WorldWideScience

Sample records for adaptations impaired oxidative

  1. Impaired visuomotor adaptation in adults with ADHD

    Kurdziel, Laura B. F.; Dempsey, Katherine; Zahara, Mackenzie; Valera, Eve; Rebecca M.C. Spencer

    2015-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is a prevalent psychiatric disorder in children that often continues into adulthood. It has been suggested that motor impairments in ADHD are associated with underlying cerebellar pathology. If such is the case, individuals with ADHD should be impaired on motor tasks requiring healthy cerebellar function. To test this, we compared performance of individuals with ADHD and ADHD-like symptoms with non-ADHD controls on a visuomotor adaptation task k...

  2. Adaptive oxide electronics: A review

    Ha, Sieu D.; Ramanathan, Shriram

    2011-10-01

    Novel information processing techniques are being actively explored to overcome fundamental limitations associated with CMOS scaling. A new paradigm of adaptive electronic devices is emerging that may reshape the frontiers of electronics and enable new modalities. Creating systems that can learn and adapt to various inputs has generally been a complex algorithm problem in information science, albeit with wide-ranging and powerful applications from medical diagnosis to control systems. Recent work in oxide electronics suggests that it may be plausible to implement such systems at the device level, thereby drastically increasing computational density and power efficiency and expanding the potential for electronics beyond Boolean computation. Intriguing possibilities of adaptive electronics include fabrication of devices that mimic human brain functionality: the strengthening and weakening of synapses emulated by electrically, magnetically, thermally, or optically tunable properties of materials.In this review, we detail materials and device physics studies on functional metal oxides that may be utilized for adaptive electronics. It has been shown that properties, such as resistivity, polarization, and magnetization, of many oxides can be modified electrically in a non-volatile manner, suggesting that these materials respond to electrical stimulus similarly as a neural synapse. We discuss what device characteristics will likely be relevant for integration into adaptive platforms and then survey a variety of oxides with respect to these properties, such as, but not limited to, TaOx, SrTiO3, and Bi4-xLaxTi3O12. The physical mechanisms in each case are detailed and analyzed within the framework of adaptive electronics. We then review theoretically formulated and current experimentally realized adaptive devices with functional oxides, such as self-programmable logic and neuromorphic circuits. Finally, we speculate on what advances in materials physics and engineering may

  3. Effective Classroom Adaptations for Students with Visual Impairments.

    Cox, Penny R.; Dykes, Mary K.

    2001-01-01

    This article discusses strategies for including students with visual impairments in general education settings. It explains categories of visual impairments and how students with visual impairments learn. Auditory learning and visual learning accommodations are addressed, and checklists for orientation and mobility adaptations, and for classroom…

  4. Parkinson's disease associated with impaired oxidative phosphorylation

    Parkinson's disease may be due to primary or secondary oxidative phosphorylation (OXPHOS) defects. In a 76-year-old man with Parkinson's disease since 1992, slightly but recurrently elevated creatine phosphokinase, recurrently elevated blood glucose, thickening of the left ventricular myocardium, bifascicular block and hypacusis were found. Cerebral MRI showed atrophy, periventricular demyelination, multiple, disseminated, supra- and infratentorial lacunas, and haemosiderin deposits in both posterior horns. Muscle biopsy showed typical features of an OXPHOS defect. Whether the association of Parkinson's disease and impaired OXPHOS was causative or coincidental remains unknown. Possibly, the mitochondrial defect acted as an additional risk factor for Parkinson's disease or the OXPHOS defect worsened the preexisting neurological impairments by a cumulative or synergistic mechanism. In conclusion, this case shows that Parkinson's disease may be associated with a mitochondrially or nuclearly encoded OXPHOS defect, manifesting as hypacusis, myopathy, axonal polyneuropathy, cardiomyopathy and recurrent subclinical ischaemic strokes and haemorrhages. (orig.)

  5. Spatial compression impairs prism-adaptation in healthy individuals

    Roger Newport

    2013-01-01

    Neglect patients typically present with gross inattention to one side of space following damage to the contralateral hemisphere. While prism-adaptation is effective in ameliorating some neglect behaviours, the mechanisms involved and their relationship to neglect remain unclear. Recent studies have shown that conscious strategic control processes in prism-adaptation may be impaired in neglect patients, who are also reported to show extraordinarily long aftereffects compared to healthy partici...

  6. Familiar Sports and Activities Adapted for Multiply Impaired Persons.

    Schilling, Mary Lou, Ed.

    1984-01-01

    Means of adapting some familiar and popular physical activities for multiply impaired persons are described. Games reviewed are dice baseball, one base baseball, in-house bowling, wheelchair bowling, ramp bowling, swing-ball bowling, table tennis, shuffleboard, beanbag bingo and tic-tac-toe, balloon basketball, circle football, and wheelchair…

  7. Spatial compression impairs prism-adaptation in healthy individuals

    Roger Newport

    2013-05-01

    Full Text Available Neglect patients typically present with gross inattention to one side of space following damage to the contralateral hemisphere. While prism-adaptation is effective in ameliorating some neglect behaviours, the mechanisms involved and their relationship to neglect remain unclear. Recent studies have shown that conscious strategic control processes in prism-adaptation may be impaired in neglect patients, who are also reported to show extraordinarily long aftereffects compared to healthy participants. Determining the underlying cause of these effects may be the key to understanding therapeutic benefits. Alternative accounts suggest that reduced strategic control might result from a failure to detect prism-induced reaching errors properly either because a the size of the error is underestimated in compressed visual space or b pathologically increased error detection thresholds reduce the requirement for error correction. The purpose of this study was to model these two alternatives in healthy participants and to examine whether strategic control and subsequent aftereffects were abnormal compared to standard prism adaptation. Each participant completed three prism-adaptation procedures within a MIRAGE mediated reality environment with direction errors recorded before, during and after adaptation. During prism-adaptation, visual-feedback of the reach could be compressed, perturbed by noise or represented veridically. Compressed visual space significantly reduced strategic control and aftereffects compared to control and noise conditions. These results support recent observations in neglect patients, suggesting that a distortion of spatial representation may successfully model neglect and explain neglect performance while adapting to prisms.

  8. Is cognitive impairment in cirrhotic patients due to increased peroxynitrite and oxidative stress?

    Gimenez-Garzó, Carla; Urios, Amparo; Agustí, Ana; González-López, Olga; Escudero-García, Desamparados; Escudero-Sanchis, Amparo; Serra, Miguel Angel; Giner-Durán, Remedios; Montoliu, Carmina; Felipo, Vicente

    2015-04-01

    Cirrhotic patients may suffer minimal hepatic encephalopathy (MHE), with mild cognitive impairment. 3-Nitro-tyrosine levels are a good biomarker for diagnosis of the cognitive impairment and MHE in cirrhotic patients. This suggests that oxidative stress could be involved in the induction of cognitive and motor alterations in MHE. We have observed that patients with MHE show increased oxidative stress in blood compared with cirrhotic patients without MHE, with increased lipid peroxidation, DNA oxidation, protein carbonylation, 3-nitrotyrosine, oxidized glutathione (GSSG)/reduced glutathione (GSH) ratio, and GSH levels. The activities of antioxidant enzymes are enhanced in erythrocytes and mononuclear cells from patients with and without MHE compared with control subjects. Only glutathione peroxidase activity was increased in MHE patients compared with patients without MHE. Oxidative stress markers in blood, especially GSSG/GSH ratio, GSH, malondialdehyde, and 3-nitrotyrosine, correlate with deficits in attention and motor coordination. The increase in antioxidant activities in patients would be an adaptive mechanism to cope with enhanced oxidative stress, although it is not effective enough to normalize it. Our observations lead to the hypothesis that oxidative stress and increased peroxynitrite formation would mediate the synergistic effects of hyperammonemia and inflammation on cognitive and motor impairment in MHE. PMID:25557123

  9. Nitric oxide and coronary vascular endothelium adaptations in hypertension

    Andrew S Levy

    2009-12-01

    Full Text Available Andrew S Levy*, Justin CS Chung*, Jeffrey T Kroetsch*, James WE RushDepartment of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada; *These authors contributed equally to this workAbstract: This review highlights a number of nitric oxide (NO-related mechanisms that contribute to coronary vascular function and that are likely affected by hypertension and thus become important clinically as potential considerations in prevention, diagnosis, and treatment of coronary complications of hypertension. Coronary vascular resistance is elevated in hypertension in part due to impaired endothelium-dependent function of coronary arteries. Several lines of evidence suggest that other NO synthase isoforms and dilators other than NO may compensate for impairments in endothelial NO synthase (eNOS to protect coronary artery function, and that NO-dependent function of coronary blood vessels depends on the position of the vessel in the vascular tree. Adaptations in NOS isoforms in the coronary circulation to hypertension are not well described so the compensatory relationship between these and eNOS in hypertensive vessels is not clear. It is important to understand potential functional consequences of these adaptations as they will impact the efficacy of treatments designed to control hypertension and coronary vascular disease. Polymorphisms of the eNOS gene result in significant associations with incidence of hypertension, although mechanistic details linking the polymorphisms with alterations in coronary vasomotor responses and adaptations to hypertension are not established. This understanding should be developed in order to better predict those individuals at the highest risk for coronary vascular complications of hypertension. Greater endothelium-dependent dilation observed in female coronary arteries is likely related to endothelial Ca2+ control and eNOS expression and activity. In hypertension models, the coronary vasculature has not been

  10. Oxidative Stress Adaptation with Acute, Chronic and Repeated Stress

    Pickering, Andrew. M.; Vojtovich, Lesya; Tower, John; Davies, Kelvin J. A.

    2012-01-01

    Oxidative stress adaptation or hormesis is an important mechanism by which cells and organisms respond to, and cope with, environmental and physiological shifts in the level of oxidative stress. Most studies of oxidative stress adaption have been limited to adaptation induced by acute stress. In contrast, many if not most environmental and physiological stresses are either repeated or chronic. In this study we find that both cultured mammalian cells, and the fruit fly Drosophila melanogaster,...

  11. Impaired Mitochondrial Fat Oxidation Induces FGF21 in Muscle.

    Vandanmagsar, Bolormaa; Warfel, Jaycob D; Wicks, Shawna E; Ghosh, Sujoy; Salbaum, J Michael; Burk, David; Dubuisson, Olga S; Mendoza, Tamra M; Zhang, Jingying; Noland, Robert C; Mynatt, Randall L

    2016-05-24

    Fatty acids are the primary fuel source for skeletal muscle during most of our daily activities, and impaired fatty acid oxidation (FAO) is associated with insulin resistance. We have developed a mouse model of impaired FAO by deleting carnitine palmitoyltransferase-1b specifically in skeletal muscle (Cpt1b(m-/-)). Cpt1b(m-/-) mice have increased glucose utilization and are resistant to diet-induced obesity. Here, we show that inhibition of mitochondrial FAO induces FGF21 expression specifically in skeletal muscle. The induction of FGF21 in Cpt1b-deficient muscle is dependent on AMPK and Akt1 signaling but independent of the stress signaling pathways. FGF21 appears to act in a paracrine manner to increase glucose uptake under low insulin conditions, but it does not contribute to the resistance to diet-induced obesity. PMID:27184848

  12. Synaptic contacts impaired by styrene-7,8-oxide toxicity

    Styrene-7,8-oxide (SO), a chemical compound widely used in industrial applications, is a potential hazard for humans, particularly in occupational settings. Neurobehavioral changes are consistently observed in occupationally exposed individuals and alterations of neurotransmitters associated with neuronal loss have been reported in animal models. Although the toxic effects of styrene have been extensively documented, the molecular mechanisms responsible for SO-induced neurotoxicity are still unclear. A possible dopamine-mediated effect of styrene neurotoxicity has been previously demonstrated, since styrene oxide alters dopamine neurotransmission in the brain. Thus, the present study hypothesizes that styrene neurotoxicity may involve synaptic contacts. Primary striatal neurons were exposed to styrene oxide at different concentrations (0.1-1 mM) for different time periods (8, 16, and 24 h) to evaluate the dose able to induce synaptic impairments. The expression of proteins crucial for synaptic transmission such as Synapsin, Synaptophysin, and RAC-1 were considered. The levels of Synaptophysin and RAC-1 decreased in a dose-dependent manner. Accordingly, morphological alterations, observed at the ultrastructural level, primarily involved the pre-synaptic compartment. In SO-exposed cultures, the biochemical cascade of caspases was activated affecting the cytoskeleton components as their target. Thus the impairments in synaptic contacts observed in SO-exposed cultures might reflect a primarily morphological alteration of neuronal cytoskeleton. In addition, our data support the hypothesis developed by previous authors of reactive oxygen species (ROS) initiating events of SO cytotoxicity

  13. Increased oxidative stress and impaired antioxidant response in Lafora disease.

    Romá-Mateo, Carlos; Aguado, Carmen; García-Giménez, José Luis; Ibáñez-Cabellos, José Santiago; Seco-Cervera, Marta; Pallardó, Federico V; Knecht, Erwin; Sanz, Pascual

    2014-10-01

    Lafora Disease (LD, OMIM 254780, ORPHA501) is a fatal neurodegenerative disorder characterized by the presence of glycogen-like intracellular inclusions called Lafora bodies and caused, in the vast majority of cases, by mutations in either EPM2A or EPM2B genes, encoding respectively laforin and malin. In the last years, several reports have revealed molecular details of these two proteins and have identified several processes affected in LD, but the pathophysiology of the disease still remains largely unknown. Since autophagy impairment has been reported as a characteristic treat in both Lafora disease cell and animal models, and as there is a link between autophagy and mitochondrial performance, we sought to determine if mitochondrial function could be altered in those models. Using fibroblasts from LD patients, deficient in laforin or malin, we found mitochondrial alterations, oxidative stress and a deficiency in antioxidant enzymes involved in the detoxification of reactive oxygen species (ROS). Similar results were obtained in brain tissue samples from transgenic mice deficient in either the EPM2A or EPM2B genes. Furthermore, in a proteomic analysis of brain tissue obtained from Epm2b-/- mice, we observed an increase in a modified form of peroxirredoxin-6, an antioxidant enzyme involved in other neurological pathologies, thus corroborating an alteration of the redox condition. These data support that oxidative stress produced by an increase in ROS production and an impairment of the antioxidant enzyme response to this stress play an important role in development of LD. PMID:26461389

  14. Linking Disability and Intercultural Studies: the adaptation journey of the visually impaired migrant in Ireland

    Murphy, Esther

    2011-01-01

    This study focuses on the lived experiences of the visually impaired migrant in Ireland and this is the first study to document the lives of these members of Irish society. It examines how visually impaired migrants are simultaneously adapting to their disability and a new cultural environment while living in Ireland. In so doing this study aims to link the two academic fields of Intercultural Studies and Disability Studies and theoretical underpinnings for this study are drawn and woven tog...

  15. High glucose-mediated oxidative stress impairs cell migration.

    Marcelo L Lamers

    Full Text Available Deficient wound healing in diabetic patients is very frequent, but the cellular and molecular causes are poorly defined. In this study, we evaluate the hypothesis that high glucose concentrations inhibit cell migration. Using CHO.K1 cells, NIH-3T3 fibroblasts, mouse embryonic fibroblasts and primary skin fibroblasts from control and diabetic rats cultured in 5 mM D-glucose (low glucose, LG, 25 mM D-glucose (high glucose, HG or 25 mM L-glucose medium (osmotic control--OC, we analyzed the migration speed, protrusion stability, cell polarity, adhesion maturation and the activity of the small Rho GTPase Rac1. We also analyzed the effects of reactive oxygen species by incubating cells with the antioxidant N-Acetyl-Cysteine (NAC. We observed that HG conditions inhibited cell migration when compared to LG or OC. This inhibition resulted from impaired cell polarity, protrusion destabilization and inhibition of adhesion maturation. Conversely, Rac1 activity, which promotes protrusion and blocks adhesion maturation, was increased in HG conditions, thus providing a mechanistic basis for the HG phenotype. Most of the HG effects were partially or completely rescued by treatment with NAC. These findings demonstrate that HG impairs cell migration due to an increase in oxidative stress that causes polarity loss, deficient adhesion and protrusion. These alterations arise, in large part, from increased Rac1 activity and may contribute to the poor wound healing observed in diabetic patients.

  16. [The role of preventing nitric oxide deficiency in the antihypertensive effect of adaptation to hypoxia].

    Mashina, S Iu; Smirin, B V; Pokidyshev, D A; Malyshev, I Iu; Liamina, N P; Senchikin, V N; Markov, Kh M; Manukhin, E B

    2001-01-01

    Shortage of endothelial nitric oxide (NO) manifested as decreased daily urinary excretion of nitrate and nitrite as well as attenuated endothelium-dependent relaxation of conduit and resistance vessels progresses with age-related increase of blood pressure (BP) in stroke-prone spontaneously hypertensive rats (SHRSP). Simultaneous NO-dependent suppression of vascular contractions is, apparently, due to the inducible NO synthase activity in vascular smooth muscle specific for spontaneously hypertensive rat. Adaptation of rats to hypobaric hypoxia initiated at early hypertensive stage (at the age of 5-6 weeks) decelerates hypertension progress. The antihypertensive effect of the adaptation was accompanied by stimulation of endothelial NO synthesis and prevention of impaired NO-dependent response in isolated blood vessels. Nitric oxide stores were formed in the vascular wall of SHRSP and WKY rats at the same time. The obtained data indicate a significant role of correction of endothelial NO deficiency in the antihypertensive effect of adaptation to hypoxia. PMID:15926321

  17. Visual Behaviors and Adaptations Associated with Cortical and Ocular Impairment in Children.

    Jan, J. E.; Groenveld, M.

    1993-01-01

    This article shows the usefulness of understanding visual behaviors in the diagnosis of various types of visual impairments that are due to ocular and cortical disorders. Behaviors discussed include nystagmus, ocular motor dyspraxia, head position, close viewing, field loss adaptations, mannerisms, photophobia, and abnormal color perception. (JDD)

  18. Cross-Cultural Adaptation of a Developmental Assessment for Arabic-Speaking Children with Visual Impairment

    Macrine, Sheila L.; Heji, Hayat; Sabri, Amel; Dalton, Sara

    2015-01-01

    Developmental screening has become an established component of child health programs in many developed countries. The research objective of this project was to translate and adapt a developmental assessment (Oregon Project Skills Inventory) for use with young children with visual impairments who speak Arabic. The study was prompted by the lack of…

  19. Guidelines for Assessing the Need for Adaptive Devices for Visually Impaired Pedestrians at Signalized Intersections.

    Gallagher, Brian R.; de Oca, Patricia Montes

    1998-01-01

    Presents guidelines for orientation and mobility instructors and traffic engineers to assess the need for adaptive devices to make crosswalks at signalized intersections accessible to pedestrians with visual impairments. The discussions of audible and tactile pedestrian devices, along with case examples, distinguish when each device should be…

  20. Humanin: a mitochondrial signaling peptide as a biomarker for impaired fasting glucose-related oxidative stress.

    Voigt, Annet; Jelinek, Herbert F

    2016-05-01

    Mitochondrial RNR-2 (mt-RNR2, humanin) has been shown to play a role in protecting several types of cells and tissues from the effects of oxidative stress. Humanin (HN) functions through extracellular and intracellular pathways adjusting mitochondrial oxidative phosphorylation and ATP production. Addition of HN improved insulin sensitivity in animal models of diabetes mellitus but no clinical studies have been carried out to measure HN levels in humans associated with hyperglycemia. The plasma levels of HN in participants attending a diabetes complications screening clinic were measured. Clinical history and anthropometric data were obtained from all participants. Plasma levels of HN were measured by a commercial ELISA kit. All data were analyzed applying nonparametric statistics and general linear modeling to correct for age and gender. A significant decrease (P = 0.0001) in HN was observed in the impaired fasting glucose (IFG) group (n = 23; 204.84 ± 92.87 pg mL(-1)) compared to control (n = 58; 124.3 ± 83.91 pg mL(-1)) consistent with an adaptive cellular response by HN to a slight increase in BGL. PMID:27173674

  1. Oxidative Injury and Neuropathy in Diabetes and Impaired Glucose Tolerance

    Russell, James W.; Berent-Spillson, Alison; Vincent, Andrea M.; Freimann, Catherine L.; Sullivan, Kelli A; Eva L Feldman

    2008-01-01

    Clinical studies suggest that impaired glucose tolerance (IGT) is associated with the development of neuropathy. The aim of the current study was to determine if neuropathy developed in the female Zucker Diabetic Fatty (ZDF) rat, an animal model of IGT and type 2 diabetes. The ZDF rat develops impaired glucose tolerance (IGT) when fed a control diet, and frank diabetes when fed a high fat diet. Following 10 weeks of hyperglycemia, sensory nerve action potentials (SNAP) and compound motor acti...

  2. Hereditary cerebellar ataxia progressively impairs force adaptation during goal-directed arm movements.

    Maschke, Matthias; Gomez, Christopher M; Ebner, Timothy J; Konczak, Jürgen

    2004-01-01

    We investigated how humans with hereditary cerebellar degeneration [spinocerebellar ataxia (SCA) type 6 and 8, n = 9] and age- and sex-matched healthy controls (n = 9) adapted goal-directed arm movements to an unknown external force field. We tested whether learning could be generalized to untrained regions in the workspace, an aspect central to the idea of an internal model, and if any learning could be retained. After removal of the force field, SCA patients showed little or no learning-related aftereffects indicating that repeated force-field exposure never led to successful force compensation. In contrast, healthy control subjects quickly adapted their movements to the new force field. The difference in force adaptation was significant for movements to targets that required both the shoulder and elbow joint (P < 0.001). Moreover, the generalization of learned movements to targets outside the learned workspace was prevented by the cerebellar degeneration (P < 0.01). Retention of force adaptation was significantly lower in SCA patients (P = 0.003). The severity of ataxia in SCA patients correlated negatively with the extent of learning (r = -0.84, P = 0.004). Our findings imply that progressive loss of cerebellar function gradually impairs force adaptation. The failure to generalize learning suggests that cerebellar degeneration prevents the formation of an internal representation of the limb dynamics. PMID:13679403

  3. A study of self-adaptive transmission control architectures in impairment-aware transparent WDM networks

    Liu, Yongjun; Gu, Wanyi; Zhang, Jie; Wang, Lei; Zhang, Hua; Ren, Jia

    2008-11-01

    This paper investigates the self-adaptive transmission control architectures (SATCA) in impairment-aware transparent WDM networks. Two approaches are proposed for the implementation of SATCA. Simulations are conducted to evaluate the benefits obtained by applying SATCA. In the transparent WDM networks, the control plane based on GMPLS protocols introduces connection intelligence into the optical networks. However, since dynamic setup/teardown of connection or fast re-route may introduce unpredictable physical impairments(i.e., fluctuation of optical power and residual dispersion) into the lightpath and in all-optical networks these physical impairments will accumulate along the lightpath, the optical signal quality and service survivablity can not be guaranteed. Therefore, the future optical networks should also have self-adaptive optical transmission ability to guarantee the physical quality of connections. Two proposed approaches to implement SATCA separately introduce extensions to routing protocols (routing-based approach) and signalling protocols (signaling-based approach) of GMPLS. For both approaches, the lightpath quality estimation (LQE) module, which is applied to evaluate the lightpath's QOT and make the compensation budgets, should be added to the optical control plane. The purpose of the simulations is to research the effect of SATCA approaches on the lightpath performance. We suppose that if OSNR or RD is out of the acceptable range, the lightpath is refused. So the blocking probability can be used for comparison among the signaling-based approach,routing-based approach and the traditional approach which is without considering physical impairments. Since the lightpath performance can be improved in the SATCA approach, the quality of lightpath is greatly guaranteed.

  4. The Muscle Oxidative Regulatory Response to Acute Exercise Is Not Impaired in Less Advanced COPD Despite a Decreased Oxidative Phenotype

    Slot, Ilse G. M.; Bram van den Borst; Hellwig, Valéry A. C. V.; Esther Barreiro; Schols, Annemie M. W. J.; Gosker, Harry R.

    2014-01-01

    Already in an early disease stage, patients with chronic obstructive pulmonary disease (COPD) are confronted with impaired skeletal muscle function and physical performance due to a loss of oxidative type I muscle fibers and oxidative capacity (i.e. oxidative phenotype; Oxphen). Physical activity is a well-known stimulus of muscle Oxphen and crucial for its maintenance. We hypothesized that a blunted response of Oxphen genes to an acute bout of exercise could contribute to decreased Oxphen in...

  5. Triiodothyronine activates lactate oxidation without impairing fatty acid oxidation and improves weaning from extracorporeal membrane oxygenation

    Kajimoto, Masaki; Ledee, Dolena R.; Xu, Chun; Kajimoto, Hidemi; Isern, Nancy G.; Portman, Michael A.

    2014-01-01

    Background: Extracorporeal membrane oxygenation (ECMO) provides a rescue for children with severe cardiac failure. We previously showed that triiodothyronine (T3) improves cardiac function by modulating pyruvate oxidation during weaning. This study was focused on fatty acid (FA) metabolism modulated by T3 for weaning from ECMO after cardiac injury. Methods: Nineteen immature piglets (9.1-15.3 kg) were separated into 3 groups with ECMO (6.5 hours) and wean: normal circulation (Group-C);transient coronary occlusion (10 minutes) followed by ECMO (Group-IR); and IR with T3 supplementation (Group-IR-T3). 13-Carbon labeled lactate, medium-chain and long-chain FAs were infused as oxidative substrates. Substrate fractional contribution to the citric acid cycle (FC) was analyzed by 13-Carbon nuclear magnetic resonance. Results: ECMO depressed circulating T3 levels to 40% baseline at 4 hours and were restored in Group-IR-T3. Group-IR decreased cardiac power, which was not fully restorable and 2 pigs were lost because of weaning failure. Group-IR also depressed FC-lactate, while the excellent contractile function and energy efficiency in Group-IR-T3 occurred along with a marked FC-lactate increase and [ATP]/[ADP] without either decreasing FC-FAs or elevating myocardial oxygen consumption over Group-C or -IR. Conclusions: T3 releases inhibition of lactate oxidation following ischemia-reperfusion injury without impairing FA oxidation. These findings indicate that T3 depression during ECMO is maladaptive, and that restoring levels improves metabolic flux and enhances contractile function during weaning.

  6. Mangifera indica Fruit Extract Improves Memory Impairment, Cholinergic Dysfunction, and Oxidative Stress Damage in Animal Model of Mild Cognitive Impairment

    Jintanaporn Wattanathorn

    2014-01-01

    Full Text Available To date, the effective preventive paradigm against mild cognitive impairment (MCI is required. Therefore, we aimed to determine whether Mangifera indica fruit extract, a substance possessing antioxidant and cognitive enhancing effects, could improve memory impairment, cholinergic dysfunction, and oxidative stress damage in animal model of mild cognitive impairment. Male Wistar rats, weighing 180–200 g, were orally given the extract at doses of 12.5, 50, and 200 mg·kg−1 BW for 2 weeks before and 1 week after the bilateral injection of AF64A (icv. At the end of study, spatial memory, cholinergic neurons density, MDA level, and the activities of SOD, CAT, and GSH-Px enzymes in hippocampus were determined. The results showed that all doses of extract could improve memory together with the decreased MDA level and the increased SOD and GSH-Px enzymes activities. The increased cholinergic neurons density in CA1 and CA3 of hippocampus was also observed in rats treated with the extract at doses of 50 and 200 mg·kg−1 BW. Therefore, our results suggested that M. indica, the potential protective agent against MCI, increased cholinergic function and the decreased oxidative stress which in turn enhanced memory. However, further researches are essential to elucidate the possible active ingredients and detail mechanism.

  7. The role of nitrogen oxides in human adaptation to hypoxia

    Levett, Denny Z; Fernandez, Bernadette O.; Riley, Heather L.; Martin, Daniel S; Kay Mitchell; Leckstrom, Carl A.; Can Ince; Brian J. Whipp; Mythen, Monty G; Montgomery, Hugh E.; Grocott, Mike P.; Martin Feelisch

    2011-01-01

    Lowland residents adapt to the reduced oxygen availability at high altitude through a process known as acclimatisation, but the molecular changes underpinning these functional alterations are not well understood. Using an integrated biochemical/whole-body physiology approach we here show that plasma biomarkers of NO production (nitrite, nitrate) and activity (cGMP) are elevated on acclimatisation to high altitude while S-nitrosothiols are initially consumed, suggesting multiple nitrogen oxide...

  8. Impact of Adaptive Materials on Teachers and their Students with Visual Impairments in Secondary Science and Mathematics Classes

    Rule, Audrey C.; Stefanich, Greg P.; Boody, Robert M.; Peiffer, Belinda

    2011-04-01

    Science, technology, engineering, and mathematics (STEM) fields, important in today's world, are underrepresented by students with disabilities. Students with visual impairments, although cognitively similar to sighted peers, face challenges as STEM subjects are often taught using visuals. They need alternative forms of access such as enlarged or audio-converted text, tactile graphics, and involvement in hands-on science. This project focused on increasing teacher awareness of and providing funds for the purchase of supplemental adaptive resources, supplies, and equipment. We examined attitude and instructional changes across the year of the programme in 15 science and mathematics teachers educating students with visual impairments. Positive changes were noted from pretest to posttest in student and teacher perspectives, and in teacher attitudes towards students with disabilities in STEM classes. Teachers also provided insights into their challenges and successes through a reflective narrative. Several adolescent students resisted accommodations to avoid appearing conspicuous to peers. Teachers implemented three strategies to address this: providing the adaptations to all students in the class; convincing the student of the need for adaptation; and involving the class in understanding and accepting the student's impairment. A variety of teacher-created adaptations for various science and mathematics labs are reported. Another finding was many adaptations provided for the student with visual impairment benefitted the entire class. This study supports the claim that given knowledgeable, supportive teachers, and with appropriate accommodations such as tactile or auditory materials, students with visual impairments can be as successful and engaged as other students in science and mathematics.

  9. Serum oxidized low-density lipoprotein level and risk of cognitive impairment in older women

    Koyama, A; Stone, K.; Yaffe, K

    2012-01-01

    We investigated the association between serum level of oxidized low-density lipoprotein (oxLDL) and risk of cognitive impairment (dementia or mild cognitive impairment) among 572 nondemented community-dwelling women from a prospective cohort study of aging. After 5 years of follow-up, 228 (39.9%) developed cognitive impairment; and this did not differ by tertile of baseline oxLDL level (highest compared with lowest tertile 38.2% vs. 39.5%; odds ratio, 0.90; 95% confidence interval, 0.63-1.43)...

  10. Impaired adaptation of gastrointestinal motility following chronic stress in maternally separated rats.

    Bülbül, Mehmet; Babygirija, Reji; Cerjak, Diana; Yoshimoto, Sazu; Ludwig, Kirk; Takahashi, Toku

    2012-04-01

    Exposure to early life stress causes increased stress responsiveness and permanent changes in the central nervous system. We recently showed that delayed gastric emptying (GE) and accelerated colonic transit (CT) in response to acute restraint stress (ARS) were completely restored following chronic homotypic stress (CHS) in rats via upregulation of hypothalamic oxytocin (OXT) expression. However, it is unknown whether early life stress affects hypothalamic OXT circuits and gastrointestinal motor function. Neonatal rats were subjected to maternal separation (MS) for 180 min/day for 2 wk. Anxiety-like behaviors were evaluated by the elevated-plus-maze test. GE and CT were measured under nonstressed (NS), ARS, and CHS conditions. Expression of corticotropin-releasing factor (CRF) and OXT in the paraventricular nucleus (PVN) of the hypothalamus was evaluated by real time RT-PCR and immunohistochemistry. MS increased anxiety-like behaviors. ARS delayed GE and accelerated CT in control and MS rats. After CHS, delayed GE and accelerated CT were restored in control, but not MS, rats. CRF mRNA expression was significantly increased in response to ARS in control and MS rats. Increased CRF mRNA expression was still observed following CHS in MS, but not control, rats. In response to CHS, OXT mRNA expression was significantly increased in control, but not MS, rats. The number of OXT-immunoreactive cells was increased following CHS in the magnocellular part of the PVN in control, but not MS, rats. MS impairs the adaptation response of gastrointestinal motility following CHS. The mechanism of the impaired adaptation involves downregulation of OXT and upregulation of CRF in the hypothalamus in MS rats. PMID:22241856

  11. Oxidative Stress Impairs Learning and Memory in apoE Knockout Mice

    Evola, Marianne; Hall, Allyson; Wall, Trevor; Young, Alice; Grammas, Paula

    2010-01-01

    Cardiovascular risk factors, such as oxidative stress and elevated lipids, are linked to the development of cognitive impairment. A mediator common to both stressors is the apolipoprotein E (apoE). The objectives of this study are to determine the effects of apoE deficiency and diet-induced systemic oxidative stress in mice on vascular expression of inflammatory proteins and on cognitive function. Mice are placed on a diet enriched in homocysteine for fifteen weeks and then assessed for spati...

  12. Maternal diabetes impairs oxidative and inflammatory response in murine placenta

    Mohamed I. Saad; Abdelkhalek, Taha M.; Moustafa M. Saleh; Haiba, Maha M.; Tawfik, Shady H.; Maher A. Kamel

    2016-01-01

    Placenta is the major exchange surface between mother and fetus and plays a pivotal role in fetal development. A better understanding of the mechanisms by which diabetes alters placental function may allow better management of diabetes pregnancies. In this study, we attempt to investigate the effect of diabetic milieu with and without malformation on placental function. In order to investigate the impact of diabetic pregnancy on oxidative stress, endothelial and vascular functions of placenta...

  13. Platelet hyperaggregability in obesity: is there a role for nitric oxide impairment and oxidative stress?

    Leite, Natália Rodrigues Pereira; Siqueira de Medeiros, Mariana; Mury, Wanda Vianna; Matsuura, Cristiane; Perszel, Monique Bandeira Moss; Noronha Filho, Gerson; Brunini, Tatiana Mc; Mendes-Ribeiro, Antônio Claúdio

    2016-08-01

    Epidemiological evidence has shown that platelet activation markers are consistently elevated in obesity, contributing to its prothrombotic state. In order to improve the understanding of the regulation of platelet function in obesity, the aim of this study was to investigate the l-arginine-nitric oxide (NO) pathway in obese adults without other cardiovascular risk factor. Seventeen obese (body mass index [BMI] 35.9±1.0 kg/m(2) ) and eighteen age-matched normal weight subjects (BMI 22.0±0.6 kg/m(2) ) were included in this study. l-arginine influx was measured with incubation of l-[(3) H]-arginine. NO synthase (NOS) and arginase activities were determined by the citrulline assay and the conversion of l-[(14) C]-arginine to [(14) C]-urea, respectively. Cyclic guanosine monophosphate (cGMP) content was evaluated by enzyme-linked immunosorbent assay. In addition, the study analyzed: platelet aggregation; intraplatelet antioxidant enzymes, via superoxide dismutase (SOD) and catalase activities; and systemic levels of l-arginine, fibrinogen, and C-reactive protein (CRP). Obese patients presented a significant decrease of platelet l-arginine influx, NOS activity, and cGMP levels, along with platelet hyperaggregability. On the presence of NO donor, platelet aggregation was similar between the groups. The fibrinogen and CRP systemic levels were significantly higher and SOD activity was reduced in obesity. No significant differences were observed in plasma levels of l-arginine and intraplatelet arginase and catalase activities between groups. The diminished NO bioavailability associated with inflammatory status and impaired enzymatic antioxidant defence may contribute to future cardiovascular complications in obesity. PMID:27145241

  14. The muscle oxidative regulatory response to acute exercise is not impaired in less advanced COPD despite a decreased oxidative phenotype.

    Slot, Ilse G M; van den Borst, Bram; Hellwig, Valéry A C V; Barreiro, Esther; Schols, Annemie M W J; Gosker, Harry R

    2014-01-01

    Already in an early disease stage, patients with chronic obstructive pulmonary disease (COPD) are confronted with impaired skeletal muscle function and physical performance due to a loss of oxidative type I muscle fibers and oxidative capacity (i.e. oxidative phenotype; Oxphen). Physical activity is a well-known stimulus of muscle Oxphen and crucial for its maintenance. We hypothesized that a blunted response of Oxphen genes to an acute bout of exercise could contribute to decreased Oxphen in COPD. For this, 28 patients with less advanced COPD (age 65 ± 7 yrs, FEV1 59 ± 16% predicted) and 15 age- and gender-matched healthy controls performed an incremental cycle ergometry test. The Oxphen response to exercise was determined by the measurement of gene expression levels of Oxphen markers in pre and 4h-post exercise quadriceps biopsies. Because exercise-induced hypoxia and oxidative stress may interfere with Oxphen response, oxygen saturation and oxidative stress markers were assessed as well. Regardless of oxygen desaturation and absolute exercise intensities, the Oxphen regulatory response to exercise was comparable between COPD patients and controls with no evidence of increased oxidative stress. In conclusion, the muscle Oxphen regulatory response to acute exercise is not blunted in less advanced COPD, regardless of exercise-induced hypoxia. Hence, this study provides further rationale for incorporation of exercise training as integrated part of disease management to prevent or slow down loss of muscle Oxphen and related functional impairment in COPD. PMID:24587251

  15. The muscle oxidative regulatory response to acute exercise is not impaired in less advanced COPD despite a decreased oxidative phenotype.

    Ilse G M Slot

    Full Text Available Already in an early disease stage, patients with chronic obstructive pulmonary disease (COPD are confronted with impaired skeletal muscle function and physical performance due to a loss of oxidative type I muscle fibers and oxidative capacity (i.e. oxidative phenotype; Oxphen. Physical activity is a well-known stimulus of muscle Oxphen and crucial for its maintenance. We hypothesized that a blunted response of Oxphen genes to an acute bout of exercise could contribute to decreased Oxphen in COPD. For this, 28 patients with less advanced COPD (age 65 ± 7 yrs, FEV1 59 ± 16% predicted and 15 age- and gender-matched healthy controls performed an incremental cycle ergometry test. The Oxphen response to exercise was determined by the measurement of gene expression levels of Oxphen markers in pre and 4h-post exercise quadriceps biopsies. Because exercise-induced hypoxia and oxidative stress may interfere with Oxphen response, oxygen saturation and oxidative stress markers were assessed as well. Regardless of oxygen desaturation and absolute exercise intensities, the Oxphen regulatory response to exercise was comparable between COPD patients and controls with no evidence of increased oxidative stress. In conclusion, the muscle Oxphen regulatory response to acute exercise is not blunted in less advanced COPD, regardless of exercise-induced hypoxia. Hence, this study provides further rationale for incorporation of exercise training as integrated part of disease management to prevent or slow down loss of muscle Oxphen and related functional impairment in COPD.

  16. Does Vitamin C and E Supplementation Impair the Favorable Adaptations of Regular Exercise?

    Michalis G. Nikolaidis

    2012-01-01

    Full Text Available The detrimental outcomes associated with unregulated and excessive production of free radicals remains a physiological concern that has implications to health, medicine and performance. Available evidence suggests that physiological adaptations to exercise training can enhance the body’s ability to quench free radicals and circumstantial evidence exists to suggest that key vitamins and nutrients may provide additional support to mitigate the untoward effects associated with increased free radical production. However, controversy has risen regarding the potential outcomes associated with vitamins C and E, two popular antioxidant nutrients. Recent evidence has been put forth suggesting that exogenous administration of these antioxidants may be harmful to performance making interpretations regarding the efficacy of antioxidants challenging. The available studies that employed both animal and human models provided conflicting outcomes regarding the efficacy of vitamin C and E supplementation, at least partly due to methodological differences in assessing oxidative stress and training adaptations. Based on the contradictory evidence regarding the effects of higher intakes of vitamin C and/or E on exercise performance and redox homeostasis, a permanent intake of non-physiological dosages of vitamin C and/or E cannot be recommended to healthy, exercising individuals.

  17. Impaired transcriptional activity of Nrf2 in age-related myocardial oxidative stress is reversible by moderate exercise training.

    Sellamuthu S Gounder

    Full Text Available Aging promotes accumulation of reactive oxygen/nitrogen species (ROS/RNS in cardiomyocytes, which leads to contractile dysfunction and cardiac abnormalities. These changes may contribute to increased cardiovascular disease in the elderly. Inducible antioxidant pathways are regulated by nuclear erythroid 2 p45-related factor 2 (Nrf2 through antioxidant response cis-elements (AREs and are impaired in the aging heart. Whereas acute exercise stress (AES activates Nrf2 signaling and promotes myocardial antioxidant function in young mice (~2 months, aging mouse (>23 months hearts exhibit significant oxidative stress as compared to those of the young. The purpose of this study was to investigate age-dependent regulation of Nrf2-antioxidant mechanisms and redox homeostasis in mouse hearts and the impact of exercise. Old mice were highly susceptible to oxidative stress following high endurance exercise stress (EES, but demonstrated increased adaptive redox homeostasis after moderate exercise training (MET; 10m/min, for 45 min/day for ~6 weeks. Following EES, transcription and protein levels for most of the ARE-antioxidants were increased in young mice but their induction was blunted in aging mice. In contrast, 6-weeks of chronic MET promoted nuclear levels of Nrf2 along with its target antioxidants in the aging heart to near normal levels as seen in young mice. These observations suggest that enhancing Nrf2 function and endogenous cytoprotective mechanisms by MET, may combat age-induced ROS/RNS and protect the myocardium from oxidative stress diseases.

  18. Cognitive impairment and Alzheimer’s disease: Links with oxidative stress and cholesterol metabolism

    Alejandra Sekler

    2008-08-01

    Full Text Available Alejandra Sekler1,2, José M Jiménez2, Leonel Rojo2, Edgard Pastene3, Patricio Fuentes4, Andrea Slachevsky4, Ricardo B Maccioni1,21Center of Cognitive Neurosciences, International Center for Biomedicine (ICC, Santiago, Chile; 2Laboratory of Cellular, Molecular Biology and Neurosciences, Faculty of Sciences, Universidad de Chile, Santiago, Chile; 3Department of Pharmacy, Faculty of Pharmacy, University of Concepcion, Concepción, Chile; 4Unidad de Neurología Cognitiva y Demencias, Servicio de Neurología, Hospital del Salvador, Santiago, ChileAbstract: Oxidative stress has been implicated in the progression of a number of neurodegenerative diseases, including Alzheimer’s disease (AD, Parkinson’s disease and amyotrophic lateral sclerosis. We carried out an in-depth study of cognitive impairment and its relationships with oxidative stress markers such as ferric-reducing ability of plasma (FRAP, plasma malondialdehyde and total antioxidative capacity (TAC, as well as cholesterol parameters, in two subsets of subjects, AD patients (n = 59 and a control group of neurologically normal subjects (n = 29, attending the University Hospital Salvador in Santiago, Chile. Cognitive impairment was assessed by a set of neuropsychological tests (Mini-Mental State Examination, Boston Naming Test, Ideomotor Praxia by imitation, Semantic Verbal Fluency of animals or words with initial A, Test of Memory Alteration, Frontal Assessment Battery, while the levels of those oxidative stress markers and cholesterol metabolism parameters were determined according with standard bioassays in fresh plasma samples of the two subgroups of patients. No significant differences were observed when the cholesterol parameters (low-, high-density lipoprotein, total cholesterol of the AD group were compared with normal controls. Interestingly, a correlation was evidenced when the levels of cognitive impairment were analyzed with respect to the plasma antioxidant capacity (AOC of

  19. Hyperhomocysteinemia impairs regional blood flow: involvements of endothelial and neuronal nitric oxide.

    Toda, Noboru; Okamura, Tomio

    2016-09-01

    Increasing evidence support the idea that hyperhomocysteinemia (HHcy) is responsible for pathogenesis underlying cerebral, coronary, renal, and other vascular circulatory disorders and for hypertension. Impaired synthesis of nitric oxide (NO) in the endothelium or increased production of asymmetric dimethylarginine and activated oxygen species are involved in the impairment of vasodilator effects of NO. Impaired circulation in the brain derived from reduced synthesis and actions of NO would be an important triggering factor to dementia and Alzheimer's disease. Reduced actions of NO and brain hypoperfusion trigger increased production of amyloid-β that inhibits endothelial function, thus establishing a vicious cycle for impairing brain circulation. HHcy is involved in the genesis of anginal attack and coronary myocardial infarction. HHcy is also involved in renal circulatory diseases. The homocysteine (Hcy)-induced circulatory failure is promoted by methionine and is prevented by increased folic acid and vitamin B6/B12. Eliminating poor life styles, such as smoking and being sedentary; keeping favorable dietary habits; and early treatment maintaining constitutive NOS functions healthy, reducing oxidative stresses would be beneficial in protecting HHcy-induced circulatory failures. PMID:27417104

  20. Amelioration of the haloperidol-induced memory impairment and brain oxidative stress by cinnarizine

    Omar M.E. Abdel-Salam; El-Mosallamy, Aliaa E.M.K.; El-Shamarka, Marwa El-Sayed; Salem, Neveen A.; Amany A. SLEEM

    2012-01-01

    Haloperidol is a classic antipsychotic drug known for its propensity to cause extrapyramidal symptoms and impaired memory, owing to blockade of striatal dopamine D2 receptors. Cinnarizine is a calcium channel blocker with D2 receptor blocking properties which is widely used in treatment of vertiginous disorders. The present study aimed to see whether cinnarizine would worsen the effect of haloperidol on memory function and on oxidative stress in mice brain. Cinnarizine (5, 10 or 20 mg/kg),...

  1. Oxidized LDL impair adipocyte response to insulin by activating serine/threonine kinases

    Scazzocchio, Beatrice; Varì, Rosaria; D'Archivio, Massimo; Santangelo, Carmela; Filesi, Carmelina; Giovannini, Claudio; Masella, Roberta

    2009-01-01

    Oxidized LDL (oxLDL) increase in patients affected by type-2 diabetes, obesity, and metabolic syndrome. Likewise, insulin resistance, an impaired responsiveness of target tissues to insulin, is associated with those pathological conditions. To investigate a possible causal relationship between oxLDL and the onset of insulin resistance, we evaluated the response to insulin of 3T3-L1 adipocytes treated with oxLDL. We observed that oxLDL inhibited glucose uptake (−40%) through reduced glucose tr...

  2. Behavioral impairments and changes of nitric oxide and inducible nitric oxide synthase in the brains of molarless KM mice.

    Pang, Qian; Hu, Xingxue; Li, Xinya; Zhang, Jianjun; Jiang, Qingsong

    2015-02-01

    More studies showed that as a common disorder in senior population, loss of teeth could adversely affect human cognitive function, and nitric oxide (NO) might play an important role in the cognitive function. However, the underlying mechanism has not yet been well-established. The objectives of this study are to evaluate behavior changes of KM mice after loss of molars, and levels of NO and inducible nitric oxide synthase (iNOS) in the brain in molarless condition. It is hypothesized that loss of molars of the mice tested results in the cognitive impairments and that the process is mediated by NO in the brain through the signaling pathways. Morris water maze is used to test the behavioral changes after 8 weeks of the surgery. The changes of NO and iNOS are evaluated by using Griess assay, western blot, and immunohistochemistry method. The results show that 8 weeks after loss of molars, the spatial learning and memory of KM mice impair and the levels of NO and iNOS in mice hippocampus increase. These findings suggest that molar extraction is associated with the behavioral impairment, and that the changes of NO and iNOS in the hippocampus may be involved in the behavioral changes in the molarless condition. PMID:25447296

  3. Oxidative stress induces caveolin 1 degradation and impairs caveolae functions in skeletal muscle cells.

    Alexis Mougeolle

    Full Text Available Increased level of oxidative stress, a major actor of cellular aging, impairs the regenerative capacity of skeletal muscle and leads to the reduction in the number and size of muscle fibers causing sarcopenia. Caveolin 1 is the major component of caveolae, small membrane invaginations involved in signaling and endocytic trafficking. Their role has recently expanded to mechanosensing and to the regulation of oxidative stress-induced pathways. Here, we increased the amount of reactive oxidative species in myoblasts by addition of hydrogen peroxide (H2O2 at non-toxic concentrations. The expression level of caveolin 1 was significantly decreased as early as 10 min after 500 μM H2O2 treatment. This reduction was not observed in the presence of a proteasome inhibitor, suggesting that caveolin 1 was rapidly degraded by the proteasome. In spite of caveolin 1 decrease, caveolae were still able to assemble at the plasma membrane. Their functions however were significantly perturbed by oxidative stress. Endocytosis of a ceramide analog monitored by flow cytometry was significantly diminished after H2O2 treatment, indicating that oxidative stress impaired its selective internalization via caveolae. The contribution of caveolae to the plasma membrane reservoir has been monitored after osmotic cell swelling. H2O2 treatment increased membrane fragility revealing that treated cells were more sensitive to an acute mechanical stress. Altogether, our results indicate that H2O2 decreased caveolin 1 expression and impaired caveolae functions. These data give new insights on age-related deficiencies in skeletal muscle.

  4. Rapid Evolution of Culture-Impaired Bacteria During Adaptation to Biofilm Growth

    Jon Penterman; Dao Nguyen; Erin Anderson; Benjamin J. Staudinger; Everett P. Greenberg; Joseph S. Lam; Pradeep K. Singh

    2014-01-01

    Biofilm growth increases the fitness of bacteria in harsh conditions. However, bacteria from clinical and environmental biofilms can exhibit impaired growth in culture, even when the species involved are readily culturable and permissive conditions are used. Here, we show that culture-impaired variants of Pseudomonas aeruginosa arise rapidly and become abundant in laboratory biofilms. The culture-impaired phenotype is caused by mutations that alter the outer-membrane lipopolysaccharide struct...

  5. Age-Dependent Cell Trafficking Defects in Draining Lymph Nodes Impair Adaptive Immunity and Control of West Nile Virus Infection.

    Justin M Richner

    2015-07-01

    Full Text Available Impaired immune responses in the elderly lead to reduced vaccine efficacy and increased susceptibility to viral infections. Although several groups have documented age-dependent defects in adaptive immune priming, the deficits that occur prior to antigen encounter remain largely unexplored. Herein, we identify novel mechanisms for compromised adaptive immunity that occurs with aging in the context of infection with West Nile virus (WNV, an encephalitic flavivirus that preferentially causes disease in the elderly. An impaired IgM and IgG response and enhanced vulnerability to WNV infection during aging was linked to delayed germinal center formation in the draining lymph node (DLN. Adoptive transfer studies and two-photon intravital microscopy revealed a decreased trafficking capacity of donor naïve CD4+ T cells from old mice, which manifested as impaired T cell diapedesis at high endothelial venules and reduced cell motility within DLN prior to antigen encounter. Furthermore, leukocyte accumulation in the DLN within the first few days of WNV infection or antigen-adjuvant administration was diminished more generally in old mice and associated with a second aging-related defect in local cytokine and chemokine production. Thus, age-dependent cell-intrinsic and environmental defects in the DLN result in delayed immune cell recruitment and antigen recognition. These deficits compromise priming of early adaptive immune responses and likely contribute to the susceptibility of old animals to acute WNV infection.

  6. Hyperhomocysteinaemia in rats is associated with erectile dysfunction by impairing endothelial nitric oxide synthase activity.

    Jiang, Weijun; Xiong, Lei; Bin Yang; Li, Weiwei; Zhang, Jing; Zhou, Qing; Wu, Qiuyue; Li, Tianfu; Zhang, Cui; Zhang, Mingchao; Xia, Xinyi

    2016-01-01

    To investigate the effect of hyperhomocysteinaemia (HHCy) on penile erectile function in a rat model, a methionine-rich diet was used in which erectile function, the reproductive system, and nitric oxide synthase were characterized. The intracavernous pressure, apomorphine experiments, measurement of oxidative stress, hematoxylin and eosin staining, immunohistochemistry analysis, reverse transcription-polymerase chain reactions and measurement of endothelial nitric oxide synthase activity were utilized. Our results showed that erections in the middle-dose, high-dose, and interference (INF) groups were significantly lower than the control (P < 0.05). INF group, being fed with vitamins B and folic acid, demonstrated markedly improved penile erections compared with the middle-dose group (P < 0.05). HHCy-induced eNOS and phospho-eNOS protein expression was reduced and the antioxidant effect was markedly impaired. The data of the present data provide evidence that HHCy is a vascular risk factor for erectile dysfunction by impairing cavernosa endothelial nitric oxide synthase activity. Intake of vitamins B can alleviate this abnormality. PMID:27221552

  7. Impaired enzymatic defensive activity, mitochondrial dysfunction and proteasome activation are involved in RTT cell oxidative damage.

    Cervellati, Carlo; Sticozzi, Claudia; Romani, Arianna; Belmonte, Giuseppe; De Rasmo, Domenico; Signorile, Anna; Cervellati, Franco; Milanese, Chiara; Mastroberardino, Pier Giorgio; Pecorelli, Alessandra; Savelli, Vinno; Forman, Henry J; Hayek, Joussef; Valacchi, Giuseppe

    2015-10-01

    A strong correlation between oxidative stress (OS) and Rett syndrome (RTT), a rare neurodevelopmental disorder affecting females in the 95% of the cases, has been well documented although the source of OS and the effect of a redox imbalance in this pathology has not been yet investigated. Using freshly isolated skin fibroblasts from RTT patients and healthy subjects, we have demonstrated in RTT cells high levels of H2O2 and HNE protein adducts. These findings correlated with the constitutive activation of NADPH-oxidase (NOX) and that was prevented by a NOX inhibitor and iron chelator pre-treatment, showing its direct involvement. In parallel, we demonstrated an increase in mitochondrial oxidant production, altered mitochondrial biogenesis and impaired proteasome activity in RTT samples. Further, we found that the key cellular defensive enzymes: glutathione peroxidase, superoxide dismutase and thioredoxin reductases activities were also significantly lower in RTT. Taken all together, our findings suggest that the systemic OS levels in RTT can be a consequence of both: increased endogenous oxidants as well as altered mitochondrial biogenesis with a decreased activity of defensive enzymes that leads to posttranslational oxidant protein modification and a proteasome activity impairment. PMID:26189585

  8. Mitochondrial impairment and oxidative stress compromise autophagosomal degradation of α-synuclein in oligodendroglial cells.

    Pukaß, Katharina; Goldbaum, Olaf; Richter-Landsberg, Christiane

    2015-10-01

    α-Synuclein (α-syn)-containing glial cytoplasmic inclusions originating in oligodendrocytes are characteristically observed in multiple system atrophy. The mechanisms of glial cytoplasmic inclusion formation remain rather elusive. α-Syn over-expression, uptake from the environment, oxidative stress or impairment of the proteolytic degradation systems have been discussed. Here, we investigated whether in oligodendrocytes autophagy plays a major role in the degradation and aggregation of endogenously expressed α-syn and of α-syn taken up from the extracellular environment. Furthermore, we studied whether in cells with impaired mitochondria the accumulation and aggregation of exogenously added α-syn is promoted. Using primary cultures of rat brain oligodendrocytes and an oligodendroglial cell line, genetically engineered to express green fluorescent protein-microtubule-associated light chain 3 with or without α-syn to monitor the autophagic flux, we demonstrate that both exogenously applied α-syn and α-syn stably expressed endogenously are effectively degraded by autophagy and do not affect the autophagic flux per se. Mitochondrial impairment with the protonophore carbonyl cyanide 3-chlorophenylhydrazone or 3-nitropropionic acid disturbs the autophagic pathway and leads to the accumulation of exogenously applied α-syn and enhances its propensity to form aggregates intracellularly. Thus, mitochondrial dysfunction and oxidative stress, which occur over time and are significant pathological features in synucleinopathies, have an impact on the autophagic pathway and participate in pathogenesis. Glial cytoplasmic inclusions are characteristically observed in multiple system atrophy, their occurrence might be related to failure in protein degradation systems. Here, we show that in oligodendrocytes autophagy is the major route of α-synuclein degradation which is either endogenously expressed or added exogenously (1, 2). Mitochondrial impairment (3) disturbs the

  9. Cyclovirobuxine D Attenuates Doxorubicin-Induced Cardiomyopathy by Suppression of Oxidative Damage and Mitochondrial Biogenesis Impairment

    Qian Guo

    2015-01-01

    Full Text Available The clinical application of doxorubicin (DOX is compromised by its cardiac toxic effect. Cyclovirobuxine D (CVB-D is a steroid alkaloid extracted from a traditional Chinese medicine, Buxus microphylla. Our results showed that CVB-D pretreatment markedly attenuated DOX-induced cardiac contractile dysfunction and histological alterations. By using TUNEL assay and western blot analysis, we found that CVB-D pretreatment reduced DOX-induced apoptosis of myocardial cells and mitochondrial cytochrome c release to cytosol. CVB-D pretreatment ameliorated DOX-induced cardiac oxidative damage including lipid peroxidation and protein carbonylation and a decrease in the ratio of reduced glutathione (GSH to oxidized glutathione (GSSG. Moreover, CVB-D was found to prevent DOX-induced mitochondrial biogenesis impairment as evidenced by preservation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α and nuclear respiratory factor 1 (NRF1, as well as mitochondrial DNA copy number. These findings demonstrate that CVB-D protects against DOX-induced cardiomyopathy, at least in part, by suppression of oxidative damage and mitochondrial biogenesis impairment.

  10. Impairment of extramitochondrial oxidative phosphorylation in mouse rod outer segments by blue light irradiation.

    Calzia, Daniela; Panfoli, Isabella; Heinig, Nora; Schumann, Ulrike; Ader, Marius; Traverso, Carlo Enrico; Funk, Richard H W; Roehlecke, Cora

    2016-06-01

    Exposure to short wavelength light causes increased reactive oxygen intermediates production in the outer retina, particularly in the rod Outer Segments (OS). Consistently, the OS were shown to conduct aerobic ATP production through the ectopic expression of the electron transfer chain complexes I-IV and F1Fo-ATP synthase. These facts prompted us to verify if the oxidative phosphorylation in the OS is implied in the oxidative damage of the blue-light (BL) treated OS, in an organotypic model of mouse retina. Whole mouse eyeball cultures were treated with short wavelength BL (peak at 405 nm, output power 1 mW/cm(2)) for 6 h. Immunogold transmission electron microscopy confirmed the expression of Complex I and F1Fo-ATP synthase in the OS. In situ histochemical assays on unfixed sections showed impairment of respiratory Complexes I and II after BL exposure, both in the OS and IS, utilized as a control. Basal O2 consumption and ATP synthesis were impaired in the OS purified from blue-light irradiated eyeball cultures. Electron transfer capacity between Complex I and II as well as activity of Complexes I and II was decreased in blue-light irradiated purified OS. The severe malfunctioning of the OS aerobic respiratory capacity after 6 h BL treatment may be the consequence of a self-induced damage. BL exposure would cause an initial over-functioning of both the phototransduction and respiratory chain, with reactive oxygen species production. In a self-renewal vicious cycle, membrane and protein oxidative damage, proton leakage and uncoupling, would impair redox chains, perpetuating the damage and causing hypo-metabolism with eventual apoptosis of the rod. Data may shed new light on the rod-driven retinopathies such as Age Related Macular Degeneration, of which blue-light irradiated retina represents a model. PMID:27059514

  11. KSR2 Mutations Are Associated with Obesity, Insulin Resistance, and Impaired Cellular Fuel Oxidation

    Pearce, Laura R.; Atanassova, Neli; Banton, Matthew C.; Bottomley, Bill; van der Klaauw, Agatha A.; Revelli, Jean-Pierre; Hendricks, Audrey; Keogh, Julia M.; Henning, Elana; Doree, Deon; Jeter-Jones, Sabrina; Garg, Sumedha; Bochukova, Elena G.; Bounds, Rebecca; Ashford, Sofie

    2013-01-01

    Summary Kinase suppressor of Ras 2 (KSR2) is an intracellular scaffolding protein involved in multiple signaling pathways. Targeted deletion of Ksr2 leads to obesity in mice, suggesting a role in energy homeostasis. We explored the role of KSR2 in humans by sequencing 2,101 individuals with severe early-onset obesity and 1,536 controls. We identified multiple rare variants in KSR2 that disrupt signaling through the Raf-MEK-ERK pathway and impair cellular fatty acid oxidation and glucose oxida...

  12. Impaired Mitochondrial Energy Production Causes Light-Induced Photoreceptor Degeneration Independent of Oxidative Stress.

    Jaiswal, Manish; Haelterman, Nele A; Sandoval, Hector; Xiong, Bo; Donti, Taraka; Kalsotra, Auinash; Yamamoto, Shinya; Cooper, Thomas A; Graham, Brett H; Bellen, Hugo J

    2015-07-01

    Two insults often underlie a variety of eye diseases including glaucoma, optic atrophy, and retinal degeneration--defects in mitochondrial function and aberrant Rhodopsin trafficking. Although mitochondrial defects are often associated with oxidative stress, they have not been linked to Rhodopsin trafficking. In an unbiased forward genetic screen designed to isolate mutations that cause photoreceptor degeneration, we identified mutations in a nuclear-encoded mitochondrial gene, ppr, a homolog of human LRPPRC. We found that ppr is required for protection against light-induced degeneration. Its function is essential to maintain membrane depolarization of the photoreceptors upon repetitive light exposure, and an impaired phototransduction cascade in ppr mutants results in excessive Rhodopsin1 endocytosis. Moreover, loss of ppr results in a reduction in mitochondrial RNAs, reduced electron transport chain activity, and reduced ATP levels. Oxidative stress, however, is not induced. We propose that the reduced ATP level in ppr mutants underlies the phototransduction defect, leading to increased Rhodopsin1 endocytosis during light exposure, causing photoreceptor degeneration independent of oxidative stress. This hypothesis is bolstered by characterization of two other genes isolated in the screen, pyruvate dehydrogenase and citrate synthase. Their loss also causes a light-induced degeneration, excessive Rhodopsin1 endocytosis and reduced ATP without concurrent oxidative stress, unlike many other mutations in mitochondrial genes that are associated with elevated oxidative stress and light-independent photoreceptor demise. PMID:26176594

  13. Beyond the redox imbalance: Oxidative stress contributes to an impaired GLUT3 modulation in Huntington's disease.

    Covarrubias-Pinto, Adriana; Moll, Pablo; Solís-Maldonado, Macarena; Acuña, Aníbal I; Riveros, Andrea; Miró, María Paz; Papic, Eduardo; Beltrán, Felipe A; Cepeda, Carlos; Concha, Ilona I; Brauchi, Sebastián; Castro, Maite A

    2015-12-01

    Failure in energy metabolism and oxidative damage are associated with Huntington's disease (HD). Ascorbic acid released during synaptic activity inhibits use of neuronal glucose, favouring lactate uptake to sustain brain activity. Here, we observe a decreased expression of GLUT3 in STHdhQ111 cells (HD cells) and R6/2 mice (HD mice). Localisation of GLUT3 is decreased at the plasma membrane in HD cells affecting the modulation of glucose uptake by ascorbic acid. An ascorbic acid analogue without antioxidant activity is able to inhibit glucose uptake in HD cells. The impaired modulation of glucose uptake by ascorbic acid is directly related to ROS levels indicating that oxidative stress sequesters the ability of ascorbic acid to modulate glucose utilisation. Therefore, in HD, a decrease in GLUT3 localisation at the plasma membrane would contribute to an altered neuronal glucose uptake during resting periods while redox imbalance should contribute to metabolic failure during synaptic activity. PMID:26456058

  14. Oxidative stress and APO E polymorphisms in Alzheimer's disease and in mild cognitive impairment.

    Chico, L; Simoncini, C; Lo Gerfo, A; Rocchi, A; Petrozzi, L; Carlesi, C; Volpi, L; Tognoni, G; Siciliano, G; Bonuccelli, U

    2013-08-01

    A number of evidences indicates oxidative stress as a relevant pathogenic factor in Alzheimer's disease (AD) and mild cognitive impairment (MCI). Considering its recognized major genetic risk factors in AD, apolipoprotein (APO E) has been investigated in several experimental settings regarding its role in the process of reactive oxygen species (ROS) generation. The aim of this work has been to evaluate possible relationships between APO E genotype and plasma levels of selected oxidative stress markers in both AD and MCI patients. APO E genotypes were determined using restriction enzyme analysis. Plasma levels of oxidative markers, advanced oxidation protein products, iron-reducing ability of plasma and, in MCI, activity of superoxide dismutases were evaluated using spectrophotometric analysis. We found, compared to controls, increased levels of oxidized proteins and decreased values of plasma-reducing capacity in both AD patients (p < 0.0001) and MCI patients (p < 0.001); the difference between AD and MCI patients was significant only for plasma-reducing capacity (p < 0.0001), the former showing the lowest values. Superoxide dismutase activity was reduced, although not at statistical level, in MCI compared with that in controls. E4 allele was statistically associated (p < 0.05) with AD patients. When comparing different APO E genotype subgroups, no difference was present, as far as advanced oxidation protein products and iron-reducing ability of plasma levels were concerned, between E4 and non-E4 carriers, in both AD and MCI; on the contrary, E4 carriers MCI patients showed significantly decreased (p < 0.05) superoxide dismutase activity with respect to non-E4 carriers. This study, in confirming the occurrence of oxidative stress in AD and MCI patients, shows how it can be related, at least for superoxide dismutase activity in MCI, to APO E4 allele risk factor. PMID:23668794

  15. The Role of Oxidative Stress in Etiopathogenesis of Chemotherapy Induced Cognitive Impairment (CICI)-"Chemobrain".

    Gaman, Amelia Maria; Uzoni, Adriana; Popa-Wagner, Aurel; Andrei, Anghel; Petcu, Eugen-Bogdan

    2016-05-01

    Chemobrain or chemotherapy induced cognitive impairment (CICI) represents a new clinical syndrome characterised by memory, learning and motor function impairment. As numerous patients with cancer are long-term survivors, CICI represent a significant factor which may interfere with their quality of life. However, this entity CICI must be distinguished from other cognitive syndromes and addressed accordingly. At the present time, experimental and clinical research suggests that CICI could be induced by numerous factors including oxidative stress. This type of CNS injury has been previously described in cancer patients treated with common anti-neoplastic drugs such as doxorubicine, carmustine, methotrexate and cyclophosphamide. It seems that all these pharmacological factors promote neuronal death through a final common pathway represented by TNF alpha (tumour necrosis factor). However, as cancer in general is diagnosed more commonly in the aging population, the elderly oncological patient must be treated with great care since aging per se is also impacted by oxidative stress and potentiually by TNF alpha deleterious action on brain parenchyma. In this context, some patients may develop cognitive dysfunction well before the appearance of CICI. In addition, chemotherapy may worsen their cognitive function. Therefore, at the present time, there is an acute need for development of effective therapeutic methods to prevent CICI as well as new methods of early CICI diagnosis. PMID:27330845

  16. Astaxanthin ameliorates aluminum chloride-induced spatial memory impairment and neuronal oxidative stress in mice.

    Al-Amin, Md Mamun; Reza, Hasan Mahmud; Saadi, Hasan Mahmud; Mahmud, Waich; Ibrahim, Abdirahman Adam; Alam, Musrura Mefta; Kabir, Nadia; Saifullah, A R M; Tropa, Sarjana Tarannum; Quddus, A H M Ruhul

    2016-04-15

    Aluminum chloride induces neurodegenerative disease in animal model. Evidence suggests that aluminum intake results in the activation of glial cells and generation of reactive oxygen species. By contrast, astaxanthin is an antioxidant having potential neuroprotective activity. In this study, we investigate the effect of astaxanthin on aluminum chloride-exposed behavioral brain function and neuronal oxidative stress (OS). Male Swiss albino mice (4 months old) were divided into 4 groups: (i) control (distilled water), (ii) aluminum chloride, (iii) astaxanthin+aluminum chloride, and (iv) astaxanthin. Two behavioral tests; radial arm maze and open field test were conducted, and OS markers were assayed from the brain and liver tissues following 42 days of treatment. Aluminum exposed group showed a significant reduction in spatial memory performance and anxiety-like behavior. Moreover, aluminum group exhibited a marked deterioration of oxidative markers; lipid peroxidation (MDA), nitric oxide (NO), glutathione (GSH) and advanced oxidation of protein products (AOPP) in the brain. To the contrary, co-administration of astaxanthin and aluminum has shown improved spatial memory, locomotor activity, and OS. These results indicate that astaxanthin improves aluminum-induced impaired memory performances presumably by the reduction of OS in the distinct brain regions. We suggest a future study to determine the underlying mechanism of astaxanthin in improving aluminum-exposed behavioral deficits. PMID:26927754

  17. Oxidized LDL impair adipocyte response to insulin by activating serine/threonine kinases.

    Scazzocchio, Beatrice; Varì, Rosaria; D'Archivio, Massimo; Santangelo, Carmela; Filesi, Carmelina; Giovannini, Claudio; Masella, Roberta

    2009-05-01

    Oxidized LDL (oxLDL) increase in patients affected by type-2 diabetes, obesity, and metabolic syndrome. Likewise, insulin resistance, an impaired responsiveness of target tissues to insulin, is associated with those pathological conditions. To investigate a possible causal relationship between oxLDL and the onset of insulin resistance, we evaluated the response to insulin of 3T3-L1 adipocytes treated with oxLDL. We observed that oxLDL inhibited glucose uptake (-40%) through reduced glucose transporter 4 (GLUT4) recruitment to the plasma membrane (-70%), without affecting GLUT4 gene expression. These findings were associated to the impairment of insulin signaling. Specifically, in oxLDL-treated cells insulin receptor (IR) substrate-1 (IRS-1) was highly degraded likely because of the enhanced Ser(307)phosphorylation. This process was largely mediated by the activation of the inhibitor of kappaB-kinase beta (IKKbeta) and the c-Jun NH(2)-terminal kinase (JNK). Moreover, the activation of IKKbeta positively regulated the nuclear content of nuclear factor kappaB (NF-kappaB), by inactivating the inhibitor of NF-kappaB (IkappaBalpha). The activated NF-kappaB further impaired per se GLUT4 functionality. Specific inhibitors of IKKbeta, JNK, and NF-kappaB restored insulin sensitivity in adipocytes treated with oxLDL. These data provide the first evidence that oxLDL, by activating serine/threonine kinases, impaired adipocyte response to insulin affecting pathways involved in the recruitment of GLUT4 to plasma membranes (PM). This suggests that oxLDL might participate in the development of insulin resistance. PMID:19136667

  18. Maternal obesity during gestation impairs fatty acid oxidation and mitochondrial SIRT3 expression in rat offspring at weaning.

    Sarah J Borengasser

    Full Text Available In utero exposure to maternal obesity increases the offspring's risk of obesity in later life. We have also previously reported that offspring of obese rat dams develop hepatic steatosis, mild hyperinsulinemia, and a lipogenic gene signature in the liver at postnatal day (PND21. In the current study, we examined systemic and hepatic adaptations in male Sprague-Dawley offspring from lean and obese dams at PND21. Indirect calorimetry revealed decreases in energy expenditure (p<0.001 and increases in RER values (p<0.001, which were further exacerbated by high fat diet (45% kcals from fat consumption indicating an impaired ability to utilize fatty acids in offspring of obese dams as analyzed by PRCF. Mitochondrial function is known to be associated with fatty acid oxidation (FAO in the liver. Several markers of hepatic mitochondrial function were reduced in offspring of obese dams. These included SIRT3 mRNA (p = 0.012 and mitochondrial protein content (p = 0.002, electron transport chain complexes (II, III, and ATPase, and fasting PGC-1α mRNA expression (p<0.001. Moreover, hepatic LCAD, a SIRT3 target, was not only reduced 2-fold (p<0.001 but was also hyperacetylated in offspring of obese dams (p<0.005 suggesting decreased hepatic FAO. In conclusion, exposure to maternal obesity contributes to early perturbations in whole body and liver energy metabolism. Mitochondrial dysfunction may be an underlying event that reduces hepatic fatty acid oxidation and precedes the development of detrimental obesity associated co-morbidities such as insulin resistance and NAFLD.

  19. Impaired pulmonary artery contractile responses in a rat model of microgravity: role of nitric oxide

    Nyhan, Daniel; Kim, Soonyul; Dunbar, Stacey; Li, Dechun; Shoukas, Artin; Berkowitz, Dan E.

    2002-01-01

    Vascular contractile hyporesponsiveness is an important mechanism underlying orthostatic intolerance after microgravity. Baroreceptor reflexes can modulate both pulmonary resistance and capacitance function and thus cardiac output. We hypothesized, therefore, that pulmonary vasoreactivity is impaired in the hindlimb-unweighted (HLU) rat model of microgravity. Pulmonary artery (PA) contractile responses to phenylephrine (PE) and U-46619 (U4) were significantly decreased in the PAs from HLU vs. control (C) animals. N(G)-nitro-L-arginine methyl ester (10(-5) M) enhanced the contractile responses in the PA rings from both C and HLU animals and completely abolished the differential responses to PE and U4 in HLU vs. C animals. Vasorelaxant responses to ACh were significantly enhanced in PA rings from HLU rats compared with C. Moreover, vasorelaxant responses to sodium nitroprusside were also significantly enhanced. Endothelial nitric oxide synthase (eNOS) and soluble guanlyl cyclase expression were significantly enhanced in PA and lung tissue from HLU rats. In marked contrast, the expression of inducible nitric oxide synthase was unchanged in lung tissue. These data support the hypothesis that vascular contractile responsiveness is attenuated in PAs from HLU rats and that this hyporesponsiveness is due at least in part to increased nitric oxide synthase activity resulting from enhanced eNOS expression. These findings may have important implications for blood volume distribution and attenuated stroke volume responses to orthostatic stress after microgravity exposure.

  20. Oxidative stress impairs the heat stress response and delays unfolded protein recovery.

    Masaaki Adachi

    Full Text Available BACKGROUND: Environmental changes, air pollution and ozone depletion are increasing oxidative stress, and global warming threatens health by heat stress. We now face a high risk of simultaneous exposure to heat and oxidative stress. However, there have been few studies investigating their combined adverse effects on cell viability. PRINCIPAL FINDINGS: Pretreatment of hydrogen peroxide (H(2O(2 specifically and highly sensitized cells to heat stress, and enhanced loss of mitochondrial membrane potential. H(2O(2 exposure impaired the HSP40/HSP70 induction as heat shock response (HSR and the unfolded protein recovery, and enhanced eIF2alpha phosphorylation and/or XBP1 splicing, land marks of ER stress. These H(2O(2-mediated effects mimicked enhanced heat sensitivity in HSF1 knockdown or knockout cells. Importantly, thermal preconditioning blocked H(2O(2-mediated inhibitory effects on refolding activity and rescued HSF1 +/+ MEFs, but neither blocked the effects nor rescued HSF1 -/- MEFs. These data strongly suggest that inhibition of HSR and refolding activity is crucial for H(2O(2-mediated enhanced heat sensitivity. CONCLUSIONS: H(2O(2 blocks HSR and refolding activity under heat stress, thereby leading to insufficient quality control and enhancing ER stress. These uncontrolled stress responses may enhance cell death. Our data thus highlight oxidative stress as a crucial factor affecting heat tolerance.

  1. Determining adaptive and adverse oxidative stress responses in human bronical epithelial cells exposed to zinc

    Determining adaptive and adverse oxidative stress responses in human bronchial epithelial cells exposed to zincJenna M. Currier1,2, Wan-Yun Cheng1, Rory Conolly1, Brian N. Chorley1Zinc is a ubiquitous contaminant of ambient air that presents an oxidant challenge to the human lung...

  2. Impaired endothelial nitric oxide bioavailability: a common link between aging, hypertension, and atherogenesis?

    Walsh, Thomas

    2012-01-31

    Endothelial-derived nitric oxide (NO) is responsible for maintaining continuous vasodilator tone and for regulating local perfusion and systemic blood pressure. It also has significant antiproliferative effects on vascular smooth muscle and platelet anti-aggregatory effects. Impaired endothelial-dependent (NO mediated) vasorelaxation is observed in most animal and human models of healthy aging. It also occurs in age-associated conditions such as atherosclerosis and hypertension. Such "endotheliopathy" increases vascular risk in older adults. Studies have indicated that pharmacotherapeutic intervention with angiotensin-converting enzyme inhibitors and 3-hydroxy-3-methyl-glutaryl coenzyme-A reductase inhibitors may improve NO-mediated vasomotor function. This review, evaluates the association between impaired endothelial NO bioavailability, accelerated vascular aging, and the age-associated conditions hypertension and atherogenesis. This is important, because pharmacotherapy aimed at improving endothelial NO bioavailability could modify age-related vascular disease and transform age into a potentially modifiable vascular risk factor, at least in a subpopulation of older adults.

  3. Age-associated memory impairment. Assessing the role of nitric oxide.

    Meyer, R C; Spangler, E L; Kametani, H; Ingram, D K

    1998-11-20

    Several neurotransmitter systems have been investigated to assess hypothesized mechanisms underlying the decline in recent memory abilities in normal aging and in Alzheimer's disease. Examining the performance of F344 rats in a 14-unit T-maze (Stone maze), we have focused on the muscarinic cholinergic (mACh) and the N-methyl-D-aspartate (NMDA) glutamate (Glu) systems and their interactions. Maze learning is impaired by antagonists to mACh or NMDA receptors. We have also shown that stimulation of mACh receptors can overcome a maze learning deficit induced by NMDA blockade, and stimulation of the NMDA receptor can overcome a similar blockade of mACh receptors. No consistent evidence in rats has been produced from our laboratory to reveal significant age-related declines in mACh or NMDA receptor binding in the hippocampus (HC), a brain region that is greatly involved in processing of recent memory. Thus, we have directed attention to the possibility of a common signal transduction pathway, the nitric oxide (NO) system. Activated by calcium influx through the NMDA receptor, NO is hypothesized to be a retrograde messenger that enhances presynaptic Glu release. Maze learning can be impaired by inhibiting the synthetic enzyme for NO, nitric oxide synthase (NOS), or enhanced by stimulating NO release. However, we have found no age-related loss of NOS-containing HC neurons or fibers in rats. Additionally, other laboratories have reported no evidence of an age-related loss of HC NOS activity. In a microdialysis study we have found preliminary evidence of reduced NO production following NMDA stimulation. We are currently working to identify the parameters of this phenomenon as well as testing various strategies for safely stimulating the NO system to improve memory function in aged rats. PMID:9928439

  4. Neutrophilic iron oxidizers adapted to highly oxic environments

    Gülay, Arda; Musovic, Sanin; Albrechtsen, Hans-Jørgen;

    carbon) while oxygen (O2) is the electron acceptor provided during the aeration process. Numerous previous studies have described neutrophilic iron oxidizers as a bacterial guild with a special niche preference, especially the transition zone between aerobic and anoxic regions, where abiotic chemical...... indicate that neutrophilic iron oxidizers in highly oxic environments like drinking water treatment systems can be abundant (5 E+04 to 7 E+05 cells per gram of wet sand material). It was furthermore observed that the diversity of the cultivated dominant iron oxidizers differs substantially from those...

  5. Effect of Lactobacillus pentosus-Fermented Artemisiae Argi Folium on Nitric Oxide Production of Macrophage impaired with Various Toxicants

    Wansu Park

    2009-01-01

    Objectives : The purpose of this study is to investigate the effect of Water Extract from Lactobacillus pentosus-fermented ARTEMISIAE ARGI FOLIUM (AFL) on nitric oxide production of mouse macrophage Raw 264.7 cells impaired by various toxicants such as gallic acid, EtOH, nicotine, acetaminophen, and acetaldehyde. Methods : ARTEMISIAE ARGI FOLIUM was fermented with Lactobacillus pentosus and extracted by water. Nitric oxide production of mouse macrophage Raw 264.7 cells was measured by Grie...

  6. Normal adaptations to exercise despite protection against oxidative stress

    Higashida, Kazuhiko; Kim, Sang Hyun; Higuchi, Mitsuru; Holloszy, John O.; Han, Dong-Ho

    2011-01-01

    It has been reported that supplementation with the antioxidant vitamins C and E prevents the adaptive increases in mitochondrial biogenesis and GLUT4 expression induced by endurance exercise. We reevaluated the effects of these antioxidants on the adaptive responses of rat skeletal muscle to swimming in a short-term study consisting of 9 days of vitamins C and E with exercise during the last 3 days and a longer-term study consisting of 8 wk of antioxidant vitamins with exercise during the las...

  7. Perindopril Attenuates Lipopolysaccharide-Induced Amyloidogenesis and Memory Impairment by Suppression of Oxidative Stress and RAGE Activation.

    Goel, Ruby; Bhat, Shahnawaz Ali; Hanif, Kashif; Nath, Chandishwar; Shukla, Rakesh

    2016-02-17

    Clinical and preclinical studies account hypertension as a risk factor for dementia. We reported earlier that angiotensin-converting enzyme (ACE) inhibition attenuated the increased vulnerability to neurodegeneration in hypertension and prevented lipopolysaccharide (LPS)-induced memory impairment in normotensive wistar rats (NWRs) and spontaneously hypertensive rats (SHRs). Recently, a receptor for advanced glycation end products (RAGE) has been reported to induce amyloid beta (Aβ1-42) deposition and memory impairment in hypertensive animals. However, the involvement of ACE in RAGE activation and amyloidogenesis in the hypertensive state is still unexplored. Therefore, in this study, we investigated the role of ACE on RAGE activation and amyloidogenesis in memory-impaired NWRs and SHRs. Memory impairment was induced by repeated (on days 1, 4, 7, and 10) intracerebroventricular (ICV) injections of LPS in SHRs (25 μg) and NWRs (50 μg). Our data showed that SHRs exhibited increased oxidative stress (increased gp91-phox/NOX-2 expression and ROS generation), RAGE, and β-secretase (BACE) expression without Aβ1-42 deposition. LPS (25 μg, ICV) further amplified oxidative stress, RAGE, and BACE activation, culminating in Aβ1-42 deposition and memory impairment in SHRs. Similar changes were observed at the higher dose of LPS (50 μg, ICV) in NWRs. Further, LPS-induced oxidative stress was associated with endothelial dysfunction and reduction in cerebral blood flow (CBF), more prominently in SHRs than in NWRs. Finally, we showed that perindopril (0.1 mg/kg, 15 days) prevented memory impairment by reducing oxidative stress, RAGE activation, amyloidogenesis, and improved CBF in both SHRs and NWRs. These findings suggest that perindopril might be used as a therapeutic strategy for the early stage of dementia. PMID:26689453

  8. 5-Lipoxygenase Deficiency Impairs Innate and Adaptive Immune Responses during Fungal Infection

    Adriana Secatto; Lilian Cataldi Rodrigues; Carlos Henrique Serezani; Simone Gusmão Ramos; Marcelo Dias-Baruffi; Lúcia Helena Faccioli; Medeiros, Alexandra I.

    2012-01-01

    5-Lipoxygenase-derived products have been implicated in both the inhibition and promotion of chronic infection. Here, we sought to investigate the roles of endogenous 5-lipoxygenase products and exogenous leukotrienes during Histoplasma capsulatum infection in vivo and in vitro. 5-LO deficiency led to increased lung CFU, decreased nitric oxide production and a deficient primary immune response during active fungal infection. Moreover, H. capsulatum-infected 5-LO(-/-) mice showed an intense in...

  9. Cross-cultural adaptation and validation of a Brazilian version of an instrument to assess impairments related to oral functioning of people with Down syndrome

    Bonanato Karina; Pordeus Isabela A; Compart Thiago; Oliveira Ana Cristina; Allison Paul J; Paiva Saul M

    2013-01-01

    Abstract Background An instrument was developed in Canada to assess impairments related to oral functioning of individuals with four years of age or older with Down syndrome (DS). The present study attempted to carry out the cross-cultural adaptation and validation of the instrument for the Brazilian Portuguese language and to test its reliability and validity. Findings After translation and cross-cultural adaptation, the instrument was tested on caregivers of people with DS. Clinical examina...

  10. Regional coherence evaluation in mild cognitive impairment and Alzheimer's disease based on adaptively extracted magnetoencephalogram rhythms

    This study assesses the connectivity alterations caused by Alzheimer's disease (AD) and mild cognitive impairment (MCI) in magnetoencephalogram (MEG) background activity. Moreover, a novel methodology to adaptively extract brain rhythms from the MEG is introduced. This methodology relies on the ability of empirical mode decomposition to isolate local signal oscillations and constrained blind source separation to extract the activity that jointly represents a subset of channels. Inter-regional MEG connectivity was analysed for 36 AD, 18 MCI and 26 control subjects in δ, θ, α and β bands over left and right central, anterior, lateral and posterior regions with magnitude squared coherence—c(f). For the sake of comparison, c(f) was calculated from the original MEG channels and from the adaptively extracted rhythms. The results indicated that AD and MCI cause slight alterations in the MEG connectivity. Computed from the extracted rhythms, c(f) distinguished AD and MCI subjects from controls with 69.4% and 77.3% accuracies, respectively, in a full leave-one-out cross-validation evaluation. These values were higher than those obtained without the proposed extraction methodology

  11. Impaired Cerebral Mitochondrial Oxidative Phosphorylation Function in a Rat Model of Ventricular Fibrillation and Cardiopulmonary Resuscitation

    Jun Jiang

    2014-01-01

    Full Text Available Postcardiac arrest brain injury significantly contributes to mortality and morbidity in patients suffering from cardiac arrest (CA. Evidence that shows that mitochondrial dysfunction appears to be a key factor in tissue damage after ischemia/reperfusion is accumulating. However, limited data are available regarding the cerebral mitochondrial dysfunction during CA and cardiopulmonary resuscitation (CPR and its relationship to the alterations of high-energy phosphate. Here, we sought to identify alterations of mitochondrial morphology and oxidative phosphorylation function as well as high-energy phosphates during CA and CPR in a rat model of ventricular fibrillation (VF. We found that impairment of mitochondrial respiration and partial depletion of adenosine triphosphate (ATP and phosphocreatine (PCr developed in the cerebral cortex and hippocampus following a prolonged cardiac arrest. Optimal CPR might ameliorate the deranged phosphorus metabolism and preserve mitochondrial function. No obvious ultrastructural abnormalities of mitochondria have been found during CA. We conclude that CA causes cerebral mitochondrial dysfunction along with decay of high-energy phosphates, which would be mitigated with CPR. This study may broaden our understanding of the pathogenic processes underlying global cerebral ischemic injury and provide a potential therapeutic strategy that aimed at preserving cerebral mitochondrial function during CA.

  12. Ammonia-oxidizing archaea have better adaptability in oxygenated/hypoxic alternant conditions compared to ammonia-oxidizing bacteria.

    Liu, Shuai; Hu, Baolan; He, Zhanfei; Zhang, Bin; Tian, Guangming; Zheng, Ping; Fang, Fang

    2015-10-01

    Ammonia oxidation is performed by both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Few studies compared the adaptability of AOA and AOB for oxygenated/hypoxic alternant conditions in water-level-fluctuating zones. Here, using qPCR and 454 high-throughput sequencing of functional amoA genes of AOA and AOB, we examined the changes of abundances, diversities, and community structures of AOA and AOB in periodically flooded soils compared to the non-flooded soils in Three Gorges Reservoir. The increased AOA operational taxonomic unit (OTU) numbers and the higher ratios of abundance (AOA:AOB) in the periodically flooded soils suggested AOA have better adaptability for oxygenated/hypoxic alternant conditions in the water-level-fluctuating zones in the Three Gorges Reservoir and probably responsible for the ammonia oxidation there. Canonical correspondence analysis (CCA) showed that oxidation-reduction potential (ORP) had the most significant effect on the community distribution of AOA (p amoA gene abundances (AOA:AOB) (p < 0.05). ORP was also significantly positively correlated with AOB abundance (p < 0.05). PMID:26099334

  13. Cobalamin inactivation by nitrous oxide produces severe neurological impairment in fruit bats: protection by methionine and aggravation by folates

    van der Westhuyzen, J.; Fernandes-Costa, F.; Metz, J.

    1982-11-01

    Nitrous oxide, which inactivates cobalamin when administered to fruit bats, results in severe neurological impairment leading to ataxia, paralysis and death. This occurs after about 6 weeks in animals depleted of cobalamin by dietary restriction, and after about 10 weeks in cobalamin replete bats. Supplementation of the diet with pteroylglutamic acid caused acceleration of the neurological impairment--the first unequivocal demonstration of aggravation of the neurological lesion in cobalamin deficiency by pteroylglutamic acid. The administration of formyltetrahydropteroylglutamic acid produced similar aggravation of the neurological lesion. Supplementation of the diet with methionine protected the bats from neurological impairment, but failed to prevent death. Methionine supplementation protected against the exacerbating effect of folate, preventing the development of neurological changes. These findings lend support to the hypothesis that the neurological lesion in cobalamin deficiency may be related to a deficiency in the methyl donor S-adenosylmethionine which follows diminished synthesis of methionine.

  14. Isolation and characterization of Caulobacter mutants impaired in adaptation to stationary phase

    Italiani Valéria C. S.

    2003-01-01

    Full Text Available The entry into stationary phase causes a change in the pattern of gene expression of bacteria, when the cells must express a whole set of genes involved mainly with resistance to starvation and to environmental stresses. As an attempt to identify genes important for the survival of Caulobacter crescentus in stationary phase, we have screened a library of 5,000 clones generated by random transposon mutagenesis for mutants that showed reduced viability after prolonged growth. Four clones were selected, which displayed either lower viability or a longer time of recovery from stationary phase. The genes disrupted were identified, and the gene products were found to be mainly involved with amino acid metabolism (glutamate N-acetyltransferase, 4-hydroxyphenylpyruvate dioxygenase and L-aspartate oxidase or with recombination (exonuclease RecJ. Each mutant was tested for resistance to stresses, such as oxidative, saline, acidic, heat and UV exposure, showing different responses. Although the mutations obtained were not in genes involved specifically in stationary phase, our results suggest that amino acids metabolism may play an important role in keeping viability during this growth phase.

  15. Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkinson's disease: how neurons are lost in the Bermuda triangle

    Malkus Kristen A

    2009-06-01

    Full Text Available Abstract While numerous hypotheses have been proposed to explain the molecular mechanisms underlying the pathogenesis of neurodegenerative diseases, the theory of oxidative stress has received considerable support. Although many correlations have been established and encouraging evidence has been obtained, conclusive proof of causation for the oxidative stress hypothesis is lacking and potential cures have not emerged. Therefore it is likely that other factors, possibly in coordination with oxidative stress, contribute to neuron death. Using Parkinson's disease (PD as the paradigm, this review explores the hypothesis that oxidative modifications, mitochondrial functional disruption, and impairment of protein degradation constitute three interrelated molecular pathways that execute neuron death. These intertwined events are the consequence of environmental exposure, genetic factors, and endogenous risks and constitute a "Bermuda triangle" that may be considered the underlying cause of neurodegenerative pathogenesis.

  16. Fatty acid-binding protein 4 impairs the insulin-dependent nitric oxide pathway in vascular endothelial cells

    Aragonès Gemma; Saavedra Paula; Heras Mercedes; Cabré Anna; Girona Josefa; Masana Lluís

    2012-01-01

    Abstract Background Recent studies have shown that fatty acid-binding protein 4 (FABP4) plasma levels are associated with impaired endothelial function in type 2 diabetes (T2D). In this work, we analysed the effect of FABP4 on the insulin-mediated nitric oxide (NO) production by endothelial cells in vitro. Methods In human umbilical vascular endothelial cells (HUVECs), we measured the effects of FABP4 on the insulin-mediated endothelial nitric oxide synthase (eNOS) expression and activation a...

  17. The novel adaptive rotating beam test unmasks sensorimotor impairments in a transgenic mouse model of Parkinson's disease.

    Gerstenberger, Julia; Bauer, Anne; Helmschrodt, Christin; Richter, Angelika; Richter, Franziska

    2016-05-01

    Development of disease modifying therapeutics for Parkinson's disease (PD), the second most common neurodegenerative disorder, relies on availability of animal models which recapitulate the disease hallmarks. Only few transgenic mouse models, which mimic overexpression of alpha-synuclein, show dopamine loss, behavioral impairments and protein aggregation. Mice overexpressing human wildtype alpha-synuclein under the Thy-1 promotor (Thy1-aSyn) replicate these features. However, female mice do not exhibit a phenotype. This was attributed to a potentially lower transgene expression located on the X chromosome. Here we support that female mice overexpress human wildtype alpha-synuclein only about 1.5 fold in the substantia nigra, compared to about 3 fold in male mice. Since female Thy1-aSyn mice were shown previously to exhibit differences in corticostriatal communication and synaptic plasticity similar to their male counterparts we hypothesized that female mice use compensatory mechanisms and strategies to not show overt motor deficits despite an underlying endophenotype. In order to unmask these deficits we translated recent findings in PD patients that sensory abnormalities can enhance motor dysfunction into a novel behavioral test, the adaptive rotating beam test. We found that under changing sensory input female Thy1-aSyn mice showed an overt phenotype. Our data supports that the integration of sensorimotor information is likely a major contributor to symptoms of movement disorders and that even low levels of overexpression of human wildtype alpha-synuclein has the potential to disrupt processing of these information. The here described adaptive rotating beam test represents a sensitive behavioral test to detect moderate sensorimotor alterations in mouse models. PMID:26880341

  18. Adaptation of intertidal biofilm communities is driven by metal ion and oxidative stresses

    Zhang, Weipeng

    2013-11-11

    Marine organisms in intertidal zones are subjected to periodical fluctuations and wave activities. To understand how microbes in intertidal biofilms adapt to the stresses, the microbial metagenomes of biofilms from intertidal and subtidal zones were compared. The genes responsible for resistance to metal ion and oxidative stresses were enriched in both 6-day and 12-day intertidal biofilms, including genes associated with secondary metabolism, inorganic ion transport and metabolism, signal transduction and extracellular polymeric substance metabolism. In addition, these genes were more enriched in 12-day than 6-day intertidal biofilms. We hypothesize that a complex signaling network is used for stress tolerance and propose a model illustrating the relationships between these functions and environmental metal ion concentrations and oxidative stresses. These findings show that bacteria use diverse mechanisms to adapt to intertidal zones and indicate that the community structures of intertidal biofilms are modulated by metal ion and oxidative stresses.

  19. Gamma radiation induces growth retardation, impaired egg production, and oxidative stress in the marine copepod Paracyclopina nana

    Won, Eun-Ji; Lee, Jae-Seong, E-mail: jslee2@skku.edu

    2014-05-01

    Highlights: • Mortality was increased with a dose dependent manner in ovigerous females of Paracyclopina nana. • Developmental impairments were observed in gamma irradiated nauplii. • Ovigerous females exposed to more than 50 Gy could not have normal two bilateral egg sacs. • Oxidative levels increased with antioxidant enzyme activities in the gamma irradiated P. nana. • The molecular indices (antioxidant enzymes and heat shock protein) were also increased. - Abstract: Accidental nuclear radioisotope release into the ocean from nuclear power plants is of concern due to ecological and health risks. In this study, we used the marine copepod Paracyclopina nana to examine the effects of radioisotopes on marine organisms upon gamma radiation, and to measure the effects on growth and fecundity, which affect population and community structure. Upon gamma radiation, mortality (LD50 – 96 h = 172 Gy) in P. nana was significantly increased in a dose-dependent manner in ovigerous P. nana females. For developmental impairment of gamma-irradiated nauplii, we observed growth retardation; in over 30 Gy-irradiated groups, offspring did not grow to adults. Particularly, over 50 Gy-irradiated ovigerous P. nana females did not have normal bilateral egg sacs, and their offspring did not develop normally to adulthood. Additionally, at over 30 Gy, we found dose-dependent increases in oxidative levels with elevated antioxidant enzyme activities and DNA repair activities. These findings indicate that gamma radiation can induce oxidative stress and DNA damage with growth retardation and impaired reproduction.

  20. Gamma radiation induces growth retardation, impaired egg production, and oxidative stress in the marine copepod Paracyclopina nana

    Highlights: • Mortality was increased with a dose dependent manner in ovigerous females of Paracyclopina nana. • Developmental impairments were observed in gamma irradiated nauplii. • Ovigerous females exposed to more than 50 Gy could not have normal two bilateral egg sacs. • Oxidative levels increased with antioxidant enzyme activities in the gamma irradiated P. nana. • The molecular indices (antioxidant enzymes and heat shock protein) were also increased. - Abstract: Accidental nuclear radioisotope release into the ocean from nuclear power plants is of concern due to ecological and health risks. In this study, we used the marine copepod Paracyclopina nana to examine the effects of radioisotopes on marine organisms upon gamma radiation, and to measure the effects on growth and fecundity, which affect population and community structure. Upon gamma radiation, mortality (LD50 – 96 h = 172 Gy) in P. nana was significantly increased in a dose-dependent manner in ovigerous P. nana females. For developmental impairment of gamma-irradiated nauplii, we observed growth retardation; in over 30 Gy-irradiated groups, offspring did not grow to adults. Particularly, over 50 Gy-irradiated ovigerous P. nana females did not have normal bilateral egg sacs, and their offspring did not develop normally to adulthood. Additionally, at over 30 Gy, we found dose-dependent increases in oxidative levels with elevated antioxidant enzyme activities and DNA repair activities. These findings indicate that gamma radiation can induce oxidative stress and DNA damage with growth retardation and impaired reproduction

  1. Mfn2 deficiency links age-related sarcopenia and impaired autophagy to activation of an adaptive mitophagy pathway.

    Sebastián, David; Sorianello, Eleonora; Segalés, Jessica; Irazoki, Andrea; Ruiz-Bonilla, Vanessa; Sala, David; Planet, Evarist; Berenguer-Llergo, Antoni; Muñoz, Juan Pablo; Sánchez-Feutrie, Manuela; Plana, Natàlia; Hernández-Álvarez, María Isabel; Serrano, Antonio L; Palacín, Manuel; Zorzano, Antonio

    2016-08-01

    Mitochondrial dysfunction and accumulation of damaged mitochondria are considered major contributors to aging. However, the molecular mechanisms responsible for these mitochondrial alterations remain unknown. Here, we demonstrate that mitofusin 2 (Mfn2) plays a key role in the control of muscle mitochondrial damage. We show that aging is characterized by a progressive reduction in Mfn2 in mouse skeletal muscle and that skeletal muscle Mfn2 ablation in mice generates a gene signature linked to aging. Furthermore, analysis of muscle Mfn2-deficient mice revealed that aging-induced Mfn2 decrease underlies the age-related alterations in metabolic homeostasis and sarcopenia. Mfn2 deficiency reduced autophagy and impaired mitochondrial quality, which contributed to an exacerbated age-related mitochondrial dysfunction. Interestingly, aging-induced Mfn2 deficiency triggers a ROS-dependent adaptive signaling pathway through induction of HIF1α transcription factor and BNIP3. This pathway compensates for the loss of mitochondrial autophagy and minimizes mitochondrial damage. Our findings reveal that Mfn2 repression in muscle during aging is a determinant for the inhibition of mitophagy and accumulation of damaged mitochondria and triggers the induction of a mitochondrial quality control pathway. PMID:27334614

  2. Gestational diabetes mellitus impairs Nrf2-mediated adaptive antioxidant defenses and redox signaling in fetal endothelial cells in utero.

    Cheng, Xinghua; Chapple, Sarah J; Patel, Bijal; Puszyk, William; Sugden, David; Yin, Xiaoke; Mayr, Manuel; Siow, Richard C M; Mann, Giovanni E

    2013-12-01

    In utero exposure to gestational diabetes mellitus (GDM) is associated with an increased risk of type 2 diabetes and cardiovascular disease in later life, yet the underlying mechanisms remain to be elucidated. We examined the effects of GDM on the proteome, redox status, and nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant gene expression in human fetal endothelial cells. Proteomic analysis revealed that proteins involved in redox homeostasis were significantly altered in GDM and associated with increased mitochondrial superoxide generation, protein oxidation, DNA damage, and diminished glutathione (GSH) synthesis. In GDM cells, the lipid peroxidation product 4-hydroxynonenal (HNE) failed to induce nuclear Nrf2 accumulation and mRNA and/or protein expression of Nrf2 and its target genes NAD(P)H:quinone oxidoreductase 1 (NQO1), Bach1, cystine/glutamate transporter, and glutamate cysteine ligase. Although methylation of CpG islands in Nrf2 or NQO1 promoters was unaltered by GDM, decreased DJ-1 and increased phosphorylated glycogen synthase kinase 3β levels may account for impaired Nrf2 signaling. HNE-induced increases in GSH and NQO1 levels were abrogated by Nrf2 small interfering RNA in normal cells, and overexpression of Nrf2 in GDM cells partially restored NQO1 induction. Dysregulation of Nrf2 in fetal endothelium may contribute to the increased risk of type 2 diabetes and cardiovascular disease in offspring. PMID:23974919

  3. Vanillin Attenuated Behavioural Impairments, Neurochemical Deficts, Oxidative Stress and Apoptosis Against Rotenone Induced Rat Model of Parkinson's Disease.

    Dhanalakshmi, Chinnasamy; Janakiraman, Udaiyappan; Manivasagam, Thamilarasan; Justin Thenmozhi, Arokiasamy; Essa, Musthafa Mohamed; Kalandar, Ameer; Khan, Mohammed Abdul Sattar; Guillemin, Gilles J

    2016-08-01

    Vanillin (4-hydroxy-3-methoxybenzaldehyde), a pleasant smelling organic aromatic compound, is widely used as a flavoring additive in food, beverage, cosmetic and drug industries. It is reported to cross the blood brain barrier and also displayed antioxidant and neuroprotective activities. We previously reported the neuroprotective effect of vanillin against rotenone induced in in vitro model of PD. The present experiment was aimed to analyze the neuroprotective effect of vanillin on the motor and non-motor deficits, neurochemical variables, oxidative, anti-oxidative indices and the expression of apoptotic markers against rotenone induced rat model of Parkinson's disease (PD). Rotenone treatment exhibited motor and non-motor impairments, neurochemical deficits, oxidative stress and apoptosis, whereas oral administration of vanillin attenuated the above-said indices. However further studies are needed to explore the mitochondrial protective and anti-inflammatory properties of vanillin, as these processes play a vital role in the cause and progression of PD. PMID:27038927

  4. Toxicity mechanisms of arsenic that are shared with neurodegenerative diseases and cognitive impairment: Role of oxidative stress and inflammatory responses.

    Escudero-Lourdes, Claudia

    2016-03-01

    Arsenic (As) is a worldwide naturally occurring metalloid. Human chronic exposure to inorganic As compounds (iAs), which are at the top of hazardous substances (ATSDR, 2013), is associated with different diseases including cancer and non- cancerous diseases. The neurotoxic effects of iAs and its methylated metabolites have been demonstrated in exposed populations and experimental models. Impaired cognitive abilities have been described in children and adults chronically exposed to iAs through drinking water. Even though different association studies failed to demonstrate that As causes neurodegenerative diseases, several toxicity mechanisms of iAs parallel those mechanisms associated with neurodegeneration, including oxidative stress and inflammation, impaired protein degradation, autophagy, and intracellular accumulation, endoplasmic reticulum stress, and mitochondrial dysfunction. Additionally, different reports have shown that specifically in brain tissue, iAs and its metabolites induce hyper-phosphorylation of the tau protein and over-regulation of the amyloid precursor protein, impaired neurotransmitters synthesis and synaptic transmission, increased glutamate receptors activation, and decreased glutamate transporters expression. Interestingly, increased and sustained pro-inflammatory responses mediated by cytokines and related factors, seems to be the triggering factor for all of such cellular pathological effects. Therefore, this review proposes that iAs-associated cognitive impairment could be the result of the activation of pro-inflammatory responses in the brain tissue, which also may favor neurodegeneration or increase the risk for neurodegenerative diseases in exposed human populations. PMID:26868456

  5. Estimation of Kinetic Parameters for Autocatalytic Oxidation of Cyclohexane Based on a Modified Adaptive Genetic Algorithm

    刘平乐; 邹丽珊; 罗和安; 王良芥; 郑金华

    2004-01-01

    A modified genetic algorithm of multiple selection strategies, crossover strategies and adaptive operator is constructed, and it is used to estimate the kinetic parameters in autocatalytic oxidation of cyclohexane. The influences of selection strategy, crossover strategy and mutation strategy on algorithm performance are discussed. This algorithm with a specially designed adaptive operator avoids the problem of local optimum usually associated with using standard genetic algorithm and simplex method. The kinetic parameters obtained from the modified genetic algorithm are credible and the calculation results using these parameters agree well with experimental data. Furthermore, a new kinetic model of cyclohexane autocatalytic oxidation is established and the kinetic parameters are estimated by using the modified genetic algorithm.

  6. Coenzyme Q10 supplementation reverses age-related impairments in spatial learning and lowers protein oxidation

    Shetty, Ritu A.; Forster, Michael J.; Sumien, Nathalie

    2012-01-01

    Coenzyme Q10 (CoQ) is widely available as a dietary supplement and remains under consideration as a treatment for age-associated neurodegenerative conditions. However, no studies have determined if supplementation, initiated relatively late in life, could have beneficial effects on mild functional impairments associated with normal brain aging. Accordingly, the current study assessed the effect of CoQ intake in older mice for which cognitive and psychomotor impairments were already evident. S...

  7. The Use of Complex Assessment of Morphofunctional State of Pancreatic Microvasculature to Study the Adaptation of the Body to Motor Activity in Impaired Glucose Tolerance

    Nikonova L.G.

    2012-03-01

    Full Text Available The aim of the investigation is to consider the possibility of using the assessment data of microvasculature to study morphofunctional state of terminal vessels of exocrine and endocrine parts of pancreas in dogs with impaired glucose tolerance after physical exertion. Materials and methods. 30 mature male dogs with impaired glucose tolerance were studied: the 1st group — with no physical exertion, the 2nd — with short-term physical exertion and the 3rd — with extreme physical exertion. Morphological changes of the microvasculature components of pancreatic exocrine and endocrine parts were studied after the single motor load actions on the organism using histological, histochemical, electron-microscopical and morphometric methods. Results. Complex assessment enabled to reveal various adaptive changes of pancreatic microvasculature in animals with impaired glucose tolerance when exposed to optimal and maximum physical exertion. The exposure to short-term load results in developing compensatory adaptive transformations in the terminal part of vasculature of the both parts of the pancreas. Extreme loads along with reactive changes caused by single physical exercise lead to destructive alterations of microvasculature elements of primarily exocrine part. The information can be taken into consideration when studying impairment mechanisms in physical exertion environment and when developing regimens of motor activity in prediabetic persons.

  8. Cerium oxide nanoparticles promote neurogenesis and abrogate hypoxia-induced memory impairment through AMPK–PKC–CBP signaling cascade

    Arya A

    2016-03-01

    Full Text Available Aditya Arya,1 Anamika Gangwar,1 Sushil Kumar Singh,2 Manas Roy,3,4 Mainak Das,3 Niroj Kumar Sethy,1 Kalpana Bhargava1 1Peptide and Proteomics Division, Defense Institute of Physiology and Allied Sciences, 2Functional Materials Division, Solid State Physics Laboratory, Defense Research and Development Organization, Timarpur, Delhi, 3Biological Science and Bioengineering, Indian Institute of Technology, Kanpur, 4Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, India Abstract: Structural and functional integrity of the brain is adversely affected by reduced oxygen saturation, especially during chronic hypoxia exposure and often encountered by altitude travelers or dwellers. Hypoxia-induced generation of reactive nitrogen and oxygen species reportedly affects the cortex and hippocampus regions of the brain, promoting memory impairment and cognitive dysfunction. Cerium oxide nanoparticles (CNPs, also known as nanoceria, switch between +3 and +4 oxidation states and reportedly scavenge superoxide anions, hydrogen peroxide, and peroxynitrite in vivo. In the present study, we evaluated the neuroprotective as well as the cognition-enhancing activities of nanoceria during hypobaric hypoxia. Using polyethylene glycol-coated 3 nm nanoceria (PEG-CNPs, we have demonstrated efficient localization of PEG-CNPs in rodent brain. This resulted in significant reduction of oxidative stress and associated damage during hypoxia exposure. Morris water maze-based memory function tests revealed that PEG-CNPs ameliorated hypoxia-induced memory impairment. Using microscopic, flow cytometric, and histological studies, we also provide evidences that PEG-CNPs augmented hippocampus neuronal survival and promoted neurogenesis. Molecular studies revealed that PEG-CNPs promoted neurogenesis through the 5'-adenine monophosphate-activated protein kinase–protein kinase C–cyclic adenosine monophosphate response element-binding protein

  9. Sex-dependent mitochondrial respiratory impairment and oxidative stress in a rat model of neonatal hypoxic-ischemic encephalopathy.

    Demarest, Tyler G; Schuh, Rosemary A; Waddell, Jaylyn; McKenna, Mary C; Fiskum, Gary

    2016-06-01

    Increased male susceptibility to long-term cognitive deficits is well described in clinical and experimental studies of neonatal hypoxic-ischemic encephalopathy. While cell death signaling pathways are known to be sexually dimorphic, a sex-dependent pathophysiological mechanism preceding the majority of secondary cell death has yet to be described. Mitochondrial dysfunction contributes to cell death following cerebral hypoxic-ischemia (HI). Several lines of evidence suggest that there are sex differences in the mitochondrial metabolism of adult mammals. Therefore, this study tested the hypothesis that brain mitochondrial respiratory impairment and associated oxidative stress is more severe in males than females following HI. Maximal brain mitochondrial respiration during oxidative phosphorylation was two-fold more impaired in males following HI. The endogenous antioxidant glutathione was 30% higher in the brain of sham females compared to males. Females also exhibited increased glutathione peroxidase (GPx) activity following HI injury. Conversely, males displayed a reduction in mitochondrial GPx4 protein levels and mitochondrial GPx activity. Moreover, a 3-4-fold increase in oxidative protein carbonylation was observed in the cortex, perirhinal cortex, and hippocampus of injured males, but not females. These data provide the first evidence for sex-dependent mitochondrial respiratory dysfunction and oxidative damage, which may contribute to the relative male susceptibility to adverse long-term outcomes following HI. Lower basal GSH levels, lower post-hypoxic mitochondrial glutathione peroxidase (mtGPx) activity, and mitochondrial glutathione peroxidase 4 (mtGPx4) protein levels may contribute to the susceptibility of the male brain to oxidative damage and mitochondrial dysfunction following neonatal hypoxic-ischemia (HI). Treatment of male pups with acetyl-L-carnitine (ALCAR) protects against the loss of mtGPx activity, mtGPx4 protein, and increases in protein

  10. Impaired learning in rats in a 14-unit T-maze by 7-nitroindazole, a neuronal nitric oxide synthase inhibitor, is attenuated by the nitric oxide donor, molsidomine.

    Meyer, R C; Spangler, E L; Patel, N; London, E D; Ingram, D K

    1998-01-01

    In previous experiments, it was demonstrated that systemic or central administration of the nitric oxide synthase (NO synthase) inhibitor, NG-nitro-L-arginine (N-Arg), produced dose-dependent learning impairments in rats in a 14-unit T-maze; and that sodium nitroprusside, a NO donor, could attenuate the impairment. Since N-Arg is not specific for neuronal NO synthase and produces hypertension, it is possible that effects on the cardiovasculature may have contributed to the impaired maze performance. In the present experiment, we have investigated the maze performance of 3-4 months old male Fischer-344 rats following treatment with 7-nitroindazole, a NO synthase inhibitor that is selective for neuronal NO synthase and does not produce hypertension. In addition, we examined the effects of the NO donor, molsidomine, which is much longer acting than sodium nitroprusside. Rats were pretrained to avoid footshock in a straight runway and received training in a 14-unit T-maze 24 h later. In an initial dose-response study, rats received intraperitoneal (i.p.) injections of either 7-nitroindazole (25, 50, or 65 mg/kg) or peanut oil 30 min prior to maze training. 7-nitroindazole produced significant, dose-dependent maze acquisition deficits, with 65 mg/kg producing the greatest learning impairment. This dose of 7-nitroindazole had no significant effect on systolic blood pressure. Following the dose-response study, rats were given i.p. injections of either 7-nitroindazole (70 mg/kg) plus saline, 7-nitroindazole (70 mg/kg) plus the NO donor, molsidomine (2 or 4 mg/kg), or peanut oil plus saline as controls. Both doses of molsidomine significantly attenuated the learning deficit induced by 7-nitroindazole relative to controls. These findings represent the first evidence that impaired learning produced by inhibition of neuronal NO synthase can be overcome by systemic administration of a NO donor. PMID:9489851

  11. Impaired suppressive activities of human MUTYH variant proteins against oxidative mutagenesis

    Kazuya Shinmura; Masanori Goto; Hong Tao; Shun Matsuura; Tomonari Matsuda; Haruhiko Sugimura

    2012-01-01

    AIM:To investigate the suppressive activity of MUTYH variant proteins against mutations caused by oxidative lesion,8-hydroxyguanine (8OHG),in human cells.METHODS:p.R154H,p.M255V,p.L360P,and p.P377L MUTYH variants,which were previously found in patients with colorectal polyposis and cancer,were selected for use in this study.Human H1299 cancer cell lines inducibly expressing wild-type (WT) MUTYH (type 2) or one of the 4 above-mentioned MUTYH variants were established using the piggyBac transposon vector system,enabling the genomic integration of the transposon sequence for MUTYH expression.MUTYH expression was examined after cumate induction using Western blotting analysis and immunofiuorescence analysis.The intracellular localization of MUTYH variants tagged with FLAG was also immunofluorescently examined.Next,the mutation frequency in the supF of the shuttle plasmid pMY189 containing a single 8OHG residue at position 159 of the supFwas compared between empty vector cells and cells expressing WT MUTYH or one of the 4 MUTYH variants using a supF forward mutation assay.RESULTS:The successful establishment of human cell lines inducibly expressing WT MUTYH or one of the 4 MUTYH variants was concluded based on the detection of MUTYH expression in these cell lines after treatment with cumate.All of the MUTYH variants and WT MUTYH were localized in the nucleus,and nuclear localization was also observed for FLAG-tagged MUTYH.The mutation frequency ofsupFwas 2.2 x 102in the 8OHG-containing pMY189 plasmid and 2.5× 10-4 in WT pMY189 in empty vector cells,which was an 86-fold increase with the introduction of 8OHG.The mutation frequency (4.7 × 10-3) of supF in the 8OHG-containing pMY189 plasmid in cells overexpressing WT MUTYH was significantly lower than in the empty vector cells (P < 0.01).However,the mutation frequencies of the supF in the 8OHG-containing pMY189 plasmid in cells overexpressing the p.R154H,p.M255V,p.L360P,or p.P377L MUTYH variant were 1.84 × 10-2,1.55

  12. Metabolic Heat Stress Adaption in Transition Cows: Differences in Macronutrient Oxidation between Late-Gestating and Early-Lactating German Holstein Dairy Cows.

    Ole Lamp

    Full Text Available High ambient temperatures have severe adverse effects on biological functions of high-yielding dairy cows. The metabolic adaption to heat stress was examined in 14 German Holsteins transition cows assigned to two groups, one heat-stressed (HS and one pair-fed (PF at the level of HS. After 6 days of thermoneutrality and ad libitum feeding (P1, cows were challenged for 6 days (P2 by heat stress (temperature humidity index (THI = 76 or thermoneutral pair-feeding in climatic chambers 3 weeks ante partum and again 3 weeks post-partum. On the sixth day of each period P1 or P2, oxidative metabolism was analyzed for 24 hours in open circuit respiration chambers. Water and feed intake, vital parameters and milk yield were recorded. Daily blood samples were analyzed for glucose, β-hydroxybutyric acid, non-esterified fatty acids, urea, creatinine, methyl histidine, adrenaline and noradrenaline. In general, heat stress caused marked effects on water homeorhesis with impairments of renal function and a strong adrenergic response accompanied with a prevalence of carbohydrate oxidation over fat catabolism. Heat-stressed cows extensively degraded tissue protein as reflected by the increase of plasma urea, creatinine and methyl histidine concentrations. However, the acute metabolic heat stress response in dry cows differed from early-lactating cows as the prepartal adipose tissue was not refractory to lipolytic, adrenergic stimuli, and the rate of amino acid oxidation was lower than in the postpartal stage. Together with the lower endogenous metabolic heat load, metabolic adaption in dry cows is indicative for a higher heat tolerance and the prioritization of the nutritional requirements of the fast-growing near-term fetus. These findings indicate that the development of future nutritional strategies for attenuating impairments of health and performance due to ambient heat requires the consideration of the physiological stage of dairy cows.

  13. Effect of protein oxidation on the impaired quality of dry-cured loins produced from frozen pork meat.

    Lorido, Laura; Ventanas, Sonia; Akcan, Tolga; Estévez, Mario

    2016-04-01

    Dry-cured loins elaborated from frozen (-20 °C/20 weeks)/thawed longissimus dorsi muscles (F) were compared with counterparts elaborated from fresh (unfrozen) muscles (UF) for the extent of protein oxidation (carbonylation and Schiff base formation) and their sensory profile (quantitative-descriptive analysis). All samples had similar moisture, fat and protein contents (p>0.05). In accordance with previous studies, freezing meat prior to processing affected the oxidative stability of meat proteins. This chemical change occurred concomitantly with modifications of the sensory profile of the loins as F-samples received significantly (p<0.05) higher scores for rancid and salty flavor, hardness and fibrousness than UF-counterparts. The formation of cross-links (assessed as Schiff bases) during freezing and the subsequent processing may have contributed to strengthening the meat structure and hence, impairing the texture properties of dry-cured loins. PMID:26593621

  14. Cultivation of a novel cold-adapted nitrite oxidizing betaproteobacterium from the Siberian Arctic.

    Alawi, Mashal; Lipski, André; Sanders, Tina; Pfeiffer, Eva Maria; Spieck, Eva

    2007-07-01

    Permafrost-affected soils of the Siberian Arctic were investigated with regard to identification of nitrite oxidizing bacteria active at low temperature. Analysis of the fatty acid profiles of enrichment cultures grown at 4 degrees C, 10 degrees C and 17 degrees C revealed a pattern that was different from that of known nitrite oxidizers but was similar to fatty acid profiles of Betaproteobacteria. Electron microscopy of two enrichment cultures grown at 10 degrees C showed prevalent cells with a conspicuous ultrastructure. Sequence analysis of the 16S rRNA genes allocated the organisms to a so far uncultivated cluster of the Betaproteobacteria, with Gallionella ferruginea as next related taxonomically described organism. The results demonstrate that a novel genus of chemolithoautotrophic nitrite oxidizing bacteria is present in polygonal tundra soils and can be enriched at low temperatures up to 17 degrees C. Cloned sequences with high sequence similarities were previously reported from mesophilic habitats like activated sludge and therefore an involvement of this taxon in nitrite oxidation in nonarctic habitats is suggested. The presented culture will provide an opportunity to correlate nitrification with nonidentified environmental clones in moderate habitats and give insights into mechanisms of cold adaptation. We propose provisional classification of the novel nitrite oxidizing bacterium as 'Candidatus Nitrotoga arctica'. PMID:18062041

  15. Fatty acid-binding protein 4 impairs the insulin-dependent nitric oxide pathway in vascular endothelial cells

    Aragonès Gemma

    2012-06-01

    Full Text Available Abstract Background Recent studies have shown that fatty acid-binding protein 4 (FABP4 plasma levels are associated with impaired endothelial function in type 2 diabetes (T2D. In this work, we analysed the effect of FABP4 on the insulin-mediated nitric oxide (NO production by endothelial cells in vitro. Methods In human umbilical vascular endothelial cells (HUVECs, we measured the effects of FABP4 on the insulin-mediated endothelial nitric oxide synthase (eNOS expression and activation and on NO production. We also explored the impact of exogenous FABP4 on the insulin-signalling pathway (insulin receptor substrate 1 (IRS1 and Akt. Results We found that eNOS expression and activation and NO production are significantly inhibited by exogenous FABP4 in HUVECs. FABP4 induced an alteration of the insulin-mediated eNOS pathway by inhibiting IRS1 and Akt activation. These results suggest that FABP4 induces endothelial dysfunction by inhibiting the activation of the insulin-signalling pathway resulting in decreased eNOS activation and NO production. Conclusion These findings provide a mechanistic linkage between FABP4 and impaired endothelial function in diabetes, which leads to an increased cardiovascular risk.

  16. Satureja bachtiarica ameliorate beta-amyloid induced memory impairment, oxidative stress and cholinergic deficit in animal model of Alzheimer's disease.

    Soodi, Maliheh; Saeidnia, Soodabeh; Sharifzadeh, Mohammad; Hajimehdipoor, Homa; Dashti, Abolfazl; Sepand, Mohammad Reza; Moradi, Shahla

    2016-04-01

    Extracellular deposition of Beta-amyloid peptide (Aβ) is the main finding in the pathophysiology of Alzheimer's disease (AD), which damages cholinergic neurons through oxidative stress and reduces the cholinergic neurotransmission. Satureja bachtiarica is a medicinal plant from the Lamiaceae family which was widely used in Iranian traditional medicine. The aim of the present study was to investigate possible protective effects of S. bachtiarica methanolic extract on Aβ induced spatial memory impairment in Morris Water Maze (MWM), oxidative stress and cholinergic neuron degeneration. Pre- aggregated Aβ was injected into the hippocampus of each rat bilaterally (10 μg/rat) and MWM task was performed 14 days later to evaluate learning and memory function. Methanolic extract of S.bachtiarica (10, 50 and 100 mg/Kg) was injected intraperitoneally for 19 consecutive days, after Aβ injection. After the probe test the brain tissue were collected and lipid peroxidation, Acetylcholinesterase (AChE) activity and Cholin Acetyl Transferees (ChAT) immunorectivity were measured in the hippocampus. Intrahipocampal injection of Aβ impaired learning and memory in MWM in training days and probe trail. Methanolic extract of S. bachtiarica (50 and 100 mg/Kg) could attenuate Aβ-induced memory deficit. ChAT immunostaining revealed that cholinergic neurons were loss in Aβ- injected group and S. bachtiarica (100 mg/Kg) could ameliorate Aβ- induced ChAT reduction in the hippocampus. Also S. bachtiarica could ameliorate Aβ-induced lipid peroxidation and AChE activity increase in the hippocampus. In conclusion our study represent that S.bachtiarica methanolic extract can improve Aβ-induced memory impairment and cholinergic loss then we recommended this extract as a candidate for further investigation in treatment of AD. PMID:26638718

  17. Performance Optimization of Metallic Iron and Iron Oxide Nanomaterials for Treatment of Impaired Water Supplies

    Xie, Yang

    2011-01-01

    Iron nanomaterials including nanoscale zero valent iron (NZVI), NZVI-based bimetallic reductants (e.g., Pd/NZVI) and naturally occurring nanoscale iron mineral phases represent promising treatment tools for impaired water supplies. However, questions pertaining to fundamental and practical aspects of their reactivity may limit their performance during applications.For NZVI treatment of pollutant source zones, a major hurdle is its limited reactive lifetime. In Chapter 2, we report the longevi...

  18. BACE1 activity impairs neuronal glucose oxidation: rescue by beta-hydroxybutyrate and lipoic acid

    Findlay, John A.; Hamilton, David L.; Ashford, Michael L J

    2015-01-01

    Glucose hypometabolism and impaired mitochondrial function in neurons have been suggested to play early and perhaps causative roles in Alzheimer's disease (AD) pathogenesis. Activity of the aspartic acid protease, beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), responsible for beta amyloid peptide generation, has recently been demonstrated to modify glucose metabolism. We therefore examined, using a human neuroblastoma (SH-SY5Y) cell line, whether increased BACE1 activity...

  19. Impaired Mitochondrial Respiratory Functions and Oxidative Stress in Streptozotocin-Induced Diabetic Rats

    Subbuswamy K. Prabu

    2011-05-01

    Full Text Available We have previously shown a tissue-specific increase in oxidative stress in the early stages of streptozotocin (STZ-induced diabetic rats. In this study, we investigated oxidative stress-related long-term complications and mitochondrial dysfunctions in the different tissues of STZ-induced diabetic rats (>15 mM blood glucose for 8 weeks. These animals showed a persistent increase in reactive oxygen and nitrogen species (ROS and RNS, respectively production. Oxidative protein carbonylation was also increased with the maximum effect observed in the pancreas of diabetic rats. The activities of mitochondrial respiratory enzymes ubiquinol: cytochrome c oxidoreductase (Complex III and cytochrome c oxidase (Complex IV were significantly decreased while that of NADH:ubiquinone oxidoreductase (Complex I and succinate:ubiquinone oxidoreductase (Complex II were moderately increased in diabetic rats, which was confirmed by the increased expression of the 70 kDa Complex II sub-unit. Mitochondrial matrix aconitase, a ROS sensitive enzyme, was markedly inhibited in the diabetic rat tissues. Increased expression of oxidative stress marker proteins Hsp-70 and HO-1 was also observed along with increased expression of nitric oxide synthase. These results suggest that mitochondrial respiratory complexes may play a critical role in ROS/RNS homeostasis and oxidative stress related changes in type 1 diabetes and may have implications in the etiology of diabetes and its complications.

  20. Adapt

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  1. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors.

    Shah, Firoz; Nicolás, César; Bentzer, Johan; Ellström, Magnus; Smits, Mark; Rineau, Francois; Canbäck, Björn; Floudas, Dimitrios; Carleer, Robert; Lackner, Gerald; Braesel, Jana; Hoffmeister, Dirk; Henrissat, Bernard; Ahrén, Dag; Johansson, Tomas; Hibbett, David S; Martin, Francis; Persson, Per; Tunlid, Anders

    2016-03-01

    Ectomycorrhizal fungi are thought to have a key role in mobilizing organic nitrogen that is trapped in soil organic matter (SOM). However, the extent to which ectomycorrhizal fungi decompose SOM and the mechanism by which they do so remain unclear, considering that they have lost many genes encoding lignocellulose-degrading enzymes that are present in their saprotrophic ancestors. Spectroscopic analyses and transcriptome profiling were used to examine the mechanisms by which five species of ectomycorrhizal fungi, representing at least four origins of symbiosis, decompose SOM extracted from forest soils. In the presence of glucose and when acquiring nitrogen, all species converted the organic matter in the SOM extract using oxidative mechanisms. The transcriptome expressed during oxidative decomposition has diverged over evolutionary time. Each species expressed a different set of transcripts encoding proteins associated with oxidation of lignocellulose by saprotrophic fungi. The decomposition 'toolbox' has diverged through differences in the regulation of orthologous genes, the formation of new genes by gene duplications, and the recruitment of genes from diverse but functionally similar enzyme families. The capacity to oxidize SOM appears to be common among ectomycorrhizal fungi. We propose that the ancestral decay mechanisms used primarily to obtain carbon have been adapted in symbiosis to scavenge nutrients instead. PMID:26527297

  2. EFFECTS OF ADDROGRAPHIS PANICULATA (NEES. ON ARSENIC- INDUCED ALTERED GLUCOSE HOMEOSTASIS AND OXIDATIVE IMPAIRMENT IN PANCREAS OF SWISS MICE

    MANDAVA V. RAO

    2007-01-01

    Full Text Available The effect of Andrographis paniculata (Nees. on arsenic-induced changes in biochemical and cellular antioxident sytem was studies in adult female mice. Daily oral administration of arsenic trioxide (0.5 and 1.0mg/kg b.w for 30days induced a significant increase in blood glucose level which was associated with impaired glucose tolrence. Arsenic treatment also resulted in elevated level panreatic tissue specific makers such as activities of amylase and lipase in serum indicating pancreatic dysfunction. Interestingly, this biochemical dysfuntion was accompanied by a marked dose related enchancement of lipid peroxidation indicating significant induction of oxidative damage. Additional evidence such as deletion in reduced gluatathione levels and alterations in enzymic antioxidant defences like superoxide dismutase, catalase and glutathione peroxidase in pancreas suggested induction of oxidative stress. Concomitant administration of Adrographis paniculata (50 mg/kg b.w. with arsenic significant restored all these parameters. These results suggest that Adrographis paniculata is capable to reducing arsenic-induce cellular oxidative and inflammatory changes in pancreas.

  3. The swan-neck lesion: proximal tubular adaptation to oxidative stress in nephropathic cystinosis.

    Galarreta, Carolina I; Forbes, Michael S; Thornhill, Barbara A; Antignac, Corinne; Gubler, Marie-Claire; Nevo, Nathalie; Murphy, Michael P; Chevalier, Robert L

    2015-05-15

    Cystinosis is an inherited disorder resulting from a mutation in the CTNS gene, causing progressive proximal tubular cell flattening, the so-called swan-neck lesion (SNL), and eventual renal failure. To determine the role of oxidative stress in cystinosis, histologic sections of kidneys from C57BL/6 Ctns(-/-) and wild-type mice were examined by immunohistochemistry and morphometry from 1 wk to 20 mo of age. Additional mice were treated from 1 to 6 mo with vehicle or mitoquinone (MitoQ), an antioxidant targeted to mitochondria. The leading edge of the SNL lost mitochondria and superoxide production, and became surrounded by a thickened tubular basement membrane. Progression of the SNL as determined by staining with lectin from Lotus tetragonolobus accelerated after 3 mo, but was delayed by treatment with MitoQ (38 ± 4% vs. 28 ± 1%, P injury molecule-1 (KIM-1) nor cell death was observed. After 9 mo, clusters of proximal tubules exhibited localized oxidative stress (4-hydroxynonenal binding), expressed KIM-1, and underwent apoptosis, leading to the formation of atubular glomeruli and accumulation of interstitial collagen. We conclude that nephron integrity is initially maintained in the Ctns(-/-) mouse by adaptive flattening of cells of the SNL through loss of mitochondria, upregulation of transgelin, and thickened basement membrane. This adaptation ultimately fails in adulthood, with proximal tubular disruption, formation of atubular glomeruli, and renal failure. Antioxidant treatment targeted to mitochondria delays initiation of the SNL, and may provide therapeutic benefit in children with cystinosis. PMID:25694483

  4. 听觉障碍学生学习适应性的调查研究%An Investigation on the Learning Adaptability of Students with Hearing Impairments

    杨福义; 谭和平; 陈进; 李方璐

    2012-01-01

    Abstract: With subjects of 242 students with hearing impairments from grade 7 to grade 12, this study investigated hearing im-paired students' learning adaptability. The results indicated that : ( 1 ) The global learning adaptability of hearing impaired students was universally medium or under medium level. Quite a few students with hearing impairments were diversely maladaptive in the domain of learning attitude, learning technology, learning environment and mental and physical health. ;(2)There existed significant grade differ- ence in hearing impaired students' learning adaptability. Their learning adaptability put up the trend to recede first and then rise with the increasing of grade. ; ( 3 ) There also existed significant gender difference in learning adaptability of students with hearing impair- ments. Females' global and four individual levels of learning adaptability were significantly higher than those of males ; (4) Hearing im- paired students' cognitive style model were mostly impulsive model. Their memory model were mostly visual model or in - between model; ( 5 ) More than half students with hearing impairments attributed their academic achievements to inner - directed reason. More than one third students with hearing impairments attributed their academic achievements to outer - directed reason; ( 6 ) Hearing im-paired students' learning time at home was less than that of normal students. Practitioners should take into account hearing impaired students' learning adaptability characteristics while giving instructions to this kind of students.%本研究采用《学习适应性测验》对242名初一——高三年级听觉障碍学生的学习适应性进行调查研究。结果表明:(1)听障学生的总体学习适应性普遍处于中等或中等以下水平,在学习态度、学习技术、学习环境和心身健康四个方面都有相当比例的学生表现出不同程

  5. Assessment of benzene induced oxidative impairment in rat isolated pancreatic islets and effect on insulin secretion.

    Bahadar, Haji; Maqbool, Faheem; Mostafalou, Sara; Baeeri, Maryam; Rahimifard, Mahban; Navaei-Nigjeh, Mona; Abdollahi, Mohammad

    2015-05-01

    Benzene (C6H6) is an organic compound used in petrochemicals and numerous other industries. It is abundantly released to our environment as a chemical pollutant causing widespread human exposure. This study mainly focused on benzene induced toxicity on rat pancreatic islets with respect to oxidative damage, insulin secretion and glucokinase (GK) activity. Benzene was dissolved in corn oil and administered orally at doses 200, 400 and 800mg/kg/day, for 4 weeks. In rats, benzene significantly raised the concentration of plasma insulin. Also the effect of benzene on the release of glucose-induced insulin was pronounced in isolated islets. Benzene caused oxidative DNA damage and lipid peroxidation, and also reduced the cell viability and total thiols groups, in the islets of exposed rats. In conclusion, the current study revealed that pancreatic glucose metabolism is susceptible to benzene toxicity and the resultant oxidative stress could lead to functional abnormalities in the pancreas. PMID:25935538

  6. Chelation of Free Zn(2+) Impairs Chemotaxis, Phagocytosis, Oxidative Burst, Degranulation, and Cytokine Production by Neutrophil Granulocytes.

    Hasan, Rafah; Rink, Lothar; Haase, Hajo

    2016-05-01

    Neutrophil granulocytes are the largest leukocyte population in the blood and major players in the innate immune response. Impaired neutrophil function has been reported in in vivo studies with zinc-deficient human subjects and experimental animals. Moreover, in vitro formation of neutrophil extracellular traps has been shown to depend on free intracellular Zn(2+). This study investigates the requirement of Zn(2+) for several other essential neutrophil functions, such as chemotaxis, phagocytosis, cytokine production, and degranulation. To exclude artifacts resulting from indirect effects of zinc deprivation, such as impaired hematopoietic development and influences of other immune cells, direct effects of zinc deprivation were tested in vitro using cells isolated from healthy human donors. Chelation of Zn(2+) by the membrane permeable chelator N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylenediamine (TPEN) reduced granulocyte migration toward N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLF) and IL-8, indicating a role of free intracellular Zn(2+) in chemotaxis. However, a direct action of Zn(2+) as a chemoattractant, as previously reported by others, was not observed. Similar to chemotaxis, phagocytosis, oxidative burst, and granule release were also impaired in TPEN-treated granulocytes. Moreover, Zn(2+) contributes to the regulatory role of neutrophil granulocytes in the inflammatory response by affecting the cytokine production by these cells. TPEN inhibited the lipopolysaccharide-induced secretion of chemotactic IL-8 and also anti-inflammatory IL-1ra. In conclusion, free intracellular Zn(2+) plays essential roles in multiple neutrophil functions, affecting extravasation to the site of the infection, uptake and killing of microorganisms, and inflammation. PMID:26400651

  7. Methodological Adaptations for Investigating the Perceptions of Language-Impaired Adolescents Regarding the Relative Importance of Selected Communication Skills

    Reed, Vicki A.; Brammall, Helen

    2006-01-01

    This article describes the systematic and detailed processes undertaken to modify a research methodology for use with language-impaired adolescents. The original methodology had been used previously with normally achieving adolescents and speech pathologists to obtain their opinions about the relative importance of selected communication skills…

  8. Impairment of mitochondrial β-oxidation in rats under cold-hypoxic environment

    Dutta, Arkadeb; Vats, Praveen; Singh, Vijay K.; Sharma, Yogendra K.; Singh, Som N.; Singh, Shashi B.

    2009-09-01

    Mitochondrial ß-oxidation of fatty acid provides a major source of energy in mammals. High altitude (HA), characterized by hypobaric hypoxia and low ambient temperatures, causes alteration in metabolic homeostasis. Several studies have depicted that hypoxic exposure in small mammals causes hypothermia due to hypometabolic state. Moreover, cold exposure along with hypoxia reduces hypoxia tolerance in animals. The present study investigated the rate of β-oxidation and key enzymes, carnitine palmitoyl transferase-I (CPT-I) and hydroxyacyl CoA dehydrogenase (HAD), in rats exposed to cold-hypobaric hypoxic environment. Male Sprague Dawley rats (190-220 g) were randomly divided into eight groups ( n = 6 rats in each group): 1 day hypoxia (H1); 7 days hypoxia (H7); 1 day cold (C1); 7 days cold (C7); 1 day cold-hypoxia (CH1); 7 days cold-hypoxia (CH7) exposed; and unexposed control for 1 and 7 days (UC1 and UC7). After exposure, animals were anaesthetized with ketamine (50 mg/kg body weight) and xylazine (10 mg/kg body weight) intraperitonialy and sacrificed. Mitochondrial CPT-I, HAD, 14C-palmitate oxidation in gastrocnemius muscle and liver, and plasma leptin were measured. Mitochondrial CPT-I was significantly reduced in muscle and liver in CH1 and CH7 as compared to respective controls. HAD activity was significantly reduced in H1 and CH7, and in H1, H7, CH1, and CH7 as compared to unexposed controls in muscle and liver, respectively. A concomitant decrease in 14C-palmitate oxidation was found. Significant reduction in plasma leptin in hypoxia and cold-hypoxia suggested hypometabolic state. It can be concluded that ß-oxidation of fatty acids is reduced in rats exposed to cold-hypoxic environment due to the persisting hypometabolic state in cold-hypoxia exposure.

  9. eNOS activation and NO function: pregnancy adaptive programming of capacitative entry responses alters nitric oxide (NO) output in vascular endothelium--new insights into eNOS regulation through adaptive cell signaling.

    Boeldt, D S; Yi, F X; Bird, I M

    2011-09-01

    In pregnancy, vascular nitric oxide (NO) production is increased in the systemic and more so in the uterine vasculature, thereby supporting maximal perfusion of the uterus. This high level of functionality is matched in the umbilical vein, and in corresponding disease states such as pre-eclampsia, reduced vascular responses are seen in both uterine artery and umbilical vein. In any endothelial cell, NO actually produced by endothelial NO synthase (eNOS) is determined by the maximum capacity of the cell (eNOS expression levels), eNOS phosphorylation state, and the intracellular [Ca(2+)](i) concentration in response to circulating hormones or physical forces. Herein, we discuss how pregnancy-specific reprogramming of NO output is determined as much by pregnancy adaptation of [Ca(2+)](i) signaling responses as it is by eNOS expression and phosphorylation. By examining the changes in [Ca(2+)](i) signaling responses from human hand vein endothelial cells, uterine artery endothelial cells, and human umbilical vein endothelial cells in (where appropriate) nonpregnant, normal pregnant, and pathological pregnant (pre-eclamptic) state, it is clear that pregnancy adaptation of NO output occurs at the level of sustained phase 'capacitative entry' [Ca(2+)](i) response, and the adapted response is lacking in pre-eclamptic pregnancies. Moreover, gap junction function is an essential permissive regulator of the capacitative response and impairment of NO output results from any inhibitor of gap junction function, or capacitative entry using TRPC channels. Identifying these [Ca(2+)](i) signaling mechanisms underlying normal pregnancy adaptation of NO output not only provides novel targets for future treatment of diseases of pregnancy but may also apply to other common forms of hypertension. PMID:21555345

  10. Protection from Palmitate-Induced Mitochondrial DNA Damage Prevents from Mitochondrial Oxidative Stress, Mitochondrial Dysfunction, Apoptosis, and Impaired Insulin Signaling in Rat L6 Skeletal Muscle Cells

    Yuzefovych, Larysa V.; Solodushko, Viktoriya A.; Wilson, Glenn L.; Rachek, Lyudmila I.

    2011-01-01

    Saturated free fatty acids have been implicated in the increase of oxidative stress, mitochondrial dysfunction, apoptosis, and insulin resistance seen in type 2 diabetes. The purpose of this study was to determine whether palmitate-induced mitochondrial DNA (mtDNA) damage contributed to increased oxidative stress, mitochondrial dysfunction, apoptosis, impaired insulin signaling, and reduced glucose uptake in skeletal muscle cells. Adenoviral vectors were used to deliver the DNA repair enzyme ...

  11. Impaired metabolism of senescent muscle satellite cells is associated with oxidative modifications of glycolytic enzymes

    Baraibar, Martin; Hyzewicz, Janek; Rogowska-Wrzesinska, Adelina;

    2014-01-01

    using a targeted proteomics analysis we have found that proteins involved in protein quality control and glycolytic enzymes are the main targets of oxidation (carbonylation) and modification with advanced glycation/lipid peroxidation end products during replicative senescence of satellite cells...... leading to increased mobilization of non-carbohydrate substrates as branched chain amino acids or long chain fatty acids was observed in senescent cells. In addition, phospho-and glycerolipids metabolism was altered. Increased levels of acyl-carnitines indicated augmented turnover of storage and membrane...... lipids for energy production. Such changes reflect alterations in membrane composition and dysregulation of sphingolipids signaling during senescence. This study establishes a new concept connecting oxidative protein modifications with the altered cellular metabolism associated with the senescent...

  12. Mice Lacking Inducible Nitric Oxide Synthase Demonstrate Impaired Killing of Porphyromonas gingivalis

    Gyurko, Robert; Boustany, Gabriel; Huang, Paul L; Kantarci, Alpdogan; Van Dyke, Thomas E.; Genco, Caroline A.; Gibson III, Frank C.

    2003-01-01

    Porphyromonas gingivalis is a primary etiological agent of generalized severe periodontitis, and emerging data suggest the importance of reactive oxygen and nitrogen species in periodontal tissue damage, as well as in microbial killing. Since nitric oxide (NO) released from inducible NO synthase (iNOS) has been shown to possess immunomodulatory, cytotoxic, and antibacterial effects in experimental models, we challenged iNOS-deficient (iNOS−/−) mice with P. gingivalis by using a subcutaneous c...

  13. Cimicifuga racemosa impairs fatty acid β-oxidation and induces oxidative stress in livers of ovariectomized rats with renovascular hypertension.

    Campos, Lilian Brites; Gilglioni, Eduardo Hideo; Garcia, Rosângela Fernandes; Brito, Márcia do Nascimento; Natali, Maria Raquel Marçal; Ishii-Iwamoto, Emy Luiza; Salgueiro-Pagadigorria, Clairce Luzia

    2012-08-15

    The aim of this work was to evaluate the effects of therapeutic doses of Cimicifuga racemosa on cardiovascular parameters and on liver lipid metabolism and redox status in an animal model of estrogen deficiency associated with hypertension, a condition that could make the liver more vulnerable to drug-induced injuries. Female Wistar rats were subjected to the surgical procedures of bilateral ovariectomy (OVX) and induction of renovascular hypertension (two-kidneys, one-clip; 2K1C). These animals (OVX + 2K1C) were treated with daily doses of a C. racemosa extract, using a dose that is similar to that recommended to postmenopausal women (0.6 mg/kg), over a period of 15 days. The results were compared to those of untreated OVX + 2K1C, OVX, and control rats. The treatment with C. racemosa caused a significant reduction in blood pressure. In the liver, treatment did not prevent the development of steatosis, and it reduced the mitochondrial and peroxisomal capacity to oxidize octanoyl-CoA compared to the untreated animals. In addition, C. racemosa caused numerous undesirable effects on the liver redox status: it increased the mitochondrial reactive oxygen species generation, an event that was not accompanied by an increase in the activity of superoxide dismutase, and it induced a decrease in peroxisomal catalase activity. Although the reduced glutathione content had not been affected, a phenomenon that probably reflected the restoration of glucose-6-phosphate dehydrogenase activity by C. racemosa, oxidative damage was evidenced by the elevated level of thiobarbituric acid-reactive substances found in the liver of treated animals. PMID:22684021

  14. Speech communication strategies in older children: acoustic-phonetic and linguistic adaptations to a hearing-impaired peer

    Granlund, S. C.

    2015-01-01

    This thesis examines the communication strategies used by both hearing (NH) and hearing-impaired (HI) children when interacting with a peer with hearing loss, focusing on the acoustic-phonetic and linguistic properties of their speech. To elicit frequent repetitions of segmental contrasts in HI children’s spontaneous speech in interaction, a new task was developed using minimal pair keywords in a communicative game context. In addition, another referential communication task, the ‘spot the di...

  15. Distinct Phenotypes Caused by Mutation of MSH2 in Trypanosome Insect and Mammalian Life Cycle Forms Are Associated with Parasite Adaptation to Oxidative Stress.

    Viviane Grazielle-Silva

    2015-06-01

    Full Text Available DNA repair mechanisms are crucial for maintenance of the genome in all organisms, including parasites where successful infection is dependent both on genomic stability and sequence variation. MSH2 is an early acting, central component of the Mismatch Repair (MMR pathway, which is responsible for the recognition and correction of base mismatches that occur during DNA replication and recombination. In addition, recent evidence suggests that MSH2 might also play an important, but poorly understood, role in responding to oxidative damage in both African and American trypanosomes.To investigate the involvement of MMR in the oxidative stress response, null mutants of MSH2 were generated in Trypanosoma brucei procyclic forms and in Trypanosoma cruzi epimastigote forms. Unexpectedly, the MSH2 null mutants showed increased resistance to H2O2 exposure when compared with wild type cells, a phenotype distinct from the previously observed increased sensitivity of T. brucei bloodstream forms MSH2 mutants. Complementation studies indicated that the increased oxidative resistance of procyclic T. brucei was due to adaptation to MSH2 loss. In both parasites, loss of MSH2 was shown to result in increased tolerance to alkylation by MNNG and increased accumulation of 8-oxo-guanine in the nuclear and mitochondrial genomes, indicating impaired MMR. In T. cruzi, loss of MSH2 also increases the parasite capacity to survive within host macrophages.Taken together, these results indicate MSH2 displays conserved, dual roles in MMR and in the response to oxidative stress. Loss of the latter function results in life cycle dependent differences in phenotypic outcomes in T. brucei MSH2 mutants, most likely because of the greater burden of oxidative stress in the insect stage of the parasite.

  16. Energy Efficient Glazing for Adaptive Solar Control Fabricated with Photothermotropic Hydrogels Containing Graphene Oxide

    Kim, Dowan; Lee, Eunsu; Lee, Heon Sang; Yoon, Jinhwan

    2015-01-01

    Glazing for adaptive solar control is the most promising for energy efficient development, because the use of this technology in buildings can be expected to significantly impact energy use and efficiency by screening sunlight that enters a building in summer. To achieve autonomous adjustable transparency, we have developed photothermotropic material system by combining photothermal materials with thermotropic hydrogels. We found that graphene oxide dispersed within a hydrogel matrix effectively converts the photo energy of sunlight into thermal energy, providing the efficient means to trigger transparency of thermotropic hydrogels. Therefore, we could develop switchable glazing of novel photothermotropic mechanism that screen strong sunlight and heat radiation in response to the sunlight intensity, as well as the temperature. Furthermore, in this study, a prototype device was manufactured with developed materials and successfully operated in outdoor testing.

  17. Dexamethasone Treatment Reverses Cognitive Impairment but Increases Brain Oxidative Stress in Rats Submitted to Pneumococcal Meningitis

    Tatiana Barichello; Santos, Ana Lucia B.; Cintia Silvestre; Generoso, Jaqueline S.; Cipriano, Andreza L.; Fabricia Petronilho; Felipe Dal-Pizzol; Comim, Clarissa M.; João Quevedo

    2011-01-01

    Pneumococcal meningitis is associated with a significant mortality rate and neurologic sequelae. The animals received either 10  μ L of saline or a S. pneumoniae suspension and were randomized into different groups: sham: placebo with dexamethasone 0.7 mg/kg/1 day; placebo with dexamethasone 0.2 mg/kg/7 days; meningitis groups: dexamethasone 0.7 mg/kg/1 day and dexamethasone 0.2 mg/kg/7 days. Ten days after induction we evaluated memory and oxidative stress parameters in hippocampus and corte...

  18. Neuronal nitric oxide synthase-deficient mice have impaired Renin release but normal blood pressure

    Sällström, Johan; Carlström, Mattias; Jensen, Boye L;

    2008-01-01

    wild-type (nNOS(+/+)) mice after 10 days of low (0.01% NaCl) and high (4% NaCl) sodium diets.ResultsThe resting heart rate was reduced in nNOS(-/-) mice, but the two genotypes had similar blood pressure during the low (nNOS(+/+) 104 +/- 2 mm Hg; nNOS(-/-) 103 +/- 2 mm Hg) and high (nNOS(+/+) 107 +/- 3......BackgroundNitric oxide deficiency is involved in the development of hypertension, but the mechanisms are currently unclear. This study was conducted to further elucidate the role of neuronal nitric oxide synthase (nNOS) in blood pressure regulation and renin release in relation to different sodium...... loads.MethodsBlood pressure and heart rate were measured telemetrically and assessed during periods of physical activity and inactivity. Urinary solute excretion was measured by metabolism cages and plasma renin concentration (PRC) was determined by radioimmunoassay; all in nNOS knockout (nNOS(-/-)) and...

  19. Nitric oxide agents impair insulin-mediated signal transduction in rat skeletal muscle

    Ragoobirsingh Dalip

    2006-05-01

    Full Text Available Abstract Background Evidence demonstrates that exogenously administered nitric oxide (NO can induce insulin resistance in skeletal muscle. We have investigated the modulatory effects of two NO donors, S-nitroso-N-acetyl-D, L-penicillamine (SNAP and S-nitrosoglutathione (GSNO on the early events in insulin signaling in rat skeletal myocytes. Results Skeletal muscle cells from 6–8 week old Sprague-Dawley rats were treated with SNAP or GSNO (25 ng/ml in the presence or absence of glucose (25 mM and insulin (100 nM. Cellular insulin receptor-β levels and tyrosine phosphorylation in IRS-1 were significantly reduced, while serine phosphorylation in IRS-1 was significantly increased in these cells, when compared to the insulin-stimulated control. Reversal to near normal levels was achieved using the NO scavenger, 2-(4-carboxyphenyl-4, 4, 5, 5-tetramethylimidazoline-1-oxyl 3-oxide (carboxy-PTIO. Conclusion These data suggest that NO is a potent modulator of insulin-mediated signal transduction and may play a significant role in the pathogenesis of type 2 diabetes mellitus.

  20. Self-Adaptive Spike-Time-Dependent Plasticity of Metal-Oxide Memristors

    Prezioso, M.; Merrikh Bayat, F.; Hoskins, B.; Likharev, K.; Strukov, D.

    2016-02-01

    Metal-oxide memristors have emerged as promising candidates for hardware implementation of artificial synapses - the key components of high-performance, analog neuromorphic networks - due to their excellent scaling prospects. Since some advanced cognitive tasks require spiking neuromorphic networks, which explicitly model individual neural pulses (“spikes”) in biological neural systems, it is crucial for memristive synapses to support the spike-time-dependent plasticity (STDP). A major challenge for the STDP implementation is that, in contrast to some simplistic models of the plasticity, the elementary change of a synaptic weight in an artificial hardware synapse depends not only on the pre-synaptic and post-synaptic signals, but also on the initial weight (memristor’s conductance) value. Here we experimentally demonstrate, for the first time, an STDP behavior that ensures self-adaptation of the average memristor conductance, making the plasticity stable, i.e. insensitive to the initial state of the devices. The experiments have been carried out with 200-nm Al2O3/TiO2-x memristors integrated into 12 × 12 crossbars. The experimentally observed self-adaptive STDP behavior has been complemented with numerical modeling of weight dynamics in a simple system with a leaky-integrate-and-fire neuron with a random spike-train input, using a compact model of memristor plasticity, fitted for quantitatively correct description of our memristors.

  1. Glutamate-induced activation of nitric oxide synthase is impaired in cerebral cortex in vivo in rats with chronic liver failure.

    Rodrigo, Regina; Erceg, Slaven; Rodriguez-Diaz, Jesus; Saez-Valero, Javier; Piedrafita, Blanca; Suarez, Isabel; Felipo, Vicente

    2007-07-01

    It has been proposed that impairment of the glutamate-nitric oxide-cyclic guanosine monophosphate (cGMP) pathway in brain contributes to cognitive impairment in hepatic encephalopathy. The aims of this work were to assess whether the function of this pathway and of nitric oxide synthase (NOS) are altered in cerebral cortex in vivo in rats with chronic liver failure due to portacaval shunt (PCS) and whether these alterations are due to hyperammonemia. The glutamate-nitric oxide-cGMP pathway function and NOS activation by NMDA was analysed by in vivo microdialysis in cerebral cortex of PCS and control rats and in rats with hyperammonemia without liver failure. Similar studies were done in cortical slices from these rats and in cultured cortical neurons exposed to ammonia. Basal NOS activity, nitrites and cGMP are increased in cortex of rats with hyperammonemia or liver failure. These increases seem due to increased inducible nitric oxide synthase expression. NOS activation by NMDA is impaired in cerebral cortex in both animal models and in neurons exposed to ammonia. Chronic liver failure increases basal NOS activity, nitric oxide and cGMP but reduces activation of NOS induced by NMDA receptors activation. Hyperammonemia is responsible for both effects which will lead, independently, to alterations contributing to neurological alterations in hepatic encephalopathy. PMID:17286583

  2. Androgen Induces Adaptation to Oxidative Stress in Prostate Cancer: Implications for Treatment with Radiation Therapy

    Jehonathan H. Pinthus

    2007-01-01

    Full Text Available Radiation therapy is a standard treatment for prostate cancer (PC. The postulated mechanism of action for radiation therapy is the generation of reactive oxygen species (ROS. Adjuvant androgen deprivation (AD therapy has been shown to confer a survival advantage over radiation alone in high-risk localized PC. However, the mechanism of this interaction is unclear. We hypothesize that androgens modify the radioresponsiveness of PC through the regulation of cellular oxidative homeostasis. Using androgen receptor (AR+ 22rv1 and AR− PC3 human PC cell lines, we demonstrated that testosterone increased basal reactive oxygen species (bROS levels, resulting in dose-dependent activation of phospho-p38 and pAKT, increased expression of clusterin, catalase, manganese superoxide dismutase. Similar data were obtained in three human PC xenografts; WISH-PC14, WISH-PC23, CWR22, growing in testosterone-supplemented or castrated SCID mice. These effects were reversible through AD or through incubation with a reducing agent. Moreover, testosterone increased the activity of catalase, superoxide dismutases, glutathione reductase. Consequently, AD significantly facilitated the response of AR+ cells to oxidative stress challenge. Thus, testosterone induces a preset cellular adaptation to radiation through the generation of elevated bROS, which is modified by AD. These findings provide a rational for combined hormonal and radiation therapy for localized PC.

  3. Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations

    Bollmann, Annette [Miami University, Oxford, OH; Sedlacek, Christopher J [Miami University, Oxford, OH; Laanbroek, Hendrikus J [Netherlands Institute of Ecology (NIOO-KNAW); Suwa, Yuichi [Chuo University, Tokyo, Japan; Stein, Lisa Y [University of California, Riverside; Klotz, Martin G [University of Louisville, Louisville; Arp, D J [Oregon State University; Sayavedra-Soto, LA [Oregon State University; Lu, Megan [Los Alamos National Laboratory (LANL); Bruce, David [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, James [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Pennacchio, Len [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Szeto, Ernest [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Peters, Lin [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL)

    2013-01-01

    Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production of nitrate. Nitrosomonas sp. Is79 is an ammonia oxidizer of high interest because it is adapted to low ammonium and can be found in freshwater environments around the world. The 3,783,444-bp chromosome with a total of 3,553 protein coding genes and 44 RNA genes was sequenced by the DOE-Joint Genome Institute Program CSP 2006.

  4. L-Arginine reverses the impairment of nitric oxide-dependent collateral perfusion in dietary-induced hypercholesterolaemia in the rabbit

    1. We have used an isolated, buffer-perfused, rabbit ear model of acute arterial occlusion to investigate the effects of exogenous L-arginine on the severe impairment of collateral perfusion associated with dietary-induced hypercholesterolaemia. The effects of L-arginine on hypercholesterolaemia-related impairment of endothelium-dependent relaxations to acetylcholine were also investigated in unligated, isolated rabbit ears perfused with buffer. 2. Cholesterol feeding for 8 weeks (blood cholesterol level 66.5 +/- 5.3 versus 1.4 +/- 0.2 mmol/l, P < 0.001) was associated with almost complete impairment of collateral perfusion, an effect previously observed after inhibition of nitric oxide synthesis. The impairment of collateral perfusion found in hypercholesterolaemia was completely reversed by the addition of 10 mmol/l L-arginine to the perfusion fluid. In control preparations from rabbits fed a normal diet, the addition of 10 mmol/l L-arginine did not influence collateral perfusion. 3. Endothelium-dependent relaxation to acetylcholine was impaired in preparations from the rabbits fed the high cholesterol diet for 8 weeks: the maximum relaxation of tone was 24.6 +/- 0.8% and was significantly (P < 0.01) less than that in the controls (70.3 +/- 2.4%). Addition of L-arginine to the perfusion fluid caused a modest improvement in the endothelium-dependent relaxations to acetylcholine, with a maximum response of 43.2 +/- 1.3%. 4. We conclude that nitric oxide-dependent collateral perfusion is severely impaired in hypercholesterolaemia and that the addition of exogenous L-arginine fully reverses these changes. Endothelium-dependent relaxations to acetylcholine are similarly impaired by hypercholesterolaemia; however, this deficit was only partially reversed by L-arginine

  5. Type 2 Diabetes and Breast Cancer: The Interplay between Impaired Glucose Metabolism and Oxidant Stress

    Ferroni, Patrizia; Riondino, Silvia; Buonomo, Oreste; Palmirotta, Raffaele; Guadagni, Fiorella; Roselli, Mario

    2015-01-01

    Metabolic disorders, especially type 2 diabetes and its associated complications, represent a growing public health problem. Epidemiological findings indicate a close relationship between diabetes and many types of cancer (including breast cancer risk), which regards not only the dysmetabolic condition, but also its underlying risk factors and therapeutic interventions. This review discusses the advances in understanding of the mechanisms linking metabolic disorders and breast cancer. Among the proposed mechanisms to explain such an association, a major role is played by the dysregulated glucose metabolism, which concurs with a chronic proinflammatory condition and an associated oxidative stress to promote tumour initiation and progression. As regards the altered glucose metabolism, hyperinsulinaemia, both endogenous due to insulin-resistance and drug-induced, appears to promote tumour cell growth through the involvement of innate immune activation, platelet activation, increased reactive oxygen species, exposure to protumorigenic and proangiogenic cytokines, and increased substrate availability to neoplastic cells. In this context, understanding the relationship between metabolic disorders and cancer is becoming imperative, and an accurate analysis of these associations could be used to identify biomarkers able to predict disease risk and/or prognosis and to help in the choice of proper evidence-based diagnostic and therapeutic protocols. PMID:26171112

  6. Polychlorinated biphenyls PCB 153 and PCB 126 impair the glutamate-nitric oxide-cGMP pathway in cerebellar neurons in culture by different mechanisms.

    Llansola, Marta; Piedrafita, Blanca; Rodrigo, Regina; Montoliu, Carmina; Felipo, Vicente

    2009-08-01

    Polychlorinated biphenyls (PCBs) are persistent organic pollutants present in human blood and milk. Exposure to PCBs during pregnancy and lactation leads to cognitive impairment in children. Perinatal exposure to PCB 153 or PCB 126 impairs the glutamate-nitric oxide-cGMP pathway in cerebellum in vivo and learning ability in adult rats. The aims of this work were: (1) to assess whether long-term exposure of primary cultures of cerebellar neurons to PCB 153 or PCB 126 reproduces the impairment in the function of the glutamate-nitric oxide-cGMP pathway found in rat cerebellum in vivo; (2) to provide some insight on the steps of the pathway affected by these PCBs; (3) to assess whether the mechanisms of interference of the pathway are different for PCB 126 and PCB 153. Both PCB 153 and PCB 126 increase basal levels of cGMP by different mechanisms. PCB 126 increases the amount of soluble guanylate cyclase while PCB 153 does not. PCB 153 reduces the amount of calmodulin while PCB 126 does not. Also both PCBs impair the function of the glutamate-nitric oxide-cGMP pathway by different mechanisms, PCB 153 impairs nitric oxide-induced activation of soluble guanylate cyclase and increase in cGMP while PCB 126 does not. PCB 126 reduces NMDA-induced increase in calcium while PCB 153 does not. When PCB 153 and PCB 126 exhibit the same effect, PCB 126 was more potent than PCB 153, as occurs in vivo. PMID:19526286

  7. Hyperglycaemia-induced impairment of endothelium-dependent vasorelaxation in rat mesenteric arteries is mediated by intracellular methylglyoxal levels in a pathway dependent on oxidative stress

    Brouwers, O; Niessen, P M; Haenen, G;

    2010-01-01

    of high glucose and methylglyoxal on NO-dependent vasorelaxation in isolated rat mesenteric arteries from wild-type and transgenic glyoxalase (GLO)-I (also known as GLO1) rats, i.e. the enzyme detoxifying methylglyoxal, were recorded in a wire myograph. AGE formation of the major methylglyoxal-adduct 5...... for AGE ligand S100b did (p stress marker nitrotyrosine. Antioxidant pre-incubation prevented methylglyoxal......-induced impairment of vasoreactivity. CONCLUSIONS/INTERPRETATION: These data show that hyperglycaemia-induced impairment of endothelium-dependent vasorelaxation is mediated by increased intracellular methylglyoxal levels in a pathway dependent on oxidative stress....

  8. Mice Lacking Inducible Nitric Oxide Synthase Demonstrate Impaired Killing of Porphyromonas gingivalis

    Gyurko, Robert; Boustany, Gabriel; Huang, Paul L.; Kantarci, Alpdogan; Van Dyke, Thomas E.; Genco, Caroline A.; Gibson III, Frank C.

    2003-01-01

    Porphyromonas gingivalis is a primary etiological agent of generalized severe periodontitis, and emerging data suggest the importance of reactive oxygen and nitrogen species in periodontal tissue damage, as well as in microbial killing. Since nitric oxide (NO) released from inducible NO synthase (iNOS) has been shown to possess immunomodulatory, cytotoxic, and antibacterial effects in experimental models, we challenged iNOS-deficient (iNOS−/−) mice with P. gingivalis by using a subcutaneous chamber model to study the specific contribution of NO to host defense during P. gingivalis infection. iNOS−/− mice inoculated with P. gingivalis developed skin lesions and chamber rejection with higher frequency and to a greater degree than similarly challenged C57BL/6 wild-type (WT) mice. Chamber fluid from iNOS−/− mice possessed significantly more P. gingivalis than that of WT mice. The immunoglobulin G responses to P. gingivalis in serum was similar in WT and iNOS−/− mice, and the inductions of tumor necrosis factor alpha, interleukin-1β and interleukin-6, and prostaglandin E2 were comparable between the two mouse strains. Although no differences in total leukocyte counts in chamber fluids were observed between iNOS−/− and WT mice, the percentage of dead polymorphonuclear leukocytes (PMNs) was significantly greater in iNOS−/− mouse chamber fluids than that of WT samples. Interestingly, casein-elicited PMNs from iNOS−/− mice released more superoxide than did WT PMNs when stimulated with P. gingivalis. These results indicate that modulation of superoxide levels is a mechanism by which NO influences PMN function and that NO is an important element of the host defense against P. gingivalis. PMID:12933833

  9. Apolipoprotein B of low-density lipoprotein impairs nitric oxide-mediated endothelium-dependent relaxation in rat mesenteric arteries

    Zhang, Yaping; Zhang, Wei; Edvinsson, Lars; Xu, Cang-Bao

    2014-01-01

    Apolipoprotein B (ApoB) of low-density lipoprotein (LDL) causes endothelial dysfunction in the initial stage of atherogenesis. The present study was designed to explore the underlying molecular mechanisms involved. Rat mesenteric arteries were organ cultured in the presence of different concentra......Apolipoprotein B (ApoB) of low-density lipoprotein (LDL) causes endothelial dysfunction in the initial stage of atherogenesis. The present study was designed to explore the underlying molecular mechanisms involved. Rat mesenteric arteries were organ cultured in the presence of different...... concentrations of ApoB or LDL. Vasodilation induced by acetylcholine was monitored by a sensitive myograph. Nitric oxide (NO), endothelium-dependent hyperpolarizing factor (EDHF) and prostacyclin (PGI2) pathways were characterized by using specific pathway inhibitors. Real-time PCR and immunohistochemistry with......-dependently attenuated the endothelium-dependent vasodilation. Immunohistochemistry staining of endothelial cell marker CD31 was weaker in the presence of LDL, indicating that LDL induced damage to the endothelium. Using the pathway specific inhibitors demonstrated that LDL-induced impairing vasodilation was mainly due...

  10. PEGylated Carbon Nanotubes Impair Retrieval of Contextual Fear Memory and Alter Oxidative Stress Parameters in the Rat Hippocampus

    Lidiane Dal Bosco

    2015-01-01

    Full Text Available Carbon nanotubes (CNT are promising materials for biomedical applications, especially in the field of neuroscience; therefore, it is essential to evaluate the neurotoxicity of these nanomaterials. The present work assessed the effects of single-walled CNT functionalized with polyethylene glycol (SWCNT-PEG on the consolidation and retrieval of contextual fear memory in rats and on oxidative stress parameters in the hippocampus. SWCNT-PEG were dispersed in water at concentrations of 0.5, 1.0, and 2.1 mg/mL and infused into the rat hippocampus. The infusion was completed immediately after training and 30 min before testing of a contextual fear conditioning task, resulting in exposure times of 24 h and 30 min, respectively. The results showed that a short exposure to SWCNT-PEG impaired fear memory retrieval and caused lipid peroxidation in the hippocampus. This response was transient and overcome by the mobilization of antioxidant defenses at 24 h. These effects occurred at low and intermediate but not high concentration of SWCNT-PEG, suggesting that the observed biological response may be related to the concentration-dependent increase in particle size in SWCNT-PEG dispersions.

  11. Oxidative stress in mouse sperm impairs embryo development, fetal growth and alters adiposity and glucose regulation in female offspring.

    Michelle Lane

    Full Text Available Paternal health cues are able to program the health of the next generation however the mechanism for this transmission is unknown. Reactive oxygen species (ROS are increased in many paternal pathologies, some of which program offspring health, and are known to induce DNA damage and alter the methylation pattern of chromatin. We therefore investigated whether a chemically induced increase of ROS in sperm impairs embryo, pregnancy and offspring health. Mouse sperm was exposed to 1500 µM of hydrogen peroxide (H2O2, which induced oxidative damage, however did not affect sperm motility or the ability to bind and fertilize an oocyte. Sperm treated with H2O2 delayed on-time development of subsequent embryos, decreased the ratio of inner cell mass cells (ICM in the resulting blastocyst and reduced implantation rates. Crown-rump length at day 18 of gestation was also reduced in offspring produced by H2O2 treated sperm. Female offspring from H2O2 treated sperm were smaller, became glucose intolerant and accumulated increased levels of adipose tissue compared to control female offspring. Interestingly male offspring phenotype was less severe with increases in fat depots only seen at 4 weeks of age, which was restored to that of control offspring later in life, demonstrating sex-specific impacts on offspring. This study implicates elevated sperm ROS concentrations, which are common to many paternal health pathologies, as a mediator of programming offspring for metabolic syndrome and obesity.

  12. Cobalt Oxide Nanoparticles: Behavior towards Intact and Impaired Human Skin and Keratinocytes Toxicity

    Marcella Mauro

    2015-07-01

    Full Text Available Skin absorption and toxicity on keratinocytes of cobalt oxide nanoparticles (Co3O4NPs have been investigated. Co3O4NPs are commonly used in industrial products and biomedicine. There is evidence that these nanoparticles can cause membrane damage and genotoxicity in vitro, but no data are available on their skin absorption and cytotoxicity on keratinocytes. Two independent 24 h in vitro experiments were performed using Franz diffusion cells, using intact (experiment 1 and needle-abraded human skin (experiment 2. Co3O4NPs at a concentration of 1000 mg/L in physiological solution were used as donor phase. Cobalt content was evaluated by Inductively Coupled–Mass Spectroscopy. Co permeation through the skin was demonstrated after 24 h only when damaged skin protocol was used (57 ± 38 ng·cm−2, while no significant differences were shown between blank cells (0.92 ± 0.03 ng cm−2 and those with intact skin (1.08 ± 0.20 ng·cm−2. To further investigate Co3O4NPs toxicity, human-derived HaCaT keratinocytes were exposed to Co3O4NPs and cytotoxicity evaluated by MTT, Alamarblue® and propidium iodide (PI uptake assays. The results indicate that a long exposure time (i.e., seven days was necessary to induce a concentration-dependent cell viability reduction (EC50 values: 1.3 × 10−4 M, 95% CL = 0.8–1.9 × 10−4 M, MTT essay; 3.7 × 10−5 M, 95% CI = 2.2–6.1 × 10−5 M, AlamarBlue® assay that seems to be associated to necrotic events (EC50 value: 1.3 × 10−4 M, 95% CL = 0.9–1.9 × 10−4 M, PI assay. This study demonstrated that Co3O4NPs can penetrate only damaged skin and is cytotoxic for HaCat cells after long term exposure.

  13. Adaptative nitric oxide overproduction in perivascular adipose tissue during early diet-induced obesity.

    Gil-Ortega, Marta; Stucchi, Paula; Guzmán-Ruiz, Rocío; Cano, Victoria; Arribas, Silvia; González, M Carmen; Ruiz-Gayo, Mariano; Fernández-Alfonso, Maria S; Somoza, Beatriz

    2010-07-01

    Perivascular adipose tissue (PVAT) plays a paracrine role in regulating vascular tone. We hypothesize that PVAT undergoes adaptative mechanisms during initial steps of diet-induced obesity (DIO) which contribute to preserve vascular function. Four-week-old male C57BL/6J mice were assigned either to a control [low-fat (LF); 10% kcal from fat] or to a high-fat diet (HF; 45% kcal from fat). After 8 wk of dietary treatment vascular function was analyzed in the whole perfused mesenteric bed (MB) and in isolated mesenteric arteries cleaned of PVAT. Relaxant responses to acetylcholine (10(-9)-10(-4) m) and sodium nitroprusside (10(-12)-10(-5) m) were significantly ameliorated in the whole MB from HF animals. However, there was no difference between HF and LF groups in isolated mesenteric arteries devoid of PVAT. The enhancement of relaxant responses detected in HF mice was not attributable to an increased release of nitric oxide (NO) from the endothelium nor to an increased sensitivity and/or activity of muscular guanilylcyclase. Mesenteric PVAT of HF animals showed an increased bioavailability of NO, detected by 4,5-diaminofluorescein diacetate (DAF2-DA) staining, which positively correlated with plasma leptin levels. DAF-2DA staining was absent in PVAT from ob/ob mice but was detected in these animals after 4-wk leptin replacement. The main finding in this study is that adaptative NO overproduction occurs in PVAT during early DIO which might be aimed at preserving vascular function. PMID:20410199

  14. Oleic Acid Increases Synthesis and Secretion of VEGF in Rat Vascular Smooth Muscle Cells: Role of Oxidative Stress and Impairment in Obesity

    Mariella Trovati

    2013-09-01

    Full Text Available Obesity is characterized by poor collateral vessel formation, a process involving vascular endothelial growth factor (VEGF action on vascular smooth muscle cells (VSMC. Free fatty acids are involved in the pathogenesis of obesity vascular complications, and we have aimed to clarify whether oleic acid (OA enhances VEGF synthesis/secretion in VSMC, and whether this effect is impaired in obesity. In cultured aortic VSMC from lean and obese Zucker rats (LZR and OZR, respectively we measured the influence of OA on VEGF-A synthesis/secretion, signaling molecules and reactive oxygen species (ROS. In VSMC from LZR we found the following: (a OA increases VEGF-A synthesis/secretion by a mechanism blunted by inhibitors of Akt, mTOR, ERK-1/2, PKC-beta, NADPH-oxidase and mitochondrial electron transport chain complex; (b OA activates the above mentioned signaling pathways and increases ROS; (c OA-induced activation of PKC-beta enhances oxidative stress, which activates signaling pathways responsible for the increased VEGF synthesis/secretion. In VSMC from OZR, which present enhanced baseline oxidative stress, the above mentioned actions of OA on VEGF-A, signaling pathways and ROS are impaired: this impairment is reproduced in VSMC from LZR by incubation with hydrogen peroxide. Thus, in OZR chronically elevated oxidative stress causes a resistance to the action on VEGF that OA exerts in LZR by increasing ROS.

  15. Reduced arginine availability and nitric oxide synthesis in cancer is related to impaired endogenous arginine synthesis.

    Engelen, Mariëlle P K J; Safar, Ahmed M; Bartter, Thaddeus; Koeman, Fari; Deutz, Nicolaas E P

    2016-07-01

    Reduced plasma arginine (ARG) concentrations are found in various types of cancer. ARG and its product nitric oxide (NO) are important mediators in the immune function and the defense against tumour cells. It remains unclear whether the diminished systemic ARG availability in cancer is related to insufficient endogenous ARG synthesis, negatively affecting NO synthesis, and whether a dietary amino acid mixture is able to restore this. In 13 patients with advanced non-small cell lung cancer (NSCLC) and 11 healthy controls, whole body ARG and CIT (citrulline) rates of appearance were measured by stable isotope methodology before and after intake of a mixture of amino acids as present in whey protein. The conversions of CIT to ARG (indicator of de novo ARG synthesis) and ARG to CIT (marker of NO synthesis), and ARG clearance (reflecting ARG disposal capacity) were calculated. Plasma isotopic enrichments and amino acid concentrations were measured by LC-MS/MS. Conversions of CIT to ARG and ARG to CIT (P<0.05), and CIT rate of appearance (P=0.07) were lower in NSCLC. ARG rate of appearance and clearance were comparable suggesting no enhanced systemic ARG production and disposal capacity in NSCLC. After intake of the mixture, ARG rate of appearance and concentration increased (P<0.001), and ARG to CIT conversion was restored in NSCLC. In conclusion, an impaired endogenous ARG synthesis plays a role in the reduced systemic ARG availability and NO synthesis in advanced NSCLC. Nutritional approaches may restore systemic ARG availability and NO synthesis in cancer, but the clinical implication remains unclear. PMID:27129191

  16. Genome-Guided Analysis of Physiological Capacities of Tepidanaerobacter acetatoxydans Provides Insights into Environmental Adaptations and Syntrophic Acetate Oxidation

    Müller, Bettina; Manzoor, Shahid; Niazi, Adnan; Bongcam-Rudloff, Erik; Schnürer, Anna

    2015-01-01

    This paper describes the genome-based analysis of Tepidanaerobacter acetatoxydans strain Re1, a syntrophic acetate-oxidising bacterium (SAOB). Principal issues such as environmental adaptations, metabolic capacities, and energy conserving systems have been investigated and the potential consequences for syntrophic acetate oxidation discussed. Briefly, in pure culture, T. acetatoxydans grows with different organic compounds and produces acetate as the main product. In a syntrophic consortium w...

  17. Cross-cultural adaptation and validation of a Brazilian version of an instrument to assess impairments related to oral functioning of people with Down syndrome

    Bonanato Karina

    2013-01-01

    Full Text Available Abstract Background An instrument was developed in Canada to assess impairments related to oral functioning of individuals with four years of age or older with Down syndrome (DS. The present study attempted to carry out the cross-cultural adaptation and validation of the instrument for the Brazilian Portuguese language and to test its reliability and validity. Findings After translation and cross-cultural adaptation, the instrument was tested on caregivers of people with DS. Clinical examination for malocclusion was carried out in people with DS by two calibrated examiners. Inter and Intra examiner agreement was assessed by Intraclass Correlation Coefficient (ICC and ranged from 0.92 to 0.97 respectively. Total of 157 people with DS and their caregivers were able to compose the sample. They were selected from eight institutions for people with DS in five cities of southeastern Brazil. The mean age of people with DS was 20.7 [±13.1] and for caregivers was 53.1 [±13.7]. The mean instrument score was 18.6 [±9.0]. Internal reliability ranged from 0.49 to 0.80 and external reliability ranged from 0.78 to 0.88. Construct validity was verified by significant correlations identified between malocclusion and the total instrument; and caregivers’ educational level and the instrument (p Conclusions Initial validity tests indicated that the instrument related to the oral health for people with DS may be a valid instrument to this segment of the population in Brazil.

  18. The ‘Goldilocks Zone’ from a redox perspective - Adaptive versus deleterious responses to oxidative stress in striated muscle

    Rick J Alleman

    2014-09-01

    Full Text Available Consequences of oxidative stress may be beneficial or detrimental in physiological systems. An organ system’s position on the ‘hormetic curve’ is governed by the source and temporality of reactive oxygen species (ROS production, proximity of ROS to moieties most susceptible to damage, and the capacity of the endogenous cellular ROS scavenging mechanisms. Most importantly, the resilience of the tissue (the capacity to recover from damage is a decisive factor, and this is reflected in the disparate response to ROS in cardiac and skeletal muscle. In myocytes, a high oxidative capacity invariably results in a significant ROS burden which in homeostasis, is rapidly neutralized by the robust antioxidant network. The up-regulation of key pathways in the antioxidant network is a central component of the hormetic response to ROS. Despite such adaptations, persistent oxidative stress over an extended time-frame (e.g. months to years inevitably leads to cumulative damages, maladaptation and ultimately the pathogenesis of chronic diseases. Indeed, persistent oxidative stress in heart and skeletal muscle has been repeatedly demonstrated to have causal roles in the etiology of heart disease and insulin resistance, respectively. Deciphering the mechanisms that underlie the divergence between adaptive and maladaptive responses to oxidative stress remains an active area of research for basic scientists and clinicians alike, as this would undoubtedly lead to novel therapeutic approaches. Here, we provide an overview of major types of ROS in striated muscle and the divergent adaptations that occur in response to them. Emphasis is placed on highlighting newly uncovered areas of research on this topic, with particular focus on the mitochondria, and the diverging roles that ROS play in muscle health (e.g., exercise or preconditioning and disease (e.g., cardiomyopathy, ischemia, metabolic syndrome.

  19. Impairment of nitric oxide synthase but not heme oxygenase accounts for baroreflex dysfunction caused by chronic nicotine in female rats.

    Mohamed A Fouda

    Full Text Available We recently reported that chronic nicotine impairs reflex chronotropic activity in female rats. Here, we sought evidence to implicate nitric oxide synthase (NOS and/or heme oxygenase (HO in the nicotine-baroreflex interaction. Baroreflex curves relating changes in heart rate to increases (phenylephrine or decreases (sodium nitroprusside in blood pressure were generated in conscious female rats treated with nicotine or saline in absence and presence of pharmacological modulators of NOS or HO activity. Compared with saline-treated rats, nicotine (2 mg/kg/day i.p., for 14 days significantly reduced the slopes of baroreflex curves, a measure of baroreflex sensitivity (BRS. Findings that favor the involvement of NOS inhibition in the nicotine effect were (i NOS inhibition (Nω-Nitro-L-arginine methyl ester, L-NAME reduced BRS in control rats but failed to do so in nicotine-treated rats, (ii L-arginine, NO donor, reversed the BRS inhibitory effect of nicotine. Alternatively, HO inhibition (zinc protoporphyrin IX, ZnPP had no effect on BRS in nicotine- or control rats and failed to reverse the beneficial effect of L-arginine on nicotine-BRS interaction. Similar to female rats, BRS was reduced by L-NAME, but not ZnPP, in male rats and the L-NAME effect was not accentuated after concomitant administration of nicotine. Baroreflex dysfunction caused by nicotine in female rats was blunted after supplementation with hemin (HO inducer but not tricarbonyldichlororuthenium(II dimer (CORM-2, a carbon monoxide (CO releasing molecule, or bilirubin, the breakdown product of heme catabolism. The facilitatory effect of hemin was abolished upon simultaneous treatment with L-NAME or 1H-[1], [2], [4] oxadiazolo[4,3-a] quinoxalin-1-one (inhibitor of soluble guanylate cyclase, sGC. The activities of HO and NOS in brainstem tissues were also significantly increased by hemin. Thus, the inhibition of NOS, but not HO, accounts for the baroreflex depressant of chronic nicotine

  20. Visual Impairment, Including Blindness

    ... top Adapting the Environment Making adaptations to the environment where a child with a visual impairment lives, works, or plays ... can consult, depending on your role in the child’s life, are: Family Connect ... to the Physical Environment: Setting up a Classroom for Students with Visual ...

  1. Swimming training induces liver mitochondrial adaptations to oxidative stress in rats submitted to repeated exhaustive swimming bouts.

    Frederico D Lima

    Full Text Available BACKGROUND AND AIMS: Although acute exhaustive exercise is known to increase liver reactive oxygen species (ROS production and aerobic training has shown to improve the antioxidant status in the liver, little is known about mitochondria adaptations to aerobic training. The main objective of this study was to investigate the effects of the aerobic training on oxidative stress markers and antioxidant defense in liver mitochondria both after training and in response to three repeated exhaustive swimming bouts. METHODS: Wistar rats were divided into training (n = 14 and control (n = 14 groups. Training group performed a 6-week swimming training protocol. Subsets of training (n = 7 and control (n = 7 rats performed 3 repeated exhaustive swimming bouts with 72 h rest in between. Oxidative stress biomarkers, antioxidant activity, and mitochondria functionality were assessed. RESULTS: Trained group showed increased reduced glutathione (GSH content and reduced/oxidized (GSH/GSSG ratio, higher superoxide dismutase (MnSOD activity, and decreased lipid peroxidation in liver mitochondria. Aerobic training protected against exhaustive swimming ROS production herein characterized by decreased oxidative stress markers, higher antioxidant defenses, and increases in methyl-tetrazolium reduction and membrane potential. Trained group also presented higher time to exhaustion compared to control group. CONCLUSIONS: Swimming training induced positive adaptations in liver mitochondria of rats. Increased antioxidant defense after training coped well with exercise-produced ROS and liver mitochondria were less affected by exhaustive exercise. Therefore, liver mitochondria also adapt to exercise-induced ROS and may play an important role in exercise performance.

  2. Oral supplements of aqueous extract of tomato seeds alleviate motor abnormality, oxidative impairments and neurotoxicity induced by rotenone in mice: relevance to Parkinson's disease.

    Gokul, Krishna; Muralidhara

    2014-07-01

    Although tomato seeds (an industrial by-product) are known to contain several bioactive compounds, studies describing their health effects are limited. Previously, we evidenced that aqueous extract of tomato seeds (TSE) markedly attenuated rotenone (ROT)-induced oxidative stress and neurotoxicity in Drosophila system. This study investigated the neuroprotective effect of TSE in a chronic ROT model of neurotoxicity in mice. Initially, we assessed the potential of oral supplements of TSE to modulate the levels of endogenous markers of oxidative stress in brain regions of mice. Subsequently, employing a co-exposure paradigm, the propensity of TSE (100 mg/kg bw, 3 weeks) to attenuate ROT-induced behavioral phenotype (gait abnormalities, anxiety-like state), oxidative dysfunctions and neurotoxicity was examined. We found that mice provided with TSE supplements exhibited progressive improvement in gait pattern and exploratory behavior. TSE markedly offset ROT-induced oxidative impairments, restored reduced glutathione levels, antioxidant defenses (superoxide dismutase, glutathione peroxidase) and protein carbonyls content in brain regions. Specifically, TSE effectively diminished ROT induced elevation in the activity levels of acetylcholinesterase and restored the dopamine levels in striatum. Interestingly, in mitochondria, TSE was able to restore the activity of mitochondrial complexes and redox state. Collectively, our findings in the chronic ROT model demonstrate the ability of TSE to alleviate behavioral phenotype, oxidative stress, mitochondrial dysfunction and neurotoxicity. Further studies in dopaminergic cell models are necessary to understand the precise molecular mechanism/s by which tomato seed bioactives offer significant neuroprotection. PMID:24831121

  3. Polychlorinated biphenyls PCB 52, PCB 180, and PCB 138 impair the glutamate-nitric oxide-cGMP pathway in cerebellar neurons in culture by different mechanisms.

    Llansola, Marta; Montoliu, Carmina; Boix, Jordi; Felipo, Vicente

    2010-04-19

    Polychlorinated biphenyls (PCBs) are persistent organic pollutants that accumulate in the food chain and are present in human blood and milk. Children born to mothers exposed to PCBs show cognitive deficits, which are reproduced in rats perinatally exposed to PCBs. It has been proposed that PCB-induced cognitive impairment is due to impairment of the glutamate-nitric oxide (NO)-cGMP pathway. The aim of the present work was to assess whether chronic exposure to the nondioxin-like PCB52, PCB138, or PCB180 alters the function of this pathway in primary cultures of rat cerebellar neurons and to assess whether different PCBs have similar or different mechanisms of action. PCB180 and PCB138 impair the function of the glutamate-NO-cGMP pathway at nanomolar concentrations, and PCB52 impairs the function of the glutamate-NO-cGMP pathway at micromolar concentrations. The mechanisms by which different PCBs impair the function of the glutamate-NO-cGMP pathway are different. Each PCB affects the pathway at more than one step but with different potency and, for some steps, in opposite ways. Exposure to the PCBs alters the basal concentrations of intracellular calcium, NO, and cGMP. The three PCBs increase NO; however, PCB52 and PCB138 increase basal cGMP, while PCB180 decreases it. PCB52 and PCB138 decrease the activation of soluble guanylate cyclase by NO, and PCB180 increases it. Long-term exposure to PCB52, PCB180, or PCB138 reduces the activation of NO synthase and the whole glutamate-NO-cGMP pathway in response to activation of N-methyl-d-aspartate receptors. The EC(50) was 300 nM for PCB52 and 2 nM for PCB138 or PCB180. These results show that chronic exposure to nondioxin like PCBs impairs the function of the glutamate-NO-cGMP pathway in cerebellar neurons by different mechanisms and with different potencies. Impaired function of this pathway would contribute to the cognitive alterations induced by perinatal exposure to PCBs in humans. PMID:20297801

  4. Neurobehavioral impairments, generation of oxidative stress and release of pro-apoptotic factors after chronic exposure to sulphur mustard in mouse brain

    Recent global events have focused attention on the potential threat of international and domestic chemical terrorism, as well as the possibility of chemical warfare proliferation. Sulphur mustard (SM) is one of the potent chemical warfare agents (CWA), which initiates a cascade of events that converge on the redox mechanisms common to brain injury. The present study was designed to examine the effects of chronic SM exposure on neurobehavioral impairments, mitochondrial oxidative stress in male Swiss Albino mice and its role in inducing apoptotic neuronal cell death. The animals were divided into four groups (control, low, medium and high dose) of 5 animals each. Exposure to SM was given percutaneously daily for 12 weeks. The results demonstrated impairment in neurobehavioral indices viz. rota rod, passive avoidance and water maze tests in a dose dependent manner. There was a significant increase in lipid peroxidation and protein carbonyl content whereas, decrease in the activity of manganese superoxide dismutase (MnSOD), glutathione reductase and glutathione peroxidase suggesting impaired antioxidant defense system. Immunoblotting of cytochrome c, Bcl-2, Bax and activation of caspase-3 suggest induction of apoptosis in a dose dependent manner. Finally, increased p53 expression suggests that it may target the mitochondrial pathway for inducing apoptosis in response to DNA damage signals. In conclusion, chronic SM exposure may have the potential to generate oxidative stress which may trigger the release of cytochrome c as well as caspase-3 activation in neurons leading to cell death by apoptosis in a dose dependent manner which may in the end be responsible for the disruption of cognitive functions in mice.

  5. Neuronal Nitric-Oxide Synthase Deficiency Impairs the Long-Term Memory of Olfactory Fear Learning and Increases Odor Generalization

    Pavesi, Eloisa; Heldt, Scott A.; Fletcher, Max L.

    2013-01-01

    Experience-induced changes associated with odor learning are mediated by a number of signaling molecules, including nitric oxide (NO), which is predominantly synthesized by neuronal nitric oxide synthase (nNOS) in the brain. In the current study, we investigated the role of nNOS in the acquisition and retention of conditioned olfactory fear. Mice…

  6. Oxidative stress adaptation in aggressive prostate cancer may be counteracted by the reduction of glutathione reductase

    Freitas, Mariana; Baldeiras, Inês; Proença, Teresa; Alves, Vera; Mota-Pinto, Anabela; Sarmento-Ribeiro, Ana Bela

    2012-01-01

    Oxidative stress has been associated with prostate cancer development and progression due to an increase of reactive oxygen species (ROS). However, the mechanisms whereby ROS and the antioxidant system participate in cancer progression remain unclear. In order to clarify the influence of oxidative stress in prostate cancer progression, we performed this study in two human prostate cancer cell lines, PC3 and HPV10 (from metastasis and from localized cancer, respectively) and RWPE1 cells derive...

  7. Involvement of anti-oxidative enzymes, photosynthetic pigments and flavonoid metabolism in the adaptation of Reaumuria soongorica to salt stress

    YuBing Liu; Bo Cao; MeiLing Liu

    2013-01-01

    Reaumuria soongorica is a short woody shrub widely found in semi-arid areas of China. It can survive severe environ-mental stress including high salinity in its natural habitat. Thus, we investigated the involvement of anti-oxidative enzymes, photosynthetic pigments and flavonoid metabolism in the adaptation of R. soongorica to saline environments. R. soon-gorica was treated with 0, 100, 200 and 400 mM NaCl solutions for 14 days. Soil salt content increased significantly by watering with high content of NaCl solution, and no variation between 8 and 14 days during treatment. The levels of pe-roxidation of lipid membranes (measured by malondialdehyde content) and the activities of three antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX)) increased under salt stress. Chlorophyll and carotenoid content decreased with increasing salt content. The ratio of Chl a/Chl b and carotenoid/Chl exhibited sig-nificant increase under 400 mM NaCl. However, total flavonoid and anthocyanin contents and key enzyme activities in the flavonoid pathway including phenylalanine ammonialyase (PAL) and Chalcone isomerase (CHI) decreased under salt stress. These findings possibly suggest that R. soongorica has an adaptation protection mechanism against salt-induced oxidative damage by inducing the activity of antioxidant enzymes and maintaining a steady level of carotenoid/Chl.

  8. Mitochondrial targeting of bilirubin regulatory enzymes: An adaptive response to oxidative stress

    Muhsain, Siti Nur Fadzilah, E-mail: sitinurfadzilah077@ppinang.uitm.edu.my [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Faculty of Pharmacy, University Teknologi Mara (Malaysia); Lang, Matti A., E-mail: m.lang@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Abu-Bakar, A' edah, E-mail: a.abubakar@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia)

    2015-01-01

    The intracellular level of bilirubin (BR), an endogenous antioxidant that is cytotoxic at high concentrations, is tightly controlled within the optimal therapeutic range. We have recently described a concerted intracellular BR regulation by two microsomal enzymes: heme oxygenase 1 (HMOX1), essential for BR production and cytochrome P450 2A5 (CYP2A5), a BR oxidase. Herein, we describe targeting of these enzymes to hepatic mitochondria during oxidative stress. The kinetics of microsomal and mitochondrial BR oxidation were compared. Treatment of DBA/2J mice with 200 mg pyrazole/kg/day for 3 days increased hepatic intracellular protein carbonyl content and induced nucleo-translocation of Nrf2. HMOX1 and CYP2A5 proteins and activities were elevated in microsomes and mitoplasts but not the UGT1A1, a catalyst of BR glucuronidation. A CYP2A5 antibody inhibited 75% of microsomal BR oxidation. The inhibition was absent in control mitoplasts but elevated to 50% after treatment. An adrenodoxin reductase antibody did not inhibit microsomal BR oxidation but inhibited 50% of mitochondrial BR oxidation. Ascorbic acid inhibited 5% and 22% of the reaction in control and treated microsomes, respectively. In control mitoplasts the inhibition was 100%, which was reduced to 50% after treatment. Bilirubin affinity to mitochondrial and microsomal CYP2A5 enzyme is equally high. Lastly, the treatment neither released cytochrome c into cytoplasm nor dissipated membrane potential, indicating the absence of mitochondrial membrane damage. Collectively, the observations suggest that BR regulatory enzymes are recruited to mitochondria during oxidative stress and BR oxidation by mitochondrial CYP2A5 is supported by mitochondrial mono-oxygenase system. The induced recruitment potentially confers membrane protection. - Highlights: • Pyrazole induces oxidative stress in the mouse liver. • Pyrazole-induced oxidative stress induces mitochondrial targeting of key bilirubin regulatory enzymes, HMOX1

  9. Selective Serotonin-norepinephrine Re-uptake Inhibition Limits Renovas-cular-hypertension Induced Cognitive Impairment, Endothelial Dysfunction, and Oxidative Stress Injury.

    Singh, Prabhat; Sharma, Bhupesh

    2016-01-01

    Hypertension has been reported to induce cognitive decline and dementia of vascular origin. Serotonin- norepinephrine reuptake transporters take part in the control of inflammation, cognitive functions, motivational acts and deterioration of neurons. This study was carried out to examine the effect of venlafaxine; a specific serotonin-norepinephrine reuptake inhibitor (SNRI), in two-kidney-one-clip-2K1C (renovascular hypertension) provoked vascular dementia (VaD) in albino rats. 2K1C technique was performed to provoke renovascular-hypertension in adult male albino Wistar rats. Learning and memory were assessed by using the elevated plus maze and Morris water maze. Mean arterial blood pressure- MABP, as well as endothelial function, were assessed by means of BIOPAC system. Serum nitrosative stress (nitrite/ nitrate), aortic superoxide anion, brain oxidative stress, inflammation, cholinergic dysfunction and brain damage (2,3,5-triphenylterazolium chloride staining) were also assessed. 2K1C has increased MABP, endothelial dysfunction as well as learning and memory impairments. 2K1C method has increased serum nitrosative stress (reduced nitrite/nitrate level), oxidative stress (increased brain thiobarbituric acid reactive species and aortic superoxide anion content along with decreased levels of brain superoxide dismutase, glutathione, and catalase), brain inflammation (increased myeloperoxidase), cholinergic dysfunction (increased acetylcholinesterase activity) and brain damage. Treatment with venlafaxine considerably attenuated renovascular-hypertension induced cognition impairment, endothelial dysfunction, serum nitrosative stress, brain and aortic oxidative stress, cholinergic function, inflammation as well as cerebral damage. The finding of this study indicates that specific modulation of the serotonin-norepinephrine transporter perhaps regarded as potential interventions for the management of renovascular hypertension provoked VaD. PMID:26915517

  10. Essential role of nitric oxide in sepsis-induced impairment of endothelium-derived hyperpolarizing factor-mediated relaxation in rat pulmonary artery.

    Subramani, Jaganathan; Leo, Marie Dennis Marcus; Kathirvel, Kandaswamy; Arunadevi, Rathinam; Singh, Thakur Uttam; Prakash, Vellanki Ravi; Mishra, Santosh Kumar

    2010-03-25

    Both endothelial nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF) are important vasodilators in pulmonary circulation. Sepsis is known to impair endothelium-dependent dilation in the pulmonary vasculature, but the mechanisms are incompletely understood. We have examined the relative contribution of EDHF/NO to the attenuated endothelium-dependent relaxation of pulmonary artery in sepsis, and the role of inducible nitric oxide synthase (iNOS)-derived NO in this mechanism. Sepsis was induced in male adult Wistar rats by caecal ligation and puncture. At 18h after surgery, left and right branches of pulmonary arteries were isolated for tension recording, NO/cyclic guanosine monophosphate (cGMP) measurements, mRNA and protein expressions. Despite a marked decrease in the arterial endothelial nitric oxide synthase (eNOS) mRNA and phosphorylated-eNOS (p-eNOS) protein expressions in sepsis, endothelium-dependent relaxation to acetylcholine (ACh) mediated by NO, acetylcholine-stimulated NO release and tissue cGMP levels were moderately inhibited. Sepsis however abolished the N(G)-Nitro-l-arginine methyl ester (L-NAME)/indomethacin-resistant arterial relaxation (EDHF response) to acetylcholine in this vessel. In vitro treatment of the arterial rings from septic rats with 1400W, a selective inhibitor of iNOS restored the EDHF response, but had no effect on the acetylcholine-induced relaxation mediated by endothelial NO. The functional role of iNOS-derived NO in impairing EDHF-mediated relaxation was coincident with an increased basal NO production, iNOS mRNA and protein expressions in the rat pulmonary artery. In conclusion, the loss of the EDHF response may be primarily responsible for the endothelial dysfunction in sepsis, and its restoration by a selective iNOS inhibitor may improve pulmonary vasodilation. PMID:20035746

  11. Distinct transthyretin oxidation isoform profile in spinal fluid from patients with Alzheimer’s disease and mild cognitive impairment

    Poulsen, Keld; Bahl, Justyna Mc; Simonsen, Anja H;

    2014-01-01

    BACKGROUND: Transthyretin (TTR), an abundant protein in cerebrospinal fluid (CSF), contains a free, oxidation-prone cysteine residue that gives rise to TTR isoforms. These isoforms may reflect conditions in vivo. Since increased oxidative stress has been linked to neurodegenerative disorders such...... (MCI, n = 17)), and normal pressure hydrocephalus (NPH, n = 15), as well as healthy controls (HC, n = 7). Fractions of three specific oxidative modifications (S-cysteinylation, S-cysteinylglycinylation, and S-glutathionylation) were quantitated relative to the total TTR protein. Results were correlated...... with diagnostic information and with levels of CSF AD biomarkers tau, phosphorylated tau, and amyloid β1-42 peptide. RESULTS: Preliminary data highlighted the high risk of artifactual TTR modification due to ex vivo oxidation and thus the samples for this study were all collected using strict and...

  12. Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkinson's disease: how neurons are lost in the Bermuda triangle

    Malkus Kristen A; Tsika Elpida; Ischiropoulos Harry

    2009-01-01

    Abstract While numerous hypotheses have been proposed to explain the molecular mechanisms underlying the pathogenesis of neurodegenerative diseases, the theory of oxidative stress has received considerable support. Although many correlations have been established and encouraging evidence has been obtained, conclusive proof of causation for the oxidative stress hypothesis is lacking and potential cures have not emerged. Therefore it is likely that other factors, possibly in coordination with o...

  13. Cultivation of a novel cold-adapted nitrite oxidizing betaproteobacterium from the Siberian Arctic

    Alawi, Mashal; Lipski, André; Sanders, Tina; Pfeiffer, Eva-Maria; Spieck, Eva

    2007-01-01

    Permafrost-affected soils of the Siberian Arctic were investigated with regard to identification of nitrite oxidizing bacteria active at low temperature. Analysis of the fatty acid profiles of enrichment cultures grown at 4°C, 10°C and 17°C revealed a pattern that was different from that of known nitrite oxidizers but was similar to fatty acid profiles of Betaproteobacteria. Electron microscopy of two enrichment cultures grown at 10°C showed prevalent cells with a conspicuous ultrastructure. ...

  14. Adaptation of the phosphotungstate method to determine reduced and oxidized vitamin C in blood plasma.

    Rutkowski, Maciej; Grzegorczyk, Krzysztof; Greger, Janusz

    2004-01-01

    The phosphotungstate reagent (PTR) was used for quantitative spectrophotometric determination of physiological forms of vitamin C in blood plasma. An immediate action of PTR on the first half of the tested samples allowed to determine reduced vitamin C concentrations (I) at 700 nm. 10 mM dithiothreitol added to the second half of the samples reduced oxidized vitamin C in it--hence the total amount of this vitamin was reduced with a concentration (II) determined as above (remains of dithiothreitol were removed with N-ethylmaleimide). The difference of results (II) and (I) gave the concentration of oxidized vitamin C. The method is characterised by fault-less analytical parameters: correlation coefficients of analytical curves > 0.99, recovery factor 100.5%, variation coefficients intra- and inter-serial < 3% and < 5%, respectively, detection limit 0.05 microM. The simplicity of the method enables an easy control of the ratio of oxidized and reduced vitamin C concentrations in blood plasma--the biomarker of the level of oxidative damage to cells. PMID:15540612

  15. Increased Oxidation as an Additional Mechanism Underlying Reduced Clot Permeability and Impaired Fibrinolysis in Type 2 Diabetes

    Anna Lados-Krupa

    2015-01-01

    Full Text Available Aims. We sought to investigate whether enhanced oxidation contributes to unfavorable fibrin clot properties in patients with diabetes. Methods. We assessed plasma fibrin clot permeation (Ks, a measure of the pore size in fibrin networks and clot lysis time induced by recombinant tissue plasminogen activator (CLT in 163 consecutive type 2 diabetic patients (92 men and 71 women aged 65 ± 8.8 years with a mean glycated hemoglobin (HbA1c of 6.8%. We also measured oxidative stress markers, including nitrotyrosine, the soluble form of receptor for advanced glycation end products (sRAGE, 8-iso-prostaglandin F2α (8-iso-PGF2α, oxidized low-density lipoprotein (oxLDL, and advanced glycation end products (AGE. Results. There were inverse correlations between Ks and nitrotyrosine, sRAGE, 8-iso-PGF2α, and oxLDL. CLT showed a positive correlation with oxLDL and nitrotyrosine but not with other oxidation markers. All these associations remained significant for Ks after adjustment for fibrinogen, disease duration, and HbA1c (all P<0.05, while oxLDL was the only independent predictor of CLT. Conclusions. Our study shows that enhanced oxidative stress adversely affects plasma fibrin clot properties in type 2 diabetic patients, regardless of disease duration and glycemia control.

  16. Impaired inflammatory response and increased oxidative stress and neurodegeneration after brain injury in interleukin-6-deficient mice

    Penkowa, M; Giralt, M; Carrasco, J;

    2000-01-01

    In order to determine the role of the neuropoietic cytokine interleukin-6 (IL-6) during the first 3 weeks after a focal brain injury, we examined the inflammatory response, oxidative stress and neuronal survival in normal and interleukin-6-deficient (knockout, IL-6KO) mice subjected to a cortical...... of the antioxidants Cu/Zn-superoxide dismutase (Cu/Zn-SOD), Mn-SOD, and catalase remained unaffected by the IL-6 deficiency. The lesioned mice showed increased oxidative stress, as judged by malondialdehyde (MDA) and nitrotyrosine (NITT) levels and by formation of inducible nitric oxide synthase (i...... freeze lesion. In normal mice, the brain injury was followed by reactive astrogliosis and recruitment of macrophages from 1 day postlesion (dpl), peaking at 3-10 dpl, and by 20 dpl the transient immunoreactions were decreased, and a glial scar was present. In IL-6KO mice, the reactive astrogliosis and...

  17. Graphene Oxides Decorated with Carnosine as an Adjuvant To Modulate Innate Immune and Improve Adaptive Immunity in Vivo.

    Meng, Chunchun; Zhi, Xiao; Li, Chao; Li, Chuanfeng; Chen, Zongyan; Qiu, Xusheng; Ding, Chan; Ma, Lijun; Lu, Hongmin; Chen, Di; Liu, Guangqing; Cui, Daxiang

    2016-02-23

    Current studies have revealed the immune effects of graphene oxide (GO) and have utilized them as vaccine carriers and adjuvants. However, GO easily induces strong oxidative stress and inflammatory reaction at the site of injection. It is very necessary to develop an alternative adjuvant based on graphene oxide derivatives for improving immune responses and decreasing side effects. Carnosine (Car) is an outstanding and safe antioxidant. Herein, the feasibility and efficiency of ultrasmall graphene oxide decorated with carnosine as an alternative immune adjuvant were explored. OVA@GO-Car was prepared by simply mixing ovalbumin (OVA, a model antigen) with ultrasmall GO covalently modified with carnosine (GO-Car). We investigated the immunological properties of the GO-Car adjuvant in model mice. Results show that OVA@GO-Car can promote robust and durable OVA-specific antibody response, increase lymphocyte proliferation efficiency, and enhance CD4(+) T and CD8(+) T cell activation. The presence of Car in GO also probably contributes to enhancing the antigen-specific adaptive immune response through modulating the expression of some cytokines, including IL-6, CXCL1, CCL2, and CSF3. In addition, the safety of GO-Car as an adjuvant was evaluated comprehensively. No symptoms such as allergic response, inflammatory redness swelling, raised surface temperatures, physiological anomalies of blood, and remarkable weight changes were observed. Besides, after modification with carnosine, histological damages caused by GO-Car in lung, muscle, kidney, and spleen became weaken significantly. This study sufficiently suggest that GO-Car as a safe adjuvant can effectively enhance humoral and innate immune responses against antigens in vivo. PMID:26766427

  18. Near infrared spectroscopy (NIRS as a new non-invasive tool to detect oxidative skeletal muscle impairment in children survived to acute lymphoblastic leukaemia.

    Francesca Lanfranconi

    Full Text Available BACKGROUND: Separating out the effects of cancer and treatment between central and peripheral components of the O2 delivery chain should be of interest to clinicians for longitudinal evaluation of potential functional impairment in order to set appropriate individually tailored training/rehabilitation programmes. We propose a non-invasive method (NIRS, near infrared spectroscopy to be used in routine clinical practice to evaluate a potential impairment of skeletal muscle oxidative capacity during exercise in children previously diagnosed with acute lymphoblastic leukaemia (ALL. The purpose of this study was to evaluate the capacity of skeletal muscle to extract O2 in 10 children diagnosed with ALL, 1 year after the end of malignancy treatment, compared to a control group matched for gender and age (mean±SD = 7.8±1.5 and 7.3±1.4 years, respectively. METHODS AND FINDINGS: Participants underwent an incremental exercise test on a treadmill until exhaustion. Oxygen uptake ([Formula: see text], heart rate (HR, and tissue oxygenation status (Δ[HHb] of the vastus lateralis muscle evaluated by NIRS, were measured. The results showed that, in children with ALL, a significant linear regression was found by plotting [Formula: see text] vs Δ[HHb] both measured at peak of exercise. In children with ALL, the slope of the HR vs [Formula: see text] linear response (during sub-maximal and peak work rates was negatively correlated with the peak value of Δ[HHb]. CONCLUSIONS: The present study proves that the NIRS technique allows us to identify large inter-individual differences in levels of impairment in muscle O2 extraction in children with ALL. The outcome of these findings is variable and may reflect either muscle atrophy due to lack of use or, in the most severe cases, an undiagnosed myopathy.

  19. Fatty Acid Incubation of Myotubues from Humans with Type 2 Diabetes Leads to Enhanced Release of Beta Oxidation Products Due to Impaired Fatty Acid Oxidation

    Wensaas, Andreas J; Rustan, Arild C; Just, Marlene;

    2008-01-01

    Objective: Increased availability of fatty acids is important for accumulation of intracellular lipids and development of insulin resistance in human myotubes. It is unknown whether different types of fatty acids like eicosapentaenoic acid (EPA) or tetradecylthioacetic acid (TTA) influence these...... processes. Research Design and Methods: We examined fatty acid and glucose metabolism, and gene expression in cultured human skeletal muscle cells from control and T2D individuals after four days preincubation with EPA or TTA. Results: T2D myotubes exhibited reduced formation of CO(2) from palmitic acid (PA......), whereas release of beta-oxidation products was unchanged at baseline, but significantly increased with respect to control myotubes after preincubation with TTA and EPA. Preincubation with TTA enhanced both complete (CO(2)) and beta-oxidation of PA, whereas EPA increased only beta-oxidation significantly...

  20. Abnormal social behavior, hyperactivity, impaired remote spatial memory, and increased D1-mediated dopaminergic signaling in neuronal nitric oxide synthase knockout mice

    Tanda Koichi

    2009-06-01

    Full Text Available Abstract Background Neuronal nitric oxide synthase (nNOS is involved in the regulation of a diverse population of intracellular messenger systems in the brain. In humans, abnormal NOS/nitric oxide metabolism is suggested to contribute to the pathogenesis and pathophysiology of some neuropsychiatric disorders, such as schizophrenia and bipolar disorder. Mice with targeted disruption of the nNOS gene exhibit abnormal behaviors. Here, we subjected nNOS knockout (KO mice to a battery of behavioral tests to further investigate the role of nNOS in neuropsychiatric functions. We also examined the role of nNOS in dopamine/DARPP-32 signaling in striatal slices from nNOS KO mice and the effects of the administration of a dopamine D1 receptor agonist on behavior in nNOS KO mice. Results nNOS KO mice showed hyperlocomotor activity in a novel environment, increased social interaction in their home cage, decreased depression-related behavior, and impaired spatial memory retention. In striatal slices from nNOS KO mice, the effects of a dopamine D1 receptor agonist, SKF81297, on the phosphorylation of DARPP-32 and AMPA receptor subunit GluR1 at protein kinase A sites were enhanced. Consistent with the biochemical results, intraperitoneal injection of a low dose of SKF81297 significantly decreased prepulse inhibition in nNOS KO mice, but not in wild-type mice. Conclusion These findings indicate that nNOS KO upregulates dopamine D1 receptor signaling, and induces abnormal social behavior, hyperactivity and impaired remote spatial memory. nNOS KO mice may serve as a unique animal model of psychiatric disorders.

  1. Modified Self-adaptive Immune Genetic Algorithm for Optimization of Combustion Side Reaction of p-Xylene Oxidation

    陶莉莉; 孔祥东; 钟伟民; 钱锋

    2012-01-01

    In recent years, immune genetic algorithm (IGA) is gaining popularity for finding the optimal solution for non-linear optimization problems in many engineering applications. However, IGA with deterministic mutation factor suffers from the problem of premature convergence. In this study, a modified self-adaptive immune genetic algorithm (MSIGA) with two memory bases, in which immune concepts are applied to determine the mutation parameters, is proposed to improve the searching ability of the algorithm and maintain population diversity. Performance comparisons with other well-known population-based iterative algorithms show that the proposed method converges quickly to the global optimum and overcomes premature problem. This algorithm is applied to optimize a feed forward neural network to measure the content of products in the combustion side reaction of p-xylene oxidation, and satisfactory results are obtained.

  2. Whole-genome analysis of the ammonia-oxidizing bacterium, Nitrosomonas eutropha C91: implications for niche adaptation

    Stein, Lisa Y [University of California, Riverside; Arp, D J [Oregon State University; Berube, PM [University of Washington, Seattle; Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Hauser, Loren John [ORNL; Jetten, MSM [Radboud University Nijmegen; Klotz, Martin G [University of Louisville, Louisville; Larimer, Frank W [ORNL; Norton, Jeanette M. [Utah State University (USU); Op den Camp, HJM [Radboud University Nijmegen; Shin, M [U.S. Department of Energy, Joint Genome Institute; Wei, Xueming [Oregon State University

    2007-12-01

    Analysis of the structure and inventory of the genome of Nitrosomonas eutropha C91 revealed distinctive features that may explain the adaptation of N. eutropha-like bacteria to N-saturated ecosystems. Multiple gene-shuffling events are apparent, including mobilized and replicated transposition, as well as plasmid or phage integration events into the 2.66 Mbp chromosome and two plasmids (65 and 56 kbp) of N. eutropha C91. A 117 kbp genomic island encodes multiple genes for heavy metal resistance, including clusters for copper and mercury transport, which are absent from the genomes of other ammonia-oxidizing bacteria (AOB). Whereas the sequences of the two ammonia monooxygenase and three hydroxylamine oxidoreductase gene clusters in N. eutropha C91 are highly similar to those of Nitrosomonas europaea ATCC 19718, a break of synteny in the regions flanking these clusters in each genome is evident. Nitrosomonas eutropha C91 encodes four gene clusters for distinct classes of haem-copper oxidases, two of which are not found in other aerobic AOB. This diversity of terminal oxidases may explain the adaptation of N. eutropha to environments with variable O2 concentrations and/or high concentrations of nitrogen oxides. As with N. europaea, the N. eutropha genome lacks genes for urease metabolism, likely disadvantaging nitrosomonads in low-nitrogen or acidic ecosystems. Taken together, this analysis revealed significant genomic variation between N. eutropha C91 and other AOB, even the closely related N. europaea, and several distinctive properties of the N. eutropha genome that are supportive of niche specialization.

  3. A Combination Supplement of Fructo- and Xylo-Oligosaccharides Significantly Abrogates Oxidative Impairments and Neurotoxicity in Maternal/Fetal Milieu Following Gestational Exposure to Acrylamide in Rat.

    Krishna, Gokul; Divyashri, Gangaraju; Prapulla, S G; Muralidhara

    2015-09-01

    Prebiotic oligosaccharides are demonstrated to confer a wide spectrum of physiological benefits during pregnancy. In view of this, focused attempts are being directed towards understanding their role as modulators of brain chemistry and behavior. Epidemiological studies have identified that exposure to neurotoxins during prenatal/early life can profoundly impact neurodevelopment/function. In this context, we have tested the hypothesis that a combination of prebiotic supplements during gestation has the propensity to attenuate acrylamide (ACR) induced oxidative impairments, mitochondrial dysfunction and neurotoxicity in maternal and fetal brain of rats. To achieve this, pregnant dams given oral supplements of a combination of fructo- and xylooligosaccharides (FOS + XOS, 3 g/kg/day) during gestation days (GD 0-19) were exposed to ACR (200 ppm in drinking water, GD 6-19). The behavioral analysis revealed that ACR dams fed prebiotics displayed higher exploratory behavior in the open field test. The prenatal evaluation showed that ACR-induced decrements of placental/fetal weights were markedly restored with prebiotic feeding. Prebiotics significantly offset markers of oxidative stress, restored enzymic antioxidants, cholinergic and mitochondrial function in the maternal and fetal brain. Concomitantly, prebiotics restored ACR-induced depletion in the levels of dopamine and γ-aminobutyric acid in the maternal cortex that positively correlated with cecal bacterial numbers. Collectively, these data suggest that prenatal prebiotic oligosaccharide supplements protect developing brain against oxidative stress-mediated neurotoxicity. While the underlying mechanism/s by which prebiotics abrogate the impact of neurotoxicants in the developing brain merits further studies, we speculate that it may be mediated predominantly through attenuation of oxidative stress and proliferation of enteric microbiota. PMID:26248513

  4. Electroacupuncture pretreatment prevents cognitive impairment induced by limb ischemia-reperfusion via inhibition of microglial activation and attenuation of oxidative stress in rats.

    Chen, Ye; Zhou, Jun; Li, Jun; Yang, Shi-Bin; Mo, Li-Qun; Hu, Jie-Hui; Yuan, Wan-Li

    2012-01-13

    Limb ischemia-reperfusion (LI/R) is associated with high morbidity and mortality. Furthermore, critical trauma survivors can present cognitive impairment. Cognitive function, survival rate, oxidative stress and neuronal health were examined to elucidate (1) the magnitude of cognitive effects of prolonged reperfusion, (2) potential players in the mechanistic pathway mediating such effects, and (3) possible benefits of electroacupuncture (EA) pretreatment at Baihui (GV20), Yanglingquan (GB34), Taichong (LR3), Zusanli (ST36) and Xuehai (SP10) acupoints. LI/R was induced in rats by placing a rubber tourniquet on each hind limb for 3h, and the animals were evaluated periodically for 7d after LI/R. Rats subjected to LI/R had significantly lower survival rates, and displayed evidence of brain injury and cognitive dysfunction (as determined by the Morris water maze test) 1d and 3d after reperfusion compared to sham-operated controls. LI/R also resulted in higher levels of reactive oxygen species (ROS) and malondialdehyde (MDA), microglial activation, and decreased superoxide dismutase (SOD) activity within Cornu Ammonis area 1 (CA1) of the hippocampus. Depressed survival rates, microglial activation, oxidative damage, and histological changes, as well as cognitive dysfunction were partially or fully attenuated in rats that received 14d of EA prior to LI/R. These findings indicate that LI/R can result in cognitive dysfunction related to activated microglia and elevated oxidative stress, and that EA has neuroprotective potential mediated, at least in part, by inhibition of microglial activation and attenuation of oxidative stress. PMID:22129788

  5. A low-voltage complementary metal-oxide semiconductor adapter circuit suitable for input rail-to-rail operation

    Tadić, Nikša; Zogović, Milena; Banjević, Mirjana; Zimmermann, Horst

    2010-11-01

    In this article, a low-voltage complementary metal-oxide semiconductor (CMOS) input signal adapter (ISA) suitable for input rail-to-rail operation of various types of analogue basic building blocks is presented. The adapter acts as a pre-stage with infinite input resistance and linear transfer characteristics. Its input signal is translated into the region fitting the operating range of the following stage. The generality of the proposed method is proven through the application of the ISA in different types of analogue basic building blocks designed in 0.5 μm CMOS technology. They are the following: below-negative-rail-to-above-positive-rail voltage-controlled transconductor, quasi rail-to-rail voltage-controlled resistor (VCR), rail-to-rail operational amplifier (OA) and quasi rail-to-rail second generation current conveyor. The proposed negative resistance quasi rail-to-rail VCR and rail-to-rail OA have been used in a Sallen and Key band-pass filter. All of these analogue basic building blocks and their applications in the form of the Sallen and Key band-pass filter operate from a single supply of 1.5 V. Simulation results confirm the predictions of the analysis performed.

  6. Jumping the gun: Smoking constituent BaP causes premature primordial follicle activation and impairs oocyte fusibility through oxidative stress

    Benzo(a)pyrene (BaP) is an ovotoxic constituent of cigarette smoke associated with pre-mature ovarian failure and decreased rates of conception in IVF patients. Although the overall effect of BaP on female fertility has been documented, the exact molecular mechanisms behind its ovotoxicity remain elusive. In this study we examined the effects of BaP exposure on the ovarian transcriptome, and observed the effects of in vivo exposure on oocyte dysfunction. Microarray analysis of BaP cultured neonatal ovaries revealed a complex mechanism of ovotoxicity involving a small cohort of genes associated with follicular growth, cell cycle progression, and cell death. Histomorphological and immunohistochemical analysis supported these results, with BaP exposure causing increased primordial follicle activation and developing follicle atresia in vitro and in vivo. Functional analysis of oocytes obtained from adult Swiss mice treated neonatally revealed significantly increased levels of mitochondrial ROS/lipid peroxidation, and severely reduced sperm-egg binding and fusion in both low (1.5 mg/kg/daily) and high (3 mg/kg/daily) dose treatments. Our results reveal a complex mechanism of BaP induced ovotoxicity involving developing follicle atresia and accelerated primordial follicle activation, and suggest short term neonatal BaP exposure causes mitochondrial leakage resulting in reduced oolemma fluidity and impaired fertilisation in adulthood. This study highlights BaP as a key compound which may be partially responsible for the documented effects of cigarette smoke on follicular development and sub-fertility. -- Highlights: ► BaP exposure up-regulates canonical pathways linked with follicular growth/atresia. ► BaP causes primordial follicle activation and developing follicle atresia. ► BaP causes oocyte mitochondrial ROS and lipid peroxidation, impairing fertilisation. ► Short term neonatal BaP exposure compromises adult oocyte quality.

  7. Jumping the gun: Smoking constituent BaP causes premature primordial follicle activation and impairs oocyte fusibility through oxidative stress

    Sobinoff, A.P.; Pye, V. [Reproductive Science Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW2308 (Australia); Nixon, B.; Roman, S.D. [Reproductive Science Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW2308 (Australia); ARC Centre of Excellence in Biotechnology and Development, University of Newcastle, Callaghan, NSW2308 (Australia); McLaughlin, E.A., E-mail: eileen.mclaughlin@newcastle.edu.au [Reproductive Science Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW2308 (Australia); ARC Centre of Excellence in Biotechnology and Development, University of Newcastle, Callaghan, NSW2308 (Australia)

    2012-04-01

    Benzo(a)pyrene (BaP) is an ovotoxic constituent of cigarette smoke associated with pre-mature ovarian failure and decreased rates of conception in IVF patients. Although the overall effect of BaP on female fertility has been documented, the exact molecular mechanisms behind its ovotoxicity remain elusive. In this study we examined the effects of BaP exposure on the ovarian transcriptome, and observed the effects of in vivo exposure on oocyte dysfunction. Microarray analysis of BaP cultured neonatal ovaries revealed a complex mechanism of ovotoxicity involving a small cohort of genes associated with follicular growth, cell cycle progression, and cell death. Histomorphological and immunohistochemical analysis supported these results, with BaP exposure causing increased primordial follicle activation and developing follicle atresia in vitro and in vivo. Functional analysis of oocytes obtained from adult Swiss mice treated neonatally revealed significantly increased levels of mitochondrial ROS/lipid peroxidation, and severely reduced sperm-egg binding and fusion in both low (1.5 mg/kg/daily) and high (3 mg/kg/daily) dose treatments. Our results reveal a complex mechanism of BaP induced ovotoxicity involving developing follicle atresia and accelerated primordial follicle activation, and suggest short term neonatal BaP exposure causes mitochondrial leakage resulting in reduced oolemma fluidity and impaired fertilisation in adulthood. This study highlights BaP as a key compound which may be partially responsible for the documented effects of cigarette smoke on follicular development and sub-fertility. -- Highlights: ► BaP exposure up-regulates canonical pathways linked with follicular growth/atresia. ► BaP causes primordial follicle activation and developing follicle atresia. ► BaP causes oocyte mitochondrial ROS and lipid peroxidation, impairing fertilisation. ► Short term neonatal BaP exposure compromises adult oocyte quality.

  8. Berberine exerts an anticonvulsant effect and ameliorates memory impairment and oxidative stress in a pilocarpine-induced epilepsy model in the rat

    Gao F

    2014-11-01

    hippocampal CA1 region. Our data suggest that Ber exerts anticonvulsant and neuroprotective effects on Pilo-induced epilepsy in rats. Simultaneously, Ber attenuates memory impairment. The beneficial effect may be partly due to mitigation of the oxidative stress burden. Keywords: status epilepticus, pilocarpine, memory impairment, oxidative stress, neuroprotection

  9. Chlorogenic acid protection of neuronal nitric oxide synthase-positive neurons in the hippocampus of mice with impaired learning and memory

    Qiuyun Tu; Xiangqi Tang; Zhiping Hu

    2008-01-01

    BACKGROUND: Clinical practice and modern pharmacology have confirmed that ehlorogenic acid can ameliorate learning and memory impairments. OBJECTIVE: To observe the effects of chlorogenic acid on neuronal nitric oxide synthase (nNOS)-positive neurons in the mouse hippocampus, and to investigate the mechanisms underlying the beneficial effects of chlorogenic acid on learning and memory. DESIGN, TIME AND SETTING: The present randomized, controlled, neural cell morphological observation was performed at the Institute of Neurobiology, Central South University between January and May 2005.MATERIALS: Forty-eight female, healthy, adult, Kunming mice were included in this study. Learning and memory impairment was induced with an injection of 0.5 μL kainic acid (0.4 mg/mL) into the hippocampus.METHODS: The mice were randomized into three groups (n = 16): model, control, and chlorogenic acid-treated. At 2 days following learning and memory impairment induction, intragastric administration of physiological saline or chlorogenic acid was performed in the model and chlorogenic acid-treated groups, respectively. The control mice were administered 0.5 μ L physiological saline into the hippocampus, and 2 days later, they received an intragastric administration of physiological saline. Each mouse received two intragastric administrations (1 mL solution once) per day, for a total of 35 days. MAIN OUTCOME MEASURES: Detection of changes in hippocampal and cerebral cortical nNOS neurons by immunohistochemistry; determination of spatial learning and memory utilizing the Y-maze device.RESULTS: At day 7 and 35 after intervention, there was no significant difference in the number of nNOS-positive neurons in the cerebral cortex between the model, chlorogenic acid, and control groups (P > 0.05). Compared with the control group, the number of nNOS-positive neurons in the hippocampal CA1-4 region was significantly less in the model group (P 0.05). At day 7 following intervention, the number

  10. Gain of Cellular Adaptation Due to Prolonged p53 Impairment Leads to Functional Switchover from p53 to p73 during DNA Damage in Acute Myeloid Leukemia Cells*

    Chakraborty, Juni; Banerjee, Shuvomoy; Ray, Pallab; Hossain, Dewan Md Sakib; Bhattacharyya, Sankar; Adhikary, Arghya; Chattopadhyay, Sreya; Das, Tanya; Sa, Gaurisankar

    2010-01-01

    Tumor suppressor p53 plays the central role in regulating apoptosis in response to genotoxic stress. From an evolutionary perspective, the activity of p53 has to be backed up by other protein(s) in case of any functional impairment of this protein, to trigger DNA damage-induced apoptosis in cancer cells. We adopted multiple experimental approaches to demonstrate that in p53-impaired cancer cells, DNA damage caused accumulation of p53 paralogue p73 via Chk-1 that strongly impacted Bax expressi...

  11. Nitric oxide from inflammatory origin impairs neural stem cell proliferation by inhibiting epidermal growth factor receptor signaling

    Bruno Pereira Carreira; Maria Inês Morte; Ana Isabel Santos; Ana Sofia Lourenço; António Francisco Ambrósio; Carvalho, Caetana M.; Araújo, Inês M.

    2014-01-01

    Neuroinflammation is characterized by activation of microglial cells, followed by production of nitric oxide (NO), which may have different outcomes on neurogenesis, favoring or inhibiting this process. In the present study, we investigated how the inflammatory mediator NO can affect proliferation of neural stem cells (NSCs), and explored possible mechanisms underlying this effect. We investigated which mechanisms are involved in the regulation of NSC proliferation following treatment with an...

  12. Oral supplementation of standardized extract of Withania somnifera protects against diabetes-induced testicular oxidative impairments in prepubertal rats.

    Kyathanahalli, Chandrashekara Nagaraj; Manjunath, Mallayya Jayawanth; Muralidhara

    2014-09-01

    Male reproductive dysfunctions and infertility are the common consequences of overt diabetes. Available evidence support oxidative stress to be the underlying mechanism for the manifestation of testicular complications during diabetes. In the present study, we assessed the attenuating effects of Withania somnifera root extract (WS) on diabetes-induced testicular oxidative disturbances in prepubertal rats. Four-week-old prepubertal rats were assigned into nondiabetic control, streptozotocin (STZ)-treated and STZ+WS supplemented (500 mg/kg b.w./d, oral, 15 days) groups. Experimental diabetes was induced by a single intraperitoneal injection of STZ (90 mg/kg b.w). Terminally, all animals were killed, and markers of oxidative stress were determined in the testis cytosol and mitochondrial fraction. Severe hyperglycemia and regression in testis size were apparent in diabetic rats. A decline in antioxidant defenses with subsequent elevation in the generation of reactive oxygen species and lipid peroxidation was discernible in testis cytosol and mitochondria of diabetic prepubertal rats, which was significantly reversed by WS. However, there was partial restoration of glucose-6-phosphate dehydrogenase, lactate dehydrogenase, and 3-beta hydroxysteroid dehydrogenase activities in testis of diabetic prepubertal rats administered with WS. Taken together, data accrued suggest the potential of WS to improve diabetes-induced testicular dysfunctions in prepubertal rats. PMID:24488064

  13. Activity-Based Protein Profiling Reveals Mitochondrial Oxidative Enzyme Impairment and Restoration in Diet-Induced Obese Mice

    Sadler, Natalie C.; Angel, Thomas E.; Lewis, Michael P.; Pederson, Leeanna M.; Chauvigne-Hines, Lacie M.; Wiedner, Susan D.; Zink, Erika M.; Smith, Richard D.; Wright, Aaron T.

    2012-10-24

    High-fat diet (HFD) induced obesity and concomitant development of insulin resistance (IR) and type 2 diabetes mellitus have been linked to mitochondrial dysfunction. However, it is not clear whether mitochondrial dysfunction is a direct effect of a HFD or if the mitochondrial function is reduced with increased HFD duration. We hypothesized that the function of mitochondrial oxidative and lipid metabolism functions in skeletal muscle mitochondria for HFD mice are similar or elevated relative to standard diet (SD) mice, thereby IR is neither cause nor consequence of mitochondrial dysfunction. We applied a chemical probe approach to identify functionally reactive ATPases and nucleotide-binding proteins in mitochondria isolated from skeletal muscle of C57Bl/6J mice fed HFD or SD chow for 2-, 8-, or 16-weeks; feeding time points known to induce IR. A total of 293 probe-labeled proteins were identified by mass spectrometry-based proteomics, of which 54 differed in abundance between HFD and SD mice. We found proteins associated with the TCA cycle, oxidative phosphorylation (OXPHOS), and lipid metabolism were altered in function when comparing SD to HFD fed mice at 2-weeks, however by 16-weeks HFD mice had TCA cycle, β-oxidation, and respiratory chain function at levels similar to or higher than SD mice.

  14. The architecture of iron microbial mats reflects the adaptation of chemolithotrophic iron oxidation in freshwater and marine environments

    Clara S Chan

    2016-06-01

    Full Text Available Microbes form mats with architectures that promote efficient metabolism within a particular physicochemical environment, thus studying mat structure helps us understand ecophysiology. Despite much research on chemolithotrophic Fe-oxidizing bacteria, Fe mat architecture has not been visualized because these delicate structures are easily disrupted. There are striking similarities between the biominerals that comprise freshwater and marine Fe mats, made by Beta- and Zetaproteobacteria, respectively. If these biominerals are assembled into mat structures with similar functional morphology, this would suggest that mat architecture is adapted to serve roles specific to Fe oxidation. To evaluate this, we combined light, confocal, and scanning electron microscopy of intact Fe microbial mats with experiments on sheath formation in culture, in order to understand mat developmental history and subsequently evaluate the connection between Fe oxidation and mat morphology. We sampled a freshwater sheath mat from Maine and marine stalk and sheath mats from Loihi Seamount hydrothermal vents, Hawaii. Mat morphology correlated to niche: stalks formed in steeper O2 gradients while sheaths were associated with low to undetectable O2 gradients. Fe-biomineralized filaments, twisted stalks or hollow sheaths, formed the highly porous framework of each mat. The mat-formers are keystone species, with nascent marine stalk-rich mats comprised of novel and uncommon Zetaproteobacteria. For all mats, filaments were locally highly parallel with similar morphologies, indicating that cells were synchronously tracking a chemical or physical cue. In the freshwater mat, cells inhabited sheath ends at the growing edge of the mat. Correspondingly, time lapse culture imaging showed that sheaths are made like stalks, with cells rapidly leaving behind an Fe oxide filament. The distinctive architecture common to all observed Fe mats appears to serve specific functions related to

  15. The Architecture of Iron Microbial Mats Reflects the Adaptation of Chemolithotrophic Iron Oxidation in Freshwater and Marine Environments

    Chan, Clara S.; McAllister, Sean M.; Leavitt, Anna H.; Glazer, Brian T.; Krepski, Sean T.; Emerson, David

    2016-01-01

    Microbes form mats with architectures that promote efficient metabolism within a particular physicochemical environment, thus studying mat structure helps us understand ecophysiology. Despite much research on chemolithotrophic Fe-oxidizing bacteria, Fe mat architecture has not been visualized because these delicate structures are easily disrupted. There are striking similarities between the biominerals that comprise freshwater and marine Fe mats, made by Beta- and Zetaproteobacteria, respectively. If these biominerals are assembled into mat structures with similar functional morphology, this would suggest that mat architecture is adapted to serve roles specific to Fe oxidation. To evaluate this, we combined light, confocal, and scanning electron microscopy of intact Fe microbial mats with experiments on sheath formation in culture, in order to understand mat developmental history and subsequently evaluate the connection between Fe oxidation and mat morphology. We sampled a freshwater sheath mat from Maine and marine stalk and sheath mats from Loihi Seamount hydrothermal vents, Hawaii. Mat morphology correlated to niche: stalks formed in steeper O2 gradients while sheaths were associated with low to undetectable O2 gradients. Fe-biomineralized filaments, twisted stalks or hollow sheaths, formed the highly porous framework of each mat. The mat-formers are keystone species, with nascent marine stalk-rich mats comprised of novel and uncommon Zetaproteobacteria. For all mats, filaments were locally highly parallel with similar morphologies, indicating that cells were synchronously tracking a chemical or physical cue. In the freshwater mat, cells inhabited sheath ends at the growing edge of the mat. Correspondingly, time lapse culture imaging showed that sheaths are made like stalks, with cells rapidly leaving behind an Fe oxide filament. The distinctive architecture common to all observed Fe mats appears to serve specific functions related to chemolithotrophic Fe

  16. Pretreatment with Rhodiola Rosea Extract Reduces Cognitive Impairment Induced by Intracerebroventricular Streptozotocin in Rats: Implication of Anti-oxidative and Neuroprotective Effects

    ZE-QIANG QU; YAN ZHOU; YUAN-SHAN ZENGt; YAN LI; PETER CHUNG

    2009-01-01

    Objectives To investigate the pretreatment effects of Rhodiola rosea (R. rosea) extract on cognitive dysfunction, oxidative stress in hippocampus and hippocampal neuron injury in a rat model of Alzheimer's disease (AD). Methods Male Sprague-Dawley rats were pretreated with R. rosea extract at doses of 1.5, 3.0, and 6.0 g/kg for 3 weeks, followed by bilateral intracerebroventricular injection with streptozotocin (1.5 mg/kg) on days 1 and 3. Behavioral alterations were monitored after 2 weeks from the lesion using Morris water maze task. Three weeks after the lesion, the rats were sacrificed for measuring the malondialdehyde (MDA), glutathione reductase (GR) and reduced glutathione (GSH) levels in hippocampus and histopathology of hippocampal neurons. Results The MDA level was significantly increased while the GR and GSH levels were significantly decreased with striking impairments in spatial learning and memory and severe damage to hippocampal neurons in the model rat induced by intracerebroventricular injection of streptozotocin. These abnormalities were significantly improved by pretreatment with R. rosea extract (3.0 g/kg). Conclusion R. rosea extract can protect rats against cognitive deficits, neuronal injury and oxidative stress induced by intracerebroventricular injection of streptozotocin, and may be used as a potential agent in treatment of neurodegenerative diseases such as AD.

  17. Standardized extract of Withania somnifera (Ashwagandha) markedly offsets rotenone-induced locomotor deficits, oxidative impairments and neurotoxicity in Drosophila melanogaster.

    Manjunath, M J; Muralidhara

    2015-04-01

    Withania somnifera (Ashwagandha, WS) or Indian ginseng possesses multiple pharmacological properties which are mainly attributed to the active constituents, withanolides. Despite its extensive usage as a memory enhancer and a nerve tonic, few attempts have been made to ascertain its usage in the management of Parkinson's disease. In the present study, we investigated the neuroameliorative effects of WS in a rotenone (ROT) model of Drosophila melanogaster (Oregon-K). Initially, we ascertained the ability of WS-enriched diet (0-0.05 %) to protect against ROT induced lethality and locomotor phenotype in adult male flies. Further, employing a co-exposure paradigm, we investigated the propensity of WS to offset ROT-induced oxidative stress, mitochondrial dysfunctions and neurotoxicity. WS conferred significant protection against ROT-induced lethality, while the survivor flies exhibited improved locomotor phenotype. Biochemical investigations revealed that ROT-induced oxidative stress was significantly diminished by WS enrichment. WS caused significant elevation in the levels of reduced GSH/non-protein thiols. Furthermore, the altered activity levels of succinate dehydrogenase, MTT, membrane bound enzymes viz., NADH-cytochrome-c reductase and succinate-cytochrome-c reductase were markedly restored to normalcy. Interestingly, ROT-induced perturbations in cholinergic function and depletion in dopamine levels were normalized by WS. Taken together these data suggests that the neuromodulatory effect of WS against ROT- induced neurotoxicity is probably mediated via suppression of oxidative stress and its potential to attenuate mitochondrial dysfunctions. Our further studies aim to understand the underlying neuroprotective mechanisms of WS and withanolides employing neuronal cell models. PMID:25829577

  18. Protective effects of dietary avocado oil on impaired electron transport chain function and exacerbated oxidative stress in liver mitochondria from diabetic rats.

    Ortiz-Avila, Omar; Gallegos-Corona, Marco Alonso; Sánchez-Briones, Luis Alberto; Calderón-Cortés, Elizabeth; Montoya-Pérez, Rocío; Rodriguez-Orozco, Alain R; Campos-García, Jesús; Saavedra-Molina, Alfredo; Mejía-Zepeda, Ricardo; Cortés-Rojo, Christian

    2015-08-01

    Electron transport chain (ETC) dysfunction, excessive ROS generation and lipid peroxidation are hallmarks of mitochondrial injury in the diabetic liver, with these alterations also playing a role in the development of non-alcoholic fatty liver disease (NAFLD). Enhanced mitochondrial sensitivity to lipid peroxidation during diabetes has been also associated to augmented content of C22:6 in membrane phospholipids. Thus, we aimed to test whether avocado oil, a rich source of C18:1 and antioxidants, attenuates the deleterious effects of diabetes on oxidative status of liver mitochondria by decreasing unsaturation of acyl chains of membrane lipids and/or by improving ETC functionality and decreasing ROS generation. Streptozocin-induced diabetes elicited a noticeable increase in the content of C22:6, leading to augmented mitochondrial peroxidizability index and higher levels of lipid peroxidation. Mitochondrial respiration and complex I activity were impaired in diabetic rats with a concomitant increase in ROS generation using a complex I substrate. This was associated to a more oxidized state of glutathione, All these alterations were prevented by avocado oil except by the changes in mitochondrial fatty acid composition. Avocado oil did not prevented hyperglycemia and polyphagia although did normalized hyperlipidemia. Neither diabetes nor avocado oil induced steatosis. These results suggest that avocado oil improves mitochondrial ETC function by attenuating the deleterious effects of oxidative stress in the liver of diabetic rats independently of a hypoglycemic effect or by modifying the fatty acid composition of mitochondrial membranes. These findings might have also significant implications in the progression of NAFLD in experimental models of steatosis. PMID:26060181

  19. Metabolite profiles reveal energy failure and impaired beta-oxidation in liver of mice with complex III deficiency due to a BCS1L mutation.

    Heike Kotarsky

    Full Text Available BACKGROUND & AIMS: Liver is a target organ in many mitochondrial disorders, especially if the complex III assembly factor BCS1L is mutated. To reveal disease mechanism due to such mutations, we have produced a transgenic mouse model with c.232A>G mutation in Bcs1l, the causative mutation for GRACILE syndrome. The homozygous mice develop mitochondrial hepatopathy with steatosis and fibrosis after weaning. Our aim was to assess cellular mechanisms for disease onset and progression using metabolomics. METHODS: With mass spectrometry we analyzed metabolite patterns in liver samples obtained from homozygotes and littermate controls of three ages. As oxidative stress might be a mechanism for mitochondrial hepatopathy, we also assessed H(2O(2 production and expression of antioxidants. RESULTS: Homozygotes had a similar metabolic profile at 14 days of age as controls, with the exception of slightly decreased AMP. At 24 days, when hepatocytes display first histopathological signs, increases in succinate, fumarate and AMP were found associated with impaired glucose turnover and beta-oxidation. At end stage disease after 30 days, these changes were pronounced with decreased carbohydrates, high levels of acylcarnitines and amino acids, and elevated biogenic amines, especially putrescine. Signs of oxidative stress were present in end-stage disease. CONCLUSIONS: The findings suggest an early Krebs cycle defect with increases of its intermediates, which might play a role in disease onset. During disease progression, carbohydrate and fatty acid metabolism deteriorate leading to a starvation-like condition. The mouse model is valuable for further investigations on mechanisms in mitochondrial hepatopathy and for interventions.

  20. Therapeutic and space radiation exposure of mouse brain causes impaired DNA repair response and premature senescence by chronic oxidant production.

    Suman, Shubhankar; Rodriguez, Olga C; Winters, Thomas A; Fornace, Albert J; Albanese, Chris; Datta, Kamal

    2013-08-01

    Despite recent epidemiological evidences linking radiation exposure and a number of human ailments including cancer, mechanistic understanding of how radiation inflicts long-term changes in cerebral cortex, which regulates important neuronal functions, remains obscure. The current study dissects molecular events relevant to pathology in cerebral cortex of 6 to 8 weeks old female C57BL/6J mice two and twelve months after exposure to a γ radiation dose (2 Gy) commonly employed in fractionated radiotherapy. For a comparative study, effects of 1.6 Gy heavy ion 56Fe radiation on cerebral cortex were also investigated, which has implications for space exploration. Radiation exposure was associated with increased chronic oxidative stress, oxidative DNA damage, lipid peroxidation, and apoptosis. These results when considered with decreased cortical thickness, activation of cell-cycle arrest pathway, and inhibition of DNA double strand break repair factors led us to conclude to our knowledge for the first time that radiation caused aging-like pathology in cerebral cortical cells and changes after heavy ion radiation were more pronounced than γ radiation. PMID:23928451

  1. Contribution of nitric oxide radicals in bystander and adaptive responses induced by heavy ion-beams

    The purpose of this study was to investigate whether radioadaptive responses were induced after irradiation with accelerated ion beams through nitric oxide-mediated bystander response in cultured cells in vitro and in some organs of mice in vivo. Human non-small cell lung carcinoma cells transfected with wild-type p53 (H1299/wtp53 cells) were used. The cells were irradiated with accelerated carbon ion beams (290 MeV/u, 31 keV/μm or 135 MeV/u, 31 keV/μm). Then, the cells were allowed forming colonies. ICR male mice (Jcl: ICR) were used. The mice were irradiated on 2 days with accelerated carbon ion beams (290 MeV/u, 13 keV/μm or 135 MeV/u, 25 keV/μm) or argon ion beams (500 MeV/u, 90 keV/μm). The small intestine and testis were excised 2 days after the last irradiation. These excised tissues were fixed, embedded in paraffin and made of thin-sections on slide glasses. Then the TUNEL- and activated caspase-3-positive cells in the thin-sections of tissues were detected by the immunohistochemical method. A significant elevated surviving fractions of cells was observed when the cells were challengingly irradiated after the priming irradiation with accelerate carbon ion beams. This enhancement was partially suppressed by Nitric oxide (NO) radical scavenger, carboxy-PTIO (c-PTIO). The bystander-induced apoptotic and activated caspase-3-positive cells were obviously observed in the unirradiated small intestine and testis when mice were irradiated with carbon or argon ion beams across the upper body. In addition, a significant reduction of apoptotic cells in the intestine and testis, when mice were challengingly irradiated after the priming irradiation with accelerate carbon or argon ion beams. These observations were partially suppressed by c-PTIO into the peritoneal cavity. Furthermore, it is suggested that the apoptosis may be induced in the tissue stem cells of small intestine and testis. (author)

  2. Adaptive cytoprotection through modulation of nitric oxide in ethanol-evoked gastritis

    Joshua Ka-Shun Ko; Chi-Hin Cho; Shiu-Kum Lam

    2004-01-01

    AIM: To assess the mechanisms of protective action by different mild irritants through maintenance of gastric mucosal integrity and modulation of mucosal nitric oxide (NO) in experimental gastritis rats.METHODS: Either 200 ml/L ethanol, 50 g/L NaCl or 0.3 mol/LHCl was pretreated to normal or 800 mL/L ethanol-induced acute gastritis Sprague-Dawley rats before a subsequent challenge with 500 mL/L ethanol. Both macroscopic lesion areas and histological damage scores were determined in the gastric mucosa of each group of animals. Besides,gastric mucosal activities of NO synthase isoforms and of superoxide dismutase, along with mucosal level of leukotriene (LT)C4 were measured.RESULTS: Macroscopic mucosal damages were protected by 200 mL/L ethanol and 50 g/L NaCl in gastritis rats.However, although 200 mL/L ethanol could protect the surface layers of mucosal cells in normal animals (protection attenuated by NG-nitro-L-arginine methyl ester), no cytoprotection against deeper histological damages was found in gastritis rats. Besides, inducible NO synthase activity was increased in the mucosa of gastritis animals and unaltered by mild irritants. Nevertheless, the elevation in mucosal LTC4 level following 500 mL/L ethanol administration and under gastritis condition was significantly reduced by pretreatment of all three mild irritants in both normal and gastritis animals.CONCLUSION: These findings suggest that the aggravated 500 mL/L ethanol-evoked mucosal damages under gastritis condition could be due to increased inducible NO and LTC4 production in the gastric mucosa. Only 200 mL/L ethanol is truly "cytoprotective" at the surface glandular level of nongastritis mucosa. Furthermore, the macroscopic protection of the three mild irritants involves reduction of LTC4 level in both normal and gastritis mucosa, implicating preservation of the vasculature.

  3. Contribution of nitric oxide radicals in bystander and adaptive responses induced by heavy ion-beams

    The purpose of this study was to investigate whether radioadaptive responses were induced after irradiation with accelerated ion beams through nitric oxide-mediated bystander response in cultured cells in vitro and in some organs of mice in vivo. Human non-small cell lung carcinoma cells transfected with wild-type p53 (H1299/wtp53 cells) were used. The cells were irradiated with accelerated neon (400 MeV/u, 31 keV/μm) or iron (500 MeV/u, 200 keV/μm) ion beams. Then, the cells were allowed forming colonies, were cultured for 48 h to obtained samples for Western blot analysis, or were cultured for several weeks to fix mutations in the locus of hprt gene. ICR male mice (Jcl:ICR) were used. The mice were irradiated on 2 days with accelerated carbon ion beams (290 MeV/u, 13 keV/μm) or argon ion beams (500 MeV/u, 90 keV/μm). The intestine and testis were excised 2 days after the last irradiation. These excised tissues were fixed, embedded in paraffin and made of thin-sections on slide glasses. Then the TdT-mediated dUTP-biotin nick end-labeling (TUNEL)- and activated caspase-3-positive cells in the thin-sections of tissues were detected by the immunohistochemical method. A significant reduction of mutation rate of the hprt gene was observed when the cells were challengingly irradiated after the priming irradiation with accelerate neon or iron ion beams. This reduction was partially suppressed by NO radical scavenger, carboxy-PTIO. The bystander-induced apoptotic and activated caspase-3-positive cells were obviously observed in unirradiated intestine and testis when mice were irradiated with carbon or argon ion beams across the upper body. These observations were partially suppressed by carboxy-PTIO into the peritoneal cavity. (author)

  4. Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells

    Changes in gene expression, by application of H2O2, O2.- generating agents (methyl viologen, digitonin) and gamma irradiation to tomato suspension cultures, were investigated and compared to the well-described heat shock response. Two-dimensional gel protein mapping analyses gave the first indication that at least small heat shock proteins (smHSP) accumulated in response to application of H2O2 and gamma irradiation, but not to O2.- generating agents. While some proteins seemed to be induced specifically by each treatment, only part of the heat shock response was observed. On the basis of Northern hybridization experiments performed with four heterologous cDNA, corresponding to classes I-IV of pea smHSP, it could be concluded that significant amounts of class I and II smHSP mRNA are induced by H2O2 and by irradiation. Taken together, these results demonstrate that in plants some HSP genes are inducible by oxidative stresses, as in micro-organisms and other eukaryotic cells. HSP22, the main stress protein that accumulates following H2O2 action or gamma irradiation, was also purified. Sequence homology of amino terminal and internal sequences, and immunoreactivity with Chenopodium rubrum mitochondrial smHSP antibody, indicated that the protein belongs to the recently discovered class of plant mitochondrial smHSP. Heat shock or a mild H2O2 pretreatment was also shown to lead to plant cell protection against oxidative injury. Therefore, the synthesis of these stress proteins can be considered as an adaptive mechanism in which mitochondrial protection could be essential

  5. The Relationship between Visual Impairment and Gestures.

    Frame, Melissa J.

    2000-01-01

    A study found the gestural activity of 15 adolescents with visual impairments differed from that of 15 adolescents with sight. Subjects with visual impairments used more adapters (especially finger-to-hand gestures) and fewer conversational gestures. Differences in gestural activity by degree of visual impairment and grade in school were also…

  6. Subtle reproductive impairment through nitric oxide-mediated mechanisms in sea urchins from an area affected by harmful algal blooms

    Migliaccio, Oriana; Castellano, Immacolata; di Cioccio, Davide; Tedeschi, Gabriella; Negri, Armando; Cirino, Paola; Romano, Giovanna; Zingone, Adriana; Palumbo, Anna

    2016-05-01

    The health of the sea urchin Paracentrotus lividus, a key species in the Mediterranean Sea, is menaced by several pressures in coastal environments. Here, we aimed at assessing the reproductive ability of apparently healthy P. lividus population in a marine protected area affected by toxic blooms of Ostreospsis cf. ovata. Wide-ranging analyses were performed in animals collected prior to and during the bloom, as well as at several times thereafter, during the reproductive season. Adults showed a low fertilization rate, along with high nitric oxide (NO) levels in the gonads and the nitration of the major yolk protein toposome, which is an important player in sea urchin development. Serious developmental anomalies were observed in the progeny, which persist several months after the bloom. NO levels were high in the different developmental stages, which also showed variations in the transcription of several genes that were found to be directly or indirectly modulated by NO. These results highlight subtle but important reproductive flaws transmitted from the female gonads to the offspring with the NO involvement. Despite a recovery along time after the bloom, insidious damages can be envisaged in the local sea urchin population, with possible reverberation on the whole benthic system.

  7. Impaired Nitric Oxide Mediated Vasodilation In The Peripheral Circulation In The R6/2 Mouse Model Of Huntington's Disease.

    Kane, Andrew D; Niu, Youguo; Herrera, Emilio A; Morton, A Jennifer; Giussani, Dino A

    2016-01-01

    Recent evidence shows that the Huntington's disease (HD) extends beyond the nervous system to other sites, including the cardiovascular system. Further, the cardiovascular pathology pre-dates neurological decline, however the mechanisms involved remain unclear. We investigated in the R6/2 mouse model of HD nitric oxide (NO) dependent and independent endothelial mechanisms. Femoral artery reactivity was determined by wire myography in wild type (WT) and R6/2 mice at 12 and 16 weeks of adulthood. WT mice showed increased endothelial relaxation between 12 and 16 weeks (Rmax: 72 ± 7% vs. 97 ± 13%, P R6/2 mice showed enhanced endothelial relaxation already by 12 weeks (Rmax at 12w: 72 ± 7% vs. 94 ± 5%, WT vs. R6/2, P R6/2, P R6/2 mouse developed overt endothelial dysfunction due to an inability to increase NO dependent vasodilation. The data add to the growing literature of non-neural manifestations of HD and implicate NO depletion as a key mechanism underlying the HD pathophysiology in the peripheral vasculature. PMID:27181166

  8. Photo-Oxidative Stress-Driven Mutagenesis and Adaptive Evolution on the Marine Diatom Phaeodactylum tricornutum for Enhanced Carotenoid Accumulation

    Zhiqian Yi

    2015-09-01

    Full Text Available Marine diatoms have recently gained much attention as they are expected to be a promising resource for sustainable production of bioactive compounds such as carotenoids and biofuels as a future clean energy solution. To develop photosynthetic cell factories, it is important to improve diatoms for value-added products. In this study, we utilized UVC radiation to induce mutations in the marine diatom Phaeodactylum tricornutum and screened strains with enhanced accumulation of neutral lipids and carotenoids. Adaptive laboratory evolution (ALE was also used in parallel to develop altered phenotypic and biological functions in P. tricornutum and it was reported for the first time that ALE was successfully applied on diatoms for the enhancement of growth performance and productivity of value-added carotenoids to date. Liquid chromatography-mass spectrometry (LC-MS was utilized to study the composition of major pigments in the wild type P. tricornutum, UV mutants and ALE strains. UVC radiated strains exhibited higher accumulation of fucoxanthin as well as neutral lipids compared to their wild type counterpart. In addition to UV mutagenesis, P. tricornutum strains developed by ALE also yielded enhanced biomass production and fucoxanthin accumulation under combined red and blue light. In short, both UV mutagenesis and ALE appeared as an effective approach to developing desired phenotypes in the marine diatoms via electromagnetic radiation-induced oxidative stress.

  9. Mitigation of peroxynitrite-mediated nitric oxide (NO) toxicity as a mechanism of induced adaptive NO resistance in the CNS.

    Bishop, Amy; Gooch, Renea; Eguchi, Asuka; Jeffrey, Stephanie; Smallwood, Lorraine; Anderson, James; Estevez, Alvaro G

    2009-04-01

    During CNS injury and diseases, nitric oxide (NO) is released at a high flux rate leading to formation of peroxynitrite (ONOO(*)) and other reactive nitrogenous species, which nitrate tyrosines of proteins to form 3-nitrotyrosine (3NY), leading to cell death. Previously, we have found that motor neurons exposed to low levels of NO become resistant to subsequent cytotoxic NO challenge; an effect dubbed induced adaptive resistance (IAR). Here, we report IAR mitigates, not only cell death, but 3NY formation in response to cytotoxic NO. Addition of an NO scavenger before NO challenge duplicates IAR, implicating reactive nitrogenous species in cell death. Addition of uric acid (a peroxynitrite scavenger) before cytotoxic NO challenge, duplicates IAR, implicating peroxynitrite, with subsequent 3NY formation, in cell death, and abrogation of this pathway as a mechanism of IAR. IAR is dependent on the heme-metabolizing enzyme, heme oxygenase-1 (HO1), as indicated by the elimination of IAR by a specific HO1 inhibitor, and by the finding that neurons isolated from HO1 null mice have increased NO sensitivity with concomitant increased 3NY formation. This data indicate that IAR is an HO1-dependent mechanism that prevents peroxynitrite-mediated NO toxicity in motor neurons, thereby elucidating therapeutic targets for the mitigation of CNS disease and injury. PMID:19183270

  10. Endogenous nitric oxide mediates He-Ne laser-induced adaptive responses in salt stressed-tall fescue leaves.

    Li, Yongfeng; Gao, Limei; Han, Rong

    2016-10-01

    The aim of this study was to investigate the role of endogenous nitric oxide in protective effects of He-Ne laser on salt stressed-tall fescue leaves. Salt stress resulted in significant increases of membrane injury, reactive oxygen species (ROS) production, polyamine accumulation, and activities of SOD, POD, and APX, while pronounced decreases of antioxidant contents, CAT activity and intracellular Ca(2+) concentration in seedlings leaves. He-Ne laser illumination caused a distinct alleviation of cellular injury that was reflected by the lower MDA amounts, polyamine accumulation and ROS levels at the stress period. In contrast, the laser treatment displayed a higher Ca(2+) concentration, antioxidant amounts, NO release, antioxidant enzyme, and NOS activities. These responses could be blocked due to the inhibition of NO biosynthesis by PTIO (NO scavenger) or LNNA (NOS inhibitor). The presented results demonstrated that endogenous NO might be involved in the progress of He-Ne laser-induced plant antioxidant system activation and ROS degradation in order to enhance adaptive responses of tall fescue to prolonged saline conditions. PMID:27309569

  11. Photo-Oxidative Stress-Driven Mutagenesis and Adaptive Evolution on the Marine Diatom Phaeodactylum tricornutum for Enhanced Carotenoid Accumulation.

    Yi, Zhiqian; Xu, Maonian; Magnusdottir, Manuela; Zhang, Yuetuan; Brynjolfsson, Sigurdur; Fu, Weiqi

    2015-10-01

    Marine diatoms have recently gained much attention as they are expected to be a promising resource for sustainable production of bioactive compounds such as carotenoids and biofuels as a future clean energy solution. To develop photosynthetic cell factories, it is important to improve diatoms for value-added products. In this study, we utilized UVC radiation to induce mutations in the marine diatom Phaeodactylum tricornutum and screened strains with enhanced accumulation of neutral lipids and carotenoids. Adaptive laboratory evolution (ALE) was also used in parallel to develop altered phenotypic and biological functions in P. tricornutum and it was reported for the first time that ALE was successfully applied on diatoms for the enhancement of growth performance and productivity of value-added carotenoids to date. Liquid chromatography-mass spectrometry (LC-MS) was utilized to study the composition of major pigments in the wild type P. tricornutum, UV mutants and ALE strains. UVC radiated strains exhibited higher accumulation of fucoxanthin as well as neutral lipids compared to their wild type counterpart. In addition to UV mutagenesis, P. tricornutum strains developed by ALE also yielded enhanced biomass production and fucoxanthin accumulation under combined red and blue light. In short, both UV mutagenesis and ALE appeared as an effective approach to developing desired phenotypes in the marine diatoms via electromagnetic radiation-induced oxidative stress. PMID:26426027

  12. Genome-guided analysis of physiological capacities of Tepidanaerobacter acetatoxydans provides insights into environmental adaptations and syntrophic acetate oxidation.

    Müller, Bettina; Manzoor, Shahid; Niazi, Adnan; Bongcam-Rudloff, Erik; Schnürer, Anna

    2015-01-01

    This paper describes the genome-based analysis of Tepidanaerobacter acetatoxydans strain Re1, a syntrophic acetate-oxidising bacterium (SAOB). Principal issues such as environmental adaptations, metabolic capacities, and energy conserving systems have been investigated and the potential consequences for syntrophic acetate oxidation discussed. Briefly, in pure culture, T. acetatoxydans grows with different organic compounds and produces acetate as the main product. In a syntrophic consortium with a hydrogenotrophic methanogen, it can also reverse its metabolism and instead convert acetate to formate/H2 and CO2. It can only proceed if the product formed is continuously removed. This process generates a very small amount of energy that is scarcely enough for growth, which makes this particular syntrophy of special interest. As a crucial member of the biogas-producing community in ammonium-rich engineered AD processes, genomic features conferring ammonium resistance, bacterial defense, oxygen and temperature tolerance were found, as well as attributes related to biofilm formation and flocculation. It is likely that T. acetatoxydans can form an electrochemical gradient by putative electron-bifurcating Rnf complex and [Fe-Fe] hydrogenases, as observed in other acetogens. However, genomic deficiencies related to acetogenic metabolism and anaerobic respiration were discovered, such as the lack of formate dehydrogenase and F1F0 ATP synthase. This has potential consequences for the metabolic pathways used under SAO and non-SAO conditions. The two complete sets of bacteriophage genomes, which were found to be encoded in the genome, are also worthy of mention. PMID:25811859

  13. Calycosin ameliorates diabetes-induced cognitive impairments in rats by reducing oxidative stress via the PI3K/Akt/GSK-3β signaling pathway.

    Wang, Xiang; Zhao, Linhui

    2016-04-29

    Diabetic encephalopathy is one of the most prevalent chronic complications of diabetes mellitus (DM), but there is currently no effective method of prevention nor proven therapeutic regimen for it. In this study, we investigated the effects of calycosin on cognitive behavior and the potential mechanism involved in streptozocin-induced diabetic rats. The effects of diabetes and calycosin treatment on spatial learning and memory were evaluated using the Morris Water Maze, passive avoidance and motor coordination tests. Histological analysis of the hippocampus cornu ammonis 1 (CA1) region was conducted in rats. The decreased expression of the synapsin (SYN) and postsynatptic density protein (PSD-95), as well as brain-derived neurotrophic factor (BDNF) in diabetic rats was measured by quantitative real-time PCR and western blot. Treatment with calycosin promoted a reduction in the expression of SYN, PSD-95 and BDNF. In addition, diabetic rats showed increased MDA levels, and decreased SOD levels and GSH-Px activities in the hippocampus, as well as increased AChE activity in the cerebral cortex; these changes were reversed by calycosin supplementation. Thus, the impairment of learning and memory in STZ-induced diabetic rats was alleviated by calycosin, and that the degree of alleviation was associated with oxidative stress. We also found that calycosin treatment significantly stimulated Akt phosphorylation and decreased GSK-3β and tau phosphorylation, and that these changes could be restored by the PI3K/Akt inhibitor LY294002. In conclusion, calycosin had a beneficial effect on the amelioration, prevention and treatment of diabetes-associated cognitive deficits, through its involvement in oxidative stress, synaptic function and the PI3K/Akt/GSK-3β pathway. PMID:26970304

  14. Amyloid-β and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer's disease mice

    Rhein, Virginie; Song, Xiaomin; Wiesner, Andreas; Ittner, Lars M.; Baysang, Ginette; Meier, Fides; Ozmen, Laurence; Bluethmann, Horst; Dröse, Stefan; Brandt, Ulrich; Savaskan, Egemen; Czech, Christian; Götz, Jürgen; Eckert, Anne

    2009-01-01

    Alzheimer's disease (AD) is characterized by amyloid-beta (Aβ)-containing plaques, neurofibrillary tangles, and neuron and synapse loss. Tangle formation has been reproduced in P301L tau transgenic pR5 mice, whereas APPswPS2N141I double-transgenic APP152 mice develop Aβ plaques. Cross-breeding generates triple transgenic (tripleAD) mice that combine both pathologies in one model. To determine functional consequences of the combined Aβ and tau pathologies, we performed a proteomic analysis followed by functional validation. Specifically, we obtained vesicular preparations from tripleAD mice, the parental strains, and nontransgenic mice, followed by the quantitative mass-tag labeling proteomic technique iTRAQ and mass spectrometry. Within 1,275 quantified proteins, we found a massive deregulation of 24 proteins, of which one-third were mitochondrial proteins mainly related to complexes I and IV of the oxidative phosphorylation system (OXPHOS). Notably, deregulation of complex I was tau dependent, whereas deregulation of complex IV was Aβ dependent, both at the protein and activity levels. Synergistic effects of Aβ and tau were evident in 8-month-old tripleAD mice as only they showed a reduction of the mitochondrial membrane potential at this early age. At the age of 12 months, the strongest defects on OXPHOS, synthesis of ATP, and reactive oxygen species were exhibited in the tripleAD mice, again emphasizing synergistic, age-associated effects of Aβ and tau in perishing mitochondria. Our study establishes a molecular link between Aβ and tau protein in AD pathology in vivo, illustrating the potential of quantitative proteomics. PMID:19897719

  15. Reduction of death rate due to acute myocardial infarction in subjects with cancers through systemic restoration of impaired nitric oxide.

    Rajeshwary Ghosh

    Full Text Available INTRODUCTION: Excessive aggregation of platelets at the site of plaque rupture on the coronary artery led to the formation of thrombus which is reported to precipitate acute myocardial infarction (AMI. Nitric oxide (NO has been reported to inhibit platelet aggregation and induce thrombolysis through the in situ formation of plasmin. As the plasma NO level in AMI patients from two different ethnic groups was reduced to 0 µM (median compared to 4.0 µM (median in normal controls, the effect of restoration of the NO level to normal ranges on the rate of death due to AMI was determined. METHODS AND RESULTS: The restoration of plasma NO level was achieved by a sticking small cotton pad (10×25 mm containing 0.28 mmol sodium nitroprusside (SNP in 0.9% NaCl to the abdominal skin of the participants using non-toxic adhesive tape which was reported to normalize the plasma NO level. The participants (8,283 were volunteers in an independent study who had different kinds of cancers and did not wish to use any conventional therapy for their condition but opted to receive SNP "pad" for their condition for 3 years. The use of SNP "pad" which normalized (≈4.0 µM the plasma NO level that in consequence reduced the death rate due to AMI, among the participants, was found to be significantly reduced compared to the death due to AMI in normal population. CONCLUSION: Our data suggested that the use of SNP "pad" significantly reduced the death due to AMI. TRIAL REGISTRATION: www.ctri.nic.in CTRI/2013/12/004236.

  16. Cardiomyocyte-Restricted Deletion of PPARβ/δ in PPARα-Null Mice Causes Impaired Mitochondrial Biogenesis and Defense, but No Further Depression of Myocardial Fatty Acid Oxidation

    Jian Liu

    2011-01-01

    Full Text Available It is well documented that PPARα and PPARβ/δ share overlapping functions in regulating myocardial lipid metabolism. However, previous studies demonstrated that cardiomyocyte-restricted PPARβ/δ deficiency in mice leads to severe cardiac pathological development, whereas global PPARα knockout shows a benign cardiac phenotype. It is unknown whether a PPARα-null background would alter the pathological development in mice with cardiomyocyte-restricted PPARβ/δ deficiency. In the present study, a mouse model with long-term PPARβ/δ deficiency in PPARα-null background showed a comparably reduced cardiac expression of lipid metabolism to those of single PPAR-deficient mouse models. The PPARα-null background did not rescue or aggravate the cardiac pathological development linked to cardiomyocyte-restricted PPARβ/δ deficiency. Moreover, PPARα-null did not alter the phenotypic development in adult mice with the short-term deletion of PPARβ/δ in their hearts, which showed mitochondrial abnormalities, depressed cardiac performance, and cardiac hypertrophy with attenuated expression of key factors in mitochondrial biogenesis and defense. The present study demonstrates that cardiomyocyte-restricted deletion of PPARβ/δ in PPARα-null mice causes impaired mitochondrial biogenesis and defense, but no further depression of fatty acid oxidation. Therefore, PPARβ/δ is essential for maintaining mitochondrial biogenesis and defense in cardiomyocytes independent of PPARα.

  17. Gamma rays induce DNA damage and oxidative stress associated with impaired growth and reproduction in the copepod Tigriopus japonicus

    Han, Jeonghoon; Won, Eun-Ji; Lee, Bo-Young [Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Hwang, Un-Ki [Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Fisheries Research and Development Institute, Incheon 400-420 (Korea, Republic of); Kim, Il-Chan; Yim, Joung Han [Division of Life Sciences, Korea Polar Research Institute, Incheon 406-840 (Korea, Republic of); Leung, Kenneth Mei Yee [School of Biological Sciences and the Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Lee, Yong Sung [Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Jae-Seong, E-mail: jslee2@skku.edu [Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-07-01

    irradiation. Additionally, antioxidant genes, phase II enzyme (e.g. GSTs), and cellular chaperone genes (e.g. Hsps) that are involved in cellular defense mechanisms also showed the same expression patterns for sublethal doses of gamma irradiation (50–200 Gy). These findings indicate that sublethal doses of gamma radiation can induce oxidative stress-mediated DNA damage and increase the expression of antioxidant enzymes and proteins with chaperone-related functions, thereby significantly affecting life history parameters such as fecundity and molting in the copepod T. japonicus.

  18. Impaired Driving

    ... help prevent injuries and deaths from alcohol-impaired driving. The Problem Risk Factors BAC Effects Prevention Additional Resources How big is the problem? In 2014, 9,967 people were killed in alcohol-impaired driving crashes, accounting for nearly one-third (31%) of ...

  19. Visual Impairment

    ... poorly lit spaces, and colors that seem faded. Diabetic retinopathy (pronounced: reh-ton-AH-pa-thee) occurs when ... that is likely to cause visual impairment, many treatments are available. Options may include eyeglasses, contact lenses, ...

  20. Calpastatin overexpression reduces oxidative stress-induced mitochondrial impairment and cell death in human neuroblastoma SH-SY5Y cells by decreasing calpain and calcineurin activation, induction of mitochondrial fission and destruction of mitochondrial fusion.

    Tangmansakulchai, Kulvadee; Abubakar, Zuroida; Kitiyanant, Narisorn; Suwanjang, Wilasinee; Leepiyasakulchai, Chaniya; Govitrapong, Piyarat; Chetsawang, Banthit

    2016-09-01

    Calpain is an intracellular Ca(2+)-dependent protease, and the activation of calpain has been implicated in neurodegenerative diseases. Calpain activity can be regulated by calpastatin, an endogenous specific calpain inhibitor. Several lines of evidence have demonstrated a potential role of calpastatin in preventing calpain-mediated pathogenesis. Additionally, several studies have revealed that calpain activation and mitochondrial damage are involved in the cell death process; however, recent evidence has not clearly indicated a neuroprotective mechanism of calpastatin against calpain-dependent mitochondrial impairment in the process of neuronal cell death. Therefore, the purpose of this study was to investigate the potential ability of calpastatin to inhibit calpain activation and mitochondrial impairment in oxidative stress-induced neuron degeneration. Calpastatin was stably overexpressed in human neuroblastoma SH-SY5Y cells. In non-calpastatin overexpressing SH-SY5Y cells, hydrogen peroxide significantly decreased cell viability, superoxide dismutase activity, mitochondrial membrane potential, ATP production and mitochondrial fusion protein (Opa1) levels in the mitochondrial fraction but increased reactive oxygen species formation, calpain and calcineurin activation, mitochondrial fission protein (Fis1 and Drp1) levels in the mitochondrial fraction and apoptotic cells. Nevertheless, these toxic effects were abolished in hydrogen peroxide-treated calpastatin-overexpressing SH-SY5Y cells. The results of the present study demonstrate the potential ability of calpastatin to diminish calpain and calcineurin activation and mitochondrial impairment in neurons that are affected by oxidative damage. PMID:27453331

  1. Effect of Modified Wuzi Yanzong Granule(加味五子衍宗颗粒)on Patients with Mild Cognitive Impairment from Oxidative Damage Aspect

    2007-01-01

    Objective:To observe the effects of modified Wuzi Yanzong Granule(加味五子洐宗颗粒,WYG)on memory function and the activity of serum superoxide dismutase(SOD),malondialdehyde(MDA)levels,leukocyte mitochondrial DNA(mtDNA)deletion rate and β-amyloid protein1-28(Aβ1-28 )in patients with mild cognitive impairment(MCI).Methods:Thirty-six patients with MCI were selected based on the internationally recognized Petersen's criteria,and equally and randomly assigned to two groups.The treated group was treated with WYG and the control group was treated with placebo for 3 months.In addition,20 healthy subjects were included in the study as the normal control group.Changes of memory function,SOD activity,MDA content,leukocyte mtDNA deletion rate and Aβ1-28 content were observed before and after treatment.Results:Compared with the normal control group,the memory quotient and SOD activity in patients with MCI decreased significantly(P<0.01),while MDA,Aβ1-28 levels and the leukocyte mtDNA deletion rate increased significantly(P<0.01).After treatment,levels of memory quotient and serum SOD activity increased while the serum MDA level,leukocyte mtDNA deletion rate and Aβ1-28 level decreased in the treated group compared with those before treatment(P<0.01,P<0.05).Meanwhile,leukocyte mtDNA deletion rate and Aβ1-28 content in the treated group were all lower than those in the control group(P<0.05).Conclusion:WYG could improve memory function in patients with MCI and the therapeutic mechanism is possibly related to the increased activity of anti-oxidase,the improved free radical metabolism and the alleviation of leukocyte mtDNA oxidation damage.WYG shows clinical significance in delaying the progression of MCI.

  2. Impaired Phagocytosis of Apoptotic Cells by Macrophages in Chronic Granulomatous Disease Is Reversed by IFN-γ in a Nitric Oxide-Dependent Manner

    Fernandez-Boyanapalli, Ruby; McPhillips, Kathleen A.; Frasch, S. Courtney; Janssen, William J.; Dinauer, Mary C.; Riches, David W.H.; Henson, Peter M.; Byrne, Aideen; Bratton, Donna L.

    2010-01-01

    Immunodeficiency in chronic granulomatous disease (CGD) is well characterized. Less understood are exaggerated sterile inflammation and autoimmunity associated with CGD. Impaired recognition and clearance of apoptotic cells resulting in their disintegration may contribute to CGD inflammation. We hypothesized that priming of macrophages (Mϕs) with IFN-γ would enhance impaired engulfment of apoptotic cells in CGD. Diverse Mϕ populations from CGD (gp91phox−/−) and wild-type mice, as well as huma...

  3. Adaptation of a thermo assay balance to the study of oxidation by water vapor and / or oxygen at high temperatures

    The construction of an apparatus which allows the continuous follow-up of oxidation in the presence of steam, with different addition of O2 is described. This apparatus permits to abserve the initial kinetics of oxidation of the stainless steel type 18-10 in mixtures steam/oxygen. (A.R.)

  4. Hearing Impairment

    ... hearing loss is present at birth. Acquired hearing loss happens later in life — during childhood, the teen years, or in adulthood — ... for your ears to avoid a permanent hearing loss. See your doctor right away ... basis. What's Life Like for People Who Are Hearing Impaired? For ...

  5. Developmental exposure to polychlorinated biphenyls or methylmercury, but not to its combination, impairs the glutamate-nitric oxide-cyclic GMP pathway and learning in 3-month-old rats.

    Piedrafita, B; Erceg, S; Cauli, O; Felipo, V

    2008-07-17

    Prenatal exposure to polychlorinated biphenyls (PCBs) or methylmercury (MeHg) contaminated food may affect brain development, leading to long-term alterations in cognitive function. Both types of contaminants, PCBs and MeHg, are often found together contaminating food, especially fish in some polluted areas. Exposure to combinations of neurotoxicants may exert different effects on the developing nervous system than exposure to individual contaminants. Developmental exposure (during pregnancy and lactation) to PCB126 or PCB153 impairs learning ability when the rats are 3 months old. Impairment of learning seems to be a consequence of impairment of the function of the glutamate-nitric oxide (NO)-cGMP pathway in brain in vivo. The aims of the present work were 1) to assess whether perinatal exposure to MeHg also affects the function of the glutamate-NO-cGMP pathway in brain in vivo analyzed by in vivo brain microdialysis and/or the ability to learn the Y maze task when the rats are 3 months old, and 2) to assess whether perinatal exposure to combinations of MeHg with PCB153 or PCB126 potentiates, decreases or does not modify the effects of the individual neurotoxicants. Perinatal exposure to PCB126, PCB153 or MeHg impaired the function of the glutamate-NO-cGMP pathway in cerebellum and learning ability. However, co-exposure to PCB126+MeHg or PCB153+MeHg inhibits the impairment of the pathway or learning ability. These results support that the function of this pathway modulates learning of the Y maze task. Moreover, they show that co-exposure to these PCBs and MeHg does not exacerbate, but reduces the effects on the ability to learn this task. PMID:18556134

  6. Part I. Molecular and cellular characterization of high nitric oxide-adapted human breast adenocarcinoma cell lines

    Vesper, B; Onul, A; Haines III, G; Tarjan, G; Xue, J; Elseth, K; Aydogan, B.; Altman, M.; Roeske, J; Paradise, W; De Vitto, H; Radosevich, J

    2013-01-01

    There is a lack of understanding of the casual mechanisms behind the observation that some breast adenocarcinomas have identical morphology and comparatively different cellular growth behavior. This is exemplified by a differential response to radiation, chemotherapy, and other biological intervention therapies. Elevated concentrations of the free radical nitric oxide (NO), coupled with the up-regulated enzyme nitric oxide synthase (NOS) which produces NO, are activities which impact tumor gr...

  7. AMPK-mediated increase of glycolysis as an adaptive response to oxidative stress in human cells: implication of the cell survival in mitochondrial diseases.

    Wu, Shi-Bei; Wei, Yau-Huei

    2012-02-01

    We report that the energy metabolism shifts to anaerobic glycolysis as an adaptive response to oxidative stress in the primary cultures of skin fibroblasts from patients with MERRF syndrome. In order to unravel the molecular mechanism involved in the alteration of energy metabolism under oxidative stress, we treated normal human skin fibroblasts (CCD-966SK cells) with sub-lethal doses of H(2)O(2). The results showed that several glycolytic enzymes including hexokinase type II (HK II), lactate dehydrogenase (LDH) and glucose transporter 1 (GLUT1) were up-regulated in H(2)O(2)-treated normal skin fibroblasts. In addition, the glycolytic flux of skin fibroblasts was increased by H(2)O(2) in a dose-dependent manner through the activation of AMP-activated protein kinase (AMPK) and phosphorylation of its downstream target, phosphofructokinase 2 (PFK2). Moreover, we found that the AMPK-mediated increase of glycolytic flux by H(2)O(2) was accompanied by an increase of intracellular NADPH content. By treatment of the cells with glycolysis inhibitors, an AMPK inhibitor or genetic knockdown of AMPK, respectively, the H(2)O(2)-induced increase of NADPH was abrogated leading to the overproduction of intracellular ROS and cell death. Significantly, we showed that phosphorylation levels of AMPK and glycolysis were up-regulated to confer an advantage of survival for MERRF skin fibroblasts. Taken together, our findings suggest that the increased production of NADPH by AMPK-mediated increase of the glycolytic flux contributes to the adaptation of MERRF skin fibroblasts and H(2)O(2)-treated normal skin fibroblasts to oxidative stress. PMID:22001850

  8. The 2013 SFRBM discovery award: selected discoveries from the butterfield laboratory of oxidative stress and its sequela in brain in cognitive disorders exemplified by Alzheimer disease and chemotherapy induced cognitive impairment.

    Butterfield, D Allan

    2014-09-01

    This retrospective review on discoveries of the roles of oxidative stress in brain of subjects with Alzheimer disease (AD) and animal models thereof as well as brain from animal models of chemotherapy-induced cognitive impairment (CICI) results from the author receiving the 2013 Discovery Award from the Society for Free Radical Biology and Medicine. The paper reviews our laboratory's discovery of protein oxidation and lipid peroxidation in AD brain regions rich in amyloid β-peptide (Aβ) but not in Aβ-poor cerebellum; redox proteomics as a means to identify oxidatively modified brain proteins in AD and its earlier forms that are consistent with the pathology, biochemistry, and clinical presentation of these disorders; how Aβ in in vivo, ex vivo, and in vitro studies can lead to oxidative modification of key proteins that also are oxidatively modified in AD brain; the role of the single methionine residue of Aβ(1-42) in these processes; and some of the potential mechanisms in the pathogenesis and progression of AD. CICI affects a significant fraction of the 14 million American cancer survivors, and due to diminished cognitive function, reduced quality of life of the persons with CICI (called "chemobrain" by patients) often results. A proposed mechanism for CICI employed the prototypical ROS-generating and non-blood brain barrier (BBB)-penetrating chemotherapeutic agent doxorubicin (Dox, also called adriamycin, ADR). Because of the quinone moiety within the structure of Dox, this agent undergoes redox cycling to produce superoxide free radical peripherally. This, in turn, leads to oxidative modification of the key plasma protein, apolipoprotein A1 (ApoA1). Oxidized ApoA1 leads to elevated peripheral TNFα, a proinflammatory cytokine that crosses the BBB to induce oxidative stress in brain parenchyma that affects negatively brain mitochondria. This subsequently leads to apoptotic cell death resulting in CICI. This review outlines aspects of CICI consistent with

  9. Integrating nitric oxide, nitrite and hydrogen sulfide signaling in the physiological adaptations to hypoxia: A comparative approach

    Fago, Angela; Jensen, Frank Bo; Tota, Bruno;

    2012-01-01

    Hydrogen sulfide (H2S), nitric oxide (NO) and nitrite (NO2-) are formed in vivo and are of crucial importance in the tissue response to hypoxia, particularly in the cardiovascular system, where these signaling molecules are involved in a multitude of processes including the regulation of vascular...

  10. Berberine exerts an anticonvulsant effect and ameliorates memory impairment and oxidative stress in a pilocarpine-induced epilepsy model in the rat

    Gao, Fei; Gao, Ying; Liu, Yang-Feng; Wang, Li; Li, Ya-Jun

    2014-01-01

    Though new antiepileptic drugs are emerging, approximately a third of epileptic patients still suffer from recurrent convulsions and cognitive dysfunction. Therefore, we tested whether berberine (Ber), a vegetable drug, has an anticonvulsant property and attenuates memory impairment in a pilocarpine (Pilo)-induced epilepsy model in rats. The rats were injected with 400 mg/kg Pilo to induce convulsions, and Ber 25, 50, and 100 mg/kg were administrated by the intragastric route once daily 7 day...

  11. The Architecture of Iron Microbial Mats Reflects the Adaptation of Chemolithotrophic Iron Oxidation in Freshwater and Marine Environments

    Chan, Clara S.; McAllister, Sean M.; Leavitt, Anna H.; Brian T. Glazer; Krepski, Sean T.; Emerson, David

    2016-01-01

    Microbes form mats with architectures that promote efficient metabolism within a particular physicochemical environment, thus studying mat structure helps us understand ecophysiology. Despite much research on chemolithotrophic Fe-oxidizing bacteria, Fe mat architecture has not been visualized because these delicate structures are easily disrupted. There are striking similarities between the biominerals that comprise freshwater and marine Fe mats, made by Beta- and Zetaproteobacteria, respecti...

  12. Application of adaptive neuro-fuzzy inference system techniques and artificial neural networks to predict solid oxide fuel cell performance in residential microgeneration installation

    Entchev, Evgueniy; Yang, Libing [Integrated Energy Systems Laboratory, CANMET Energy Technology Centre, 1 Haanel Dr., Ottawa, Ontario (Canada)

    2007-06-30

    This study applies adaptive neuro-fuzzy inference system (ANFIS) techniques and artificial neural network (ANN) to predict solid oxide fuel cell (SOFC) performance while supplying both heat and power to a residence. A microgeneration 5 kW{sub el} SOFC system was installed at the Canadian Centre for Housing Technology (CCHT), integrated with existing mechanical systems and connected in parallel to the grid. SOFC performance data were collected during the winter heating season and used for training of both ANN and ANFIS models. The ANN model was built on back propagation algorithm as for ANFIS model a combination of least squares method and back propagation gradient decent method were developed and applied. Both models were trained with experimental data and used to predict selective SOFC performance parameters such as fuel cell stack current, stack voltage, etc. The study revealed that both ANN and ANFIS models' predictions agreed well with variety of experimental data sets representing steady-state, start-up and shut-down operations of the SOFC system. The initial data set was subjected to detailed sensitivity analysis and statistically insignificant parameters were excluded from the training set. As a result, significant reduction of computational time was achieved without affecting models' accuracy. The study showed that adaptive models can be applied with confidence during the design process and for performance optimization of existing and newly developed solid oxide fuel cell systems. It demonstrated that by using ANN and ANFIS techniques SOFC microgeneration system's performance could be modelled with minimum time demand and with a high degree of accuracy. (author)

  13. Differential Mitochondrial Adaptation in Primary Vascular Smooth Muscle Cells from a Diabetic Rat Model

    Keller, Amy C.; Knaub, Leslie A; P. Mason McClatchey; Chelsea A. Connon; Ron Bouchard; Miller, Matthew W.; Kate E. Geary; Walker, Lori A.; Klemm, Dwight J.; Reusch, Jane E. B.

    2016-01-01

    Diabetes affects more than 330 million people worldwide and causes elevated cardiovascular disease risk. Mitochondria are critical for vascular function, generate cellular reactive oxygen species (ROS), and are perturbed by diabetes, representing a novel target for therapeutics. We hypothesized that adaptive mitochondrial plasticity in response to nutrient stress would be impaired in diabetes cellular physiology via a nitric oxide synthase- (NOS-) mediated decrease in mitochondrial function. ...

  14. ECONOMIC EFFICIENT PRODUCTION OF BIOMASS ADAPTED TO THE SUBSTRATE OF OIL OXIDIZING ACTINOBACILLOSIS USED IN BIOREMEDIATION PROCESSES

    Khudokormov A. A.

    2013-10-01

    Full Text Available In the article we have studied the technology of obtaining a biomass of oil oxidizing microorganisms in a nutrient medium containing vegetable oil as the sole source of carbon and energy. In vitro and in soil experiment we have confirmed the effectiveness of the resulting biomass at work on bioremediation of oil contaminated sites. It is shown that the use of vegetable oil during culturing allows obtaining the same amount of biomass and carbohydrate raw materials, but the efficiency of its use is 20% higher, in average

  15. Isoliquiritigenin impairs insulin signaling and adipocyte differentiation through the inhibition of protein-tyrosine phosphatase 1B oxidation in 3T3-L1 preadipocytes.

    Park, Sun-Ji; Choe, Young-Geun; Kim, Jung-Hak; Chang, Kyu-Tae; Lee, Hyun-Shik; Lee, Dong-Seok

    2016-07-01

    Isoliquritigenin (ISL) is an abundant dietary flavonoid with a chalcone structure, which is an important constituent in Glycyrrhizae Radix (GR). ISL exhibits anti-oxidant activity, and this activity has been shown to play a beneficial role in various health conditions. However, it is unclear whether the anti-oxidant activity of ISL affects insulin signaling pathway and lipid accumulation of adipocytes. We sought to investigate the effects and molecular mechanisms of ISL on insulin-stimulated adipogenesis in 3T3-L1 cells. We investigated whether ISL attenuates insulin-induced Reactive Oxygen Species (ROS) generation, and whether ISL inhibits the lipid accumulation and the expression of adipogenic-genes during the differentiation of 3T3-L1 cells. ISL blocked the ROS generation, suppressed the lipid accumulation and the expression of adipocyte-specific proteins, which are increased in response to insulin stimulation during adipocyte differentiation of 3T3-L1 cells. We also investigated whether the anti-oxidant capacity of ISL is involved in regulating the molecular events of insulin-signaling cascade in 3T3-L1 adipocytes. ISL restores PTP1B activity by inhibiting PTP1B oxidation and IR/PI3K/AKT phosphorylation during the early stages of insulin-induced adipogenesis. Our findings show that the anti-oxidant capacity of ISL attenuated insulin IR/PI3K/AKT signaling through inhibition of PTP1B oxidation, and ultimately attenuated insulin-induced adipocyte differentiation of 3T3-L1 cells. PMID:27117918

  16. Nitric oxide derived from L-arginine impairs cytoplasmic pH regulation by vacuolar-type H+ ATPases in peritoneal macrophages

    1991-01-01

    The ability of macrophages (Mos) to function within an acidic environment has been shown to depend on cytoplasmic pH (pHi) regulation by vacuolar-type H+ ATPases. Mos metabolize L-arginine via an oxidative pathway that generates nitric oxide, nitrate, and nitrite. Since each of these products could potentially inhibit vacuolar-type H+ ATPases, we investigated the effect of L-arginine metabolism on Mo pHi regulation in thioglycolate-elicited murine peritoneal Mos. H+ ATPase- mediated pHi recov...

  17. Phospholipase A2 - nexus of aging, oxidative stress, neuronal excitability and functional decline of the aging nervous system? Insights from a snail model system of neuronal aging and age-associated memory impairment.

    Petra Maria Hermann

    2014-12-01

    Full Text Available TThe aging brain can undergo a range of changes varying from subtle structural and physiological changes causing only minor functional decline under healthy normal aging conditions, to severe cognitive or neurological impairment associated with extensive loss of neurons and circuits due to age-associated neurodegenerative disease conditions. Understanding how biological aging processes affect the brain and how they contribute to the onset and progress of age-associated neurodegenerative diseases is a core research goal in contemporary neuroscience. This review focuses on the idea that changes in intrinsic neuronal electrical excitability associated with (peroxidation of membrane lipids and activation of phospholipase A2 (PLA2 enzymes are an important mechanism of learning and memory failure under normal aging conditions. Specifically, in the context of this special issue on the Biology of cognitive aging we (1 portray the opportunities offered by the identifiable neurons and behaviorally characterized neural circuits of the freshwater snail Lymnaea stagnalis in neuronal aging research and (2 recapitulate recent insights indicating a key role of lipid peroxidation-induced PLA2 as instruments of aging, oxidative stress and inflammation in age-associated neuronal and memory impairment in this model system. The findings are discussed in view of accumulating evidence suggesting involvement of analogous mechanisms in the etiology of age-associated dysfunction and disease of the human and mammalian brain.

  18. Acompanhamento da adaptação de próteses auditivas em crianças surdas Evaluating the adaptation of hearing aids for hearing impaired children

    Bianca Pinheiro Lanzetta

    2010-06-01

    Full Text Available OBJETIVOS: descrever as características audiológicas e sociais de crianças surdas e avaliar a incidência de retornos para acompanhamento no Programa de Saúde Auditiva. MÉTODOS: foram analisados os prontuários de crianças que receberam as próteses auditivas pelo Programa de Saúde Auditiva, em Vila Velha - Espírito Santo. A população estudada foi constituída por 50 crianças, na faixa etária de zero a oito anos, de ambos os sexos, com diagnóstico de perda auditiva sensorioneural de grau leve a profundo. O protocolo de pesquisa foi preenchido a partir dos dados de prontuários para a obtenção das informações desejadas. RESULTADOS: a solicitação de retorno pelo Serviço Social propiciou o comparecimento de quase da metade da população (44%; os demais achados foram indicativos da associação entre o retorno para acompanhamento e a rotina escolar. CONCLUSÕES: o referido programa atinge predominantemente famílias com rendimento mensal entre um e dois salários mínimos; o diagnóstico da surdez ocorre entre dois e três anos de idade cronológica neste estudo; a época da primeira adaptação de próteses auditivas, aos seis anos de idade, é bastante tardia; o contato com os pais, por meio do Serviço Social, viabiliza o acompanhamento proposto, influenciado positivamente também pela rotina escolar.PURPOSE: to describe the compliance and attitudes of hearing-impaired children towards the treatment and support offered by the Hearing Health Program, a public health endeavor, and assessing patients’ returns for follow-ups. METHODS: participants consisted of fifty children aged from 0 to 8 years, with a diagnosis of mild to severe sensorineural hearing loss. The children received the hearing aids from the Hearing Health Program, in Vila Velha, in the state of Espírito Santo, Brazil. The research protocol was completed using both medical records and a socio-economical profile survey of the affected children, including the

  19. Liquid fructose downregulates Sirt1 expression and activity and impairs the oxidation of fatty acids in rat and human liver cells.

    Rebollo, Alba; Roglans, Núria; Baena, Miguel; Sánchez, Rosa M; Merlos, Manel; Alegret, Marta; Laguna, Juan C

    2014-04-01

    Fructose ingestion is associated with the production of hepatic steatosis and hypertriglyceridemia. For fructose to attain these effects in rats, simultaneous induction of fatty acid synthesis and inhibition of fatty acid oxidation is required. We aimed to determine the mechanism involved in the inhibition of fatty acid oxidation by fructose and whether this effect occurs also in human liver cells. Female rats were supplemented or not with liquid fructose (10% w/v) for 7 or 14 days; rat (FaO) and human (HepG2) hepatoma cells, and human hepatocytes were incubated with fructose 25mM for 24h. The expression and activity of the enzymes and transcription factors relating to fatty acid β-oxidation were evaluated. Fructose inhibited the activity of fatty acid β-oxidation only in livers of 14-day fructose-supplemented rats, as well as the expression and activity of peroxisome proliferator activated receptor α (PPARα). Similar results were observed in FaO and HepG2 cells and human hepatocytes. PPARα downregulation was not due to an osmotic effect or to an increase in protein-phosphatase 2A activity caused by fructose. Rather, it was related to increased content in liver of inactive and acetylated peroxisome proliferator activated receptor gamma coactivator 1α, due to a reduction in sirtuin 1 expression and activity. In conclusion, fructose inhibits liver fatty acid oxidation by reducing PPARα expression and activity, both in rat and human liver cells, by a mechanism involving sirtuin 1 down-regulation. PMID:24434080

  20. Chronic Cigarette Smoking Impairs Erectile Function through Increased Oxidative Stress and Apoptosis, Decreased nNOS, Endothelial and Smooth Muscle Contents in a Rat Model.

    Yun-Ching Huang

    Full Text Available Cigarette use is an independent risk factor for the development of erectile dysfunction (ED. While the association between chronic smoking and ED is well established, the fundamental mechanism(s of cigarette-related ED are incompletely understood, partly due to no reliable animal model of smoking-induced ED. The present study was designed to validate an in vivo rat model of chronic cigarette-induced ED. Forty 12-week old male Sprague-Dawley rats were divided into 4 groups. Ten rats served as control group and were exposed only to room air. The remaining 30 rats were passively exposed to cigarette smoke (CS for 4 weeks (n = 10, 12 weeks (n = 10, and 24 weeks (n = 10. At the 24-week time point all rats were assessed with intracavernous pressure (ICP during cavernous nerve electrostimulation. Blood and urine were collected to measure serum testosterone and oxidative stress, respectively. Corporal tissue was assessed by Western blot for neuronal nitric oxide synthase (nNOS. Penile tissues were subjected to immunohistochemistry for endothelial, smooth muscle, and apoptotic content. Mean arterial pressure (MAP was significantly higher in 24-week cigarette exposed animals compared to the control animals. Mean ICP/MAP ratio and cavernosal smooth muscle/endothelial contents were significantly lower in the 12- and 24-week rats compared to control animals. Oxidative stress was significantly higher in the 24-week cigarette exposed group compared to control animals. Mean nNOS expression was significantly lower, and apoptotic index significantly higher, in CS-exposed animals compared to control animals. These findings indicate that the rat model exposure to CS increases apoptosis and oxidative stress and decreases nNOS, endothelial and smooth muscle contents, and ICP in a dose dependent fashion. The rat model is a useful tool for further study of the molecular and cellular mechanisms of CS-related ED.

  1. Chronic Cigarette Smoking Impairs Erectile Function through Increased Oxidative Stress and Apoptosis, Decreased nNOS, Endothelial and Smooth Muscle Contents in a Rat Model.

    Huang, Yun-Ching; Chin, Chih-Chien; Chen, Chih-Shou; Shindel, Alan W; Ho, Dong-Ru; Lin, Ching-Shwun; Shi, Chung-Sheng

    2015-01-01

    Cigarette use is an independent risk factor for the development of erectile dysfunction (ED). While the association between chronic smoking and ED is well established, the fundamental mechanism(s) of cigarette-related ED are incompletely understood, partly due to no reliable animal model of smoking-induced ED. The present study was designed to validate an in vivo rat model of chronic cigarette-induced ED. Forty 12-week old male Sprague-Dawley rats were divided into 4 groups. Ten rats served as control group and were exposed only to room air. The remaining 30 rats were passively exposed to cigarette smoke (CS) for 4 weeks (n = 10), 12 weeks (n = 10), and 24 weeks (n = 10). At the 24-week time point all rats were assessed with intracavernous pressure (ICP) during cavernous nerve electrostimulation. Blood and urine were collected to measure serum testosterone and oxidative stress, respectively. Corporal tissue was assessed by Western blot for neuronal nitric oxide synthase (nNOS). Penile tissues were subjected to immunohistochemistry for endothelial, smooth muscle, and apoptotic content. Mean arterial pressure (MAP) was significantly higher in 24-week cigarette exposed animals compared to the control animals. Mean ICP/MAP ratio and cavernosal smooth muscle/endothelial contents were significantly lower in the 12- and 24-week rats compared to control animals. Oxidative stress was significantly higher in the 24-week cigarette exposed group compared to control animals. Mean nNOS expression was significantly lower, and apoptotic index significantly higher, in CS-exposed animals compared to control animals. These findings indicate that the rat model exposure to CS increases apoptosis and oxidative stress and decreases nNOS, endothelial and smooth muscle contents, and ICP in a dose dependent fashion. The rat model is a useful tool for further study of the molecular and cellular mechanisms of CS-related ED. PMID:26491965

  2. Creating workshops for blind and visually impaired

    Rot, Peter

    2013-01-01

    The thesis Načrtovanje projektnih delavnic za osebe s slepoto in slabovidnostjo discusses the planning stage and the performance of projects for blind and visually impaired adults. It points out the positive effects of those projects on the life of an individual. Adults and senior citizens who are not blind from birth often lack professional help which would enable their adaptation to the life of blind and visually impaired. The thesis concentrates on one of the ways of integrating blind and ...

  3. Gestural Interfaces for Hearing-Impaired Communication

    Aran, Oya; Burger, Thomas; Akarun, Lale; Caplier, Alice

    2008-01-01

    International audience Gestural interfaces, besides providing natural means of human computer interaction for everyone, enable the hearing impaired to use sign language or better understand speech through vision. This chapter overviews (1) the various modalities involved in gestured languages (2) the mean to automatically apprehend them individually and (3) to fuse them in order to provide a communication medium adapted to hearing-impaired. We present two example applications, a sign langu...

  4. Toxicity of cobalt ferrite (CoFe2O4) nanobeads in Chlorella vulgaris: interaction, adaptation and oxidative stress.

    Ahmad, Farooq; Yao, Hongzhou; Zhou, Ying; Liu, Xiaoyi

    2015-11-01

    The potential toxicity of CoFe2O4 nanobeads (NBs) in Chlorella vulgaris was observed up to 72h. Algal cell morphology, membrane integrity and viability were severely compromised due to adsorption and aggregation of NBs on algal surfaces, release of Fe(3+) and Co(2+) ions and possible mechanical damage by NBs. Interactions with NBs and effective decrease in ions released by aggregation and exudation of algal cells as a self defense mechanism were observed by Fourier transform infrared attenuated total reflectance (FTIR-ATR) and inductively coupled plasma mass spectrometry (ICP-MS). The results corroborated CoFe2O4 NBs induced ROS triggered oxidative stress, leading to a reduction in catalase activity, activation of the mutagenic glutathione s-transferase (mu-GST) and acid phosphatase (AP) antioxidant enzymes, and an increase in genetic aberrations, metabolic and cellular signal transduction dysfunction. Circular dichroism (CD) spectra indicated the weak interactions of NBs with BSA, with slight changes in the α-helix structure of BSA confirming conformational changes in structure, hence the potential for functional interactions with biomolecules. Possible interferences of CoFe2O4 NBs with assay techniques and components indicated CoFe2O4 NBs at lower concentration do not show any significant interference with ROS, catalase, mu-GST and no interference with CD measurements. This study showed ROS production is one of the pathways of toxicity initiated by CoFe2O4 NBs and illustrates the complex processes that may occur between organisms and NBs in natural complex ecosystem. PMID:26291677

  5. Adaptive Inverse Control Based on Least Square Support Vector Machines for Solid Oxide Fuel Cell%基于LS-SVM的SOFC系统自适应逆控制

    刘宗辉; 王阳华; 杨慧君

    2013-01-01

    The operating temperature and voltage are the key parameters affecting the performance of Solid Oxide Fuel Cell( SOFC) . Aiming at the strong nonlinear of SOFC and conventional mature linear theory does not apply, the paper adopted an adaptive inverse control strategy based on least square support vector machine. First, the principle dynamic model of SOFC was constructed. Then, the LS-SVM method was used to establish the inverse dynamics model of SOFC. Based on the inverse dynamic model acquired, a control algorithm based on recursive least squares support vector machine(RLS-SVM) of inverse dynamics was designed. In this adaptive inverse control mechanism, the inverse dynamic model was updated by RLS algorithm. The parameters of controller were adjusted on—line with e—filtering. The simulations of SOFC system identification and control show that the method is credibility, the inverse dynamic model identified has high precision and the designed controller has good control performance. The simulation results can provide certain theoretical basis for the practical and industrialization of SOFC.%关于固体氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)性能的优化问题,其中工作温度和电压是关键参数.针对固体氧化物燃料具有较强的非线性且常规成熟线性理论不适用的特点,提出了一种最小二乘支持向量机(LS-SVM)的自适应逆控制策略.首先建立了SOFC的机理模型,然后采用LS-SVM方法建立了SOFC系统的逆动力学模型.在获得逆动力学模型的基础上,设计了一种逆动力学递推最小二乘支持向量机的控制方法.在自适应逆控制下,逆模型通过RLS算法更新,控制器依据ε-滤波进行在线调整.SOFC系统辨识和仿真结果表明,改进方法的可信性,辨识出的逆动力模型具有较高的精度,所设计的控制器能获得较好的控制性能.仿真结果可以为SOFC的实用化和产业化提供一定的理论依据.

  6. Parkinson's disease brain mitochondria have impaired respirasome assembly, age-related increases in distribution of oxidative damage to mtDNA and no differences in heteroplasmic mtDNA mutation abundance

    Keeney Paula M

    2009-09-01

    Full Text Available Abstract Background Sporadic Parkinson's disease (sPD is a nervous system-wide disease that presents with a bradykinetic movement disorder and is frequently complicated by depression and cognitive impairment. sPD likely has multiple interacting causes that include increased oxidative stress damage to mitochondrial components and reduced mitochondrial bioenergetic capacity. We analyzed mitochondria from postmortem sPD and CTL brains for evidence of oxidative damage to mitochondrial DNA (mtDNA, heteroplasmic mtDNA point mutations and levels of electron transport chain proteins. We sought to determine if sPD brains possess any mtDNA genotype-respiratory phenotype relationships. Results Treatment of sPD brain mtDNA with the mitochondrial base-excision repair enzyme 8-oxyguanosine glycosylase-1 (hOGG1 inhibited, in an age-dependent manner, qPCR amplification of overlapping ~2 kbase products; amplification of CTL brain mtDNA showed moderate sensitivity to hOGG1 not dependent on donor age. hOGG1 mRNA expression was not different between sPD and CTL brains. Heteroplasmy analysis of brain mtDNA using Surveyor nuclease® showed asymmetric distributions and levels of heteroplasmic mutations across mtDNA but no patterns that statistically distinguished sPD from CTL. sPD brain mitochondria displayed reductions of nine respirasome proteins (respiratory complexes I-V. Reduced levels of sPD brain mitochondrial complex II, III and V, but not complex I or IV proteins, correlated closely with rates of NADH-driven electron flow. mtDNA levels and PGC-1α expression did not differ between sPD and CTL brains. Conclusion PD brain mitochondria have reduced mitochondrial respiratory protein levels in complexes I-V, implying a generalized defect in respirasome assembly. These deficiencies do not appear to arise from altered point mutational burden in mtDNA or reduction of nuclear signaling for mitochondrial biogenesis, implying downstream etiologies. The origin of age

  7. Antioxidant enzymes and oxidative stress adaptation to exercise training: Comparison of endurance, resistance, and concurrent training in untrained males

    Kamal Azizbeigi

    2014-06-01

    Full Text Available The aim of this study was to compare the effect of endurance training (ET, resistance training (RT, and concurrent training (CT on circulating antioxidant capacity and oxidative stress. For this purpose, 30 men aged 21.7 ± 2.4 years were assigned to the following three training groups: ET, which included continuous running with incremental intensity that was increased up to 80% of maximal heart rate (n = 10; RT, which included a beginning load of 50% of one repetition maximum (1RM that was increased up to 80% of 1RM (n = 10; and CT, which included ET and RT programs every other day during the week (n = 10. Activities of superoxide dismutase (SOD and glutathione peroxidase (GPx in erythrocytes and total antioxidant capacity (TAC and malondialdehyde (MDA level in plasma were measured. The results showed that SOD significantly increased by 21.85% (p = 0.020, 9.54% (p = 0.032, and 14.55% (p = 0.038 in the ET, RT, and CT groups, respectively. Furthermore, the activity of erythrocyte GPx significantly increased in the ET (p = 0.018 and CT (p = 0.042 groups. The TAC increased significantly in the ET (p = 0.040 and CT (p = 0.049 groups compared with the pretest values. The MDA level significantly decreased in the ET group by 32.7% (p = 0.028, by 32% in the RT group (p = 0.025, and by 29.1% (p = 0.047 in the CT group. However, there was no significant difference in the interaction of time and group between variables of SOD and GPx enzymes and TAC of plasma and MDA in the ET, RT, and CT groups (p < 0.05. It can be concluded that all three training types induced the same changes in redox state (increased SOD activity and reduction in MDA levels, but at different rates.

  8. Saponin-rich fraction from Clematis chinensis Osbeck roots protects rabbit chondrocytes against nitric oxide-induced apoptosis via preventing mitochondria impairment and caspase-3 activation.

    Wu, Wenjun; Gao, Xinghua; Xu, Xianxiang; Luo, Yubin; Liu, Mei; Xia, Yufeng; Dai, Yue

    2013-03-01

    Our previous study reported that the saponin-rich fraction from Clematis chinensis Osbeck roots (SFC) could effectively alleviate experimental osteoarthritis induced by monosodium iodoacetate in rats through protecting articular cartilage and inhibiting local inflammation. The present study was performed to investigate the preventive effects of SFC on articular chondrocyte, and explore the underlying mechanisms. Primary rabbit chondrocytes were cultured and exposed to sodium nitroprusside (SNP), a NO donor. After treatment with different concentrations of SFC (30, 100, 300, 1,000 μg/ml) for 24 h, nucleic morphology, apoptotic rate, mitochondrial function and caspase-3 activity of chondrocytes were examined. The results showed that SNP induced remarkable apoptosis of rabbit chondrocytes evidenced by Hoechst 33258 staining and flow cytometry analysis, and SFC prevented the apoptosis in a concentration-dependent manner. Further studies indicated that SFC could prevent the depolarization of mitochondrial membrane potential (∆ψm) in SNP-treated chondrocytes and suppress the activation of caspase-3. It can be concluded that the protection of SFC on articular chondrocytes is associated with the anti-apoptosis effects via inhibiting the mitochondrion impairment and caspase-3 activation. PMID:22821055

  9. Antagonism of lycopene on pulmonary oxidative impairment induced by O3 in rats%番茄红素对臭氧致大鼠肺氧化损伤的拮抗作用

    潘洪志; 万丽葵; 常东

    2004-01-01

    ,差异有显著性意义(P<0 05).结论:吸入臭氧能够造成机体氧化损伤,番茄红素可以拮抗臭氧造成的氧化损伤.%BACKGROUND: O3 is a kind of strong oxidant, which induces lipid peroxidation, impairs organic anti-oxidase and results in oxidative impairment. Lung is the main organ in charge of air exchange between the human body and outer environment. Since it connects with the outer environment directly, the lung is the first organ to be attacked earliest by O3 and results in oxidative impairment. Lycopene is a kind of important carotenoid with various biological functions, such as antioxidation, anti-carcinoma, inducing message connection among inter-cells, etc.OBJECTIVE: To probe into the oxidative impairment of O3 in rats and protection of lycopene.DESIGN: A randomized controlled experimental study.SETTINGS: Sanitary Test Center, College of Public Health, Harbin Medical University; Heilongjiang Center for Disease Control and Prevention; Department of Laboratory, the First Affiliated Hospital of Harbin Medical University.PARTICIPANTS: The experiment was performed in the Animal Room of College of Public Health, Harbin Medical University. Forty pure male SD rats were emplored, provided by the Experimental Animal Center of the Second Affiliated Hospital of Haerbin Medical University.INTERVENTIONS: To divide normal control, O3 impaired model group,low dosage of lycopene group( 10 mg/kg) and high dosage of lycopene group (20 mg/kg). Except in the control, the rats in the rest groups were poisoned by O3. Lycopene was applied for lycopene groups except model and control groups. The rats were sacrificed 3 weeks later and the serum and pulmonary tissues were collected to prepare homogenate.MAIN OUTCOME MEASURES: Activity of superoxide dismutase(SOD), activity of glutathione peroxides(GSH-Px) and content of malondi aldehyde(MDA) in serum and pulmonary homogenate.RESULTS: O3 could remarkably affect the activity of anti-oxidase, reduce SOD activity[(4 645.60±891.85) μkat/L in

  10. Part II. Mitochondrial mutational status of high nitric oxide adapted cell line BT-20 (BT-20-HNO) as it relates to human primary breast tumors.

    De Vitto, H; Mendonça, B S; Elseth, K M; Vesper, B J; Portari, E A; Gallo, C V M; Paradise, W A; Rumjanek, F D; Radosevich, J A

    2013-02-01

    Mitochondria combine hydrogen and oxygen to produce heat and adenosine triphosphate (ATP). As a toxic by-product of oxidative phosphorylation (OXPHOS), mitochondria generate reactive oxygen species (ROS). These free radicals may cause damage to mitochondrial DNA (mtDNA) and other molecules in the cell. Nitric oxide (NO) plays an important role in the biology of human cancers, including breast cancer; however, it is still unclear how NO might affect the mitochondrial genome. The aim of the current study is to determine the role of mtDNA in the breast oncogenic process. Using DNA sequencing, we studied one breast cancer cell line as a model system to investigate the effects of oxidative stress. The BT-20 cell line was fully adapted to increasing concentrations of the NO donor DETA-NONOate and is referred to as BT-20-HNO, a high NO (HNO) cell line. The HNO cell line is biologically different from the "parent" cell line from which it originated. Moreover, we investigated 71 breast cancer biopsies and the corresponding noncancerous breast tissues. The free radical NO was able to generate somatic mtDNA mutations in the BT-20-HNO cell line that were missing in the BT-20 parent cell line. We identified two somatic mutations, A4767G and G13481A, which changed the amino acid residues. Another two point mutations were identified in the mtDNA initiation replication site at nucleotide 57 and at the 'hot spot' cytidine-rich D300-310 segment. Furthermore, the NO regulated the mtDNA copy number and selected different mtDNA populations by clonal expansion. Interestingly, we identified eight somatic mutations in the coding regions of mtDNAs of eight breast cancer patients (8/71, 11.2 %). All of these somatic mutations changed amino acid residues in the highly conserved regions of mtDNA which potentially leads to mitochondrial dysfunctions. The other two somatic mtDNA mutations in the displacement loop (D-loop) region [303:315 C(7-8)TC(6) and nucleotide 57] were distributed among 14

  11. Bevacizumab impairs oxidative energy metabolism and shows antitumoral effects in recurrent glioblastomas: a 31P/1H MRSI and quantitative magnetic resonance imaging study.

    Hattingen, Elke; Jurcoane, Alina; Bähr, Oliver; Rieger, Johannes; Magerkurth, Jörg; Anti, Sandra; Steinbach, Joachim P; Pilatus, Ulrich

    2011-12-01

    Bevacizumab shows unprecedented rates of response in recurrent glioblastomas (GBM), but the detailed mechanisms are still unclear. We employed in vivo magnetic resonance spectroscopic imaging (MRSI) and quantitative magnetic resonance imaging to investigate whether bevacizumab alters oxygen and energy metabolism and whether this effect has antitumoral activity in recurrent GBM. (31)P and (1)H MRSI, apparent diffusion coefficient (ADC), and high-resolution T2 and T2' mapping (indirect marker of oxygen extraction) were investigated in 16 patients with recurrent GBM at 3 Tesla before and 1.5-2 months after initiation of therapy with bevacizumab. Changes of metabolite concentrations and of the quantitative values in the tumor and normal appearing brain tissue were calculated. The Wilcoxon signed-ranks test was used to evaluate differences for tumor/edema versus control as well as changes before versus after commencement of therapy. Survival analyses were performed for significant parameters. Tumor T2', pH, ADC, and T2 decreased significantly in patients responding to bevacizumab therapy (n = 10). Patients with at least 25% T2' decrease during treatment showed longer progression-free and overall survival durations. Levels of high-energy metabolites were lower at baseline; these persisted under therapy. Glycerophosphoethanolamine as catabolic phospholipid metabolite increased in responders. The MRSI data support the hypothesis that bevacizumab induces relative tumor hypoxia (T2' decrease) and affects energy homeostasis in recurrent GBM, suggesting that bevacizumab impairs vascular function. The antiangiogenic effect of bevacizumab is predictive of better outcome and seems to induce antitumoral activity in the responding GBMs. PMID:21890539

  12. Triclosan (TCS) and Triclocarban (TCC) cause lifespan reduction and reproductive impairment through oxidative stress-mediated expression of the defensome in the monogonont rotifer (Brachionus koreanus).

    Han, Jeonghoon; Won, Eun-Ji; Hwang, Un-Ki; Kim, Il-Chan; Yim, Joung Han; Lee, Jae-Seong

    2016-01-01

    Triclosan (TCS) and Triclocarban (TCC) are used as antimicrobial agents and have been widely dispersed and detected in the marine environment. However, the toxicities of TCS and TCC have been poorly investigated in marine invertebrates. In this study, the effects of TCS and TCC on mortality, population growth, lifespan, and fecundity were examined in the monogonont rotifer (Brachionus koreanus) using cellular ROS levels, GST enzymatic activity, and gene expression of defensomes. The median lethal concentration (LC50) of TCS (393.1μg/L) and TCC (388.1μg/L) was also determined in the same species. In TCS- and TCC-exposed B. koreanus, growth retardation and reduced fecundity were observed and were shown to have a potentially deleterious effect on the life cycle of B. koreanus. In addition, time-dependent increases in ROS content (%) and GST enzymatic activity were shown in response to TCS and TCC exposure. Additionally, transcript levels of detoxification proteins (e.g., CYPs), antioxidant proteins (e.g., GST-sigma, Cu/ZnSOD, CAT), and heat shock proteins (Hsps) were modulated in response to TCS and TCC exposure over a 24h period. Our results indicate that TCS and TCC induce oxidative stress and transcriptional regulation of detoxification, antioxidant, and heat shock proteins, resulting in changes in lifespan and fecundity. PMID:27067728

  13. Amelioration of aspirin induced oxidative impairment and apoptotic cell death by a novel antioxidant protein molecule isolated from the herb Phyllanthus niruri.

    Sudip Bhattacharyya

    Full Text Available Aspirin has been used for a long time as an analgesic and anti-pyretic drug. Limitations of its use, however, remain for the gastro-intestinal side effects and erosions. Although the role of aspirin on gastro-intestinal injury has been extensively studied, the molecular mechanisms underlying aspirin-induced liver and spleen pathophysiology are poorly defined. The present study has been conducted to investigate whether phyllanthus niruri protein (PNP possesses any protective role against aspirin mediated liver and spleen tissue toxicity, and if so, what signaling pathways it utilizes to convey its protective action. Aspirin administration in mice enhanced serum marker (ALP levels, reactive oxygen species (ROS generation, reduced antioxidant power and altered oxidative stress related biochemical parameters in liver and spleen tissues. Moreover, we observed that aspirin intoxication activated both the extrinsic and intrinsic apoptotic pathways, as well as down regulated NF-κB activation and the phosphorylation of p38 and JNK MAPKs. Histological assessments and TUNEL assay also supported that aspirin induced tissue damages are apoptotic in nature. PNP treatment after aspirin exposure effectively neutralizes all these abnormalities via the activation of survival PI3k/Akt pathways. Combining all results suggest that PNP could be a potential protective agent to protect liver and spleen from the detrimental effects of aspirin.

  14. Impaired renal endothelial nitric oxide synthase and reticulocyte production as modulators of hypertension induced by rHuEPO in the rat.

    Ribeiro, Sandra; Garrido, Patrícia; Fernandes, João; Vala, Helena; Rocha-Pereira, Petronila; Costa, Elísio; Belo, Luís; Reis, Flávio; Santos-Silva, Alice

    2016-04-15

    Our aim was to study the effect of a broad range of recombinant human erythropoietin (rHuEPO) doses on hematological and biochemical parameters, blood pressure (BP), renal function and damage in the rat, focusing on endothelial nitric oxide synthase (eNOS) and hypoxia-inducible factors (HIFs). Male Wistar rats were divided in 5 groups receiving different doses of rHuEPO (100, 200, 400 and 600IU/kg body weight (BW)/week) and saline solution (control), during 3weeks. Blood and 24h urine were collected to perform hematological and biochemical analysis. BP was measured by the tail-cuff method. Kidney tissue was collected to mRNA and protein expression assays and to characterize renal lesions. A dose-dependent increase in red blood cells count, hematocrit and hemoglobin levels was found with rHuEPO therapy, in rHuEPO200, rHuEPO400 and rHuEPO600 groups. Increased reticulocyte count was found in rHuEPO400 and rHuEPO600 groups. BP raised in all groups receiving rHuEPO. The rHuEPO200 and rHuEPO600 groups presented increased kidney protein levels of HIF2α, a reduction in kidney protein levels of eNOS, and the highest grade of vascular and tubular renal lesions. Our study showed that rHuEPO-induced hypertension is present before significant hematological changes occur and, therefore, might involve direct (renal) and indirect (hematological) effects, which varies according to the dose used. The presence of renal hypoxia reduces eNOS activity. Excessive erythrocytosis increases blood hyperviscosity, which can be modulated by an increase in reticulocytes. Hypertension leads to early renal damage without alterations in traditional markers of renal function, thus underestimating the serious adverse effects and risks. PMID:26924494

  15. Staphylococcus aureus adapts to oxidative stress by producing H2O2-resistant small-colony variants via the SOS response.

    Painter, Kimberley L; Strange, Elizabeth; Parkhill, Julian; Bamford, Kathleen B; Armstrong-James, Darius; Edwards, Andrew M

    2015-05-01

    The development of chronic and recurrent Staphylococcus aureus infections is associated with the emergence of slow-growing mutants known as small-colony variants (SCVs), which are highly tolerant of antibiotics and can survive inside host cells. However, the host and bacterial factors which underpin SCV emergence during infection are poorly understood. Here, we demonstrate that exposure of S. aureus to sublethal concentrations of H2O2 leads to a specific, dose-dependent increase in the population frequency of gentamicin-resistant SCVs. Time course analyses revealed that H2O2 exposure caused bacteriostasis in wild-type cells during which time SCVs appeared spontaneously within the S. aureus population. This occurred via a mutagenic DNA repair pathway that included DNA double-strand break repair proteins RexAB, recombinase A, and polymerase V. In addition to triggering SCV emergence by increasing the mutation rate, H2O2 also selected for the SCV phenotype, leading to increased phenotypic stability and further enhancing the size of the SCV subpopulation by reducing the rate of SCV reversion to the wild type. Subsequent analyses revealed that SCVs were significantly more resistant to the toxic effects of H2O2 than wild-type bacteria. With the exception of heme auxotrophs, gentamicin-resistant SCVs displayed greater catalase activity than wild-type bacteria, which contributed to their resistance to H2O2. Taken together, these data reveal a mechanism by which S. aureus adapts to oxidative stress via the production of a subpopulation of H2O2-resistant SCVs with enhanced catalase production. PMID:25690100

  16. Developmental Programming in Response to Intrauterine Growth Restriction Impairs Myoblast Function and Skeletal Muscle Metabolism

    D. T. Yates

    2012-01-01

    Full Text Available Fetal adaptations to placental insufficiency alter postnatal metabolic homeostasis in skeletal muscle by reducing glucose oxidation rates, impairing insulin action, and lowering the proportion of oxidative fibers. In animal models of intrauterine growth restriction (IUGR, skeletal muscle fibers have less myonuclei at birth. This means that myoblasts, the sole source for myonuclei accumulation in fibers, are compromised. Fetal hypoglycemia and hypoxemia are complications that result from placental insufficiency. Hypoxemia elevates circulating catecholamines, and chronic hypercatecholaminemia has been shown to reduce fetal muscle development and growth. We have found evidence for adaptations in adrenergic receptor expression profiles in myoblasts and skeletal muscle of IUGR sheep fetuses with placental insufficiency. The relationship of β-adrenergic receptors shifts in IUGR fetuses because Adrβ2 expression levels decline and Adrβ1 expression levels are unaffected in myofibers and increased in myoblasts. This adaptive response would suppress insulin signaling, myoblast incorporation, fiber hypertrophy, and glucose oxidation. Furthermore, this β-adrenergic receptor expression profile persists for at least the first month in IUGR lambs and lowers their fatty acid mobilization. Developmental programming of skeletal muscle adrenergic receptors partially explains metabolic and endocrine differences in IUGR offspring, and the impact on metabolism may result in differential nutrient utilization.

  17. Neutralization by Acetyl Salicylic Acid of the Testosterone induced Impaired Maspin Synthesis Stimulated by Estriol in Neutrophils through Nitric Oxide Synthesis

    Manna, Emili; Bank, Sarbashri; Maiti, Smarajit; Jana, Pradipta; Sinha, Asru K.

    2015-01-01

    Purpose: Maspin, an anti breast cancer protein in the mammary cell and normal neutrophil has been reported to be synthesised by the stimulation of NO production induced by estriol. The role of testosterone was investigated in the synthesis of maspin in relation to that of estriol. Methods: Fifty normal female between the ages of 25-65 years old participated in the study. Maspin synthesis was demonstrated by in vitro translation of maspin mRNA, followed by the quantification of maspin by enzyme linked immune absorbent assay. NO was determined by methomoglobin method. Results: Incubation of the neutrophils in HBSS both with 30 nM estriol resulted in the synthesis of 1.8 ngm maspin with simultaneous increase of NO synthesis. In contrast incubating neutrophils with 20 nM testosterone in the presence of estriol inhibited maspin synthesis to 0.33 nM with simultaneous inhibition of NO synthesis from 1.89 nM to 0 nM at the same time. Addition of 0.2 μM flutamide, a testosterone receptor blocker to the incubation mixture restored the synthesis of maspin by 60.64 %. Incubation of 25 μM aspirin that stimulated NO synthesis restored the inhibition of maspin synthesis by testosterone by 79.1%. I-NAME, an inhibitor of nitric oxide synthase, abolished both maspin and NO synthesis. Scatchard plot of estriol binding in the presence of testosterone demonstrated that the male sex hormone inhibited the female sex hormone binding to its receptor by “cross talk” between the receptors. It was found that while 1.02 × 103 molecules of estriol bind each neutrophil at equilibrium, in the presence of testosterone (20 nM) in the binding mixture decreases the binding of estriol to 0.5 × 103 with little change in the dissociation constant compared to controls. Conclution: Estriol was found to stimulate maspin synthesis through the stimulation of NO, testosterone inhibited maspin synthesis through the inhibition of NO synthesis. PMID:26759534

  18. ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function

    This review focuses on the emerging evidence that reactive oxygen species (ROS) derived from glucose metabolism, such as H2O2, act as metabolic signaling molecules for glucose-stimulated insulin secretion (GSIS) in pancreatic beta-cells. Particular emphasis is placed on the potential inhibitory role of endogenous antioxidants, which rise in response to oxidative stress, in glucose-triggered ROS and GSIS. We propose that cellular adaptive response to oxidative stress challenge, such as nuclear factor E2-related factor 2 (Nrf2)-mediated antioxidant induction, plays paradoxical roles in pancreatic beta-cell function. On the one hand, induction of antioxidant enzymes protects beta-cells from oxidative damage and possible cell death, thus minimizing oxidative damage-related impairment of insulin secretion. On the other hand, the induction of antioxidant enzymes by Nrf2 activation blunts glucose-triggered ROS signaling, thus resulting in reduced GSIS. These two premises are potentially relevant to impairment of beta-cells occurring in the late and early stage of Type 2 diabetes, respectively. In addition, we summarized our recent findings that persistent oxidative stress due to absence of uncoupling protein 2 activates cellular adaptive response which is associated with impaired pancreatic beta-cell function.

  19. All Vision Impairment

    ... Cases of Vision Impairment (in thousands) by Age, Gender, and Race/Ethnicity Table for 2010 U.S. Prevalent ... Cases of Vision Impairment (in thousands) by Age, Gender, and Race/Ethnicity Table for 2000 U.S. Prevalent ...

  20. Speech impairment (adult)

    ... impairment; Impairment of speech; Inability to speak; Aphasia; Dysarthria; Slurred speech; Dysphonia voice disorders ... in others the condition does not get better. DYSARTHRIA With dysarthria, the person has ongoing difficulty expressing ...

  1. Mild Cognitive Impairment

    ... Research Portfolio (IADRP) AMP-AD Detecting Cognitive Impairment Database ... Mild cognitive impairment (MCI) is a condition in which people have more memory or other thinking problems than normal for their ...

  2. Space Activities for the Visually Impaired

    Ries, J. G.; Baguio, M.

    2005-12-01

    To a visually impaired person celestial objects or concepts of space exploration are likely to be more abstract than to other people, but they encounter news about the universe through their daily life. A partnership between Texas Space Grant Consortium, The University of Texas at Austin, and the Texas School for the Blind and Visually Impaired provided the opportunity to assist visually impaired students increase their understanding of astronomy and space science. The activities helped visually impaired students activity engage in inquiry-based, hands-on astronomy activities. The experiences provided during the educator workshops, adapted instructional classroom activities, and tactile learning aids will be shared in the hopes that others may be able to incorporate these lessons into their regular teaching activities.

  3. Evaluation of packet loss impairment on streaming video

    RUI Hua-xia; LI Chong-rong; QIU Sheng-ke

    2006-01-01

    Video compression technologies are essential in video streaming application because they could save a great amount of network resources. However compressed videos are also extremely sensitive to packet loss which is inevitable in today's best effort IP network. Therefore we think accurate evaluation of packet loss impairment on compressed video is very important. In this work, we develop an analytic model to describe these impairments without the reference of the original video (NR) and propose an impairment metric based on the model, which takes into account both impairment length and impairment strength. To evaluate an impaired frame or video, we design a detection and evaluation algorithm (DE algorithm) to compute the above metric value. The DE algorithm has low computational complexity and is currently being implemented in the real-time monitoring module of our HDTV over IP system. The impairment metric and DE algorithm could also be used in adaptive system or be used to compare diffeient error concealment strategies.

  4. Visual impairment in the hearing impaired students

    Gogate Parikshit

    2009-01-01

    Full Text Available Background : Ocular problems are more common in children with hearing problems than in normal children. Neglected visual impairment could aggravate educational and social disability. Aim : To detect and treat visual impairment, if any, in hearing-impaired children. Setting and Design : Observational, clinical case series of hearing-impaired children in schools providing special education. Materials and Methods : Hearing-impaired children in selected schools underwent detailed visual acuity testing, refraction, external ocular examination and fundoscopy. Ocular motility testing was also performed. Teachers were sensitized and trained to help in the assessment of visual acuity using Snellen′s E charts. Refractive errors and squint were treated as per standard practice. Statistical Analysis : Excel software was used for data entry and SSPS for analysis. Results : The study involved 901 hearing-impaired students between four and 21 years of age, from 14 special education schools. A quarter of them (216/901, 24% had ocular problems. Refractive errors were the most common morbidity 167(18.5%, but only 10 children were using appropriate spectacle correction at presentation. Fifty children had visual acuity less than 20/80 at presentation; after providing refractive correction, this number reduced to three children, all of whom were provided low-vision aids. Other common conditions included strabismus in 12 (1.3% children, and retinal pigmentary dystrophy in five (0.6% children. Conclusion : Ocular problems are common in hearing-impaired children. Screening for ocular problems should be made mandatory in hearing-impaired children, as they use their visual sense to compensate for the poor auditory sense.

  5. Adaptive Lighting

    Petersen, Kjell Yngve; Søndergaard, Karin; Kongshaug, Jesper

    2015-01-01

    Adaptive LightingAdaptive lighting is based on a partial automation of the possibilities to adjust the colour tone and brightness levels of light in order to adapt to people’s needs and desires. IT support is key to the technical developments that afford adaptive control systems. The possibilities offered by adaptive lighting control are created by the ways that the system components, the network and data flow can be coordinated through software so that the dynamic variations are controlled i...

  6. Oxidative stress and anxiety

    Bouayed, Jaouad; Rammal, Hassan; Soulimani, Rachid

    2009-01-01

    High O2 consumption, modest antioxidant defenses and a lipid-rich constitution make the brain highly vulnerable to redox imbalances. Oxidative damage in the brain causes nervous system impairment. Recently, oxidative stress has also been implicated in depression, anxiety disorders and high anxiety levels. The findings which establish a link between oxidative stress and pathological anxiety have inspired a number of other recent studies focusing on the link between oxidative status and normal ...

  7. Hypertension and cognitive impairment

    Su-hang SHANG

    2015-08-01

    Full Text Available As a leading risk factor for stroke, hypertension is also an important risk factor for cognitive impairment. Midlife hypertension doubles the risk of dementia later in life and accelerates the progression of dementia, but the correlation between late-life blood pressure and cognitive impairment is still unclear. Beside blood pressure, the effect of pulse pressure, blood pressure variability and circadian rhythm of blood pressure on cognition is currently attracting more and more attention. Hypertension induces alterations in cerebrovascular structure and functions, which lead to brain lesions including cerebral atrophy, stroke, lacunar infarcts, diffuse white matter damage, microinfarct and microhemorrhage, resuling in cognitive impairment. Hypertension also impairs the metabolism and transfer of amyloid-β protein (Aβ, thus accelerates cognitive impairment. Individualized therapy, focusing on characteristics of hypertensive patients, may be a good choice for prevention and treatment of cognitive impairment. DOI: 10.3969/j.issn.1672-6731.2015.08.004

  8. Impaired oxidative phosphorylation in overtrained rat myocardium

    Kadaja, Lumme; Eimre, Margus; Paju, Kalju; Roosimaa, Mart; Põdramägi, Taavi; Kaasik, Priit; Pehme, Ando; Orlova, Ehte; Mudist, Margareeta; Peet, Nadezhda; Piirsoo, Andres; Seene, Teet; Gellerich, Frank N; Seppet, Enn K

    2010-01-01

    The present study was undertaken to characterize and review the changes in energy metabolism in rat myocardium in response to chronic exhaustive exercise. It was shown that a treadmill exercise program applied for six weeks led the rats into a state characterized by decreased performance, loss of body weight and enhanced muscle catabolism, indicating development of overtraining syndrome. Electron microscopy revealed disintegration of the cardiomyocyte structure, cellular swelling and appearan...

  9. The Influence of green tea on oxidative stress r esponse of patients with vascular cognitive impairment%绿茶对血管性认知功能障碍患者氧化应激反应的影响

    徐艳; 肖云月; 杨英; 鞠洁阳; 张磊; 訚亚涛

    2015-01-01

    目的:探讨饮用绿茶对血管性认知功能障碍( VCI)患者体内氧化应激反应的影响。方法将入选的VCI患者依据饮用绿茶的习惯分为两组,即饮茶者组和非饮茶者组,采用简易精神状态检查表(MMSE)和蒙特利尔认识评估量表(MoCA)检测认知功能,取肘静脉血测定丙二醛(MDA)、4-羟基壬烯醛(4-HNE)及8-羟化脱氧鸟苷(8-OHdG )的含量。结果所入选的 VCI 患者中,饮茶者组的 MMSE 评分(26.62±0.41)稍高于非饮茶者组(26.17±0.38),统计学分析显示两组差异无统计学意义(P>0.05)。但饮茶者组的MoCA评分(23.29±0.61)高于非饮用绿茶者组(21.12±0.50),差异具有统计学意义(P<0.05)。饮茶者外周血的 MDA 含量(2.345±0.3697)低于非饮茶者(4.437±0.3710),以及饮茶者外周血4-HNE 含量(4.919±0.9378)低于非饮茶者(8.660±0.7883),差异均具有统计学意义(P<0.01),而饮茶者8-OHdG浓度(1845±121.5)虽低于非饮茶者(2322±203.4),但差异无统计学意义(P>0.05)。结论常饮绿茶可能具有抑制VCI患者的氧化应激反应,改善认知功能的作用,但绿茶对抑制氧化性DNA损伤的作用较弱。%Objective To explore the influence of drinking green tea on oxidative stress response of patients with vascular cognitive impairment( VCI) .Methods The involved patients with vascular cognitive impairment were divided into two groups according to the habit of drinking green tea:drinking green tea group and non-drinking green tea group.The cognitive function was measured by Mini Mental State Examination ( MMSE)and Montreal Cognitive Assessment ( MoCA ) .The oxidative stress response was evaluated by the level of malondialdehyde ( MDA ) , 4-hydroxynonenal(4-HNE) and 8-hydroxy-2ˊ-deoxyguanosine (8 -OHdG) in elbow venous blood.Results Of all participants with VCI, the

  10. Adaptive skills

    Staša Stropnik; Jana Kodrič

    2013-01-01

    Adaptive skills are defined as a collection of conceptual, social and practical skills that are learned by people in order to function in their everyday lives. They include an individual's ability to adapt to and manage her or his surroundings to effectively function and meet social or community expectations. Good adaptive skills promote individual's independence in different environments, whereas poorly developed adaptive skills are connected to individual's dependency and with g...