WorldWideScience

Sample records for acute ischemia-reperfusion model

  1. Unilateral Renal Ischemia-Reperfusion as a Robust Model for Acute to Chronic Kidney Injury in Mice.

    Nathalie Le Clef

    Full Text Available Acute kidney injury (AKI is an underestimated, yet important risk factor for development of chronic kidney disease (CKD. Even after initial total recovery of renal function, some patients develop progressive and persistent deterioration of renal function and these patients are more likely to progress to end-stage renal disease (ESRD. Animal models are indispensable for unravelling the mechanisms underlying this progression towards CKD and ESRD and for the development of new therapeutic strategies in its prevention or treatment. Ischemia (i.e. hypoperfusion after surgery, bleeding, dehydration, shock, or sepsis is a major aetiology in human AKI, yet unilateral ischemia-reperfusion is a rarely used animal model for research on CKD and fibrosis. Here, we demonstrate in C57Bl/6J mice, by both histology and gene expression, that unilateral ischemia-reperfusion without contralateral nephrectomy is a very robust model to study the progression from acute renal injury to long-term tubulo-interstitial fibrosis, i.e. the histopathological hallmark of CKD. Furthermore, we report that the extent of renal fibrosis, in terms of Col I, TGFβ, CCN2 and CCN3 expression and collagen I immunostaining, increases with increasing body temperature during ischemia and ischemia-time. Thus, varying these two main determinants of ischemic injury allows tuning the extent of the long-term fibrotic outcome in this model. Finally, in order to cover the whole practical finesse of ischemia-reperfusion and allow model and data transfer, we provide a referenced overview on crucial technical issues (incl. anaesthesia, analgesia, and pre- and post-operative care with the specific aim of putting starters in the right direction of implementing ischemia in their research and stimulate them, as well as the community, to have a critical view on ischemic literature data.

  2. Acute and chronic nociceptive phases observed in a rat hind paw ischemia/reperfusion model depend on different mechanisms.

    Klafke, J Z; da Silva, M A; Rossato, M F; de Prá, S Dal Toé; Rigo, F K; Walker, C I B; Bochi, G V; Moresco, R N; Ferreira, J; Trevisan, G

    2016-02-01

    Complex regional pain syndrome type 1 (CRPS1) may be evoked by ischemia/reperfusion, eliciting acute and chronic pain that is difficult to treat. Despite this, the underlying mechanism of CRPS1 has not been fully elucidated. Therefore, the goal of this study is to evaluate the involvement of inflammation, oxidative stress, and the transient receptor potential ankyrin 1 (TRPA1) channel, a chemosensor of inflammation and oxidative substances, in an animal model of chronic post-ischemia pain (CPIP). Male Wistar rats were subjected to 3 h hind paw ischemia/reperfusion (CPIP model). Different parameters of nociception, inflammation, ischemia, and oxidative stress were evaluated at 1 (acute) and 14 (chronic) days after CPIP. The effect of a TRPA1 antagonist and the TRPA1 immunoreactivity were also observed after CPIP. In the CPIP acute phase, we observed mechanical and cold allodynia; increased levels of tumor necrosis factor-α (hind paw), ischemia-modified albumin (IMA) (serum), protein carbonyl (hind paw and spinal cord), lactate (serum), and 4-hydroxy-2-nonenal (4-HNE, hind paw and spinal cord); and higher myeloperoxidase (MPO) and N-acetyl-β-D-glucosaminidase (NAGase) activities (hind paw). In the CPIP chronic phase, we detected mechanical and cold allodynia and increased levels of IMA (serum), protein carbonyl (hind paw and spinal cord), and 4-HNE (hind paw and spinal cord). TRPA1 antagonism reduced mechanical and cold allodynia 1 and 14 days after CPIP, but no change in TRPA1 immunoreactivity was observed. Different mechanisms underlie acute (inflammation and oxidative stress) and chronic (oxidative stress) phases of CPIP. TRPA1 activation may be relevant for CRPS1/CPIP-induced acute and chronic pain. PMID:26490459

  3. Acute administration of n-3 rich triglyceride emulsions provides cardioprotection in murine models after ischemia-reperfusion.

    Hylde Zirpoli

    Full Text Available Dietary n-3 fatty acids (FAs may reduce cardiovascular disease risk. We questioned whether acute administration of n-3 rich triglyceride (TG emulsions could preserve cardiac function and decrease injury after ischemia/reperfusion (I/R insult. We used two different experimental models: in vivo, C57BL/6 mice were exposed to acute occlusion of the left anterior descending coronary artery (LAD, and ex-vivo, C57BL/6 murine hearts were perfused using Langendorff technique (LT. In the LAD model, mice treated with n-3 TG emulsion (1.5 g/kg body weight, immediately after ischemia and 1 h later during reperfusion, significantly reduced infarct size and maintained cardiac function (p<0.05. In the LT model, administration of n-3 TG emulsion (300 mg TG/100 ml during reperfusion significantly improved functional recovery (p<0.05. In both models, lactate dehydrogenase (LDH levels, as a marker of injury, were significantly reduced by n-3 TG emulsion. To investigate the mechanisms by which n-3 FAs protects hearts from I/R injury, we investigated changes in key pathways linked to cardioprotection. In the ex-vivo model, we showed that n-3 FAs increased phosphorylation of AKT and GSK3β proteins (p<0.05. Acute n-3 TG emulsion treatment also increased Bcl-2 protein level and reduced an autophagy marker, Beclin-1 (p<0.05. Additionally, cardioprotection by n-3 TG emulsion was linked to changes in PPARγ protein expression (p<0.05. Rosiglitazone and p-AKT inhibitor counteracted the positive effect of n-3 TG; GSK3β inhibitor plus n-3 TG significantly inhibited LDH release. We conclude that acute n-3 TG injection during reperfusion provides cardioprotection. This may prove to be a novel acute adjunctive reperfusion therapy after treating patients with myocardial infarction.

  4. Rat Experimental Model of Myocardial Ischemia/Reperfusion Injury: An Ethical Approach to Set up the Analgesic Management of Acute Post-Surgical Pain

    Ciuffreda, M; Tolva, V; Casana, R.; Gnecchi, M; Vanoli, E.; Spazzolini, C; Roughan, J; Calvillo, L

    2014-01-01

    Rationale During the past 30 years, myocardial ischemia/reperfusion injury in rodents became one of the most commonly used model in cardiovascular research. Appropriate pain-prevention appears critical since it may influence the outcome and the results obtained with this model. However, there are no proper guidelines for pain management in rats undergoing thoracic surgery. Accordingly, we evaluated three analgesic regimens in cardiac ischemia/reperfusion injury. This study was strongly focuse...

  5. Intravenous Administration of Cilostazol Nanoparticles Ameliorates Acute Ischemic Stroke in a Cerebral Ischemia/Reperfusion-Induced Injury Model

    Noriaki Nagai

    2015-12-01

    Full Text Available It was reported that cilostazol (CLZ suppressed disruption of the microvasculature in ischemic areas. In this study, we have designed novel injection formulations containing CLZ nanoparticles using 0.5% methylcellulose, 0.2% docusate sodium salt, and mill methods (CLZnano dispersion; particle size 81 ± 59 nm, mean ± S.D., and investigated their toxicity and usefulness in a cerebral ischemia/reperfusion-induced injury model (MCAO/reperfusion mice. The pharmacokinetics of injections of CLZnano dispersions is similar to that of CLZ solutions prepared with 2-hydroxypropyl-β-cyclodextrin, and no changes in the rate of hemolysis of rabbit red blood cells, a model of cell injury, were observed with CLZnano dispersions. In addition, the intravenous injection of 0.6 mg/kg CLZnano dispersions does not affect the blood pressure and blood flow, and the 0.6 mg/kg CLZnano dispersions ameliorate neurological deficits and ischemic stroke in MCAO/reperfusion mice. It is possible that the CLZnano dispersions will provide effective therapy for ischemic stroke patients, and that injection preparations of lipophilic drugs containing drug nanoparticles expand their therapeutic usage.

  6. Heterogeneity of epigenetic changes at ischemia/reperfusion- and endotoxin-induced acute kidney injury genes.

    Mar, Daniel; Gharib, Sina A; Zager, Richard A; Johnson, Ali; Denisenko, Oleg; Bomsztyk, Karol

    2015-10-01

    Aberrant gene expression is a molecular hallmark of acute kidney injury (AKI). As epigenetic processes control gene expression in a cell- and environment-defined manner, understanding the epigenetic pathways that regulate genes altered by AKI may open vital new insights into the complexities of disease pathogenesis and identify possible therapeutic targets. Here we used matrix chromatin immunoprecipitation and integrative analysis to study 20 key permissive and repressive epigenetic histone marks at transcriptionally induced Tnf, Ngal, Kim-1, and Icam-1 genes in mouse models of AKI; unilateral renal ischemia/reperfusion, lipopolysaccharide (LPS), and their synergistically injurious combination. Results revealed unexpected heterogeneity of transcriptional and epigenetic responses. Tnf and Ngal were transcriptionally upregulated in response to both treatments individually, and to combination treatment. Kim-1 was induced by ischemia/reperfusion and Icam-1 by LPS only. Epigenetic alterations at these genes exhibited distinct time-dependent changes that shared some similarities, such as reduction in repressive histone modifications, and also had major ischemia/reperfusion versus endotoxin differences. Thus, diversity of changes at AKI genes in response to different insults indicates involvement of several epigenetic pathways. This could be exploited pharmacologically through rational-drug design to alter the course and improve clinical outcomes of this syndrome. PMID:26061546

  7. Establishment and Evaluation of Rat Acute Kidney Ischemia/Reperfusion Model%大鼠急性肾缺血再灌注损伤模型的建立与评估

    易小敏; 张更; 马帅军; 刘克普; 袁建林

    2011-01-01

    目的:对现有的经腹部切口建立急性肾缺血再灌注损伤动物模型进行改良,探索建立急性肾缺血再灌注损伤模型的新方法.方法:实验组大鼠16例,经背部切口进入腹膜后间隙,游离钳夹双侧肾动脉45 min后开放血流,建立急性肾缺血再灌注损伤模型;伪手术组8例,不夹闭肾动脉,余步骤与实验组相同;对照组8例无处理.术后通过建模成功率、组织病理检查、血肌酐和血尿素氮及氧化应激水平对模型进行评估.结果:实验组l5只成功建立急性肾缺血再灌注损伤模型.术后l天病理检查显示实验组肾组织出现广泛损伤,术后实验组肾小管坏死评分、肾MDA水平、血肌酐及血尿素氮值明显高于对照组(P<0.05).结论:经背部切口钳夹双侧肾动脉可建立稳定的大鼠急性肾缺血再灌注损伤模型.该造模方法简便易行,成功率高,且具备手术切口小、手术时间短及并发症少的优点,建立的模型适合于急性肾损伤的研究.%Objective: To improve current acute kidney ischemia/reperfusion animal model through abdominal incision and investigate a new approach to establish acute kidney ischemia/reperfusion animal model. Methods: Acute rat kidney ischemia/reperfusion model was established by dorsal incision by clamping bilateral renal arteries for 45 min in experimental group (n=16); The same procedure without renal artery clamping was implemented in sham operating group (n=8); No treatment was given to control group (n=8). Established model was assessed by histopathological examining, concentrations of serum creatinine and blood urea nitrogen, and oxidative stress in kidney and success ratio of acute kidney ischemia/reperfusion model establishment. Results: Acute kidney ischemia/reperfusion model was established successfully. There were extensive injuries in experimental group, while kidney morphostructure appeared normal in control group. Tubular injury score, MDA level

  8. Thymoquinone protects end organs from abdominal aorta ischemia/reperfusion injury in a rat model

    Mehmet Salih Aydin

    2015-02-01

    Full Text Available Introduction: Previous studies have demonstrated that thymoquinone has protective effects against ischemia reperfusion injury to various organs like lungs, kidneys and liver in different experimental models. Objective: We aimed to determine whether thymoquinone has favorable effects on lung, renal, heart tissues and oxidative stress in abdominal aorta ischemia-reperfusion injury. Methods: Thirty rats were divided into three groups as sham (n=10, control (n=10 and thymoquinone (TQ treatment group (n=10. Control and TQ-treatment groups underwent abdominal aorta ischemia for 45 minutes followed by a 120-min period of reperfusion. In the TQ-treatment group, thymoquinone was given 5 minutes. before reperfusion at a dose of 20 mg/kg via an intraperitoneal route. Total antioxidant capacity, total oxidative status (TOS, and oxidative stress index (OSI in blood serum were measured and lung, kidney, and heart tissue histopathology were evaluated with light microscopy. Results: Total oxidative status and oxidative stress index activity in blood samples were statistically higher in the control group compared to the sham and TQ-treatment groups (P<0.001 for TOS and OSI. Control group injury scores were statistically higher compared to sham and TQ-treatment groups (P<0.001 for all comparisons. Conclusion: Thymoquinone administered intraperitoneally was effective in reducing oxidative stress and histopathologic injury in an acute abdominal aorta ischemia-reperfusion rat model.

  9. Rat experimental model of myocardial ischemia/reperfusion injury: an ethical approach to set up the analgesic management of acute post-surgical pain.

    Maria Chiara Ciuffreda

    Full Text Available RATIONALE: During the past 30 years, myocardial ischemia/reperfusion injury in rodents became one of the most commonly used model in cardiovascular research. Appropriate pain-prevention appears critical since it may influence the outcome and the results obtained with this model. However, there are no proper guidelines for pain management in rats undergoing thoracic surgery. Accordingly, we evaluated three analgesic regimens in cardiac ischemia/reperfusion injury. This study was strongly focused on 3R's ethic principles, in particular the principle of Reduction. METHODS: Rats undergoing surgery were treated with pre-surgical tramadol (45 mg/kg intra-peritoneal, or carprofen (5 mg/kg sub-cutaneous, or with pre-surgical administration of carprofen followed by 2 post-surgery tramadol injections (multi-modal group. We assessed behavioral signs of pain and made a subjective evaluation of stress and suffering one and two hours after surgery. RESULTS: Multi-modal treatment significantly reduced the number of signs of pain compared to carprofen alone at both the first hour (61±42 vs 123±47; p<0.05 and the second hour (43±21 vs 74±24; p<0.05 post-surgery. Tramadol alone appeared as effective as multi-modal treatment during the first hour, but signs of pain significantly increased one hour later (from 66±72 to 151±86, p<0.05. Carprofen alone was more effective at the second hour post-surgery when signs of pain reduced to 74±24 from 113±40 in the first hour (p<0.05. Stress behaviors during the second hour were observed in only 20% of rats in the multimodal group compared to 75% and 86% in the carprofen and tramadol groups, respectively (p<0.05. CONCLUSIONS: Multi-modal treatment with carprofen and tramadol was more effective in preventing pain during the second hour after surgery compared with both tramadol or carprofen. Our results suggest that the combination of carprofen and tramadol represent the best therapy to prevent animal pain after

  10. Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury

    Chen, Lijuan [Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009 (China); Cardiovascular Disease, Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267 (United States); Wang, Yingjie [Cardiovascular Disease, Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267 (United States); Internal Medicine of Traditional Chinese Medicine, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203 (China); Pan, Yaohua; Zhang, Lan [Cardiovascular Disease, Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267 (United States); Shen, Chengxing [Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai (China); Qin, Gangjian [Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 (United States); Ashraf, Muhammad [Pathology and Lab Med, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267 (United States); Weintraub, Neal [Cardiovascular Disease, Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267 (United States); Ma, Genshan, E-mail: magenshan@hotmail.com [Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009 (China); Tang, Yaoliang, E-mail: tangyg@ucmail.uc.edu [Cardiovascular Disease, Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267 (United States)

    2013-02-15

    Highlights: ► Cardiac progenitor-derived (CPC) Exosomes protect H9C2 from apoptosis in vitro. ► CPC-exosomes protect cardiomyoyctes from MI/R induced apoptosis in vivo. ► CPC-exosomes were taken up by H9C2 with high efficiency using PKH26 labeling. ► miR-451, one of GATA4-responsive miRNA cluster, is enriched in CPC-exosomes. -- Abstract: Background: Cardiac progenitors (CPC) mediate cardioprotection via paracrine effects. To date, most of studies focused on secreted paracrine proteins. Here we investigated the CPC-derived-exosomes on protecting myocardium from acute ischemia/reperfusion (MI/R) injury. Methods and results: CPC were isolated from mouse heart using two-step protocol. Exosomes were purified from conditional medium, and confirmed by electron micrograph and Western blot using CD63 as a marker. qRT-PCR shows that CPC-exosomes have high level expression of GATA4-responsive-miR-451. Exosomes were ex vivo labeled with PKH26, We observed exosomes can be uptaken by H9C2 cardiomyoblasts with high efficiency after 12 h incubation. CPC-exosomes protect H9C2 from oxidative stress by inhibiting caspase 3/7 activation invitro. In vivo delivery of CPC-exosomes in an acute mouse myocardial ischemia/reperfusion model inhibited cardiomyocyte apoptosis by about 53% in comparison with PBS control (p < 0.05). Conclusion: Our results suggest, for the first time, the CPC-exosomes can be used as a therapeutic vehicle for cardioprotection, and highlights a new perspective for using non-cell exosomes for cardiac disease.

  11. Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury

    Highlights: ► Cardiac progenitor-derived (CPC) Exosomes protect H9C2 from apoptosis in vitro. ► CPC-exosomes protect cardiomyoyctes from MI/R induced apoptosis in vivo. ► CPC-exosomes were taken up by H9C2 with high efficiency using PKH26 labeling. ► miR-451, one of GATA4-responsive miRNA cluster, is enriched in CPC-exosomes. -- Abstract: Background: Cardiac progenitors (CPC) mediate cardioprotection via paracrine effects. To date, most of studies focused on secreted paracrine proteins. Here we investigated the CPC-derived-exosomes on protecting myocardium from acute ischemia/reperfusion (MI/R) injury. Methods and results: CPC were isolated from mouse heart using two-step protocol. Exosomes were purified from conditional medium, and confirmed by electron micrograph and Western blot using CD63 as a marker. qRT-PCR shows that CPC-exosomes have high level expression of GATA4-responsive-miR-451. Exosomes were ex vivo labeled with PKH26, We observed exosomes can be uptaken by H9C2 cardiomyoblasts with high efficiency after 12 h incubation. CPC-exosomes protect H9C2 from oxidative stress by inhibiting caspase 3/7 activation invitro. In vivo delivery of CPC-exosomes in an acute mouse myocardial ischemia/reperfusion model inhibited cardiomyocyte apoptosis by about 53% in comparison with PBS control (p < 0.05). Conclusion: Our results suggest, for the first time, the CPC-exosomes can be used as a therapeutic vehicle for cardioprotection, and highlights a new perspective for using non-cell exosomes for cardiac disease

  12. The morphologic changes of remote-organs after acute cerebral ischemia-reperfusion injury in rats and the protective effects of rofecoxib

    YUJuan; QIULi-Ying; ZHOUYu; CHENChong-Hong

    2004-01-01

    AIM: To observe the pathomorphologic changes of major organs in thoracic-abdominal cavity induced by acute cerebral ischemia-reperfusion injury (CIRI and explore the protective effects of rofecoxib. METHODS: The model of local cerebral ischemia-2h/reperfusion -24h was induced by reversible middle cerebral artery occlusion (MCAO in SD rats.

  13. Neuroprotective effects of SMAds in a rat model of cerebral ischemia/reperfusion

    Fang-fang Liu; Chao-ying Liu; Xiao-ping Li; Sheng-zhe Zheng; Qing-quan Li; Qun Liu; Lei Song

    2015-01-01

    Previous studies have shown that up-regulation of transforming growth factorβ1 results in neuroprotective effects. However, the role of the transforming growth factorβ1 downstream molecule, SMAD2/3, following ischemia/reperfusion remains unclear. Here, we investigated the neuroprotective effects of SMAD2/3 by analyzing the relationships between SMAD2/3 expression and cell apoptosis and inlfammation in the brain of a rat model of cerebral ischemia/reperfusion. Levels of SMAD2/3 mRNA were up-regulated in the ischemic penumbra 6 hours after cerebral ischemia/reperfusion, reached a peak after 72 hours and were then decreased at 7 days. Phos-phorylated SMAD2/3 protein levels at the aforementioned time points were consistent with the mRNA levels. Over-expression of SMAD3 in the brains of the ischemia/reperfusion model rats viadelivery of an adeno-associated virus containing the SMAD3 gene could reduce tumor ne-crosis factor-α and interleukin-1β mRNA levels, down-regulate expression of the pro-apoptotic gene, capase-3, and up-regulate expression of the anti-apoptotic protein, Bcl-2. The SMAD3 protein level was negatively correlated with cell apoptosis. These ifndings indicate that SMAD3 exhibits neuroprotective effects on the brain after ischemia/reperfusion through anti-inlfamma-tory and anti-apoptotic pathways.

  14. Neuroprotective effects of SMADs in a rat model of cerebral ischemia/reperfusion

    Fang-fang Liu

    2015-01-01

    Full Text Available Previous studies have shown that up-regulation of transforming growth factor β1 results in neuroprotective effects. However, the role of the transforming growth factor β1 downstream molecule, SMAD2/3, following ischemia/reperfusion remains unclear. Here, we investigated the neuroprotective effects of SMAD2/3 by analyzing the relationships between SMAD2/3 expression and cell apoptosis and inflammation in the brain of a rat model of cerebral ischemia/reperfusion. Levels of SMAD2/3 mRNA were up-regulated in the ischemic penumbra 6 hours after cerebral ischemia/reperfusion, reached a peak after 72 hours and were then decreased at 7 days. Phosphorylated SMAD2/3 protein levels at the aforementioned time points were consistent with the mRNA levels. Over-expression of SMAD3 in the brains of the ischemia/reperfusion model rats via delivery of an adeno-associated virus containing the SMAD3 gene could reduce tumor necrosis factor-α and interleukin-1β mRNA levels, down-regulate expression of the pro-apoptotic gene, capase-3, and up-regulate expression of the anti-apoptotic protein, Bcl-2. The SMAD3 protein level was negatively correlated with cell apoptosis. These findings indicate that SMAD3 exhibits neuroprotective effects on the brain after ischemia/reperfusion through anti-inflammatory and anti-apoptotic pathways.

  15. A New Therapeutic Modality for Acute Myocardial Infarction: Nanoparticle-Mediated Delivery of Pitavastatin Induces Cardioprotection from Ischemia-Reperfusion Injury via Activation of PI3K/Akt Pathway and Anti-Inflammation in a Rat Model

    Kazuhiro Nagaoka; Tetsuya Matoba; Yajing Mao; Yasuhiro Nakano; Gentaro Ikeda; Shizuka Egusa; Masaki Tokutome; Ryoji Nagahama; Kaku Nakano; Kenji Sunagawa; Kensuke Egashira

    2015-01-01

    Aim There is an unmet need to develop an innovative cardioprotective modality for acute myocardial infarction (AMI), for which the effectiveness of interventional reperfusion therapy is hampered by myocardial ischemia-reperfusion (IR) injury. Pretreatment with statins before ischemia is shown to reduce MI size in animals. However, no benefit was found in animals and patients with AMI when administered at the time of reperfusion, suggesting insufficient drug targeting into the IR myocardium. H...

  16. Pharmacological protection of mitochondrial function mitigates acute limb ischemia/reperfusion injury.

    Bi, Wei; Bi, Yue; Gao, Xiang; Yan, Xin; Zhang, Yanrong; Harris, Jackie; Legalley, Thomas D; Gibson, K Michael; Bi, Lanrong

    2016-08-15

    We describe several novel curcumin analogues that possess both anti-inflammatory antioxidant properties and thrombolytic activities. The therapeutic efficacy of these curcumin analogues was verified in a mouse ear edema model, a rat arterial thrombosis assay, a free radical scavenging assay performed in PC12 cells, and in both in vitro and in vivo ischemia/reperfusion models. Our findings suggest that their protective effects partially reside in maintenance of optimal mitochondrial function. PMID:27390069

  17. Protective effect of rhMG53 protein on a focal cerebral ischemia/reperfusion in a rat model

    Yong-gang YAO

    2014-08-01

    Full Text Available Objective To identify the protective effect of rhMG53 (exogenous recombinant human MG53 protein on focal cerebral ischemia/reperfusion injury in a rat model. Methods The cerebral ischemia reperfusion model was reproduced in SD rats using middle cerebral artery occlusion (MCAO method, and the rats were then randomly divided into sham operation group, ischemia reperfusion group, and ischemia reperfusion+rhMG53 group (n=7. The Zea-Longa score of nervous system, brain tissue TTC staining and pathological sections were observed. Result Compared with the ischemia reperfusion group, nerve dysfunction was improved obviously in ischemia reperfusion+rhMG53 group. The area of cerebral infarction was reduced, and the extent of brain tissue necrosis was alleviated. Furthermore, the protective effect showed a relation with the treatment time. The time-window of effective protection of exogenous rhMG53 on cerebral ischemia reperfusion injury was within 4 hours. Conclusion The exogenous rhMG53 may have an effective protective effect on focal cerebral ischemia reperfusion injury. DOI: 10.11855/j.issn.0577-7402.2014.06.03

  18. Chapter 7. Mouse models of ischemic angiogenesis and ischemia-reperfusion injury.

    Greenberg, Joshua I; Suliman, Ahmed; Barillas, Samuel; Angle, Niren

    2008-01-01

    Ischemia and ischemia-reperfusion (I/R) events are distinct but interrelated processes etiologic to the most prevalent human diseases. A delicate balance exists whereby ischemic injury can result in beneficial angiogenesis or in detrimental reperfusion injury overwhelming the organism. Here, we describe in vivo models of ischemia and ischemia-reperfusion injury with emphasis on murine hindlimb ischemia models. We also provide a brief introduction to murine myocardial ischemia experiments. Each model is described in the context of human disease. Emphasis is made on the strengths and weaknesses of the available techniques, particularly as it relates to data analysis, interpretation, and translational relevance. PMID:19007664

  19. Tramadol Alleviates Myocardial Injury Induced by Acute Hindlimb Ischemia Reperfusion in Rats

    Takhtfooladi, Hamed Ashrafzadeh; Asl, Adel Haghighi Khiabanian [Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Shahzamani, Mehran [Department of Cardiovascular Surgery, Isfahan University of Medical Sciences, Tehran (Iran, Islamic Republic of); Takhtfooladi, Mohammad Ashrafzadeh, E-mail: dr-ashrafzadeh@yahoo.com [Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Allahverdi, Amin [Department of Surgery, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Khansari, Mohammadreza [Department of Physiology, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-08-15

    Organ injury occurs not only during periods of ischemia but also during reperfusion. It is known that ischemia reperfusion (IR) causes both remote organ and local injuries. This study evaluated the effects of tramadol on the heart as a remote organ after acute hindlimb IR. Thirty healthy mature male Wistar rats were allocated randomly into three groups: Group I (sham), Group II (IR), and Group III (IR + tramadol). Ischemia was induced in anesthetized rats by left femoral artery clamping for 3 h, followed by 3 h of reperfusion. Tramadol (20 mg/kg, intravenous) was administered immediately prior to reperfusion. At the end of the reperfusion, animals were euthanized, and hearts were harvested for histological and biochemical examination. The levels of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were higher in Groups I and III than those in Group II (p < 0.05). In comparison with other groups, tissue malondialdehyde (MDA) levels in Group II were significantly increased (p < 0.05), and this increase was prevented by tramadol. Histopathological changes, including microscopic bleeding, edema, neutrophil infiltration, and necrosis, were scored. The total injuryscore in Group III was significantly decreased (p < 0.05) compared with Group II. From the histological and biochemical perspectives, treatment with tramadol alleviated the myocardial injuries induced by skeletal muscle IR in this experimental model.

  20. Tramadol Alleviates Myocardial Injury Induced by Acute Hindlimb Ischemia Reperfusion in Rats

    Organ injury occurs not only during periods of ischemia but also during reperfusion. It is known that ischemia reperfusion (IR) causes both remote organ and local injuries. This study evaluated the effects of tramadol on the heart as a remote organ after acute hindlimb IR. Thirty healthy mature male Wistar rats were allocated randomly into three groups: Group I (sham), Group II (IR), and Group III (IR + tramadol). Ischemia was induced in anesthetized rats by left femoral artery clamping for 3 h, followed by 3 h of reperfusion. Tramadol (20 mg/kg, intravenous) was administered immediately prior to reperfusion. At the end of the reperfusion, animals were euthanized, and hearts were harvested for histological and biochemical examination. The levels of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were higher in Groups I and III than those in Group II (p < 0.05). In comparison with other groups, tissue malondialdehyde (MDA) levels in Group II were significantly increased (p < 0.05), and this increase was prevented by tramadol. Histopathological changes, including microscopic bleeding, edema, neutrophil infiltration, and necrosis, were scored. The total injuryscore in Group III was significantly decreased (p < 0.05) compared with Group II. From the histological and biochemical perspectives, treatment with tramadol alleviated the myocardial injuries induced by skeletal muscle IR in this experimental model

  1. Temporal relationship of serum markers and tissue damage during acute intestinal ischemia/reperfusion

    Francisco Javier Guzmán-de la Garza

    2013-07-01

    Full Text Available OBJECTIVE: It is essential to identify a serological marker of injury in order to study the pathophysiology of intestinal ischemia reperfusion. In this work, we studied the evolution of several serological markers after intestinal ischemia reperfusion injury in rats. The markers of non-specific cell damage were aspartate aminotransferase, alanine aminotransaminase, and lactic dehydrogenase, the markers of inflammation were tumor necrosis factor alpha, interleukin-6, and interleukin-1 beta, and the markers of intestinal mucosal damage were intestinal fatty acid binding protein and D-lactate. We used Chiús classification to grade the histopathological damage. METHODS: We studied 35 Wistar rats divided into groups according to reperfusion time. The superior mesenteric artery was clamped for 30 minutes, and blood and biopsies were collected at 1, 3, 6, 12, 24, and 48 hours after reperfusion. We plotted the mean ± standard deviation and compared the baseline and maximum values for each marker using Student’s t-test. RESULTS: The maximum values of interleukin-1 beta and lactic dehydrogenase were present before the maximal histopathological damage. The maximum tumor necrosis factor alpha and D-lactate expressions coincided with histopathological damage. Alanine aminotransaminase and aspartate aminotransferase had a maximum expression level that increased following the histopathological damage. The maximum expressions of interluken-6 and intestinal fatty acid binding protein were not significantly different from the Sham treated group. CONCLUSION: For the evaluation of injury secondary to acute intestinal ischemia reperfusion with a 30 minute ischemia period, we recommend performing histopathological grading, quantification of D-lactate, which is synthesized by intestinal bacteria and is considered an indicator of mucosal injury, and quantification of tumor necrosis factor alpha as indicators of acute inflammation three hours after reperfusion.

  2. Expression of Bcl-2 and NF-κB in brain tissue after acute renal ischemia-reperfusion in rats

    Na Zhang; Gen-Yang Cheng; Xian-Zhi Liu; Feng-Jiang Zhang

    2014-01-01

    Objective:To investigate the effect of acute renal ischemia reperfusion on brain tissue. Methods:Fourty eight rats were randomly divided into four groups(n=12): sham operation group,30 min ischemia60 min reperfusion group,60 min ischemia60 min reperfusion group, and 120 min ischemia60 min reperfusion group.The brain tissues were taken after the experiment. TUNEL assay was used to detect the brain cell apoptosis, and western blot was used to detect the expression of apoptosis-related proteins and inflammatory factors.Results:Renal ischemia-reperfusion induced apoptosis of brain tissues, and the apoptosis increased with prolongation of ischemia time.The detection at the molecular level showed decreasedBcl-2 expression, increasedBax expression, upregulated expression ofNF-κB and its downstream factor COX-2/PGE2.Conclusions:Acute renal ischemia-reperfusion can cause brain tissue damage, manifested as induced brain tissues apoptosis and inflammation activation.

  3. Obestatin Accelerates the Recovery in the Course of Ischemia/Reperfusion-Induced Acute Pancreatitis in Rats.

    Jakub Bukowczan

    Full Text Available Several previous studies have shown that obestatin exhibits protective and regenerative effects in some organs including the stomach, kidney, and the brain. In the pancreas, pretreatment with obestatin inhibits the development of cerulein-induced acute pancreatitis, and promotes survival of pancreatic beta cells and human islets. However, no studies investigated the effect of obestatin administration following the onset of experimental acute pancreatitis.The aim of this study was to evaluate the impact of obestatin therapy in the course of ischemia/reperfusion-induced pancreatitis. Moreover, we tested the influence of ischemia/reperfusion-induced acute pancreatitis and administration of obestatin on daily food intake and pancreatic exocrine secretion.Acute pancreatitis was induced by pancreatic ischemia followed by reperfusion of the pancreas. Obestatin (8 nmol/kg/dose was administered intraperitoneally twice a day, starting 24 hours after the beginning of reperfusion. The effect of obestatin in the course of necrotizing pancreatitis was assessed between 2 and 14 days, and included histological, functional, and biochemical analyses. Secretory studies were performed on the third day after sham-operation or induction of acute pancreatitis in conscious rats equipped with chronic pancreatic fistula.Treatment with obestatin ameliorated morphological signs of pancreatic damage including edema, vacuolization of acinar cells, hemorrhages, acinar necrosis, and leukocyte infiltration of the gland, and led to earlier pancreatic regeneration. Structural changes were accompanied by biochemical and functional improvements manifested by accelerated normalization of interleukin-1β level and activity of myeloperoxidase and lipase, attenuation of the decrease in pancreatic DNA synthesis, and by an improvement of pancreatic blood flow. Induction of acute pancreatitis by pancreatic ischemia followed by reperfusion significantly decreased daily food intake and

  4. Activation of the lectin pathway by natural IgM in a model of ischemia/reperfusion injury

    Zhang, M.; Takahashi, K.; Alicot, E.M.;

    2006-01-01

    Reperfusion of ischemic tissues elicits an acute inflammatory response involving serum complement, which is activated by circulating natural IgM specific to self-Ags exposed by ischemia. Recent reports demonstrating a role for the lectin pathway raise a question regarding the initial events in...... complement activation. To dissect the individual roles of natural IgM and lectin in activation of complement, mice bearing genetic deficiency in early complement, IgM, or mannan-binding lectin were characterized in a mesenteric model of ischemia reperfusion injury. The results reveal that IgM binds initially...

  5. Extraction and Identification of Ginsenoside Re and Its Effects and Mechanism of Protecting Acute Renal Ischemia-reperfusion Injury in Rats

    GU Xin-quan; CHEN Yan-ping; HU Ting-ting; LU Xiu-hua; LI Xi-qian1; DU Xiao-hui; CAO Xia; WANG Wei-hua; XU Zhong-gao

    2011-01-01

    This paper studies the extraction and identification of ginsenoside Re from ginseng fruits and investigates the effect and mechanism of ginsenoside Re of protecting acute renal ischemia-reperfusion injury in rats.Having been smashed,the ginseng fruits were ultrasonically extracted twice with 95% ethanol for 30 min each.Having been concentrated,the solution was dissolved with distilled water and separated by two-column chromatography,of which one was packed with macroporous resin D4020,and the other was packed with macroporous resin D941.The raw product was dissolved with methanol and was purified by elution on a Si gel column,finally ginsenoside Re was obtained.The structure of the ginsenoside Re was analyzed by the thin-layer chromatography and NMR methods,and HPLC was carried for the content determination.The model of acute renal ischemia-reperfusion injury in rats was established after ischemia for 1 h and reperfusion for 1 h or 24 h,serum SOD(superoxide dismutase),MDA(malondialdehyde) and plasma TXB2(thromboxane B2) and 6-keto-PGFlα were detected.The results show that it has accurately,fast,convenient merits and so on.Ginsenoside Re has a protective effect on acute renal ischemia-reperfusion injury in rats,the mechanism may be related to improving the imbalance of thromboxane A2(TXA2)/prostacyclin(PG12) and inhibiting lipid peroxidation reaction.

  6. Experimental study of pulmonary thromboembolism ischemia-reperfusion injury in canine model

    Objective: To establish a canine model of pulmonary thromboembolism ischemia- reperfusion injury (PTE IRI) that may be used for imaging study. Methods: Ten male and 10 female healthy mongrel canines with (18.6±0.8) kg/body weight, were used. A Swan-Ganz catheter was introduced into the right internal jugular vein via a preset percutaneous sheath using the Seldinger technique, and then was with further insertion the pulmonary artery. Balloon occlusion of the right inferior lobe pulmonary artery for 4 hours was followed by removing the catheter and ending with 4 hours of reperfusion. CT was performed before ischemia, 4 h after ischemia and 4 h after reperfusion. At last, dogs were killed and the bilateral inferior lung tissues were prepared for the examination by light and electronic microscopy. Results: All canine models were successfully developed pulmonary thromboembolism ischemia-reperfusion injury. The examination of CT, light and electron microscopy consistently indicated the presence of permeability pulmonary edema after reperfusion. Conclusions: A closed-chest canine model in vivo of pulmonary thromboembolism ischemia-reperfusion injury can be established with virtual pathophysiological process in human and be as well as for imaging experimental study. (authors)

  7. The stability of the atherosclerotic plaque depends on the extent of injured endothelium: results from a novel model of ischemia /reperfusion induced atherosclerosis in carotid artery of rats

    晋学庆

    2014-01-01

    Objective To observe the atherogenic lesion progress in a novel ischemia/reperfusion induced atherosclerosis model in the carotid artery of rats.Methods Rats were divided into normal control,sham-operated control and ischemia-reperfusion injury(IRI)groups(n=10each).IRI was induced by 30 min carotid artery occlusion with a 2 cm

  8. Minocycline protects against hepatic ischemia/reperfusion injury in a rat model

    Li, Yining; Li, Tao; Qi, Haizhi; Yuan, Fang

    2014-01-01

    Hepatic ischemia/reperfusion (I/R) injury is a common clinical problem. The present study was conducted to investigate the protective effect and mechanism of minocycline (Mino), a tetracycline with anti-inflammatory and antioxidant properties, on I/R injury of liver in rats. In total, 54 male Sprague-Dawley rats were randomly divided into 3 groups with 18 rats in each: Sham-operated (control group), I/R model (I/R group) and Mino preconditioning groups (Mino group). The rats of the Mino group...

  9. Local and Remote Postconditioning Decrease Intestinal Injury in a Rabbit Ischemia/Reperfusion Model

    Yang, Mu; Dong, Jian-Xin; Li, Lu-Bin; Che, Hai-Jie; Yong, Jun; Song, Fu-Bo; Wang, Tao; Zhang, Jv-Wen

    2016-01-01

    Intestinal ischemia/reperfusion (I/R) injury is a significant problem that is associated with high morbidity and mortality in critical settings. This injury may be ameliorated using postconditioning protocol. In our study, we created a rabbit intestinal I/R injury model to analyze the effects of local ischemia postconditioning (LIPo) and remote ischemia postconditioning (RIPo) on intestinal I/R injury. We concluded that LIPo affords protection in intestinal I/R injury in a comparable fashion with RIPo by decreasing oxidative stress, neutrophil activation, and apoptosis. PMID:26819600

  10. Protective effects of hyperbaric oxygen and iloprost on ischemia/reperfusion-induced lung injury in a rabbit model

    Bozok Ş

    2012-06-01

    Full Text Available Abstract Background The role of multiorgan damage in the mortality caused by ischemic limb injury is still not clarified. The objective of this study was to examine the potential protective effects of hyperbaric oxygen (HBO and iloprost (IL therapy on lung damage induced by limb ischemia/reperfusion injury in a rabbit model, using both biochemical and histopathological aspects. Methods Forty New Zealand white rabbits were randomly allocated into one of five study groups: HBO group (single session of HBO treatment; IL group (25 ng/kg/min infusion of IL; HBO + IL group (both HBO and IL; Control group (0.9% saline only; and a sham group. Acute hind limb ischemia-reperfusion was established by clamping the abdominal aorta for 1 h. HBO treatment and IL infusion were administrated during 60 min of ischemia and 60 min of reperfusion period. Blood pH, partial pressure of oxygen, partial pressure of carbon dioxide and levels of bicarbonate, sodium, potassium, creatine kinase, lactate dehydrogenase, and tumor necrosis factor alpha were determined at the end of the reperfusion period. Malondialdehyde was measured in the plasma and lung as an indicator of free radicals. After sacrifice, left lungs were removed and histopathological examination determined the degree of lung injury. Results In the control group, blood partial pressure of oxygen and bicarbonate levels were significantly lower and creatine kinase, lactate dehydrogenase, malondialdehyde and tumor necrosis factor-α levels were significantly higher than those of the HBO group, IL group, HBO + IL group and sham group. Similarly, the malondialdehyde levels in the lung tissue and plasma levels were significantly lower in the treatment groups compared with the control group. The extent of lung injury according to the histological findings was significantly higher in the control group. Conclusions These results suggest that both HBO and IL therapies and their combination might be

  11. Effects of Platelet-Rich Plasma (PRP) on a Model of Renal Ischemia-Reperfusion in Rats.

    Martín-Solé, Oriol; Rodó, Joan; García-Aparicio, Lluís; Blanch, Josep; Cusí, Victoria; Albert, Asteria

    2016-01-01

    Renal ischemia-reperfusion injury is a major cause of acute renal failure, causing renal cell death, a permanent decrease of renal blood flow, organ dysfunction and chronic kidney disease. Platelet-rich plasma (PRP) is an autologous product rich in growth factors, and therefore able to promote tissue regeneration and angiogenesis. This product has proven its efficacy in multiple studies, but has not yet been tested on kidney tissue. The aim of this work is to evaluate whether the application of PRP to rat kidneys undergoing ischemia-reperfusion reduces mid-term kidney damage. A total of 30 monorrenal Sprague-Dawley male rats underwent renal ischemia-reperfusion for 45 minutes. During ischemia, PRP (PRP Group, n = 15) or saline solution (SALINE Group, n = 15) was administered by subcapsular renal injection. Control kidneys were the contralateral organs removed immediately before the start of ischemia in the remaining kidneys. Survival, body weight, renal blood flow on Doppler ultrasound, kidney weight, kidney volume, blood biochemistry and histopathology were determined for all subjects and kidneys, as applicable. Correlations between these variables were searched for. The PRP Group showed significantly worse kidney blood flow (p = 0.045) and more histopathological damage (pkidney volume, kidney weight, renal blood flow, histology, and serum levels of creatinine and urea. Our study provides the first evidence that treatment with PRP results in the deterioration of the kidney's response to ischemia-reperfusion injury. PMID:27551718

  12. Activity Exerted by a Testosterone Derivative on Myocardial Injury Using an Ischemia/Reperfusion Model

    Figueroa-Valverde Lauro

    2014-01-01

    Full Text Available Some reports indicate that several steroid derivatives have activity at cardiovascular level; nevertheless, there is scarce information about the activity exerted by the testosterone derivatives on cardiac injury caused by ischemia/reperfusion (I/R. Analyzing these data, in this study, a new testosterone derivative was synthetized with the objective of evaluating its effect on myocardial injury using an ischemia/reperfusion model. In addition, perfusion pressure and coronary resistance were evaluated in isolated rat hearts using the Langendorff technique. Additionally, molecular mechanism involved in the activity exerted by the testosterone derivative on perfusion pressure and coronary resistance was evaluated by measuring left ventricular pressure in the absence or presence of the following compounds: flutamide, prazosin, metoprolol, nifedipine, indomethacin, and PINANE TXA2. The results showed that the testosterone derivative significantly increases P=0.05 the perfusion pressure and coronary resistance in isolated heart. Other data indicate that the testosterone derivative increases left ventricular pressure in a dose-dependent manner (0.001–100 nM; however, this phenomenon was significantly inhibited P=0.06 by indomethacin and PINANE-TXA2  P=0.05 at a dose of 1 nM. In conclusion, these data suggest that testosterone derivative induces changes in the left ventricular pressure levels through thromboxane receptor activation.

  13. Do antioxidant vitamins reduce infarct size following acute myocardial ischemia/reperfusion?

    Bellows, S D; Hale, S L; Simkhovich, B Z; Kay, G L; Kloner, R A

    1995-02-01

    There is controversy concerning the ability of antioxidant vitamins to reduce myocardial infarct size. We sought to determine whether a brief prophylactic treatment of vitamin C or vitamin C plus Trolox (a water-soluble form of vitamin E) could reduce myocardial infarct size in an experimental model. We used an anesthetized open-chest rabbit model in which a branch of the circumflex coronary artery was ligated for 30 minutes followed by 4 hours of reperfusion. Experiments were performed in a randomized and blinded fashion. An IV injection of normal saline pH balanced to 7.4 (control group n = 15), vitamin C (150 mg/kg, n = 14), or vitamin C plus Trolox (150 mg/kg plus 100 mg/kg, respectively, n = 15) was administered prior to coronary occlusion. Collateral blood flow during coronary occlusion was measured by radioactive microspheres, myocardial risk zone (AR) was assessed by blue dye injection, and myocardial infarct size (AN) was assessed by triphenyltetrazolium chloride staining. All rabbits received comparable ischemic insult: Collateral blood flow and AR were similar among all three groups. Infarct size, measured as a percent of AR, did not differ significantly among the controls (21%), vitamin C (29%), or the vitamin C plus Trolox (18%) groups. Therefore, in this ischemia/reperfusion model, antioxidant vitamins did not alter myocardial infarct size. PMID:7540423

  14. High temporal resolution parametric MRI monitoring of the initial ischemia/reperfusion phase in experimental acute kidney injury.

    Andreas Pohlmann

    Full Text Available Ischemia/reperfusion (I/R injury, a consequence of kidney hypoperfusion or temporary interruption of blood flow is a common cause of acute kidney injury (AKI. There is an unmet need to better understand the mechanisms operative during the initial phase of ischemic AKI. Non-invasive in vivo parametric magnetic resonance imaging (MRI may elucidate spatio-temporal pathophysiological changes in the kidney by monitoring the MR relaxation parameters T2* and T2, which are known to be sensitive to blood oxygenation. The aim of our study was to establish the technical feasibility of fast continuous T2*/T2 mapping throughout renal I/R. MRI was combined with a remotely controlled I/R model and a segmentation model based semi-automated quantitative analysis. This technique enabled the detailed assessment of in vivo changes in all kidney regions during ischemia and early reperfusion. Significant changes in T2* and T2 were observed shortly after induction of renal ischemia and during the initial reperfusion phase. Our study demonstrated for the first time that continuous and high temporal resolution parametric MRI is feasible for in-vivo monitoring and characterization of I/R induced AKI in rats. This technique may help in the identification of the timeline of key events responsible for development of renal damage in hypoperfusion-induced AKI.

  15. The Influence of Copper (Cu) Deficiency in a Cardiomyocyte Cell Model (HL-1 Cell) of Ischemia/Reperfusion Injury

    Mitochondria are important mediators of cell death and this study examines whether mitochondrial dysfunction caused by Cu deprivation promotes cell death in a cell culture model for ischemia/reperfusion injury in cardiomyocytes. HL-1 cells (kindly donated by Dr. William C. Claycomb, LSU Health Scien...

  16. Role of TRPV1 channels in ischemia/reperfusion-induced acute kidney injury.

    Lan Chen

    Full Text Available OBJECTIVES: Transient receptor potential vanilloid 1 (TRPV1 -positive sensory nerves are widely distributed in the kidney, suggesting that TRPV1-mediated action may participate in the regulation of renal function under pathophysiological conditions. Stimulation of TRPV1 channels protects against ischemia/reperfusion (I/R-induced acute kidney injury (AKI. However, it is unknown whether inhibition of these channels is detrimental in AKI or not. We tested the role of TRPV1 channels in I/R-induced AKI by modulating these channels with capsaicin (TRPV1 agonist, capsazepine (TRPV1 antagonist and using Trpv1-/- mice. METHODS AND RESULTS: Anesthetized C57BL/6 mice were subjected to 25 min of renal ischemia and 24 hrs of reperfusion. Mice were pretreated with capsaicin (0.3 mg/kg body weight or capsazepine (50 mg/kg body weight. Capsaicin ameliorated the outcome of AKI, as measured by serum creatinine levels, tubular damage,neutrophil gelatinase-associated lipocalin (NGAL abundance and Ly-6B.2 positive polymorphonuclear inflammatory cells in injured kidneys. Neither capsazepine nor deficiency of TRPV1 did deteriorate renal function or histology after AKI. Measurements of endovanilloids in kidney tissue indicate that 20-hydroxyeicosatetraeonic acid (20-HETE or epoxyeicosatrienoic acids (EETs are unlikely involved in the beneficial effects of capsaicin on I/R-induced AKI. CONCLUSIONS: Activation of TRPV1 channels ameliorates I/R-induced AKI, but inhibition of these channels does not affect the outcome of AKI. Our results may have clinical implications for long-term safety of renal denervation to treat resistant hypertension in man, with respect to the function of primary sensory nerves in the response of the kidney to ischemic stimuli.

  17. Cromakalin pretreatment affects mitochondrial structure and function in a rat model of ischemia/reperfusion injury

    Shilei Wang; Peng Wang; Qingxian Chang; Yu Li; Yan Jiang; Shiduan Wang

    2008-01-01

    BACKGROUND: Mitochondrial structural changes and energy dysmetabolism frequently occur subsequent to cerebral ischemia. Adenosine triphosphate (ATP)-sensitive potassium channel openers exhibit protective effects on cerebral ischemia/reperfusion injury. OBJECTIVE: To validate the effects of cromakalin on mitochondrial structure and function in ischemic penumbra brain tissue in a rat model of middle cerebral artery occlusion (MCAO). DESIGN, TIME AND SETTING: The present single-factor analysis of variance, randomized, controlled, animal experiment was performed at the Institute of Brain Science, Affiliated Hospital of Qingdao University Medical College between October 2007 and March 2008. MATERIALS: Forty male, Wistar rats were randomly divided into four groups, with 10 rats per group: sham-operated, MCAO, MCAO+ATP-sensitive potassium channel opener (cromakalin), and MCAO+eromakalin+ATP-sensitive potassium channel blocking agent (glibenclamide). METHODS: Focal cerebral ischemia/reperfusion injury was induced by MCAO in all groups except the sham-operated group. The MCAO cromakalin group was administered 10 mg/kg cromakalin (i.p.) prior to MCAO induction. The MCAO+cromakalin+glibenclamide group received an injection of 10 mg/kg cromakalin (i.v.), and subsequently an injection of 10 mg/kg cromakalin (i.p.) prior to MCAO induction. MAIN OUTCOME MEASURES: At 24 hours after cerebral ischemia/reperfusion injury, cellular apoptosis was detected by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick-end labeling technique. Cytochrome C expression was measured by immunohistochemistry. In addition, mitochondrial swelling, membrane fluidity, membrane phospholipid and malonaldehyde (MDA) contents, as well as Na+-K+-ATPase, Ca2+-ATPase, and superoxide dismutase (SOD) activities were determined. RESULTS: Compared with the sham-operated group, the three ischemia groups exhibited significantly elevated mitochondrial MDA content, reduced membrane

  18. Relieving Effect of Quercetin on Ischemia/Reperfusion-Induced Liver Damage in an Animal Model

    Toru Shizuma

    2014-02-01

    Full Text Available We examined the effect of quercetin in relieving ischemia/reperfusion-induced liver damage using an animal model. F344 rats were divided into a control group (n=8 and a group administered 100 mg/kg of quercetin (quercetin-treated group (n=8. Both groups underwent laparotomy, and the portal vein was ligated for 60 min to simulate ischemia. After 60 min of reperfusion, serum aspartate transaminase (AST/alanine aminotransferase (ALT levels, tumor necrosis factor-alpha (TNF-α levels, and blood nitrotyrosine yield were measured. The livers were also excised to examine histology. Our results showed that AST/ALT levels, TNF-α, and nitrotyrosine yield were all significantly lower in the quercetin-treated group than in the control group. Liver damage was also significantly reduced histologically. Based on these results, administration of quercetin relieves ischemia–reperfusion-induced liver damage.

  19. Protective effects of pretreatment with Radix Paeoniae Rubra on acute lung injury induced by intestinal ischemia/ reperfusion in rats

    CHEN Chang; ZHANG Fan; XIA Zhong-yuan; LIN Hui; MO An-sheng

    2008-01-01

    Objective: To investigate the effect of pretreatment with Radix Paeoniae Rubra (RPR) on acute lung injury induced by intestinal ischemia/reperfusion in rats and its protective mechanism.Methods:n lung tissues was detected by immunohistochemistry and morphometry computer image analysis. Arterial blood gas analysis, lung permeability index, malondialdehyde (MDA) and superoxide dismutase (SOD) contents in lungs were measured. The histological changes of lung tissue were observed under light microscope.Results:The expression of HO-1 in RPR-pretreatment group and hemin group was obviously higher than that in sham-operation group and I/R group (P < 0.01). The level of MDA and lung permeability index in RPR-pretreatment and hemin group were significantly lower than those in I/R group (P<0.01 or P<0.05), while the activity of SOD in RPR-pretreatment and hemin group was obviously higher than that in I/R group (P<0.01 ). Under light microscope, the pathologic changes induced by I/R were significantly attenuated by RPR.Conclusion : Intestinal ischemia/reperfusion may result in acute lung injury and pretreatment with RPR injection can attenuate the injury. The protective effect of RPR on the acute lung injury is related to its property of inducing HO-1 expression and inhibiting lipid peroxidation.

  20. Ginsenoside Rd alleviates mouse acute renal ischemia/reperfusion injury by modulating macrophage phenotype

    Ren, Kaixi; Jin, Chao; Ma, Pengfei; Ren, Qinyou; Jia, Zhansheng; Zhu, Daocheng

    2015-01-01

    Background Ginsenoside Rd (GSRd), a main component of the root of Panax ginseng, exhibits anti-inflammation functions and decreases infarct size in many injuries and ischemia diseases such as focal cerebral ischemia. M1 Macrophages are regarded as one of the key inflammatory cells having functions for disease progression. Methods To investigate the effect of GSRd on renal ischemia/reperfusion injury (IRI) and macrophage functional status, and their regulatory role on mouse polarized macrophag...

  1. The TRIF-dependent signaling pathway is not required for acute cerebral ischemia/reperfusion injury in mice

    TIR domain-containing adaptor protein (TRIF) is an adaptor protein in Toll-like receptor (TLR) signaling pathways. Activation of TRIF leads to the activation of interferon regulatory factor 3 (IRF3) and nuclear factor kappa B (NF-κB). While studies have shown that TLRs are implicated in cerebral ischemia/reperfusion (I/R) injury and in neuroprotection against ischemia afforded by preconditioning, little is known about TRIF's role in the pathological process following cerebral I/R. The present study investigated the role that TRIF may play in acute cerebral I/R injury. In a mouse model of cerebral I/R induced by transient middle cerebral artery occlusion, we examined the activation of NF-κB and IRF3 signaling in ischemic cerebral tissue using ELISA and Western blots. Neurological function and cerebral infarct size were also evaluated 24 h after cerebral I/R. NF-κB activity and phosphorylation of the inhibitor of kappa B (IκBα) increased in ischemic brains, but IRF3, inhibitor of κB kinase complex-ε (IKKε), and TANK-binding kinase1 (TBK1) were not activated after cerebral I/R in wild-type (WT) mice. Interestingly, TRIF deficit did not inhibit NF-κB activity or p-IκBα induced by cerebral I/R. Moreover, although cerebral I/R induced neurological and functional impairments and brain infarction in WT mice, the deficits were not improved and brain infarct size was not reduced in TRIF knockout mice compared to WT mice. Our results demonstrate that the TRIF-dependent signaling pathway is not required for the activation of NF-κB signaling and brain injury after acute cerebral I/R.

  2. The TRIF-dependent signaling pathway is not required for acute cerebral ischemia/reperfusion injury in mice

    Hua, Fang, E-mail: fhua2@emory.edu [Department of Emergency Medicine, Brain Research Laboratory, Emory University School of Medicine, 1365B Clifton Road, Suite 5100, Atlanta, GA 30322 (United States); Wang, Jun; Sayeed, Iqbal; Ishrat, Tauheed; Atif, Fahim; Stein, Donald G. [Department of Emergency Medicine, Brain Research Laboratory, Emory University School of Medicine, 1365B Clifton Road, Suite 5100, Atlanta, GA 30322 (United States)

    2009-12-18

    TIR domain-containing adaptor protein (TRIF) is an adaptor protein in Toll-like receptor (TLR) signaling pathways. Activation of TRIF leads to the activation of interferon regulatory factor 3 (IRF3) and nuclear factor kappa B (NF-{kappa}B). While studies have shown that TLRs are implicated in cerebral ischemia/reperfusion (I/R) injury and in neuroprotection against ischemia afforded by preconditioning, little is known about TRIF's role in the pathological process following cerebral I/R. The present study investigated the role that TRIF may play in acute cerebral I/R injury. In a mouse model of cerebral I/R induced by transient middle cerebral artery occlusion, we examined the activation of NF-{kappa}B and IRF3 signaling in ischemic cerebral tissue using ELISA and Western blots. Neurological function and cerebral infarct size were also evaluated 24 h after cerebral I/R. NF-{kappa}B activity and phosphorylation of the inhibitor of kappa B (I{kappa}B{alpha}) increased in ischemic brains, but IRF3, inhibitor of {kappa}B kinase complex-{epsilon} (IKK{epsilon}), and TANK-binding kinase1 (TBK1) were not activated after cerebral I/R in wild-type (WT) mice. Interestingly, TRIF deficit did not inhibit NF-{kappa}B activity or p-I{kappa}B{alpha} induced by cerebral I/R. Moreover, although cerebral I/R induced neurological and functional impairments and brain infarction in WT mice, the deficits were not improved and brain infarct size was not reduced in TRIF knockout mice compared to WT mice. Our results demonstrate that the TRIF-dependent signaling pathway is not required for the activation of NF-{kappa}B signaling and brain injury after acute cerebral I/R.

  3. 99mTc-MAG3 scintigraphy for the longitudinal follow-up of kidney function in a mouse model of renal ischemia-reperfusion injury

    Herrler, Tanja; Wang, Hao; Tischer, Anne; Bartenstein, Peter; Jauch, Karl-Walter; Guba, Markus; Diemling, Markus; Nimmon, Cyril; Hacker, Marcus

    2012-01-01

    Background Experimental models are essential tools in the development and evaluation of novel treatment options, but the preclinical model of renal ischemia-reperfusion injury is limited to the retrieval of (very) early functional data, leaving the pivotal long-term outcome unknown. The present study applies technetium-99m-mercapto-acetyl-tri-glycine [99mTc-MAG3] scintigraphy for the longitudinal follow-up examination of long-term kidney function after renal ischemia-reperfusion injury. Metho...

  4. Evidence that estrogen receptors play a limited role in mediating enhanced recovery of bile flow in female rats in the acute phase of liver ischemia reperfusion injury

    de Vries, Heleen A. H.; Ponds, Fraukje A. M.; Nieuwenhuijs, Vincent B.; Morphett, Arthur; Padbury, Robert T. A.; Barritt, Greg J.

    2013-01-01

    Introduction. Female patients exhibit better survival and less hepatic damage from ischemia reperfusion (IR) injury following surgery. However, the effects of sex and estrogens on liver function in the acute phase of IR are not well understood. Objective. The aim was to investigate this question. Ma

  5. Cardiac Imaging Using Clinical 1.5 T MRI Scanners in a Murine Ischemia/Reperfusion Model

    Jakob G. J. Voelkl

    2011-01-01

    Full Text Available To perform cardiac imaging in mice without having to invest in expensive dedicated equipment, we adapted a clinical 1.5 Tesla (T magnetic resonance imaging (MRI scanner for use in a murine ischemia/reperfusion model. Phase-sensitive inversion recovery (PSIR sequence facilitated the determination of infarct sizes in vivo by late gadolinium enhancement. Results were compared to histological infarct areas in mice after ischemia/reperfusion procedure with a good correlation (=0.807, <.001. In addition, fractional area change (FAC was assessed with single slice cine MRI and was matched to infarct size (=−0.837 and fractional shortening (FS measured with echocardiography (=0.860; both <.001. Here, we demonstrate the use of clinical 1.5 MRI scanners as a feasible method for basic phenotyping in mice. These widely available scanners are capable of investigating in vivo infarct dimensions as well as assessment of cardiac functional parameters in mice with reasonable throughput.

  6. Expression of aquaporin-1 and aquaporin-3 in lung tissue of rat model with ischemia-reperfusion injury

    ZHAO Song; LI Xiang-nan

    2010-01-01

    @@ End-stage lung diseases are common and frequentlyoccurring diseases which are difficult for clinical treatment. In recent years, lung transplantation has become a widely accepted and effective therapeutic option for patients with the end-stage pulmonary diseases. Early pulmonary edema resulting from ischemia-reperfusion injury accounts for the major part of mortality and morbidity after lung transplantation. The water channel proteins in lung injury have been little studied, and their impact on the formation of pulmonary edema remains unclear. In this study, we established a rat lung ischemia-reperfusion model to study its impact on the expressions of water channel proteins in lung tissue and explore a new approach to lung transplantation in pulmonary edema pathogenesis.

  7. Donor pre-treatment with tetrahydrobiopterin saves pancreatic isografts from ischemia reperfusion injury in a mouse model

    Maglione, M.; Oberhuber, R.; Cardini, B; Watschinger, K; Hermann, M; Obrist, P; Hengster, P; Mark, W; Schneeberger, S; Werner-Felmayer, G; Pratschke, J; R. Margreiter; Werner, ER; Brandacher, G

    2010-01-01

    Depletion of the nitric oxide synthase cofactor tetrahydrobiopterin (H4B) during ischemia and reperfusion is associated with severe graft pancreatitis. Since clinically feasible approaches to prevent ischemia reperfusion injury (IRI) by H4B-substitution are missing we investigated its therapeutic potential in a murine pancreas transplantation model using different treatment regimens. Grafts were subjected to 16h cold ischemia time (CIT) and different treatment regimens: no treatment, 160μM H4...

  8. Effect of infliximab on acute hepatic ischemia/reperfusion injury in rats

    Yucel, Ahmet Fikret; Pergel, Ahmet; Aydin, Ibrahim; Alacam, Hasan; Karabicak, Ilhan; Kesicioglu, Tugrul; Tumkaya, Levent; Kalkan, Yildiray; Ozer, Ender; Arslan, Zakir; Sehitoglu, Ibrahim; Sahin, Dursun Ali

    2015-01-01

    This study aimed to investigate the hepatoprotective and antioxidant effects of infliximab (IFX) against liver ischemia/reperfusion (I/R) injury in rats. A total of 30 male Wistar albino rats were divided into three groups: sham, I/R, and I/R+IFX. IFX was given at a dose of 3 mg/kg for three days before I/R. Rat livers were subjected to 60 min of ischemia followed by 90 h of reperfusion. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), TNF-α, malondialdehyde (MDA), and glutat...

  9. PARP Inhibition Attenuates Histopathological Lesion in Ischemia/Reperfusion Renal Mouse Model after Cold Prolonged Ischemia

    Raimundo M. G. del Moral

    2013-01-01

    Full Text Available We test the hypothesis that PARP inhibition can decrease acute tubular necrosis (ATN and other renal lesions related to prolonged cold ischemia/reperfusion (IR in kidneys preserved at 4°C in University of Wisconsin (UW solution. Material and Methods. We used 30 male Parp1+/+ wild-type and 15 male Parp10/0 knockout C57BL/6 mice. Fifteen of these wild-type mice were pretreated with 3,4-dihydro-5-[4-(1-piperidinylbutoxyl]-1(2H-isoquinolinone (DPQ at a concentration of 15 mg/kg body weight, used as PARP inhibitor. Subgroups of mice were established (A: IR 45 min/6 h; B: IR + 48 h in UW solution; and C: IR + 48 h in UW solution plus DPQ. We processed samples for morphological, immunohistochemical, ultrastructural, and western-blotting studies. Results. Prolonged cold ischemia time in UW solution increased PARP-1 expression and kidney injury. Preconditioning with PARP inhibitor DPQ plus DPQ supplementation in UW solution decreased PARP-1 nuclear expression in renal tubules and renal damage. Parp10/0 knockout mice were more resistant to IR-induced renal lesion. In conclusion, PARP inhibition attenuates ATN and other IR-related renal lesions in mouse kidneys under prolonged cold storage in UW solution. If confirmed, these data suggest that pharmacological manipulation of PARP activity may have salutary effects in cold-stored organs at transplantation.

  10. Ischemia-Reperfusion Damage

    Yapca, Omer E.; Borekci, Bunyamin; Suleyman, Halis

    2013-01-01

    Ischemia-reperfusion damage is a complex pathological process that begins with tissue anoxia and continues with the production of free oxygen radicals, expanding with the inflammatory response. The literature suggests the importance of antioxidant and anti-inflammatory treatment to treat ischemia-reperfusion-related tissue damage.

  11. Curcumin and dexmedetomidine prevents oxidative stress and renal injury in hind limb ischemia/reperfusion injury in a rat model.

    Karahan, M A; Yalcin, S; Aydogan, H; Büyükfirat, E; Kücük, A; Kocarslan, S; Yüce, H H; Taskın, A; Aksoy, N

    2016-06-01

    Curcumin and dexmedetomidine have been shown to have protective effects in ischemia-reperfusion injury on various organs. However, their protective effects on kidney tissue against ischemia-reperfusion injury remain unclear. We aimed to determine whether curcumin or dexmedetomidine prevents renal tissue from injury that was induced by hind limb ischemia-reperfusion in rats. Fifty rats were divided into five groups: sham, control, curcumin (CUR) group (200 mg/kg curcumin, n = 10), dexmedetomidine (DEX) group (25 μg/kg dexmedetomidine, n = 10), and curcumin-dexmedetomidine (CUR-DEX) group (200 mg/kg curcumin and 25 μg/kg dexmedetomidine). Curcumin and dexmedetomidine were administered intraperitoneally immediately after the end of 4 h ischemia, just 5 min before reperfusion. The extremity re-perfused for 2 h and then blood samples were taken and total antioxidant capacity (TAC), total oxidative status (TOS) levels, and oxidative stress index (OSI) were measured, and renal tissue samples were histopathologically examined. The TAC activity levels in blood samples were significantly lower in the control than the other groups (p OSI were found to be significantly increased in the control group compared to others groups (p model. PMID:26983591

  12. Acute ethanol exposure increases the susceptibility of the donor hearts to ischemia/reperfusion injury after transplantation in rats.

    Shiliang Li

    contractility and relaxation, oxidative stress and altered protein expression were observed. CONCLUSIONS: These results demonstrate acute alcohol abuse increases the susceptibility of donor hearts to ischemia/reperfusion in a rat heart transplant model even though the global contractile function recovers 6 h after ethanol-administration.

  13. TLR2 mRNA Upregulation in Ischemic Lobes in Mouse Partial Hepatic Ischemia/Reperfusion Injury Model

    张进祥; 吴河水; 王琳; 张锦辉; 王慧; 郑启昌

    2004-01-01

    To investigate TLR2 (Toll-like receptor 2) mRNA expression in ischemic hepatic lobes under the condition of partial hepatic ischemia/reperfusion injury in BALB/c mice and its relation ship with liver function impairment. A partial ischemia/reperfusion injury model was established.The portal vein and hepatic artery supply to the median and left lobes of the liver were obstructed by an atraumatic artery micro clip, with the obstruction lasting for about 60 min. Then reperfusion was fulfilled by removal of the clip. The liver samples were collected at the 4th h after the restoration of blood inflow. Total RNA was extracted from the liver samples and analyzed quantitatively by method of real-time PCR. At the same time, portal vein serum and plasma were taken respectively for further detection of the level of endotoxin, tumor necrosis factor alpha (TNF-alpha) and plasmic alanine aminotransferase (pALT). The results indicated that TLR2 mRNA in ischemic lobe was up-regulated markedly in mice partial liver ischemia/reperfusion injury model compared to that in sham operation group (△Ct: 1.05±1.02 vs 5. 08±1.36, P<0.001). The level of portal vein pALT and TNF-alpha increased significantly (112.32±17.56 pg/ml vs 6. 07±5.33 pg/ml,P<0.01;890±127 μ/L vs 30±5 μ/L, P<0.001) . However, the level of portal vein endotoxin re mained below the normal line, suggesting a state of non-endotoxemia. TLR2 mRNA expression in ischemic lobe, as well as portal vein pALT and TNF-alpha, was up-regulated in the model of mice partial ischemia/reperfusion injury, suggesting the involvement of TLR2 in ischemia/reperfusion pathological process.

  14. Novel rat model of ischemic cardiomyopathy induced by repetitive myocardial ischemia/reperfusion injury while conscious

    A rodent model of ischemic cardiomyopathy (ICM) induced by repetitive brief ischemia/reperfusion (I/R) injury while conscious has not been previously established. A newly developed coronary occluder was implanted in male Wistar rats. A repetitive I/R protocol (20 s, 2 min, followed by main 30 min -ischemia, every 48 h, for 4 weeks) was introduced while the animals were conscious. The I/R protocol did not induce transmural scar formation but induced residual myocytes with scattered infiltration of fibrosis (Masson trichrome stain), coronary hypoperfusion (201Tl-Cl autoradiogram), reduced coronary microvascular volume fraction (microCT), and gradually progressive left ventricular (LV) dilation (echocardiography). These parameters of ICM showed interindividual variation; however, the percent increase in LV diastolic area on day 3 was significantly correlated with LV dilation (r=0.91, p<0.0001), fibrosis (r=0.77, p=0.0034.), and reduction in microvessels (r=0.67, p=0.040) at week 4. The LV dilatory response on day 3 also correlated with inducible nitric oxide synthase expression (immunohistochemistry, day 3) in the LV (r=0.92, p=0.028). A novel rat model of ICM induced by repetitive I/R while conscious showed interindividual variation in the severity of ICM in the advanced stage, but this was predictable non-invasively (by LV dilatory response) during the initial stage of repetitive I/R. (author)

  15. Myocardial contrast echocardiography to assess perfusion in a mouse model of ischemia/reperfusion injury

    Hossack, John A.; Li, Yinbo; Christensen, Jonathan P.; Yang, Zequan; French, Brent A.

    2004-04-01

    Noninvasive approaches for measuring anatomical and physiological changes resulting from myocardial ischemia / reperfusion injury in the mouse heart have significant value since the mouse provides a practical, low-cost model for modeling human heart disease. In this work, perfusion was assessed before, during and after an induced closed- chest, coronary ischemic event. Ultrasound contrast agent, similar to MP1950, in a saline suspension, was injected via cannulated carotid artery as a bolus and imaged using a Siemens Sequoia 512 scanner and a 15L8 intraoperative transducer operating in second harmonic imaging mode. Image sequences were transferred from the scanner to a PC for analysis. Regions of interest were defined in septal and anterior segments of the myocardium. During the ischemic event, when perfusion was diminished in the anterior segment, mean video intensity in the affected segment was reduced by one half. Furthermore, following reperfusion, hyperemia (enhanced blood flow) was observed in the anterior segment. Specifically, the mean video intensity in the affected segment was increased by approximately 50% over the original baseline level prior to ischemia. Following the approach of Kaul et al., [1], gamma variate curves were fitted to the time varying level of mean video intensity. This foundation suggests the possibility of quantifying myocardial blood flow in ischemic regions of a mouse heart using automated analysis of contrast image data sets. An improved approach to perfusion assessment using the destruction-reperfusion approach [2] is also presented.

  16. Sildenafil citrate protects skeletal muscle of ischemia-reperfusion injury: immunohistochemical study in rat model

    Dinani Matoso Fialho de Oliveira Armstrong

    2013-04-01

    Full Text Available PURPOSE: To investigate the effect of sildenafil citrate (SC on skeletal muscle ischemia-reperfusion (IR injury in rats. METHODS: Adult male Wistar rats were randomized into three groups: vehicle-treated control (CTG, sildenafil citrate-treated (SCG, and sham group (SG. CTG and SCG had femoral artery occluded for 6 hours. Saline or 1 mg/kg of SC was given 5.5 hours after occlusion. SG had a similar procedure without artery occlusion. Soleus muscle samples were acquired 4 or 24h after the reperfusion. Immunohistochemistry caspase-3 analysis was used to estimate apoptosis using the apoptotic ratio (computed as positive/negative cells. Wilcoxon rank-sum or Kruskal-Wallis tests were used to assess differences among groups. RESULTS: Eighteen animals were included in the 4h reperfusion groups and 21 animals in the 24h reperfusion groups. The mean apoptotic ratio was 0.18±0.1 for the total cohort; 0.14±0.06 for the 4h reperfusion groups and 0.19±0.08 for the 24h groups (p<0.05. The SCG had lower caspase-3 ratio compared to the control groups at the 24h reperfusion time point (p<0.05. CONCLUSION: Sildenafil citrate administration after the onset of the ischemic injury reduces IR-induced cellular damage in skeletal muscle in this rat hindlimb ischemia model.

  17. Carbon monoxide-Releasing Molecule-2 (CORM-2 attenuates acute hepatic ischemia reperfusion injury in rats

    Zhang Weihui

    2010-05-01

    Full Text Available Abstract Background Hepatic ischemia-reperfusion injury (I/Ri is a serious complication occurring during liver surgery that may lead to liver failure. Hepatic I/Ri induces formation of reactive oxygen species, hepatocyte apoptosis, and release of pro-inflammatory cytokines, which together causes liver damage and organ dysfunction. A potential strategy to alleviate hepatic I/Ri is to exploit the potent anti-inflammatory and cytoprotective effects of carbon monoxide (CO by application of so-called CO-releasing molecules (CORMs. Here, we assessed whether CO released from CORM-2 protects against hepatic I/Ri in a rat model. Methods Forty male Wistar rats were randomly assigned into four groups (n = 10. Sham group underwent a sham operation and received saline. I/R group underwent hepatic I/R procedure by partial clamping of portal structures to the left and median lobes with a microvascular clip for 60 minutes, yielding ~70% hepatic ischemia and subsequently received saline. CORM-2 group underwent the same procedure and received 8 mg/kg of CORM-2 at time of reperfusion. iCORM-2 group underwent the same procedure and received iCORM-2 (8 mg/kg, which does not release CO. Therapeutic effects of CORM-2 on hepatic I/Ri was assessed by measuring serum damage markers AST and ALT, liver histology score, TUNEL-scoring of apoptotic cells, NFkB-activity in nuclear liver extracts, serum levels of pro-inflammatory cytokines TNF-α and IL-6, and hepatic neutrophil infiltration. Results A single systemic infusion with CORM-2 protected the liver from I/Ri as evidenced by a reduction in serum AST/ALT levels and an improved liver histology score. Treatment with CORM-2 also up-regulated expression of the anti-apoptotic protein Bcl-2, down-regulated caspase-3 activation, and significantly reduced the levels of apoptosis after I/Ri. Furthermore, treatment with CORM-2 significantly inhibited the activity of the pro-inflammatory transcription factor NF-κB as measured in

  18. The role and modulation of autophagy in experimental models of myocardial ischemia-reperfusion injury

    Carol Chen-Scarabelli; Richard Knight; Pratik R Agrawal; Louis Saravolatz; Cadigia Abuniat; Gabriele Scarabelli; Anastasis Stephanou; Leena Loomba; Jagat Narula; Tiziano M Scarabelli

    2014-01-01

    A physiological sequence called autophagy qualitatively determines cellular viability by removing protein aggregates and damaged cyto-plasmic constituents, and contributes significantly to the degree of myocardial ischemia-reperfusion (I/R) injury. This tightly orchestrated cata-bolic cellular‘housekeeping’ process provides cells with a new source of energy to adapt to stressful conditions. This process was first described as a pro-survival mechanism, but increasing evidence suggests that it can also lead to the demise of the cell. Autophagy has been implicated in the pathogenesis of multiple cardiac conditions including myocardial I/R injury. However, a debate persists as to whether autophagy acts as a protec-tive mechanism or contributes to the injurious effects of I/R injury in the heart. This controversy may stem from several factors including the va-riability in the experimental models and species, and the methodology used to assess autophagy. This review provides updated knowledge on the modulation and role of autophagy in isolated cardiac cells subjected to I/R, and the growing interest towards manipulating autophagy to increase the survival of cardiac myocytes under conditions of stress-most notably being I/R injury. Perturbation of this evolutionarily conserved intracellular cleansing autophagy mechanism, by targeted modulation through, among others, mammalian target of rapamycin (mTOR) inhibitors, adenosine monophosphate-activated protein kinase (AMPK) modulators, calcium lowering agents, resveratrol, longevinex, sirtuin activators, the proapoptotic gene Bnip3, IP3 and lysosome inhibitors, may confer resistance to heart cells against I/R induced cell death. Thus, therapeutic ma-nipulation of autophagy in the challenged myocardium may benefit post-infarction cardiac healing and remodeling.

  19. CD47 Blockade Reduces Ischemia Reperfusion Injury and Improves Outcomes in a Rat Kidney Transplant Model

    Lin, Yiing; Manning, Pamela T.; Jia, Jianluo; Gaut, Joseph P.; Xiao, Zhen-yu; Capoccia, Ben J.; Chen, Chun-Cheng; Hiebsch, Ronald R.; Upadhya, Gundumi; Mohanakumar, Thalachallour; Frazier, William A.; Chapman, William C.

    2016-01-01

    Background Ischemia/reperfusion injury (IRI) significantly contributes to delayed graft function and inflammation leading to graft loss. IRI is exacerbated by the thrombospondin-1/CD47 system through inhibition of nitric oxide signaling. We postulate that CD47 blockade and prevention of nitric oxide inhibition reduces IRI in organ transplantation. Methods We used a syngeneic rat renal transplantation model of IRI with bilaterally nephrectomized recipients to evaluate the effect of a CD47 monoclonal antibody (CD47mAb) on IRI. Donor kidneys were flushed with CD47mAb OX101 or an isotype-matched control immunoglobulin and stored at 4°C in UW solution for 6 hours prior to transplantation. Results CD47mAb perfusion of donor kidneys resulted in marked improvement in post-transplant survival, lower levels of serum creatinine, BUN, phosphorus and magnesium and less histologic evidence of injury. In contrast, control groups did not survive more than 5 days, had increased biochemical indicators of renal injury and exhibited severe pathological injury with tubular atrophy and necrosis. Recipients of CD47mAb-treated kidneys showed decreased levels of plasma biomarkers of renal injury including cystatin C, osteopontin, TIMP1, β2-microglobulin, VEGF-A and clusterin compared to the control group. Furthermore, laser Doppler assessment showed higher renal blood flow in the CD47mAb-treated kidneys. Conclusions These results provide strong evidence for the use of CD47 antibody-mediated blockade to reduce IRI and improve organ preservation for renal transplantation. PMID:24983310

  20. Effect of infliximab on acute hepatic ischemia/reperfusion injury in rats

    Yucel, Ahmet Fikret; Pergel, Ahmet; Aydin, Ibrahim; Alacam, Hasan; Karabicak, Ilhan; Kesicioglu, Tugrul; Tumkaya, Levent; Kalkan, Yildiray; Ozer, Ender; Arslan, Zakir; Sehitoglu, Ibrahim; Sahin, Dursun Ali

    2015-01-01

    This study aimed to investigate the hepatoprotective and antioxidant effects of infliximab (IFX) against liver ischemia/reperfusion (I/R) injury in rats. A total of 30 male Wistar albino rats were divided into three groups: sham, I/R, and I/R+IFX. IFX was given at a dose of 3 mg/kg for three days before I/R. Rat livers were subjected to 60 min of ischemia followed by 90 h of reperfusion. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), TNF-α, malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) levels were measured in the serum. The liver was removed to evaluate the histopathologic changes. The I/R group had a significant increase in AST, ALT, MDA, and TNF-α levels, and a decrease in GSH-Px activity compared with the sham group. The use of IFX significantly reduced the ALT, AST, MDA and TNF-α levels and significantly increased GSH-Px activity. IFX attenuated the histopathologic changes. IFX has a protective effect on liver I/R injury. This liver protective effect may be related to antioxidant and anti-TNF-α effects. We propose that, for the relief of liver injury subsequent to transplantation, liver resection, trauma, and shock, tentative treatments can be incorporated with IFX, which is already approved for clinical use. PMID:26885068

  1. The Protective Effect of MicroRNA-320 on Left Ventricular Remodeling after Myocardial Ischemia-Reperfusion Injury in the Rat Model

    Song, Chun-Li; Liu, Bin; Diao, Hong-Ying; Shi, Yong-Feng; Li, Yang-Xue; Zhang, Ji-Chang; Lu, Yang; WANG, GUAN; Liu, Jia; Yu, Yun-Peng; Guo, Zi-Yuan; Wang, Jin-Peng; Zhao, Zhuo; Liu, Jian-Gen; Liu, Yi-Hang

    2014-01-01

    The primary objective of this study investigated the role of microRNA-320 (miR-320) on left ventricular remodeling in the rat model of myocardial ischemia-reperfusion (I/R) injury, and we intended to explore the myocardial mechanism of miR-320-mediated myocardium protection. We collected 120 male Wistar rats (240–280 g) in this study and then randomly divided them into three groups: (1) sham surgery group (sham group: n = 40); (2) ischemia-reperfusion model group (I/R group: n = 40); and (3) ...

  2. The Protective Effect of MicroRNA-320 on Left Ventricular Remodeling after Myocardial Ischemia-Reperfusion Injury in the Rat Model

    Chun-Li Song; Bin Liu; Hong-Ying Diao; Yong-Feng Shi; Yang-Xue Li; Ji-Chang Zhang; Yang Lu; Guan Wang; Jia Liu; Yun-Peng Yu; Zi-Yuan Guo; Jin-Peng Wang; Zhuo Zhao; Jian-Gen Liu; Yi-Hang Liu

    2014-01-01

    The primary objective of this study investigated the role of microRNA-320 (miR-320) on left ventricular remodeling in the rat model of myocardial ischemia-reperfusion (I/R) injury, and we intended to explore the myocardial mechanism of miR-320-mediated myocardium protection. We collected 120 male Wistar rats (240–280 g) in this study and then randomly divided them into three groups: (1) sham surgery group (sham group: n = 40); (2) ischemia-reperfusion model group (I/R group: n = 40); and (3)...

  3. Pleiotropic preconditioning-like cardioprotective effects of hypolipidemic drugs in acute ischemia-reperfusion in normal and hypertensive rats.

    Ravingerová, Táňa; Ledvényiová-Farkašová, Veronika; Ferko, Miroslav; Barteková, Monika; Bernátová, Iveta; Pecháňová, Ol'ga; Adameová, Adriana; Kolář, František; Lazou, Antigone

    2015-07-01

    Although pleiotropy, which is defined as multiple effects derived from a single gene, was recognized many years ago, and considerable progress has since been achieved in this field, it is not very clear how much this feature of a drug is clinically relevant. During the last decade, beneficial pleiotropic effects from hypolipidemic drugs (as in, effects that are different from the primary ones) have been associated with reduction of cardiovascular risk. As with statins, the agonists of peroxisome proliferator-activated receptors (PPARs), niacin and fibrates, have been suggested to exhibit pleiotropic activity that could significantly modify the outcome of a cardiovascular ailment. This review examines findings demonstrating the impacts of treatment with hypolipidemic drugs on cardiac response to ischemia in a setting of acute ischemia-reperfusion, in relation to PPAR activation. Specifically, it addresses the issue of susceptibility to ischemia, with particular regard to the preconditioning-like cardioprotection conferred by hypolipidemic drugs, as well as the potential molecular mechanisms behind this cardioprotection. Finally, the involvement of PPAR activation in the mechanisms of non-metabolic cardioprotective effects from hypolipidemic drugs, and their effects on normal and pathologically altered myocardium (in the hearts of hypertensive rats) is also discussed. PMID:25965412

  4. Mechanism of Mitochondrial Connexin43's Protection of the Neurovascular Unit under Acute Cerebral Ischemia-Reperfusion Injury.

    Hou, Shuai; Shen, Ping-Ping; Zhao, Ming-Ming; Liu, Xiu-Ping; Xie, Hong-Yan; Deng, Fang; Feng, Jia-Chun

    2016-01-01

    We observed mitochondrial connexin43 (mtCx43) expression under cerebral ischemia-reperfusion (I/R) injury, analyzed its regulation, and explored its protective mechanisms. Wistar rats were divided into groups based on injections received before middle cerebral artery occlusion (MCAO). Cerebral infarction volume was detected by 2,3,5-triphenyltetrazolim chloride staining, and cell apoptosis was observed by transferase dUTP nick end labeling. We used transmission electron microscopy to observe mitochondrial morphology and determined superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. MtCx43, p-mtCx43, protein kinase C (PKC), and p-PKC expression were detected by Western blot. Compared with those in the IR group, cerebral infarction volumes in the carbenoxolone (CBX) and diazoxide (DZX) groups were obviously smaller, and the apoptosis indices were down-regulated. Mitochondrial morphology was damaged after I/R, especially in the IR and 5-hydroxydecanoic acid (5-HD) groups. Similarly, decreased SOD activity and increased MDA were observed after MCAO; CBX, DZX, and phorbol-12-myristate-13-acetate (PMA) reduced mitochondrial functional injury. Expression of mtCx43 and p-mtCx43 and the p-Cx43/Cx43 ratio were significantly lower in the IR group than in the sham group. These abnormalities were ameliorated by CBX, DZX, and PMA. MtCx43 may protect the neurovascular unit from acute cerebral IR injury via PKC activation induced by mitoKATP channel agonists. PMID:27164087

  5. Hippophae salicifolia D.Don berries attenuate cerebral ischemia reperfusion injury in a rat model of middle cerebral artery occlusion

    Santhrani Thakur; Pradeepthi Chilikuri; Bindu Pulugurtha; Lavanya Yaidikar

    2015-01-01

    Objective: To investigate the protective effect of Hippophae salicifolia D.Don (H. salicifolia) berries extract against cerebral reperfusion injury induced neurobehavioral and neurochemical changes in a rat model of middle cerebral artery occlusion (MCAO). Methods: Rats were pretreated with alcoholic extract of H. salicifolia (250 and 500 mg/kg) for 14 d and focal cerebral ischemia was induced by MCAO. After 60 min of MCAO, reperfused for 24 h, a battery of behavioral tests were assessed the extent of neurological deficits. Infarct volume and brain edema were measured in 2,3,5-triphenyltetrazolium chloride stained brain sections. TNF-α, oxidative stress parameters like reduced glutathione, calcium, glutamate, malondialdehyde and apoptotic parameters like caspase-3, and caspase-9 were estimated in the brain homogenates. Results:Pretreatment with alcoholic extract of H. salicifolia at doses of 250 and 500 mg/kg significantly improved the neurobehavioral alterations and reduced the infarct volume, edema induced by ischemia reperfusion injury. H. salicifolia significantly prevented ischemia induced increase in malondialdehyde, glutamate, calcium, caspase-3, caspase-9 and TNF-αlevels as compared to ischemic animals. Conclusions: Our results indicate that H. salicifolia mitigated the ischemia reperfusion induced neuronal damage.

  6. Hydroxyfasudil-mediated inhibition of ROCK1 and ROCK2 improves kidney function in rat renal acute ischemia-reperfusion injury.

    Dominik Kentrup

    Full Text Available Renal ischemia-reperfusion (IR injury (IRI is a common and important trigger of acute renal injury (AKI. It is inevitably linked to transplantation. Involving both, the innate and the adaptive immune response, IRI causes subsequent sterile inflammation. Attraction to and transmigration of immune cells into the interstitium is associated with increased vascular permeability and loss of endothelial and tubular epithelial cell integrity. Considering the important role of cytoskeletal reorganization, mainly regulated by RhoGTPases, in the development of IRI we hypothesized that a preventive, selective inhibition of the Rho effector Rho-associated coiled coil containing protein kinase (ROCK by hydroxyfasudil may improve renal IRI outcome. Using an IRI-based animal model of AKI in male Sprague Dawley rats, animals treated with hydroxyfasudil showed reduced proteinuria and polyuria as well as increased urine osmolarity when compared with sham-treated animals. In addition, renal perfusion (as assessed by (18F-fluoride Positron Emission Tomography (PET, creatinine- and urea-clearances improved significantly. Moreover, endothelial leakage and renal inflammation was significantly reduced as determined by histology, (18F-fluordesoxyglucose-microautoradiography, Evans Blue, and real-time PCR analysis. We conclude from our study that ROCK-inhibition by hydroxyfasudil significantly improves kidney function in a rat model of acute renal IRI and is therefore a potential new therapeutic option in humans.

  7. Minocycline protects against hepatic ischemia/reperfusion injury in a rat model.

    Li, Yining; Li, Tao; Qi, Haizhi; Yuan, Fang

    2015-01-01

    Hepatic ischemia/reperfusion (I/R) injury is a common clinical problem. The present study was conducted to investigate the protective effect and mechanism of minocycline (Mino), a tetracycline with anti-inflammatory and antioxidant properties, on I/R injury of liver in rats. In total, 54 male Sprague-Dawley rats were randomly divided into 3 groups with 18 rats in each: Sham-operated (control group), I/R model (I/R group) and Mino preconditioning groups (Mino group). The rats of the Mino group were administered Mino (45 mg/kg) by gastric irrigation at 36 h before surgery and were subsequently administered with 22.5 mg/kg every 12 h for the 36 h before surgery. The rats were sacrificed at 2, 6 and 24 h after reperfusion, and the serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) were measured. Hematoxylin/eosin staining of liver tissues was performed to detect the rat liver histological changes and the grade of liver I/R injury (Suzuki's criteria); the levels of malondialdehyde (MDA) and myeloperoxidase (MPO) were determined by spectrophotometry; hepatic tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) mRNA were measured by quantitative polymerase chain reaction; the Dickkopf-1 (DKK-1) and β-catenin gene products of the liver were detected by western blot analysis. Mino treatment significantly ameliorated the I/R injury of the liver, as shown by decreased Suzuki scores and liver function (ALT, AST and LDH). After 2, 6 and 24 h reperfusion, compared to the I/R group the MDA and MPO levels of the Mino group decreased in the liver tissues and the levels of hepatic TNF-α and IL-1β mRNA were decreased too. The protein expression of hepatic DKK-1 decreased, whereas β-catenin increased, which indicates that the Wnt/β-catenin pathway has been activated. In conclusion, Mino protects the liver from I/R injury mainly through reducing oxidative stress and inhibiting the release of pro

  8. Batroxobin plus hypothermia for protection of cerebral ischemia/reperfusion injury models in gerbils

    Lin Zhang; Pixing Zhang; Yinming Zeng; Qun Chen

    2006-01-01

    BACKGROUND: Hypothermia plays a protective role in cerebral ischemia/reperfusion injury. Dose combination with batroxobin, an active drug for treating cerebrovascular disease, will enhance its protection? OBJECTIVE: To explore the effects of hypothermia, batroxobin, hypothermia combined with batroxobin on complete cerebral ischemia/reperfusion injury in gerbils.DESIGN: A randomized block comparison observation. SETTING: Jiangsu Key Lab of Anesthesiology. MATERIALS: Experimental animal: Sixty Mongolia gerbils weighing 50-80 g, male or female, were provided by the Animals Center of Xuzhou Medical College. Drugs and agents: Batroxobin was provided by Dongling Phar maceutical Industry Organization (Japan). Superoxide dismutase (SOD) and malondiadehyde (MDA) kits were offered by Nanjing Jiancheng Bioengineering Institute. Other reagents were all import or national analytical pure grade. HITACHI R22A refrigerated high-speed centrifuge, and HARRIS ultra-hypothermia refrigerator were used.METHODS: The experiments were completed in Jiangsu Key Lab of Anesthesiology from May 2004 to January 2005. ① The animals were divided into 6 groups by random member table method: sham-operated group (n =6), ischemia control group (n =6), normothermia group (n =12), hypothermia group (n =12), batroxobin group (n =12) and hypothermia+batroxobin group (n =12). Gerbil rats were abdominally anesthetized with sodium pentobarbital. The neck skin was incised to separate bilateral common carotid arteries. Complete cerebral ischemia models were established by occluding bilateral common carotid arteries with artery clamp for 10 minutes, then the clamp was loosened to perfuse the arteries. Iso-electric level of brain electric wave showed the models were established successfully. The gerbils in the batroxobin group and hypothermia+batroxobin group were abdominally injected with batroxobin (8 BU/kg) while reperfusion, and isovolumetric saline was administered to the gerbils in the other groups

  9. Bone marrow-derived cells can acquire renal stem cells properties and ameliorate ischemia-reperfusion induced acute renal injury

    Jia Xiaohua

    2012-09-01

    Full Text Available Abstract Background Bone marrow (BM stem cells have been reported to contribute to tissue repair after kidney injury model. However, there is no direct evidence so far that BM cells can trans-differentiate into renal stem cells. Methods To investigate whether BM stem cells contribute to repopulate the renal stem cell pool, we transplanted BM cells from transgenic mice, expressing enhanced green fluorescent protein (EGFP into wild-type irradiated recipients. Following hematological reconstitution and ischemia-reperfusion (I/R, Sca-1 and c-Kit positive renal stem cells in kidney were evaluated by immunostaining and flow cytometry analysis. Moreover, granulocyte colony stimulating factor (G-CSF was administrated to further explore if G-CSF can mobilize BM cells and enhance trans-differentiation efficiency of BM cells into renal stem cells. Results BM-derived cells can contribute to the Sca-1+ or c-Kit+ renal progenitor cells population, although most renal stem cells came from indigenous cells. Furthermore, G-CSF administration nearly doubled the frequency of Sca-1+ BM-derived renal stem cells and increased capillary density of I/R injured kidneys. Conclusions These findings indicate that BM derived stem cells can give rise to cells that share properties of renal resident stem cell. Moreover, G-CSF mobilization can enhance this effect.

  10. Prophylactic and therapeutic effect of ginko biloba extract (Egb761 on mortality of intestinal deep ischemia-reperfusion model in rats

    Mustafa Ateş

    2010-09-01

    Full Text Available Objectives: Ginkgo biloba extract (EGb761 is a standardized form of Ginkgo Biloba plant leaves which have been used by Chines nearly 5000 years and Its’ antioxidant activity is known. In this study we aimed to investigate effect use of EGb761 on mortality in Megison'un deep ischemia reperfusion model of rats.Materials and Methods: 138 male Spraque-Dawley rats were used in this study. The rats were divided into 4 groups: Group I (control group, Group II (deep ischemia-reperfusion group, Group III (Group of prophylaxis and treatment of deep ischemia-reperfusion with EGb 761, Group IV (group of treatment with EGb 761 during deep ischemia. Deep ischemia was applied 30 minutes. Rats were followed-up one week after laparotomy. Differences between numbers of mortality in groups during one week follow-up were compared.Results: Number of died rats in Group I, II, III, and IV during one week follow-up were 2 (7.7%, 22 (61.1%, 6 (13.6%, and 11 (34.3% respectively. Mortality rate decreased statistically significant with use of EGb761 with pro-phylactic and therapeutic purposes (p<0.001, p<0.028.Conclusion: EGb761's prophylactic and therapeutic benefit on intestinal ischemia reperfusion injury was observed. However, these results should be supported with further biochemical and histopathological studies.

  11. Protective effects of allicin on acute cerebral ischemia-reperfusion injury in rats

    ZHENGYan-hua; CHENChong-hong

    2004-01-01

    AIM To study the protective effects of allicin on acute focal cerebral ischemia reperfusioninjury. METHODS: The model of cerebral ishemia-3 h/reperfusion - 24h was induced by middle cerebral artery occlusion (MCAO) in SD rats. Allicin (10,20mg·kg-1) was administered once daily in rats: at 0 h of reperfusion. After 24h reperfusion, the content of

  12. Relations between CT perfusion parameters and degree of hepatic ischemia reperfusion injury in a rabbit model

    Objective: To observe the changes of hepatic CT perfusion parameters and their correlation with serum aspartate transaminase (AST), alanine transaminase (ALT) and alkaline phosphatase (ALP) in a rabbit hepatic ischemia reperfusion injury (IRI) model. Methods: Hepatic IRI was produced in rabbits by inducing left liver lobe ischemia (60 min) followed by 6 h, 12 h and 24 h reperfusion (6 rabbits were used for each reperfusion interval). Additional 6 rabbits were served as sham-operated controls. All the rabbits were scanned with a dynamic iCT protocol. Blood samples were taken from the superior mesenteric vein to measure the levels of serum amylase (ALT, AST, and ALP) in various groups, and liver samples were taken for histological examinations after scanning. One-way analysis of variance (ANOVA) was used to determine differences between groups. The correlations of CT perfusion parameters with serum levels were analyzed using Pearson correlation coefficient. Results: Heterogeneity of CT perfusion patterns appeared in the 6 h groups, which presented as low enhanced area [(25.1±9.3) ml · min-1 · 100 mg-1]. In reduced perfusion regions of IRI group, HAP of 12 h IRI group [(19.5± 13.6) ml · min-1 · 100 mg-1], 24 h IRI group (8.0±2.7) ml · min-1 · 100 mg-1], HPP of 6 h IRI group [(10.8±5.5) ml · min-1 · 100 mg-1], 12 h IRI group [(14.4±5.2) ml · min-1 · 100 mg-1] , 24 h IRI group [(7.8±3.3) ml · min-1 · 100 mg-1] and TLP of 6 h IRI group [(35.9±14.0) ml · min-1 · 100 mg-1], 12 h IRI group [(33.9±16.1) ml · min-1 · 100 mg-1], 24 h IRI group [(16.0± 5.5) ml · min-1 · 100 mg-1] were lower than those of sham group [HAP (21.2±10.5) ml · min-1 · 100 mg-1, HPP (63.5±24.0) ml · min-1 · 100 mg-1, TLP (81.4±24.8) ml · min-1 · 100 mg-1] (F=8.376, 25.950, 16.925, P<0.01). However, HPI of 6 h IRI group [(65.9±3.9)%], 12 h IRI group [(54.2±16.7)%], and 24 h IRI group [(48.9±10.0)%] were higher compared to sham group [(24.1±7.5)%] (F=43.664, P<0

  13. Downregulation of organic anion transporters in rat kidney under ischemia/reperfusion-induced acute [corrected] renal failure.

    Matsuzaki, T; Watanabe, H; Yoshitome, K; Morisaki, T; Hamada, A; Nonoguchi, H; Kohda, Y; Tomita, K; Inui, K; Saito, H

    2007-03-01

    The effect of acute renal failure (ARF) induced by ischemia/reperfusion (I/R) of rat kidney on the expression of organic anion transporters (OATs) was examined. The level of serum indoxyl sulfate (IS), a uremic toxin and substrate of OATs in renal tubules, shows a marked increase with the progression of ARF. However, this increase was significantly attenuated by ingestion of cobalt. The level of mRNA and protein of both rOAT1 and rOAT3 were markedly depressed in the ischemic kidney. The uptake of p-aminohippuric acid (PAH) and estrone sulfate (ES) by renal slices of ischemic rats was significantly reduced compared to control rats. Renal slices taken from ischemic rats treated with cobalt displayed significantly elevated levels of ES uptake. Cobalt intake did not affect PAH uptake, indicating the functional restoration of rOAT3 but not rOAT1. The expression of Na(+)/K(+)-ATPase was markedly depressed in the ischemic kidney, suggesting that the inward Na(+) gradient in renal tubular cells had collapsed, thereby reducing the outward gradient of alpha-ketoglutarate, a driving force of both rOATs. The decreased expression of Na(+)/K(+)-ATPase was significantly restored by cobalt treatment. Our results suggest that the downregulation of renal rOAT1 and rOAT3 could be responsible for the increase in serum IS level of ischemic rats. Cobalt treatment has a significant protective effect on ischemia-induced ARF, being accompanied by the restoration of rOAT3 and/or Na(+)/K(+)-ATPase function. PMID:17245393

  14. Selenium Pretreatment for Mitigation of Ischemia/Reperfusion Injury in Cardiovascular Surgery: Influence on Acute Organ Damage and Inflammatory Response.

    Steinbrenner, Holger; Bilgic, Esra; Pinto, Antonio; Engels, Melanie; Wollschläger, Lena; Döhrn, Laura; Kellermann, Kristine; Boeken, Udo; Akhyari, Payam; Lichtenberg, Artur

    2016-08-01

    Ischemia/reperfusion injury (IRI) contributes to morbidity and mortality after cardiovascular surgery requiring cardiopulmonary bypass (CPB) and deep hypothermic circulatory arrest (DHCA). Multi-organ damage is associated with substantial decreases of blood selenium (Se) levels in patients undergoing cardiac surgery with CPB. We compared the influence of a dietary surplus of Se and pretreatment with ebselen, a mimic of the selenoenzyme glutathione peroxidase, on IRI-induced tissue damage and inflammation. Male Wistar rats were fed either a Se-adequate diet containing 0.3 ppm Se or supplemented with 1 ppm Se (as sodium selenite) for 5 weeks. Two other groups of Se-adequate rats received intraperitoneal injection of ebselen (30 mg/kg) or DMSO (solvent control) before surgery. The animals were connected to a heart-lung-machine and underwent 45 min of global ischemia during circulatory arrest at 16 °C, followed by re-warming and reperfusion. Selenite and ebselen suppressed IRI-induced leukocytosis and the increase in plasma levels of tissue damage markers (AST, ALT, LDH, troponin) during surgery but did not prevent the induction of proinflammatory cytokines (IL-6, TNF-α). Both Se compounds affected phosphorylation and expression of proteins related to stress response and inflammation: Ebselen increased phosphorylation of STAT3 transcription factor in the heart and decreased phosphorylation of ERK1/2 MAP kinases in the lungs. Selenite decreased ERK1/2 phosphorylation and HSP-70 expression in the heart. Pretreatment with selenite or ebselen protected against acute IRI-induced tissue damage during CPB and DHCA. Potential implications of their different actions with regard to molecular stress markers on the recovery after surgery represent promising targets for further investigation. PMID:27192987

  15. Long-term existence of cerebral hypoxic tissue in a rat model of cerebral ischemia/reperfusion injury

    Yidong Wang; Jingrui Pan; Yu Qiu; Xiangpen Li; Mei Li; Ying Peng

    2009-01-01

    BACKGROUND: Hypoxic tissue surrounding the ischemic core may represent the ischemic penumbra following cerebral infarction. However, some studies have shown that the duration of ischemic tissue is longer than previously believed.OBJECTIVE: To clarify whether cerebral hypoxic tissue could survive long-term and whether it is altered in rats following cerebral infarction; to establish an ischemia/reperfusion model in which hypoxic tissue exists for extended periods of time.DESIGN, TIME AND SETTING: A completely randomized grouping and controlled experiment was performed at the Experimental Animal Center of Sun Yat-sen University and Medical Research Center, the Second Affiliated Hospital of Sun Yat-sen University between June and December 2008. MATERIALS: 4,9-diaza-3,3,10,10-tetramethyldodecan-2, 11-dione dioxime (BnAO) (HL91), used as the hypoxic marker for autoradiography, was supplied by the Beijing Syncor Star Medicinal, China, and the flesh eluent Na99TcmO4 to mark HL91 was supplied by Guangzhou Medical Isotope Center of the China Institute of Atomic Energy. 2-(2-nitro-1H-imidazole-1-yl)-N-(2,2,3,3,3-pentafluoropropyl) acetamide (EF5) and its antibody ELK3-51, used as a hypoxic marker for immunofluorescence, were supplied by the University of Pennsylvania, USA.METHODS: Male Sprague Dawley rats were randomly divided into four groups: 1.5-hour ischemia/reperfusion group (1.5 h IR), 2-hour ischemia/reperfusion group (2 h IR), 3-hour ischemia/reperfusion group (3 h IR), and permanent ischemia (PI) group, with 21 rats in each group. The middle cerebral artery occlusion model was established using the intraluminal suture method, while reperfusion was performed by removing the suture at each observation time point. However, in the PI group, the suture was left in the artery.MAIN OUTCOME MEASURES: Area and average absorbance of fluorescence, representing hypoxic tissue, were measured by image-analysis.RESULTS: Autoradiography revealed positive hypoxia at days 1 and 14

  16. Treatment with the C5a receptor antagonist ADC-1004 reduces myocardial infarction in a porcine ischemia-reperfusion model

    Arheden Håkan

    2010-09-01

    Full Text Available Abstract Background Polymorphonuclear neutrophils, stimulated by the activated complement factor C5a, have been implicated in cardiac ischemia/reperfusion injury. ADC-1004 is a competitive C5a receptor antagonist that has been shown to inhibit complement related neutrophil activation. ADC-1004 shields the neutrophils from C5a activation before they enter the reperfused area, which could be a mechanistic advantage compared to previous C5a directed reperfusion therapies. We investigated if treatment with ADC-1004, according to a clinically applicable protocol, would reduce infarct size and microvascular obstruction in a large animal myocardial infarct model. Methods In anesthetized pigs (42-53 kg, a percutaneous coronary intervention balloon was inflated in the left anterior descending artery for 40 minutes, followed by 4 hours of reperfusion. Twenty minutes after balloon inflation the pigs were randomized to an intravenous bolus administration of ADC-1004 (175 mg, n = 8 or saline (9 mg/ml, n = 8. Area at risk (AAR was evaluated by ex vivo SPECT. Infarct size and microvascular obstruction were evaluated by ex vivo MRI. The observers were blinded to the treatment at randomization and analysis. Results ADC-1004 treatment reduced infarct size by 21% (ADC-1004: 58.3 ± 3.4 vs control: 74.1 ± 2.9%AAR, p = 0.007. Microvascular obstruction was similar between the groups (ADC-1004: 2.2 ± 1.2 vs control: 5.3 ± 2.5%AAR, p = 0.23. The mean plasma concentration of ADC-1004 was 83 ± 8 nM at sacrifice. There were no significant differences between the groups with respect to heart rate, mean arterial pressure, cardiac output and blood-gas data. Conclusions ADC-1004 treatment reduces myocardial ischemia-reperfusion injury and represents a novel treatment strategy of myocardial infarct with potential clinical applicability.

  17. Renoprotective effect of paricalcitol via a modulation of the TLR4-NF-κB pathway in ischemia/reperfusion-induced acute kidney injury

    Lee, Jae-Won, E-mail: maestro97@hanmail.net; Kim, Sun Chul, E-mail: linefe99@hanmail.net; Ko, Yoon Sook, E-mail: rainboweyes@hanmail.net; Lee, Hee Young, E-mail: cell1023@hanmail.net; Cho, Eunjung, E-mail: icdej@naver.com; Kim, Myung-Gyu, E-mail: gyu219@hanmail.net; Jo, Sang-Kyung, E-mail: sang-kyung@korea.ac.kr; Cho, Won Yong, E-mail: wonyong@korea.ac.kr; Kim, Hyoung Kyu, E-mail: hyoung@korea.ac.kr

    2014-02-07

    Highlights: • Paricalcitol. • Attenuation of renal inflammation. • Modulation of TLR4-NF-κB signaling. - Abstract: Background: The pathophysiology of ischemic acute kidney injury (AKI) is thought to include a complex interplay between vascular endothelial cell dysfunction, inflammation, and tubular cell damage. Several lines of evidence suggest a potential anti-inflammatory effect of vitamin D in various kidney injury models. In this study, we investigated the effect of paricalcitol, a synthetic vitamin D analog, on renal inflammation in a mouse model of ischemia/reperfusion (I/R) induced acute kidney injury (AKI). Methods: Paricalcitol was administered via intraperitoneal (IP) injection at 24 h before ischemia, and then I/R was performed through bilateral clamping of the renal pedicles. Twenty-four hours after I/R, mice were sacrificed for the evaluation of injury and inflammation. Additionally, an in vitro experiment using HK-2 cells was also performed to examine the direct effect of paricalcitol on tubular cells. Results: Pre-treatment with paricalcitol attenuated functional deterioration and histological damage in I/R induced AKI, and significantly decreased tissue neutrophil and macrophage infiltration and the levels of chemokines, the pro-inflammatory cytokine interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1). It also decreased IR-induced upregulation of Toll-like receptor 4 (TLR4), and nuclear translocation of p65 subunit of NF-κB. Results from the in vitro study showed pre-treatment with paricalcitol suppressed the TNF-α-induced depletion of cytosolic IκB in HK-2 cells. Conclusion: These results demonstrate that pre-treatment with paricalcitol has a renoprotective effect in ischemic AKI, possibly by suppressing TLR4-NF-κB mediated inflammation.

  18. Renoprotective effect of paricalcitol via a modulation of the TLR4-NF-κB pathway in ischemia/reperfusion-induced acute kidney injury

    Highlights: • Paricalcitol. • Attenuation of renal inflammation. • Modulation of TLR4-NF-κB signaling. - Abstract: Background: The pathophysiology of ischemic acute kidney injury (AKI) is thought to include a complex interplay between vascular endothelial cell dysfunction, inflammation, and tubular cell damage. Several lines of evidence suggest a potential anti-inflammatory effect of vitamin D in various kidney injury models. In this study, we investigated the effect of paricalcitol, a synthetic vitamin D analog, on renal inflammation in a mouse model of ischemia/reperfusion (I/R) induced acute kidney injury (AKI). Methods: Paricalcitol was administered via intraperitoneal (IP) injection at 24 h before ischemia, and then I/R was performed through bilateral clamping of the renal pedicles. Twenty-four hours after I/R, mice were sacrificed for the evaluation of injury and inflammation. Additionally, an in vitro experiment using HK-2 cells was also performed to examine the direct effect of paricalcitol on tubular cells. Results: Pre-treatment with paricalcitol attenuated functional deterioration and histological damage in I/R induced AKI, and significantly decreased tissue neutrophil and macrophage infiltration and the levels of chemokines, the pro-inflammatory cytokine interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1). It also decreased IR-induced upregulation of Toll-like receptor 4 (TLR4), and nuclear translocation of p65 subunit of NF-κB. Results from the in vitro study showed pre-treatment with paricalcitol suppressed the TNF-α-induced depletion of cytosolic IκB in HK-2 cells. Conclusion: These results demonstrate that pre-treatment with paricalcitol has a renoprotective effect in ischemic AKI, possibly by suppressing TLR4-NF-κB mediated inflammation

  19. Upregulation of miR-21 by Ghrelin Ameliorates Ischemia/Reperfusion-Induced Acute Kidney Injury by Inhibiting Inflammation and Cell Apoptosis.

    Zhang, Wanzhe; Shu, Liliang

    2016-08-01

    Renal ischemia-reperfusion (I/R) injury can be caused by cardiac surgery, renal vascular obstruction, and kidney transplantation, mainly leading to acute kidney injury (AKI), which is complicated by lack of effective preventative and therapeutic strategies. Ghrelin has recently been reported to possess anti-inflammatory properties in several types of cells; however, little attention has been given to the role of ghrelin in I/R-induced AKI. The aim of this study is to explore the role of ghrelin in I/R-induced AKI. In this study, an I/R-induced rat AKI model and a hypoxia-induced NRK-52E cell I/R model were successfully constructed. Ghrelin expression was increased significantly in these rat and cell models. After enhancing ghrelin level by injecting exogenous ghrelin into rats or transfecting a ghrelin-pcDNA3.1 vector into renal tubular epithelial cells, we observed that I/R-induced AKI can be ameliorated by ghrelin, as shown by alterations in histology, as well as changes in serum creatinine (SCr) level, cell apoptosis, and the levels of inflammatory factors. Based on the importance of microRNA-21 (miR-21) in renal disease and the modulation effect of ghrelin on miR-21 in gastric epithelial cells, we tested whether miR-21 participates in the protective effect of ghrelin on I/R-induced AKI. Ghrelin could upregulate the PI3K/AKT signaling pathway by increasing the miR-21 level, which led to the protective effect of ghrelin on I/R-induced AKI by inhibiting the inflammatory response and renal tubular epithelial cell apoptosis. Our research identifies that ghrelin can ameliorate I/R-induced AKI by upregulating miR-21, which advances the understanding of mechanisms by which ghrelin ameliorates I/R-induced AKI. PMID:27152763

  20. Heterogeneity of epigenetic changes at ischemia/reperfusion- and endotoxin-induced acute kidney injury genes

    Mar, Daniel; Gharib, Sina A; Zager, Richard A.; Johnson, Ali; Denisenko, Oleg; Bomsztyk, Karol

    2015-01-01

    Aberrant gene expression is a molecular hallmark of acute kidney injury (AKI). Since epigenetic processes control gene expression in a cell- and environment-defined manner, understanding the epigenetic pathways that regulate genes altered by AKI may open vital new insights into the complexities of disease pathogenesis and identify possible therapeutic targets. Here we used matrix chromatin immunoprecipitation and integrative analysis to study twenty key permissive and repressive epigenetic hi...

  1. Sildenafil Protects against Myocardial Ischemia-Reperfusion Injury Following Cardiac Arrest in a Porcine Model: Possible Role of the Renin-Angiotensin System

    Guoxing Wang; Qian Zhang; Wei Yuan; Junyuan Wu; Chunsheng Li

    2015-01-01

    Sildenafil, a phosphodiesterase-5 inhibitor sold as Viagra, is a cardioprotector against myocardial ischemia/reperfusion (I/R) injury. Our study explored whether sildenafil protects against I/R-induced damage in a porcine cardiac arrest and resuscitation (CAR) model via modulating the renin-angiotensin system. Male pigs were randomly divided to three groups: Sham group, Saline group, and sildenafil (0.5 mg/kg) group. Thirty min after drug infusion, ventricular fibrillation (8 min) and cardiop...

  2. Ultrasonic tissue characterization with integrated backscatter. Acute myocardial ischemia, reperfusion, and stunned myocardium in patients

    We have previously shown in studies of experimental animals that myocardium exhibits a cardiac cycle-dependent variation of integrated backscatter that reflects regional myocardial contractile performance and that is blunted promptly after arterial occlusion and recovers after reperfusion. To define the clinical utility of ultrasonic tissue characterization with integrated backscatter for detection of acute myocardial infarction and reperfusion, 21 patients (14 men and seven women) were studied in the cardiac care unit within the first 24 hours (mean time, 11.3 hours; range, 3.5-23.8 hours) after the onset of symptoms indicative of acute myocardial infarction with conventional two-dimensional and M-mode echocardiography and with analysis of integrated backscatter. The magnitude of cyclic variation of integrated backscatter was measured from several sites within acute infarct regions and normal regions remote from the infarct zone for each patient. The average magnitude of cyclic variation among all patients (n = 21) was 4.8 +/- 0.5 dB in normal regions compared with 0.8 +/- 0.3 dB in infarct regions (p less than 0.05) within the first 24 hours after the onset of symptoms. Among the patients who had two studies, 15 (mean, 7.1 days; range, 2-31 days for second study) underwent coronary arteriography to define vessel patency. In patients with vessels with documented patency (n = 10), the magnitude of cyclic variation in infarct regions increased over time from 1.3 +/- 0.6 to 2.5 +/- 0.5 dB from the initial to final study (p less than 0.05). Patients with occluded infarct-related arteries (n = 5) exhibited no significant recovery of cyclic variation (0.3 +/- 0.3-0.6 +/- 0.3 dB). A blinded analysis of standard two-dimensional echocardiographic images revealed no significant recovery of wall thickening in either group over the same time intervals

  3. RC-3095, a Selective Gastrin-Releasing Peptide Receptor Antagonist, Does Not Protect the Lungs in an Experimental Model of Lung Ischemia-Reperfusion Injury

    Vera L. Oliveira-Freitas

    2015-01-01

    Full Text Available RC-3095, a selective GRPR antagonist, has been shown to have anti-inflammatory properties in different models of inflammation. However, its protective effect on lungs submitted to lung ischemia-reperfusion injury has not been addressed before. Then, we administrated RC-3095 intravenously before and after lung reperfusion using an animal model of lung ischemia-reperfusion injury (LIRI by clamping the pulmonary hilum. Twenty Wistar rats were subjected to an experimental model in four groups: SHAM, ischemia-reperfusion (IR, RC-Pre, and RC-Post. The final mean arterial pressure significantly decreased in IR and RC-Pre compared to their values before reperfusion (P<0.001. The RC-Post group showed significant decrease of partial pressure of arterial oxygen at the end of the observation when compared to baseline (P=0.005. Caspase-9 activity was significantly higher in the RC-Post as compared to the other groups (P<0.013. No significant differences were observed in eNOS activity among the groups. The groups RC-Pre and RC-Post did not show any significant decrease in IL-1β (P=0.159 and TNF-α (P=0.260, as compared to IR. The histological score showed no significant differences among the groups. In conclusion, RC-3095 does not demonstrate a protective effect in our LIRI model. Additionally, its use after reperfusion seems to potentiate cell damage, stimulating apoptosis.

  4. Enhanced protection against renal ischemia-reperfusion injury with combined melatonin and exendin-4 in a rodent model.

    Chang, Yi-Chih; Hsu, Shu-Yuan; Yang, Chih-Chao; Sung, Pei-Hsun; Chen, Yi-Ling; Huang, Tien-Hung; Kao, Gour-Shenq; Chen, Sheng-Yi; Chen, Kuan-Hung; Chiang, Hsin-Ju; Yip, Hon-Kan; Lee, Fan-Yen

    2016-08-01

    We tested the hypothesis that combined treatment with melatonin, an anti-oxidant, and exendin-4, an anti-inflammatory agent, was superior to either alone for protecting the kidney from ischemia-reperfusion (IR) injury. Male adult Sprague-Dawley rats (n=40) were equally divided into group 1 (sham-operated control), group 2 (IR only, IR=1h/72h), group 3 (IR-exendin-4, 10 µg/kg at 30 min, 24 h, 48 h after IR procedure), group 4 (IR-melatonin, i.p. 50 mg at 30 min, then 20 mg at 6 and 18 h after IR procedure), and group 5 (combined IR-exendin-4-melatonin). All animals were sacrificed by 72 h after IR/sham procedure. The results showed that the kidney injury score, plasma creatinine, and blood urea nitrogen (BUN) levels were highest in group 2 and lowest in group 1, significantly higher in groups 3 and 4 than those in group 5 and significantly higher in group 3 than those in group 4 (all p protecting the kidney from acute IR injury. PMID:27037275

  5. Effects of basic fibroblast growth factor on hippocampal and parietal cortical neuronal cAMP-response element-binding protein expression in a rat model of focal cerebral ischemia/reperfusion

    Chunyu Qu; Xuesong Xing; Jin Zang

    2009-01-01

    BACKGROUND: cAMP-response element binding protein (CREB) is a key modulator of various signaling pathways. CREB activation initiates a series of intracellular signaling pathways that promote neuronal survival. OBJECTIVE: To investigate the regulatory effects of basic fibroblast growth factor (bFGF) on cerebral neuronal CREB expression following ischemia/reperfusion injury. DESIGN, TIME AND SETTING: An immunohistochemical detection experiment was performed at the Department of Anatomy, Shenyang Medical College, between October 2006 and April 2008.MATERIALS: A total of 60 healthy, adult, Wistar rats were randomly divided into three groups: sham-operated (n=12), ischemia/reperfusion (n=24), and bFGF-treated (n=24). Rabbit anti-rat CREB (1: 100) and biotin labeled goat anti-rabbit IgG were purchased from the Wuhan Boster Company, China. MetaMorph-evolution MPS. 0-BX51 microscopy imaging system was provided by China Medical University, China. METHODS: Rat models of cerebral ischemia/reperfusion injury were developed using the suture method for right middle cerebral artery occlusion. Two-hour ischemia was followed by reperfusion. Rats from the bFGF-treated and ischemia/reperfusion groups were intraperitoneally administered endogenous bFGF (500 IU/mL, 2 000 IU/kg) or an equal amount of physiological saline. Rats from the sham-operated group underwent a similar surgical procedure, without induction of ischemia/reperfusion injury and drug administration. MAIN OUTCOME MEASURES: After 48-hour reperfusion, hippocampal and parietal cortical neuronal CREB expression was detected by immunohistochemistry, and the absorbance of hippocampal CREB-positive products was determined using MetaMorph-evolutionMP5.0-BX51 microscopy imaging system. RESULTS: The sham-operated group exhibited noticeable CREB expression in hippocampal and parietal cortical neurons. In the ischemia/reperfusion group, the CREB expression was discrete and neurons were poorly arranged. The bFGF-treated group

  6. Manipulations of core temperatures in ischemia-reperfusion lung injury in rabbits.

    Chang, Hung; Huang, Kun-Lun; Li, Min-Hui; Hsu, Ching-Wang; Tsai, Shih-Hung; Chu, Shi-Jye

    2008-01-01

    The present study was designed to determine the effect of various core temperatures on acute lung injury induced by ischemia-reperfusion (I/R) in our isolated rabbit lung model. Typical acute lung injury was successfully induced by 30 min of ischemia followed by 90 min of reperfusion observation. The I/R elicited a significant increase in pulmonary arterial pressure, microvascular permeability (measured by using the capillary filtration coefficient, Kfc), Delta Kfc ratio, lung weight gain and the protein concentration of the bronchoalveolar lavage fluid. Mild hypothermia significantly attenuated acute lung injury induced by I/R, all parameters having decreased significantly (p<0.05); conversely, mild hyperthermia did not further exacerbate acute lung injury. These experimental data suggest that mild hypothermia significantly ameliorated acute lung injury induced by ischemia-reperfusion in rabbits. PMID:17629529

  7. Comparative study between trimetazidine and ice slush hypothermia in protection against renal ischemia/reperfusion injury in a porcine model

    Leonardo de Albuquerque dos Santos Abreu

    2011-10-01

    Full Text Available PURPOSE: The aim of the study was to compare the effects of renal ice slush hypothermia and the use of trimetazidine in the protection against ischemia/reperfusion (I/R injury. MATERIALS AND METHODS: Fifteen farm pigs were submitted to left kidney ischemia and right nephrectomy during the same procedure. Animals were divided into three groups. Group 1 was submitted to warm ischemia; Group 2 was submitted to cold ischemia with ice slush; and Group 3 received trimetazidine 20 mg one day and 4 hours before surgery. Ischemia time was 120 minutes in all three groups. Serum creatinine (SCr and plasma iohexol clearance (CLioh were measured before surgery and on postoperative days (PODs 1,3,7, and 14. Semi-quantitative analyses of histological alterations were performed by a pathologist. A p value of < 0.05 was considered significant. RESULTS: All groups showed elevation of serum creatinine in the first week. Serum creatinine was higher in Group 3 in the first and third postoperative days (Mean Cr: 5.5 and 8.1 respectively. Group 2 showed a lower increase in creatinine and a lower decrease in iohexol clearance than the others. Renal function stabilized in the fourteenth POD in all three groups. Analyses of histological alterations did not reach statistical significance between groups. CONCLUSION: Trimetazidine did not show protection against renal I/R injury in comparison to warm ischemia or hypothermia in a porcine model submitted to 120 minutes of renal ischemia.

  8. Kaempferol Attenuates Myocardial Ischemic Injury via Inhibition of MAPK Signaling Pathway in Experimental Model of Myocardial Ischemia-Reperfusion Injury

    Kapil Suchal

    2016-01-01

    Full Text Available Kaempferol (KMP, a dietary flavonoid, has antioxidant, anti-inflammatory, and antiapoptotic effects. Hence, we investigated the effect of KMP in ischemia-reperfusion (IR model of myocardial injury in rats. We studied male albino Wistar rats that were divided into sham, IR-control, KMP-20 + IR, and KMP 20 per se groups. KMP (20 mg/kg; i.p. was administered daily to rats for the period of 15 days, and, on the 15th day, ischemia was produced by one-stage ligation of left anterior descending coronary artery for 45 min followed by reperfusion for 60 min. After completion of surgery, rats were sacrificed; heart was removed and processed for biochemical, morphological, and molecular studies. KMP pretreatment significantly ameliorated IR injury by maintaining cardiac function, normalizing oxidative stress, and preserving morphological alterations. Furthermore, there was a decrease in the level of inflammatory markers (TNF-α, IL-6, and NFκB, inhibition of active JNK and p38 proteins, and activation of ERK1/ERK2, a prosurvival kinase. Additionally, it also attenuated apoptosis by reducing the expression of proapoptotic proteins (Bax and Caspase-3, TUNEL positive cells, and increased level of antiapoptotic proteins (Bcl-2. In conclusion, KMP protected against IR injury by attenuating inflammation and apoptosis through the modulation of MAPK pathway.

  9. Intravenous Sphingosylphosphorylcholine Protects Ischemic and Postischemic Myocardial Tissue in a Mouse Model of Myocardial Ischemia/Reperfusion Injury

    Christine Herzog

    2010-01-01

    Full Text Available HDL, through sphingosine-1-phosphate (S1P, exerts direct cardioprotective effects on ischemic myocardium. It remains unclear whether other HDL-associated sphingophospholipids have similar effects. We therefore examined if HDL-associated sphingosylphosphorylcholine (SPC reduces infarct size in a mouse model of transient myocardial ischemia/reperfusion. Intravenously administered SPC dose-dependently reduced infarct size after 30 minutes of myocardial ischemia and 24 hours reperfusion compared to controls. Infarct size was also reduced by postischemic, therapeutical administration of SPC. Immunohistochemistry revealed reduced polymorphonuclear neutrophil recruitment to the infarcted area after SPC treatment, and apoptosis was attenuated as measured by TUNEL. In vitro, SPC inhibited leukocyte adhesion to TNFα-activated endothelial cells and protected rat neonatal cardiomyocytes from apoptosis. S1P3 was identified as the lysophospholipid receptor mediating the cardioprotection by SPC, since its effect was completely absent in S1P3-deficient mice. We conclude that HDL-associated SPC directly protects against myocardial reperfusion injury in vivo via the S1P3 receptor.

  10. Mangafodipir Protects against Hepatic Ischemia-Reperfusion Injury in Mice

    Coriat, Romain; Leconte, Mahaut; Kavian, Niloufar; Bedda, Sassia; Nicco, Carole; Chereau, Christiane; Goulvestre, Claire; Weill, Bernard; Laurent, Alexis; Batteux, Frédéric

    2011-01-01

    Introduction and Aim Mangafodipir is a contrast agent used in magnetic resonance imaging that concentrates in the liver and displays pleiotropic antioxidant properties. Since reactive oxygen species are involved in ischemia-reperfusion damages, we hypothesized that the use of mangafodipir could prevent liver lesions in a mouse model of hepatic ischemia reperfusion injury. Mangafodipir (MnDPDP) was compared to ischemic preconditioning and intermittent inflow occlusion for the prevention of hep...

  11. Effect of minocycline on cerebral ischemia-reperfusion injury★

    Zheng, Yuanyin; Xu, Lijuan; Yin, Jinbao; Zhong, Zhichao; Fan, Hongling; LI, XI; Chang, Quanzhong

    2013-01-01

    Minocylcine, a tetracycline derivate, has been shown to cross the blood-brain barrier and enter the central nervous system. In this study, cerebral ischemia-reperfusion injury models were established using the suture method, and minocycline was immediately injected intraperitoneally after cerebral ischemia-reperfusion (22.5 mg/kg, initially 45 mg/kg) at a 12-hour interval. Results showed that after minocycline treatment, the volume of cerebral infarction was significantly reduced, the number ...

  12. Differential protein expression in spinal cord tissue of a rabbit model of spinal cord ischemia/reperfusion injury

    Qi Gao; Jian Dong; Jianhang Jiao; Yonghui Liang; Xiaoyu Yang; Guifeng Liu; Xiaoxue Li; Benqing Zhu; Jian Liu; Maoguang Yang; Weiwei Xia

    2012-01-01

    New Zealand rabbits were randomly divided into an ischemia group (occlusion of the abdominal aorta for 60 minutes), an ischemia-reperfusion group (occlusion of the abdominal aorta for 60 minutes followed by 48 hours of reperfusion) and a sham-surgery group. Two-dimensional gel electrophoresis detected 49 differentially expressed proteins in spinal cord tissue from the ischemia and ischemia/reperfusion groups and 23 of them were identified by mass spectrometry. In the ischemia group, the expression of eight proteins was up regulated, and that of the remaining four proteins was down regulated. In the ischemia/reperfusion group, the expression of four proteins was up regulated, and that of two proteins was down regulated. In the sham-surgery group, only one protein was detected. In the ischemia and ischemia/reperfusion groups, four proteins overlapped between groups with the same differential expression, including three that were up regulated and one down regulated. These proteins were related to energy metabolism, cell defense, inflammatory mechanism and cell signaling.

  13. Berberine Pretreatment Confers Cardioprotection Against Ischemia-Reperfusion Injury in a Rat Model of Type 2 Diabetes.

    Chang, Wenguang; Li, Kun; Guan, Fengying; Yao, Fan; Yu, Yang; Zhang, Ming; Hatch, Grant M; Chen, Li

    2016-09-01

    Preclinical and clinical studies have demonstrated that berberine (BBR) improves diabetic complications and reduces mortality of patients with congestive heart failure. The therapeutic effects of BBR have been reported to be mediated by its regulation of adenosine monophosphate (AMP)-activated protein kinase (AMPK). We previously reported that BBR protects against ischemia-reperfusion injury via regulating AMPK activity in both ischemic and nonischemic areas of the rat heart. Since diabetic hearts are more sensitive to ischemia-reperfusion injury, we examined whether BBR treatment exhibited cardioprotective effects in the diabetic heart. Type 2 diabetic rats were pretreated plus or minus BBR for 7 days and subjected to 30-minute ischemia followed by 120-minute reperfusion. Pretreatment of type 2 diabetic rats with BBR reduced ischemia-reperfusion injury infarct size and attenuated arrhythmia compared to untreated diabetic controls. Subsequent to ischemia-reperfusion, serum triglyceride, total cholesterol, and malondialdehyde levels were reduced by pretreatment of type 2 diabetic rats with BBR compared to untreated diabetic controls. In contrast, serum glucose and superoxide dismutase levels were unaltered. The mechanism for the BBR-mediated cardioprotective effect was examined. Pretreatment with BBR did not alter AMPK activity in ischemic areas at risk but increased AMPK activity in nonischemic areas compared to untreated diabetic controls. The increased AMPK activity in nonischemic areas was due an elevated ratio of AMP to adenosine triphosphate (ATP) and adenosine diphosphate to ATP. In addition, pretreatment with BBR increased protein kinase B (AKT) phosphorylation and reduced glycogen synthase kinase 3β (GSK3β) activity in nonischemic areas compared to untreated diabetic controls. These findings indicate that BBR protects the diabetic heart from ischemia-reperfusion injury. In addition, BBR may mediate this cardioprotective effect through AMPK activation, AKT

  14. Neuroprotective effects of rutaecarpine on cerebral ischemia reperfusion injury**

    Chunlin Yan; Ji Zhang; Shu Wang; Guiping Xue; Yong Hou

    2013-01-01

    Rutaecarpine, an active component of the traditional Chinese medicine Tetradium ruticarpum, has been shown to improve myocardial ischemia reperfusion injury. Because both cardiovascular and cerebrovascular diseases are forms of ischemic vascular disease, they are closely related. We hypothesized that rutaecarpine also has neuroprotective effects on cerebral ischemia reperfusion injury. A cerebral ischemia reperfusion model was established after 84, 252 and 504 µg/kg carpine were given to mice via intraperitoneal injection, daily for 7 days. Results of the step through test, 2,3,5-triphenyl tetrazolium chloride dyeing and oxidative stress indicators showed that rutae-carpine could improve learning and memory ability, neurological symptoms and reduce infarction volume and cerebral water content in mice with cerebral ischemia reperfusion injury. Rutaecarpine could significantly decrease the malondialdehyde content and increase the activities of superoxide dismutase and glutathione peroxidase in mouse brain. Therefore, rutaecarpine could improve neu-rological function fol owing injury induced by cerebral ischemia reperfusion, and the mechanism of this improvement may be associated with oxidative stress. These results verify that rutaecarpine has neuroprotective effects on cerebral ischemia reperfusion in mice.

  15. Ischemia reperfusion dysfunction changes model-estimated kinetics of myofilament interaction due to inotropic drugs in isolated hearts

    Riess Matthias L

    2006-03-01

    Full Text Available Abstract Background The phase-space relationship between simultaneously measured myoplasmic [Ca2+] and isovolumetric left ventricular pressure (LVP in guinea pig intact hearts is altered by ischemic and inotropic interventions. Our objective was to mathematically model this phase-space relationship between [Ca2+] and LVP with a focus on the changes in cross-bridge kinetics and myofilament Ca2+ sensitivity responsible for alterations in Ca2+-contraction coupling due to inotropic drugs in the presence and absence of ischemia reperfusion (IR injury. Methods We used a four state computational model to predict LVP using experimentally measured, averaged myoplasmic [Ca2+] transients from unpaced, isolated guinea pig hearts as the model input. Values of model parameters were estimated by minimizing the error between experimentally measured LVP and model-predicted LVP. Results We found that IR injury resulted in reduced myofilament Ca2+ sensitivity, and decreased cross-bridge association and dissociation rates. Dopamine (8 μM reduced myofilament Ca2+ sensitivity before, but enhanced it after ischemia while improving cross-bridge kinetics before and after IR injury. Dobutamine (4 μM reduced myofilament Ca2+ sensitivity while improving cross-bridge kinetics before and after ischemia. Digoxin (1 μM increased myofilament Ca2+ sensitivity and cross-bridge kinetics after but not before ischemia. Levosimendan (1 μM enhanced myofilament Ca2+ affinity and cross-bridge kinetics only after ischemia. Conclusion Estimated model parameters reveal mechanistic changes in Ca2+-contraction coupling due to IR injury, specifically the inefficient utilization of Ca2+ for contractile function with diastolic contracture (increase in resting diastolic LVP. The model parameters also reveal drug-induced improvements in Ca2+-contraction coupling before and after IR injury.

  16. Atorvastatin protects against cerebral ischemia/reperfusion injury through anti-inflammatory and antioxidant effects

    Tu, Qiuyun; Cao, Hui; Zhong, Wei; Ding, Binrong; Tang, Xiangqi

    2014-01-01

    In addition to its lipid-lowering effect, atorvastatin exerts anti-inflammatory and antioxidant effects as well. In this study, we hypothesized that atorvastatin could protect against cerebral ischemia/reperfusion injury. The middle cerebral artery ischemia/reperfusion model was established, and atorvastatin, 6.5 mg/kg, was administered by gavage. We found that, after cerebral ischemia/reperfusion injury, levels of the inflammation-related factors E-selectin and myeloperoxidase were upregulat...

  17. Etanercept Attenuates Myocardial Ischemia/Reperfusion Injury by Decreasing Inflammation and Oxidative Stress

    YANG Mei; Chen, Jianchang; Zhao, Jing; Meng, Mei

    2014-01-01

    The protective role of etanercept in myocardial ischemia/reperfusion is not well understood. The aim of this study was to investigate whether etanercept modulates neutrophil accumulation, TNF-α induction and oxidative stress in an ischemia/reperfusion injured rat heart model. Rats were randomly exposed to sham operation, myocardial ischemia/reperfusion (MI/R) alone, MI/R+ etanercept. The results demonstrated that compared to MI/R, etanercept reduced myocardial infarction area, myocardial myel...

  18. In Vivo Neuroprotective Effect of Histidine-Tryptophan-Ketoglutarate Solution in an Ischemia/Reperfusion Spinal Cord Injury Animal Model

    Kang, Shin Kwang; Kang, Min-Woong; Rhee, Youn Ju; Kim, Cuk-Seong; Jeon, Byeong Hwa; Han, Sung Joon; Cho, Hyun Jin; Na, Myung Hoon; Yu, Jae-Hyeon

    2016-01-01

    Background Paraplegia is a devastating complication following operations on the thoracoabdominal aorta. We investigated whether histidine-tryptophan-ketoglutarate (HTK) solution could reduce the extent of ischemia/reperfusion (IR) spinal cord injuries in a rat model using a direct delivery method. Methods Twenty-four Sprague-Dawley male rats were randomly divided into four groups. The sham group (n=6) underwent a sham operation, the IR group (n=6) underwent only an aortic occlusion, the saline infusion group (saline group, n=6) underwent an aortic occlusion and direct infusion of cold saline into the occluded aortic segment, and the HTK infusion group (HTK group, n=6) underwent an aortic occlusion and direct infusion of cold HTK solution into the occluded aortic segment. An IR spinal cord injury was induced by transabdominal clamping of the aorta distally to the left renal artery and proximally to the aortic bifurcation for 60 minutes. A neurological evaluation of locomotor function was performed using the modified Tarlov score after 48 hours of reperfusion. The spinal cord was harvested for histopathological and immunohistochemical examinations. Results The spinal cord IR model using direct drug delivery in rats was highly reproducible. The Tarlov score was 4.0 in the sham group, 1.17±0.75 in the IR group, 1.33±1.03 in the saline group, and 2.67±0.81 in the HTK group (p=0.04). The histopathological analysis of the HTK group showed reduced neuronal cell death. Conclusion Direct infusion of cold HTK solution into the occluded aortic segment may reduce the extent of spinal cord injuries in an IR model in rats. PMID:27525231

  19. The Long-Term Consumption of Ginseng Extract Reduces the Susceptibility of Intermediate-Aged Hearts to Acute Ischemia Reperfusion Injury.

    Pei Luo

    -aged hearts to acute ischemia reperfusion injury in rats. These effects might be mediated through the activation of Akt/eNOS, suppression of Erk/caspase 7 and upregulation of Sirt1 and Sirt3 in intermediate-aged rats.

  20. Mitochondrially targeted Endonuclease III has a powerful anti-infarct effect in an in vivo rat model of myocardial ischemia/reperfusion

    Yang, Xi-Ming; Cui, Lin; White, James; Kuck, Jamie; Ruchko, Mykhaylo V.; Wilson, Glenn L.; Alexeyev, Mikhail; Gillespie, Mark N.; Downey, James M.; Cohen, Michael V.

    2015-01-01

    Recent reports indicate that elevating DNA glycosylase/AP lyase repair enzyme activity offers marked cytoprotection in cultured cells and a variety of injury models. In this study, we measured the effect of EndoIII, a fusion protein construct that traffics Endonuclease III, a DNA glycosylase/AP lyase, to the mitochondria, on infarct size in a rat model of myocardial ischemia/reperfusion. Open-chest, anesthetized rats were subjected to 30 min of occlusion of a coronary artery followed by 2 h o...

  1. Aged Garlic Extract Attenuates Neuronal Injury in a Rat Model of Spinal Cord Ischemia/Reperfusion Injury.

    Cemil, Berker; Gokce, Emre Cemal; Kahveci, Ramazan; Gokce, Aysun; Aksoy, Nurkan; Sargon, Mustafa Fevzi; Erdogan, Bulent; Kosem, Bahadir

    2016-06-01

    Garlic has been used as a food as well as a component of traditional medicine. Aged garlic extract (AGE) is claimed to promote human health through antioxidant/anti-inflammatory activities with neuroprotective effects. We evaluated the possible beneficial effect of AGE neurologically, pathologically, ultrastructurally, and biochemically in a spinal cord ischemia-reperfusion (I/R) model of rats. Twenty-four Sprague-Dawley rats were divided into three groups: sham (no I/R), I/R, and AGE (I/R+AGE); each group consisted of eight animals. Animals were evaluated neurologically with the Basso, Beattie, and Bresnahan (BBB) scoring system. The spinal cord tissue samples were harvested for pathological and ultrastructural examinations. Oxidative products (Malondialdehyde, nitric oxide), antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase), inflammatory cytokines (tissue tumor necrosis factor alpha, interleukin-1), and caspase-3 activity were analyzed. The AGE group had significantly higher BBB scores than the I/R group. Pathologically, AGE group revealed reduced degree of ischemia and spinal cord edema. Ultrastructural results also showed preservation of tissue structure in the AGE group. Oxidative product levels of the I/R group were significantly higher than both the other groups, and antioxidant enzyme levels of AGE group were significantly higher than the I/R group. There was also significant difference between the sham and AGE groups in terms of total antioxidant enzyme levels. Furthermore, AGE treatment significantly reduced the inflammatory cytokines and caspase-3 activity than the I/R group. This study demonstrates the considerable neuroprotective effect of AGE on the neurological, pathological, ultrastructural, and biochemical status of rats with I/R-induced spinal cord injury. PMID:27183321

  2. Electroacupuncture stimulation of the brachial plexus trunk on the healthy side promotes brain-derived neurotrophic factor mRNA expression in the ischemic cerebral cortex of a rat model of cerebral ischemia/reperfusion injury

    Zongjun Guo; Lumin Wang

    2012-01-01

    A rat model of cerebral ischemia/reperfusion was established by suture occlusion of the left middle cerebral artery. In situ hybridization results showed that the number of brain-derived neurotrophic factor mRNA-positive cells in the ischemic rat cerebral cortex increased after cerebral ischemia/ reperfusion injury. Low frequency continuous wave electroacupuncture (frequency 2-6 Hz, current intensity 2 mA) stimulation of the brachial plexus trunk on the healthy (right) side increased the number of brain-derived neurotrophic factor mRNA-positive cells in the ischemic cerebral cortex 14 days after cerebral ischemia/reperfusion injury. At the same time, electroacupuncture stimulation of the healthy brachial plexus truck significantly decreased neurological function scores and alleviated neurological function deficits. These findings suggest that electroacupuncture stimulation of the brachial plexus trunk on the healthy (right) side can greatly increase brain-derived neurotrophic factor mRNA expression and improve neurological function.

  3. Lung Ischemia-Reperfusion is a Sterile Inflammatory Process Influenced by Commensal Microbiota in Mice

    Prakash, A; Sundar, SV; Zhu, YG; A. Tran; Lee, JW; Lowell, C; Hellman, J.

    2015-01-01

    © 2015 by the Shock Society. Lung ischemia-reperfusion (IR) complicates numerous clinical processes, such as cardiac arrest, transplantation, and major trauma. These conditions generate sterile inflammation, which can cause or worsen acute lung injury. We previously reported that lung and systemic inflammation in a mouse model of ventilated lung IR depends on Toll-like receptor 4 (TLR-4) signaling and the presence of alveolar macrophages. Here, we tested the hypothesis that the intestinal mic...

  4. Inhibition of Fas-associated death domain-containing protein (FADD protects against myocardial ischemia/reperfusion injury in a heart failure mouse model.

    Qian Fan

    Full Text Available AIM: As technological interventions treating acute myocardial infarction (MI improve, post-ischemic heart failure increasingly threatens patient health. The aim of the current study was to test whether FADD could be a potential target of gene therapy in the treatment of heart failure. METHODS: Cardiomyocyte-specific FADD knockout mice along with non-transgenic littermates (NLC were subjected to 30 minutes myocardial ischemia followed by 7 days of reperfusion or 6 weeks of permanent myocardial ischemia via the ligation of left main descending coronary artery. Cardiac function were evaluated by echocardiography and left ventricular (LV catheterization and cardiomyocyte death was measured by Evans blue-TTC staining, TUNEL staining, and caspase-3, -8, and -9 activities. In vitro, H9C2 cells transfected with ether scramble siRNA or FADD siRNA were stressed with chelerythrin for 30 min and cleaved caspase-3 was assessed. RESULTS: FADD expression was significantly decreased in FADD knockout mice compared to NLC. Ischemia/reperfusion (I/R upregulated FADD expression in NLC mice, but not in FADD knockout mice at the early time. FADD deletion significantly attenuated I/R-induced cardiac dysfunction, decreased myocardial necrosis, and inhibited cardiomyocyte apoptosis. Furthermore, in 6 weeks long term permanent ischemia model, FADD deletion significantly reduced the infarct size (from 41.20 ± 3.90% in NLC to 26.83 ± 4.17% in FADD deletion, attenuated myocardial remodeling, improved cardiac function and improved survival. In vitro, FADD knockdown significantly reduced chelerythrin-induced the level of cleaved caspase-3. CONCLUSION: Taken together, our results suggest FADD plays a critical role in post-ischemic heart failure. Inhibition of FADD retards heart failure progression. Our data supports the further investigation of FADD as a potential target for genetic manipulation in the treatment of heart failure.

  5. Intestinal ischemia/reperfusion induces bronchial hyperreactivity and increases serum TNF-alpha in rats

    Arruda Marcio Jose Cristiano de

    2006-01-01

    Full Text Available INTRODUCTION: Intestinal or hepatic ischemia/reperfusion induces acute lung injury in animal models of multiple organ failure. Tumor necrosis factor (TNF- alpha is involved in the underlying inflammatory mechanism of acute respiratory distress syndrome. Although the inflammatory cascade leading to acute respiratory distress syndrome has been extensively investigated, the mechanical components of acute respiratory distress syndrome are not fully understood. Our hypothesis is that splanchnic ischemia/reperfusion increases airway reactivity and serum TNF-alpha levels. OBJECTIVE: To assess bronchial smooth muscle reactivity under methacholine stimulation, and to measure serum TNF-alpha levels following intestinal and/or hepatic ischemia/reperfusion in rats. METHOD: Rats were subjected to 45 minutes of intestinal ischemia, or 20 minutes of hepatic ischemia, or to both (double ischemia, or sham procedures (control, followed by 120 minutes of reperfusion. The animals were then sacrificed, and the bronchial response to increasing methacholine molar concentrations (10-7 to 3 x 10-4 was evaluated in an ex-vivo bronchial muscle preparation. Serum TNF-alpha was determined by the L929-cell bioassay. RESULTS: Bronchial response (g/100 mg tissue showed increased reactivity to increasing methacholine concentrations in the intestinal ischemia and double ischemia groups, but not in the hepatic ischemia group. Similarly, serum TNF-alpha (pg/mL concentration was increased in the intestinal ischemia and double ischemia groups, but not in the hepatic ischemia group. CONCLUSION: Intestinal ischemia, either isolated or associated with hepatic ischemia, increased bronchial smooth muscle reactivity, suggesting a possible role for bronchial constriction in respiratory dysfunction following splanchnic ischemia/reperfusion. This increase occurred in concomitance with serum TNF-alpha increase, but whether the increase in TNF-alpha caused this bronchial contractility remains

  6. Effects of intracoronary melatonin on ischemia-reperfusion injury in ST-elevation myocardial infarction

    Ekeløf, Sarah V; Halladin, Natalie L; Jensen, Svend E;

    2016-01-01

    Acute coronary occlusion is effectively treated by primary percutaneous coronary intervention. However, myocardial ischemia-reperfusion injury is at the moment an unavoidable consequence of the procedure. Oxidative stress is central in the development of ischemia-reperfusion injury. Melatonin, an...... endogenous hormone, acts through antioxidant mechanisms and could potentially minimize the myocardial injury. The aim of the experimental study was to examine the cardioprotective effects of melatonin in a porcine closed-chest reperfused infarction model. A total of 20 landrace pigs were randomized to a...... dosage of 200 mg (0.4 mg/mL) melatonin or placebo (saline). The intervention was administered intracoronary and intravenous. Infarct size, area at risk and microvascular obstruction were determined ex vivo by cardiovascular magnetic resonance imaging. Myocardial salvage index was calculated. The plasma...

  7. Pressure Combined with Ischemia/Reperfusion Injury Induces Deep Tissue Injury via Endoplasmic Reticulum Stress in a Rat Pressure Ulcer Model.

    Cui, Fei-Fei; Pan, Ying-Ying; Xie, Hao-Huang; Wang, Xiao-Hui; Shi, Hong-Xue; Xiao, Jian; Zhang, Hong-Yu; Chang, Hao-Teng; Jiang, Li-Ping

    2016-01-01

    Pressure ulcer is a complex and significant health problem in long-term bedridden patients, and there is currently no effective treatment or efficient prevention method. Furthermore, the molecular mechanisms and pathogenesis contributing to the deep injury of pressure ulcers are unclear. The aim of the study was to explore the role of endoplasmic reticulum (ER) stress and Akt/GSK3β signaling in pressure ulcers. A model of pressure-induced deep tissue injury in adult Sprague-Dawley rats was established. Rats were treated with 2-h compression and subsequent 0.5-h release for various cycles. After recovery, the tissue in the compressed regions was collected for further analysis. The compressed muscle tissues showed clear cellular degenerative features. First, the expression levels of ER stress proteins GRP78, CHOP, and caspase-12 were generally increased compared to those in the control. Phosphorylated Akt and phosphorylated GSK3β were upregulated in the beginning of muscle compression, and immediately significantly decreased at the initiation of ischemia-reperfusion injury in compressed muscles tissue. These data show that ER stress may be involved in the underlying mechanisms of cell degeneration after pressure ulcers and that the Akt/GSK3β signal pathway may play an important role in deep tissue injury induced by pressure and ischemia/reperfusion. PMID:26927073

  8. Pressure Combined with Ischemia/Reperfusion Injury Induces Deep Tissue Injury via Endoplasmic Reticulum Stress in a Rat Pressure Ulcer Model

    Fei-Fei Cui

    2016-02-01

    Full Text Available Pressure ulcer is a complex and significant health problem in long-term bedridden patients, and there is currently no effective treatment or efficient prevention method. Furthermore, the molecular mechanisms and pathogenesis contributing to the deep injury of pressure ulcers are unclear. The aim of the study was to explore the role of endoplasmic reticulum (ER stress and Akt/GSK3β signaling in pressure ulcers. A model of pressure-induced deep tissue injury in adult Sprague-Dawley rats was established. Rats were treated with 2-h compression and subsequent 0.5-h release for various cycles. After recovery, the tissue in the compressed regions was collected for further analysis. The compressed muscle tissues showed clear cellular degenerative features. First, the expression levels of ER stress proteins GRP78, CHOP, and caspase-12 were generally increased compared to those in the control. Phosphorylated Akt and phosphorylated GSK3β were upregulated in the beginning of muscle compression, and immediately significantly decreased at the initiation of ischemia-reperfusion injury in compressed muscles tissue. These data show that ER stress may be involved in the underlying mechanisms of cell degeneration after pressure ulcers and that the Akt/GSK3β signal pathway may play an important role in deep tissue injury induced by pressure and ischemia/reperfusion.

  9. Protective effect of ginsenoside Rb1 against intestinal ischemia-reperfusion induced acute renal injury in mice.

    Qian Sun

    Full Text Available Ginsenoside Rb1 (RB1, the most clinically effective constituent of ginseng, possesses a variety of biological activities. The objectives of this study were to investigate the protective effects of RB1 and its underlying mechanism on renal injury induced by intestinal ischemia-reperfusion (IIR in mice. RB1 was administered prior to inducing IIR achieved by occluding the superior mesenteric artery for 45 min followed by 120 min of reperfusion. All-trans-retinoic acid (ATRA was used as an inhibitor of NF-E2-related factor-2 (Nrf2 signaling. Adult male C57BL/6J mice were randomly divided into six groups: (1 sham group, (2 IIR group, (3 RB1 group, (4 sham + ATRA group, (5 IIR + ATRA group, and (6 RB1 + ATRA group. Intestinal histology and pathological injury score were observed. Intestinal mucosal injury was also evaluated by measuring serum diamine oxidase (DAO. Renal injury induced by IIR was characterized by increased levels of histological severity score, blood urea nitrogen (BUN, serum creatinine (Scr and neutrophil gelatinase-associated lipocalin (NGAL, which was accompanied with elevated renal TUNEL-positive cells and the Bcl-2/Bax expression ratio. RB1 significantly reduced renal injury and apoptosis as compared with IIR group, which was reversed by ATRA treatment. Immunohistochemistry and Western blot analysis demonstrated that RB1 significantly upregulated the protein expression of heme oxygenase-1 (HO-1 and Nrf2, which were attenuated by ATRA treatment. Taken together, these results suggest that the protective effects of RB1 pretreatment against renal injury induced by IIR are associated with activation of the Nrf2/ anti-oxidant response element (ARE pathway.

  10. Comparative study between trimetazidine and ice slush hypothermia in protection against renal ischemia/reperfusion injury in a porcine model

    Leonardo de Albuquerque dos Santos Abreu; Paulo Roberto Kawano; Hamilto Yamamoto; Ronaldo Damião; Oscar Eduardo Hidetoshi Fugita

    2011-01-01

    PURPOSE: The aim of the study was to compare the effects of renal ice slush hypothermia and the use of trimetazidine in the protection against ischemia/reperfusion (I/R) injury. MATERIALS AND METHODS: Fifteen farm pigs were submitted to left kidney ischemia and right nephrectomy during the same procedure. Animals were divided into three groups. Group 1 was submitted to warm ischemia; Group 2 was submitted to cold ischemia with ice slush; and Group 3 received trimetazidine 20 mg one day and 4 ...

  11. Minocycline inhibits neuroinflammation and enhances vascular endothelial growth factor expression in a cerebral ischemia/reperfusion rat model

    Zhiyou Cai; Yong Yan; Changyin Yu; Jun Zhang

    2008-01-01

    BACKGROUND: Brain ischemia involves secondary inflammation, which significantly contributes to the outcome of ischemic insults. Vascular endothelial growth factor (VEGF) may play an important role in the vascular response to cerebral ischemia, because ischemia stimulates VEGF expression in the brain, and VEGF promotes formation of new cerebral blood vessels. Minocyclinc, a tetracycline derivative, protects against cerebral ischemia and reduces inflammation, oxidative stress, and apoptosis.OBJECTIVE: To observe the influence of minocycline on VEGE interleukin-1 beta (IL-1β), and tumor necrosis factor alpha (TNF-α) expression in Wistar rats with focal cerebral ischemia/rcperfusion injury, and to study the neuroproteetion mechanism of minocycline against focal cerebral ischemia/rcpeffusion injury.DESIGN, TIME AND SETTING: Randomized, controlled experiment, which was performed in the Chongqing Key Laboratory of Neurology between March 2007 and March 2008.MATERIALS: A total of 36 female, Wistar rats underwent surgery to insert a thread into the left middle cerebral artery. Animals were randomly divided into sham-operation, minocyclinc treatment, and ischemia/reperfusion groups, with 12 rats in each group. Minocycline (Huishi Pharmaceutical Limited Company, China) was dissolved to 0.5 g/L in normal saline.METHODS: A 0.5- 1.0 cm thread was inserted into rats from the sham-operation group. Rats in the ischemia/reperfusion group underwent ischemia and reperfusion. The minocycline group received minocycline (50 mg/kg) 12 and 24 hours following ischemia and reperfusion, whereas the other groups received saline at the corresponding time points.MAIN OUTCOME MEASURES: mRNA and protein expression of IL-1β and TNF-α was measured by reverse transcriptase-polymerasc chain reaction (RT-PCR) and enzyme linked immunosorbent assay (ELISA), respectively. VEGF mRNA and protein expression was examined by RT-PCR, Western blot, and ELISA.RESULTS: Minocycline decreased the focal infarct

  12. Contribution of Large Pig for Renal Ischemia-Reperfusion and Transplantation Studies: The Preclinical Model

    S. Giraud

    2011-01-01

    Full Text Available Animal experimentation is necessary to characterize human diseases and design adequate therapeutic interventions. In renal transplantation research, the limited number of in vitro models involves a crucial role for in vivo models and particularly for the porcine model. Pig and human kidneys are anatomically similar (characterized by multilobular structure in contrast to rodent and dog kidneys unilobular. The human proximity of porcine physiology and immune systems provides a basic knowledge of graft recovery and inflammatory physiopathology through in vivo studies. In addition, pig large body size allows surgical procedures similar to humans, repeated collections of peripheral blood or renal biopsies making pigs ideal for medical training and for the assessment of preclinical technologies. However, its size is also its main drawback implying expensive housing. Nevertheless, pig models are relevant alternatives to primate models, offering promising perspectives with developments of transgenic modulation and marginal donor models facilitating data extrapolation to human conditions.

  13. Contribution of Large Pig for Renal Ischemia-Reperfusion and Transplantation Studies: The Preclinical Model

    Hauet, T.; Maiga, S.; Thuillier, R.; Chatauret, N.; Favreau, F; Giraud, S

    2011-01-01

    Animal experimentation is necessary to characterize human diseases and design adequate therapeutic interventions. In renal transplantation research, the limited number of in vitro models involves a crucial role for in vivo models and particularly for the porcine model. Pig and human kidneys are anatomically similar (characterized by multilobular structure in contrast to rodent and dog kidneys unilobular). The human proximity of porcine physiology and immune systems provides a basic knowledge ...

  14. Mangafodipir Protects against Hepatic Ischemia-Reperfusion Injury in Mice

    Coriat, Romain; Leconte, Mahaut; Kavian, Niloufar; Bedda, Sassia; Nicco, Carole; Chereau, Christiane; Goulvestre, Claire; Weill, Bernard

    2011-01-01

    Introduction and Aim Mangafodipir is a contrast agent used in magnetic resonance imaging that concentrates in the liver and displays pleiotropic antioxidant properties. Since reactive oxygen species are involved in ischemia-reperfusion damages, we hypothesized that the use of mangafodipir could prevent liver lesions in a mouse model of hepatic ischemia reperfusion injury. Mangafodipir (MnDPDP) was compared to ischemic preconditioning and intermittent inflow occlusion for the prevention of hepatic ischemia-reperfusion injury in the mouse. Methods Mice were subjected to 70% hepatic ischemia (continuous ischemia) for 90 min. Thirty minutes before the ischemic period, either mangafodipir (10 mg/kg) or saline was injected intraperitoneally. Those experimental groups were compared with one group of mice preconditioned by 10 minutes' ischemia followed by 15 minutes' reperfusion, and one group with intermittent inflow occlusion. Hepatic ischemia-reperfusion injury was evaluated by measurement of serum levels of aspartate aminotransferase (ASAT) activity, histologic analysis of the livers, and determination of hepatocyte apoptosis (cytochrome c release, caspase 3 activity). The effect of mangafodipir on the survival rate of mice was studied in a model of total hepatic ischemia. Results Mangafodipir prevented experimental hepatic ischemia-reperfusion injuries in the mouse as indicated by a reduction in serum ASAT activity (P<0.01), in liver tissue damages, in markers of apoptosis (P<0.01), and by higher rates of survival in treated than in untreated animals (P<0.001). The level of protection by mangafodipir was similar to that observed following intermittent inflow occlusion and higher than after ischemic preconditioning. Conclusions Mangafodipir is a potential new preventive treatment for hepatic ischemia-reperfusion injury. PMID:22073237

  15. Mangafodipir protects against hepatic ischemia-reperfusion injury in mice.

    Romain Coriat

    Full Text Available INTRODUCTION AND AIM: Mangafodipir is a contrast agent used in magnetic resonance imaging that concentrates in the liver and displays pleiotropic antioxidant properties. Since reactive oxygen species are involved in ischemia-reperfusion damages, we hypothesized that the use of mangafodipir could prevent liver lesions in a mouse model of hepatic ischemia reperfusion injury. Mangafodipir (MnDPDP was compared to ischemic preconditioning and intermittent inflow occlusion for the prevention of hepatic ischemia-reperfusion injury in the mouse. METHODS: Mice were subjected to 70% hepatic ischemia (continuous ischemia for 90 min. Thirty minutes before the ischemic period, either mangafodipir (10 mg/kg or saline was injected intraperitoneally. Those experimental groups were compared with one group of mice preconditioned by 10 minutes' ischemia followed by 15 minutes' reperfusion, and one group with intermittent inflow occlusion. Hepatic ischemia-reperfusion injury was evaluated by measurement of serum levels of aspartate aminotransferase (ASAT activity, histologic analysis of the livers, and determination of hepatocyte apoptosis (cytochrome c release, caspase 3 activity. The effect of mangafodipir on the survival rate of mice was studied in a model of total hepatic ischemia. RESULTS: Mangafodipir prevented experimental hepatic ischemia-reperfusion injuries in the mouse as indicated by a reduction in serum ASAT activity (P<0.01, in liver tissue damages, in markers of apoptosis (P<0.01, and by higher rates of survival in treated than in untreated animals (P<0.001. The level of protection by mangafodipir was similar to that observed following intermittent inflow occlusion and higher than after ischemic preconditioning. CONCLUSIONS: Mangafodipir is a potential new preventive treatment for hepatic ischemia-reperfusion injury.

  16. Evaluation of cardioprotective effect of ischemic preconditioning on ischemic myocardium using 99Tcm-Syt I-C2A in the myocardial ischemia-reperfusion rat model

    Objective: Precondition is an approach to myocardial protection during ischemia-reperfusion by inhibiting myocardial cell apoptosis. The purpose of this study was to evaluate the cardioprotective effect using 99Tcm-synaptotagmin I (Syt I) -C2A to detect myocardial cell apoptosis in the myocardial is-chemia-reperfusion rat model. Methods: (1) The C2A domain of Syt I was labeled with 99Tcm using 2-iminothiophene hydrochloride (IT) method. Radiochemical purity was determined with thin layer chroma-tography. The binding activity of radiolabeled protein was assessed using camptothecin-treated Jurket cells. (2) One group of 6 rats was prepared for myocardial ischemia-reperfusion model (A group), and another group of 6 rats was prepared for myocardial ischemia precondition model (B group). 99Tcm-Syt I-C2A was injected via the tail vein at a dosage of about 7.4 MBq. At 1h after injection, the rat was sacrificed, and the heart was removed to rinse with saline and dye with triphenyl tetrazolium coride (TTC). According to the resdt of myocardial dye, theischemic myocardium was separated from the viable myocardium and weight was measured, and then its radioactivity was determined by gamma counting. The difference of radioactive uptake in the ischemic myocardium between these two group models was compared using percentage activity of injection dose per gram of tissue (%ID/g) ± standard deviation [(x -bar)± s]. SPSS 12.0 was used for data analysis, and t-test was used to compare data. Results: (1) The radiochemical purity of 99Tcm-Syt I-C2A was (98.90 ± 0.43)%, and the radioactivity in the camptothecin-treated group was (10.99 ± 0.55) folds higher than that of non-treated viable control group. (2)In the ischemia-reperfusion model, the radioactive uptake of 99Tcm-Syt, I-C2A was (2.41 ± 0.32)% ID/g in the ischemic myocardium, and (0.16 ± O.02)% ID/g in the nomud myocardiunm. However, in the myocardial ischemia precondition model, (0.46 ± 0.05)% ID/g in the ischemic

  17. Selection of reference genes in different myocardial regions of an in vivo ischemia/reperfusion rat model for normalization of antioxidant gene expression

    Vesentini Nicoletta

    2012-02-01

    Full Text Available Abstract Background Changes in cardiac gene expression due to myocardial injury are usually assessed in whole heart tissue. However, as the heart is a heterogeneous system, spatial and temporal heterogeneity is expected in gene expression. Results In an ischemia/reperfusion (I/R rat model we evaluated gene expression of mitochondrial and cytoplasmatic superoxide dismutase (MnSod, Cu-ZnSod and thioredoxin reductase (trxr1 upon short (4 h and long (72 h reperfusion times in the right ventricle (RV, and in the ischemic/reperfused (IRR and the remote region (RR of the left ventricle. Gene expression was assessed by Real-time reverse-transcription quantitative PCR (RT-qPCR. In order to select most stable reference genes suitable for normalization purposes, in each myocardial region we tested nine putative reference genes by geNorm analysis. The genes investigated were: Actin beta (actb, Glyceraldehyde-3-P-dehydrogenase (gapdh, Ribosomal protein L13A (rpl13a, Tyrosine 3-monooxygenase (ywhaz, Beta-glucuronidase (gusb, Hypoxanthine guanine Phosphoribosyltransferase 1 (hprt, TATA binding box protein (tbp, Hydroxymethylbilane synthase (hmbs, Polyadenylate-binding protein 1 (papbn1. According to our findings, most stable reference genes in the RV and RR were hmbs/hprt and hmbs/tbp/hprt respectively. In the IRR, six reference genes were recommended for normalization purposes; however, in view of experimental feasibility limitations, target gene expression could be normalized against the three most stable reference genes (ywhaz/pabp/hmbs without loss of sensitivity. In all cases MnSod and Cu-ZnSod expression decreased upon long reperfusion, the former in all myocardial regions and the latter in IRR alone. trxr1 expression did not vary. Conclusions This study provides a validation of reference genes in the RV and in the anterior and posterior wall of the LV of cardiac ischemia/reperfusion model and shows that gene expression should be assessed separately in

  18. Intake of hot water-extracted apple protects against myocardial injury by inhibiting apoptosis in an ischemia/reperfusion rat model.

    Kim, Mi Young; Lim, Sun Ha; Lee, Jongwon

    2014-11-01

    Intakes of apple and its products are shown to reduce the risk of coronary heart disease by delaying occlusion of coronary arteries. In our previous study, we showed that apple pectin protected against myocardial injury by prohibiting apoptotic cascades in a rat model of ischemia/reperfusion. Thus, we hypothesized that water-extracted apple, into which apple pectin was released from the cell wall, might exhibit the same efficacy as apple pectin. To test this hypothesis, we fed rats either cold water- (400 mg kg(-1) d(-1)) or hot water-extracted apples (HWEA; 40, 100, and 400 mg kg(-1) d(-1)). Three days later, the rats were subjected to myocardial injuries by ligating the left anterior descending coronary artery (30 minutes), and subsequently, the heart (3 hours) reperfused by releasing the ligation. Only the rats that were supplemented with HWEA (400 mg kg(-1) d(-1)) showed significant reductions in infarct size, which was 28.5% smaller than that of the control group. This infarct size reduction could be partly attributed to the prevention of steps leading to apoptosis. These steps are manifested by a higher Bcl-2/Bax ratio, lower procaspase-3 conversion to caspase-3, and inhibition of DNA nick generation, which reflects the extent of apoptosis. The findings indicate that HWEA supplementation reduces myocardial injury by inhibiting apoptosis under ischemia/reperfusion conditions. In conclusion, this study suggests that apple intake, specifically boiled apple, might reduce the risk of coronary heart disease by inhibiting postocclusion steps, such as myocardial injury after artery occlusion, as well as preocclusion steps, such as atherosclerotic plaque formation. PMID:25304826

  19. Effect of Panax notoginseng saponins on the content of IL-8 in serum after cerebral ischemia-reperfusion in rat

    Objective: To investigate the effect of Panax notoginseng saponins (Pns) against cerebral ischemia-reperfusion injury. Methods: Focal cerebral ischemia-reperal ischemia-reperfusion model in rat was established by occlusion the middle cerebral artery for 2 h, after 3 h reperfusion. The serum concentration of IL-8 was detected with radioimmunoassay (RIA). Results: Png 50 mg·kg-1 ip, qd x 7d before MCAO decreased the serum content of IL-8 after ischemia-reperfusion. Conclusion: Pns has protective effect against cerebral ischemia-reperfusion injury by decreased the serum content of IL-8

  20. Preventive administration of cromakalim reduces aquaporin-4 expression and blood-brain barrier permeability in a rat model of cerebral ischemia/reperfusion injury

    Shilei Wang; Yanting Wang; Yan Jiang; Qingxian Chang; Peng Wang; Shiduan Wang

    2011-01-01

    Cromakalim, an adenosine triphosphate-sensitive potassium channel opener, exhibits protective effects on cerebral ischemia/reperfusion injury. However, there is controversy as to whether this effect is associated with aquaporin-4 and blood-brain barrier permeability. Immunohistochemistry results show that preventive administration of cromakalim decreased aquaporin-4 and IgG protein expression in rats with ischemia/reperfusion injury; it also reduced blood-brain barrier permeability, and alleviated brain edema, ultimately providing neuroprotection.

  1. Nanoparticle-Mediated Delivery of Irbesartan Induces Cardioprotection from Myocardial Ischemia-Reperfusion Injury by Antagonizing Monocyte-Mediated Inflammation

    Yasuhiro Nakano; Tetsuya Matoba; Masaki Tokutome; Daiki Funamoto; Shunsuke Katsuki; Gentaro Ikeda; Kazuhiro Nagaoka; Ayako Ishikita; Kaku Nakano; Jun-ichiro Koga; Kenji Sunagawa; Kensuke Egashira

    2016-01-01

    Myocardial ischemia-reperfusion (IR) injury limits the therapeutic effect of early reperfusion therapy for acute myocardial infarction (AMI), in which the recruitment of inflammatory monocytes plays a causative role. Here we develop bioabsorbable poly-lactic/glycolic acid (PLGA) nanoparticles incorporating irbesartan, an angiotensin II type 1 receptor blocker with a peroxisome proliferator-activated receptor (PPAR)γ agonistic effect (irbesartan-NP). In a mouse model of IR injury, intravenous ...

  2. Effect of renal ischemia-reperfusion on lung injury and inflammatory responses in male rat

    Hadi Yousefi; Naser Ahmadiasl; Alireza Alihemmati; Parisa Habibi

    2014-01-01

    Objective(s):Acute kidney injury (AKI), a syndrome characterized by decreased glomerular filtration, occurs in every 1 of 5 hospitalized patients.  Renal ischemia-reperfusion, one of the main causes of AKI, is of particular importance in the setting of kidney transplantation. Materials and Methods: Sixty male rats were divided into four groups including control, nephrectomy, sham surgery and renal ischemia-reperfusion (IRI) group. The rats were anesthetized with intraperitonealketamin and ...

  3. Effects of low molecular weight heparin-superoxide dismutase conjugate on serum levels of nitric oxide, glutathione peroxidase, and myeloperoxidase in a gerbil model of cerebral ischemia/reperfusion injury

    Qingde Wang; Guixiang Cui; Hongxia Liu; Yizhao Li; Fengshan Wang

    2008-01-01

    BACKGROUND: Several studies have demonstrated that low molecular weight heparin-superoxide dismutase (LMWH-SOD) conjugate may exhibit good neuroprotective effects on cerebral ischemia/reperfusion injury though anticoagulation, decreasing blood viscosity, having anti-inflammatory activity, and scavenging oxygen free radicals. OBJECTIVE: To investigate the intervention effects of LMWH-SOD conjugate on serum levels of nitric oxide (NO), glutathione peroxidase (GSH-Px), and myeloperoxidase (MPO) following cerebral ischemia/reperfusion injury. DESIGN, TIME AND SETTING: A randomized, controlled, and neurobiochemical experiment was performed at the Institute of Biochemical Pharmacy, School of Pharmaceutical Sciences, Shandong University between April and July 2004. MATERIALS: A total of 60 Mongolian gerbils of either gender were included in this study. Total cerebral ischemia/reperfusion injury was induced in 50 gerbils by occluding bilateral common carotid arteries. The remaining 10 gerbils received a sham-operation (sham-operated group). Kits of SOD, NO, and MPO were sourced from Nanjing Jiancheng Bioengineering Institute, China. LMWH, SOD, and LMWH-SOD conjugates were provided by Institute of Biochemistry and Biotechnique, Shandong University, China. METHODS: Fifty successful gerbil models of total cerebral ischemia/reperfusion injury were evenly randomized to five groups: physiological saline, LMWH-SOD, SOD, LMWH + SOD, and LMWH. At 2 minutes prior to ischemia, 0.5 mL/65 g physiological saline, 20 000 U/kg LMWH-SOD conjugate, 20 000 U/kg SOD, a mixture of SOD (20 000 U/kg) and LMWH (LMWH dose calculated according to weight ratio, LMWH: SOD = 23.6:51), and LMWH (dose as in the LMWH + SOD group) were administered through the femoral artery in each above-mentioned group, respectively. MAIN OUTCOME MEASURES: Serum levels of NO, MPO, and GSH-Px. RESULTS: Compared with 10 sham-operated gerbils, the cerebral ischemia/reperfusion injury gerbils exhibited decreased serum

  4. Effect of minocycline on cerebral ischemia- reperfusion injury

    Yuanyin Zheng; Lijuan Xu; Jinbao Yin; Zhichao Zhong; Hongling Fan; Xi Li; Quanzhong Chang

    2013-01-01

    Minocylcine, a tetracycline derivate, has been shown to cross the blood-brain barrier and enter the central nervous system. In this study, cerebral ischemia-reperfusion injury models were established using the suture method, and minocycline was immediately injected intraperitoneally after cerebral ischemia-reperfusion (22.5 mg/kg, initially 45 mg/kg) at a 12-hour interval. Results showed that after minocycline treatment, the volume of cerebral infarction was significantly reduced, the number of surviving cell in the hippocampal CA1 region increased, the number of apoptotic cells decreased, the expression of caspase-3 and poly(adenosine diphosphate-ribose) polymerase-1 protein was down-regulated, and the escape latency in the water maze test was significantly shortened compared with the ischemia-reperfusion group. Our experimental findings indicate that minocycline can protect against neuronal injury induced by focal ischemia-reperfusion, which may be mediated by the inhibition of caspase-3 and poly(adenosine diphosphate-ribose) polymerase-1 protein expression.

  5. Effects of the mitochondrial calcium uniporter on cerebral edema in a rat model of cerebral ischemia reperfusion injury

    Linlin Li; Shilei Wang; Haihong Luan

    2011-01-01

    The present study investigated the effects of the mitochondrial calcium uniporter inhibitor ruthenium red and the agonist spermine on cerebral edema in rats with cerebral ischemia reperfusion injury.Left middle cerebral artery occlusion (MCAO) was induced in rats using the suture method.Following 24 hours of ischemic reperfusion, neurological function scores of rats with MCAO, and rats pretreated with ruthenium red and spermine were significantly lower, however, water content of brain tissue, aquaporin 4 expression and immunoglobulin G (IgG) exudation were significantly higher than those of sham-operated rats.Compared with MCAO rats and spermine-treated rats, neurological function scores were considerably higher, and brain tissue water content, aquaporin 4 expression and IgG exudation decreased in ruthenium red-treated rats.These findings suggest that preventive application of the mitochondrial calcium uniporter inhibitor ruthenium red can significantly decrease aquaporin 4 and IgG expression, influence the permeability of the blood brain barrier, and thereby decrease the extent of cerebral edema.

  6. Melatonin combined with exercise cannot alleviate cerebral injury in a rat model of focal cerebral ischemia/reperfusion injury

    Seunghoon Lee; Kyu-Tae Chang; Yonggeun Hong; Jinhee Shin; Minkyung Lee; Yunkyung Hong; Sang-Kil Lee; Youngjeon Lee; Tserentogtokh Lkhagvasuren; Dong-Wook Kim; Young-Ae Yang

    2012-01-01

    Previous studies have demonstrated that melatonin combined with exercise can alleviate secondary damage after spinal cord injury in rats. Therefore, it is hypothesized that melatonin combined with exercise can also alleviate ischemic brain damage. In this study, adult rats were subjected to right middle cerebral artery occlusion after receiving 10 mg/kg melatonin or vehicle subcutaneously twice daily for 14 days. Forced exercise using an animal treadmill was performed at 20 m/min for 30 minutes per day for 6 days prior to middle cerebral artery occlusion. After middle cerebral artery occlusion, each rat received melatonin combined with exercise, melatonin or exercise alone equally for 7 days until sacrifice. Interestingly, rats receiving melatonin combined with exercise exhibited more severe neurological deficits than those receiving melatonin or exercise alone. Hypoxia-inducible factor 1α mRNA in the brain tissue was upregulated in rats receiving melatonin combined with exercise. Similarly, microtubule associated protein-2 mRNA expression was significantly upregulated in rats receiving melatonin alone. Chondroitin sulfate proteoglycan 4 (NG2) mRNA expression was significantly decreased in rats receiving melatonin combined with exercise as well as in rats receiving exercise alone. Furthermore, neural cell loss in the primary motor cortex was significantly reduced in rats receiving melatonin or exercise alone, but the change was not observed in rats receiving melatonin combined with exercise. These findings suggest that excessive intervention with melatonin, exercise or their combination may lead to negative effects on ischemia/reperfusion-induced brain damage.

  7. Study on Effect of Shenmai Injection Protecting Myocardium against Ischemia-Reperfusion Injury in Thrombolytic Therapy with Urokinase for Acute Myocardial Infarction Patient Evaluated by 99mTc-MIBI Myocardial Imaging

    2001-01-01

    Objective: To evaluate the myocardial protecting effect of Shenmai injection (SMI) against ischemia/reperfusion injury in thrombolytic therapy with urokinase (UK) for acute myocardial infarction patients by 99mTc-MIBI myocardial imaging (SPECT). Methods: Five hundred and thirty-seven patients were divided into two groups randomly. The SMI group (n=292) was treated with thrombolytictreatment plus SMI and the control group (n=245) with thrombolytic treatment solely. Single photon emission computed tomography (SPECT) was carried out on the 7th day after thrombolysis to determine the ischemic myocardial area (IMA) and ejection fraction (EF) in both groups and compared. Results: The infarction related area (IRA) of reperfusion rate in the two groups was not different significantly (72.26% vs 72.65%, P >0.05). The IMA in patients of the SMI group, no matter with or without reperfused IRA (211 cases and 81 cases) respectively, was significantly lower than that in the control group (178 cases and 67 cases) respectively, P<0.01 and P<0.05 respectively. The EF value in the SMI group was significantly higher than that in the control group (P<0.01). Conclusion:Using SMI in early stage of thrombolytic treatment in acute myocardial infarction could significantly reduce IMA and increase EF. SMI showed good protective effect against myocardial ischemia/reperfusion injury in thrombolytic treatment.

  8. Study on Effect of Shenmai Injection Protecting Myocardium against Ischemia-Reperfusion Injury in Thrombolytic Therapy with Urokinase for Acute Myocardial Infarction Patient Evaluated by 99mTc-MIBI Myocardial Imaging

    郭松鹏; 张言镇

    2001-01-01

    Objective: To evaluate the myocardial protecting effect of Shenmai injection (SMI) against ischemia/reperfusion injury in thrombolytic therapy with urokinase (UK) for acute myocardial infarction patients by 99mTc-MIBI myocardial imaging (SPECT). Methods: Five hundred and thirty-seven patients were divided into two groups randomly. The SMI group (n=292) was treated with thrombolytictreatment plus SMI and the control group (n=245) with thrombolytic treatment solely. Single photon emission computed tomography (SPECT) was carried out on the 7th day after thrombolysis to determine the ischemic myocardial area (IMA) and ejection fraction (EF) in both groups and compared. Results: The infarction related area (IRA) of reperfusion rate in the two groups was not different significantly (72.26% vs 72.65%, P >0.05). The IMA in patients of the SMI group, no matter with or without reperfused IRA (211 cases and 81 cases) respectively, was significantly lower than that in the control group (178 cases and 67 cases) respectively, P<0.01 and P<0.05 respectively. The EF value in the SMI group was significantly higher than that in the control group (P<0.01). Conclusion:Using SMI in early stage of thrombolytic treatment in acute myocardial infarction could significantly reduce IMA and increase EF. SMI showed good protective effect against myocardial ischemia/reperfusion injury in thrombolytic treatment.

  9. Protective effect of adipose-derived mesenchymal stem cells against acute kidney injury induced by ischemia-reperfusion in Sprague-Dawley rats

    SHEASHAA, HUSSEIN; LOTFY, AHMED; ELHUSSEINI, FATMA; AZIZ, AZZA ABDEL; BAIOMY, AZZA; AWAD, SAMAH; ALSAYED, AZIZA; EL-GILANY, ABDEL-HADY; SAAD, MOHAMED-AHDY A.A.; MAHMOUD, KHALED; ZAHRAN, FATEN; SALEM, DALIA A.; SARHAN, AHMED; GHAFFAR, HASSAN ABDEL; SOBH, MOHAMED

    2016-01-01

    Acute kidney injury (AKI) is a complex clinical condition associated with significant morbidity and mortality and lacking effective management. Ischemia-reperfusion injury (IRI) remains one of the leading causes of AKI in native and transplanted kidneys. The aim of this study was to evaluate the efficacy of adipose-derived mesenchymal stem cells (ADSCs) in the prevention of renal IRI in rats. The study was conducted on male Sprague-Dawley rats (n=72) weighing 250–300 g. Rats were randomly assigned to three main groups: i) Sham-operated control group (n=24); ii) positive control group, in which rats were subjected to IRI and were administered culture media following 4 h of IRI (n=24); and iii) ADSC group (n=24), in which rats were administered 1×106 ADSCs via the tail vein following 4 h of IRI. Each main group was further divided according to the timing after IRI into four equal-sized subgroups. Renal function was tested via the measurement of serum creatinine levels and creatinine clearance. In addition, malondialdehyde (MDA) levels were determined in serum and renal tissue homogenate as an indicator of oxidative stress. Histopathological changes were analyzed in different regions of the kidney, namely the cortex, outer stripe of the outer medulla (OSOM), inner stripe of the outer medulla (ISOM) and inner medulla. In each region, the scoring system considered active injury changes, regenerative changes and chronic changes. The ADSCs were assessed and their differentiation capability was verified. IRI resulted in a significant increase in serum creatinine, serum and tissue MDA levels and a significant reduction in creatinine clearance compared with those in sham-operated rats,. These changes were attenuated by the use of ADSCs. The prominent histopathological changes in the cortex, ISOM and OSOM were reflected in the injury score, which was significantly evident in the positive control group. The use of ADSCs was associated with significantly lowered injury

  10. Quantitative phosphoproteomics using acetone-based peptide labeling: method evaluation and application to a cardiac ischemia/reperfusion model.

    Wijeratne, Aruna B; Manning, Janet R; Schultz, Jo El J; Greis, Kenneth D

    2013-10-01

    Mass spectrometry (MS) techniques to globally profile protein phosphorylation in cellular systems that are relevant to physiological or pathological changes have been of significant interest in biological research. An MS-based strategy utilizing an inexpensive acetone-based peptide-labeling technique known as reductive alkylation by acetone (RABA) for quantitative phosphoproteomics was explored to evaluate its capacity. Because the chemistry for RABA labeling for phosphorylation profiling had not been previously reported, it was first validated using a standard phosphoprotein and identical phosphoproteomes from cardiac tissue extracts. A workflow was then utilized to compare cardiac tissue phosphoproteomes from mouse hearts not expressing FGF2 versus hearts expressing low-molecular-weight fibroblast growth factor-2 (LMW FGF2) to relate low-molecular-weight fibroblast growth factor-2 (LMW FGF2)-mediated cardioprotective phenomena induced by ischemia/reperfusion injury of hearts, with downstream phosphorylation changes in LMW FGF2 signaling cascades. Statistically significant phosphorylation changes were identified at 14 different sites on 10 distinct proteins, including some with mechanisms already established for LMW FGF2-mediated cardioprotective signaling (e.g., connexin-43), some with new details linking LMW FGF2 to the cardioprotective mechanisms (e.g., cardiac myosin binding protein C or cMyBPC), and also several new downstream effectors not previously recognized for cardio-protective signaling by LMW FGF2. Additionally, one of the phosphopeptides, cMyBPC/pSer-282, identified was further verified with site-specific quantification using an SRM (selected reaction monitoring)-based approach that also relies on isotope labeling of a synthetic phosphopeptide with deuterated acetone as an internal standard. Overall, this study confirms that the inexpensive acetone-based peptide labeling can be used in both exploratory and targeted quantification phosphoproteomic

  11. Rosiglitazone Affects Nitric Oxide Synthases and Improves Renal Outcome in a Rat Model of Severe Ischemia/Reperfusion Injury

    Boris Betz

    2012-01-01

    Full Text Available Background. Nitric oxide (NO-signal transduction plays an important role in renal ischemia/reperfusion (I/R injury. NO produced by endothelial NO-synthase (eNOS has protective functions whereas NO from inducible NO-synthase (iNOS induces impairment. Rosiglitazone (RGZ, a peroxisome proliferator-activated receptor (PPAR-γ agonist exerted beneficial effects after renal I/R injury, so we investigated whether this might be causally linked with NOS imbalance. Methods. RGZ (5 mg/kg was administered i.p. to SD-rats (f subjected to bilateral renal ischemia (60 min. Following 24 h of reperfusion, inulin- and PAH-clearance as well as PAH-net secretion were determined. Morphological alterations were graded by histopathological scoring. Plasma NOx-production was measured. eNOS and iNOS expression was analyzed by qPCR. Cleaved caspase 3 (CC3 was determined as an apoptosis indicator and ED1 as a marker of macrophage infiltration in renal tissue. Results. RGZ improves renal function after renal I/R injury (PAH-/inulin-clearance, PAH-net secretion and reduces histomorphological injury. Additionally, RGZ reduces NOx plasma levels, ED-1 positive cell infiltration and CC3 expression. iNOS-mRNA is reduced whereas eNOS-mRNA is increased by RGZ. Conclusion. RGZ has protective properties after severe renal I/R injury. Alterations of the NO pathway regarding eNOS and iNOS could be an explanation of the underlying mechanism of RGZ protection in renal I/R injury.

  12. Bilateral ovarian ischemia/reperfusion injury and treatment options in rats with an induced model of diabetes

    Omer Erkan Yapca

    2014-04-01

    Full Text Available Objective(s:This study investigated the effects of melatonin, famotidine, mirtazapine, and thiamine pyrophosphate on ischemia/reperfusion (I/R injury in diabetic rats and evaluated oxidant and antioxidant marker measurement results. It also examined the effects of the drugs aimed at preventing infertility that may result from I/R injury. Materials and Methods: Diabetic rats were divided into a control group (IRC to be exposed to I/R, an ovarian I/R + 2.2 mg/kg melatonin (IRML group, an ovarian I/R + famotidine (IRFA group, an ovarian I/R + 20 mg/kg mirtazapine (IRMR group, an ovarian I/R + 20 mg/kg thiamine pyrophosphate (IRTP group, and a sham operation (SO group. Results: In the control group exposed to I/R, the levels of the oxidant parameters Malondialdehyde (MDA and Myeloperoxidase(MPO were significantly higher compared with the SO group, while the levels of the antioxidant parameters glutathione (GSH, Glutathioneperoxidase(GPO, Glutathione reductase (GSHRd, Glutathione S - transferase (GST, and[y1]   Superoxide dismutase (SOD were significantly lower. Melatonin, famotidine, mirtazapine, and thiamin pyrophosphate prevented a rise in oxidant parameters and a decrease in antioxidants in ovarian tissue exposed to I/R. However, apart from thiamin pyrophosphate, none of the drugs were able to prevent infertility caused by I/R injury.   Conclusion: Prevention of ovarian I/R injury-related infertility in rats with induced diabetes is not through antioxidant activity. Thiamine pyrophosphate prevents infertility through an as yet unknown mechanism. This study suggests that thiamine pyrophosphate may be useful in the prevention of I/R-related infertility in diabetics.

  13. Expression of C2A domain of synaptotagmin I fusion protein and its imaging in the ischemia-reperfusion rat model

    Objective: To evaluate myocardial apoptosis with 99Tcm-C2A-GST myocardial imaging using the recombined C2A domain of Synaptotagmin I by gene engineering. Methods: (1) The C2A gene was inserted into the prokaryotic glutathione S-transferate (GST) fusion protein expression plasmid pGEX-6P-1. The recombinant plasmid was transformed into E. coli BL21. C2A-GST fusion protein was purified after BL21 was induced with isopropyl-β-D-1-thiogalactopyranoside (IPTG). (2) The activity of fusion protein was identified by cell binding test with fluorescein-5-isothiocyanate (FITC)-C2A-GST. (3) The C2A-GST fusion protein was labeled with 99Tcm using 2-iminothiophene hydrocoride method. Radiochemical purity was determined with thin layer chromatography. (4) 99Tcm-C2A-GST (7.4 MBq) was injected to ischemia-reperfusion rat models through tail vein. The image was acquired with SPECT at 1 h after injection, and then hearts were removed, rinsed with saline and dyed with triphenyl tetrazolium coride (TTC). The ischemic myocardium was separated from the viable myocardium and was weighted. Its radioactivity was measured by gamma counting. The difference of uptake of radiotracer between ischemic myocardium and normal myocardium was compared using percentage activity of injected dose per gram of tissue (% ID/g) with standard deviation. SPSS 12.0 and t-test were used for data analysis. Results: (1) C2A-GST fusion protein was successfully expressed and its relative molecular weight was 3.8 x 104. (2) FITC-C2A-GST binding to apoptotic cells could be observed by fluorescent microscopy. (3) The radiochemical purity of 99Tcm-C2A-GST was (98.90 ±0.43)%. (4) The imaging studies showed that there was focal uptake of radioactivity in the ischemic myocardium. In vitro uptake of 99Tcm-C2A-GST was (2.41±0.32) % ID/g by the ischemic myocardium, however 99Tcm-C2A-GST-N-hydroxysuccinimide (C2A-GST-NHS) was (0.82±0.24) % ID/g. There was statistically significant difference between those two groups (t=10

  14. Ischemic preconditioning attenuates remote pulmonary inflammatory infiltration of diabetic rats with an intestinal and hepatic ischemia-reperfusion injury

    Farid José Thomaz Neto

    2013-03-01

    Full Text Available PURPOSE: To assess ischemic preconditioning (IPC effects in pulmonary lesion in intestinal and hepatic ischemia-reperfusion (IR injury models using diabetic rats. METHODS: Diabetes (DM was induced in 28 male Wistar rats by alloxan (42 mg/kg, IV. After 28 days, severe DM rats were submitted to intestinal or hepatic IR injury with or without IPC. Intestinal IR (30 min of mesenteric artery occlusion and 30 min of reperfusion; n=6 and IPC groups (10 min ischemia, 10 min reperfusion, followed by intestinal IR; n=6, and Hepatic IR (30 min of hepatic pedicle occlusion and 30 min of reperfusion; n=5 and IPC groups (10 min ischemia, 10 min reperfusion, followed by hepatic IR; n=5, were compared to DM rats group (n=6. Plasmatic lactate, glycemia were measured before and after IR injury. Histomorphology of lung was performed counting inflammatory cells. Data was expressed in mean± SE. P<0.05. RESULTS: Glycemia and lactate were similar among groups. IPC did not interfere in these parameters. On histological evaluation, IR increased inflammatory cells infiltration in pulmonary parenchyma compared to control in both IR injury models. IPC attenuated inflammatory infiltration in lungs. CONCLUSION: Ischemic preconditioning protects against remote ischemia-reperfusion injury in lung on intestinal or hepatic ischemia-reperfusion model with acute diabetes.

  15. Ketamine inhibits c-Jun protein expression in mouse hippocampus following cerebral ischemia/reperfusion injury

    Feng Xiao; Liangzhi Xiong; Qingxiu Wang; Long Zhou; Qingshan Zhou

    2012-01-01

    A model of cerebral ischemia and reperfusion was established in mice. Mice were treated with ketamine via intraperitoneal injection immediately following ischemia or ischemia/reperfusion. Ketamine did not remarkably change infarct volume in mice immediately following ischemia, but injection immediately following ischemia/reperfusion significantly decreased infarct volume. Ketamine injection immediately after ischemia or ischemia/reperfusion inhibited c-Jun protein expression in mouse hippocampus, but nuclear factor kappa B expression was unaltered. In addition, the Longa scale score for neural impairment was not reduced in mice following cerebral ischemia/reperfusion. These results indicate that ketamine can protect mice against cerebral ischemia and reperfusion injury by modulating c-Jun protein expression in mouse hippocampus.

  16. A new gastric ulcer model induced by ischemia-reperfusion in the rat: role of leukocytes on ulceration in rat stomach.

    Wada, K; Kamisaki, Y; Kitano, M; Kishimoto, Y; Nakamoto, K; Itoh, T

    1996-01-01

    A new model of gastric ulcer involving damage to the muscularis mucosae was developed by clamping the celiac artery in rat to induce ischemia-reperfusion (I-R) injury. Although erosions with falling off of the gastric mucosa were observed immediately, 24 and 36 hours after the I-R, gastric ulcers involving the injury of muscularis mucosae were observed in the area of gastric glands at 48 and 72 hours after initiation of injury. Administration of omeprazol, a proton pump inhibitor, or pentoxifylline, an anti-leukocyte drug, just after the initiation of injury significantly decreased the total area of ulcers at 72 hours. A combination of omeprazol and pentoxifylline was more effective than either drug alone. An anti-leukocyte adhesion molecule (anti-CD18 antibody) also showed significant inhibitory effect on the development of ulcers at 72 hours and the infiltration of leukocytes into both submucosa and mucosa. These results indicate that in our model, gastric acid together with leukocytes contribute to the development of ulcers following erosions. This model may be used to investigate the mechanisms of the development of gastric ulcer and evaluate antiulcer drugs in a preclinical setting. PMID:8913334

  17. The protective role of montelukast against intestinal ischemia-reperfusion injury in rats

    Shenbao Wu; Xuxing Zhu; Zhonghai Jin; Xiuping Tong; Liqin Zhu; Xiaofei Hong; Xianfei Zhu; Pengfei Liu; Weidong Shen

    2015-01-01

    Several drugs are effective in attenuating intestinal ischemia-reperfusion injury (IRI); however little is known about the effect of montelukast. Fifty rats were randomly assigned to 3 groups: model group (operation with clamping), sham group (operation without clamping), and study group (operation with clamping and 0.2, 2 and 20 mg/kg montelukast pretreatment). Intestinal ischemia-reperfusion was performed by occlusion (clamping) of the arteria mesenterica anterior for 45 min, followed by 24...

  18. Protective effects of amifostine on ischemia-reperfusion injury of rat kidneys

    Ayse Arducoglu Merter; Burhan Mayir; Okan Erdogan; Taner Colak

    2015-01-01

    Objectives: Amifostine is a drug which can eliminate free oxygen radicals that appear in the body after radiation or chemotherapeutic agent exposure. It is used to decrease the renal toxicity of cisplatin. The aim of this study was to determine the role of amifostine in warm ischemia kidney model for prevention of ischemia/reperfusion injury and also to find out the mechanism for prevention from ischemia/reperfusion injury if such an effect does exist. Materials and Methods: Adult female ...

  19. Carvacrol, a Food-Additive, Provides Neuroprotection on Focal Cerebral Ischemia/Reperfusion Injury in Mice

    Yu, Hailong; Zhang, Zeng-Li; Chen, Jing; Pei, Aijie; Hua, Fang; Qian, Xuanchen; He, Jinjiang; Liu, Chun-Feng; Xu, Xingshun

    2012-01-01

    Carvacrol (CAR), a naturally occurring monoterpenic phenol and food additive, has been shown to have antimicrobials, antitumor, and antidepressant-like activities. A previous study demonstrated that CAR has the ability to protect liver against ischemia/reperfusion injury in rats. In this study, we investigated the protective effects of CAR on cerebral ischemia/reperfusion injury in a middle cerebral artery occlusion mouse model. We found that CAR (50 mg/kg) significantly reduced infarct volum...

  20. Edaravone, A Free Radical Scavenger, Ameliorates Early-Phase Ischemia/Reperfusion Injury and Increases Hepatocyte Proliferation in A Pig Hepatectomy Model

    Mitsugi Shimoda

    2012-06-01

    Full Text Available Background: The effects of Edaravone (Edr on hepatic ischemia-reperfusion (I/R injury and liver regeneration were examined in a pig hepatectomy model. Methods: One hour of ischemia was induced by occluding the vessels and the bile duct of the right and median lobes. About a 40% left hepatectomy was performed after reperfusion. Six animals received Edr (3 mg/kg/h intravenously and six control animals received saline just before reperfusion. Remnant liver volume, hemodynamics, and levels of AST, ALT, LDH, and LA were compared between the groups. Expression of TGF-beta1 and IL-6 mRNA in hepatic tissues was examined using RT-PCR. Apoptosis and cell proliferation were demonstrated by TUNEL and Ki-67 staining, respectively. Results: Serum AST, LDH, and LA levels were significantly lower at 3 hours and 1 week after perfusion in animals that had received Edr. In the Edr group, hepatic tissues showed a greater tendency for the expression of TGF-beta1 mRNA to be inhibited at 1 week, although the difference was not significant. Also at 1 week in the Edr group, TUNEL-positive cells in the hepatic sinusoidal endothelium were significantly fewer, and Ki-67-positive cells were significantly more numerous. Conclusion: We conclude that Edr reduces hepatic injury and supports tissue regeneration after I/R injury in this pig model. [Arch Clin Exp Surg 2012; 1(3.000: 142-150

  1. Effects of N-acetylcysteine and pentoxifylline on remote lung injury in a rat model of hind-limb ischemia/reperfusion injury

    Hamed Ashrafzadeh Takhtfooladi

    2016-02-01

    Full Text Available Objective : To investigate the effects of N-acetylcysteine (NAC and pentoxifylline in a model of remote organ injury after hind-limb ischemia/reperfusion (I/R in rats, the lungs being the remote organ system. Methods : Thirty-five male Wistar rats were assigned to one of five conditions (n = 7/group, as follows: sham operation (control group; hind-limb ischemia, induced by clamping the left femoral artery, for 2 h, followed by 24 h of reperfusion (I/R group; and hind-limb ischemia, as above, followed by intraperitoneal injection (prior to reperfusion of 150 mg/kg of NAC (I/R+NAC group, 40 mg/kg of pentoxifylline (I/R+PTX group, or both (I/R+NAC+PTX group. At the end of the trial, lung tissues were removed for histological analysis and assessment of oxidative stress. Results : In comparison with the rats in the other groups, those in the I/R group showed lower superoxide dismutase activity and glutathione levels, together with higher malondialdehyde levels and lung injury scores (p 0.05 for all. Conclusions : Our results suggest that NAC and pentoxifylline both protect lung tissue from the effects of skeletal muscle I/R. However, their combined use does not appear to increase the level of that protection.

  2. Effects of N-acetylcysteine and pentoxifylline on remote lung injury in a rat model of hind-limb ischemia/reperfusion injury

    Takhtfooladi, Hamed Ashrafzadeh; Hesaraki, Saeed; Razmara, Foad; Takhtfooladi, Mohammad Ashrafzadeh; Hajizadeh, Hadi

    2016-01-01

    Objective : To investigate the effects of N-acetylcysteine (NAC) and pentoxifylline in a model of remote organ injury after hind-limb ischemia/reperfusion (I/R) in rats, the lungs being the remote organ system. Methods : Thirty-five male Wistar rats were assigned to one of five conditions (n = 7/group), as follows: sham operation (control group); hind-limb ischemia, induced by clamping the left femoral artery, for 2 h, followed by 24 h of reperfusion (I/R group); and hind-limb ischemia, as above, followed by intraperitoneal injection (prior to reperfusion) of 150 mg/kg of NAC (I/R+NAC group), 40 mg/kg of pentoxifylline (I/R+PTX group), or both (I/R+NAC+PTX group). At the end of the trial, lung tissues were removed for histological analysis and assessment of oxidative stress. Results : In comparison with the rats in the other groups, those in the I/R group showed lower superoxide dismutase activity and glutathione levels, together with higher malondialdehyde levels and lung injury scores (p 0.05 for all). Conclusions : Our results suggest that NAC and pentoxifylline both protect lung tissue from the effects of skeletal muscle I/R. However, their combined use does not appear to increase the level of that protection. PMID:26982035

  3. Renoprotective effect of berberine via intonation on apoptosis and mitochondrial-dependent pathway in renal ischemia reperfusion-induced mutilation.

    Visnagri, Asjad; Kandhare, Amit D; Bodhankar, Subhash L

    2015-04-01

    Ischemic acute renal failure is a condition that extends subsequent to sudden and momentary fall in overall or regional blood flow to the kidney. The present investigation was deliberated to scrutinize the renoprotective potential of berberine in animal model of renal ischemia reperfusion (RIR) induced dent via assessment of various biochemical and molecular biomarkers. Male Wistar rats were anesthetized and the right kidney was removed through a small flank incision. Renal ischemia reperfusion was persuaded in uni-nephrectomized rats by occlusion of left renal artery for 45 min and reperfusion for 4 weeks. After 4 weeks of treatment of berberine (10, 20, and 40 mg/kg, p.o.), hemodynamic and left ventricular function were evaluated. Induction of ischemia reperfusion resulted callous mutilation in kidney which was confirmed by alterations in oxidative stress (SOD, GSH, and MDA), membrane bound enzymes, kidney function markers (serum creatinine and BUN), and mitochondrial dysfunction. Moreover, RIR injury exhibited incredible alterations in mRNA expression of KIM-1, NGAL, Caspase-3, Bax, Bcl-2, and TNF-α levels. Conversely treatment of berberine (20 and 40 mg/kg) significantly (p intonation of biochemical and molecular biomarkers. To sum up, berberine demonstrated compelling renoprotective effect in RIR injury via caspase-mitochondria-dependent pathway. PMID:25598236

  4. The Protective Effect of MicroRNA-320 on Left Ventricular Remodeling after Myocardial Ischemia-Reperfusion Injury in the Rat Model

    Chun-Li Song

    2014-09-01

    Full Text Available The primary objective of this study investigated the role of microRNA-320 (miR-320 on left ventricular remodeling in the rat model of myocardial ischemia-reperfusion (I/R injury, and we intended to explore the myocardial mechanism of miR-320-mediated myocardium protection. We collected 120 male Wistar rats (240–280 g in this study and then randomly divided them into three groups: (1 sham surgery group (sham group: n = 40; (2 ischemia-reperfusion model group (I/R group: n = 40; and (3 I/R model with antagomir-320 group (I/R + antagomir-320 group: n = 40. Value changes of heart function in transesophageal echocardiography were recorded at various time points (day 1, day 3, day 7, day 15 and day 30 after surgery in each group. Myocardial sections were stained with hematoxylin and eosin (H&E and examined with optical microscope. The degree of myocardial fibrosis was assessed by Sirius Red staining. Terminal dUTP nick end-labeling (TUNEL and qRT-PCR methods were used to measure the apoptosis rate and to determine the miR-320 expression levels in myocardial tissues. Transesophageal echocardiography showed that the values of left ventricular ejection fraction (LVEF, left ventricular fractional shortening (LVFS, left ventricular systolic pressure (LVSP and ±dp/dtmax in the I/R group were obviously lower than those in the sham group, while the left ventricular end-diastolic pressure (LVEDP value was higher than that in the sham group. The values of LVEF, LVFS, LVSP and ±dp/dtmax showed a gradual decrease in the I/R group, while the LVEDP value showed an up tendency along with the extension of reperfusion time. The H&E staining revealed that rat myocardial tissue in the I/R group presented extensive myocardial damage; for the I/R + antagomir-320 group, however, the degree of damage in myocardial cells was obviously better than that of the I/R group. The Sirius Red staining results showed that the degree of myocardial fibrosis in the I/R group was more

  5. The mitochondria-targeted anti-oxidant MitoQ decreases ischemia-reperfusion injury in a murine syngeneic heart transplant model

    Dare, Anna J.; Logan, Angela; Prime, Tracy A.; Rogatti, Sebastian; Goddard, Martin; Bolton, Eleanor M.; Bradley, J. Andrew; Pettigrew, Gavin J.; Murphy, Michael P.; Saeb-Parsy, Kourosh

    2015-01-01

    Background Free radical production and mitochondrial dysfunction during cardiac graft reperfusion is a major factor in post-transplant ischemia-reperfusion (IR) injury, an important underlying cause of primary graft dysfunction. We therefore assessed the efficacy of the mitochondria-targeted anti-oxidant MitoQ in reducing IR injury in a murine heterotopic cardiac transplant model. Methods Hearts from C57BL/6 donor mice were flushed with storage solution alone, solution containing the anti-oxidant MitoQ, or solution containing the non–anti-oxidant decyltriphenylphosphonium control and exposed to short (30 minutes) or prolonged (4 hour) cold preservation before transplantation. Grafts were transplanted into C57BL/6 recipients and analyzed for mitochondrial reactive oxygen species production, oxidative damage, serum troponin, beating score, and inflammatory markers 120 minutes or 24 hours post-transplant. Results MitoQ was taken up by the heart during cold storage. Prolonged cold preservation of donor hearts before IR increased IR injury (troponin I, beating score) and mitochondrial reactive oxygen species, mitochondrial DNA damage, protein carbonyls, and pro-inflammatory cytokine release 24 hours after transplant. Administration of MitoQ to the donor heart in the storage solution protected against this IR injury by blocking graft oxidative damage and dampening the early pro-inflammatory response in the recipient. Conclusions IR after heart transplantation results in mitochondrial oxidative damage that is potentiated by cold ischemia. Supplementing donor graft perfusion with the anti-oxidant MitoQ before transplantation should be studied further to reduce IR-related free radical production, the innate immune response to IR injury, and subsequent donor cardiac injury. PMID:26140808

  6. Autophagy and Liver Ischemia-Reperfusion Injury

    Raffaele Cursio

    2015-01-01

    Full Text Available Liver ischemia-reperfusion (I-R injury occurs during liver resection, liver transplantation, and hemorrhagic shock. The main mode of liver cell death after warm and/or cold liver I-R is necrosis, but other modes of cell death, as apoptosis and autophagy, are also involved. Autophagy is an intracellular self-digesting pathway responsible for removal of long-lived proteins, damaged organelles, and malformed proteins during biosynthesis by lysosomes. Autophagy is found in normal and diseased liver. Although depending on the type of ischemia, warm and/or cold, the dynamic process of liver I-R results mainly in adenosine triphosphate depletion and in production of reactive oxygen species (ROS, leads to both, a local ischemic insult and an acute inflammatory-mediated reperfusion injury, and results finally in cell death. This process can induce liver dysfunction and can increase patient morbidity and mortality after liver surgery and hemorrhagic shock. Whether autophagy protects from or promotes liver injury following warm and/or cold I-R remains to be elucidated. The present review aims to summarize the current knowledge in liver I-R injury focusing on both the beneficial and the detrimental effects of liver autophagy following warm and/or cold liver I-R.

  7. Inhibition of tumor necrosis factor alpha reduces the outgrowth of hepatic micrometastasis of colorectal tumors in a mouse model of liver ischemia-reperfusion injury

    Jiao, Shu-Fan; Sun, Kai; Chen, Xiao-Jing; Zhao, Xue; Cai, Ning; Liu, Yan-jun; Xu, Long-Mei; Kong, Xian-Ming; Wei, Li-Xin

    2014-01-01

    Background Patients with colorectal cancer (CRC) often develop liver metastases, in which case surgery is considered the only potentially curative treatment option. However, liver surgery is associated with a risk of ischemia-reperfusion (IR) injury, which is thought to promote the growth of colorectal liver metastases. The influence of IR-induced tumor necrosis factor alpha (TNF-α) elevation in the process still is unknown. To investigate the role of TNF-α in the growth of pre-existing micro...

  8. Clematichinenoside attenuates myocardial infarction in ischemia/reperfusion injury both in vivo and in vitro.

    Zhang, Rui; Fang, Weirong; Han, Dan; Sha, Lan; Wei, Jie; Liu, Lifang; Li, Yunman

    2013-09-01

    Clematichinenoside is a triterpenoid saponin isolated from the roots of Clematis chinensis. Oxidative stress and excessive nitric oxide production are thought to play considerable roles in ischemia/reperfusion injury that impairs cardiac function. The present study investigated the protective effect of clematichinenoside on regional and global ischemia/reperfusion injury and ventricular myocytes. In vivo, regional myocardial ischemia/reperfusion injury of rats was induced by the occlusion of the left anterior descending coronary artery, and isolated guinea pigs heart using Langendorff apparatus served as a global ischemia/reperfusion injury model ex vivo. Primary cultured neonatal ventricular myocytes were further applied to explore the anti-ischemia/reperfusion injury property in vitro. Infarct size was measured with TTC stain; enzyme activities such as lactate dehydrogenase, creatine kinase, superoxide dismutase, malondialdehyde, and nitric oxide were analyzed with assay kits; inducible nitric oxide synthase and endothelial nitric oxide synthase expressions were determined by Western blot. Clematichinenoside attenuated infarct size, decreased lactate dehydrogenase, creatine kinase, and malondialdehyde levels and enhanced superoxide dismutase activity. Clematichinenoside improved hemodynamics indexes, such as left ventricular developed pressure, maximum left ventricular developed pressure, and increase/decrease rate (± dp/dtmax) in the isolated guinea pig heart after reperfusion. Clematichinenoside also inhibited excessive production of nitric oxide through downregulating inducible nitric oxide synthase as well as upregulating endothelial nitric oxide synthase during ischemia/reperfusion injury. Clematichinenoside attenuates ischemia/reperfusion injury in vivo, ex vivo, and in vitro via an antioxidant effect and by restoring the balance between inducible nitric oxide synthase and endothelial nitric oxide synthase. PMID:23929248

  9. Effects of trimetazidine on the Akt/eNOS signaling pathway and oxidative stress in an in vivo rat model of renal ischemia-reperfusion.

    Mahfoudh-Boussaid, Asma; Hadj Ayed Tka, Kaouther; Zaouali, Mohamed Amine; Roselló-Catafau, Joan; Ben Abdennebi, Hassen

    2014-10-01

    Renal ischemia reperfusion (I/R) injury, which occurs during renal surgery or transplantation, is the major cause of acute renal failure. Trimetazidine (TMZ), an anti-ischemic drug, protects kidney against the deleterious effects of I/R. However its protective mechanism remains unclear. The aim of this study is to examine the relevance of Akt, endothelial nitric oxide synthase (eNOS), and hypoxia inducible factor-1α (HIF-1α) on TMZ induced protection of kidneys against I/R injury. Wistar rats were subjected to 60 min of warm renal ischemia followed by 120 min of reperfusion, or to intraperitoneal injection of TMZ (3 mg/kg) 30 min before ischemia. In sham operated group renal pedicles were only dissected. Compared to I/R, TMZ treatment decreased lactate dehydrogenase (845 ± 13 vs. 1028 ± 30 U/L). In addition, creatinine clearance and sodium reabsorption rates reached 105 ± 12 versus 31 ± 11 μL/min/g kidney weight and 95 ± 1 versus 68 ± 5%, respectively. Besides, we noted a decrease in malondialdehyde concentration (0.33 ± 0.01 vs. 0.59 ± 0.03 nmol/mg of protein) and an increase in glutathione concentration (2.6 ± 0.2 vs. 0.93 ± 0.16 µg GSH/mg of protein), glutathione peroxidase (95 ± 4 vs. 61 ± 3 µg GSH/min/mg of protein), and superoxide dismutase (25 ± 3 vs. 11 ± 2 U/mg of protein) and catalase (91 ± 12 vs. 38 ± 9 μmol/min/mg of protein) activities. Parallely, we noted a significant increase in p-Akt, eNOS, nitrite and nitrate (18 ± 2 vs. 8 ± 0.1 pomL/mg of protein), HIF-1α (333 ± 48 vs. 177 ± 14 µg/mg of protein) and heme oxygenase-1 (HO-1) levels regarding I/R. TMZ treatment improves renal tolerance to warm I/R. Such protection implicates an activation of Akt/eNOS signaling pathway, HIF-1α stabilization and HO-1 activation. PMID:25246344

  10. Triptolide for cerebral ischemia/reperfusion injury

    Dengming Wei; Yiping Liao; Lin Wang; Guangzhao Huang; Yigu Zhang; Guangxun Rao

    2007-01-01

    BACKGROUND: Studies have demonstrated that triptolide has good anti-inflammatory and immunosuppressive effects. However, the effect of triptolide on cerebral ischemia/reperfusion injury is still unclear.OBJECTIVE: To observe the effects of triptolide on neurologic function, infarct volume, water content of brain tissue, neutrophil number in microvascular wall and intedeukin-1β (IL-1β ) expression in rat models of local ischemia/reperfusion, and analyze the mechanism of triptolide for protecting brain.DESIGN: Randomized controlled experiment.SETTING: Department of Pathology, Medical School of Ningbo University; Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology.MATERIALS: Sixty Wistar rats of either gender, aged 4 months old, weighing from 200 to 250 g, were provided by the Experimental Animal Center, Tongji Medical College, Huazhong University of Science and Technology. Triptolide was purchased from Fujian Institute for Medical Science (purity 99.98%; Batch No.2000215). It was dissolved in 20 g/L propanediol, and filtered with 200-mesh filter for later use.METHODS: This experiment was carried out in the laboratory of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Department of Pathology, Medical School of Ningbo University between January 2001 and September 2004. ① Sixty Wistar rats were randomized into 4 groups: sham-operation group, model group, low-dose triptolide group and high-dose triptolide group. Rats in each group, except for sham-operation group, were developed into rat models of cerebral ischemia/reperfusion according to the method of Longa et al. In the first 3 days of modeling, rats in the low-and high-dose triptolide groups were intraperitoneaily injected with 0.2 and 0.4 mg/kg triptolide respectively,once a day, 3 days in total. ② At ischemia 1 hour and reperfusion 24 hours, infarct volume, neurologic deficit (five-point scale, higher scores

  11. The receptor for complement component C3a mediates protection from intestinal ischemia-reperfusion injuries by inhibiting neutrophil mobilization

    Wu, Mike C. L.; Brennan, Faith H; Lynch, Jason P. L.; Mantovani, Susanna; Phipps, Simon; Wetsel, Rick A.; Ruitenberg, Marc J.; Taylor, Stephen M.; Woodruff, Trent M.

    2013-01-01

    C3a is a key complement activation fragment, yet its neutrophil-expressed receptor (C3aR) still has no clearly defined role. In this study, we used a neutrophil-dependent mouse model of intestinal ischemia-reperfusion (IR) injury to explore the role of C3aR in acute tissue injuries. C3aR deficiency worsened intestinal injury, which corresponded with increased numbers of tissue-infiltrating neutrophils. Circulating neutrophils were significantly increased in C3aR−/− mice after intestinal ische...

  12. Bone marrow‑derived mesenchymal stem cells rescue injured H9c2 cells via transferring intact mitochondria through tunneling nanotubes in an in vitro simulated ischemia/reperfusion model.

    Han, Hui; Hu, Jinquan; Yan, Qiang; Zhu, Jinzhou; Zhu, Zhengbin; Chen, Yanjia; Sun, Jiateng; Zhang, Ruiyan

    2016-02-01

    The transplantation of mesenchymal stem cells (MSCs) is considered to be a promising treatment for ischemic heart disease; however, the therapeutic effects and underlying mechanisms of action require further evaluation. Mitochondrial dysfunction is a key event in simulated ischemia/reperfusion (SI/R) injury. The purpose of the present study was to investigate the mechanism of mitochondrial transfer, which may be involved the antiapoptotic action of co-culture with MSCs. An in vitro model of simulated ischemia/reperfusion (SI/R) was used in the present study. The apoptotic indexes were significantly increased when H9c2 cardiomyocytes were induced in the SI/R group. Following co-culture with bone marrow-derived (BM)‑MSCs, H9c2 cells exhibited marked resistance against the SI/R-induced apoptotic process. Besides, mitochondrial transfer via a tunneling nanotube (TNT) like structure was detected by confocal fluorescent microscopy. In addition, following pretreated with latrunculin-A (LatA), an inhibitor of TNT formation, the BM-MSCs were not able to rescue injured H9c2 cells from apoptosis, as previously observed. In conclusion, the anti‑apoptotic ability of BM‑MSCs may be partially attributed to the recovery of mitochondrial dysfunction in SI/R, and the formation of TNTs appears to be involved in this action of mitochondrial transfer between adjacent cells. PMID:26718099

  13. Auricular vagus nerve stimulation promotes functional recovery and enhances the post-ischemic angiogenic response in an ischemia/reperfusion rat model.

    Jiang, Ying; Li, Longling; Ma, Jingxi; Zhang, Lina; Niu, Fei; Feng, Tao; Li, Changqing

    2016-07-01

    Electrical stimulation of the vagus nerve, which has been used to treat epilepsy patients since 1997, also enhances long-term restoration after central nervous system (CNS) injury. Angiogenesis is a complex restorative mechanism that occurs in response to ischemic stroke, and it positively affects the recovery of neurological functions in a rat model of stroke. The aims of our study were to determine whether auricular vagus nerve stimulation (aVNS) promoted functional recovery and enhanced angiogenesis in the ischemic boundary following ischemia/reperfusion and to uncover the possible molecular mechanisms that are involved. Adult male Sprague-Dawley (SD) rats underwent transient middle cerebral artery occlusion (tMCAO) surgery and received repeated electrical stimulation of the left cavum concha starting 30 min after ischemia. For the following 21 days, we evaluated functional recovery at different time points using neurological deficit scores, the beam-walking test and the staircase test. The infarct volume was measured using TTC staining at 24 h post reperfusion, neuronal survival in the ischemic penumbra was assessed using hematoxylin and eosin (HE) staining. Microvessel density and endothelial cell proliferation in the ischemic boundary were assessed using immunofluorescence. The expression levels of brain-derived neurotrophic factor (BDNF), endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF) in the ischemic penumbra were also evaluated. Our results showed that aVNS had significant neuroprotective effects and enhanced angiogenesis, which was demonstrated by improvements in the behavioral scores and brain histopathology, including increased levels of microvessel density and endothelial cell proliferation surrounding the infarct area. Furthermore, BDNF, eNOS and VEGF were expressed at higher levels in the I/R + aVNS group than in the I/R group or the I/R + sham aVNS group (p < 0.05). Our findings suggest that repeated a

  14. Ginsenoside Rb3 protects cardiomyocytes against ischemia-reperfusion injury via the inhibition of JNK-mediated NF-κB pathway: a mouse cardiomyocyte model.

    Lijia Ma

    Full Text Available Ginsenoside Rb3 is extracted from the plant Panax ginseng and plays important roles in cardiovascular diseases, including myocardial ischemia-reperfusion (I/R injury. NF-κB is an important transcription factor involved in I/R injury. However, the underlying mechanism of ginsenoside Rb3 in myocardial I/R injury remains poorly understood. In the current study, a model of myocardial I/R injury was induced via oxygen and glucose deprivation (OGD followed by reperfusion (OGD-Rep in mouse cardiac myoblast H9c2 cells. Our data demonstrate that ginsenoside Rb3 suppresses OGD-Rep-induced cell apoptosis by the suppression of ROS generation. By detecting the NF-κB signaling pathway, we discover that the protective effect of ginsenoside Rb3 on the OGD-Rep injury is closely related to the inhibition of NF-κB activity. Ginsenoside Rb3 inhibits the upregulation of phospho-IκB-α and nuclear translocation of NF-κB subunit p65 which are induced by ORD-Rep injury. In addition, the extract also inhibits the OGD-Rep-induced increase in the expression of inflammation-related factors, such as IL-6, TNF-α, monocyte chemotactic protein-1 (MCP-1, MMP-2 and MMP-9. However, LPS treatment alleviates the protective roles of ginsenoside Rb3 and activates the NF-κB pathway. Finally, the upstream factors of NF-κB were analyzed, including the Akt/Foxo3a and MAPK signaling pathways. We find that ginsenoside Rb3 pretreatment only decreases the phosphorylation of JNK induced by OGD-Rep injury, an indicator of the MAPK pathway. Importantly, an inhibitor of phospho-JNK, SP600125, protects against OGD-Rep induced apoptosis and inhibited NF-κB signaling pathway, similar to the roles of ginsenoside Rb3. Taken together, our results demonstrate that the protective effect of ginsenoside Rb3 on the OGD-Rep injury is attributed to the inhibition of JNK-mediated NF-κB activation, suggesting that ginsenoside Rb3 has the potential to serve as a novel therapeutic agent for myocardial

  15. Role of IgM and C-reactive protein in ischemia reperfusion injury

    Diaz Padilla, Niubel

    2007-01-01

    Ischemia-reperfusion injury (IRI) is a pathophysiological event that occurs in many clinical conditions, ranging from surgery, acute artery occlusion to transplantation. Complement activation is thought to be a crucial step in IRI, because complement inhibition and complement deficiency considerably

  16. The effects of exogenous l-carnitine on lipid peroxidation and tissue damage in an experimental warm hepatic ischemia-reperfusion injury model*

    Canbaz, Hakan; Akca, Tamer; Tataroglu, Canten; Caglikulekci, Mehmet; Dirlik, Musa; Ayaz, Lokman; Ustunsoy, Ali Bora; Tasdelen, Bahar; Aydin, Suha

    2007-01-01

    Background:l-Carnitine is the essential endogenous factor for the transport of long-chain fatty acids from the cytoplasm to within the mitochondrion where the β-oxidation process takes place. l-Carnitine is a superoxide scavenger and an antioxidant that possesses an anti-ischemic action and a stabilizing effect on cell membranes. It may be of help in liver ischemia reperfusion injury. Results regarding the effects of l-carnitine on liver ischemia and reperfusion injury are few and conflicting.

  17. Protective Effect of Extract of Folium Ginkgo on Repeated Cerebral Ischemia-Reperfusion Injury

    2000-01-01

    Objective: To study the protective effect of extract of Folium Ginkgo (FGE) on repeated cerebral ischemia-reperfusion injury. Methods: The model in waking mice induced by repeated cerebral ischemia-reperfusion were used in the experiment to observe the effect of FGE on behavior, oxygen free radical metabolism and prostaglandin E2 (PGE2) content by step-through experiment, diving stand and colorimetric method. Results: FGE could obviously improve the learning ability and memory of model animals, and could lower obviously the content of malonyldialdehyde, nitric oxide and PGE2, restore the lowered activity of superoxide dismutase and catalase in cerebral tissue. Conclusion: FGE has highly protective effect against repeated ischemia-reperfusion injury, the mechanism might be related with its action on anti-lipid oxidatin, improve the activity of antioxidase and inhibit the producing of PGE2.

  18. Atorvastatin attenuates inflammation and oxidative stress induced by ischemia/reperfusion in rat heart via the Nrf2 transcription factor

    Sun, Guoqiang; Li, Yubo; Ji, Zhiyong

    2015-01-01

    The role of atorvastatin in inflammation and oxidative stress induced by ischemia/reperfusion is currently not well understood. The aim of this study was toinvestigate whether atorvastatin modulates neutrophil accumulation, TNF-α induction and oxidative stress and to examine the possible role of the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway in an ischemia/reperfusion injured rat heart model. Rats were randomly assigned into tosham operation ...

  19. Lateral intracerebroventricular injection of Apelin-13 inhibits apoptosis after cerebral ischemia/reperfusion injury

    Xiao-ge Yan

    2015-01-01

    Full Text Available Apelin-13 inhibits neuronal apoptosis caused by hydrogen peroxide, yet apoptosis following cerebral ischemia-reperfusion injury has rarely been studied. In this study, Apelin-13 (0.1 µg/g was injected into the lateral ventricle of middle cerebral artery occlusion model rats. TTC, TUNEL, and immunohistochemical staining showed that compared with the cerebral ischemia/reperfusion group, infarct volume and apoptotic cell number at the ischemic penumbra region were decreased in the Apelin-13 treatment group. Additionally, Apelin-13 treatment increased Bcl-2 immunoreactivity and decreased caspase-3 immunoreactivity. Our findings suggest that Apelin-13 is neuroprotective against cerebral ischemia/reperfusion injury through inhibition of neuronal apoptosis.

  20. Protective Effect of Ischemic Postconditioning against Ischemia Reperfusion-Induced Myocardium Oxidative Injury in IR Rats

    Jiangwei Ma

    2012-03-01

    Full Text Available Brief episodes of myocardial ischemia-reperfusion (IR employed during reperfusion after a prolonged ischemic insult may attenuate the total ischemia-reperfusion injury. This phenomenon has been termed ischemic postconditioning. In the present study, we studied the possible effect of ischemic postconditioning on an ischemic reperfusion (IR-induced myocardium oxidative injury in rat model. Results showed that ischemic postconditioning could improve arrhythmia cordis, reduce myocardium infarction and serum creatin kinase (CK, lactate dehydrogenase (LDH and aspartate transaminase (AST activities in IR rats. In addition, ischemic postconditioning could still decrease myocardium malondialdehyde (MDA level, and increased myocardium Na+-K+-ATPase, Ca2+-Mg2+-ATPase, superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GSH-Px and glutathione reductase (GR activities. It can be concluded that ischemic postconditioning possesses strong protective effects against ischemia reperfusion-induced myocardium oxidative injury in IR rats.

  1. Hydrogen sulfide intervention in focal cerebral ischemia/reperfusion injury in rats

    Xin-juan Li

    2015-01-01

    Full Text Available The present study aimed to explore the mechanism underlying the protective effects of hydrogen sulfide against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusion model in rats via the suture method. Ten minutes after middle cerebral artery occlusion, the animals were intraperitoneally injected with hydrogen sulfide donor compound sodium hydrosulfide. Immunofluorescence revealed that the immunoreactivity of P2X 7 in the cerebral cortex and hippocampal CA1 region in rats with cerebral ischemia/reperfusion injury decreased with hydrogen sulfide treatment. Furthermore, treatment of these rats with hydrogen sulfide significantly lowered mortality, the Longa neurological deficit scores, and infarct volume. These results indicate that hydrogen sulfide may be protective in rats with local cerebral ischemia/reperfusion injury by down-regulating the expression of P2X 7 receptors.

  2. Buyanghuanwu decoction promotes angiogenesis after cerebral ischemia/reperfusion injury: mechanisms of brain tissue repair.

    Zhang, Zhen-Qiang; Song, Jun-Ying; Jia, Ya-Quan; Zhang, Yun-Ke

    2016-03-01

    Buyanghuanwu decoction has been shown to protect against cerebral ischemia/reperfusion injury, but the underlying mechanisms remain unclear. In this study, rats were intragastrically given Buyanghuanwu decoction, 15 mL/kg, for 3 days. A rat model of cerebral ischemia/reperfusion injury was established by middle cerebral artery occlusion. In rats administered Buyanghuanwu decoction, infarct volume was reduced, serum vascular endothelial growth factor and integrin αvβ3 levels were increased, and brain tissue vascular endothelial growth factor and CD34 expression levels were increased compared with untreated animals. These effects of Buyanghuanwu decoction were partially suppressed by an angiogenesis inhibitor (administered through the lateral ventricle for 7 consecutive days). These data suggest that Buyanghuanwu decoction promotes angiogenesis, improves cerebral circulation, and enhances brain tissue repair after cerebral ischemia/reperfusion injury. PMID:27127482

  3. Buyanghuanwu decoction promotes angiogenesis after cerebral ischemia/reperfusion injury: mechanisms of brain tissue repair

    Zhen-qiang Zhang

    2016-01-01

    Full Text Available Buyanghuanwu decoction has been shown to protect against cerebral ischemia/reperfusion injury, but the underlying mechanisms remain unclear. In this study, rats were intragastrically given Buyanghuanwu decoction, 15 mL/kg, for 3 days. A rat model of cerebral ischemia/reperfusion injury was established by middle cerebral artery occlusion. In rats administered Buyanghuanwu decoction, infarct volume was reduced, serum vascular endothelial growth factor and integrin αvβ3 levels were increased, and brain tissue vascular endothelial growth factor and CD34 expression levels were increased compared with untreated animals. These effects of Buyanghuanwu decoction were partially suppressed by an angiogenesis inhibitor (administered through the lateral ventricle for 7 consecutive days. These data suggest that Buyanghuanwu decoction promotes angiogenesis, improves cerebral circulation, and enhances brain tissue repair after cerebral ischemia/reperfusion injury.

  4. Exogenous surfactant application in a rat lung ischemia reperfusion injury model: effects on edema formation and alveolar type II cells

    Richter Joachim

    2008-01-01

    Full Text Available Abstract Background Prophylactic exogenous surfactant therapy is a promising way to attenuate the ischemia and reperfusion (I/R injury associated with lung transplantation and thereby to decrease the clinical occurrence of acute lung injury and acute respiratory distress syndrome. However, there is little information on the mode by which exogenous surfactant attenuates I/R injury of the lung. We hypothesized that exogenous surfactant may act by limiting pulmonary edema formation and by enhancing alveolar type II cell and lamellar body preservation. Therefore, we investigated the effect of exogenous surfactant therapy on the formation of pulmonary edema in different lung compartments and on the ultrastructure of the surfactant producing alveolar epithelial type II cells. Methods Rats were randomly assigned to a control, Celsior (CE or Celsior + surfactant (CE+S group (n = 5 each. In both Celsior groups, the lungs were flush-perfused with Celsior and subsequently exposed to 4 h of extracorporeal ischemia at 4°C and 50 min of reperfusion at 37°C. The CE+S group received an intratracheal bolus of a modified natural bovine surfactant at a dosage of 50 mg/kg body weight before flush perfusion. After reperfusion (Celsior groups or immediately after sacrifice (Control, the lungs were fixed by vascular perfusion and processed for light and electron microscopy. Stereology was used to quantify edematous changes as well as alterations of the alveolar epithelial type II cells. Results Surfactant treatment decreased the intraalveolar edema formation (mean (coefficient of variation: CE: 160 mm3 (0.61 vs. CE+S: 4 mm3 (0.75; p 3 (0.90 vs. CE+S: 0 mm3; p 3 (0.39 vs. CE+S: 268 mm3 (0.43; p 3(0.10 and CE+S (481 μm3(0.10 compared with controls (323 μm3(0.07; p Conclusion Intratracheal surfactant application before I/R significantly reduces the intraalveolar edema formation and development of atelectases but leads to an increased development of

  5. Hydrogen saline offers neuroprotection by reducing oxidative stress in a focal cerebral ischemia-reperfusion rat model

    Liu Ying; Liu Wenwu; Sun Xuejun; Li Runping; Sun Qiang; Cai Jianmei; Kang Zhimin; Lv Shijun; Zhang John H; Zhang Wei

    2011-01-01

    Abstract Hydrogen gas is neuroprotective in cerebral ischemia animal models. In this study, we tested the neuroprotective effects of hydrogen saline, which is safe and easy to use clinically, in a rat model of middle cerebral artery occlusion (MCAO). Sprague-Dawley male rats weighting 250-280 g were divided into sham, MCAO plus hydrogen saline and MCAO groups, and subjected to 90-min ischemia followed by 24 h of reperfusion. Hydrogen saline was injected intraperitoneally at 1 ml/100 g body we...

  6. Protective effect of glutamine pretreatment on ischemia-reperfusion injury of spinal cord in rabbits

    2009-01-01

    Objective To investigate the effect of glutamine(Gln)on the content of reduced glutathione hormone(GSH)and aminoglutaminic acid(Glu)of spinal cord following ischemia-reperfusion injury.Methods Totally 40 healthy adult male rabbits were randomly divided into five groups:sham-operation group(S group),ischemia-reperfusion injury group(I/R group),low-dose glutamine group(L Gln group),median-dose glutamine group(M Gln group)and high-dose glutamine group(H Gln group).After glutamine preconditioning,the model of s...

  7. Hydrogen saline offers neuroprotection by reducing oxidative stress in a focal cerebral ischemia-reperfusion rat model

    Liu Ying

    2011-07-01

    Full Text Available Abstract Hydrogen gas is neuroprotective in cerebral ischemia animal models. In this study, we tested the neuroprotective effects of hydrogen saline, which is safe and easy to use clinically, in a rat model of middle cerebral artery occlusion (MCAO. Sprague-Dawley male rats weighting 250-280 g were divided into sham, MCAO plus hydrogen saline and MCAO groups, and subjected to 90-min ischemia followed by 24 h of reperfusion. Hydrogen saline was injected intraperitoneally at 1 ml/100 g body weight. Infarct volume and brain water content were evaluated at different time points after reperfusion. Oxidative stress, inflammation, and apoptotic cell death markers were measured. Hydrogen saline significantly reduced the infarct volume and edema and improved the neurological function, when it was administered at 0, 3 and 6 h after reperfusion. Hydrogen saline decreased 8-hydroxyl-2'-deoxyguanosine (8-OHdG, reduced malondidehyde, interleukin-1β, tumor necrosis factor-α, and suppressed caspase 3 activity in the ischemic brain. These findings demonstrated hydrogen saline is neuroprotective when administered within 6 h after ischemia. Because hydrogen saline is safe and easy to use, it has clinical potentials to reduce neurological injuries.

  8. Effect of atrial natriuretic peptide on ischemia-reperfusion injury in a porcine total hepatic vascular exclusion model

    Katsumi Kobayashi; Koshi Matsurnoto; Izumi Takeyoshi; Kiyohiro Oshima; Masato Muraoka; Takahiko Akao; Osamu Totsuka; Hisashi Shimizu; Hiroaki Sato; Kazumi Tanaka; Kenjiro Konno

    2007-01-01

    AIM: To evaluate the effect of ANP on warm I/R injury in a porcine THVE model.METHODS: Miniature pigs (mini-pigs) weighing 16-24 kg were observed for 120 min after reperfusion following 120 min of THVE. The animals were divided into two groups. ANP (0.1 μg/kg per min) was administered to the ANP group (n = 7), and vehicle was administered to the control group (n = 7). Either vehicle or ANP was intravenously administered from 30 min before the THVE to the end of the experiment. Arterial blood was collected to measure AST, LDH, and TNF-α. Hepatic tissue blood flow (HTBF) was also measured. Liver specimens were harvested for p38 MAPK analysis and histological study.Those results were compared between the two groups.RESULTS: The AST and LDH levels were lower in the ANP group than in the control group; the AST levels were significantly different between the two groups (60 min: 568.7 ± 113.3 vs 321.6 ± 60.1, P = 0.038 < 0.05,120 min: 673.6 ± 148.2 vs 281.1 ± 44.8, P = 0.004< 0.01). No significant difference was observed in the TNF-α levels between the two groups. HTBF was higher in the ANP group, but the difference was not significant.A significantly higher level of phosphorylated p38 MAPK was observed in the ANP group compared to the control group (0 min: 2.92 ± 1.1 vs 6.38 ± 1.1, P = 0.611 < 0.05).Histological tissue damage was milder in the ANP group than in the control group.CONCLUSION: Our results show that ANP has a protective role in I/R injury with p38 MAPK activation in a porcine THVE model.

  9. The Effect of Nitric Oxide/Endothelins System on the Hepatic Ischemia/Reperfusion Injury

    吕平; 陈道达; 田源; 张景辉; 吴毅华

    2002-01-01

    Summary: The relationship between the hepatic ischemia/reperfusion (I/R) injury and the balance of nitric oxide/endothelins (NO/ET) was studied. The changes of the ratio of NO/ET and the hepatic injury were observed in a rat hepatic I/R model pretreated with several tool drugs. In the acute phase of hepatic I/R injury, the ratio of plasma NO/ET was reduced from 1.58 ± 0. 20 to 0. 29 ± 0. 05 (P < 0. 01) and the hepatic damage deteriorated. NO donor L-Arg and ET receptor antagonist TAK-044 could alleviate the hepatic I/R injury to some degree, whereas NO synthase inhibitor L-NAME aggravated the damage. It was concluded that the hepatic I/R injury might be related with the disturbance of the NO/ET balance. Regulation of this balance might have an effect on the I/R injury.

  10. Cerebral Ischemia Reperfusion Exacerbates and Pueraria Flavonoids Attenuate Depressive Responses to Stress in Mice

    LAN Jiaqi; YAN Bin; ZHAO Yu'nan; WANG Daoyi; HU Jun; XING Dongming; DU Lijun

    2008-01-01

    Previous studies have shown that mice experiencing cerebral ischemia reperfusion (CIR) and stress can serve as a model of post stroke depression (PSD).The present study verified the acute antide-pressant effects of radix puerariae extract (PE) on PSD mice through behavior and gene expression ex-periments.CIR was found to reduce the sucrose consumption and tyrosine hydroxylase (TH) gene expres-sion.PE administration after CIR surgery was observed to significantly enhance the mRNA expression of TH in the hippocampus compared with the PSD group on Day 0 and Day 3 postsurgery.These findings in-dicate that PE contributes to the amelioration of behavior response in PSD mice,which is closely related with the protective effects of catecholamine synthesize against CIR brain damage.

  11. Molecular studies of the immunological effects of the sevoflurane preconditioning in the liver and lung in a rat model of liver ischemia/reperfusion injury.

    Mikrou, Angeliki; Kalimeris, Konstantinos A; Lilis, Ioannis; Papoutsidakis, Nikolaos; Nastos, Konstantinos; Papadaki, Helen; Kostopanagiotou, Georgia G; Zarkadis, Ioannis K

    2016-04-01

    Sevoflurane has been shown to improve ischemia/reperfusion injury (IRI) through several mechanisms, including amelioration of inflammatory response. However, there haven't been any studies considering the potential role of the complement system in sevoflurane-mediated amelioration of ischemia/reperfusion injury. Our purpose was to investigate the molecular mechanisms involved in sevoflurane preconditioning in liver and lung injury induced by liver ischemia-reperfusion (LIR), giving emphasis to the immunological mechanisms. In order to do that, fifty male Wistar rats were randomly allocated in five groups (n=10 each): Animals in group LIR received ketamine and xylazine and were then subjected to ischemia of the right and median hepatic lobe for 45 min and reperfusion for 6h. Group SEVO/LIR received sevoflurane and then LIR was induced, as in group LIR. Animals in group SHAM/LIR were anesthetized with ketamine and xylazine and then laparotomy followed. Group SHAM/SEVO received sevoflurane for 30 min and then laparotomy followed. Finally, in group VEN, animals only received ketamine and xylazine. Our results showed that sevoflurane preconditioning significantly improved liver-biochemical tests (decreased Alanine transaminase (ALT), Alkaline phosphatase (ALP), Aspartate transaminase (AST) and Alkaline phosphatase (ALP) levels) and limited inflammatory cell infiltration in BALF. Additionally, compared with the LIR group, the reduction in plasma C3 was significantly reduced in the SEVO/LIR group. No significant differences were observed in histological examination in the liver and lung. Immunostaining of the liver for Intracellular Adhesion Molecule 1 (ICAM1) however, showed a decrease in ICAM1 levels in the SEVO/LIR group. In the lung, sevoflurane seemed to exert no effect in ICAM1 levels. Caspase 3 (CASP3) levels in the liver and the lung also appeared unaffected by sevoflurane preconditioning. In the SEVO/LIR group, ICAM1 mRNA expression was significantly reduced in

  12. Matrix metalloproteinase-9 expression and blood brain barrier permeability in the rat brain after cerebral ischemia/reperfusion injury

    Lifang Lei; Xiaohong Zi; Qiuyun Tu

    2008-01-01

    BACKGROUND: The integrity of the blood brain barrier (BBB) plays an important role in the patho-physiological process of cerebral ischemia/reperfusion injury. It has been recently observed that metalloproteinase-9 (MMP-9) is closely related to cerebral ischemia/reperfusion injuryOBJECTIVE: This study was designed to observe MMP-9 expression in the rat brain after cerebral ischemia/reperfusion injury and to investigate its correlation to BBB permeability.DESIGN, TIME AND SETTING: This study, a randomized controlled animal experiment, was performed at the Institute of Neurobiology, Central South University between September 2005 and March 2006.MATERIALS: Ninety healthy male SD rats, aged 3-4 months, weighing 200-280g, were used in the present study. Rabbit anti-rat MMP-9 polyclonal antibody (Boster, Wuhan, China) and Evans blue (Sigma, USA) were also used.METHODS: All rats were randomly divided into 9 groups with 10 rats in each group: normal control group, sham-operated group, and ischemia for 2 hours followed by reperfusion for 3,6,12 hours, 1,2,4 and 7 days groups. In the ischemia/reperfusion groups, rats were subjected to ischemia/reperfusion injury by suture occlusion of the right middle cerebral artery. In the sham-operated group, rats were merely subjected to vessel dissociation. In the normal control group, rats were not modeled.MAIN OUTCOME MEASURES: BBB permeability was assessed by determining the level of effusion of Evans blue. MMP-9 expression was detected by an immunohistochemical method.RESULTS: All 90 rats were included in the final analysis. BBB permeability alteration was closely correlated to ischemia/reperfusion time. BBB permeability began to increase at ischemia/reperfusion for 3 hours, then it gradually reached a peak level at ischemia/reperfusion for 1 day, and thereafter it gradually decreased. MMP-9 expression began to increase at ischemia/reperfusion for 3 hours, then gradually reached its peak level 2 days after perfusion, and thereafter

  13. Crataegus oxycantha extract attenuates apoptotic incidence in myocardial ischemia-reperfusion injury by regulating Akt and HIF-1 signaling pathways.

    Jayachandran, Kesavan S; Khan, Mahmood; Selvendiran, Karuppaiyah; Devaraj, S Niranjali; Kuppusamy, Periannan

    2010-11-01

    The objective of the present study was to evaluate the efficacy and mechanism of Crataegus oxycantha (COC) extract in preventing ischemia-reperfusion (IR) injury in an in vivo rat model of acute myocardial infarction induced by a 30-minute regional ischemia followed by 72 hours of reperfusion. The COC extract [100 mg/(kg body weight)] was administered 12 hours after the surgical procedure and then at 24-hour intervals for 3 days. Animals treated with COC extract showed a significant decrease in creatine kinase activity and infarct size. At the molecular level, COC administration resulted in a significant attenuation of PTEN (phosphatase and tensin homolog deleted on chromosome 10) and upregulation of phospho-Akt and c-Raf levels in the heart. As a consequence, cleaved caspase-9 and cleaved caspase-7 levels were significantly downregulated, indicating negative regulation of apoptosis by COC extract. In part with the hypoxia-inducible factor (HIF) signaling pathway, COC extract administration significantly upregulated the prolyl hydroxylase-2 level. In contrast, other proapoptotic proteins such as nuclear factor-κB, cytochrome c, apoptosis-inducing factor, and cleaved poly(adenosine diphosphate-ribose) polymerase levels were significantly downregulated in the COC-treated group when compared with the untreated control group. The results suggested that COC extract attenuated apoptotic incidence in the experimental myocardial ischemia-reperfusion model by regulating Akt and HIF-1 signaling pathways. PMID:20729753

  14. Matrix metalloproteinase-9 and pancreatic trypsin in the intestinal wall:a contribution to the understanding of intestinal ischemia-reperfusion

    Rosário, Henrique Baptista Colaço Sobral do, 1971-

    2009-01-01

    Tese de doutoramento, Medicina (Bioquímica), Universidade de Lisboa, Faculdade de Medicina, 2009 Ischemia reperfusion of the intestine produces a set of inflammatory mediators, the origin of which has recently been shown to involve pancreatic digestive enzymes. Matrix metalloproteinase‐9 (MMP‐9) participates in a variety of inflammatory processes including myocardial, hepatic, and pancreatic ischemia reperfusion. In the present study, we explore the role of neutrophil‐derived MMP‐9 in acut...

  15. Effects of ischemic preconditioning on ischemia/reperfusion-induced arrhythmias by upregulatation of connexin 43 expression

    Chen Zhenguang

    2011-06-01

    Full Text Available Abstract Background The susceptibility of hypertrophied myocardium to ischemia-reperfusion injury is associated with increased risk of postoperative arrhythmias. We investigate the effects of ischemic preconditioning (IP on post-ischemic reperfusion arrhythmias in hypertrophic rabbit hearts. Methods Thirty-three rabbit models of myocardial hypertrophy were randomly divided into three groups of 11 each: non-ischemia-reperfusion group (group A, ischemia-reperfusion group (group B, and ischemic preconditioning group (group C. Another ten healthy rabbits with normal myocardium served as the healthy control group. Rabbit models of myocardial hypertrophy were induced by abdominal aortic banding. Surface electrocardiogram (ECG was recorded and Curtis-Ravingerova score was used for arrhythmia quantification. Connexin 43 (Cx43 expression was assessed by immunohistochemistry. Results Ratios of heart weight to body weight and left ventricular weight to body weight increase significantly in the three groups compared with the healthy control group (p Conclusions The incidence of ischemia/reperfusion-induced arrhythmias in hypertrophic rabbit hearts decreases after IP, which plays an important protecting role on the electrophysiology of hypertrophied myocardium by up-regulating the expression of Cx43.

  16. The effect of mitochondrial calcium uniporter on mitochondrial fission in hippocampus cells ischemia/reperfusion injury

    Zhao, Lantao; Li, Shuhong; Wang, Shilei, E-mail: wshlei@aliyun.com; Yu, Ning; Liu, Jia

    2015-06-05

    The mitochondrial calcium uniporter (MCU) transports free Ca{sup 2+} into the mitochondrial matrix, maintaining Ca{sup 2+} homeostasis, thus regulates the mitochondrial morphology. Previous studies have indicated that there was closely crosstalk between MCU and mitochondrial fission during the process of ischemia/reperfusion injury. This study constructed a hypoxia reoxygenation model using primary hippocampus neurons to mimic the cerebral ischemia/reperfusion injury and aims to explore the exactly effect of MCU on the mitochondrial fission during the process of ischemia/reperfusion injury and so as the mechanisms. Our results found that the inhibitor of the MCU, Ru360, decreased mitochondrial Ca{sup 2+} concentration, suppressed the expression of mitochondrial fission protein Drp1, MIEF1 and Fis1, and thus improved mitochondrial morphology significantly. Whereas spermine, the agonist of the MCU, had no significant impact compared to the I/R group. This study demonstrated that the MCU regulates the process of mitochondrial fission by controlling the Ca{sup 2+} transport, directly upregulating mitochondrial fission proteins Drp1, Fis1 and indirectly reversing the MIEF1-induced mitochondrial fusion. It also provides new targets for brain protection during ischemia/reperfusion injury. - Highlights: • We study MCU with primary neuron culture. • MCU induces mitochondrial fission. • MCU reverses MIEF1 effect.

  17. Pretreatment with scutellaria baicalensis stem-leaf total flavonoid prevents cerebral ischemia-reperfusion injury

    Shumin Zhao; Wei Kong; Shufeng Zhang; Meng Chen; Xiaoying Zheng; Xiangyu Kong

    2013-01-01

    Pretreatment with scutel aria baicalensis stem-leaf total flavonoid has protective effects against ischemia and attenuates myocardial ischemia-reperfusion injury. In this study, rats were given scu-tel aria baicalensis stem-leaf total flavonoid intragastrical y at 50, 100, and 200 mg/kg per day for 7 days before focal cerebral ischemia-reperfusion injury models were established using the suture method. We then determined the protective effects of scutel aria baicalensis stem-leaf total flavo-noid pretreatment on focal cerebral ischemia-reperfusion injury. Results showed that neurological deficit scores increased, infarct volumes enlarged, apoptosis increased and Bcl-2 and Bax protein expression were upregulated at 24 hours after reperfusion. Pretreatment with scutel aria baicalensis stem-leaf total flavonoid at any dose lowered the neurological deficit scores, reduced the infarct volume, prevented apoptosis in hippocampal cells, attenuated neuronal and blood-brain barrier damage and upregulated Bcl-2 protein expression but inhibited Bax protein expression. Doses of 100 and 200 mg/kg were the most efficacious. Our findings indicate that pretreatment with scutel a-ria baicalensis stem-leaf total flavonoid at 100 and 200 mg/kg can improve the neurological func-tions and have preventive and protective roles after focal cerebral ischemia-reperfusion injury.

  18. Hydrogen, a potential safeguard for graft-versus-host disease and graft ischemia-reperfusion injury?

    Yuan, Lijuan; Shen, Jianliang

    2016-01-01

    Post-transplant complications such as graft-versus-host disease and graft ischemia-reperfusion injury are crucial challenges in transplantation. Hydrogen can act as a potential antioxidant, playing a preventive role against post-transplant complications in animal models of multiple organ transplantation. Herein, the authors review the current literature regarding the effects of hydrogen on graft ischemia-reperfusion injury and graft-versus-host disease. Existing data on the effects of hydrogen on ischemia-reperfusion injury related to organ transplantation are specifically reviewed and coupled with further suggestions for future work. The reviewed studies showed that hydrogen (inhaled or dissolved in saline) improved the outcomes of organ transplantation by decreasing oxidative stress and inflammation at both the transplanted organ and the systemic levels. In conclusion, a substantial body of experimental evidence suggests that hydrogen can significantly alleviate transplantation-related ischemia-reperfusion injury and have a therapeutic effect on graft-versus-host disease, mainly via inhibition of inflammatory cytokine secretion and reduction of oxidative stress through several underlying mechanisms. Further animal experiments and preliminary human clinical trials will lay the foundation for hydrogen use as a drug in the clinic.

  19. The effect of mitochondrial calcium uniporter on mitochondrial fission in hippocampus cells ischemia/reperfusion injury

    The mitochondrial calcium uniporter (MCU) transports free Ca2+ into the mitochondrial matrix, maintaining Ca2+ homeostasis, thus regulates the mitochondrial morphology. Previous studies have indicated that there was closely crosstalk between MCU and mitochondrial fission during the process of ischemia/reperfusion injury. This study constructed a hypoxia reoxygenation model using primary hippocampus neurons to mimic the cerebral ischemia/reperfusion injury and aims to explore the exactly effect of MCU on the mitochondrial fission during the process of ischemia/reperfusion injury and so as the mechanisms. Our results found that the inhibitor of the MCU, Ru360, decreased mitochondrial Ca2+ concentration, suppressed the expression of mitochondrial fission protein Drp1, MIEF1 and Fis1, and thus improved mitochondrial morphology significantly. Whereas spermine, the agonist of the MCU, had no significant impact compared to the I/R group. This study demonstrated that the MCU regulates the process of mitochondrial fission by controlling the Ca2+ transport, directly upregulating mitochondrial fission proteins Drp1, Fis1 and indirectly reversing the MIEF1-induced mitochondrial fusion. It also provides new targets for brain protection during ischemia/reperfusion injury. - Highlights: • We study MCU with primary neuron culture. • MCU induces mitochondrial fission. • MCU reverses MIEF1 effect

  20. Sesamin protects against renal ischemia reperfusion injury by promoting CD39-adenosine-A2AR signal pathway in mice

    Li, Ke; Gong, Xia; Kuang, Ge; Jiang, Rong; Wan, Jingyuan; Wang, Bin

    2016-01-01

    Ischemia reperfusion injury (IRI) is a leading cause of acute kidney injury with high morbidity and mortality due to limited therapy. Here, we examine whether sesamin attenuates renal IRI in an animal model and explore the underlying mechanisms. Male mice were subjected to right renal ischemia for 30 min followed by reperfusion for 24 h with sesamin (100 mg/kg) during which the left kidney was removed. Renal damage and function were assessed subsequently. The results showed that sesamin reduced kidney ischemia reperfusion injury, as assessed by decreased serum creatinine (Scr) and Blood urea nitrogen (BUN), alleviated tubular damage and apoptosis. In addition, sesamin inhibited neutrophils infiltration and pro-inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-1β production in IR-preformed kidney. Notably, sesamin promoted the expression of CD39, A2A adenosine receptor (A2AAR), and A2BAR mRNA and protein as well as adenosine production. Furthermore, CD39 inhibitor or A2AR antagonist abolished partly the protection of sesamin in kidney IRI. In conclusion, sesamin could effectively protect kidney from IRI by inhibiting inflammatory responses, which might be associated with promoting the adenosine-CD39-A2AR signaling pathway. PMID:27347331

  1. Electroacupuncture Could Regulate the NF-κB Signaling Pathway to Ameliorate the Inflammatory Injury in Focal Cerebral Ischemia/Reperfusion Model Rats.

    Qin, Wen-Yi; Luo, Yong; Chen, Ling; Tao, Tao; Li, Yang; Cai, Yan-Li; Li, Ya-Hui

    2013-01-01

    The activated nuclear factor-KappaB signaling pathway plays a critical role in inducing inflammatory injury. It has been reported that electroacupuncture could be an effective anti-inflammatory treatment. We aimed to explore the complex mechanism by which EA inhibits the activation of the NF- κ B signal pathway and ameliorate inflammatory injury in the short term; the effects of NEMO Binding Domain peptide for this purpose were compared. Focal cerebral I/R was induced by middle cerebral artery occlusion for 2 hrs. Total 380 male Sprague-Dawley rats are in the study. The neurobehavioral scores, infarction volumes, and the levels of IL-1 β and IL-13 were detected. NF- κ B p65, I κ B α , IKK α , and IKK β were analyzed and the ability of NF- κ B binding DNA was investigated. The EA treatment and the NBD peptide treatment both reduced infarct size, improved neurological scores, and regulated the levels of IL-1 β and IL-13. The treatment reduced the expression of IKK α and IKK β and altered the expression of NF- κ B p65 and I κ B α in the cytoplasm and nucleus; the activity of NF- κ B was effectively reduced. We conclude that EA treatment might interfere with the process of NF- κ B nuclear translocation. And it also could suppress the activity of NF- κ B signaling pathway to ameliorate the inflammatory injury after focal cerebral ischemia/reperfusion. PMID:23970940

  2. Electroacupuncture Could Regulate the NF-κB Signaling Pathway to Ameliorate the Inflammatory Injury in Focal Cerebral Ischemia/Reperfusion Model Rats

    Wen-yi Qin

    2013-01-01

    Full Text Available The activated nuclear factor-KappaB signaling pathway plays a critical role in inducing inflammatory injury. It has been reported that electroacupuncture could be an effective anti-inflammatory treatment. We aimed to explore the complex mechanism by which EA inhibits the activation of the NF-κB signal pathway and ameliorate inflammatory injury in the short term; the effects of NEMO Binding Domain peptide for this purpose were compared. Focal cerebral I/R was induced by middle cerebral artery occlusion for 2 hrs. Total 380 male Sprague-Dawley rats are in the study. The neurobehavioral scores, infarction volumes, and the levels of IL-1β and IL-13 were detected. NF-κB p65, IκBα, IKKα, and IKKβ were analyzed and the ability of NF-κB binding DNA was investigated. The EA treatment and the NBD peptide treatment both reduced infarct size, improved neurological scores, and regulated the levels of IL-1β and IL-13. The treatment reduced the expression of IKKα and IKKβ and altered the expression of NF-κB p65 and IκBα in the cytoplasm and nucleus; the activity of NF-κB was effectively reduced. We conclude that EA treatment might interfere with the process of NF-κB nuclear translocation. And it also could suppress the activity of NF-κB signaling pathway to ameliorate the inflammatory injury after focal cerebral ischemia/reperfusion.

  3. Melatonin Modulates Endoplasmic Reticulum Stress and Akt/GSK3-Beta Signaling Pathway in a Rat Model of Renal Warm Ischemia Reperfusion

    Kaouther Hadj Ayed Tka

    2015-01-01

    Full Text Available Melatonin (Mel is widely used to attenuate ischemia/reperfusion (I/R injury in several organs. Nevertheless, the underlying mechanisms remain unclear. This study was conducted to explore the effect of Mel on endoplasmic reticulum (ER stress, Akt and MAPK cascades after renal warm I/R. Eighteen Wistar rats were randomized into three groups: Sham, I/R, and Mel + I/R. The ischemia period was 60 min followed by 120 min of reperfusion. Mel (10 mg/kg was administrated 30 min prior to ischemia. The creatinine clearance, MDA, LDH levels, and histopathological changes were evaluated. In addition, Western blot was performed to study ER stress and its downstream apoptosis as well as phosphorylation of Akt, GSK-3β, VDAC, ERK, and P38. Mel decreased cytolysis and lipid peroxidation and improved renal function and morphology compared to I/R group. Parallely, it significantly reduced the ER stress parameters including GRP 78, p-PERK, XBP 1, ATF 6, CHOP, and JNK. Simultaneously, p-Akt level was significantly enhanced and its target molecules GSK-3β and VDAC were inhibited. Furthermore, the ERK and P38 phosphorylation were evidently augmented after Mel administration in comparison to I/R group. In conclusion, Mel improves the recovery of renal function by decreasing ER stress and stimulating Akt pathway after renal I/R injury.

  4. ERK phosphorylation mediates sildenafil-induced myocardial protection against ischemia-reperfusion injury in mice

    Das, Anindita; Salloum, Fadi N.; Xi, Lei; Rao, Yuan J.; Kukreja, Rakesh C.

    2009-01-01

    Sildenafil, a selective inhibitor of phosphodiesterase type 5, induces powerful protection against myocardial ischemia-reperfusion injury through activation of cGMP-dependent protein kinase (PKG). We further hypothesized that PKG-dependent activation of survival kinase ERK may play a causative role in sildenafil-induced cardioprotection via induction of endothelial nitric oxide synthase (eNOS)/inducible nitric oxide synthase (iNOS) and Bcl-2. Our results show that acute intracoronary infusion...

  5. HIF-1 mediates pathogenic inflammatory responses to intestinal ischemia-reperfusion injury

    Feinman, Rena; Deitch, Edwin A.; Watkins, Anthony C.; Abungu, Billy; Colorado, Iriana; Kannan, Kolenkode B.; Sheth, Sharvil U.; Caputo, Francis J.; Lu, Qi; Ramanathan, Madhuri; Attan, Shirhan; Badami, Chirag D.; Doucet, Danielle; Barlos, Dimitrios; Bosch-Marce, Marta

    2010-01-01

    Acute lung injury (ALI) and the development of the multiple organ dysfunction syndrome (MODS) are major causes of death in trauma patients. Gut inflammation and loss of gut barrier function as a consequence of splanchnic ischemia-reperfusion (I/R) have been implicated as the initial triggering events that contribute to the development of the systemic inflammatory response, ALI, and MODS. Since hypoxia-inducible factor (HIF-1) is a key regulator of the physiological and pathophysiological resp...

  6. Development and Treatments of Inflammatory Cells and Cytokines in Spinal Cord Ischemia-Reperfusion Injury

    Jian Zhuang; Xiao-Kang Li; Masayuki Fujino; Ping Zhu; Jia-xin Li

    2013-01-01

    During aortic surgery, interruption of spinal cord blood flow might cause spinal cord ischemia-reperfusion injury (IRI). The incidence of spinal cord IRI after aortic surgery is up to 28%, and patients with spinal cord IRI might suffer from postoperative paraplegia or paraparesis. Spinal cord IRI includes two phases. The immediate spinal cord injury is related to acute ischemia. And the delayed spinal cord injury involves both ischemic cellular death and reperfusion injury. Inflammation is a ...

  7. Aging might increase myocardial ischemia / reperfusion-induced apoptosis in humans and rats

    Liu, Miaobing; Zhang, Ping; Chen, Mulei; Zhang, Wuning; Yu, Liping; Yang, Xin-Chun; Fan, Qian

    2011-01-01

    Previous studies indicated aging results in the significant cardiac function decreasing and myocardial apoptosis increasing in normal humans or rats. Additionally, animal experiments demonstrated aging increased myocardial ischemia / reperfusion (MI/R)-induced apoptosis. However, whether more myocardial apoptosis happen in the old acute myocardial infarction (AMI) patients is unclear. Reperfusion injury-induced apoptosis is an important cause of heart failure. This study determined the effect...

  8. Formoterol Restores Mitochondrial and Renal Function after Ischemia-Reperfusion Injury

    Jesinkey, Sean R.; Funk, Jason A.; Stallons, L. Jay; Wills, Lauren P.; Megyesi, Judit K.; Beeson, Craig C.; Schnellmann, Rick G.

    2014-01-01

    Mitochondrial biogenesis may be an adaptive response necessary for meeting the increased metabolic and energy demands during organ recovery after acute injury, and renal mitochondrial dysfunction has been implicated in the pathogenesis of AKI. We proposed that stimulation of mitochondrial biogenesis 24 hours after ischemia/reperfusion (I/R)–induced AKI, when renal dysfunction is maximal, would accelerate recovery of mitochondrial and renal function in mice. We recently showed that formoterol,...

  9. 肾小管上皮细胞体外缺血再灌注新模型的建立%Establishment of an in vitro injury new model of ischemia-reperfusion in NRK cells

    陈志强; 夏宗禹; 胡威; 叶章群; 朱珉; 陈刚

    2009-01-01

    目的 建立稳定的体外大鼠肾小管上皮细胞(NRK cells)缺血再灌注模型,寻找建立模型的最佳条件.观察大鼠Ppif基因在该模型中的表达.方法 体外培养NRK细胞,以氧糖剥夺(krebs)液及使用去氧剂连二亚硫酸钠(Na_2 S_2O_4 mmol/L)和厌氧产气袋充以N_2和CO_2(95%N_2/5%CO_2),以模拟体外NRK细胞缺血再灌注,Annexin V/PI染色后,流式细胞仪检测细胞凋亡率,用逆转录-聚合酶链反应(RT-PCR)方法检测Ppif基因(CypD的编码基因)的mRNA表达.结果 去氧去糖40 min再复氧复糖后,NRK细胞凋亡率于16h达到最高值(P<0.05).Ppif mRNA再灌注16 h时达高峰,48 h开始回落,各时段与0 h比较,差异均有统计学意义(P<0.05).结论 本模型可以模拟体内缺血再灌注机制,去氧去糖40 min后再复氧复糖16 h是体外NRK细胞缺血再灌注诱导凋亡的最佳条件.%Objective To establish an in vitro injury model of ischemia-reperfusion in normal rat kidney cells and investigate optimal conditions for modeling,and observe the Ppif gene expression in NRK cells. Methods NRK cells were subjected to the oxygen-glucose deprivation [ Krebs solution, sodium di hionite (Na_2S_2O_4 2 mmol/L) ,GENbag anaer (95% N_2/5% CO_2) ] and recovery of oxygen-glucose, which simulated ire vitro ischemia-reperfusion injury (IRI). Apoptosis of NRK cells was assayed by flow cytometry after Annexin V/PI double staining. The expression of Ppif (coding gene of CypD) in mRNA was detected by RT-PCR method. Results The apoptosis rate of NRK cells reached the peak at 16th h (P<0.05). Ppif mRNA was expressed at a low level at 0 h,began to increase at 4 h,and reached the peak at 16 h,after 16 h, it began to decrease,significantly decreased at 48 h,but higher than that at 0 h (P<0.05). Conclusion The model well simulated in vitro ischemia-reperfusion,and the oxygen-glucose deprivation (40 min) and recovery of oxygen-glucose (16 h) was the optimal condition for modeling.

  10. The protective mechanism of Yisheng Injection against hepatic ischemia reperfusion injury in mice

    Feng Cheng; You-Ping Li; Jing-Qiu Cheng; Li Feng; Sheng-Fu Li

    2004-01-01

    AIM: Hepatic ischemia/reperfusion injury may cause acute inflammatory, significant organ damage or dysfunction, and remains an important problem for liver transplantation.Our previous in vivo and in vitro studies demonstrated that Yisheng injection (YS), a traditional Chinese medicine, had protective effect on ischemia/reperfusion injury. In this study, we examined whether YS had protective effect for hepatic ischemia/reperfusion injury and explored its protective mechanism.METHODS: Hepatic warm ischemia/reperfusion was induced in mice. YS at different doses (5, 10, 20 mg/kg)was injected intraperitoneally 24 h and 1 h before ischemia and a third dose was injected intravenously just before reperfusion. The hepatocellular injury, oxidative stress,neutrophil recruitment, proinflammatory mediators and adhesion molecules associated with hepatic ischemia/reperfusion injury were assayed by enzyme-linked immunosorbent assay (ELISA), immunohistochemical assay and reverse transcription polymerase chain reaction (RT-PCR).RESULTS: Undergoing 90 min of ischemia and 6 h of reperfusion caused dramatical injuries in mouse livers.Administration of YS at doses of 5, 10 and 20 mg/kg effectively reduced serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH), from 3 670±463 U/L, 2 362±323 U/L and 12 752±1 455 U/L in I/R group to 1 172±257 U/L,845±193 U/L and 2 866±427 U/L in YS (20 mg/kg) treated group, respectively (P<0.01). The liver myeloperoxidase (MPO) and malondialdehyde (MDA) contents were decreased from 1.1±0.2 (U/mg protein) and 9.1±0.7 (nmol/mg protein) in I/R group to 0.4±0.1 (U/mg protein) and 5.5±0.9 (nmol/mg protein) in YS (20 mg/kg) treated group, respectively (P<0.01). Moreover, the serum levels of tumor necrosis factor-alpha (TNF-α) were reduced from 55±9.9 (pg/mL) in I/R group to 16±4.2 (pg/mL) (P<0.01).Furthermore, the over-expressions of TNF-α and intercellular adhesion molecule-1 (ICAM-1

  11. Polyamine metabolism in rat myocardial ischemia-reperfusion injury.

    Han, Liping; Xu, Changqing; Guo, Yimin; Li, Hongzhu; Jiang, Chunming; Zhao, Yajun

    2009-02-01

    This study was focused on investigating the involvement of polyamine metabolism in the myocardial ischemia-reperfusion injury (MIRI) in an in vivo rat model. A branch of the descending left coronary artery was occluded for 30 min followed by 2 h, 6 h, 12 h, and 24 h reperfusion. Then the expression of spermidine/spermine N1-acetyltransferase (SSAT) and ornithine decarboxylase (ODC) and the concentrations of polyamines were assessed. It was found that the expression of SSAT and ODC were upregulated after reperfusion and the concentrations of spermidine and spermine were significantly decreased, while putrescine concentration was significantly increased. The results suggest that MIRI may cause disturbance of polyamine metabolism, and it may play a critical role in MIRI. PMID:18077014

  12. Intestinal translocation of clinical isolates of vancomycin-resistant Enterococcus faecalis and ESBL-producing Escherichia coli in a rat model of bacterial colonization and liver ischemia/reperfusion injury.

    Karin M van der Heijden

    Full Text Available The objectives of this study were to develop a rat model of gastrointestinal colonization with vancomycin-resistant Enterococcus faecalis (VRE and extended-spectrum beta-lactamase (ESBL-producing E. coli and to evaluate intestinal translocation to blood and tissues after total and partial hepatic ischemia. Methods - We developed a model of rat colonization with VRE and ESBL-E coli. Then we studied four groups of colonized rats: Group I (with hepatic pedicle occlusion causing complete liver ischemia and intestinal stasis; Group II (with partial liver ischemia without intestinal stasis; Group III (surgical manipulation without hepatic ischemia or intestinal stasis; Group IV (anesthetized without surgical manipulation. After sacrifice, portal and systemic blood, large intestine, small intestine, spleen, liver, lungs, and cervical and mesenteric lymph nodes were cultured. Endotoxin concentrations in portal and systemic blood were determined. Results - The best inocula were: VRE: 2.4×10(10 cfu and ESBL-E. coli: 1.12×10(10 cfu. The best results occurred 24 hours after inoculation and antibiotic doses of 750 µg/mL of water for vancomycin and 2.1 mg/mL for ceftriaxone. There was a significantly higher proportion of positive cultures for ESBL-E. coli in the lungs in Groups I, II and III when compared with Group IV (67%; 60%; 75% and 13%, respectively; p:0.04. VRE growth was more frequent in mesenteric lymph nodes for Groups I (67% and III (38% than for Groups II (13% and IV (none (p:0.002. LPS was significantly higher in systemic blood of Group I (9.761 ± 13.804 EU/mL-p:0.01. No differences for endotoxin occurred in portal blood. Conclusion -We developed a model of rats colonized with resistant bacteria useful to study intestinal translocation. Translocation occurred in surgical procedures with and without hepatic ischemia-reperfusion and probably occurred via the bloodstream. Translocation was probably lymphatic in the ischemia-reperfusion groups

  13. Intestinal translocation of clinical isolates of vancomycin-resistant Enterococcus faecalis and ESBL-producing Escherichia coli in a rat model of bacterial colonization and liver ischemia/reperfusion injury.

    van der Heijden, Karin M; van der Heijden, Inneke M; Galvao, Flavio H; Lopes, Camila G; Costa, Silvia F; Abdala, Edson; D'Albuquerque, Luiz A; Levin, Anna S

    2014-01-01

    The objectives of this study were to develop a rat model of gastrointestinal colonization with vancomycin-resistant Enterococcus faecalis (VRE) and extended-spectrum beta-lactamase (ESBL)-producing E. coli and to evaluate intestinal translocation to blood and tissues after total and partial hepatic ischemia. Methods - We developed a model of rat colonization with VRE and ESBL-E coli. Then we studied four groups of colonized rats: Group I (with hepatic pedicle occlusion causing complete liver ischemia and intestinal stasis); Group II (with partial liver ischemia without intestinal stasis); Group III (surgical manipulation without hepatic ischemia or intestinal stasis); Group IV (anesthetized without surgical manipulation). After sacrifice, portal and systemic blood, large intestine, small intestine, spleen, liver, lungs, and cervical and mesenteric lymph nodes were cultured. Endotoxin concentrations in portal and systemic blood were determined. Results - The best inocula were: VRE: 2.4×10(10) cfu and ESBL-E. coli: 1.12×10(10) cfu. The best results occurred 24 hours after inoculation and antibiotic doses of 750 µg/mL of water for vancomycin and 2.1 mg/mL for ceftriaxone. There was a significantly higher proportion of positive cultures for ESBL-E. coli in the lungs in Groups I, II and III when compared with Group IV (67%; 60%; 75% and 13%, respectively; p:0.04). VRE growth was more frequent in mesenteric lymph nodes for Groups I (67%) and III (38%) than for Groups II (13%) and IV (none) (p:0.002). LPS was significantly higher in systemic blood of Group I (9.761 ± 13.804 EU/mL-p:0.01). No differences for endotoxin occurred in portal blood. Conclusion -We developed a model of rats colonized with resistant bacteria useful to study intestinal translocation. Translocation occurred in surgical procedures with and without hepatic ischemia-reperfusion and probably occurred via the bloodstream. Translocation was probably lymphatic in the ischemia-reperfusion groups

  14. Exogenous alpha-1-acid glycoprotein protects against renal ischemia-reperfusion injury by inhibition of inflammation and apoptosis

    de Vries, B; Walter, SJ; Wolfs, TGAM; Hochepied, T; Rabina, J; Heeringa, P; Parkkinen, J; Libert, C; Buurman, WA

    2004-01-01

    Background. Although ischemia-reperfusion (I/R) injury represents a major problem in posttransplant organ failure, effective treatment is not available. The acute phase protein a-l-acid glycoprotein (AGP) has been shown to be protective against experimental I/R injury. The effects of AGP are thought

  15. 脑缺血再灌注损伤模型大鼠炎性反应相关信号研究%The research of the inflammation related signal in the cerebral ischemia reperfusion rat model

    李沙; 黄艳秋; 游红琴; 高扬

    2012-01-01

    reperfusion rat model, and then analyze the effect of the inflammation injury and the stress response to the disease of central nervous system and their interaction. Methods Improved Zea Longa method was used to prepare cerebral ischemia reperfusion model of Spraque-Dawley (SD) rats. Immunohistochemical technique was used to analyse the expression of the inflammatory related signals [interleukin-lβ (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) , matrix metalloproteinases-9 (MMP-9), intercellular adhesion molecule-I (ICAM-1), monocyte chemoattractant protein -1 (MCP-1), transforming growth factor-β (TGF-β)] in rats injured brain areas at 12 h, 24 h, 48 h, 72 h, 96 h and 144 h after ischemia/reperfusion, and ELISA was used to detect the levels of relevant signals [IL-lβ, TNF-α, IL-6, Heat Shock Proteins 70 (HSP70), adrenocorticotropic hormone (ACTH)] in the rats serum at the same time. Results Compared with the other two groups, in the injured brain regions of the model rats, the injury related signals including IL-1β, IL-6, MMP-9, ICAM-1 and TGF-β showed consistent elevated levels and expressed classical two peaks. They expressed the first peak 24 h to 48 h after ischemia/reperfusion, and then slightly decreased; the second peak appeared 96 h to 144 h after ischemia/reperfusion. The expression trends of TNF-α and MCP-1 were not consistent with others. The patterns of the elevated rats' serum signals including IL-1β, TNF-α, HSP70 and ACTH showed one peak. There were significant differences between the model group and the control (P<0. 05). The expression trends of IL-6 was not consistent with others. Conclusions During the cerebral ischemia reperfusion, the injury related signals both in CNS and serum expressed higher levels than the control, which indicated that cytokines were involved in the process of injury and repair and the neuro-endocrine-immune regulation network in the central nervous system injury, they play a critical role in the

  16. Study on the protective mechanism of remifentanil on mitochondria in rat hepatocytes subjected to ischemia-reperfusion injury

    HAO Xue-qin; TAO Guo-cai; CUI Jian; YI Bin; CHEN Yi-fei

    2006-01-01

    Objective:To explore the protective effect of remifentanil on mitochondria in rat hepatocytes subjected to ischemia-reperfusion injury and their possible mechanism. Methods:The model of rat hepatic ischemia-reperfusion injury was used and the effect of remifentanil on the ultrastructure of mitochondria,calcium homeostasis, MDA level in mitochondria were observed. Results: In contrast with the control group, mitochondrial matrix calcium concentration, calcium concentration after calcium uptake, and the quantity of calcium uptake in low and high remifentanil concentration groups and 5-HD group are lower (P<0. 01), and there is no difference in RHD (5-HD+remifentanil) group. The difference in MDA level between groups is insignificant. Conclusion:Remifentanil at clinical concentrations exerts a protective effect on mitochondria in rat hepatocytes subjected to ischemia-reperfusion injury, in which activating the KATP channel may be involved.

  17. Protective effects of icariin on neurons injured by cerebral ischemia/reperfusion

    LI Li; ZHOU Qi-xin; SHI Jing-shan

    2005-01-01

    Background It is very important to search for novel anti-ischemia/reperfusion neuroprotective drugs for prevention or treatment of cerebrovascular diseases. Icariin, the major active component of traditional Chinese herb Yinyanghuo, may have a beneficial role for neurons in cerebral ischemia/reperfusion caused by accident. However, it was not clear yet. In this study, we observed the protective effects of icariin on neurons injured by ischemia/reperfusion in vitro and in vivo and investigated its protective mechanism.Methods Cerebral cortical neurons of Wistar rats in primary culture were studied during the different periods of oxygen-glucose deprivation and reperfusion with oxygen and glucose. Cell viability was determined by methyl thiazoleterazolium (MTT) assay. The activity of lactate dehydrogenase (LDH) leaked from neurons, cell apoptosis and the concentration of intracellular free calcium were measured respectively. On the other hand, the mice model of transient cerebral ischemia/reperfusion was made by bilateral occlusion of common carotid arteries and ischemic hypotension/reperfusion. The mice were divided into several groups at random: sham operated group, model group and icariin preventive treatment group. The changes of mice behavioral, activities of superoxide dismutase (SOD) and the content of malondialdehyde (MDA) were measured, respectively. Results Treatment with icariin (final concentration 0.25, 0.5, and 1 mg/L) during ischemia/reperfusion-mimetic incubation in vitro concentration-dependently attenuated neuronal damage with characteristics of increasing injured neuronal absorbance of MTT, decreasing LDH release, decreasing cell apoptosis, and blunting elevation of intracellular calcium concentration. And in vivo the learning and memory abilities significantly decreased,activities of SOD were diminished and MDA level increased obviously in model group,compared with that in sham operated group. But pre-treatment of model mice with icariin (10, 30

  18. Carnosic acid nanoparticles suppress liver ischemia/reperfusion injury by inhibition of ROS, Caspases and NF-κB signaling pathway in mice.

    Li, Hui; Sun, Jian-Jun; Chen, Guo-Yong; Wang, Wei-Wei; Xie, Zhan-Tao; Tang, Gao-Feng; Wei, Si-Dong

    2016-08-01

    Living donor liver transplantation (LDLT) requires ischemia/reperfusion (I/R), which can lead to early graft injury. However, the detailed molecular mechanism of I/R injury remains unclear. Carnosic acid, as a phenolic diterpene with function of anti-inflammation, anti-cancer, anti-bacterial, anti-diabetic, as well as neuroprotective properties, is produced by many species from Lamiaceae family. Nanoparticulate drug delivery systems have been known to better the bioavailability of drugs on intranasal administration compared with only drug solutions. Administration of carnosic acid nanoparticles was thought to be sufficient to lead to considerable inhibition of liver injury progression induced by ischemia/reperfusion. In our study, liver ischemia/reperfusion injury was established successfully with C57BL/6 animal model. 10 and 20mg/kg carnosic acid nanoparticles were injected to mice for five days prior to ischemia. After liver ischemia/reperfusion, the levels of serum AST, ALT and APL were increased, which was attenuated by pre-treatment with carnosic acid nanoparticles. In addition, carnosic acid nanoparticles inhibited ROS production via its related signals regulation. And carnosic acid nanoparticles also suppressed the ischemia/reperfusion-induced up-regulation in the pro-apoptotic protein and mRNA levels of Bax, Cyto-c, Apaf-1 and Caspase-9/3 while increased ischemia/reperfusion-induced decrease of anti-apoptotic factor of Bcl-2. Further, ischemia/reperfusion-induced inflammation was also inhibited for carnosic acid nanoparticles administration via inactivating NF-κB signaling pathway, leading to down-regulation of pro-inflammatory cytokines releasing. In conclusion, our study suggested that carnosic acid nanoparticles protected against liver ischemia/reperfusion injury via its role of anti-oxidative, anti-apoptotic and anti-inflammatory bioactivity. PMID:27470360

  19. Tribulosin protects rat hearts from ischemia/reperfusion injury

    Zhang, Shuang; Li, Hong; Yang, Shi-Jie

    2010-01-01

    Aim: To investigate the protective effect of tribulosin, a monomer of the gross saponins from Tribulus terrestris, against cardiac ischemia/reperfusion injury and the underlying mechanism in rats. Methods: Isolated rat hearts were subjected to 30 min of ischemia followed by 120 min of reperfusion using Langendorff's technique. The hearts were assigned to seven groups: control, ischemia/reperfusion (I/R), treatment with gross saponins from Tribulus terrestris (GSTT) 100 mg/L, treatment with tr...

  20. Extracellular BCL2 Proteins Are Danger-Associated Molecular Patterns That Reduce Tissue Damage in Murine Models of Ischemia-Reperfusion Injury

    Iwata, Akiko; Morgan-Stevenson, Vicki; Schwartz, Barbara; Liu, Li; Tupper, Joan; Zhu, Xiaodong

    2010-01-01

    Background Ischemia-reperfusion (I/R) injury contributes to organ dysfunction in a variety of clinical disorders, including myocardial infarction, stroke, organ transplantation, and hemorrhagic shock. Recent investigations have demonstrated that apoptosis as an important mechanism of cell death leading to organ dysfunction following I/R. Intracellular danger-associated molecular patterns (DAMPs) released during cell death can activate cytoprotective responses by engaging receptors of the innate immune system. Methodology/Principal Findings Ischemia was induced in the mouse hind limb by tourniquet or in the heart by coronary artery ligation. Reperfusion injury of skeletal or cardiac muscle was markedly reduced by intraperitoneal or subcutaneous injection of recombinant human (rh)BCL2 protein or rhBCL2-related protein A1 (BCL2A1) (50 ng/g) given prior to ischemia or at the time of reperfusion. The cytoprotective activity of extracellular rhBCL2 or rhBCL2A1 protein was mapped to the BH4 domain, as treatment with a mutant BCL2 protein lacking the BH4 domain was not protective, whereas peptides derived from the BH4 domain of BCL2 or the BH4-like domain of BCL2A1 were. Protection by extracellular rhBCL2 or rhBCL2A1 was associated with a reduction in apoptosis in skeletal and cardiac muscle following I/R, concomitant with increased expression of endogenous mouse BCL2 (mBCL2) protein. Notably, treatment with rhBCL2A1 protein did not protect mice deficient in toll-like receptor-2 (TLR2) or the adaptor protein, myeloid differentiation factor-88 (MyD88). Conclusions/Significance Treatment with cytokine-like doses of rhBCL2 or rhBCL2A1 protein or BH4-domain peptides reduces apoptosis and tissue injury following I/R by a TLR2-MyD88-dependent mechanism. These findings establish a novel extracellular cytoprotective activity of BCL2 BH4-domain proteins as potent cytoprotective DAMPs. PMID:20161703

  1. Effect of compound preparation Tongqiao Jiannao capsules on neural cell apoptosis and Bcl-2 and Bax protein levels in a rat model of brain ischemia/reperfusion injury

    Rui Wang; Guanglai Li; Wei Wang; Huanying Li

    2008-01-01

    Bcl-2-positive cells were slightly decreased compared with the sham-operated group. Bcl-2- and Bax-pnsitive cells and apoptotic cells were primarily distributed in the ischemic penumbra. In the Tongqiao Jiannao capsule-treated group, neuronal apoptosis was inhibited, and the number of Bcl-2-positive cells was significantly increased (P < 0.01), while the number of Bax-positive cells was significantly decreased (P < 0.01), compared with the MCAO group.CONCLUSION: Tongqiao Jiannao capsules elevated Bcl-2 expression, lowered Bax expression, and inhibited cellular apoptosis during the process of cerebral ischemia/reperfusion injury.

  2. Poly-IC preconditioning protects against cerebral and renal ischemia-reperfusion injury

    Packard, Amy E. B.; Hedges, Jason C; Bahjat, Frances R; Stevens, Susan L; Michael J. Conlin; Salazar, Andres M.; Stenzel-Poore, Mary P

    2011-01-01

    Preconditioning induces ischemic tolerance, which confers robust protection against ischemic damage. We show marked protection with polyinosinic polycytidylic acid (poly-IC) preconditioning in three models of murine ischemia-reperfusion injury. Poly-IC preconditioning induced protection against ischemia modeled in vitro in brain cortical cells and in vivo in models of brain ischemia and renal ischemia. Further, unlike other Toll-like receptor (TLR) ligands, which generally induce significant ...

  3. Expression of SGLT1 in Human Hearts and Impairment of Cardiac Glucose Uptake by Phlorizin during Ischemia-Reperfusion Injury in Mice.

    Yusuke Kashiwagi

    Full Text Available Sodium-glucose cotransporter 1 (SGLT1 is thought to be expressed in the heart as the dominant isoform of cardiac SGLT, although more information is required to delineate the subtypes of SGLTs in human hearts. Moreover, the functional role of SGLTs in the heart remains to be fully elucidated. We herein investigated whether SGLT1 is expressed in human hearts and whether SGLTs significantly contribute to cardiac energy metabolism during ischemia-reperfusion injury (IRI via enhanced glucose utilization in mice.We determined that SGLT1 was highly expressed in both human autopsied hearts and murine perfused hearts, as assessed by immunostaining and immunoblotting with membrane fractionation. To test the functional significance of the substantial expression of SGLTs in the heart, we studied the effects of a non-selective SGLT inhibitor, phlorizin, on the baseline cardiac function and its response to ischemia-reperfusion using the murine Langendorff model. Although phlorizin perfusion did not affect baseline cardiac function, its administration during IRI significantly impaired the recovery in left ventricular contractions and rate pressure product, associated with an increased infarct size, as demonstrated by triphenyltetrazolium chloride staining and creatine phosphokinase activity released into the perfusate. The onset of ischemic contracture, which indicates the initiation of ATP depletion in myocardium, was earlier with phlorizin. Consistent with this finding, there was a significant decrease in the tissue ATP content associated with reductions in glucose uptake, as well as lactate output (indicating glycolytic flux, during ischemia-reperfusion in the phlorizin-perfused hearts.Cardiac SGLTs, possibly SGLT1 in particular, appear to provide an important protective mechanism against IRI by replenishing ATP stores in ischemic cardiac tissues via enhancing availability of glucose. The present findings provide new insight into the significant role of

  4. Acute hyperglycemia exacerbates myocardial ischemia/reperfusion injury by inhibiting aldehyde dehydrogenase 2 activity in rats%急性高血糖通过抑制 ALDH2活性加重大鼠心肌缺血/再灌注损伤

    李明华; 王甲莉; 徐峰; 袁秋环; 刘宝山; 庞佼佼; 张运; 陈玉国

    2015-01-01

    及心肌细胞凋亡。%Objective To investigate the activity changes and actions of aldehyde dehydrogenase 2 (ALDH2)in myocardial ischemia/reperfusion injury exacerbated by acute hyperglycemia.Methods A total of 48 male Wistar rats were randomly divided into 4 groups:sham operation (SHAM)group,normal saline control (CON)group,high blood glucose (HG)group,and HG with Alda-1 administration (HG +Alda-1)group,with 12 animals in each group. The left anterior descending artery (LAD)was occluded for 30 minutes followed by 1 hour reperfusion to establish my-ocardial ischemia-reperfusion rat models.Acute hyperglycemia rat models were established via jugular vein injection of 50% glucose (3 g /kg)during the ischemia period.Blood glucose levels were maintained at 20-28 mmol/L throughout the experiment by administration of glucose with trace pumping[4 mL/(kg·h)]during ischemia and reperfusion peri-od.The rats in CON group and HG +Alda-1 group were given normal saline (6 mL/kg).The rats in HG +Alda-1 group were given Alda-1 (8.5 mg /kg)with trace pumping during ischemia and reperfusion.After reperfusion,ALDH2 activity of heart was detected with colorimetric method,changes of myocardial tissue morphology were observed with HE staining,myocardial infarction size was determined with TTC staining,and myocardial cell apoptosis was tested with TUNEL method.Results Blood glucose level was significantly increased in HG group compared with that of CON group [(23.4 ±0.21 )vs (5.8 ±0.21 )mmol/L,P <0.01 ].Compared with CON group,the activity of ALDH2 in HG group was markedly decreased [(69.1 ±5.16)% vs (87.0 ±4.30)%,P <0.05].Myocardial infarct size of HG group was remarkably increased compared with the CON group [(38.2 ±3.30)% vs (26.8 ±2.53)%, P <0.05].Compared with HG group,myocardial infarct size of HG +Alda-1 group was notedly decreased [(27.8 ± 2.50)% vs (38.2 ±3.30)%,P <0.05].Myocardial apoptosis index of HG group was significantly higher than that of CON group [(16.1 ±0.83)% vs (13.1 ±0.39)%,P <0

  5. 急性高血糖通过抑制 ALDH2活性加重大鼠心肌缺血/再灌注损伤%Acute hyperglycemia exacerbates myocardial ischemia/reperfusion injury by inhibiting aldehyde dehydrogenase 2 activity in rats

    李明华; 王甲莉; 徐峰; 袁秋环; 刘宝山; 庞佼佼; 张运; 陈玉国

    2015-01-01

    Objective To investigate the activity changes and actions of aldehyde dehydrogenase 2 (ALDH2)in myocardial ischemia/reperfusion injury exacerbated by acute hyperglycemia.Methods A total of 48 male Wistar rats were randomly divided into 4 groups:sham operation (SHAM)group,normal saline control (CON)group,high blood glucose (HG)group,and HG with Alda-1 administration (HG +Alda-1)group,with 12 animals in each group. The left anterior descending artery (LAD)was occluded for 30 minutes followed by 1 hour reperfusion to establish my-ocardial ischemia-reperfusion rat models.Acute hyperglycemia rat models were established via jugular vein injection of 50% glucose (3 g /kg)during the ischemia period.Blood glucose levels were maintained at 20-28 mmol/L throughout the experiment by administration of glucose with trace pumping[4 mL/(kg·h)]during ischemia and reperfusion peri-od.The rats in CON group and HG +Alda-1 group were given normal saline (6 mL/kg).The rats in HG +Alda-1 group were given Alda-1 (8.5 mg /kg)with trace pumping during ischemia and reperfusion.After reperfusion,ALDH2 activity of heart was detected with colorimetric method,changes of myocardial tissue morphology were observed with HE staining,myocardial infarction size was determined with TTC staining,and myocardial cell apoptosis was tested with TUNEL method.Results Blood glucose level was significantly increased in HG group compared with that of CON group [(23.4 ±0.21 )vs (5.8 ±0.21 )mmol/L,P <0.01 ].Compared with CON group,the activity of ALDH2 in HG group was markedly decreased [(69.1 ±5.16)% vs (87.0 ±4.30)%,P <0.05].Myocardial infarct size of HG group was remarkably increased compared with the CON group [(38.2 ±3.30)% vs (26.8 ±2.53)%, P <0.05].Compared with HG group,myocardial infarct size of HG +Alda-1 group was notedly decreased [(27.8 ± 2.50)% vs (38.2 ±3.30)%,P <0.05].Myocardial apoptosis index of HG group was significantly higher than that of CON group [(16.1 ±0.83)% vs (13.1 ±0.39)%,P

  6. Intravenous Administration of Lycopene, a Tomato Extract, Protects against Myocardial Ischemia-Reperfusion Injury

    Chao Tong

    2016-03-01

    Full Text Available Background: Oral uptake of lycopene has been shown to be beneficial for preventing myocardial ischemia-reperfusion (I/R injury. However, the strong first-pass metabolism of lycopene influences its bioavailability and impedes its clinic application. In this study, we determined an intravenous (IV administration dose of lycopene protects against myocardial infarction (MI in a mouse model, and investigated the effects of acute lycopene administration on reactive oxygen species (ROS production and related signaling pathways during myocardial I/R. Methods: In this study, we established both in vitro hypoxia/reoxygenation (H/R cell model and in vivo regional myocardial I/R mouse model by ligating left anterior artery descending. TTC dual staining was used to assess I/R induced MI in the absence and presence of acute lycopene administration via tail vein injection. Results: Lycopene treatment (1 μM before reoxygenation significantly reduced cardiomyocyte death induced by H/R. Intravenous administration of lycopene to achieve 1 μM concentration in circulating blood significantly suppressed MI, ROS production, and JNK phosphorylation in the cardiac tissue of mice during in vivo regional I/R. Conclusion: Elevating circulating lycopene to 1 μM via IV injection protects against myocardial I/R injury through inhibition of ROS accumulation and consequent inflammation in mice.

  7. Fluorometry of ischemia reperfusion injury in rat lungs in vivo

    Sepehr, R.; Staniszewski, K.; Jacobs, E. R.; Audi, S.; Ranji, Mahsa

    2013-02-01

    Previously we demonstrated the utility of optical fluorometry to evaluate lung tissue mitochondrial redox state in isolated perfused rats lungs under various chemically-induced respiratory states. The objective of this study was to evaluate the effect of acute ischemia on lung tissue mitochondrial redox state in vivo using optical fluorometry. Under ischemic conditions, insufficient oxygen supply to the mitochondrial chain should reduce the mitochondrial redox state calculated from the ratio of the auto-fluorescent mitochondrial metabolic coenzymes NADH (Nicotinamide Adenine Dinucleotide) and FAD (Flavoprotein Adenine Dinucleotide). The chest of anesthetized, and mechanically ventilated Sprague-Dawley rat was opened to induce acute ischemia by clamping the left hilum to block both blood flow and ventilation to one lung for approximately 10 minutes. NADH and FAD fluorescent signals were recorded continuously in a dark room via a fluorometer probe placed on the pleural surface of the left lung. Acute ischemia caused a decrease in FAD and an increase in NADH, which resulted in an increase in the mitochondrial redox ratio (RR=NADH/FAD). Restoration of blood flow and ventilation by unclamping the left hilum returned the RR back to its baseline. These results (increase in RR under ischemia) show promise for the fluorometer to be used in a clinical setting for evaluating the effect of pulmonary ischemia-reperfusion on lung tissue mitochondrial redox state in real time.

  8. Buyanghuanwu decoction promotes angiogenesis after cerebral ischemia/reperfusion injury:mechanisms of brain tissue repair

    Zhen-qiang Zhang; Jun-ying Song; Ya-quan Jia; Yun-ke Zhang

    2016-01-01

    Buyanghuanwu decoction has been shown to protect against cerebral ischemia/reperfusion injury, but the underlying mechanisms remain unclear. In this study, rats were intragastrically givenBuyanghuanwu decoction, 15 mL/kg, for 3 days. A rat model of cerebral ischemia/reper-fusion injury was established by middle cerebral artery occlusion. In rats administeredBuyanghuanwu decoction, infarct volume was reduced, serum vascular endothelial growth factor and integrinαvβ3 levels were increased, and brain tissue vascular endothelial growth factor and CD34 expression levels were increased compared with untreated animals. These effects ofBuyanghuanwu decoction were partially suppressed by an angiogenesis inhibitor (administered through the lateral ventricle for 7 consecutive days). These data suggest thatBuyanghuanwu de-coction promotes angiogenesis, improves cerebral circulation, and enhances brain tissue repair after cerebral ischemia/reperfusion injury.

  9. Transcription factor changes following long term cerebral ischemia/reperfusion injury★

    Zhang, Hongbo; Gao, Weijuan; Qian, Tao; Tang, Jinglong; Li, Jun

    2013-01-01

    The present study established a rat model of cerebral ischemia/reperfusion injury using four-vessel occlusion and found that hippocampal CA1 neuronal morphology was damaged, and that there were reductions in hippocampal neuron number and DNA-binding activity of cAMP response element binding protein and CCAAT/enhancer binding protein, accompanied by decreased learning and memory ability. These findings indicate that decline of hippocampal cAMP response element binding protein and CCAAT/enhance...

  10. Effects of propionyl-L-carnitine on ischemia-reperfusion injury in hamster cheek pouch microcirculation.

    DomingaLapi; LinaSabatino; GiovannaAltobelli

    2010-01-01

    Background and Purpose Propionyl-L-carnitine (pLc) exerts protective effects in different experimental models of ischemia-reperfusion (I/R). The aim of the present study was to assess the effects of intravenously and topically applied pLc on microvascular permeability increase induced by I/R in the hamster check pouch preparation. Methods The hamster check pouch microcirculation was visualized by fluorescence microscopy. Microvascular permeability, leukocyte adhesion to venular walls, perfus...

  11. Cardioprotective properties of Crataegus oxycantha extract against ischemia-reperfusion injury

    Swaminathan, Jayachandran Kesavan; Khan, Mahmood; Mohan, Iyappu K; Selvendiran, Karuppaiyah; Devaraj, S. Niranjali; Rivera, Brian K.; Kuppusamy, Periannan

    2010-01-01

    The aim of the study was to investigate the cardioprotective effect and mechanism of Crataegus oxycantha (COC) extract, a well-known natural antioxidant-based cardiotonic, against ischemia/reperfusion (I/R) injury. Electron paramagnetic resonance studies showed that COC extract was capable of scavenging superoxide, hydroxyl, and peroxyl radicals, in vitro. The cardioprotective efficacy of the extract was studied in a crystalloid perfused heart model of I/R injury. Hearts were subjected to 30 ...

  12. Dose-dependent effects of procyanidin on nerve growth factor expression following cerebral ischemia/ reperfusion injury in rats

    Feng Li; Hai Xie; Ying Gao; Tongxia Zhan

    2008-01-01

    BACKGROUND: Recently, grape seed procyanidin (GSP) has been shown to be exhibit antioxidant effects, effectively reducing ischemia/reperfusion injury and inhibiting brain cell apoptosis.OBJECTIVE: To study the effects of GSP on nerve growth factor (NGF) expression and neurological function following cerebral ischemia/reperfusion injury in rats.DESIGN: Randomized controlled study based on SD rats.SETTING: Weifang Municipal People's Hospital. MATERIALS: Forty-eight healthy adult SD rats weighing 280-330 g and irrespective of gender were provided by the Experimental Animal Center of Shandong University. GSP derived from grape seed was a new high-effective antioxidant provided by Tianjin Jianfeng Natural Product Researching Company (batch number: 20060107). Rabbit-anti-rat NGF monoclonal antibody was provided by Beijing Zhongshan Biotechnology Co., Ltd., and SABC immunohistochemical staining kit by Wuhan Boster Bioengineering Co., Ltd. METHODS: The present study was performed in the Functional Laboratory of Weifang Medical College from April 2006 to January 2007. Forty-eight SD rats were randomly divided into the sham operation group, ischemia/reperfusion group, high-dose GSP (40 mg/kg) group, or low-dose GSP (10 mg/kg) group (n = 12 per group). Ischemia/reperfusion injury was established using the threading embolism method of the middle cerebral artery. Rats in the ischemia/reperfusion model group were given saline injection (2 mL/kg i.p.) once daily for seven days pre-ischemia/reperfusion, and once more at 15 minutes before reperfusion. Rats in the high-dose and low-dose GSP groups were injected with GSP (20 or 5 mg/mL i.p., respectively, 2 mL/kg) with the same regime as the ischemia/reperfusion model group. The surgical procedures in the sham operation group were as the same as those in the ischemia/reperfusion model group, but the thread was approximately 10 mm long, thus, the middle cerebral artery was not blocked. MAIN OUTCOME MEASURES: NGF expression in the

  13. The Long-Term Consumption of Ginseng Extract Reduces the Susceptibility of Intermediate-Aged Hearts to Acute Ischemia Reperfusion Injury

    Luo, Pei; Dong, Gengting; Liu, Liang; Zhou, Hua

    2015-01-01

    Background A large number of experimental studies using young adult subjects have shown that ginseng (Panax ginseng C.A. Meyer) protects against ischemia heart disease. However, ginseng has not been explored for its anti-I/R effect and mechanism of action in the aged myocardium. The present study was designed to evaluate the effects of the long-term consumption of ginseng extract on myocardial I/R in an in vivo rat model and explore the potential underlying mechanism. Methods and Results Youn...

  14. Delivery of Hydrogen Sulfide by Ultrasound Targeted Microbubble Destruction Attenuates Myocardial Ischemia-reperfusion Injury

    Chen, Gangbin; Yang, Li; Zhong, Lintao; Kutty, Shelby; Wang, Yuegang; Cui, Kai; Xiu, Jiancheng; Cao, Shiping; Huang, Qiaobing; Liao, Wangjun; Liao, Yulin; Wu, Juefei; Zhang, Wenzhu; Bin, Jianping

    2016-01-01

    Hydrogen sulfide (H2S) is an attractive agent for myocardial ischemia-reperfusion injury, however, systemic delivery of H2S may cause unwanted side effects. Ultrasound targeted microbubble destruction has become a promising tool for organ specific delivery of bioactive substance. We hypothesized that delivery of H2S by ultrasound targeted microbubble destruction attenuates myocardial ischemia-reperfusion injury and could avoid unwanted side effects. We prepared microbubbles carrying hydrogen sulfide (hs-MB) with different H2S/C3F8 ratios (4/0, 3/1, 2/2, 1/3, 0/4) and determined the optimal ratio. Release of H2S triggered by ultrasound was investigated. The cardioprotective effect of ultrasound targeted hs-MB destruction was investigated in a rodent model of myocardial ischemia-reperfusion injury. The H2S/C3F8 ratio of 2/2 was found to be an optimal ratio to prepare stable hs-MB with higher H2S loading capability. Ultrasound targeted hs-MB destruction triggered H2S release and increased the concentration of H2S in the myocardium and lung. Ultrasound targeted hs-MB destruction limited myocardial infarct size, preserved left ventricular function and had no influence on haemodynamics and respiratory. This cardioprotective effect was associated with alleviation of apoptosis and oxidative stress. Delivery of H2S to the myocardium by ultrasound targeted hs-MB destruction attenuates myocardial ischemia-reperfusion injury and may avoid unwanted side effects. PMID:27469291

  15. The Meniere attack: an ischemia/reperfusion disorder of inner ear sensory tissues.

    Foster, C A; Breeze, R E

    2013-12-01

    We believe Meniere attacks arise as a chance association of endolymphatic hydrops and vascular risk factors for intracerebral ischemia. Hydrops acts as a variable Starling resistor upon the inner ear vasculature that is capable of inducing ischemic attacks only in people with reduced perfusion pressure in the ear. The unique characteristics of the attacks (loss of vestibular response and hearing acutely followed by a return to apparent normalcy over hours) are explained by the differential sensitivity of the inner ear tissues to transient ischemia, with the sensory tissues (dendrites, hair cells) vulnerable to hours-long ischemia/reperfusion injury, and the stria vulnerable to ischemia due to its high metabolic rate. Permanent hearing loss and vestibular damage after many attacks would result when small areas of irreversible sensory cell damage accumulate and become confluent. This theory is supported by the strong correlation of hydrops with Meniere attacks, the finding that autoregulation of cochlear blood flow is impaired in the hydropic ear, and studies demonstrating that symptoms and signs in people and in animal models vary with conditions that alter perfusion pressure in the inner ear. Induction of Meniere attacks in animal models requires both hydrops and a mechanism that reduces perfusion pressure, such as epinephrine injection or head dependency. There is a strong clinical association between Meniere attacks and disorders that increase the risk for cerebrovascular ischemia, such as migraine. The excitable tissues in the sensory structures have long been known to be more vulnerable to ischemia than the remaining aural tissues, and are now known to be vulnerable to excitotoxicity induced by ischemia/reperfusion. This correlates well with autopsy evidence of damage to dendrites and hair cells and with strial atrophy in late Meniere disease cases. If this hypothesis is confirmed, treatment of vascular risk factors may allow control of symptoms and result in a

  16. Role of Mitochondria in Neuron Apoptosis during Ischemia-Reperfusion Injury

    段秋红; 王西明; 王忠强; 卢涛; 韩义香; 何善述

    2004-01-01

    To investigate the role of mitochondria in neuronal apoptosis, ischemia-reperfusion mediated neuronal cell injury model was established by depriving of glucose, serum and oxygen in media.DNA fragmentation, cell viability, cytochrome C releasing, caspase3 activity and mitochondrial transmembrane potential were observed after N2a cells suffered the insults. The results showed that N2a cells in ischemic territory exhibited survival damage, classical cell apoptosis change, DNA ladder and activation of caspase3. Apoptosis-related alterations in mitochondrial functions, including release of cytochrome C and depression of mitochondrial transmembrane potential (△ψm)were testified in N2a cells after mimic ischemia-reperfusion. Moreover, activation of caspase3 occurred following the release of cytochrome C. However, the inhibitor of caspase3, Ac-DEVDinhibitor of mitochondria permeability transition pore only partly inhibited caspase3 activity and reduced DNA damage. Interestingly, treatment of Z-IETD-FMK, an inhibitor of caspase8 could comthat there were caspase3 dependent and independent cellular apoptosis pathways in N2a cells suffering ischemia-reperfusion insults. Mitochondria dysfunction may early trigger apoptosis and amplify apoptosis signal.

  17. Noscapine protects OLN-93 oligodendrocytes from ischemia-reperfusion damage: Calcium and nitric oxide involvement.

    Nadjafi, S; Ebrahimi, S-A; Rahbar-Roshandel, N

    2015-12-01

    This study was carried out to evaluate the effects of noscapine, a benzylisoquinoline alkaloid from opium poppy, on oligodendrocyte during ischemia/reperfusion-induced excitotoxic injury. Changes in intracellular calcium levels due to chemical ischemia and nitric oxide (NO) production during ischemia/reperfusion were evaluated as the hallmarks of ischemia-derived excitotoxic event. OLN-93 cell line (a permanent immature rat oligodendrocyte) was used as a model of oligodendrocyte. 30- or 60-minute-oxygen-glucose deprivation/24 hours reperfusion were used to induce excitotoxicity. MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay was used to evaluate cell viability. Ratiometric fluorescence microscopy using Ca(2+)-sensitive indicator Fura-2/AM was utilized to assess intracellular calcium levels. NO production was evaluated by Griess method. Noscapine (4 μM) significantly attenuated intracellular Ca(2+) elevation (P < 0.001). Also, noscapine significantly decreased NO production during a 30-minute oxygen-glucose deprivation/reperfusion (P < 0.01). The inhibitory effect of noscapine (4 μM) on intracellular Ca(2+) was greater than ionotropic glutamate receptors antagonists. Noscapine is protective against ischemia/reperfusion-induced excitotoxic injury in OLN-93 oligodendrocyte. This protective effect seems to be related to attenuation of intracellular Ca(2+) overload and NO production. PMID:26690027

  18. Neuroprotective effect of atorvastatin in spinal cord ischemia-reperfusion injury

    Yunus Nazli

    2015-01-01

    Full Text Available OBJECTIVES: Prevention of the development of paraplegia during the repair of the damage caused by descending thoracic and thoracoabdominal aneurysms remains an important issue. Therefore, we investigated the protective effect of atorvastatin on ischemia-induced spinal cord injury in a rabbit model. METHOD: Thirty-two rabbits were divided into the following four equally sized groups: group I (control, group II (ischemia-reperfusion, group III (atorvastatin treatment and group IV (atorvastatin withdrawal. Spinal cord ischemia was induced by clamping the aorta both below the left renal artery and above the iliac bifurcation. Seventy-two hours postoperatively, the motor function of the lower limbs of each animal was evaluated according to the Tarlov score. Spinal cord and blood samples were obtained for histopathological and biochemical analyses. RESULTS: All of the rabbits in group II exhibited severe neurological deficits. Atorvastatin treatment (groups III and IV significantly reduced the level of motor dysfunction. No significant differences were observed between the motor function scores of groups III and IV at the evaluated time points. Light microscopic examination of spinal cord tissue samples obtained at the 72nd hour of reperfusion indicated greater tissue preservation in groups III and IV than in group II. CONCLUSION: This study demonstrates the considerable neuroprotective effect of atorvastatin on the neurological, biochemical and histopathological status of rabbits with ischemia-induced spinal cord injury. Moreover, the acute withdrawal of atorvastatin therapy following the induction of spinal cord ischemia did not increase the neuronal damage in this rabbit model.

  19. Ischemic preconditioning reduces the severity of ischemia-reperfusion injury of peripheral nerve in rats

    Kurutas Ergul

    2006-09-01

    Full Text Available Abstract Background and aim Allow for protection of briefly ischemic tissues against the harmful effects of subsequent prolonged ischemia is a phenomennon called as Ischemic Preconditioning (IP. IP has not been studied in ischemia-reperfusion (I/R model of peripheral nerve before. We aimed to study the effects of acute IP on I/R injury of peripheral nerve in rats. Method 70 adult male rats were randomly divided into 5 groups in part 1 experimentation and 3 groups in part 2 experimentation. A rat model of severe nerve ischemia which was produced by tying iliac arteries and all idenfiable anastomotic vessels with a silk suture (6-0 was used to study the effects of I/R and IP on nerve biochemistry. The suture technique used was a slip-knot technique for rapid release at time of reperfusion in the study. Cytoplasmic vacuolar degeneration was also histopathologically evaluated by light microscopic examination in sciatic nerves of rats at 7th day in part 2 study. Results 3 hours of Reperfusion resulted in an increase in nerve malondialdehyde levels when compared with ischemia and non-ischemia groups (p 0.05. There was also a significant decrease in vacoular degeneration of sciatic nerves in IP group than I/R group (p Conclusion IP reduces the severity of I/R injury in peripheral nerve as shown by reduced tissue MDA levels at 3 th hour of reperfusion and axonal vacoulization at 7 th postischemic day.

  20. Blockade of Death Ligand TRAIL Inhibits Renal Ischemia Reperfusion Injury

    Renal ischemia-reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI). Many investigators have reported that cell death via apoptosis significantly contributed to the pathophysiology of renal IRI. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor superfamily, and induces apoptosis and inflammation. However, the role of TRAIL in renal IRI is unclear. Here, we investigated whether TRAIL contributes to renal IRI and whether TRAIL blockade could attenuate renal IRI. AKI was induced by unilateral clamping of the renal pedicle for 60 min in male FVB/N mice. We found that the expression of TRAIL and its receptors were highly upregulated in renal tubular cells in renal IRI. Neutralizing anti-TRAIL antibody or its control IgG was given 24 hr before ischemia and a half-dose booster injection was administered into the peritoneal cavity immediately after reperfusion. We found that TRAIL blockade inhibited tubular apoptosis and reduced the accumulation of neutrophils and macrophages. Furthermore, TRAIL blockade attenuated renal fibrosis and atrophy after IRI. In conclusion, our study suggests that TRAIL is a critical pathogenic factor in renal IRI, and that TRAIL could be a new therapeutic target for the prevention of renal IRI

  1. Protective effects of ghrelin against oxidative stress, inducible nitric oxide synthase and inflammation in a mouse model of myocardial ischemia/reperfusion injury via the HMGB1 and TLR4/NF-κB pathway.

    Sun, Ning; Wang, Hui; Wang, Lin

    2016-09-01

    The present study aimed to investigate the protective effects of ghrelin against oxidative stress, inducible nitric oxide synthase (iNOS) and inflammation in a mouse model of myocardial ischemia/reperfusion injury (MIRI). In addition, the study aimed to determine its underlying mechanisms. A mouse model of MIRI was used in vivo, in order to ascertain the protective effects of ghrelin on MIRI. Commercial kits were used to measure the serum levels of creatine kinase (CK) and lactate dehydrogenase (LDH) in MIRI mice. Furthermore, Evan's Blue-triphenyltetrazolium chloride solution was used to analyze the protective effects of ghrelin against infarct size in MIRI mice. The underlying mechanisms were determined by measuring MIRI-induced tumor necrosis factor (TNF)‑α, interleukin (IL)‑6, superoxide dismutase (SOD), glutathione (GSH), GSH-peroxidase (GSH‑PX), malondialdehyde (MDA) and caspase‑3/caspase‑9 activities, and iNOS, high mobility group box 1 (HMGB1), Toll‑like receptor 4 (TLR4) and nuclear factor (NF)‑κB protein expression in MIRI mice. The results demonstrated that MIRI led to an increase in infarct size; CK, LDH, TNF‑α, IL‑6, MDA, caspase‑3 and caspase-9 serum levels; and iNOS protein expression. MIRI resulted in inhibition of SOD, FSH and GSH‑PX levels. Conversely, these alterations were significantly inhibited following treatment with ghrelin. In addition, the protective effects of ghrelin against MIRI suppressed HMGB1, TLR4 and NF‑κB protein expression in MIRI mice. The present study revealed that ghrelin exerted protective effects against oxidative stress, iNOS and inflammation in MIRI mice via the HMGB1/TLR4/NF-κB pathway. PMID:27485280

  2. The protective effect of dl-3n-butylphthalide on local cerebral ischemia-reperfusion injury in experimental rats

    Objective: To observe the effect of dl-3n-butylphthalide (NBP) on the expression of vascular endothelial growth factor (VEGF) in the rat model with focal cerebral ischemia-reperfusion injury and to discuss its impact on the therapeutic time window for cerebral ischemia-reperfusion injury. Methods: Seventy-two SD rats were randomly and equally divided into three groups with 24 rats in each group: sham operation (SO) group, ischemia-reperfusion (I-R) group and NBP group; and each group was again randomly and equally subdivided into three subgroups: 2-hour, 3-hour and 4-hour reperfusion subgroup according to the reperfusion time after ischemia. By using modified suture embolus method the focal cerebral ischemia-reperfusion model was established. The experimental models were kept under close observation for the extent of cerebral infarction and the neurological deficit. The expressions of VEGF in the brain tissues were determined with immunohistochemical method. The results were statistically analyzed and compared among different groups. Results: As the ischemia time went on, the extent of cerebral infarction and the neurological deficit after reperfusion increased. The severity of cerebral infarction and the neurological deficit in NBP group was significantly lower than that in I-R group, the difference between the two groups was significant (P0.05). Along with the increased ischemia time the expressions of VEGF in brain tissues in both NBP group and I-R group were significantly decreased (P<0.01). The expression level of VEGF in NBP group was significantly higher than those in both I-R group and SO group (P<0.01). Conclusion: The dl-3n-butylphthalide has a protective effect on focal cerebral ischemia-reperfusion injury. Its mechanism may be associated with VEGF expression level. The use of dl-3n-butylphthalide can prolong the therapeutic time window of reperfusion. (authors)

  3. Dexmedetomidine preconditioning ameliorates kidney ischemia-reperfusion injury

    Lempiäinen, Juha; Finckenberg, Piet; Mervaala, Elina E; Storvik, Markus; Kaivola, Juha; Lindstedt, Ken; Levijoki, Jouko; Mervaala, Eero M

    2014-01-01

    Kidney ischemia-reperfusion (I/R) injury is a common cause of acute kidney injury. We tested whether dexmedetomidine (Dex), an alpha2 adrenoceptor (α2-AR) agonist, protects against kidney I/R injury. Sprague–Dawley rats were divided into four groups: (1) Sham-operated group; (2) I/R group (40 min ischemia followed by 24 h reperfusion); (3) I/R group + Dex (1 μg/kg i.v. 60 min before the surgery), (4) I/R group + Dex (10 μg/kg). The effects of Dex postconditiong (Dex 1 or 10 μg/kg i.v. after reperfusion) as well as the effects of peripheral α2-AR agonism with fadolmidine were also examined. Hemodynamic effects were monitored, renal function measured, and acute tubular damage along with monocyte/macrophage infiltration scored. Kidney protein kinase B, toll like receptor 4, light chain 3B, p38 mitogen-activated protein kinase (p38 MAPK), sirtuin 1, adenosine monophosphate kinase (AMPK), and endothelial nitric oxide synthase (eNOS) expressions were measured, and kidney transciptome profiles analyzed. Dex preconditioning, but not postconditioning, attenuated I/R injury-induced renal dysfunction, acute tubular necrosis and inflammatory response. Neither pre- nor postconditioning with fadolmidine protected kidneys. Dex decreased blood pressure more than fadolmidine, ameliorated I/R-induced impairment of autophagy and increased renal p38 and eNOS expressions. Dex downregulated 245 and upregulated 61 genes representing 17 enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, in particular, integrin pathway and CD44. Ingenuity analysis revealed inhibition of Rac and nuclear factor (erythroid-derived 2)-like 2 pathways, whereas aryl hydrocarbon receptor (AHR) pathway was activated. Dex preconditioning ameliorates kidney I/R injury and inflammatory response, at least in part, through p38-CD44-pathway and possibly also through ischemic preconditioning. PMID:25505591

  4. SPECT imaging of myocardial infarction using {sup 99m}Tc-labeled C2A domain of synaptotagmin I in a porcine ischemia-reperfusion model

    Fang Wei [Department of Nuclear Medicine, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences, Beijing 100037 (China); Wang Feng [Nuclear Medicine Department, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing 210006 (China); Ji Shundong [Jiangsu Institute of Hematology, 1st Hospital of Suzhou University, Suzhou 215006 (China); Zhu Xiaoguang [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, WI 53226 (United States); Meier, Heidi T. [Clinical Veterinarian and Radiology Research, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, WI 53295 (United States); Hellman, Robert S. [Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, WI 53226 (United States); Brindle, Kevin M. [MRC Laboratory of Molecular Biology, Cambridge CB2 2QH (United Kingdom); Davletov, Bazbek [Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA (United Kingdom); Zhao Ming [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, WI 53226 (United States)], E-mail: mzhao@mcw.edu

    2007-11-15

    Introduction: The C2A domain of synaptotagmin I recognizes necrotic and apoptotic cells by binding to exposed anionic phospholipids. The goal is to explore the potential imaging utility of {sup 99m}Tc-labeled C2A in the detection of acute cardiac cell death in a porcine model that resembles human cardiovascular physiology. Methods: Ischemia (20-25 min) was induced in pigs (M/F, 20-25 kg) using balloon angioplasty. {sup 99m}Tc-C2A-GST (n=7) or {sup 99m}Tc-BSA (n=2) was injected intravenously 1-2 h after reperfusion. Noninfarct animals were injected with {sup 99m}Tc-C2A-GST (n=4). SPECT images were acquired at 3 and 6 h postinjection. Cardiac tissues were analyzed to confirm the presence of cell death. Results: Focal uptake was detected in five out of seven subjects at 3 h and in all infarct subjects at 6 h postinjection but not in infarct animals injected with {sup 99m}Tc-BSA or in noninfarct animals with {sup 99m}Tc-C2A-GST. Gamma counting of infarct versus normal myocardium yielded a 10.2{+-}5.7-fold elevation in absolute radioactivity, with histologically confirmed infarction. Conclusions: We present data on imaging myocardial cell death in the acute phase of infarction in pigs. C2A holds promise and warrants further development as an infarct-avid molecular probe.

  5. Tadalafil significantly reduces ischemia reperfusion injury in skin island flaps

    Oguz Kayiran

    2013-01-01

    Full Text Available Introduction: Numerous pharmacological agents have been used to enhance the viability of flaps. Ischemia reperfusion (I/R injury is an unwanted, sometimes devastating complication in reconstructive microsurgery. Tadalafil, a specific inhibitor of phosphodiesterase type 5 is mainly used for erectile dysfunction, and acts on vascular smooth muscles, platelets and leukocytes. Herein, the protective and therapeutical effect of tadalafil in I/R injury in rat skin flap model is evaluated. Materials and Methods: Sixty epigastric island flaps were used to create I/R model in 60 Wistar rats (non-ischemic group, ischemic group, medication group. Biochemical markers including total nitrite, malondialdehyde (MDA and myeloperoxidase (MPO were analysed. Necrosis rates were calculated and histopathologic evaluation was carried out. Results: MDA, MPO and total nitrite values were found elevated in the ischemic group, however there was an evident drop in the medication group. Histological results revealed that early inflammatory findings (oedema, neutrophil infiltration, necrosis rate were observed lower with tadalafil administration. Moreover, statistical significance (P < 0.05 was recorded. Conclusions: We conclude that tadalafil has beneficial effects on epigastric island flaps against I/R injury.

  6. Emergent role of gasotransmitters in ischemia-reperfusion injury

    Moody Bridgette F

    2011-04-01

    Full Text Available Abstract Nitric oxide (NO, carbon monoxide (CO and hydrogen sulfide (H2S are lipid-soluble, endogenously produced gaseous messenger molecules collectively known as gasotransmitters. Over the last several decades, gasotransmitters have emerged as potent cytoprotective mediators in various models of tissue and cellular injury. Specifically, when used at physiological levels, the exogenous and endogenous manipulation of these three gases has been shown to modulate ischemia/reperfusion injury by inducing a number of cytoprotective mechanisms including: induction of vasodilatation, inhibition of apoptosis, modulation of mitochondrial respiration, induction of antioxidants, and inhibition of inflammation. However, while the actions are similar, there are some differences in the mechanisms by which these gasotransmitters induce these effects and the regulatory actions of the enzyme systems can vary depending upon the gas being investigated. Furthermore, there does appear to be some crosstalk between the gases, which can provide synergistic effects and additional regulatory effects. This review article will discuss several models and mechanisms of gas-mediated cytoprotection, as well as provide a brief discussion on the complex interactions between the gasotransmitter systems.

  7. Dapagliflozin, SGLT2 Inhibitor, Attenuates Renal Ischemia-Reperfusion Injury

    Chang, Yoon-Kyung; Choi, Hyunsu; Jeong, Jin Young; Na, Ki-Ryang; Lee, Kang Wook

    2016-01-01

    Dapagliflozin, a new type of drug used to treat diabetes mellitus (DM), is a sodium/glucose cotransporter 2 (SGLT2) inhibitor. Although some studies showed that SGLT2 inhibition attenuated reactive oxygen generation in diabetic kidney the role of SGLT2 inhibition is unknown. We evaluated whether SLT2 inhibition has renoprotective effects in ischemia-reperfusion (IR) models. We evaluated whether dapagliflozin reduces renal damage in IR mice model. In addition, hypoxic HK2 cells were treated with or without SGLT2 inhibitor to investigate cell survival, the apoptosis signal pathway, and the induction of hypoxia-inducible factor 1 (HIF1) and associated proteins. Dapagliflozin improved renal function. Dapagliflozin reduced renal expression of Bax, renal tubule injury and TUNEL-positive cells and increased renal expression of HIF1 in IR-injured mice. HIF1 inhibition by albendazole negated the renoprotective effects of dapagliflozin treatment in IR-injured mice. In vitro, dapagliflozin increased the expression of HIF1, AMP-activated protein kinase (AMPK), and ERK and increased cell survival of hypoxic HK2 cells in a dose-dependent manner. In conclusion, dapagliflozin attenuates renal IR injury. HIF1 induction by dapagliflozin may play a role in renoprotection against renal IR injury. PMID:27391020

  8. Studies on the active constituents in radix salviae miltiorrhizae and their protective effects on cerebral ischemia reperfusion injury and its mechanism

    Yan-hui Li

    2015-01-01

    Full Text Available Background: To extract, purify and identify the active constituents in ethanol extract of Radix Salviae Miltiorrhizae, and to analyze the protective effects of tanshinone IIA on cerebral ischemia-reperfusion injury in rats. Materials and Methods: Radix Salviae Miltiorrhizae was extracted by ultrasonic extraction, effective parts were extracted by extraction method, compounds were isolated by preparative TLC and preparative HPLC, and structures of compounds were identified by 1 H NMR and 13 C NMR; the effects of tanshinone IIA on cerebral ischemia-reperfusion injury in rats were determined by establishing rat model of middle cerebral artery occlusion (MCAO. Results: The experimental data show four compounds were isolated, namely tanshinone IIB, hydroxymethylene tanshinone, salvianolic acid B and 9"′-methyl lithospermate B. Tanshinone IIA could alleviate the symptoms of neurological deficit in rats, the neurological deficit alleviating effect became more obvious with the increase of dose; tanshinone IIA experimental groups could reduce the cerebral infarction size and brain water content in rats, different concentrations of tanshinone IIA could decrease the SOD content and increase the MDA content in the frontal and parietal cortices of ischemic hemisphere in the ischemia reperfusion group, the differences were statistically significant compared with the ischemia reperfusion group. Conclusion: Radix Salviae Miltiorrhizae has the protective effects on cerebral ischemia reperfusion injury in rats.

  9. The Anti-Inflammatory Effect of Erythropoietin and Melatonin on Renal Ischemia Reperfusion Injury in Male Rats

    Nasser Ahmadiasl; Shokofeh Banaei; Alireza Alihemmati; Behzad Baradaran; Ehsan Azimian

    2013-01-01

    Purpose: Renal ischemia reperfusion (IR) is an important cause of renal dysfunction. It contributes to the development of acute renal failure (ARF). The purpose of this study was to investigate the anti-inflammatory effect of erythropoietin (EPO) and melatonin (MEL), which are known anti-inflammatory and antioxidant agents, in IR-induced renal injury in rats. Methods: Male Wistar Albino rats were unilaterally nephrectomized and subjected to 45 min of renal pedicle occlusion followed by 24 ...

  10. Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2—dependent mechanisms

    Shibata, Rei; Sato, Kaori; Pimentel, David R.; Takemura, Yukihiro; Kihara, Shinji; Ohashi, Koji; Funahashi, Tohru; Ouchi, Noriyuki; Walsh, Kenneth

    2005-01-01

    Obesity-related disorders are associated with the development of ischemic heart disease. Adiponectin is a circulating adipose-derived cytokine that is downregulated in obese individuals and after myocardial infarction. Here, we examine the role of adiponectin in myocardial remodeling in response to acute injury. Ischemia-reperfusion in adiponectin-deficient (APN-KO) mice resulted in increased myocardial infarct size, myocardial apoptosis and tumor necrosis factor (TNF)-α expression compared w...

  11. Timing of erythropoietin treatment for cardioprotection in ischemia/reperfusion

    Lipsic, E; van der Meer, P; Henning, RH; Suurmeijer, AJH; Boddeus, KM; van Veldhuisen, DJ; van Gilst, WH; Schoemaker, RG

    2004-01-01

    Erythropoietin (EPO) is a hormone known to stimulate hematopoiesis. However, recent research suggests additional properties of EPO, such as protection against ischemia/reperfusion (I/R) injury in various tissues. We studied the effect of timing of EPO administration on cardioprotection during I/R in

  12. Glycine preconditioning to ameliorate pulmonary ischemia reperfusion injury in rats

    Sommer, Sebastian-Patrick; Sommer, Stefanie; Sinha, Bhanu; Leyh, Rainer G.

    2012-01-01

    This study examines the impact of glycine (Gly) preconditioning on ischemia reperfusion (IR)-induced pulmonary mitochondrial injury to research the previously, in pig lungs, demonstrated Gly-dependent amelioration of pulmonary IR injury. IR injury was induced in rat lungs by 30 min pulmonary hilum c

  13. The neuroprotection of Aspirin on Cerebral Ischemia-Reperfusion rats

    QiuLi-ying; YuJuan; ChenChong-hong; ZhouYu

    2004-01-01

    AIM: Aspirin (aeetylsalicylic acid, ASA as a nonsteroidal anti-inflammatory drug not only has well-established efficacy in anti-thromboxane, but also has direct neuroprotective effect. In this study, we design to investigate its neuroprotective effect on focal cerebral ischemia-reperfusion injury (CIRI rats, and its effect on ATP level from occluded brain tis-

  14. Regulation of Expression of Renal Organic Anion Transporters OAT1 and OAT3 in a Model of Ischemia/Reperfusion Injury

    Christina Preising

    2015-08-01

    Full Text Available Background: Recently, we gained evidence that impairment of rOat1 and rOat3 expression induced by ischemic acute kidney injury (AKI is mediated by COX metabolites and this suppression might be critically involved in renal damage. Methods: (i Basolateral organic anion uptake into proximal tubular cells after model ischemia and reperfusion (I/R was investigated by fluorescein uptake. The putative promoter sequences from hOAT1 (SLC22A6 and hOAT3 (SCL22A8 were cloned into a reporter plasmid, transfected into HEK cells and (ii transcriptional activity was determined after model ischemia and reperfusion as a SEAP reporter gen assay. Inhibitors or antagonists were applied with the beginning of reperfusion. Results: By using inhibitors of PKA (H89 and PLC (U73122, antagonists of E prostanoid receptor type 2 (AH6809 and type 4 (L161,982, we gained evidence that I/R induced down regulation of organic anion transport is mediated by COX1 metabolites via E prostanoid receptor type 4. The latter signaling was confirmed by application of butaprost (EP2 agonist or TCS2510 (EP4 agonist to control cells. In brief, the latter signaling was verified for the transcriptional activity in the reporter gen assay established. Therein, selective inhibitors for COX1 (SC58125 and COX2 (SC560 were also applied. Conclusion: Our data show (a that COX1 metabolites are involved in the regulation of renal organic anion transport(ers after I/R via the EP4 receptor and (b that this is due to transcriptional regulation of the respective transporters. As the promoter sequences cloned were of human origin and expressed in a human renal epithelial cell line we (c hypothesize that the regulatory mechanisms described after I/R is meaningful for humans as well.

  15. Discussion on the treatment of cerebral ischemia-reperfusion injuries following intra-arterial thrombolysis

    Objective: To investigate the therapeutic method of cerebral ischemia-reperfusion injuries occurred after arterial thrombolytic therapy for acute cerebral infarction. Methods: Thirty-five patients, encountered in authors' Department since Oct. 2005, with cerebral ischemia-reperfusion injuries, which occurred after thrombolytic therapy by using arterial perfusion of urokinase for acute cerebral infarction, were enrolled in this study. The clinical data were retrospectively analyzed. Results: After the thrombolytic therapy, completer or partial recanalization of the occluded cerebral arteries was obtained in 33 cases, while secondary cerebral hemorrhage occurred in 13 cases, of whom cerebral parenchyma bleeding was seen in 2 and hemorrhagic infarction in 11. Different degrees of cerebral edema were found in all 33 cases. Among them significant shift of the midline structures was detected in 18 (54.5%), which was manifested clinically as the worsening of disturbance of consciousness. Strict control of blood pressure, prompt adjustment of dehydration medication, strengthening the cerebral protection measures, cerebral decompression by fenestration, etc. were carried out. All the patients took a turn for the better and were out of danger with remarkable improvement of neurological functions except one patient who died from massive intracerebral hemorrhage. Conclusion: Usually, different degrees of reperfusion injuries will develop after thrombolytic therapy for cerebral arterial infarction. Strictly controlling blood pressure, promptly adjusting dehydration medication and strengthening cerebral protection are the keys to reduce the severity of cerebral reperfusion injuries. (authors)

  16. Secretory pathway Ca(2+)-ATPase isoform 1 knockdown promotes Golgi apparatus stress injury in a mouse model of focal cerebral ischemia-reperfusion: In vivo and in vitro study.

    Fan, Yongmei; Zhang, Changjie; Peng, Wenna; Li, Ting; Yin, Jing; Kong, Ying; Lan, Chunna; Li, Xiaofang; Wang, Rumi; Hu, Zhiping

    2016-07-01

    The present study was designed to investigate the potential role of secretory pathway Ca(2+)-ATPase isoform 1(SPCA1) in experimental focal cerebral ischemia-reperfusion injury. Cerebral ischemia-reperfusion was induced by transient middle cerebral artery occlusion (MCAO) for 2h s in Sprague-Dawley rats, and then the expression levels of SPAC1 mRNA and protein were determined. Results showed that SPCA1 level was transiently increased 1 day after reperfusion in peri-infarction area, while markedly increased in infarction core on 3day and 7 day after reperfusion. Then a SPCA1 lentivirus was used to achieve knockdown of SPCA1 gene: Ca(2+) transporting type 2C, member 1 (ATP2C1) gene. It has been observed that SPCA1 knockdown by lentivirus markedly increased cerebral infarction volume in vivo. Meanwhile, SPCA1 knockdown also facilitated per-oxidative production, including nitric oxide (NO) and 3-nitrotyrosine (3-NT) and decreased the expression of total superoxide dismutase (SOD) and manganese superoxide dismutase (MnSOD). Moreover, in vitro study showed that SPCA1 knockdown increased hydrogen peroxide (H2O2)-induced lactate dehydrogenase (LDH) leakage dose-dependently, and elevated caspase3 level in neuro-2a (N2a) cells. In addition, SPCA1 knockdown increased H2O2-induced production of nitric oxide and 3-NT dose-dependently, and reversed the increased activity of total SOD and MnSOD in neuro-2a cells. In conclusion, the present study indicated that SPCA1 could suppress over active Golgi apparatus (GA) stress thus attenuate cerebral ischemia-reperfusion injury. PMID:27038757

  17. Bromelain induces cardioprotection against ischemia-reperfusion injury through Akt/FOXO pathway in rat myocardium

    Juhász Béla (1978-) (kísérletes farmakológus); Thirunavukkarasu, Mahesh; PANT, RIMA; Zhan, Lijun; Penumathsa, Suresh Varma; Secor, Eric R.Jr; Srivastava, Sapna; Raychaudhuri, Utpal; Menon, Venugopal P; Otani, Hajime; Thrall, Roger S.; Maulik, Nilanjana

    2008-01-01

    Bromelain (Br), a proteolytic enzyme extracted from the stem of the pineapple, is known to possess anti-inflammatory activity and has been shown to reduce blood viscosity, prevent the aggregation of blood platelets, and improve ischemia-reperfusion (I/R) injury in a skeletal muscle model. We investigated the capacity of Br to limit myocardial injury in a global I/R model. Adult male Sprague-Dawley rats were divided into two groups: control (PBS) and Br at 10 mg/kg in PBS administered via intr...

  18. Attenuation of Brain Inflammatory Response after Focal Cerebral Ischemia/Reperfusion with Xuesaitong Injection(血塞通注射液) in Rats

    HE Wei; XU Xiao-jun

    2006-01-01

    Objective: To investigate the neuro-protective effect of Xuesaitong Injection ( 血塞通注射液 ,XST) on brain inflammatory response after transient focal cerebral ischemia/reperfusion in rats. Methods:Focal cerebral ischemia/reperfusion models of male rats were induced by transient occlusion for 2 h of middle cerebral artery (MCA) which was followed by 24 h reperfusion. XST was administered through intraperitoneal injection of 25 mg/kg or 50 mg/kg at 4 h after the onset of ischemia. After reperfusion for 24 h, the neurological function score was evaluated, the brain edema was detected with dry-wet weight method, the myeloperoxidase (MPO) activity and the expression of intercellular adhesion molecule-1 (ICAM-1) of ischemic cerebral cortex and caudate putamen was determined by spectrophotometry and immunohistochemistry respectively. Results: XST not only lowered neurological function score at the dose of 50 mg/kg, but reduced brain edema and inhibited MPO activity and ICAM-1 expression as compared with the ischemia/reperfusion model group ( P<0.01 ). Conclusion: XST has a definite effect on inhibiting the expression of ICAM-1 and neutrophil infiltration in rats with cerebral ischemia/reperfusion when treatment started at 4 h after ischemia onset, and also attenuates inflammation in the infarcted cerebral area.neutrophil, intercellular adhesion molecule-1 of ischemic cerebral cortex and caudate putamen was determined by spectrophotometry and immunohistochemistry respectively. Results: XST not only lowered neurological function score at the dose of 50 mg/kg, but reduced brain edema and inhibited MPO activity and ICAM-1 expression as compared with the ischemia/reperfusion model group ( P<0.01 ). Conclusion: XST has a definite effect on inhibiting the expression of ICAM-1 and neutrophil infiltration in rats with cerebral ischemia/reperfusion when treatment started at 4 h after ischemia onset, and also attenuates inflammation in the infarcted cerebral area.

  19. Mouse model of ischemic acute kidney injury: technical notes and tricks

    Wei, Qingqing; Zheng DONG

    2012-01-01

    Renal ischemia-reperfusion leads to acute kidney injury (AKI), a major kidney disease associated with an increasing prevalence and high mortality rates. A variety of experimental models, both in vitro and in vivo, have been used to study the pathogenic mechanisms of ischemic AKI and to test renoprotective strategies. Among them, the mouse model of renal clamping is popular, mainly due to the availability of transgenic models and the relatively small animal size for drug testing. However, the ...

  20. Low molecular weight fucoidan against renal ischemia-reperfusion injury via inhibition of the MAPK signaling pathway.

    Jihui Chen

    Full Text Available BACKGROUND: Ischemia reperfusion injury (IRI is a leading cause of acute kidney injury (AKI in both native and transplanted kidneys. The objective of the present study was to evaluate whether low-molecular-weight fucoidan (LMWF could attenuate renal IRI in an animal model and in vitro cell models and study the mechanisms in which LMWF protected from IRI. METHODOLOGY/PRINCIPAL FINDINGS: Male mice were subjected to right renal ischemia for 30 min and reperfusion for 24 h, or to a sham operation with left kidney removed. Kidneys undergone IR showed characteristic morphological changes, such as tubular dilatation, and brush border loss. However, LMWF significantly corrected the renal dysfunction and the abnormal levels of MPO, MDA and SOD induced by IR. LMWF also inhibited the activation of MAPK pathways, which consequently resulted in a significant decrease in the release of cytochrome c from mitochondria, ratios of Bax/Bcl-2 and cleaved caspase-3/caspase-3, and phosphorylation of p53. LMWF alleviated hypoxia-reoxygenation or CoCl(2 induced cell viability loss and ΔΨm dissipation in HK2 renal tubular epithelial cells, which indicates LMWF may result in an inhibition of the apoptosis pathway through reducing activity of MAPK pathways in a dose-dependent manner. CONCLUSIONS/SIGNIFICANCE: Our in vivo and in vitro studies show that LMWF ameliorates acute renal IRI via inhibiting MAPK signaling pathways. The data provide evidence that LMWF may serve as a potential therapeutic agent for acute renal IRI.

  1. Beneficial effects of n-acetyl cysteine on pancreas and kidney following experimental pancreatic ischemia-reperfusion in rats

    Roberto Ferreira Meirelles Junior

    2010-01-01

    Full Text Available OBJECTIVE: To evaluate the protective effects of N-acetyl cysteine on the pancreas and kidney after pancreatic ischemia reperfusion injury in a rat model. METHODS AND MATERIALS: Pancreatic ischemia reperfusion was performed in Wistar rats for 1 hour. Revascularization was achieved followed by 4 h of reperfusion. A total of 24 animals were divided into four groups: Group 1: sham; Group 2: pancreatic ischemia reperfusion without treatment; Group 3: pancreatic ischemia reperfusion plus N-acetyl cysteine intravenously; and Group 4: pancreatic ischemia reperfusion plus N-acetyl cysteine per os. Blood and tissue samples were collected after reperfusion. RESULTS: There were significant differences in amylase levels between Group 1 (6.11±0.55 and Group 2 (10.30±0.50 [p=0.0002] as well as between Group 2 (10.30±0.50 and Group 4 (7.82±0.38 [p=0.003]; creatinine levels between Group 1 (0.52 ± 0.07 and Group 2 (0.77±0.18 [p=0.035] as well as between Group 2 (0.77±0.18 and Group 3 (0.48±0.13 [p=0.012]; and pancreatic tissue thiobarbituric acid reactive substance levels between Group 1 (1.27±0.96 and Group 2 (2.60±3.01 [p=0.026] as well as between Group 2 (2.60±3.01 and Group 4 (0.52±0.56 [p=0.002]. A decrease in pancreatic tissue GST-α3 gene expression was observed in Group 2 in comparison to Group 1 (p =0.006, and an increase was observed in Groups 3 and 4 when compared to Group 2 (p= 0.025 and p=0.010, respectively. CONCLUSION: This study provides evidence that N-acetyl cysteine has a beneficial effect on pancreatic ischemia reperfusion injury and renal function in a rat model.

  2. Efeito renoprotetor da estatina: modelo animal de isquemia-reperfusão Renoprotective effect of statin: a ischemia-reperfusion animal model

    Claudia Akemi Shibuya Teshima

    2010-09-01

    Full Text Available OBJETIVO: A lesão renal aguda isquêmica, de causa multifatorial, apresenta morbidade e mortalidade alarmantes. A estatina, inibidor de HMG-CoA redutase, tem demonstrado papel renoprotetor, com componente antioxidante, antiinflamatório e vascular. A atividade de heme oxigenase-1 pode ser mediadora desses efeitos pleitrópicos da estatina sobre o rim, ou seja, independente da ação de redução de lipídio. Esse estudo visou avaliar se o efeito renoprotetor da estatina pode ter mecanismo heme de proteção em ratos. MÉTODOS: O modelo isquêmico foi obtido por meio do clampeamento dos pedículos renais bilaterais por 30 minutos, seguido de reperfusão. Foram utilizados ratos Wistar, machos, pesando entre 250-300g, distribuídos nos seguintes grupos: SHAM (controle, sem clampeamento renal; Isquemia; Iquemia+Estatina (sinvastatina 0,5 mg/kg, via oral por 3 dias; Isquemia+Hemin (indutor de HO-1, 1 mg/100g, intraperitoneal 24h antes da cirurgia; Isquemia+SnPP (inibidor de HO-1, 2μmol/kg intraperitoneal 24h antes da cirurgia; Isquemia+Estatina+Hemin e Isquemia+Estatina+SnPP. Foram avaliados a função renal (clearance de creatinina, Jaffé, osmolalidade urinária, peróxidos urinários e a imunohistoquímica para ED-1. RESULTADOS: Os resultados mostraram que a estatina melhorou a função renal, a osmolalidade urinária, reduziu a excreção de peróxidos urinários e a infiltração de macrófagos em rins de animais submetidos à isquemia renal. O indutor da heme oxigenase-1 e a sua associação com sinvastatina reproduziram o padrão de melhora determinado pela sinvastatina. CONCLUSÃO: O estudo confirmou o efeito renoprotetor da estatina, com ação antioxidante e antiinflamatória, e sugere que esse efeito tenha interface com o sistema heme de proteção renal.OBJECTIVE: Ischemic acute kidney injury (iLRA, with multifatorial cause, presents alarming morbidity and mortality. Statin, HMG-CoA inhibition reductase has shown a renoprotective effect

  3. Role of NO-cGMP signalling pathway in mediation of ischemia-reperfusion lung injury

    Egemnazarov, Bakytbek

    2008-01-01

    Ischemia reperfusion (I/R) lung injury is a complex pathological process, which occurs in many clinical situations. Previous studies reported equivocal results about the role of nitric oxide (NO) synthase isoforms in the mediation of the injury and their possible mechanisms of action. Therefore, the aim of our study was to evaluate the role of NO synthase isoforms and NO-cGMP signaling pathway on I/R injury of the lung in an isolated perfused organ model employing rabbits as well as wild type...

  4. Prophylactic Ozone Administration Reduces Intestinal Mucosa Injury Induced by Intestinal Ischemia-Reperfusion in the Rat

    Ozkan Onal

    2015-01-01

    Full Text Available Objectives. Intestinal ischemia-reperfusion injury is associated with mucosal damage and has a high rate of mortality. Various beneficial effects of ozone have been shown. The aim of the present study was to show the effects of ozone in ischemia reperfusion model in intestine. Material and Method. Twenty eight Wistar rats were randomized into four groups with seven rats in each group. Control group was administered serum physiologic (SF intraperitoneally (ip for five days. Ozone group was administered 1 mg/kg ozone ip for five days. Ischemia Reperfusion (IR group underwent superior mesenteric artery occlusion for one hour and then reperfusion for two hours. Ozone + IR group was administered 1 mg/kg ozone ip for five days and at sixth day IR model was applied. Rats were anesthetized with ketamine∖xyzlazine and their intracardiac blood was drawn completely and they were sacrificed. Intestinal tissue samples were examined under light microscope. Levels of superoxide dismutase (SOD, catalase (CAT, glutathioneperoxidase (GSH-Px, malondyaldehide (MDA, and protein carbonyl (PCO were analyzed in tissue samples. Total oxidant status (TOS, and total antioxidant capacity (TAC were analyzed in blood samples. Data were evaluated statistically by Kruskal Wallis test. Results. In the ozone administered group, degree of intestinal injury was not different from the control group. IR caused an increase in intestinal injury score. The intestinal epithelium maintained its integrity and decrease in intestinal injury score was detected in Ozone + IR group. SOD, GSH-Px, and CAT values were high in ozone group and low in IR. TOS parameter was highest in the IR group and the TAC parameter was highest in the ozone group and lowest in the IR group. Conclusion. In the present study, IR model caused an increase in intestinal injury.In the present study, ozone administration had an effect improving IR associated tissue injury. In the present study, ozone therapy

  5. Prophylactic Ozone Administration Reduces Intestinal Mucosa Injury Induced by Intestinal Ischemia-Reperfusion in the Rat

    Onal, Ozkan; Yetisir, Fahri; Sarer, A. Ebru Salman; Zeybek, N. Dilara; Onal, C. Oztug; Yurekli, Banu; Celik, H. Tugrul; Sirma, Ayse; Kılıc, Mehmet

    2015-01-01

    Objectives. Intestinal ischemia-reperfusion injury is associated with mucosal damage and has a high rate of mortality. Various beneficial effects of ozone have been shown. The aim of the present study was to show the effects of ozone in ischemia reperfusion model in intestine. Material and Method. Twenty eight Wistar rats were randomized into four groups with seven rats in each group. Control group was administered serum physiologic (SF) intraperitoneally (ip) for five days. Ozone group was administered 1 mg/kg ozone ip for five days. Ischemia Reperfusion (IR) group underwent superior mesenteric artery occlusion for one hour and then reperfusion for two hours. Ozone + IR group was administered 1 mg/kg ozone ip for five days and at sixth day IR model was applied. Rats were anesthetized with ketamine∖xyzlazine and their intracardiac blood was drawn completely and they were sacrificed. Intestinal tissue samples were examined under light microscope. Levels of superoxide dismutase (SOD), catalase (CAT), glutathioneperoxidase (GSH-Px), malondyaldehide (MDA), and protein carbonyl (PCO) were analyzed in tissue samples. Total oxidant status (TOS), and total antioxidant capacity (TAC) were analyzed in blood samples. Data were evaluated statistically by Kruskal Wallis test. Results. In the ozone administered group, degree of intestinal injury was not different from the control group. IR caused an increase in intestinal injury score. The intestinal epithelium maintained its integrity and decrease in intestinal injury score was detected in Ozone + IR group. SOD, GSH-Px, and CAT values were high in ozone group and low in IR. TOS parameter was highest in the IR group and the TAC parameter was highest in the ozone group and lowest in the IR group. Conclusion. In the present study, IR model caused an increase in intestinal injury.In the present study, ozone administration had an effect improving IR associated tissue injury. In the present study, ozone therapy prevented

  6. Local delivery of soluble TNF-alpha receptor 1 gene reduces infarct size following ischemia/reperfusion injury in rats.

    Sugano, Masahiro; Hata, Tomoji; Tsuchida, Keiko; Suematsu, Nobuhiro; Oyama, Jun-Ichi; Satoh, Shinji; Makino, Naoki

    2004-11-01

    Apoptosis in the myocardium is linked to ischemia/reperfusion injury, and TNF-alpha induces apoptosis in cardiomyocytes. A significant amount of TNF-alpha is detected after ischemia and reperfusion. Soluble TNF-alpha receptor 1 (sTNFR1) is an extracellular domain of TNF-alpha receptor 1 and is an antagonist to TNF-alpha. In the present study, we examined the effects of sTNFR1 on infarct size in acute myocardial infarction (AMI) following ischemia/reperfusion. Male Wistar rats were subjected to left coronary artery (LCA) ligation. After 30 min of LCA occlusion, the temporary ligature on the LCA was released and blood flow was restored. Immediately after reperfusion, a total of 200 microg of sTNFR1 or LacZ plasmid was injected into three different sites of the left ventricular wall. At 6 h, 1 and 2 days after reperfusion, the TNF-alpha bioactivity in the myocardium was significantly higher in rats receiving LacZ plasmid than in sham-operated rats, whereas sTNFR1 plasmid significantly suppressed the increase in the TNF-alpha bioactivity. The sTNFR1 plasmid significantly reduced DNA fragmentation and caspase activity compared to the LacZ plasmid. Finally, the sTNFR1 expression-plasmid treatment significantly reduced the area of myocardial infarction at 2 days after ischemia/reperfusion compared to LacZ plasmid. In conclusion, the TNF-alpha bioactivity in the heart increased from the early stage of ischemia/reperfusion, and this increase was thought to contribute in part to the increased area of myocardial infarction. Suppression of TNF-alpha bioactivity with the sTNFR1 plasmid reduced the infarct size in AMI following ischemia and reperfusion. PMID:15646033

  7. Caffeine Mitigates Lung Inflammation Induced by Ischemia-Reperfusion of Lower Limbs in Rats

    Wei-Chi Chou

    2015-01-01

    Full Text Available Reperfusion of ischemic limbs can induce inflammation and subsequently cause acute lung injury. Caffeine, a widely used psychostimulant, possesses potent anti-inflammatory capacity. We elucidated whether caffeine can mitigate lung inflammation caused by ischemia-reperfusion (IR of the lower limbs. Adult male Sprague-Dawley rats were randomly allocated to receive IR, IR plus caffeine (IR + Caf group, sham-operation (Sham, or sham plus caffeine (n=12 in each group. To induce IR, lower limbs were bilaterally tied by rubber bands high around each thigh for 3 hours followed by reperfusion for 3 hours. Caffeine (50 mg/kg, intraperitoneal injection was administered immediately after reperfusion. Our histological assay data revealed characteristics of severe lung inflammation in the IR group and mild to moderate characteristic of lung inflammation in the IR + Caf group. Total cells number and protein concentration in bronchoalveolar lavage fluid of the IR group were significantly higher than those of the IR + Caf group (P<0.001 and P=0.008, resp.. Similarly, pulmonary concentrations of inflammatory mediators (tumor necrosis factor-α, interleukin-1β, and macrophage inflammatory protein-2 and pulmonary myeloperoxidase activity of the IR group were significantly higher than those of the IR + Caf group (all P<0.05. These data clearly demonstrate that caffeine could mitigate lung inflammation induced by ischemia-reperfusion of the lower limbs.

  8. Radix Ilicis Pubescentis total flavonoids combined with mobilization of bone marrow stem cells to protect cerebral ischemia/reperfusion injury

    Ming-san Miao; Lin Guo; Rui-qi Li; Xiao Ma

    2016-01-01

    Previous studies have shown that Radix Ilicis Pubescentis total flavonoids have a neuroprotective effect, but it remains unclear whether Radix Ilicis Pubescentis total flavonoids have a synergistic effect with the recombinant human granulocyte colony stimulating factor-mobilized bone marrow stem cell transplantation on cerebral ischemia/reperfusion injury. Rat ischemia models were administered 0.3, 0.15 and 0.075 g/kg Radix Ilicis Pubescentis total flavonoids from 3 days before modeling to 2 ...

  9. Meta-analysis of molecular response of kidney to ischemia reperfusion injury for the identification of new candidate genes

    Grigoryev, Dmitry N.; Cheranova, Dilyara I; Heruth, Daniel P.; Huang, Peixin; Zhang, Li Q.; Rabb, Hamid; Ye, Shui Q.

    2013-01-01

    Background Accumulated to-date microarray data on ischemia reperfusion injury (IRI) of kidney represent a powerful source for identifying new targets and mechanisms of kidney IRI. In this study, we conducted a meta-analysis of gene expression profiles of kidney IRI in human, pig, rat, and mouse models, using a new scoring method to correct for the bias of overrepresented species. The gene expression profiles were obtained from the public repositories for 24 different models. After filtering a...

  10. Lung Ischemia-Reperfusion is a Sterile Inflammatory Process Influenced by Commensal Microbiota in Mice.

    Prakash, Arun; Sundar, Shirin V; Zhu, Ying-Gang; Tran, Alphonso; Lee, Jae-Woo; Lowell, Clifford; Hellman, Judith

    2015-09-01

    Lung ischemia-reperfusion (IR) complicates numerous clinical processes, such as cardiac arrest, transplantation, and major trauma. These conditions generate sterile inflammation, which can cause or worsen acute lung injury. We previously reported that lung and systemic inflammation in a mouse model of ventilated lung IR depends on Toll-like receptor 4 (TLR-4) signaling and the presence of alveolar macrophages. Here, we tested the hypothesis that the intestinal microbiome has a role in influencing the inflammatory response to lung IR. Lung IR was created in intubated mechanically ventilated mice via reversible left pulmonary artery occlusion followed by reperfusion. Inflammatory markers and histology were tracked during varying periods of reperfusion (from 1 to 24 h). Separate groups of mice were given intestinally localized antibiotics for 8 to 10 weeks and then were subjected to left lung IR and analysis of lungs and plasma for markers of inflammation. Alveolar macrophages from antibiotic-treated or control mice were tested ex vivo for inflammatory responses to bacterial TLR agonists, namely, lipopolysaccharide and Pam3Cys. We found that inflammation generated by left lung IR was rapid in onset and dissipated within 12 to 24 h. Treatment of mice with intestinally localized antibiotics was associated with a marked attenuation of circulating and lung inflammatory markers as well as reduced histologic evidence of infiltrating cells and edema in the lung after IR. Alveolar macrophages from antibiotic-treated mice produced less cytokines ex vivo when stimulated with TLR agonists as compared with those from control mice. Our data indicate that the inflammatory response induced by nonhypoxic lung IR is transient and is strongly influenced by intestinal microbiota. Furthermore, these data suggest that the intestinal microbiome could potentially be manipulated to attenuate the post-IR pulmonary inflammatory response. PMID:26196836