WorldWideScience

Sample records for actuators

  1. Modular droplet actuator drive

    Pollack, Michael G. (Inventor); Paik, Philip (Inventor)

    2011-01-01

    A droplet actuator drive including a detection apparatus for sensing a property of a droplet on a droplet actuator; circuitry for controlling the detection apparatus electronically coupled to the detection apparatus; a droplet actuator cartridge connector arranged so that when a droplet actuator cartridge electronically is coupled thereto: the droplet actuator cartridge is aligned with the detection apparatus; and the detection apparatus can sense the property of the droplet on a droplet actuator; circuitry for controlling a droplet actuator coupled to the droplet actuator connector; and the droplet actuator circuitry may be coupled to a processor.

  2. Smart Tendon Actuated Flexible Actuator

    Md. Masum Billah; Raisuddin Khan

    2015-01-01

    We investigate the kinematic feasibility of a tendon-based flexible parallel platform actuator. Much of the research on tendon-driven Stewart platforms is devoted either to the completely restrained positioning mechanism (CRPM) or to one particular type of the incompletely restrained positioning mechanism (IRPM) where the external force is provided by the gravitational pull on the platform such as in cable-suspended Stewart platforms. An IRPM-based platform is proposed which uses the external...

  3. A Foldable Antagonistic Actuator

    Shintake, Jun; Rosset, Samuel; Schubert, Bryan Edward; Floreano, Dario; Shea, Herbert

    2015-01-01

    We report on an actuator based on dielectric elastomers that is capable of antagonistic actuation and passive folding. This actuator enables foldability in robots with simple structures. Unlike other antagonistic dielectric elastomer devices, our concept uses elastic hinges to allow the folding of the structure, which also provides an additional design parameter. To validate the actuator concept through a specific application test, a foldable elevon actuator with outline size of 70 mm × 130 m...

  4. Smart Tendon Actuated Flexible Actuator

    Md. Masum Billah

    2015-01-01

    Full Text Available We investigate the kinematic feasibility of a tendon-based flexible parallel platform actuator. Much of the research on tendon-driven Stewart platforms is devoted either to the completely restrained positioning mechanism (CRPM or to one particular type of the incompletely restrained positioning mechanism (IRPM where the external force is provided by the gravitational pull on the platform such as in cable-suspended Stewart platforms. An IRPM-based platform is proposed which uses the external force provided by a compliant member. The compliant central column allows the configuration to achieve n DOFs with n tendons. In particular, this investigation focuses on the angular deflection of the upper platform with respect to the lower platform. The application here is aimed at developing a linkable module that can be connected to one another so as to form a “snake robot” of sorts. Since locomotion takes precedence over positioning in this application, a 3-DOF Stewart platform is adopted. For an arbitrary angular displace of the end-effector, the corresponding length of each tendon can be determined through inverse kinematics. Mathematical singularities are investigated using the traditional analytical method of defining the Jacobian.

  5. Extended DNA Tile Actuators

    Kristiansen, Martin; Kryger, Mille; Zhang, Zhao;

    2012-01-01

    A dynamic linear DNA tile actuator is expanded to three new structures of higher complexity. The original DNA actuator was constructed from a central roller strand which hybridizes with two piston strands by forming two half-crossover junctions. A linear expansion of the actuator is obtained...

  6. MEMS fluidic actuator

    Kholwadwala, Deepesh K.; Johnston, Gabriel A.; Rohrer, Brandon R.; Galambos, Paul C.; Okandan, Murat

    2007-07-24

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  7. Magnetic actuators and sensors

    Brauer, John R

    2014-01-01

    An accessible, comprehensive guide on magnetic actuators and sensors, this fully updated second edition of Magnetic Actuators and Sensors includes the latest advances, numerous worked calculations, illustrations, and real-life applications. Covering magnetics, actuators, sensors, and systems, with updates of new technologies and techniques, this exemplary learning tool emphasizes computer-aided design techniques, especially magnetic finite element analysis, commonly used by today's engineers. Detailed calculations, numerous illustrations, and discussions of discrepancies make this text an inva

  8. High Resolution Actuators

    Mathieu Grossard

    2016-06-01

    Full Text Available Driven by increasing societal, economic, and technological pressures, high-resolution actuators must achieve ever increasing accuracy requirements and functional integration into the system.[...

  9. Sensors and actuators, Twente

    Bergveld, P.

    1989-01-01

    This paper describes the organization and the research programme of the Sensor and Actuator (S&A) Research Unit of the University of Twente, Enschede, the Netherlands. It includes short descriptions of all present projects concerning: micromachined mechanical sensors and actuators, optical sensors,

  10. An electrochemical micro actuator

    Hamberg, M.W.; Neagu, C.R.; Gardeniers, J.G.E.; IJntema, D.J.; Elwenspoek, M.C.

    1995-01-01

    In this paper an investigation of the feasibility of a new electrochemical micro actuator is presented. The actuator is fabricated using silicon micro-machining techniques. A gas pressure is generated by electrolysis of an aqueous electrolyte solution. The build up pressure is used to change the def

  11. Conjugated Polymers as Actuators: Modes of Actuation

    Skaarup, Steen

    The physical and chemical properties of conjugated polymers often depend very strongly on the degree of doping with anions or cations. The movement of ions in and out of the polymer matrix as it is redox cycled is also accompanied by mechanical changes. Both the volume and the stiffness can exhibit...... significant differences between the oxidized and reduced states. These effects form the basis of the use of conjugated polymers as actuators (or “artificial muscles”) controllable by a small (1-10 V) voltage. Three basic modes of actuation (bending, linear extension and stiffness change) have been proposed...

  12. Conjugated polymers as actuators: modes of actuation

    Skaarup, Steen

    The physical and chemical properties of conjugated polymers often depend very strongly on the degree of doping with anions or cations. The movement of ions in and out of the polymer matrix as it is redox cycled is also accompanied by mechanical changes. Both the volume and the stiffness can exhibit...... significant differences between the oxidized and reduced states. These effects form the basis of the use of conjugated polymers as actuators (or “artificial muscles”) controllable by a small (1-10 V) voltage. Three basic modes of actuation (bending, linear extension and stiffness change) have been proposed...

  13. Muscle Motion Solenoid Actuator

    Obata, Shuji

    It is one of our dreams to mechanically recover the lost body for damaged humans. Realistic humanoid robots composed of such machines require muscle motion actuators controlled by all pulling actions. Particularly, antagonistic pairs of bi-articular muscles are very important in animal's motions. A system of actuators is proposed using the electromagnetic force of the solenoids with the abilities of the stroke length over 10 cm and the strength about 20 N, which are needed to move the real human arm. The devised actuators are based on developments of recent modern electro-magnetic materials, where old time materials can not give such possibility. Composite actuators are controlled by a high ability computer and software making genuine motions.

  14. Magnetically Actuated Seal

    Pinera, Alex

    2013-01-01

    This invention is a magnetically actuated seal in which either a single electromagnet, or multiple electromagnets, are used to control the seal's position. This system can either be an open/ close type of system or an actively controlled system.

  15. Magnetically Actuated Seal Project

    National Aeronautics and Space Administration — FTT proposes development of a magnetically actuated dynamic seal. Dynamic seals are used throughout the turbopump in high-performance, pump-fed, liquid rocket...

  16. Automated stopcock actuator

    Vandehey, N. T.; O'Neil, J.P.

    2015-01-01

    Introduction We have developed a low-cost stopcock valve actuator for radiochemistry automation built using a stepper motor and an Arduino, an open-source single-board microcontroller. The con-troller hardware can be programmed to run by serial communication or via two 5–24 V digital lines for simple integration into any automation control system. This valve actuator allows for automated use of a single, disposable stopcock, providing a number of advantages over stopcock manifold systems ...

  17. Laser Initiated Actuator study

    Watson, B.

    1991-06-27

    The program task was to design and study a laser initiated actuator. The design of the actuator is described, it being comprised of the fiber and body subassemblies. The energy source for all experiments was a Spectra Diode 2200-H2 laser diode. The diode is directly coupled to a 100 micron core, 0.3 numerical aperture fiber optic terminated with an SMA connector. The successful testing results are described and recommendations are made.

  18. Combustion powered linear actuator

    Fischer, Gary J.

    2007-09-04

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  19. Dielectric Actuation of Polymers

    Niu, Xiaofan

    2013-01-01

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy den...

  20. Electromechanical actuation of buckypaper actuator: Material properties and performance relationships

    Carbon nanotubes can be assembled into macroscopic thin film materials called buckypapers. To incorporate buckypaper actuators into engineering systems, it is of high importance to understand their material property-actuation performance relationships in order to model and predict the behavior of these actuators. The electromechanical actuation of macroscopic buckypaper structures and their actuators, including single and multi-walled carbon nanotube buckypapers and aligned single-walled nanotube buckypapers, were analyzed and compared. From the experimental evidence, this Letter discusses the effects of the fundamental material properties, including Young modulus and electrical double layer properties, on actuation performance of the resultant actuators. -- Highlights: ► In this study we identified the figure of merit of the electromechanical conversion. ► Different type of buckypaper was realized and characterized for actuation properties. ► The results demonstrated the potential of Buckypapers/Nafion for actuation

  1. Digital Actuator Technology

    Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst

    2014-09-01

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator

  2. Hydraulic involute cam actuator

    Love, Lonnie J.; Lind, Randall F.

    2011-11-01

    Mechanical joints are provided in which the angle between a first coupled member and a second coupled member may be varied by mechanical actuators. In some embodiments the angle may be varied around a pivot axis in one plane and in some embodiments the angle may be varied around two pivot axes in two orthogonal planes. The joints typically utilize a cam assembly having two lobes with an involute surface. Actuators are configured to push against the lobes to vary the rotation angle between the first and second coupled member.

  3. The Actuated Guitar

    Larsen, Jeppe Veirum; Overholt, Daniel; Moeslund, Thomas B.

    2013-01-01

    Playing a guitar is normally only for people with fully functional hands. In this work we investigate alternative interaction concepts to enable or re-enable people with non-functional right hands or arms to play a guitar via actuated strumming. The functionality and complexity of right hand...... interaction with the guitar is immense. We therefore divided the right hand techniques into three main areas: Strumming, string picking / skipping, and string muting. This paper explores the first stage, strum- ming. We have developed an exploratory platform called the Actuated Guitar that utilizes a normal...

  4. Low-Shock Pyrotechnic Actuator

    Lucy, M. H.

    1984-01-01

    Miniature 1-ampere, 1-watt pyrotechnic actuator enclosed in flexible metal bellows. Bellows confines outgassing products, and pyrotechnic shock reduction achieved by action of bellows, gas cushion within device, and minimum use of pyrotechnic material. Actuator inexpensive, compact, and lightweight.

  5. Applications of dielectric elastomer actuators

    Pelrine, Ron; Sommer-Larsen, Peter; Kornbluh, Roy D.; Heydt, Richard; Kofod, Guggi; Pei, Qibing; Gravesen, Peter

    2001-07-01

    Dielectric elastomer actuators, based on the field-induced deformation of elastomeric polymers with compliant electrodes, can produce a large strain response, combined with a fast response time and high electromechanical efficiency. This unique performance, combined with other factors such as low cost, suggests many potential applications, a wide range of which are under investigation. Applications that effectively exploit the properties of dielectric elastomers include artificial muscle actuators for robots; low-cost, lightweight linear actuators; solid- state optical devices; diaphragm actuators for pumps and smart skins; acoustic actuators; and rotary motors. Issues that may ultimately determine the success or failure of the actuation technology for specific applications include the durability of the actuator, the performance of the actuator under load, operating voltage and power requirements, and electronic driving circuitry, to name a few.

  6. Control of Adjustable Compliant Actuators

    Berno J.E. Misgeld; Kurt Gerlach-Hahn; Daniel Rüschen; Anake Pomprapa; Steffen Leonhardt

    2014-01-01

    Adjustable compliance or variable stiffness actuators comprise an additional element to elastically decouple the actuator from the load and are increasingly applied to human-centered robotic systems. The advantages of such actuators are of paramount importance in rehabilitation robotics, where requirements demand safe interaction between the therapy system and the patient. Compliant actuator systems enable the minimization of large contact forces arising, for example, from muscular spasticity...

  7. Nonmagnetic driver for piezoelectric actuators

    Ekhtiari, Marzieh

    2014-01-01

    Piezoelectric actuator drive aims to enable reliable motor performance in strong magnetic fields for magnetic res- onance imaging and computed tomography treatment tables. There are technical limitations in operation of these motors and drive systems related to magnetic interference. Piezoelectric...... actuators. Therefore, piezoelectric transformer-based power converters are used for driving piezoelectric actuator drive motor in the presence of high electromagnetic field....

  8. Shape Memory Alloy Actuator

    Baumbick, Robert J. (Inventor)

    2002-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  9. A Magnetic Bead Actuator

    Derks, R.; Prins, M.W.J.; Wimberger-Friedl, R.

    2006-01-01

    Actuation principles of superparamagnetic beads applicable on biosensing (at single beads and chain orderning) are studied in this report. This research can be used to develop new techniques that are able to accelerate bio-assays. An experimental setup containing a sub-microliter fluid volume surrou

  10. Thermally Actuated Hydraulic Pumps

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  11. Dielectric Actuation of Polymers

    Niu, Xiaofan

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP

  12. Thermally actuated linkage arrangement

    A reusable thermally actuated linkage arrangement includes a first link member having a longitudinal bore therein adapted to receive at least a portion of a second link member therein, the first and second members being sized to effect an interference fit preventing relative movement there-between at a temperature below a predetermined temperature. The link members have different coefficients of thermal expansion so that when the linkage is selectively heated by heating element to a temperature above the predetermined temperature, relative longitudinal and/or rotational movement between the first and second link members is enabled. Two embodiments of a thermally activated linkage are disclosed which find particular application in actuators for a grapple head positioning arm in a nuclear reactor fuel handling mechanism to facilitate back-up safety retraction of the grapple head independently from the primary fuel handling mechanism drive system. (author)

  13. Automatic rotary valve actuator

    This report describes the design, construction, and operation of a microcomputer-controlled valve actuator for operating test valves requiring rotary motion of the valve stem. An AIM 65 microcomputer, using a FORTH language program, controls an air motor and air clutch mounted within an oven to accomplish testing at elevated temperatures. The valve actuator closes the test valve until a preset torque is reached and then opens the valve to its initial starting point. The number of cycles and extremes of rotation are tallied and printed as the test progresses. Provisions are made to accept remote signals to stop the test and to indicate to a remote device when the test has been stopped

  14. Dual drive series actuator

    Janko, Balazs

    2015-01-01

    Industrial robotic manipulators can be found in most factories today. Their tasks are accomplished through actively moving, placing and assembling parts. This movement is facilitated by actuators that apply a torque in response to a command signal. The presence of friction and possibly backlash have instigated the development of sophisticated compensation and control methods in order to achieve the desired performance may that be accurate motion tracking, fast movement or in fa...

  15. Valve actuator motor degradation

    Valve actuator motor degradation and failure has been a significant, but little studied, problem in the nuclear industry. This study provides a discussion of the primary failure mode --thermal degradation-- and reviews the basis for the solution to thermal degradation -- thermal protection. The study also provides reviews of various industry data bases, discusses effects of other failure modes such as corrosion, and provides a review of other considerations the user should entertain when assessing thermal protection

  16. Stepper Motor Actuated Microvalve

    Fazal, Imran; Louwerse, Marcus; Jansen, Henri; Elwenspoek, Miko

    2006-01-01

    We present the design, fabrication and characterization of a novel microvalve realized by combining micro and fine machining techniques. The design is for high flow rates at high pressure difference between inlet and outlet, burst pressure of up to 15 bars, there is no power consumption required for the valve to maintain its position during operation in any intermediate state and the process gas does not interact with the actuation mechanism. The microvalve was experimentally characterized wi...

  17. Metal hydride actuation device

    A self-recocking actuation device is disclosed. One possible use for it is in conjunction with a pneumatic fire protection system. This invention employs the process known as occlusion to store large amounts of gas in a small volume. Metal hydrides in a chamber are used to store hydrogen in the disclosed preferred embodiment. Upon the application of heat-from a heat source like a resistance heater-the charged metal hydride releases its hydrogen (H2) in a chamber having only one exit opening which empties into a sealed bellows. This bellows contacts a piston located in another chamber wherein a biased resetting spring is provided to normally maintain the piston in contact with the bellows. As the pressure from the H2 gas builds up, it overcomes the biased spring to move it and the piston along with an associated pin or other actuator. If used to actuate a pneumatic fire protection system, the pin or actuator at the downward side of its stroke in turn, may puncture a shearable diaphragm or in some other way releases the contents of a container containing a second gas, like nitrogen (N2), which is then released from a second exit port in a different chamber to charge the fire protection system. Recocking of the piston begins as the heating of the metal hydride ceases. As cooling takes place the hydrogen is absorbed to reenter the hydride to decrease the gas pressure supplied. The piston's biased resetting spring then recocks the piston to its original position

  18. Laser Actuated Presentation System

    Chowdhary, Atul; Agrawal, Vivek; Karmakar, Subhajit; Sarkar, Sandip

    2009-01-01

    We present here a pattern sensitive PowerPoint presentation scheme. The presentation is actuated by simple patterns drawn on the presentation screen by a laser pointer. A specific pattern corresponds to a particular command required to operate the presentation. Laser spot on the screen is captured by a RGB webcam with a red filter mounted, and its location is identified at the blue layer of each captured frame by estimating the mean position of the pixels whose intensity is above a given thre...

  19. Laser Actuated Presentation System

    Chowdhary, Atul; Karmakar, Subhajit; Sarkar, Sandip

    2009-01-01

    We present here a pattern sensitive PowerPoint presentation scheme. The presentation is actuated by simple patterns drawn on the presentation screen by a laser pointer. A specific pattern corresponds to a particular command required to operate the presentation. Laser spot on the screen is captured by a RGB webcam with a red filter mounted, and its location is identified at the blue layer of each captured frame by estimating the mean position of the pixels whose intensity is above a given threshold value. Measured Reliability, Accuracy and Latency of our system are 90%, 10 pixels (in the worst case) and 38 ms respectively.

  20. Lead screw linear actuator

    Perkins, Gerald S. (Inventor)

    1980-01-01

    A linear actuator which can apply high forces is described, which includes a reciprocating rod having a threaded portion engaged by a nut that is directly coupled to the rotor of an electric motor. The nut is connected to the rotor in a manner that minimizes loading on the rotor, by the use of a coupling that transmits torque to the nut but permits it to shift axially and radially with respect to the rotor. The nut has a threaded hydrostatic bearing for engaging the threaded rod portion, with an oilcarrying groove in the nut being interrupted.

  1. Piezoelectric actuated gimbal

    Tschaggeny, Charles W.; Jones, Warren F.; Bamberg, Eberhard

    2011-09-13

    A gimbal is described and which includes a fixed base member defining an axis of rotation; a second member concentrically oriented relative to the axis of rotation; a linear actuator oriented in immediate, adjoining force transmitting relation relative to the base member or to the second member, and which applies force along a linear axis which is tangential to the axis of rotation so as to cause the second member to rotate coaxially relative to the fixed base member; and an object of interest mounted to the second member such that the object of interest is selectively moved relative to the base member about the axis of rotation.

  2. Actuator technology and market outlook: where does the actuator move

    Aleksanin Sergei Andreevich

    2013-11-01

    There are made conclusions about the "migration" of demand from hydraulic and pneumatic solutions to electromechanical actuators in the aerospace and manufacturing industries. Identify advantages of electromechanics over more traditional actuators in terms of energy efficiency and reliability. Also identify the most promising areas of the drive technological development.

  3. Electromagnetic actuation in MEMS switches

    Oliveira Hansen, Roana Melina de; Mátéfi-Tempfli, Mária; Chemnitz, Steffen;

    . Electromagnetic actuation is a very promising approach to operate such MEMS and Power MEMS devices, due to the long range, reproducible and strong forces generated by this method, among other advantages. However, the use of electromagnetic actuation in such devices requires the use of thick magnetic films, which...

  4. Polypyrrole Actuators for Tremor Suppression

    Skaarup, Steen; Mogensen, Naja; Bay, Lasse;

    2003-01-01

    exemplify 'soft actuator' technology that may be especially suitable for use in conjunction with human limbs. The electrochemical and mechanical properties of polypyrrole dodecyl benzene sulphonate actuator films have been studied with this application in mind. The results show that the time constants for...

  5. T-Slide Linear Actuators

    Vranish, John

    2009-01-01

    T-slide linear actuators use gear bearing differential epicyclical transmissions (GBDETs) to directly drive a linear rack, which, in turn, performs the actuation. Conventional systems use a rotary power source in conjunction with a nut and screw to provide linear motion. Non-back-drive properties of GBDETs make the new actuator more direct and simpler. Versions of this approach will serve as a long-stroke, ultra-precision, position actuator for NASA science instruments, and as a rugged, linear actuator for NASA deployment duties. The T slide can operate effectively in the presence of side forces and torques. Versions of the actuator can perform ultra-precision positioning. A basic T-slide actuator is a long-stroke, rack-and-pinion linear actuator that, typically, consists of a T-slide, several idlers, a transmission to drive the slide (powered by an electric motor) and a housing that holds the entire assembly. The actuator is driven by gear action on its top surface, and is guided and constrained by gear-bearing idlers on its other two parallel surfaces. The geometry, implemented with gear-bearing technology, is particularly effective. An electronic motor operating through a GBDET can directly drive the T slide against large loads, as a rack and pinion linear actuator, with no break and no danger of back driving. The actuator drives the slide into position and stops. The slide holes position with power off and no brake, regardless of load. With the T slide configuration, this GBDET has an entire T-gear surface on which to operate. The GB idlers coupling the other two T slide parallel surfaces to their housing counterpart surfaces provide constraints in five degrees-of-freedom and rolling friction in the direction of actuation. Multiple GB idlers provide roller bearing strength sufficient to support efficient, rolling friction movement, even in the presence of large, resisting forces. T-slide actuators can be controlled using the combination of an off

  6. Linear electrochemical gel actuators

    Goswami, Shailesh; McAdam, C. John; Hanton, Lyall R.; Moratti, Stephen C.

    2012-04-01

    By using electroactive monomers it is possible to produce gels that respond to oxidation or reduction by swelling and deswelling in the presence of solvent. By the inclusion of an appropriate biasing element such as a spring, it is possible to produce linear, reversible actuation. The process can be driven electrochemically in a standard cell, with driving voltages under +/- 1 V. For many systems, the intrinsic conductivity of the gel, leading to poor or no performance. This can be overcome by blending conductive carbon nanotubes at 1% concentration, which give reasonable conductivity without affecting mechanical performance. Extensions of up to 40% are possible, against an external pressure of 30 kPa. The process is slow, taking up to 160 minutes per cycle due to slow ionic diffusion. The electrochemical cell can be cycled many times without degradation.

  7. The Actuated Guitar

    Larsen, Jeppe Veirum; Overholt, Daniel; Moeslund, Thomas B.

    2014-01-01

    functioning hands. In this study we try to enable people with Hemiplegia to play a real electrical guitar, by modifying it in a way that allows people with Hemiplegia able to actually use the instrument. We developed a guitar platform utilizing sensors to capture the rhythmic motion of alternate fully......, thereby making it easier to adapt to individual users. To validate and test the instrument platform we collaborated with the Helena Elsass Center in Copenhagen, Denmark during their 2013 Summer Camp, to see if we actually succeeded in creating an electrical guitar that children with Hemiplegia could play....... The initial user studies showed that children with Hemiplegia were able to play the actuated guitar by producing rhythmical movement across the strings, enabling them to enter a world of music they so often see as closed....

  8. Pneumatic actuator with hydraulic control

    Everett, Hobart R., Jr.

    1992-11-01

    The present invention provides a pneumatically powered actuator having hydraulic control for both locking and controlling the velocity of an output rod without any sponginess. The invention includes a double-acting pneumatic actuator having a bore, a piston slidably engaged within the bore, and a control rod connected to the piston. The double-acting pneumatic actuator is mounted to a frame. A first double-acting hydraulic actuator having a bore, a piston slidably engaged within the bore, and a follower rod mounted to the piston is mounted to the frame such that the follower rod is fixedly connected to the control rod. The maximum translation of the piston within the bore of the first double-acting hydraulic actuator provides a volumetric displacement V1. The present invention also includes a second double-acting hydraulic actuator having a bore, a piston slidably engaged within the bore, and an output rod mounted to the piston. The maximum translation of the piston within the bore of the second double-acting hydraulic actuator provides a volumetric displacement V2, where V2=V1. A pair of fluid ports in each of the first and second double-acting hydraulic cylinders are operably connected by fluid conduits, one of which includes a valve circuit which may be used to control the velocity of the output rod or to lock the output rod in a static position by regulating the flow of hydraulic fluid between the double-acting cylinders.

  9. FLUTTER SUPPRESSION USING DISTRIBUTEDPIEZOELECTRIC ACTUATORS

    2000-01-01

    A piezoelectric actuator has the benefits of flexibility of its position, without time lag and wide bandpass characteristics. The early results of the wind tunnel flutter suppression test using the piezoeletric actuator were presented in Ref.[1]. A rigid rectangular wing model is constrained by a plunge spring and a pitch spring, and a pair of piezoelectric actuators is bonded on both sides of the plunge spring so as to carry out the active control. Refs.[2,3] reported two flutter suppression wind tunnel tests where the distributed piezoelectric actuators were used. In Ref.[2] low speed wind tunnel tests were conducted with aluminum and composite plate-like rectangular models fully covered by piezoelectric actuators. Flutter speed is increased by 11%. In Ref.[3] a composite plate-like swept back model with piezoceramic actuators bonded on the inboard surface was tested in a transonic wind tunnel and a 12% increment of flutter dynamic pressure was achieved.  In the present investigation, an aluminum plate-like rectangular model with inboard bonded piezoceramic actuators is adopted. Active flutter suppression control law has been designed. A series of analyses and ground tests and, finally, low-speed wind tunnel tests with the active control system opened and closed are conducted. Reasonable results have been obtained.

  10. Gear-Driven Turnbuckle Actuator

    Rivera, Ricky N.

    2010-01-01

    This actuator design allows the extension and contraction of turnbuckle assemblies. It can be operated manually or remotely, and is extremely compact. It is ideal for turnbuckles that are hard to reach by conventional tools. The tool assembly design solves the problem of making accurate adjustments to the variable geometry guide vanes without having to remove and reinstall the actuator system back on the engine. The actuator does this easily by adjusting the length of the turnbuckles while they are still attached to the engine.

  11. Energy-Efficient Variable Stiffness Actuators

    Visser, Ludo C.; Carloni, Raffaella; Stramigioli, Stefano

    2011-01-01

    Variable stiffness actuators are a particular class of actuators that is characterized by the property that the apparent output stiffness can be changed independent of the output position. To achieve this, variable stiffness actuators consist of a number of elastic elements and a number of actuated

  12. Novel Cryogenic Actuator Development Project

    National Aeronautics and Space Administration —  New thin film low friction coating technologies have recently been developed and matured to the point for use in this IRAD actuator work.The new novel...

  13. NEW PRECISION PIEZOELECTRIC STEP ACTUATOR

    LIU Jianfang; YANG Zhigang; FAN Zunqiang; CHENG Guangming

    2006-01-01

    A new precision piezoelectric actuator is proposed to improve its drive capabilities. The actuator is based on the piezoelectric technology. It adopts the principle of bionics and works with a new method of stator initiative anchoring/loosen and a distortion structure of double-side thin flexible hinge. It solves the problem of anchoring/loosen, frequency, journey, resolution and velocity. The experiment shows that the new linear piezoelectric actuator works with high frequency (100 Hz), high speed (502 μm/s), large travel (>10 mm), high resolution (0.05 μm) and high load (100 N). This kind of new piezoelectric actuator will be applied for large travel and high resolution driving device, optics engineering, precision positioning and some micromanipulation field.

  14. Soft Pneumatic Actuators for Rehabilitation

    Guido Belforte

    2014-05-01

    Full Text Available Pneumatic artificial muscles are pneumatic devices with practical and various applications as common actuators. They, as human muscles, work in agonistic-antagonistic way, giving a traction force only when supplied by compressed air. The state of the art of soft pneumatic actuators is here analyzed: different models of pneumatic muscles are considered and evolution lines are presented. Then, the use of Pneumatic Muscles (PAM in rehabilitation apparatus is described and the general characteristics required in different applications are considered, analyzing the use of proper soft actuators with various technical properties. Therefore, research activity carried out in the Department of Mechanical and Aerospace Engineering in the field of soft and textile actuators is presented here. In particular, pneumatic textile muscles useful for active suits design are described. These components are made of a tubular structure, with an inner layer of latex coated with a deformable outer fabric sewn along the edge. In order to increase pneumatic muscles forces and contractions Braided Pneumatic Muscles are studied. In this paper, new prototypes are presented, based on a fabric construction and various kinds of geometry. Pressure-force-deformation tests results are carried out and analyzed. These actuators are useful for rehabilitation applications. In order to reproduce the whole upper limb movements, new kind of soft actuators are studied, based on the same principle of planar membranes deformation. As an example, the bellows muscle model and worm muscle model are developed and described. In both cases, wide deformations are expected. Another issue for soft actuators is the pressure therapy. Some textile sleeve prototypes developed for massage therapy on patients suffering of lymph edema are analyzed. Different types of fabric and assembly techniques have been tested. In general, these Pressure Soft Actuators are useful for upper/lower limbs treatments

  15. Miniature Phase-Transistion Actuators

    Klintberg, Lena

    2002-01-01

    Clearly, there is a need for simple, strong actuators capable of large strokes in miniaturized systems such as valves and optical shutters. The basis for this work is the microstructure technology with processing techniques adopted from the integrated circuit industry. In many cases alternative techniques have been developed to obtain features not achievable with conventional silicon technology. Techniques to fabricate thermally activated phase transition actuators capable of large strokes, a...

  16. A Parylene Bellows Electrochemical Actuator

    Li, Po-Ying; Sheybani, Roya; Gutierrez, Christian A.; Kuo, Jonathan T. W.; Meng, Ellis

    2010-01-01

    We present the first electrochemical actuator with Parylene bellows for large-deflection operation. The bellows diaphragm was fabricated using a polyethylene-glycol-based sacrificial molding technique followed by coating in Parylene C. Bellows were mechanically characterized and integrated with a pair of interdigitated electrodes to form an electrochemical actuator that is suitable for low-power pumping of fluids. Pump performance (gas generation rate and pump efficiency) was optimized throug...

  17. Modeling and control of precision actuators

    Kiong, Tan Kok

    2013-01-01

    IntroductionGrowing Interest in Precise ActuatorsTypes of Precise ActuatorsApplications of Precise ActuatorsNonlinear Dynamics and ModelingHysteresisCreepFrictionForce RipplesIdentification and Compensation of Preisach Hysteresis in Piezoelectric ActuatorsSVD-Based Identification and Compensation of Preisach HysteresisHigh-Bandwidth Identification and Compensation of Hysteretic Dynamics in Piezoelectric ActuatorsConcluding RemarksIdentification and Compensation of Frict

  18. Control of Adjustable Compliant Actuators

    Berno J.E. Misgeld

    2014-05-01

    Full Text Available Adjustable compliance or variable stiffness actuators comprise an additional element to elastically decouple the actuator from the load and are increasingly applied to human-centered robotic systems. The advantages of such actuators are of paramount importance in rehabilitation robotics, where requirements demand safe interaction between the therapy system and the patient. Compliant actuator systems enable the minimization of large contact forces arising, for example, from muscular spasticity and have the ability to periodically store and release energy in cyclic movements. In order to overcome the loss of bandwidth introduced by the elastic element and to guarantee a higher range in force/torque generation, new actuator designs consider variable or nonlinear stiffness elements, respectively. These components cannot only be adapted to the walking speed or the patient condition, but also entail additional challenges for feedback control. This paper introduces a novel design method for an impedance-based controller that fulfills the control objectives and compares the performance and robustness to a classical cascaded control approach. The new procedure is developed using a non-standard positive-real Η2 controller design and is applied to a loop-shaping approach. Robust norm optimal controllers are designed with regard to the passivity of the actuator load-impedance transfer function and the servo control problem. Classical cascaded and positive-real Η2 controller designs are validated and compared in simulations and in a test bench using a passive elastic element of varying stiffness.

  19. Explosive actuated valve

    Byrne, Kenneth G.

    1983-01-01

    1. A device of the character described comprising the combination of a housing having an elongate bore and including a shoulder extending inwardly into said bore, a single elongate movable plunger disposed in said bore including an outwardly extending flange adjacent one end thereof overlying said shoulder, normally open conduit means having an inlet and an outlet perpendicularly piercing said housing intermediate said shoulder and said flange and including an intermediate portion intersecting and normally openly communicating with said bore at said shoulder, normally closed conduit means piercing said housing and intersecting said bore at a location spaced from said normally open conduit means, said elongate plunger including a shearing edge adjacent the other end thereof normally disposed intermediate both of said conduit means and overlying a portion of said normally closed conduit means, a deformable member carried by said plunger intermediate said flange and said shoulder and normally spaced from and overlying the intermediate portion of said normally open conduit means, and means on the housing communicating with the bore to retain an explosive actuator for moving said plunger to force the deformable member against the shoulder and extrude a portion of the deformable member out of said bore into portions of the normally open conduit means for plugging the same and to effect the opening of said normally closed conduit means by the plunger shearing edge substantially concomitantly with the plugging of the normally open conduit means.

  20. Pyrotechnic actuator: a new generation of Si integrated actuator

    Rossi, C.; Esteve, D.; Mingues, C.

    1998-06-01

    Mechanical micro actuators on silicon is playing a major role in the development of micro-systems. In this context, many structures have been performed on electrostatic, piezo electric or pneumatic actuators. However, limitations are remaining when energetic micro actuations have to be created. We propose in this paper, a new original type of actuation based on the force generated by the combustion of an explosive. It consists of a micro-machined silicon micro-heater (3 mm x 3 mm x 0.3 mm) on which a thin film of propellant (2 mm x 2 mm x 0.2 mm) is deposited. Its functioning principle is based on a hot gas emitted by the auto combustion of the propellant when its temperature reaches 300 deg C locally. In this paper, we present the results of a study (by modelling and experimental) of the ignition and combustion of a very small quantity of explosive onto a Si-micro-machined micro-heater. We conclude by presenting two examples of applications showing the promising interest of this energetic actuator: the first application is the biomedical field. The second one is today for micro-spacecraft attitude control. (authors) 9 refs.

  1. Reliable Actuation in Sensor Networks

    Sean Rooney

    2007-12-01

    Full Text Available We present a protocol that uses a publish/subscribe approach to perform reliable but efficient actuation over a sensor network whose topology may change. Actuation on a given group of devices in the sensor network is achieved through a publish operation on the topic the devices in that group are subscribed to. The publication message contains the necessary data to successfully perform the actuation. We make the case for our design showing that: a suitable data distribution techniques and cross-layer optimizations can reduce transmissions within the messaging layer of the sensor-network b a soft-state approach can help with the frequent topology changes in wireless sensor networks caused by the transmission medium. We describe our protocol and compare its features and robustness to those of epidemic protocols through simulation. Our protocol is more efficient when the actuation is performed on selected groups of devices within the sensor network. In the general case, the efficiency of our proposal is similar to that of an epidemic model, plus feedback is given to the initiator of the actuation. Robustness remains close to the epidemic approach, even for moderate bit error rates.

  2. Cryogenic actuator for subnanometer positioning

    Bree, B. v.; Janssen, H.; Paalvast, S.; Albers, R.

    2012-09-01

    This paper discusses the development, realization, and qualification of a positioning actuator concept specifically for cryogenic environments. Originally developed for quantum physics research, the actuator also has many applications in astronomic cryogenic instruments to position optical elements with nanometer level accuracy and stability. Typical applications include the correction of thermally induced position errors of optical components after cooling down from ambient to cryogenic temperatures or sample positioning in microscopes. The actuator is nicknamed the ‘PiezoKnob’ because it is piezo based and it is compatible with the typical manipulator knob often found in standard systems for optical benches, such as linear stages or tip/tilt lens holders. Actuation with high stiffness piezo elements enables the Piezoknob to deliver forces up to 50 Newton which allows relatively stiff guiding mechanisms or large pre-loads. The PiezoKnob has been qualified at 77 Kelvin and was shown to work down to 2 Kelvin. As part of the qualification program, the custom developed driving electronics and set point profile have been fine-tuned, by combing measurements with predictions from a dynamic model, thus maximizing efficiency and minimizing power dissipation. Furthermore, the actuator holds its position without power and thanks to its mechanical layout it is absolutely insensitive to drift of the piezo elements or the driving electronics.

  3. Electromechanical propellant control system actuator

    Myers, W. Neill; Weir, Rae Ann

    1990-01-01

    New control mechanism technologies are currently being sought to provide alternatives to hydraulic actuation systems. The Propulsion Laboratory at Marshall Space Flight Center (MSFC) is involved in the development of electromechanical actuators (EMA's) for this purpose. Through this effort, an in-house designed electromechanical propellant valve actuator has been assembled and is presently being evaluated. This evaluation will allow performance comparisons between EMA and hydraulics systems. The in-house design consists of the following hardware: a three-phase brushless motor, a harmonic drive, and an output spline which will mate with current Space Shuttle Main Engine (SSME) propellant control valves. A resolver and associated electronics supply position feedback for the EMA. System control is provided by a solid-state electronic controller and power supply. Frequency response testing has been performed with further testing planned as hardware and test facilities become available.

  4. Modular Actuators for Space Applications Project

    National Aeronautics and Space Administration — Rocketstar Robotics is proposing the development of a modern dual drive actuator. Rocketstar has put together numerous modern concepts for modular actuators that...

  5. A novel spherical actuator: Design and control

    Wang, J B; Jewell, G. W.; Howe, D

    1997-01-01

    The paper describes the design and control of a novel spherical permanent magnet actuator which is capable of two-degrees-freedom and a high specific torque. Based on an analytical actuator model, an optimal design procedure is developed to yield maximum output torque or maximum system acceleration for a given payload. The control of the actuator, whose dynamics are similar to those of robotic manipulators, is facilitated by the establishment of a complete actuation system model. A robust con...

  6. More Electric Landing Gear Actuation Study

    Li, Wei

    2009-01-01

    This report addresses the problem of landing gear actuation system design on more-electric aircraft (MEA). Firstly, information about more-electric aircraft and more-electric actuators was gathered and sorted. Current more-electric landing actuation system applications and researches were also summarized. Then several possible more-electric landing gear actuation concepts were identified. To evaluate these concepts, the case study method has been used. A concept aircraft “MR...

  7. Distributed structural control using multilayered piezoelectric actuators

    Cudney, Harley H.; Inman, Daniel J.; Oshman, Yaakov

    1990-01-01

    A method of segmenting piezoelectric sensors and actuators is proposed which can preclude the currently experienced cancelation of sensor signals, or the reduction of actuator effectiveness, due to the integration of the property undergoing measurement or control. The segmentation method is demonstrated by a model developed for beam structures, to which multiple layers of piezoelectric materials are attached. A numerical study is undertaken of increasing active and passive damping of a beam using the segmented sensors and actuators over unsegmented sensors and actuators.

  8. Electrostatic actuators fabricated by surface micromachining techniques

    Legtenberg, Rob

    1996-01-01

    This thesis deals with "electrostatic actuators fabricated by surface micromachining techniques". It presents fabrication techniques, design issues, modelling and performance characteristics of a number of electrostatic actuators. These actuators can be used in future micromechanical devices and systems which have applications such as micropositioning, microfluidics, microsurgery etc.

  9. Carbon nanotube-polymer composite actuators

    Gennett, Thomas; Raffaelle, Ryne P.; Landi, Brian J.; Heben, Michael J.

    2008-04-22

    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  10. Multilayer Piezoelectric Stack Actuator Characterization

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  11. A bidirectional shape memory alloy folding actuator

    This paper presents a low-profile bidirectional folding actuator based on annealed shape memory alloy sheets applicable for meso- and microscale systems. Despite the advantages of shape memory alloys—high strain, silent operation, and mechanical simplicity—their application is often limited to unidirectional operation. We present a bidirectional folding actuator that produces two opposing 180° motions. A laser-patterned nickel alloy (Inconel 600) heater localizes actuation to the folding sections. The actuator has a thin ( < 1 mm) profile, making it appropriate for use in robotic origami. Various design parameters and fabrication variants are described and experimentally explored in the actuator prototype. (paper)

  12. Long working range mercury droplet actuation

    This paper reports novel mercury droplet actuators with a long working range. The actuators were designed so that they can be used as thermal switches. Two types of actuation electrode were investigated: electrowetting type and electrostatic type. It was confirmed that the actuation of a mercury droplet was possible with each electrode. In addition, two types of actuator surface were investigated: flat surface and surface with micropillars. The micropillars showed considerable mobility enhancement of the droplet, but were found to be useful only with an appropriate electrode design. When the mercury droplet was actuated by 100–300 Vp-p, the observed maximum working range was about 200 µm, which is much longer than the values reported previously. Poor repeatability of droplet motion due to the charge-up of the actuator surface was revealed as a problem

  13. Novel applications of plasma actuators

    Ozturk, Arzu Ceren

    The current study investigates the effectiveness of two different dielectric barrier discharge plasma actuator configurations, a 3-D annular geometry for use in micro thrusters and internal duct aerodynamics and a jet vectoring actuator that acts as a vortex generator and flow control device. The first configuration consists of a closed circumferential arrangement which yields a body force when a voltage difference is applied across the inner and outer electrodes separated by a dielectric. The primary flow is driven by this zero-net mass flux jet at the wall that then entrains fluid in the core of the duct. PIV experiments in both quiescent flow and freestream are conducted on tubes of different diameters while varying parameters such as the modulation frequency, duty cycle and tunnel speed. The values of the induced velocities increase with the forcing frequency and duty cycle although there is a peak value for the forcing frequency after which the velocity and thrust decrease for each thruster. The velocities and thrust increase as the inner diameter of the tubes are increased while the velocity profiles show a great difference with the (l/di) ratio; recirculation occurs after going below a critical value. Experiments in the wind tunnel illustrate that the jet exit characteristics significantly change upon actuation in freestream flow but the effect tends to diminish with increasing inner diameters and tunnel speeds. Using staged arrays of these thrusters result in higher velocities while operating at both in phase and out of phase. The jet vectoring configuration consists of a single embedded electrode separated from two exposed electrodes on either side by the dielectric. The embedded electrode is grounded while the exposed electrodes are driven with a high frequency high voltage input signal. PIV measurements of the actuator in a freestream show that vectoring the jet yields stronger vortices than a linear configuration and increasing the difference between

  14. Efficient Hybrid Actuation Using Solid-State Actuators

    Leo, Donald J.; Cudney, Harley H.; Horner, Garnett (Technical Monitor)

    2001-01-01

    Piezohydraulic actuation is the use of fluid to rectify the motion of a piezoelectric actuator for the purpose of overcoming the small stroke limitations of the material. In this work we study a closed piezohydraulic circuit that utilizes active valves to rectify the motion of a hydraulic end affector. A linear, lumped parameter model of the system is developed and correlated with experiments. Results demonstrate that the model accurately predicts the filtering of the piezoelectric motion caused by hydraulic compliance. Accurate results are also obtained for predicting the unidirectional motion of the cylinder when the active valves are phased with respect to the piezoelectric actuator. A time delay associated with the mechanical response of the valves is incorporated into the model to reflect the finite time required to open or close the valves. This time delay is found to be the primary limiting factor in achieving higher speed and greater power from the piezohydraulic unit. Experiments on the piezohydraulic unit demonstrate that blocked forces on the order of 100 N and unloaded velocities of 180 micrometers/sec are achieved.

  15. Piezoelectric step-motion actuator

    Mentesana; Charles P.

    2006-10-10

    A step-motion actuator using piezoelectric material to launch a flight mass which, in turn, actuates a drive pawl to progressively engage and drive a toothed wheel or rod to accomplish stepped motion. Thus, the piezoelectric material converts electrical energy into kinetic energy of the mass, and the drive pawl and toothed wheel or rod convert the kinetic energy of the mass into the desired rotary or linear stepped motion. A compression frame may be secured about the piezoelectric element and adapted to pre-compress the piezoelectric material so as to reduce tensile loads thereon. A return spring may be used to return the mass to its resting position against the compression frame or piezoelectric material following launch. Alternative embodiment are possible, including an alternative first embodiment wherein two masses are launched in substantially different directions, and an alternative second embodiment wherein the mass is eliminated in favor of the piezoelectric material launching itself.

  16. Design of Autonomous Gel Actuators

    Shuji Hashimoto; Shingo Maeda; Yusuke Hara; Satoshi Nakamaru

    2011-01-01

    In this paper, we introduce autonomous gel actuators driven by chemical energy. The polymer gels prepared here have cyclic chemical reaction networks. With a cyclic reaction, the polymer gels generate periodical motion. The periodic motion of the gel is produced by the chemical energy of the oscillatory Belouzov-Zhabotinsky (BZ) reaction. We have succeeded in making synthetic polymer gel move autonomously like a living organism. This experimental fact represents the great possibility of the c...

  17. Design of Autonomous Gel Actuators

    Shuji Hashimoto

    2011-01-01

    Full Text Available In this paper, we introduce autonomous gel actuators driven by chemical energy. The polymer gels prepared here have cyclic chemical reaction networks. With a cyclic reaction, the polymer gels generate periodical motion. The periodic motion of the gel is produced by the chemical energy of the oscillatory Belouzov-Zhabotinsky (BZ reaction. We have succeeded in making synthetic polymer gel move autonomously like a living organism. This experimental fact represents the great possibility of the chemical robot.

  18. Electrical actuators applications and performance

    De Fornel, Bernard

    2013-01-01

    This helpful resource covers a large range of information regarding electrical actuators. In particular, robustness, a very problematic issue, is fully explored in a dedicated chapter. The text also deals with he estimate of non-measurable mechanical variables by examining the estimate of load moment, then observation of the positioning of a command without mechanical sensor. Finally, it examines the conditions needed to measure variables and real implementation of numerical algorithms. This is a key working resource for electrical engineers.

  19. Ferrofluid-Impregnated Paper Actuators

    Ding, Zhenwen; Wei, Pinghung; Chitnis, Girish; Ziaie, Babak

    2011-01-01

    In this paper, we report on an inexpensive method of fabricating miniature magnetic actuators using ferrofluid-impregnated paper. Different types of papers (including soft tissue paper, cleanroom paper, Whatman-1 filter paper, printer paper, and newspaper) were loaded with oil-based ferrofluid, micromachined by a CO(2) laser and coated with a thin layer of parylene-C. The soaking capability of the different papers was investigated, with the soft tissue paper having the highest loading capacit...

  20. The actuation of sound change

    Pinget, A.C.H.

    2015-01-01

    This dissertation is a sociophonetic study on sound change in progress. It addresses the actuation problem, i.e. the question as to why a particular change takes place in a particular language at a given time. The study is implemented in the framework of exemplar-based theories, which incorporates individual variation and the influence of the ambient language on individuals. Two sound changes in progress in the Dutch language are selected: the devoicing of initial labiodental fricatives (/v/ ...

  1. Functional Soft Robotic Actuators Based on Dielectric Elastomers

    Shintake, Jun

    2016-01-01

    Dielectric elastomer actuators (DEAs) are a promising soft actuator technology for robotics. Adding robotic functionalities--folding, variable stiffness, and adhesion--into their actuator design is a novel method to create functionalized robots with simplified actuator configurations. We first propose a foldable actuator that has a simple antagonistic DEA configuration allowing bidirectional actuation and passive folding. To prove the concept, a foldable elevon actuator with outline size of 7...

  2. Improving actuator disk wake model

    The wind energy industry has traditionally relied on simple wake models for estimating Wind Turbine (WT) wake losses. Despite limitations, low requirements in terms of detailed rotor information makes their use feasible, unlike more complex models, such as Blade Element Method (BEM) or Actuator Line. Froude's Actuator Disk (AD) does not suffer the simpler model's limitation of prescribing the wake through a closed set of equations, while sharing with them the low rotor data requirements. On the other hand they require some form of parametrization to close the model and calculate total thrust acting on the flow. An Actuator Disk model was developed, using an iterative algorithm based on Froude's one-dimensional momentum theory to determine the WT's performance, proving to be successful in estimating the performance of both machines in undisturbed flow and in the wake of an upstream machines. Before Froude's AD limitations compared to more complex rotor models, load distributions emulating those of a BEM model were tested. The results show that little impact is obtained at 3 rotor diameters downstream and beyond, agreeing with common definition of a far-wake that starts at 1-2 diameters downstream, where rotor characteristics become negligible and atmospheric flow effects dominate

  3. Plasma actuators for bluff body flow control

    Kozlov, Alexey V.

    The aerodynamic plasma actuators have shown to be efficient flow control devices in various applications. In this study the results of flow control experiments utilizing single dielectric barrier discharge plasma actuators to control flow separation and unsteady vortex shedding from a circular cylinder in cross-flow are reported. This work is motivated by the need to reduce landing gear noise for commercial transport aircraft via an effective streamlining created by the actuators. The experiments are performed at Re D = 20,000...164,000. Circular cylinders in cross-flow are chosen for study since they represent a generic flow geometry that is similar in all essential aspects to a landing gear oleo or strut. The minimization of the unsteady flow separation from the models and associated large-scale wake vorticity by using actuators reduces the radiated aerodynamic noise. Using either steady or unsteady actuation at ReD = 25,000, Karman shedding is totally eliminated, turbulence levels in the wake decrease significantly and near-field sound pressure levels are reduced by 13.3 dB. Unsteady actuation at an excitation frequency of St D = 1 is found to be most effective. The unsteady actuation also has the advantage that total suppression of shedding is achieved for a duty cycle of only 25%. However, since unsteady actuation is associated with an unsteady body force and produces a tone at the actuation frequency, steady actuation is more suitable for noise control applications. Two actuation strategies are used at ReD = 82,000: spanwise and streamwise oriented actuators. Near field microphone measurements in an anechoic wind tunnel and detailed study of the near wake using LDA are presented in the study. Both spanwise and streamwise actuators give nearly the same noise reduction level of 11.2 dB and 14.2 dB, respectively, and similar changes in the wake velocity profiles. The contribution of the actuator induced noise is found to be small compared to the natural shedding

  4. Electromechanical actuator for thrust vector control

    Zubkow, Zygmunt

    Attention is given to the development and testing of electromechanical actuator (EMA) systems for use in first- and second-stage thrust vector control of rocket engines. An overview of the test program is also presented. Designs for both first- and second-stage actuators employ redundant dc brushless, three-phase rare-earth permanent magnet motors. The first-stage actuator is about 28 hp per motor and uses a roller screw. Second-stage thrust vector control is implemented with a much smaller actuator of about 1 hp per motor. This actuator uses a gear drive with a recycling ball screw mechanism. An operational EMA is presented. This 6.5-in. actuator is capable of a stall force of 1350 pounds per motor and a frequency response of about 5 HZ.

  5. Thermal vertical bimorph actuators and their applications

    Sehr, H J

    2002-01-01

    In this thesis, a novel concept for lateral actuators based on vertical bimorphs is presented. Vertical bimorphs consist of silicon beams side-coated with aluminium, which bend when heated due to the different thermal expansion coefficients of the two materials causing a displacement in the wafer plane. The heating of the actuator is provided by an electrical current through the silicon beam. The simplest implementation of a vertical bimorph actuator is a clamped-clamped beam. To obtain higher deflections, a meander shaped actuator has been designed. By combining four meander actuators, a two-dimensional positioning stage has been realised. The meander actuator has also been applied for normally closed and normally open micro-relays. Analytical calculations and ANSYS simulations have been carried out to predict the physical behaviour of the bimorph devices, including temperature distribution, static deflection, vertical stiffness, thermal time constant and lateral resonances. For both the clamped-clamped beam...

  6. Transputer Control of Hydraulic Actuators and Robots

    Conrad, Finn

    1996-01-01

    Results from a Danish mechatronics research program entitled IMCIA - Intelligent Control and Intelligent Actuators. The objective is development of intelligent actuators for intelligent motion control. A mechatronics test facility with a transputer controlled hydraulic robot suiteable for real......-time experiments and evaluation of control laws and algorithms is presented. Concepts of intelligent motion control and intelligent hydraulic actuators are proposed. Promising experimental path-tracking results obtained from model-based adaptive control algorithms are presented and discussed....

  7. Signal processing for plane wave actuators

    T. Corbach; Holters, M.; U. Zölzer

    2010-01-01

    Plane wave actuators without an enclosure per se have a forward and backward radiation. The backward radiation is unwanted in many applications when a single direction radiation is desired. To avoid the disadvantages of an enclosure a system is proposed, which provides a high suppression of the unwanted backward radiation using a pair of plane wave actuators. This is achieved by adapted input signal filters. The influences of the second plane wave actuator to the forward rad...

  8. A bidirectional shape memory alloy folding actuator

    Paik, Jamie; Wood, Robert J.

    2012-01-01

    This paper presents a low-profile bidirectional folding actuator based on annealed shape memory alloy sheets applicable for meso-and microscale systems. Despite the advantages of shape memory alloys-high strain, silent operation, and mechanical simplicity-their application is often limited to unidirectional operation. We present a bidirectional folding actuator that produces two opposing 180 degrees motions. A laser-patterned nickel alloy (Inconel 600) heater localizes actuation to the foldin...

  9. Continuously-Variable Series-Elastic Actuator

    Mooney, Luke M.; Herr, Hugh M.

    2013-01-01

    Actuator efficiency is an important factor in the design of powered leg prostheses, orthoses, exoskeletons, and legged robots. A continuously-variable series-elastic actuator (CV-SEA) is presented as an efficient actuator for legged locomotion. The CV-SEA implements a continuously-variable transmission (CVT) between a motor and series elastic element. The CVT reduces the torque seen at the motor and allows the motor to operate in speed regimes of higher efficiency, while the series-elastic el...

  10. ANALYSIS OF BEAMS WITH PIEZOELECTRIC ACTUATORS

    林启荣; 刘正兴; 王宗利

    2001-01-01

    Based on the two-dimensional constitutive relationships of the piezoelectric material, an analytical solution for an intelligent beam excited by a pair of piezoelectric actuators is derived. With the solution the force and moment generated by two piezoelectric actuators and a pair of piezoelectric actuator/sensor are obtained. Examples of a cantilever piezoelectric laminated beam or a simply supported piezoelectric laminated beam, applied with voltages, are given.

  11. High Reliability Cryogenic Piezoelectric Valve Actuator Project

    National Aeronautics and Space Administration — Cryogenic fluid valves are subject to harsh exposure and actuators to drive these valves require robust performance and high reliability. DSM's piezoelectric...

  12. Nonlinear analysis of RAINBOW actuator characteristics

    This paper discusses an investigation into deformations of rectangular RAINBOW actuators, which are classified as a type of laminated actuator. The actuators consist of a piezoelectric active layer and a reduced passive layer formed in an elevated temperature reduction process. An energy-based Rayleigh–Ritz model is used to approximate the thermally induced deformations with 23-term polynomials. Due to large out-of-plane displacements of the RAINBOW actuators after cooling down to room temperature, inclusion of geometric nonlinearities in the kinematic relations is taken into consideration. Actuation characteristics of these actuators caused by a quasi-static electric field applied to the piezoelectric layer are also modeled with the Rayleigh–Ritz approach. Material nonlinearities in the piezoelectric layer are included in the constitutive equation to capture the effects of a strong electric field. Piezoelectrically induced tip deflections of a series of RAINBOW cantilever actuators are calculated and compared with experiment. With the geometrical and material nonlinearities taken into account, numerical simulation reveals the computed tip deflections agree very well with the experimental data. In addition, tip blocking forces representing the load-carrying capability of the RAINBOW actuators are approximately evaluated by equating the magnitude of force-induced displacement to that of the piezoelectrically induced tip deflection. Again, good agreement between numerical results and experiment can be observed in the case of the tip blocking force. This evidently shows that the pertinent nonlinearities have very crucial effects on the responses and performances of the RAINBOW actuators

  13. Design optimization of a linear actuator

    Rechenbach, B.; Willatzen, Morten; Preisler, K. Lorenzen;

    2013-01-01

    The mechanical contacting of a dielectric elastomer actuator is investigated. The actuator is constructed by coiling the dielectric elastomer around two parallel metal rods, similar to a rubber band stretched by two index fingers. The goal of this paper is to design the geometry and the mechanica...

  14. Artificial Cilia : Mimicking Nature Through Magnetic Actuation

    Khaderi, S. N.; Baltussen, M. G. H. M.; Anderson, P. D.; Ioan, D.; den Toonder, J.M.J.; Onck, P. R.; Murthy, SK; Khan, SA; Ugaz, VM; Zeringue, HC

    2009-01-01

    Manipulation of bio-fluids in microchannels faces many challenges in the development of lab-on-a-chip devices. We propose magnetically actuated artificial cilia which can propel fluids in microchannels. These cilia are magnetic films which can be actuated by an external magnetic field, leading to an

  15. Integrated piezoelectric actuators in deep drawing tools

    Neugebauer, R.; Mainda, P.; Drossel, W.-G.; Kerschner, M.; Wolf, K.

    2011-04-01

    The production of car body panels are defective in succession of process fluctuations. Thus the produced car body panel can be precise or damaged. To reduce the error rate, an intelligent deep drawing tool was developed at the Fraunhofer Institute for Machine Tools and Forming Technology IWU in cooperation with Audi and Volkswagen. Mechatronic components in a closed-loop control is the main differentiating factor between an intelligent and a conventional deep drawing tool. In correlation with sensors for process monitoring, the intelligent tool consists of piezoelectric actuators to actuate the deep drawing process. By enabling the usage of sensors and actuators at the die, the forming tool transform to a smart structure. The interface between sensors and actuators will be realized with a closed-loop control. The content of this research will present the experimental results with the piezoelectric actuator. For the analysis a production-oriented forming tool with all automotive requirements were used. The disposed actuators are monolithic multilayer actuators of the piezo injector system. In order to achieve required force, the actuators are combined in a cluster. The cluster is redundant and economical. In addition to the detailed assembly structures, this research will highlight intensive analysis with the intelligent deep drawing tool.

  16. Attitude Control for Magnetic Actuated Satellite

    Wisniewski, Rafal; Blanke, M.

    1996-01-01

    Magnetic actuation utilizes the mechanic torque that is the result of interaction of the current in a coil with an external magnetic field.......Magnetic actuation utilizes the mechanic torque that is the result of interaction of the current in a coil with an external magnetic field....

  17. Conjugated Polymer Actuators: Prospects and Limitations

    Skaarup, Steen

    Actuators constructed with a conjugated polymer as the active part have been predicted to have a number of highly desirable properties: Large mechanical strength, high power density, i.e. high actuation speeds possible, sufficient maximum strain values, high reversibility and safe, low voltages (1...

  18. Conducting Polymer Actuators: Prospects and Limitations

    Skaarup, Steen

    Actuators constructed with a conjugated polymer as the active part have been predicted to have a number of highly desirable properties: Large mechanical strength, high power density, i.e. high actuation speeds possible, sufficient maximum strain values, high reversibility and safe, low voltages (1...

  19. Advanced Actuator Concepts for High Precision Deformable Mirrors Project

    National Aeronautics and Space Administration — TRS Technologies proposes to develop a variety of single crystal actuators for adaptive optics deformable mirrors. Single crystal piezoelectric actuators are...

  20. FABRICATION AND PROPERTIES OF ANTIFERROELECTRIC RAINBOW ACTUATOR

    2006-01-01

    A new type of large-displacement actuator called reduced and internally biased oxide wafer (RAINBOW) is fabricated by chemical reduction of Pb(Sn, Zr, Ti)O3(PSZT) antiferroelectric ceramics and its properties are investigated. It is found that PSZT is easily reduced and the optimal conditions for producing RAINBOW samples are determined to be 870 ℃ for 2~3 h. The antiferroelectricsferroelectrics phase transitions occur at lower field strength in RAINBOW actuators compared with normal PSZT actuators. Large axial displacements are also obtained from the RAINBOW actuator by application of electric fields exceeding the phase switching level. However, the field-induced displacement of the RAINBOW actuator is dependent on the manner of applying load on the samples.

  1. Genetic Algorithm Approaches for Actuator Placement

    Crossley, William A.

    2000-01-01

    This research investigated genetic algorithm approaches for smart actuator placement to provide aircraft maneuverability without requiring hinged flaps or other control surfaces. The effort supported goals of the Multidisciplinary Design Optimization focus efforts in NASA's Aircraft au program. This work helped to properly identify various aspects of the genetic algorithm operators and parameters that allow for placement of discrete control actuators/effectors. An improved problem definition, including better definition of the objective function and constraints, resulted from this research effort. The work conducted for this research used a geometrically simple wing model; however, an increasing number of potential actuator placement locations were incorporated to illustrate the ability of the GA to determine promising actuator placement arrangements. This effort's major result is a useful genetic algorithm-based approach to assist in the discrete actuator/effector placement problem.

  2. Out-of-Plane Translational PZT Bimorph Actuator with Archimedes’ Spiral Actuating Tethers

    Yang, Chenye; Liu, Sanwei; Livermore, Carol

    2015-12-01

    The design, finite element analysis (FEA), and experimental characterization of a MEMS out-of-plane (vertical) translational lead-zirconate-titanate (PZT) bimorph actuator supported on Archimedes’ spiral tethers are presented. Two types of bimorph actuators with different electrode patterns (with spiral tethers half actuated or fully actuated) are designed and fabricated. Both designs are fabricated by commercial processes and are compatible with integration into more complex MEMS systems. Finite element analysis (FEA) was used to analyze and predict the displacements of both types of actuators. The deflections of both fully- actuated and half-actuated devices were measured experimentally to validate the design. At an applied voltage of 110V, the out-of-plane deflections of the actuators with half-actuated and fully-actuated tethers were measured at about 17 μm and 29 μm respectively, in good agreement with FEA predictions of 17.1 μm and 25.8 μm. The corresponding blocking forces are predicted as 10 mN and 17 mN by FEA.

  3. Characterization of kink actuators as compared to traditional chevron shaped Bent-Beam electrothermal actuators

    Rawashdeh, E.

    2012-07-06

    This paper compares the design and performance of kink actuators, a modified version of the bent-beam thermal actuator, to the standard chevron-shaped designs. A variety of kink and chevron actuator designs were fabricated from polysilicon. While the actuators were electrically probed, these designs were tested using a probe station connected to a National Instruments (NI) controller that uses LabVIEW to extract the displacement results via image processing. The displacement results were then used to validate the thermal-electric-structural simulations produced by COMSOL. These results, in turn, were used to extract the stiffness for both actuator types. The data extracted show that chevron actuators can have larger stiffness values with increasing offsets, but at the cost of lower amplification factors. In contrast, kink actuators showed a constant stiffness value equivalent to the chevron actuator with the highest amplification factor. The kink actuator also had larger amplification factors than chevrons at all designs tested. Therefore, kink actuators are capable of longer throws at lower power levels than the standard chevron designs.

  4. Smart film actuators using biomass plastic

    This paper presents a novel smart film actuator based on the use of a biomass plastic as a piezoelectric film. Conventional polymeric smart sensors and actuators have been based upon synthetic piezoelectric polymer films such as PVDF. Almost all synthetic polymers are made from nearly depleted oil resources. In addition combustion of their materials releases carbon dioxide, thereby contributing to global warming. Thus at least two important sustainability principles are violated when employing synthetic polymers: avoiding depletable resources and avoiding ecosystem destruction. To overcome such problems, industrial plastic products made from synthetic polymers were developed to replace oil-based plastics with biomass plastics. This paper applies a biomass plastic with piezoelectricity such as poly-L-lactic acid (PLLA). As a result, PLLA film becomes a distributed parameter actuator per se, hence an environmentally conscious smart film actuator is developed. Firstly, this paper overviews the fundamental properties of piezoelectric synthetic polymers and biopolymers. The concept of carbon neutrality using biopolymers is mentioned. Then a two-dimensional modal actuator for exciting a specific structural mode is proposed. Furthermore, a biomass plastic-based cantilever beam with the capability of modal actuation is developed, the validity of the proposed smart film actuator based upon a biomass plastic being analytically as well as experimentally verified

  5. Thermostatic Valves Containing Silicone-Oil Actuators

    Bhandari, Pradeep; Birur, Gajanana C.; Bame, David P.; Karlmann, Paul B.; Prina, Mauro; Young, William; Fisher, Richard

    2009-01-01

    Flow-splitting and flow-mixing thermally actuated spool valves have been developed for controlling flows of a heat-transfer fluid in a temperature-regulation system aboard the Mars Science Laboratory (MSL) rover. Valves like these could also be useful in terrestrial temperature-regulation systems, including automobile air-conditioning systems and general refrigeration systems. These valves are required to provide smoother actuation over a wider temperature range than the flow-splitting, thermally actuated spool valves used in the Mars Explorer Rover (MER). Also, whereas the MER valves are unstable (tending to oscillate) in certain transition temperature ranges, these valves are required not to oscillate. The MER valves are actuated by thermal expansion of a wax against spring-loaded piston rods (as in common automotive thermostats). The MSL valves contain similar actuators that utilize thermal expansion of a silicone oil, because silicone-oil actuators were found to afford greater and more nearly linear displacements, needed for smoother actuation, over the required wider temperature range. The MSL valves also feature improved spool designs that reflect greater understanding of fluid dynamics, consideration of pressure drops in valves, and a requirement for balancing of pressures in different flow branches.

  6. Elastomeric actuator devices for magnetic resonance imaging

    Dubowsky, Steven (Inventor); Hafez, Moustapha (Inventor); Jolesz, Ferenc A. (Inventor); Kacher, Daniel F. (Inventor); Lichter, Matthew (Inventor); Weiss, Peter (Inventor); Wingert, Andreas (Inventor)

    2008-01-01

    The present invention is directed to devices and systems used in magnetic imaging environments that include an actuator device having an elastomeric dielectric film with at least two electrodes, and a frame attached to the actuator device. The frame can have a plurality of configurations including, such as, for example, at least two members that can be, but not limited to, curved beams, rods, plates, or parallel beams. These rigid members can be coupled to flexible members such as, for example, links wherein the frame provides an elastic restoring force. The frame preferably provides a linear actuation force characteristic over a displacement range. The linear actuation force characteristic is defined as .+-.20% and preferably 10% over a displacement range. The actuator further includes a passive element disposed between the flexible members to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. The preferred embodiment actuator includes one or more layers of the elastomeric film integrated into the frame. The elastomeric film can be made of many elastomeric materials such as, for example, but not limited to, acrylic, silicone and latex.

  7. Diagnostics for characterisation of plasma actuators

    Kotsonis, Marios

    2015-09-01

    The popularity of plasma actuators as flow control devices has sparked a flurry of diagnostic efforts towards their characterisation. This review article presents an overview of experimental investigations employing diagnostic techniques specifically aimed at AC dielectric barrier discharge, DC corona and nanosecond pulse plasma actuators. Mechanical, thermal and electrical characterisation techniques are treated. Various techniques for the measurement of induced velocity, body force, heating effects, voltage, current, power and discharge morphology are presented and common issues and challenges are described. The final part of this report addresses the effect of ambient conditions on the performance of plasma actuators.

  8. Selecting Actuator Configuration for a Benson Boiler

    Kragelund, Martin Nygaard; Leth, John-Josef; Wisniewski, Rafal

    2009-01-01

    This paper addresses the problem of an optimal actuator configuration in an economic perspective. The objective is to minimize the economical cost of operating a given plant. Functionals encapsulating information of the business objectives given the different actuators has been established...... with particular focus on a boiler in a power plant operated by DONG Energy - a Danish energy supplier. The problem has been reformulated using mathematic notions from economics. The selection of actuator configuration has been limited to the fuel system which in the considered plant consists of three different...

  9. Analysis of a spherical permanent magnet actuator

    This paper describes a new form of actuator with a spherical permanent magnet rotor and a simple winding arrangement, which is capable of a high specific torque by utilizing a rare-earth permanent magnet. The magnetic-field distribution is established using an analytical technique formulated in spherical coordinates, and the results are validated by finite element analysis. The analytical field solution allows the prediction of the actuator torque and back emf in closed forms. In turn, these facilitate the characterization of the actuator and provide a firm basis for design optimization, system dynamic modeling, and closed-loop control law development. copyright 1997 American Institute of Physics

  10. Bluff Body Flow Control Using Plasma Actuators

    Thomas, Flint

    2005-11-01

    In this study, the use of single dielectric barrier discharge plasma actuators for the control of bluff body flow separation is investigated. In particular, surface mounted plasma actuators are used to reduce both drag and unsteady vortex shedding from circular cylinders in cross-flow. It is demonstrated that the plasma-induced surface blowing gives rise to a local Coanda effect that promotes the maintenance of flow attachment. Large reductions in vortex shedding and drag are demonstrated for Reynolds numbers ˜ 10^410^5. Both steady and unsteady plasma-induced surface blowing is explored. Results are presented from experiments involving both two and four surface mounted actuators.

  11. Nature-inspired microfluidic manipulation using magnetic actuators

    Khaderi, S. N.; Ioan, D.; den Toonder, J.M.J.; Onck, P. R.; LaVan, D.; Spearing, M.; Vengallatore, S.; DaSilva, M.

    2008-01-01

    Magnetically actuated micro-actuators are proposed to propel and manipulate fluid in micro-channels. As the fluid flows at low Reynolds number in such systems, the actuator should move in an asymmetric manner. The proposed actuators are polymer films with embedded magnetic particles, which are actua

  12. NICKEL-PLATED THERMAL ACTUATOR WITH ELECTROSTATIC LATCH

    Driesen, Maarten; Ceyssens, Frederik; Decoster, Jeroen; Puers, Robert

    2008-01-01

    An innovative parallel gap actuator is developed and demonstrated based on a two-layer nickel plating process. It combines thermal actuation for large stroke movement with electrostatic actuation for the latch. Moreover, the electrostatic actuation is capable to hold this position with very low power requirements.

  13. High Reliability Cryogenic Piezoelectric Valve Actuator Project

    National Aeronautics and Space Administration — Piezoelectric actuators constructed with the "smart material" PZT offer many potential advantages for use in NASA cryo-valve missions relative to conventional...

  14. Sensors and actuators inherent in biological species

    Taya, Minoru; Stahlberg, Rainer; Li, Fanghong; Zhao, Ying Joyce

    2007-04-01

    This paper addresses examples of sensing and active mechanisms inherent in some biological species where both plants and animals cases are discussed: mechanosensors and actuators in Venus Fly Trap and cucumber tendrils, chemosensors in insects, two cases of interactions between different kingdoms, (i) cotton plant smart defense system and (ii) bird-of-paradise flower and hamming bird interaction. All these cases lead us to recognize how energy-efficient and flexible the biological sensors and actuators are. This review reveals the importance of integration of sensing and actuation functions into an autonomous system if we make biomimetic design of a set of new autonomous systems which can sense and actuate under a number of different stimuli and threats.

  15. Nylon-muscle-actuated robotic finger

    Wu, Lianjun; Jung de Andrade, Monica; Rome, Richard S.; Haines, Carter; Lima, Marcio D.; Baughman, Ray H.; Tadesse, Yonas

    2015-04-01

    This paper describes the design and experimental analysis of novel artificial muscles, made of twisted and coiled nylon fibers, for powering a biomimetic robotic hand. The design is based on circulating hot and cold water to actuate the artificial muscles and obtain fast finger movements. The actuation system consists of a spring and a coiled muscle within a compliant silicone tube. The silicone tube provides a watertight, expansible compartment within which the coiled muscle contracts when heated and expands when cooled. The fabrication and characterization of the actuating system are discussed in detail. The performance of the coiled muscle fiber in embedded conditions and the related characteristics of the actuated robotic finger are described.

  16. Considerations for Contractile Electroactive Materials and Actuators

    Lenore Rasmussen, David Schramm, Paul Rasmussen, Kevin Mullaly, Ras Labs, LLC, Intelligent Materials for Prosthetics & Automation, Lewis D. Meixler, Daniel Pearlman and Alice Kirk

    2011-05-23

    Ras Labs produces contractile electroactive polymer (EAP) based materials and actuators that bend, swell, ripple, and contract (new development) with low electric input. In addition, Ras Labs produces EAP materials that quickly contract and expand, repeatedly, by reversing the polarity of the electric input, which can be cycled. This phenomenon was explored using molecular modeling, followed by experimentation. Applied voltage step functions were also investigated. High voltage steps followed by low voltage steps produced a larger contraction followed by a smaller contraction. Actuator control by simply adjusting the electric input is extremely useful for biomimetic applications. Muscles are able to partially contract. If muscles could only completely contract, nobody could hold an egg, for example, without breaking it. A combination of high and low voltage step functions could produce gross motor function and fine manipulation within the same actuator unit. Plasma treated electrodes with various geometries were investigated as a means of providing for more durable actuation.

  17. Mirrors Containing Biomimetic Shape-Control Actuators

    Bar-Cohen, Yoseph; Mouroulis, Pantazis; Bao, Xiaoqi; Sherrit, Stewart

    2003-01-01

    Curved mirrors of a proposed type would comprise lightweight sheets or films containing integral, biologically inspired actuators for controlling their surface figures. These mirrors could be useful in such applications as collection of solar energy, focusing of radio beams, and (provided sufficient precision could be achieved) imaging. These mirrors were originally intended for use in outer space, but it should also be possible to develop terrestrial versions. Several prior NASA Tech Briefs articles have described a variety of approaches to the design of curved, lightweight mirrors containing integral shape-control actuators. The primary distinction between the present approach and the prior approaches lies in the actuator design concept, which involves shapes and movements reminiscent of those of a variety of small, multi-armed animals. The shape and movement of an actuator of this type can also be characterized as reminiscent of that of an umbrella. This concept can be further characterized as a derivative of that of multifinger grippers, the fingers of which are bimorph bending actuators (see Figure 1). The fingers of such actuators can be strips containing any of a variety of materials that have been investigated for use as actuators, including such electroactive polymers as ionomeric polymer/metal composites (IPMCs), ferroelectric polymers, and grafted elastomers. A mirror according to this proposal would be made from a sheet of one of the actuator composites mentioned above. The design would involve many variables, including the pre-curvature and stiffness of the mirror sheet, the required precision of figure control, the required range of variation in focal length (see Figure 2), the required precision of figure control for imaging or non-imaging use, the bending and twisting moments needed to effect the required deformations, and voltage-tomoment coefficients of the actuators, and the voltages accordingly required for actuation. A typical design would call

  18. Design and application of shape memory actuators

    Mertmann, M.; Vergani, G.

    2008-05-01

    The use of shape memory alloys in actuators allows the development of robust, simple and lightweight elements for application in a multitude of different industries. Over the years, the intermetallic compound Nickel-Titanium (NiTi or Nitinol) together with its ternary and quaternary derivates has gained general acceptance as a standard alloy. Even though as many as 99% of all shape memory actuator applications make use of Nitinol there are certain properties of this alloy system which require further research in order to find improvements and new markets: • Lack of higher transformation temperatures in the available alloys in order to open the field of automotive applications (Mf temperature > 80 °C) • Non-linearity in the electrical resistivity in order to improve the controllability of the actuator, • Wide hysteresis in the temperature-vs.-strain behaviour, which has a signi-ficant effect on both, the dynamics of the actuator and its controllability. Hence, there is a constant strive in the field towards an improvement of the related properties. However, these improvements are not always just alloy composition related. There is also a tremendous potential in the thermomechanical treatment of the material and in the design of the actuator. Significant improvement steps are already possible if the usage of the existent materials is optimized for the projected application and if the actuator system is designed in the most efficient way. This paper provides an overview about existent designs, applications and alloys for use in actuators, as well as examples of new shape memory actuator application with improved performance. It also gives an overview about general design rules and reflects about the strengths of the material and the related opportunities for its application.

  19. Linear peristaltic pump based on electromagnetic actuators

    Maddoui Lotfi

    2014-01-01

    Full Text Available In this paper a study and design of a linear peristaltic pump are presented. A set of electromagnetic (solenoid actuators is used as the active tools to drag the liquid by crushing an elastic tube. The pump consists of six serially-connected electromagnetic actuators controlled via an electronic board. This may be considered as a simulated peristalsis action of intestines. The dynamic performances of the pump are investigated analytically and experimentally.

  20. Novel Actuation Methods for High Force Haptics

    Buerger, Stephen P.; Hogan, Neville

    2010-01-01

    This chapter presented and defined high force haptic systems, and articulated the specific constraints that make the selection of actuators for this application difficult. To provide context, the pioneering high force haptics application of therapeutic robotics, and the obstacles to continued advancement of the field, were discussed. We continue to develop therapeutic robots for human movement from lower body (including partial weight support) to fine finger motions, and the actuation problem...

  1. Numerical simulation of aerodynamic plasma actuator effects

    da Silva Del Rio Vieira, Debora Gleice

    2013-01-01

    The present work used an in-house code (FASTEST) for solving the incompressible Navier-Stokes equations with Finite Volume Method applied to the flow over a flat plate influenced by plasma actuators. The actuators were modeled using experimental data (from PIV) for a precise evaluation of the plasma body force and its fluid mechanic effects. This method is proven and found to have a good accuracy suitable for a quantitative analysis of the proposed test cases. Tollmien-Schlichting waves were ...

  2. Floppy swimming: Viscous locomotion of actuated elastica

    Lauga, Eric

    2006-01-01

    Actuating periodically an elastic filament in a viscous liquid generally breaks the constraints of Purcell's scallop theorem, resulting in the generation of a net propulsive force. This observation suggests a method to design simple swimming devices - which we call "elastic swimmers" - where the actuation mechanism is embedded in a solid body and the resulting swimmer is free to move. In this paper, we study theoretically the kinematics of elastic swimming. After discussing the basic physical...

  3. Torque Control of Electrorheological Fluidic Actuators

    Vitrani, Marie-Aude; Nikitczuk, Jason; Morel, Guillaume; Mavroidis, Constantinos

    2004-01-01

    In this paper, the experimental closed loop torque control of electro-rheological fluids (ERF) based actuators for haptic applications is performed. ERFs are liquids that respond mechanically to electric fields by changing their properties, such as viscosity and shear stress, electroactively. Using the electrically controlled rheological properties of ERFs, we developed actuators for haptic devices that can resist human operator forces in a controlled and tunable fashion. In this study, the E...

  4. Position Control of Single Pneumatic Muscle Actuator

    FAN Wei; PENG Guang-zheng; NING Ru-xin

    2005-01-01

    The PID, fuzzy, self-organized fuzzy and self-organized fuzzy-PID controllers are adopted in the position control of single pneumatic muscle actuator. Experiments show that the self-organized fuzzy-PID is obviously effective for the position control of single pneumatic muscle actuator, which can realize precision within 0.3 mm and withstand 18N variable load plus about 36N fixed load. It is relatively precise and robust.

  5. Simultaneous Sensing cum Actuating DC Motor

    Daraeepour, Ali; Karimi Varkani, Ali

    2013-01-01

    This work aims to develop a new measurement method to monitor the speed, velocity, and mechanical impedance of a DC motor platform without using conventional sensors. A back-drivable DC motor platform is developed which uses the motor as sensor cum actuator. The sensor cum actuator determines the mechanical impedance of the moving load. By calibrating the Transduction Matrix of the DC motor the angular velocity and torque load of the motor can be measured via measuring the motor's electrical ...

  6. Model and control of tendon actuated robots

    Palli, Gianluca

    2007-01-01

    The use of tendons for the transmission of the forces and the movements in robotic devices has been investigated from several researchers all over the world. The interest in this kind of actuation modality is based on the possibility of optimizing the position of the actuators with respect to the moving part of the robot, in the reduced weight, high reliability, simplicity in the mechanic design and, finally, in the reduced cost of the resulting kinematic chain. After a brie...

  7. Electromechanical flight control actuator, volume 1

    1978-01-01

    An electromechanical actuator was developed that will follow a proportional control command with minimum wasted energy to demonstrate the feasibility of meeting space vehicle actuator requirements using advanced electromechanical concepts. The approach was restricted to a four-channel redundant configuration. Each channel has independent drive and control electronics, a brushless electric motor with brake, and velocity and position feedback transducers. A differential gearbox sums the output velocities of the motors. Normally, two motors are active and the other two are braked.

  8. Deformations of Piezoceramic-Composite Actuators

    Jilani, Adel Benhaj

    1999-01-01

    In the past few years a new class of layered piezoceramic and piezoceramic-composite actuators, known as RAINBOW and GRAPHBOW, respectively, that are capable of achieving 100 times greater out-of-plane displacements than previously available has been developed. Prior to the development of RAINBOW and GRAPHBOW, large stacks of piezoelectric actuators, requiring complicated electronic drive circuits, were necessary to achieve the displacement now possible through the use of a single RAINBOW act...

  9. Sensors and actuators engineering system instrumentation

    de Silva, Clarence W

    2015-01-01

    An engineering system contains multiple components that interconnect to perform a specific task. Starting from basic fundamentals through to advanced applications, Sensors and Actuators: Engineering System Instrumentation, Second Edition thoroughly explains the inner workings of an engineering system. The text first provides introductory material-practical procedures and applications in the beginning-and then methodically integrates more advanced techniques, theory, and concepts throughout the book. Emphasizing sensors, transducers, and actuators, the author discusses important aspects of comp

  10. Modeling and Control of Electromechanical Actuators for Heavy Vehicle Applications

    Pettersson, Alexander; Storm, Patrik

    2012-01-01

    The possibility to develop control systems for electromechanical actuators at Scania is studied, in particular the focus is on how to exchange the intelligent actuators used today with dumb ones. An intelligent actuator contains its own control electronics and computational power, bought as a unit from suppliers by Scania and controlled via the CAN bus. A dumb actuator contains no means of controlling itself and its I/O is the motor’s power pins. Intelligent actuators tend to have limited con...

  11. Electrically actuated multiple store launcher

    Marshall, Frank P.; Travor, Bruce W.

    1991-12-01

    This invention comprises a multi-store, electrical pulse initiated launcher that fits into, and is electrically connected with a transporting vehicle and that contains sequentially stacked assemblies. An electrical pulse from the transporting vehicle causes a resistor with the least value to transfer the electric sufficient gas pressure to force the store out of the launcher. The present invention discloses an electrically-actuated, multi-store dispenser wherein an initial electrical charge ignites gas cartridges causing sequential launching of stores from their tandem position inside a launch container. In some environments, it is desirable to dispense multiple stores from a launch vehicle, for instance sonobuoys, in dense patterns. Due to physical limitations of space in the dispensing vehicle, an effort was made to miniaturize the active components inside the store and therefore reduce the overall outer dimensions thereof. Once the size of the store was reduced, in order to meet the demands of the denser patterns, the inside of the individual launch containers were modified to allow each to hold and dispense more than one store. This new type of launch container, in addition to maintaining the size requirement dictated by the transporting vehicle, is operated by the vehicle's electrical system.

  12. High-pressure microhydraulic actuator

    Mosier, Bruce P [San Francisco, CA; Crocker, Robert W [Fremont, CA; Patel, Kamlesh D [Dublin, CA

    2008-06-10

    Electrokinetic ("EK") pumps convert electric to mechanical work when an electric field exerts a body force on ions in the Debye layer of a fluid in a packed bed, which then viscously drags the fluid. Porous silica and polymer monoliths (2.5-mm O.D., and 6-mm to 10-mm length) having a narrow pore size distribution have been developed that are capable of large pressure gradients (250-500 psi/mm) when large electric fields (1000-1500 V/cm) are applied. Flowrates up to 200 .mu.L/min and delivery pressures up to 1200 psi have been demonstrated. Forces up to 5 lb-force at 0.5 mm/s (12 mW) have been demonstrated with a battery-powered DC-DC converter. Hydraulic power of 17 mW (900 psi@ 180 uL/min) has been demonstrated with wall-powered high voltage supplies. The force and stroke delivered by an actuator utilizing an EK pump are shown to exceed the output of solenoids, stepper motors, and DC motors of similar size, despite the low thermodynamic efficiency.

  13. Lightweight Exoskeletons with Controllable Actuators

    Bar-Cohen, Yoseph; Mavrodis, Constantinos; Melli-Huber, Juan; Fisch, Avi (Alan)

    2004-01-01

    A proposed class of lightweight exoskeletal electromechanical systems would include electrically controllable actuators that would generate torques and forces that, depending on specific applications, would resist and/or assist wearers movements. The proposed systems would be successors to relatively heavy, bulky, and less capable human-strength-amplifying exoskeletal electromechanical systems that have been subjects of research during the past four decades. The proposed systems could be useful in diverse applications in which there are needs for systems that could be donned or doffed easily, that would exert little effect when idle, and that could be activated on demand: examples of such applications include (1) providing controlled movement and/or resistance to movement for physical exercise and (2) augmenting wearers strengths in the performance of military, law-enforcement, and industrial tasks. An exoskeleton according to the proposal would include adjustable lightweight graphite/epoxy struts and would be attached to the wearer's body by belts made of hook-and-pile material. At selected rotary and linear joints, the exoskeleton would be fitted, variously, with lightweight, low-power-consumption rotary and linear brakes, clutches, and motors. The exoskeleton would also be equipped with electronic circuitry for monitoring, control, and possibly communication with external electronic circuits that would perform additional monitoring and control functions.

  14. Position and torque tracking: series elastic actuation versus model-based-controlled hydraulic actuation.

    Otten, Alexander; van Vuuren, Wieke; Stienen, Arno; van Asseldonk, Edwin; Schouten, Alfred; van der Kooij, Herman

    2011-01-01

    Robotics used for diagnostic measurements on, e.g. stroke survivors, require actuators that are both stiff and compliant. Stiffness is required for identification purposes, and compliance to compensate for the robots dynamics, so that the subject can move freely while using the robot. A hydraulic actuator can act as a position (stiff) or a torque (compliant) actuator. The drawback of a hydraulic actuator is that it behaves nonlinear. This article examines two methods for controlling a nonlinear hydraulic actuator. The first method that is often applied uses an elastic element (i.e. spring) connected in series with the hydraulic actuator so that the torque can be measured as the deflection of the spring. This torque measurement is used for proportional integral control. The second method of control uses the inverse of the model of the actuator as a linearizing controller. Both methods are compared using simulation results. The controller designed for the series elastic hydraulic actuator is faster to implement, but only shows good performance for the working range for which the controller is designed due to the systems nonlinear behavior. The elastic element is a limiting factor when designing a position controller due to its low torsional stiffness. The model-based controller linearizes the nonlinear system and shows good performance when used for torque and position control. Implementing the model-based controller does require building and validating of the detailed model. PMID:22275654

  15. Cruise and turning performance of an improved fish robot actuated by piezoceramic actuators

    Nguyen, Quang Sang; Heo, Seok; Park, Hoon Cheol; Goo, Nam Seo; Byun, Doyoung

    2009-03-01

    The purpose of this study is improvement of a fish robot actuated by four light-weight piezocomposite actuators (LIPCAs). In the fish robot, we developed a new actuation mechanism working without any gear and thus the actuation mechanism was simple in fabrication. By using the new actuation mechanism, cross section of the fish robot became 30% smaller than that of the previous model. Performance tests of the fish robot in water were carried out to measure tail-beat angle, thrust force, swimming speed and turning radius for tail-beat frequencies from 1Hz to 5Hz. The maximum swimming speed of the fish robot was 7.7 cm/s at 3.9Hz tail-beat frequency. Turning experiment showed that swimming direction of the fish robot could be controlled with 0.41 m turning radius by controlling tail-beat angle.

  16. Ionoprinted Multi-Responsive Hydrogel Actuators

    Daniel Morales

    2016-05-01

    Full Text Available We report multi-responsive and double-folding bilayer hydrogel sheet actuators, whose directional bending response is tuned by modulating the solvent quality and temperature and where locally crosslinked regions, induced by ionoprinting, enable the actuators to invert their bending axis. The sheets are made multi-responsive by combining two stimuli responsive gels that incur opposing and complementary swelling and shrinking responses to the same stimulus. The lower critical solution temperature (LCST can be tuned to specific temperatures depending on the EtOH concentration, enabling the actuators to change direction isothermally. Higher EtOH concentrations cause upper critical solution temperature (UCST behavior in the poly(N-isopropylacrylamide (pNIPAAm gel networks, which can induce an amplifying effect during bilayer bending. External ionoprints reliably and repeatedly invert the gel bilayer bending axis between water and EtOH. Placing the ionoprint at the gel/gel interface can lead to opposite shape conformations, but with no clear trend in the bending behavior. We hypothesize that this is due to the ionoprint passing through the neutral axis of the bilayer during shrinking in hot water. Finally, we demonstrate the ability of the actuators to achieve shapes unique to the specific external conditions towards developing more responsive and adaptive soft actuator devices.

  17. Proprioceptive Actuation Design for Dynamic Legged locomotion

    Kim, Sangbae; Wensing, Patrick; Biomimetic Robotics Lab Team

    Designing an actuator system for highly-dynamic legged locomotion exhibited by animals has been one of the grand challenges in robotics research. Conventional actuators designed for manufacturing applications have difficulty satisfying challenging requirements for high-speed locomotion, such as the need for high torque density and the ability to manage dynamic physical interactions. It is critical to introduce a new actuator design paradigm and provide guidelines for its incorporation in future mobile robots for research and industry. To this end, we suggest a paradigm called proprioceptive actuation, which enables highly- dynamic operation in legged machines. Proprioceptive actuation uses collocated force control at the joints to effectively control contact interactions at the feet under dynamic conditions. In the realm of legged machines, this paradigm provides a unique combination of high torque density, high-bandwidth force control, and the ability to mitigate impacts through backdrivability. Results show that the proposed design provides an impact mitigation factor that is comparable to other quadruped designs with series springs to handle impact. The paradigm is shown to enable the MIT Cheetah to manage the application of contact forces during dynamic bounding, with results given down to contact times of 85ms and peak forces over 450N. As a result, the MIT Cheetah achieves high-speed 3D running up to 13mph and jumping over an 18-inch high obstacle. The project is sponsored by DARPA M3 program.

  18. Continuously-variable series-elastic actuator.

    Mooney, Luke; Herr, Hugh

    2013-06-01

    Actuator efficiency is an important factor in the design of powered leg prostheses, orthoses, exoskeletons, and legged robots. A continuously-variable series-elastic actuator (CV-SEA) is presented as an efficient actuator for legged locomotion. The CV-SEA implements a continuously-variable transmission (CVT) between a motor and series elastic element. The CVT reduces the torque seen at the motor and allows the motor to operate in speed regimes of higher efficiency, while the series-elastic element efficiently stores and releases mechanical energy, reducing motor work requirements for actuator applications where an elastic response is sought. An energy efficient control strategy for the CV-SEA was developed using a Monte-Carlo minimization method that randomly generates transmission profiles and converges on those that minimize the electrical energy consumption of the motor. The CV-SEA is compared to a standard SEA and an infinitely variable series elastic actuator (IV-SEA). Simulations suggest that a CV-SEA will require less energy that an SEA or IV-SEA when used in a knee prosthesis during level-ground walking. PMID:24187221

  19. Evolutionary flight and enabling smart actuator devices

    Manzo, Justin; Garcia, Ephrahim

    2007-04-01

    Recent interest in morphing vehicles with multiple, optimized configurations has led to renewed research on biological flight. The flying vertebrates - birds, bats, and pterosaurs - all made or make use of various morphing devices to achieve lift to suit rapidly changing flight demands, including maneuvers as complex as perching and hovering. The first part of this paper will discuss these devices, with a focus on the morphing elements and structural strong suits of each creature. Modern flight correlations to these devices will be discussed and analyzed as valid adaptations of these evolutionary traits. The second part of the paper will focus on the use of active joint structures for use in morphing aircraft devices. Initial work on smart actuator devices focused on NASA Langley's Hyper-Elliptical Cambered Span (HECS) wing platform, which led to development of a discretized spanwise curvature effector. This mechanism uses shape memory alloy (SMA) as the sole morphing actuator, allowing fast rotation with lightweight components at the expense of energy inefficiency. Phase two of morphing actuator development will add an element of active rigidity to the morphing structure, in the form of shape memory polymer (SMP). Employing a composite structure of polymer and alloy, this joint will function as part of a biomimetic morphing actuator system in a more energetically efficient manner. The joint is thermally actuated to allow compliance on demand and rigidity in the nominal configuration. Analytical and experimental joint models are presented, and potential applications on a bat-wing aircraft structure are outlined.

  20. A wireless actuating drug delivery system

    A wireless actuating drug delivery system was devised. The system is based on induction heating for drug delivery. In this study, thermally generated nitrogen gas produced by induction heating of azobisisobutyronitrile (AIBN) was utilized for pressure-driven release of the drug. The delivery device consists of an actuator chamber, a drug reservoir, and a microchannel. A semicircular copper disc (5 and 6 mm in diameter and 100 µm thick), and thermal conductive tape were integrated as the heating element in the actuator chamber. The final device was 2.7 mm thick. 28 µl of drug solution were placed in the reservoir and the device released the drug quickly at the rate of 6 µl s−1 by induction heating at 160 µT of magnetic intensity. The entire drug solution was released and dispersed after subcutaneous implantation under identical experimental condition. This study demonstrates that the device was simply prepared and drug delivery could be achieved by wireless actuation of a thin, pressure-driven actuator. (paper)

  1. Experimental investigation of resonant MEMS switch with ac actuation

    Pal, Jitendra; Zhu, Yong; Wang, Boyi; Lu, Junwei; Khan, Fahimullah; Viet Dao, Dzung; Wang, Yifan

    2016-06-01

    In this letter, modeling, analysis, and experimental investigation for a resonant MEMS switch are presented. The resonant switch harnesses its mechanical resonance to lower the required actuation voltage by a substantial factor over the switch with static actuation. With alternating actuation voltage at its mechanical resonance frequency of 6.6 kHz, the average capacitance is tuned by changing the gap between fixed and movable electrodes. Based on the proposed actuation method, the device offers 57.44% lower actuation voltage compared with the switch with static actuation.

  2. Anticipating electrical breakdown in dielectric elastomer actuators

    Muffoletto, Daniel P.; Burke, Kevin M.; Zirnheld, Jennifer L.

    2013-04-01

    The output strain of a dielectric elastomer actuator is directly proportional to the square of its applied electric field. However, since the likelihood of electric breakdown is elevated with an increased applied field, the maximum operating electric field of the dielectric elastomer is significantly derated in systems employing these actuators so that failure due to breakdown remains unlikely even as the material ages. In an effort to ascertain the dielectric strength so that stronger electric fields can be applied, partial discharge testing is used to assess the health of the actuator by detecting the charge that is released when localized instances of breakdown partially bridge the insulator. Pre-stretched and unstretched samples of VHB4910 tape were submerged in dielectric oil to remove external sources of partial discharges during testing, and the partial discharge patterns were recorded just before failure of the dielectric sample.

  3. Smart multi-lane electromechanical actuators

    Recent development in brushless DC motors and their drives provided the technology to build electromechanically actuated primary controls, hence they were proposed for ground, aerospace and (recently) mercantile applications. This paper addresses the transfer of single type summing architectures (namely, velocity, Torque and electromagnetic summing) to marine technology. The paper will highlight the drawbacks in such architectures and will propose (as an alternative) a novel Electromagnetic Torque Summing technique and will address the possible application of a vibration control method to this type of architecture. The previously proposed Fault detection and Fault Isolation system (in the all-electric aircraft) will be recommended and description of suitable threshold setting techniques on the imbedded Monitoring Devices will be given. The paper will also show how stringent space and response requirements in aircraft actuation systems could be relaxed when actuation technology is transferred to propel marine systems

  4. NEW HYDRAULIC ACTUATOR'S POSITION SERVOCONTROL STRATEGY

    KE Zunrong; ZHU Yuquan; LING Xuan

    2007-01-01

    A new hydraulic actuator-hydraulic muscle (HM) is described, and the actuator's features and applications are analyzed, then a position servocontrol system in which HM is main actuator is set up. The mathematical model of the system is built up and several control strategies are discussed. Based on the mathematical model, simulation research and experimental investigation with subsection PID control, neural network self-adaptive PID control and single neuron self-adaptive PID control adopted respectively are carried out, and the results indicate that compared with PID control, neural network self-adaptive PID control and single neuron self-adaptive PID control don't need controlled system's accurate model and have fast response, high control accuracy and strong robustness, they are very suitable for HM position servo control system.

  5. Adaptive liquid lens driven by elastomer actuator

    Jin, Boya; Lee, Ji-Hyeon; Zhou, Zuowei; Zhang, Guoqing; Lee, Gi-Bbeum; Ren, Hongwen; Nah, Changwoon

    2016-01-01

    When a liquid droplet is filled in the hole of a dielectric elastomer (DE) film, a liquid lens is prepared. By applying a DC voltage to the DE film, the liquid lens can be actuated. As a comparison, two liquid lenses, one in a millimeter scale and the other in a submillimeter scale, are demonstrated. In a relaxed state, the focal length of each liquid lens is the longest. In an actuated state, the diameter of each lens is reduced. As a result, their focal length is tuned. Here, the DE film functions as an actuator. Due to the biconvex shape and smooth liquid surface, each liquid lens can provide good optical performance. They also possess the merits of simple fabrication, compact structure, and easy operation. In contrast to the bigger liquid lens, the smaller one can present a better mechanical stability without the concern of the gravitational effect.

  6. Cylinder Flow Control Using Plasma Actuators

    Kozlov, Alexey; Thomas, Flint

    2007-11-01

    In this study the results of flow control experiments utilizing single dielectric barrier discharge plasma actuators to control flow separation and unsteady vortex shedding from a circular cylinder in cross-flow are reported. Two optimized quartz dielectric plasma actuators mounted on the cylinder surface utilizing an improved saw-tooth waveform high-voltage generator allowed flow control at Reynolds number approaching supercritical. Using either steady or unsteady actuation, it is demonstrated that the plasma-induced surface blowing gives rise to a local Coanda effect that promotes the maintenance of flow attachment. PIV based flow fields and wake velocity profiles obtained with hot-wire anemometry show large reductions in vortex shedding, wake width and turbulence intensity.

  7. Potential/charge induced nanoporous metal actuators.

    Viswanath, R N

    2009-01-01

    The mechanical response to the electrochemical charging of nanoporous metals with their pore space wetted by electrolyte have been studied in-situ using dilatometry and wide angle x-ray diffractometry techniques. The actuation strain reported in this manuscript is purely elastic and completely reversible. The capacitive double layer charging became more effective near to the potential to zero charge (pzc) and contribute significantly to the variations of surface stress and crystal strain. In a suitable experimental setup, the actuator effect from porous metals can be amplified, where deliberate movements of the actuator parts are desirable with minimum external force, suggesting that metallic foam-like materials with high surface to volume ratio could be used to mimic natural muscles. PMID:19964917

  8. Performance study of a hydrogen powered metal hydride actuator

    Mainul Hossain Bhuiya, Md; Kim, Kwang J.

    2016-04-01

    A thermally driven hydrogen powered actuator integrating metal hydride hydrogen storage reactor, which is compact, noiseless, and able to generate smooth actuation, is presented in this article. To test the plausibility of a thermally driven actuator, a conventional piston type actuator was integrated with LaNi5 based hydrogen storage system. Copper encapsulation followed by compaction of particles into pellets, were adopted to improve overall thermal conductivity of the reactor. The operation of the actuator was thoroughly investigated for an array of operating temperature ranges. Temperature swing of the hydride reactor triggering smooth and noiseless actuation over several operating temperature ranges were monitored for quantification of actuator efficiency. Overall, the actuator generated smooth and consistent strokes during repeated cycles of operation. The efficiency of the actuator was found to be as high as 13.36% for operating a temperature range of 20 °C-50 °C. Stress-strain characteristics, actuation hysteresis etc were studied experimentally. Comparison of stress-strain characteristics of the proposed actuator with traditional actuators, artificial muscles and so on was made. The study suggests that design modification and use of high pressure hydride may enhance the performance and broaden the application horizon of the proposed actuator in future.

  9. Effect of actuation sequence on flow rates of peristaltic micropumps with PZT actuators.

    Jang, Ling-Sheng; Shu, Kuan; Yu, Yung-Chiang; Li, Yuan-Jie; Chen, Chiun-Hsun

    2009-02-01

    Many biomedical applications require the administration of drugs at a precise and preferably programmable rate. The flow rate generated by the peristaltic micropumps used in such applications depends on the actuation sequence. Accordingly, the current study performs an analytical and experimental investigation to determine the correlation between the dynamic response of the diaphragms in the micropump and the actuation sequence. A simple analytical model of a peristaltic micropump is established to analyze the shift in the resonant frequency of the diaphragms caused by the viscous damping effect. The analytical results show that this damping effect increases as the oscillation frequency of the diaphragm increases. A peristaltic micropump with three piezoelectric actuators is fabricated on a silicon substrate and is actuated using 2-, 3-, 4- and 6-phase actuation sequences via a driving system comprising a microprocessor and a phase controller. A series of experiments is conducted using de-ionized water as the working fluid to determine the diaphragm displacement and the flow rates induced by each of the different actuation sequences under phase frequencies ranging from 50 Hz to 1 MHz. The results show that the damping effect of actuation sequences influences diaphragm resonant frequency, which in turn affects the profiles of flow rates. PMID:18821016

  10. Research on Composite PZT for Largedisplacement Actuators

    2007-01-01

    A new kind of composite piezoelectric ceramics for large-displacement actuators, which were composed of reduced and unreduced layers, was prepared from normal PZT by chemical reduction. The stress distribution inside the composite PZT was researched and the chemical reduction conditions were explored.The actuating properties of reduced PZT were also studied. It is found that the optimal ratio of reduced layer thickness for the composite structure is 0.3; Reduced composite PZT has lower resonance frequency and 3 times larger displacement than that of the traditional PZT; Re-oxide phases are found in reduced layer of composite PZT showing the reduction procedure needs to be improved.

  11. Optical nano and micro actuator technology

    Knopf, George K

    2012-01-01

    In Optical Nano and Micro Actuator Technology, leading engineers, material scientists, chemists, physicists, laser scientists, and manufacturing specialists offer an in-depth, wide-ranging look at the fundamental and unique characteristics of light-driven optical actuators. They discuss how light can initiate physical movement and control a variety of mechanisms that perform mechanical work at the micro- and nanoscale. The book begins with the scientific background necessary for understanding light-driven systems, discussing the nature of light and the interaction between light and NEMS/MEMS d

  12. Surface micromachined electrostatically actuated micro peristaltic pump

    Xie, Jun; Shih, Jason; Lin, Qiao; Yang, Bozhi; Tai, Yu-Chong

    2004-01-01

    An electrostatically actuated micro peristaltic pump is reported. The micro pump is entirely surface micromachined using a multilayer parylene technology. Taking advantage of the multilayer technology, the micro pump design enables the pumped fluid to be isolated from the electric field. Electrostatic actuation of the parylene membrane using both DC and AC voltages was demonstrated and applied to fluid pumping based on a 3-phase peristaltic sequence. A maximum flow rate of 1.7 nL min^–1 and a...

  13. FLUTTER SUPPRESSION USING DISTRIBUTED PIEZOELECTRIC ACTUATORS

    2000-01-01

    The Flutter suppression using distributed piezoelectric actuators has been analyzed and tested. In constructing the finite element equation, effects of piezoelectric matrices are investigated. LQG method is used in designing the control law. In reducing the order of the control law, both balance realization and LK methods are used. For the rational approximation of the unsteady aerodynamic forces LS method is improved. In determining the piezoelectric constants d31 a new dynamic response method is developed. Laser vibrameter is used to pick up the model response and in ground resonance test the model is excited by piezoelectric actuators. Reasonable agreement of the wind tunnel flutter suppression test with calculated results is obtained.

  14. Ceramic-Metal Interfaces in Multilayer Actuators

    Engell, John; Pedersen, Henrik Guldberg; Andersen, Bjørn;

    1996-01-01

    quality and strength of this interface. In the case of a weak ceramic-metal interface, delaminations will occur under severe working conditions.Work has been carried out on a commercial PZT type ceramic and various types of Pt electrode paste. The present study involves characterization of the interface......Multilayer actuators consist of a number of piezoelectric or electrostrictive ceramic layers, separated by thin metal electrodes. Thus, the ceramic-metal interface plays an even more important role than for bulk piezoceramics. The performance and durability of the actuator depends closely on the...

  15. Ceramic-Metal Interfaces in Multilayer Actuators

    Engell, John; Pedersen, Henrik Guldberg; Andersen, Bjørn; James, Andrew S.

    1996-01-01

    Multilayer actuators consist of a number of piezoelectric or electrostrictive ceramic layers, separated by thin metal electrodes. Thus, the ceramic-metal interface plays an even more important role than for bulk piezoceramics. The performance and durability of the actuator depends closely on the...... quality and strength of this interface. In the case of a weak ceramic-metal interface, delaminations will occur under severe working conditions.Work has been carried out on a commercial PZT type ceramic and various types of Pt electrode paste. The present study involves characterization of the interface...

  16. Prognostic Health-Management System Development for Electromechanical Actuators

    National Aeronautics and Space Administration — Electro-mechanical actuators (EMAs) have been gaining increased acceptance as safety-critical actuation devices in the next generation of aircraft and spacecraft....

  17. Actuator assembly including a single axis of rotation locking member

    Quitmeyer, James N.; Benson, Dwayne M.; Geck, Kellan P.

    2009-12-08

    An actuator assembly including an actuator housing assembly and a single axis of rotation locking member fixedly attached to a portion of the actuator housing assembly and an external mounting structure. The single axis of rotation locking member restricting rotational movement of the actuator housing assembly about at least one axis. The single axis of rotation locking member is coupled at a first end to the actuator housing assembly about a Y axis and at a 90.degree. angle to an X and Z axis providing rotation of the actuator housing assembly about the Y axis. The single axis of rotation locking member is coupled at a second end to a mounting structure, and more particularly a mounting pin, about an X axis and at a 90.degree. angle to a Y and Z axis providing rotation of the actuator housing assembly about the X axis. The actuator assembly is thereby restricted from rotation about the Z axis.

  18. Unconventional Magnetic Actuators for Automatic Transmission Shifted by Wire

    Reinap, Avo

    2015-01-01

    This report has its focus on development of an unconventional magnetic actuator for vehicular application more specific for gearbox actuators namely: Automatic Transmission Shifted by Wire (ATSbW). The application requires a compact an inexpensive electrically actuated drive that provides high torque over limited angle of movement. The specific research focus of this project is related to development of a novel and unconventional solution for a transmission actuator. The central part part of ...

  19. Dynamic Actuator for Centrifuge Modeling of Soil-Structure Interaction

    CABRERA, Miguel Angel; Caicedo, Bernardo; THOREL, Luc

    2012-01-01

    This paper presents a new dynamic actuator useful to study soil-structure interactions in a centrifuge. This new dynamic apparatus is based on an amplified piezoelectric actuator. Using this device it is possible to create vibrations in the soil sample of different frequencies and amplitudes. The dynamic actuator consists of a set of weights in a single degree of freedom system plus a piezoelectric actuator and a piezoelectric load cell, which measures the dynamic load. A description of the d...

  20. A Review of High Voltage Drive Amplifiers for Capacitive Actuators

    Huang, Lina; Zhang, Zhe; Andersen, Michael A. E.

    2012-01-01

    This paper gives an overview of the high voltage amplifiers, which are used to drive capacitive actuators. The amplifiers for both piezoelectric and DEAP (dielectric electroactive polymer) actuator are discussed. The suitable topologies for driving capacitive actuators are illustrated in detail......, including linear as well as switched mode amplifiers. In the past much attention has been paid on the driver for piezoelectric actuator. As DEAP is a type of new material, there is not much literature reference for it....

  1. Shape-Memory-Alloy Actuator For Flight Controls

    Barret, Chris

    1995-01-01

    Report proposes use of shape-memory-alloy actuators, instead of hydraulic actuators, for aerodynamic flight-control surfaces. Actuator made of shape-memory alloy converts thermal energy into mechanical work by changing shape as it makes transitions between martensitic and austenitic crystalline phase states of alloy. Because both hot exhaust gases and cryogenic propellant liquids available aboard launch rockets, shape-memory-alloy actuators exceptionally suited for use aboard such rockets.

  2. Flexible parylene actuator for micro adaptive flow control

    Pornsin-Sirirak, T. N.; Tai, Y. C.; Nassef, H.; Ho, C M

    2001-01-01

    This paper describes the first flexible parylene electrostatic actuator valves intended for micro adaptive flow control for the future use on the wings of micro-air-vehicle (MAV). The actuator diaphragm is made of two layers of parylene membranes with offset vent holes. Without electrostatic actuation, air can move freely from one side of the skin to the other side through the vent holes. With actuation, these vent holes are sealed and the airflow is controlled. The membrane behaves as a comp...

  3. 14 CFR 33.72 - Hydraulic actuating systems.

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic actuating systems. 33.72 Section... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72 Hydraulic actuating systems. Each hydraulic actuating system must function properly under all conditions in which...

  4. Dynamic actuation of single-crystal diamond nanobeams

    Sohn, Young-Ik; Burek, Michael J.; Lončar, Marko, E-mail: loncar@seas.harvard.edu [John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138 (United States); Kara, Vural [Department of Mechanical Engineering, Division of Materials Science and Engineering, and the Photonics Center, Boston University, Boston, Massachusetts 02215 (United States); Kearns, Ryan [John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138 (United States); Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada)

    2015-12-14

    We show the dielectrophoretic actuation of single-crystal diamond nanomechanical devices. Gradient radio-frequency electromagnetic forces are used to achieve actuation of both cantilever and doubly clamped beam structures, with operation frequencies ranging from a few MHz to ∼50 MHz. Frequency tuning and parametric actuation are also studied.

  5. Thermal Actuation for Precision Micro Motion and Positioning

    Paalvast, S.L.

    2010-01-01

    The primary goal of this research was to study the feasibility of a thermal micro actuator for improved tracking performance of a Hard Disk Drive (HDD), and the feasibility of thermal actuation for precision micro motion and positioning in general. The fast dynamics of the micro actuator allows it t

  6. Application of shape memory alloy (SMA) as actuator

    Ľ. Miková; Medvecká - Beňová, S.; M. Kelemen; Trebuňa, F.; Virgala, I.

    2015-01-01

    This paper deals w ith actuators based on shape memory alloys. The testing device has been developed for experimental verification of shape memory alloy actuator testing. Static characteristic shows the hysteresis of this material. Also dynamic properties have been explored through the step response characteristic. Application of the material as actuator in engineering system is shown.

  7. STUDY ON THE CONTROL OF SINGLE PNEUMATIC MUSCLE ACTUATOR

    Fan Wei; Peng Guangzheng; Chai Senchun; Ning Ruxin

    2003-01-01

    The control of single pneumatic muscle actuator is studied, as one basic part of research on the parallel-robot arthrosis actuated by pneumatic muscle actuators. Experiments show that a self-modified fuzzy-PID controller is obviously effective for its position servo and a simple PID controller is good for its force track.

  8. Preisach model of hysteresis for the Piezoelectric Actuator Drive

    Zsurzsan, Tiberiu-Gabriel; Andersen, Michael A. E.; Zhang, Zhe;

    2015-01-01

    The Piezoelectric Actuator Drive (PAD) is a precise piezoelectric motor generating high-torque rotary motion, which employs piezoelectric stack actuators in a wobblestyle actuation to generate rotation. The piezoelectric stacked ceramics used as the basis for motion in the motor suffer from...

  9. Final report : compliant thermo-mechanical MEMS actuators, LDRD #52553.

    Walraven, Jeremy Allen; Baker, Michael Sean; Headley, Thomas Jeffrey; Plass, Richard Anton

    2004-12-01

    Thermal actuators have proven to be a robust actuation method in surface-micromachined MEMS processes. Their higher output force and lower input voltage make them an attractive alternative to more traditional electrostatic actuation methods. A predictive model of thermal actuator behavior has been developed and validated that can be used as a design tool to customize the performance of an actuator to a specific application. This tool has also been used to better understand thermal actuator reliability by comparing the maximum actuator temperature to the measured lifetime. Modeling thermal actuator behavior requires the use of two sequentially coupled models, the first to predict the temperature increase of the actuator due to the applied current and the second to model the mechanical response of the structure due to the increase in temperature. These two models have been developed using Matlab for the thermal response and ANSYS for the structural response. Both models have been shown to agree well with experimental data. In a parallel effort, the reliability and failure mechanisms of thermal actuators have been studied. Their response to electrical overstress and electrostatic discharge has been measured and a study has been performed to determine actuator lifetime at various temperatures and operating conditions. The results from this study have been used to determine a maximum reliable operating temperature that, when used in conjunction with the predictive model, enables us to design in reliability and customize the performance of an actuator at the design stage.

  10. A novel energy-efficient rotational variable stiffness actuator

    Rao, Shodhan; Carloni, Raffaella; Stramigioli, Stefano

    2011-01-01

    This paper presents the working principle, the design and realization of a novel rotational variable stiffness actuator, whose stiffness can be varied independently of its output angular position. This actuator is energy-efficient, meaning that the stiffness of the actuator can be varied by keeping

  11. Dynamic actuation of single-crystal diamond nanobeams

    We show the dielectrophoretic actuation of single-crystal diamond nanomechanical devices. Gradient radio-frequency electromagnetic forces are used to achieve actuation of both cantilever and doubly clamped beam structures, with operation frequencies ranging from a few MHz to ∼50 MHz. Frequency tuning and parametric actuation are also studied

  12. Performance evaluation of an improved fish robot actuated by piezoceramic actuators

    This paper presents an improved fish robot actuated by four lightweight piezocomposite actuators. Our newly developed actuation mechanism is simple to fabricate because it works without gears. With the new actuation mechanism, the fish robot has a 30% smaller cross section than our previous model. Performance tests of the fish robot in water were carried out to measure the tail-beat angle, the thrust force, the swimming speed for various tail-beat frequencies from 1 to 5 Hz and the turning radius at the optimal frequency. The maximum swimming speed of the fish robot is 7.7 cm s−1 at a tail-beat frequency of 3.9 Hz. A turning experiment shows that the swimming direction of the fish robot can be controlled by changing the duty ratio of the driving voltage; the fish robot has a turning radius of 0.41 m for a left turn and 0.68 m for a right turn

  13. Performance evaluation of an improved fish robot actuated by piezoceramic actuators

    Nguyen, Q. S.; Heo, S.; Park, H. C.; Byun, D.

    2010-03-01

    This paper presents an improved fish robot actuated by four lightweight piezocomposite actuators. Our newly developed actuation mechanism is simple to fabricate because it works without gears. With the new actuation mechanism, the fish robot has a 30% smaller cross section than our previous model. Performance tests of the fish robot in water were carried out to measure the tail-beat angle, the thrust force, the swimming speed for various tail-beat frequencies from 1 to 5 Hz and the turning radius at the optimal frequency. The maximum swimming speed of the fish robot is 7.7 cm s - 1 at a tail-beat frequency of 3.9 Hz. A turning experiment shows that the swimming direction of the fish robot can be controlled by changing the duty ratio of the driving voltage; the fish robot has a turning radius of 0.41 m for a left turn and 0.68 m for a right turn.

  14. A design of winch actuator speed control actuator on the gamma detection device geophysics logging

    The detection device consists of a detection system, data acquisition system and winch control system actuators. The winch speed actuator controller is for controlling the speed of detector 6 meters/minute and capable of carrying 20 kg load as far as 500 meters into the under ground using an electric motor. The purpose of this design is to determine and to select the electric motor according to speed control of winch actuator desired. The method of the design is using these used data to determine the motor power, motor rotation, and speed winch actuator used. A DC series motor of 1/20 HP, 24 V, 1140 RPM is the motor is provided with settings to the motor power supply voltage from 12 V up to 24 V and resistance from 0 Ω up to 12 Ω. The resistance is connected in series with motor yoke. (author)

  15. Novel Highly Efficient Compact Rotary-Hammering Planetary Sampler Actuated by a Single Piezoelectric Actuator Project

    National Aeronautics and Space Administration — We had two objectives in this task: 1. Develop effective single low-mass, low-power piezoelectric drive that can actuate rotary-hammer samplers through walls. 2....

  16. Spring-loaded polymeric gel actuators

    Shahinpoor, M.

    1995-02-14

    Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications. 5 figs.

  17. Actuation response of polyacrylate dielectric elastomers

    Kofod, G.; Kornbluh, R.; Pelrine, R.;

    2001-01-01

    Polyacrylate dielectric elastomers have yielded extremely large strain and elastic energy density suggesting that they are useful for many actuator applications. A thorough understanding of the physics underlying the mechanism of the observed response to an electric field can help develop improved...

  18. Piezoelectric actuators control applications of smart materials

    Choi, Seung-Bok

    2010-01-01

    Newer classes of smart materials are beginning to display the capacity for self-repair, self-diagnosis, self-multiplication, and self-degradation. While there are other candidates, piezoelectric actuators and sensors are proving to be the best choice. This title details the authors' research and development in this area.

  19. Sleeve Muscle Actuator: Concept and Prototype Demonstration

    Tad Driver; Xiangrong Shen

    2013-01-01

    This paper presents the concept and prototype demonstration results of a new sleeve muscle actuator,which provides a significantly improved performance through a fundamental structural change to the traditional pneumatic muscle.Specifically,the sleeve muscle incorporates a cylindrical insert to the center of the pneumatic muscle,and thus eliminates the central portion of the intemal volume.Through the analysis of the actuation mechanism,it is shown that the sleeve muscle is able to provide a consistent increase of force capacity over the entire range of motion.Furthermore,the sleeve muscle provides a significant energy saving effect,as a result of the reduced internal volume as well as the enhance force capacity.To demonstrate this new concept,a sleeve muscle prototype was designed and fabricated.Experiments conducted on the prototype verified the improvement in the force capacity and demonstrated a significant energy saving effect (20%-37%).Finally,as the future work on this new concept,the paper presents a new robotic elbow design actuated with the proposed sleeve muscle.This unique design is expected to provide a highly compact and powerful actuation approach for robotic systems.

  20. Pulley With Active Antifriction Actuator And Control

    Ih, Che-Hang C.; Vivian, Howard C.

    1994-01-01

    Torque actuator and associated control system minimizes effective friction of rotary bearing. Motor exerts compensating torque in response to feedback from external optical sensor. Compensation torque nearly cancels frictional torque of shaft bearings. Also useful in reducing bearing friction in gyro-scopes, galvanometers, torquemeters, accelerometers, earth-motion detectors, and balances.

  1. Carbon nanotube based NEMS actuators and sensors

    Forney, Michael; Poler, Jordan

    2011-03-01

    Single-walled carbon nanotubes (SWNTs) have been widely studied due to superior mechanical and electrical properties. We have grown vertically aligned SWNTs (VA-SWNTs) onto microcantilever (MC) arrays, which provides an architecture for novel actuators and sensors. Raman spectroscopy confirms that the CVD-grown nanotubes are SWNTs and SEM confirms aligned growth. As an actuator, this hybrid MC/VA-SWNT system can be electrostatically modulated. SWNTs are excellent electron acceptors, so we can charge up the VA-SWNT array by applying a voltage. The electrostatic repulsion among the charged SWNTs provides a surface stress that induces MC deflection. Simulation results show that a few electrons per SWNT are needed for measureable deflections, and experimental actuators are being characterized by SEM, Raman, and an AFM optical lever system. The applied voltage is sinusoidally modulated, and deflection is measured with a lock-in amplifier. These actuators could be used for nano-manipulation, release of drugs from a capsule, or nano-valves. As a sensor, this MC/VA-SWNT system offers an improved sensitivity for chemical and bio-sensing compared to surface functionalized MC-based sensors. Those sensors only have a 2D sensing surface, but a MC/VA-SWNT system has significantly more sensing surface because the VA-SWNTs extend microns off the MC surface.

  2. Multiscale optimization of saturated poroelastic actuators

    Andreasen, Casper Schousboe; Sigmund, Ole

    A multiscale method for optimizing the material micro structure in a macroscopically heterogeneous saturated poroelastic media with respect to macro properties is presented. The method is based on topology optimization using the homogenization technique, here applied to the optimization of a bi......-morph saturated poroelastic actuator....

  3. Saturated poroelastic actuators generated by topology optimization

    Andreasen, Casper Schousboe; Sigmund, Ole

    2011-01-01

    In this paper the fluid-structure interaction problem of a saturated porous media is considered. The pressure coupling properties of porous saturated materials change with the microstructure and this is utilized in the design of an actuator using a topology optimized porous material. By maximizin...

  4. Numerical simulation of mechatronic sensors and actuators

    Kaltenbacher, Manfred

    2007-01-01

    Focuses on the physical modeling of mechatronic sensors and actuators and their precise numerical simulation using the Finite Element Method (FEM). This book discusses the physical modeling as well as numerical computation. It also gives a comprehensive introduction to finite elements, including their computer implementation.

  5. Satellite Attitude Control Using Only Electromagnetic Actuation

    Wisniewski, Rafal

    The primary purpose of this work was to develop control laws for three axis stabilization of a magnetic actuated satellite. This was achieved by a combination of linear and nonlinear system theory. In order to reach this goal new theoretical results were produced in both fields. The focus of the ...

  6. Shape memory polymer actuator and catheter

    Maitland, Duncan J. (Pleasant Hill, CA); Lee, Abraham P. (Walnut Creek, CA); Schumann, Daniel L. (Concord, CA); Matthews, Dennis L. (Moss Beach, CA); Decker, Derek E. (Byron, CA); Jungreis, Charles A. (Pittsburgh, PA)

    2007-11-06

    An actuator system is provided for acting upon a material in a vessel. The system includes an optical fiber and a shape memory polymer material operatively connected to the optical fiber. The shape memory polymer material is adapted to move from a first shape for moving through said vessel to a second shape where it can act upon said material.

  7. The Overtone Fiddle: an Actuated Acoustic Instrument

    Overholt, Daniel

    2011-01-01

    The Overtone Fiddle is a new violin-family instrument that incorporates electronic sensors, integrated DSP, and physical actuation of the acoustic body. An embedded tactile sound transducer creates extra vibrations in the body of the Overtone Fiddle, allowing performer control and sensation via...

  8. Development of ICPF Actuated Underwater Microrobots

    Xiuo-Fen Ye; Bao-Feng Gao; Shu-Xiang Guo; Li-Quan Wang

    2006-01-01

    It is our target to develop underwater microrobots for medical and industrial applications. This kind of underwater microrobots should have the characteristics of flexibility, good response and safety. Its structure should be simple and it can be driven by low voltage and produces no pollution or noise. The low actuating voltage and quick bending responses of Ionic Conducting Polymer Film (ICPF) are considered very useful and attractive for constructing various types of actuators and sensors. In this paper, we will first study the characteristics of the ICPF actuator used in underwater microrobot to realize swimming and walking. Then, we propose a new prototype model of underwater swimming microrobot utilizing only one piece of ICPF as the servo actuator. Through theoretic analysis, the motion mechanism of the microrobot is illustrated. It can swim forward and vertically. The relationships between moving speed and signal voltage amplitude and signal frequency is obtained after experimental study. Lastly, we present a novel underwater crab-like walking microrobot named crabliker-1. It has eight legs, and each leg is made up of two pieces of ICPF. Three sample processes of the octopod gait are proposed with a new analyzing method. The experimental results indicate that the crab-like underwater microrobot can perform transverse and rotation movement when the legs of the crab collaborate.

  9. A smart soft actuator using a single shape memory alloy for twisting actuation

    Shim, Jae-Eul; Quan, Ying-Jun; Wang, Wei; Rodrigue, Hugo; Song, Sung-Hyuk; Ahn, Sung-Hoon

    2015-12-01

    Recently, robots have become a topic of interest with regard to their functionality as they need to complete a large number of diverse tasks in a variety of environments. When using traditional mechanical components, many parts are needed to realize complex deformations, such as motors, hinges, and cranks. To produce complex deformations, this work introduces a smart soft composite torsional actuator using a single shape memory alloy (SMA) wire without any additional elements. The proposed twisting actuator is composed of a torsionally prestrained SMA wire embedded at the center of a polydimethylsiloxane matrix that twists by applying an electric current upon joule heating of the SMA wire. This report shows the actuator design, fabrication method, and results for the twisting angle and actuation moment. Results show that a higher electric current helps reach the maximum twisting angle faster, but that if the current is too low or too high, it will not be able to reach its maximum deformation. Also, both the twisting angle and the twisting moment increase with a large applied twisting prestrain, but this increase has an asymptotic behavior. However, results for both the width and the thickness of the actuator show that a larger width and thickness reduce the maximum actuation angle of the actuator. This paper also presents a new mechanism for an SMA-actuated active catheter using only two SMA wires with a total length of 170 mm to bend the tip of the catheter in multiple directions. The fabricated active catheter’s maximum twisting angle is 270°, and the maximum bending curvature is 0.02 mm-1.

  10. Printing low-voltage dielectric elastomer actuators

    Poulin, Alexandre; Rosset, Samuel; Shea, Herbert R.

    2015-12-01

    We demonstrate the fabrication of fully printed thin dielectric elastomer actuators (DEAs), reducing the operation voltage below 300 V while keeping good actuation strain. DEAs are soft actuators capable of strains greater than 100% and response times below 1 ms, but they require driving voltage in the kV range, limiting the possible applications. One way to reduce the driving voltage of DEAs is to decrease the dielectric membrane thickness, which is typically in the 20-100 μm range, as reliable fabrication becomes challenging below this thickness. We report here the use of pad-printing to produce μm thick silicone membranes, on which we pad-print μm thick compliant electrodes to create DEAs. We achieve a lateral actuation strain of 7.5% at only 245 V on a 3 μm thick pad-printed membrane. This corresponds to a ratio of 125%/kV2, by far the highest reported value for DEAs. To quantify the increasing stiffening impact of the electrodes on DEA performance as the membrane thickness decreases, we compare two circular actuators, one with 3 μm- and one with 30 μm-thick membranes. Our experimental measurements show that the strain uniformity of the 3 μm-DEA is indeed affected by the mechanical impact of the electrodes. We developed a simple DEA model that includes realistic electrodes of finite stiffness, rather than assuming zero stiffness electrodes as is commonly done. The simulation results confirm that the stiffening impact of the electrodes is an important parameter that should not be neglected in the design of thin-DEAs. This work presents a practical approach towards low-voltage DEAs, a critical step for the development of real world applications.

  11. Identification of micropositioning stage with piezoelectric actuators

    Dong, Ruili; Tan, Yonghong; Xie, Yangqiu

    2016-06-01

    In this paper, a two-step identification method for a micropositioning stage with piezoelectric actuator is proposed. It is noted that one of the difficulties encountered in identification is that both input and output of the actuator embedded in the stage cannot be measured directly. Moreover, hysteresis existing in piezoelectric actuators is a non-smooth complex nonlinearity. In the proposed modeling method, a sandwich model with hysteresis is used to describe the performance of the micropositioning stage with piezoelectric actuator. In this modeling architecture, the input linear submodel is utilized to describe the behavior of preceded amplifier with filtering circuit, which provides electrical voltage to the piezoactuator, and the output linear submodel is employed to depict the flexural hinge with load, respectively, while a Duhem function embedded in between the input and output linear submodels is employed to describe the hysteresis characteristic of piezoelectric actuator in the stage. At the first step of the identification procedure, a special excitation input is implemented to excite the stage to decompose the hysteresis into a monotonic polynomial within a certain region. Then, the parameters of linear submodels are separated and estimated. Subsequently, at the second step, an input signal that can fully excite the system within the operation region is implemented to excite the stage. Based on the previously estimated linear submodels, both input and output of the piezoactuator are estimated. Then, in terms of the estimated input and output of the piezoactuator, the parameters of the hysteresis submodel are estimated. Finally, experimental results are presented to verify the proposed method.

  12. Adaptive SMA actuator priming using resistance feedback

    Shape memory alloys (SMAs) are a group of alloys which demonstrate the unique ability of returning back to a previously defined shape or size if subjected to the appropriate thermal conditions. They have been implemented as actuators—where heat is controlled via applied current—in a wide range of applications spanning several fields such as robotics, aeronautics, automotive and medicine. SMA manufacturers specify what they refer to as the 'safe current' which is the maximum current that can be applied to the SMA wire indefinitely without damaging it by overheating. However, this current is typically specified at room temperature under natural convection conditions. The objective of this work is to develop controllers for SMA actuators in automotive applications and this requires predictable and consistent functionality across a wide range of ambient temperatures, typically from − 40 to 85 °C. Consequently, applying the safe current in cold ambient temperatures may not actuate the SMA whereas it could potentially over-heat the SMA at high ambient temperatures. In this paper, we use a novel approach involving resistance feedback to achieve more consistent actuation across a range of ambient temperatures and compare experimental results for several different control strategies. The results show that controller designs using an adaptive current to actuate the SMA wire achieved more consistent results across the desired range of ambient temperatures compared to using the fixed safe current. Of these designs, a controller strategy dubbed Minus 4.5% achieved the most consistent actuation results and was a significant improvement over conventional control strategies

  13. Failure of cargo aileron’s actuator

    G. Zucca

    2014-10-01

    Full Text Available During a ferry flight, in a standard operation condition and at cruising level, a military cargo experienced a double hydraulic system failure due to a structural damage of the dual booster actuator. The booster actuator is the main component in mechanism of aileron’s deflection. The crew was able to arrange an emergency landing thanks to the spare oil onboard: load specialists refilled the hydraulic reservoirs. Due to safety concerns and in order to prevent the possibility of other similar incidents, a technical investigation took place. The study aimed to carry out the analysis of root causes of the actuator failure. The Booster actuator is composed mainly by the piston rod and its aluminum external case (AA7049. The assembly has two bronze caps on both ends. These are fixed in position by means of two retainers. At one end of the actuator case is placed a trunnion: a cylindrical protrusion used as a pivoting point on the aircraft. The fracture was located at one end of the case, on the trunnion side, in correspondence to the cap and over the retainer. One of the two fracture surfaces was found separated to the case and with the cap entangled inside. The fracture surfaces of the external case indicated fatigue crack growth followed by ductile separation. The failure analysis was performed by means of optical, metallographic, digital and electronic microscopy. The collected evidences showed a multiple initiation fracture mechanism. Moreover, 3D scanner reconstruction and numerical simulation demonstrated that dimensional non conformances and thermal loads caused an abnormal stress concentration. Stress concentration was located along the case assy outer surface where the fatigue crack originated. The progressive rupture mechanism grew under cyclical axial load due to the normal operations. Recommendations were issued in order to improve dimensional controls and assembly procedures during production and overhaul activities.

  14. Field emission microplasma actuation for microchannel flows

    Sashank Tholeti, Siva; Shivkumar, Gayathri; Alexeenko, Alina A.

    2016-06-01

    Microplasmas offer attractive flow control methodology for gas transport in microsystems where large viscous losses make conventional pumping methods highly inefficient. We study microscale flow actuation by dielectric-barrier discharge (DBD) with field emission (FE) of electrons, which allows lowering the operational voltage from kV to a few hundred volts and below. A feasibility study of FE-DBD for flow actuation is performed using 2D particle-in-cell method with Monte Carlo collisions (PIC/MCC) at 10 MHz in nitrogen at atmospheric pressure. The free diffusion dominated, high velocity field emission electrons create a large positive space charge and a body force on the order of 106 N m‑3. The body force and Joule heat decrease with increase in dielectric thickness and electrode thickness. The body force also decreases at lower pressures. The plasma body force distribution along with the Joule heating is then used in the Navier–Stokes simulations to quantify the flow actuation in a microchannel. Theoretical analysis and simulations for plasma actuated planar Poiseuille flow show that the gain in flow rate is inversely proportional to Reynolds number. This theoretical analysis is in good agreement with the simulations for a microchannel with closely placed actuators under incompressible conditions. Flow rate of FE-DBD driven 2D microchannel is around 100 ml min‑1 mm‑1 for an input power of 64 μW mm‑1. The gas temperature rises by 1500 K due to the Joule heating, indicating FE-DBD’s potential for microcombustion, micropropulsion and chemical sensing in addition to microscale pumping and mixing applications.

  15. Nonlinear vibration of an electrically actuated microresonator tuned by combined DC piezoelectric and electric actuations

    This paper studies the nonlinear vibration of a clamped–clamped microresonator under combined electric and piezoelectric actuations. The electric actuation is induced by applying an AC–DC voltage between the microbeam and the electrode plate that lies on opposite sides of the microbeam, and the piezoelectric actuation is induced by applying the DC voltage between upper and lower sides of the piezoelectric layer deposited on the microbeam length. It is assumed that the neutral axis of bending is stretched when the microbeam is deflected. The equations of motion are derived using Newton's second law, and are solved using the multiple-scale perturbation method. It is shown that, depending on the value of DC electric and piezoelectric actuations, geometry and the bending stiffness of the system. A softening or hardening behavior may be realized. It demonstrates that nonlinear behavior of an electrically actuated microresonator may be tuned to a linear behavior by applying a convenient DC electric voltage to the piezoelectric layer, and so an undesirable shift of resonance frequency may be removed. If one lets the applied voltage to the piezoelectric layer be equal to zero, this paper would be an effort to tailor the linear and nonlinear stiffness coefficients of two layered electrically actuated microresonators without the assumption that the lengths of the two layers are equal

  16. Experimental Investigation on Airfoil Shock Control by Plasma Aerodynamic Actuation

    An experimental investigation on airfoil (NACA64—215) shock control is performed by plasma aerodynamic actuation in a supersonic tunnel (Ma = 2). The results of schlieren and pressure measurement show that when plasma aerodynamic actuation is applied, the position moves forward and the intensity of shock at the head of the airfoil weakens. With the increase in actuating voltage, the total pressure measured at the head of the airfoil increases, which means that the shock intensity decreases and the control effect increases. The best actuation effect is caused by upwind-direction actuation with a magnetic field, and then downwind-direction actuation with a magnetic field, while the control effect of aerodynamic actuation without a magnetic field is the most inconspicuous. The mean intensity of the normal shock at the head of the airfoil is relatively decreased by 16.33%, and the normal shock intensity is relatively reduced by 27.5% when 1000 V actuating voltage and upwind-direction actuation are applied with a magnetic field. This paper theoretically analyzes the Joule heating effect generated by DC discharge and the Lorentz force effect caused by the magnetic field. The discharge characteristics are compared for all kinds of actuation conditions to reveal the mechanism of shock control by plasma aerodynamic actuation

  17. Mechatronics and Bioinspiration in Actuator Design and Control

    J. L. Pons

    2008-01-01

    Full Text Available Actuators are components of motion control systems in which mechatronics plays a crucial role. They can be regarded as a paradigmatic case in which this mechatronic approach is required. Furthermore, actuator technologies can get new sources of inspiration from nature (bioinspiration. Biological systems are the result of an evolutionary process and show excellent levels of performance. In this paper, we analyse the actuator as a bioinspired mechatronic system through analogies between mechatronics and biological actuating mechanisms that include hierarchical control of actuators, switched control of power flow and some transduction principles. Firstly, some biological models are introduced as a source of inspiration for setting up both actuation principles and control technologies. Secondly, a particular actuator technology, the travelling wave ultrasonic motor, is taken to illustrate this approach. Eventually, the last section draws some conclusions and points out future directions.

  18. Deformable mirrors: design fundamentals for force actuation of continuous facesheets

    Ravensbergen, S. K.; Hamelinck, R. F. H. M.; Rosielle, P. C. J. N.; Steinbuch, M.

    2009-08-01

    Adaptive Optics is established as essential technology in current and future ground based (extremely) large telescopes to compensate for atmospheric turbulence. Deformable mirrors for astronomic purposes have a high number of actuators (> 10k), a relatively large stroke (> 10μm) on a small spacing ( 100Hz). The availability of piezoelectric ceramics as an actuator principle has driven the development of many adaptive deformable mirrors towards inappropriately stiff displacement actuation. This, while the use of force actuation supersedes piezos in performance and longevity while being less costly per channel by a factor of 10-20. This paper presents a model which is independent of the actuator type used for actuation of continuous facesheet deformable mirrors, to study the design parameters such as: actuator spacing & coupling, influence function, peak-valley stroke, dynamical behavior: global & local, etc. The model is validated using finite element simulations and its parameters are used to derive design fundamentals for optimization.

  19. Advanced actuators for the control of large space structures

    Downer, James; Hockney, Richard; Johnson, Bruce; Misovec, Kathleen

    1993-01-01

    The objective of this research was to develop advanced six-degree-of-freedom actuators employing magnetic suspensions suitable for the control of structural vibrations in large space structures. The advanced actuators consist of a magnetically suspended mass that has three-degrees-of-freedom in both translation and rotation. The most promising of these actuators featured a rotating suspended mass providing structural control torques in a manner similar to a control moment gyro (CMG). These actuators employ large-angle-magnetic suspensions that allow gimballing of the suspended mass without mechanical gimbals. Design definitions and sizing algorithms for these CMG type as well as angular reaction mass actuators based on multi-degree-of-freedom magnetic suspensions were developed. The performance of these actuators was analytically compared with conventional reaction mass actuators for a simple space structure model.

  20. Remotely powered and controlled EAPap actuator by amplitude modulated microwaves

    This paper reports on a remotely powered and controlled Electro-Active Paper (EAPap) actuator without onboard controller using amplitude modulated microwaves. A rectenna is a key element for microwave power transmission that converts microwaves into dc power through coupling and rectification. In this study, the concept of a remotely controlled and powered EAPap actuator is proposed by means of modulating microwaves with a control signal and demodulating it through the rectenna rectification. This concept is applied to a robust EAPap actuator, namely cellulose–polypyrrole–ionic liquid (CPIL) EAPap. Details of fabrication and characterization of the rectenna and the CPIL-EAPap actuator are explained. Also, the charge accumulation problem of the actuator is explained and resolved by connecting an additional resistor. Since this idea can eliminate the onboard controller by supplying the operating signal through modulation, a compact and lightweight actuator can be achieved, which is useful for biomimetic robots and remotely driven actuators. (technical note)

  1. Analytical dynamic modeling of fast trilayer polypyrrole bending actuators

    Analytical modeling of conjugated polymer actuators with complicated electro-chemo-mechanical dynamics is an interesting area for research, due to the wide range of applications including biomimetic robots and biomedical devices. Although there have been extensive reports on modeling the electrochemical dynamics of polypyrrole (PPy) bending actuators, mechanical dynamics modeling of the actuators remains unexplored. PPy actuators can operate with low voltage while producing large displacement in comparison to robotic joints, they do not have friction or backlash, but they suffer from some disadvantages such as creep and hysteresis. In this paper, a complete analytical dynamic model for fast trilayer polypyrrole bending actuators has been proposed and named the analytical multi-domain dynamic actuator (AMDDA) model. First an electrical admittance model of the actuator will be obtained based on a distributed RC line; subsequently a proper mechanical dynamic model will be derived, based on Hamilton's principle. The purposed modeling approach will be validated based on recently published experimental results

  2. Biomimetic jellyfish-inspired underwater vehicle actuated by ionic polymer metal composite actuators

    This paper presents the design, fabrication, and characterization of a biomimetic jellyfish robot that uses ionic polymer metal composites (IPMCs) as flexible actuators for propulsion. The shape and swimming style of this underwater vehicle are based on the Aequorea victoria jellyfish, which has an average swimming speed of 20 mm s−1 and which is known for its high swimming efficiency. The Aequorea victoria is chosen as a model system because both its bell morphology and kinematic properties match the mechanical properties of IPMC actuators. This medusa is characterized by its low swimming frequency, small bell deformation during the contraction phase, and high Froude efficiency. The critical components of the robot include the flexible bell that provides the overall shape and dimensions of the jellyfish, a central hub and a stage used to provide electrical connections and mechanical support to the actuators, eight distinct spars meant to keep the upper part of the bell stationary, and flexible IPMC actuators that extend radially from the central stage. The bell is fabricated from a commercially available heat-shrinkable polymer film to provide increased shape-holding ability and reduced weight. The IPMC actuators constructed for this study demonstrated peak-to-peak strains of ∼0.7% in water across a frequency range of 0.1–1.0 Hz. By tailoring the applied voltage waveform and the flexibility of the bell, the completed robotic jellyfish with four actuators swam at an average speed 0.77 mm s−1 and consumed 0.7 W. When eight actuators were used the average speed increased to 1.5 mm s−1 with a power consumption of 1.14 W. (paper)

  3. Attitude control with active actuator saturation prevention

    Forbes, James Richard

    2015-02-01

    Spacecraft attitude control in the presence of actuator saturation is considered. The attitude controller developed has two components: a proportional component and an angular velocity component. The proportional control has a special form that depends on the attitude parameterization. The angular velocity control is realized by a strictly positive real system with its own input nonlinearity. The strictly positive real system can filter noise in the angular velocity measurement. With this control architecture the torques applied to the body are guaranteed to be below a predetermined value, thus preventing saturation of the actuators. The closed-loop equilibrium point corresponding to the desired attitude is shown to be asymptotically stable. Additionally, the control law does not require specific knowledge of the body's inertia properties, and is therefore robust to such modelling errors.

  4. Environmental Qualification of an Actuator Torque Switch

    Environmental qualification testing was performed on a modified Limitorque torque switch for the torque switch safety functions in the Limitorque type SMB actuators located inside and outside containment in a nuclear power plant. The torque switch specimen was installed in a Limitorque SMB-1 electric actuator mounted on an 8'' Velan gate valve and operated with a customized programmable logic controller to allow normal torque switch behaviour to be observed. The present paper describes the qualification testing performed. The modified torque switch was aged to a 30-year service life at the normal service conditions for both inside and outside containment. Aging included radiation, thermal and cycle aging. A seismic test and then a combined Loss of Coolant Accident (LOCA) and Main Steam Line Break (MSLB) steam accident simulation were followed. After each stage of aging, functional tests were done to confirm normal insulation resistance, normal contact resistance and normal operation. (authors)

  5. Robotic insects: Manufacturing, actuation, and power considerations

    Wood, Robert

    2015-12-01

    As the characteristic size of a flying robot decreases, the challenges for successful flight revert to basic questions of fabrication, actuation, fluid mechanics, stabilization, and power - whereas such questions have in general been answered for larger aircraft. When developing a robot on the scale of a housefly, all hardware must be developed from scratch as there is nothing "off-the-shelf" which can be used for mechanisms, sensors, or computation that would satisfy the extreme mass and power limitations. With these challenges in mind, this talk will present progress in the essential technologies for insect-like robots with an emphasis on multi-scale manufacturing methods, high power density actuation, and energy-efficient power distribution.

  6. Braille display device using soft actuator

    Lee, Sangwon; Jung, Kwangmok; Koo, Jachoon; Lee, Sungil; Choi, Hoogon; Jeon, Jaewook; Nam, Jaedo; Choi, Hyoukryeol

    2004-07-01

    Tactile sensation is one of the most important sensory functions along with the auditory sensation for the visually impaired because it replaces the visual sensation of the persons with sight. In this paper, we present a tactile display device as a dynamic Braille display that is the unique tool for exchanging information among them. The proposed tactile cell of the Braille display is based on the dielectric elastomer and it has advantageous features over the existing ones with respect to intrinsic softness, ease of fabrication, cost effectiveness and miniaturization. We introduce a new idea for actuation and describe the actuating mechanism of the Braille pin in details capable of realizing the enhanced spatial density of the tactile cells. Finally, results of psychophysical experiments are given and its effectiveness is confirmed.

  7. Plate actuator vibration modes for levitation

    Almurshedi, A; Atherton, M; C. Mares; Stolarski, T; Wei, B.; Wang, Y.

    2015-01-01

    The design of an aluminium or steel plate of various thicknesses for achieving levitation of a small aluminum disk is investigated by simulation using ANSYS. Each plate design is excited by an arrangement of four hard piezoelectric actuators driven with an AC voltage, which produces a centre displacement for generating a squeeze-film in the gap between the vibrating plate and the disk. Physical experiments show levitation conditions for one of the designs.

  8. Satellite Attitude Control Using Only Electromagnetic Actuation

    Wisniewski, Rafal

    1997-01-01

    The primary purpose of this work was to develop control laws for three axis stabilization of a magnetic actuated satellite. This was achieved by a combination of linear and nonlinear system theory. In order to reach this goal new theoretical results were produced in both fields. The focus of the work was on the class of periodic systems reflecting orbital motion of the satellite. In addition to a theoretical treatment, the thesis contains a large portion of application considerations. The con...

  9. Shape-memory alloy micro-actuator

    Busch, John D. (Inventor); Johnson, Alfred D. (Inventor)

    1991-01-01

    A method of producing an integral piece of thermo-sensitive material, which is responsive to a shift in temperature from below to above a phase transformation temperature range to alter the material's condition to a shape-memory condition and move from one position to another. The method is characterized by depositing a thin film of shape-memory material, such as Nickel titanium (Ni-Ti) onto a substrate by vacuum deposition process such that the alloy exhibits an amorphous non-crystalline structure. The coated substrate is then annealed in a vacuum or in the presence of an inert atmosphere at a selected temperature, time and cool down rate to produce an ordered, partially disordered or fully disordered BCC structure such that the alloy undergoes thermoelastic, martinsetic phase transformation in response to alteration in temperature to pass from a martinsetic phase when at a temperature below a phase transformation range and capable of a high level of recoverable strain to a parent austenitic phase in a memory shape when at a temperature above the phase transformation range. Also disclosed are actuator devices employing shape-memory material actuators that deform from a set shape toward an original shape when subjected to a critical temperature level after having been initially deformed from the original shape into the set shape while at a lower temperature. The actuators are mechanically coupled to one or more movable elements such that the temperature-induce deformation of the actuators exerts a force or generates a motion of the mechanical element(s).

  10. Design of actuator system for industrial robots

    Santaulària Arbonés, Oriol

    2010-01-01

    Heavy-duty robots are used in a wide range of industrial applications. During the last years the handling capacity and a reduced cycle time requirements have been increased without compromising the robot quality. The purpose of this master thesis is to design and simulate an actuator system for motion control suitable for a three joint robot. Before analyzing the 3-DOF model, a theoretical kinematic and dynamic analysis is performed. This theoretical foundation gives the basis to later dec...

  11. Crone control of a nonlinear hydraulic actuator

    Pommier-Budinger, Valérie; Sabatier, Jocelyn; Lanusse, Patrick; Oustaloup, Alain

    2002-01-01

    The CRONE control (fractional robust control) of a hydraulic actuator whose dynamic model is nonlinear is presented. An input-output linearization under diffeomorphism and feedback is first achieved for the nominal plant. The relevance of this linearization when the parameters of the plant vary is then analyzed using the Volterra input-output representation in the frequency domain. CRONE control based on complex fractional differentiation is finally applied to control the velocity of the inpu...

  12. Induction thermoelastic actuator with controllable operation regime

    Doležel, Ivo; Kotlan, V.; Krónerová, E.; Ulrych, B.

    2010-01-01

    Roč. 29, č. 4 (2010), s. 1004-1014. ISSN 0332-1649 R&D Projects: GA ČR GA102/09/1305 Institutional research plan: CEZ:AV0Z20570509 Keywords : control of position * thermoelastic actuator * electromagnetic field Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.386, year: 2010 www.emeraldinsight.com/compel.htm

  13. Induction Thermoelastic Actuator with Controllable Operation Regime

    Doležel, Ivo; Krónerová, E.; Ulrych, B.

    Arras: L’Université d’Artois, 2009, s. 1-6. ISBN 978-2-84832-115-8. [ISEF 2009 /15./. Arras (FR), 10.09.2009-12.09.2009] R&D Projects: GA ČR(CZ) GA102/07/0496 Institutional research plan: CEZ:AV0Z20570509 Keywords : thermoelastic actuator * cotrollable shift * coupled problem Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering http://www.lsee.fr/isef09/

  14. Electromechanical Actuator Working on Principle of Thermoelasticity

    Beneš, K.; Doležel, Ivo; Ulrych, B.

    Gliwice - Ustroň: Politechnika Slaska, 2005, s. 107-110. ISBN 83-85940-27-8. [International Conference on Fundamentals of Electrotechnics and Circuit Theory - IC SPETO 2005 /28./. Gliwice - Ustroň (PL), 11.05.2005-14.05.2005] R&D Projects: GA ČR(CZ) GA102/04/0095 Institutional research plan: CEZ:AV0Z20570509 Keywords : electromechanical actuators * electromagnetic-thermoelastic task Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  15. Direct computations of a synthetic jet actuator

    Hayes-McCoy, Declan

    2012-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. Synthetic jet actuators have previously been defined as having potential use in both internal and external aerodynamic applications. The formation of a jet flow perpendicular to the surface of an aerofoil or in a duct of diffuser has a range of potential flow control benefits. These benefits can include both laminar to turbulent transition control, which is associated with a drag reduction in...

  16. The Overtone Fiddle: an Actuated Acoustic Instrument

    Overholt, Daniel

    2011-01-01

    The Overtone Fiddle is a new violin-family instrument that incorporates electronic sensors, integrated DSP, and physical actuation of the acoustic body. An embedded tactile sound transducer creates extra vibrations in the body of the Overtone Fiddle, allowing performer control and sensation via both traditional violin techniques, as well as extended playing techniques that incorporate shared man/machine control of the resulting sound. A magnetic pickup system is mounted to the end of the fidd...

  17. Design and demonstration of a fish robot actuated by a SMA-driven actuation system

    Le, Chan H.; Nguyen, Quang S.; Park, Hoon C.

    2010-04-01

    This paper presents a concept of a fish robot actuated by an SMA-based actuator. The bending-type actuator system is composed of a 0.1mm diameter SMA wire and a 0.5mm thick glass/epoxy strip. The SMA wire is installed to the bent composite strip. The actuator can produce about 200gf of blocking force and 3.5mm displacement at the center of the glass/epoxy strip. The bending motion of the actuator is converted into the tail-beat motion of a fish robot through a linkage system. The fish robot is evaluated by measuring the tail-beat angle, swimming speed and thrust produced by the fish robot. The tail-beat angle is about 20° and the maximum swimming speed is about 1.6cm/s. The measured thrust is about 0.4gf when the fish robot is operated at 0.9Hz.

  18. Piezoelectric strain sensor/actuator rosettes

    In-plane anisotropy in the linear piezoelectric constitutive law for [011]c cut and poled PMN–0.29PT is demonstrated to enable its use as a sensor/actuator rosette. The equations for a 0°/45°/90° rosette are developed using the conditions of coupling between the in-plane strain of the crystal and a substrate, and zero out-of-plane stress on the crystal (plane stress conditions in the crystals). The crystals are bonded to a substrate aluminum plate that is instrumented with strain gages next to the crystals. The plate is subjected to bending about different axes and the resulting electric displacement change of the crystals is monitored. The strain components calculated using the change of electric displacement are compared with the strain components measured using strain gages. This sensor/actuator rosette approach is demonstrated to enable both sensing principal strain components and actuating principal strains in an electronically controllable direction. (fast track communication)

  19. Synthetic jet actuation for load control

    The reduction of wind turbine blade loads is an important issue in the reduction of the costs of energy production. Reduction of the loads of a non-cyclic nature requires so-called smart rotor control, which involves the application of distributed actuators and sensors to provide fast and local changes in aerodynamic performance. This paper investigates the use of synthetic jets for smart rotor control. Synthetic jets are formed by ingesting low-momentum fluid from the boundary layer along the blade into a cavity and subsequently ejecting this fluid with a higher momentum. We focus on the observed flow phenomena and the ability to use these to obtain the desired changes of the aerodynamic properties of a blade section. To this end, numerical simulations and wind tunnel experiments of synthetic jet actuation on a non-rotating NACA0018 airfoil have been performed. The synthetic jets are long spanwise slits, located close to the trailing edge and directed perpendicularly to the surface of the airfoil. Due to limitations of the present experimental setup in terms of performance of the synthetic jets, the main focus is on the numerical flow simulations. The present results show that high-frequency synthetic jet actuation close to the trailing edge can induce changes in the effective angle of attack up to approximately 2.9°

  20. Novel compliant actuator for wearable robotics applications.

    Claros, M; Soto, R; Rodríguez, J J; Cantú, C; Contreras-Vidal, José L

    2013-01-01

    In the growing fields of wearable robotics, rehabilitation robotics, prosthetics, and walking robots, variable impedance and force actuators are being designed and implemented because of their ability to dynamically modulate the intrinsic viscoelastic properties such as stiffness and damping. This modulation is crucial to achieve an efficient and safe human-robot interaction that could lead to electronically generate useful emergent dynamical behaviors. In this work we propose a novel actuation system in which is implemented a control scheme based on equilibrium forces for an active joint capable to provide assistance/resistance as needed and also achieve minimal mechanical impedance when tracking the movement of the user limbs. The actuation system comprises a DC motor with a built in speed reducer, two force-sensing resistors (FSR), a mechanism which transmits to the FSRs the torque developed in the joint and a controller which regulate the amount of energy that is delivered to the DC motor. The proposed system showed more impedance reduction, by the effect of the controlled contact forces, compared with the ones in the reviewed literature. PMID:24110322

  1. Electromechanical modelling for piezoelectric flextensional actuators

    The piezoelectric flextensional actuator investigated in this paper comprises three pre-stressed piezoceramic lead zirconate titanate (PZT) stacks and an external, flexure-hinged, mechanical amplifier configuration. An electromechanical model is used to relate the electrical and mechanical domains, comprising the PZT stacks and the flexure mechanism, with the dynamic characteristics of the latter represented by a multiple degree-of-freedom dynamic model. The Maxwell resistive capacitive model is used to describe the nonlinear relationship between charge and voltage within the PZT stacks. The actuator model parameters and the electromechanical couplings of the PZT stacks, which describe the energy transfer between the electrical and mechanical domains, are experimentally identified without disassembling the embedded piezoceramic stacks. To verify the electromechanical model, displacement and frequency experiments are performed. There was good agreement between modelled and experimental results, with less than 1.5% displacement error. This work outlines a general process by which other pre-stressed piezoelectric flextensional actuators can be characterized, modelled and identified in a non-destructive way. (paper)

  2. Considerations for Electroactive Polymeric Materials and Actuators

    Ras Labs produces electroactive polymer (EAP) based materials and actuators that bend, swell, ripple and now contract (new development) with low electric input. This is an important attribute because of the ability of contraction to produce life-like motion. The mechanism of contraction is not well understood. Radionuclide-labeled experiments were conducted to follow the movement of electrolytes and water in these EAPs when activated. Extreme temperature experiments were performed on the contractile EAPs with very favorable results. One of the biggest challenges in developing these actuators, however, is the electrode-EAP interface because of the pronounced movement of the EAP. Plasma treatments of metallic electrodes were investigated in order to improve the attachment of the embedded electrodes to the EAP material. Surface analysis, adhesive testing, and mechanical testing were conducted to test metal surfaces and metal-polymer interfaces. The nitrogen plasma treatment of titanium produced a strong metal-polymer interface; however, oxygen plasma treatment of both stainless steel and titanium produced even stronger metal-polymer interfaces. Plasma treatment of the electrodes allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface.

  3. Fpga-based control of piezoelectric actuators

    Juhász László

    2011-01-01

    Full Text Available In many industrial applications like semiconductor production and optical inspection systems, the availability of positioning systems capable to follow trajectory paths in the range of several centimetres, featuring at the same time a nanometre-range precision, is demanding. Pure piezoelectric stages and standard positioning systems with motor and spindle are not able to meet such requirements, because of the small operation range and inadequacies like backlash and friction. One concept for overcoming these problems consists of a hybrid positioning system built through the integration of a DC-drive in series with a piezoelectric actuator. The wide range of potential applications enables a considerable market potential for such an actuator, but due to the high variety of possible positioned objects and dynamic requirements, the required control complexity may be significant. In this paper, a real-time capable state-space control concept for the piezoelectric actuators, embedded in such a hybrid micropositioning system, is presented. The implementation of the controller together with a real-time capable hysteresis compensation measure is performed using a low-budget FPGA-board, whereas the superimposed integrated controller is realized with a dSPACE RCP-system. The advantages of the designed control over a traditional proportional-integral control structure are proven through experimental results using a commercially available hybrid micropositioning system. Positioning results by different dynamic requirements featuring positioning velocities from 1 μm/s up to 5 cm/s are given.

  4. Piezoelectrically Actuated Shutter for High Vacuum

    Thompson, Robert; Klose, Gerhard

    2003-01-01

    A piezoelectrically actuated shutter is undergoing development for use in experiments on laser cooling of atoms. The shutter is required to be compatible with ultrahigh vacuum [pressure of 10(exp -9) torr (.1.3 x 10(exp -7) Pa) or less] and to be capable of performing reliably in the vacuum for at least one year. In operation, the shutter would enable the collection and launch of successive samples of cold atoms and would enable the interrogation of the immediately preceding sample while preventing disturbance of the atoms of that sample by light from the collection region. A major constraint is imposed on the design and operation of the shutter by a requirement that it not generate a magnetic field large enough to perturb an atomic clock. An electromagnetically actuated shutter could satisfy all requirements except this one. Hence, it was decided to use piezoelectric instead of electromagnetic actuation. The shutter (see figure) includes two commercial piezoelectrically driven flexure stages that produce a travel of 0.5 mm. Levers mechanically amplify the travel to the required level of 1 cm. Problems that remained to be addressed at the time of reporting the information for this article included lifetime testing and correction of a tendency for shutter blades to bounce open.

  5. Highly Tunable Electrothermally and Electrostatically Actuated Resonators

    Hajjaj, Amal Z.

    2016-03-30

    This paper demonstrates experimentally, theoretically, and numerically for the first time, a wide-range tunability of an in-plane clamped-clamped microbeam, bridge, and resonator actuated electrothermally and electrostatically. Using both actuation methods, we demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally by passing a dc current through it, and electrostatically by applying a dc polarization voltage between the microbeam and the stationary electrode. We show that when increasing the electrothermal voltage, the compressive stress inside the microbeam increases, which leads eventually to its buckling. Before buckling, the fundamental frequency decreases until it drops to very low values, almost to zero. After buckling, the fundamental frequency increases, which is shown to be as high as twice the original resonance frequency. Adding a dc bias changes the qualitative nature of the tunability both before and after buckling, which adds another independent way of tuning. This reduces the dip before buckling, and can eliminate it if desired, and further increases the fundamental frequency after buckling. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared with the experimental data and simulation results of a multi-physics finite-element model. A good agreement is found among all the results. [2015-0341

  6. Magnetically Actuated Cilia for Microfluidic Manipulation

    Hanasoge, Srinivas; Owen, Drew; Ballard, Matt; Hesketh, Peter J.; Alexeev, Alexander; Woodruff School of Mechanical Engineering Collaboration; Petit InstituteBioengineering; Biosciences Collaboration

    2015-11-01

    We demonstrate magnetic micro-cilia based microfluidic mixing and capture techniques. For this, we use a simple and easy to fabricate high aspect ratio cilia, which are actuated magnetically. These micro-features are fabricated by evaporating NiFe alloy at room temperature, on to patterned photoresist. The evaporated alloy curls upwards when the seed layer is removed to release the cilia, thus making a free standing `C' shaped magnetic microstructure. This is actuated using an external electromagnet or a rotating magnet. The artificial cilia can be actuated upto 20Hz. We demonstrate the active mixing these cilia can produce in the microchannel. Also, we demonstrate the capture of target species in a sample using these fast oscillating cilia. The surface of the cilia is functionalized by streptavidin which binds to biotin labelled fluorescent microspheres and mimic the capture of bacteria. We show very high capture efficiencies by using these methods. These simple to fabricate micro cilia can easily be incorporated into many microfluidic systems which require high mixing and capture efficiencies.

  7. Considerations for Contractile Electroactive Materials and Actuators

    Rasmussen, Lenore; Erickson, Carl J.; Meixler, Lewis D.; Ascione, George; Gentile, Charles A.; Tilson, Carl; Bernasek, Stephen L.; Abelev, Esta

    2010-02-19

    Ras Labs produces electroactive polymer (EAP) based materials and actuators that bend, swell, ripple and now contract (new development) with low electric input. This is an important attribute because of the ability of contraction to produce life-like motion. The mechanism of contraction is not well understood. Radionuclide-labeled experiments were conducted to follow the movement of electrolytes and water in these EAPs when activated. Extreme temperature experiments were performed on the contractile EAPs with very favorable results. One of the biggest challenges in developing these actuators, however, is the electrode-EAP interface because of the pronounced movement of the EAP. Plasma treatments of metallic electrodes were investigated in order to improve the attachment of the embedded electrodes to the EAP material. Surface analysis, adhesive testing, and mechanical testing were conducted to test metal surfaces and metal-polymer interfaces. The nitrogen plasma treatment of titanium produced a strong metal-polymer interface; however, oxygen plasma treatment of both stainless steel and titanium produced even stronger metal-polymer interfaces. Plasma treatment of the electrodes allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface.

  8. Actuator characterization of a man-portable precision maneuver concept

    Ilmars Celmins

    2014-06-01

    Full Text Available The US Army Research Laboratory is conducting research to explore technologies that may be suitable for maneuvering man-portable munitions. Current research is focused on the use of rotary actuators with spin-stabilized munitions. A rotary actuator holds the potential of providing a low-power solution for guidance of a spinning projectile. This is in contrast to a linear (reciprocating actuator which would need to constantly change direction, resulting in large accelerations which in turn would require large forces, thereby driving up the actuator power. A rotational actuator would be operating at a fairly constant rotation rate once it is up to speed, resulting in much lower power requirements. Actuator experiments conducted over a variety of conditions validate the dynamic models of the actuator and supply the data necessary for model parameter estimation. Actuator performance metrics of spin rate response, friction, and power requirements were derived from the data. This study indicates that this class of maneuver concepts can be driven with these actuators. These results enable actuator design and multi-disciplinary simulation of refined maneuver concepts for a specific application.

  9. Actuator characterization of a man-portable precision maneuver concept

    Ilmars CELMINS; Frank E.FRESCONI; Bryant P.NELSON

    2014-01-01

    The US Army Research Laboratory is conducting research to explore technologies that may be suitable for maneuvering man-portable munitions. Current research is focused on the use of rotary actuators with spin-stabilized munitions. A rotary actuator holds the potential of providing a low-power solution for guidance of a spinning projectile. This is in contrast to a linear (reciprocating) actuator which would need to constantly change direction, resulting in large accelerations which in turn would require large forces, thereby driving up the actuator power. A rotational actuator would be operating at a fairly constant rotation rate once it is up to speed, resulting in much lower power requirements. Actuator experiments conducted over a variety of conditions validate the dynamic models of the actuator and supply the data necessary for model parameter estimation. Actuator performance metrics of spin rate response, friction, and power requirements were derived from the data. This study indicates that this class of maneuver concepts can be driven with these actuators. These results enable actuator design and multi-disciplinary simulation of refined maneuver concepts for a specific application.

  10. Performance Improvement of Axial Compressors and Fans with Plasma Actuation

    Sebastien Lemire

    2009-01-01

    Full Text Available This paper proposes the use of plasma actuator to suppress boundary layer separation on a compressor blade suction side to increase axial compressor performance. Plasma actuators are a new type of electrical flow control device that imparts momentum to the air when submitted to a high AC voltage at high frequency. The concept presented in this paper consists in the positioning of a plasma actuator near the separation point on a compressor rotor suction side to increase flow turning. In this computational study, three parameters have been studied to evaluate the effectiveness of plasma actuator: actuator strength, position and actuation method (steady versus unsteady. Results show that plasma actuator operated in steady mode can increase the pressure ratio, efficiency, and power imparted by the rotor to the air and that the pressure ratio, efficiency and rotor power increase almost linearly with actuator strength. On the other hand, the actuator's position has limited effect on the performance increase. Finally, the results from unsteady simulations show a limited performance increase but are not fully conclusive, due possibly to the chosen pulsing frequencies of the actuator and/or to limitations of the CFD code.

  11. Electromechanical actuation for thrust vector control applications

    Roth, Mary Ellen

    At present, actuation systems for the Thrust Vector Control (TVC) for launch vehicles are hydraulic systems. The Advanced Launch System (ALS), a joint initiative between NASA and the Air Force, is a launch vehicle that is designed to be cost effective, highly reliable and operationally efficient with a goal of reducing the cost per pound to orbit. As part of this initiative, an electromechanical actuation system is being developed as an attractive alternative to the hydraulic systems used today. NASA-Lewis is developing and demonstrating an Induction Motor Controller Actuation System with a 40 hp peak rating. The controller will integrate 20 kHz resonant link Power Management and Distribution (PMAD) technology and Pulse Population Modulation (PPM) techniques to implement Field Oriented Vector Control (FOVC) of a new advanced induction motor. Through PPM, multiphase variable frequency, variable voltage waveforms can be synthesized from the 20 kHz source. FOVC shows that varying both the voltage and frequency and their ratio (V/F), permits independent control of both torque and speed while operating at maximum efficiency at any point on the torque-speed curve. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a Built-in Test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA TVC system. The design and fabrication of the motor controller is being done by General Dynamics Space Systems Division. The University of Wisconsin-Madison will assist in the design of the advanced induction motor and in the implementation of the FOVC theory. A 75 hp electronically controlled dynamometer will be used to test the motor controller in all four quadrants of operation using flight type

  12. Low-Stroke Actuation for a Serial Robot

    Gao, Dalong (Inventor); Ihrke, Chris A. (Inventor)

    2014-01-01

    A serial robot includes a base, first and second segments, a proximal joint joining the base to the first segment, and a distal joint. The distal joint that joins the segments is serially arranged and distal with respect to the proximal joint. The robot includes first and second actuators. A first tendon extends from the first actuator to the proximal joint and is selectively moveable via the first actuator. A second tendon extends from the second actuator to the distal joint and is selectively moveable via the second actuator. The robot includes a transmission having at least one gear element which assists rotation of the distal joint when an input force is applied to the proximal and/or distal joints by the first and/or second actuators. A robotic hand having the above robot is also disclosed, as is a robotic system having a torso, arm, and the above-described hand.

  13. Shape memory alloy actuated adaptive exhaust nozzle for jet engine

    Song, Gangbing (Inventor); Ma, Ning (Inventor)

    2009-01-01

    The proposed adaptive exhaust nozzle features an innovative use of the shape memory alloy (SMA) actuators for actively control of the opening area of the exhaust nozzle for jet engines. The SMA actuators remotely control the opening area of the exhaust nozzle through a set of mechanism. An important advantage of using SMA actuators is the reduction of weight of the actuator system for variable area exhaust nozzle. Another advantage is that the SMA actuator can be activated using the heat from the exhaust and eliminate the need of other energy source. A prototype has been designed and fabricated. The functionality of the proposed SMA actuated adaptive exhaust nozzle is verified in the open-loop tests.

  14. Hierarchically arranged helical fibre actuators driven by solvents and vapours

    Chen, Peining; Xu, Yifan; He, Sisi; Sun, Xuemei; Pan, Shaowu; Deng, Jue; Chen, Daoyong; Peng, Huisheng

    2015-12-01

    Mechanical responsiveness in many plants is produced by helical organizations of cellulose microfibrils. However, simple mimicry of these naturally occurring helical structures does not produce artificial materials with the desired tunable actuations. Here, we show that actuating fibres that respond to solvent and vapour stimuli can be created through the hierarchical and helical assembly of aligned carbon nanotubes. Primary fibres consisting of helical assemblies of multiwalled carbon nanotubes are twisted together to form the helical actuating fibres. The nanoscale gaps between the nanotubes and micrometre-scale gaps among the primary fibres contribute to the rapid response and large actuation stroke of the actuating fibres. The compact coils allow the actuating fibre to rotate reversibly. We show that these fibres, which are lightweight, flexible and strong, are suitable for a variety of applications such as energy-harvesting generators, deformable sensing springs and smart textiles.

  15. Self-Sensing Ionic Polymer Actuators: A Review

    Karl Kruusamäe

    2015-03-01

    Full Text Available Ionic electromechanically active polymers (IEAP are laminar composites that can be considered attractive candidates for soft actuators. Their outstanding properties such as low operating voltage, easy miniaturization, and noiseless operation are, however, marred by issues related to the repeatability in the production and operation of these materials. Implementing closed-loop control for IEAP actuators is a viable option for overcoming these issues. Since IEAP laminates also behave as mechanoelectrical sensors, it is advantageous to combine the actuating and sensing functionalities of a single device to create a so-called self-sensing actuator. This review article systematizes the state of the art in producing self-sensing ionic polymer actuators. The IEAPs discussed in this paper are conducting (or conjugated polymers actuators (CPA, ionic polymer-metal composite (IPMC, and carbonaceous polymer laminates.

  16. Frequency response of IPMC actuator with palladium electrode

    Kobayashi, T.; Omiya, M.

    2011-04-01

    The present study investigates the frequency response of IPMC actuator. By using the electroless plating method, IPMC actuator with palladium electrode was obtained in 60 minutes, which was shorter than the conventional fabrication time. In the observation of response to step voltages, IPMC actuator with palladium electrode showed larger deformation and slower backward motion than the conventional IPMC actuators with platinum electrode. In the experiments of frequency response, IPMC actuator showed the resonance phenomenon at a specified frequency, and the resonance frequency could be predicted by the simple cantilever beam model. Then, the phase shift increased drastically when the resonance phenomena were observed. Finally, the frequency response of IPMC actuator was modeled by using the transfer function.

  17. Dielectric barrier Discharge Plasma Actuator Characterization and Application

    Correale, G.

    2016-01-01

    An experimental investigation about nanosecond Dielectric Barrier Discharge (ns-DBD) plasma actuator is presented in this thesis. This work aimed to answer fundamental questions on the actuation mechanism of this device. In order to do so, parametric studies in a quiescent air as well as laminar bounded of free shear layers were performed. Amplitude and location of the input with respect to the receptivity region as well as frequency of flow actuation were investigated. This work required the...

  18. Design and Control of a Pneumatically Actuated Transtibial Prosthesis

    Zheng, Hao; Shen, Xiangrong

    2015-01-01

    This paper presents the design and control of a pneumatically actuated transtibial prosthesis, which utilizes a pneumatic cylinder-type actuator to power the prosthetic ankle joint to support the user's locomotion. The pneumatic actuator has multiple advantages over the traditional electric motor, such as light weight, low cost, and high power-to-weight ratio. The objective of this work is to develop a compact and lightweight transtibial prosthesis, leveraging the multiple advantages provided...

  19. Enhanced Fault Detection and Isolation in Modern Flight Actuators

    Ossmann, Daniel

    2013-01-01

    Due to their central location in the control system, actuation systems of primary control surfaces in modern, augmented aircraft must show an increased reliability. A traditional approach is based on hardware redundancy. In this way, modern actuation systems of one single control surface consist of up to two actuators and three sensors. These different dynamic subsystems are all prone to faults themselves and can be monitored. This paper presents the setup of a fault detection and diagnosis (...

  20. Requirement analysis of an intelligent, redundant, actuation system

    De Feo, P.; Shih, K. C.

    1986-01-01

    The reliability and fault tolerance requirements of integrated, critical, digital fly-by-wire control systems for advanced military and civil aircraft requires redundant, reconfigurable implementations of the actuation system. An effective way for controlling the actuators and implementing the required fault detection and reconfiguration strategies is by means of dedicated microprocessors. This paper describes a laboratory implementation of a flexible intelligent redundant actuation system capable of demonstrating the concept and analyzing a variety of configurations and technical issues.

  1. Selecting Actuator Configuration for a Benson Boiler:Production Economics

    Kragelund, Martin Nygaard; Leth, John-Josef; Wisniewski, Rafal

    2009-01-01

    This paper addresses the problem of an optimal actuator configuration in an economic perspective. The objective is to minimize the economical cost of operating a given plant. Functionals encapsulating information of the business objectives given the different actuators has been established with particular focus on a boiler in a power plant operated by DONG Energy - a Danish energy supplier. The problem has been reformulated using mathematic notions from economics. The selection of actuator co...

  2. Mechatronics and Bioinspiration in Actuator Design and Control

    J. L. Pons; A. Forner-Cordero; Rocon, E.; Moreno, J. C.

    2008-01-01

    Actuators are components of motion control systems in which mechatronics plays a crucial role. They can be regarded as a paradigmatic case in which this mechatronic approach is required. Furthermore, actuator technologies can get new sources of inspiration from nature (bioinspiration). Biological systems are the result of an evolutionary process and show excellent levels of performance. In this paper, we analyse the actuator as a bioinspired mechatronic system through analogies between mechat...

  3. Recent Advances in the Control of Piezoelectric Actuators

    Ziqiang Chi; Qingsong Xu

    2014-01-01

    The micro/nano positioning field has made great progress towards enabling the advance of micro/nano technology. Micro/nano positioning stages actuated by piezoelectric actuators are the key devices in micro/nano manipulation. The control of piezoelectric actuators has emerged as a hot topic in recent years. Piezoelectric materials have inherent hysteresis and creep nonlinearity, which can reduce the accuracy of the manipulation, even causing the instability of the whole system. Remarkable eff...

  4. Pedot and PPy Conducting Polymer Bilayer and Trilayer Actuators

    Zainudeen, Umer Lebbe; Careem, Mohamed Abdul; Skaarup, Steen

    2008-01-01

    Actuators based on conducting polymers are attracting increasing interest due to their desirable features such as large mechanical stress generated, sufficient maximum strain values, high reversibility, good safety properties and the possibility of precise control using small voltages. Many...... attempts have been made to improve the actuator performance. We report electromechanical measurements on actuators of bilayer and trilayer free standing films prepared with polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymers. Both types of conducting polymer are pre...

  5. Micromachined Piezoelectric Actuators for Cryogenic Adaptive Optics Project

    National Aeronautics and Space Administration — TRS Technologies proposes micromachined single crystal piezoelectric actuator arrays to enable ultra-large stroke, high precision shape control for large aperture,...

  6. Active optics: deformable mirrors with a minimum number of actuators

    Laslandes, Marie; Ferrari, Marc; 10.2971/jeos.2012.12036

    2012-01-01

    We present two concepts of deformable mirror to compensate for first order optical aberrations. Deformation systems are designed using both elasticity theory and Finite Element Analysis in order to minimize the number of actuators. Starting from instrument specifications, we explain the methodology to design dedicated deformable mirrors. The work presented here leads to correcting devices optimized for specific functions. The Variable Off-Axis paraboLA concept is a 3-actuators, 3-modes system able to generate independently Focus, Astigmatism and Coma. The Correcting Optimized Mirror with a Single Actuator is a 1-actuator system able to generate a given combination of optical aberrations.

  7. Energy Efficient Wireless Vehicular-Guided Actuator Network

    Boudellioua, Imene

    2013-06-09

    In this paper, we present an energy-efficient vehicular guided system for environmental disaster management using wireless sensor/actuator networks. Sensor nodes within clusters are controlled by a master node that is dynamically selected. Actuators support mobility for every sensor node in the area of interest. The system maintains energy efficiency using statistical, correlation, and confidence for determining actuator actions and implements an adaptive energy scheme to prolong the system lifespan. Experimental results show that the system is capable of saving up to 2.7Watt for every 28KByte of data exchanged. We also show that actuator actions are correct with a 90% confidence.

  8. Multiscale modeling and topology optimization of poroelastic actuators

    Andreasen, Casper Schousboe; Sigmund, Ole

    2012-01-01

    This paper presents a method for design of optimized poroelastic materials which under internal pressurization turn into actuators for application in, for example, linear motors. The actuators are modeled in a two-scale fluid–structure interaction approach. The fluid saturated material microstruc......This paper presents a method for design of optimized poroelastic materials which under internal pressurization turn into actuators for application in, for example, linear motors. The actuators are modeled in a two-scale fluid–structure interaction approach. The fluid saturated material...

  9. Electrical servo actuator bracket. [fuel control valves on jet engines

    Sawyer, R. V. (Inventor)

    1981-01-01

    An electrical servo actuator is mounted on a support arm which is allowed to pivot on a bolt through a fixed mounting bracket. The actuator is pivotally connected to the end of the support arm by a bolt which has an extension allowed to pass through a slot in the fixed mounting bracket. An actuator rod extends from the servo actuator to a crank arm which turns a control shaft. A short linear thrust of the rod pivots the crank arm through about 90 for full-on control with the rod contracted into the servo actuator, and full-off control when the rod is extended from the actuator. A spring moves the servo actuator and actuator rod toward the control crank arm once the actuator rod is fully extended in the full-off position. This assures the turning of the control shaft to a full-off position. A stop bolt and slot are provided to limit pivot motion. Once fully extended, the spring pivots the motion.

  10. Cryogenic Fluid Transfer Components Using Single Crystal Piezoelectric Actuators Project

    National Aeronautics and Space Administration — Cryogenic fluid transfer components using single crystal piezoelectric actuators are proposed to enable low thermal mass, minimal heat leak, low power consumption...