated as a limitation of turbulence models such as Reynolds Averaged Navier- Stokes (RANS) models compared to the experimental data. This paper shows that pressure loss characteristics of the FD can be predicted using a Detached-Eddy Simulation (DES) turbulence model, which can provide valuable flow characteristics far exceeding RANS simulations

  7. Compaction dynamics of crunchy granular material

    Directory of Open Access Journals (Sweden)

    Guillard François

    2017-01-01

    Full Text Available Compaction of brittle porous material leads to a wide variety of densification patterns. Static compaction bands occurs naturally in rocks or bones, and have important consequences in industry for the manufacturing of powder tablets or metallic foams for example. Recently, oscillatory compaction bands have been observed in brittle porous media like snow or cereals. We will discuss the great variety of densification patterns arising during the compaction of puffed rice, including erratic compaction at low velocity, one or several travelling compaction bands at medium velocity and homogeneous compaction at larger velocity. The conditions of existence of each pattern are studied thanks to a numerical spring lattice model undergoing breakage and is mapped to the phase diagram of the patterns based on dimensionless characteristic quantities. This also allows to rationalise the evolution of the compaction behaviour during a single test. Finally, the localisation of compaction bands is linked to the strain rate sensitivity of the material.

  8. Compaction dynamics of crunchy granular material

    Science.gov (United States)

    Guillard, François; Golshan, Pouya; Shen, Luming; Valdès, Julio R.; Einav, Itai

    2017-06-01

    Compaction of brittle porous material leads to a wide variety of densification patterns. Static compaction bands occurs naturally in rocks or bones, and have important consequences in industry for the manufacturing of powder tablets or metallic foams for example. Recently, oscillatory compaction bands have been observed in brittle porous media like snow or cereals. We will discuss the great variety of densification patterns arising during the compaction of puffed rice, including erratic compaction at low velocity, one or several travelling compaction bands at medium velocity and homogeneous compaction at larger velocity. The conditions of existence of each pattern are studied thanks to a numerical spring lattice model undergoing breakage and is mapped to the phase diagram of the patterns based on dimensionless characteristic quantities. This also allows to rationalise the evolution of the compaction behaviour during a single test. Finally, the localisation of compaction bands is linked to the strain rate sensitivity of the material.

  9. Topology optimisation of micro fluidic mixers considering fluid-structure interactions with a coupled Lattice Boltzmann algorithm

    Science.gov (United States)

    Munk, David J.; Kipouros, Timoleon; Vio, Gareth A.; Steven, Grant P.; Parks, Geoffrey T.

    2017-11-01

    Recently, the study of micro fluidic devices has gained much interest in various fields from biology to engineering. In the constant development cycle, the need to optimise the topology of the interior of these devices, where there are two or more optimality criteria, is always present. In this work, twin physical situations, whereby optimal fluid mixing in the form of vorticity maximisation is accompanied by the requirement that the casing in which the mixing takes place has the best structural performance in terms of the greatest specific stiffness, are considered. In the steady state of mixing this also means that the stresses in the casing are as uniform as possible, thus giving a desired operating life with minimum weight. The ultimate aim of this research is to couple two key disciplines, fluids and structures, into a topology optimisation framework, which shows fast convergence for multidisciplinary optimisation problems. This is achieved by developing a bi-directional evolutionary structural optimisation algorithm that is directly coupled to the Lattice Boltzmann method, used for simulating the flow in the micro fluidic device, for the objectives of minimum compliance and maximum vorticity. The needs for the exploration of larger design spaces and to produce innovative designs make meta-heuristic algorithms, such as genetic algorithms, particle swarms and Tabu Searches, less efficient for this task. The multidisciplinary topology optimisation framework presented in this article is shown to increase the stiffness of the structure from the datum case and produce physically acceptable designs. Furthermore, the topology optimisation method outperforms a Tabu Search algorithm in designing the baffle to maximise the mixing of the two fluids.

  10. Summary of Self-compacting Concrete Workability

    OpenAIRE

    GUO Gui-xiang; Duan Hong-jun

    2015-01-01

    On the basis of a large number of domestic and foreign literature, situation and development of self-compacting concrete is introduced. Summary of the compacting theory of self-compacting concrete. And some of the factors affecting the workability of self-compacting concrete were discussed and summarized to a certain extent. Aims to further promote the application and research of self-compacting concrete

  11. Model Compaction Equation

    African Journals Online (AJOL)

    The currently proposed model compaction equation was derived from data sourced from the. Niger Delta and it relates porosity to depth for sandstones under hydrostatic pressure condition. The equation is useful in predicting porosity and compaction trend in hydrostatic sands of the. Niger Delta. GEOLOGICAL SETTING OF ...

  12. An experimental study of the flow characteristics of fluidic device in a passive safety injection tank

    International Nuclear Information System (INIS)

    Cho, Seok; Song, Chul Hwa; Won, Suon Yeon; Min, Kyong Ho; Chung, Moon Ki

    1998-01-01

    It is considered to adopt passive safety injection tank (SIT) as a enhanced safety feature in KNGR. Passive SIT employs a vortex chamber as a fluidic device, which control injection flow rate passively by the variation of flow resistance produced by vortex intensity within the vortex chamber. To investigate the flow characteristics of the vortex chamber many tests have been carried out by using small-scale test facility. In this report the effects of geometric parameters of vortex chamber on discharge flow characteristics and the velocity measurement result of flow field, measured by PIV, are presented and discussed. (author). 25 refs., 11 tabs., 31 figs

  13. Pharmaceutical powder compaction technology

    National Research Council Canada - National Science Library

    Çelik, Metin

    2011-01-01

    ... through the compaction formulation process and application. Compaction of powder constituents both active ingredient and excipients is examined to ensure consistent and reproducible disintegration and dispersion profiles...

  14. Rapid Vortex Fluidics: Continuous Flow Synthesis of Amides and Local Anesthetic Lidocaine.

    Science.gov (United States)

    Britton, Joshua; Chalker, Justin M; Raston, Colin L

    2015-07-20

    Thin film flow chemistry using a vortex fluidic device (VFD) is effective in the scalable acylation of amines under shear, with the yields of the amides dramatically enhanced relative to traditional batch techniques. The optimized monophasic flow conditions are effective in ≤80 seconds at room temperature, enabling access to structurally diverse amides, functionalized amino acids and substituted ureas on multigram scales. Amide synthesis under flow was also extended to a total synthesis of local anesthetic lidocaine, with sequential reactions carried out in two serially linked VFD units. The synthesis could also be executed in a single VFD, in which the tandem reactions involve reagent delivery at different positions along the rapidly rotating tube with in situ solvent replacement, as a molecular assembly line process. This further highlights the versatility of the VFD in organic synthesis, as does the finding of a remarkably efficient debenzylation of p-methoxybenzyl amines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Nested, fixed-depth fluidic sampler supplementary testing - AEAT doc 2926-2-002

    International Nuclear Information System (INIS)

    REICH, F.R.

    1999-01-01

    This report summarizes the results of cold testing, completed by AEAT, as part of the proof-of-principle testing for a proposed nested, fixed-depth fluidic sampling system. This sampling system will provide waste samples from the PHMC feed tank to support the privatization contract with BNFL. Proof-of-principle tests were completed with 2 wt% and 10 wt% sand/water and 25 wt% kaolin clay/water simulants with a test setup that spanned the 24 ft to 57 ft height required in the feed tank. The tests demonstrated that the system could pump and sample waste materials with low and with high solids content. In addition, the tests demonstrated a need for some design upgrades to the sampling system, as there was material loss when the sample bottle was removed from the sampling needle. These were complementary tests, completed as part of an EM-50 Tank Focus Area (TFA) to develop a sampling system for validating LAW and HLW waste batches for the Privatization Contract

  16. Nested, fixed-depth fluidic sampler supplementary testing - AEAT doc 2926-2-002

    Energy Technology Data Exchange (ETDEWEB)

    REICH, F.R.

    1999-03-11

    This report summarizes the results of cold testing, completed by AEAT, as part of the proof-of-principle testing for a proposed nested, fixed-depth fluidic sampling system. This sampling system will provide waste samples from the PHMC feed tank to support the privatization contract with BNFL. Proof-of-principle tests were completed with 2 wt% and 10 wt% sand/water and 25 wt% kaolin clay/water simulants with a test setup that spanned the 24 ft to 57 ft height required in the feed tank. The tests demonstrated that the system could pump and sample waste materials with low and with high solids content. In addition, the tests demonstrated a need for some design upgrades to the sampling system, as there was material loss when the sample bottle was removed from the sampling needle. These were complementary tests, completed as part of an EM-50 Tank Focus Area (TFA) to develop a sampling system for validating LAW and HLW waste batches for the Privatization Contract.

  17. Preparation and Testing of Impedance-based Fluidic Biochips with RTgill-W1 Cells for Rapid Evaluation of Drinking Water Samples for Toxicity

    Science.gov (United States)

    2016-03-07

    109 | e53555 | Page 1 of 8 Video Article Preparation and Testing of Impedance-based Fluidic Biochips with RTgill-W1 Cells for Rapid Evaluation of...www.jove.com/ video /53555 DOI: doi:10.3791/53555 Keywords: Environmental Sciences, Issue 109, Fish cells, impedance, sensors, biochip, water toxicity...sensitivity to cholinesterase-inhibiting pesticides . Applications for this toxicity detector are for rapid field-portable testing of drinking water

  18. Anisotropic Material Behavior of Uni-axially Compacted Graphite Matrix for HTGR Fuel Compact Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Woo; Yeo, Seunghwan; Yoon, Ji-Hae; Cho, Moon Sung [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In developing the fuel compact fabrication technology, and fuel graphite material to meet the required material properties, it is essential to investigate the relationship among the process parameters of the matrix graphite powder preparation, the fabrication parameters of fuel element green compact and the heat treatments conditions and the material properties of fuel element. It was observed, during this development, that the pressing technique employed for the compaction fabrication prior to the two successive heat treatments (carbonization and final high temperature heat treatment) was of extreme importance in determining the material properties of the final compact product. In this work, the material behavior of the uni-axially pressed graphite matrix during the carbonization and final heat treatment are evaluated and summarized along the different directions, viz., perpendicular and parallel directions to pressing direction. In this work, the dimensional variations and variations in thermal expansion, thermal conductivity and Vickers hardness of the graphite matrix compact samples in the axial and radial directions prepared by uni-axial pressing are evaluated, and compared with those of samples prepared by cold isostatic pressing with the available data. From this work, the followings are observed. 1) Dimensional changes of matrix graphite green compacts during carbonization show that the difference in radial and axial variations shows a large anisotropic behavior in shrinkage. The radial variation is very small while the axial variation is large. During carbonization, the stresses caused by the force would be released in to the axial direction together with the phenolic resin vapor. 2) Dimensional variation of compact samples in perpendicular and parallel directions during carbonization shows a large difference in behavior when compact sample is prepared by uni-axial pressing. However, when compact sample is prepared by cold isostatic pressing, there is

  19. Anisotropic Material Behavior of Uni-axially Compacted Graphite Matrix for HTGR Fuel Compact Fabrication

    International Nuclear Information System (INIS)

    Lee, Young-Woo; Yeo, Seunghwan; Yoon, Ji-Hae; Cho, Moon Sung

    2016-01-01

    In developing the fuel compact fabrication technology, and fuel graphite material to meet the required material properties, it is essential to investigate the relationship among the process parameters of the matrix graphite powder preparation, the fabrication parameters of fuel element green compact and the heat treatments conditions and the material properties of fuel element. It was observed, during this development, that the pressing technique employed for the compaction fabrication prior to the two successive heat treatments (carbonization and final high temperature heat treatment) was of extreme importance in determining the material properties of the final compact product. In this work, the material behavior of the uni-axially pressed graphite matrix during the carbonization and final heat treatment are evaluated and summarized along the different directions, viz., perpendicular and parallel directions to pressing direction. In this work, the dimensional variations and variations in thermal expansion, thermal conductivity and Vickers hardness of the graphite matrix compact samples in the axial and radial directions prepared by uni-axial pressing are evaluated, and compared with those of samples prepared by cold isostatic pressing with the available data. From this work, the followings are observed. 1) Dimensional changes of matrix graphite green compacts during carbonization show that the difference in radial and axial variations shows a large anisotropic behavior in shrinkage. The radial variation is very small while the axial variation is large. During carbonization, the stresses caused by the force would be released in to the axial direction together with the phenolic resin vapor. 2) Dimensional variation of compact samples in perpendicular and parallel directions during carbonization shows a large difference in behavior when compact sample is prepared by uni-axial pressing. However, when compact sample is prepared by cold isostatic pressing, there is

  20. Weakly compact operators and interpolation

    OpenAIRE

    Maligranda, Lech

    1992-01-01

    The class of weakly compact operators is, as well as the class of compact operators, a fundamental operator ideal. They were investigated strongly in the last twenty years. In this survey, we have collected and ordered some of this (partly very new) knowledge. We have also included some comments, remarks and examples. The class of weakly compact operators is, as well as the class of compact operators, a fundamental operator ideal. They were investigated strongly in the last twenty years. I...

  1. A High-Voltage Integrated Circuit Engine for a Dielectrophoresis-based Programmable Micro-Fluidic Processor

    Science.gov (United States)

    Current, K. Wayne; Yuk, Kelvin; McConaghy, Charles; Gascoyne, Peter R. C.; Schwartz, Jon A.; Vykoukal, Jody V.; Andrews, Craig

    2010-01-01

    A high-voltage (HV) integrated circuit has been demonstrated to transport droplets on programmable paths across its coated surface. This chip is the engine for a dielectrophoresis (DEP)-based micro-fluidic lab-on-a-chip system. This chip creates DEP forces that move and help inject droplets. Electrode excitation voltage and frequency are variable. With the electrodes driven with a 100V peak-to-peak periodic waveform, the maximum high-voltage electrode waveform frequency is about 200Hz. Data communication rate is variable up to 250kHz. This demonstration chip has a 32×32 array of nominally 100V electrode drivers. It is fabricated in a 130V SOI CMOS fabrication technology, dissipates a maximum of 1.87W, and is about 10.4 mm × 8.2 mm. PMID:23989241

  2. The Entropy of Co-Compact Open Covers

    Directory of Open Access Journals (Sweden)

    Steven Bourquin

    2013-06-01

    Full Text Available Co-compact entropy is introduced as an invariant of topological conjugation for perfect mappings defined on any Hausdorff space (compactness and metrizability are not necessarily required. This is achieved through the consideration of co-compact covers of the space. The advantages of co-compact entropy include: (1 it does not require the space to be compact and, thus, generalizes Adler, Konheim and McAndrew’s topological entropy of continuous mappings on compact dynamical systems; and (2 it is an invariant of topological conjugation, compared to Bowen’s entropy, which is metric-dependent. Other properties of co-compact entropy are investigated, e.g., the co-compact entropy of a subsystem does not exceed that of the whole system. For the linear system, (R; f, defined by f(x = 2x, the co-compact entropy is zero, while Bowen’s entropy for this system is at least log 2. More generally, it is found that co-compact entropy is a lower bound of Bowen’s entropies, and the proof of this result also generates the Lebesgue Covering Theorem to co-compact open covers of non-compact metric spaces.

  3. A supermassive black hole in an ultra-compact dwarf galaxy.

    Science.gov (United States)

    Seth, Anil C; van den Bosch, Remco; Mieske, Steffen; Baumgardt, Holger; den Brok, Mark; Strader, Jay; Neumayer, Nadine; Chilingarian, Igor; Hilker, Michael; McDermid, Richard; Spitler, Lee; Brodie, Jean; Frank, Matthias J; Walsh, Jonelle L

    2014-09-18

    Ultra-compact dwarf galaxies are among the densest stellar systems in the Universe. These systems have masses of up to 2 × 10(8) solar masses, but half-light radii of just 3-50 parsecs. Dynamical mass estimates show that many such dwarfs are more massive than expected from their luminosity. It remains unclear whether these high dynamical mass estimates arise because of the presence of supermassive black holes or result from a non-standard stellar initial mass function that causes the average stellar mass to be higher than expected. Here we report adaptive optics kinematic data of the ultra-compact dwarf galaxy M60-UCD1 that show a central velocity dispersion peak exceeding 100 kilometres per second and modest rotation. Dynamical modelling of these data reveals the presence of a supermassive black hole with a mass of 2.1 × 10(7) solar masses. This is 15 per cent of the object's total mass. The high black hole mass and mass fraction suggest that M60-UCD1 is the stripped nucleus of a galaxy. Our analysis also shows that M60-UCD1's stellar mass is consistent with its luminosity, implying a large population of previously unrecognized supermassive black holes in other ultra-compact dwarf galaxies.

  4. Integrated optics nano-opto-fluidic sensor based on whispering gallery modes for picoliter volume refractometry

    International Nuclear Information System (INIS)

    Gilardi, Giovanni; Beccherelli, Romeo

    2013-01-01

    We propose and numerically investigate an integrated optics refractometric nano-opto-fluidic sensor based on whispering gallery modes in sapphire microspheres. A measurand fluid is injected in a micromachined reservoir defined in between the microsphere and an optical waveguide. The wavelength shift due to changes in the refractive index of the measurand fluid are studied for a set of different configurations by the finite element method and a high sensitivity versus fluid volume is found. The proposed device can be tailored to work with a minimum fluid volume of 1 pl and a sensitivity up of 2000 nm/(RIU·nl). We introduce a figure of merit which quantifies the amplifying effect on the sensitivity of high quality factor resonators and allows us to compare different devices. (paper)

  5. A bladder-free, non-fluidic, conductive McKibben artificial muscle operated electro-thermally

    Science.gov (United States)

    Sangian, Danial; Foroughi, Javad; Farajikhah, Syamak; Naficy, Sina; Spinks, Geoffrey M.

    2017-01-01

    Fluidic McKibben artificial muscles that operate pneumatically or hydraulically provide excellent performance, but require bulky pumps/compressors, valves and connecting lines. Use of a pressure generating material, such as thermally expanding paraffin wax, can eliminate the need for these pumps and associated infrastructure. Here we further develop this concept by introducing the first bladderless McKibben muscle wherein molten paraffin is contained by surface tension within a tailored braid. Incorporation of electrically conductive wires in the braid allows for convenient Joule heating of the paraffin. The muscle is light (0.14 g) with a diameter of 1.4 mm and is capable of generating a tensile stress of 50 kPa (0.039 N) in 20 s. The maximum contraction strain of 10% (7.6 kPa given load) was achieved in 60 s with an applied electrical power of 0.35 W.

  6. Fluidic delivery of homogeneous solutions through carbon tube bundles

    International Nuclear Information System (INIS)

    Srikar, R; Yarin, A L; Megaridis, C M

    2009-01-01

    A wide array of technological applications requires localized high-rate delivery of dissolved compounds (in particular, biological ones), which can be achieved by forcing the solutions or suspensions of such compounds through nano or microtubes and their bundled assemblies. Using a water-soluble compound, the fluorescent dye Rhodamine 610 chloride, frequently used as a model drug release compound, it is shown that deposit buildup on the inner walls of the delivery channels and its adverse consequences pose a severe challenge to implementing pressure-driven long-term fluidic delivery through nano and microcapillaries, even in the case of such homogeneous solutions. Pressure-driven delivery (3-6 bar) of homogeneous dye solutions through macroscopically-long (∼1 cm) carbon nano and microtubes with inner diameters in the range 100 nm-1 μm and their bundled parallel assemblies is studied experimentally and theoretically. It is shown that the flow delivery gradually shifts from fast convection-dominated (unobstructed) to slow jammed convection, and ultimately to diffusion-limited transport through a porous deposit. The jamming/clogging phenomena appear to be rather generic: they were observed in a wide concentration range for two fluorescent dyes in carbon nano and microtubes, as well as in comparable transparent glass microcapillaries. The aim of the present work is to study the physics of jamming, rather than the chemical reasons for the affinity of dye molecules to the tube walls.

  7. Characterisation of adaptive fluidic silicone-membrane lenses

    CSIR Research Space (South Africa)

    Schneider, F

    2010-03-01

    Full Text Available , as can be seen in fig- ure 12, due to the shift of the membrane inflection point. Figure 12: Simulated membrane shapes for a lens volume of 1 たl at divorce homogeneous membrane thicknesses. The measurement of the system behaviour is realized...- branes are reasonable for a large focal length range, a constant optical lens quality and a short response time. On the other hand, the application of lenses with shaped membranes is reasonable for a higher optical lens quality at a smaller focal...

  8. Characterisation of adaptive fluidic silicone membrane lenses

    CSIR Research Space (South Africa)

    Schneider, F

    2009-09-01

    Full Text Available membrane shapes for a lens volume of 1 µl at divorce homogeneous membrane thicknesses. The measurement of the system behaviour is realized by the laser-profilometer in the dynamic mode. For the lens with a homogeneous membrane the membrane surface..., inhomogeneous membranes is application specific. On the one hand, systems with planar mem- branes are reasonable for a large focal length range, a constant optical lens quality and a short response time. On the other hand, the application of lenses...

  9. EAF Slag Aggregate in Roller-Compacted Concrete Pavement: Effects of Delay in Compaction

    Directory of Open Access Journals (Sweden)

    My Ngoc-Tra Lam

    2018-04-01

    Full Text Available This study investigates the effect of delay in compaction on the optimum moisture content and the mechanical propertie s (i.e., compressive strength, ultrasonic pulse velocity, splitting tensile strength, and modulus of elasticity of roller-compacted concrete pavement (RCCP made of electric arc furnace (EAF slag aggregate. EAF slag with size in the range of 4.75–19 mm was used to replace natural coarse aggregate in RCCP mixtures. A new mixing method was proposed for RCCP using EAF slag aggregate. The optimum moisture content of RCCP mixtures in this study was determined by a soil compaction method. The Proctor test assessed the optimum moisture content of mixtures at various time after mixing completion (i.e., 0, 15, 30, 60, and 90 min. Then, the effect of delay in compaction on the mechanical properties of RCCP mixtures at 28 days of age containing EAF slag aggregate was studied. The results presented that the negative effect on water content in the mixture caused by the higher water absorption characteristic of EAF slag was mitigated by the new mixing method. The optimum water content and maximum dry density of RCCP experience almost no effect from the delay in compaction. The compressive strength and splitting tensile strength of RCCP using EAF slag aggregate fulfilled the strength requirements for pavement with 90 min of delay in compaction.

  10. Engineering task plan for development, fabrication, and deployment of nested, fixed depth fluidic sampling and at-tank analysis systems

    International Nuclear Information System (INIS)

    REICH, F.R.

    1999-01-01

    An engineering task plan was developed that presents the resources, responsibilities, and schedules for the development, test, and deployment of the nested, fixed-depth fluidic sampling and at-tank analysis system. The sampling system, deployed in the privatization contract double-shell tank feed tank, will provide waste samples for assuring the readiness of the tank for shipment to the privatization contractor for vitrification. The at-tank analysis system will provide ''real-time'' assessments of the sampled wastes' chemical and physical properties. These systems support the Hanford Phase 1B Privatization Contract

  11. The Rapid Formation of Localized Compaction Bands Under Hydrostatic Load Leading to Pore-pressure Transients in Compacting Rocks

    Science.gov (United States)

    Faulkner, D.; Leclere, H.; Bedford, J. D.; Behnsen, J.; Wheeler, J.

    2017-12-01

    Compaction of porous rocks can occur uniformly or within localized deformation bands. The formation of compaction bands and their effects on deformation behaviour are poorly understood. Porosity may be primary and compaction can occur with burial, or it can be produced by metamorphic reactions with a solid volume reduction, that can then undergo collapse. We report results from hydrostatic compaction experiments on porous bassanite (CaSO4.0.5H2O) aggregates. Gypsum (CaSO4.2H2O) is first dehydrated under low effective pressure, 4 MPa, to produce a bassanite aggregate with a porosity of 27%. Compaction is induced by increasing confining pressure at rates from 0.001 MPa/s to 0.02 MPa/s while the sample is maintained at a temperature of 115°C. At slow compaction rates, porosity collapse proceeds smoothly. At higher compaction rates, sudden increases in the pore-fluid pressure occur with a magnitude of 5 MPa. Microstructural investigations using X-ray microtomography and SEM observations show that randomly oriented localized compaction features occur in all samples, where the bulk porosity of 18% outside the band is reduced to 5% inside the band. Previous work on deformation bands has suggested that localized compactive features only form under an elevated differential stress and not under a hydrostatic stress state. The magnitude of the pore-pressure pulses can be explained by the formation of compaction bands. The results indicate that the compaction bands can form by rapid (unstable) propagation across the sample above a critical strain rate, or quasi-statically at low compaction rates without pore-fluid pressure bursts. The absence of pore-fluid pressure bursts at slow compaction rates can be explained by viscous deformation of the bassanite aggregate around the tip of a propagating compaction band, relaxing stress, and promoting stable propagation. Conversely, at higher compaction rates, viscous deformation cannot relax the stress sufficiently and unstable

  12. Diverse Formation Mechanisms for Compact Galaxies

    Science.gov (United States)

    Kim, Jin-Ah; Paudel, Sanjaya; Yoon, Suk-Jin

    2018-01-01

    Compact, quenched galaxies such as M32 are unusual ones located off the mass - size scaling relation defined by normal galaxies. Still, their formation mechanisms remain unsolved. Here we investigate the evolution of ~100 compact, quenched galaxies at z = 0 identified in the Illustris cosmological simulation. We identify three ways for a galaxy to become a compact one and, often, multiple mechanisms operate in a combined manner. First, stripping is responsible for making about a third of compact galaxies. Stripping removes stars from galaxies, usually while keeping their sizes intact. About one third are galaxies that cease their growth early on after entering into more massive, gigantic halos. Finally, about half of compact galaxies, ~ 35 % of which turn out to undergo stripping, experience the compaction due to the highly centrally concentrated star formation. We discuss the evolutionary path of compact galaxies on the mass – size plane for each mechanism in a broader context of dwarf galaxy formation and evolution.

  13. Investigation of the dye concentration influence on the lasing wavelength and threshold for a micro-fluidic dye laser

    DEFF Research Database (Denmark)

    Helbo, Bjarne; Kragh, Søren; Kjeldsen, B.G.

    2003-01-01

    We investigate a micro-fluidic dye laser, which can be integrated with polymer-based lab-on-a-chip microsystems without further processing steps. A simple rate-equation model is used to predict the lasing threshold. The laser device is characterised using the laser dye Rhodamine 6G dissolved...... in ethanol, and the influence of dye concentration on the lasing wavelength and threshold is investigated. The experiments confirm the predictions of the rate-equation model, that lasing can be achieved in the 10 mum long laser cavity with moderate concentrations of Rhodamine 6G in ethanol, starting from 5 x...

  14. Compact Process Development at Babcock & Wilcox

    Energy Technology Data Exchange (ETDEWEB)

    Eric Shaber; Jeffrey Phillips

    2012-03-01

    Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of compaction trials have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel at packing fractions exceeding 46% by volume. Results from these trials are included. The scale-up effort is nearing completion with the process installed and operable using nuclear fuel materials. Final process testing is in progress to certify the process for manufacture of qualification test fuel compacts in 2012.

  15. Compact magnetic confinement fusion: Spherical torus and compact torus

    Directory of Open Access Journals (Sweden)

    Zhe Gao

    2016-05-01

    Full Text Available The spherical torus (ST and compact torus (CT are two kinds of alternative magnetic confinement fusion concepts with compact geometry. The ST is actually a sub-category of tokamak with a low aspect ratio; while the CT is a toroidal magnetic configuration with a simply-connected geometry including spheromak and field reversed pinch. The ST and CT have potential advantages for ultimate fusion reactor; while at present they can also provide unique fusion science and technology contributions for mainstream fusion research. However, some critical scientific and technology issues should be extensively investigated.

  16. Compact stars

    Science.gov (United States)

    Estevez-Delgado, Gabino; Estevez-Delgado, Joaquin

    2018-05-01

    An analysis and construction is presented for a stellar model characterized by two parameters (w, n) associated with the compactness ratio and anisotropy, respectively. The reliability range for the parameter w ≤ 1.97981225149 corresponds with a compactness ratio u ≤ 0.2644959374, the density and pressures are positive, regular and monotonic decrescent functions, the radial and tangential speed of sound are lower than the light speed, moreover, than the plausible stability. The behavior of the speeds of sound are determinate for the anisotropy parameter n, admitting a subinterval where the speeds are monotonic crescent functions and other where we have monotonic decrescent functions for the same speeds, both cases describing a compact object that is also potentially stable. In the bigger value for the observational mass M = 2.05 M⊙ and radii R = 12.957 Km for the star PSR J0348+0432, the model indicates that the maximum central density ρc = 1.283820319 × 1018 Kg/m3 corresponds to the maximum value of the anisotropy parameter and the radial and tangential speed of the sound are monotonic decrescent functions.

  17. Roller-compacted concrete pavements.

    Science.gov (United States)

    2010-09-01

    Roller-compacted concrete (RCC) gets its name from the heavy vibratory steel drum and rubber-tired rollers used to help compact it into its final form. RCC has similar strength properties and consists of the same basic ingredients as conventional con...

  18. A Comment on Language Is a Complex Adaptive System:Position Paper

    Institute of Scientific and Technical Information of China (English)

    单妍

    2014-01-01

    Language not only functions as a communication tool, it has fundamental functions. People ’s social interaction and their past experience can affect people’s choice of language, as language is a complex, adaptive system. The paper tries to com-ment on“A comment on Language Is a Complex Adaptive System: Position Paper”from several aspects to conclude that Lan-guage Is a Complex Adaptive System:Position Paper is a comprehensive, creative and influential academic paper which is charac-teristic of high originality, well-compact organization, detailed literature review.

  19. Adaptive Lens Inspired by Bio-Visual Systems

    National Research Council Canada - National Science Library

    Lo, Yu-Hwa

    2004-01-01

    ...: (a) We have identified and demonstrated the merits of PDMS elastomer for lens membranes. The PDMS-based fluidic lens process has been proven to be simple, controllable, and scalable to form lenses from 10 urn to several centimeters in diameter. (b...

  20. Bio-inspired online variable recruitment control of fluidic artificial muscles

    Science.gov (United States)

    Jenkins, Tyler E.; Chapman, Edward M.; Bryant, Matthew

    2016-12-01

    This paper details the creation of a hybrid variable recruitment control scheme for fluidic artificial muscle (FAM) actuators with an emphasis on maximizing system efficiency and switching control performance. Variable recruitment is the process of altering a system’s active number of actuators, allowing operation in distinct force regimes. Previously, FAM variable recruitment was only quantified with offline, manual valve switching; this study addresses the creation and characterization of novel, on-line FAM switching control algorithms. The bio-inspired algorithms are implemented in conjunction with a PID and model-based controller, and applied to a simulated plant model. Variable recruitment transition effects and chatter rejection are explored via a sensitivity analysis, allowing a system designer to weigh tradeoffs in actuator modeling, algorithm choice, and necessary hardware. Variable recruitment is further developed through simulation of a robotic arm tracking a variety of spline position inputs, requiring several levels of actuator recruitment. Switching controller performance is quantified and compared with baseline systems lacking variable recruitment. The work extends current variable recruitment knowledge by creating novel online variable recruitment control schemes, and exploring how online actuator recruitment affects system efficiency and control performance. Key topics associated with implementing a variable recruitment scheme, including the effects of modeling inaccuracies, hardware considerations, and switching transition concerns are also addressed.

  1. The Lω-Compactness in Lω-Spaces

    Directory of Open Access Journals (Sweden)

    Shui-Li Chen

    2013-01-01

    Full Text Available The concepts of αω-remote neighborhood family, γω-cover, and Lω-compactness are defined in Lω-spaces. The characterizations of Lω-compactness are systematically discussed. Some important properties of Lω-compactness such as ω-closed heredity, arbitrarily multiplicative property, and preserving invariance under ω-continuous mappings are obtained. Finally, the Alexander ω-subbase lemma and the Tychonoff product theorem with respect to Lω-compactness are given.

  2. UV written compact broadband optical couplers

    DEFF Research Database (Denmark)

    Olivero, Massimo; Svalgaard, Mikael

    2005-01-01

    In this paper the first demonstration of compact asymmetric directional couplers made by UV writing is presented. The combined performance in terms bandwidth, loss and compactness exceeds that reported using other, more elaborate fabrication techniques.......In this paper the first demonstration of compact asymmetric directional couplers made by UV writing is presented. The combined performance in terms bandwidth, loss and compactness exceeds that reported using other, more elaborate fabrication techniques....

  3. Prediction of reservoir compaction and surface subsidence

    Energy Technology Data Exchange (ETDEWEB)

    De Waal, J.A.; Smits, R.M.M.

    1988-06-01

    A new loading-rate-dependent compaction model for unconsolidated clastic reservoirs is presented that considerably improves the accuracy of predicting reservoir rock compaction and surface subsidence resulting from pressure depletion in oil and gas fields. The model has been developed on the basis of extensive laboratory studies and can be derived from a theory relating compaction to time-dependent intergranular friction. The procedure for calculating reservoir compaction from laboratory measurements with the new model is outlined. Both field and laboratory compaction behaviors appear to be described by one single normalized, nonlinear compaction curve. With the new model, the large discrepancies usually observed between predictions based on linear compaction models and actual (nonlinear) field behavior can be explained.

  4. Robust and Optimal Control of Magnetic Microparticles inside Fluidic Channels with Time-Varying Flow Rates

    Directory of Open Access Journals (Sweden)

    Islam S.M. Khalil

    2016-06-01

    Full Text Available Targeted therapy using magnetic microparticles and nanoparticles has the potential to mitigate the negative side-effects associated with conventional medical treatment. Major technological challenges still need to be addressed in order to translate these particles into in vivo applications. For example, magnetic particles need to be navigated controllably in vessels against flowing streams of body fluid. This paper describes the motion control of paramagnetic microparticles in the flowing streams of fluidic channels with time-varying flow rates (maximum flow is 35 ml.hr−1. This control is designed using a magnetic-based proportional-derivative (PD control system to compensate for the time-varying flow inside the channels (with width and depth of 2 mm and 1.5 mm, respectively. First, we achieve point-to-point motion control against and along flow rates of 4 ml.hr−1, 6 ml.hr−1, 17 ml.hr−1, and 35 ml.hr−1. The average speeds of single microparticle (with average diameter of 100 μm against flow rates of 6 ml.hr−1 and 30 ml.hr−1 are calculated to be 45 μm.s−1 and 15 μm.s−1, respectively. Second, we implement PD control with disturbance estimation and compensation. This control decreases the steady-state error by 50%, 70%, 73%, and 78% at flow rates of 4 ml.hr−1, 6 ml.hr−1, 17 ml.hr−1, and 35 ml.hr−1, respectively. Finally, we consider the problem of finding the optimal path (minimal kinetic energy between two points using calculus of variation, against the mentioned flow rates. Not only do we find that an optimal path between two collinear points with the direction of maximum flow (middle of the fluidic channel decreases the rise time of the microparticles, but we also decrease the input current that is supplied to the electromagnetic coils by minimizing the kinetic energy of the microparticles, compared to a PD control with disturbance compensation.

  5. Molecular Weiss domain polarization in piezoceramics to diaphragm, cantilever and channel construction in low-temperature-cofired ceramics for micro-fluidic applications

    International Nuclear Information System (INIS)

    Khanna, P.K.; Ahmad, S.; Grimme, R.

    2005-01-01

    This paper presents the efforts made to study the process of comminution to Weiss domain polarization and phase transition in piezoceramics together with the versatility of low-temperature-cofired ceramics-based devices and components for their ready adoption for typical applications in the area of micro-fluidics. A conceptual micro-fluidic module has been presented and few unit entities necessary for its realization have been described. The purpose of these entities is to position the sensors and actuators by using piezoelectric materials. Investigations are performed to make useful constructions like diaphragms and cantilevers for laying the sensing elements, cavities for burying the electronic chip devices, and channels for fluid transportation. In order to realize these constructions, the basic step involves machining of circular, straight line, rectangular and square-shaped structure in the green ceramic tapes followed by lamination and firing with post-machining in some cases. The diaphragm and cavity includes one or more un-machined layer stacked together with several machined layers with rectangular or square slits. The cantilever is an extension of the diaphragm creation process with inclusion of a post-machining step. The channel essentially consists of a machined green ceramic layer sandwiched between an un-machined and a partially machined layer. The fabrication for all the above constructions has been exemplified and the details have been discussed

  6. Compaction properties of isomalt

    NARCIS (Netherlands)

    Bolhuis, Gerad K.; Engelhart, Jeffrey J. P.; Eissens, Anko C.

    Although other polyols have been described extensively as filler-binders in direct compaction of tablets, the polyol isomalt is rather unknown as pharmaceutical excipient, in spite of its description in all the main pharmacopoeias. In this paper the compaction properties of different types of

  7. LES-based characterization of a suction and oscillatory blowing fluidic actuator

    Science.gov (United States)

    Kim, Jeonglae; Moin, Parviz

    2015-11-01

    Recently, a novel fluidic actuator using steady suction and oscillatory blowing was developed for control of turbulent flows. The suction and oscillatory blowing (SaOB) actuator combines steady suction and pulsed oscillatory blowing into a single device. The actuation is based upon a self-sustained mechanism of confined jets and does not require any moving parts. The control output is determined by a pressure source and the geometric details, and no additional input is needed. While its basic mechanisms have been investigated to some extent, detailed characteristics of internal turbulent flows are not well understood. In this study, internal flows of the SaOB actuator are simulated using large-eddy simulation (LES). Flow characteristics within the actuator are described in detail for a better understanding of the physical mechanisms and improving the actuator design. LES predicts the self-sustained oscillations of the turbulent jet. Switching frequency, maximum velocity at the actuator outlets, and wall pressure distribution are in good agreement with the experimental measurements. The computational results are used to develop simplified boundary conditions for numerical experiments of active flow control. Supported by the Boeing company.

  8. Engineering fluidic delays in paper-based devices using laser direct-writing.

    Science.gov (United States)

    He, P J W; Katis, I N; Eason, R W; Sones, C L

    2015-10-21

    We report the use of a new laser-based direct-write technique that allows programmable and timed fluid delivery in channels within a paper substrate which enables implementation of multi-step analytical assays. The technique is based on laser-induced photo-polymerisation, and through adjustment of the laser writing parameters such as the laser power and scan speed we can control the depth and/or the porosity of hydrophobic barriers which, when fabricated in the fluid path, produce controllable fluid delay. We have patterned these flow delaying barriers at pre-defined locations in the fluidic channels using either a continuous wave laser at 405 nm, or a pulsed laser operating at 266 nm. Using this delay patterning protocol we generated flow delays spanning from a few minutes to over half an hour. Since the channels and flow delay barriers can be written via a common laser-writing process, this is a distinct improvement over other methods that require specialist operating environments, or custom-designed equipment. This technique can therefore be used for rapid fabrication of paper-based microfluidic devices that can perform single or multistep analytical assays.

  9. Phased array compaction cell for measurement of the transversely isotropic elastic properties of compacting sediments

    Energy Technology Data Exchange (ETDEWEB)

    Nihei, K.T.; Nakagawa, S.; Reverdy, F.; Meyer, L.R.; Duranti, L.; Ball, G.

    2010-12-15

    Sediments undergoing compaction typically exhibit transversely isotropic (TI) elastic properties. We present a new experimental apparatus, the phased array compaction cell, for measuring the TI elastic properties of clay-rich sediments during compaction. This apparatus uses matched sets of P- and S-wave ultrasonic transducers located along the sides of the sample and an ultrasonic P-wave phased array source, together with a miniature P-wave receiver on the top and bottom ends of the sample. The phased array measurements are used to form plane P-waves that provide estimates of the phase velocities over a range of angles. From these measurements, the five TI elastic constants can be recovered as the sediment is compacted, without the need for sample unloading, recoring, or reorienting. This paper provides descriptions of the apparatus, the data processing, and an application demonstrating recovery of the evolving TI properties of a compacting marine sediment sample.

  10. Large-scale dynamic compaction of natural salt

    International Nuclear Information System (INIS)

    Hansen, F.D.; Ahrens, E.H.

    1996-01-01

    A large-scale dynamic compaction demonstration of natural salt was successfully completed. About 40 m 3 of salt were compacted in three, 2-m lifts by dropping a 9,000-kg weight from a height of 15 m in a systematic pattern to achieve desired compaction energy. To enhance compaction, 1 wt% water was added to the relatively dry mine-run salt. The average compacted mass fractional density was 0.90 of natural intact salt, and in situ nitrogen permeabilities averaged 9X10 -14 m 2 . This established viability of dynamic compacting for placing salt shaft seal components. The demonstration also provided compacted salt parameters needed for shaft seal system design and performance assessments of the Waste Isolation Pilot Plant

  11. Mean electrostatic and Poisson-Boltzmann models for multicomponent transport through compacted clay

    International Nuclear Information System (INIS)

    Steefel, C.I.; Galindez, J.M.

    2012-01-01

    -specific diffusion coefficients. Mass is automatically partitioned between the electrical double layer porosity and the bulk water depending on the magnitude of the mineral surface charge to be balanced. The Poisson-Nernst-Planck (NPP) set of equations allows for the determination of the electric potential over the entire domain, along with the spatial distribution of the concentration of ionic species. Although this approach has been considered for some time in the field of nano-fluidics, clay science does not appear to have fully embraced this approach to date. The present work attempts to bridge that gap by proposing the simulation of multicomponent solute transport in compacted clays by means of the resolution of the PNP set of the equations under a two-dimensional finite-element framework. Modeling procedures are presented in detail and then applied to a simple case reported in the literature [2]. Numerical results were found to match experimental data more accurately than those based on Donnan models over a wider range of dry densities. In light of this, it is then argued that the NPP set of equations can provide a more reliable basis for the incorporation of surface phenomena into the modeling of solute transport through compacted clays. (authors)

  12. Performance Verification for Safety Injection Tank with Fluidic Device

    International Nuclear Information System (INIS)

    Yune, Seok Jeong; Kim, Da Yong

    2014-01-01

    In LBLOCA, the SITs of a conventional nuclear power plant deliver excessive cooling water to the reactor vessel causing the water to flow into the containment atmosphere. In an effort to make it more efficient, Fluidic Device (FD) is installed inside a SIT of Advanced Power Reactor 1400 (APR 1400). FD, a complete passive controller which doesn't require actuating power, controls injection flow rates which are susceptible to a change in the flow resistance inside a vortex chamber of FD. When SIT Emergency Core Cooling (ECC) water level is above the top of the stand pipe, the water enters the vortex chamber through both the top of the stand pipe and the control ports resulting in injection of the water at a large flow rate. When the water level drops below the top of the stand pipe, the water only enters the vortex chamber through the control ports resulting in vortex formation in the vortex chamber and a relatively small flow injection. Performance verification of SIT shall be carried out because SITs play an integral role to mitigate accidents. In this paper, the performance verification method of SIT with FD is presented. In this paper, the equations for calculation of flow resistance coefficient (K) are induced to evaluate on-site performance of APR 1400 SIT with FD. Then, the equations are applied to the performance verification of SIT with FD and good results are obtained

  13. Integration and Evaluation of Microscope Adapter for the Ultra-Compact Imaging Spectrometer

    Science.gov (United States)

    Smith-Dryden, S. D.; Blaney, D. L.; Van Gorp, B.; Mouroulis, P.; Green, R. O.; Sellar, R. G.; Rodriguez, J.; Wilson, D.

    2012-12-01

    Petrologic, diagenetic, impact and weathering processes often happen at scales that are not observable from orbit. On Earth, one of the most common things that a scientist does when trying to understand detailed geologic history is to create a thin section of the rock and study the mineralogy and texture. Unfortunately, sample preparation and manipulation with advanced instrumentation may be a resource intensive proposition (e.g. time, power, complexity) in-situ. Getting detailed mineralogy and textural information without sample preparation is highly desirable. Visible to short wavelength microimaging spectroscopy has the potential to provide this information without sample preparation. Wavelengths between 500-2600 nm are sensitive to a wide range of minerals including mafic, carbonates, clays, and sulfates. The Ultra-Compact Imaging Spectrometer (UCIS) has been developed as a low mass (contract with the National Aeronautics and Space Administration. Work was carried out with JPL Research and Technology Development Funding.

  14. Soil compaction and growth of woody plants

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, T.T. [Univ. of California, Berkeley (United States). Dept. of Environmental Science, Policy and Management

    1999-07-01

    Although soil compaction in the field may benefit or inhibit the growth of plants, the harmful effects are much more common. This paper emphasizes the deleterious effects of predominantly high levels of soil compaction on plant growth and yield. High levels of soil compaction are common in heavily used recreation areas, construction sites, urban areas, timber harvesting sites, fruit orchards, agroforestry systems and tree nurseries. Compaction can occur naturally by settling or slumping of soil or may be induced by tillage tools, heavy machinery, pedestrian traffic, trampling by animals and fire. Compaction typically alters soil structure and hydrology by increasing soil bulk density; breaking down soil aggregates; decreasing soil porosity, aeration and infiltration capacity; and by increasing soil strength, water runoff and soil erosion. Appreciable compaction of soil leads to physiological dysfunctions in plants. Often, but not always, reduced water absorption and leaf water deficits develop. Soil compaction also induces changes in the amounts and balances of growth hormones in plants, especially increases in abscisic acid and ethylene. Absorption of the major mineral nutrients is reduced by compaction of both surface soils and subsoils. The rate of photosynthesis of plants growing in very compacted soil is decreased by both stomatal and non-stomatal inhibition. Total photosynthesis is reduced as a result of smaller leaf areas. As soils become increasingly compacted respiration of roots shifts toward an anaerobic state. Severe soil compaction adversely influences regeneration of forest stands by inhibiting seed germination and growth of seedlings, and by inducing seedling mortality. Growth of woody plants beyond the seedling stage and yields of harvestable plant products also are greatly decreased by soil compaction because of the combined effects of high soil strength, decreased infiltration of water and poor soil aeration, all of which lead to a decreased

  15. Soil compaction and growth of woody plants

    International Nuclear Information System (INIS)

    Kozlowski, T.T.

    1999-01-01

    Although soil compaction in the field may benefit or inhibit the growth of plants, the harmful effects are much more common. This paper emphasizes the deleterious effects of predominantly high levels of soil compaction on plant growth and yield. High levels of soil compaction are common in heavily used recreation areas, construction sites, urban areas, timber harvesting sites, fruit orchards, agroforestry systems and tree nurseries. Compaction can occur naturally by settling or slumping of soil or may be induced by tillage tools, heavy machinery, pedestrian traffic, trampling by animals and fire. Compaction typically alters soil structure and hydrology by increasing soil bulk density; breaking down soil aggregates; decreasing soil porosity, aeration and infiltration capacity; and by increasing soil strength, water runoff and soil erosion. Appreciable compaction of soil leads to physiological dysfunctions in plants. Often, but not always, reduced water absorption and leaf water deficits develop. Soil compaction also induces changes in the amounts and balances of growth hormones in plants, especially increases in abscisic acid and ethylene. Absorption of the major mineral nutrients is reduced by compaction of both surface soils and subsoils. The rate of photosynthesis of plants growing in very compacted soil is decreased by both stomatal and non-stomatal inhibition. Total photosynthesis is reduced as a result of smaller leaf areas. As soils become increasingly compacted respiration of roots shifts toward an anaerobic state. Severe soil compaction adversely influences regeneration of forest stands by inhibiting seed germination and growth of seedlings, and by inducing seedling mortality. Growth of woody plants beyond the seedling stage and yields of harvestable plant products also are greatly decreased by soil compaction because of the combined effects of high soil strength, decreased infiltration of water and poor soil aeration, all of which lead to a decreased

  16. Small Valdivia compact spaces

    CERN Document Server

    Kubi's, W; Kubi\\'s, Wieslaw; Michalewski, Henryk

    2005-01-01

    We prove a preservation theorem for the class of Valdivia compact spaces, which involves inverse sequences of ``simple'' retractions. Consequently, a compact space of weight $\\loe\\aleph_1$ is Valdivia compact iff it is the limit of an inverse sequence of metric compacta whose bonding maps are retractions. As a corollary, we show that the class of Valdivia compacta of weight at most $\\aleph_1$ is preserved both under retractions and under open 0-dimensional images. Finally, we characterize the class of all Valdivia compacta in the language of category theory, which implies that this class is preserved under all continuous weight preserving functors.

  17. Clustering of near clusters versus cluster compactness

    International Nuclear Information System (INIS)

    Yu Gao; Yipeng Jing

    1989-01-01

    The clustering properties of near Zwicky clusters are studied by using the two-point angular correlation function. The angular correlation functions for compact and medium compact clusters, for open clusters, and for all near Zwicky clusters are estimated. The results show much stronger clustering for compact and medium compact clusters than for open clusters, and that open clusters have nearly the same clustering strength as galaxies. A detailed study of the compactness-dependence of correlation function strength is worth investigating. (author)

  18. Response Of Lowland Rice To Soil Compaction

    International Nuclear Information System (INIS)

    Idawati; Haryanto

    2000-01-01

    Soil compaction, as a new tillage practice for paddy soil, is to substitute pudding in order to reduce land preparation cost. To study response of lowland rice to soil compaction, a pot experiment has been conducted which took place in the greenhouse of P3TIR-BATAN. Soil for experiment was taken from pusakanegara. Two factors (degree of soil compaction and rice variety) were combined. Degree of compaction was split into 3 levels (DI = normal; D215% more compact than normal; 30 % more compact than normal), and rice variety into 2 levels (IR64 and Atomita IV). KH 2 32 PO 4 solution was injected into the soil surrounding rice clump to test the root activity at blooming stage of rice plant. Data resulted from this experiment is presented together with additional data from some other experiments of fertilization in the research s erie to study soil compaction. Some information's from experiment results are as following. Both rice varieties tested gave the same response to soil compaction. Root activity, according to data of 32 P absorbed by plant, was not harmed by soil compaction at the degree tested in the experiment. This prediction is supported by the growth by rice observed at generative growth stage, in pot experiment as well as in field experiment, which showed that soil compaction tested did not decrease rice yield but in opposite in tended to increase the yield. In practising soil compaction in land preparation, fertilizers should be applied by deep placement to have higher increasing is rice yield

  19. Formation and evolution of compact binaries

    NARCIS (Netherlands)

    Sluijs, Marcel Vincent van der

    2006-01-01

    In this thesis we investigate the formation and evolution of compact binaries. Chapters 2 through 4 deal with the formation of luminous, ultra-compact X-ray binaries in globular clusters. We show that the proposed scenario of magnetic capture produces too few ultra-compact X-ray binaries to explain

  20. Equationally Compact Acts : Coproducts / Peeter Normak

    Index Scriptorium Estoniae

    Normak, Peeter

    1998-01-01

    In this article equational compactness of acts and its generalizations are discussed. As equational compactness does not carry over to coproducts a slight generalization of c-equational campactness is introduced. It is proved that a coproduct of acts is c-equationally compact if and only if all components are c-equationally campact

  1. The United Nations Global Compact

    DEFF Research Database (Denmark)

    Rasche, Andreas; Waddock, Sandra; McIntosh, Malcolm

    2013-01-01

    This article reviews the interdisciplinary literature on the UN Global Compact. The review identifies three research perspectives, which scholars have used to study the UN Global Compact so far: a historical perspective discussing the Global Compact in the context of UN-business relations...... key empirical as well as conceptual scholarly contributions. The remainder of this article contains focused summaries of the articles selected for this Special Issue. All articles are introduced and evaluated against the background of the three research perspectives....

  2. Maximizing ion current rectification in a bipolar conical nanopore fluidic diode using optimum junction location.

    Science.gov (United States)

    Singh, Kunwar Pal

    2016-10-12

    The ion current rectification has been obtained as a function of the location of a heterojunction in a bipolar conical nanopore fluidic diode for different parameters to determine the junction location for maximum ion current rectification using numerical simulations. Forward current peaks for a specific location of the junction and reverse current decreases with the junction location due to a change in ion enrichment/depletion in the pore. The optimum location of the heterojunction shifts towards the tip with base/tip diameter and surface charge density, and towards the base with the electrolyte concentration. The optimum location of the heterojunction has been approximated by an equation as a function of pore length, base/tip diameter, surface charge density and electrolyte concentration. The study is useful to design a rectifier with maximum ion current rectification for practical purposes.

  3. Compaction of spent nuclear fuel cans

    International Nuclear Information System (INIS)

    Sullivan, H.

    1985-01-01

    Hydraulic press apparatus for compacting waste material eg. spent nuclear fuel cans comprises a fixed frame, a movable cross head, a press crown and three groups of piston/cylinder devices; having their pistons connected to the cross head and their cylinders secured to the press crown. A control means connects the first group of devices to hydraulic fluid in a reservoir which is pressurised initially by gas from gas accumulators to move the cross head and a quill secured thereto towards the frame base to compact the waste at a first high rate under a first high loading. Compaction then proceeds at a lower second rate at a lower second loading as the hydraulic fluid in the reservoir is pressurised by a pump. At two subsequent stages of compaction of the waste at which resistance increases causing a pressure rise in cylinders the control means causes hydraulic fluid to be passed to the second group of devices and thence to the third group of devices, the compaction rate reducing at each stage but the compaction force increasing. (author)

  4. Physically detached 'compact groups'

    Science.gov (United States)

    Hernquist, Lars; Katz, Neal; Weinberg, David H.

    1995-01-01

    A small fraction of galaxies appear to reside in dense compact groups, whose inferred crossing times are much shorter than a Hubble time. These short crossing times have led to considerable disagreement among researchers attempting to deduce the dynamical state of these systems. In this paper, we suggest that many of the observed groups are not physically bound but are chance projections of galaxies well separated along the line of sight. Unlike earlier similar proposals, ours does not require that the galaxies in the compact group be members of a more diffuse, but physically bound entity. The probability of physically separated galaxies projecting into an apparent compact group is nonnegligible if most galaxies are distributed in thin filaments. We illustrate this general point with a specific example: a simulation of a cold dark matter universe, in which hydrodynamic effects are included to identify galaxies. The simulated galaxy distribution is filamentary and end-on views of these filaments produce apparent galaxy associations that have sizes and velocity dispersions similar to those of observed compact groups. The frequency of such projections is sufficient, in principle, to explain the observed space density of groups in the Hickson catalog. We discuss the implications of our proposal for the formation and evolution of groups and elliptical galaxies. The proposal can be tested by using redshift-independent distance estimators to measure the line-of-sight spatial extent of nearby compact groups.

  5. A Tunable Mid-Infrared Solid-State Laser with a Compact Thermal Control System

    Directory of Open Access Journals (Sweden)

    Deyang Yu

    2018-05-01

    Full Text Available Tunable mid-infrared lasers are widely used in laser spectroscopy, gas sensing and many other related areas. In order to solve heat dissipation problems and improve the environmental temperature adaptability of solid-state laser sources, a tunable all-fiber laser pumped optical parametric oscillator (OPO was established, and a compact thermal control system based on thermoelectric coolers, an automatic temperature control circuit, cooling fins, fans and heat pipes was integrated and designed for the laser. This system is compact, light and air-cooling which satisfies the demand for miniaturization of lasers. A mathematical model and method was established to estimate the cooling capacity of this thermal control system under different ambient environments. A finite-element model was built and simulated to analyze the thermal transfer process. Experiments in room and high temperature environments were carried out and showed that the substrate temperature of a pump module could be maintained at a stable value with controlled precision to 0.2 degrees, while the output power stability of the laser was within ±1%. The experimental results indicate that this compact air-cooling thermal control system could effectively solve the heat dissipation problem of mid-infrared solid-state lasers with a one hundred watts level pump module in room and high temperature environments.

  6. Peculiarities of powder brittle media compaction

    International Nuclear Information System (INIS)

    Perel'nam, V.E.; Aristarkhov, A.I.

    1981-01-01

    The paper is concerned with theoretical and practical aspects of the compaction process for powders of almost unstrained materials. Consideration from the standpoint of compressible body strain mechanics shows that such porous media may have a certain ''threshold'' density. Ductile characteristics of the porous material compacted up to this extent are identical with properties of compacrat bodies, i.e. there is a theoretically substantiated ban on a possibility of their further compaction without changing the state of the powder particle material. Theoretical conclusions are confirmed by results of experimental studies in compaction of titanium- containing ceramics [ru

  7. EPRI compact analyzer: A compact, interactive and color-graphics based simulator for power plant analysis

    International Nuclear Information System (INIS)

    Ipakchi, A.; Khadem, M.; Chen, H.; Colley, R.W.

    1986-01-01

    This paper presents the results of an EPRI sponsored project (RP2395-2) for design and development of an interactive, and color graphics based simulator for power plant analysis. The system is called Compact Analyzer and can be applied to engineering and training applications in the utility industry. The Compact Analyzer's software and system design are described. Results of two demonstration system for a nuclear plant, and a fossil plant are presented, and the applications of the Compact Analyzer to operating procedures evaluation are discussed

  8. The Future Concrete: Self-Compacting Concrete

    OpenAIRE

    Iureş, Liana; Bob, Corneliu

    2010-01-01

    The paper presents the characteristics of the self-compacting concretes, their advantages and disadvantages when they are used in buildings. Due to its properties and composition, the self-compacting concrete is described here as being one of the future friendly enviromental material for buildings. Tests concerning to obtaining a self-compacting concrete, together with the specific fresh concrete properties tests, are described.

  9. Powder compaction in systems of bimodal distribution

    Science.gov (United States)

    Chattopadhyay, A. K.; Whittemore, O. J., Jr.

    1973-01-01

    The compaction of mixtures involving different particle sizes is discussed. The various stages of the compaction process include the rearrangement of particles, the filling of the interstices of the large particles by the smaller ones, and the change in particle size and shape upon further densification through the application of pressure. Experimental approaches and equipment used for compacting material are discussed together with the theoretical relations of the compacting process.

  10. Compact vortices

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Losano, L.; Marques, M.A.; Zafalan, I. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Menezes, R. [Universidade Federal da Paraiba, Departamento de Ciencias Exatas, Rio Tinto, PB (Brazil); Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, PB (Brazil)

    2017-02-15

    We study a family of Maxwell-Higgs models, described by the inclusion of a function of the scalar field that represent generalized magnetic permeability. We search for vortex configurations which obey first-order differential equations that solve the equations of motion. We first deal with the asymptotic behavior of the field configurations, and then implement a numerical study of the solutions, the energy density and the magnetic field. We work with the generalized permeability having distinct profiles, giving rise to new models, and we investigate how the vortices behave, compared with the solutions of the corresponding standard models. In particular, we show how to build compact vortices, that is, vortex solutions with the energy density and magnetic field vanishing outside a compact region of the plane. (orig.)

  11. Compaction monitoring in the Ekofisk area Chalk Fields

    International Nuclear Information System (INIS)

    Menghini, M.L.

    1989-01-01

    In late Nov. 1984, the subsidence phenomenon was recognized in the Ekofisk field. To determine the magnitude and areal extent of the formation compaction, a program for measuring compaction with electric logging tools was initiated. Initial time-lapse surveys performed with cased-hole neutron tools indicated that reservoir compaction was occurring, but the accuracy of the determination of compaction rate was low. In addition to the cased-hole neutron survey, radioactive markers and a gamma ray (GR) detection tool were used to determine compaction rate in the reservoir more accurately and to determine whether compaction was occurring in the overburden. A program for implanting radioactive-marker bullets and subsequent monitoring with a four-detector GR tool was implemented. There are currently 13 wells equipped with radioactive markers in the compaction monitoring program. Compaction monitoring accuracy using the four-detector GR tool was found to depend on wellbore geometry, completion design, and radioactive-marker placement. This paper gives the results of the program to date and describes the operational procedures and analysis techniques used for compaction monitoring in the greater Ekofisk area chalk fields

  12. Does soil compaction increase floods? A review

    Science.gov (United States)

    Alaoui, Abdallah; Rogger, Magdalena; Peth, Stephan; Blöschl, Günter

    2018-02-01

    Europe has experienced a series of major floods in the past years which suggests that flood magnitudes may have increased. Land degradation due to soil compaction from crop farming or grazing intensification is one of the potential drivers of this increase. A literature review suggests that most of the experimental evidence was generated at plot and hillslope scales. At larger scales, most studies are based on models. There are three ways in which soil compaction affects floods at the catchment scale: (i) through an increase in the area affected by soil compaction; (ii) by exacerbating the effects of changes in rainfall, especially for highly degraded soils; and (iii) when soil compaction coincides with soils characterized by a fine texture and a low infiltration capacity. We suggest that future research should focus on better synthesising past research on soil compaction and runoff, tailored field experiments to obtain a mechanistic understanding of the coupled mechanical and hydraulic processes, new mapping methods of soil compaction that combine mechanical and remote sensing approaches, and an effort to bridge all disciplines relevant to soil compaction effects on floods.

  13. Nanobiomimetic Active Shape Control - Fluidic and Swarm-Intelligence Embodiments for Planetary Exploration

    Science.gov (United States)

    Santoli, S.

    The concepts of Active Shape Control ( ASC ) and of Generalized Quantum Holography ( GQH ), respectively embodying a closer approach to biomimicry than the current macrophysics-based attempts at bioinspired robotic systems, and realizing a non-connectionistic, life-like kind of information processing that allows increasingly depths of mimicking of the biological structure-function solidarity, which have been formulated in physical terms in previous papers, are here further investigated for application to bioinspired flying or swimming robots for planetary exploration. It is shown that nano-to-micro integration would give the deepest level of biomimicry, and that both low and very low Reynolds number ( Re ) fluidics would involve GQH and Fiber Bundle Topology ( FBT ) for processing information at the various levels of ASC bioinspired robotics. While very low Re flows lend themselves to geometrization of microrobot dynamics and to FBT design, the general design problem is geometrized through GQH , i.e. made independent of dynamic considerations, thus allowing possible problems of semantic dyscrasias in highly complex hierarchical dynamical chains of sensing information processing actuating to be overcome. A roadmap to near- and medium-term nanostructured and nano-to-micro integration realizations is suggested.

  14. The multi-mode modulator: A versatile fluidic device for two-dimensional gas chromatography.

    Science.gov (United States)

    Seeley, John V; Schimmel, Nicolaas E; Seeley, Stacy K

    2018-02-09

    A fluidic device called the multi-mode modulator (MMM) has been developed for use as a comprehensive two-dimensional gas chromatography (GC x GC) modulator. The MMM can be employed in a wide range of capacities including as a traditional heart-cutting device, a low duty cycle GC x GC modulator, and a full transfer GC x GC modulator. The MMM is capable of producing narrow component pulses (widths <50ms) while operating at flows compatible with high resolution chromatography. The sample path of modulated components is confined to the interior of a joining capillary. The joining capillary dimensions and the position of the columns within the joining capillary can be optimized for the selected modulation mode. Furthermore, the joining capillary can be replaced easily and inexpensively if it becomes fouled due to sample matrix components or column bleed. The principles of operation of the MMM are described and its efficacy is demonstrated as a heart-cutting device and as a GC x GC modulator. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The Future Concrete: Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Liana Iureş

    2010-01-01

    Full Text Available The paper presents the characteristics of the self-compacting concretes, their advantages and disadvantages when they are used in buildings. Due to its properties and composition, the self-compacting concrete is described here as being one of the future friendly enviromental material for buildings. Tests concerning to obtaining a self-compacting concrete, together with the specific fresh concrete properties tests, are described.

  16. Soil compaction: alterations in physical, chemical and biological attributes in a fluvic neosoil

    International Nuclear Information System (INIS)

    Viana, Eliane Ferreira

    2004-12-01

    The efficient management of soil proposes the correct utilization of agricultural practices to minimize the loss of structure, compaction, and nutrient losses in the soil, which are the main causes of its degradation. Such concerns reside in the fact that the impact from compaction can also be related to the soil capacity for losing carbon. This effect has strong influence on CO 2 emissions to the atmosphere. On the other hand, induced mutation, a valuable tool for the development of genetic materials, that is tolerant to environmental adversities, can be helpful in the adaptation of crops in compacted soils. This study was conducted to evaluate isolated and combined effects of compaction, water content and organic amendments in soil respiration. Also it investigates the development of cowpea (V. unguiculata, L. Walp] var. IPA 206, in a Fluvic Neosoil, artificially compacted, with different fertilizer materials added (cowdung, NPK, organomineral I, and organomineral II). Also it evaluates the development of cowpea when the seeds were submitted to gamma irradiation ( 60 Co) and cultivated in compacted and non compacted soil, under greenhouse conditions, for 60 days. The isolated addition of spent coffee powder and marine algae to the soil increased the CO 2 evolution from soil, reflecting variations in dynamics of the heterotrophic soil microbiota. CO 2 evolution decreased with the increase in soil density, showing reductions in aeration. The values presented were found to be low in the treatment without addition of these materials (control) and showed them to be significantly increased in the treatments that received such residues, all over the incubation period. Plant height, root length, shoot dry matter production and dry matter of nodules diminished with the increase in soil density. The incorporation of the organomineral mixtures I and II to the artificially compacted soil, showed an increase in plant height, and root length, suggesting the beneficial action

  17. Prediction for swelling characteristics of compacted bentonite

    International Nuclear Information System (INIS)

    Komine, H.; Ogata, N.

    1996-01-01

    Compacted bentonites are attracting greater attention as back-filling (buffer) materials for high-level nuclear waste repositories. For this purpose, it is very important to quantitatively evaluate the swelling characteristics of compacted bentonite. New equations for evaluating the relationship between the swelling deformation of compacted bentonite and the distance between two montmorillonite layers are derived. New equations for evaluating the ion concentration of pore water and the specific surface of bentonite, which significantly influence the swelling characteristics of compacted bentonite, are proposed. Furthermore, a prediction method for the swelling characteristics of compacted bentonite is presented by combining the new equations with the well-known theoretical equations of repulsive and attractive forces between two montmorillonite layers. The applicability of this method was investigated by comparing the predicted results with laboratory test results on the swelling deformation and swelling pressure of compacted bentonites. (author) 31 refs., 8 tabs., 12 figs

  18. DO POST-SOCIALIST URBAN AREAS MAINTAIN THEIR SUSTAINABLE COMPACT FORM? ROMANIAN URBAN AREAS AS CASE STUDY

    Directory of Open Access Journals (Sweden)

    Simona Raluca GRĂDINARU

    2015-12-01

    Full Text Available The compact city is regarded as an important concept in promoting sustainable development, especially within the European Union. The socialist urban planning system maintained a high compactness of the urban areas through almost exclusive predominance of the public sector in housing provision, and ideological nature of the planning strategies. After the 1990’s, the administrative decentralization allowed local authorities to adopt particular urban development strategies. However, development was directly influenced by the importance of the urban administrative centre. The aim of the paper is to determine if post-socialist urban areas maintained their compact urban form or they encountered different evolution trajectories. We determined the type of changes by calculating urban form indicators at two time moments: 1990 and 2006. Furthermore, the two-way repeated-measurement ANOVA was used to identify significant changes, and to assess the effect of the development level of the urban area on the variance of form indicators. The results show that Romanian post-socialist urban areas either shifted from the compact form, "inherited" after the collapse of socialism, to more dispersed patterns, either expanded in a compact manner. Moreover, as development level got higher, urban areas were more likely to be affected by suburbanization and periurbanization. In order to respond to these challenges, new instruments such as setting of metropolitan areas or spatial framework plans could be used. Furthermore, planning should be adapted to local circumstances and to the different development trajectories of big and mid-sized urban areas.

  19. Deep Compaction Control of Sandy Soils

    Directory of Open Access Journals (Sweden)

    Bałachowski Lech

    2015-02-01

    Full Text Available Vibroflotation, vibratory compaction, micro-blasting or heavy tamping are typical improvement methods for the cohesionless deposits of high thickness. The complex mechanism of deep soil compaction is related to void ratio decrease with grain rearrangements, lateral stress increase, prestressing effect of certain number of load cycles, water pressure dissipation, aging and other effects. Calibration chamber based interpretation of CPTU/DMT can be used to take into account vertical and horizontal stress and void ratio effects. Some examples of interpretation of soundings in pre-treated and compacted sands are given. Some acceptance criteria for compaction control are discussed. The improvement factors are analysed including the normalised approach based on the soil behaviour type index.

  20. Algebraic Bethe ansatz for U(1) invariant integrable models: Compact and non-compact applications

    International Nuclear Information System (INIS)

    Martins, M.J.; Melo, C.S.

    2009-01-01

    We apply the algebraic Bethe ansatz developed in our previous paper [C.S. Melo, M.J. Martins, Nucl. Phys. B 806 (2009) 567] to three different families of U(1) integrable vertex models with arbitrary N bond states. These statistical mechanics systems are based on the higher spin representations of the quantum group U q [SU(2)] for both generic and non-generic values of q as well as on the non-compact discrete representation of the SL(2,R) algebra. We present for all these models the explicit expressions for both the on-shell and the off-shell properties associated to the respective transfer matrices eigenvalue problems. The amplitudes governing the vectors not parallel to the Bethe states are shown to factorize in terms of elementary building blocks functions. The results for the non-compact SL(2,R) model are argued to be derived from those obtained for the compact systems by taking suitable N→∞ limits. This permits us to study the properties of the non-compact SL(2,R) model starting from systems with finite degrees of freedom.

  1. Algebraic Bethe ansatz for U(1) invariant integrable models: Compact and non-compact applications

    Science.gov (United States)

    Martins, M. J.; Melo, C. S.

    2009-10-01

    We apply the algebraic Bethe ansatz developed in our previous paper [C.S. Melo, M.J. Martins, Nucl. Phys. B 806 (2009) 567] to three different families of U(1) integrable vertex models with arbitrary N bond states. These statistical mechanics systems are based on the higher spin representations of the quantum group U[SU(2)] for both generic and non-generic values of q as well as on the non-compact discrete representation of the SL(2,R) algebra. We present for all these models the explicit expressions for both the on-shell and the off-shell properties associated to the respective transfer matrices eigenvalue problems. The amplitudes governing the vectors not parallel to the Bethe states are shown to factorize in terms of elementary building blocks functions. The results for the non-compact SL(2,R) model are argued to be derived from those obtained for the compact systems by taking suitable N→∞ limits. This permits us to study the properties of the non-compact SL(2,R) model starting from systems with finite degrees of freedom.

  2. Adaptive capture of expert knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, C.L.; Jones, R.D. [Los Alamos National Lab., NM (United States); Hand, Un Kyong [Los Alamos National Lab., NM (United States)]|[US Navy (United States)

    1995-05-01

    A method is introduced that can directly acquire knowledge-engineered, rule-based logic in an adaptive network. This adaptive representation of the rule system can then replace the rule system in simulated intelligent agents and thereby permit further performance-based adaptation of the rule system. The approach described provides both weight-fitting network adaptation and potentially powerful rule mutation and selection mechanisms. Nonlinear terms are generated implicitly in the mutation process through the emergent interaction of multiple linear terms. By this method it is possible to acquire nonlinear relations that exist in the training data without addition of hidden layers or imposition of explicit nonlinear terms in the network. We smoothed and captured a set of expert rules with an adaptive network. The motivation for this was to (1) realize a speed advantage over traditional rule-based simulations; (2) have variability in the intelligent objects not possible by rule-based systems but provided by adaptive systems: and (3) maintain the understandability of rule-based simulations. A set of binary rules was smoothed and converted into a simple set of arithmetic statements, where continuous, non-binary rules are permitted. A neural network, called the expert network, was developed to capture this rule set, which it was able to do with zero error. The expert network is also capable of learning a nonmonotonic term without a hidden layer. The trained network in feedforward operation is fast running, compact, and traceable to the rule base.

  3. Starbursts in Blue compact dwarf galaxies

    International Nuclear Information System (INIS)

    Thuan, T.X.

    1987-01-01

    We summarize all the arguments for a bursting mode of star formation in blue compact dwarf galaxies. We show in particular how spectral synthesis of far ultraviolet spectra of Blue compact dwarf galaxy constitutes a powerful way for studying the star formation history in these galaxies. Blue compact dwarf galaxy luminosity functions show jumps and discontinuities. These jumps act like fossil records of the star-forming bursts, helping us to count and date the bursts

  4. Compact magnetic fusin reactor concepts

    International Nuclear Information System (INIS)

    Chung, K.M.

    1984-01-01

    Compact, high-power-density approaches to fusion power represent alternatives to main-line fusion concepts, Tokamaks and mirrors. If technological issues are resolved, theses approaches would yield small, low-cost fusion power plants. This survey reviews the principal physics and technology employed by leading compact magnetic fusion plants. (Author)

  5. A representation independent propagator. Pt. 1. Compact Lie groups

    International Nuclear Information System (INIS)

    Tome, W.A.

    1995-01-01

    Conventional path integral expressions for propagators are representation dependent. Rather than having to adapt each propagator to the representation in question, it is shown that for compact Lie groups it is possible to introduce a propagator that is representation independent. For a given set of kinematical variables this propagator is a single function independent of any particular choice of fiducial vector, which monetheless, correctly propagates each element of the coherent state representation associated with these kinematical variables. Although the configuration space is in general curved, nevertheless the lattice phase-space path integral for the representation independent propagator has the form appropriate to flat space. To illustrate the general theory a representation independent propagator is explicitly constructed for the Lie group SU(2). (orig.)

  6. Invariant subsets under compact quantum group actions

    OpenAIRE

    Huang, Huichi

    2012-01-01

    We investigate compact quantum group actions on unital $C^*$-algebras by analyzing invariant subsets and invariant states. In particular, we come up with the concept of compact quantum group orbits and use it to show that countable compact metrizable spaces with infinitely many points are not quantum homogeneous spaces.

  7. Topological entropy of continuous actions of compactly generated groups

    OpenAIRE

    Schneider, Friedrich Martin

    2015-01-01

    We introduce a notion of topological entropy for continuous actions of compactly generated topological groups on compact Hausdorff spaces. It is shown that any continuous action of a compactly generated topological group on a compact Hausdorff space with vanishing topological entropy is amenable. Given an arbitrary compactly generated locally compact Hausdorff topological group $G$, we consider the canonical action of $G$ on the closed unit ball of $L^{1}(G)' \\cong L^{\\infty}(G)$ endowed with...

  8. Direct Adaptive Control of a Class of Nonlinear Discrete-Time Systems

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon

    2004-01-01

    In this paper we deal with direct adaptive control of a specific class of discrete-time SISO systems, where the nonlinearities are convex and an upper bound is known. We use a control law based on a linear combination of a set of globally uniformly bounded basis functions with compact support, wh...

  9. Mappings with closed range and compactness

    International Nuclear Information System (INIS)

    Iyahen, S.O.; Umweni, I.

    1985-12-01

    The motivation for this note is the result of E.O. Thorp that a normed linear space E is finite dimensional if and only if every continuous linear map for E into any normed linear space has a closed range. Here, a class of Hausdorff topological groups is introduced; called r-compactifiable topological groups, they include compact groups, locally compact Abelian groups and locally convex linear topological spaces. It is proved that a group in this class which is separable, complete metrizable or locally compact, is necessarily compact if its image by a continuous group homomorphism is necessarily closed. It is deduced then that a Hausdorff locally convex is zero if its image by a continuous additive map is necessarily closed. (author)

  10. Controlled Compact High Voltage Power Lines

    Directory of Open Access Journals (Sweden)

    Postolati V.

    2016-04-01

    Full Text Available Nowadays modern overhead transmission lines (OHL constructions having several significant differences from conventional ones are being used in power grids more and more widely. Implementation of compact overhead lines equipped with FACTS devices, including phase angle regulator settings (compact controlled OHL, appears to be one of the most effective ways of power grid development. Compact controlled AC HV OHL represent a new generation of power transmission lines embodying recent advanced achievements in design solutions, including towers and insulation, together with interconnection schemes and control systems. Results of comprehensive research and development in relation to 110–500kV compact controlled power transmission lines together with theoretical basis, substantiation, and methodological approaches to their practical application are presented in the present paper.

  11. Compact approach to fusion power reactors

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.; Bathke, C.G.; Miller, R.L.

    1984-01-01

    The potential of the Reversed-Field Pinch (RFP) for development into an efficient, compact, copper-coil fusion reactor has been quantified by comprehensive parametric tradeoff studies. These compact systems promise to be competitive in size, power density, and cost to alternative energy sources. Conceptual engineering designs that largely substantiate these promising results have since been completed. This 1000-MWe(net) design is described along with a detailed rationale and physics/technology assessment for the compact approach to fusion

  12. Heat transfer in large compacts of SYNROC powder

    International Nuclear Information System (INIS)

    Buykx, W.J.

    1984-01-01

    The parameters determining the time required to reach temperature uniformity in a shock heated cylindrical compact of SYNROC powder are identified as the dimensions of the compact and the thermal diffusivity of the material. The effect of shape and size of the compact are discussed, and an experimental study of the factors influencing the thermal diffusivity of compacted SYNROC powder is described

  13. Compact NMR

    Energy Technology Data Exchange (ETDEWEB)

    Bluemich, Bernhard; Haber-Pohlmeier, Sabina; Zia, Wasif [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie (ITMC)

    2014-06-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures, while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue. In both applications, the sample (or patient) is positioned inside a large, superconducting magnet to magnetize the atomic nuclei. Interrogating radio-frequency pulses result in frequency spectra that provide the chemist with molecular information, the medical doctor with anatomic images, and materials scientist with NMR relaxation parameters. Recent advances in magnet technology have led to a variety of small permanent magnets to allow compact and low-cost instruments. The goal of this book is to provide an introduction to the practical use of compact NMR at a level nearly as basic as the operation of a smart phone.

  14. On compact galaxies in the UGC catalogue

    International Nuclear Information System (INIS)

    Kogoshvili, N.G.

    1980-01-01

    A problem of separation of compact galaxies in the UGC Catalogue is considered. Value of surface brightness equal to or less than 21sup(m) was used as compactness criterion from a square second of arc. 96 galaxies, which are brighter than 14sup(m)5 satisfy this criterion. Among compact galaxies discovered in the UGC Catalogue 7% are the Zwicky galaxies, 15% belong to the Markarian galaxies and 27% of galaxies are part of a galaxy list with high surface brightness. Considerable divergence in estimates of total share of compact galaxies in the B.A. Worontsov-Veljaminov Morphological Catalogue of Galaxies (MCG) and the UGC Catalogue is noted. This divergence results from systematical underestimation of visible sizes of compact galaxies in the MCG Catalogue as compared with the UGC Catalogue [ru

  15. Planar compaction of ceramic powders with mining explosives

    International Nuclear Information System (INIS)

    Stuivinga, M.; Verbeek, H.J.; Carton, E.P.

    2000-01-01

    Shock compaction experiments of B 4 C powders have been performed using a planar configuration. The powders were contained between metal plates. On top of the upper plate, having a thickness of about 10 mm, was a layer of mining explosives. For this configuration, computer simulations have been performed with use of the hydrocode Autodyn. In comparison with the cylindrical compaction process the planar compaction process appears to be quite different. The reason is the very low detonation velocity of the used mining explosives (2-4 km/s), which is much lower than the sound and shock speeds of the steel plate, in combination with the relatively large thickness of the metal layer. As a result, the nature of the compaction process of the powder initially more resembles a quasi-static compaction process than a shock compaction process. Due to the quasi-static nature of the compaction, the pressure release in the powder after compression is very gradual. Therefore, no strong rarefaction waves leading to high tensile stresses in the compact arise. Flat plates (10x10 cm, 0.6-0.8 cm thick) of Al (20-30 vol %) infiltrated B 4 C have been fabricated using this configuration

  16. Application of nanotechnology in self-compacting concrete design

    International Nuclear Information System (INIS)

    Maghsoudi, A. A.; Arabpour Dahooei, F.

    2009-01-01

    In this study, first, different mix design of four types of Self-Compacting Concrete, 1. Self-Compacting Concrete consisted of only nano silica, 2. Self-Compacting Concrete included only micro silica, 3. Self-Compacting Concrete consisted of both micro silica and nano silica and 4. Self-Compacting Concrete without micro silica and nano silica called as control mix, were casted and tested to find out the values of the Slump Flow, L-Box and 7 and 28 days compressive strength. Then, based on the results obtained and as yet there is no universally accepted standard for characterizing of Self-Compacting Concrete, the most suitable four concrete mixes were selected for further investigation of fresh and hardened concrete. For selected mixes, the fresh concrete properties such as values of the Slump Flow, L-Box, V-Funnel, J-Ring and hardened engineering properties such as compressive and flexural strength, shrinkage and swelling values were investigated for three curing conditions at short and long term. The results showed that the engineering properties of Self-Compacting Concrete mixes could not be improved by adding only nano silica. However, a satisfactory behavior can be achieved using micro silica in the Self-Compacting Concrete mixes. However, by adding both micro silica and nano silica to the Self-Compacting Concrete mixtures, the best effect on the engineering properties was reported while comparing to the control mixes.

  17. Zone fluidics for measurement of octanol-water partition coefficient of drugs.

    Science.gov (United States)

    Wattanasin, Panwadee; Saetear, Phoonthawee; Wilairat, Prapin; Nacapricha, Duangjai; Teerasong, Saowapak

    2015-02-20

    A novel zone fluidics (ZF) system for the determination of the octanol-water partition coefficient (Pow) of drugs was developed. The ZF system consisted of a syringe pump with a selection valve, a holding column, a silica capillary flow-cell and an in-line spectrophotometer. Exact microliter volumes of solvents (octanol and phosphate buffer saline) and a solution of the drug, sandwiched between air segments, were sequentially loaded into the vertically aligned holding column. Distribution of the drug between the aqueous and octanol phases occurred by the oscillation movement of the syringe pump piston. Phase separation occurred due to the difference in densities. The liquid zones were then pushed into the detection flow cell. In this method, absorbance measurements in only one of the phase (octanol or aqueous) were employed, which together with the volumes of the solvents and pure drug sample, allowed the calculation of the Pow. The developed system was applied to the determination of the Pow of some common drugs. The log (Pow) values agreed well with a batch method (R(2)=0.999) and literature (R(2)=0.997). Standard deviations for intra- and inter-day analyses were both less than 0.1log unit. This ZF system provides a robust and automated method for screening of Pow values in the drug discovery process. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Lab on a Biomembrane: Rapid prototyping and manipulation of 2D fluidic lipid bilayers circuits

    Science.gov (United States)

    Ainla, Alar; Gözen, Irep; Hakonen, Bodil; Jesorka, Aldo

    2013-01-01

    Lipid bilayer membranes are among the most ubiquitous structures in the living world, with intricate structural features and a multitude of biological functions. It is attractive to recreate these structures in the laboratory, as this allows mimicking and studying the properties of biomembranes and their constituents, and to specifically exploit the intrinsic two-dimensional fluidity. Even though diverse strategies for membrane fabrication have been reported, the development of related applications and technologies has been hindered by the unavailability of both versatile and simple methods. Here we report a rapid prototyping technology for two-dimensional fluidic devices, based on in-situ generated circuits of phospholipid films. In this “lab on a molecularly thin membrane”, various chemical and physical operations, such as writing, erasing, functionalization, and molecular transport, can be applied to user-defined regions of a membrane circuit. This concept is an enabling technology for research on molecular membranes and their technological use. PMID:24067786

  19. Solid targetry for compact cyclotrons

    International Nuclear Information System (INIS)

    Comor, J.

    2004-01-01

    In this presentation authors present experimental results of solid targetry for compact cyclotrons. It is concluded: Solid targetry is not restricted to large accelerator centers anymore; Small and medium scale radioisotope production is feasible with compact cyclotrons; The availability of versatile solid target systems is expected to boost the radiochemistry of 'exotic' positron emitters

  20. Steady state compact toroidal plasma production

    Science.gov (United States)

    Turner, William C.

    1986-01-01

    Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.

  1. Where are compact groups in the local Universe?

    Science.gov (United States)

    Díaz-Giménez, Eugenia; Zandivarez, Ariel

    2015-06-01

    Aims: The purpose of this work is to perform a statistical analysis of the location of compact groups in the Universe from observational and semi-analytical points of view. Methods: We used the velocity-filtered compact group sample extracted from the Two Micron All Sky Survey for our analysis. We also used a new sample of galaxy groups identified in the 2M++ galaxy redshift catalogue as tracers of the large-scale structure. We defined a procedure to search in redshift space for compact groups that can be considered embedded in other overdense systems and applied this criterion to several possible combinations of different compact and galaxy group subsamples. We also performed similar analyses for simulated compact and galaxy groups identified in a 2M++ mock galaxy catalogue constructed from the Millennium Run Simulation I plus a semi-analytical model of galaxy formation. Results: We observed that only ~27% of the compact groups can be considered to be embedded in larger overdense systems, that is, most of the compact groups are more likely to be isolated systems. The embedded compact groups show statistically smaller sizes and brighter surface brightnesses than non-embedded systems. No evidence was found that embedded compact groups are more likely to inhabit galaxy groups with a given virial mass or with a particular dynamical state. We found very similar results when the analysis was performed using mock compact and galaxy groups. Based on the semi-analytical studies, we predict that 70% of the embedded compact groups probably are 3D physically dense systems. Finally, real space information allowed us to reveal the bimodal behaviour of the distribution of 3D minimum distances between compact and galaxy groups. Conclusions: The location of compact groups should be carefully taken into account when comparing properties of galaxies in environments that are a priori different. Appendices are available in electronic form at http://www.aanda.orgFull Tables B.1 and B.2

  2. 77 FR 22805 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact; Correction

    Science.gov (United States)

    2012-04-17

    ... Compact Council (Council) created by the National Crime Prevention and Privacy Compact Act of 1998..., correct the hotel address line in ADDRESSES to read: 300 East Travis. Dated: April 10, 2012. Gary S...

  3. Exploring mechanisms of compaction in salt-marsh sediments using Common Era relative sea-level reconstructions

    Science.gov (United States)

    Brain, Matthew J.; Kemp, Andrew C.; Hawkes, Andrea D.; Engelhart, Simon E.; Vane, Christopher H.; Cahill, Niamh; Hill, Troy D.; Donnelly, Jeffrey P.; Horton, Benjamin P.

    2017-07-01

    Salt-marsh sediments provide precise and near-continuous reconstructions of Common Era relative sea level (RSL). However, organic and low-density salt-marsh sediments are prone to compaction processes that cause post-depositional distortion of the stratigraphic column used to reconstruct RSL. We compared two RSL reconstructions from East River Marsh (Connecticut, USA) to assess the contribution of mechanical compression and biodegradation to compaction of salt-marsh sediments and their subsequent influence on RSL reconstructions. The first, existing reconstruction ('trench') was produced from a continuous sequence of basal salt-marsh sediment and is unaffected by compaction. The second, new reconstruction is from a compaction-susceptible core taken at the same location. We highlight that sediment compaction is the only feasible mechanism for explaining the observed differences in RSL reconstructed from the trench and core. Both reconstructions display long-term RSL rise of ∼1 mm/yr, followed by a ∼19th Century acceleration to ∼3 mm/yr. A statistically-significant difference between the records at ∼1100 to 1800 CE could not be explained by a compression-only geotechnical model. We suggest that the warmer and drier conditions of the Medieval Climate Anomaly (MCA) resulted in an increase in sediment compressibility during this time period. We adapted the geotechnical model by reducing the compressive strength of MCA sediments to simulate this softening of sediments. 'Decompaction' of the core reconstruction with this modified model accounted for the difference between the two RSL reconstructions. Our results demonstrate that compression-only geotechnical models may be inadequate for estimating compaction and post-depositional lowering of susceptible organic salt-marsh sediments in some settings. This has important implications for our understanding of the drivers of sea-level change. Further, our results suggest that future climate changes may make salt

  4. Machine for compacting solid residues

    International Nuclear Information System (INIS)

    Herzog, J.

    1981-11-01

    Machine for compacting solid residues, particularly bulky radioactive residues, constituted of a horizontally actuated punch and a fixed compression anvil, in which the residues are first compacted horizontally and then vertically. Its salient characteristic is that the punch and the compression anvil have embossments on the compression side and interpenetrating plates in the compression position [fr

  5. Soil compaction and fertilization in soybean productivity

    Directory of Open Access Journals (Sweden)

    Beutler Amauri Nelson

    2004-01-01

    Full Text Available Soil compaction and fertilization affect soybean development. This study evaluated the effects of soil compaction and fertilization on soybean (Glycine max cv. Embrapa 48 productivity in a Typic Haplustox under field conditions in Jaboticabal, SP, Brazil. A completely randomized design with a 5 x 2 factorial layout (compaction vs. fertilization, with four replications in each treatment, was employed. Each experimental unit (replicate consisted of a 3.6 m² useful area. After the soil was prepared by cultivation, an 11 Mg tractor passed over it a variable number of times to create five levels of compaction. Treatments were: T0= no compaction, T1= one tractor pass, T2= two, T4= four, and T6= six passes, and no fertilizer and fertilizer to give soybean yields of 2.5 to 2.9 Mg ha-1. Soil was sampled at depths of 0.02-0.05, 0.07-0.10, and 0.15-0.18 m to determine macro and microporosity, penetration resistance (PR, and bulk density (Db. After 120 days growing under these conditions, the plants were analyzed in terms of development (plant height, number of pods, shoot dry matter per plant and weight of 100 seeds and seed productivity per hectare. Soil compaction decreased soybean development and productivity, but this effect was decreased by soil fertilization, showing that such fertilization increased soybean tolerance to soil compaction.

  6. Wavelet methods in multi-conjugate adaptive optics

    International Nuclear Information System (INIS)

    Helin, T; Yudytskiy, M

    2013-01-01

    The next generation ground-based telescopes rely heavily on adaptive optics for overcoming the limitation of atmospheric turbulence. In the future adaptive optics modalities, like multi-conjugate adaptive optics (MCAO), atmospheric tomography is the major mathematical and computational challenge. In this severely ill-posed problem, a fast and stable reconstruction algorithm is needed that can take into account many real-life phenomena of telescope imaging. We introduce a novel reconstruction method for the atmospheric tomography problem and demonstrate its performance and flexibility in the context of MCAO. Our method is based on using locality properties of compactly supported wavelets, both in the spatial and frequency domains. The reconstruction in the atmospheric tomography problem is obtained by solving the Bayesian MAP estimator with a conjugate-gradient-based algorithm. An accelerated algorithm with preconditioning is also introduced. Numerical performance is demonstrated on the official end-to-end simulation tool OCTOPUS of European Southern Observatory. (paper)

  7. Aligning laboratory and field compaction practices for asphalt - the influence of compaction temperature on mechanical properties

    NARCIS (Netherlands)

    Bijleveld, Frank; Miller, Seirgei Rosario; de Bondt, A.H.; Doree, Andries G.

    2015-01-01

    The approach used to identify a compaction temperature in the laboratory, based on binder viscosity, provides a single compaction temperature whereas, on-site, a roller operates within a temperature window. The effect on the density and mechanical properties of rolling during a temperature window

  8. Study of thermo-fluidic behavior of micro-droplet in inkjet-based micro manufacturing processes

    Science.gov (United States)

    Das, Raju; Mahapatra, Abhijit; Ball, Amit Kumar; Roy, Shibendu Shekhar; Murmu, Naresh Chandra

    2017-06-01

    Inkjet printing technology, a maskless, non-contact patterning operation, which has been a revelation in the field of micro and nano manufacturing for its use in the selective deposition of desired materials. It is becoming an exciting alternative technology such as lithography to print functional material on to a substrate. Selective deposition of functional materials on desired substrates is a basic requirement in many of the printing based micro and nano manufacturing operations like the fabrication of microelectronic devices, solar cell, Light-emitting Diode (LED) research fields like pharmaceutical industries for drug discovery purposes and in biotechnology to make DNA microarrays. In this paper, an attempt has been made to design and develop an indigenous Electrohydrodynamic Inkjet printing system for micro fabrication and to study the interrelationships between various thermos-fluidic parameters of the ink material in the printing process. The effect of printing process parameters on printing performance characteristics has also been studied. And the applicability of the process has also been experimentally demonstrated. The experimentally found results were quite satisfactory and accordance to its applicability.

  9. Roller compaction of moist pharmaceutical powders.

    Science.gov (United States)

    Wu, C-Y; Hung, W-L; Miguélez-Morán, A M; Gururajan, B; Seville, J P K

    2010-05-31

    The compression behaviour of powders during roller compaction is dominated by a number of factors, such as process conditions (roll speed, roll gap, feeding mechanisms and feeding speed) and powder properties (particle size, shape, moisture content). The moisture content affects the powder properties, such as the flowability and cohesion, but it is not clear how the moisture content will influence the powder compression behaviour during roller compaction. In this study, the effect of moisture contents on roller compaction behaviour of microcrystalline cellulose (MCC, Avicel PH102) was investigated experimentally. MCC samples of different moisture contents were prepared by mixing as-received MCC powder with different amount of water that was sprayed onto the powder bed being agitated in a rotary mixer. The flowability of these samples were evaluated in terms of the poured angle of repose and flow functions. The moist powders were then compacted using the instrumented roller compactor developed at the University of Birmingham. The flow and compression behaviour during roller compaction and the properties of produced ribbons were examined. It has been found that, as the moisture content increases, the flowability of moist MCC powders decreases and the powder becomes more cohesive. As a consequence of non-uniform flow of powder into the compaction zone induced by the friction between powder and side cheek plates, all produced ribbons have a higher density in the middle and lower densities at the edges. For the ribbons made of powders with high moisture contents, different hydration states across the ribbon width were also identified from SEM images. Moreover, it was interesting to find that these ribbons were split into two halves. This is attributed to the reduction in the mechanical strength of moist powder compacts with high moisture contents produced at high compression pressures. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  10. Bone compaction enhances fixation of weightbearing titanium implants

    DEFF Research Database (Denmark)

    Kold, Søren; Rahbek, Ole; Vestermark, Marianne

    2005-01-01

    are weightbearing, the effects of compaction on weightbearing implants were examined. The hypothesis was that compaction would increase implant fixation compared with conventional drilling. Porous-coated titanium implants were inserted bilaterally into the weightbearing portion of the femoral condyles of dogs....... In each dog, one knee had the implant cavity prepared with drilling, and the other knee was prepared with compaction. Eight dogs were euthanized after 2 weeks, and eight dogs were euthanized after 4 weeks. Femoral condyles from an additional eight dogs represented Time 0. Compacted specimens had higher...... bone-implant contact and periimplant bone density at 0 and 2 weeks, but not at 4 weeks. A biphasic response of compaction was found with a pushout test, as compaction increased ultimate shear strength and energy absorption at 0 and 4 weeks, but not at 2 weeks. This biphasic response indicates...

  11. Gamma-Rays from Galactic Compact Sources

    Science.gov (United States)

    Kaaret, Philip

    2007-04-01

    Recent discoveries have revealed many sources of TeV photons in our Mikly Way galaxy powered by compact objects, either neutron stars or black holes. These objects must be powerful particle accelerators, some with peak energies of at least 100 TeV, and may be neutrino, as well as photon, sources. Future TeV observations will enable us to address key questions concerning particle acceleration by compact objects including the fraction of energy which accreting black holes channel into relativstic jet production, whether the compact object jets are leptonic or hadronic, and the mechanism by which pulsar winds accelerate relativistic particles. We report on work done related to compact Galactic objects in preparation of a White Paper on the status and future of ground-based gamma-ray astronomy requested by the Division of Astrophysics of the American Physical Society.

  12. Correlating particle hardness with powder compaction performance.

    Science.gov (United States)

    Cao, Xiaoping; Morganti, Mikayla; Hancock, Bruno C; Masterson, Victoria M

    2010-10-01

    Assessing particle mechanical properties of pharmaceutical materials quickly and with little material can be very important to early stages of pharmaceutical research. In this study, a wide range of pharmaceutical materials were studied using atomic force microscopy (AFM) nanoindentation. A significant amount of particle hardness and elastic modulus data were provided. Moreover, powder compact mechanical properties of these materials were investigated in order to build correlation between the particle hardness and powder compaction performance. It was found that the materials with very low or high particle hardness most likely exhibit poor compaction performance while the materials with medium particle hardness usually have good compaction behavior. Additionally, the results from this study enriched Hiestand's special case concept on particle hardness and powder compaction performance. This study suggests that the use of AFM nanoindentation can help to screen mechanical properties of pharmaceutical materials at early development stages of pharmaceutical research.

  13. Self-Compacting Concrete in Precast Elements Industry

    Directory of Open Access Journals (Sweden)

    Corneliu Bob

    2005-01-01

    Full Text Available In this paper the authors present information about the Self-Compacting Concrete and experimental results regarding the use of them into precast element industry. This type of concrete does not require vibration for placing and compaction; it is able to flow under its own weight, completely filling formwork and achieving full compaction, even in the presence of congested reinforcement. The experimental programme has take into account two prestressed beams which were prefabricated and tested on a special stands. The beams of Self-Compacting Concrete with the length of 24 m were prepared at „Beton-Star” Kft, Kecsekenet, Hungary, and used at the CASCO, Satu-Mare.

  14. Effect of slash on forwarder soil compaction

    Science.gov (United States)

    Timothy P. McDonald; Fernando Seixas

    1997-01-01

    A study of the effect of slash on forwarder soil compaction was carried out. The level of soil compaction at two soil moisture contents, three slash densities (0, 10, and 20 kg/m2), and two levels of traffic (one and five passes) were measured. Results indicated that, on dry, loamy sand soils, the presence of slash did not decrease soil compaction after one forwarder...

  15. Compacted cancellous bone has a spring-back effect

    DEFF Research Database (Denmark)

    Kold, S; Bechtold, JE; Ding, Ming

    2003-01-01

    A new surgical technique, compaction, has been shown to improve implant fixation. It has been speculated that the enhanced implant fixation with compaction could be due to a spring-back effect of compacted bone. However, such an effect has yet to be shown. Therefore we investigated in a canine mo....... Thus we found a spring-back effect of compacted bone, which may be important for increasing implant fixation by reducing initial gaps between the implant and bone....

  16. Effect of repeated compaction of tablets on tablet properties and work of compaction using an instrumented laboratory tablet press.

    Science.gov (United States)

    Gamlen, Michael John Desmond; Martini, Luigi G; Al Obaidy, Kais G

    2015-01-01

    The repeated compaction of Avicel PH101, dicalcium phosphate dihydrate (DCP) powder, 50:50 DCP/Avicel PH101 and Starch 1500 was studied using an instrumented laboratory tablet press which measures upper punch force, punch displacement and ejection force and operates using a V-shaped compression profile. The measurement of work compaction was demonstrated, and the test materials were ranked in order of compaction behaviour Avicel PH101 > DCP/Avicel PH101 > Starch > DCP. The behaviour of the DCP/Avicel PH101 mixture was distinctly non-linear compared with the pure components. Repeated compaction and precompression had no effect on the tensile fracture strength of Avicel PH101 tablets, although small effects on friability and disintegration time were seen. Repeated compaction and precompression reduced the tensile strength and the increased disintegration time of the DCP tablets, but improved the strength and friability of Starch 1500 tablets. Based on the data reported, routine laboratory measurement of tablet work of compaction may have potential as a critical quality attribute of a powder blend for compression. The instrumented press was suitable for student use with minimal supervisor input.

  17. Evaluation of automatic vacuum- assisted compaction solutions

    Directory of Open Access Journals (Sweden)

    M. Brzeziński

    2011-01-01

    Full Text Available Currently on the mould-making machines market the companies like: DiSA, KUENKEL WAGNER, HAFLINGER, HEINRICH WAGNER SINTO, HUNTER, SAVELLI AND TECHNICAL play significant role. These companies are the manufacturers of various solutions in machines and instalations applied in foundry engineering. Automatic foundry machines for compaction of green sand have the major role in mechanisation and automation processes of making the mould. The concept of operation of automatic machines is based on the static and dynamic methods of compacting the green sand. The method which gains the importance is the compacting method by using the energy of the air pressure. It's the initial stage or the supporting process of compacting the green sand. However in the automatic mould making machines using this method it's essential to use the additional compaction of the mass in order to receive the final parameters of the form. In the constructional solutions of the machines there is the additional division which concerns the method of putting the sand into the mould box. This division distinquishes the transport of the sand with simultaneous compaction or the putting of the sand without the pre-compaction. As the solutions of the major manufacturers are often the subject for application in various foundries, the authors of the paper would like/have the confidence to present their own evaluation process confirmed by their own researches and independent analysis of the producers' solutions.

  18. Design of an optical and micro-fluidic sensor for concentration measurement by photo-thermal effect

    International Nuclear Information System (INIS)

    Schimpf, A.

    2011-01-01

    This work has been done in the context of fuel reprocessing in the nuclear industry. In fact, the handling of nuclear waste is one of the major issues in the nuclear industry. Its implications reach from economical to political to ecological dimensions. Since used nuclear fuel consists of 97% of recyclable substances, many countries have chosen to reprocess used fuel, not only for economical reasons but also to limit the quantity of nuclear waste. The most widely employed extraction technique is the PUREX process where the used fuel is diluted in nitric acid. The recyclable compounds can then be extracted by solvent techniques. Such processes need to be monitored crucially. However, nowadays, the process supervision is carried out by manually sampling the radioactive effluents and analyzing them in external laboratories. Not only prone to potential risks, this approach is little responsive and produces radio-toxic samples that cannot be reintroduced in the nuclear fuel cycle. In this study, we therefore present the developpement of a micro-fluidic glass sensor, based on the detection of a photothermal effect induced in the sample fluid. Micro-fluidic allows fluid handling on a microliter-scale and can therefore significantly reduce the sample volume and thereby the radio-toxicity of the analyzed fluids. Photothermal spectrometry is well suited for small-scale sample analysis since its sensitivity does not rely on the length of optical interaction with the analyte. The photothermal effect is a local refractive index variation due to the absorption of photons by the analyte species which are contained in the sample. On the sensor chip, the index refraction change is being sensed by an integrated Young interferometer made by ion-exchange in glass. The probed volume in the channel was (33.5± 3.5) pl. The interferometric system can sense refractive index changes as low as Δn(min)=7.5*10 -6 , allowing to detect a minimum concentration of cobalt(II) in ethanol c

  19. Compact Antenna Range

    Data.gov (United States)

    Federal Laboratory Consortium — Facility consists of a folded compact antenna range including a computer controlled three axis position table, parabolic reflector and RF sources for the measurement...

  20. Linear Shrinkage Behaviour of Compacted Loam Masonry Blocks

    Directory of Open Access Journals (Sweden)

    NAWAB ALI LAKHO

    2017-04-01

    Full Text Available Walls of wet loam, used in earthen houses, generally experience more shrinkage which results in cracks and less compressive strength. This paper presents a technique of producing loam masonry blocks that are compacted in drained state during casting process in order to minimize shrinkage. For this purpose, loam masonry blocks were cast and compacted at a pressure of 6 MPa and then dried in shade by covering them in plastic sheet. The results show that linear shrinkage of 2% occurred which is smaller when compared to un-compacted wet loam walls. This implies that the loam masonry blocks compacted in drained state is expected to perform better than un-compacted wet loam walls.

  1. Formation of a compact toroid for enhanced efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Mozgovoy, A. G. [P.N. Lebedev Physical Institute, Moscow 119991 (Russian Federation); Romadanov, I. V.; Ryzhkov, S. V., E-mail: ryzhkov@power.bmstu.ru [Bauman Moscow State Technical University, Moscow 105005 (Russian Federation)

    2014-02-15

    We report here our results on the formation of a plasma configuration with the generic name of compact toroid (CT). A method of compact toroid formation to confine, heat and compress a plasma is investigated. Formation of a compact torus using an additional toroidal magnetic field helps to increase the plasma current to a maintainable level of the original magnetic field. We design the Compact Toroid Challenge (CTC) experiment in order to improve the magnetic flux trapping during field reversal in the formation of a compact toroid. The level of the magnetic field immersed in the plasma about 70% of the primary field is achieved. The CTC device and scheme of high level capturing of magnetic flux are presented.

  2. Compactness in quasi-Banach function spaces and applications to compact embeddings of Besov-type spaces

    Czech Academy of Sciences Publication Activity Database

    Caetano, A.M.; Gogatishvili, Amiran; Opic, B.

    2016-01-01

    Roč. 146, č. 5 (2016), s. 905-927 ISSN 0308-2105 R&D Projects: GA ČR GA13-14743S Institutional support: RVO:67985840 Keywords : quasi-Banach function space * compactness * compact embedding Subject RIV: BA - General Mathematics Impact factor: 1.158, year: 2016 http:// journals .cambridge.org/action/displayAbstract?fromPage=online&aid=10379393&fileId=S0308210515000761

  3. Compaction of amorphous iron–boron powder

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Mørup, Steen; Koch, Christian

    1993-01-01

    Large scale practical use of bulk amorphous alloys requires the capability of molding the material to a desired design, for instance by compaction of an amorphous powder. This is a difficult task because the sintering temperature is limited by the crystallization temperature of the alloy.1 Here we......, should facilitate a compaction. The passivation layer, however, impedes a compaction. Isostatic pressing at 540 K at a pressure of 200 MPa clearly illustrated this; pellets pressed from passivated powder were much more brittle than pellets pressed from unpassivated powder. The density of the pellets...... was very low ([approximately-equal-to]25% of the density of bulk FeB). We have designed a die for uniaxial pressing in which the compaction can be performed without exposing the powder to air and have obtained densities larger than 60% of that of bulk FeB. We have reported studies of the dependence...

  4. Deployment of a fluidic pulse jet mixing system for horizontal waste storage tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Kent, T.E.; Hylton, T.D.; Moore, J.W.

    1998-08-01

    A fluidic pulse jet mixing system, designed and fabricated by AEA Technology, was successfully demonstrated for mobilization of remote-handled transuranic (RH-TRU) sludge for retrieval from three 50,000-gal horizontal waste storage tanks (W-21, W-22, and W-23) at Oak Ridge National Laboratory (ORNL). The pulse jet system is unique because it does not contain any moving parts except for some solenoid valves which can be easily replaced if necessary. The pulse jet system consisted of seven modular equipment skids and was installed and commissioned in about 7 weeks. The system used specially designed fluidic jet pumps and charge vessels, along with existing submerged nozzles for mixing the settled sludges with existing supernate in the tank. The operation also used existing piping and progressive cavity pumps for retrieval and transfer of the waste mixtures. The pulse jet system operated well and experienced no major equipment malfunctions. The modular design, use of quick-connect couplings, and low-maintenance aspects of the system minimized radiation exposure during installation and operation of the system. The extent of sludge removal from the tanks was limited by the constraints of using the existing tank nozzles and the physical characteristics of the sludge. Removing greater than 98% of this sludge would require aggressive use of the manual sluicer (and associated water additions), a shielded sluicer system that utilizes supernate from existing inventory, or a more costly and elaborate robotic retrieval system. The results of this operation indicate that the pulse jet system should be considered for mixing and bulk retrieval of sludges in other horizontal waste tanks at ORNL and US Department of Energy sites

  5. Understanding Fish Linear Acceleration Using an Undulatory Biorobotic Model with Soft Fluidic Elastomer Actuated Morphing Median Fins.

    Science.gov (United States)

    Wen, Li; Ren, Ziyu; Di Santo, Valentina; Hu, Kainan; Yuan, Tao; Wang, Tianmiao; Lauder, George V

    2018-04-10

    Although linear accelerations are an important common component of the diversity of fish locomotor behaviors, acceleration is one of the least-understood aspects of propulsion. Analysis of acceleration behavior in fishes with both spiny and soft-rayed median fins demonstrates that fin area is actively modulated when fish accelerate. We implemented an undulatory biomimetic robotic fish model with median fins manufactured using multimaterial three-dimensional printing-a spiny-rayed dorsal fin, soft-rayed dorsal/anal fins, and a caudal fin-whose stiffnesses span three orders of magnitude. We used an array of fluidic elastomeric soft actuators to mimic the dorsal/anal inclinator and erector/depressor muscles of fish, which allowed the soft fins to be erected or folded within 0.3 s. We experimentally show that the biomimetic soft dorsal/anal fin can withstand external loading. We found that erecting the soft dorsal/anal fins significantly enhanced the linear acceleration rate, up to 32.5% over the folded fin state. Surprisingly, even though the projected area of the body (in the lateral plane) increased 16.9% when the median fins were erected, the magnitude of the side force oscillation decreased by 24.8%, which may have led to significantly less side-to-side sway in the robotic swimmer. Visualization of fluid flow in the wake of median fins reveals that during linear acceleration, the soft dorsal fin generates a wake flow opposite in direction to that of the caudal fin, which creates propulsive jets with time-variant circulations and jet angles. Erectable/foldable fins provide a new design space for bioinspired underwater robots with structures that morph to adapt to different locomotor behaviors. This biorobotic fish model is also a potentially promising system for studying the dynamics of complex multifin fish swimming behaviors, including linear acceleration, steady swimming, and burst and coast, which are difficult to analyze in freely swimming fishes.

  6. Isometric coactions of compact quantum groups on compact ...

    Indian Academy of Sciences (India)

    a compact quantum metric space in the framework of Rieffel, where the ... This problem can be formulated and studied in various settings. ... The spaces we are interested in this paper are metric spaces, both classical and quantum. ... He has given a definition for a quantum symmetry of a classical ...... by the construction of I.

  7. Artificial boundary conditions for certain evolution PDEs with cubic nonlinearity for non-compactly supported initial data

    Science.gov (United States)

    Vaibhav, V.

    2011-04-01

    The paper addresses the problem of constructing non-reflecting boundary conditions for two types of one dimensional evolution equations, namely, the cubic nonlinear Schrödinger (NLS) equation, ∂tu+Lu-iχ|u|2u=0 with L≡-i∂x2, and the equation obtained by letting L≡∂x3. The usual restriction of compact support of the initial data is relaxed by allowing it to have a constant amplitude along with a linear phase variation outside a compact domain. We adapt the pseudo-differential approach developed by Antoine et al. (2006) [5] for the NLS equation to the second type of evolution equation, and further, extend the scheme to the aforementioned class of initial data for both of the equations. In addition, we discuss efficient numerical implementation of our scheme and produce the results of several numerical experiments demonstrating its effectiveness.

  8. Temperature evolution during compaction of pharmaceutical powders.

    Science.gov (United States)

    Zavaliangos, Antonios; Galen, Steve; Cunningham, John; Winstead, Denita

    2008-08-01

    A numerical approach to the prediction of temperature evolution in tablet compaction is presented here. It is based on a coupled thermomechanical finite element analysis and a calibrated Drucker-Prager Cap model. This approach is capable of predicting transient temperatures during compaction, which cannot be assessed by experimental techniques due to inherent test limitations. Model predictions are validated with infrared (IR) temperature measurements of the top tablet surface after ejection and match well with experiments. The dependence of temperature fields on speed and degree of compaction are naturally captured. The estimated transient temperatures are maximum at the end of compaction at the center of the tablet and close to the die wall next to the powder/die interface.

  9. 'Crescent'-shaped tokamak for compact ignition

    International Nuclear Information System (INIS)

    Yamazaki, K.; Reiersen, W.T.

    1985-12-01

    A compact high-beta tokamak configuration with ''crescent''-shaped (or ''boomerang''-shaped) cross-section is proposed as a next-generation ignition machine. This configuration with a small indentation but a large triangularity is more compact than the normal dee-shaped design because of its high-beta characteristics in the first-second transition regime of stability. This may also be a more reliable next-generation compact device than the bean-shaped design with large indentation and small triangularity, because this design dose not rely on the second stability and is easily extendable from the present dee-shaped design. (author)

  10. Generalised model for anisotropic compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Raj Kumar Goel Institute of Technology, Department of Mathematics, Ghaziabad, Uttar Pradesh (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Deb, Debabrata [Indian Institute of Engineering Science and Technology, Shibpur, Department of Physics, Howrah, West Bengal (India)

    2016-12-15

    In the present investigation an exact generalised model for anisotropic compact stars of embedding class 1 is sought with a general relativistic background. The generic solutions are verified by exploring different physical aspects, viz. energy conditions, mass-radius relation, stability of the models, in connection to their validity. It is observed that the model presented here for compact stars is compatible with all these physical tests and thus physically acceptable as far as the compact star candidates RXJ 1856-37, SAX J 1808.4-3658 (SS1) and SAX J 1808.4-3658 (SS2) are concerned. (orig.)

  11. 'Crescent'-shaped tokamak for compact ignition

    International Nuclear Information System (INIS)

    Yamazaki, K.; Reiersen, W.T.

    1986-01-01

    A compact high-beta tokamak configuration with ''crescent''-shaped (or ''boomerang''-shaped) cross section is proposed as a next-generation ignition machine. This configuration with a small indentation but a large triangularity is more compact than the normal dee-shaped design because of its high-beta characteristics in the first-second transition regime of stability. This may also be a more reliable next-generation compact device than the bean-shaped design with large indentation and small triangularity, because this design does not rely on the second stability and is easily extendable from the present dee-shaped design. (author)

  12. Development of compact toroids injector for direct plasma controls

    International Nuclear Information System (INIS)

    Azuma, K.; Oda, Y.; Onozuka, M.; Uyama, T.; Nagata, M.; Fukumoto, N.

    1995-01-01

    The application of the compact toroids injector for direct plasma controls has been investigated. The compact toroids injection can fuel particles directly into the core of the plasma and modify the plasma profiles at the desired locations. The acceleration tests of the compact toroids have been conducted at Himeji Institute of Technology. The tests showed that the hydrogen compact toroid was accelerated up to 80km/s and the plasma density of the compact toroid was compressed to 1.2 x 10 21 m -3 . (orig.)

  13. Compact self-powered synchronous energy extraction circuit design with enhanced performance

    Science.gov (United States)

    Liu, Weiqun; Zhao, Caiyou; Badel, Adrien; Formosa, Fabien; Zhu, Qiao; Hu, Guangdi

    2018-04-01

    Synchronous switching circuit is viewed as an effective solution of enhancing the generator’s performance and providing better adaptability for load variations. A critical issue for these synchronous switching circuits is the self-powered realization. In contrast with other methods, the electronic breaker possesses the advantage of simplicity and reliability. However, beside the energy consumption of the electronic breakers, the parasitic capacitance decreases the available piezoelectric voltage. In this technical note, a new compact design of the self-powered switching circuit using electronic breaker is proposed. The envelope diodes are excluded and only a single envelope capacitor is used. The parasitic capacitance is reduced to half with boosted performance while the components are reduced with cost saved.

  14. Co-compact Gabor Systems on Locally Compact Abelian Groups

    DEFF Research Database (Denmark)

    Jakobsen, Mads Sielemann; Lemvig, Jakob

    2016-01-01

    In this work we extend classical structure and duality results in Gabor analysis on the euclidean space to the setting of second countable locally compact abelian (LCA) groups. We formulate the concept of rationally oversampling of Gabor systems in an LCA group and prove corresponding characteriz...

  15. Agglomeration of powders with a new-coupled vibration-compaction device

    Directory of Open Access Journals (Sweden)

    Serris Eric

    2017-01-01

    Full Text Available Inorganic powder recycling should be a crucial process for the “smart factories” in the future. A complex three-phase system (bauxite mixed with ordinary Portland cement and water with a new-coupled vibration-compaction device is studied. The compressive stress of compacts seems to be improved by using this device at low compaction pressure leaving the other characteristics unchanged. The tomographic study of macroscopic porosities shows differences in the pores repartitions inside vibrated and untreated compacts. Classic porosity repartition is shown in the classic compacted bauxite compacts whereas in the vibrated-compacted bauxite exhibits inhomogeneities. Despite this, we find these results quite promising for further investigations.

  16. Impact Compaction of a Granular Material

    Science.gov (United States)

    Fenton, Gregg; Asay, Blaine; Todd, Steve; Grady, Dennis

    2017-06-01

    The dynamic behavior of granular materials has importance to a variety of engineering applications. Although, the mechanical behavior of granular materials have been studied extensively for several decades, the dynamic behavior of these materials remains poorly understood. High-quality experimental data are needed to improve our general understanding of granular material compaction physics. This paper describes how an instrumented plunger impact system can be used to measure the compaction process for granular materials at high and controlled strain rates and subsequently used for computational modelling. The experimental technique relies on a gas-gun driven plunger system to generate a compaction wave through a volume of granular material. This volume of material has been redundantly instrumented along the bed length to track the progression of the compaction wave, and the piston displacement is measured with Photon Doppler Velocimetry (PDV). Using the gathered experimental data along with the initial material tap density, a granular material equation of state can be determined.

  17. Development of compact toroids injector for direct plasma controls

    Energy Technology Data Exchange (ETDEWEB)

    Azuma, K. [Mitsubishi Heavy Industries Ltd., Takasago (Japan); Oda, Y. [Mitsubishi Heavy Industries Ltd., Takasago (Japan); Onozuka, M. [Mitsubishi Heavy Industries Ltd., Takasago (Japan); Uyama, T. [Himeji Inst. of Tech. (Japan); Nagata, M. [Himeji Inst. of Tech. (Japan); Fukumoto, N. [Himeji Inst. of Tech. (Japan)

    1995-12-31

    The application of the compact toroids injector for direct plasma controls has been investigated. The compact toroids injection can fuel particles directly into the core of the plasma and modify the plasma profiles at the desired locations. The acceleration tests of the compact toroids have been conducted at Himeji Institute of Technology. The tests showed that the hydrogen compact toroid was accelerated up to 80km/s and the plasma density of the compact toroid was compressed to 1.2 x 10{sup 21}m{sup -3}. (orig.).

  18. Principles of control automation of soil compacting machine operating mechanism

    Science.gov (United States)

    Anatoly Fedorovich, Tikhonov; Drozdov, Anatoly

    2018-03-01

    The relevance of the qualitative compaction of soil bases in the erection of embankment and foundations in building and structure construction is given.The quality of the compactible gravel and sandy soils provides the bearing capability and, accordingly, the strength and durability of constructed buildings.It has been established that the compaction quality depends on many external actions, such as surface roughness and soil moisture; granulometry, chemical composition and degree of elasticity of originalfilled soil for compaction.The analysis of technological processes of soil bases compaction of foreign and domestic information sources showed that the solution of such important problem as a continuous monitoring of soil compaction actual degree in the process of machine operation carry out only with the use of modern means of automation. An effective vibrodynamic method of gravel and sand material sealing for the building structure foundations for various applications was justified and suggested.The method of continuous monitoring the soil compaction by measurement of the amplitudes and frequencies of harmonic oscillations on the compactible surface was determined, which allowed to determine the basic elements of facilities of soil compacting machine monitoring system of operating, etc. mechanisms: an accelerometer, a bandpass filter, a vibro-harmonics, an on-board microcontroller. Adjustable parameters have been established to improve the soil compaction degree and the soil compacting machine performance, and the adjustable parameter dependences on the overall indexhave been experimentally determined, which is the soil compaction degree.A structural scheme of automatic control of the soil compacting machine control mechanism and theoperation algorithm has been developed.

  19. Hydrodynamics of Safety Injection Tank with Fluidic Device in Recent Regulation

    International Nuclear Information System (INIS)

    Bang, Young Seok; Yoo, Seung Hun

    2016-01-01

    Safety Injection Tank (SIT) with Fluidic Device (FD) has been used in several APR1400 nuclear power plants. It was designed to provide a longer passive safety injection than the existing accumulator to improve the safety for Large Break Loss-of-Coolant Accident (LBLOCA) by changing the injected flow through the FD and the standpipe of the SIT. As a result, high flow injection phase and the subsequent low flow one can be achieved as longer than the existing accumulator. The present paper discusses the major concerns related to SIT hydrodynamics and the directions to resolution recently concerned. Modeling of SIT/FD by total hydraulic resistances, potential of nitrogen intrusion, and effect of initial pressure of SIT testing are included. Based on the discussion, a table of the important phenomena of the SIT/FD was proposed with the relevancy of the calculation models applied. The present paper discussed the SIT hydrodynamics including the modeling of SIT/FD by total hydraulic resistances, potential of nitrogen intrusion, and effect of initial pressure of SIT testing. Also a table of the important phenomena of the SIT/FD was proposed with the relevancy of the calculation models applied. The following conclusions are obtained uncertainty due to the assumption of the total Kfactor as constant for high flow, transition phase, and low flow phase should be considered and nitrogen intrusion phenomena during the transition phase should be considered with a conservatism, especially considering the current situation of nonmeasuring the standpipe level

  20. Hydrodynamics of Safety Injection Tank with Fluidic Device in Recent Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Young Seok; Yoo, Seung Hun [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    Safety Injection Tank (SIT) with Fluidic Device (FD) has been used in several APR1400 nuclear power plants. It was designed to provide a longer passive safety injection than the existing accumulator to improve the safety for Large Break Loss-of-Coolant Accident (LBLOCA) by changing the injected flow through the FD and the standpipe of the SIT. As a result, high flow injection phase and the subsequent low flow one can be achieved as longer than the existing accumulator. The present paper discusses the major concerns related to SIT hydrodynamics and the directions to resolution recently concerned. Modeling of SIT/FD by total hydraulic resistances, potential of nitrogen intrusion, and effect of initial pressure of SIT testing are included. Based on the discussion, a table of the important phenomena of the SIT/FD was proposed with the relevancy of the calculation models applied. The present paper discussed the SIT hydrodynamics including the modeling of SIT/FD by total hydraulic resistances, potential of nitrogen intrusion, and effect of initial pressure of SIT testing. Also a table of the important phenomena of the SIT/FD was proposed with the relevancy of the calculation models applied. The following conclusions are obtained uncertainty due to the assumption of the total Kfactor as constant for high flow, transition phase, and low flow phase should be considered and nitrogen intrusion phenomena during the transition phase should be considered with a conservatism, especially considering the current situation of nonmeasuring the standpipe level.

  1. FEM modeling on the compaction of Fe and Al composite powders

    Directory of Open Access Journals (Sweden)

    Han P.

    2015-01-01

    Full Text Available The compaction process of Fe and Al composite powders subjected to single action die compaction was numerically modeled by FEM method. The relationship between the overall relative density and compaction pressure of the compacts with various Al contents was firstly identified, and the influences of Al content on the local relative density, stress, and their distributions were studied. Then the compaction pressure effects on the above properties with fixed Al content were discussed. Furthermore, detailed flow behaviors of the composite powders during compaction and the relationship between the compaction pressure and the ejection force/spring back of the compact were analyzed. The results show that: (1 With each compaction pressure, higher relative density can be realized with the increase of Al content and the relative density distribution tends to be uniform; (2 When the Al content is fixed, higher compaction pressure can lead to composite compact with higher relative density, and the equivalent Von Mises stress in the central part of the compact increases gradually; (3 Convective flow occurs at the top and bottom parts of the compact close to the die wall, each indicates a different flow behavior; (4 The larger the compaction pressure for each case, the higher the residual elasticity, and the larger the ejection force needed.

  2. Advanced freeform optics enabling ultra-compact VR headsets

    Science.gov (United States)

    Benitez, Pablo; Miñano, Juan C.; Zamora, Pablo; Grabovičkić, Dejan; Buljan, Marina; Narasimhan, Bharathwaj; Gorospe, Jorge; López, Jesús; Nikolić, Milena; Sánchez, Eduardo; Lastres, Carmen; Mohedano, Ruben

    2017-06-01

    We present novel advanced optical designs with a dramatically smaller display to eye distance, excellent image quality and a large field of view (FOV). This enables headsets to be much more compact, typically occupying about a fourth of the volume of a conventional headset with the same FOV. The design strategy of these optics is based on a multichannel approach, which reduces the distance from the eye to the display and the display size itself. Unlike conventional microlens arrays, which are also multichannel devices, our designs use freeform optical surfaces to produce excellent imaging quality in the entire field of view, even when operating at very oblique incidences. We present two families of compact solutions that use different types of lenslets: (1) refractive designs, whose lenslets are composed typically of two refractive surfaces each; and (2) light-folding designs that use prism-like three-surface lenslets, in which rays undergo refraction, reflection, total internal reflection and refraction again. The number of lenslets is not fixed, so different configurations may arise, adaptable for flat or curved displays with different aspect ratios. In the refractive designs the distance between the optics and the display decreases with the number of lenslets, allowing for displaying a light-field when the lenslet becomes significantly small than the eye pupil. On the other hand, the correlation between number of lenslets and the optics to display distance is broken in light-folding designs, since their geometry permits achieving a very short display to eye distance with even a small number of lenslets.

  3. Mechanical and chemical compaction in fine-grained shallow-water limestones.

    Science.gov (United States)

    Shinn, E.A.; Robbin, D.M.

    1983-01-01

    Significant mechanical compaction resulted from pressures simulating less than 305 m of burial. Increasing loads to an equivalent of more than 3400 m did not significantly increase compaction or reduce sediment core length. Chemical compaction (pressure dissolution) was detected only in sediment cores compacted to pressures greater than 3400 m of burial. These short-term experiments suggest that chemical compaction would begin at much shallower depths given geologic time. Compaction experiments that caused chemical compaction lend support to the well-established hypothesis; that cement required to produce a low-porosity/low-permeability fine-grained limestone is derived internally. Dissolution, ion diffusion, and reprecipitation are considered the most likely processes for creating significant thicknesses of dense limestone in the geologic record. Continuation of chemical compaction after significant porosity reduction necessitates expulsion of connate fluids, possibly including hydrocarbons. -from Authors

  4. Bone compaction enhances implant fixation in a canine gap model

    DEFF Research Database (Denmark)

    Kold, Søren; Rahbek, Ole; Toft, Marianne

    2005-01-01

    A new bone preparation technique, compaction, has increased fixation of implants inserted with exact-fit or press-fit to bone. Furthermore, a demonstrated spring-back effect of compacted bone might be of potential value in reducing the initial gaps that often exist between clinical inserted...... implants and bone. However, it is unknown whether the compression and breakage of trabeculae during the compaction procedure results in impaired gap-healing of compacted bone. Therefore, we compared compaction with conventional drilling in a canine gap model. Grit-blasted titanium implants (diameter 6 mm...... that the beneficial effect of reduced gap size, as compacted bone springs back, is not eliminated by an impaired gap-healing of compacted bone....

  5. Modeling compaction-induced energy dissipation of granular HMX

    Energy Technology Data Exchange (ETDEWEB)

    Gonthier, K.A. [Lamar Univ., Beaumont, TX (US). Dept. of Mechanical Engineering; Menikoff, R.; Son, S.F.; Asay, B.W. [Los Alamos National Lab., NM (US)

    1998-12-31

    A thermodynamically consistent model is developed for the compaction of granular solids. The model is an extension of the single phase limit of two-phase continuum models used to describe Deflagration-to-Detonation Transition (DDT) experiments. The focus is on the energetics and dissipation of the compaction process. Changes in volume fraction are partitioned into reversible and irreversible components. Unlike conventional DDT models, the model is applicable from the quasi-static to dynamic compaction regimes for elastic, plastic, or brittle materials. When applied to the compaction of granular HMX (a brittle material), the model predicts results commensurate with experiments including stress relaxation, hysteresis, and energy dissipation. The model provides a suitable starting point for the development of thermal energy localization sub-scale models based on compaction-induced dissipation.

  6. Strategy Guideline. Compact Air Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Burdick, Arlan [IBACOS, Inc., Pittsburgh, PA (United States)

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  7. The use of compaction in the manufacture of tablets

    Directory of Open Access Journals (Sweden)

    O. V. Tryhubchak

    2016-08-01

    Full Text Available In the production of tablets direct compression method, wet and dry granulationare used. Dry granulation can be used if materials have sufficient cohesive properties to form granules. Scientific publications of recent years clearly demonstrate the prospects of roller compaction using in pharmaceutical industry. Aim. The aim of work is to generalize available data regarding to the use of compaction in the pharmaceutical industry. Materials and methods. We have studied and analyzed the available scientific sources in order to generalize the available literature on the use of compacting in the production of the tablets. During this study we used methods of observation and systematization analysis. Results. Materials for compaction characteristics of the process, its benefits and conditions of application have been collected and systematized, parameters of process have been selected, theories of compaction have been generalized, the characteristics and examples of compaction equipment have been adduced, and the key characteristics of the material used in the pharmaceutical industry have been demonstrated. Compacting is dry granulation technology in which powder containing active ingredients and excipients are compacted between two opposing spinning rollers by applying mechanical pressure. Compared with the original powder, granules after compression are characterized by much better fluidity and higher density by reducing the volume. The roller consolidation process substantially affects the particle size distribution, flowability, homogeneity, pressing, compaction substances and excipients, therefore, can affect dissolution, time of disintegration, resistance to crushing, abrasion of tablets. The main parameters of compacting are seal and method of its application, conditions and speed of the process. Conclusions. It has been established that the use of compacting decreases or increases particles size to form granules, which leads to improved

  8. Land subsidence and hydrodynamic compaction of sedimentary basins

    Directory of Open Access Journals (Sweden)

    H. Kooi

    1998-01-01

    Full Text Available A one-dimensional model is used to investigate the relationship between land subsidence and compaction of basin sediments in response to sediment loading. Analysis of the model equations and numerical experiments demonstrate quasi-linear systems behaviour and show that rates of land subsidence due to compaction: (i can attain a significant fraction (>40% of the long-term sedimentation rate; (ii are hydrodynamically delayed with respect to sediment loading. The delay is controlled by a compaction response time τc that can reach values of 10-5-107 yr for thick shale sequences. Both the behaviour of single sediment layers and multiple-layer systems are analysed. Subsequently the model is applied to the coastal area of the Netherlands to illustrate that lateral variability in compaction-derived land subsidence in sedimentary basins largely reflects the spatial variability in both sediment loading and compaction response time. Typical rates of compaction-derived subsidence predicted by the model are of the order of 0.1 mm/yr but may reach values in excess of 1 mm/yr under favourable conditions.

  9. DNA compaction by azobenzene-containing surfactant

    International Nuclear Information System (INIS)

    Zakrevskyy, Yuriy; Kopyshev, Alexey; Lomadze, Nino; Santer, Svetlana; Morozova, Elena; Lysyakova, Ludmila; Kasyanenko, Nina

    2011-01-01

    We report on the interaction of cationic azobenzene-containing surfactant with DNA investigated by absorption and fluorescence spectroscopy, dynamic light scattering, and atomic force microscopy. The properties of the surfactant can be controlled with light by reversible switching of the azobenzene unit, incorporated into the surfactant tail, between a hydrophobic trans (visible irradiation) and a hydrophilic cis (UV irradiation) configuration. The influence of the trans-cis isomerization of the azobenzene on the compaction process of DNA molecules and the role of both isomers in the formation and colloidal stability of DNA-surfactant complexes is discussed. It is shown that the trans isomer plays a major role in the DNA compaction process. The influence of the cis isomer on the DNA coil configuration is rather small. The construction of a phase diagram of the DNA concentration versus surfactant/DNA charge ratio allows distancing between three major phases: colloidally stable and unstable compacted globules, and extended coil conformation. There is a critical concentration of DNA above which the compacted globules can be hindered from aggregation and precipitation by adding an appropriate amount of the surfactant in the trans configuration. This is because of the compensation of hydrophobicity of the globules with an increasing amount of the surfactant. Below the critical DNA concentration, the compacted globules are colloidally stable and can be reversibly transferred with light to an extended coil state.

  10. Compact torsatron reactors

    International Nuclear Information System (INIS)

    Lyon, J.F.; Carreras, B.A.; Lynch, V.E.; Tolliver, J.S.; Sviatoslavsky, I.N.

    1988-05-01

    Low-aspect-ratio torsatron configurations could lead to compact stellarator reactors with R 0 = 8--11m, roughly one-half to one-third the size of more conventional stellarator reactor designs. Minimum-size torsatron reactors are found using various assumptions. Their size is relatively insensitive to the choice of the conductor parameters and depends mostly on geometrical constraints. The smallest size is obtained by eliminating the tritium breeding blanket under the helical winding on the inboard side and by reducing the radial depth of the superconducting coil. Engineering design issues and reactor performance are examined for three examples to illustrate the feasibility of this approach for compact reactors and for a medium-size (R 0 ≅ 4 m,/bar a/ /approx lt/ 1 m) copper-coil ignition experiment. 26 refs., 11 figs., 7 tabs

  11. Compact fusion reactors

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.

  12. On compact multipliers of topological algebras

    International Nuclear Information System (INIS)

    Mohammad, N.

    1994-08-01

    It is shown that if the maximal ideal space Δ(A) of a semisimple commutative complete metrizable locally convex algebra contains no isolated points, then every compact multiplier is trivial. Particularly, compact multipliers on semisimple commutative Frechet algebras whose maximal ideal space has no isolated points are identically zero. (author). 5 refs

  13. The classification of 2-compact groups

    DEFF Research Database (Denmark)

    K. S. Andersen, Kasper; Grodal, Jesper

    2009-01-01

    with Moeller and Viruel for p odd, this establishes the full classification of p-compact groups, stating that, up to isomorphism, there is a one-to-one correspondence between connected p-compact groups and root data over the p-adic integers. As a consequence we prove the maximal torus conjecture, giving a one...

  14. Ultra high frequency induction welding of powder metal compacts

    Energy Technology Data Exchange (ETDEWEB)

    Cavdar, U.; Gulsahin, I.

    2014-10-01

    The application of the iron based Powder Metal (PM) compacts in Ultra High Frequency Induction Welding (UHFIW) were reviewed. These PM compacts are used to produce cogs. This study investigates the methods of joining PM materials enforceability with UHFIW in the industry application. Maximum stress and maximum strain of welded PM compacts were determined by three point bending and strength tests. Microhardness and microstructure of induction welded compacts were determined. (Author)

  15. Ultra high frequency induction welding of powder metal compacts

    International Nuclear Information System (INIS)

    Cavdar, U.; Gulsahin, I.

    2014-01-01

    The application of the iron based Powder Metal (PM) compacts in Ultra High Frequency Induction Welding (UHFIW) were reviewed. These PM compacts are used to produce cogs. This study investigates the methods of joining PM materials enforceability with UHFIW in the industry application. Maximum stress and maximum strain of welded PM compacts were determined by three point bending and strength tests. Microhardness and microstructure of induction welded compacts were determined. (Author)

  16. Compaction of an Oxisol and chemical composition of palisadegrass

    Directory of Open Access Journals (Sweden)

    Eurico Lucas de Sousa Neto

    2013-08-01

    Full Text Available Compaction is an important problem in soils under pastoral land use, and can make livestock systems unsustainable. The objective of this research was to study the impact of soil compaction on yield and quality of palisade (UROCHLOA BRIZANTHA cv. Marandu. The experiment was conducted on an Oxisol in the State of Mato Grosso, Brazil. Treatments consisted of four levels of soil compaction: no compaction (NC, slight compaction (SC, medium compaction (MC and high compaction (HC. The following soil properties were evaluated (layers 0-0.05 and 0.05-0.10 m: aggregate size distribution, bulk density (BD, macroporosity, microporosity, total porosity (TP, relative compaction (RC, and the characteristics of crude protein (CP, neutral detergent fiber (NDF, acid detergent fiber (ADF and dry matter yield (DMY of the forage. Highly compacted soil had high BD and RC, and low TP (0-0.05 m. Both DMY and CP were affected by HC, and both were strongly related to BD. Higher DMY (6.96 Mg ha-1 and CP (7.8 % were observed in the MC treatment (BD 1.57 Mg m-3 and RC 0.91 Mg m-3, in 0-0.05 m. A high BD of 1.57 Mg m-3 (0-0.05 m did not inhibit plant growth. The N concentration in the palisade biomass differed significantly among compaction treatments, and was 8.72, 11.20, 12.48 and 10.98 g kg-1 in NC, SC, MC and HC treatments, respectively. Increase in DMY and CP at the MC level may be attributed to more absorption of N in this coarse-textured soil.

  17. Explaining compact groups as change alignments

    International Nuclear Information System (INIS)

    Mamon, G.A.

    1990-01-01

    The physical nature of the apparently densest groups of galaxies, known as compact groups is a topic of some recent controversy, despite the detailed observations of a well-defined catalog of 100 isolated compact groups compiled by Hickson (1982). Whereas many authors have espoused the view that compact groups are bound systems, typically as dense as they appear in projection on the sky (e.g., Williams ampersand Rood 1987; Sulentic 1987; Hickson ampersand Rood 1988), others see them as the result of chance configurations within larger systems, either in 1D (chance alignments: Mamon 1986; Walke ampersand Mamon 1989), or in 3D (transient cores: Rose 1979). As outlined in the companion review to this contribution (Mamon, in these proceedings), the implication of Hickson's compact groups (HCGs) being dense bound systems is that they would then constitute the densest isolated systems of galaxies in the Universe and the privileged site for galaxy interactions. In a previous paper (Mamon 1986), the author reviewed the arguments given for the different theories of compact groups. Since then, a dozen papers have been published on the subject, including a thorough and perceptive review by White (1990), thus more than doubling the amount written on the subject. Here, the author first enumerates the arguments that he brought up in 1986 substantiating the chance alignment hypothesis, then he reviews the current status of the numerous recent arguments arguing against chance alignments and/or for the bound dense group hypothesis (both for the majority of HCGs but not all of them), and finally he reconsiders each one of these anti-chance alignment arguments and shows that, rather than being discredited, the chance alignment hypothesis remains a fully consistent explanation for the nature of compact groups

  18. Analysis of the cold compaction behaviour of TiH2-316L nanocomposite powder blend using compaction models

    CSIR Research Space (South Africa)

    Machio, Christopher N

    2015-07-01

    Full Text Available The paper captures the effect of structure and the applicability of compaction models using the cold compaction of a TiH2-SS316L composite powder prepared by high energy mechanical milling. The composite blend was cold pressed uniaxially...

  19. Compact akinetic swept source optical coherence tomography angiography at 1060 nm supporting a wide field of view and adaptive optics imaging modes of the posterior eye.

    Science.gov (United States)

    Salas, Matthias; Augustin, Marco; Felberer, Franz; Wartak, Andreas; Laslandes, Marie; Ginner, Laurin; Niederleithner, Michael; Ensher, Jason; Minneman, Michael P; Leitgeb, Rainer A; Drexler, Wolfgang; Levecq, Xavier; Schmidt-Erfurth, Ursula; Pircher, Michael

    2018-04-01

    Imaging of the human retina with high resolution is an essential step towards improved diagnosis and treatment control. In this paper, we introduce a compact, clinically user-friendly instrument based on swept source optical coherence tomography (SS-OCT). A key feature of the system is the realization of two different operation modes. The first operation mode is similar to conventional OCT imaging and provides large field of view (FoV) images (up to 45° × 30°) of the human retina and choroid with standard resolution. The second operation mode enables it to optically zoom into regions of interest with high transverse resolution using adaptive optics (AO). The FoV of this second operation mode (AO-OCT mode) is 3.0° × 2.8° and enables the visualization of individual retinal cells such as cone photoreceptors or choriocapillaris. The OCT engine is based on an akinetic swept source at 1060 nm and provides an A-scan rate of 200 kHz. Structural as well as angiographic information can be retrieved from the retina and choroid in both operational modes. The capabilities of the prototype are demonstrated in healthy and diseased eyes.

  20. Automorphisms of p-compact groups and their root data

    DEFF Research Database (Denmark)

    Andersen, Kasper K. S.; Grodal, Jesper Kragh

    2008-01-01

    We construct a model for the space of automorphisms of a connected p–compact group in terms of the space of automorphisms of its maximal torus normalizer and its root datum. As a consequence we show that any homomorphism to the outer automorphism group of a p–compact group can be lifted to a group...... action, analogous to   a classical theorem of de Siebenthal for compact Lie groups. The model of this paper is used in a crucial way in our paper `The classification of 2-compact groups' [arXiv:math.AT/0611437], where we prove the conjectured classification of 2–compact groups and determine...... their automorphism spaces....

  1. Pharmaceutical powder compaction technology

    National Research Council Canada - National Science Library

    Çelik, Metin

    2011-01-01

    "Revised to reflect modern pharmaceutical compacting techniques, this Second Edition guides pharmaceutical engineers, formulation scientists, and product development and quality assurance personnel...

  2. Inhomogeneous compact extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Bronnikov, K.A. [Center of Gravity and Fundamental Metrology, VNIIMS, 46 Ozyornaya st., Moscow 119361 (Russian Federation); Budaev, R.I.; Grobov, A.V.; Dmitriev, A.E.; Rubin, Sergey G., E-mail: kb20@yandex.ru, E-mail: buday48@mail.ru, E-mail: alexey.grobov@gmail.com, E-mail: alexdintras@mail.ru, E-mail: sergeirubin@list.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow (Russian Federation)

    2017-10-01

    We show that an inhomogeneous compact extra space possesses two necessary features— their existence does not contradict the observable value of the cosmological constant Λ{sub 4} in pure f ( R ) theory, and the extra dimensions are stable relative to the 'radion mode' of perturbations, the only mode considered. For a two-dimensional extra space, both analytical and numerical solutions for the metric are found, able to provide a zero or arbitrarily small Λ{sub 4}. A no-go theorem has also been proved, that maximally symmetric compact extra spaces are inconsistent with 4D Minkowski space in the framework of pure f ( R ) gravity.

  3. Engineering aspects of compact stellarators

    International Nuclear Information System (INIS)

    Nelson, B.E.; Benson, R.D.; Brooks, A.

    2003-01-01

    Compact stellarators could combine the good confinement and high beta of a tokamak with the inherently steady state, disruption-free characteristics of a stellarator. Two U.S. compact stellarator facilities are now in the conceptual design phase: the National Compact Stellarator Experiment (NCSX) and the Quasi- Poloidal Stellarator (QPS). NCSX has a major radius of 1.4 m and a toroidal field up to 2 T. The primary feature of both NCSX and QPS is the set of modular coils that provide the basic magnetic configuration. These coils represent a major engineering challenge due to the complex shape, precise geometric accuracy, and high current density of the windings. The winding geometry is too complex for conventional hollow copper conductor construction. Instead, the modular coils will be wound with flexible, multi strand cable conductor that has been compacted to a 75% copper packing fraction. Inside the NCSX coil set and surrounding the plasma is a highly contoured vacuum vessel. The vessel consists of three identical, 120 deg. segments that are bolted together at double sealed joints. The QPS device has a major radius of 0.9 m, a toroidal field of 1 T, and an aspect ratio of only 2.7. Instead of an internal vacuum vessel, the QPS modular coils will operate in an external vacuum tank. (author)

  4. Fabrication, sensation and control of fluidic elastomer actuators and their application towards hand orthotics and prosthetics

    Science.gov (United States)

    Zhao, Huichan

    Due to their continuous and natural motion, fluidic elastomer actuators (FEAs) have shown potential in a range of robotic applications including prosthetics and orthotics. Despite their advantages and rapid developments, robots using these actuators still have several challenging issues to be addressed. First, the reliable production of low cost and complex actuators that can apply high forces is necessary, yet none of existing fabrication methods are both easy to implement and of high force output. Next, compliant or stretchable sensors that can be embedded into their bodies for sophisticated functions are required, however, many of these sensors suffer from hysteresis, fabrication complexity, chemical safety and environmental instability, and material incompatibility with soft actuators. Finally, feedback control for FEAs is necessary to achieve better performance, but most soft robots are still "open-loop". In this dissertation, I intend to help solve the above issues and drive the applications of soft robotics towards hand orthotics and prosthetics. First, I adapt rotational casting as a new manufacturing method for soft actuators. I present a cuboid soft actuator that can generate a force of >25 N at its tip, a near ten-fold increase over similar actuators previously reported. Next, I propose a soft orthotic finger with position control enabled via embedded optical fiber. I monitor both the static and dynamic states via the optical sensor and achieve the prescribed curvatures accurately and with stability by a gain-scheduled proportional-integral-derivative controller. Then I develop the soft orthotic fingers into a low-cost, closed-loop controlled, soft orthotic glove that can be worn by a typical human hand and helpful for grasping light objects, while also providing finger position control. I achieve motion control with inexpensive, binary pneumatic switches controlled by a simple finite-state-machine. Finally, I report the first use of stretchable optical

  5. Effect of Subsoil Compaction on Hydraulic Parameters

    DEFF Research Database (Denmark)

    Iversen, Bo Vangsø; Berisso, Feto Esimo; Schjønning, Per

    Soil compaction is a major threat to sustainable soil quality and is increasing since agricultural machinery is becoming heavier and is used more intensively. Compaction not only reduces pore volume, but also modifies the pore connectivity. The inter-Nordic research project POSEIDON (Persistent...... effects of subsoil compaction on soil ecological services and functions) put forward the hypothesis that due to a decrease in the hydraulic conductivity in the soil matrix, compaction increases the frequency of preferential flow events in macropores and therefore increases the leaching of otherwise....... In the field the near-saturated hydraulic conductivity was measured with a tension infiltrometer in the same treatments at a depth of 30 cm. In the laboratory saturated and near-saturated hydraulic conductivity and the bulk density were measured as well. Also, macropores in the large soil cores were made...

  6. Compact turbidity meter

    Science.gov (United States)

    Hirschberg, J. G.

    1979-01-01

    Proposed monitor that detects back-reflected infrared radiation makes in situ turbidity measurements of lakes, streams, and other bodies of water. Monitor is compact, works well in daylight as at night, and is easily operated in rough seas.

  7. Strategy Guideline: Compact Air Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Burdick, A.

    2013-06-01

    This Strategy Guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. Traditional systems sized by 'rule of thumb' (i.e., 1 ton of cooling per 400 ft2 of floor space) that 'wash' the exterior walls with conditioned air from floor registers cannot provide appropriate air mixing and moisture removal in low-load homes. A compact air distribution system locates the HVAC equipment centrally with shorter ducts run to interior walls, and ceiling supply outlets throw the air toward the exterior walls along the ceiling plane; alternatively, high sidewall supply outlets throw the air toward the exterior walls. Potential drawbacks include resistance from installing contractors or code officials who are unfamiliar with compact air distribution systems, as well as a lack of availability of low-cost high sidewall or ceiling supply outlets to meet the low air volumes with good throw characteristics. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  8. Siting actions in compacts and nonmember states

    International Nuclear Information System (INIS)

    Tullis, J.

    1986-05-01

    This paper examines the status of siting actions in those compacts and states currently progressing with siting studies. The efforts of the Central Compact Commission, Texas, California, Colorado and Illinois are highlighted to illustrate progress, methodology, and problems encountered

  9. 42 CFR 137.30 - What is a self-governance compact?

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false What is a self-governance compact? 137.30 Section... SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES TRIBAL SELF-GOVERNANCE Self-Governance compact § 137.30 What is a self-governance compact? A self-governance compact is a legally binding and mutually...

  10. 25 CFR 1000.161 - What is a self-governance compact?

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false What is a self-governance compact? 1000.161 Section 1000... EDUCATION ACT Negotiation Process for Annual Funding Agreements Negotiating A Self-Governance Compact § 1000.161 What is a self-governance compact? A self-governance compact is an executed document that affirms...

  11. Ultra-compact Ku band rectenna

    OpenAIRE

    Takacs , Alexandru; Aubert , Hervé; Charlot , Samuel

    2015-01-01

    International audience; This paper addresses an innovative and ultra-compact rectenna designed for energy harvesting or wireless power transfer applications. The presented rectenna uses a printed cross dipoles antenna array and a rectifier implemented with only one silicon Schottky diode. Experimental results show that 1.15 mW of DC power can be obtained for an optimal load impedance of 500 Ω using a compact rectenna (2.5 cm 2 or 0.6 square wavelength) illuminated by an electric field of 60 V...

  12. Rate type isotach compaction of consolidated sandstone

    NARCIS (Netherlands)

    Waal, J.A. de; Thienen-Visser, K. van; Pruiksma, J.P.

    2015-01-01

    Laboratory experiments on samples from a consolidated sandstone reservoir are presented that demonstrate rate type compaction behaviour similar to that observed on unconsolidated sands and soils. Such rate type behaviour can have large consequences for reservoir compaction, surface subsidence and

  13. COMPACTION OF FIBERBOARD IN A 9975 SHIPPING PACKAGE

    Energy Technology Data Exchange (ETDEWEB)

    Stefek, T.; Daugherty, W.; Estochen, E.; Leduc, D.

    2011-05-11

    Compaction of lower layers in the fiberboard overpack has been observed in 9975 packages that contain elevated moisture. Lab testing has resulted in a better understanding of (1) the relationship between the fiberboard moisture level and compaction of the lower fiberboard assembly, and (2) the behavior of the fiberboard during transport. In laboratory tests, higher moisture content has been shown to correspond to higher total compaction of fiberboard material, greater rate of compaction, and continued compaction over a longer period of time. In addition, laboratory tests have shown that the application of a dynamic load results in higher fiberboard compaction. The test conditions and sample geometric/loading configurations were chosen to simulate the regulatory requirements for 9975 package input dynamic loading. Dynamic testing was conducted over a period of several months to acquire immediate and cumulative changes in geometric data for various moisture levels. Currently, one sample set has undergone a complete dynamic test regimen, while testing of another set is still in-progress. The dynamic input, data acquisition, test effects on sample dynamic parameters, and interim results from this test program will be summarized and compared to regulatory specifications for dynamic loading. This will provide a basis from which to evaluate the impact of moisture and fiberboard compaction on the safety basis for transportation (Safety Analysis Report for Packaging) and storage (facility Documented Safety Analysis) at the Savannah River Site (SRS).

  14. May compact storage facilities be licensed

    International Nuclear Information System (INIS)

    Gleim, A.; Winter, G.

    1980-01-01

    The authors examine as potential statements fo fact for licensing so-called compact storage facilities for spent fuel elements Sec. 6 to 9c of the German Atomic Energy Act and Sec. 4 of the German Radiation Protection Ordinance. They find that none of these provisions were applicable to compact stroage facilities. In particular, the storage of spent fuel elements was no storage of nuclear fuels licensable under Sec. 6 of the Atomic Energy Act, because Sec. 6 did not cover spent fuel elements. Also in the other wording of the Atomic Energy Act there was no provision, which could be used as a statement of fact for licensing compact storage facilities. Such facilities could not be licensed and, for that reason, were not permitted. (IVR) [de

  15. Assessment of soil compaction properties based on surface wave techniques

    Science.gov (United States)

    Jihan Syamimi Jafri, Nur; Rahim, Mohd Asri Ab; Zahid, Mohd Zulham Affandi Mohd; Faizah Bawadi, Nor; Munsif Ahmad, Muhammad; Faizal Mansor, Ahmad; Omar, Wan Mohd Sabki Wan

    2018-03-01

    Soil compaction plays an important role in every construction activities to reduce risks of any damage. Traditionally, methods of assessing compaction include field tests and invasive penetration tests for compacted areas have great limitations, which caused time-consuming in evaluating large areas. Thus, this study proposed the possibility of using non-invasive surface wave method like Multi-channel Analysis of Surface Wave (MASW) as a useful tool for assessing soil compaction. The aim of this study was to determine the shear wave velocity profiles and field density of compacted soils under varying compaction efforts by using MASW method. Pre and post compaction of MASW survey were conducted at Pauh Campus, UniMAP after applying rolling compaction with variation of passes (2, 6 and 10). Each seismic data was recorded by GEODE seismograph. Sand replacement test was conducted for each survey line to obtain the field density data. All seismic data were processed using SeisImager/SW software. The results show the shear wave velocity profiles increase with the number of passes from 0 to 6 passes, but decrease after 10 passes. This method could attract the interest of geotechnical community, as it can be an alternative tool to the standard test for assessing of soil compaction in the field operation.

  16. An SOI CMOS-Based Multi-Sensor MEMS Chip for Fluidic Applications.

    Science.gov (United States)

    Mansoor, Mohtashim; Haneef, Ibraheem; Akhtar, Suhail; Rafiq, Muhammad Aftab; De Luca, Andrea; Ali, Syed Zeeshan; Udrea, Florin

    2016-11-04

    An SOI CMOS multi-sensor MEMS chip, which can simultaneously measure temperature, pressure and flow rate, has been reported. The multi-sensor chip has been designed keeping in view the requirements of researchers interested in experimental fluid dynamics. The chip contains ten thermodiodes (temperature sensors), a piezoresistive-type pressure sensor and nine hot film-based flow rate sensors fabricated within the oxide layer of the SOI wafers. The silicon dioxide layers with embedded sensors are relieved from the substrate as membranes with the help of a single DRIE step after chip fabrication from a commercial CMOS foundry. Very dense sensor packing per unit area of the chip has been enabled by using technologies/processes like SOI, CMOS and DRIE. Independent apparatuses were used for the characterization of each sensor. With a drive current of 10 µA-0.1 µA, the thermodiodes exhibited sensitivities of 1.41 mV/°C-1.79 mV/°C in the range 20-300 °C. The sensitivity of the pressure sensor was 0.0686 mV/(V excit kPa) with a non-linearity of 0.25% between 0 and 69 kPa above ambient pressure. Packaged in a micro-channel, the flow rate sensor has a linearized sensitivity of 17.3 mV/(L/min) -0.1 in the tested range of 0-4.7 L/min. The multi-sensor chip can be used for simultaneous measurement of fluid pressure, temperature and flow rate in fluidic experiments and aerospace/automotive/biomedical/process industries.

  17. Adaptive Learning in Cartesian Product of Reproducing Kernel Hilbert Spaces

    OpenAIRE

    Yukawa, Masahiro

    2014-01-01

    We propose a novel adaptive learning algorithm based on iterative orthogonal projections in the Cartesian product of multiple reproducing kernel Hilbert spaces (RKHSs). The task is estimating/tracking nonlinear functions which are supposed to contain multiple components such as (i) linear and nonlinear components, (ii) high- and low- frequency components etc. In this case, the use of multiple RKHSs permits a compact representation of multicomponent functions. The proposed algorithm is where t...

  18. Compact accelerator for medical therapy

    Science.gov (United States)

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  19. Observational properties of compact groups of galaxies

    International Nuclear Information System (INIS)

    Hickson, P.

    1990-01-01

    Compact groups are small, relatively isolated, systems of galaxies with projected separations comparable to the diameters of the galaxies themselves. Two well-known examples are Stephan's Quintet (Stephan, 1877) and Seyfert's Sextet (Seyfert 1948a,b). In groups such as these, the apparent space density of galaxies approaches 10(exp 6) Mpc(sub -3), denser even than the cores of rich clusters. The apparent unlikeliness of the chance occurrence of such tight groupings lead Ambartsumyan (1958, 1975) to conclude that compact groups must be physically dense systems. This view is supported by clear signs of galaxy interactions that are seen in many groups. Spectroscopic observations reveal that typical relative velocities of galaxies in the groups are comparable to their internal stellar velocities. This should be conducive to strong gravitational interactions - more so than in rich clusters, where galaxy velocities are typically much higher. This suggests that compact groups could be excellent laboratories in which to study galaxy interactions and their effects. Compact groups often contain one or more galaxies whose redshift differs greatly from those of the other group members. If these galaxies are at the same distance as the other members, either entire galaxies are being ejected at high velocities from these groups, or some new physical phenomena must be occurring. If their redshifts are cosmological, we must explain why so many discordant galaxies are found in compact groups. In recent years much progress has been made in addressing these questions. Here, the author discusses the current observational data on compact groups and their implications

  20. Materials needs for compact fusion reactors

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1983-01-01

    The economic prospects for magnetic fusion energy can be dramatically improved if for the same total power output the fusion neutron first-wall (FW) loading and the system power density can be increased by factors of 3 to 5 and 10 to 30, respectively. A number of compact fusion reactor embodiments have been proposed, all of which would operate with increased FW loadings, would use thin (0.5 to 0.6 m) blankets, and would confine quasi-steady-state plasma with resistive, water-cooled copper or aluminum coils. Increased system power density (5 to 15 MWt/m 3 versus 0.3 to 0.5 MW/m 3 ), considerably reduced physical size of the fusion power core (FPC), and appreciably reduced economic leverage exerted by the FPC and associated physics result. The unique materials requirements anticipated for these compact reactors are outlined against the well documented backdrop provided by similar needs for the mainline approaches. Surprisingly, no single materials need that is unique to the compact systems is identified; crucial uncertainties for the compact approaches must also be addressed by the mainline approaches, particularly for in-vacuum components (FWs, limiters, divertors, etc.)

  1. Considerations for evaluating proposed low-level radioactive waste compacts

    International Nuclear Information System (INIS)

    1985-02-01

    Thirty-nine States have enacted legislation related to this Act, and five compacts have been submitted to Congress for consent. Other compacts are being negotiated, one in the West and several in the Midwest and Northeast. The Department of Energy has identified a number of items, which if included in the congressional review of each compact, would be likely to increase the possibility that new disposal sites will be developed and properly supported. The Department is providing additional perspectives that have not been previously included in testimony or reports. By suggesting examination of several general elements of a compact proposal, the Department hopes to provide a common focus that may be useful to the Congress in integrating all available information. The Department believes that the Congress should consider the following key items when reviewing the compacts: Commitments that assure the provision of new disposal capacity in the form of a host-State and site selection process with schedules and a target date for new sites to be opened; Commitments that provide short-term measures for storage, treatment, or disposal during an interim period when such new capacity may not be available; Consistency of definitions with 10 CFR Part 61 to assure the compact plan presents a total solution for all low-level waste generated within the region; Periodic review of the compacts by the Congress to examine concerns that are more easily assessed after a compact becomes operational, e.g., economic viability and long-term institutional control; and Economic viability of a compact, when reviewed in the future, in terms of the benefits and the costs specific to that region

  2. An innovative plate heat exchanger of enhanced compactness

    International Nuclear Information System (INIS)

    Vitillo, Francesco; Cachon, Lionel; Reulet, Philippe; Laroche, Emmanuel; Millan, Pierre

    2015-01-01

    In the framework of CEA R&D program to develop the Advanced Sodium Technological Reactor for Industrial Demonstration (ASTRID), the present work aims to demonstrate the industrial interest of an innovative compact heat exchanger technology. In fact, one of the main innovations of the ASTRID reactor could be the use of a Brayton Gas-power conversion system, in order to avoid the energetic sodium–water interaction that might occur if a traditional Rankine cycle was used. The present work aims to study the thermal-hydraulic performance of the innovative compact heat exchanger concept. Hence, thanks to a trustful numerical model, friction factor and heat transfer correlations are obtained. Then, a global compactness comparison strategy is proposed, taking into account design constraints. Finally, it is demonstrated that the innovative heat exchanger concept is more compact then other already industrial technologies of interest, showing that is can be considered to warrant serious consideration for future ASTRID design as well as for any industrial application that needs very compact heat exchanger technologies. - Highlights: • We propose a new innovative compact heat exchanger technology. • We provide thermal-hydraulic correlations for designers. • We provide a comparison strategy with existing technologies. • We demonstrate the industrial interest of the innovative concept

  3. Quantification of the compactibility of pharmaceutical powders

    DEFF Research Database (Denmark)

    Sonnergaard, Jørn

    2006-01-01

    The purpose of this study is to investigate and to quantify the compactibility of pharmaceutical powders by a simple linear relationship between the diametral compressive strength of tablets and the applied compaction pressure. The mechanical strength of the tablets is characterized as the crushing...

  4. An approach for modeling the influence of wheel tractor loads and vibration frequencies on soil compaction

    Science.gov (United States)

    Verotti, M.; Servadio, P.; Belfiore, N. P.; Bergonzoli, S.

    2012-04-01

    -soil-man interaction. In particular, a model based on elasto-visco-plastic concentrated parameters, with multiple degrees of freedom, will be used in order to build a method for detecting a soil damage index, especially expressed in terms of increasing of soil compaction. Besides the axle load, the model will take into account the frequency of the vibrations that the vehicle is transmitting to the soil. Such model expresses a numerical value for the transmissibility coefficient and also allows evaluating the damage at the surface and on the bulk medium where the agricultural crops initially develop. Key words: vehicle-soil interaction, vibration, compaction, models. Acknowledgements This work was carried out under the auspices of the special project "Sceneries of adaptation of the Italian agriculture to the climatic changes" (AGROSCENARI) of the Agricultural Research Council, and Italian Ministry of the Agricultural and Forestry Politics.

  5. Compact stellarators as reactors

    International Nuclear Information System (INIS)

    Lyon, J.F.; Valanju, P.; Zarnstorff, M.C.; Hirshman, S.; Spong, D.A.; Strickler, D.; Williamson, D.E.; Ware, A.

    2001-01-01

    Two types of compact stellarators are examined as reactors: two- and three-field-period (M=2 and 3) quasi-axisymmetric devices with volume-average =4-5% and M=2 and 3 quasi-poloidal devices with =10-15%. These low-aspect-ratio stellarator-tokamak hybrids differ from conventional stellarators in their use of the plasma-generated bootstrap current to supplement the poloidal field from external coils. Using the ARIES-AT model with B max =12T on the coils gives Compact Stellarator reactors with R=7.3-8.2m, a factor of 2-3 smaller R than other stellarator reactors for the same assumptions, and neutron wall loadings up to 3.7MWm -2 . (author)

  6. Compact Spreader Schemes

    Energy Technology Data Exchange (ETDEWEB)

    Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.

    2014-07-25

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  7. Methods of making high performance compacts and products

    International Nuclear Information System (INIS)

    Fey, M.G.; Iyer, N.C.; Male, A.T.; Lovic, W.R.

    1990-01-01

    This patent describes a method of forming a pressed, dense compact. It comprises: providing a compactable particulate combination of: Class 1 metals selected from the group consisting of Ag, Cu, Al, and mixtures thereof, with material selected from the class consisting of CdO, SnO, SnO 2 , C, Co, Ni, Fe, Cr, Cr 3 C 2 , Cr 7 C 3 , W, WC, W 2 C, WB, Mo, Mo 2 C, MoB, Mo 2 B, TiC, TiN, TiB 2 , Si, SiC, Si 3 N 4 , and mixtures thereof; uniaxially pressing the particulate combination to provide a compact; placing at least one compact in an open pan; evacuating air from the pan; sealing the open top portion of the pan; stacking the pans next to each other, with plates having a high electrical resistance disposed between each pan so that the pans and plates alternate with each other, where a layer of thermally conductive, granular, pressure transmitting material is disposed between each pan and plate, which granular material acts to provide heat transfer and uniform mechanical loading to the compacts in the pans upon subsequent pressing; placing the stack in a press, passing an electrical current through the pans and high electrical resistance plates to cause a heating effect on the compacts in the pans, and uniaxial pressing the alternating pans and plates; cooling and releasing pressure on the alternating pans and plates; and separating the pans from the plates and the compacts from the pans

  8. Dissolution and compaction instabilities in geomaterials

    Science.gov (United States)

    Stefanou, I.; Sulem, J.; de Sauvage, J.

    2014-12-01

    Compaction bands play an important role in reservoir engineering and geological storage. Their presence in geological formations may also provide useful information on various geological processes. Several mechanisms can be involved at different scales and may be responsible for compaction band instabilities [1]. Compaction bands can be seen as a particular instability of the governing mathematical system leading to localization of deformation [2-4]. In a saturated porous rock, the progressive mechanical damage of the solid skeleton during compaction, results in the increase of the interface area of the reactants and consequently in the acceleration of the dissolution rate of the solid phase [2,5]. Thus, the solid skeleton is degraded more rapidly (mass removal because of dissolution), the overall mechanical properties of the system diminish (contraction of the elastic domain - chemical softening), deformations increase and the solid skeleton is further damaged (intergranular fractures, debonding, breakage of the porous network etc.). The stability of this positive feedback process is investigated analytically through linear stability analysis by considering the strong chemo-poro-mechanical coupling due to chemical dissolution. The post bifurcation behavior is then studied analytically and numerically revealing the compaction band thickness and periodicity. The effect of various parameters is studied as for instance the influence of the hydraulic diffusivity on the compaction band thickness. [1] P. Baud, S. Vinciguerra, C. David, A. Cavallo, E. Walker and T. Reuschlé (2009), Pure Appl. Geophys., 166(5-7), 869-898 [2] I. Stefanou and J. Sulem (2014), JGR: Solid Earth, 119(2), 880-899. doi:10.1002/2013JB010342I [3] J.W. Rudnicki and J.R. Rice (1975), Journal of the Mechanics and Physics of Solids 23(6),: 371-394 [4] K.A. Issen and J.W. Rudnicki (2000), JGR, 105(B9), 21529. doi:10.1029/2000JB900185 [5] R. Nova, R. Castellanza and C. Tamagnini (2003), International

  9. The classification of p-compact groups for p odd

    DEFF Research Database (Denmark)

    Andersen, Kasper K. S.; Grodal, Jesper Kragh; Møller, Jesper Michael

    2008-01-01

    A p-compact group, as defined by Dwyer and Wilkerson, is a purely homotopically defined p-local analog of a compact Lie group. It has long been the hope, and later the conjecture, that these objects should have a classification similar to the classification of compact Lie groups. In this paper we...... groups are uniquely determined as p-compact groups by their Weyl groups seen as finite reflection groups over the p-adic integers. Our approach in fact gives a largely self-contained proof of the entire classification theorem for p odd....

  10. Development of compact mutants in apple and sour cherry

    International Nuclear Information System (INIS)

    Zagaja, S.W.; Przybyla, A.; Machnik, B.

    1982-01-01

    During the period 1973 - 79 studies were conducted with the aim of developing compact mutants in apple and cherry cultivars and in apple vegetative rootstocks. During the investigations the effect of the dose of gamma rays on frequency of the mutants was studied. Attempts were also made to evolve a micropropagation technique adapted to propagate P 2 and P 22 apple rootstocks, as an aid in mutation breeding. Several mutants were produced in all the material studied, but none of them have yet reached a sufficient developmental stage to enable their complete assessment. On the basis of the results obtained so far the following conclusions can be drawn: higher doses of irradiation resulted in higher frequency of mutants in most apple cultivars and apple rootstocks; in sour cherries the effect of dose depended on the cultivars. Among V 1 shoots developed from sleeping buds on irradiated scion wood, compact mutants were found; their frequency, however, was about 60% lower than among V 1 shoots developed directly from irradiated dormant buds. In apple rootstocks A 2 and M 26 several dwarfed mutants were found; some of these produced thorny plants and some had lower rooting ability; both these characteristics are inferior from the practical point of view. Multiplication and rooting media for in vitro propagation of apple rootstocks, worked out for M 26, were found unsuitable for the rootstocks P 2 and P 22; modifications made in the growth substance composition of the above media enabled satisfactory propagation to be obtained. (author)

  11. Green strength of zirconium sponge and uranium dioxide powder compacts

    International Nuclear Information System (INIS)

    Balakrishna, Palanki; Murty, B. Narasimha; Sahoo, P.K.; Gopalakrishna, T.

    2008-01-01

    Zirconium metal sponge is compacted into rectangular or cylindrical shapes using hydraulic presses. These shapes are stacked and electron beam welded to form a long electrode suitable for vacuum arc melting and casting into solid ingots. The compact electrodes should be sufficiently strong to prevent breakage in handling as well as during vacuum arc melting. Usually, the welds are strong and the electrode strength is limited by the green strength of the compacts, which constitute the electrode. Green strength is also required in uranium dioxide (UO 2 ) powder compacts, to withstand stresses during de-tensioning after compaction as well as during ejection from the die and for subsequent handling by man and machine. The strengths of zirconium sponge and UO 2 powder compacts have been determined by bending and crushing respectively, and Weibul moduli evaluated. The green density of coarse sponge compact was found to be larger than that from finer sponge. The green density of compacts from lightly attrited UO 2 powder was higher than that from unattrited category, accompanied by an improvement in UO 2 green crushing strength. The factors governing green strength have been examined in the light of published literature and experimental evidence. The methodology and results provide a basis for quality control in metal sponge and ceramic powder compaction in the manufacture of nuclear fuel

  12. A portable cell-based impedance sensor for toxicity testing of drinking water.

    Science.gov (United States)

    Curtis, Theresa M; Widder, Mark W; Brennan, Linda M; Schwager, Steven J; van der Schalie, William H; Fey, Julien; Salazar, Noe

    2009-08-07

    A major limitation to using mammalian cell-based biosensors for field testing of drinking water samples is the difficulty of maintaining cell viability and sterility without an on-site cell culture facility. This paper describes a portable automated bench-top mammalian cell-based toxicity sensor that incorporates enclosed fluidic biochips containing endothelial cells monitored by Electric Cell-substrate Impedance Sensing (ECIS) technology. Long-term maintenance of cells on the biochips is made possible by using a compact, self-contained disposable media delivery system. The toxicity sensor monitors changes in impedance of cell monolayers on the biochips after the introduction of water samples. The fluidic biochip includes an ECIS electronic layer and a polycarbonate channel layer, which together reduce initial impedance disturbances seen in commercially available open well ECIS chips caused by the mechanics of pipetting while maintaining the ability of the cells to respond to toxicants. A curve discrimination program was developed that compares impedance values over time between the control and treatment channels on the fluidic biochip and determines if they are significantly different. Toxicant responses of bovine pulmonary artery endothelial cells grown on fluidic biochips are similar to cells on commercially-available open well chips, and these cells can be maintained in the toxicity sensor device for at least nine days using an automated media delivery system. Longer-term cell storage is possible; bovine lung microvessel endothelial cells survive for up to four months on the fluidic biochips and remain responsive to a model toxicant. This is the first demonstration of a portable bench top system capable of both supporting cell health over extended periods of time and obtaining impedance measurements from endothelial cell monolayers after toxicant exposure.

  13. Computing Decoupled Residuals for Compact Disc Players

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle

    2006-01-01

    a pair of residuals generated by Compact Disc Player. However, these residuals depend on the performance of position servos in the Compact Disc Player. In other publications of the same authors a pair of decoupled residuals is derived. However, the computation of these alternative residuals has been...

  14. Professional Windows Embedded Compact 7

    CERN Document Server

    Phung, Samuel; Joubert, Thierry; Hall, Mike

    2011-01-01

    Learn to program an array of customized devices and solutions As a compact, highly efficient, scalable operating system, Windows Embedded Compact 7 (WEC7) is one of the best options for developing a new generation of network-enabled, media-rich, and service-oriented devices. This in-depth resource takes you through the benefits and capabilities of WEC7 so that you can start using this performance development platform today. Divided into several major sections, the book begins with an introduction and then moves on to coverage of OS design, application development, advanced application developm

  15. Modeling of compact loop antennas

    International Nuclear Information System (INIS)

    Baity, F.W.

    1987-01-01

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively-tuned resonant double loop (RDL) antennas the model treats stub-tuned resonant double loop antennas. Calculations using the model have been compared with measurements on full-scale mockups of resonant double loop antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and for the Compact Ignition Tokamak

  16. Challenges: a state and compact perspective

    International Nuclear Information System (INIS)

    Brown, H.

    1987-01-01

    The challenges facing states and compacts in their efforts to implement the Low-Level Waste Policy Amendments Act are described. Institutional challenges include: small-volume sites; compact maintenance; shifting agencies and changing personnel; and timing of progress. The technical challenge lies in the enormous number of plans, procedures, and regulations that have to be developed over the next four years. There are two main fiscal challenges: funding of day-to-day operations of compact commissions; and financing the siting and construction of new disposal sites. There are also two main regulatory challenges: host states must develop regulations for siting and selection of technology; and all states have to await federal regulations to be completed. The final challenge is political: whether a region can overcome public opposition and actually site a facility

  17. Design study of the compact ERL

    International Nuclear Information System (INIS)

    Hajima, Ryoichi; Nakamura, Norio; Sakanaka, Shogo; Kobayashi, Yukinori

    2008-02-01

    Energy-recovery linac (ERL) is a promising device for future X-ray light sources, which can produce coherent X-rays and femto-second X-ray pulses. In Japan, we have organized a collaboration team, consisting of the members of KEK, JAEA, ISSP and other laboratories, toward realization of future ERL light sources, and started R and D efforts to establish accelerator technologies relevant to the ERL light source. In order to demonstrate all the accelerator technologies working together, we have decided to build a small facility, the Compact ERL. This report presents a design study of the Compact ERL, which includes R and D issues for each accelerator component, studies on the beam dynamics, performance of the Compact ERL as a light source of THz and X-ray. (author)

  18. {theta}-Compactness in L-topological spaces

    Energy Technology Data Exchange (ETDEWEB)

    Hanafy, I.M. [Department of Mathematics, Faculty of Education, Suez Canal University, El-Arish (Egypt)], E-mail: ihanafy@hotmail.com

    2009-12-15

    Recently, El-Naschie has shown that the notion of fuzzy topology may be relevant to quantum particle physics in connection with string theory and e{sup {infinity}} theory. In 2005, Caldas and Jafari have introduced {theta}-compact fuzzy topological spaces. In this paper, the concepts of{theta}-compactness, countable{theta}-compactness and the{theta}-Lindeloef property are introduced and studied in L-topological spaces, where L is a complete de Morgan algebra. They are defined by means of{theta}-openL-sets and their inequalities. They does not rely on the structure of basis lattice L and no distributivity in L is required. They can also be characterized by{theta}-closedL-sets and their inequalities. When L is a completely de Morgan algebra, their many characterizations are presented.

  19. Rapid solidification and dynamic compaction of Ni-base superalloy powders

    Science.gov (United States)

    Field, R. D.; Hales, S. J.; Powers, W. O.; Fraser, H. L.

    1984-01-01

    A Ni-base superalloy containing 13Al-9Mo-2Ta (in at. percent) has been characterized in both the rapidly solidified condition and after dynamic compaction. Dynamically compacted specimens were examined in the as-compacted condition and observations related to current theories of interparticle bonding. In addition, the recrystallization behavior of the compacted material at relatively low temperature (about 0.5-0.75 Tm) was investigated.

  20. New geometrical compactness measures for zones design

    Directory of Open Access Journals (Sweden)

    Eric Alfredo Rincón-García

    2012-07-01

    Full Text Available The design of compact zones has been studied because of its influence in the creation of zones with regular forms, which are easier to analyze, to investigate or to administer. This paper propose a new method to measure compactness,by means of the transformation of the original geographical spaces, into figures formed with square cells, which are used to measure the similarity between the original zone and an ideal zone with straight forms. The proposed method was applied to design electoral zones, which must satisfy constraints of compactness, contiguity and population balance, in a topographical configuration that favors the creation of twisted and diffuse shapes. The results show that the new method favors the creation of zones with straight forms, without an important effect to the population balance, which are considered zones of high quality. Keywords: Redistricting, compactness, simulated annealing, GIS. Mathematics Subject Classification: 90C59, 90C29, 68T20.

  1. Non-compact left ventricle/hypertrabeculated left ventricle

    International Nuclear Information System (INIS)

    Restrepo, Gustavo; Castano, Rafael; Marmol, Alejandro

    2005-01-01

    Non-compact left ventricle/hypertrabeculated left ventricle is a myocardiopatie produced by an arrest of the normal left ventricular compaction process during the early embryogenesis. It is associated to cardiac anomalies (congenital cardiopaties) as well as to extracardial conditions (neurological, facial, hematologic, cutaneous, skeletal and endocrinological anomalies). This entity is frequently unnoticed, being diagnosed only in centers with great experience in the diagnosis and treatment of myocardiopathies. Many cases of non-compact left ventricle have been initially misdiagnosed as hypertrophic myocardiopatie, endocardial fibroelastosis, dilated cardiomyopatie, restrictive cardiomyopathy and endocardial fibrosis. It is reported the case of a 74 years old man with a history of chronic arterial hypertension and diabetes mellitus, prechordial chest pain and mild dyspnoea. An echocardiogram showed signs of non-compact left ventricle with prominent trabeculations and deep inter-trabecular recesses involving left ventricular apical segment and extending to the lateral and inferior walls. Literature on this topic is reviewed

  2. The Nano-X Linear Accelerator: A Compact and Economical Cancer Radiotherapy System Incorporating Patient Rotation.

    Science.gov (United States)

    Eslick, Enid M; Keall, Paul J

    2015-10-01

    Rapid technological improvements in radiotherapy delivery results in improved outcomes to patients, yet current commercial systems with these technologies on board are costly. The aim of this study was to develop a state-of-the-art cancer radiotherapy system that is economical and space efficient fitting with current world demands. The Nano-X system is a compact design that is light weight combining a patient rotation system with a vertical 6 MV fixed beam. In this paper, we present the Nano-X system design configuration, an estimate of the system dimensions and its potential impact on shielding cost reductions. We provide an assessment of implementing such a radiotherapy system clinically, its advantages and disadvantages compared to a compact conventional gantry rotating linac. The Nano-X system has several differentiating features from current radiotherapy systems, it is [1] compact and therefore can fit into small vaults, [2] light weight, and [3] engineering efficient, i.e., it rotates a relatively light component and the main treatment delivery components are not under rotation (e.g., DMLCs). All these features can have an impact on reducing the costs of the system. In terms of shielding requirements, leakage radiation was found to be the dominant contributor to the Nano-X vault and as such no primary shielding was necessary. For a low leakage design, the Nano-X vault footprint and concrete volume required is 17 m2 and 35 m3 respectively, compared to 54 m2 and 102 m3 for a conventional compact linac vault, resulting in decreased costs in shielding. Key issues to be investigated in future work are the possible patient comfort concerns associated with the patient rotation system, as well as the magnitude of deformation and subsequent adaptation requirements. © The Author(s) 2014.

  3. A mathematical model for surface roughness of fluidic channels produced by grinding aided electrochemical discharge machining (G-ECDM

    Directory of Open Access Journals (Sweden)

    Ladeesh V. G.

    2017-01-01

    Full Text Available Grinding aided electrochemical discharge machining is a hybrid technique, which combines the grinding action of an abrasive tool and thermal effects of electrochemical discharges to remove material from the workpiece for producing complex contours. The present study focuses on developing fluidic channels on borosilicate glass using G-ECDM and attempts to develop a mathematical model for surface roughness of the machined channel. Preliminary experiments are conducted to study the effect of machining parameters on surface roughness. Voltage, duty factor, frequency and tool feed rate are identified as the significant factors for controlling surface roughness of the channels produced by G-ECDM. A mathematical model was developed for surface roughness by considering the grinding action and thermal effects of electrochemical discharges in material removal. Experiments are conducted to validate the model and the results obtained are in good agreement with that predicted by the model.

  4. HPC in Basin Modeling: Simulating Mechanical Compaction through Vertical Effective Stress using Level Sets

    Science.gov (United States)

    McGovern, S.; Kollet, S. J.; Buerger, C. M.; Schwede, R. L.; Podlaha, O. G.

    2017-12-01

    ). Novel basin modelling concept for simulating deformation from mechanical compaction using level sets. Computational Geosciences, SI:ECMOR XV, 1-14.[2] Bangerth, et. al. (2011). Algorithms and data structures for massively parallel generic adaptive finite element codes. ACM Transactions on Mathematical Software (TOMS), 38(2):14.

  5. Compaction and relaxation of biofilms

    KAUST Repository

    Valladares Linares, R.

    2015-06-18

    Operation of membrane systems for water treatment can be seriously hampered by biofouling. A better characterization of biofilms in membrane systems and their impact on membrane performance may help to develop effective biofouling control strategies. The objective of this study was to determine the occurrence, extent and timescale of biofilm compaction and relaxation (decompaction), caused by permeate flux variations. The impact of permeate flux changes on biofilm thickness, structure and stiffness was investigated in situ and non-destructively with optical coherence tomography using membrane fouling monitors operated at a constant crossflow velocity of 0.1 m s−1 with permeate production. The permeate flux was varied sequentially from 20 to 60 and back to 20 L m−2 h−1. The study showed that the average biofilm thickness on the membrane decreased after elevating the permeate flux from 20 to 60 L m−2 h−1 while the biofilm thickness increased again after restoring the original flux of 20 L m−2 h−1, indicating the occurrence of biofilm compaction and relaxation. Within a few seconds after the flux change, the biofilm thickness was changed and stabilized, biofilm compaction occurred faster than the relaxation after restoring the original permeate flux. The initial biofilm parameters were not fully reinstated: the biofilm thickness was reduced by 21%, biofilm stiffness had increased and the hydraulic biofilm resistance was elevated by 16%. Biofilm thickness was related to the hydraulic biofilm resistance. Membrane performance losses are related to the biofilm thickness, density and morphology, which are influenced by (variations in) hydraulic conditions. A (temporarily) permeate flux increase caused biofilm compaction, together with membrane performance losses. The impact of biofilms on membrane performance can be influenced (increased and reduced) by operational parameters. The article shows that a (temporary) pressure increase leads to more

  6. Mechanical compaction of Waste Isolation Pilot Plant simulated waste

    International Nuclear Information System (INIS)

    Butcher, B.M.; Thompson, T.W.; VanBuskirk, R.G.; Patti, N.C.

    1991-06-01

    The investigation described in this report acquired experimental information about how materials simulating transuranic (TRU) waste compact under axial compressive stress, and used these data to define a model for use in the Waste Isolation Pilot Plant (WIPP) disposal room analyses. The first step was to determine compaction curves for various simultant materials characteristic of TRU waste. Stress-volume compaction curves for various combinations of these materials were than derived to represent the combustible, metallic, and sludge waste categories. Prediction of compaction response in this manner is considered essential for the WIPP program because of the difficulties inherent in working with real (radioactive) waste. Next, full-sized 55-gallon drums of simulated combustible, metallic, and sludge waste were axially compacted. These results provided data that can be directly applied to room consolidation and data for comparison with the predictions obtained in Part 1 of the investigation. Compaction curves, which represent the combustible, metallic, and sludge waste categories, were determined, and a curve for the averaged waste inventory of the entire repository was derived. 9 refs., 31 figs., 12 tabs

  7. Characterization of Compaction Process on UO2 Powder Pelletisation

    International Nuclear Information System (INIS)

    Rachmawati, M; Langenati, R; Saputra, T.T; Mahpudin, A; Histori; Sutarya, D; Zahedi

    1998-01-01

    Determination of compaction pressure of pelletization which is based on density characterization in conjunction with satisfactory green strength of the UO 2 pellet, is carried out in this experiment. Cameco UO 2 powder has been mixed up with Zn-stearate lubricant prior to compaction process. The compaction pressure is varied from the range of 2 Mp up to 6 Mp. The mechanical strength is determined using diametral compression strength with the speed of loading of 0.1 mm.min 1 . The density measurement and compression strength test are performed on each of the applied pressure. The result shows that compaction at 5 Mp gives the maximum green strength of UO 2 pellet, while the maximum density is achieved at 5.7 Mp. The maximum green strength and green density of UO 2 (+ TiO 2 ) pellets is achieved at the addition of 0.25% and 0.125% TiO 2 respectively. The compaction pressure which is showing the maximum pellet green strength but still having the required density, is chosen to be the determinant compaction pressure in condition of pelletization

  8. Duality results for co-compact Gabor systems

    DEFF Research Database (Denmark)

    Jakobsen, Mads Sielemann; Lemvig, Jakob

    2015-01-01

    In this paper we give an account of recent developments in the duality theory of Gabor frames. We prove the Wexler-Raz biorthogonality relations and the duality principle for co-compact Gabor systems on second countable, locally compact abelian groups G. Our presentation does not rely on the exis...

  9. Compact Two-step Laser Time-of-Flight Mass Spectrometer for in Situ Analyses of Aromatic Organics on Planetary Missions

    Science.gov (United States)

    Getty, Stephanie; Brickerhoff, William; Cornish, Timothy; Ecelberger, Scott; Floyd, Melissa

    2012-01-01

    RATIONALE A miniature time-of-flight mass spectrometer has been adapted to demonstrate two-step laser desorption-ionization (LOI) in a compact instrument package for enhanced organics detection. Two-step LDI decouples the desorption and ionization processes, relative to traditional laser ionization-desorption, in order to produce low-fragmentation conditions for complex organic analytes. Tuning UV ionization laser energy allowed control ofthe degree of fragmentation, which may enable better identification of constituent species. METHODS A reflectron time-of-flight mass spectrometer prototype measuring 20 cm in length was adapted to a two-laser configuration, with IR (1064 nm) desorption followed by UV (266 nm) postionization. A relatively low ion extraction voltage of 5 kV was applied at the sample inlet. Instrument capabilities and performance were demonstrated with analysis of a model polycyclic aromatic hydrocarbon, representing a class of compounds important to the fields of Earth and planetary science. RESULTS L2MS analysis of a model PAH standard, pyrene, has been demonstrated, including parent mass identification and the onset o(tunable fragmentation as a function of ionizing laser energy. Mass resolution m/llm = 380 at full width at half-maximum was achieved which is notable for gas-phase ionization of desorbed neutrals in a highly-compact mass analyzer. CONCLUSIONS Achieving two-step laser mass spectrometry (L2MS) in a highly-miniature instrument enables a powerful approach to the detection and characterization of aromatic organics in remote terrestrial and planetary applications. Tunable detection of parent and fragment ions with high mass resolution, diagnostic of molecular structure, is possible on such a compact L2MS instrument. Selectivity of L2MS against low-mass inorganic salt interferences is a key advantage when working with unprocessed, natural samples, and a mechanism for the observed selectivity is presented.

  10. Fracture toughness measurements with subsize disk compact specimens

    International Nuclear Information System (INIS)

    Alexander, D.J.

    1992-01-01

    Special fixtures and test methods are necessary to facilitate the fracture toughness testing of small disk compact specimens of irradiated candidate materials for first-wall fusion applications. New methods have been developed for both the unloading compliance and potential drop techniques of monitoring crack growth. Provisions have been made to allow the necessary probes and instrumentation to be installed remotely using manipulators for testing of irradiated specimens in a hot cell. Laboratory trials showed that both unloading compliance and potential drop gave useful results. Both techniques gave similar data, and predicted the final crack extension within allowable limits. The results from the small disk compact specimens were similar to results from conventional compact specimen 12.7 mm thick. However, the slopes of the J-R curves from the larger specimens were lower, suggesting that the smaller disk compact specimens may have lost some constraint due to their size. The testing shows that it should be possible to generate useful J-R curve fracture toughness data from the small disk compact specimens

  11. Fracture toughness measurements with subsize disk compact specimens

    International Nuclear Information System (INIS)

    Alexander, D.J.

    1992-01-01

    Special fixtures and test methods have been developed for testing small disk compact specimens (12.5 mm diam by 4.6 mm thick). Both unloading compliance and potential drop methods have been used to monitor crack extension during the J-integral resistance (J-R) curve testing. Provisions have been made to allow the necessary probes and instrumentation to be installed remotely using manipulators for testing of irradiated specimens in a hat cell. Laboratory trials showed that both unloading compliance and potential drop gave useful results. Both techniques gave similar data, and predicted the final crack extension within allowable limits. The results from the small disk compact specimens were similar to results from conventional compact specimens 12.7-mm thick. However, the slopes of the J-R curves from the larger specimens were lower, suggesting that the smaller disk compact specimens may have lost some constraint due to their size. The testing shows that it should be possible to generate useful J-R curve fracture toughness data from the small disk compact specimens

  12. Custom CCD for adaptive optics applications

    Science.gov (United States)

    Downing, Mark; Arsenault, Robin; Baade, Dietrich; Balard, Philippe; Bell, Ray; Burt, David; Denney, Sandy; Feautrier, Philippe; Fusco, Thierry; Gach, Jean-Luc; Diaz Garcia, José Javier; Guillaume, Christian; Hubin, Norbert; Jorden, Paul; Kasper, Markus; Meyer, Manfred; Pool, Peter; Reyes, Javier; Skegg, Michael; Stadler, Eric; Suske, Wolfgang; Wheeler, Patrick

    2006-06-01

    ESO and JRA2 OPTICON have funded e2v technologies to develop a compact packaged Peltier cooled 24 μm square 240x240 pixels split frame transfer 8-output back-illuminated L3Vision CCD3, L3Vision CCD for Adaptive Optic Wave Front Sensor (AO WFS) applications. The device is designed to achieve sub-electron read noise at frame rates from 25 Hz to 1,500 Hz and dark current lower than 0.01 e-/pixel/frame. The development has many unique features. To obtain high frame rates, multi-output EMCCD gain registers and metal buttressing of row clock lines are used. The baseline device is built in standard silicon. In addition, a split wafer run has enabled two speculative variants to be built; deep depletion silicon devices to improve red response and devices with an electronic shutter to extend use to Rayleigh and Pulsed Laser Guide Star applications. These are all firsts for L3Vision CCDs. The designs of the CCD and Peltier package have passed their reviews and fabrication has begun. This paper will describe the progress to date, the requirements and the design of the CCD and compact Peltier package, technology trade-offs, schedule and proposed test plan. High readout speed, low noise and compactness (requirement to fit in confined spaces) provide special challenges to ESO's AO variant of its NGC, New General detector Controller to drive this CCD. This paper will describe progress made on the design of the controller to meet these special needs.

  13. Gun-generated compact tori at Los Alamos

    International Nuclear Information System (INIS)

    Jarboe, T.R.; Henins, I.; Hoida, H.W.; Linford, R.K.; Marshall, J.; Platts, D.A.; Sherwood, A.R.

    1982-01-01

    We have generated compact toroids which can be made to come to rest in a cylindrical resistive flux conserver. They are observed to rotate so that their major axis is perpendicular to the axis of the flux conserver. Subsequently they appear to remain stationary and decay with a time constant of about 100 μs. We have also generated compact toroids in an oblate geometry which remain aligned with the axis of the flux conserver and decay with a time constant of 150 μs. The magnetic field reconnection time for compact toroid formation is measured in the latter case to be much shorter than the decay time

  14. Adaptive measurement selection for progressive damage estimation

    Science.gov (United States)

    Zhou, Wenfan; Kovvali, Narayan; Papandreou-Suppappola, Antonia; Chattopadhyay, Aditi; Peralta, Pedro

    2011-04-01

    Noise and interference in sensor measurements degrade the quality of data and have a negative impact on the performance of structural damage diagnosis systems. In this paper, a novel adaptive measurement screening approach is presented to automatically select the most informative measurements and use them intelligently for structural damage estimation. The method is implemented efficiently in a sequential Monte Carlo (SMC) setting using particle filtering. The noise suppression and improved damage estimation capability of the proposed method is demonstrated by an application to the problem of estimating progressive fatigue damage in an aluminum compact-tension (CT) sample using noisy PZT sensor measurements.

  15. Strange matter in compact stars

    Directory of Open Access Journals (Sweden)

    Klähn Thomas

    2018-01-01

    Full Text Available We discuss possible scenarios for the existence of strange matter in compact stars. The appearance of hyperons leads to a hyperon puzzle in ab-initio approaches based on effective baryon-baryon potentials but is not a severe problem in relativistic mean field models. In general, the puzzle can be resolved in a natural way if hadronic matter gets stiffened at supersaturation densities, an effect based on the quark Pauli quenching between hadrons. We explain the conflict between the necessity to implement dynamical chiral symmetry breaking into a model description and the conditions for the appearance of absolutely stable strange quark matter that require both, approximately masslessness of quarks and a mechanism of confinement. The role of strangeness in compact stars (hadronic or quark matter realizations remains unsettled. It is not excluded that strangeness plays no role in compact stars at all. To answer the question whether the case of absolutely stable strange quark matter can be excluded on theoretical grounds requires an understanding of dense matter that we have not yet reached.

  16. Strange matter in compact stars

    Science.gov (United States)

    Klähn, Thomas; Blaschke, David B.

    2018-02-01

    We discuss possible scenarios for the existence of strange matter in compact stars. The appearance of hyperons leads to a hyperon puzzle in ab-initio approaches based on effective baryon-baryon potentials but is not a severe problem in relativistic mean field models. In general, the puzzle can be resolved in a natural way if hadronic matter gets stiffened at supersaturation densities, an effect based on the quark Pauli quenching between hadrons. We explain the conflict between the necessity to implement dynamical chiral symmetry breaking into a model description and the conditions for the appearance of absolutely stable strange quark matter that require both, approximately masslessness of quarks and a mechanism of confinement. The role of strangeness in compact stars (hadronic or quark matter realizations) remains unsettled. It is not excluded that strangeness plays no role in compact stars at all. To answer the question whether the case of absolutely stable strange quark matter can be excluded on theoretical grounds requires an understanding of dense matter that we have not yet reached.

  17. Durability of Self Compacting Concrete

    International Nuclear Information System (INIS)

    Benmarce, A.; Boudjehem, H.; Bendjhaiche, R.

    2011-01-01

    Self compacting concrete (SCC) seem to be a very promising materials for construction thanks to their properties in a fresh state. Studying of the influence of the parameters of specific designed mixes to their mechanical, physical and chemical characteristics in a state hardened is an important stage so that it can be useful for new-to-the-field researchers and designers (worldwide) beginning studies and work involving self compacting concrete. The objective of this research is to study the durability of self compacting concrete. The durability of concrete depends very much on the porosity; the latter determines the intensity of interactions with aggressive agents. The pores inside of concrete facilitate the process of damage, which began generally on the surface. We are interested to measure the porosity of concrete on five SCC with different compositions (w/c, additives) and vibrated concrete to highlight the influence of the latter on the porosity, thereafter on the compressive strength and the transfer properties (oxygen permeability, chloride ion diffusion, capillary absorption). (author)

  18. Compaction Characteristics of Igumale Shale | Iorliam | Global ...

    African Journals Online (AJOL)

    This paper reports the outcome of an investigation into the effect of different compactive energies on the compaction characteristics of Igumale shale, to ascertain its suitability as fill material in highway ... The study showed that Igumale shale is not suitable for use as base, subbase and filling materials in road construction.

  19. Dynamic compaction with high energy of sandy hydraulic fills

    Directory of Open Access Journals (Sweden)

    Khelalfa Houssam

    2017-09-01

    Full Text Available A case study about the adoption of the dynamic compaction technique with high energy in a sandy hydraulic fill is presented. The feasibility of this technique to ensure the stability of the caisson workshop and to minimize the risk of liquefaction during manufacture. This Article is interested to establish diagnostic of dynamic compaction test, basing on the results of SPT tests and quality control as well as the details of work of compaction and the properties of filling materials. A theory of soil response to a high-energy impact during dynamic compaction is proposed.

  20. COSMIC probes into compact binary formation and evolution

    Science.gov (United States)

    Breivik, Katelyn

    2018-01-01

    The population of compact binaries in the galaxy represents the final state of all binaries that have lived up to the present epoch. Compact binaries present a unique opportunity to probe binary evolution since many of the interactions binaries experience can be imprinted on the compact binary population. By combining binary evolution simulations with catalogs of observable compact binary systems, we can distill the dominant physical processes that govern binary star evolution, as well as predict the abundance and variety of their end products.The next decades herald a previously unseen opportunity to study compact binaries. Multi-messenger observations from telescopes across all wavelengths and gravitational-wave observatories spanning several decades of frequency will give an unprecedented view into the structure of these systems and the composition of their components. Observations will not always be coincident and in some cases may be separated by several years, providing an avenue for simulations to better constrain binary evolution models in preparation for future observations.I will present the results of three population synthesis studies of compact binary populations carried out with the Compact Object Synthesis and Monte Carlo Investigation Code (COSMIC). I will first show how binary-black-hole formation channels can be understood with LISA observations. I will then show how the population of double white dwarfs observed with LISA and Gaia could provide a detailed view of mass transfer and accretion. Finally, I will show that Gaia could discover thousands black holes in the Milky Way through astrometric observations, yielding view into black-hole astrophysics that is complementary to and independent from both X-ray and gravitational-wave astronomy.

  1. Effect of material parameters on the compactibility of backfill materials

    International Nuclear Information System (INIS)

    Keto, P.; Kuula-Vaeisaenen, P.; Ruuskanen, J.

    2006-05-01

    The effect of different parameters on compactibility of mixture of bentonite and ballast as well as Friedland-clay was studied in laboratory with two different types of compaction tests. The material parameters varied were grain size distribution of the ballast material, grain shape, water ratio and bentonite content (15/30%). The other parameters varied were salinity of the mixing water, mixing process and compaction method and energy. Ballast materials with varying grain size distributions were produced from Olkiluoto mica-gneiss with different type of crushing processes. In addition, sand was chosen for ballast material due to its uniform grain size distribution and rounded grain shape. The maximum grain size of the ballast materials was between 5-10 mm. When comparing the compactibility of ballast materials, the highest dry densities were gained for ballast materials with graded grain size distribution. The compaction behaviour of the tested bentonite ballast mixtures is dominated by the bentonite content. The other parameters varied did not have significant effect on the compactibility of the mixtures with bentonite content of 30%. This can be explained with the amount of bentonite that is higher than what is needed to fill up the volume between the ballast grains. The results gained with the two different compaction tests are comparable. Both the bentonite/ballast mixtures and the Friedland clay behaved similarly when compacted with three different compaction pressures (180, 540 and 980 kPa). (orig.)

  2. Adaptive competitive learning neural networks

    Directory of Open Access Journals (Sweden)

    Ahmed R. Abas

    2013-11-01

    Full Text Available In this paper, the adaptive competitive learning (ACL neural network algorithm is proposed. This neural network not only groups similar input feature vectors together but also determines the appropriate number of groups of these vectors. This algorithm uses a new proposed criterion referred to as the ACL criterion. This criterion evaluates different clustering structures produced by the ACL neural network for an input data set. Then, it selects the best clustering structure and the corresponding network architecture for this data set. The selected structure is composed of the minimum number of clusters that are compact and balanced in their sizes. The selected network architecture is efficient, in terms of its complexity, as it contains the minimum number of neurons. Synaptic weight vectors of these neurons represent well-separated, compact and balanced clusters in the input data set. The performance of the ACL algorithm is evaluated and compared with the performance of a recently proposed algorithm in the literature in clustering an input data set and determining its number of clusters. Results show that the ACL algorithm is more accurate and robust in both determining the number of clusters and allocating input feature vectors into these clusters than the other algorithm especially with data sets that are sparsely distributed.

  3. SpiderSpec: a low-cost compact colorimeter with IoT functionality

    Science.gov (United States)

    Mignani, Anna G.; Mencaglia, Andrea A.; Baldi, Massimo; Ciaccheri, Leonardo

    2015-07-01

    A miniaturized device for colorimetry is presented that utilizes a LED array for illumination and a compact spectrometer for detection. It can be battery-powered, operated locally as a stand-alone device, or connected via wi-fi to the internet. It has potentials to be remotely operated by means of a tablet or a smartphone. In practice, it consists of a low-cost hardware configuration that is adaptable via software to the user's most varied requests, as a spectroscopic platform appropriate for a variety of applications. The hardware and software modules can be designed with different performances, complexities and costs, with the aim of making the colorimeter a device for Internet-of-Things use. It will be suitable for a selected range of consumer applications, as well as for targeted industrial, environmental, and food applications.

  4. The compact genome of the plant pathogen Plasmodiophora brassicae is adapted to intracellular interactions with host Brassica spp.

    Science.gov (United States)

    Rolfe, Stephen A; Strelkov, Stephen E; Links, Matthew G; Clarke, Wayne E; Robinson, Stephen J; Djavaheri, Mohammad; Malinowski, Robert; Haddadi, Parham; Kagale, Sateesh; Parkin, Isobel A P; Taheri, Ali; Borhan, M Hossein

    2016-03-31

    The protist Plasmodiophora brassicae is a soil-borne pathogen of cruciferous species and the causal agent of clubroot disease of Brassicas including agriculturally important crops such as canola/rapeseed (Brassica napus). P. brassicae has remained an enigmatic plant pathogen and is a rare example of an obligate biotroph that resides entirely inside the host plant cell. The pathogen is the cause of severe yield losses and can render infested fields unsuitable for Brassica crop growth due to the persistence of resting spores in the soil for up to 20 years. To provide insight into the biology of the pathogen and its interaction with its primary host B. napus, we produced a draft genome of P. brassicae pathotypes 3 and 6 (Pb3 and Pb6) that differ in their host range. Pb3 is highly virulent on B. napus (but also infects other Brassica species) while Pb6 infects only vegetable Brassica crops. Both the Pb3 and Pb6 genomes are highly compact, each with a total size of 24.2 Mb, and contain less than 2 % repetitive DNA. Clustering of genome-wide single nucleotide polymorphisms (SNP) of Pb3, Pb6 and three additional re-sequenced pathotypes (Pb2, Pb5 and Pb8) shows a high degree of correlation of cluster grouping with host range. The Pb3 genome features significant reduction of intergenic space with multiple examples of overlapping untranslated regions (UTRs). Dependency on the host for essential nutrients is evident from the loss of genes for the biosynthesis of thiamine and some amino acids and the presence of a wide range of transport proteins, including some unique to P. brassicae. The annotated genes of Pb3 include those with a potential role in the regulation of the plant growth hormones cytokinin and auxin. The expression profile of Pb3 genes, including putative effectors, during infection and their potential role in manipulation of host defence is discussed. The P. brassicae genome sequence reveals a compact genome, a dependency of the pathogen on its host for some

  5. Compactibility of atomized high-speed steel and steel 3 powders

    International Nuclear Information System (INIS)

    Kulak, L.D.; Gavrilenko, A.P.; Pikozh, A.P.; Kuz'menko, N.N.

    1985-01-01

    Spherical powders and powders of lammellar-scaly shape of high-speed R6M5K5 steel and steel 3 produced by the method of centrifugal atomization of a rotating billet under conditions of cold pressing in steel moulds are studied for thier compactability. Compacting pressure dependnences are establsihed for density of cold-pressed compacts of spherical and scaly powders. The powders of lammellar-scaly shape both of high-speed steel and steel 3 are found to possess better compactibility within a wide range of pressures as compared to powders of spherical shape. Compacts of the lammellar-scaly powders possess also higher mechanical strength

  6. Variability aware compact model characterization for statistical circuit design optimization

    Science.gov (United States)

    Qiao, Ying; Qian, Kun; Spanos, Costas J.

    2012-03-01

    Variability modeling at the compact transistor model level can enable statistically optimized designs in view of limitations imposed by the fabrication technology. In this work we propose an efficient variabilityaware compact model characterization methodology based on the linear propagation of variance. Hierarchical spatial variability patterns of selected compact model parameters are directly calculated from transistor array test structures. This methodology has been implemented and tested using transistor I-V measurements and the EKV-EPFL compact model. Calculation results compare well to full-wafer direct model parameter extractions. Further studies are done on the proper selection of both compact model parameters and electrical measurement metrics used in the method.

  7. Review of compact, alternate concepts for magnetic confinement fusion

    International Nuclear Information System (INIS)

    Nickerson, S.B.; Shmayda, W.T.; Dinner, P.J.; Gierszewski, P.

    1984-06-01

    This report documents a study of compact alternate magnetic confinement fusion experiments and conceptual reactor designs. The purpose of this study is to identify those devices with a potential to burn tritium in the near future. The bulk of the report is made up of a review of the following compact alternates: compact toroids, high power density tokamaks, linear magnetic systems, compact mirrors, reversed field pinches and some miscellaneous concepts. Bumpy toruses and stellarators were initially reviewed but were not pursued since no compact variations were found. Several of the concepts show promise of either burning tritium or evolving into tritium burning devices by the early 1990's: RIGGATRON, Ignitor, OHTE, Frascati Tokamak upgrade, several driven (low or negative net power) mirror experiments and several Reversed Field Pinch experiments that may begin operation around 1990. Of the above only the Frascati Tokamak Upgrade has had funds allocated. Also identified in this report are groups who may have tritium burning experiments in the mid to late 1990's. There is a discussion of the differences between the reviewed devices and the mainline tokamak experiments. This discussion forms the basis of recommendations for R and D aimed at the compact alternates and the applicability of the present CFFTP program to the needs of the compact alternates. These recommendations will be presented in a subsequent report

  8. The influence of crushed rock salt particle gradation on compaction

    International Nuclear Information System (INIS)

    Ran, C.; Daemen, J.J.K.

    1994-01-01

    This paper presents results of laboratory compaction testing to determine the influence of particle size, size gradation and moisture-content on compaction of crushed rock salt. Included is a theoretical analysis of the optimum size gradation. The objective is to evaluate the relative densities that can be achieved with tamping techniques. Initial results indicate that compaction increases with maximum particle size and compaction energy, and varies significantly with article size gradation and water content

  9. Coherent states for quantum compact groups

    CERN Document Server

    Jurco, B

    1996-01-01

    Coherent states are introduced and their properties are discussed for all simple quantum compact groups. The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit and interpret the coherent state as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R--matrix formulation (generalizing this way the q--deformed Grassmann and flag manifolds). The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel--Weil construction) are described using the concept of coherent state. The relation between representation theory and non--commutative differential geometry is suggested.}

  10. Effects of compaction pressure and particle shape on the porosity and compression mechanical properties of sintered Ti6Al4V powder compacts for hard tissue implantation.

    Science.gov (United States)

    Güden, Mustafa; Celik, Emrah; Hizal, Alpay; Altindiş, Mustafa; Cetiner, Sinan

    2008-05-01

    Sintered Ti6Al4V powder compacts potentially to be used in implant applications were prepared using commercially available spherical and angular powders (100-200 mum) within the porosity range of 34-54%. Cylindrical green powder compacts were cold compacted at various pressures and then sintered at 1200 degrees C for 2 h. The final percent porosity and mean pore sizes were determined as functions of the applied compaction pressure and powder type. The mechanical properties were investigated through compression testing. Results have shown that yield strength of the powder compacts of 40-42% porosity was comparable with that of human cortical bone. As compared with previously investigated Ti powder compacts, Ti6Al4V powder compacts showed higher strength at similar porosity range. Microscopic observations on the failed compact samples revealed that failure occurred primarily by the separation of interparticle bond regions in the planes 45 degrees to the loading axis. Copyright 2007 Wiley Periodicals, Inc.

  11. Special issue on compact x-ray sources

    Science.gov (United States)

    Hooker, Simon; Midorikawa, Katsumi; Rosenzweig, James

    2014-04-01

    Journal of Physics B: Atomic, Molecular and Optical Physics is delighted to announce a forthcoming special issue on compact x-ray sources, to appear in the winter of 2014, and invites you to submit a paper. The potential for high-brilliance x- and gamma-ray sources driven by advanced, compact accelerators has gained increasing attention in recent years. These novel sources—sometimes dubbed 'fifth generation sources'—will build on the revolutionary advance of the x-ray free-electron laser (FEL). New radiation sources of this type have widespread applications, including in ultra-fast imaging, diagnostic and therapeutic medicine, and studies of matter under extreme conditions. Rapid advances in compact accelerators and in FEL techniques make this an opportune moment to consider the opportunities which could be realized by bringing these two fields together. Further, the successful development of compact radiation sources driven by compact accelerators will be a significant milestone on the road to the development of high-gradient colliders able to operate at the frontiers of particle physics. Thus the time is right to publish a peer-reviewed collection of contributions concerning the state-of-the-art in: advanced and novel acceleration techniques; sophisticated physics at the frontier of FELs; and the underlying and enabling techniques of high brightness electron beam physics. Interdisciplinary research connecting two or more of these fields is also increasingly represented, as exemplified by entirely new concepts such as plasma based electron beam sources, and coherent imaging with fs-class electron beams. We hope that in producing this special edition of Journal of Physics B: Atomic, Molecular and Optical Physics (iopscience.iop.org/0953-4075/) we may help further a challenging mission and ongoing intellectual adventure: the harnessing of newly emergent, compact advanced accelerators to the creation of new, agile light sources with unprecedented capabilities

  12. Steady cone-jet mode in compound-fluidic electro-flow focusing for fabricating multicompartment microcapsules

    Science.gov (United States)

    Si, Ting; Yin, Chuansheng; Gao, Peng; Li, Guangbin; Ding, Hang; He, Xiaoming; Xie, Bin; Xu, Ronald X.

    2016-01-01

    A compound-fluidic electro-flow focusing (CEFF) process is proposed to produce multicompartment microcapsules. The central device mainly consists of a needle assembly of two parallel inner needles and one outer needle mounted in a gas chamber with their tips facing a small orifice at the bottom of the chamber. As the outer and the inner fluids flow through the needle assembly, a high-speed gas stream elongates the liquid menisci in the vicinity of the orifice entrance. An electric field is further integrated into capillary flow focusing to promote the formation of steady cone-jet mode in a wide range of operation parameters. The multiphase liquid jet is broken up into droplets due to perturbation propagation along the jet surface. To estimate the diameter of the multiphase liquid jet as a function of process parameters, a modified scaling law is derived and experimentally validated. Microcapsules of around 100 μm with an alginate shell and multiple cores at a production rate of 103-105 per second are produced. Technical feasibility of stimulation triggered coalescence and drug release is demonstrated by benchtop experiments. The proposed CEFF process can be potentially used to encapsulate therapeutic agents and biological cargos for controlled micro-reaction and drug delivery.

  13. Feature Based Control of Compact Disc Players

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh

    Two servo control loops are used to keep the Optical Pick-up Unit focused and radially on the information track of the Compact Disc. These control servos have problems handling surface faults on the Compact Disc. In this Ph.D thesis a method is proposed to improve the handling of these surface...

  14. Simple Stacking Methods for Silicon Micro Fuel Cells

    Directory of Open Access Journals (Sweden)

    Gianmario Scotti

    2014-08-01

    Full Text Available We present two simple methods, with parallel and serial gas flows, for the stacking of microfabricated silicon fuel cells with integrated current collectors, flow fields and gas diffusion layers. The gas diffusion layer is implemented using black silicon. In the two stacking methods proposed in this work, the fluidic apertures and gas flow topology are rotationally symmetric and enable us to stack fuel cells without an increase in the number of electrical or fluidic ports or interconnects. Thanks to this simplicity and the structural compactness of each cell, the obtained stacks are very thin (~1.6 mm for a two-cell stack. We have fabricated two-cell stacks with two different gas flow topologies and obtained an open-circuit voltage (OCV of 1.6 V and a power density of 63 mW·cm−2, proving the viability of the design.

  15. Compact toroid refueling of reactors

    International Nuclear Information System (INIS)

    Gouge, M.J.; Hogan, J.T.; Milora, S.L.; Thomas, C.E.

    1988-04-01

    The feasibility of refueling fusion reactors and devices such as the International Thermonuclear Engineering Reactor (ITER) with high-velocity compact toroids is investigated. For reactors with reasonable limits on recirculating power, it is concluded that the concept is not economically feasible. For typical ITER designs, the compact toroid fueling requires about 15 MW of electrical power, with about 5 MW of thermal power deposited in the plasma. At these power levels, ideal ignition (Q = ∞) is not possible, even for short-pulse burns. The pulsed power requirements for this technology are substantial. 6 ref., 1 figs

  16. Investigation of HMA compactability using GPR technique

    Science.gov (United States)

    Plati, Christina; Georgiou, Panos; Loizos, Andreas

    2014-05-01

    In-situ field density is often regarded as one of the most important controls used to ensure that an asphalt pavement being placed is of high quality. The achieved density results from the effectiveness of the applied compaction mode on the Hot Mix Asphalt (HMA) layer. It is worthwhile mentioning that the proper compaction of HMA increases pavement fatigue life, decreases the amount of permanent deformation or rutting, reduces the amount of oxidation or aging, decreases moisture damage or stripping, increases strength and internal stability, and may decrease slightly the amount of low-temperature cracking that may occur in the mix. Conventionally, the HMA density in the field is assessed by direct destructive methods, including through the cutting of samples or drilling cores. These methods are characterized by a high accuracy, although they are intrusive and time consuming. In addition, they provide local information, i.e. information only for the exact test location. To overcome these limitations, the use of non-intrusive techniques is often recommended. The Ground Penetrating Radar (GPR) technique is an example of a non-intrusive technique that has been increasingly used for pavement investigations over the years. GPR technology is practical and application-oriented with the overall design concept, as well as the hardware, usually dependent on the target type and the material composing the target and its surroundings. As the sophistication of operating practices increases, the technology matures and GPR becomes an intelligent sensor system. The intelligent sensing deals with the expanded range of GPR applications in pavements such as determining layer thickness, detecting subsurface distresses, estimating moisture content, detecting voids and others. In addition, the practice of using GPR to predict in-situ field density of compacted asphalt mixture material is still under development and research; however the related research findings seem to be promising

  17. Explosive compaction of aluminum oxide modified by multiwall carbon nanotubes

    Science.gov (United States)

    Buzyurkin, A. E.; Kraus, E. I.; Lukyanov, Ya L.

    2018-04-01

    This paper presents experiments and numerical research on explosive compaction of aluminum oxide powder modified by multiwall carbon nanotubes (MWCNT) and modeling of the stress state behind the shock front at shock loading. The aim of this study was to obtain a durable low-porosity compact sample. The explosive compaction technology is used in this problem because the aluminum oxide is an extremely hard and refractory material. Therefore, its compaction by traditional methods requires special equipment and considerable expenses.

  18. The physical properties and compaction characteristics of swelling soils

    International Nuclear Information System (INIS)

    Komine, Hideo; Ogata, Nobuhide

    1990-01-01

    Expansive soils have recently attracted increasing attention as the back filling material for the repositories of high level nuclear wastes or as the material for improving extremely soft grounds. However, since very little has been known concerning the physical and mechanical properties of such materials, it is necessary to clarify the swelling, compaction and thermal characteristics of expansive soils. For this purpose, various kinds of index tests and a series of static compaction tests were performed using several kinds of swelling soils in order to investigate the relationship between the fundamental physical properties and the compaction characteristics. Since the ordinary testing method stipulated in JIS is difficult to perform for such expansive soils, the new method was proposed to obtained the reliable values of specific gravity, grain size distribution and liquid/plastic limits. By this method, some representative values were presented for various kinds of clay including bentonite. As the results of static compaction tests, the compaction characteristics of clay were strongly dependent on the plastic limit of clay. The maximum dry density and optimum water content were strongly dependent on both plastic limit and compaction pressure. (K.I.)

  19. Filtration behavior of organic substance through a compacted bentonite

    International Nuclear Information System (INIS)

    Kanaji, Mariko; Kuno, Yoshio; Yui, Mikazu

    1999-07-01

    Filtration behavior of organic substance through a compacted bentonite was investigated. Na-type bentonite containing 30wt% of quartz sand was compacted in a column and the dry density was adjusted to be 1.6 g/cm 3 . Polyacrylic acid solution (including three types of polyacrylic acid, average molecular weight 2,100, 15,000 and 450,000) was prepared and was passed through the compacted bentonite. Molecular weight distributions of polyacrylic acid in the effluent solution were analysed by GPC (Gel Permeation Chromatography). A batch type experiment was also carried out in order to examine a sorption behavior of these organic substances onto the surfaces of grains of the bentonite. The results indicated that the smaller size polyacrylic acid (molecular weight < 100,000) was passed through the compacted bentonite. On the other hand, the larger size polyacrylic acid (molecular weight ≥100,000) was mostly filtrated by the compacted bentonite. The batch type sorption tests clarified that the polyacrylic acid did not sorb onto the surfaces of minerals constituting the bentonite. Therefore it was suggested that the larger size molecules (≥100,000) of organic substances could be predominantly filtrated by the microstructure of the compacted bentonite. (author)

  20. Keck-I MOSFIRE spectroscopy of compact star-forming galaxies at z ≳ 2: high velocity dispersions in progenitors of compact quiescent galaxies

    International Nuclear Information System (INIS)

    Barro, Guillermo; Koo, David C.; Faber, Sandra M.; Guo, Yicheng; Toloba, Elisa; Fang, Jerome J.; Trump, Jonathan R.; Dekel, Avishai; Kassin, Susan A.; Koekemoer, Anton M.; Kocevski, Dale D.; Van der Wel, Arjen; Pérez-González, Pablo G.; Pacifici, Camilla; Simons, Raymond; Campbell, Randy D.; Goodrich, Bob; Kassis, Marc; Ceverino, Daniel; Finkelstein, Steven L.

    2014-01-01

    We present Keck-I MOSFIRE near-infrared spectroscopy for a sample of 13 compact star-forming galaxies (SFGs) at redshift 2 ≤ z ≤ 2.5 with star formation rates of SFR ∼ 100 M ☉ yr –1 and masses of log(M/M ☉ ) ∼10.8. Their high integrated gas velocity dispersions of σ int =230 −30 +40 km s –1 , as measured from emission lines of Hα and [O III], and the resultant M * -σ int relation and M * -M dyn all match well to those of compact quiescent galaxies at z ∼ 2, as measured from stellar absorption lines. Since log(M * /M dyn ) =–0.06 ± 0.2 dex, these compact SFGs appear to be dynamically relaxed and evolved, i.e., depleted in gas and dark matter (<13 −13 +17 %), and present larger σ int than their non-compact SFG counterparts at the same epoch. Without infusion of external gas, depletion timescales are short, less than ∼300 Myr. This discovery adds another link to our new dynamical chain of evidence that compact SFGs at z ≳ 2 are already losing gas to become the immediate progenitors of compact quiescent galaxies by z ∼ 2.

  1. Update on low-level waste compacts and state agencies

    International Nuclear Information System (INIS)

    Tenan, M.; Rabbe, D.; Thompson, P.

    1995-01-01

    This article updates information on the following agencies involved in low-level radioactive wastes: Appalachian States Low-Level Radioactive Waste Commission; Central Interstate Low-Level radioactive Waste Commission; Central Midwest Interstate Low-Level radioactive Waste Compact; Massachusetts Low-Level radioactive Waste Management Board; Michigan Low-Level Radioactive Waste Authority; Midwest Interstate Low-Level Radioactive Waste Commission; New York State Low-Level Radioactive Waste Siting Commission; Northeast Interstate Low-Level Radioactive Waste Compact; Northwest Interstate Compact on Low-Level Radioactive Waste Management; Rocky Mountain Low-Level Radioactive Waste Board; Southeast Compact Commission for Low-Level Radioactive Waste Management;Southwest Low-Level Radioactive Waste Commission; Texas Low-Level Radioactive Waste Disposal Authority

  2. Extended generalized Lagrangian multipliers for magnetohydrodynamics using adaptive multiresolution methods

    Directory of Open Access Journals (Sweden)

    Domingues M. O.

    2013-12-01

    Full Text Available We present a new adaptive multiresoltion method for the numerical simulation of ideal magnetohydrodynamics. The governing equations, i.e., the compressible Euler equations coupled with the Maxwell equations are discretized using a finite volume scheme on a two-dimensional Cartesian mesh. Adaptivity in space is obtained via Harten’s cell average multiresolution analysis, which allows the reliable introduction of a locally refined mesh while controlling the error. The explicit time discretization uses a compact Runge–Kutta method for local time stepping and an embedded Runge-Kutta scheme for automatic time step control. An extended generalized Lagrangian multiplier approach with the mixed hyperbolic-parabolic correction type is used to control the incompressibility of the magnetic field. Applications to a two-dimensional problem illustrate the properties of the method. Memory savings and numerical divergences of magnetic field are reported and the accuracy of the adaptive computations is assessed by comparing with the available exact solution.

  3. CMS (Compact Muon Solenoid)

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The milestone workshops on LHC experiments in Aachen in 1990 and at Evian in 1992 provided the first sketches of how LHC detectors might look. The concept of a compact general-purpose LHC experiment based on a solenoid to provide the magnetic field was first discussed at Aachen, and the formal Expression of Interest was aired at Evian. It was here that the Compact Muon Solenoid (CMS) name first became public. Optimizing first the muon detection system is a natural starting point for a high luminosity (interaction rate) proton-proton collider experiment. The compact CMS design called for a strong magnetic field, of some 4 Tesla, using a superconducting solenoid, originally about 14 metres long and 6 metres bore. (By LHC standards, this warrants the adjective 'compact'.) The main design goals of CMS are: 1 - a very good muon system providing many possibilities for momentum measurement (physicists call this a 'highly redundant' system); 2 - the best possible electromagnetic calorimeter consistent with the above; 3 - high quality central tracking to achieve both the above; and 4 - an affordable detector. Overall, CMS aims to detect cleanly the diverse signatures of new physics by identifying and precisely measuring muons, electrons and photons over a large energy range at very high collision rates, while also exploiting the lower luminosity initial running. As well as proton-proton collisions, CMS will also be able to look at the muons emerging from LHC heavy ion beam collisions. The Evian CMS conceptual design foresaw the full calorimetry inside the solenoid, with emphasis on precision electromagnetic calorimetry for picking up photons. (A light Higgs particle will probably be seen via its decay into photon pairs.) The muon system now foresaw four stations. Inner tracking would use silicon microstrips and microstrip gas chambers, with over 10 7 channels offering high track finding efficiency. In the central CMS barrel, the tracking elements are

  4. Computed tomography scanner applied to soil compaction studies

    International Nuclear Information System (INIS)

    Vaz, C.M.P.

    1989-11-01

    The soil compaction problem was studied using a first generation computed tomography scanner (CT). This apparatus gets images of soil cross sections samples, with resolution of a few millimeters. We performed the following laboratory and field experiments: basic experiments of equipment calibrations and resolutions studies; measurements of compacted soil thin layers; measurements of soil compaction caused by agricultural tools; stress-strain modelling in confined soil sample, with several moisture degree; characterizations of soil bulk density profile with samples collected in a hole (trench), comparing with a cone penetrometer technique. (author)

  5. Coherent states for quantum compact groups

    International Nuclear Information System (INIS)

    Jurco, B.; Stovicek, P.; CTU, Prague

    1996-01-01

    Coherent states are introduced and their properties are discussed for simple quantum compact groups A l , B l , C l and D l . The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit. The coherent state is interpreted as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R-matrix formulation (generalizing this way the q-deformed Grassmann and flag manifolds). The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel-Weil construction) is described using the concept of coherent state. The relation between representation theory and non-commutative differential geometry is suggested. (orig.)

  6. Compact space-like hypersurfaces in de Sitter space

    OpenAIRE

    Lv, Jinchi

    2005-01-01

    We present some integral formulas for compact space-like hypersurfaces in de Sitter space and some equivalent characterizations for totally umbilical compact space-like hypersurfaces in de Sitter space in terms of mean curvature and higher-order mean curvatures.

  7. Study of nuclear fuel powders forming by axial compaction

    International Nuclear Information System (INIS)

    Fourcade, J.

    2002-12-01

    Nuclear fuel powders forming, although perfectly dominated, fail to make compacts without density gradients. Density heterogeneities induce diametric deformations during firing which force manufacturers to adjust shape with a high cost machining stage. Manufacturing process improvement is a major project to obtain perfectly shaped pellets and reduce their cost. One way of investigation of this project is the study of powders compaction mechanisms to understand and improve their behaviour. The goal of this study is to identify the main mechanisms linked with powder properties that act on pressing. An empirical model is developed to predict pellet deformations from a single compaction test. This model has to link powder properties with their compaction behaviour. Then, compaction tests identify the main mechanisms whereas a contact dynamic program is used to explain them. These works, done to improve the understanding in powders behaviour, focus on powders agglomeration state and macroscopic particles arrangement during the die filling stage. Actually, for granulated powders, granules cohesion act on the powder bed behaviour under pressure. The first particles arrangement is responsible for the first transfer directions into the powder and so for its transfer homogeneity and isotropy. As a consequence, the knowledge of all the macroscopic powder properties is essential to understand and improve the manufacturing process. Moreover, tests on UO 2 powders have shown that it is better to use granulated powders with spherical granules, short size distribution and granules cohesion according with compaction pressure to improve compact homogeneity of densification. (author)

  8. Ultrasensitive detection and quantification of E. coli O157:H7 using a giant magneto impedance sensor in an open-surface micro fluidic cavity covered with an antibody-modified gold surface

    International Nuclear Information System (INIS)

    Yang, Zhen; Liu, Yan; Lei, Chong; Sun, Xue-cheng; Zhou, Yong

    2016-01-01

    We report on a method for ultrasensitive detection and quantification of the pathogen Escherichia coli (E. coli), type O157:H7. It is using a tortuous-shaped giant magneto impedance (GMI) sensor in combination with an open-surface micro fluidic system coated with a gold film for performing the sandwich immuno binding on its surface. Streptavidin-coated super magnetic Dynabeads were loaded with biotinylated polyclonal antibody to capture E. coli O157:H7. The E. coli-loaded Dynabeads are then injected into the microfluidics system where it comes into contact with the surface of gold nanofilm carrying the monoclonal antibody to form the immuno complex. As a result, the GMI ratio is strongly reduced at high frequencies if E. coli O157:H7 is present. The sensor has a linear response in the 50 to 500 cfu·mL"−"1 concentration range, and the detection limit is 50 cfu·mL"−"1 at a working frequency of 2.2 MHz. In our perception, this method provides a valuable tool for developing GMI-based micro fluidic sensors systems for ultrasensitive and quantitative analysis of pathogenic bacteria. The method may also be extended to other sensing applications by employing respective immuno reagents. (author)

  9. Electrical properties of the potassium polytitanate compacts

    International Nuclear Information System (INIS)

    Goffman, V.G.; Gorokhovsky, A.V.; Kompan, M.M.; Tretyachenko, E.V.; Telegina, O.S.; Kovnev, A.V.; Fedorov, F.S.

    2014-01-01

    Highlights: • Quasi-static permittivity of potassium polytitanates compacts achieves 10 4 –10 5 . • Observed Maxwell–Wagner polarization attributes to layered structure of polytitanates. • The conductivity varies from 5 × 10 −2 to 10 −6 –10 −7 Sm/m in a wide range of temperatures. - Abstract: Titanates of alkali metals are widely applied materials as they are relatively low in cost and might be easily synthesized. They are utilized as adsorbents, catalysts, solid state electrolytes, superconductors. Here we report our results on electrical properties of the compacted amorphous potassium polytitanates powders. The electrical properties of the compacts were studied by means of complex impedance spectroscopy in a wide range of frequencies at different temperatures using two-electrode configuration. The frequency dependences of conductivity for the investigated potassium polytitanates compacts varies in the range from 5 × 10 −2 Sm/m (high frequencies, ion conductivity) up to 10 −6 –10 −7 Sm/m (low frequencies, electron conductivity) for a wide range of temperatures (19–150 °C). According to the results, at low frequencies quasi-static permittivity of the stabilized PPT compacts achieves high values of 10 4 –10 5 . This might be explained by Maxwell–Wagner polarization attributed to the layered structure of the potassium polytitanates particles containing potassium and hydronium ions together with crystallization water in the interlayer and is very promising for solid state electrolyte applications for moderate temperatures

  10. Hydrodynamic modeling and explosive compaction of ceramics

    International Nuclear Information System (INIS)

    Hoenig, C.; Holt, A.; Finger, M.; Kuhl, W.

    1977-01-01

    High-density ceramics with high-strength microstructure were achieved by explosive compaction. Well-characterized Al 2 O 3 , AlN, and boron powders were explosively compacted in both cylindrical and flat plate geometries. In cylindrical geometries compacted densities between 91 and 98 percent of theoretical were achieved. Microhardness measurements indicated that the strength and integrity of the microstructure were comparable to conventionally fabricated ceramics, even though all samples with densities greater than 90 percent theoretical contained macrocracks. Fractured surfaces evaluated by SEM showed evidence of boundary melting. Equation of state data for porous Al 2 O 3 were used to calculate the irreversible work done on the sample as a function of pressure. This was expressed as a percentage of the total sample which could be melted. Calculations show that very little melting can be expected in samples shocked to less than 3 GPa. Significant melting and grain boundary fusion can be expected in samples shocked to pressures greater than 8 GPa. Hydrodynamic modeling of right cylinder compaction with detonation at one end was attempted by using a two-dimensional computer code. The complications of this analysis led to experiments using plane shock waves. Flat-plate compaction assemblies were designed and analyzed by 2-D hydrodynamic codes. The use of porous shock attenuators was evaluated. Experiments were performed on aluminum oxide powders in plane wave geometry. Microstructure evaluations were made as a function of location in the flat plate samples. 11 figures, 1 table

  11. Compact Reversed-Field Pinch Reactors (CRFPR): preliminary engineering considerations

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.; Bathke, C.G.; Miller, R.L.; Embrechts, M.J.; Schnurr, N.M.; Battat, M.E.; LaBauve, R.J.; Davidson, J.W.

    1984-08-01

    The unique confinement physics of the Reversed-Field Pinch (RFP) projects to a compact, high-power-density fusion reactor that promises a significant reduction in the cost of electricity. The compact reactor also promises a factor-of-two reduction in the fraction of total cost devoted to the reactor plant equipment [i.e., fusion power core (FPC) plus support systems]. In addition to operational and developmental benefits, these physically smaller systems can operate economically over a range of total power output. After giving an extended background and rationale for the compact fusion approaches, key FPC subsystems for the Compact RFP Reactor (CRFPR) are developed, designed, and integrated for a minimum-cost, 1000-MWe(net) system. Both the problems and promise of the compact, high-power-density fusion reactor are quantitatively evaluated on the basis of this conceptual design. The material presented in this report both forms a framework for a broader, more expanded conceptual design as well as suggests directions and emphases for related research and development

  12. A utility perspective on the proposed Northeast interstate compact

    International Nuclear Information System (INIS)

    Keating, W.R.

    1984-01-01

    The proposed Northeast Compact on Low-Level Radioactive Waste appears to be stalled in its present form. The Low-Level Waste Policy Act of 1980 encourages states to enter into regional waste compacts where practicable. The Northeast Region, which includes eleven states made up of the six New England states plus New York, New Jersey, Pennsylvania, Delaware, and Maryland, is the largest proposed compact region from the standpoint of low-level radioactive waste volumes. There is also wide variation in volumes among the states. Four states in the region have ratified the Northeast Compact, but the remaining seven states, including the three largest generating states, have not ratified to date. The large states are pivotal in determining whether the compact will move forward. The prime concerns of these large volume generating states appear to be host state selection and responsibility issues, as well as some of the proposed powers and authority of the Regional Commission

  13. Modelling of anisotropic compact stars of embedding class one

    Energy Technology Data Exchange (ETDEWEB)

    Bhar, Piyali [Government General Degree College, Department of Mathematics, Singur, Hooghly, West Bengal (India); Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Raj Kumar Goel Institute of Technology, Department of Mathematics, Ghaziabad, U.P. (India); Manna, Tuhina [St. Xavier' s College, Department of Commerce (Evening), Kolkata, West Bengal (India)

    2016-10-15

    In the present article, we have constructed static anisotropic compact star models of Einstein field equations for the spherical symmetric metric of embedding class one. By assuming the particular form of the metric function ν, we have solved the Einstein field equations for anisotropic matter distribution. The anisotropic models represent the realistic compact objects such as SAX J 1808.4-3658 (SS1), Her X-1, Vela X-12, PSR J1614-2230 and Cen X-3. We have reported our results in details for the compact star Her X-1 on the ground of physical properties such as pressure, density, velocity of sound, energy conditions, TOV equation and red-shift etc. Along with these, we have also discussed about the stability of the compact star models. Finally we made a comparison between our anisotropic stars with the realistic objects on the key aspects as central density, central pressure, compactness and surface red-shift. (orig.)

  14. Self-compacting geopolymer concrete-a review

    Science.gov (United States)

    Ukesh Praveen, P.; Srinivasan, K.

    2017-11-01

    In this construction world, Geopolymer concrete is a special concrete which doesn’t requires the Ordinary Portland Cement and also reduces the emission of carbon-dioxide. The Geopolymer Concrete is made up of industrial by-products (which contains more Silica and Alumina) and activated with the help of Alkaline solution (combination of sodium hydroxide & sodium silicate or potassium hydroxide & potassium silicate). The high viscosity nature of Geopolymer Concrete had the ability to fail due to lack of compaction. In improvising the issue, Self Compacting Geopolymer Concrete has been introduced. The SCGC doesn’t require any additional compaction it will flow and compacted by its own weight. This concrete is made up of industrial by-products like Fly ash, GGBFS and Silica Fume and activated with alkaline solution. The earlier research was mostly on Fly ash based SCGC. In few research works Fly ash was partially replaced with GGBS and Silica Fume. They evaluated the compressive strength of concrete with varying molarities of NaOH; curing time and curing temperature. The flexural behaviour of the concrete also examined. The Fly ash based SCGC was got high compressive strength in heat curing as well as low compressive strength in ambient curing. The presence of GGBS improves the strength in ambient curing. For aiming the high strength in ambient curing Fly ash will be completely replace and examine with different mineral admixtures.

  15. Comminution circuits for compact itabirites

    Directory of Open Access Journals (Sweden)

    Pedro Ferreira Pinto

    Full Text Available Abstract In the beneficiation of compact Itabirites, crushing and grinding account for major operational and capital costs. As such, the study and development of comminution circuits have a fundamental importance for feasibility and optimization of compact Itabirite beneficiation. This work makes a comparison between comminution circuits for compact Itabirites from the Iron Quadrangle. The circuits developed are: a crushing and ball mill circuit (CB, a SAG mill and ball mill circuit (SAB and a single stage SAG mill circuit (SSSAG. For the SAB circuit, the use of pebble crushing is analyzed (SABC. An industrial circuit for 25 million tons of run of mine was developed for each route from tests on a pilot scale (grinding and industrial scale. The energy consumption obtained for grinding in the pilot tests was compared with that reported by Donda and Bond. The SSSAG route had the lowest energy consumption, 11.8kWh/t and the SAB route had the highest energy consumption, 15.8kWh/t. The CB and SABC routes had a similar energy consumption of 14.4 kWh/t and 14.5 kWh/t respectively.

  16. Gas migration characteristics of highly compacted bentonite ore

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Hironaga, Michihiko

    2010-01-01

    In the current concept of repository for radioactive waste disposal, compacted bentonite will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides. Hydrogen gas can be generated inside the engineered barrier by anaerobic corrosion of metals used for containers, etc. If the gas generation rate exceeds the diffusion rate of dissolved gas inside of the engineered barrier, gas will accumulate in the void space inside of the engineered barrier until its pressure becomes large enough for it to enter the bentonite as a discrete gaseous phase. It is expected to be not easy for gas to entering into the bentonite as a discrete gaseous phase because the pore of compacted bentonite is so minute. Gas migration characteristics of highly compacted powdered bentonite are already reported by CRIEPI. In this report, gas migration characteristics of bentonite ore, which is a candidate for construction material of repository for radioactive waste, is investigated. The following conclusions are obtained through the results of the gas migration tests which are conducted in this study: 1) When the total gas pressure exceeds the initial total axial stress, the total axial stress is always equal to the total gas pressure because specimens shrink in the axial direction with causing the clearance between the end of the specimen and porous metal. By increasing the gas pressure more, gas breakthrough, which defined as a sudden and sharp increase in gas flow rate out of the specimen, occurs. Therefore gas migration mechanism of compacted bentonite ore is basically identical to that of compacted powdered bentonite. 2) Hydraulic conductivity measured after the gas breakthrough is somewhat smaller than that measured before the gas migration test. This fact means that it might be possible to neglect decline of the function of bentonite as engineered barrier caused by the gas breakthrough. These characteristics of compacted bentonite ore are identical to those of

  17. A compact and versatile dynamic flow cryostat for photon science

    Science.gov (United States)

    van der Linden, Peter J. E. M.; Moretti Sala, Marco; Henriquet, Christian; Rossi, Matteo; Ohgushi, Kenya; Fauth, François; Simonelli, Laura; Marini, Carlo; Fraga, Edmundo; Murray, Claire; Potter, Jonathan; Krisch, Michael

    2016-11-01

    We have developed a helium gas flow cryostat for use on synchrotron tender to hard X-ray beamlines. Very efficient sample cooling is achieved because the sample is placed directly in the cooling helium flow on a removable sample holder. The cryostat is compact and easy to operate; samples can be changed in less than 5 min at any temperature. The cryostat has a temperature range of 2.5-325 K with temperature stability better than 0.1 K. The very wide optical angle and the ability to operate in any orientation mean that the cryostat can easily be adapted for different X-ray techniques. It is already in use on different beamlines at the European Synchrotron Radiation Facility (ESRF), ALBA Synchrotron Light Facility (ALBA), and Diamond Light Source (DLS) for inelastic X-ray scattering, powder diffraction, and X-ray absorption spectroscopy. Results obtained at these beamlines are presented here.

  18. Preparation of bulk superhard B-C-N nanocomposite compact

    Science.gov (United States)

    Zhao, Yusheng [Los Alamos, NM; He, Duanwei [Sichuan, CN

    2011-05-10

    Bulk, superhard, B--C--N nanocomposite compacts were prepared by ball milling a mixture of graphite and hexagonal boron nitride, encapsulating the ball-milled mixture at a pressure in a range of from about 15 GPa to about 25 GPa, and sintering the pressurized encapsulated ball-milled mixture at a temperature in a range of from about 1800-2500 K. The product bulk, superhard, nanocomposite compacts were well sintered compacts with nanocrystalline grains of at least one high-pressure phase of B--C--N surrounded by amorphous diamond-like carbon grain boundaries. The bulk compacts had a measured Vicker's hardness in a range of from about 41 GPa to about 68 GPa.

  19. Modeling of charged anisotropic compact stars in general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Dayanandan, Baiju; Maurya, S.K.; T, Smitha T. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman)

    2017-06-15

    A charged compact star model has been determined for anisotropic fluid distribution. We have solved the Einstein-Maxwell field equations to construct the charged compact star model by using the radial pressure, the metric function e{sup λ} and the electric charge function. The generic charged anisotropic solution is verified by exploring different physical conditions like causality condition, mass-radius relation and stability of the solution (via the adiabatic index, TOV equations and the Herrera cracking concept). It is observed that the present charged anisotropic compact star model is compatible with the star PSR 1937+21. Moreover, we also presented the EOS ρ = f(p) for the present charged compact star model. (orig.)

  20. Influence of Compacting Rate on the Properties of Compressed Earth Blocks

    Directory of Open Access Journals (Sweden)

    Humphrey Danso

    2016-01-01

    Full Text Available Compaction of blocks contributes significantly to the strength properties of compressed earth blocks. This paper investigates the influence of compacting rates on the properties of compressed earth blocks. Experiments were conducted to determine the density, compressive strength, splitting tensile strength, and erosion properties of compressed earth blocks produced with different rates of compacting speed. The study concludes that although the low rate of compaction achieved slightly better performance characteristics, there is no statistically significant difference between the soil blocks produced with low compacting rate and high compacting rate. The study demonstrates that there is not much influence on the properties of compressed earth blocks produced with low and high compacting rates. It was further found that there are strong linear correlations between the compressive strength test and density, and density and the erosion. However, a weak linear correlation was found between tensile strength and compressive strength, and tensile strength and density.

  1. Compact silicon photonics-based multi laser module for sensing

    Science.gov (United States)

    Ayotte, S.; Costin, F.; Babin, A.; Paré-Olivier, G.; Morin, M.; Filion, B.; Bédard, K.; Chrétien, P.; Bilodeau, G.; Girard-Deschênes, E.; Perron, L.-P.; Davidson, C.-A.; D'Amato, D.; Laplante, M.; Blanchet-Létourneau, J.

    2018-02-01

    A compact three-laser source for optical sensing is presented. It is based on a low-noise implementation of the Pound Drever-Hall method and comprises high-bandwidth optical phase-locked loops. The outputs from three semiconductor distributed feedback lasers, mounted on thermo-electric coolers (TEC), are coupled with micro-lenses into a silicon photonics (SiP) chip that performs beat note detection and several other functions. The chip comprises phase modulators, variable optical attenuators, multi-mode-interference couplers, variable ratio tap couplers, integrated photodiodes and optical fiber butt-couplers. Electrical connections between a metallized ceramic and the TECs, lasers and SiP chip are achieved by wirebonds. All these components stand within a 35 mm by 35 mm package which is interfaced with 90 electrical pins and two fiber pigtails. One pigtail carries the signals from a master and slave lasers, while another carries that from a second slave laser. The pins are soldered to a printed circuit board featuring a micro-processor that controls and monitors the system to ensure stable operation over fluctuating environmental conditions. This highly adaptable multi-laser source can address various sensing applications requiring the tracking of up to three narrow spectral features with a high bandwidth. It is used to sense a fiber-based ring resonator emulating a resonant fiber optics gyroscope. The master laser is locked to the resonator with a loop bandwidth greater than 1 MHz. The slave lasers are offset frequency locked to the master laser with loop bandwidths greater than 100 MHz. This high performance source is compact, automated, robust, and remains locked for days.

  2. Testing the Binary Black Hole Nature of a Compact Binary Coalescence.

    Science.gov (United States)

    Krishnendu, N V; Arun, K G; Mishra, Chandra Kant

    2017-09-01

    We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.

  3. Acoustic emission during the compaction of brittle UO2 particles

    International Nuclear Information System (INIS)

    Hegron, Lise

    2014-01-01

    One of the options considered for recycling minor actinides is to incorporate about 10% to UO 2 matrix. The presence of open pores interconnected within this fuel should allow the evacuation of helium and fission gases to prevent swelling of the pellet and ultimately its interaction with the fuel clad surrounding it. Implementation of minor actinides requires working in shielded cell, reducing their retention and outlawing additions of organic products. The use of fragmentable particles of several hundred micrometers seems a good solution to control the microstructure of the green compacts and thus control the open porosity after sintering. The goal of this study is to monitor the compaction of brittle UO 2 particles by acoustic emission and to link the particle characteristics to the open porosity obtained after the compact sintering. The signals acquired during tensile strength tests on individual granules and compacts show that the acoustic emission allows the detection of the mechanism of fragmentation and enables identification of a characteristic waveform of this fragmentation. The influences of compaction stress, of the initial particle size distribution and of the internal cohesion of the granules, on the mechanical strength of the compact and on the microstructure and open porosity of the sintered pellets, are analyzed. By its ability to identify the range of fragmentation of the granules during compaction, acoustic emission appears as a promising technique for monitoring the compaction of brittle particles in the manufacture of a controlled porosity fuel. (author) [fr

  4. Keck-I MOSFIRE spectroscopy of compact star-forming galaxies at z ≳ 2: high velocity dispersions in progenitors of compact quiescent galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Barro, Guillermo; Koo, David C.; Faber, Sandra M.; Guo, Yicheng; Toloba, Elisa; Fang, Jerome J. [University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Trump, Jonathan R. [Pennsylvania State University, University Park, State College, PA 16802 (United States); Dekel, Avishai [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Kassin, Susan A.; Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Kocevski, Dale D. [University of Kentucky, Lexington, KY 40506 (United States); Van der Wel, Arjen [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Pérez-González, Pablo G. [Universidad Complutense de Madrid, Avda. de Sneca, 2 Ciudad Universitaria, E-28040 Madrid (Spain); Pacifici, Camilla [Yonsei University Observatory, Yonsei University 50, Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Simons, Raymond [Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2683 (United States); Campbell, Randy D.; Goodrich, Bob; Kassis, Marc [W. M. Keck Observatory, California Association for Research in Astronomy, 65-1120 Mamalahoa Highway, Kamuela, HI 96743 (United States); Ceverino, Daniel [Universidad Autonoma de Madrid, Ciudad Universitaria de Cantoblanco, E-28049 Madrid (Spain); Finkelstein, Steven L. [The University of Texas at Austin, Austin, TX 78712 (United States); and others

    2014-11-10

    We present Keck-I MOSFIRE near-infrared spectroscopy for a sample of 13 compact star-forming galaxies (SFGs) at redshift 2 ≤ z ≤ 2.5 with star formation rates of SFR ∼ 100 M {sub ☉} yr{sup –1} and masses of log(M/M {sub ☉}) ∼10.8. Their high integrated gas velocity dispersions of σ{sub int} =230{sub −30}{sup +40} km s{sup –1}, as measured from emission lines of Hα and [O III], and the resultant M {sub *}-σ{sub int} relation and M {sub *}-M {sub dyn} all match well to those of compact quiescent galaxies at z ∼ 2, as measured from stellar absorption lines. Since log(M {sub *}/M {sub dyn}) =–0.06 ± 0.2 dex, these compact SFGs appear to be dynamically relaxed and evolved, i.e., depleted in gas and dark matter (<13{sub −13}{sup +17}%), and present larger σ{sub int} than their non-compact SFG counterparts at the same epoch. Without infusion of external gas, depletion timescales are short, less than ∼300 Myr. This discovery adds another link to our new dynamical chain of evidence that compact SFGs at z ≳ 2 are already losing gas to become the immediate progenitors of compact quiescent galaxies by z ∼ 2.

  5. Industrial production of insulators using isostatic compaction method

    Energy Technology Data Exchange (ETDEWEB)

    Drugoveiko, O.P.; Ermolaeva, L.V.; Koren' , M.G.; Kreimer, B.D.; Panichev, G.I.; Ponomarev, A.P.; Rutkovskii, V.N.

    1985-07-01

    The process of shaping ceramic products from powders using isostatic compaction method is finding increasing industrial application. The production of electrical-engineering porcelain using isostatic compaction method is, according to the authors, a promising direction since this method permits one to obtain large and complex shaped products having uniform density distribution. The authors introduce an automatic isostatic compaction line at the ''Proletarii'' Factory for the production of the IOS-110-20000UKhL, T1 type insulators having the described dimensions. According to the technological process developed at the ''Elektrokeramika'' Production Complex, insulators were manufactured on the isostatic compaction line from the G-33 mass. Presspowder having a moisture content of 0.3-0.6% and a particle size of 90-160 micrometers was obtained in a spray dryer using disk spraying. The authors studied saturability by moisture of the powder obtained.

  6. Creating interstate compacts for low level waste management

    International Nuclear Information System (INIS)

    Marcus, A.A.

    1986-01-01

    The implementation of the 1980 Low-level Radioactive Waste Policy Act (LLRWPA) depends on the creation of interstate compacts. Compact formation is a public goods problem. Formation may be impeded by opposition from elements in the federal government, the inability of state governments to resolve problems of conflicting political interests, and the possiblity of extensive and unfruitful negotiations. These obstacles my be overcome if fortuitous circumstances exist and entrepreneurial behavior is applied. Guidelines that entrepreneurs may use to facilitate compact formation are relying on the exclusive character of incentives, forming compacts with a small number of members, taking advantage of inequality of interests among prospective members, using solidary incentives to promote cooperation, relying on existing regional organizations to build support, employing a game metaphor to understand the stakes of the participants, and making each party subject to an agreement feel as if it were a winner. (author)

  7. Compact fuel storage rack for fuel pools

    International Nuclear Information System (INIS)

    Parras, F.; Louvat, J.P.

    1986-01-01

    ETS LEMER and FRAMATOME propose a new compact storage rack. This rack permits a considerable increase of the storage capacity of cooling pools. A short description of the structure and the components is presented, to propose racks that are: . Inalterable, . Compact, . Insensitive to earthquakes. Installation in pools already in operation is simplified by their light structure and the bearing device [fr

  8. Are soils in urban ecosystems compacted? A citywide analysis.

    Science.gov (United States)

    Edmondson, Jill L; Davies, Zoe G; McCormack, Sarah A; Gaston, Kevin J; Leake, Jonathan R

    2011-10-23

    Soil compaction adversely influences most terrestrial ecosystem services on which humans depend. This global problem, affecting over 68 million ha of agricultural land alone, is a major driver of soil erosion, increases flood frequency and reduces groundwater recharge. Agricultural soil compaction has been intensively studied, but there are no systematic studies investigating the extent of compaction in urban ecosystems, despite the repercussions for ecosystem function. Urban areas are the fastest growing land-use type globally, and are often assumed to have highly compacted soils with compromised functionality. Here, we use bulk density (BD) measurements, taken to 14 cm depth at a citywide scale, to compare the extent of surface soil compaction between different urban greenspace classes and agricultural soils. Urban soils had a wider BD range than agricultural soils, but were significantly less compacted, with 12 per cent lower mean BD to 7 cm depth. Urban soil BD was lowest under trees and shrubs and highest under herbaceous vegetation (e.g. lawns). BD values were similar to many semi-natural habitats, particularly those underlying woody vegetation. These results establish that, across a typical UK city, urban soils were in better physical condition than agricultural soils and can contribute to ecosystem service provision.

  9. Sintering studies on iron-carbon-copper compacts

    Directory of Open Access Journals (Sweden)

    Perianayagam Philomen-D-Anand Raj

    2016-01-01

    Full Text Available Sintered Iron-Carbon-Copper parts are among the most widely used powder metallurgy product in automobile. In this paper, studies have been carried out to find out the sintering characteristics of iron-carbon-copper compacts when sintered in nitrogen atmosphere. The effects of various processing parameters on the sintering characteristics were studied. The various processing parameters considered were compaction pressure, green density and sintering temperature. The sintering characteristics determined were sintered density, porosity, dimensional change, micro hardness and radial crush strength. The results obtained have been discussed on the basis of micro structural observations. The characteristics of SEM fractography were also used to determine the mechanism of fracture. The fracture energy is strongly dependent on density of the compact.

  10. Activation analysis of the compact ignition tokamak

    International Nuclear Information System (INIS)

    Selcow, E.C.

    1986-01-01

    The US fusion program has completed the conceptual design of a compact tokamak device that achieves ignition. The high neutron wall loadings associated with this compact deuterium-tritium-burning device indicate that radiation-related issues may be significant considerations in the overall system design. Sufficient shielding will be requied for the radiation protection of both reactor components and occupational personnel. A close-in igloo shield has been designed around the periphery of the tokamak structure to permit personnel access into the test cell after shutdown and limit the total activation of the test cell components. This paper describes the conceptual design of the igloo shield system and discusses the major neutronic concerns related to the design of the Compact Ignition Tokamak

  11. Psychicones: Visual Traces of the Soul in Late Nineteenth-Century Fluidic Photography.

    Science.gov (United States)

    Pethes, Nicolas

    2016-07-01

    The article discusses attempts to visualise the soul on photographic plates at the end of the nineteenth century, as conducted by the French physician Hippolyte Baraduc in Paris. Although Baraduc refers to earlier experiments on fluidic photography in his book on The Human Soul (1896) and is usually mentioned as a precursor to parapsychological thought photography of the twentieth century, his work is presented as a genuine attempt at photographic soul-catching. Rather than producing mimetic representations of thoughts and imaginations, Baraduc claims to present the vital radiation of the psyche itself and therefore calls the images he produces psychicones. The article first discusses the difference between this method of soul photography and other kinds of occult media technologies of the time, emphasising the significance of its non-mimetic, abstract character: since the soul itself was considered an abstract entity, abstract traces seemed all the more convincing to the contemporary audience. Secondly, the article shows how the technological agency of photography allowed Baraduc's psychicones to be tied into related discourses in medicine and psychology. Insofar as the photographic plates displayed actual visual traces, Baraduc and his followers no longer considered hallucinations illusionary and pathological but emphasised the physical reality and normality of imagination. Yet, the greatest influence of soul photography was not on science but on art. As the third part of the paper argues, the abstract shapes on Baraduc's plates provided inspiration for contemporary avant-garde aesthetics, for example, Kandinsky's abstract paintings and the random streams of consciousness in surrealistic literature.

  12. An SOI CMOS-Based Multi-Sensor MEMS Chip for Fluidic Applications †

    Science.gov (United States)

    Mansoor, Mohtashim; Haneef, Ibraheem; Akhtar, Suhail; Rafiq, Muhammad Aftab; De Luca, Andrea; Ali, Syed Zeeshan; Udrea, Florin

    2016-01-01

    An SOI CMOS multi-sensor MEMS chip, which can simultaneously measure temperature, pressure and flow rate, has been reported. The multi-sensor chip has been designed keeping in view the requirements of researchers interested in experimental fluid dynamics. The chip contains ten thermodiodes (temperature sensors), a piezoresistive-type pressure sensor and nine hot film-based flow rate sensors fabricated within the oxide layer of the SOI wafers. The silicon dioxide layers with embedded sensors are relieved from the substrate as membranes with the help of a single DRIE step after chip fabrication from a commercial CMOS foundry. Very dense sensor packing per unit area of the chip has been enabled by using technologies/processes like SOI, CMOS and DRIE. Independent apparatuses were used for the characterization of each sensor. With a drive current of 10 µA–0.1 µA, the thermodiodes exhibited sensitivities of 1.41 mV/°C–1.79 mV/°C in the range 20–300 °C. The sensitivity of the pressure sensor was 0.0686 mV/(Vexcit kPa) with a non-linearity of 0.25% between 0 and 69 kPa above ambient pressure. Packaged in a micro-channel, the flow rate sensor has a linearized sensitivity of 17.3 mV/(L/min)−0.1 in the tested range of 0–4.7 L/min. The multi-sensor chip can be used for simultaneous measurement of fluid pressure, temperature and flow rate in fluidic experiments and aerospace/automotive/biomedical/process industries. PMID:27827904

  13. Coherent states for quantum compact groups

    Energy Technology Data Exchange (ETDEWEB)

    Jurco, B. [European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Stovicek, P. [Ceske Vysoke Uceni Technicke, Prague (Czech Republic). Dept. of Mathematics]|[CTU, Prague (Czech Republic). Doppler Inst.

    1996-12-01

    Coherent states are introduced and their properties are discussed for simple quantum compact groups A{sub l}, B{sub l}, C{sub l} and D{sub l}. The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit. The coherent state is interpreted as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R-matrix formulation (generalizing this way the q-deformed Grassmann and flag manifolds). The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel-Weil construction) is described using the concept of coherent state. The relation between representation theory and non-commutative differential geometry is suggested. (orig.)

  14. New forms of -compactness with respect to hereditary classes

    Directory of Open Access Journals (Sweden)

    Abdo Mohammed Qahis

    2019-01-01

    Full Text Available A hereditary class on a set X is a nonempty collection of subsets closed under heredity. The aim of this paper is to introduce and study strong forms of u-compactness in generalized topological spaces with respect to a hereditary class, called  SuH-compactness and S- SuH-compactness. Also several of their properties are presented. Finally some eects of various kinds of functions on them are studied.

  15. Fast in-situ tool inspection based on inverse fringe projection and compact sensor heads

    Science.gov (United States)

    Matthias, Steffen; Kästner, Markus; Reithmeier, Eduard

    2016-11-01

    Inspection of machine elements is an important task in production processes in order to ensure the quality of produced parts and to gather feedback for the continuous improvement process. A new measuring system is presented, which is capable of performing the inspection of critical tool geometries, such as gearing elements, inside the forming machine. To meet the constraints on sensor head size and inspection time imposed by the limited space inside the machine and the cycle time of the process, the measuring device employs a combination of endoscopy techniques with the fringe projection principle. Compact gradient index lenses enable a compact design of the sensor head, which is connected to a CMOS camera and a flexible micro-mirror based projector via flexible fiber bundles. Using common fringe projection patterns, the system achieves measuring times of less than five seconds. To further reduce the time required for inspection, the generation of inverse fringe projection patterns has been implemented for the system. Inverse fringe projection speeds up the inspection process by employing object-adapted patterns, which enable the detection of geometry deviations in a single image. Two different approaches to generate object adapted patterns are presented. The first approach uses a reference measurement of a manufactured tool master to generate the inverse pattern. The second approach is based on a virtual master geometry in the form of a CAD file and a ray-tracing model of the measuring system. Virtual modeling of the measuring device and inspection setup allows for geometric tolerancing for free-form surfaces by the tool designer in the CAD-file. A new approach is presented, which uses virtual tolerance specifications and additional simulation steps to enable fast checking of metric tolerances. Following the description of the pattern generation process, the image processing steps required for inspection are demonstrated on captures of gearing geometries.

  16. Studies on the sintering of copper powder compacts

    International Nuclear Information System (INIS)

    Elmasry, M.A.A.; Abadir, M.F.; Mahdy, A.N.; Elkinawy, W.S.

    1995-01-01

    Solid state sintering behavior of cylindrical compacts, (1 cm diameter and 1 cm height), made of copper powder was studied within a range of compacting pressure of 75 up to 300 MPa, sintering temperature of 600 up to to 900 degree C, and sintering time of 5 up to 60 min in a reducing atmosphere composed of H2 and N 2 gases with a volumetric ratio 3:1. The green and the sintered densities were found to to increase with the compacting pressure. Higher sintering temperature, and time favour increased sintered density. probable mechanisms during the initial stage of sintering were disclosed. It was found that low pressures cause dilation of closed pores, and vice versa. At low pressures and temperatures the surface diffusion mechanism is favoured, While high temperatures favour lattice diffusion mechanism. at high pressures, the lattice diffusion mechanism is suppressed while surface diffusion predominates. Density and hence shrinkage were also found to increase with the increase of sintering time, While its rate increases with the increase of sintering temperature. the influence of sintering conditions on the hardness of the compacts was studied. An increase in hardness, When higher compacting pressures and higher sintering temperatures were adopted, has bee obtained. 11 figs

  17. Effect of surface energy on powder compactibility.

    Science.gov (United States)

    Fichtner, Frauke; Mahlin, Denny; Welch, Ken; Gaisford, Simon; Alderborn, Göran

    2008-12-01

    The influence of surface energy on the compactibility of lactose particles has been investigated. Three powders were prepared by spray drying lactose solutions without or with low proportions of the surfactant polysorbate 80. Various powder and tablet characterisation procedures were applied. The surface energy of the powders was characterized by Inverse Gas Chromatography and the compressibility of the powders was described by the relationship between tablet porosity and compression pressure. The compactibility of the powders was analyzed by studying the evolution of tablet tensile strength with increasing compaction pressure and porosity. All powders were amorphous and similar in particle size, shape, and surface area. The compressibility of the powders and the microstructure of the formed tablets were equal. However, the compactibility and dispersive surface energy was dependent of the composition of the powders. The decrease in tablet strength correlated to the decrease in powder surface energy at constant tablet porosities. This supports the idea that tablet strength is controlled by formation of intermolecular forces over the areas of contact between the particles and that the strength of these bonding forces is controlled by surface energy which, in turn, can be altered by the presence of surfactants.

  18. Compact stars in f(R, T) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Das, Amit; Guha, B.K. [Indian Institute of Engineering Science and Technology, Department of Physics, Howrah, West Bengal (India); Rahaman, Farook [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India)

    2016-12-15

    In the present paper we generate a set of solutions describing the interior of a compact star under f(R, T) theory of gravity which admits conformal motion. An extension of general relativity, the f(R, T) gravity is associated to Ricci scalar R and the trace of the energy-momentum tensor T. To handle the Einstein field equations in the form of differential equations of second order, first of all we adopt the Lie algebra with conformal Killing vectors (CKV) which enable one to get a solvable form of such equations and second we consider the equation of state (EOS) p = ωρ with 0 < ω < 1 for the fluid distribution consisting of normal matter, ω being the EOS parameter. We therefore analytically explore several physical aspects of the model to represent behavior of the compact stars such as - energy conditions, TOV equation, stability of the system, Buchdahl condition, compactness and redshift. It is checked that the physical validity and the acceptability of the present model within the specified observational constraint in connection to a dozen of the compact star candidates are quite satisfactory. (orig.)

  19. ZnTiO3 ceramic nanopowder microstructure changes during compaction

    Directory of Open Access Journals (Sweden)

    Labus N.

    2013-01-01

    Full Text Available ZnTiO3 nanopowder as a constitutive component in compact production was primarily characterized. Scanning electron micrographs of as received powder were recorded. Mercury porosimetry and nitrogen adsorption were also performed on loose powder. Particle size distribution in a water powder suspension was determined with a laser particle size analyser. Compaction was performed on different pressures in a range from 100 to 400 MPa using the uniaxial double sided compaction technique without binder and lubricant. Micrographs of compacted specimens were obtained using scanning electron microscopy and atomic force microscopy. Pore size distribution was also determined by mercury porosimetry and nitrogen adsorption. Results revealed that with increasing pressure during compaction interagglomerate pores diminish in size until they reach some critical diameter related to the intra-agglomerate pore size.

  20. Effect of Compaction on Compressive Strength of Unfired Clay Blocks

    International Nuclear Information System (INIS)

    Lakho, N.A.; Zardari, M.A.; Pathan, A.A.

    2016-01-01

    This study investigates the possible use of unfired compacted clay blocks as a substitute of CSEB (Compressed Stabilized Earth Blocks) for the construction of economical houses. Cubes of 150 mm size were cut from the clay blocks which were compacted at various intensities of pressure during the casting. The results show that the compressive strength of the clay cubes increased with the compacting pressure to which the blocks were subjected during casting. The average crushing strength of the cubes, sawed from clay blocks that were subjected to compacting pressure of 7.2 MPa, was found to be 4.4 MPa. This value of compressive strength is about 50 percent more than that of normal CSEB. This study shows that the compacted clay blocks could be used as economical walling material as replacement of CSEB. (author)

  1. Compact nuclear fuel storage

    International Nuclear Information System (INIS)

    Kiselev, V.V.; Churakov, Yu.A.; Danchenko, Yu.V.; Bylkin, B.K.; Tsvetkov, S.V.

    1983-01-01

    Different constructions of racks for compact storage of spent fuel assemblies (FA) in ''coolin''g pools (CP) of NPPs with the BWR and PWR type reactors are described. Problems concerning nuclear and radiation safety and provision of necessary thermal conditions arising in such rack design are discussed. It is concluded that the problem of prolonged fuel storage at NPPs became Very actual for many countries because of retapdation of the rates of fuel reprocessing centers building. Application of compact storage racks is a promising solution of the problem of intermediate FA storage at NPPs. Such racks of stainless boron steel and with neutron absorbers in the from of boron carbide panels enable to increase the capacity of the present CP 2-2.6 times, and the period of FA storage in them up to 5-10 years

  2. [Effect of compaction pressure on the properties of dental machinable zirconia ceramic].

    Science.gov (United States)

    Huang, Hui; Wei, Bin; Zhang, Fu-qiang; Sun, Jing; Gao, Lian

    2010-10-01

    To investigate the effect of compaction pressure on the linear shrinkage, sintering property and machinability of the dental zirconia ceramic. The nano-size zirconia powder was compacted at different isostatic pressure and sintered at different temperature. The linear shrinkage of sintered body was measured and the relative density was tested using the Archimedes method. The cylindrical surface of pre-sintering blanks was traversed using a hard metal tool. Surface and edge quality were checked visually using light stereo microscopy. The sintering behaviour depended on the compaction pressure. Increasing compaction pressure led to higher sintering rate and lower sintering temperature. Increasing compaction pressure also led to decreasing linear shrinkage of the sintered bodies, from 24.54% of 50 MPa to 20.9% of 400 MPa. Compaction pressure showed only a weak influence on machinability of zirconia blanks, but the higher compaction pressure resulted in the poor surface quality. The better sintering property and machinability of dental zirconia ceramic is found for 200-300 MPa compaction pressure.

  3. Electrical properties of the potassium polytitanate compacts

    Energy Technology Data Exchange (ETDEWEB)

    Goffman, V.G.; Gorokhovsky, A.V. [NanoTechProm Ltd., Saratov (Russian Federation); Saratov State Technical University, Saratov (Russian Federation); Kompan, M.M. [Physico-Technical Institute of the Russian Academy of Science, St. Petersburg (Russian Federation); Tretyachenko, E.V.; Telegina, O.S.; Kovnev, A.V. [NanoTechProm Ltd., Saratov (Russian Federation); Saratov State Technical University, Saratov (Russian Federation); Fedorov, F.S., E-mail: fedorov_fs@daad-alumni.de [NanoTechProm Ltd., Saratov (Russian Federation); Saratov State Technical University, Saratov (Russian Federation)

    2014-12-05

    Highlights: • Quasi-static permittivity of potassium polytitanates compacts achieves 10{sup 4}–10{sup 5}. • Observed Maxwell–Wagner polarization attributes to layered structure of polytitanates. • The conductivity varies from 5 × 10{sup −2} to 10{sup −6}–10{sup −7} Sm/m in a wide range of temperatures. - Abstract: Titanates of alkali metals are widely applied materials as they are relatively low in cost and might be easily synthesized. They are utilized as adsorbents, catalysts, solid state electrolytes, superconductors. Here we report our results on electrical properties of the compacted amorphous potassium polytitanates powders. The electrical properties of the compacts were studied by means of complex impedance spectroscopy in a wide range of frequencies at different temperatures using two-electrode configuration. The frequency dependences of conductivity for the investigated potassium polytitanates compacts varies in the range from 5 × 10{sup −2} Sm/m (high frequencies, ion conductivity) up to 10{sup −6}–10{sup −7} Sm/m (low frequencies, electron conductivity) for a wide range of temperatures (19–150 °C). According to the results, at low frequencies quasi-static permittivity of the stabilized PPT compacts achieves high values of 10{sup 4}–10{sup 5}. This might be explained by Maxwell–Wagner polarization attributed to the layered structure of the potassium polytitanates particles containing potassium and hydronium ions together with crystallization water in the interlayer and is very promising for solid state electrolyte applications for moderate temperatures.

  4. Investigation of pressing of molybdenum powder compacts

    International Nuclear Information System (INIS)

    Mymrin, S.A.; Kuznetsov, V.Eh.; Yampol'skij, M.L.; Leonov, S.A.; Mikhridinov, R.M.; Korzukhin, V.A.

    1990-01-01

    Results of an experimental investigation into pressing of compacts of MCh type molybdenum powders using the industrial equipment are presented. To measure the density of powder molybdenum billets a radioisotopic density meter with cesium-137 is used as radioactive gamma radiation source. The dependence of the produced billet density on the specific compacting pressure at different values of the powder bulk density is ascertained

  5. Numerical design and analysis of a compact TE10 to TE01 mode transducer

    International Nuclear Information System (INIS)

    Tantawi, S.; Ko, K.; Kroll, N.

    1993-04-01

    A high-power low-loss mode transducer design has been proposed to adapt the output of the X-Band klystron, WR90 rectangular waveguide, to the input of the pulse compression system, SLED II, which utilizes overmoded circular waveguides operating in the low-loss TE 01 mode. This device is much more compact than the conventional Marie type mode converters. The device splits the incoming klystron output into two separate rectangular guides that are then fed into a circular guide through a four-slot arrangement. We will use both MAFIA and HFSS to calculate the transmission properties of the three-dimensional structure. We will also determine the extent of mode contamination and compare the numerical results with experiments

  6. Compact type mutants in apple and sour cherries

    International Nuclear Information System (INIS)

    Zagaja, S.W.; Przybyla, A.

    1976-01-01

    Induction of mutations in deciduous fruits is considered complementary to the conventional breeding methods. Several promissing mutants, particularly in apples, were described and some of them were introduced to commercial orchards. Studies described herein are aimed at developing compact type mutants in apple cultivars, apple rootstocks and in sour cherry cultivars. Data obtained so far confirm the results of the other authors, who developed compact type mutants in apples and sweet cherries. Physiological studies have shown that the leaves of spontaneous apple mutants of compact type are more efficient in photosynthesis than the leaves of respective standards. In spite of this, using branch ringing techniques, it was found that the leaves of compacts and those of standards do not differ in their productivity. There seem to be several advantages in employing tissue culture technique in mutation breeding. That is why a project was started to work out a method of growing apple shoots from adventitious buds developed on sections of roots. (author)

  7. Definably compact groups definable in real closed fields. I

    OpenAIRE

    Barriga, Eliana

    2017-01-01

    We study definably compact definably connected groups definable in a sufficiently saturated real closed field $R$. We introduce the notion of group-generic point for $\\bigvee$-definable groups and show the existence of group-generic points for definably compact groups definable in a sufficiently saturated o-minimal expansion of a real closed field. We use this notion along with some properties of generic sets to prove that for every definably compact definably connected group $G$ definable in...

  8. Equivariant volumes of non-compact quotients and instanton counting

    OpenAIRE

    Martens, Johan

    2006-01-01

    Motivated by Nekrasov's instanton counting, we discuss a method for calculating equivariant volumes of non-compact quotients in symplectic and hyper-K\\"ahler geometry by means of the Jeffrey-Kirwan residue-formula of non-abelian localization. In order to overcome the non-compactness, we use varying symplectic cuts to reduce the problem to a compact setting, and study what happens in the limit that recovers the original problem. We implement this method for the ADHM construction of the moduli ...

  9. How to Make Eccentricity Cycles in Stratigraphy: the Role of Compaction

    Science.gov (United States)

    Liu, W.; Hinnov, L.; Wu, H.; Pas, D.

    2017-12-01

    Milankovitch cycles from astronomically driven climate variations have been demonstrated as preserved in cyclostratigraphy throughout geologic time. These stratigraphic cycles have been identified in many types of proxies, e.g., gamma ray, magnetic susceptibility, oxygen isotopes, carbonate content, grayscale, etc. However, the commonly prominent spectral power of orbital eccentricity cycles in stratigraphy is paradoxical to insolation, which is dominated by precession index power. How is the spectral power transferred from precession to eccentricity in stratigraphy? Nonlinear sedimentation and bioturbation have long been identified as players in this transference. Here, we propose that in the absence of bioturbation differential compaction can generate the transference. Using insolation time series, we trace the steps by which insolation is transformed into stratigraphy, and how differential compaction of lithology acts to transfer spectral power from precession to eccentricity. Differential compaction is applied to unique values of insolation, which is assumed to control the type of deposited sediment. High compaction is applied to muds, and progressively lower compaction is applied to silts and sands, or carbonate. Linear differential compaction promotes eccentricity spectral power, but nonlinear differential compaction elevates eccentricity spectral power to dominance and precession spectral power to near collapse as is often observed in real stratigraphy. Keywords: differential compaction, cyclostratigraphy, insolation, eccentricity

  10. Designing deoxidation inhibiting encapsulation of metal oxide nanostructures for fluidic and biological applications

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Moumita, E-mail: ghoshiisc@gmail.com [Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India); Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012 (India); IV. Institute of Physics, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); III. Institute of Physics – Biophysics and Complex Systems, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Ghosh, Siddharth [III. Institute of Physics – Biophysics and Complex Systems, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Seibt, Michael [IV. Institute of Physics, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Schaap, Iwan A.T. [III. Institute of Physics – Biophysics and Complex Systems, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Schmidt, Christoph F. [III. Institute of Physics – Biophysics and Complex Systems, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Mohan Rao, G. [Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India)

    2016-12-30

    Graphical abstract: To retain atomic structure and morphology of ZnO nanostructures (caused by deoxidation of ZnO) in water/bio-fluids, we propose and demonstrate a robust and inexpensive encapsulation technique using bio-compatible non-ionic surfactant. - Highlights: • Aqueous solutions of ZnO nanorods with and without surfactant are prepared. • With time ZnO nanorods show structural deterioration in different aqueous solutions. • Crystallinity of ZnO nanorods in absence of aqueous solution remain unaffected. • Encapsulation of bio-compatible surfactant in alchohol avoid ZnO deoxidation. • Crystallinity and structure of ZnO nanorods after encapsulation remain unaffected. - Abstract: Due to their photoluminescence, metal oxide nanostructures such as ZnO nanostructures are promising candidates in biomedical imaging, drug delivery and bio-sensing. To apply them as label for bio-imaging, it is important to study their structural stability in a bio-fluidic environment. We have explored the effect of water, the main constituent of biological solutions, on ZnO nanostructures with scanning electron microscopy (SEM) and photoluminescence (PL) studies which show ZnO nanorod degeneration in water. In addition, we propose and investigate a robust and inexpensive method to encapsulate these nanostructures (without structural degradation) using bio-compatible non-ionic surfactant in non-aqueous medium, which was not reported earlier. This new finding is an immediate interest to the broad audience of researchers working in biophysics, sensing and actuation, drug delivery, food and cosmetics technology, etc.

  11. Study of radial die-wall pressure changes during pharmaceutical powder compaction.

    Science.gov (United States)

    Abdel-Hamid, Sameh; Betz, Gabriele

    2011-04-01

    In tablet manufacturing, less attention is paid to the measurement of die-wall pressure than to force-displacement diagrams. Therefore, the aim of this study was to investigate radial stress change during pharmaceutical compaction. The Presster(TM), a tablet-press replicator, was used to characterize compaction behavior of microcrystalline cellulose (viscoelastic), calcium hydrogen phosphate dihydrate (brittle), direct compressible mannitol (plastic), pre-gelatinized starch (plastic/elastic), and spray dried lactose monohydrate (plastic/brittle) by measuring radial die-wall pressure; therefore powders were compacted at different (pre) compaction pressures as well as different speeds. Residual die-wall pressure (RDP) and maximum die-wall pressure (MDP) were measured. Various tablet physical properties were correlated to radial die-wall pressure. With increasing compaction pressure, RDP and MDP (P compaction behavior of materials and detecting friction phenomena in the early stage of development.

  12. Collective bads: The case of low-level radioactive waste compacts

    International Nuclear Information System (INIS)

    McGinnis, M.V.

    1994-01-01

    In low-level radioactive waste (LLW) compact development, policy gridlock and intergovernmental conflict between states has been the norm. In addition to the not-in-my-backyard (NIMBY) phenomenon, LLW compacts must content with myriad political and ethical dilemmas endemic to a particular collective bad. This paper characterizes the epistemology of collective bads, and reviews how LLW compacts deal with such bads. In addition, using data from survey questionnaires and interviews, this paper assesses the cooperative nature of LLW compacts in terms of their levels of regional autonomy, regional efficacy, allocation of costs and benefits, and their technocentric orientation

  13. Compaction of Chemically Prepared Amorphous Fe-B nanoparticles

    DEFF Research Database (Denmark)

    Hendriksen, P.V.; Bødker, Franz; Mørup, Steen

    1997-01-01

    We report on attempts to compact chemically prepared amorphous iron-boron particles. The praticles have a size of about 100 nm and are pyrophoric. We have made a special die for uniaxial pressing in which the compaction can be performed at elevated temperature without exposing the powder to air...

  14. Compact green-diode-based lasers for biophotonic bioimaging

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Petersen, Paul Michael

    2014-01-01

    Diode lasers simultaneously offer tunability, high-power emission, and compact size at fairly low cost and are increasingly preferred for pumping titanium:sapphire lasers.......Diode lasers simultaneously offer tunability, high-power emission, and compact size at fairly low cost and are increasingly preferred for pumping titanium:sapphire lasers....

  15. The Compact Muon Solenoid Experiment at the Large Hadron Collider The Compact Muon Solenoid Experiment at the Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    David Delepine

    2012-02-01

    Full Text Available The Compact Muon Solenoid experiment at the CERN Large Hadron Collider will study protonproton collisions at unprecedented energies and luminosities. In this article we providefi rst a brief general introduction to particle physics. We then explain what CERN is. Thenwe describe the Large Hadron Collider at CERN, the most powerful particle acceleratorever built. Finally we describe the Compact Muon Solenoid experiment, its physics goals,construction details, and current status.El experimento Compact Muon Solenoid en el Large Hadron Collider del CERN estudiarácolisiones protón protón a energías y luminosidades sin precedente. En este artículo presentamos primero una breve introducción general a la física de partículas. Despuésexplicamos lo que es el CERN. Luego describimos el Large Hadron Collider, el más potente acelerador de partículas construido por el hombre, en el CERN. Finalmente describimos el experimento Compact Muon Solenoid, sus objetivos en física, los detalles de su construcción,y su situación presente.

  16. Analysis of compaction initiation in human embryos by using time-lapse cinematography.

    Science.gov (United States)

    Iwata, Kyoko; Yumoto, Keitaro; Sugishima, Minako; Mizoguchi, Chizuru; Kai, Yoshiteru; Iba, Yumiko; Mio, Yasuyuki

    2014-04-01

    To analyze the initiation of compaction in human embryos in vitro by using time-lapse cinematography (TLC), with the goal of determining the precise timing of compaction and clarifying the morphological changes underlying the compaction process. One hundred and fifteen embryos donated by couples with no further need for embryo-transfer were used in this study. Donated embryos were thawed and processed, and then their morphological behavior during the initiation of compaction was dynamically observed via time-lapse cinematography (TLC) for 5 days. Although the initiation of compaction occurred throughout the period from the 4-cell to 16-cell stage, 99 (86.1 %) embryos initiated compaction at the 8-cell stage or later, with initiation at the 8-cell stage being most frequent (22.6 %). Of these 99 embryos, 49.5 % developed into good-quality blastocysts. In contrast, of the 16 (13.9 %) embryos that initiated compaction prior to the 8-cell stage, only 18.8 % developed into good-quality blastocysts. Embryos that initiated compaction before the 8-cell stage showed significantly higher numbers of multinucleated blastomeres, due to asynchronism in nuclear division at the third mitotic division resulting from cytokinetic failure. The initiation of compaction primarily occurs at the third mitotic division or later in human embryos. Embryos that initiate compaction before the 8-cell stage are usually associated with aberrant embryonic development (i.e., cytokinetic failure accompanied by karyokinesis).

  17. Influence of compaction and surface roughness on low-energy ion scattering signals

    NARCIS (Netherlands)

    Jansen, W.P.A.; Knoester, A.; Maas, A.J.H.; Schmit, P.; Kytökivi, A.; Denier van der Gon, A.W.; Brongersma, H.H.

    2004-01-01

    Investigation of the surface composition of powders often requires compaction. To study the effect of compaction on surface analysis, samples have been compacted at various pressures ranging from 0 Pa (i.e. no compaction) up to 2000 MPa (2 × 104 kg cm-2) Low-energy ion scattering (LEIS) was used to

  18. Transient dynamics of the flow around a NACA 0015 airfoil using fluidic vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Siauw, W.L. [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, ENSMA - Teleport 2, 1 Avenue Clement Ader, BP 40109, F-86961 Futuroscope Chasseneuil Cedex (France); Bonnet, J.-P., E-mail: Jean-Paul.Bonnet@univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, CEAT, 43 rue de l' Aerodrome, F-86036 Poitiers Cedex (France); Tensi, J., E-mail: Jean.Tensi@lea.univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, ENSMA - Teleport 2, 1 Avenue Clement Ader, BP 40109, F-86961 Futuroscope Chasseneuil Cedex (France); Cordier, L., E-mail: Laurent.Cordier@univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, CEAT, 43 rue de l' Aerodrome, F-86036 Poitiers Cedex (France); Noack, B.R., E-mail: Bernd.Noack@univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, CEAT, 43 rue de l' Aerodrome, F-86036 Poitiers Cedex (France); Cattafesta, L., E-mail: cattafes@ufl.ed [Florida Center for Advanced Aero-Propulsion (FCAAP), Department of Mechanical and Aerospace Engineering, University of Florida, 231 MAE-A, Gainesville, FL 32611 (United States)

    2010-06-15

    The unsteady activation or deactivation of fluidic vortex generators on a NACA 0015 airfoil is studied to understand the transient dynamics of flow separation control. The Reynolds number is high enough and the boundary layer is tripped, so the boundary layer is fully turbulent prior to separation. Conditional PIV of the airfoil wake is obtained phase-locked to the actuator trigger signal, allowing reconstruction of the transient processes. When the actuators are impulsively turned on, the velocity field in the near wake exhibit a complex transient behavior associated with the formation and shedding of a starting vortex. When actuation is stopped, a more gradual process of the separation dynamics is found. These results are in agreement with those found in the literature in comparable configurations. Proper Orthogonal Decomposition of phase-locked velocity fields reveals low-dimensional transient dynamics for the attachment and separation processes, with 98% of the fluctuation energy captured by the first four modes. The behavior is quantitatively well captured by a four-dimensional dynamical system with the corresponding mode amplitudes. Analysis of the first temporal POD modes accurately determines typical time scales for attachment and separation processes to be respectively t{sup +}=10 and 20 in conventional non-dimensional values. This study adds to experimental investigations of this scale with essential insight for the targeted closed-loop control.

  19. Press-pack components electro-thermo-fluidic modeling: application to the Integrated Gate Commutated Thyristor 4,5 kV-4 kA; Modelisation des couplages electro-thermo-fluidiques des composants en boitier press-pack: application a l'integrated gate commutated thyristor 4,5kV-4kA

    Energy Technology Data Exchange (ETDEWEB)

    Feral, H.

    2005-09-15

    Temperature is an important parameter when you use semi-conductors. In the multi MW power converters the semiconductor losses are upper than kW. The thermal analyzes of the semiconductor package and cooling system must be performed to understand the thermal limitations. The maximal temperature can not be upper than 150 deg. C for silicon components. The temperature variations have an impact on the component life time. The thermal phenomena in the power electronic component can not be dissociated with the electric phenomena (losses) and fluidic phenomena (cooling). An electro-thermo-fluidic modelling method has been elaborated. The method is used to study an IGCT (Integrated Gate commutated Thyristor) 4.5 kV 4 kA in the switching cell with his water cooling system. The IGCT use a press-pack floating mount package technology. The thermal contact resistances have an important impact on the heat transfer in the package. The thermal contact resistances have been estimated with a profile-metric measure and a direct measure. To validate the method and tune the model, thermal, electric and fluidic measurements are performed in an IGCT in MW switching operation. The last chapter introduces the model applications. The model is used to study the water flow direction in the IGCT cooling system. Transient simulations are used to study the temperature fluctuation on an arc furnace melting cycle. (author)

  20. Static investigation of two fluidic thrust-vectoring concepts on a two-dimensional convergent-divergent nozzle

    Science.gov (United States)

    Wing, David J.

    1994-01-01

    A static investigation was conducted in the static test facility of the Langley 16-Foot Transonic Tunnel of two thrust-vectoring concepts which utilize fluidic mechanisms for deflecting the jet of a two-dimensional convergent-divergent nozzle. One concept involved using the Coanda effect to turn a sheet of injected secondary air along a curved sidewall flap and, through entrainment, draw the primary jet in the same direction to produce yaw thrust vectoring. The other concept involved deflecting the primary jet to produce pitch thrust vectoring by injecting secondary air through a transverse slot in the divergent flap, creating an oblique shock in the divergent channel. Utilizing the Coanda effect to produce yaw thrust vectoring was largely unsuccessful. Small vector angles were produced at low primary nozzle pressure ratios, probably because the momentum of the primary jet was low. Significant pitch thrust vector angles were produced by injecting secondary flow through a slot in the divergent flap. Thrust vector angle decreased with increasing nozzle pressure ratio but moderate levels were maintained at the highest nozzle pressure ratio tested. Thrust performance generally increased at low nozzle pressure ratios and decreased near the design pressure ratio with the addition of secondary flow.