WorldWideScience

Sample records for acute nociceptive signals

  1. Roles of phosphotase 2A in nociceptive signal processing

    2013-01-01

    Multiple protein kinases affect the responses of dorsal horn neurons through phosphorylation of synaptic receptors and proteins involved in intracellular signal transduction pathways, and the consequences of this modulation may be spinal central sensitization. In contrast, the phosphatases catalyze an opposing reaction of de-phosphorylation, which may also modulate the functions of crucial proteins in signaling nociception. This is an important mechanism in the regulation of intracellular signal transduction pathways in nociceptive neurons. Accumulated evidence has shown that phosphatase 2A (PP2A), a serine/threonine specific phosphatase, is implicated in synaptic plasticity of the central nervous system and central sensitization of nociception. Therefore, targeting protein phosphotase 2A may provide an effective and novel strategy for the treatment of clinical pain. This review will characterize the structure and functional regulation of neuronal PP2A and bring together recent advances on the modulation of PP2A in targeted downstream substrates and relevant multiple nociceptive signaling molecules. PMID:24010880

  2. A nociceptive signaling role for Neuromedin B

    Mishra, Santosh K.; Holzman, Sarah; Hoon, Mark A

    2012-01-01

    Here we used an array based differential screen to uncover the expression of the neuropeptide neuromedin B (NMB) in the trigeminal ganglia of mice. Double labeling experiments reveal NMB is expressed in a subset of sensory neurons that co-label with CGRP and TRPV1 suggestive of a role for NMB in nociception. Indeed, administration of NMB-antagonist greatly attenuates edema and nerve sensitization following stimulation of peripheral nerves with mustard oil, demonstrating that NMB contributes t...

  3. Minocycline markedly reduces acute visceral nociception via inhibiting neuronal ERK phosphorylation

    Cho Ik-Hyun

    2012-02-01

    Full Text Available Abstract Background Minocycline prevents the development of neuropathic and inflammatory pain by inhibiting microglial activation and postsynaptic currents. But, how minocycline obviates acute visceral pain is unclear. The present study investigated whether minocycline had an any antinociceptive effect on acetic acid-induced acute abdominal pain after intraperitoneal (i.p. administration of saline or minocycline 1 hour before acetic acid injection (1.0%, 250 μl, i.p.. Results Minocycline (4, 10, or 40 mg/kg significantly decreased acetic acid-induced nociception (0-60 minutes post-injection and the enhancement in the number of c-Fos positive cells in the T5-L2 spinal cord induced by acetic acid injection. Also, the expression of spinal phosphorylated extracellular signal-regulated kinase (p-ERK induced by acetic acid was reduced by minocycline pre-administration. Interestingly, intrathecal introduction of PD98059, an ERK upstream kinase inhibitor, markedly blocked the acetic acid-stimulated pain responses. Conclusions These results demonstrate that minocycline effectively inhibits acetic acid-induced acute abdominal nociception via the inhibition of neuronal p-ERK expression in the spinal cord, and that minocycline may have therapeutic potential in suppressing acute abdominal pain.

  4. Immobilization contributes to exaggerated neuropeptide signaling, inflammatory changes, and nociceptive sensitization after fracture in rats

    Guo, Tian-Zhi; Wei, Tzuping; Li, Wen-Wu; Li, Xiang-Qi; Clark, J. David; Kingery, Wade S.

    2014-01-01

    A tibia fracture cast immobilized for 4 weeks can induce exaggerated substance P (SP) and CGRP signaling and neuropeptide-dependent nociceptive and inflammatory changes in the hindlimbs of rats similar to those seen in complex regional pain syndrome (CRPS). Four weeks of hindlimb cast immobilization can also induce nociceptive and vascular changes resembling CRPS. To test our hypothesis that immobilization alone could cause exaggerated neuropeptide signaling and inflammatory changes we tested...

  5. Physiological Signal Processing for Individualized Anti-nociception Management During General Anesthesia: A Review

    Bonhomme, V.; Jeanne, M.; Boselli, E.; Gruenewald, M.; Logier, R.; Richebé, P.

    2015-01-01

    Summary Objective The aim of this paper is to review existing technologies for the nociception / anti-nociception balance evaluation during surgery under general anesthesia. Methods General anesthesia combines the use of analgesic, hypnotic and muscle-relaxant drugs in order to obtain a correct level of patient non-responsiveness during surgery. During the last decade, great efforts have been deployed in order to find adequate ways to measure how anesthetic drugs affect a patient’s response to surgical nociception. Nowadays, though some monitoring devices allow obtaining information about hypnosis and muscle relaxation, no gold standard exists for the nociception / anti-nociception balance evaluation. Articles from the PubMed literature search engine were reviewed. As this paper focused on surgery under general anesthesia, articles about nociception monitoring on conscious patients, in post-anesthesia care unit or in intensive care unit were not considered. Results In this article, we present a review of existing technologies for the nociception / anti-nociception balance evaluation, which is based in all cases on the analysis of the autonomous nervous system activity. Presented systems, based on sensors and physiological signals processing algorithms, allow studying the patients’ reaction regarding anesthesia and surgery. Conclusion Some technological solutions for nociception / antinociception balance monitoring were described. Though presented devices could constitute efficient solutions for individualized anti-nociception management during general anesthesia, this review of current literature emphasizes the fact that the choice to use one or the other mainly relies on the clinical context and the general purpose of the monitoring. PMID:26293855

  6. Normothermic Mouse Functional MRI of Acute Focal Thermostimulation for Probing Nociception

    Reimann, Henning Matthias; Hentschel, Jan; Marek, Jaroslav; Huelnhagen, Till; Todiras, Mihail; Kox, Stefanie; Waiczies, Sonia; Hodge, Russ; Bader, Michael; Pohlmann, Andreas; Niendorf, Thoralf

    2016-01-01

    Combining mouse genomics and functional magnetic resonance imaging (fMRI) provides a promising tool to unravel the molecular mechanisms of chronic pain. Probing murine nociception via the blood oxygenation level-dependent (BOLD) effect is still challenging due to methodological constraints. Here we report on the reproducible application of acute noxious heat stimuli to examine the feasibility and limitations of functional brain mapping for central pain processing in mice. Recent technical and procedural advances were applied for enhanced BOLD signal detection and a tight control of physiological parameters. The latter includes the development of a novel mouse cradle designed to maintain whole-body normothermia in anesthetized mice during fMRI in a way that reflects the thermal status of awake, resting mice. Applying mild noxious heat stimuli to wildtype mice resulted in highly significant BOLD patterns in anatomical brain structures forming the pain matrix, which comprise temporal signal intensity changes of up to 6% magnitude. We also observed sub-threshold correlation patterns in large areas of the brain, as well as alterations in mean arterial blood pressure (MABP) in response to the applied stimulus.

  7. Application of bifurcation analysis for determining the mechanism of coding of nociceptive signals

    Dik, O. E.; Shelykh, T. N.; Plakhova, V. B.; Nozdrachev, A. D.; Podzorova, S. A.; Krylov, B. V.

    2015-10-01

    The patch clamp method is used for studying the characteristics of slow sodium channels responsible for coding of nociceptive signals. Quantitative estimates of rate constants of transitions of "normal" and pharmacologically modified activation gating mechanisms of these channels are obtained. A mathematical model of the type of Hogdkin-Huxley nociceptive neuron membrane is constructed. Cometic acid, which is a drug substance of a new nonopioid analgesic, is used as a pharmacological agent. The application of bifurcation analysis makes it possible to outline the boundaries of the region in which a periodic impulse activity is generated. This boundary separates the set of values of the model parameter for which periodic pulsation is observed from the values for which such pulsations are absent or damped. The results show that the finest effect of modulation of physical characteristic of a part of a protein molecule and its effective charge suppresses the excitability of the nociceptive neuron membrane and, hence, leads to rapid reduction of pain.

  8. Can preoperative electrical nociceptive stimulation predict acute pain after groin herniotomy?

    Aasvang, Eske Kvanner; Hansen, J.B.; Kehlet, H.

    2008-01-01

    recently been shown to correlate to acute postoperative pain after cesarean section, but the findings have not been confirmed in larger studies or other procedures. Preoperative electrical pain detection threshold and pain tolerance were assessed in patients undergoing a primary unilateral groin hernia...... pain (rho = -0.13, P = .09, and rho = -1.2, P = .4, respectively. PERSPECTIVE: Although preoperative electrical nociceptive stimulation may predict patients at risk of high-intensity acute pain after other surgical procedures, this was not the case in groin hernia repair patients receiving concomitant...

  9. Neuropeptidergic Signaling and Active Feeding State Inhibit Nociception in Caenorhabditis elegans.

    Ezcurra, Marina; Walker, Denise S; Beets, Isabel; Swoboda, Peter; Schafer, William R

    2016-03-16

    Food availability and nutritional status are important cues affecting behavioral states. Here we report that, in Caenorhabditis elegans, a cascade of dopamine and neuropeptide signaling acts to inhibit nociception in food-poor environments. In the absence of food, animals show decreased sensitivity and increased adaptation to soluble repellents sensed by the polymodal ASH nociceptors. The effects of food on adaptation are affected by dopamine and neuropeptide signaling; dopamine acts via the DOP-1 receptor to decrease adaptation on food, whereas the neuropeptide receptors NPR-1 and NPR-2 act to increase adaptation off food. NPR-1 and NPR-2 function cell autonomously in the ASH neurons to increase adaptation off food, whereas the DOP-1 receptor controls neuropeptide release from interneurons that modulate ASH activity indirectly. These results indicate that feeding state modulates nociception through the interaction of monoamine and neuropeptide signaling pathways. PMID:26985027

  10. Frutalin reduces acute and neuropathic nociceptive behaviours in rodent models of orofacial pain.

    Damasceno, Marina B M V; de Melo Júnior, José de Maria A; Santos, Sacha Aubrey A R; Melo, Luana T M; Leite, Laura Hévila I; Vieira-Neto, Antonio E; Moreira, Renato de A; Monteiro-Moreira, Ana Cristina de O; Campos, Adriana R

    2016-08-25

    Orofacial pain is a highly prevalent clinical condition, yet difficult to control effectively with available drugs. Much attention is currently focused on the anti-inflammatory and antinociceptive properties of lectins. The purpose of this study was to evaluate the antinociceptive effect of frutalin (FTL) using rodent models of inflammatory and neuropathic orofacial pain. Acute pain was induced by formalin, glutamate or capsaicin (orofacial model) and hypertonic saline (corneal model). In one experiment, animals were pretreated with l-NAME and naloxone to investigate the mechanism of antinociception. The involvement of the lectin domain in the antinociceptive effect of FTL was verified by allowing the lectin to bind to its specific ligand. In another experiment, animals pretreated with FTL or saline were submitted to the temporomandibular joint formalin test. In yet another, animals were submitted to infraorbital nerve transection to induce chronic pain, followed by induction of thermal hypersensitivity using acetone. Motor activity was evaluated with the rotarod test. A molecular docking was performed using the TRPV1 channel. Pretreatment with FTL significantly reduced nociceptive behaviour associated with acute and neuropathic pain, especially at 0.5 mg/kg. Antinociception was effectively inhibited by l-NAME and d-galactose. In line with in vivo experiments, docking studies indicated that FTL may interact with TRPV1. Our results confirm the potential pharmacological relevance of FTL as an inhibitor of orofacial nociception in acute and chronic pain mediated by TRPA1, TRPV1 and TRPM8 receptor. PMID:27302204

  11. A digital wireless system for closed-loop inhibition of nociceptive signals

    Zuo, Chao; Yang, Xiaofei; Wang, Yang; Hagains, Christopher E.; Li, Ai-Ling; Peng, Yuan B.; Chiao, J.-C.

    2012-10-01

    Neurostimulation of the spinal cord or brain has been used to inhibit nociceptive signals in pain management applications. Nevertheless, most of the current neurostimulation models are based on open-loop system designs. There is a lack of closed-loop systems for neurostimulation in research with small freely-moving animals and in future clinical applications. Based on our previously developed analog wireless system for closed-loop neurostimulation, a digital wireless system with real-time feedback between recorder and stimulator modules has been developed to achieve multi-channel communication. The wireless system includes a wearable recording module, a wearable stimulation module and a transceiver connected to a computer for real-time and off-line data processing, display and storage. To validate our system, wide dynamic range neurons in the spinal cord dorsal horn have been recorded from anesthetized rats in response to graded mechanical stimuli (brush, pressure and pinch) applied in the hind paw. The identified nociceptive signals were used to automatically trigger electrical stimulation at the periaqueductal gray in real time to inhibit their own activities by the closed-loop design. Our digital wireless closed-loop system has provided a simplified and efficient method for further study of pain processing in freely-moving animals and potential clinical application in patients. Groups 1, 2 and 3 contributed equally to this project.

  12. Anti-nociceptive and anti-inflammatory effects of cyanocobalamin (vitamin B12) against acute and chronic pain and inflammation in mice.

    Hosseinzadeh, H; Moallem, S A; Moshiri, M; Sarnavazi, M S; Etemad, L

    2012-07-01

    In this study, the anti-nociceptive and anti-inflammatory effects of cyanocobalamin (Vit B12) against acute and chronic pain and inflammation were evaluated in mice. Vit B12 (0.87, 1 and 1.77 mg/kg) were injected intraperitoneally. The anti-nociceptive effects against acute pain were examined using hot-plate and writhing tests. The chronic pain was examined 14 days after sciatic nerve ligation using the hot-plate test. Morphine (10 mg/kg) was used as a positive control. Anti-inflammatory effects of Vit B12 against acute and chronic inflammation were assessed using xylene-induced edema in ears and granuloma caused by compressed cotton implantation, respectively. In these tests, sodium diclofenac (15 mg/kg) was used as a positive control. Vit B12 showed a dose related effect in acute anti-nociceptive test and increased the anti-nociceptive effect of morphine in chronic treatment. Vit B12 demonstrated an anti-nociceptive effect in chronic studies as single or continues daily treatment and increased significantly the anti-nociceptive effect of morphine. All doses of Vit B12 significantly decreased xylene-induced ear edema. Maximum anti-inflammatory effect (37.5%) was obtained at dose of 1 mg/kg. In chronic inflammation, Vit B12 significantly decreased granuloma formation in mice. In conclusion our work presents some experimental evidence supporting the administration of cyanocobalamin in controlling acute and chronic neuropathic pain. Cyanocobalamin may have anti-inflammatory effect. It may reduce tolerance to anti-nociceptive effect of morphine as well. PMID:22588629

  13. Acute and chronic nociceptive phases observed in a rat hind paw ischemia/reperfusion model depend on different mechanisms.

    Klafke, J Z; da Silva, M A; Rossato, M F; de Prá, S Dal Toé; Rigo, F K; Walker, C I B; Bochi, G V; Moresco, R N; Ferreira, J; Trevisan, G

    2016-02-01

    Complex regional pain syndrome type 1 (CRPS1) may be evoked by ischemia/reperfusion, eliciting acute and chronic pain that is difficult to treat. Despite this, the underlying mechanism of CRPS1 has not been fully elucidated. Therefore, the goal of this study is to evaluate the involvement of inflammation, oxidative stress, and the transient receptor potential ankyrin 1 (TRPA1) channel, a chemosensor of inflammation and oxidative substances, in an animal model of chronic post-ischemia pain (CPIP). Male Wistar rats were subjected to 3 h hind paw ischemia/reperfusion (CPIP model). Different parameters of nociception, inflammation, ischemia, and oxidative stress were evaluated at 1 (acute) and 14 (chronic) days after CPIP. The effect of a TRPA1 antagonist and the TRPA1 immunoreactivity were also observed after CPIP. In the CPIP acute phase, we observed mechanical and cold allodynia; increased levels of tumor necrosis factor-α (hind paw), ischemia-modified albumin (IMA) (serum), protein carbonyl (hind paw and spinal cord), lactate (serum), and 4-hydroxy-2-nonenal (4-HNE, hind paw and spinal cord); and higher myeloperoxidase (MPO) and N-acetyl-β-D-glucosaminidase (NAGase) activities (hind paw). In the CPIP chronic phase, we detected mechanical and cold allodynia and increased levels of IMA (serum), protein carbonyl (hind paw and spinal cord), and 4-HNE (hind paw and spinal cord). TRPA1 antagonism reduced mechanical and cold allodynia 1 and 14 days after CPIP, but no change in TRPA1 immunoreactivity was observed. Different mechanisms underlie acute (inflammation and oxidative stress) and chronic (oxidative stress) phases of CPIP. TRPA1 activation may be relevant for CRPS1/CPIP-induced acute and chronic pain. PMID:26490459

  14. Possible effects of mobilisation on acute post-operative pain and nociceptive function after total knee arthroplasty

    Lunn, T H; Kristensen, B B; Gaarn-Larsen, L;

    2012-01-01

    BACKGROUND: Experimental studies in animals, healthy volunteers, and patients with chronic pain suggest exercise to provide analgesia in several types of pain conditions and after various nociceptive stimuli. To our knowledge, there is no data on the effects of exercise on pain and nociceptive fu...

  15. Gi- and Gq-coupled ADP (P2Y receptors act in opposition to modulate nociceptive signaling and inflammatory pain behavior

    Molliver Derek C

    2010-04-01

    Full Text Available Abstract Background Investigations of nucleotide signaling in nociception to date have focused on actions of adenosine triphosphate (ATP. Both ATP-gated ion channels (P2X receptors and G protein-coupled (P2Y receptors contribute to nociceptive signaling in peripheral sensory neurons. In addition, several studies have implicated the Gq-coupled adenosine diphosphate (ADP receptor P2Y1 in sensory transduction. In this study, we examined the expression and function of P2Y1 and the Gi-coupled receptors P2Y12, P2Y13 and P2Y14 in sensory neurons to determine their contribution to nociception. Results We detected mRNA and protein for ADP receptors P2Y12 and P2Y13 in mouse dorsal root ganglia (DRG. P2Y14, a homologous Gi-coupled nucleotide receptor, is also expressed in DRG. Immunohistochemical analysis of receptor distribution indicated that these receptors are widely expressed in nociceptive neurons. Using ratiometric calcium imaging, we found that ADP evokes increases in intracellular calcium in isolated DRG neurons and also produces a pertussis toxin-sensitive inhibition of depolarization-evoked calcium transients. The inhibitory effect of ADP was unaltered in the presence of the selective P2Y1 antagonist MRS2179 and in neurons isolated from P2Y1 knockout mice, whereas ADP-evoked calcium transients were greatly reduced. Analysis of behavioral responses to noxious heat before and after inflammatory injury (injection of complete Freund's adjuvant into the hindpaw revealed that P2Y1 is required for the full expression of inflammatory hyperalgesia, whereas local injection of agonists for Gi-coupled P2Y receptors reduced hyperalgesia. Conclusions We report that Gi-coupled P2Y receptors are widely expressed in peripheral sensory neurons. Agonists for these receptors inhibit nociceptive signaling in isolated neurons and reduce behavioral hyperalgesia in vivo. Anti-nociceptive actions of these receptors appear to be antagonized by the Gq-coupled ADP receptor

  16. Capsaicin, Nociception and Pain.

    Frias, Bárbara; Merighi, Adalberto

    2016-01-01

    Capsaicin, the pungent ingredient of the hot chili pepper, is known to act on the transient receptor potential cation channel vanilloid subfamily member 1 (TRPV1). TRPV1 is involved in somatic and visceral peripheral inflammation, in the modulation of nociceptive inputs to spinal cord and brain stem centers, as well as the integration of diverse painful stimuli. In this review, we first describe the chemical and pharmacological properties of capsaicin and its derivatives in relation to their analgesic properties. We then consider the biochemical and functional characteristics of TRPV1, focusing on its distribution and biological effects within the somatosensory and viscerosensory nociceptive systems. Finally, we discuss the use of capsaicin as an agonist of TRPV1 to model acute inflammation in slices and other ex vivo preparations. PMID:27322240

  17. Democratic organization of the thalamocortical neural ensembles in nociceptive signal processing

    LUO Fei; WANG Jin-Yan

    2008-01-01

    Acute pain is a warning protective sensation for any impending harm. However, chronic pain syndromes are often resistant diseases that may consume large amount of health care costs. It has been suggested by recent studies that pain perception may be formed in central neural networks via large-scale coding processes, which involves sensory, affective, and cognitive dimensions. Many central areas are involved in these processes, including structures from the spinal cord, the brain stem, the limbic system, to the cortices. Thus, chronic painful diseases may be the result of some abnormal coding within this network. A thorough investigation of coding mechanism of pain within the central neuromatrix will bring us great insight into the mechanisms responsible for the development of chronic pain, hence leading to novel therapeutic interventions for pain management.

  18. Acute and chronic treatment with selective serotonin uptake inhibitors in mice: effects on nociceptive sensitivity and response to 5-methoxy-N,N-dimethyltryptamine.

    Eide, P K; Hole, K

    1988-03-01

    The tail-flick and increasing temperature hot-plate tests were employed to study the effects of acute or chronic treatment with zimelidine, alaproclate or chlorimipramine on nociception and response to 5-methoxy-N,N-dimethyltryptamine (5-MeODMT) in mice. A single dose of the serotonin (5-HT) uptake inhibitors produced antinociception in the hot-plate test but not in the tail-flick test. After chronic administration, reduced tail-flick latencies were demonstrated 24, 48, 72 and 144 h after withdrawal of zimelidine treatment, 48 h after withdrawal of alaproclate and 48 and 96 h after withdrawal of chlorimipramine treatment. The hot-plate response temperatures were slightly lowered after chronic zimelidine treatment but not after treatment with alaproclate or chlorimipramine. The response to 5-MeODMT was not altered by a single dose of the 5-HT uptake inhibitors, however, after withdrawal of chronic treatment this response was increased in the tail-flick test but not in the hot-plate test. It was concluded that acute and chronic treatment with 5-HT uptake inhibitors modulate nociception differently, and that chronic treatment induces supersensitivity of spinal postsynaptic 5-HT receptors. Different modulation of different 5-HT receptor subpopulations by these compounds may possibly contribute to the test-dependent results. PMID:2966334

  19. Real-Time Translocation and Function of PKCβII Isoform in Response to Nociceptive Signaling via the TRPV1 Pain Receptor

    Basil D. Roufogalis

    2011-11-01

    Full Text Available Serine/threonine protein kinase C βII isoform (PKCβII or the pain receptor transient receptor potential vanilloid 1 (TRPV1 have been separately implicated in mediating heat hyperalgesia during inflammation or diabetic neuropathy. However, detailed information on the role of PKC βII in nociceptive signaling mediated by TRPV1 is lacking. This study presents evidence for activation and translocation of the PKC βII isoform as a signaling event in nociception mediated by activation of TRPV1 by capsaicin. We show that capsaicin induces translocation of cytosolic PKCβII isoform fused with enhanced green fluorescence protein (PKCβII-EGFP in dorsal root ganglion (DRG neurons. We also show capsaicin-induced translocation in Chinese Hamster Ovarian (CHO cells co-transfected with TRPV1 and PKCβII-EGFP, but not in CHO cells expressing PKCβII-EGFP alone. By contrast, the PKC activator phorbol-12-myristate-13-acetate (PMA induced translocation of PKCβII-EGFP which was sustained and independent of calcium or TRPV1. In addition PMA-induced sensitization of TRPV1 to capsaicin response in DRG neurons was attenuated by PKCβII blocker CGP 53353. Capsaicin response via TRPV1 in the DRG neurons was confirmed by TRPV1 antagonist AMG 9810. These results suggested a novel and potential signaling link between PKCβII and TRPV1. These cell culture models provide a platform for investigating mechanisms of painful neuropathies mediated by nociceptors expressing the pain sensing gene TRPV1, and its regulation by the PKC isoform PKCβII.

  20. Signaling and Adhesive Mechanisms in Acute Pancreatitis

    Awla, Darbaz

    2011-01-01

    Acute pancreatitis (AP) is an inflammatory disease with variable severity ranging from mild interstitial edematous to severe necrotizing disease. The overall mortality rate of AP is 8-9%. Specific treatment of AP is lacking which is partly related to an incomplete understanding of the basic pathophysiology behind the disease. It is widely held that premature intra-cellular trypsinogen activation and leukocyte recruitment play key roles in the pathophysiology of the AP. However, the signaling ...

  1. Controlling Attention to Nociceptive Stimuli with Working Memory

    Legrain, Valéry; Crombez, Geert; Mouraux, André

    2011-01-01

    Background: Because pain often signals the occurrence of potential tissue damage, a nociceptive stimulus has the capacity to involuntarily capture attention and take priority over other sensory inputs. Whether distraction by nociception actually occurs may depend upon the cognitive characteristics of the ongoing activities. The present study tested the role of working memory in controlling the attentional capture by nociception. Methodology and Principal Findings: Participants performed visua...

  2. Role of NHE1 in Nociception

    Jorge Elías Torres-López

    2013-01-01

    Full Text Available Intracellular pH is a fundamental parameter to cell function that requires tight homeostasis. In the absence of any regulation, excessive acidification of the cytosol would have the tendency to produce cellular damage. Mammalian Na+/H+ exchangers (NHEs are electroneutral Na+-dependent proteins that exchange extracellular Na+ for intracellular H+. To date, there are 9 identified NHE isoforms where NHE1 is the most ubiquitous member, known as the housekeeping exchanger. NHE1 seems to have a protective role in the ischemia-reperfusion injury and other inflammatory diseases. In nociception, NHE1 is found in neurons along nociceptive pathways, and its pharmacological inhibition increases nociceptive behavior in acute pain models at peripheral and central levels. Electrophysiological studies also show that NHE modulates electrical activity of primary nociceptive terminals. However, its role in neuropathic pain still remains controversial. In humans, NHE1 may be responsible for inflammatory bowel diseases since its expression is reduced in Crohn’s disease and ulcerative colitis. The purpose of this work is to provide a review of the evidence about participation of NHE1 in the nociceptive processing.

  3. Vascular endothelial growth factor signaling in acute myeloid leukemia

    Kampen, Kim R.; ter Elst, Arja; de Bont, Eveline S. J. M.

    2013-01-01

    This review is designed to provide an overview of the current literature concerning vascular endothelial growth factor signaling (VEGF) in acute myeloid leukemia (AML). Aberrant VEGF signaling operates in the bone marrow of AML patients and is related to a poor prognosis. The altered signaling pathw

  4. Impact of behavioral control on the processing of nociceptive stimulation

    JamesWGrau; RussellHuie; EricD.Crown; KyleM.Baumbauer

    2012-01-01

    How nociceptive signals are processed within the spinal cord, and whether these signals lead to behavioral signs of neuropathic pain, depends upon their relation to other events and behavior. Our work shows that these relations can have a lasting effect on spinal plasticity, inducing a form of learning that alters the effect of subsequent nociceptive stimuli. The capacity of lower spinal systems to adapt, in the absence of brain input, is examined in spinally transected rats that receive a no...

  5. TNF signaling contributes to the development of nociceptive sensitization in a tibia fracture model of complex regional pain syndrome type I

    Sabsovich, Ilya; Guo, Tian-Zhi; Wei, Tzuping; Zhao, Rong; Li, Xiangqi; Clark, David J.; Geis, Christian; Sommer, Claudia; Kingery, Wade S.

    2007-01-01

    Tibia fracture in rats initiates a cascade of nociceptive, vascular, and bone changes resembling complex regional pain syndrome type I (CRPS I). Previous studies suggest that the pathogenesis of these changes is attributable to an exaggerated regional inflammatory response to injury. We postulated that the pro-inflammatory cytokine tumor necrosis factor alpha (TNF) might mediate the development of CRPS-like changes after fracture. RT-PCR and EIA assays were used to evaluate changes in TNF exp...

  6. Controlling attention to nociceptive stimuli with working memory.

    Valéry Legrain

    Full Text Available BACKGROUND: Because pain often signals the occurrence of potential tissue damage, a nociceptive stimulus has the capacity to involuntarily capture attention and take priority over other sensory inputs. Whether distraction by nociception actually occurs may depend upon the cognitive characteristics of the ongoing activities. The present study tested the role of working memory in controlling the attentional capture by nociception. METHODOLOGY AND PRINCIPAL FINDINGS: Participants performed visual discrimination and matching tasks in which visual targets were shortly preceded by a tactile distracter. The two tasks were chosen because of the different effects the involvement of working memory produces on performance, in order to dissociate the specific role of working memory in the control of attention from the effect of general resource demands. Occasionally (i.e. 17% of the trials, tactile distracters were replaced by a novel nociceptive stimulus in order to distract participants from the visual tasks. Indeed, in the control conditions (no working memory, reaction times to visual targets were increased when the target was preceded by a novel nociceptive distracter as compared to the target preceded by a frequent tactile distracter, suggesting attentional capture by the novel nociceptive stimulus. However, when the task required an active rehearsal of the visual target in working memory, the novel nociceptive stimulus no longer induced a lengthening of reaction times to visual targets, indicating a reduction of the distraction produced by the novel nociceptive stimulus. This effect was independent of the overall task demands. CONCLUSION AND SIGNIFICANCE: Loading working memory with pain-unrelated information may reduce the ability of nociceptive input to involuntarily capture attention, and shields cognitive processing from nociceptive distraction. An efficient control of attention over pain is best guaranteed by the ability to maintain active goal

  7. Synaptic Plasticity and Nociception

    ChenJianguo

    2004-01-01

    Synaptic plasticity is one of the fields that progresses rapidly and has a lot of success in neuroscience. The two major types of synaptie plasticity: long-term potentiation ( LTP and long-term depression (LTD are thought to be the cellular mochanisms of learning and memory. Recently, accumulating evidence suggests that, besides serving as a cellular model for learning and memory, the synaptic plasticity involves in other physiological or pathophysiological processes, such as the perception of pain and the regulation of cardiovascular system. This minireview will focus on the relationship between synaptic plasticity and nociception.

  8. Innate danger signals in acute injury: From bench to bedside.

    Fontaine, Mathieu; Lepape, Alain; Piriou, Vincent; Venet, Fabienne; Friggeri, Arnaud

    2016-08-01

    The description of the systemic inflammatory response syndrome (SIRS) as a reaction to numerous insults marked a turning point in the understanding of acute critical states, which are intensive care basic cases. This concept highlighted the final inflammatory response features whichever the injury mechanism is: infectious, or non-infectious such as extensive burns, traumas, major surgery or acute pancreatitis. In these cases of severe non-infectious insult, many endogenous mediators are released. Like infectious agents components, they can activate the immune system (via common signaling pathways) and initiate an inflammatory response. They are danger signals or alarmins. These molecules generally play an intracellular physiological role and acquire new functions when released in extracellular space. Many progresses brought new information on these molecules and on their function in infectious and non-infectious inflammation. These danger signals can be used as biomarkers and provide new pathophysiological and therapeutic approaches, particularly for immune dysfunctions occurring after an acute injury. We present herein the danger model, the main danger signals and the clinical consequences. PMID:26987739

  9. Short-term synaptic plasticity in the nociceptive thalamic-anterior cingulate pathway

    Vogt Brent A

    2009-09-01

    noxious events. Moreover, these modifications of cingulate synapses appear to regulate afferent signals that may be important to the transition from acute to chronic pain conditions associated with persistent peripheral noxious stimulation. Enhanced and maintained nociceptive activities in cingulate cortex, therefore, can become adverse and it will be important to learn how to regulate such changes in thalamic firing patterns that transmit nociceptive information to ACC in early stages of chronic pain.

  10. Resveratrol engages AMPK to attenuate ERK and mTOR signaling in sensory neurons and inhibits incision-induced acute and chronic pain

    Tillu Dipti V

    2012-01-01

    Full Text Available Abstract Background Despite advances in our understanding of basic mechanisms driving post-surgical pain, treating incision-induced pain remains a major clinical challenge. Moreover, surgery has been implicated as a major cause of chronic pain conditions. Hence, more efficacious treatments are needed to inhibit incision-induced pain and prevent the transition to chronic pain following surgery. We reasoned that activators of AMP-activated protein kinase (AMPK may represent a novel treatment avenue for the local treatment of incision-induced pain because AMPK activators inhibit ERK and mTOR signaling, two important pathways involved in the sensitization of peripheral nociceptors. Results To test this hypothesis we used a potent and efficacious activator of AMPK, resveratrol. Our results demonstrate that resveratrol profoundly inhibits ERK and mTOR signaling in sensory neurons in a time- and concentration-dependent fashion and that these effects are mediated by AMPK activation and independent of sirtuin activity. Interleukin-6 (IL-6 is thought to play an important role in incision-induced pain and resveratrol potently inhibited IL-6-mediated signaling to ERK in sensory neurons and blocked IL-6-mediated allodynia in vivo through a local mechanism of action. Using a model of incision-induced allodynia in mice, we further demonstrate that local injection of resveratrol around the surgical wound strongly attenuates incision-induced allodynia. Intraplantar IL-6 injection and plantar incision induces persistent nociceptive sensitization to PGE2 injection into the affected paw after the resolution of allodynia to the initial stimulus. We further show that resveratrol treatment at the time of IL-6 injection or plantar incision completely blocks the development of persistent nociceptive sensitization consistent with the blockade of a transition to a chronic pain state by resveratrol treatment. Conclusions These results highlight the importance of signaling

  11. Changes in thermal nociceptive responses in dairy cows following experimentally induced Esherichia coli mastitis

    Rasmussen, Ditte B.; Fogsgaard, Katrine; Røntved, Christine Maria;

    2011-01-01

    Mastitis is a high incidence disease in dairy cows. The acute stage is considered painful and inflammation can lead to hyperalgesia and thereby contribute to decreased welfare. The aim of this study was to examine changes in nociceptive responses toward cutaneous nociceptive laser stimulation (NL...

  12. Retinoid receptor signaling and autophagy in acute promyelocytic leukemia

    Orfali, Nina [Cork Cancer Research Center, University College Cork, Cork (Ireland); Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA. (United States); McKenna, Sharon L. [Cork Cancer Research Center, University College Cork, Cork (Ireland); Cahill, Mary R. [Department of Hematology, Cork University Hospital, Cork (Ireland); Gudas, Lorraine J., E-mail: ljgudas@med.cornell.edu [Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA. (United States); Mongan, Nigel P., E-mail: nigel.mongan@nottingham.ac.uk [Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, LE12 5RD (United Kingdom); Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA. (United States)

    2014-05-15

    Retinoids are a family of signaling molecules derived from vitamin A with well established roles in cellular differentiation. Physiologically active retinoids mediate transcriptional effects on cells through interactions with retinoic acid (RARs) and retinoid-X (RXR) receptors. Chromosomal translocations involving the RARα gene, which lead to impaired retinoid signaling, are implicated in acute promyelocytic leukemia (APL). All-trans-retinoic acid (ATRA), alone and in combination with arsenic trioxide (ATO), restores differentiation in APL cells and promotes degradation of the abnormal oncogenic fusion protein through several proteolytic mechanisms. RARα fusion-protein elimination is emerging as critical to obtaining sustained remission and long-term cure in APL. Autophagy is a degradative cellular pathway involved in protein turnover. Both ATRA and ATO also induce autophagy in APL cells. Enhancing autophagy may therefore be of therapeutic benefit in resistant APL and could broaden the application of differentiation therapy to other cancers. Here we discuss retinoid signaling in hematopoiesis, leukemogenesis, and APL treatment. We highlight autophagy as a potential important regulator in anti-leukemic strategies. - Highlights: • Normal and aberrant retinoid signaling in hematopoiesis and leukemia is reviewed. • We suggest a novel role for RARα in the development of X-RARα gene fusions in APL. • ATRA therapy in APL activates transcription and promotes onco-protein degradation. • Autophagy may be involved in both onco-protein degradation and differentiation. • Pharmacologic autophagy induction may potentiate ATRA's therapeutic effects.

  13. Retinoid receptor signaling and autophagy in acute promyelocytic leukemia

    Retinoids are a family of signaling molecules derived from vitamin A with well established roles in cellular differentiation. Physiologically active retinoids mediate transcriptional effects on cells through interactions with retinoic acid (RARs) and retinoid-X (RXR) receptors. Chromosomal translocations involving the RARα gene, which lead to impaired retinoid signaling, are implicated in acute promyelocytic leukemia (APL). All-trans-retinoic acid (ATRA), alone and in combination with arsenic trioxide (ATO), restores differentiation in APL cells and promotes degradation of the abnormal oncogenic fusion protein through several proteolytic mechanisms. RARα fusion-protein elimination is emerging as critical to obtaining sustained remission and long-term cure in APL. Autophagy is a degradative cellular pathway involved in protein turnover. Both ATRA and ATO also induce autophagy in APL cells. Enhancing autophagy may therefore be of therapeutic benefit in resistant APL and could broaden the application of differentiation therapy to other cancers. Here we discuss retinoid signaling in hematopoiesis, leukemogenesis, and APL treatment. We highlight autophagy as a potential important regulator in anti-leukemic strategies. - Highlights: • Normal and aberrant retinoid signaling in hematopoiesis and leukemia is reviewed. • We suggest a novel role for RARα in the development of X-RARα gene fusions in APL. • ATRA therapy in APL activates transcription and promotes onco-protein degradation. • Autophagy may be involved in both onco-protein degradation and differentiation. • Pharmacologic autophagy induction may potentiate ATRA's therapeutic effects

  14. The inhibitory effect of locally injected dexmedetomidine on carrageenan-induced nociception in rats.

    Honda, Yuka; Higuchi, Hitoshi; Matsuoka, Yoshikazu; Yabuki-Kawase, Akiko; Ishii-Maruhama, Minako; Tomoyasu, Yumiko; Maeda, Shigeru; Morimatsu, Hiroshi; Miyawaki, Takuya

    2015-10-01

    Recent studies showed that the administration of dexmedetomidine relieved hyperalgesia in the presence of neuropathic pain. These findings have led to the hypothesis that the local administration of dexmedetomidine is useful for relieving acute inflammatory nociception, such as postoperative pain. Thus, we evaluated the inhibitory effect of locally injected dexmedetomidine on acute inflammatory nociception. Acute inflammatory nociception was induced by an intraplantar injection of 1% carrageenan into the hindpaws of rats, and dexmedetomidine was also injected combined with carrageenan. The paw withdrawal threshold based on von Frey filament stimulation was measured until 12 h after injection. We compared the area under the time-curve (AUC) between carrageenan and carrageenan with dexmedetomidine. To clarify that the action of dexmedetomidine was via α2-adrenoceptors, we evaluated the effect of yohimbine, a selective antagonist of α2-adrenoceptors, on the anti-nociception of dexmedetomidine. As the results, the intraplantar injection of carrageenan with over 10 μM dexmedetomidine significantly increased AUC, compared to that with only carrageenan injection. This effect of dexmedetomidine was reversed by the addition of yohimbine to carrageenan and dexmedetomidine. These results demonstrated that the locally injected dexmedetomidine was effective against carrageenan-induced inflammatory nociception via α2-adrenoceptors. The findings suggest that the local injection of dexmedetomidine is useful for relieving local acute inflammatory nociception. PMID:26160316

  15. Gliotransmission modulates baseline mechanical nociception

    Foley Jeannine C

    2011-12-01

    Full Text Available Abstract Pain is a physiological and adaptive process which occurs to protect organisms from tissue damage and extended injury. Pain sensation beyond injury, however, is a pathological process which is poorly understood. Experimental models of neuropathic pain demonstrate that reactive astrocytes contribute to reduced nociceptive thresholds. Astrocytes release "gliotransmitters" such as D-serine, glutamate, and ATP, which is extracellularly hydrolyzed to adenosine. Adenosine 1 receptor activation in the spinal cord has anti-nociceptive effects on baseline pain threshold, but the source of the endogenous ligand (adenosine in the spinal cord is unknown. In this study we used a transgenic mouse model in which SNARE-mediated gliotransmission was selectively attenuated (called dnSNARE mice to investigate the role of astrocytes in mediating baseline nociception and the development of neuropathic pain. Under baseline conditions, immunostaining in the dorsal horn of the spinal cord showed astrocyte-specific transgene expression in dnSNARE mice, and no difference in expression levels of the astrocyte marker GFAP and the microglia marker Iba1 relative to wild-type mice. The Von Frey filament test was used to probe sensitivity to baseline mechanical pain thresholds and allodynia following the spared nerve injury model of neuropathic pain. DnSNARE mice exhibit a reduced nociceptive threshold in response to mechanical stimulation compared to wild-type mice under baseline conditions, but nociceptive thresholds following spared nerve injury were similar between dnSNARE and wild-types. This study is the first to provide evidence that gliotransmission contributes to basal mechanical nociception.

  16. Retinoid receptor signaling and autophagy in acute promyelocytic leukemia.

    Orfali, Nina

    2014-05-15

    Retinoids are a family of signaling molecules derived from vitamin A with well established roles in cellular differentiation. Physiologically active retinoids mediate transcriptional effects on cells through interactions with retinoic acid (RARs) and retinoid-X (RXR) receptors. Chromosomal translocations involving the RARα gene, which lead to impaired retinoid signaling, are implicated in acute promyelocytic leukemia (APL). All-trans-retinoic acid (ATRA), alone and in combination with arsenic trioxide (ATO), restores differentiation in APL cells and promotes degradation of the abnormal oncogenic fusion protein through several proteolytic mechanisms. RARα fusion-protein elimination is emerging as critical to obtaining sustained remission and long-term cure in APL. Autophagy is a degradative cellular pathway involved in protein turnover. Both ATRA and ATO also induce autophagy in APL cells. Enhancing autophagy may therefore be of therapeutic benefit in resistant APL and could broaden the application of differentiation therapy to other cancers. Here we discuss retinoid signaling in hematopoiesis, leukemogenesis, and APL treatment. We highlight autophagy as a potential important regulator in anti-leukemic strategies.

  17. Impact of behavioral control on the processing of nociceptive stimulation

    James W Grau

    2012-08-01

    Full Text Available How nociceptive signals are processed within the spinal cord, and whether these signals lead to behavioral signs of neuropathic pain, depends upon their relation to other events and behavior. Our work shows that these relations can have a lasting effect on spinal plasticity, inducing a form of learning that alters the effect of subsequent nociceptive stimuli. The capacity of lower spinal systems to adapt, in the absence of brain input, is examined in spinally transected rats that receive a nociceptive shock to the tibialis anterior muscle of one hind leg. If shock is delivered whenever the leg is extended (controllable stimulation, it induces an increase in flexion duration that minimizes net shock exposure. This learning is not observed in subjects that receive the same amount of shock independent of leg position (uncontrollable stimulation. These two forms of stimulation have a lasting, and divergent, effect on subsequent learning: Controllable stimulation enables learning whereas uncontrollable stimulation disables it (learning deficit. Uncontrollable stimulation also enhances mechanical reactivity (allodynia. We review evidence that training with controllable stimulation engages a BDNF-dependent process that can both prevent and reverse the consequences of uncontrollable shock. We relate these effects to changes in BDNF protein and TrkB signaling. Controllable stimulation is also shown to counter the effects of peripheral inflammation (from intradermal capsaicin. A model is proposed that assumes nociceptive input is gated at an early stage, within the dorsal horn. his gate is sensitive to current environmental relations (between proprioceptive and nociceptive input, allowing stimulation to be classified as controllable or uncontrollable. We further propose that the status of this gate is affected by past experience and that a history of uncontrollable stimulation will promote the development of neuropathic pain.

  18. The Role of CGRPin Nociception?

    R. G. Hill

    2001-01-01

    Full Text Available The failure of NK1 receptor antagonists to show analgesic activity in clinical trials in spite of abundant preclinical evidence for a role of this neuropeptide in nociception, makes it somewhat dangerous to speculate on the nociceptive role of other neuropeptides, especially with respect to therapeutic utility of receptor antagonists! However, CGRP is the primary afferent peptide with the strongest evidence of a role in pain perception. It is found in a greater proportion of sensory neurones than other peptides and is a constituent of A[delta ] as well as C-fibres. Inflammation of peripheral tissues upregulates production of CGRP in sensory ganglia, coincident with the development of hyperalgesia, and CGRP knockout mice have attenuated hyperalgesic responses. CGRP is released into the dorsal horn of the spinal cord (DHSC by noxious peripheral stimuli and excites nociceptive DHSC neurones on local application. The peptide antagonist CGRP8-37 blocks the response to exogenous CGRP and can reduce the response of DHSC neurones to noxious peripheral stimuli. CGRP8-37 has also been shown to have behavioural antinociceptive properties when given intrathecally. Conversely, injection of CGRP itself to the PAG or n. accumbens has been reported to have antinociceptive effects that are reversed by CGRP8-37. With the advent of potent non-peptide antagonists such as BIBN4096BS we should soon be able to determine whether systemic blockade of all CGRP receptors produces antinociception without limiting side effects.

  19. Fine-tuned ATP signals are acute mediators in osteocyte mechanotransduction

    Kringelbach, Tina M.; Aslan, Derya; Novak, Ivana;

    2015-01-01

    effects on bone remodeling. Therefore, we hypothesized that ATP signaling is also applied by osteocytes in mechanotransduction. We applied a short fluid pulse on MLO-Y4 osteocyte-like cells during real-time detection of ATP and demonstrated that mechanical stimulation activates the acute release of ATP...... and that these acute ATP signals are fine-tuned according to the magnitude of loading. ATP release was then challenged by pharmacological inhibitors, which indicated a vesicular release pathway for acute ATP signals. Finally, we showed that osteocytes express functional P2X2 and P2X7 receptors and...... respond to even low concentrations of nucleotides by increasing intracellular calcium concentration. These results indicate that in osteocytes, vesicular ATP release is an acute mediator of mechanical signals and the magnitude of loading. These and previous results, therefore, implicate purinergic...

  20. Network dynamics in nociceptive pathways assessed by the neuronal avalanche model

    Wu José

    2012-04-01

    Full Text Available Abstract Background Traditional electroencephalography provides a critical assessment of pain responses. The perception of pain, however, may involve a series of signal transmission pathways in higher cortical function. Recent studies have shown that a mathematical method, the neuronal avalanche model, may be applied to evaluate higher-order network dynamics. The neuronal avalanche is a cascade of neuronal activity, the size distribution of which can be approximated by a power law relationship manifested by the slope of a straight line (i.e., the α value. We investigated whether the neuronal avalanche could be a useful index for nociceptive assessment. Findings Neuronal activity was recorded with a 4 × 8 multichannel electrode array in the primary somatosensory cortex (S1 and anterior cingulate cortex (ACC. Under light anesthesia, peripheral pinch stimulation increased the slope of the α value in both the ACC and S1, whereas brush stimulation increased the α value only in the S1. The increase in α values was blocked in both regions under deep anesthesia. The increase in α values in the ACC induced by peripheral pinch stimulation was blocked by medial thalamic lesion, but the increase in α values in the S1 induced by brush and pinch stimulation was not affected. Conclusions The neuronal avalanche model shows a critical state in the cortical network for noxious-related signal processing. The α value may provide an index of brain network activity that distinguishes the responses to somatic stimuli from the control state. These network dynamics may be valuable for the evaluation of acute nociceptive processes and may be applied to chronic pathological pain conditions.

  1. IL-6 signalling in patients with acute ST-elevation myocardial infarction

    Vibeke N. Ritschel

    2014-01-01

    In conclusion, circulating levels of IL-6 and CRP, but not the soluble forms of the receptor (sIL-6R or the receptor signalling subunit (sgp130 were associated with the extent of myocardial necrosis. The biological importance of the IL-6/gp130-mediated signalling pathways in patients with acute myocardial infarction and dysglycemia should be further elucidated.

  2. Fine-tuned ATP signals are acute mediators in osteocyte mechanotransduction.

    Kringelbach, Tina M; Aslan, Derya; Novak, Ivana; Ellegaard, Maria; Syberg, Susanne; Andersen, Christina K B; Kristiansen, Kim A; Vang, Ole; Schwarz, Peter; Jørgensen, Niklas R

    2015-12-01

    Osteocytes are considered the primary mechanosensors of bone, but the signaling pathways they apply in mechanotransduction are still incompletely investigated and characterized. A growing body of data strongly indicates that P2 receptor signaling among osteoblasts and osteoclasts has regulatory effects on bone remodeling. Therefore, we hypothesized that ATP signaling is also applied by osteocytes in mechanotransduction. We applied a short fluid pulse on MLO-Y4 osteocyte-like cells during real-time detection of ATP and demonstrated that mechanical stimulation activates the acute release of ATP and that these acute ATP signals are fine-tuned according to the magnitude of loading. ATP release was then challenged by pharmacological inhibitors, which indicated a vesicular release pathway for acute ATP signals. Finally, we showed that osteocytes express functional P2X2 and P2X7 receptors and respond to even low concentrations of nucleotides by increasing intracellular calcium concentration. These results indicate that in osteocytes, vesicular ATP release is an acute mediator of mechanical signals and the magnitude of loading. These and previous results, therefore, implicate purinergic signaling as an early signaling pathway in osteocyte mechanotransduction. PMID:26327582

  3. Effects of Parecoxib and Fentanyl on nociception-induced cortical activity

    Wang Ying-Wei

    2010-01-01

    Full Text Available Abstract Background Analgesics, including opioids and non-steroid anti-inflammatory drugs reduce postoperative pain. However, little is known about the quantitative effects of these drugs on cortical activity induced by nociceptive stimulation. The aim of the present study was to determine the neural activity in response to a nociceptive stimulus and to investigate the effects of fentanyl (an opioid agonist and parecoxib (a selective cyclooxygenase-2 inhibitor on this nociception-induced cortical activity evoked by tail pinch. Extracellular recordings (electroencephalogram and multi-unit signals were performed in the area of the anterior cingulate cortex while intracellular recordings were made in the primary somatosensory cortex. The effects of parecoxib and fentanyl on induced cortical activity were compared. Results Peripheral nociceptive stimulation in anesthetized rats produced an immediate electroencephalogram (EEG desynchronization resembling the cortical arousal (low-amplitude, fast-wave activity, while the membrane potential switched into a persistent depolarization state. The induced cortical activity was abolished by fentanyl, and the fentanyl's effect was reversed by the opioid receptor antagonist, naloxone. Parecoxib, on the other hand, did not significantly affect the neural activity. Conclusion Cortical activity was modulated by nociceptive stimulation in anesthetized rats. Fentanyl showed a strong inhibitory effect on the nociceptive-stimulus induced cortical activity while parecoxib had no significant effect.

  4. The role of skin nociceptive afferent nerves in blister healing.

    Westerman, R A; Carr, R W; Delaney, C A; Morris, M J; Roberts, R G

    1993-01-01

    Because sensory neuropeptides improve survival of critical skin and muscle flaps in rats, skin nociceptive sensory nerve function in blister healing was examined. Sensory nerve ablation by unilateral hindlimb denervation or cutaneous axon reflex enhancement by 14 days systemic nicotine treatment (5 mg kg-1 day-1) decreased and increased, respectively, peripheral motor functions of nociceptive (peptidergic) skin nerves. Effects on nociception were measured by a radiant heat tail-flick test. Axon reflex flares were evoked by transdermal iontophoresis of acetylcholine or noxious electrical stimulation under pentobarbitone 40 mg kg-1 anaesthesia. Resultant changes in cutaneous microvascular blood flux were measured non-invasively by laser Doppler flowmetry. In nicotine-treated rats compared with placebo-treated controls, acetylcholine-evoked axon reflex flare was enhanced by 240% (p skin using a constant weight and diameter of compressed dry ice pellet applied for 30 secs at constant force. Dry-ice blisters raised on the hindpaw 14 days post-denervation were significantly slower to heal completely (42 days) than controls (30 days: P skin. The data signal a possible important role for neuropeptides in these processes and question the function of nicotinic receptors on sensory nerves. PMID:7712628

  5. DNA Methylation Modulates Nociceptive Sensitization after Incision

    Sun, Yuan; Sahbaie, Peyman; Liang, DeYong; Li, Wenwu; Shi, Xiaoyou; Kingery, Paige; Clark, J. David

    2015-01-01

    DNA methylation is a key epigenetic mechanism controlling DNA accessibility and gene expression. Blockade of DNA methylation can significantly affect pain behaviors implicated in neuropathic and inflammatory pain. However, the role of DNA methylation with regard to postoperative pain has not yet been explored. In this study we sought to investigate the role of DNA methylation in modulating incisional pain and identify possible targets under DNA methylation and contributing to incisional pain. DNA methyltranferase (DNMT) inhibitor 5-Aza-2′-deoxycytidine significantly reduced incision-induced mechanical allodynia and thermal sensitivity. Aza-2′-deoxycytidine also reduced hindpaw swelling after incision, suggesting an anti-inflammatory effect. Global DNA methylation and DNMT3b expression were increased in skin after incision, but none of DNMT1, DNMT3a or DNMT3b was altered in spinal cord or DRG. The expression of proopiomelanocortin Pomc encoding β-endorphin and Oprm1 encoding the mu-opioid receptor were upregulated peripherally after incision; moreover, Oprm1 expression was further increased under DNMT inhibitor treatment. Finally, local peripheral injection of the opioid receptor antagonist naloxone significantly exacerbated incision-induced mechanical hypersensitivity. These results suggest that DNA methylation is functionally relevant to incisional nociceptive sensitization, and that mu-opioid receptor signaling might be one methylation regulated pathway controlling sensitization after incision. PMID:26535894

  6. Effects of acute aerobic exercise on motor response inhibition: An ERP study using the stop-signal task

    Chien-Heng Chu; Alderman, Brandon L.; Gao-Xia Wei; Yu-Kai Chang

    2015-01-01

    Purpose: The purpose of this study was to determine the effects of acute exercise on motor response inhibition using both behavioral and electrophysiological approaches. Methods: The P3 and N1 event-related potential (ERP) components were recorded while performing a stop-signal task in 21 college students following a moderately intense acute exercise bout for 30 min and a sedentary control session that involved reading. Results: Acute exercise induced a shorter stop signal response time...

  7. Phagocyte respiratory burst activates macrophage erythropoietin signalling to promote acute inflammation resolution.

    Luo, Bangwei; Wang, Jinsong; Liu, Zongwei; Shen, Zigang; Shi, Rongchen; Liu, Yu-Qi; Liu, Yu; Jiang, Man; Wu, Yuzhang; Zhang, Zhiren

    2016-01-01

    Inflammation resolution is an active process, the failure of which causes uncontrolled inflammation which underlies many chronic diseases. Therefore, endogenous pathways that regulate inflammation resolution are fundamental and of wide interest. Here, we demonstrate that phagocyte respiratory burst-induced hypoxia activates macrophage erythropoietin signalling to promote acute inflammation resolution. This signalling is activated following acute but not chronic inflammation. Pharmacological or genetical inhibition of the respiratory burst suppresses hypoxia and macrophage erythropoietin signalling. Macrophage-specific erythropoietin receptor-deficient mice and chronic granulomatous disease (CGD) mice, which lack the capacity for respiratory burst, display impaired inflammation resolution, and exogenous erythropoietin enhances this resolution in WT and CGD mice. Mechanistically, erythropoietin increases macrophage engulfment of apoptotic neutrophils via PPARγ, promotes macrophage removal of debris and enhances macrophage migration to draining lymph nodes. Together, our results provide evidences of an endogenous pathway that regulates inflammation resolution, with important implications for treating inflammatory conditions. PMID:27397585

  8. What's Coming Near? The Influence of Dynamical Visual Stimuli on Nociceptive Processing.

    De Paepe, Annick L; Crombez, Geert; Legrain, Valéry

    2016-01-01

    Objects approaching us may pose a threat, and signal the need to initiate defensive behavior. Detecting these objects early is crucial to either avoid the object or prepare for contact most efficiently. This requires the construction of a coherent representation of our body, and the space closely surrounding our body, i.e. the peripersonal space. This study, with 27 healthy volunteers, investigated how the processing of nociceptive stimuli applied to the hand is influenced by dynamical visual stimuli either approaching or receding from the hand. On each trial a visual stimulus was either approaching or receding the participant's left or right hand. At different temporal delays from the onset of the visual stimulus, a nociceptive stimulus was applied either at the same or the opposite hand, so that it was presented when the visual stimulus was perceived at varying distances from the hand. Participants were asked to respond as fast as possible at which side they perceived a nociceptive stimulus. We found that reaction times were fastest when the visual stimulus appeared near the stimulated hand. Moreover, investigating the influence of the visual stimuli along the continuous spatial range (from near to far) showed that approaching lights had a stronger spatially dependent effect on nociceptive processing, compared to receding lights. These results suggest that the coding of nociceptive information in a peripersonal frame of reference may constitute a safety margin around the body that is designed to protect it from potential physical threat. PMID:27224421

  9. Interaction and regulatory functions of μ- and δ-opioid receptors in nociceptive afferent neurons

    Xu Zhang; Lan Bao

    2012-01-01

    μ-opioid receptor (MOR) agonists such as morphine are powerful analgesics used for pain therapy.However,the use of these drugs is limited by their side-effects,which include antinociceptive tolerance and dependence.Earlier studies reported that MOR analgesic tolerance is reduced by blockade of δ-opioid receptors (DORs) that interact with MORs.Recent studies show that the MOR/DOR interaction in nociceptive afferent neurons in the dorsal root ganglion may contribute to morphine analgesic tolerance.Further analysis of the mechanisms for regulating the trafficking of receptors,ion channels and signaling molecules in nociceptive afferent neurons would help to understand the nociceptive mechanisms and improve pain therapy.

  10. The G Protein regulators EGL-10 and EAT-16, the Giα GOA-1 and the Gqα EGL-30 modulate the response of the C. elegans ASH polymodal nociceptive sensory neurons to repellents

    Di Schiavi Elia; Bergamasco Carmela; Amoroso Maria R; Esposito Giovanni; Bazzicalupo Paolo

    2010-01-01

    Abstract Background Polymodal, nociceptive sensory neurons are key cellular elements of the way animals sense aversive and painful stimuli. In Caenorhabditis elegans, the polymodal nociceptive ASH sensory neurons detect aversive stimuli and release glutamate to generate avoidance responses. They are thus useful models for the nociceptive neurons of mammals. While several molecules affecting signal generation and transduction in ASH have been identified, less is known about transmission of the...

  11. Thermal Nociceptive Threshold Testing Detects Altered Sensory Processing in Broiler Chickens with Spontaneous Lameness

    Becky Hothersall; Gina Caplen; Parker, Richard M. A.; Nicol, Christine J; Waterman-Pearson, Avril E.; Claire A Weeks; Joanna C Murrell

    2014-01-01

    Lameness is common in commercially reared broiler chickens but relationships between lameness and pain (and thus bird welfare) have proved complex, partly because lameness is often partially confounded with factors such as bodyweight, sex and pathology. Thermal nociceptive threshold (TNT) testing explores the neural processing of noxious stimuli, and so can contribute to our understanding of pain. Using an acute model of experimentally induced articular pain, we recently demonstrated that TNT...

  12. Brain estrogen signaling and acute modulation of acoustic communication behaviors: a working hypothesis

    Remage-Healey, Luke

    2012-01-01

    Although estrogens are widely considered circulating ‘sex steroid hormones’ typically associated with female reproduction, recent evidence suggests that estrogens can act as local modulators of brain circuits in both males and females. Functional implications of this newly-characterized estrogen signaling system have begun to emerge. This essay summarizes evidence in support of the hypothesis that the rapid production of estrogens in brain circuits can drive acute changes in both the producti...

  13. Genetic or Pharmacologic Amplification of Nrf2 Signaling Inhibits Acute Inflammatory Liver Injury in Mice

    Osburn, William O.; YATES, Melinda S.; Dolan, Patrick D.; Liby, Karen T.; Sporn, Michael B.; Taguchi, Keiko; Yamamoto, Masayuki; Kensler, Thomas W.

    2008-01-01

    Oxidative stress-mediated destruction of normal parenchymal cells during hepatic inflammatory responses contributes to the pathogenesis of immune-mediated hepatitis and is implicated in the progression of acute inflammatory liver injury to chronic inflammatory liver disease. The transcription factor NF-E2-related factor 2 (Nrf2) regulates the expression of a battery of antioxidative enzymes and Nrf2 signaling can be activated by small-molecule drugs that disrupt Keap1-mediated repression of N...

  14. Rationale for targeting the pre-B-cell receptor signaling pathway in acute lymphoblastic leukemia.

    Müschen, Markus

    2015-06-11

    Inhibitors of B-cell receptor (BCR) and pre-BCR signaling were successfully introduced into patient care for various subtypes of mature B-cell lymphoma (e.g., ibrutinib, idelalisib). Acute lymphoblastic leukemia (ALL) typically originates from pre-B cells that critically depend on survival signals emanating from a functional pre-BCR. However, whether patients with ALL benefit from treatment with (pre-) BCR inhibitors has not been explored. Recent data suggest that the pre-BCR functions as tumor suppressor in the majority of cases of human ALL. However, a distinct subset of human ALL is selectively sensitive to pre-BCR antagonists. PMID:25878119

  15. Chronic Psychological Stress Enhances Nociceptive Processing in the Urinary Bladder in High-Anxiety Rats

    Robbins, M.T.; DeBerry, J.; Ness, T. J

    2007-01-01

    This study sought to determine whether acute and/or chronic psychological stress produce changes in urinary bladder nociception. Female Sprague-Dawley (SD; low/moderate anxiety) or Wistar-Kyoto (WK; high-anxiety) rats were exposed to either an acute (1 day) or a chronic (10 days) water avoidance stress paradigm or a sham stress paradigm. Paw withdrawal thresholds to mechanical and thermal stimuli and fecal pellet output, were quantified at baseline and after the final stress or sham stress ex...

  16. Cutaneous nociception and neurogenic inflammation evoked by PACAP38 and VIP

    Schytz, Henrik Winther; Holst, Helle; Arendt-Nielsen, Lars;

    2010-01-01

    Pituitary adenylate cyclase-activating peptide-38 (PACAP38) and vasoactive intestinal peptide (VIP) belong to the same secretin-glucagon superfamily and are present in nerve fibers in dura and skin. Using a model of acute cutaneous pain we explored differences in pain perception and vasomotor res...... conclusion, we found that peripheral nociceptive cutaneous responses elicited by PACAP38 and VIP are similar in healthy volunteers. This suggests that acute pain and vasomotor responses following intradermal injections of PACAP38 and VIP are primarily mediated by VPAC receptors....

  17. Feeding state modulates nociception in C. elegans

    Ezcurra, Marina

    2011-01-01

    An important function of the nervous system is to respond to changes in the environment. The nematode C. elegans chemotaxes towards attractants and escapes noxious stimuli. Chemotaxis to salts requires the two ASE neurons ASEL and ASER, and escape responses require the nociceptive ASH neurons. To study the mechanisms underlying these behaviors, we adopted a combination of genetics and in vivo calcium imaging, which allows monitoring of neuronal activity in living animals. Calcium imaging reve...

  18. Cellular mechanisms of nociception in the frog

    Kuffler, D. P.; Lyfenko, Alla; Vyklický st., Ladislav; Vlachová, Viktorie

    2002-01-01

    Roč. 88, č. 4 (2002), s. 1843-1850. ISSN 0022-3077 R&D Projects: GA ČR GA305/00/1639; GA MŠk LN00B122 Grant ostatní: NATO(XX) Grant 977062 Institutional research plan: CEZ:AV0Z5011922 Keywords : cellular mechanisms of nociception * frog Subject RIV: FH - Neurology Impact factor: 3.743, year: 2002

  19. Nociceptive Effects of Locally Treated Metoprolol

    Nursima Cukadar

    2015-06-01

    Results: Metoprolol, an antagonist, significantly decreased the thermal latency and mechanical thresholds with dose and time dependent manner. However, dobutamine, an agonist, enhanced the latency and thresholds dose and time dependent. Conclusions: This results suggest that in contrast to dobutamine, locally treated metoprolol may cause hyperalgesic and allodynic actions. In addition, our results can demonstrate that peripheral beta-adrenergic receptors can play important roles in nociceptive process. [Cukurova Med J 2015; 40(2.000: 258-266

  20. Nociceptive Effects of Locally Treated Metoprolol

    Çukadar, Nursima; Baran, Furkan; Özsoy, Kadir Ercan; Uyanık, Fatih; Sürer, Tuba; Mert, Tufan; Güneş, Yasemin

    2015-01-01

    Purpose: Beta (β-)-adrenergic receptor antagonists, such as metoprolol, are often used to avoid circulatory complications during anesthesia for their antihypertensive and anti-tachycardia effects in patients with cardiovascular diseases. Although a few previous studies have been reported to exert antinociceptive and anesthetic effects of these drugs, knowledge about their action mechanisms in nociceptive process including pain perception is limited. This study therefore designed to identify t...

  1. Nociceptive Effects of Locally Treated Metoprolol

    Nursima Cukadar; Furkan Baran; Kadir Ercan Ozsoy; Fatih B. Uyanik; Tuba Surer; Tufan Mert; Yasemin Gunes

    2015-01-01

    Purpose: Beta (beta-)-adrenergic receptor antagonists, such as metoprolol, are often used to avoid circulatory complications during anesthesia for their antihypertensive and anti-tachycardia effects in patients with cardiovascular diseases. Although a few previous studies have been reported to exert antinociceptive and anesthetic effects of these drugs, knowledge about their action mechanisms in nociceptive process including pain perception is limited. This study therefore designed to identif...

  2. Preoperative anxiety induces no clinically relevant effect on intraoperative nociceptive levels during breast surgery under general anesthesia.

    Hashimoto, Kazuma; Iwayama, Sachiko; Sano, Yuka; Tatara, Tsuneo; Hirose, Munetaka

    2015-12-01

    Anxiety can affect acute and chronic postoperative pain after breast surgery. Nociceptive response during surgery might also be affected by preoperative anxiety even under unconscious state during general anesthesia. The aim of this retrospective study was to investigate nociceptive responses during breast surgery under general anesthesia in patients with or without preoperative anxiety. Patients (n = 45) were divided into a low-anxiety group (n = 25) and a high-anxiety group (n = 20) in accordance with preoperative scores for the State Trait Anxiety Inventory. We performed discriminant analysis to compare nociception during surgery using three intraoperative averaged values: heart rate; systolic blood pressure; and perfusion index. No significant differences in discriminant score were seen between groups (p = 0.10). Although we performed propensity score-matching to reduce the bias due to confounding variables in this retrospective study, there was also no significant difference in levels of nociceptive response between groups (p = 0.06). In conclusion, the level of nociception during breast surgery is not significantly affected by preoperative anxiety. PMID:25995061

  3. Pseudomonas aeruginosa forms Biofilms in Acute InfectionIndependent of Cell-to-Cell Signaling

    Schaber, J. Andy; Triffo, W.J.; Suh, Sang J.; Oliver, Jeffrey W.; Hastert, Mary C.; Griswold, John A.; Auer, Manfred; Hamood, Abdul N.; Rumbaugh, Kendra P.

    2006-09-20

    Biofilms are bacterial communities residing within a polysaccharide matrix that are associated with persistence and antibiotic resistance in chronic infections. We show that the opportunistic pathogen Pseudomonas aeruginosa forms biofilms within 8 hours of infection in thermally-injured mice, demonstrating that biofilms contribute to bacterial colonization in acute infections. P. aeruginosa biofilms were visualized within burned tissue surrounding blood vessels and adipose cells. Although quorum sensing (QS), a bacterial signaling mechanism, coordinates differentiation of biofilms in vitro, wild type and QS-deficient P. aeruginosa formed similar biofilms in vivo. Our findings demonstrate that P. aeruginosa forms biofilms on specific host tissues independent of QS.

  4. MR of vertebral compression fracture: Acute and chronic trauma versus metastasis -emphasis on the signal intensity and enhancement-

    Magnetic resonance (MR) imaging was performed in 41 patients with compression fracture of the spine. MR images of 14 patients with acute spinal trauma (within recent 1 month), eight patients with chronic trauma (over 1 month), and 19 patients with malignant cause without history for trauma were analyzed, retrospectively. Low signal intensities on T1-weighted images and high signal intensities on T2-weighted images were noted in 86% (12/14) of patients with acute trauma. Iso-signal intensities on all pulse sequence were noted in 50% (4/8) of patients with chronic trauma. Low signal intensities on T1-weighted images and high signal intensities on T2-weighted images were noted 100% (19/19) of patients with metastatic compression fracture. Contrast enhancement was observed in all the cases of acute trauma (4/4) and metastases (18/18), whereas only 20% (1/5) of chronic trauma showed enhancement. Fragmentation was seen in 35% (5/14) of patients with acute trauma, in 25% (2/8) with chronic trauma, and not seen in the patients with metastasis. In conclusion, acute traumatic compression fracture can not be differentiated from malignant cause by MR signal intensity or contrast enhancement, but chronic compression fracture can be distinguished from metastasis . Fragmentation may suggest traumatic compression fracture. So, MRI could be a useful method in differentiating the benign compression fracture from the pathologic ones caused by malignancy

  5. Adenosine A1 receptor agonists inhibit trigeminovascular nociceptive transmission

    Goadsby, P J; Hoskin, K L; Storer, R J;

    2002-01-01

    There is a considerable literature to suggest that adenosine A1 receptor agonists may have anti-nociceptive effects, and we sought to explore the role of adenosine A1 receptors in a model of trigeminovascular nociceptive transmission. Cats were anaesthetized (alpha-chloralose 60 mg/kg, intraperit......There is a considerable literature to suggest that adenosine A1 receptor agonists may have anti-nociceptive effects, and we sought to explore the role of adenosine A1 receptors in a model of trigeminovascular nociceptive transmission. Cats were anaesthetized (alpha-chloralose 60 mg...

  6. Acute upregulation of hedgehog signaling in mice causes differential effects on cranial morphology.

    Singh, Nandini; Dutka, Tara; Devenney, Benjamin M; Kawasaki, Kazuhiko; Reeves, Roger H; Richtsmeier, Joan T

    2015-03-01

    Hedgehog (HH) signaling, and particularly signaling by sonic hedgehog (SHH), is implicated in several essential activities during morphogenesis, and its misexpression causes a number of developmental disorders in humans. In particular, a reduced mitogenic response of cerebellar granule cell precursors to SHH signaling in a mouse model for Down syndrome (DS), Ts65Dn, is substantially responsible for reduced cerebellar size. A single treatment of newborn trisomic mice with an agonist of the SHH pathway (SAG) normalizes cerebellar morphology and restores some cognitive deficits, suggesting a possible therapeutic application of SAG for treating the cognitive impairments of DS. Although the beneficial effects on the cerebellum are compelling, inappropriate activation of the HH pathway causes anomalies elsewhere in the head, particularly in the formation and patterning of the craniofacial skeleton. To determine whether an acute treatment of SAG has an effect on craniofacial morphology, we quantitatively analyzed the cranial form of adult euploid and Ts65Dn mice that were injected with either SAG or vehicle at birth. We found significant deformation of adult craniofacial shape in some animals that had received SAG at birth. The most pronounced differences between the treated and untreated mice were in the midline structures of the facial skeleton. The SAG-driven craniofacial dysmorphogenesis was dose-dependent and possibly incompletely penetrant at lower concentrations. Our findings illustrate that activation of HH signaling, even with an acute postnatal stimulation, can lead to localized dysmorphology of the skull by generating modular shape changes in the facial skeleton. These observations have important implications for translating HH-agonist-based treatments for DS. PMID:25540129

  7. Acute upregulation of hedgehog signaling in mice causes differential effects on cranial morphology

    Nandini Singh

    2015-03-01

    Full Text Available Hedgehog (HH signaling, and particularly signaling by sonic hedgehog (SHH, is implicated in several essential activities during morphogenesis, and its misexpression causes a number of developmental disorders in humans. In particular, a reduced mitogenic response of cerebellar granule cell precursors to SHH signaling in a mouse model for Down syndrome (DS, Ts65Dn, is substantially responsible for reduced cerebellar size. A single treatment of newborn trisomic mice with an agonist of the SHH pathway (SAG normalizes cerebellar morphology and restores some cognitive deficits, suggesting a possible therapeutic application of SAG for treating the cognitive impairments of DS. Although the beneficial effects on the cerebellum are compelling, inappropriate activation of the HH pathway causes anomalies elsewhere in the head, particularly in the formation and patterning of the craniofacial skeleton. To determine whether an acute treatment of SAG has an effect on craniofacial morphology, we quantitatively analyzed the cranial form of adult euploid and Ts65Dn mice that were injected with either SAG or vehicle at birth. We found significant deformation of adult craniofacial shape in some animals that had received SAG at birth. The most pronounced differences between the treated and untreated mice were in the midline structures of the facial skeleton. The SAG-driven craniofacial dysmorphogenesis was dose-dependent and possibly incompletely penetrant at lower concentrations. Our findings illustrate that activation of HH signaling, even with an acute postnatal stimulation, can lead to localized dysmorphology of the skull by generating modular shape changes in the facial skeleton. These observations have important implications for translating HH-agonist-based treatments for DS.

  8. Negative Regulation of TGFβ Signaling by Stem Cell Antigen-1 Protects against Ischemic Acute Kidney Injury.

    Troy D Camarata

    Full Text Available Acute kidney injury, often caused by an ischemic insult, is associated with significant short-term morbidity and mortality, and increased risk of chronic kidney disease. The factors affecting the renal response to injury following ischemia and reperfusion remain to be clarified. We found that the Stem cell antigen-1 (Sca-1, commonly used as a stem cell marker, is heavily expressed in renal tubules of the adult mouse kidney. We evaluated its potential role in the kidney using Sca-1 knockout mice submitted to acute ischemia reperfusion injury (IRI, as well as cultured renal proximal tubular cells in which Sca-1 was stably silenced with shRNA. IRI induced more severe injury in Sca-1 null kidneys, as assessed by increased expression of Kim-1 and Ngal, rise in serum creatinine, abnormal pathology, and increased apoptosis of tubular epithelium, and persistent significant renal injury at day 7 post IRI, when recovery of renal function in control animals was nearly complete. Serum creatinine, Kim-1 and Ngal were slightly but significantly elevated even in uninjured Sca-1-/- kidneys. Sca-1 constitutively bound both TGFβ receptors I and II in cultured normal proximal tubular epithelial cells. Its genetic loss or silencing lead to constitutive TGFβ receptor-mediated activation of canonical Smad signaling even in the absence of ligand and to KIM-1 expression in the silenced cells. These studies demonstrate that by normally repressing TGFβ-mediated canonical Smad signaling, Sca-1 plays an important in renal epithelial cell homeostasis and in recovery of renal function following ischemic acute kidney injury.

  9. Brain potentials evoked by intraepidermal electrical stimuli reflect the central sensitization of nociceptive pathways

    Liang, M.; Lee, M. C.; O'Neill, J.; Dickenson, A.H.; Iannetti, G.D.

    2016-01-01

    Central sensitization (CS), the increased sensitivity of the central nervous system to somatosensory inputs, accounts for secondary hyperalgesia, a typical sign of several painful clinical conditions. Brain potentials elicited by mechanical punctate stimulation using flat-tip probes can provide neural correlates of CS, but their signal-to-noise ratio is limited by poor synchronisation of the afferent nociceptive input. Additionally, mechanical punctate stimulation does not activate nociceptor...

  10. Deregulated WNT signaling in childhood T-cell acute lymphoblastic leukemia

    WNT signaling has been implicated in the regulation of hematopoietic stem cells and plays an important role during T-cell development in thymus. Here we investigated WNT pathway activation in childhood T-cell acute lymphoblastic leukemia (T-ALL) patients. To evaluate the potential role of WNT signaling in T-cell leukomogenesis, we performed expression analysis of key components of WNT pathway. More than 85% of the childhood T-ALL patients showed upregulated β-catenin expression at the protein level compared with normal human thymocytes. The impact of this upregulation was reflected in high expression of known target genes (AXIN2, c-MYC, TCF1 and LEF). Especially AXIN2, the universal target gene of WNT pathway, was upregulated at both mRNA and protein levels in ∼40% of the patients. When β-CATENIN gene was silenced by small interfering RNA, the cancer cells showed higher rates of apoptosis. These results demonstrate that abnormal WNT signaling activation occurs in a significant fraction of human T-ALL cases independent of known T-ALL risk factors. We conclude that deregulated WNT signaling is a novel oncogenic event in childhood T-ALL

  11. Neurophysiological observation of the nociceptive system using electrocutaneous stimulation

    Heide, van der Esther Marjan

    2009-01-01

    Adequate observation techniques are required to explore changes in the nociceptive system in pain patients. In this thesis neurophysiological observation methods of nociceptive system are explored. The focus is to explore the merits of electrocutaneous single pulse (SP) and pulse train (PT) stimulat

  12. Metformin induces differentiation in acute promyelocytic leukemia by activating the MEK/ERK signaling pathway

    Huai, Lei; Wang, Cuicui; Zhang, Cuiping; Li, Qihui; Chen, Yirui; Jia, Yujiao; Li, Yan; Xing, Haiyan; Tian, Zheng; Rao, Qing; Wang, Min [State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020 (China); Wang, Jianxiang, E-mail: wangjx@ihcams.ac.cn [State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020 (China)

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer Metformin induces differentiation in NB4 and primary APL cells. Black-Right-Pointing-Pointer Metformin induces activation of the MEK/ERK signaling pathway in APL cells. Black-Right-Pointing-Pointer Metformin synergizes with ATRA to trigger maturation of NB4 and primary APL cells. Black-Right-Pointing-Pointer Metformin induces the relocalization and degradation of the PML-RAR{alpha} fusion protein. Black-Right-Pointing-Pointer The study may be applicable for new differentiation therapy in cancer treatment. -- Abstract: Recent studies have shown that metformin, a widely used antidiabetic agent, may reduce the risk of cancer development. In this study, we investigated the antitumoral effect of metformin on both acute myeloid leukemia (AML) and acute promyelocytic leukemia (APL) cells. Metformin induced apoptosis with partial differentiation in an APL cell line, NB4, but only displayed a proapoptotic effect on several non-M3 AML cell lines. Further analysis revealed that a strong synergistic effect existed between metformin and all-trans retinoic acid (ATRA) during APL cell maturation and that metformin induced the hyperphosphorylation of extracellular signal-regulated kinase (ERK) in APL cells. U0126, a specific MEK/ERK activation inhibitor, abrogated metformin-induced differentiation. Finally, we found that metformin induced the degradation of the oncoproteins PML-RAR{alpha} and c-Myc and activated caspase-3. In conclusion, these results suggest that metformin treatment may contribute to the enhancement of ATRA-induced differentiation in APL, which may deepen the understanding of APL maturation and thus provide insight for new therapy strategies.

  13. Metformin induces differentiation in acute promyelocytic leukemia by activating the MEK/ERK signaling pathway

    Highlights: ► Metformin induces differentiation in NB4 and primary APL cells. ► Metformin induces activation of the MEK/ERK signaling pathway in APL cells. ► Metformin synergizes with ATRA to trigger maturation of NB4 and primary APL cells. ► Metformin induces the relocalization and degradation of the PML-RARα fusion protein. ► The study may be applicable for new differentiation therapy in cancer treatment. -- Abstract: Recent studies have shown that metformin, a widely used antidiabetic agent, may reduce the risk of cancer development. In this study, we investigated the antitumoral effect of metformin on both acute myeloid leukemia (AML) and acute promyelocytic leukemia (APL) cells. Metformin induced apoptosis with partial differentiation in an APL cell line, NB4, but only displayed a proapoptotic effect on several non-M3 AML cell lines. Further analysis revealed that a strong synergistic effect existed between metformin and all-trans retinoic acid (ATRA) during APL cell maturation and that metformin induced the hyperphosphorylation of extracellular signal-regulated kinase (ERK) in APL cells. U0126, a specific MEK/ERK activation inhibitor, abrogated metformin-induced differentiation. Finally, we found that metformin induced the degradation of the oncoproteins PML-RARα and c-Myc and activated caspase-3. In conclusion, these results suggest that metformin treatment may contribute to the enhancement of ATRA-induced differentiation in APL, which may deepen the understanding of APL maturation and thus provide insight for new therapy strategies.

  14. Melittin activates TRPV1 receptors in primary nociceptive sensory neurons via the phospholipase A2 cascade pathways

    Du, Yi-Ru; Xiao, Yong; Lu, Zhuo-Min; Ding, Jing; Xie, Fang; Fu, Han; Wang, Yan; Strong, Judith A.; Zhang, Jun-Ming; Chen, Jun

    2011-01-01

    Previous studies demonstrated that melittin, the main peptide in bee venom, could cause persistent spontaneous pain, primary heat and mechanical hyperalgesia, and enhance the excitability of spinal nociceptive neurons. However, the underlying mechanism of melittin-induced cutaneous hypersensitivity is unknown. Effects of melittin applied topically to acutely dissociated rat dorsal root ganglion neurons were studied using whole-cell patch clamp and calcium imaging techniques. Melittin induced ...

  15. Green tea extract supplement reduces D-galactosamine-induced acute liver injury by inhibition of apoptotic and proinflammatory signaling

    Lee Hsuan-Shu; Yu Chia-Jung; Chen Wang-Chuan; Lin Bor-Ru; Chang Huei-Min; Lee Yen-Chih; Chien Chiang-Ting; Chen Chau-Fong

    2009-01-01

    Abstract Oxidative stress and inflammation contributed to the propagation of acute liver injury (ALI). The present study was undertaken to determine whether D-galactosamine (D-GalN) induces ALI via the mitochondrial apoptosis- and proinflammatory cytokine-signaling pathways, and possible mechanism(s) by which green tea (GT) extract modulates the apoptotic and proinflammatory signaling in rat. D-GalN induced hepatic hypoxia/hypoperfusion and triggered reactive oxygen species (ROS) production f...

  16. The Nociception Coma Scale: a new tool to assess nociception in disorders of consciousness.

    Schnakers, Caroline; Chatelle, Camille; Vanhaudenhuyse, Audrey; Majerus, Steve; Ledoux, Didier; Boly, Melanie; Bruno, Marie-Aurélie; Boveroux, Pierre; Demertzi, Athena; Moonen, Gustave; Laureys, Steven

    2010-02-01

    Assessing behavioral responses to nociception is difficult in severely brain-injured patients recovering from coma. We here propose a new scale developed for assessing nociception in vegetative (VS) and minimally conscious (MCS) coma survivors, the Nociception Coma Scale (NCS), and explore its concurrent validity, inter-rater agreement and sensitivity. Concurrent validity was assessed by analyzing behavioral responses of 48 post-comatose patients to a noxious stimulation (pressure applied to the fingernail) (28 VS and 20 MCS; age range 20-82 years; 17 of traumatic etiology). Patients' were assessed using the NCS and four other scales employed in non-communicative patients: the 'Neonatal Infant Pain Scale' (NIPS) and the 'Faces, Legs, Activity, Cry, Consolability' (FLACC) used in newborns; and the 'Pain Assessment In Advanced Dementia Scale' (PAINAD) and the 'Checklist of Non-verbal Pain Indicators' (CNPI) used in dementia. For the establishment of inter-rater agreement, fifteen patients were concurrently assessed by two examiners. Concurrent validity, assessed by Spearman rank order correlations between the NCS and the four other validated scales, was good. Cohen's kappa analyses revealed a good to excellent inter-rater agreement for the NCS total and subscore measures, indicating that the scale yields reproducible findings across examiners. Finally, a significant difference between NCS total scores was observed as a function of diagnosis (i.e., VS or MCS). The NCS constitutes a sensitive clinical tool for assessing nociception in severely brain-injured patients. This scale constitutes the first step to a better management of patients recovering from coma. PMID:19854576

  17. Intracellular Signaling Pathways Involved in Childhood Acute Lymphoblastic Leukemia; Molecular Targets.

    Layton Tovar, Cristian Fabián; Mendieta Zerón, Hugo

    2016-06-01

    Acute lymphoblastic leukemia (ALL) is a malignant disease characterized by an uncontrolled proliferation of immature lymphoid cells. ALL is the most common hematologic malignancy in early childhood, and it reaches peak incidence between the ages of 2 and 3 years. The prognosis of ALL is associated with aberrant gene expression, in addition to the presence of numerical or structural chromosomal alterations, age, race, and immunophenotype. The Relapse rate with regard to pharmacological treatment rises in childhood; thus, the expression of biomarkers associated with the activation of cell signaling pathways is crucial to establish the disease prognosis. Intracellular pathways involved in ALL are diverse, including Janus kinase/Signal transducers and transcription activators (JAK-STAT), Phosphoinositide-3-kinase-protein kinase B (PI3K-AKT), Ras mitogen-activated protein kinase (Ras-MAPK), Glycogen synthase kinase-3β (GSK-3β), Nuclear factor-kappa beta (NF-κB), and Hypoxia-inducible transcription factor 1α (HIF-1α), among others. In this review, we present several therapeutic targets, intracellular pathways, and molecular markers that are being studied extensively at present. PMID:27065575

  18. A pro-nociceptive phenotype unmasked in mice lacking fatty-acid amide hydrolase.

    Carey, Lawrence M; Slivicki, Richard A; Leishman, Emma; Cornett, Ben; Mackie, Ken; Bradshaw, Heather; Hohmann, Andrea G

    2016-02-01

    Fatty-acid amide hydrolase (FAAH) is the major enzyme responsible for degradation of anandamide, an endocannabinoid. Pharmacological inhibition or genetic deletion of FAAH (FAAH KO) produces antinociception in preclinical pain models that is largely attributed to anandamide-induced activation of cannabinoid receptors. However, FAAH metabolizes a wide range of structurally related, biologically active lipid signaling molecules whose functions remain largely unknown. Some of these endogenous lipids, including anandamide itself, may exert pro-nociceptive effects under certain conditions. In our study, FAAH KO mice exhibited a characteristic analgesic phenotype in the tail flick test and in both formalin and carrageenan models of inflammatory nociception. Nonetheless, intradermal injection of the transient receptor potential channel V1 (TRPV1) agonist capsaicin increased nocifensive behavior as well as mechanical and heat hypersensitivity in FAAH KO relative to wild-type mice. This pro-nociceptive phenotype was accompanied by increases in capsaicin-evoked Fos-like immunoreactive (FLI) cells in spinal dorsal horn regions implicated in nociceptive processing and was attenuated by CB1 (AM251) and TRPV1 (AMG9810) antagonists. When central sensitization was established, FAAH KO mice displayed elevated levels of anandamide, other fatty-acid amides, and endogenous TRPV1 agonists in both paw skin and lumbar spinal cord relative to wild-type mice. Capsaicin decreased spinal cord 2-AG levels and increased arachidonic acid and prostaglandin E2 levels in both spinal cord and paw skin irrespective of genotype. Our studies identify a previously unrecognized pro-nociceptive phenotype in FAAH KO mice that was unmasked by capsaicin challenge. The heightened nociceptive response was mediated by CB1 and TRPV1 receptors and accompanied by enhanced spinal neuronal activation. Moreover, genetic deletion of FAAH has a profound impact on the peripheral and central lipidome. Thus, genetic

  19. Mast Cell-Mediated Mechanisms of Nociception

    Anupam Aich

    2015-12-01

    Full Text Available Mast cells are tissue-resident immune cells that release immuno-modulators, chemo-attractants, vasoactive compounds, neuropeptides and growth factors in response to allergens and pathogens constituting a first line of host defense. The neuroimmune interface of immune cells modulating synaptic responses has been of increasing interest, and mast cells have been proposed as key players in orchestrating inflammation-associated pain pathobiology due to their proximity to both vasculature and nerve fibers. Molecular underpinnings of mast cell-mediated pain can be disease-specific. Understanding such mechanisms is critical for developing disease-specific targeted therapeutics to improve analgesic outcomes. We review molecular mechanisms that may contribute to nociception in a disease-specific manner.

  20. Mast Cell-Mediated Mechanisms of Nociception

    Aich, Anupam; Afrin, Lawrence B.; Gupta, Kalpna

    2015-01-01

    Mast cells are tissue-resident immune cells that release immuno-modulators, chemo-attractants, vasoactive compounds, neuropeptides and growth factors in response to allergens and pathogens constituting a first line of host defense. The neuroimmune interface of immune cells modulating synaptic responses has been of increasing interest, and mast cells have been proposed as key players in orchestrating inflammation-associated pain pathobiology due to their proximity to both vasculature and nerve fibers. Molecular underpinnings of mast cell-mediated pain can be disease-specific. Understanding such mechanisms is critical for developing disease-specific targeted therapeutics to improve analgesic outcomes. We review molecular mechanisms that may contribute to nociception in a disease-specific manner. PMID:26690128

  1. FYN expression potentiates FLT3-ITD induced STAT5 signaling in acute myeloid leukemia

    Chougule, Rohit A.; Kazi, Julhash U.; Rönnstrand, Lars

    2016-01-01

    FYN is a non-receptor tyrosine kinase belonging to the SRC family of kinases, which are frequently over-expressed in human cancers, and play key roles in cancer biology. SRC has long been recognized as an important oncogene, but little attention has been given to its other family members. In this report, we have studied the role of FYN in FLT3 signaling in respect to acute myeloid leukemia (AML). We observed that FYN displays a strong association with wild-type FLT3 as well as oncogenic FLT3-ITD and is dependent on the kinase activity of FLT3 and the SH2 domain of FYN. We identified multiple FYN binding sites in FLT3, which partially overlapped with SRC binding sites. To understand the role of FYN in FLT3 signaling, we generated FYN overexpressing cells. We observed that expression of FYN resulted in slightly enhanced phosphorylation of AKT, ERK1/2 and p38 in response to ligand stimulation. Furthermore, FYN expression led to a slight increase in FLT3-ITD-dependent cell proliferation, but potent enhancement of STAT5 phosphorylation as well as colony formation. We also observed that FYN expression is deregulated in AML patient samples and that higher expression of FYN, in combination with FLT3-ITD mutation, resulted in enrichment of the STAT5 signaling pathway and correlated with poor prognosis in AML. Taken together our data suggest that FYN cooperates with oncogenic FLT3-ITD in cellular transformation by selective activation of the STAT5 pathway. Therefore, inhibition of FYN, in combination with FLT3 inhibition, will most likely be beneficial for this group of AML patients. PMID:26848862

  2. Notch signalling drives bone marrow stromal cell-mediated chemoresistance in acute myeloid leukemia.

    Takam Kamga, Paul; Bassi, Giulio; Cassaro, Adriana; Midolo, Martina; Di Trapani, Mariano; Gatti, Alessandro; Carusone, Roberta; Resci, Federica; Perbellini, Omar; Gottardi, Michele; Bonifacio, Massimiliano; Nwabo Kamdje, Armel Hervé; Ambrosetti, Achille; Krampera, Mauro

    2016-04-19

    Both preclinical and clinical investigations suggest that Notch signalling is critical for the development of many cancers and for their response to chemotherapy. We previously showed that Notch inhibition abrogates stromal-induced chemoresistance in lymphoid neoplasms. However, the role of Notch in acute myeloid leukemia (AML) and its contribution to the crosstalk between leukemia cells and bone marrow stromal cells remain controversial. Thus, we evaluated the role of the Notch pathway in the proliferation, survival and chemoresistance of AML cells in co-culture with bone marrow mesenchymal stromal cells expanded from both healthy donors (hBM-MSCs) and AML patients (hBM-MSCs*). As compared to hBM-MSCs, hBM-MSCs* showed higher level of Notch1, Jagged1 as well as the main Notch target gene HES1. Notably, hBM-MSCs* induced expression and activation of Notch signalling in AML cells, supporting AML proliferation and being more efficientin inducing AML chemoresistance than hBM-MSCs*. Pharmacological inhibition of Notch using combinations of Notch receptor-blocking antibodies or gamma-secretase inhibitors (GSIs), in presence of chemotherapeutic agents, significant lowered the supportive effect of hBM-MSCs and hBM-MSCs* towards AML cells, by activating apoptotic cascade and reducing protein level of STAT3, AKT and NF-κB.These results suggest that Notch signalling inhibition, by overcoming the stromal-mediated promotion of chemoresistance,may represent a potential therapeutic targetnot only for lymphoid neoplasms, but also for AML. PMID:26967055

  3. Clinical study on microembolic signals monitored by transcranial Doppler ultrasonography in acute ischemic stroke

    Qi-wu XU

    2016-06-01

    Full Text Available Objective To explore the correlation between microembolic signals (MES in middle cerebral artery (MCA and the occurrence of acute ischemic stroke and also evaluate the clinical effect of single and dual antiplatlet therapy.  Methods A total of 129 cases with acute ischemic stroke were tested by transcranial Doppler (TCD ultrasonography to detect MES. Univariate and multivariate Logistic regression analysis were adopted to analyze and screen the positive risk factors for MES. Medication effects and prognosis were evaluated by treatment of aspirin and combination therapy of aspirin and clopidogrel. Results Among 129 patients, 42 patients (32.56% were detected MES positive. According to Logistic regression analysis, hyperlipidemia was the independent risk factor of patients with MES positive (OR = 0.335, 95%CI: 0.147-0.764; P = 0.009. After antiplatelet treatment, the disappearence rate of MES was higher in the dual-therapy treatment group than that in the monotherapy group ( χ2 = 16.701, P = 0.000. The NIHSS score decreased significantly after 14 d of treatment in both groups (P = 0.000. The decrease of NIHSS score in dual-therapy group was more than that in monotherapy group (P = 0.025. It proves the effectiveness of antiplatelet treatment and the advantage of dual antiplatelet is superior to single antiplatelet.  Conclusions This study demonstrated that hyperlipidemia is the independent risk factor for MES positive detected by TCD and dual-therapy can inhibit the formation of MES and improve the recent prognosis. DOI: 10.3969/j.issn.1672-6731.2016.06.009

  4. Somatic modulation of spinal reflex bladder activity mediated by nociceptive bladder afferent nerve fibers in cats.

    Xiao, Zhiying; Rogers, Marc J; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2014-09-15

    The goal of the present study was to determine if supraspinal pathways are necessary for inhibition of bladder reflex activity induced by activation of somatic afferents in the pudendal or tibial nerve. Cats anesthetized with α-chloralose were studied after acute spinal cord transection at the thoracic T9/T10 level. Dilute (0.25%) acetic acid was used to irritate the bladder, activate nociceptive afferent C-fibers, and trigger spinal reflex bladder contractions (amplitude: 19.3 ± 2.9 cmH2O). Hexamethonium (a ganglionic blocker, intravenously) significantly (P < 0.01) reduced the amplitude of the reflex bladder contractions to 8.5 ± 1.9 cmH2O. Injection of lidocaine (2%, 1-2 ml) into the sacral spinal cord or transection of the sacral spinal roots and spinal cord further reduced the contraction amplitude to 4.2 ± 1.3 cmH2O. Pudendal nerve stimulation (PNS) at frequencies of 0.5-5 Hz and 40 Hz but not at 10-20 Hz inhibited reflex bladder contractions, whereas tibial nerve stimulation (TNS) failed to inhibit bladder contractions at all tested frequencies (0.5-40 Hz). These results indicate that PNS inhibition of nociceptive afferent C-fiber-mediated spinal reflex bladder contractions can occur at the spinal level in the absence of supraspinal pathways, but TNS inhibition requires supraspinal pathways. In addition, this study shows, for the first time, that after acute spinal cord transection reflex bladder contractions can be triggered by activating nociceptive bladder afferent C-fibers using acetic acid irritation. Understanding the sites of action for PNS or TNS inhibition is important for the clinical application of pudendal or tibial neuromodulation to treat bladder dysfunctions. PMID:25056352

  5. Inhibition of myostatin signaling through Notch activation following acute resistance exercise.

    Matthew G MacKenzie

    Full Text Available Myostatin is a TGFβ family member and negative regulator of muscle size. Due to the complexity of the molecular pathway between myostatin mRNA/protein and changes in transcription, it has been difficult to understand whether myostatin plays a role in resistance exercise-induced skeletal muscle hypertrophy. To circumvent this problem, we determined the expression of a unique myostatin target gene, Mighty, following resistance exercise. Mighty mRNA increased by 6 h (82.9 ± 24.21% and remained high out to 48 h (56.5 ± 19.67% after resistance exercise. Further examination of the soleus, plantaris and tibialis anterior muscles showed that the change in Mighty mRNA at 6 h correlated with the increase in muscle size associated with this protocol (R(2 = 0.9996. The increase in Mighty mRNA occurred both independent of Smad2 phosphorylation and in spite of an increase in myostatin mRNA (341.8 ± 147.14% at 3 h. The myostatin inhibitor SKI remained unchanged. However, activated Notch, another potential inhibitor of TGFβ signaling, increased immediately following resistance exercise (83 ± 11.2% and stayed elevated out to 6 h (78 ± 16.6%. Electroportion of the Notch intracellular domain into the tibialis anterior resulted in an increase in Mighty mRNA (63 ± 13.4% that was equivalent to the canonical Notch target HES-1 (94.4 ± 7.32%. These data suggest that acute resistance exercise decreases myostatin signaling through the activation of the TGFβ inhibitor Notch resulting in a decrease in myostatin transcriptional activity that correlates well with muscle hypertrophy.

  6. Emotional modulation of pain and spinal nociception in fibromyalgia

    Rhudy, Jamie L.; DelVentura, Jennifer L; Terry, Ellen L.; Bartley, Emily J; Olech, Ewa; Palit, Shreela; Kerr, Kara L

    2013-01-01

    Fibromyalgia (FM) is characterized by widespread pain, as well as affective disturbance (e.g., depression). Given that emotional processes are known to modulate pain, a disruption of emotion and emotional modulation of pain and nociception may contribute to FM. The present study used a well-validated affective picture-viewing paradigm to study emotional processing and emotional modulation of pain and spinal nociception. Participants were 18 individuals with FM, 18 individuals with rheumatoid ...

  7. Intestinal Epithelial Cell Tyrosine Kinase 2 Transduces IL-22 Signals To Protect from Acute Colitis.

    Hainzl, Eva; Stockinger, Silvia; Rauch, Isabella; Heider, Susanne; Berry, David; Lassnig, Caroline; Schwab, Clarissa; Rosebrock, Felix; Milinovich, Gabriel; Schlederer, Michaela; Wagner, Michael; Schleper, Christa; Loy, Alexander; Urich, Tim; Kenner, Lukas; Han, Xiaonan; Decker, Thomas; Strobl, Birgit; Müller, Mathias

    2015-11-15

    In the intestinal tract, IL-22 activates STAT3 to promote intestinal epithelial cell (IEC) homeostasis and tissue healing. The mechanism has remained obscure, but we demonstrate that IL-22 acts via tyrosine kinase 2 (Tyk2), a member of the Jak family. Using a mouse model for colitis, we show that Tyk2 deficiency is associated with an altered composition of the gut microbiota and exacerbates inflammatory bowel disease. Colitic Tyk2(-/-) mice have less p-STAT3 in colon tissue and their IECs proliferate less efficiently. Tyk2-deficient primary IECs show reduced p-STAT3 in response to IL-22 stimulation, and expression of IL-22-STAT3 target genes is reduced in IECs from healthy and colitic Tyk2(-/-) mice. Experiments with conditional Tyk2(-/-) mice reveal that IEC-specific depletion of Tyk2 aggravates colitis. Disease symptoms can be alleviated by administering high doses of rIL-22-Fc, indicating that Tyk2 deficiency can be rescued via the IL-22 receptor complex. The pivotal function of Tyk2 in IL-22-dependent colitis was confirmed in Citrobacter rodentium-induced disease. Thus, Tyk2 protects against acute colitis in part by amplifying inflammation-induced epithelial IL-22 signaling to STAT3. PMID:26432894

  8. Kv4 channels underlie the subthreshold-operating A-type K+-current in nociceptive dorsal root ganglion neurons

    Thanawath R Na Phuket

    2009-07-01

    Full Text Available The dorsal root ganglion (DRG contains heterogeneous populations of sensory neurons including primary nociceptive neurons and C-fibers implicated in pain signaling.  Recent studies have demonstrated DRG hyperexcitability associated with downregulation of A-type K+ channels; however, the molecular correlate of the corresponding A-type K+ current (IA has remained hypothetical.  Kv4 channels may underlie the IA in DRG neurons.  We combined electrophysiology, molecular biology (whole-tissue and single-cell RT-PCR and immunohistochemistry to investigate the molecular basis of the IA in acutely dissociated DRG neurons from 7-8 day-old rats.  Whole-cell recordings demonstrate a robust tetraethylammonium-resistant (20 mM and 4-aminopyridine-sensitive (5 mM IA.  Matching Kv4 channel properties, activation and inactivation of this IA occur in the subthreshold range of membrane potentials and the rate of recovery from inactivation is rapid and voltage-dependent.  Among Kv4 transcripts, the DRG expresses significant levels of Kv4.1 and Kv4.3 mRNAs.  Also, single small-medium diameter DRG neurons (~30 mm exhibit correlated frequent expression of mRNAs encoding Kv4.1 and Nav1.8, a known nociceptor marker.  In contrast, the expressions of Kv1.4 and Kv4.2 mRNAs at the whole-tissue and single-cell levels are relatively low and infrequent.  Kv4 protein expression in nociceptive DRG neurons was confirmed by immunohistochemistry, which demonstrates colocalization of Kv4.3 and Nav1.8, and negligible expression of Kv4.2.  Furthermore, specific dominant-negative suppression and overexpression strategies confirmed the contribution of Kv4 channels to IA in DRG neurons.  Contrasting the expression patterns of Kv4 channels in the central and peripheral nervous systems, we discuss possible functional roles of these channels in primary sensory neurons.

  9. Voltage-Gated Calcium Channels in Nociception

    Yasuda, Takahiro; Adams, David J.

    Voltage-gated calcium channels (VGCCs) are a large and functionally diverse group of membrane ion channels ubiquitously expressed throughout the central and peripheral nervous systems. VGCCs contribute to various physiological processes and transduce electrical activity into other cellular functions. This chapter provides an overview of biophysical properties of VGCCs, including regulation by auxiliary subunits, and their physiological role in neuronal functions. Subsequently, then we focus on N-type calcium (Cav2.2) channels, in particular their diversity and specific antagonists. We also discuss the role of N-type calcium channels in nociception and pain transmission through primary sensory dorsal root ganglion neurons (nociceptors). It has been shown that these channels are expressed predominantly in nerve terminals of the nociceptors and that they control neurotransmitter release. To date, important roles of N-type calcium channels in pain sensation have been elucidated genetically and pharmacologically, indicating that specific N-type calcium channel antagonists or modulators are particularly useful as therapeutic drugs targeting chronic and neuropathic pain.

  10. Gain control mechanisms in the nociceptive system.

    Treede, Rolf-Detlef

    2016-06-01

    The "gate control theory of pain" of 1965 became famous for integrating clinical observations and the understanding of spinal dorsal horn circuitry at that time into a testable model. Although it became rapidly clear that spinal circuitry is much more complex than that proposed by Melzack and Wall, their prediction of the clinical efficacy of transcutaneous electrical nerve stimulation and spinal cord stimulation has left an important clinical legacy also 50 years later. In the meantime, it has been recognized that the sensitivity of the nociceptive system can be decreased or increased and that this "gain control" can occur at peripheral, spinal, and supraspinal levels. The resulting changes in pain sensitivity can be rapidly reversible or persistent, highly localized or widespread. Profiling of spatio-temporal characteristics of altered pain sensitivity (evoked pain to mechanical and/or heat stimuli) allows implications on the mechanisms likely active in a given patient, including peripheral or central sensitization, intraspinal or descending inhibition. This hypothesis generation in the diagnostic process is an essential step towards a mechanism-based treatment of pain. The challenge now is to generate the rational basis of multimodal pain therapy algorithms by including profile-based stratification of patients into studies on efficacy of pharmacological and nonpharmacological treatment modalities. This review outlines the current evidence base for this approach. PMID:26817644

  11. Green tea extract supplement reduces D-galactosamine-induced acute liver injury by inhibition of apoptotic and proinflammatory signaling

    Lee Hsuan-Shu

    2009-03-01

    Full Text Available Abstract Oxidative stress and inflammation contributed to the propagation of acute liver injury (ALI. The present study was undertaken to determine whether D-galactosamine (D-GalN induces ALI via the mitochondrial apoptosis- and proinflammatory cytokine-signaling pathways, and possible mechanism(s by which green tea (GT extract modulates the apoptotic and proinflammatory signaling in rat. D-GalN induced hepatic hypoxia/hypoperfusion and triggered reactive oxygen species (ROS production from affected hepatocytes, infiltrated leukocytes, and activated Kupffer cells. D-GalN evoked cytosolic Bax and mitochondrial cytochrome C translocation and activated proinflammatory nuclear factor-kappa B (NF-κB and activator protein-1 (AP-1 translocation, contributing to the increase of intercellular adhesion molecule-1 expression, terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL-positive hepatocytes, multiple plasma cytokines and chemokines release, and alanine aminotransferase (ALT activity. An altered biliary secretion profile of several acute phase proteins directly indicates oxidative stress affecting intracellular trafficking in the hepatocyte. GT pretreatment attenuated ROS production, mitochondrial apoptosis- and proinflammatory cytokine-signaling pathway, plasma ALT and cytokines levels, biliary acute phase proteins secretion and hepatic pathology by the enhancement of anti-apoptotic mechanisms. In conclusion, D-GalN induced ALI via hypoxia/hypoperfusion-enhanced mitochondrial apoptosis- and proinflammatory cytokine-signaling pathway, contributing to oxidative stress and inflammation in the liver. GT can counteract the D-GalN-induced ALI via the attenuation of apoptotic and proinflammatory signaling by the upregulation of anti-apoptotic mechanism.

  12. Chronic inflammation and estradiol interact through MAPK activation to affect TMJ nociceptive processing by trigeminal caudalis neurons

    Tashiro, A.; Okamoto, K.; Bereiter, D.A.

    2009-01-01

    The mitogen-activated protein kinase/extracellular regulated kinase (MAPK/ERK) pathway plays a key role in mediating estrogen actions in the brain and neuronal sensitization during inflammation. Estrogen status is a risk factor in chronic temporomandibular muscle/joint disorders (TMJD); however, the basis for this relationship is not known. The present study tested the hypothesis that estrogen status acts through the MAPK/ERK signaling pathway to alter TMJ nociceptive processing. Single TMJ-r...

  13. Intrathecal rimantadine induces motor, proprioceptive, and nociceptive blockades in rats.

    Tzeng, Jann-Inn; Wang, Jieh-Neng; Wang, Jhi-Joung; Chen, Yu-Wen; Hung, Ching-Hsia

    2016-04-01

    The purpose of the experiment was to evaluate the local anesthetic effect of rimantadine in spinal anesthesia. Rimantadine in a dose-dependent fashion was constructed after intrathecally injecting the rats with four different doses. The potency and duration of rimantadine were compared with that of the local anesthetic lidocaine at producing spinal motor, nociceptive, and proprioceptive blockades. We demonstrated that intrathecal rimantadine dose-dependently produced spinal motor, nociceptive, and proprioceptive blockades. On the 50% effective dose (ED50) basis, the ranks of potencies at inducing spinal motor, nociceptive, and proprioceptive blockades was lidocaine>rimantadine (Pspinal block duration produced by rimantadine was longer than that produced by lidocaine (Pspinal anesthesia when compared with lidocaine. PMID:26949181

  14. The Specification and Maturation of Nociceptive Neurons from Human Embryonic Stem Cells

    Erin M. Boisvert; Engle, Sandra J; Shawn E. Hallowell; Ping Liu; Zhao-Wen Wang; Xue-Jun Li

    2015-01-01

    Nociceptive neurons play an essential role in pain sensation by transmitting painful stimuli to the central nervous system. However, investigations of nociceptive neuron biology have been hampered by the lack of accessibility of human nociceptive neurons. Here, we describe a system for efficiently guiding human embryonic stem cells into nociceptive neurons by first inducing these cells to the neural lineage. Subsequent addition of retinoic acid and BMP4 at specific time points and concentrati...

  15. Assessment of anti-nociceptive efficacy of Costus Speciosus rhizome in swiss albino mice

    Upendra Nagaich; Sanjib Bhattacharya

    2010-01-01

    Present study attempts to evaluate the anti-nociceptive activity of the aqueous and ethanol extracts of Costus speciosus rhizome (CPA and CPE) in Swiss albino mice. The maceration extracts were evaluated for anti-nociceptive activity by acetic acid-induced writhing and tail flick method in mice. The anti-nociceptive screening revealed significant peripheral anti-nociceptive actions of both extracts against acetic acid induced writhing in mice. Aqueous extract (CPA) significantly inhibited wri...

  16. Effect of a nitric oxide donor (glyceryl trinitrate) on nociceptive thresholds in man

    Thomsen, L L; Brennum, J; Iversen, Helle Klingenberg;

    1996-01-01

    Several animal studies suggest that nitric oxide (NO) plays a role in central and peripheral modulation of nociception. Glyceryl trinitrate (GTN) exerts its physiological actions via donation of NO. The purpose of the present study was to examine the effect of this NO donor on nociceptive...... central facilitation of nociception by NO. However, we regard convergence of nociceptive input from pericranial myofascial tissue and from cephalic blood vessels dilated by NO as a more likely explanation of our findings....

  17. Evaluation of anti-nociceptive activity of methanolic extract of Tecomaria capensis Thunb. (Bignoniaceae) leaves in rats

    Saini NK; Singhal M

    2012-01-01

    Objective:To evaluate the anti-nociceptive activity of Tecomaria capensis (T. capensis) leaves extract (TCLE) using different models in rats by acetic acid induced writhing test, (b) tail-flick test (c) tail-clip test. Methods:TCLE (100, 300, 1 000 and 2 000 mg/kg body wt.) was given to rats orally to observe acute toxicity for 14 d. Then test drug TCLE were given at dose of 100, 200 and 500 mg/kg p.o. and standard drug aspirin were given at a dose of 100 mg/kg p.o. Results: No mortality was reported even after 14 d. This indicates that the methanol extract is safe up to a single dose of 2 000 mg/kg body weight. TCLE (100, 200 and 500 mg/kg p.o.) significantly inhibited abdominal constrictions (writhing) induced by acetic acid and increased the latency period in the tail flick and tail clip test. TCLE at the dose of 500 mg/kg showed significant anti-nociceptive activity compared to standard aspirin. Discussions:The results of this study show that methanol extract of T. capensis possesses anti-nociceptive activity which may be mediated by the central and peripheral mechanisms.

  18. Morphological properties of nociceptive and non-nociceptive neurons in primary somatic cerebral cortex (SI) of cat

    2000-01-01

    With the techniques of intracellular recording and labelling, we investigated pain sensation and modulation of the somatic cortical cortex at the neuron's level. After observing the evoked potentials from stimulating the saphenous nerves (SN) of 654 neurons in SI area of the cats, we labelled 30 of the neurons with Neurobiotin to preserve the distribution and the morphologic characteristics of the neurons in the cortex. Based on the tridimensional reconstruction in addition to the eletrophysiological functions, we found clear morphological distinctions between nociceptive and non-nociceptive neurons (P<0.01). This result provided new experimental material to illustrate the function of nociceptive neurons in somatosensory cortex (SI) and presented further evidence to support the "specificity theory" of pain sensation in terms of morphology.

  19. Bile Acid Signaling Is Involved in the Neurological Decline in a Murine Model of Acute Liver Failure.

    McMillin, Matthew; Frampton, Gabriel; Quinn, Matthew; Ashfaq, Samir; de los Santos, Mario; Grant, Stephanie; DeMorrow, Sharon

    2016-02-01

    Hepatic encephalopathy is a serious neurological complication of liver failure. Serum bile acids are elevated after liver damage and may disrupt the blood-brain barrier and enter the brain. Our aim was to assess the role of serum bile acids in the neurological complications after acute liver failure. C57Bl/6 or cytochrome p450 7A1 knockout (Cyp7A1(-/-)) mice were fed a control, cholestyramine-containing, or bile acid-containing diet before azoxymethane (AOM)-induced acute liver failure. In parallel, mice were given an intracerebroventricular infusion of farnesoid X receptor (FXR) Vivo-morpholino before AOM injection. Liver damage, neurological decline, and molecular analyses of bile acid signaling were performed. Total bile acid levels were increased in the cortex of AOM-treated mice. Reducing serum bile acids via cholestyramine feeding or using Cyp7A1(-/-) mice reduced bile acid levels and delayed AOM-induced neurological decline, whereas cholic acid or deoxycholic acid feeding worsened AOM-induced neurological decline. The expression of bile acid signaling machinery apical sodium-dependent bile acid transporter, FXR, and small heterodimer partner increased in the frontal cortex, and blocking FXR signaling delayed AOM-induced neurological decline. In conclusion, circulating bile acids may play a pathological role during hepatic encephalopathy, although precisely how they dysregulate normal brain function is unknown. Strategies to minimize serum bile acid concentrations may reduce the severity of neurological complications associated with liver failure. PMID:26683664

  20. Effects of acute versus repeated cocaine exposure on the expression of endocannabinoid signaling-related proteins in the mouse cerebellum

    Ana ePalomino

    2014-03-01

    Full Text Available Growing awareness of cerebellar involvement in addiction is based on the cerebellum’s intermediary position between motor and reward, potentially acting as an interface between motivational and cognitive functions. Here, we examined the impact of acute and repeated cocaine exposure on the two main signaling systems in the mouse cerebellum: the endocannabinoid (eCB and glutamate systems. To this end, we investigated whether eCB signaling-related gene and protein expression (CB1 receptors and enzymes that produce (DAGLα/β and NAPE-PLD and degrade (MAGL and FAAH eCB were altered. In addition, we analyzed the gene expression of relevant components of the glutamate signaling system (glutamate synthesizing enzymes LGA and KGA, mGluR3/5 metabotropic receptors, and NR1/2A/2B/2C-NMDA and GluR1/2/3/4-AMPA ionotropic receptor subunits and the gene expression of tyrosine hydroxylase (TH, the rate-limiting enzyme in catecholamine biosynthesis, because noradrenergic terminals innervate the cerebellar cortex. Results indicated that acute cocaine exposure decreased DAGLα expression, suggesting a down-regulation of 2-AG production, as well as gene expression of TH, KGA, mGluR3 and all ionotropic receptor subunits analyzed in the cerebellum. The acquisition of conditioned locomotion and sensitization after repeated cocaine exposure were associated with an increased NAPE-PLD/FAAH ratio, suggesting enhanced anandamide production, and a decreased DAGLβ/MAGL ratio, suggesting decreased 2-AG generation. Repeated cocaine also increased LGA gene expression but had no effect on glutamate receptors. These findings indicate that acute cocaine modulates the expression of the eCB and glutamate systems. Repeated cocaine results in normalization of glutamate receptor expression, although sustained changes in eCB is observed. We suggest that cocaine-induced alterations to cerebellar eCB should be considered when analyzing the adaptations imposed by psychostimulants that

  1. The role of JAK2/STAT3 signaling pathway in the lung injury rat with severe acute pancreatitis

    Min-li LI; Zhu, Ren-Min; Zhang, Xiao-Hua; Jing-yun GUO; Yang, Miao-Fang; Xiao-wei WU; Mei-xia GUO

    2011-01-01

    Objective To investigate the mechanism of action of JAK/STAT signaling pathways in the lung injury of experimental severe acute pancreatitis(SAP).Methods The rat model of SAP was reproduced by retrograde injection of 4% sodium taurocholate into the biliopancreatic duct.Thirty-two male SD rats were randomly assigned into 4 groups(8 each): normal control group(NC),SAP 6h,12h and 18h groups.The level of serum amylase(AMY) was measured dynamically.The pathological changes in pancreas and lung wer...

  2. Acute exercise decreases PTP-1B protein level and improves insulin signaling in the liver of old rats

    De Moura, Leandro Pereira; Souza Pauli, Luciana Santos; Cintra, Dennys Esper; de Souza, Claudio Teodoro; da Silva, Adelino Sanchez Ramos; Marinho, Rodolfo; de Melo, Maria Alice Rostom; Ropelle, Eduardo Rochete; Pauli, José Rodrigo

    2013-01-01

    It is now commonly accepted that chronic inflammation associated with obesity during aging induces insulin resistance in the liver. In the present study, we investigated whether the improvement in insulin sensitivity and insulin signaling, mediated by acute exercise, could be associated with modulation of protein-tyrosine phosphatase 1B (PTP-1B) in the liver of old rats. Aging rats were subjected to swimming for two 1.5-h long bouts, separated by a 45 min rest period. Sixteen hours after the ...

  3. Acute T-cell leukemias remain dependent on Notch signaling despite PTEN and INK4A/ARF loss

    Medyouf, Hind; Gao, Xiuhua; Armstrong, Florence; Gusscott, Samuel; Liu, Qing; Gedman, Amanda Larson; Matherly, Larry H.; Schultz, Kirk R.; Pflumio, Francoise; You, Mingjian James; Weng, Andrew P.

    2010-01-01

    NOTCH1 is activated by mutation in more than 50% of human T-cell acute lymphoblastic leukemias (T-ALLs) and inhibition of Notch signaling causes cell-cycle/growth arrest, providing rationale for NOTCH1 as a therapeutic target. The tumor suppressor phosphatase and tensin homolog (PTEN) is also mutated or lost in up to 20% of cases. It was recently observed among human T-ALL cell lines that PTEN loss correlated with resistance to Notch inhibition, raising concern that patients with PTEN-negativ...

  4. Citral reduces nociceptive and inflammatory response in rodents

    Lucindo J. Quintans-Júnior

    2011-06-01

    Full Text Available Citral (CIT, which contains the chiral enantiomers, neral (cis and geranial (trans, is the majority monoterpene from Lippia alba and Cymbopogon citratus. The present study aimed to evaluate CIT for antinociceptive and anti-inflammatory activities in rodents. Antinociceptive and anti-inflammatory effects were studied by measuring nociception through acetic acid and formalin tests, while inflammation was verified by inducing peritonitis and paw edema with carrageenan. All tested doses of CIT had significant protection (p<0.001 against acetic acid (0.8% induced nociceptive behavior and the effects were also similar to morphine while formalin induced nociception was significantly protected (p<0.05 only at higher dose (200 mg/kg of CIT in the first phase of the test. CIT significantly reduce (p<0.001 nociceptive behavior emanating from inflammation in second phase at all the doses.The pretreatment with CIT (100 and 200 mg/kg significantly reduced the paw edema induced by carrageenan. Moreover, systemic treatment with CIT (100 and 200 mg/kg significantly reduced (p<0.001 the leukocyte migration in the carrageenan-induced migration to the peritoneal cavity. Our investigation shows that CIT possess significant central and peripheral antinociceptive effects. It was also verified an anti-inflammatory activity. All together these results suggest that CIT might represent important tool for treatment of painful conditions.

  5. Acute upregulation of hedgehog signaling in mice causes differential effects on cranial morphology

    Singh, Nandini; Dutka, Tara; Devenney, Benjamin M.; Kawasaki, Kazuhiko; Reeves, Roger H.; Richtsmeier, Joan T.

    2014-01-01

    Hedgehog (HH) signaling, and particularly signaling by sonic hedgehog (SHH), is implicated in several essential activities during morphogenesis, and its misexpression causes a number of developmental disorders in humans. In particular, a reduced mitogenic response of cerebellar granule cell precursors to SHH signaling in a mouse model for Down syndrome (DS), Ts65Dn, is substantially responsible for reduced cerebellar size. A single treatment of newborn trisomic mice with an agonist of the SHH...

  6. Acute upregulation of hedgehog signaling in mice causes differential effects on cranial morphology

    Nandini Singh; Tara Dutka; Devenney, Benjamin M.; Kazuhiko Kawasaki; Reeves, Roger H.; Richtsmeier, Joan T.

    2015-01-01

    Hedgehog (HH) signaling, and particularly signaling by sonic hedgehog (SHH), is implicated in several essential activities during morphogenesis, and its misexpression causes a number of developmental disorders in humans. In particular, a reduced mitogenic response of cerebellar granule cell precursors to SHH signaling in a mouse model for Down syndrome (DS), Ts65Dn, is substantially responsible for reduced cerebellar size. A single treatment of newborn trisomic mice with an agonist of the SHH...

  7. Contrasting phenotypes of putative proprioceptive and nociceptive trigeminal neurons innervating jaw muscle in rat

    Connor Mark

    2005-10-01

    putative muscle nociceptors are molecularly diverse. This heterogeneity may reflect the mixture of metabosensitive afferents which can also signal noxious stimuli and purely nociceptive afferents characteristic of muscle.

  8. Effects of acute and chronic treatment elicited by lamotrigine on behavior, energy metabolism, neurotrophins and signaling cascades in rats.

    Abelaira, Helena M; Réus, Gislaine Z; Ribeiro, Karine F; Zappellini, Giovanni; Ferreira, Gabriela K; Gomes, Lara M; Carvalho-Silva, Milena; Luciano, Thais F; Marques, Scherolin O; Streck, Emilio L; Souza, Cláudio T; Quevedo, João

    2011-12-01

    The present study was aimed to investigate the behavioral and molecular effects of lamotrigine. To this aim, Wistar rats were treated with lamotrigine (10 and 20 mg/kg) or imipramine (30 mg/kg) acutely and chronically. The behavior was assessed using forced swimming test. Brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), Proteina Kinase B (PKB, AKT), glycogen synthase kinase 3 (GSK-3) and B-cell lymphoma 2 (Bcl-2) levels, citrate synthase, creatine kinase and mitochondrial chain (I, II, II-III and IV) activities were assessed in the brain. The results showed that both treatments reduced the immobility time. The BDNF were increased in the prefrontal after acute treatment with lamotrigine (20 mg/kg), and the BDNF and NGF were increased in the prefrontal after chronic treatment with lamotrigine in all doses. The AKT increased and Bcl-2 and GSK-3 decreased after both treatments in all brain areas. The citrate synthase and creatine kinase increased in the amygdala after acute treatment with imipramine. Chronic treatment with imipramine and lamotrigine (10 mg/kg) increased the creatine kinase in the hippocampus. The complex I was reduced and the complex II, II-III and IV were increased, but related with treatment and brain area. In conclusion, lamotrigine exerted antidepressant-like, which can be attributed to its effects on pathways related to depression, such as neurotrophins, metabolism energy and signaling cascade. PMID:22044672

  9. The TRIF-dependent signaling pathway is not required for acute cerebral ischemia/reperfusion injury in mice

    TIR domain-containing adaptor protein (TRIF) is an adaptor protein in Toll-like receptor (TLR) signaling pathways. Activation of TRIF leads to the activation of interferon regulatory factor 3 (IRF3) and nuclear factor kappa B (NF-κB). While studies have shown that TLRs are implicated in cerebral ischemia/reperfusion (I/R) injury and in neuroprotection against ischemia afforded by preconditioning, little is known about TRIF's role in the pathological process following cerebral I/R. The present study investigated the role that TRIF may play in acute cerebral I/R injury. In a mouse model of cerebral I/R induced by transient middle cerebral artery occlusion, we examined the activation of NF-κB and IRF3 signaling in ischemic cerebral tissue using ELISA and Western blots. Neurological function and cerebral infarct size were also evaluated 24 h after cerebral I/R. NF-κB activity and phosphorylation of the inhibitor of kappa B (IκBα) increased in ischemic brains, but IRF3, inhibitor of κB kinase complex-ε (IKKε), and TANK-binding kinase1 (TBK1) were not activated after cerebral I/R in wild-type (WT) mice. Interestingly, TRIF deficit did not inhibit NF-κB activity or p-IκBα induced by cerebral I/R. Moreover, although cerebral I/R induced neurological and functional impairments and brain infarction in WT mice, the deficits were not improved and brain infarct size was not reduced in TRIF knockout mice compared to WT mice. Our results demonstrate that the TRIF-dependent signaling pathway is not required for the activation of NF-κB signaling and brain injury after acute cerebral I/R.

  10. The TRIF-dependent signaling pathway is not required for acute cerebral ischemia/reperfusion injury in mice

    Hua, Fang, E-mail: fhua2@emory.edu [Department of Emergency Medicine, Brain Research Laboratory, Emory University School of Medicine, 1365B Clifton Road, Suite 5100, Atlanta, GA 30322 (United States); Wang, Jun; Sayeed, Iqbal; Ishrat, Tauheed; Atif, Fahim; Stein, Donald G. [Department of Emergency Medicine, Brain Research Laboratory, Emory University School of Medicine, 1365B Clifton Road, Suite 5100, Atlanta, GA 30322 (United States)

    2009-12-18

    TIR domain-containing adaptor protein (TRIF) is an adaptor protein in Toll-like receptor (TLR) signaling pathways. Activation of TRIF leads to the activation of interferon regulatory factor 3 (IRF3) and nuclear factor kappa B (NF-{kappa}B). While studies have shown that TLRs are implicated in cerebral ischemia/reperfusion (I/R) injury and in neuroprotection against ischemia afforded by preconditioning, little is known about TRIF's role in the pathological process following cerebral I/R. The present study investigated the role that TRIF may play in acute cerebral I/R injury. In a mouse model of cerebral I/R induced by transient middle cerebral artery occlusion, we examined the activation of NF-{kappa}B and IRF3 signaling in ischemic cerebral tissue using ELISA and Western blots. Neurological function and cerebral infarct size were also evaluated 24 h after cerebral I/R. NF-{kappa}B activity and phosphorylation of the inhibitor of kappa B (I{kappa}B{alpha}) increased in ischemic brains, but IRF3, inhibitor of {kappa}B kinase complex-{epsilon} (IKK{epsilon}), and TANK-binding kinase1 (TBK1) were not activated after cerebral I/R in wild-type (WT) mice. Interestingly, TRIF deficit did not inhibit NF-{kappa}B activity or p-I{kappa}B{alpha} induced by cerebral I/R. Moreover, although cerebral I/R induced neurological and functional impairments and brain infarction in WT mice, the deficits were not improved and brain infarct size was not reduced in TRIF knockout mice compared to WT mice. Our results demonstrate that the TRIF-dependent signaling pathway is not required for the activation of NF-{kappa}B signaling and brain injury after acute cerebral I/R.

  11. p-Cymene reduces orofacial nociceptive response in mice

    Michele F. Santana

    2011-12-01

    Full Text Available This study investigated the possible antinociceptive effect of p-cymene in different tests of orofacial nociception. The animals (mice were pretreated (i.p. with p-cymene (25, 50, 100 mg/kg, morphine (5 mg/kg, or vehicle (0.2% Tween 80+saline, and were then subsequently administered, subcutaneously into their upper lip: formalin, capsaicin, and glutamate. The nociceptive behavior response was characterized by the time in s that the mice remained rubbing the orofacial region, for a period of 40 min in the formalin test (first phase, 0-6 min; and second phase, 21-40 min, and for 42 and 15 min in the capsaicin and glutamate tests, respectively. To verify the possible opioid involvement in the antinociceptive effects, naloxone (i.p. was administered into the mice 15 min prior to the pretreatment with p-cymene (100 mg/kg. Finally, whether or not the p-cymene evoked any change in motor performance in the Rota-rod test was evaluated. The results showed that the treatment with p-cymene, at all doses, reduced (p<0.001 the nociceptive behavior in all nociception tests. The antinociceptive effect of p-cymene was antagonized by naloxone (1.5 mg/kg. Additionally, mice treated with p-cymene did not show any change in motor performance. In conclusion, p-cymene attenuated orofacial nociception, suggesting an involvement of the opioid system in this effect. Thus, p-cymene might represent an important biomolecule for management and/or treatment of orofacial pain.

  12. Emotional modulation of pain and spinal nociception in fibromyalgia

    Rhudy, Jamie L.; DelVentura, Jennifer L.; Terry, Ellen L.; Bartley, Emily J.; Olech, Ewa; Palit, Shreela; Kerr, Kara L.

    2013-01-01

    Fibromyalgia (FM) is characterized by widespread pain, as well as affective disturbance (e.g., depression). Given that emotional processes are known to modulate pain, a disruption of emotion and emotional modulation of pain and nociception may contribute to FM. The present study used a well-validated affective picture-viewing paradigm to study emotional processing and emotional modulation of pain and spinal nociception. Participants were 18 individuals with FM, 18 individuals with rheumatoid arthritis (RA), and 19 healthy pain-free controls (HC). Mutilation, neutral, and erotic pictures were presented in four blocks; two blocks assessed only physiological-emotional reactions (i.e., pleasure/arousal ratings, corrugator EMG, startle modulation, skin conductance) in the absence of pain and two blocks assessed emotional reactivity and emotional modulation of pain and the nociceptive flexion reflex (NFR, a physiological measure of spinal nociception) evoked by suprathreshold electric stimulations over the sural nerve. In general, mutilation pictures elicited displeasure, corrugator activity, subjective arousal, and sympathetic activation, whereas erotic pictures elicited pleasure, subjective arousal, and sympathetic activation. However, FM was associated with deficits in appetitive activation (e.g., reduced pleasure/arousal to erotica). Moreover, emotional modulation of pain was observed in HC and RA, but not FM, even though all three groups evidenced modulation of NFR. Additionally, NFR thresholds were not lower in the FM group, indicating a lack of spinal sensitization. Together, these results suggest that FM is associated with a disruption of supraspinal processes associated with positive affect and emotional modulation of pain, but not brain-to-spinal cord circuitry that modulates spinal nociceptive processes. PMID:23622762

  13. Activation of ERK1/2 in spinal cord contributes to the development of acute cystic pain in rabbits

    Yong-Hong WANG; Li-Cai ZHANG; Yin-Ming ZENG

    2006-01-01

    Objective To investigate the role of activated extracellular signal-regulated kinase 1/2 (ERK1/2) in spinal cord in the development of cystic pain in rabbit. Methods We observed the relationship between the activation of ERK1/2 in spinal cord and nociceptive behaviors, as well as the effect of U0126, a mitogen-activated protein kinase (MEK, upstream protein of ERK1/2) inhibitor, on cystic pain in rabbits by behavioral test, immunohistochemistry and western blot analysis. Results After injecting 0.5 ml formalin into gallbladder, the behaviors such as grasping of the cheek and licking of theabdomen increased in 30 min, with a significant increase in pERK1/2 expression in the spinal cord, as well as the pERK1/2 immunoreactive cells located in laminae Ⅴ~Ⅶ and X of the dorsal horn and ventral horn of T6 spinal cord. Administration of U0126 (100 ~400 μg/kg body weight, i.v., 10 min before instillation of formalin) could attenuated nociceptive behaviors dose-dependently, but could not restrain the nociceptive behaviors completely even at the maximal efficient dose of 400 μg/kg body weight. Conclusion Activated ERK1/2 in the spinal cord at least partly participates in the development of acute inflammatory cystic pain induced by formalin in rabbits.

  14. Progesterone in the treatment of neonatal arterial ischemic stroke and acute seizures: Role of BDNF/TrkB signaling.

    Atif, Fahim; Yousuf, Seema; Stein, Donald G

    2016-08-01

    Neonatal stroke is among the top ten causes of childhood death and permanent disability in survivors, but no safe and effective acute treatments exist. To advance understanding of its neuroprotective mechanisms, we examined the effects of progesterone (PROG) on local and systemic inflammation (IL-1β, IL-6, TNFα), brain derived neurotrophic factor/Tropomyosin receptor kinase B (BDNF/TrkB) signaling, vascular damage (vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 (MMP-9)), acute behavioral seizures and brain infarction size following neonatal arterial ischemic stroke in mice. CD1 mouse pups (postnatal day 12, mixed gender) received permanent unilateral right common carotid ligation (pUCCL) or sham surgery. Pups showing seizure activity during the first hour post-pUCCL were randomly assigned to receive PROG (8 mg/kg) or vehicle injections. PROG treatment significantly (p sex differences on any other markers of the injury at this early stage of development. PROG treatment is neuroprotective through a number of signaling pathways and can be beneficial in treating neonatal arterial ischemic stroke in CD1 mice. PMID:27039043

  15. Metabotropic glutamate receptor 5 (mGluR5 regulates bladder nociception

    Crock Lara W

    2012-03-01

    Full Text Available Abstract Background Interstitial cystitis/painful bladder syndrome (IC/PBS, is a severely debilitating chronic condition that is frequently unresponsive to conventional pain medications. The etiology is unknown, however evidence suggests that nervous system sensitization contributes to enhanced pain in IC/PBS. In particular, central nervous system plasticity of glutamatergic signaling involving NMDA and metabotropic glutamate receptors (mGluRs has been implicated in a variety of chronic pain conditions. Here, we test the hypothesis that mGluR5 mediates both non-inflammatory and inflammatory bladder pain or nociception in a mouse model by monitoring the visceromotor response (VMR during graded bladder distention. Results Using a combination of genetic and pharmacologic approaches, we provide evidence indicating that mGluR5 is necessary for the full expression of VMR in response to bladder distention in the absence of inflammation. Furthermore, we observed that mice infected with a uropathogenic strain of Escherichia coli (UPEC develop inflammatory hyperalgesia to bladder distention, and that the selective mGluR5 antagonist fenobam [N-(3-chlorophenyl-N'-(4,5-dihydro-1-methyl-4-oxo-1H-imidazole-2-yl urea], reduces the VMR to bladder distention in UPEC-infected mice. Conclusions Taken together, these data suggest that mGluR5 modulates both inflammatory and non-inflammatory bladder nociception, and highlight the therapeutic potential for mGluR5 antagonists in the alleviation of bladder pain.

  16. Proteomic analysis uncovers novel actions of the neurosecretory protein VGF in nociceptive processing.

    Riedl, Maureen S; Braun, Patrick D; Kitto, Kelley F; Roiko, Samuel A; Anderson, Lorraine B; Honda, Christopher N; Fairbanks, Carolyn A; Vulchanova, Lucy

    2009-10-21

    Peripheral tissue injury is associated with changes in protein expression in sensory neurons that may contribute to abnormal nociceptive processing. We used cultured dorsal root ganglion (DRG) neurons as a model of axotomized neurons to investigate early changes in protein expression after nerve injury. Comparing protein levels immediately after DRG dissociation and 24 h later by proteomic differential expression analysis, we found a substantial increase in the levels of the neurotrophin-inducible protein VGF (nonacronymic), a putative neuropeptide precursor. In a rodent model of nerve injury, VGF levels were increased within 24 h in both injured and uninjured DRG neurons, and the increase persisted for at least 7 d. VGF was also upregulated 24 h after hindpaw inflammation. To determine whether peptides derived from proteolytic processing of VGF participate in nociceptive signaling, we examined the spinal effects of AQEE-30 and LQEQ-19, potential proteolytic products shown previously to be bioactive. Each peptide evoked dose-dependent thermal hyperalgesia that required activation of the mitogen-activated protein kinase p38. In addition, LQEQ-19 induced p38 phosphorylation in spinal microglia when injected intrathecally and in the BV-2 microglial cell line when applied in vitro. In summary, our results demonstrate rapid upregulation of VGF in sensory neurons after nerve injury and inflammation and activation of microglial p38 by VGF peptides. Therefore, VGF peptides released from sensory neurons may participate in activation of spinal microglia after peripheral tissue injury. PMID:19846725

  17. Mechanisms of Disease: detrimental adrenergic signaling in acute decompensated heart failure

    Feldman, David S.; Elton, Terry S; Sun, Benjamin; Martin, Mickey M.; Ziolo, Mark T

    2008-01-01

    Acute decompensated heart failure (ADHF) is responsible for more than 1 million hospital admissions each year in the US. Clinicians and scientists have developed therapeutic strategies that reduce mortality in patients with chronic heart failure (HF). Despite the widely appreciated magnitude of the ADHF problem, there is still a critical gap in our understanding of the cellular mechanisms involved and effective treatment strategies for hospitalized patients. Irrespective of the etiology, pati...

  18. Urethane anesthesia depresses activities of thalamocortical neurons and alters its response to nociception in terms of dual firing modes

    Yeowool eHuh

    2013-10-01

    Full Text Available Anesthetics are often used to characterize the activity of single neurons in-vivo for its advantages such as reduced noise level and convenience in noxious stimulations. Of the anesthetics, urethane had been widely used in some thalamic studies under the assumption that sensory signals are still relayed to the thalamus under urethane anesthesia and that thalamic response would therefore reflect the response of the awake state. We tested whether this assumption stands by comparing thalamic activity in terms of tonic and burst firing modes during ‘the awake state’ or under ‘urethane anesthesia’ utilizing the extracellular single unit recording technique. First we have tested how thalamic relay neurons respond to the introduction of urethane and then tested how urethane influences thalamic discharges under formalin-induced nociception. Urethane significantly depressed overall firing rates of thalamic relay neurons, which was sustained despite the delayed increase of burst activity over the 4 hour recording period. Thalamic response to nociception under anesthesia was also similar overall except for the slight and transient increase of burst activity. Overall, results demonstrated that urethane suppresses the activity of thalamic relay neurons and that, despite the slight fluctuation of burst firing, formalin-induced nociception cannot significantly change the firing pattern of thalamic relay neurons that was caused by urethane.

  19. Different phosphoinositide 3-kinase isoforms mediate carrageenan nociception and inflammation.

    Pritchard, Rory A; Falk, Lovissa; Larsson, Mathilda; Leinders, Mathias; Sorkin, Linda S

    2016-01-01

    Phosphoinositide 3-kinases (PI3Ks) participate in signal transduction cascades that can directly activate and sensitize nociceptors and enhance pain transmission. They also play essential roles in chemotaxis and immune cell infiltration leading to inflammation. We wished to determine which PI3K isoforms were involved in each of these processes. Lightly anesthetized rats (isoflurane) were injected subcutaneously with carrageenan in their hind paws. This was preceded by a local injection of 1% DMSO vehicle or an isoform-specific antagonist to PI3K-α (compound 15-e), -β (TGX221), -δ (Cal-101), or -γ (AS252424). We measured changes in the mechanical pain threshold and spinal c-Fos expression (4 hours after injection) as indices of nociception. Paw volume, plasma extravasation (Evans blue, 0.3 hours after injection), and neutrophil (myeloperoxidase; 1 hour after injection) and macrophage (CD11b+; 4 hour after injection) infiltration into paw tissue were the measured inflammation endpoints. Only PI3K-γ antagonist before treatment reduced the carrageenan-induced pain behavior and spinal expression of c-Fos (P ≤ 0.01). In contrast, pretreatment with PI3K-α, -δ, and-γ antagonists reduced early indices of inflammation. Plasma extravasation PI3K-α (P ≤ 0.05), -δ (P ≤ 0.05), and -γ (P ≤ 0.01), early (0-2 hour) edema -α (P ≤ 0.05), -δ (P ≤ 0.001), and -γ (P ≤ 0.05), and neutrophil infiltration (all P ≤ 0.001) were all reduced compared to vehicle pretreatment. Later (2-4 hour), edema and macrophage infiltration (P ≤ 0.05) were reduced by only the PI3K-δ and -γ isoform antagonists, with the PI3K-δ antagonist having a greater effect on edema. PI3K-β antagonism was ineffective in all paradigms. These data indicate that pain and clinical inflammation are pharmacologically separable and may help to explain clinical conditions in which inflammation naturally wanes or goes into remission, but pain continues unabated. PMID:26313408

  20. The Acute Effects of Leptin Require PI3K Signaling in the Hypothalamic Ventral Premammillary Nucleus

    Williams, Kevin W; Sohn, Jong-Woo; Donato, Jose; Lee, Charlotte E.; Zhao, Jean J.; Elmquist, Joel K.; Elias, Carol F.

    2011-01-01

    Evidence suggests that the role played by the adipocyte-derived hormone leptin in female reproductive physiologyis mediated in part by neurons located within the ventral premammillary nucleus (PMV). Leptin activates PMV neurons; however, the intracellular signaling pathway and channel(s) involved remain undefined. Notably, leptin's excitatory and inhibitory effects within hypothalamic and brainstem nuclei share the intracellular signaling cascade phosphoinositide 3 kinase (PI3K). Therefore, w...

  1. Functional characterization of FLT3 receptor signaling deregulation in acute myeloid leukemia by single cell network profiling (SCNP.

    David B Rosen

    Full Text Available BACKGROUND: Molecular characterization of the FMS-like tyrosine kinase 3 receptor (FLT3 in cytogenetically normal acute myeloid leukemia (AML has recently been incorporated into clinical guidelines based on correlations between FLT3 internal tandem duplications (FLT3-ITD and decreased disease-free and overall survival. These mutations result in constitutive activation of FLT3, and FLT3 inhibitors are currently undergoing trials in AML patients selected on FLT3 molecular status. However, the transient and partial responses observed suggest that FLT3 mutational status alone does not provide complete information on FLT3 biological activity at the individual patient level. Examination of variation in cellular responsiveness to signaling modulation may be more informative. METHODOLOGY/PRINCIPAL FINDINGS: Using single cell network profiling (SCNP, cells were treated with extracellular modulators and their functional responses were quantified by multiparametric flow cytometry. Intracellular signaling responses were compared between healthy bone marrow myeloblasts (BMMb and AML leukemic blasts characterized as FLT3 wild type (FLT3-WT or FLT3-ITD. Compared to healthy BMMb, FLT3-WT leukemic blasts demonstrated a wide range of signaling responses to FLT3 ligand (FLT3L, including elevated and sustained PI3K and Ras/Raf/Erk signaling. Distinct signaling and apoptosis profiles were observed in FLT3-WT and FLT3-ITD AML samples, with more uniform signaling observed in FLT3-ITD AML samples. Specifically, increased basal p-Stat5 levels, decreased FLT3L induced activation of the PI3K and Ras/Raf/Erk pathways, decreased IL-27 induced activation of the Jak/Stat pathway, and heightened apoptotic responses to agents inducing DNA damage were observed in FLT3-ITD AML samples. Preliminary analysis correlating these findings with clinical outcomes suggests that classification of patient samples based on signaling profiles may more accurately reflect FLT3 signaling

  2. The posterior insular-opercular region and the search of a primary cortex for pain : the nociceptive cortex in humans

    Garcia Larrea, Luis

    2012-01-01

    To be considered specific for nociception, a cortical region should (a) have plausible connections with ascending nociceptive pathways; (b) be activated by noxious stimuli; (c) trigger nociceptive sensations if directly stimulated, and (d) tone down nociception when injured. In addition, lesions in this area should have a potential to develop neuropathic pain, as is the case of all lesions in nociceptive pathways. The single cortical region approaching these requirements in humans encompasses...

  3. Abnormal functional integration of thalamic low frequency oscillation in the BOLD signal after acute heroin treatment.

    Denier, Niklaus; Schmidt, André; Gerber, Hana; Vogel, Marc; Huber, Christian G; Lang, Undine E; Riecher-Rossler, Anita; Wiesbeck, Gerhard A; Radue, Ernst-Wilhelm; Walter, Marc; Borgwardt, Stefan

    2015-12-01

    Heroin addiction is a severe relapsing brain disorder associated with impaired cognitive control, including deficits in attention allocation. The thalamus has a high density of opiate receptors and is critically involved in orchestrating cortical activity during cognitive control. However, there have been no studies on how acute heroin treatment modulates thalamic activity. In a cross-over, double-blind, vehicle-controlled study, 29 heroin-maintained outpatients were studied after heroin and placebo administration, while 20 healthy controls were included for the placebo condition only. Resting-state functional magnetic resonance imaging was used to analyze functional integration of the thalamus by three different resting state analysis techniques. Thalamocortical functional connectivity (FC) was analyzed by seed-based correlation, while intrinsic thalamic oscillation was assessed by analysis of regional homogeneity (ReHo) and the fractional amplitude of low frequency fluctuations (fALFF). Relative to the placebo treatment and healthy controls, acute heroin administration reduced thalamocortical FC to cortical regions, including the frontal cortex, while the reductions in FC to the mediofrontal cortex, orbitofrontal cortex, and frontal pole were positively correlated with the plasma level of morphine, the main psychoactive metabolite of heroin. Furthermore, heroin treatment was associated with increased thalamic ReHo and fALFF values, whereas fALFF following heroin exposure correlated negatively with scores of attentional control. The heroin-associated increase in fALFF was mainly dominated by slow-4 (0.027-0.073 Hz) oscillations. Our findings show that there are acute effects of heroin within the thalamocortical system and may shed new light on the role of the thalamus in cognitive control in heroin addiction. Future research is needed to determine the underlying physiological mechanisms and their role in heroin addiction. PMID:26441146

  4. Effects of acute versus repeated cocaine exposure on the expression of endocannabinoid signaling-related proteins in the mouse cerebellum

    Palomino, Ana; Pavón, Francisco-Javier; Blanco-Calvo, Eduardo; Serrano, Antonia; Arrabal, Sergio; Rivera, Patricia; Alén, Francisco; Vargas, Antonio; Bilbao, Ainhoa; Rubio, Leticia; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2014-01-01

    Growing awareness of cerebellar involvement in addiction is based on the cerebellum’s intermediary position between motor and reward, potentially acting as an interface between motivational and cognitive functions. Here, we examined the impact of acute and repeated cocaine exposure on the two main signaling systems in the mouse cerebellum: the endocannabinoid (eCB) and glutamate systems. To this end, we investigated whether eCB signaling-related gene and protein expression {cannabinoid receptor type 1 receptors and enzymes that produce [diacylglycerol lipase alpha/beta (DAGLα/β) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD)] and degrade [monoacylglycerol lipase (MAGL) and fatty acid amino hydrolase (FAAH)] eCB} were altered. In addition, we analyzed the gene expression of relevant components of the glutamate signaling system [glutamate synthesizing enzymes liver-type glutaminase isoform (LGA) and kidney-type glutaminase isoform (KGA), metabotropic glutamatergic receptor (mGluR3/5), NMDA-ionotropic glutamatergic receptor (NR1/2A/2B/2C) and AMPA-ionotropic receptor subunits (GluR1/2/3/4)] and the gene expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, because noradrenergic terminals innervate the cerebellar cortex. Results indicated that acute cocaine exposure decreased DAGLα expression, suggesting a down-regulation of 2-arachidonylglycerol (2-AG) production, as well as gene expression of TH, KGA, mGluR3 and all ionotropic receptor subunits analyzed in the cerebellum. The acquisition of conditioned locomotion and sensitization after repeated cocaine exposure were associated with an increased NAPE-PLD/FAAH ratio, suggesting enhanced anandamide production, and a decreased DAGLβ/MAGL ratio, suggesting decreased 2-AG generation. Repeated cocaine also increased LGA gene expression but had no effect on glutamate receptors. These findings indicate that acute cocaine modulates the expression of the eCB and

  5. Lobeline improves acute lung injury via nuclear factor-κB-signaling pathway and oxidative stress.

    Li, Kun-Cheng; Ho, Yu-Ling; Chen, Cing-Yu; Hsieh, Wen-Tsong; Chang, Yuan-Shiun; Huang, Guan-Jhong

    2016-05-01

    Acute lung injury (ALI) is a severe, life-threatening medical condition whose pathogenesis is linked to neutrophil infiltration of the lung. Activation and recruitment of neutrophils to the lung is mostly attributed to the production of chemokines NO, IL-6, for instance. This study aims to investigate lobeline ability in reducing NO production, and nitric oxide synthase (iNOs) expression. Lobeline was tested by inhibiting phosphorylation of mitogen-activated protein kinases (MAPKs), NF-κB and IκBα in LPS-stimulated RAW 264.7 cells. When RAW 264.7 macrophages were given lobeline with LPS, a significant concentration-dependent inhibition of NO production was detected. In vivo tests, mice were either treated with normal saline, 10mg/kg dexmethasone or 5, 10, 20mg/kg lobeline intraperitoneally, and after an hour, the administration of 5mg/kg of LPS was given intratracheally. External performance, cytokines, MAPK pathways and antioxidative enzymes (AOEs) were also carried out to evaluate the effects of these drugs. This is the first investigation in which lobeline was found to effectively inhibit acute lung edema, which may provide a potential target for treating ALI. Lobeline may utilize MAPKs pathways as well as AOEs activity to attenuate LPS-induced nonspecific pulmonary inflammation. PMID:26702732

  6. Effects of Liver × receptor agonist treatment on signal transduction pathways in acute lung inflammation

    Bramanti Placido

    2010-02-01

    Full Text Available Abstract Background Liver × receptor α (LXRα and β (LXRβ are members of the nuclear receptor super family of ligand-activated transcription factors, a super family which includes the perhaps better known glucocorticoid receptor, estrogen receptor, thyroid receptor, and peroxisome proliferator-activated receptors. There is limited evidence that LXL activation may reduces acute lung inflammation. The aim of this study was to investigate the effects of T0901317, a potent LXR receptor ligand, in a mouse model of carrageenan-induced pleurisy. Methods Injection of carrageenan into the pleural cavity of mice elicited an acute inflammatory response characterized by: accumulation of fluid containing a large number of neutrophils (PMNs in the pleural cavity, infiltration of PMNs in lung tissues and subsequent lipid peroxidation, and increased production of nitrite/nitrate (NOx, tumor necrosis factor-α, (TNF-α and interleukin-1β (IL-1β. Furthermore, carrageenan induced the expression of iNOS, nitrotyrosine and PARP, as well as induced apoptosis (TUNEL staining and Bax and Bcl-2 expression in the lung tissues. Results Administration of T0901317, 30 min after the challenge with carrageenan, caused a significant reduction in a dose dependent manner of all the parameters of inflammation measured. Conclusions Thus, based on these findings we propose that LXR ligand such as T0901317, may be useful in the treatment of various inflammatory diseases.

  7. Berberine inhibits inflammatory mediators and attenuates acute pancreatitis through deactivation of JNK signaling pathways.

    Choi, Sun-Bok; Bae, Gi-Sang; Jo, Il-Joo; Wang, Shaofan; Song, Ho-Joon; Park, Sung-Joo

    2016-06-01

    Acute pancreatitis (AP) is a life-threatening disease. Berberine (BBR), a well-known plant alkaloid, is reported to have anti-inflammatory activity in many diseases. However, the effects of BBR on AP have not been clearly elucidated. Therefore, the present study aimed to investigate the effects of BBR on cerulein-induced AP in mice. AP was induced by either cerulein or l-arginine. In the BBR treated group, BBR was administered intraperitoneally 1h before the first cerulein or l-arginine injection. Blood samples were obtained to determine serum amylase and lipase activities and nitric oxide production. The pancreas and lung were rapidly removed for examination of histologic changes, myeloperoxidase (MPO) activity, and real-time reverse transcription-polymerase chain reaction. Furthermore, the regulating mechanisms of BBR were evaluated. Treatment of mice with BBR reduced pancreatic injury and activities of amylase, lipase, and pancreatitis-associated lung injury, as well as inhibited several inflammatory parameters such as the expression of pro-inflammatory cytokines and inducible nitric oxide synthesis (iNOS). Furthermore, BBR administration significantly inhibited c-Jun N-terminal kinase (JNK) activation in the cerulein-induced AP. Deactivation of JNK resulted in amelioration of pancreatitis and the inhibition of inflammatory mediators. These results suggest that BBR exerts anti-inflammatory effects on AP via JNK deactivation on mild and severe acute pancreatitis model, and could be a beneficial target in the management of AP. PMID:27148818

  8. Signaling mechanisms involved in the acute effects of estradiol on 5-HT clearance.

    Benmansour, Saloua; Privratsky, Anthony A; Adeniji, Opeyemi S; Frazer, Alan

    2014-05-01

    Estradiol was found previously to have an antidepressant-like effect and to block the ability of selective serotonin reuptake inhibitors (SSRIs) to have an antidepressant-like effect. The antidepressant-like effect of estradiol was due to estrogen receptor β (ERβ) and/or GPR30 activation, whereas estradiol's blockade of the effect of an SSRI was mediated by ERα. This study focuses on investigating signaling pathways as well as interacting receptors associated with these two effects of estradiol. In vivo chronoamperometry was used to measure serotonin transporter (SERT) function. The effect of local application of estradiol or selective agonists for ERα (PPT) or ERβ (DPN) into the CA3 region of the hippocampus of ovariectomized (OVX) rats on 5-hydroxytryptamine (5-HT) clearance as well as on the ability of fluvoxamine to slow 5-HT clearance was examined after selective blockade of signaling pathways or that of interacting receptors. Estradiol- or DPN-induced slowing of 5-HT clearance mediated by ERβ was blocked after inhibition of MAPK/ERK1/2 but not of PI3K/Akt signaling pathways. This effect also involved interactions with TrkB, and IGF-1 receptors. Estradiol's or PPT's inhibition of the fluvoxamine-induced slowing of 5-HT clearance mediated by ERα, was blocked after inhibition of either MAPK/ERK1/2 or PI3K/Akt signaling pathways. This effect involved interactions with the IGF-1 receptor and with the metabotropic glutamate receptor 1, but not with TrkB. This study illustrates some of the signaling pathways required for the effects of estradiol on SERT function, and particularly shows that ER subtypes elicit different as well as common signaling pathways for their actions. PMID:24423185

  9. The Role of PPK26 in Drosophila Larval Mechanical Nociception

    Yanmeng Guo

    2014-11-01

    Full Text Available In Drosophila larvae, the class IV dendritic arborization (da neurons are polymodal nociceptors. Here, we show that ppk26 (CG8546 plays an important role in mechanical nociception in class IV da neurons. Our immunohistochemical and functional results demonstrate that ppk26 is specifically expressed in class IV da neurons. Larvae with mutant ppk26 showed severe behavioral defects in a mechanical nociception behavioral test but responded to noxious heat stimuli comparably to wild-type larvae. In addition, functional studies suggest that ppk26 and ppk (also called ppk1 function in the same pathway, whereas piezo functions in a parallel pathway. Consistent with these functional results, we found that PPK and PPK26 are interdependent on each other for their cell surface localization. Our work indicates that PPK26 and PPK might form heteromeric DEG/ENaC channels that are essential for mechanotransduction in class IV da neurons.

  10. Sympathetic β-adrenergic mechanism in pudendal inhibition of nociceptive and non-nociceptive reflex bladder activity.

    Kadow, Brian T; Lyon, Timothy D; Zhang, Zhaocun; Lamm, Vladimir; Shen, Bing; Wang, Jicheng; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2016-07-01

    This study investigated the role of the hypogastric nerve and β-adrenergic mechanisms in the inhibition of nociceptive and non-nociceptive reflex bladder activity induced by pudendal nerve stimulation (PNS). In α-chloralose-anesthetized cats, non-nociceptive reflex bladder activity was induced by slowly infusing saline into the bladder, whereas nociceptive reflex bladder activity was induced by replacing saline with 0.25% acetic acid (AA) to irritate the bladder. PNS was applied at multiple threshold (T) intensities for inducing anal sphincter twitching. During saline infusion, PNS at 2T and 4T significantly (P < 0.01) increased bladder capacity to 184.7 ± 12.6% and 214.5 ± 10.4% of the control capacity. Propranolol (3 mg/kg iv) had no effect on PNS inhibition, but 3-[(2-methyl-4-thiazolyl)ethynyl]pyridine (MTEP; 1-3 mg/kg iv) significantly (P < 0.05) reduced the inhibition. During AA irritation, the control bladder capacity was significantly (P < 0.05) reduced to ∼22% of the saline control capacity. PNS at 2T and 4T significantly (P < 0.01) increased bladder capacity to 406.8 ± 47% and 415.8 ± 46% of the AA control capacity. Propranolol significantly (P < 0.05) reduced the bladder capacity to 276.3% ± 53.2% (at 2T PNS) and 266.5 ± 72.4% (at 4T PNS) of the AA control capacity, whereas MTEP (a metabotropic glutamate 5 receptor antagonist) removed the residual PNS inhibition. Bilateral transection of the hypogastric nerves produced an effect similar to that produced by propranolol. This study indicates that hypogastric nerves and a β-adrenergic mechanism in the detrusor play an important role in PNS inhibition of nociceptive but not non-nociceptive reflex bladder activity. In addition to this peripheral mechanism, a central nervous system mechanism involving metabotropic glutamate 5 receptors also has a role in PNS inhibition. PMID:27170683

  11. Eugenol reduces acute pain in mice by modulating the glutamatergic and tumor necrosis factor alpha (TNF-α) pathways.

    Dal Bó, Wladmir; Luiz, Ana Paula; Martins, Daniel F; Mazzardo-Martins, Leidiane; Santos, Adair R S

    2013-10-01

    Eugenol is utilized together with zinc oxide in odontological clinical for the cementation of temporary prostheses and the temporary restoration of teeth and cavities. This work explored the antinociceptive effects of the eugenol in different models of acute pain in mice and investigated its possible modulation of the inhibitory (opioid) and excitatory (glutamatergic and pro-inflammatory cytokines) pathways of nociceptive signaling. The administration of eugenol (3-300 mg/kg, p.o., 60 min or i.p., 30 min) inhibited 82 ± 10% and 90 ± 6% of the acetic acid-induced nociception, with ID₅₀ values of 51.3 and 50.2 mg/kg, respectively. In the glutamate test, eugenol (0.3-100 mg/kg, i.p.) reduced the response behavior by 62 ± 5% with an ID₅₀ of 5.6 mg/kg. In addition, the antinociceptive effect of eugenol (10 mg/kg, i.p.) in the glutamate test was prevented by the i.p. treatment for mice with naloxone. The pretreatment of mice with eugenol (10 mg/kg, i.p.) was able to inhibit the nociception induced by the intrathecal (i.t.) injection of glutamate (37 ± 9%), kainic (acid kainite) (41 ± 12%), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) (55 ± 5%), and substance P (SP) (39 ± 8%). Furthermore, eugenol (10 mg/kg, i.p.) also inhibited biting induced by tumor necrosis factor alpha (TNF-α, 65 ± 8%). These results extend our current knowledge of eugenol and confirm that it promotes significant antinociception against different mouse models of acute pain. The mechanism of action appears to involve the modulation of the opioid system and glutamatergic receptors (i.e., kainate and AMPA), and the inhibition of TNF-α. Thus, eugenol could represent an important compound in the treatment for acute pain. PMID:22775297

  12. GABA receptors modulate trigeminovascular nociceptive neurotransmission in the trigeminocervical complex

    Storer, R James; Akerman, Simon; Goadsby, Peter J.

    2001-01-01

    GABA (γ-aminobutyric acid) receptors involved in craniovascular nociceptive pathways were characterised by in vivo microiontophoresis of GABA receptor agonists and antagonists onto neurones in the trigeminocervical complex of the cat.Extracellular recordings were made from neurones in the trigeminocervical complex activated by supramaximal electrical stimulation of superior sagittal sinus, which were subsequently stimulated with L-glutamate.Cell firing evoked by microiontophoretic application...

  13. A Novel Behavioral Fish Model of Nociception for Testing Analgesics

    E. Don Stevens; Cunha, Sérgio R.; Martin Scholze; Correia, Ana D.

    2011-01-01

    Pain is a major symptom in many medical conditions, and often interferes significantly with a person's quality of life. Although a priority topic in medical research for many years, there are still few analgesic drugs approved for clinical use. One reason is the lack of appropriate animal models that faithfully represent relevant hallmarks associated with human pain. Here we propose zebrafish (Danio rerio) as a novel short-term behavioral model of nociception, and analyse its sensitivity and ...

  14. Fisetin Alleviates Lipopolysaccharide-Induced Acute Lung Injury via TLR4-Mediated NF-κB Signaling Pathway in Rats.

    Feng, Guang; Jiang, Ze-Yu; Sun, Bo; Fu, Jie; Li, Tian-Zuo

    2016-02-01

    Acute lung injury (ALI), a common component of systemic inflammatory disease, is a life-threatening condition without many effective treatments. Fisetin, a natural flavonoid from fruits and vegetables, was reported to have wide pharmacological properties such as anti-inflammatory, antioxidant, and anticancer activities. The aim of this study was to detect the effects of fisetin on lipopolysaccharide (LPS)-induced acute lung injury and investigate the potential mechanism. Fisetin was injected (1, 2, and 4 mg/kg, i.v.) 30 min before LPS administration (5 mg/kg, i.v.). Our results showed that fisetin effectively reduced the inflammatory cytokine release and total protein in bronchoalveolar lavage fluids (BALF), decreased the lung wet/dry ratios, and obviously improved the pulmonary histology in LPS-induced ALI. Furthermore, fisetin inhibited LPS-induced increases of neutrophils and macrophage infiltration and attenuated MPO activity in lung tissues. Additionally, fisetin could significantly inhibit the Toll-like receptor 4 (TLR4) expression and the activation of NF-κB in lung tissues. Our data indicates that fisetin has a protective effect against LPS-induced ALI via suppression of TLR4-mediated NF-κB signaling pathways, and fisetin may be a promising candidate for LPS-induced ALI treatment. PMID:26272311

  15. Nociception at the diabetic foot, an uncharted territory

    Ernst A Chantelau

    2015-01-01

    The diabetic foot is characterised by painless footulceration and/or arthropathy; it is a typical complicationof painless diabetic neuropathy. Neuropathy depletesthe foot skin of intraepidermal nerve fibre endings of theafferent A-delta and C-fibres, which are mostly nociceptorsand excitable by noxious stimuli only. However, someof them are cold or warm receptors whose functionsin diabetic neuropathy have frequently been reported.Hence, it is well established by quantitative sensory testingthat thermal detection thresholds at the foot skin increaseduring the course of painless diabetic neuropathy. Painperception (nociception), by contrast, has rarely beenstudied. Recent pilot studies of pinprick pain at plantardigital skinfolds showed that the perception thresholdwas always above the upper limit of measurement of 512mN (equivalent to 51.2 g) at the diabetic foot. However,deep pressure pain perception threshold at musculus abductor hallucis was beyond 1400 kPa (equivalent to 14 kg; limit of measurement) only in every fifth case. These discrepancies of pain perception between forefoot and hindfoot, and between skin and muscle, demand further study. Measuring nociception at the feet in diabetes opens promising clinical perspectives. A critical nociception threshold may be quantified (probably corresponding to a critical number of intraepidermal nerve fibre endings), beyond which the individual risk of a diabetic foot rises appreciably. Staging of diabetic neuropathy according to nociception thresholds at the feet is highly desirable as guidance to an individualised injury prevention strategy.

  16. Chronic intrathecal cannulation enhances nociceptive responses in rats

    Almeida F.R.C.

    2000-01-01

    Full Text Available The influence of a chronically implanted spinal cannula on the nociceptive response induced by mechanical, chemical or thermal stimuli was evaluated. The hyperalgesia in response to mechanical stimulation induced by carrageenin or prostaglandin E2 (PGE2 was significantly increased in cannulated (Cn rats, compared with naive (Nv or sham-operated (Sh rats. Only Cn animals presented an enhanced nociceptive response in the first phase of the formalin test when low doses were used (0.3 and 1%. The withdrawal latency to thermal stimulation of a paw inflamed by carrageenin was significantly reduced in Cn rats but not in Nv or Sh rats. In contrast to Nv and Sh rats, injection in Cn animals of a standard non-steroid anti-inflammatory drug, indomethacin, either intraperitoneally or into the spinal cord via an implanted cannula or by direct puncture of the intrathecal space significantly blocked the intensity of the hyperalgesia induced by PGE2. Cannulated animals treated with indomethacin also showed a significant inhibition of second phase formalin-induced paw flinches. Histopathological analysis of the spinal cord showed an increased frequency of mononuclear inflammatory cells in the Cn groups. Thus, the presence of a chronically implanted cannula seems to cause nociceptive spinal sensitization to mechanical, chemical and thermal stimulation, which can be blocked by indomethacin, thus suggesting that it may result from the spinal release of prostaglandins due to an ongoing mild inflammation.

  17. Hydrosulfide attenuates acute myocardial ischemic injury through the glycogen synthase kinase-3β/β-catenin signaling pathway.

    Ge, Ning; Liu, Chao; Li, Guofeng; Xie, Lijun; Zhang, Qinzeng; Li, Liping; Hao, Na; Zhang, Jianxin

    2016-05-01

    The endogenous signaling gasotransmitter, hydrosulfide (H2S), has been shown to exert cardioprotective effects against acute myocardial infarction (AMI) due to ischemic injury. However, the mechanisms responsible for these effects are not yet fully understood. In this study, we investigated whether sodium hydrogen sulfide (NaHS), an H2S donor, attenuates acute myocardial ischemic injury through glycogen synthase kinase-3β (GSK-3β)/β-catenin signaling. For this purpose, we utilized an in vivo rat model of AMI by occluding the left anterior descending coronary artery. NaHS (0.39, 0.78 or 1.56 mg/kg, intraperitoneally), the GSK-3β inhibitor, SB216763 (0.6 mg/kg, intravenously), or 1% dimethylsulfoxide (2 ml/kg, intravenously) were administered to the rats. The results demonstrated that the administration of medium- and high-dose NaHS and SB216763 significantly improved rat cardiac function, as evidenced by an increase in the mean arterial pressure, left ventricular developed pressure, contraction and relaxation rates, as well as a decrease in left ventricular end-diastolic pressure. In addition, the administration of NaHS and SB216763 attenuated myocardial injury as reflected by a decrease in apoptotic cell death and in the serum lactate dehydrogenase concentrations, and prevented myocardial structural changes. The administration of NaHS and SB216763 increased the concentrations of phosphorylated (p-)GSK-3β, the p-GSK-3β/t-GSK-3β ratio and downstream protein β-catenin. Moreover, western blot and immunohistochemical analyses of apoptotic signaling pathway proteins further established the cardioprotective potential of NaHS, as reflected by the upregulation of Bcl-2 expression, the downregulation of Bax expression, and a decrease in the number of TUNEL-positive stained cells. These findings suggest that hydrosulfide exerts cardioprotective effects against AMI-induced apoptosis through the GSK-3β/β-catenin signaling pathway. PMID:27035393

  18. Capsaicin (8%) patch increases multiple electrical nociceptive thresholds in healthy human subjects

    Doll, R.J.; Buitenweg, J.R.; Amerongen, van, H.; Hay, J. L.; Groeneveld, G J; Veltink, P.H.

    2013-01-01

    Thresholds are dependent on stimulus properties and are related to different mechanisms in the nociceptive system. Measuring multiple thresholds enables a detailed observation of peripheral and central nociceptive processing. In this study, a model of capsaicin defunctionalization was used to investigate the effect on multiple simultaneously measured electrical nociceptive perception thresholds.With the presented data, increased electrical perception thresholds were observed due to capsaicin....

  19. GABA receptors modulate trigeminovascular nociceptive neurotransmission in the trigeminocervical complex.

    Storer, R J; Akerman, S; Goadsby, P J

    2001-10-01

    1. GABA (gamma-aminobutyric acid) receptors involved in craniovascular nociceptive pathways were characterised by in vivo microiontophoresis of GABA receptor agonists and antagonists onto neurones in the trigeminocervical complex of the cat. 2. Extracellular recordings were made from neurones in the trigeminocervical complex activated by supramaximal electrical stimulation of superior sagittal sinus, which were subsequently stimulated with L-glutamate. 3. Cell firing evoked by microiontophoretic application of L-glutamate (n=30) was reversibly inhibited by GABA in every cell tested (n=19), the GABA(A) agonist muscimol (n=10) in all cells tested, or both where tested, but not by iontophoresis of either sodium or chloride ions at comparable ejection currents. Inhibited cells received wide dynamic range (WDR) or nociceptive specific input from cutaneous receptive fields on the face or forepaws. 4. The inhibition of trigeminal neurones by GABA or muscimol could be antagonized by the GABA(A) antagonist N-methylbicuculline, 1(S),9(R) in all but two cells tested (n=16), but not by the GABA(B) antagonist 2-hydroxysaclofen (n=11). 5. R(-)-baclofen, a GABA(B) agonist, inhibited the firing of three out of seven cells activated by L-glutamate. Where tested, this inhibition could be antagonized by 2-hydroxysaclofen. These baclofen-inhibited cells were characterized as having low threshold mechanoreceptor/WDR input. 6. GABA thus appears to modulate nociceptive input to the trigeminocervical complex mainly through GABA(A) receptors. GABA(A) receptors may therefore provide a target for the development of new therapeutic agents for primary headache disorders. PMID:11606331

  20. Acute Exercise Induced Mitochondrial H2O2 Production in Mouse Skeletal Muscle: Association with p66Shc and FOXO3a Signaling and Antioxidant Enzymes

    Ping Wang

    2015-01-01

    Full Text Available Exercise induced skeletal muscle phenotype change involves a complex interplay between signaling pathways and downstream regulators. This study aims to investigate the effect of acute exercise on mitochondrial H2O2 production and its association with p66Shc, FOXO3a, and antioxidant enzymes. Male ICR/CD-1 mice were subjected to an acute exercise. Muscle tissues (gastrocnemius and quadriceps femoris were taken after exercise to measure mitochondrial H2O2 content, expression of p66Shc and FOXO3a, and the activity of antioxidant enzymes. The results showed that acute exercise significantly increased mitochondrial H2O2 content and expressions of p66Shc and FOXO3a in a time-dependent manner, with a linear correlation between the increase in H2O2 content and p66Shc or FOXO3a expression. The activity of mitochondrial catalase was slightly reduced in the 90 min exercise group, but it was significantly higher in groups with 120 and 150 min exercise compared to that of 90 min exercise group. The activity of SOD was not significantly affected. The results indicate that acute exercise increases mitochondrial H2O2 production in the skeletal muscle, which is associated with the upregulation of p66Shc and FOXO3a. The association of p66Shc and FOXO3a signaling with exercise induced H2O2 generation may play a role in regulating cellular oxidative stress during acute exercise.

  1. Chemogenetic and Optogenetic Activation of Gαs Signaling in the Basolateral Amygdala Induces Acute and Social Anxiety-Like States.

    Siuda, Edward R; Al-Hasani, Ream; McCall, Jordan G; Bhatti, Dionnet L; Bruchas, Michael R

    2016-07-01

    Anxiety disorders are debilitating psychiatric illnesses with detrimental effects on human health. These heightened states of arousal are often in the absence of obvious threatening cues and are difficult to treat owing to a lack of understanding of the neural circuitry and cellular machinery mediating these conditions. Activation of noradrenergic circuitry in the basolateral amygdala is thought to have a role in stress, fear, and anxiety, and the specific cell and receptor types responsible is an active area of investigation. Here we take advantage of two novel cellular approaches to dissect the contributions of G-protein signaling in acute and social anxiety-like states. We used a chemogenetic approach utilizing the Gαs DREADD (rM3Ds) receptor and show that selective activation of generic Gαs signaling is sufficient to induce acute and social anxiety-like behavioral states in mice. Second, we use a recently characterized chimeric receptor composed of rhodopsin and the β2-adrenergic receptor (Opto-β2AR) with in vivo optogenetic techniques to selectively activate Gαs β-adrenergic signaling exclusively within excitatory neurons of the basolateral amygdala. We found that optogenetic induction of β-adrenergic signaling in the basolateral amygdala is sufficient to induce acute and social anxiety-like behavior. These findings support the conclusion that activation of Gαs signaling in the basolateral amygdala has a role in anxiety. These data also suggest that acute and social anxiety-like states may be mediated through signaling pathways identical to β-adrenergic receptors, thus providing support that inhibition of this system may be an effective anxiolytic therapy. PMID:26725834

  2. Intracellular β2-adrenergic receptor signaling specificity in mouse skeletal muscle in response to single-dose β2-agonist clenbuterol treatment and acute exercise

    Sato, Shogo; Shirato, Ken; Mitsuhashi, Ryosuke; Inoue, Daisuke; Kizaki, Takako; Ohno, Hideki; Tachiyashiki, Kaoru; Imaizumi, Kazuhiko

    2013-01-01

    The aim of this study was to clarify the intracellular β2-adrenergic receptor signaling specificity in mouse slow-twitch soleus and fast-twitch tibialis anterior (TA) muscles, resulting from single-dose β2-agonist clenbuterol treatment and acute exercise. At 1, 4, and 24 h after single-dose treatment with clenbuterol or after acute running exercise, the soleus and TA muscles were isolated and subjected to analysis. The phosphorylation of p38 mitogen-activated protein kinase (MAPK) increased a...

  3. Acute Exercise Induced Mitochondrial H2O2 Production in Mouse Skeletal Muscle: Association with p66Shc and FOXO3a Signaling and Antioxidant Enzymes

    Ping Wang; Chun Guang Li; Zhengtang Qi; Di Cui; Shuzhe Ding

    2015-01-01

    Exercise induced skeletal muscle phenotype change involves a complex interplay between signaling pathways and downstream regulators. This study aims to investigate the effect of acute exercise on mitochondrial H2O2 production and its association with p66Shc, FOXO3a, and antioxidant enzymes. Male ICR/CD-1 mice were subjected to an acute exercise. Muscle tissues (gastrocnemius and quadriceps femoris) were taken after exercise to measure mitochondrial H2O2 content, expression of p66Shc and FOXO3...

  4. Ezh2 Controls an Early Hematopoietic Program and Growth and Survival Signaling in Early T Cell Precursor Acute Lymphoblastic Leukemia

    Etienne Danis

    2016-03-01

    Full Text Available Early T cell precursor acute lymphoblastic leukemia (ETP-ALL is an aggressive subtype of ALL distinguished by stem-cell-associated and myeloid transcriptional programs. Inactivating alterations of Polycomb repressive complex 2 components are frequent in human ETP-ALL, but their functional role is largely undefined. We have studied the involvement of Ezh2 in a murine model of NRASQ61K-driven leukemia that recapitulates phenotypic and transcriptional features of ETP-ALL. Homozygous inactivation of Ezh2 cooperated with oncogenic NRASQ61K to accelerate leukemia onset. Inactivation of Ezh2 accentuated expression of genes highly expressed in human ETP-ALL and in normal murine early thymic progenitors. Moreover, we found that Ezh2 contributes to the silencing of stem-cell- and early-progenitor-cell-associated genes. Loss of Ezh2 also resulted in increased activation of STAT3 by tyrosine 705 phosphorylation. Our data mechanistically link Ezh2 inactivation to stem-cell-associated transcriptional programs and increased growth/survival signaling, features that convey an adverse prognosis in patients.

  5. NOTCH1 signaling promotes human T-cell acute lymphoblastic leukemia initiating cell regeneration in supportive niches.

    Wenxue Ma

    Full Text Available BACKGROUND: Leukemia initiating cells (LIC contribute to therapeutic resistance through acquisition of mutations in signaling pathways, such as NOTCH1, that promote self-renewal and survival within supportive niches. Activating mutations in NOTCH1 occur commonly in T cell acute lymphoblastic leukemia (T-ALL and have been implicated in therapeutic resistance. However, the cell type and context specific consequences of NOTCH1 activation, its role in human LIC regeneration, and sensitivity to NOTCH1 inhibition in hematopoietic microenvironments had not been elucidated. METHODOLOGY AND PRINCIPAL FINDINGS: We established humanized bioluminescent T-ALL LIC mouse models transplanted with pediatric T-ALL samples that were sequenced for NOTCH1 and other common T-ALL mutations. In this study, CD34(+ cells from NOTCH1(Mutated T-ALL samples had higher leukemic engraftment and serial transplantation capacity than NOTCH1(Wild-type CD34(+ cells in hematopoietic niches, suggesting that self-renewing LIC were enriched within the NOTCH1(Mutated CD34(+ fraction. Humanized NOTCH1 monoclonal antibody treatment reduced LIC survival and self-renewal in NOTCH1(Mutated T-ALL LIC-engrafted mice and resulted in depletion of CD34(+CD2(+CD7(+ cells that harbor serial transplantation capacity. CONCLUSIONS: These results reveal a functional hierarchy within the LIC population based on NOTCH1 activation, which renders LIC susceptible to targeted NOTCH1 inhibition and highlights the utility of NOTCH1 antibody targeting as a key component of malignant stem cell eradication strategies.

  6. The Acute-Phase Protein Orosomucoid Regulates Food Intake and Energy Homeostasis via Leptin Receptor Signaling Pathway.

    Sun, Yang; Yang, Yili; Qin, Zhen; Cai, Jinya; Guo, Xiuming; Tang, Yun; Wan, Jingjing; Su, Ding-Feng; Liu, Xia

    2016-06-01

    The acute-phase protein orosomucoid (ORM) exhibits a variety of activities in vitro and in vivo, notably modulation of immunity and transportation of drugs. We found in this study that mice lacking ORM1 displayed aberrant energy homeostasis characterized by increased body weight and fat mass. Further investigation found that ORM, predominantly ORM1, is significantly elevated in sera, liver, and adipose tissues from the mice with high-fat diet (HFD)-induced obesity and db/db mice that develop obesity spontaneously due to mutation in the leptin receptor (LepR). Intravenous or intraperitoneal administration of exogenous ORM decreased food intake in C57BL/6, HFD, and leptin-deficient ob/ob mice, which was absent in db/db mice and was significantly reduced in mice with arcuate nucleus (ARC) LepR knockdown, whereas enforced expression of ORM1 in ARC significantly decreased food intake, body weight, and serum insulin level. Furthermore, we found that ORM is able to bind directly to LepR and activate the receptor-mediated JAK2-STAT3 signaling in hypothalamus tissue and GT1-7 cells, which was derived from hypothalamic tumor. These data indicated that ORM could function through LepR to regulate food intake and energy homeostasis in response to nutrition status. Modulating the expression of ORM is a novel strategy for the management of obesity and related metabolic disorders. PMID:27207522

  7. Comparative study of the effects of toluene, benzene, 1,1,1-trichloroethane, diethyl ether, and flurothyl on anxiety and nociception in mice

    The main purpose of this study was to compare the effects of solvents from different chemical classes on anxiety and nociception. Independent groups of mice were exposed to air (control group), toluene (1000-4000 ppm), benzene (1000-4000 ppm), 1,1,1-trichloroethane (TCE, 2000-12000 ppm), diethyl ether (10,000-30,000) or flurothyl (200-600 ppm). After a 30-min exposure, animals were tested either in the anxiety paradigm conditioned defensive burying (CDB) test or in the hot plate test. All solvents but flurothyl produced anxiolytic-like actions being the order of potency toluene > benzene > TCE > diethyl ether. When tested in the hot plate paradigm, toluene and TCE increased nociception, benzene and diethyl ether had no effects, and flurothyl decreased nociception Additional groups of mice were conditioned to recognize the aversive stimulus (electrified prod) prior to toluene exposure and then tested in the CDB test. In unconditioned animals, toluene increased the number of shocks that mice received; however, when mice had previous experience in the CDB test, toluene lacked this effect. Taken together, these results show that inhalants have different effects with different potencies both in the CDB and in the hot plate tests. Additionally, data suggest that acute administration of toluene could impair learning

  8. Amygdala-prefrontal pathways and the dopamine system affect nociceptive responses in the prefrontal cortex

    Onozawa Kitaro

    2011-11-01

    Full Text Available Abstract Background We previously demonstrated nociceptive discharges to be evoked by mechanical noxious stimulation in the prefrontal cortex (PFC. The nociceptive responses recorded in the PFC are conceivably involved in the affective rather than the sensory-discriminative dimension of pain. The PFC receives dense projection from the limbic system. Monosynaptic projections from the basolateral nucleus of the amygdala (BLA to the PFC are known to produce long-lasting synaptic plasticity. We examined effects of high frequency stimulation (HFS delivered to the BLA on nociceptive responses in the rat PFC. Results HFS induced long lasting suppression (LLS of the specific high threshold responses of nociceptive neurons in the PFC. Microinjection of N-methyl-D-aspartic acid (NMDA receptor antagonists (2-amino-5-phosphonovaleric acid (APV, dizocilpine (MK-801 and also metabotropic glutamate receptor (mGluR group antagonists (α-methyl-4-carboxyphenylglycine (MCPG, and 2-[(1S,2S-2-carboxycyclopropyl]-3-(9H-xanthen-9-yl-D-alanine (LY341495, prevented the induction of LLS of nociceptive responses. We also examined modulatory effects of dopamine (DA on the LLS of nociceptive responses. With depletion of DA in response to 6-hydroxydopamine (6-OHDA injection into the ipsilateral forebrain bundle, LLS of nociceptive responses was decreased, while nociceptive responses were normally evoked. Antagonists of DA receptor subtypes D2 (sulpiride and D4 (3-{[4-(4-chlorophenyl piperazin-1-yl] methyl}-1H-pyrrolo [2, 3-b] pyridine (L-745,870, microinjected into the PFC, inhibited LLS of nociceptive responses. Conclusions Our results indicate that BLA-PFC pathways inhibited PFC nociceptive cell activities and that the DA system modifies the BLA-PFC regulatory function.

  9. Peripheral prostaglandin E2 prolongs the sensitization of nociceptive dorsal root ganglion neurons possibly by facilitating the synthesis and anterograde axonal trafficking of EP4 receptors.

    St-Jacques, Bruno; Ma, Weiya

    2014-11-01

    Prostaglandin E2 (PGE2), a well-known pain mediator enriched in inflamed tissues, plays a pivotal role in the genesis of chronic pain conditions such as inflammatory and neuropathic pain. PGE2-prolonged sensitization of nociceptive dorsal root ganglion (DRG) neurons (nociceptors) may contribute to the transition from acute to chronic pain. However, the underlying cellular mechanisms are poorly understood. In this study, we tested the hypothesis that facilitating synthesis and anterograde axonal trafficking of EP receptors contribute to PGE2-prolonged nociceptor sensitization. Intraplantar (i.pl.) injection of a stabilized PGE2 analog, 16,16 dimethyl PGE2 (dmPGE2), in a dose- and time-dependent manner, not only elicited primary tactile allodynia which lasted for 1d, but also prolonged tactile allodynia evoked by a subsequent i.pl. injection of dmPGE2 from 1d to 4d. Moreover, the duration of tactile allodynia was progressively prolonged following multiple sequential i.pl. injections of dmPGE2. Co-injection of the selective EP1 or EP4 receptor antagonist, the inhibitors of cAMP, PKA, PKC, PKCε or PLC as well as an interleukin-6 (IL-6) neutralizing antiserum differentially blocked primary tactile allodynia elicited by the 1st dmPGE2 and the prolonged tactile allodynia evoked by the 2nd dmPGE2, suggesting the involvement of these signaling events in dmPGE2-induced nociceptor activation and sensitization. Co-injection of a selective COX2 inhibitor or two EP4 antagonists prevented or shortened inflammagen-prolonged nociceptor sensitization. I.pl. injection of dmPGE2 or carrageenan time-dependently increased EP4 levels in L4-6 DRG neurons and peripheral nerves. EP4 was expressed in almost half of IB4-binding nociceptors of L4-6 DRG. Taken together, our data suggest that stimulating the synthesis and anterograde axonal trafficking to increase EP4 availability at the axonal terminals of nociceptors is likely a novel mechanism underlying PGE2-prolonged nociceptor

  10. Specific cellular signal-transduction responses to in vivo combination therapy with ATRA, valproic acid and theophylline in acute myeloid leukemia.

    Skavland, J; Jørgensen, K M; Hadziavdic, K; Hovland, R; Jonassen, I; Bruserud, O; Gjertsen, B T

    2011-02-01

    Acute myeloid leukemia (AML) frequently comprises mutations in genes that cause perturbation in intracellular signaling pathways, thereby altering normal responses to growth factors and cytokines. Such oncogenic cellular signal transduction may be therapeutic if targeted directly or through epigenetic regulation. We treated 24 selected elderly AML patients with all-trans retinoic acid for 2 days before adding theophylline and the histone deacetylase inhibitor valproic acid (ClinicalTrials.gov NCT00175812; EudraCT no. 2004-001663-22), and sampled 11 patients for peripheral blood at day 0, 2 and 7 for single-cell analysis of basal level and signal-transduction responses to relevant myeloid growth factors (granulocyte-colony-stimulating factor, granulocyte/macrophage-colony-stimulating factor, interleukin-3, Flt3L, stem cell factor, erythropoietin, CXCL-12) on 10 signaling molecules (CREB, STAT1/3/5, p38, Erk1/2, Akt, c-Cbl, ZAP70/Syk and rpS6). Pretreatment analysis by unsupervised clustering and principal component analysis divided the patients into three distinguishable signaling clusters (non-potentiated, potentiated basal and potentiated signaling). Signal-transduction pathways were modulated during therapy and patients moved between the clusters. Patients with multiple leukemic clones demonstrated distinct stimulation responses and therapy-induced modulation. Individual signaling profiles together with clinical and hematological information may be used to early identify AML patients in whom epigenetic and signal-transduction targeted therapy is beneficial. PMID:22829110

  11. Specific cellular signal-transduction responses to in vivo combination therapy with ATRA, valproic acid and theophylline in acute myeloid leukemia

    Acute myeloid leukemia (AML) frequently comprises mutations in genes that cause perturbation in intracellular signaling pathways, thereby altering normal responses to growth factors and cytokines. Such oncogenic cellular signal transduction may be therapeutic if targeted directly or through epigenetic regulation. We treated 24 selected elderly AML patients with all-trans retinoic acid for 2 days before adding theophylline and the histone deacetylase inhibitor valproic acid (ClinicalTrials.gov NCT00175812; EudraCT no. 2004-001663-22), and sampled 11 patients for peripheral blood at day 0, 2 and 7 for single-cell analysis of basal level and signal-transduction responses to relevant myeloid growth factors (granulocyte-colony-stimulating factor, granulocyte/macrophage-colony-stimulating factor, interleukin-3, Flt3L, stem cell factor, erythropoietin, CXCL-12) on 10 signaling molecules (CREB, STAT1/3/5, p38, Erk1/2, Akt, c-Cbl, ZAP70/Syk and rpS6). Pretreatment analysis by unsupervised clustering and principal component analysis divided the patients into three distinguishable signaling clusters (non-potentiated, potentiated basal and potentiated signaling). Signal-transduction pathways were modulated during therapy and patients moved between the clusters. Patients with multiple leukemic clones demonstrated distinct stimulation responses and therapy-induced modulation. Individual signaling profiles together with clinical and hematological information may be used to early identify AML patients in whom epigenetic and signal-transduction targeted therapy is beneficial

  12. THE ROLE OF RED NUCLEUS IN THE MODULATION OF SPINAL NOCICEPTIVE TRANSMISSION AND IN NOCICEPTION ELICITED BY MUSCLE SPINDLE AFFERENTS

    唐斌; 樊小力; 吴苏娣

    2003-01-01

    Objective To analyse the antinociceptive effect of red nucleus (RN) and its role in the antinociceptive effect of muscle spindle afferents. Methods The single units of RN or wide dynamic range (WDR) neuron in the spinal cord dorsal horn were extracelluarly recorded. The effects of RN stimulation on nociceptive responses (C-fibers-evoked responses, C-responses) of WDR neurons were observed. The influence of muscle spindle afferents elicited by intravenous administration of succinylcholine (Sch) on the spontaneous discharge of RN neurons and on C-responses of WDR neurons were observed. The effect of muscle spindle afferents on C-responses of WDR neurons after unilateral lesions of RN was also observed. Results Electrical stimulation of the RN produced a significantly inhibitory effect on the nociceptive responses of WDR neurons. RN neurons were excited by muscle spindle afferents. Muscle spindle afferents significantly inhibited C-response of WDR neurons and this inhibitory effect was reduced by lesions of RN. Conclusion RN neurons have a significant antinociceptive effect and might be involved in the antinociceptive effects elicited by muscle spindle afferents.

  13. In vivo and in vitro anti-inflammatory and anti-nociceptive activities of lovastatin in rodents

    D.O. Gonçalves

    2011-02-01

    Full Text Available Statins are among the most prescribed drugs in recent clinical practice. They are also known for their pleiotropic actions, which are independent of their lipid-lowering properties. The effect of lovastatin was investigated against carrageenan-induced paw edema in male Wistar rats (200-250 g and on leukocyte migration, as measured by carrageenan-induced peritonitis in male Swiss mice (20-25 g, which are models of acute inflammation. Lovastatin (administered 1 h prior to carrageenan, at oral doses of 2, 5, and 10 mg/kg, markedly attenuated paw edema formation in rats at the 4th hour after carrageenan injection (25, 43, and 37% inhibition, respectively. Inhibitions of 20, 45 and 80% were observed in the leukocyte migration, as evaluated by carrageenan-induced peritonitis in mice with lovastatin doses of 0.5, 1 and 5 mg/kg, as compared to controls. Furthermore, lovastatin (administered 1 h before initiation reduced the nociceptive effect of the formalin test in mice, at both phases, at doses of 2, 5, and 10 mg/kg: first phase (51, 65, and 70%, respectively and second phase (73, 57, and 66% inhibition of licking time, respectively. The anti-nociceptive activity of lovastatin was inhibited by naloxone (3 mg/kg, sc. Lovastatin (0.01, 0.1, and 1 µg/mL inhibited by 23, 79, and 86%, respectively, the release of myeloperoxidase from human neutrophils. Leukocyte (predominantly neutrophils infiltration was almost completely reduced by lovastatin treatment, as observed in the model of acute paw edema with hematoxylin and eosin staining. In addition, lovastatin decreased the number of cells expressing tumor necrosis factor-α (TNF-α and the inducible form of nitric oxide synthase (iNOS activity. Therefore, the alterations in leukocyte activity and cytokine release could contribute to the anti-inflammatory activity of lovastatin.

  14. Small molecule ErbB inhibitors decrease proliferative signaling and promote apoptosis in philadelphia chromosome-positive acute lymphoblastic leukemia.

    Mary E Irwin

    Full Text Available The presence of the Philadelphia chromosome in patients with acute lymphoblastic leukemia (Ph(+ALL is a negative prognostic indicator. Tyrosine kinase inhibitors (TKI that target BCR/ABL, such as imatinib, have improved treatment of Ph(+ALL and are generally incorporated into induction regimens. This approach has improved clinical responses, but molecular remissions are seen in less than 50% of patients leaving few treatment options in the event of relapse. Thus, identification of additional targets for therapeutic intervention has potential to improve outcomes for Ph+ALL. The human epidermal growth factor receptor 2 (ErbB2 is expressed in ~30% of B-ALLs, and numerous small molecule inhibitors are available to prevent its activation. We analyzed a cohort of 129 ALL patient samples using reverse phase protein array (RPPA with ErbB2 and phospho-ErbB2 antibodies and found that activity of ErbB2 was elevated in 56% of Ph(+ALL as compared to just 4.8% of Ph(-ALL. In two human Ph+ALL cell lines, inhibition of ErbB kinase activity with canertinib resulted in a dose-dependent decrease in the phosphorylation of an ErbB kinase signaling target p70S6-kinase T389 (by 60% in Z119 and 39% in Z181 cells at 3 µM. Downstream, phosphorylation of S6-kinase was also diminished in both cell lines in a dose-dependent manner (by 91% in both cell lines at 3 µM. Canertinib treatment increased expression of the pro-apoptotic protein Bim by as much as 144% in Z119 cells and 49% in Z181 cells, and further produced caspase-3 activation and consequent apoptotic cell death. Both canertinib and the FDA-approved ErbB1/2-directed TKI lapatinib abrogated proliferation and increased sensitivity to BCR/ABL-directed TKIs at clinically relevant doses. Our results suggest that ErbB signaling is an additional molecular target in Ph(+ALL and encourage the development of clinical strategies combining ErbB and BCR/ABL kinase inhibitors for this subset of ALL patients.

  15. Effects of acute aerobic exercise on motor response inhibition: An ERP study using the stop-signal task

    Chien-Heng Chu

    2015-03-01

    Conclusion: Acute exercise has a selective and beneficial effect on cognitive function, specifically affecting the motor response inhibition aspect of executive function. Furthermore, acute exercise predominately impacts later stages of information processing during motor response inhibition, which may lead to an increase in attentional resource allocation and confer the ability to successfully withhold a response to achieve motor response inhibition.

  16. Nociceptive responses to thermal and mechanical stimulations in awake pigs

    di Giminiani, Pierpaolo; Petersen, Lars Jelstrup; Herskin, Mette S.

    2013-01-01

    BACKGROUND: Porcine skin exhibits a high degree of homology to human skin, and the pig has recently been used as a cutaneous pain model. However, before the full potential of this novel in vivo cutaneous pain model can be achieved, several methodological aspects related to the management of awake...... animal studies in a large species require further examination. This manuscript describes the initial development of a porcine model of cutaneous nociception and focuses on interactions between the sensory modality, body size and the anatomical location of the stimulation site. METHODS: Pigs of different...... body sizes (30 and 60 kg) were exposed to thermal (CO(2) laser) and mechanical (pressure application measurement device) stimulations to the flank and the hind legs in a balanced order. The median response latency and the type of behavioural response were recorded. RESULTS: Small pigs exhibited...

  17. Sertraline inhibits formalin-induced nociception and cardiovascular responses

    Santuzzi, C.H. [Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Futuro Neto, H.A. [Departamento de Morfologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Escola de Medicina da Empresa Brasileira de Ensino, Pesquisa e Extensão, Vitória, ES (Brazil); Escola Superior de Ciências da Saúde, Santa Casa de Misericórdia de Vitória, Vitória, ES (Brazil); Pires, J.G.P. [Escola de Medicina da Empresa Brasileira de Ensino, Pesquisa e Extensão, Vitória, ES (Brazil); Centro Universitário do Espírito Santo, Colatina, ES (Brazil); Gonçalves, W.L.S. [Centro Universitário do Espírito Santo, Colatina, ES (Brazil); Tiradentes, R.V.; Gouvea, S.A.; Abreu, G.R. [Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil)

    2011-11-18

    The objective of the present study was to determine the antihyperalgesic effect of sertraline, measured indirectly by the changes of sciatic afferent nerve activity, and its effects on cardiorespiratory parameters, using the model of formalin-induced inflammatory nociception in anesthetized rats. Serum serotonin (5-HT) levels were measured in order to test their correlation with the analgesic effect. Male Wistar rats (250-300 g) were divided into 4 groups (N = 8 per group): sertraline-treated group (Sert + Saline (Sal) and Sert + Formalin (Form); 3 mg·kg{sup −1}·day{sup −1}, ip, for 7 days) and saline-treated group (Sal + Sal and Sal + Form). The rats were injected with 5% (50 µL) formalin or saline into the right hind paw. Sciatic nerve activity was recorded using a silver electrode connected to a NeuroLog apparatus, and cardiopulmonary parameters (mean arterial pressure, heart rate and respiratory frequency), assessed after arterial cannulation and tracheotomy, were monitored using a Data Acquisition System. Blood samples were collected from the animals and serum 5-HT levels were determined by ELISA. Formalin injection induced the following changes: sciatic afferent nerve activity (+50.8 ± 14.7%), mean arterial pressure (+1.4 ± 3 mmHg), heart rate (+13 ± 6.8 bpm), respiratory frequency (+4.6 ± 5 cpm) and serum 5-HT increased to 1162 ± 124.6 ng/mL. Treatment with sertraline significantly reduced all these parameters (respectively: +19.8 ± 6.9%, -3.3 ± 2 mmHg, -13.1 ± 10.8 bpm, -9.8 ± 5.7 cpm) and serum 5-HT level dropped to 634 ± 69 ng/mL (P < 0.05). These results suggest that sertraline plays an analgesic role in formalin-induced nociception probably through a serotonergic mechanism.

  18. Sertraline inhibits formalin-induced nociception and cardiovascular responses

    C.H. Santuzzi

    2012-01-01

    Full Text Available The objective of the present study was to determine the antihyperalgesic effect of sertraline, measured indirectly by the changes of sciatic afferent nerve activity, and its effects on cardiorespiratory parameters, using the model of formalin-induced inflammatory nociception in anesthetized rats. Serum serotonin (5-HT levels were measured in order to test their correlation with the analgesic effect. Male Wistar rats (250-300 g were divided into 4 groups (N = 8/per group: sertraline-treated group (Sert + Saline (Sal and Sert + Formalin (Form; 3 mg·kg-1·day-1, ip, for 7 days and saline-treated group (Sal + Sal and Sal + Form. The rats were injected with 5% (50 µL formalin or saline into the right hind paw. Sciatic nerve activity was recorded using a silver electrode connected to a NeuroLog apparatus, and cardiopulmonary parameters (mean arterial pressure, heart rate and respiratory frequency, assessed after arterial cannulation and tracheotomy, were monitored using a Data Acquisition System. Blood samples were collected from the animals and serum 5-HT levels were determined by ELISA. Formalin injection induced the following changes: sciatic afferent nerve activity (+50.8 ± 14.7%, mean arterial pressure (+1.4 ± 3 mmHg, heart rate (+13 ± 6.8 bpm, respiratory frequency (+4.6 ± 5 cpm and serum 5-HT increased to 1162 ± 124.6 ng/mL. Treatment with sertraline significantly reduced all these parameters (respectively: +19.8 ± 6.9%, -3.3 ± 2 mmHg, -13.1 ± 10.8 bpm, -9.8 ± 5.7 cpm and serum 5-HT level dropped to 634 ± 69 ng/mL (P < 0.05. These results suggest that sertraline plays an analgesic role in formalin-induced nociception probably through a serotonergic mechanism.

  19. Forebrain Mechanisms of Nociception and Pain: Analysis through Imaging

    Casey, Kenneth L.

    1999-07-01

    Pain is a unified experience composed of interacting discriminative, affective-motivational, and cognitive components, each of which is mediated and modulated through forebrain mechanisms acting at spinal, brainstem, and cerebral levels. The size of the human forebrain in relation to the spinal cord gives anatomical emphasis to forebrain control over nociceptive processing. Human forebrain pathology can cause pain without the activation of nociceptors. Functional imaging of the normal human brain with positron emission tomography (PET) shows synaptically induced increases in regional cerebral blood flow (rCBF) in several regions specifically during pain. We have examined the variables of gender, type of noxious stimulus, and the origin of nociceptive input as potential determinants of the pattern and intensity of rCBF responses. The structures most consistently activated across genders and during contact heat pain, cold pain, cutaneous laser pain or intramuscular pain were the contralateral insula and anterior cingulate cortex, the bilateral thalamus and premotor cortex, and the cerebellar vermis. These regions are commonly activated in PET studies of pain conducted by other investigators, and the intensity of the brain rCBF response correlates parametrically with perceived pain intensity. To complement the human studies, we developed an animal model for investigating stimulus-induced rCBF responses in the rat. In accord with behavioral measures and the results of human PET, there is a progressive and selective activation of somatosensory and limbic system structures in the brain and brainstem following the subcutaneous injection of formalin. The animal model and human PET studies should be mutually reinforcing and thus facilitate progress in understanding forebrain mechanisms of normal and pathological pain.

  20. Mitigation of nociception via transganglionic degenerative atrophy: possible mechanism of vinpocetine-induced blockade of retrograde axoplasmic transport.

    Csillik, Bertalan; Mihály, András; Krisztin-Péva, Beata; Farkas, Ibolya; Knyihár-Csillik, Elizabeth

    2008-01-01

    Vinpocetine, a derivative of vincamine, widely used in the clinical pharmacotherapy of cerebral circulatory diseases, inhibits retrograde axoplasmic transport of nerve growth factor (NGF) in the peripheral nerve, resulting in transganglionic degenerative atrophy (TDA) in the related ipsilateral superficial spinal dorsal horn, as shown in our previous publications. TDA induced by vinpocetine has been demonstrated to be followed by depletion of the marker enzyme fluoride-resistant acid phosphatase (FRAP) and its isoenzyme thiamine monophosphatase (TMP), and by the decrease in the pain-related neuropeptide substance P from laminae I-II-(III) from the segmentally related, ipsilateral substance of Rolando of the spinal cord. In the present paper, we report on the behavioral effects of perineurally administered vinpocetine. Nociception, induced by intraplantar injection of formalin, was mitigated by vinpocetine; increased expression of c-fos in the ipsilateral, segmentally related upper dorsal horn was also prevented. Since vinpocetine is not a microtubule inhibitor, and its chemical structure differs from that of vincristin and vinblastin (used formerly by us in the therapy of intractable, chronic neuropathic pain), its mode of action is enigmatic. We assume that the effect of vinpocetine in blocking retrograde axoplasmic transport of NGF might be related to its interaction with membrane trafficking proteins, such as signalling endosomes and the endocytosis-mediating "pincher" protein. Temporary, locally restricted decrease of nociception, induced by vinpocetine, might be useful in the clinical treatment of intractable, chronic neuropathic pain, since vinpocetine can successfully be applied by transcutaneous iontophoresis. PMID:18413267

  1. TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins

    Meseguer, Victor; Alpizar, Yeranddy A.; Luis, Enoch; Tajada, Sendoa; Denlinger, Bristol; Fajardo, Otto; Manenschijn, Jan-Albert; Fernández-Peña, Carlos; Talavera, Arturo; Kichko, Tatiana; Navia, Belén; Sánchez, Alicia; Señarís, Rosa; Reeh, Peter; Pérez-García, María Teresa; López-López, José Ramón; Voets, Thomas; Belmonte, Carlos; Talavera, Karel; Viana, Félix

    2014-01-01

    Gram-negative bacterial infections are accompanied by inflammation and somatic or visceral pain. These symptoms are generally attributed to sensitization of nociceptors by inflammatory mediators released by immune cells. Nociceptor sensitization during inflammation occurs through activation of the Toll-like receptor 4 (TLR4) signalling pathway by lipopolysaccharide (LPS), a toxic by-product of bacterial lysis. Here we show that LPS exerts fast, membrane delimited, excitatory actions via TRPA1, a transient receptor potential cation channel that is critical for transducing environmental irritant stimuli into nociceptor activity. Moreover, we find that pain and acute vascular reactions, including neurogenic inflammation (CGRP release) caused by LPS are primarily dependent on TRPA1 channel activation in nociceptive sensory neurons, and develop independently of TLR4 activation. The identification of TRPA1 as a molecular determinant of direct LPS effects on nociceptors offers new insights into the pathogenesis of pain and neurovascular responses during bacterial infections and opens novel avenues for their treatment.

  2. Hedgehog信号在胰腺炎症损伤中的作用机制%Mechanisms of the Hedgehog signaling pathway in acute and chronic pancreatitis

    郑英强; 周翔宇; 李园

    2014-01-01

    Aberrant activation of Hedgehog signaling plays multiple roles in acute and chronic inflammatory injury,cell regeneration and tissue self-repair.In acute and chronic pancreatitis,cell regeneration and tissue repair are triggered simultaneously.The hedgehog family is a group of secreted molecules that are essential for cell fate and patterning during the development.Studies have revealed that hedgehog signaling cross-talks with others signaling pathways in regulating inflammation,cell regeneration and fibrosis.Inhibition of hedgehog signal obviously influenced pancreatic inflammation and regeneration.%Hedgehog信号通路广泛参与多种器官急慢性炎症损伤、细胞再生和组织修复.尽管急性胰腺炎和慢性胰腺炎发病机制各异,在炎症损伤的同时,组织的自身修复和再生机制必然启动.国内外的研究已经证实,Hedgehog信号通路与其他信号通路发生交联反应,参与调节胰腺炎症程度、细胞再生以及纤维化,干预Hedgehog信号通路明显影响胰腺炎症进程和纤维化的程度.

  3. The effects of low-dose ketamine on the analgesia nociception index (ANI) measured with the novel PhysioDoloris™ analgesia monitor: a pilot study.

    Bollag, Laurent; Ortner, Clemens M; Jelacic, Srdjan; Rivat, Cyril; Landau, Ruth; Richebé, Philippe

    2015-04-01

    The PhysioDoloris™ analgesia monitor assesses nociception effects on the autonomic nervous system by analyzing changes in heart rate variability (HRV). This non-invasive device analyses ECG signals and determines the analgesia nociception index (ANI), allowing for quantitative assessment of the analgesia/nociception balance in anesthetized patients. Ketamine, an analgesic adjuvant with sympathomimetic properties, has been shown to improve perioperative pain management. The purpose of this pilot study was to evaluate whether low-dose ketamine, due to its intrinsic effect on the sino-atrial node, affects HRV and, therefore, interferes with ANI measurements. This pilot study included 20 women undergoing abdominal hysterectomies. Anesthesia and analgesia were maintained with sevoflurane and fentanyl respectively, in a standardized manner. Five minutes after intubation, 0.5 μg kg(-1) of intravenous (i.v.) ketamine was administered. ANI, bispectral index (BIS), heart rate and blood pressure were recorded from the induction of anesthesia until 5 min after skin incision. There was not any significant decrease in mean (±SD) ANI values after intubation (2.11±20.11, p=0.35) or i.v. ketamine administration (1.31±15.26, p=0.28). The mean (±SD) reduction in ANI values after skin incision was statistically significant (13.65±15.44, p=0.01), which is consistent with increased nociception. A single i.v. bolus of 0.5 μg kg(-1) ketamine did not influence the ANI values of 20 women under standardized general anesthesia conditions and absent noxious stimulation. These results suggest that the ANI derived from the PhysioDoloris™ analgesia monitor is feasible under such clinical conditions. PMID:25062948

  4. Protective Effect of Tempol on Acute Kidney Injury Through PI3K/Akt/Nrf2 Signaling Pathway

    Zhang, Gensheng; Wang, Qiaoling; Zhou, Qin; Wang, Renjun; Xu, Minze; Wang, Huiping; Wang, Lei; Wilcox, Christopher S.; Liu, Ruisheng; Lai, En Yin

    2016-01-01

    Background/Aims Tempol is a protective antioxidant against ischemic injury in many animal models. The molecular mechanisms are not well understood. Nuclear factor erythroid 2-related factor (Nrf2) is a master transcription factor during oxidative stress, which is enhanced by activation of protein kinase C (PKC) pathway. Another factor, tubular epithelial apoptosis, is mediated by activation of phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB, Akt) signaling pathway during renal ischemic injury. We tested the hypothesis that tempol activates PKC or PI3K/Akt/Nrf2 pathways to transcribe many genes that coordinate endogenous antioxidant defense. Methods The right renal pedicle was clamped for 45 minutes and the left kidney was removed to study renal ischemia/reperfusion (I/R) injury in C57BL/6 mice. The response was assessed from serum parameters, renal morphology and renal expression of PKC, phosphorylated-PKC (p-PKC), Nrf2, heme oxygenase-1 (HO-1), Akt, phosphorylated-Akt (p-Akt), pro-caspase-3 and cleaved caspase-3 in groups of sham and I/R mice given vehicle, or tempol (50 or 100 mg/kg, intraperitoneal injection). Results The serum malondialdehyde (MDA, marker of reactive oxygen species) doubled and the BUN and creatinine increased 5- to 10-fold after I/R injury. Tempol (50 or 100 mg/kg) prevented the increases in MDA but only tempol (50 mg/kg) lessened the increases in BUN and creatinine and moderated the acute tubular necrosis. I/R did not change expression of PKC or p-PKC but reduced renal expression of Nrf2, p-Akt, HO-1 and pro-caspase-3 and increased cleaved caspase-3. Tempol (50 mg/kg) prevented these changes produced by I/R whereas tempol (100 mg/kg) had lesser or inconsistent effects. Conclusion Tempol (50 mg/kg) prevents lipid peroxidation and attenuates renal damage after I/R injury. The beneficial pathway apparently is not dependent on upregulation or phosphorylation of PKC, at lower tempol doses, does implicate upregulation of Akt with expression

  5. Serum-resistant CpG-STAT3 decoy for targeting survival and immune checkpoint signaling in acute myeloid leukemia.

    Zhang, Qifang; Hossain, Dewan Md Sakib; Duttagupta, Priyanka; Moreira, Dayson; Zhao, Xingli; Won, Haejung; Buettner, Ralf; Nechaev, Sergey; Majka, Marcin; Zhang, Bin; Cai, Qi; Swiderski, Piotr; Kuo, Ya-Huei; Forman, Stephen; Marcucci, Guido; Kortylewski, Marcin

    2016-03-31

    Targeting oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) in acute myeloid leukemia (AML) can reduce blast survival and tumor immune evasion. Decoy oligodeoxynucleotides (dODNs), which comprise STAT3-specific DNA sequences are competitive inhibition of STAT3 transcriptional activity. To deliver STAT3dODN specifically to myeloid cells, we linked STAT3dODN to the Toll-like receptor 9 (TLR9) ligand, cytosine guanine dinucleotide (CpG). The CpG-STAT3dODN conjugates are quickly internalized by human and mouse TLR9(+)immune cells (dendritic cells, B cells) and the majority of patients' derived AML blasts, including leukemia stem/progenitor cells. Following uptake, CpG-STAT3dODNs are released from endosomes, and bind and sequester cytoplasmic STAT3, thereby inhibiting downstream gene expression in target cells. STAT3 inhibition in patients' AML cells limits their immunosuppressive potential by reduced arginase expression, thereby partly restoring T-cell proliferation. Partly chemically modified CpG-STAT3dODNs have >60 hours serum half-life which allows for IV administration to leukemia-bearing mice (50% effective dose ∼ 2.5 mg/kg). Repeated administration of CpG-STAT3dODN resulted in regression of human MV4-11 AML in mice. The antitumor efficacy of this strategy is further enhanced in immunocompetent mice by combining direct leukemia-specific cytotoxicity with immunogenic effects of STAT3 blocking/TLR9 triggering. CpG-STAT3dODN effectively reducedCbfb/MYH11/MplAML burden in various organs and eliminated leukemia stem/progenitor cells, mainly through CD8/CD4 T-cell-mediated immune responses. In contrast, small-molecule Janus kinase 2/STAT3 inhibitor failed to reproduce therapeutic effects of cell-selective CpG-STAT3dODN strategy. These results demonstrate therapeutic potential of CpG-STAT3dODN inhibitors with broad implications for treatement of AML and potentially other hematologic malignancies. PMID:26796361

  6. Amygdala-prefrontal pathways and the dopamine system affect nociceptive responses in the prefrontal cortex

    Onozawa Kitaro; Yagasaki Yuki; Izawa Yumi; Abe Hiroyuki; Kawakami Yoriko

    2011-01-01

    Abstract Background We previously demonstrated nociceptive discharges to be evoked by mechanical noxious stimulation in the prefrontal cortex (PFC). The nociceptive responses recorded in the PFC are conceivably involved in the affective rather than the sensory-discriminative dimension of pain. The PFC receives dense projection from the limbic system. Monosynaptic projections from the basolateral nucleus of the amygdala (BLA) to the PFC are known to produce long-lasting synaptic plasticity. We...

  7. Subject-level differences in reported locations of cutaneous tactile and nociceptive stimuli

    Steenbergen, Peter; Buitenweg, Jan R.; Trojan, Jörg; Klaassen, Bart; Veltink, Peter H

    2012-01-01

    Recent theoretical advances on the topic of body representations have raised the question whether spatial perception of touch and nociception involve the same representations. Various authors have established that subjective localizations of touch and nociception are displaced in a systematic manner. The relation between veridical stimulus locations and localizations can be described in the form of a perceptual map; these maps differ between subjects. Recently, evidence was found for a common...

  8. Studying nociceptive processing in the rat brain by PET imaging and digital atlasing

    2010-01-01

    The present thesis aims to contribute to a better understanding of the mechanisms underlying the development of long-lasting pain. Animal models of long-term potentiation (LTP) induced by noxious stimuli are extensively used to study cellular memory of nociceptive information. The present thesis investigates, by electrophysiology and positron emission tomography (PET), the correlation between spinal LTP and supraspinal nociceptive processing, assessing both the effect on neuronal metaboli...

  9. Similar itch and nociceptive sensations evoked by punctate cutaneous application of capsaicin, histamine and cowhage

    Sikand, Parul; Shimada, Steven G.; Green, Barry G.; LaMotte, Robert H.

    2009-01-01

    Itch evoked by cowhage or histamine is reduced or blocked by capsaicin desensitization, suggesting that pruriceptive neurons are capsaicin-sensitive. Topical capsaicin can evoke both nociceptive sensations and itch, whereas intradermal injection of capsaicin evokes only burning pain. To dissociate the pruritic and nociceptive sensory effects caused by the chemical activation of sensory neurons, chemicals were applied in a punctiform manner to the skin of the forearm using individual, heat-ina...

  10. Influence of Stimulation Location and Posture on the Reliability and Comfort of the Nociceptive Flexion Reflex

    Lewis, Gwyn N.; David A Rice; Kathryn Jourdain; McNair, Peter J

    2012-01-01

    BACKGROUND: The lower limb nociceptive flexion reflex (NFR) is commonly used to assess the function of the nociceptive system. Currently, there is a lack of standardized stimulation procedures to determine the NFR threshold, making comparisons of thresholds across studies difficult.OBJECTIVES: To assess and compare the within- and between-session reliability of NFR threshold when elicited from two common stimulation locations: the medial arch of the foot (while standing) and the sural nerve (...

  11. EVALUATION OF ANTI-NOCICEPTIVE AND ANTI-INFLAMMATORY ACTIVITY OF PUNICA GRANATUM SEED EXTRACT

    Gupta Jeetendra Kumar; Sharma Sandeep Kumar; Misra Vimlesh; Patel Kanika

    2011-01-01

    The plant Punica granatum of family Punicaceae is distributed throughout India and reputed to have numerous applications in traditional medicine system. In order to justify its folkloric use in nociception and inflammation, the study was performed.In this study, the extraction of Punica granatum seed extract was carried out in aqueous media. In order to explore its potency, various experimental models of anti-nociceptive and anti-inflammatory activities were taken. The oral administration of ...

  12. Mrgprd-expressing polymodal nociceptive neurons innervate most known classes of substantia gelatinosa neurons

    Wang, Hong; Zylka, Mark J.

    2009-01-01

    The Mas-related G protein-coupled receptor D (Mrgprd) marks a distinct subset of sensory neurons that transmit polymodal nociceptive information from the skin epidermis to the substantia gelatinosa (SG, lamina II) of the spinal cord. Moreover, Mrgprd-expressing (Mrgprd+) neurons are required for the full expression of mechanical but not thermal nociception. While such anatomical and functional specificity suggests Mrgprd+ neurons might synapse with specific postsynaptic targets in the SG, pre...

  13. A sensitive scale to assess nociceptive pain in patients with disorders of consciousness.

    Chatelle, Camille; Majerus, Steve; Whyte, John; Laureys, Steven; Schnakers, Caroline

    2012-01-01

    OBJECTIVE: To determine the sensitivity of the Nociception Coma Scale (NCS), the first scale developed to assess nociceptive pain in vegetative state and minimally conscious state patients, in comparing behavioural changes in response to noxious versus non-noxious stimulation. METHODS: The NCS was administered to assess patients' responses in three conditions: (1) baseline (observation of spontaneous behaviours), (2) non-noxious/tactile stimulation (taps on the patient's shoulder), and (3) no...

  14. microRNAs in nociceptive circuits as predictors of future clinical applications

    Michaela eKress

    2013-10-01

    Full Text Available Neuro-immune alterations in the peripheral and central nervous system play a role in the pathophysiology of chronic pain, and non-coding RNAs (ncRNAs – and microRNAs (miRNAs in particular - regulate both immune and neuronal processes. Specifically, miRNAs control macromolecular complexes in neurons, glia and immune cells and regulate signals used for neuro-immune communication in the pain pathway. Therefore, miRNAs may be hypothesised as critically important master switches modulating chronic pain. In particular, understanding the concerted function of miRNA in the regulation of nociception and endogenous analgesia and defining the importance of miRNAs in the circuitries and cognitive, emotional and behavioural components involved in pain is expected to shed new light on the enigmatic pathophysiology of neuropathic pain, migraine and complex regional pain syndrome (CRPS. Specific miRNAs may evolve as new druggable molecular targets for pain prevention and relief. Furthermore, predisposing miRNA expression patterns and inter-individual variations and polymorphisms in miRNAs and/or their binding sites may serve as biomarkers for pain and help to predict individual risks for certain types of pain and responsiveness to analgesic drugs. miRNA-based diagnostics are expected to develop into hands-on tools that allow better patient stratification, improved mechanism-based treatment, and targeted prevention strategies for high risk individuals.

  15. PAMAM Nanoparticles Promote Acute Lung Injury by Inducing Autophagic Cell Death through the Akt-TSC2-mTOR Signaling Pathway

    Chenggang Li; Haolin Liu; Yang Sun; Hongliang Wang; Feng Guo; Shuan Rao; Jiejie Deng; Yanli Zhang; Yufa Miao; Chenying Guo; Jie Meng; Xiping Chen; Limin Li; Dangsheng Li; Haiyan Xu; Heng Wang; Bo Li; Chengyu Jiang

    2009-01-01

    Nanotechnology is an important and emerging industry with a projected annual market of around one trillion US dollars by 2011–2015. Concerns about the toxicity of nanomaterials in humans, however, have recently been raised. Although studies of nanoparticle toxicity have focused on lung disease the molecular link between nanoparticle exposure and lung injury remained unclear. In this report, we show that cationic Starburst polyamidoamine dendrimer (PAMAM), a class of nanomaterials that are being widely developed for clinical applications can induce acute lung injury in vivo. PAMAM triggers autophagic cell death by deregulating the Akt-TSC2-mTOR signaling pathway. The autophagy inhibitor 3-methyladenine rescued PAMAM dendrimer-induced cell death and ameliorated acute lung injury caused by PAMAM in mice. Our data provide a molecular explanation for nanoparticle-induced lung injury, and suggest potential remedies to address the growing concerns of nanotechnology safety.

  16. Involvement of spinal glutamate in nociceptive behavior induced by intrathecal administration of hemokinin-1 in mice.

    Watanabe, Chizuko; Mizoguchi, Hirokazu; Bagetta, Giacinto; Sakurada, Shinobu

    2016-03-23

    The most recently identified tachykinin, hemokinin-1, was cloned from mouse bone marrow. While several studies indicated that hemokinin-1 is involved in pain and inflammation, the physiological functions of hemokinin-1 are not fully understood. Our previous research demonstrated that the intrathecal (i.t.) administration of hemokinin-1 (0.00625-1.6 nmol) dose-dependently induced nociceptive behaviors, consisting of scratching, biting and licking in mice, which are very similar with the nociceptive behaviors induced by the i.t. administration of substance P. Low-dose (0.0125 nmol) hemokinin-1-induced nociceptive behavior was inhibited by a specific NK1 receptor antagonist; however, high-dose (0.1 nmol) hemokinin-1-induced nociceptive behavior was not affected. In the present study, we found that the nociceptive behaviors induced by hemokinin-1 (0.1 nmol) were inhibited by the i.t. co-administration of MK-801 or D-APV, which are NMDA receptor antagonists. Moreover, we measured glutamate in the extracellular fluid of the mouse spinal cord using microdialysis. The i.t. administration of hemokinin-1 produced a significant increase in glutamate in the spinal cord, which was significantly reduced by co-administration with NMDA receptor antagonists. These results suggest that hemokinin-1-induced nociceptive behaviors may be mediated by the NMDA receptor in the spinal cord. PMID:26899156

  17. IL-1RI (interleukin-1 receptor type I signalling is essential for host defence and hemichannel activity during acute central nervous system bacterial infection

    Tammy Kielian

    2012-04-01

    Full Text Available Staphylococcus aureus is a common aetiological agent of bacterial brain abscesses. We have previously established that a considerable IL-1 (interleukin-1 response is elicited immediately following S. aureus infection, where the cytokine can exert pleiotropic effects on glial activation and blood–brain barrier permeability. To assess the combined actions of IL-1α and IL-1β during CNS (central nervous system infection, host defence responses were evaluated in IL-1RI (IL-1 receptor type I KO (knockout animals. IL-1RI KO mice were exquisitely sensitive to intracerebral S. aureus infection, as demonstrated by enhanced mortality rates and bacterial burdens within the first 24 h following pathogen exposure compared with WT (wild-type animals. Loss of IL-1RI signalling also dampened the expression of select cytokines and chemokines, concomitant with significant reductions in neutrophil and macrophage infiltrates into the brain. In addition, the opening of astrocyte hemichannels during acute infection was shown to be dependent on IL-1RI activity. Collectively, these results demonstrate that IL-1RI signalling plays a pivotal role in the genesis of immune responses during the acute stage of brain abscess development through S. aureus containment, inflammatory mediator production, peripheral immune cell recruitment, and regulation of astrocyte hemichannel activity. Taken in the context of previous studies with MyD88 (myeloid differentiation primary response gene 88 and TLR2 (Toll-like receptor 2 KO animals, the current report advances our understanding of MyD88-dependent cascades and implicates IL-1RI signalling as a major antimicrobial effector pathway during acute brain-abscess formation.

  18. Thermal nociceptive properties of trigeminal afferent neurons in rats

    Nemenov Michael I

    2010-07-01

    Full Text Available Abstract Background Although nociceptive afferents innervating the body have been heavily studied form many years, much less attention has been paid to trigeminal afferent biology. In particular, very little is known concerning trigeminal nociceptor responses to heat, and almost nothing in the rat. This study uses a highly controlled and reproducible diode laser stimulator to investigate the activation of trigeminal afferents to noxious skin heating. Results The results of this experiment demonstrate that trigeminal thermonociceptors are distinct from themonociceptors innervating the limbs. Trigeminal nociceptors have considerably slower action potential conduction velocities and lower temperature thresholds than somatic afferent neurons. On the other hand, nociceptors innervating both tissue areas separate into those that respond to short pulse, high rate skin heating and those that respond to long pulse, low rate skin heating. Conclusions This paper provides the first description in the literature of the in vivo properties of thermonociceptors in rats. These finding of two separate populations aligns with the separation between C and A-delta thermonociceptors innervating the paw, but have significant differences in terms of temperature threshold and average conduction velocities. An understanding of the temperature response properties of afferent neurons innervating the paw skin have been critical in many mechanistic discoveries, some leading to new pain therapies. A clear understanding of trigeminal nociceptors may be similarly useful in the investigation of trigeminal pain mechanisms and potential therapies.

  19. BOLD fMRI of C-Fiber Mediated Nociceptive Processing in Mouse Brain in Response to Thermal Stimulation of the Forepaws.

    Simone C Bosshard

    Full Text Available Functional magnetic resonance imaging (fMRI in rodents enables non-invasive studies of brain function in response to peripheral input or at rest. In this study we describe a thermal stimulation paradigm using infrared laser diodes to apply noxious heat to the forepaw of mice in order to study nociceptive processing. Stimulation at 45 and 46°C led to robust BOLD signal changes in various brain structures including the somatosensory cortices and the thalamus. The BOLD signal amplitude scaled with the temperature applied but not with the area irradiated by the laser beam. To demonstrate the specificity of the paradigm for assessing nociceptive signaling we administered the quaternary lidocaine derivative QX-314 to the forepaws, which due to its positive charge cannot readily cross biological membranes. However, upon activation of TRPV1 channels following the administration of capsaicin the BOLD signal was largely abolished, indicative of a selective block of the C-fiber nociceptors due to QX-314 having entered the cells via the now open TRPV1 channels. This demonstrates that the cerebral BOLD response to thermal noxious paw stimulation is specifically mediated by C-fibers.

  20. Neurogenic nitric oxide facilitates the central nociceptive transmission of migraine attacks

    Hebo Wang; Huijun Qi; Shengyuan Yu; Sumian Yang; Ruozhuo Liu

    2011-01-01

    Recent studies have shown that nitric oxide (NO) can induce migraine attacks at three possible sites of action: nitroxidergic nerves, the vascular endothelium, and the central nervous system. Most previous studies have focused on the former two sites of action. Several experiments using exogenic NO donors have suggested that nitroglycerin may induce migraine via central mechanisms. However, few studies have investigated the source of the NO involved in the central mechanisms of migraine. The present study used a cat model of migraine to represent migraine attacks in humans. We performed immunochemical staining of successive frozen sections of the brainstem and upper cervical spinal cord, and then used c-Fos protein expression to label nerve cell activation. We observed the effects of Nω-nitro-L-arginine methyl ester (L-NAME), a non-selective nitric oxide synthase (NOS) inhibitor, and 7-nitroindozole (7-NI), a selective neuronal NOS inhibitor, on c-Fos and nNOS expression, which were induced by electrical stimulation to the dura mater near the superior sagittal sinus. The results demonstrated that c-Fos or nNOS immunoreactive cells was concentrated in the superficial layers (laminae I and II) of the spinal nucleus of trigeminal nerve. L-NAME and 7-NI pre-treatment significantly decreased c-Fos and neurogenic NOS expression; and there was a significant linear correlation between c-Fos and NOS expression (r= 0.858 2, P< 0.01). These findings suggest that neurogenic NO could facilitate migraine nociceptive transmission to second-order neurons of the trigeminal nerve. However, L-NAME and 7-NI may block the activation of neurons in the spinal nucleus of the trigeminal nerve by inhibiting NO synthesis, and thereby attenuate acute migraine attacks.

  1. Methanol extract of Xanthium strumarium L. possesses anti-inflammatory and anti-nociceptive activities.

    Kim, In-Tae; Park, Young-Mi; Won, Jong-Heon; Jung, Hyun-Ju; Park, Hee-Juhn; Choi, Jong-Won; Lee, Kyung-Tae

    2005-01-01

    As an attempt to identify bioactive natural products with anti-inflammatory activity, we evaluated the effects of the methanol extract of the semen of Xanthium strumarium L. (MEXS) on lipopolysaccharide (LPS)-induced nitric oxide (NO), prostaglandin E2 (PGE2) and tumor necrosis factor-alpha (TNF-alpha) production in RAW 264.7 cells. Our data indicate that MEXS is a potent inhibitor of NO, PGE2 and TNF-alpha production. Consistent with these findings, the expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein and iNOS, COX-2 and TNF-alpha mRNA were down-regulated in a concentration-dependent manner. Furthermore, MEXS inhibited nuclear factor kappa B (NF-kappaB) DNA binding activity and the translocation of NF-kappaB to the nucleus by blocking the degradation of inhibitor of kappa B-alpha (IkappaB-alpha). We further evaluated the anti-inflammatory and anti-nociceptive activities of MEXS in vivo. MEXS (100, 200 mg/kg/d, p.o.) reduced acute paw edema induced by carrageenin in rats, and showed analgesic activities in an acetic acid-induced abdominal constriction test and a hot plate test in mice. Thus, our study suggests that the inhibitions of iNOS, COX-2 expression, and TNF-alpha release by the methanol extract of the semen of Xanthium strumarium L. are achieved by blocking NF-kappaB activation, and that this is also responsible for its anti-inflammatory effects. PMID:15635170

  2. Acute inhalation of 2,2,4-trimethylpentane alters visual evoked potentials and signal detection behaviour of rats.

    The volatile organic compound 2,2,4-trimethylpentane (TMP, “isooctane”) is a primary constituent of gasoline for which the current health effects data are insufficient to permit EPA to conduct a risk assessment. We evaluated potential neurological impairment from acute inhalati...

  3. Effects of Acute Exercise and Chronic Exercise on the Liver Leptin-AMPK-ACC Signaling Pathway in Rats with Type 2 Diabetes

    Xuejie Yi

    2013-01-01

    Full Text Available Aim. To investigate the effects of acute and chronic exercise on glucose and lipid metabolism in liver of rats with type 2 diabetes caused by a high fat diet and low dose streptozotocin (STZ. Methods. Animals were classified into control (CON, diabetes (DC, diabetic chronic exercise (DCE, and diabetic acute exercise (DAE groups. Results. Compared to CON, the leptin levels in serum and liver and ACC phosphorylation were significantly higher in DC, but the levels of liver leptin receptor, AMPKα1/2, AMPKα1, and ACC proteins expression and phosphorylation were significantly lower in DC. In addition, the levels of liver glycogen reduced significantly, and the levels of TG and FFA increased significantly in DC compared to CON. Compared to DC, the levels of liver AMPKα1/2, AMPKα2, AMPKα1, and ACC phosphorylation significantly increased in DCE and DAE. However, significant increase of the level of liver leptin receptor and glycogen as well as significant decrease of the level of TG and FFA were observed only in DEC. Conclusion. Our study demonstrated that both acute and chronic exercise indirectly activated the leptin-AMPK-ACC signaling pathway and increased insulin sensitivity in the liver of type 2 diabetic rats. However, only chronic and long-term exercise improved glucose and lipid metabolism of the liver.

  4. Inhibition of Toll-Like Receptor 4 Signaling Mitigates Microvascular Loss but Not Fibrosis in a Model of Ischemic Acute Kidney Injury

    Dagher, Pierre C.; Hato, Takashi; Mang, Henry E.; Plotkin, Zoya; Richardson, Quentin V.; Massad, Michael; Mai, Erik; Kuehl, Sarah E.; Graham, Paige; Kumar, Rakesh; Sutton, Timothy A.

    2016-01-01

    The development of chronic kidney disease (CKD) following an episode of acute kidney injury (AKI) is an increasingly recognized clinical problem. Inhibition of toll-like receptor 4 (TLR4) protects renal function in animal models of AKI and has become a viable therapeutic strategy in AKI. However, the impact of TLR4 inhibition on the chronic sequelae of AKI is unknown. Consequently, we examined the chronic effects of TLR4 inhibition in a model of ischemic AKI. Mice with a TLR4-deletion on a C57BL/6 background and wild-type (WT) background control mice (C57BL/6) were subjected to bilateral renal artery clamping for 19 min and reperfusion for up to 6 weeks. Despite the acute protective effect of TLR4 inhibition on renal function (serum creatinine 1.6 ± 0.4 mg/dL TLR4-deletion vs. 2.8 ± 0.3 mg/dL·WT) and rates of tubular apoptosis following ischemic AKI, we found no difference in neutrophil or macrophage infiltration. Furthermore, we observed significant protection from microvascular rarefaction at six weeks following injury with TLR4-deletion, but this did not alter development of fibrosis. In conclusion, we validate the acute protective effect of TLR4 signal inhibition in AKI but demonstrate that this protective effect does not mitigate the sequential fibrogenic response in this model of ischemic AKI. PMID:27136544

  5. Alfaxalone Anaesthesia Facilitates Electrophysiological Recordings of Nociceptive Withdrawal Reflexes in Dogs (Canis familiaris).

    Hunt, James; Murrell, Jo; Knazovicky, David; Harris, John; Kelly, Sara; Knowles, Toby G; Lascelles, B Duncan X

    2016-01-01

    Naturally occurring canine osteoarthritis represents a welfare issue for affected dogs (Canis familiaris), but is also considered very similar to human osteoarthritis and has therefore been proposed as a model of disease in humans. Central sensitisation is recognized in human osteoarthritis sufferers but identification in dogs is challenging. Electromyographic measurement of responses to nociceptive stimulation represents a potential means of investigating alterations in central nociceptive processing, and has been evaluated in conscious experimental dogs, but is likely to be aversive. Development of a suitable anaesthetic protocol in experimental dogs, which facilitated electrophysiological nociceptive withdrawal reflex assessment, may increase the acceptability of using the technique in owned dogs with naturally occurring osteoarthritis. Seven purpose bred male hound dogs underwent electromyographic recording sessions in each of three states: acepromazine sedation, alfaxalone sedation, and alfaxalone anaesthesia. Electromyographic responses to escalating mechanical and electrical, and repeated electrical, stimuli were recorded. Subsequently the integral of both early and late rectified responses was calculated. Natural logarithms of the integral values were analysed within and between the three states using multi level modeling. Alfaxalone increased nociceptive thresholds and decreased the magnitude of recorded responses, but characteristics of increasing responses with increasing stimulus magnitude were preserved. Behavioural signs of anxiety were noted in two out of seven dogs during recordings in the acepromazine sedated state. There were few significant differences in response magnitude or nociceptive threshold between the two alfaxalone states. Following acepromazine premedication, induction of anaesthesia with 1-2 mg kg-1 alfaxalone, followed by a continuous rate infusion in the range 0.075-0.1 mg kg-1 min-1 produced suitable conditions to enable assessment

  6. Genetic and metabolic signals during acute enteric bacterial infection alter the microbiota and drive progression to chronic inflammatory disease

    Kamdar, Karishma; Khakpour, Samira; Chen, Jingyu; Leone, Vanessa; Brulc, Jennifer; Mangatu, Thomas; Antonopoulos, Dionysios A.; Chang, Eugene B; Kahn, Stacy A.; Kirschner, Barbara S; Young, Glenn; DePaolo, R. William

    2016-01-13

    Chronic inflammatory disorders are thought to arise due to an interplay between predisposing host genetics and environmental factors. For example, the onset of inflammatory bowel disease is associated with enteric proteobacterial infection, yet the mechanistic basis for this association is unclear. We have shown previously that genetic defiency in TLR1 promotes acute enteric infection by the proteobacteria Yersinia enterocolitica. Examining that model further, we uncovered an altered cellular immune response that promotes the recruitment of neutrophils which in turn increases metabolism of the respiratory electron acceptor tetrathionate by Yersinia. These events drive permanent alterations in anti-commensal immunity, microbiota composition, and chronic inflammation, which persist long after Yersinia clearence. Deletion of the bacterial genes involved in tetrathionate respiration or treatment using targeted probiotics could prevent microbiota alterations and inflammation. Thus, acute infection can drive long term immune and microbiota alterations leading to chronic inflammatory disease in genetically predisposed individuals.

  7. Neuregulin-1-Human Epidermal Receptor-2 Signaling Is a Central Regulator of Pulmonary Epithelial Permeability and Acute Lung Injury*

    Finigan, James H.; Faress, Jihane A.; Wilkinson, Emily; Mishra, Rangnath S.; Nethery, David E.; Wyler, David; Shatat, Mohammad; Ware, Lorraine B.; Matthay, Michael A.; Mason, Robert; Silver, Richard F.; Kern, Jeffrey A.

    2011-01-01

    The mechanisms behind the loss of epithelial barrier function leading to alveolar flooding in acute lung injury (ALI) are incompletely understood. We hypothesized that the tyrosine kinase receptor human epidermal growth factor receptor-2 (HER2) would be activated in an inflammatory setting and participate in ALI. Interleukin-1β (IL-1β) exposure resulted in HER2 activation in human epithelial cells and markedly increased conductance across a monolayer of airway epithelial cells. Upon HER2 bloc...

  8. Central nervous system mast cells in peripheral inflammatory nociception

    Ellmeier Wilfried

    2011-06-01

    Full Text Available Abstract Background Functional aspects of mast cell-neuronal interactions remain poorly understood. Mast cell activation and degranulation can result in the release of powerful pro-inflammatory mediators such as histamine and cytokines. Cerebral dural mast cells have been proposed to modulate meningeal nociceptor activity and be involved in migraine pathophysiology. Little is known about the functional role of spinal cord dural mast cells. In this study, we examine their potential involvement in nociception and synaptic plasticity in superficial spinal dorsal horn. Changes of lower spinal cord dura mast cells and their contribution to hyperalgesia are examined in animal models of peripheral neurogenic and non-neurogenic inflammation. Results Spinal application of supernatant from activated cultured mast cells induces significant mechanical hyperalgesia and long-term potentiation (LTP at spinal synapses of C-fibers. Lumbar, thoracic and thalamic preparations are then examined for mast cell number and degranulation status after intraplantar capsaicin and carrageenan. Intradermal capsaicin induces a significant percent increase of lumbar dural mast cells at 3 hours post-administration. Peripheral carrageenan in female rats significantly increases mast cell density in the lumbar dura, but not in thoracic dura or thalamus. Intrathecal administration of the mast cell stabilizer sodium cromoglycate or the spleen tyrosine kinase (Syk inhibitor BAY-613606 reduce the increased percent degranulation and degranulated cell density of lumbar dural mast cells after capsaicin and carrageenan respectively, without affecting hyperalgesia. Conclusion The results suggest that lumbar dural mast cells may be sufficient but are not necessary for capsaicin or carrageenan-induced hyperalgesia.

  9. Effects of salt-loading hypertension on nociception in rats

    Afolabi AO

    2013-05-01

    Full Text Available Ayobami Oladele Afolabi,1 Saheed Kolade Mudashiru,1 Isiaka Abdullateef Alagbonsi21Department of Physiology, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria; 2Department of Physiology, Faculty of Medicine, Kogi State University, PMB 1008, Anyigba, Kogi, NigeriaBackground: There is on going controversy on the effect of experimentally induced hypertension on nociception. The effect of salt-loading-induced hypertension on pain was studied in male rats.Method: Twenty-four male Sprague-Dawley rats (160–280 g were divided into two groups. Group A (n = 12 was treated with normal-feed diet (control, while group B (n = 12 was treated with 8% salt-loaded diet for 10 weeks. After 10 weeks of the treatment, six rats each from groups A and B were used for blood pressure measurement, while the remaining six rats were used for both the tail-flick and formalin tests. Thermal and chemical pain test were assessed using tail immersion test (tail flick and formalin test pain paradigms at onset of salt-loading diet and after 10 weeks of salt loading.Results: Chronic administration of salt-loading diet caused significant increases (P < 0.001 in systolic blood pressure, diastolic blood pressure, and mean arterial blood pressure. Moreover, salt-loading-induced hypertension was found to significantly reduce pain sensitivity in the tail-immersion test (P < 0.001 and in the early and late phase of the formalin test (P < 0.01. However, the hypoalgesia was higher in the late phase (94.8% than in the early phase (56.8% of the formalin test.Conclusion: The present study suggests that high salt-loading-induced hypertension causes hypoalgesia in rats, which might be due more to reduction in inflammatory response.Keywords: formalin test, tail-flick test

  10. Effects of acute exposure to WIFI signals (2.45GHz) on heart variability and blood pressure in Albinos rabbit.

    Saili, Linda; Hanini, Amel; Smirani, Chiraz; Azzouz, Ines; Azzouz, Amina; Sakly, Mohsen; Abdelmelek, Hafedh; Bouslama, Zihad

    2015-09-01

    Electrocardiogram and arterial pressure measurements were studied under acute exposures to WIFI (2.45GHz) during one hour in adult male rabbits. Antennas of WIFI were placed at 25cm at the right side near the heart. Acute exposure of rabbits to WIFI increased heart frequency (+22%) and arterial blood pressure (+14%). Moreover, analysis of ECG revealed that WIFI induced a combined increase of PR and QT intervals. By contrast, the same exposure failed to alter maximum amplitude and P waves. After intravenously injection of dopamine (0.50ml/kg) and epinephrine (0.50ml/kg) under acute exposure to RF we found that, WIFI alter catecholamines (dopamine, epinephrine) action on heart variability and blood pressure compared to control. These results suggest for the first time, as far as we know, that exposure to WIFI affect heart rhythm, blood pressure, and catecholamines efficacy on cardiovascular system; indicating that radiofrequency can act directly and/or indirectly on cardiovascular system. PMID:26356390

  11. Subject-level differences in reported locations of cutaneous tactile and nociceptive stimuli

    Peter Steenbergen

    2012-11-01

    Full Text Available Recent theoretical advances on the topic of body representations have raised the question whether spatial perception of touch and nociception involve the same representations. Various authors have established that subjective localizations of touch and nociception are displaced in a systematic manner. The relation between veridical stimulus locations and localizations can be described in the form of a perceptual map; these maps differ between subjects. Recently, evidence was found for a common set of body representations to underlie spatial perception of touch and slow and fast pain, which receive information from modality specific primary representations. There are neurophysiological clues that the various cutaneous senses may not share the same primary representation. If this is the case, then differences in primary representations between touch and nociception may cause subject-dependent differences in perceptual maps of these modalities. We studied localization of tactile and nociceptive sensations on the forearm using electrocutaneous stimulation. The perceptual maps of these modalities differed at the group level. When assessed for individual subjects, the differences localization varied in nature between subjects. The agreement of perceptual maps of the two modalities was moderate. These findings are consistent with a common internal body representation underlying spatial perception of touch and nociception. The subject level differences suggest that in addition to these representations other aspects, possibly differences in primary representation and/or the influence of stimulus parameters, lead to differences in perceptual maps in individuals.

  12. Nociceptive-Evoked Potentials Are Sensitive to Behaviorally Relevant Stimulus Displacements in Egocentric Coordinates.

    Moayedi, M; Di Stefano, G; Stubbs, M T; Djeugam, B; Liang, M; Iannetti, G D

    2016-01-01

    Feature selection has been extensively studied in the context of goal-directed behavior, where it is heavily driven by top-down factors. A more primitive version of this function is the detection of bottom-up changes in stimulus features in the environment. Indeed, the nervous system is tuned to detect fast-rising, intense stimuli that are likely to reflect threats, such as nociceptive somatosensory stimuli. These stimuli elicit large brain potentials maximal at the scalp vertex. When elicited by nociceptive laser stimuli, these responses are labeled laser-evoked potentials (LEPs). Although it has been shown that changes in stimulus modality and increases in stimulus intensity evoke large LEPs, it has yet to be determined whether stimulus displacements affect the amplitude of the main LEP waves (N1, N2, and P2). Here, in three experiments, we identified a set of rules that the human nervous system obeys to identify changes in the spatial location of a nociceptive stimulus. We showed that the N2 wave is sensitive to: (1) large displacements between consecutive stimuli in egocentric, but not somatotopic coordinates; and (2) displacements that entail a behaviorally relevant change in the stimulus location. These findings indicate that nociceptive-evoked vertex potentials are sensitive to behaviorally relevant changes in the location of a nociceptive stimulus with respect to the body, and that the hand is a particularly behaviorally important site. PMID:27419217

  13. Activation of type I interferon signaling in the parotid and exorbital lachrymal glands during the acute phase of encephalomyocarditis (EMC) virus infection in mice.

    Ohguchi, Atsuko; Yamauchi, Hirofumi; Doi, Kunio; Nakayama, Hiroyuki

    2016-06-01

    The present study was carried out to clarify the mechanisms of EMC virus-induced sialodacryoadenitis in mice during the acute phase infection focusing on the activation of type I interferon (IFN) signaling in the parotid and exorbital lachrymal glands. In the parotid gland, a few apoptotic acinar cells were detected at 2days post inoculation (DPI). The ratio of apoptotic acinar cells increased at 3 and 4DPI. On the other hand, in the exorbital lachrymal gland, apoptosis of acinar cells and infiltration of inflammatory cells mainly composed of mononuclear cells started at 3DPI, and prominent acinar cell damage developed at 4DPI. Viral RNA was detected at 3 and 4DPI in both glands and the expression level was higher in the exorbital lachrymal gland than in the parotid gland. The up-regulation of IFN-stimulated genes (ISGs), such as Irf7, Pkr and Oas, was quickly induced at 2DPI in the parotid gland, and this probably contributed to suppress viral replication and to eliminate affected cells by apoptosis. In the exorbital lachrymal gland, the expression levels of ISGs mRNAs were not elevated at 2DPI, suggesting no induction of an effective anti-viral response such as apoptosis at this time point. In the exorbital lachrymal gland, the mRNA expression of IFN beta and IFN alpha (type I IFNs) was weak- to strong-positive at 1DPI, and became negative at 2DPI. The weak- to strong-positive expression of IFNs at 1DPI is likely related to the abrupt viral replication and pathological changes in the exorbital lachrymal gland through activating the negative feedback regulation that depressed the IFN signaling cascade at 2DPI. In conclusion, the present study showed the changes in factors involved in the activation of type I IFN signaling cascade in the parotid and exorbital lachrymal glands and their differences between the two glands during the acute phase of EMC virus infection in mice. PMID:27079771

  14. gp130 signaling in proopiomelanocortin neurons mediates the acute anorectic response to centrally applied ciliary neurotrophic factor

    Janoschek, Ruth; Plum, Leona; Koch, Linda; Münzberg, Heike; Diano, Sabrina; Shanabrough, Marya; Müller, Werner; Horvath, Tamas L.; Brüning, Jens C.

    2006-01-01

    Ciliary neurotrophic factor (CNTF) exerts anorectic effects by overcoming leptin resistance via activation of hypothalamic neurons. However, the exact site of CNTF action in the hypothalamus has not yet been identified. Using Cre-loxP-mediated recombination in vivo, we have selectively ablated the common cytokine signaling chain gp130, which is required for functional CNTF signaling, in proopiomelanocortin (POMC)-expressing neurons. POMC-specific gp130 knockout mice exhibit unaltered numbers ...

  15. A temporal role of type I interferon signaling in CD8+ T cell maturation during acute West Nile virus infection.

    Amelia K Pinto

    2011-12-01

    Full Text Available A genetic absence of the common IFN-α/β signaling receptor (IFNAR in mice is associated with enhanced viral replication and altered adaptive immune responses. However, analysis of IFNAR(-/- mice is limited for studying the functions of type I IFN at discrete stages of viral infection. To define the temporal functions of type I IFN signaling in the context of infection by West Nile virus (WNV, we treated mice with MAR1-5A3, a neutralizing, non cell-depleting anti-IFNAR antibody. Inhibition of type I IFN signaling at or before day 2 after infection was associated with markedly enhanced viral burden, whereas treatment at day 4 had substantially less effect on WNV dissemination. While antibody treatment prior to infection resulted in massive expansion of virus-specific CD8(+ T cells, blockade of type I IFN signaling starting at day 4 induced dysfunctional CD8(+ T cells with depressed cytokine responses and expression of phenotypic markers suggesting exhaustion. Thus, only the later maturation phase of anti-WNV CD8(+ T cell development requires type I IFN signaling. WNV infection experiments in BATF3(-/- mice, which lack CD8-α dendritic cells and have impaired priming due to inefficient antigen cross-presentation, revealed a similar effect of blocking IFN signaling on CD8(+ T cell maturation. Collectively, our results suggest that cell non-autonomous type I IFN signaling shapes maturation of antiviral CD8(+ T cell response at a stage distinct from the initial priming event.

  16. EVALUATION OF ANTI-NOCICEPTIVE AND ANTI-INFLAMMATORY ACTIVITY OF PUNICA GRANATUM SEED EXTRACT

    Gupta Jeetendra Kumar

    2011-12-01

    Full Text Available The plant Punica granatum of family Punicaceae is distributed throughout India and reputed to have numerous applications in traditional medicine system. In order to justify its folkloric use in nociception and inflammation, the study was performed.In this study, the extraction of Punica granatum seed extract was carried out in aqueous media. In order to explore its potency, various experimental models of anti-nociceptive and anti-inflammatory activities were taken. The oral administration of the extract 100mg and 200mg per kg body weight showed significant pharmacological action. Furthermore the anti-ulcer activity was carried out with the help of Indomethacin induced ulceration model using Mesoprostol as standard drug and it showed no ulcerogenic effect in wistar albino rats.Overall, the extract was found to be significant anti-nociceptive and anti-inflammatory activity with no ulcerogenic adverse effect.

  17. Are presynaptic GABA-Cρ2 receptors involved in anti-nociception?

    Tadavarty, R; Hwang, J; Rajput, P S; Soja, P J; Kumar, U; Sastry, B R

    2015-10-01

    We investigated the anti-nociceptive effects of GABA-C receptors in the central nervous system. Intracisternal injection of CACA, a GABA-C receptor agonist or isoguvacine, a GABA-A receptor agonist, significantly increased the tail-withdrawal latency. TPMPA, a GABA-C receptor antagonist blocked the effects of CACA but not isoguvacine indicating that GABA-C receptors are involved in regulating pain. Further, double-labelled immunofluorescence studies revealed that GABA-Cρ2 receptors are expressed presynaptically in the spinal dorsal horn, especially, substantia gelatinosa, a region that has been previously implicated in analgesia by regulating nociceptive inflow. These data provide a provenance for future work looking at presynaptic spinal GABA-C receptors in the control of nociception. PMID:26327143

  18. Indomethacin inhibits tetrodotoxin-resistant Na(+) channels at acidic pH in rat nociceptive neurons.

    Nakamura, Michiko; Jang, Il-Sung

    2016-06-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are well-known inhibitors of cyclooxygenases (COXs) and are widely used for the treatment of inflammatory pain; however several NSAIDs display COX-independent analgesic action including the inhibition of voltage-gated Na(+) channels expressed in primary afferent neurons. In the present study, we examined whether NSAIDs modulate tetrodotoxin-resistant (TTX-R) Na(+) channels and if this modulation depends on the extracellular pH. The TTX-R Na(+) currents were recorded from small-sized trigeminal ganglion neurons by using a whole-cell patch clamp technique. Among eight NSAIDs tested in this study, several drugs, including aspirin and ibuprofen, did not affect TTX-R Na(+) channels either at pH 7.4 or at pH 6.0. However, we found that indomethacin, and, to a lesser extent, ibuprofen and naproxen potently inhibited the peak amplitude of TTX-R Na(+) currents at pH 6.0. The indomethacin-induced inhibition of TTX-R Na(+) channels was more potent at depolarized membrane potentials. Indomethacin significantly shifted both the voltage-activation and voltage-inactivation relationships to depolarizing potentials at pH 6.0. Indomethacin accelerated the development of inactivation and retarded the recovery from inactivation of TTX-R Na(+) channels at pH 6.0. Given that indomethacin and several other NSAIDs could further suppress local nociceptive signals by inhibiting TTX-R Na(+) channels at an acidic pH in addition to the classical COX inhibition, these drugs could be particularly useful for the treatment of inflammatory pain. PMID:26898291

  19. Response characteristics of pruriceptive and nociceptive trigeminoparabrachial tract neurons in the rat.

    Jansen, Nico A; Giesler, Glenn J

    2015-01-01

    We tested the possibility that the trigeminoparabrachial tract (VcPbT), a projection thought to be importantly involved in nociception, might also contribute to sensation of itch. In anesthetized rats, 47 antidromically identified VcPbT neurons with receptive fields involving the cheek were characterized for their responses to graded mechanical and thermal stimuli and intradermal injections of pruritogens (serotonin, chloroquine, and β-alanine), partial pruritogens (histamine and capsaicin), and an algogen (mustard oil). All pruriceptive VcPbT neurons were responsive to mechanical stimuli, and more than half were additionally responsive to thermal stimuli. The majority of VcPbT neurons were activated by injections of serotonin, histamine, capsaicin, and/or mustard oil. A subset of neurons were inhibited by injection of chloroquine. The large majority of VcPbT neurons projected to the ipsilateral and/or contralateral external lateral parabrachial and Kölliker-Fuse nuclei, as evidenced by antidromic mapping techniques. Analyses of mean responses and spike-timing dynamics of VcPbT neurons suggested clear differences in firing rates between responses to noxious and pruritic stimuli. Comparisons between the present data and those previously obtained from trigeminothalamic tract (VcTT) neurons demonstrated several differences in responses to some pruritogens. For example, responses of VcPbT neurons to injection of serotonin often endured for nearly an hour and showed a delayed peak in discharge rate. In contrast, responses of VcTT neurons endured for roughly 20 min and no delayed peak of firing was noted. Thus the longer duration responses to 5-HT and the delay in peak firing of VcPbT neurons better matched behavioral responses to stimulation in awake rats than did those of VcTT neurons. The results indicate that VcPbT neurons may have important roles in the signaling of itch as well as pain. PMID:25298386

  20. FLT3 and CDK4/6 inhibitors: signaling mechanisms and tumor burden in subcutaneous and orthotopic mouse models of acute myeloid leukemia.

    Zhang, Yaping; Hsu, Cheng-Pang; Lu, Jian-Feng; Kuchimanchi, Mita; Sun, Yu-Nien; Ma, Ji; Xu, Guifen; Zhang, Yilong; Xu, Yang; Weidner, Margaret; Huard, Justin; D'Argenio, David Z

    2014-12-01

    FLT3(ITD) subtype acute myeloid leukemia (AML) has a poor prognosis with currently available therapies. A number of small molecule inhibitors of FLT3 and/or CDK4/6 are currently under development. A more complete and quantitative understanding of the mechanisms of action of FLT3 and CDK4/6 inhibitors may better inform the development of current and future compounds that act on one or both of the molecular targets, and thus may lead to improved treatments for AML. In this study, we investigated in both subcutaneous and orthotopic AML mouse models, the mechanisms of action of three FLT3 and/or CDK4/6 inhibitors: AMG925 (Amgen), sorafenib (Bayer and Onyx), and quizartinib (Ambit Biosciences). A composite model was developed to integrate the plasma pharmacokinetics of these three compounds on their respective molecular targets, the coupling between the target pathways, as well as the resulting effects on tumor burden reduction in the subcutaneous xenograft model. A sequential modeling approach was used, wherein model structures and estimated parameters from upstream processes (e.g. PK, cellular signaling) were fixed for modeling subsequent downstream processes (cellular signaling, tumor burden). Pooled data analysis was employed for the plasma PK and cellular signaling modeling, while population modeling was applied to the tumor burden modeling. The resulting model allows the decomposition of the relative contributions of FLT3(ITD) and CDK4/6 inhibition on downstream signaling and tumor burden. In addition, the action of AMG925 on cellular signaling and tumor burden was further studied in an orthotopic tumor mouse model more closely representing the physiologically relevant environment for AML. PMID:25326874

  1. Top-Down Effect of Direct Current Stimulation on the Nociceptive Response of Rats

    Dimov, Luiz Fabio; Franciosi, Adriano Cardozo; Campos, Ana Carolina Pinheiro; Brunoni, André Russowsky

    2016-01-01

    Transcranial direct current stimulation (tDCS) is an emerging, noninvasive technique of neurostimulation for treating pain. However, the mechanisms and pathways involved in its analgesic effects are poorly understood. Therefore, we investigated the effects of direct current stimulation (DCS) on thermal and mechanical nociceptive thresholds and on the activation of the midbrain periaqueductal gray (PAG) and the dorsal horn of the spinal cord (DHSC) in rats; these central nervous system areas are associated with pain processing. Male Wistar rats underwent cathodal DCS of the motor cortex and, while still under stimulation, were evaluated using tail-flick and paw pressure nociceptive tests. Sham stimulation and naive rats were used as controls. We used a randomized design; the assays were not blinded to the experimenter. Immunoreactivity of the early growth response gene 1 (Egr-1), which is a marker of neuronal activation, was evaluated in the PAG and DHSC, and enkephalin immunoreactivity was evaluated in the DHSC. DCS did not change the thermal nociceptive threshold; however, it increased the mechanical nociceptive threshold of both hind paws compared with that of controls, characterizing a topographical effect. DCS decreased the Egr-1 labeling in the PAG and DHSC as well as the immunoreactivity of spinal enkephalin. Altogether, the data suggest that DCS disinhibits the midbrain descending analgesic pathway, consequently inhibiting spinal nociceptive neurons and causing an increase in the nociceptive threshold. This study reinforces the idea that the motor cortex participates in the neurocircuitry that is involved in analgesia and further clarifies the mechanisms of action of tDCS in pain treatment. PMID:27071073

  2. Changing Balance of Spinal Cord Excitability and Nociceptive Brain Activity in Early Human Development.

    Hartley, Caroline; Moultrie, Fiona; Gursul, Deniz; Hoskin, Amy; Adams, Eleri; Rogers, Richard; Slater, Rebeccah

    2016-08-01

    In adults, nociceptive reflexes and behavioral responses are modulated by a network of brain regions via descending projections to the spinal dorsal horn [1]. Coordinated responses to noxious inputs manifest from a balance of descending facilitation and inhibition. In contrast, young infants display exaggerated and uncoordinated limb reflexes [2]. Our understanding of nociceptive processing in the infant brain has been advanced by the use of electrophysiological and hemodynamic imaging [3-6]. From approximately 35 weeks' gestation, nociceptive-specific patterns of brain activity emerge [7], whereas prior to this, non-specific bursts of activity occur in response to noxious, tactile, visual, and auditory stimulation [7-10]. During the preterm period, refinement of spinal cord excitability is also observed: reflex duration shortens, response threshold increases, and improved discrimination between tactile and noxious events occurs [2, 11, 12]. However, the development of descending modulation in human infants remains relatively unexplored. In 40 infants aged 28-42 weeks' gestation, we examined the relationship between nociceptive brain activity and spinal reflex withdrawal activity in response to a clinically essential noxious procedure. Nociceptive-specific brain activity increases in magnitude with gestational age, whereas reflex withdrawal activity decreases in magnitude, duration, and latency across the same developmental period. By recording brain and spinal cord activity in the same infants, we demonstrate that the maturation of nociceptive brain activity is concomitant with the refinement of noxious-evoked limb reflexes. We postulate that, consistent with studies in animals, infant reflexes are influenced by the development of top-down inhibitory modulation from maturing subcortical and cortical brain networks. PMID:27374336

  3. Microparticles from kidney-derived mesenchymal stem cells act as carriers of proangiogenic signals and contribute to recovery from acute kidney injury.

    Hoon Young Choi

    Full Text Available We recently demonstrated the use of in vitro expanded kidney-derived mesenchymal stem cells (KMSC protected peritubular capillary endothelial cells in acute renal ischemia-reperfusion injury. Herein, we isolated and characterized microparticles (MPs from KMSC. We investigated their in vitro biologic effects on human endothelial cells and in vivo renoprotective effects in acute ischemia-reperfusion renal injury. MPs were isolated from the supernatants of KMSC cultured in anoxic conditions in serum-deprived media for 24 hours. KMSC-derived MPs demonstrated the presence of several adhesion molecules normally expressed on KMSC membranes, such as CD29, CD44, CD73, α4, 5, and 6 integrins. Quantitative real time PCR confirmed the presence of 3 splicing variants of VEGF-A (120, 164, 188, bFGF and IGF-1 in isolated MPs. MPs labeled with PKH26 red fluorescence dye were incorporated by cultured human umbilical vein endothelial cells (HUVEC via surface molecules such as CD44, CD29, and α4, 5, and 6 integrins. MP dose dependently improved in vitro HUVEC proliferation and promoted endothelial tube formation on growth factor reduced Matrigel. Moreover, apoptosis of human microvascular endothelial cell was inhibited by MPs. Administration of KMSC-derived MPs into mice with acute renal ischemia was followed by selective engraftment in ischemic kidneys and significant improvement in renal function. This was achieved by improving proliferation, of peritubular capillary endothelial cell and amelioration of peritubular microvascular rarefaction. Our results support the hypothesis that KMSC-derived MPs may act as a source of proangiogenic signals and confer renoprotective effects in ischemic kidneys.

  4. Aberrant Notch Signaling in the Bone Marrow Microenvironment of Acute Lymphoid Leukemia Suppresses Osteoblast-Mediated Support of Hematopoietic Niche Function.

    Wang, Weihuan; Zimmerman, Grant; Huang, Xiaoran; Yu, Shuiliang; Myers, Jay; Wang, Yiwei; Moreton, Stephen; Nthale, Joseph; Awadallah, Amad; Beck, Rose; Xin, Wei; Wald, David; Huang, Alex Y; Zhou, Lan

    2016-03-15

    More than half of T-cell acute lymphoblastic leukemia (T-ALL) patients harbor gain-of-function mutations in the intracellular domain of Notch1. Diffuse infiltration of the bone marrow commonly occurs in T-ALL and relapsed B-cell acute lymphoblastic leukemia patients, and is associated with worse prognosis. However, the mechanism of leukemia outgrowth in the marrow and the resulting biologic impact on hematopoiesis are poorly understood. Here, we investigated targetable cellular and molecular abnormalities in leukemia marrow stroma responsible for the suppression of normal hematopoiesis using a T-ALL mouse model and human T-ALL xenografts. We found that actively proliferating leukemia cells inhibited normal hematopoietic stem and progenitor cell (HSPC) proliferation and homing to the perivascular region. In addition, leukemia development was accompanied by the suppression of the endosteum-lining osteoblast population. We further demonstrated that aberrant Notch activation in the stroma plays an important role in negatively regulating the expression of CXLC12 on osteoblasts and their differentiation. Notch blockade reversed attenuated HSPC cycling, leukemia-associated abnormal blood lineage distribution, and thrombocytopenia as well as recovered osteoblast and HSPC abundance and improved the hematopoietic-supportive functions of osteoblasts. Finally, we confirmed that reduced osteoblast frequency and enhanced Notch signaling were also features of the marrow stroma of human ALL tissues. Collectively, our findings suggest that therapeutically targeting the leukemia-infiltrated hematopoietic niche may restore HSPC homeostasis and improve the outcome of ALL patients. PMID:26801976

  5. Unique Effects of Acute Aripiprazole Treatment on the Dopamine D2 Receptor Downstream cAMP-PKA and Akt-GSK3β Signalling Pathways in Rats

    Pan, Bo; Chen, Jiezhong; Lian, Jiamei; Huang, Xu-Feng; Deng, Chao

    2015-01-01

    Aripiprazole is a wide-used antipsychotic drug with therapeutic effects on both positive and negative symptoms of schizophrenia, and reduced side-effects. Although aripiprazole was developed as a dopamine D2 receptor (D2R) partial agonist, all other D2R partial agonists that aimed to mimic aripiprazole failed to exert therapeutic effects in clinic. The present in vivo study aimed to investigate the effects of aripiprazole on the D2R downstream cAMP-PKA and Akt-GSK3β signalling pathways in comparison with a D2R antagonist – haloperidol and a D2R partial agonist – bifeprunox. Rats were injected once with aripiprazole (0.75mg/kg, i.p.), bifeprunox (0.8mg/kg, i.p.), haloperidol (0.1mg/kg, i.p.) or vehicle. Five brain regions – the prefrontal cortex (PFC), nucleus accumbens (NAc), caudate putamen (CPu), ventral tegmental area (VTA) and substantia nigra (SN) were collected. The protein levels of PKA, Akt and GSK3β were measured by Western Blotting; the cAMP levels were examined by ELISA tests. The results showed that aripiprazole presented similar acute effects on PKA expression to haloperidol, but not bifeprunox, in the CPU and VTA. Additionally, aripiprazole was able to increase the phosphorylation of GSK3β in the PFC, NAc, CPu and SN, respectively, which cannot be achieved by bifeprunox and haloperidol. These results suggested that acute treatment of aripiprazole had differential effects on the cAMP-PKA and Akt-GSK3β signalling pathways from haloperidol and bifeprunox in these brain areas. This study further indicated that, by comparison with bifeprunox, the unique pharmacological profile of aripiprazole may be attributed to the relatively lower intrinsic activity at D2R. PMID:26162083

  6. Blocking TGF-β Signaling Pathway Preserves Mitochondrial Proteostasis and Reduces Early Activation of PDGFRβ+ Pericytes in Aristolochic Acid Induced Acute Kidney Injury in Wistar Male Rats

    Pozdzik, Agnieszka A.; Giordano, Laetitia; Li, Gang; Antoine, Marie-Hélène; Quellard, Nathalie; Godet, Julie; De Prez, Eric; Husson, Cécile; Declèves, Anne-Emilie; Arlt, Volker M.; Goujon, Jean-Michel; Brochériou-Spelle, Isabelle; Ledbetter, Steven R.; Caron, Nathalie; Nortier, Joëlle L.

    2016-01-01

    Background The platelet-derived growth factor receptor β (PDGFRβ)+ perivascular cell activation becomes increasingly recognized as a main source of scar-associated kidney myofibroblasts and recently emerged as a new cellular therapeutic target. Aims In this regard, we first confirmed the presence of PDGFRβ+ perivascular cells in a human case of end-stage aristolochic acid nephropathy (AAN) and thereafter we focused on the early fibrosis events of transforming growth factor β (TGFβ) inhibition in a rat model of AAN. Materials and Methods Neutralizing anti-TGFβ antibody (1D11) and its control isotype (13C4) were administered (5 mg/kg, i.p.) at Days -1, 0, 2 and 4; AA (15 mg/kg, sc) was injected daily. Results At Day 5, 1D11 significantly suppressed p-Smad2/3 signaling pathway improving renal function impairment, reduced the score of acute tubular necrosis, peritubular capillaritis, interstitial inflammation and neoangiogenesis. 1D11 markedly decreased interstitial edema, disruption of tubular basement membrane loss of brush border, cytoplasmic edema and organelle ultrastructure alterations (mitochondrial disruption and endoplasmic reticulum edema) in proximal tubular epithelial cells. Moreover, 1D11 significantly inhibited p-PERK activation and attenuated dysregulation of unfolded protein response (UPR) pathways, endoplasmic reticulum and mitochondrial proteostasis in vivo and in vitro. Conclusions The early inhibition of p-Smad2/3 signaling pathway improved acute renal function impairment, partially prevented epithelial-endothelial axis activation by maintaining PTEC proteostasis and reduced early PDGFRβ+ pericytes-derived myofibroblasts accumulation. PMID:27379382

  7. Association of Toll-Like Receptor Signaling and Reactive Oxygen Species: A Potential Therapeutic Target for Posttrauma Acute Lung Injury

    Meng Xiang

    2010-01-01

    Full Text Available Acute lung injury (ALI frequently occurs in traumatic patients and serves as an important component of systemic inflammatory response syndrome (SIRS. Hemorrhagic shock (HS that results from major trauma promotes the development of SIRS and ALI by priming the innate immune system for an exaggerated inflammatory response. Recent studies have reported that the mechanism underlying the priming of pulmonary inflammation involves the complicated cross-talk between Toll-like receptors (TLRs and interactions between neutrophils (PMNs and alveolar macrophages (AMϕ as well as endothelial cells (ECs, in which reactive oxygen species (ROS are the key mediator. This paper summarizes some novel mechanisms underlying HS-primed lung inflammation focusing on the role of TLRs and ROS, and therefore suggests a new therapeutic target for posttrauma ALI.

  8. Effects of Arachidonic Acid Supplementation on Acute Anabolic Signaling and Chronic Functional Performance and Body Composition Adaptations

    De Souza, Eduardo O.; Lowery, Ryan P.; Wilson, Jacob M.; Sharp, Matthew H.; Mobley, Christopher Brooks; Fox, Carlton D.; Lopez, Hector L.; Shields, Kevin A.; Rauch, Jacob T.; Healy, James C.; Thompson, Richard M.; Ormes, Jacob A.; Joy, Jordan M.; Roberts, Michael D.

    2016-01-01

    Background The primary purpose of this investigation was to examine the effects of arachidonic acid (ARA) supplementation on functional performance and body composition in trained males. In addition, we performed a secondary study looking at molecular responses of ARA supplementation following an acute exercise bout in rodents. Methods Thirty strength-trained males (age: 20.4 ± 2.1 yrs) were randomly divided into two groups: ARA or placebo (i.e. CTL). Then, both groups underwent an 8-week, 3-day per week, non-periodized training protocol. Quadriceps muscle thickness, whole-body composition scan (DEXA), muscle strength, and power were assessed at baseline and post-test. In the rodent model, male Wistar rats (~250 g, ~8 weeks old) were pre-fed with either ARA or water (CTL) for 8 days and were fed the final dose of ARA prior to being acutely strength trained via electrical stimulation on unilateral plantar flexions. A mixed muscle sample was removed from the exercised and non-exercised leg 3 hours post-exercise. Results Lean body mass (2.9%, p<0.0005), upper-body strength (8.7%, p<0.0001), and peak power (12.7%, p<0.0001) increased only in the ARA group. For the animal trial, GSK-β (Ser9) phosphorylation (p<0.001) independent of exercise and AMPK phosphorylation after exercise (p-AMPK less in ARA, p = 0.041) were different in ARA-fed versus CTL rats. Conclusions Our findings suggest that ARA supplementation can positively augment strength-training induced adaptations in resistance-trained males. However, chronic studies at the molecular level are required to further elucidate how ARA combined with strength training affect muscle adaptation. PMID:27182886

  9. A Role for a CXCR2/Phosphatidylinositol 3-Kinase γ Signaling Axis in Acute and Chronic Vascular Permeability▿ †

    Gavard, Julie; Hou, Xu; Qu, Yi; Masedunskas, Andrius; Martin, Daniel; Weigert, Roberto; Li, Xuri; Gutkind, J. Silvio

    2009-01-01

    Most proangiogenic polypeptide growth factors and chemokines enhance vascular permeability, including vascular endothelial growth factor (VEGF), the main target for anti-angiogenic-based therapies, and interleukin-8 (IL-8), a potent proinflammatory mediator. Here, we show that in endothelial cells IL-8 initiates a signaling route that converges with that deployed by VEGF at the level of the small GTPase Rac1 and that both act through the p21-activated kinase to promote the phosphorylation and...

  10. Anti-nociceptive and anti-oedematogenic properties of the hydroethanolic extract of Sidastrum micranthum leaves in mice

    Gabriela Mastrangelo Gonçalves

    2013-10-01

    Full Text Available Sidastrum micranthum (A. St.-Hil. Fryxell, Malvaceae, grows in the northeastern region of Brazil, where the leaves of this species are traditionally used to treat coughs, bronchitis or asthma. Male Swiss mice (20-22 g were tested in models of acute pain (acetic acid-induced abdominal writhing, tail flick and formalin test, oedema assessment test (paw oedema test and model for evaluation of spontaneous motor performance (open field test. The hydroethanolic extract of S. micranthum was administered orally at doses of 50-500 mg/kg. In addition were administered water, vehicle, morphine 5.01 mg/kg (evaluation of pain and motor performance and dexamethasone 2.25 mg/kg (evaluation of oedema formation. The extract showed a significant effect at all doses in the acetic acid-induced abdominal writhing test and at the second phase of the formalin test, while in the first phase of this test and in the paw oedema test only at the highest dose (500 mg/kg. In the formalin and paw oedema tests, the extract had a potentiation of the anti-nociceptive and anti-inflammatory effects by pretreatment with L-NAME and reduction of the effect by pretreatment with L-arginine. The extract was not toxic after oral administration (LD50 > 2000 mg/kg.

  11. Motor cortex-periaqueductal gray-spinal cord neuronal circuitry may involve in modulation of nociception: a virally mediated transsynaptic tracing study in spinally transected transgenic mouse model.

    Da-Wei Ye

    Full Text Available Several studies have shown that motor cortex stimulation provided pain relief by motor cortex plasticity and activating descending inhibitory pain control systems. Recent evidence indicated that the melanocortin-4 receptor (MC4R in the periaqueductal gray played an important role in neuropathic pain. This study was designed to assess whether MC4R signaling existed in motor cortex-periaqueductal gray-spinal cord neuronal circuitry modulated the activity of sympathetic pathway by a virally mediated transsynaptic tracing study. Pseudorabies virus (PRV-614 was injected into the left gastrocnemius muscle in adult male MC4R-green fluorescent protein (GFP transgenic mice (n = 15. After a survival time of 4-6 days, the mice (n = 5 were randomly assigned to humanely sacrifice, and spinal cords and brains were removed and sectioned, and processed for PRV-614 visualization. Neurons involved in the efferent control of the left gastrocnemius muscle were identified following visualization of PRV-614 retrograde tracing. The neurochemical phenotype of MC4R-GFP-positive neurons was identified using fluorescence immunocytochemical labeling. PRV-614/MC4R-GFP dual labeled neurons were detected in spinal IML, periaqueductal gray and motor cortex. Our findings support the hypothesis that MC4R signaling in motor cortex-periaqueductal gray-spinal cord neural pathway may participate in the modulation of the melanocortin-sympathetic signaling and contribute to the descending modulation of nociceptive transmission, suggesting that MC4R signaling in motor cortex-periaqueductal gray-spinal cord neural pathway may modulate the activity of sympathetic outflow sensitive to nociceptive signals.

  12. Neurophysiological correlates of nociceptive heterosynaptic long-term potentiation in humans.

    Broeke, E.N. van den; Rijn, C.M. van; Biurrun Manresa, J.A.; Andersen, O.K.; Arendt-Nielsen, L.; Wilder-Smith, O.H.G.

    2010-01-01

    Long-term potentiation (LTP) is a cellular model of synaptic plasticity and reflects an increase of synaptic strength. LTP is also present in the nociceptive system and is believed to be one of the key mechanisms involved in the manifestations of chronic pain. LTP manifested as an increased response

  13. Neurophysiological Correlates of Nociceptive Heterosynaptic Long-Term Potentiation in Humans

    Broeke, E.N. van den; Rijn, C.M. van; Biurrun Manresa, J.A.; Andersen, O.K.; Arendt-Nielsen, L.; Wilder-Smith, O.H.G.

    2010-01-01

    Long-term potentiation (LTP) is a cellular model of synaptic plasticity and reflects an increase of synaptic strength. LTP is also present in the nociceptive system and is believed to be one of the key mechanisms involved in the manifestations of chronic pain. LTP manifested as an increased response

  14. Neural correlates of heterotopic facilitation induced after high frequency electrical stimulation of nociceptive pathways

    Broeke, E.N. van den; Heck, C.H. van; Rijn, C.M. van; Wilder-Smith, O.H.G.

    2011-01-01

    BACKGROUND: High frequency electrical stimulation (HFS) of primary nociceptive afferents in humans induce a heightened sensitivity in the surrounding non-stimulated skin area. Several studies suggest that this heterotopic effect is the result of central (spinal) plasticity. The aim of this study is

  15. Neural correlates of heterotopic facilitation induced after high frequency electrical stimulation of nociceptive pathways

    Broeke, E.N. van den; Heck, C.H. van; Rijn, C.M. van; Wilder-Smith, O.H.G.

    2011-01-01

    Background High frequency electrical stimulation (HFS) of primary nociceptive afferents in humans induce a heightened sensitivity in the surrounding non-stimulated skin area. Several studies suggest that this heterotopic effect is the result of central (spinal) plasticity. The aim of this study is t

  16. Mechanisms of G Protein-Coupled Estrogen Receptor-Mediated Spinal Nociception

    Deliu, Elena; Brailoiu, G. Cristina; Arterburn, Jeffrey B.;

    2012-01-01

    Human and animal studies suggest that estrogens are involved in the processing of nociceptive sensory information and analgesic responses in the central nervous system. Rapid pronociceptive estrogenic effects have been reported, some of which likely involve G protein-coupled estrogen receptor (GPER...

  17. Pharmacological investigation of the nociceptive response and edema induced by venom of the scorpion Tityus serrulatus.

    Nascimento, Elias B; Costa, Karina A; Bertollo, Caryne M; Oliveira, Antônio Carlos P; Rocha, Leonardo T S; Souza, Adriano L S; Glória, Maria Beatriz A; Moraes-Santos, Tasso; Coelho, Márcio M

    2005-04-01

    In this study we characterized the nociceptive response and edema induced by the venom of the scorpion Tityus serrulatus in rats and mice and carried out a preliminary pharmacological investigation of the mechanisms involved in these responses. Intraplantar injection of the venom (1 or 10mug) induced edema and a marked ipsilateral nociceptive response, characterized by thermal and mechanical allodynia and paw licking behaviour. The nociceptive response was inhibited by previous intraperitoneal administration of indomethacin (4mg/kg), dipyrone (200mg/kg), cyproheptadine (10mg/kg) or morphine (5 or 10mg/kg), but not by dexamethasone (1 or 4mg/kg) or promethazine (1 or 5mg/kg). The edema was inhibited by previous treatment with promethazine (5 or 10mg/kg) or cyproheptadine (5 or 10mg/kg), but not by indomethacin (2 or 4mg/kg), dexamethasone (1 or 4mg/kg) or cromolyn (40 or 80mg/kg). Some bioactive amines, including histamine and 5-hydroxytryptamine, were found in the venom in low concentrations. In conclusion, the nociceptive response and edema induced by the venom of T. serrulatus may result from the action of multiple mediators including eicosanoids, histamine and 5-hydroxytryptamine. These results may lead to a better understanding of the host response to potent animal toxins and also give insights into a more rational pharmacological approach to alleviate the intense pain associated with the scorpion envenomation. PMID:15777954

  18. Painful, degenerating intervertebral discs up-regulate neurite sprouting and CGRP through nociceptive factors

    Krock, Emerson; Rosenzweig, Derek H; Chabot-Doré, Anne-Julie; Jarzem, Peter; Weber, Michael H; Ouellet, Jean A; Stone, Laura S; Haglund, Lisbet

    2014-01-01

    Intervertebral disc degeneration (IVD) can result in chronic low back pain, a common cause of morbidity and disability. Inflammation has been associated with IVD degeneration, however the relationship between inflammatory factors and chronic low back pain remains unclear. Furthermore, increased levels of nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) are both associated with inflammation and chronic low back pain, but whether degenerating discs release sufficient concentrations of factors that induce nociceptor plasticity remains unclear. Degenerating IVDs from low back pain patients and healthy, painless IVDs from human organ donors were cultured ex vivo. Inflammatory and nociceptive factors released by IVDs into culture media were quantified by enzyme-linked immunosorbent assays and protein arrays. The ability of factors released to induce neurite growth and nociceptive neuropeptide production was investigated. Degenerating discs release increased levels of tumour necrosis factor-α, interleukin-1β, NGF and BDNF. Factors released by degenerating IVDs increased neurite growth and calcitonin gene-related peptide expression, both of which were blocked by anti-NGF treatment. Furthermore, protein arrays found increased levels of 20 inflammatory factors, many of which have nociceptive effects. Our results demonstrate that degenerating and painful human IVDs release increased levels of NGF, inflammatory and nociceptive factors ex vivo that induce neuronal plasticity and may actively diffuse to induce neo-innervation and pain in vivo. PMID:24650225

  19. Carnosine has antinociceptive properties in the inflammation-induced nociceptive response in mice.

    Ohsawa, Masahiro; Mutoh, Junpei; Asato, Megumi; Yamamoto, Shohei; Ono, Hideki; Hisa, Hiroaki; Kamei, Junzo

    2012-05-01

    Carnosine is a biologically active dipeptide that is found in fish and chicken muscle. Recent studies have revealed that carnosine has neuroprotective activity in zinc-induced neural cell apoptosis and ischemic stroke. In the present study, we examined the expression of carnosine in the spinal cord, and the antinociceptive potency of carnosine in a mouse model of inflammation-induced nociceptive pain. Immunohistochemical studies with antiserum against carnosine showed an abundance of carnosine-immunoreactivity in the dorsal horn of the mouse spinal cord. Double-immunostaining techniques revealed that carnosine was expressed in the neurons and astrocytes in the spinal cord. Oral administration of carnosine attenuated the number of writhing behaviors induced by the intraperitoneal administration of 0.6% acetic acid. Treatment with carnosine also attenuated the second phase, but not the first phase, of the nociceptive response to formalin. Moreover, intrathecal, but not intraplanter, administration of carnosine attenuated the second phase of the nociceptive response to formalin. Our immunohistochemical and behavioral data suggest that carnosine has antinociceptive effects toward inflammatory pain, which may be mediated by the attenuation of nociceptive sensitization in the spinal cord. PMID:22366199

  20. Inhibition of Notch Signaling Ameliorates Acute Kidney Failure and Downregulates Platelet-Derived Growth Factor Receptor β in the Mouse Model.

    Kramer, Jan; Schwanbeck, Ralf; Pagel, Horst; Cakiroglu, Figen; Rohwedel, Jürgen; Just, Ursula

    2016-01-01

    Ischemic acute kidney injury (AKI) is associated with high morbidity and frequent complications. Repeated episodes of AKI may lead to end-stage renal failure. The pathobiology of regeneration in AKI is not well understood and there is no effective clinical therapy that improves regeneration. The Notch signaling pathway plays an essential role in kidney development and has been implicated in tissue repair in the adult kidney. Here, we found that kidneys after experimental AKI in mice showed increased expression of Notch receptors, specifically Notch1-3, of the Notch ligands Jagged-1 (Jag1), Jag2 and Delta-like-4 (Dll4) and of the Notch target genes Hes1, Hey2, HeyL, Sox9 and platelet-derived growth factor receptor β (Pdgfrb). Treatment of ischemic mice with the x03B3;-secretase inhibitor DBZ blocked Notch signaling and specifically downregulated the expression of Notch3 and the Notch target genes Hes1, Hey2, HeyL and Pdgfrb. After DBZ treatment, the mice developed less interstitial edema and displayed altered interstitial inflammation patterns. Furthermore, serum urea and creatinine levels were significantly decreased from 6 h onwards when compared to control mice treated with DMSO only. Our data are consistent with an amelioration of the severity of kidney injury by blocking Notch activation following AKI, and suggest an involvement of Notch-regulated Pdgfrb in AKI pathogenesis. PMID:26939110

  1. Consequences of a human TRPA1 genetic variant on the perception of nociceptive and olfactory stimuli.

    Michael Schütz

    Full Text Available BACKGROUND: TRPA1 ion channels are involved in nociception and are also excited by pungent odorous substances. Based on reported associations of TRPA1 genetics with increased sensitivity to thermal pain stimuli, we therefore hypothesized that this association also exists for increased olfactory sensitivity. METHODS: Olfactory function and nociception was compared between carriers (n = 38 and non-carriers (n = 43 of TRPA1 variant rs11988795 G>A, a variant known to enhance cold pain perception. Olfactory function was quantified by assessing the odor threshold, odor discrimination and odor identification, and by applying 200-ms pulses of H2S intranasal. Nociception was assessed by measuring pain thresholds to experimental nociceptive stimuli (blunt pressure, electrical stimuli, cold and heat stimuli, and 200-ms intranasal pulses of CO2. RESULTS: Among the 11 subjects with moderate hyposmia, carriers of the minor A allele (n = 2 were underrepresented (34 carriers among the 70 normosmic subjects; p = 0.049. Moreover, carriers of the A allele discriminated odors significantly better than non-carriers (13.1±1.5 versus 12.3±1.6 correct discriminations and indicated a higher intensity of the H2S stimuli (29.2±13.2 versus 21±12.8 mm VAS, p = 0.006, which, however, could not be excluded to have involved a trigeminal component during stimulation. Finally, the increased sensitivity to thermal pain could be reproduced. CONCLUSIONS: The findings are in line with a previous association of a human TRPA1 variant with nociceptive parameters and extend the association to the perception of odorants. However, this addresses mainly those stimulants that involve a trigeminal component whereas a pure olfactory effect may remain disputable. Nevertheless, findings suggest that future TRPA1 modulating drugs may modify the perception of odorants.

  2. Phorbol Ester Modulation of Ca2+ Channels Mediates Nociceptive Transmission in Dorsal Horn Neurones

    Gary J. Stephens

    2013-05-01

    Full Text Available Phorbol esters are analogues of diacylglycerol which activate C1 domain proteins, such as protein kinase C (PKC. Phorbol ester/PKC pathways have been proposed as potential therapeutic targets for chronic pain states, potentially by phosphorylating proteins involved in nociception, such as voltage-dependent Ca2+ channels (VDCCs. In this brief report, we investigate the potential involvement of CaV2 VDCC subtypes in functional effects of the phorbol ester, phorbol 12-myristate 13-acetate (PMA on nociceptive transmission in the spinal cord. Effects of PMA and of selective pharmacological blockers of CaV2 VDCC subtypes on nociceptive transmission at laminae II dorsal horn neurones were examined in mouse spinal cord slices. Experiments were extended to CaV2.3(−/− mice to complement pharmacological studies. PMA increased the mean frequency of spontaneous postsynaptic currents (sPSCs in dorsal horn neurones, without an effect on event amplitude or half-width. sPSC frequency was reduced by selective VDCC blockers, w-agatoxin-IVA (AgTX; CaV2.1, w-conotoxin-GVIA (CTX; CaV2.2 or SNX-482 (CaV2.3. PMA effects were attenuated in the presence of each VDCC blocker and, also, in CaV2.3(−/− mice. These initial data demonstrate that PMA increases nociceptive transmission at dorsal horn neurones via actions on different CaV2 subtypes suggesting potential anti-nociceptive targets in this system.

  3. Notch and NF-kB signaling pathways regulate miR-223/FBXW7 axis in T-cell acute lymphoblastic leukemia.

    Kumar, V; Palermo, R; Talora, C; Campese, A F; Checquolo, S; Bellavia, D; Tottone, L; Testa, G; Miele, E; Indraccolo, S; Amadori, A; Ferretti, E; Gulino, A; Vacca, A; Screpanti, I

    2014-12-01

    Notch signaling deregulation is linked to the onset of several tumors including T-cell acute lymphoblastic leukemia (T-ALL). Deregulated microRNA (miRNA) expression is also associated with several cancers, including leukemias. However, the transcriptional regulators of miRNAs, as well as the relationships between Notch signaling and miRNA deregulation, are poorly understood. To identify miRNAs regulated by Notch pathway, we performed microarray-based miRNA profiling of several Notch-expressing T-ALL models. Among seven miRNAs, consistently regulated by overexpressing or silencing Notch3, we focused our attention on miR-223, whose putative promoter analysis revealed a conserved RBPjk binding site, which was nested to an NF-kB consensus. Luciferase and chromatin immunoprecipitation assays on the promoter region of miR-223 show that both Notch and NF-kB are novel coregulatory signals of miR-223 expression, being able to activate cooperatively the transcriptional activity of miR-223 promoter. Notably, the Notch-mediated activation of miR-223 represses the tumor suppressor FBXW7 in T-ALL cell lines. Moreover, we observed the inverse correlation of miR-223 and FBXW7 expression in a panel of T-ALL patient-derived xenografts. Finally, we show that miR-223 inhibition prevents T-ALL resistance to γ-secretase inhibitor (GSI) treatment, suggesting that miR-223 could be involved in GSI sensitivity and its inhibition may be exploited in target therapy protocols. PMID:24727676

  4. IGF1R Derived PI3K/AKT Signaling Maintains Growth in a Subset of Human T-Cell Acute Lymphoblastic Leukemias.

    Gusscott, Samuel; Jenkins, Catherine E; Lam, Sonya H; Giambra, Vincenzo; Pollak, Michael; Weng, Andrew P

    2016-01-01

    Insulin-like growth factor 1 receptor (IGF1R) is a prevalent signaling pathway in human cancer that supports cell growth/survival and thus contributes to aggressive biological behavior. Much work has gone into development of IGF1R inhibitors; however, candidate agents including small molecule tyrosine kinase inhibitors and blocking antibodies have yet to fulfill their promise clinically. Understanding cellular features that define sensitivity versus resistance are important for effective patient selection and anticipation of outgrowth of a resistant clone. We previously identified an important role for IGF signaling in T-cell acute lymphoblastic leukemia (T-ALL) relying primarily upon genetically defined mouse models. We present here an assessment of IGF1R dependence in human T-ALL using a broad panel of 27 established cell lines that capture a spectrum of the genetic variation that might be encountered in clinical practice. We observed that a subset of cell lines are sensitive to IGF1R inhibition and are characterized by high levels of surface IGF1R expression and PTEN positivity. Interestingly, lentiviral expression or knock-down of PTEN in PTEN-negative/positive cell lines, respectively, had limited effects on their response to IGF1R inhibition, suggesting that PTEN contributes to, but does not define IGF dependence. Additionally, we characterize downstream PI3K/AKT signaling as dominant over RAS/RAF/MEK/ERK in mediating growth and/or survival in this context. Finally, we demonstrate that IGF and interleukin-7 (IL-7) fulfill non-overlapping roles in supporting T-ALL growth. These findings are significant in that they reveal cellular features and downstream mechanisms that may determine the response of an individual patient's tumor to IGF1R inhibitor therapy. PMID:27532210

  5. Prevention by Regular Exercise of Acute Sleep Deprivation-Induced Impairment of Late Phase LTP and Related Signaling Molecules in the Dentate Gyrus.

    Zagaar, Munder A; Dao, An T; Alhaider, Ibrahim A; Alkadhi, Karim A

    2016-07-01

    The dentate gyrus (DG) and CA1 regions of the hippocampus are intimately related physically and functionally, yet they react differently to insults. The purpose of this study was to determine the protective effects of regular treadmill exercise on late phase long-term potentiation (L-LTP) and its signaling cascade in the DG region of the hippocampus of rapid eye movement (REM) sleep-deprived rats. Adult Wistar rats ran on treadmills for 4 weeks then were acutely sleep deprived for 24 h using the modified multiple platform method. After sleep deprivation, the rats were anesthetized and L-LTP was induced in the DG region. Extracellular field potentials from the DG were recorded in vivo, and levels of L-LTP-related signaling proteins were assessed both before and after L-LTP expression using immunoblot analysis. Sleep deprivation reduced the basal levels of phosphorylated cAMP response element-binding protein (P-CREB) as well as other upstream modulators including calcium/calmodulin kinase IV (CaMKIV) and brain-derived neurotrophic factor (BDNF) in the DG of the hippocampus. Regular exercise prevented impairment of the basal levels of P-CREB and total CREB as well as those of CaMKIV in sleep-deprived animals. Furthermore, regular exercise prevented sleep deprivation-induced inhibition of L-LTP and post-L-LTP downregulation of P-CREB and BDNF levels in the DG. The current findings show that our exercise regimen prevents sleep deprivation-induced deficits in L-LTP as well as the basal and poststimulation levels of key signaling molecules. PMID:25902862

  6. Roles of Proton-Sensing Receptors in the Transition from Acute to Chronic Pain.

    Sun, W H; Chen, C C

    2016-02-01

    Chronic pain, when not effectively treated, is a leading health and socioeconomic problem and has a harmful effect on all aspects of health-related quality of life. Therefore, understanding the molecular mechanism of how pain transitions from the acute to chronic phase is essential for developing effective novel analgesics. Accumulated evidence has shown that the transition from acute to chronic pain is determined by a cellular signaling switch called hyperalgesic priming, which occurs in primary nociceptive afferents. The hyperalgesic priming is triggered by inflammatory mediators and is involved in a signal switch from protein kinase A (PKA) to protein kinase Cε (PKCε) located in both isolectin B4 (IB4)-positive (nonpeptidergic) and IB4-negative (peptidergic) nociceptors. Acidosis may be the decisive factor regulating the PKA-to-PKCε signal switch in a proton-sensing G-protein-coupled receptor-dependent manner. Protons can also induce the hyperalgesic priming in IB4-negative muscle nociceptors in a PKCε-independent manner. Acid-sensing ion channel 3 (ASIC3) and transient receptor potential/vanilloid receptor subtype 1 (TRPV1) are 2 major acid sensors involved in the proton-induced hyperalgesic priming. The proton-induced hyperalgesic priming in muscle afferents can be prevented by a substance P-mediated signaling pathway. In this review, we summarize the factors that modulate hyperalgesic priming in both IB4-positive and IB4-negative nociceptors and discuss the role of acid signaling in inflammatory and noninflammatory pain as well as orofacial muscle pain. PMID:26597969

  7. The G Protein regulators EGL-10 and EAT-16, the Giα GOA-1 and the Gqα EGL-30 modulate the response of the C. elegans ASH polymodal nociceptive sensory neurons to repellents

    Di Schiavi Elia

    2010-11-01

    Full Text Available Abstract Background Polymodal, nociceptive sensory neurons are key cellular elements of the way animals sense aversive and painful stimuli. In Caenorhabditis elegans, the polymodal nociceptive ASH sensory neurons detect aversive stimuli and release glutamate to generate avoidance responses. They are thus useful models for the nociceptive neurons of mammals. While several molecules affecting signal generation and transduction in ASH have been identified, less is known about transmission of the signal from ASH to downstream neurons and about the molecules involved in its modulation. Results We discovered that the regulator of G protein signalling (RGS protein, EGL-10, is required for appropriate avoidance responses to noxious stimuli sensed by ASH. As it does for other behaviours in which it is also involved, egl-10 interacts genetically with the Go/iα protein GOA-1, the Gqα protein EGL-30 and the RGS EAT-16. Genetic, behavioural and Ca2+ imaging analyses of ASH neurons in live animals demonstrate that, within ASH, EGL-10 and GOA-1 act downstream of stimulus-evoked signal transduction and of the main transduction channel OSM-9. EGL-30 instead appears to act upstream by regulating Ca2+ transients in response to aversive stimuli. Analysis of the delay in the avoidance response, of the frequency of spontaneous inversions and of the genetic interaction with the diacylglycerol kinase gene, dgk-1, indicate that EGL-10 and GOA-1 do not affect signal transduction and neuronal depolarization in response to aversive stimuli but act in ASH to modulate downstream transmission of the signal. Conclusions The ASH polymodal nociceptive sensory neurons can be modulated not only in their capacity to detect stimuli but also in the efficiency with which they respond to them. The Gα and RGS molecules studied in this work are conserved in evolution and, for each of them, mammalian orthologs can be identified. The discovery of their role in the modulation of signal

  8. Histological changes and antioxidant enzyme activity in signal crayfish (Pacifastacus leniusculus) associated with sub-acute peracetic acid exposure.

    Chupani, Latifeh; Zuskova, Eliska; Stara, Alzbeta; Velisek, Josef; Kouba, Antonin

    2016-01-01

    Peracetic acid (PAA) is a powerful disinfectant recently adopted as a therapeutic agent in aquaculture. A concentration of 10 mg L(-1) PAA effectively suppresses zoospores of Aphanomyces astaci, the agent of crayfish plague. To aid in establishing safe therapeutic guideline, the effects of PAA on treated crayfish were investigated through assessment of histological changes and oxidative damage. Adult female signal crayfish Pacifastacus leniusculus (n = 135) were exposed to 2 mg L(-1) and 10 mg L(-1) of PAA for 7 days followed by a 7 day recovery period in clean water. Superoxide dismutase activity was significantly lower in gill and hepatopancreas after three days exposure to 10 mg L(1) PAA than in the group treated with 2 mg L(-1) PAA and a control in only clean water. Catalase activity in gill and hepatopancreas remained unaffected by both exposures. Glutathione reductase was significantly decreased in gill of 10 mg L(-1) PAA treated crayfish and increased in group exposed to 2 mg L(-1) compared to control after 7 days exposure. Antioxidant enzyme activity in exposed groups returned to control values after recovery period. Gill, hepatopancreas, and antennal gland showed slight damage in crayfish treated with 2 mg L(-1) of PAA compared to the control group. The extent and frequency of histological alterations were more pronounced in animals exposed to 10 mg L(-1). The gill was the most affected organ, infiltrated by granular hemocytes and displaying malformations of lamella tips and disorganization of epithelial cells. After a 7 day recovery period, the infiltrating cells in affected tissues of the exposed crayfish began to return to normal levels. Results suggested that the given concentrations could be applied to signal crayfish against crayfish plague agent in aquaculture; however, further studies are required for safe use. PMID:26611721

  9. Cell signaling-based classifier predicts response to induction therapy in elderly patients with acute myeloid leukemia.

    Alessandra Cesano

    Full Text Available Single-cell network profiling (SCNP data generated from multi-parametric flow cytometry analysis of bone marrow (BM and peripheral blood (PB samples collected from patients >55 years old with non-M3 AML were used to train and validate a diagnostic classifier (DXSCNP for predicting response to standard induction chemotherapy (complete response [CR] or CR with incomplete hematologic recovery [CRi] versus resistant disease [RD]. SCNP-evaluable patients from four SWOG AML trials were randomized between Training (N = 74 patients with CR, CRi or RD; BM set = 43; PB set = 57 and Validation Analysis Sets (N = 71; BM set = 42, PB set = 53. Cell survival, differentiation, and apoptosis pathway signaling were used as potential inputs for DXSCNP. Five DXSCNP classifiers were developed on the SWOG Training set and tested for prediction accuracy in an independent BM verification sample set (N = 24 from ECOG AML trials to select the final classifier, which was a significant predictor of CR/CRi (area under the receiver operating characteristic curve AUROC = 0.76, p = 0.01. The selected classifier was then validated in the SWOG BM Validation Set (AUROC = 0.72, p = 0.02. Importantly, a classifier developed using only clinical and molecular inputs from the same sample set (DXCLINICAL2 lacked prediction accuracy: AUROC = 0.61 (p = 0.18 in the BM Verification Set and 0.53 (p = 0.38 in the BM Validation Set. Notably, the DXSCNP classifier was still significant in predicting response in the BM Validation Analysis Set after controlling for DXCLINICAL2 (p = 0.03, showing that DXSCNP provides information that is independent from that provided by currently used prognostic markers. Taken together, these data show that the proteomic classifier may provide prognostic information relevant to treatment planning beyond genetic mutations and traditional prognostic factors in elderly AML.

  10. Sleeping Beauty transposon screen identifies signaling modules that cooperate with STAT5 activation to induce B-cell acute lymphoblastic leukemia.

    Heltemes-Harris, L M; Larson, J D; Starr, T K; Hubbard, G K; Sarver, A L; Largaespada, D A; Farrar, M A

    2016-06-30

    Signal transducer and activator of transcription 5 (STAT5) activation occurs frequently in human progenitor B-cell acute lymphoblastic leukemia (B-ALL). To identify gene alterations that cooperate with STAT5 activation to initiate leukemia, we crossed mice expressing a constitutively active form of STAT5 (Stat5b-CA) with mice in which a mutagenic Sleeping Beauty transposon (T2/Onc) was mobilized only in B cells. Stat5b-CA mice typically do not develop B-ALL (<2% penetrance); in contrast, 89% of Stat5b-CA mice in which the T2/Onc transposon had been mobilized died of B-ALL by 3 months of age. High-throughput sequencing approaches were used to identify genes frequently targeted by the T2/Onc transposon; these included Sos1 (74%), Kdm2a (35%), Jak1 (26%), Bmi1 (19%), Prdm14 or Ncoa2 (13%), Cdkn2a (10%), Ikzf1 (8%), Caap1 (6%) and Klf3 (6%). Collectively, these mutations target three major cellular processes: (i) the Janus kinase/STAT5 pathway (ii) progenitor B-cell differentiation and (iii) the CDKN2A tumor-suppressor pathway. Transposon insertions typically resulted in altered expression of these genes, as well as downstream pathways including STAT5, extracellular signal-regulated kinase (Erk) and p38. Importantly, expression of Sos1 and Kdm2a, and activation of p38, correlated with survival, further underscoring the role these genes and associated pathways have in B-ALL. PMID:26500062

  11. Application of a handheld Pressure Application Measurement device for the characterisation of mechanical nociceptive thresholds in intact pig tails

    Di Giminiani, Pierpaolo; Sandercock, Dale A.; Malcolm, Emma M.;

    2016-01-01

    as tail docking or tail biting. The Pressure Application Measurement (PAM) device is used here for the first time on the tail of pigs to determine the reliability of the methods and to provide novel data on mechanical nociceptive thresholds (MNT) associated with four different age groups (9, 17, 24...... measurement of mechanical nociceptive threshold in pig tails. This methodological approach is possibly suitable for assessing changes in tail stump MNTs after tail injury caused by tail docking and biting.......The assessment of nociceptive thresholds is employed in animals and humans to evaluate changes in sensitivity potentially arising from tissue damage. Its application on the intact pig tail might represent a suitable method to assess changes in nociceptive thresholds arising from tail injury, such...

  12. LukS-PV induces differentiation by activating the ERK signaling pathway and c-JUN/c-FOS in human acute myeloid leukemia cells.

    Dai, Chunyang; Zhang, Chengfang; Sun, Xiaoxi; Pan, Qing; Peng, Jing; Shen, Jilong; Ma, Xiaoling

    2016-07-01

    LukS-PV, a component of Panton-Valentine leukocidin, is a pore-forming cytotoxin secreted by Staphylococcus aureus. Here we examined the potential effect of LukS-PV in differentiation of human leukemia cells and the underlying mechanism. We found that LukS-PV could induce differentiation of human acute myeloid leukemia (AML) cells, including AML cell lines and primary AML blasts, as determined by morphological changes, phagocytosis assay and expression of CD14 and CD11b surface antigens. In addition, LukS-PV activated the extracellular signal-regulated kinase (ERK) pathway and significantly upregulated the phosphorylation of c-JUN and c-FOS transcriptional factors in the process of differentiation. Inhibiting ERK pathway activation with U0126 (a MEK1/2 inhibitor) markedly blocked LukS-PV-induced differentiation and decreased the phosphorylation of c-JUN and c-FOS. These findings demonstrate an essential role for the ERK pathway together with c-JUN and c-FOS in the differentiation activity of LukS-PV. Taken together, our data suggest that LukS-PV could be a potential candidate as a differentiation-inducing agent for the therapeutic treatment of AML. PMID:27102414

  13. The oncofusion protein FUS-ERG targets key hematopoietic regulators and modulates the all-trans retinoic acid signaling pathway in t(16;21) acute myeloid leukemia.

    Sotoca, A M; Prange, K H M; Reijnders, B; Mandoli, A; Nguyen, L N; Stunnenberg, H G; Martens, J H A

    2016-04-14

    The ETS transcription factor ERG has been implicated as a major regulator of both normal and aberrant hematopoiesis. In acute myeloid leukemias harboring t(16;21), ERG function is deregulated due to a fusion with FUS/TLS resulting in the expression of a FUS-ERG oncofusion protein. How this oncofusion protein deregulates the normal ERG transcription program is unclear. Here, we show that FUS-ERG acts in the context of a heptad of proteins (ERG, FLI1, GATA2, LYL1, LMO2, RUNX1 and TAL1) central to proper expression of genes involved in maintaining a stem cell hematopoietic phenotype. Moreover, in t(16;21) FUS-ERG co-occupies genomic regions bound by the nuclear receptor heterodimer RXR:RARA inhibiting target gene expression and interfering with hematopoietic differentiation. All-trans retinoic acid treatment of t(16;21) cells as well as FUS-ERG knockdown alleviate the myeloid-differentiation block. Together, the results suggest that FUS-ERG acts as a transcriptional repressor of the retinoic acid signaling pathway. PMID:26148230

  14. A newly synthesized macakurzin C-derivative attenuates acute and chronic skin inflammation: The Nrf2/heme oxygenase signaling as a potential target.

    Akram, Muhammad; Shin, Iljin; Kim, Kyeong-A; Noh, Dabi; Baek, Seung-Hoon; Chang, Sun-Young; Kim, Hyoungsu; Bae, Ok-Nam

    2016-09-15

    Impaired immune responses in skin play a pivotal role in the development and progression of chemical-associated inflammatory skin disorders. In this study, we synthesized new flavonoid derivatives from macakurzin C, and identified in vitro and in vivo efficacy of a potent anti-inflammatory flavonoid, Compound 14 (CPD 14), with its underlying mechanisms. In lipopolysaccharide (LPS)-stimulated murine macrophages and IFN-γ/TNF-α-stimulated human keratinocytes, CPD 14 significantly inhibited the release of inflammatory mediators including nitric oxide (NO), prostaglandins, and cytokines (IC50 for NO inhibition in macrophages: 4.61μM). Attenuated NF-κB signaling and activated Nrf2/HO-1 pathway were responsible for the anti-inflammatory effects of CPD 14. The in vivo relevance was examined in phorbol 12-myristate 13-acetate (TPA)-induced acute skin inflammation and oxazolone-induced atopic dermatitis models. Topically applied CPD 14 significantly protected both irritation- and sensitization-associated skin inflammation by suppressing the expression of inflammatory mediators. In summary, we demonstrated that a newly synthesized flavonoid, CPD 14, has potent inhibitory effects on skin inflammation, suggesting it is a potential therapeutic candidate to treat skin disorders associated with excessive inflammation. PMID:27450019

  15. Targeting PML-RARα and Oncogenic Signaling Pathways by Chinese Herbal Mixture Tien-Hsien Liquid in Acute Promyelocytic Leukemia NB4 Cells

    Chih-Jung Yao

    2011-01-01

    Full Text Available Tien-Hsien Liquid (THL is a Chinese herbal mixture that has been used worldwide as complementary treatment for cancer patients in the past decade. Recently, THL has been shown to induce apoptosis in various types of solid tumor cells in vitro. However, the underlying molecular mechanisms have not yet been well elucidated. In this study, we explored the effects of THL on acute promyelocytic leukemia (APL NB4 cells, which could be effectively treated by some traditional Chinese remedies containing arsenic trioxide. The results showed THL could induce G2/M arrest and apoptosis in NB4 cells. Accordingly, the decrease of cyclin A and B1 were observed in THL-treated cells. The THL-induced apoptosis was accompanied with caspase-3 activation and decrease of PML-RARα fusion protein. Moreover, DNA methyltransferase 1 and oncogenic signaling pathways such as Akt/mTOR, Stat3 and ERK were also down-regulated by THL. By using ethyl acetate extraction and silica gel chromatography, an active fraction of THL named as EAS5 was isolated. At about 0.5–1% of the dose of THL, EAS5 appeared to have most of THL-induced multiple molecular targeting effects in NB4 cells. Based on the findings of these multi-targeting effects, THL might be regarding as a complementary and alternative therapeutic agent for refractory APL.

  16. TRPV currents and their role in the nociception and neuroplasticity.

    Satheesh, Noothan Jyothi; Uehara, Yoshio; Fedotova, Julia; Pohanka, Miroslav; Büsselberg, Dietrich; Kruzliak, Peter

    2016-06-01

    Transient receptor potential channels sensitive to vanilloids (TRPVs) are group of ion channels which are sensitive to various tissue damaging signals and their activation is generally perceived as pain. Therefore, they are generally named as nociceptors. Understanding their activation and function as well as their interaction with intracellular pathways is crucial for the development of pharmacological interference in order to reduce pain perception. The current review summarizes basic facts in regard to TRPV and discusses their relevance in the sensing of (pain-) signals and their intracellular processing, focussing on their modulation of the intracellular calcium ([Ca(2+)]i) signal. Furthermore we discuss the basic mechanisms how the modification of [Ca(2+)]i through TRPV might induce long-term-potentiation (LTP) or long-term- depression (LTD) and from "memories" of pain. Understanding of these mechanisms is needed to localize the best point of interference for pharmacological treatment. Therefore, high attention is given to highlight physiological and pathological processes and their interaction with significant modulators and their roles in neuroplasticity and pain modulation. PMID:26825374

  17. Lumbar spinal anesthesia with cervical nociceptive blockade. Critical review of a series of 1,330 procedures

    Percio Ramón Becker Benitez; Celso Schmalfuss Nogueira; Ana Cristina Carvalho de Holanda; José Caio Santos

    2016-01-01

    BACKGROUND AND OBJECTIVES: The manufacture of minimally traumatic needles and synthesis of pharmacological adjuncts with safe and effective action on inhibitory and neuromodulatory synapses distributed along the nociceptive pathways were crucial for a new expansion phase of spinal anesthesia. The objectives of this paper are present our clinical experience with 1330 lumbar spinal anesthesia performed with purposeful nociceptive blockade of the thoracic and cervical spinal nerves correspondin...

  18. Self-reported sleep duration associated with distraction analgesia, hyperemia, and secondary hyperalgesia in the heat-capsaicin nociceptive model

    Campbell, Claudia M.; Bounds, Sara C.; Simango, Mpepera B.; Witmer, Kenneth R.; Campbell, James N.; Edwards, Robert R.; Haythornthwaite, Jennifer A; Smith, Michael T.

    2010-01-01

    Although sleep deprivation is known to heighten pain sensitivity, the mechanisms by which sleep modifies nociception are largely unknown. Few studies of sleep-pain interactions have utilized quantitative sensory testing models that implicate specific underlying physiologic mechanisms. One possibility, which is beginning to receive attention, is that differences in sleep may alter the analgesic effects of distraction. We utilized the heat-capsaicin nociceptive model to examine whether self-rep...

  19. Possible involvement of convergent nociceptive input to medullary dorsal horn neurons in intraoral hyperalgesia following peripheral nerve injury.

    Terayama, Ryuji; Tsuchiya, Hiroki; Omura, Shinji; Maruhama, Kotaro; Mizutani, Masahide; Iida, Seiji; Sugimoto, Tomosada

    2015-04-01

    Previous studies demonstrated that the number of c-Fos protein-like immunoreactive (c-Fos-IR) neurons in the medullary dorsal horn (MDH) evoked by noxious stimulation was increased after peripheral nerve injury, and such increase has been proposed to reflect the development of neuropathic pain state. The aim of this study was to examine the MDH for convergent collateral primary afferent input to second order neurons deafferented by peripheral nerve injury, and to explore a possibility of its contribution to the c-Fos hyperinducibility. Double immunofluorescence labeling for c-Fos and phosphorylated extracellular signal-regulated kinase (p-ERK) was performed to detect convergent synaptic input. c-Fos expression and the phosphorylation of ERK were induced by the intraoral application of capsaicin and by electrical stimulation of the inferior alveolar nerve (IAN), respectively. The number of c-Fos-IR neurons in the MDH induced by the intraoral application of capsaicin was increased after IAN injury, whereas the number of p-ERK immunoreactive neurons remained unchanged. The number of double-labeled neurons, that presumably received convergent primary afferent input from the lingual nerve and the IAN, was significantly increased after IAN injury. These results indicated that convergent primary nociceptive input through neighboring intact nerves may contribute to the c-Fos hyperinducibility in the MDH and the pathogenesis of neuropathic pain following trigeminal nerve injury. PMID:25407627

  20. Partial involvement of NMDA receptors and glial cells in the nociceptive behaviors induced by intrathecally administered histamine.

    Mizoguchi, Hirokazu; Komatsu, Takaaki; Iwata, Yoko; Watanabe, Chizuko; Watanabe, Hiroyuki; Orito, Tohru; Katsuyama, Soh; Yonezawa, Akihiko; Onodera, Kenji; Sakurada, Tsukasa; Sakurada, Shinobu

    2011-05-16

    The involvement of spinal glial cells in the nociceptive behaviors induced by 800 pmol of histamine was determined in mice. Histamine at 800 pmol injected intrathecally (i.t.) produced nociceptive behaviors, consisting of scratching, biting and licking. The nociceptive behaviors induced by histamine were significantly suppressed by i.t. co-administration with tachykinin NK(1) receptor antagonist CP99,994 or competitive antagonist for N-methyl-d-aspartate (NMDA) receptor d-(-)-2-amino-5-phosphonovaleric acid (d-APV). The i.t. pretreatment with the glial cell inhibitor dl-fluorocitric acid or minocycline failed to affect the nociceptive behaviors induced by histamine. However, in mice pretreated i.t. with dl-fluorocitric acid or minocycline, the nociceptive behaviors induced by histamine were significantly suppressed by i.t. co-administration with CP99,994 but not d-APV. In Western blot analysis using lumbar spinal cords, i.t. treatment with 800 pmol of histamine increased the phosphorylation of the NR1 subunit of NMDA receptors. The increased phosphorylation of the NR1 subunit of NMDA receptors by histamine was abolished by i.t. pretreatment with dl-fluorocitric acid or minocycline. The present results suggest that histamine at 800 pmol elicits nociceptive behaviors through activation of the neuronal NK(1) receptor and the NR1 subunit-containing NMDA receptors on glial cells in the spinal cord. PMID:21352890

  1. Neural correlates of heterotopic facilitation induced after high frequency electrical stimulation of nociceptive pathways

    van Rijn Clementina M; van Heck Casper H; van den Broeke Emanuel N; Wilder-Smith Oliver HG

    2011-01-01

    Abstract Background High frequency electrical stimulation (HFS) of primary nociceptive afferents in humans induce a heightened sensitivity in the surrounding non-stimulated skin area. Several studies suggest that this heterotopic effect is the result of central (spinal) plasticity. The aim of this study is to investigate HFS-induced central plasticity of sensory processing at the level of the brain using the electroencephalogram (EEG). To this end we measured evoked potentials in response to ...

  2. Contributions of calcitonin gene-related peptide in ischemia, inflammation and nociception

    Brodda Jansen, Gunilla

    1996-01-01

    The sensory neuropeptide Calcitonin gene-related peptide (CGRP) is a very potent vaso- dilator with a wide distribution in peripheral sensory nerves, often co-stored with sub- stance P. In the present study, the effects of CGRP in different models of ischemia, inflammation and nociception were examined. Calcitonin gene-related peptide, but not substance P (SP), was found to inhibit edema-promoting actions of inflammatory mediators (histamine, leukotrine B4, 5-hydroxytryp...

  3. Changes in peripheral innervation and nociception in reticular type and erosive type of oral lichen planus

    Siriporn Chattipakorn

    2011-01-01

    Full Text Available Background: Oral lichen planus (OLP is a chronic inflammatory lesion in oral mucosa. Reticular (OLP-R and erosive (OLP-E types of OLP are the common forms that have been found in dental clinics. The aim of this investigation is to determine the correlation between neurogenic inflammation and nociception associated with OLP-R and OLP-E. Materials and Methods: The oral mucosal lesions from six patients with OLP-E, four with OLP-R and three with noninflamed oral mucosa, which represent normal mucosa, were identified by morphometric analysis of nerve fibers containing immunoreactive protein gene product (PGP 9.5. The level of inflammation was measured with hematoxylin and eosin staining and the level of nociception was analyzed with visual analog scale measurement. Results: We found that 1 an increase in peripheral innervation was related to the size of the area of inflammatory cell infiltration from both OLP-R and OLP-E; 2 the pattern of PGP 9.5-immunoreactivity among OLP-R and OLP-E was not significantly different (P=0.23; and 3 the correlation between nociception and an increase in PGP 9.5-immunoreactivity was not found in OLP-E and in OLP-R. Conclusions: Our findings suggest that an increase in peripheral innervation may lead to increased inflammation, which is part of the immunopathogenesis of OLP. Differences in nociception between OLP-R and OLP-E arise from the pathogenesis of each lesion, not from the differences in peripheral innervation.

  4. Prostatic Acid Phosphatase Is Expressed in Peptidergic and Nonpeptidergic Nociceptive Neurons of Mice and Rats

    Taylor-Blake, Bonnie; Zylka, Mark J.

    2010-01-01

    Thiamine monophosphatase (TMPase, also known as Fluoride-resistant acid phosphatase or FRAP) is a classic histochemical marker of small- to medium-diameter dorsal root ganglia (DRG) neurons and has primarily been studied in the rat. Previously, we found that TMPase was molecularly identical to Prostatic acid phosphatase (PAP) using mice. In addition, PAP was expressed in a majority of nonpeptidergic, isolectin B4-binding (IB4+) nociceptive neurons and a subset of peptidergic, calcitonin gene-...

  5. Ovariectomy results in variable changes in nociception, mood and depression in adult female rats.

    Li-Hong Li

    Full Text Available Decline in the ovarian hormones with menopause may influence somatosensory, cognitive, and affective processing. The present study investigated whether hormonal depletion alters the nociceptive, depressive-like and learning behaviors in experimental rats after ovariectomy (OVX, a common method to deplete animals of their gonadal hormones. OVX rats developed thermal hyperalgesia in proximal and distal tail that was established 2 weeks after OVX and lasted the 7 weeks of the experiment. A robust mechanical allodynia was also occurred at 5 weeks after OVX. In the 5th week after OVX, dilute formalin (5%-induced nociceptive responses (such as elevating and licking or biting during the second phase were significantly increased as compared to intact and sham-OVX females. However, chronic constriction injury (CCI of the sciatic nerve-induced mechanical allodynia did not differ as hormonal status (e.g. OVX and ovarian intact. Using formalin-induced conditioned place avoidance (F-CPA, which is believed to reflect the pain-related negative emotion, we further found that OVX significantly attenuated F-CPA scores but did not alter electric foot-shock-induced CPA (S-CPA. In the open field and forced swimming test, there was an increase in depressive-like behaviors in OVX rats. There was no detectable impairment of spatial performance by Morris water maze task in OVX rats up to 5 weeks after surgery. Estrogen replacement retrieved OVX-induced nociceptive hypersensitivity and depressive-like behaviors. This is the first study to investigate the impacts of ovarian removal on nociceptive perception, negative emotion, depressive-like behaviors and spatial learning in adult female rats in a uniform and standard way.

  6. Standardization of elektromyographic magnitude and threshold criteria of the nociceptive blink reflex

    Koppe, Peter

    2011-01-01

    To observe narcoses and analgosedation it would be preferable to have an objective measurement for pain evaluation. The nociceptive blink reflex is possibly such an applicative measurement. It is a trigeminofacial brain-stem reflex. We investigated which electromyographic parameter shows the best correlation with subjective pain ratings. Furthermore we investigated which electromyographic parameter shows the highest accuracy and lowest variability to define the blink reflex threshold. The...

  7. Neural correlates of heterotopic facilitation induced after high frequency electrical stimulation of nociceptive pathways

    Broeke, E.N. van den; Heck, C.H. van; Rijn, C.M. van; Wilder-Smith, O.H.G.

    2011-01-01

    Background High frequency electrical stimulation (HFS) of primary nociceptive afferents in humans induce a heightened sensitivity in the surrounding non-stimulated skin area. Several studies suggest that this heterotopic effect is the result of central (spinal) plasticity. The aim of this study is to investigate HFS-induced central plasticity of sensory processing at the level of the brain using the electroencephalogram (EEG). To this end we measured evoked potentials in response to noxious e...

  8. Proteomic Analysis Uncovers Novel Actions of the Neurosecretory Protein VGF in Nociceptive Processing

    Riedl, Maureen S; Braun, Patrick D.; Kitto, Kelley F.; Roiko, Samuel A.; Anderson, Lorraine B.; Honda, Christopher N.; Fairbanks, Carolyn A.; Vulchanova, Lucy

    2009-01-01

    Peripheral tissue injury is associated with changes in protein expression in sensory neurons that may contribute to abnormal nociceptive processing. We used cultured dorsal root ganglion (DRG) neurons as a model of axotomized neurons to investigate early changes in protein expression following nerve injury. Comparing protein levels immediately after DRG dissociation and 24 h later by proteomic differential expression analysis, we found a substantial increase in the levels of the neurotrophin-...

  9. The role of dopamine in a model of trigeminovascular nociception.

    Akerman, S; Goadsby, P J

    2005-07-01

    Migraine is a common, disabling problem with three phases: premonitory, main headache attack, and postdrome. The headache phase is thought to involve activation of trigeminal neurons, whereas the premonitory and postdrome phases may involve dopaminergic mechanisms. In animal studies, dopamine has been found to cause vasodilation of cranial arteries at very low doses. Using intravital microscopy, we examined the effect of dopamine receptor agonists on dural blood vessel caliber and the effect of dopamine and specific dopamine receptor antagonists on trigeminovascular neurogenic dural vasodilation. Dopamine hydrochloride caused a significant vasoconstriction (P blood pressure (P dopamine receptor antagonists. The D1 receptor agonist caused a vasoconstriction (P blood pressure increase (P dopamine receptor antagonists were able to attenuate neurogenic dural vasodilation. Dopamine hydrochloride infusion (P dopamine agonist infusion. This response may be due to the vasoconstrictor effects of the alpha2-adrenoceptor and an action at the D1 receptor. In the intravital model of trigeminal activation, it seems that dopamine receptors do not play a major role and may not present an acute treatment option. Our data do not exclude a role for dopamine receptor modulators in short- or long-term prevention. PMID:15778266

  10. New Insights in Trigeminal Anatomy: A Double Orofacial Tract for Nociceptive Input

    Henssen, Dylan J. H. A.; Kurt, Erkan; Kozicz, Tamas; van Dongen, Robert; Bartels, Ronald H. M. A.; van Cappellen van Walsum, Anne-Marie

    2016-01-01

    Orofacial pain in patients relies on the anatomical pathways that conduct nociceptive information, originating from the periphery towards the trigeminal sensory nucleus complex (TSNC) and finally, to the thalami and the somatosensorical cortical regions. The anatomy and function of the so-called trigeminothalamic tracts have been investigated before. In these animal-based studies from the previous century, the intracerebral pathways were mapped using different retro- and anterograde tracing methods. We review the literature on the trigeminothalamic tracts focusing on these animal tracer studies. Subsequently, we related the observations of these studies to clinical findings using fMRI trials. The intracerebral trigeminal pathways can be subdivided into three pathways: a ventral (contralateral) and dorsal (mainly ipsilateral) trigeminothalamic tract and the intranuclear pathway. Based on the reviewed evidence we hypothesize the co-existence of an ipsilateral nociceptive conduction tract to the cerebral cortex and we translate evidence from animal-based research to the human anatomy. Our hypothesis differs from the classical idea that orofacial pain arises only from nociceptive information via the contralateral, ventral trigeminothalamic pathway. Better understanding of the histology, anatomy and connectivity of the trigeminal fibers could contribute to the discovery of a more effective pain treatment in patients suffering from various orofacial pain syndromes.