WorldWideScience

Sample records for actuated traffic signal controllers

  1. Light signals for road traffic control.

    Schreuder, D.A.

    1981-01-01

    Signals for road traffic control are a major constituent of the modern traffic scene, particularly in built-up areas. A vast amount of research has been executed in the last two decennia, resulting in a fairly generally accepted view on what the requirements for effective traffic lights are. For the French translation see B 19780

  2. Distributed traffic signal control using fuzzy logic

    Chiu, Stephen

    1992-01-01

    We present a distributed approach to traffic signal control, where the signal timing parameters at a given intersection are adjusted as functions of the local traffic condition and of the signal timing parameters at adjacent intersections. Thus, the signal timing parameters evolve dynamically using only local information to improve traffic flow. This distributed approach provides for a fault-tolerant, highly responsive traffic management system. The signal timing at an intersection is defined by three parameters: cycle time, phase split, and offset. We use fuzzy decision rules to adjust these three parameters based only on local information. The amount of change in the timing parameters during each cycle is limited to a small fraction of the current parameters to ensure smooth transition. We show the effectiveness of this method through simulation of the traffic flow in a network of controlled intersections.

  3. A Two-Stage Fuzzy Logic Control Method of Traffic Signal Based on Traffic Urgency Degree

    Yan Ge

    2014-01-01

    City intersection traffic signal control is an important method to improve the efficiency of road network and alleviate traffic congestion. This paper researches traffic signal fuzzy control method on a single intersection. A two-stage traffic signal control method based on traffic urgency degree is proposed according to two-stage fuzzy inference on single intersection. At the first stage, calculate traffic urgency degree for all red phases using traffic urgency evaluation module and select t...

  4. The fully actuated traffic control problem solved by global optimization and complementarity

    Ribeiro, Isabel M.; de Lurdes de Oliveira Simões, Maria

    2016-02-01

    Global optimization and complementarity are used to determine the signal timing for fully actuated traffic control, regarding effective green and red times on each cycle. The average values of these parameters can be used to estimate the control delay of vehicles. In this article, a two-phase queuing system for a signalized intersection is outlined, based on the principle of minimization of the total waiting time for the vehicles. The underlying model results in a linear program with linear complementarity constraints, solved by a sequential complementarity algorithm. Departure rates of vehicles during green and yellow periods were treated as deterministic, while arrival rates of vehicles were assumed to follow a Poisson distribution. Several traffic scenarios were created and solved. The numerical results reveal that it is possible to use global optimization and complementarity over a reasonable number of cycles and determine with efficiency effective green and red times for a signalized intersection.

  5. Adaptive Traffic Signalization Model using Neuro-Fuzzy Controllers

    Devesh Batra*

    2014-07-01

    Full Text Available Current traffic lights are pre-programmed and use daily signal timing schedules, which contribute to traffic congestion and delay. Thus, with the increase in the number of vehicles on road, need for adaptive signal technology arises which has the potential to adjust the timing of red, yellow and green lights in order to accommodate changing traffic patterns and ease traffic congestion. In this paper, we present a model for adaptive traffic signalization, which uses fuzzy neural network for designing traffic signal controller. The controllers use vehicle detectors in order to detect the number of incoming vehicles. Based on the number of approaching vehicles, the current signal phase is either extended or terminated. The traffic volume at one particular region in an intersection is compared with that in the competing regions of the same intersection. The decision made is thus robust and results in less congestion and delays.

  6. Traffic Signals Control with Adaptive Fuzzy Controller in Urban Road Network

    LI Yan; FAN Xiao-ping

    2008-01-01

    An adaptive fuzzy logic controller (AFC) is presented for the signal control of the urban traffic network.The AFC is composed of the signal control system-oriented control level and the signal controller-oriented fuzzy rules regulation level.The control level decides the signal tunings in an intersection with a fuzzy logic controller.The regulation level optimizes the fuzzy rules by the Adaptive Rule Module in AFC according to both the system performance index in current control period and the traffic flows in the last one.Consequently the system performances are improved.A weight coefficient controller (WCC) is also developed to describe the interactions of traffic flow among the adjacent intersections.So the AFC combined with the WCC can be applied in a road network for signal timings.Simulations of the AFC on a real traffic scenario have been conducted.Simulation results indicate that the adaptive controller for traffic control shows better performance than the actuated one.

  7. Autonomous Traffic Signal Control Model with Neural Network Analogy

    Ohira, T

    1997-01-01

    We propose here an autonomous traffic signal control model based on analogy with neural networks. In this model, the length of cycle time period of traffic lights at each signal is autonomously adapted. We find a self-organizing collective behavior of such a model through simulation on a one-dimensional lattice model road: traffic congestion is greatly diffused when traffic signals have such autonomous adaptability with suitably tuned parameters. We also find that effectiveness of the system emerges through interactions between units and shows a threshold transition as a function of proportion of adaptive signals in the model.

  8. Signal Groups of Compatible Graph in Traffic Control Problems

    Arun Kumar Baruah

    2012-07-01

    Full Text Available Signal Groups of a compatibility graph is used to solve conflict between the traffic streams and hence can be used as a solution for traffic control problem at an intersection. In this paper we have considered cliques of the compatible graph as signal groups and the set of signal groups which can simultaneously move at an intersection is taken in a phase. Phasing of traffic lights is done by splitting the cycle time among these phases so that each set of signal group is allowed to move once in the cycle.

  9. An extended signal control strategy for urban network traffic flow

    Yan, Fei; Tian, Fuli; Shi, Zhongke

    2016-03-01

    Traffic flow patterns are in general repeated on a daily or weekly basis. To improve the traffic conditions by using the inherent repeatability of traffic flow, a novel signal control strategy for urban networks was developed via iterative learning control (ILC) approach. Rigorous analysis shows that the proposed learning control method can guarantee the asymptotic convergence. The impacts of the ILC-based signal control strategy on the macroscopic fundamental diagram (MFD) were analyzed by simulations on a test road network. The results show that the proposed ILC strategy can evenly distribute the accumulation in the network and improve the network mobility.

  10. Adaptive Traffic Signalization Model using Neuro-Fuzzy Controllers

    Devesh Batra; Pragya Verma

    2014-01-01

    Current traffic lights are pre-programmed and use daily signal timing schedules, which contribute to traffic congestion and delay. Thus, with the increase in the number of vehicles on road, need for adaptive signal technology arises which has the potential to adjust the timing of red, yellow and green lights in order to accommodate changing traffic patterns and ease traffic congestion. In this paper, we present a model for adaptive traffic signalization, which uses fuzzy neura...

  11. Modelling Signal Controlled Traffic Based on Driving Behaviors

    Yang Wang; Yanyan Chen; Ning Chen

    2015-01-01

    In urban traffic, of particular interest the traffic breakdown which is primarily resulted from the driving behaviors is emerged to respond to the traffic signal. To investigate the influences of driving behaviors on the traffic breakdown, a cellular automaton model has been developed by incorporating a number of driving behaviors typically manifesting during the different stages when the vehicle approaching a traffic light. Numerical simulations have been performed based on a road segment co...

  12. Calculation features of traffic light regulation regimesat the signal group control

    Єресов, Володимир Іванович; Трушевський, Вячеслав Едуардович

    2014-01-01

    The differences between the existing technologies of traffic light control by phases and signal groups were determined in the paper. It was proved that the signal group control technology is more perfect and to a greater extent corresponds to the changing traffic conditions at intersections. Approach for compiling the traffic light regulation cycle structure based on the analysis of conflict of traffic and pedestrian flows, taking into account traffic volume, the number of road accidents in t...

  13. Traffic Congestion Evaluation and Signal Control Optimization Based on Wireless Sensor Networks: Model and Algorithms

    Wei Zhang; Guozhen Tan; Nan Ding; Guangyuan Wang

    2012-01-01

    This paper presents the model and algorithms for traffic flow data monitoring and optimal traffic light control based on wireless sensor networks. Given the scenario that sensor nodes are sparsely deployed along the segments between signalized intersections, an analytical model is built using continuum traffic equation and develops the method to estimate traffic parameter with the scattered sensor data. Based on the traffic data and principle of traffic congestion formation, we introduce the ...

  14. Traffic Congestion Evaluation and Signal Control Optimization Based on Wireless Sensor Networks: Model and Algorithms

    Wei Zhang

    2012-01-01

    Full Text Available This paper presents the model and algorithms for traffic flow data monitoring and optimal traffic light control based on wireless sensor networks. Given the scenario that sensor nodes are sparsely deployed along the segments between signalized intersections, an analytical model is built using continuum traffic equation and develops the method to estimate traffic parameter with the scattered sensor data. Based on the traffic data and principle of traffic congestion formation, we introduce the congestion factor which can be used to evaluate the real-time traffic congestion status along the segment and to predict the subcritical state of traffic jams. The result is expected to support the timing phase optimization of traffic light control for the purpose of avoiding traffic congestion before its formation. We simulate the traffic monitoring based on the Mobile Century dataset and analyze the performance of traffic light control on VISSIM platform when congestion factor is introduced into the signal timing optimization model. The simulation result shows that this method can improve the spatial-temporal resolution of traffic data monitoring and evaluate traffic congestion status with high precision. It is helpful to remarkably alleviate urban traffic congestion and decrease the average traffic delays and maximum queue length.

  15. Fuzzy urban traffic signal control - an overview: Mehko upravljanje mestne prometne signalizacije - pregled:

    Brodnik, Andrej; Malej, Alenka

    2007-01-01

    In the last years, there have been many attempts made to improve urban traffic signal contol systems as this is one of the most cost-effective ways to improve the traffic flow through a network intersections. Besides the traditional method for traffic signal control that are usually based on a traffic flow model, the development of new system started to consider the various emerging technologies including artifical intelligence. Application of metaheuristic methods has proven to be worth of b...

  16. Delays at signalised intersections with exhaustive traffic control

    Boon, MAA Marko; Adan, IJBF Ivo; Winands, EMM Erik; Down, DG

    2014-01-01

    In this paper we study a traffic intersection with vehicle-actuated traffic signal control. Traffic lights stay green until all lanes within a group are emptied. Assuming general renewal arrival processes, we derive exact limiting distributions of the delays under Heavy Traffic (HT) conditions. Furthermore, we derive the Light Traffic (LT) limit of the mean delays for intersections with Poisson arrivals, and develop a heuristic adaptation of this limit to capture the LT behaviour for other in...

  17. Model predictive control for hybrid vehicle ecological driving using traffic signal and road slope information

    Kaijiang YU; Junqi YANG; Daisuke YAMAGUCHI

    2015-01-01

    This paper presents development of a control system for ecological driving of a hybrid vehicle. Prediction using traffic signal and road slope information is considered to improve the fuel economy. It is assumed that the automobile receives traffic signal information from intelligent transportation systems (ITS). Model predictive control is used to calculate optimal vehicle control inputs using traffic signal and road slope information. The performance of the proposed method was analyzed through computer simulation results. Both the fuel economy and the driving profile are optimized using the proposed approach. It was observed that fuel economy was improved compared with driving of a typical human driving model.

  18. Positive Switched System Approach to Traffic Signal Control for Oversaturated Intersection

    Lin Du; Yun Zhang

    2014-01-01

    The online traffic signalization for intersection is addressed. A new model for intersection called positive switched system is presented. Then, based on the dissipativity analysis results for positive switched system, an online state-feedback control strategy for traffic signal in two-phase intersection section is proposed. A numerical example is provided to illustrate the effectiveness of our theoretical findings. Finally, in order to extend to more general cases, multiphase intersection is...

  19. Multiobjective Traffic Signal Control Model for Intersection Based on Dynamic Turning Movements Estimation

    Pengpeng Jiao

    2014-01-01

    Full Text Available The real-time traffic signal control for intersection requires dynamic turning movements as the basic input data. It is impossible to detect dynamic turning movements directly through current traffic surveillance systems, but dynamic origin-destination (O-D estimation can obtain it. However, the combined models of dynamic O-D estimation and real-time traffic signal control are rare in the literature. A framework for the multiobjective traffic signal control model for intersection based on dynamic O-D estimation (MSC-DODE is presented. A state-space model using Kalman filtering is first formulated to estimate the dynamic turning movements; then a revised sequential Kalman filtering algorithm is designed to solve the model, and the root mean square error and mean percentage error are used to evaluate the accuracy of estimated dynamic turning proportions. Furthermore, a multiobjective traffic signal control model is put forward to achieve real-time signal control parameters and evaluation indices. Finally, based on practical survey data, the evaluation indices from MSC-DODE are compared with those from Webster method. The actual and estimated turning movements are further input into MSC-DODE, respectively, and results are also compared. Case studies show that results of MSC-DODE are better than those of Webster method and are very close to unavailable actual values.

  20. Overcoming the Pigou-Downs Paradox Using Advanced Traffic Signal Control

    Fowdur, S. C.; Rughooputh, S. D. D. V.

    2013-06-01

    Expansion of a road network has often been observed to cause more congestion and has led researchers to the formulation of traffic paradoxes such as the Pigou-Downs and the Braess paradoxes. In this paper, we present an application of advanced traffic signal control (ATSC) to overcome the Pigou-Downs paradox. Port Louis, the capital city of Mauritius is used to investigate the effect of using a harbor bridge to by-pass the city center. Using traffic cellular automata (TCA) simulations it has been shown how, if traffic is only gradually deviated along the by-pass, an overall longer travel time and decreased flux would result. By making use of ATSC, which involves traffic lights that sense the number of vehicles accumulated in the queue, better travel times and fluxes are achieved.

  1. From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks

    Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming

    2016-03-01

    The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains.

  2. Vehicular motion in counter traffic flow through a series of signals controlled by a phase shift

    Nagatani, Takashi; Tobita, Kazuhiro

    2012-10-01

    We study the dynamical behavior of counter traffic flow through a sequence of signals (traffic lights) controlled by a phase shift. There are two lanes for the counter traffic flow: the first lane is for east-bound vehicles and the second lane is for west-bound vehicles. The green-wave strategy is studied in the counter traffic flow where the phase shift of signals in the second lane has opposite sign to that in the first lane. A nonlinear dynamic model of the vehicular motion is presented by nonlinear maps at a low density. There is a distinct difference between the traffic flow in the first lane and that in the second lane. The counter traffic flow exhibits very complex behavior on varying the cycle time, the phase difference, and the split. Also, the fundamental diagram is derived by the use of the cellular automaton (CA) model. The dependence of east-bound and west-bound vehicles on cycle time, phase difference, and density is clarified.

  3. Estimating airflow rates in air-handling units from actuator control signals

    Tan, Huiling; Dexter, Arthur [University of Oxford (United Kingdom). Department of Engineering Science

    2006-10-15

    The design and accuracy of simple airflow estimators that are based on actuator control signals are investigated. A computer simulation of the air-circuits of a variable-air-volume air-conditioning system is developed and validated experimentally. The simulation is used to examine the relationship between the supply airflow, the extract airflow and the inlet airflow, and the control signals for the fans and the mixing-box dampers in the air-handling unit (AHU). Based on the simulation results, linear estimators are proposed for the estimation of airflow rates in AHUs. The accuracy of the linear estimators, which are calibrated using measured data collected from the air-conditioning system during testing and balancing, is examined using data collected from a full-scale air-conditioning system. The results show that the estimation errors are less than 8% of full-scale. (author)

  4. Multiobjective Reinforcement Learning for Traffic Signal Control Using Vehicular Ad Hoc Network

    Houli, Duan; Zhiheng, Li; Yi, Zhang

    2010-12-01

    We propose a new multiobjective control algorithm based on reinforcement learning for urban traffic signal control, named multi-RL. A multiagent structure is used to describe the traffic system. A vehicular ad hoc network is used for the data exchange among agents. A reinforcement learning algorithm is applied to predict the overall value of the optimization objective given vehicles' states. The policy which minimizes the cumulative value of the optimization objective is regarded as the optimal one. In order to make the method adaptive to various traffic conditions, we also introduce a multiobjective control scheme in which the optimization objective is selected adaptively to real-time traffic states. The optimization objectives include the vehicle stops, the average waiting time, and the maximum queue length of the next intersection. In addition, we also accommodate a priority control to the buses and the emergency vehicles through our model. The simulation results indicated that our algorithm could perform more efficiently than traditional traffic light control methods.

  5. Multiobjective Reinforcement Learning for Traffic Signal Control Using Vehicular Ad Hoc Network

    Houli Duan

    2010-01-01

    Full Text Available We propose a new multiobjective control algorithm based on reinforcement learning for urban traffic signal control, named multi-RL. A multiagent structure is used to describe the traffic system. A vehicular ad hoc network is used for the data exchange among agents. A reinforcement learning algorithm is applied to predict the overall value of the optimization objective given vehicles' states. The policy which minimizes the cumulative value of the optimization objective is regarded as the optimal one. In order to make the method adaptive to various traffic conditions, we also introduce a multiobjective control scheme in which the optimization objective is selected adaptively to real-time traffic states. The optimization objectives include the vehicle stops, the average waiting time, and the maximum queue length of the next intersection. In addition, we also accommodate a priority control to the buses and the emergency vehicles through our model. The simulation results indicated that our algorithm could perform more efficiently than traditional traffic light control methods.

  6. Traffic Signal Using Smart Agent System

    Cheonshik Kim; You S. Hong

    2008-01-01

    In this research, we propose an electro-sensitive traffic light using the smart agent algorithm to reduce traffic congestion and traffic accidents. The multi-agent system approach can provide a new and preferable solution. The proposed method adaptively controls the cycle of traffic signals even though the traffic volume varies. Consequently, we reduce the car waiting time and start-up delay time using fuzzy control of feedback data. In particular, we have designed and implemented a system to...

  7. Traffic Signal Using Smart Agent System

    Cheonshik Kim

    2008-01-01

    Full Text Available In this research, we propose an electro-sensitive traffic light using the smart agent algorithm to reduce traffic congestion and traffic accidents. The multi-agent system approach can provide a new and preferable solution. The proposed method adaptively controls the cycle of traffic signals even though the traffic volume varies. Consequently, we reduce the car waiting time and start-up delay time using fuzzy control of feedback data. In particular, we have designed and implemented a system to create optimum traffic signals in congested conditions. The effectiveness of this method was shown through simulation of multiple intersections.

  8. Organic traffic control

    Prothmann, Holger

    2011-01-01

    Modern cities cannot be imagined without traffic lights controlling the road network. To handle the network's changing demands efficiently, the signal plan specification needs to be shifted from the design time to the run-time of a signal system. The generic observer/controller architecture proposed for Organic Computing facilitates this shift. A two-levelled learning mechanism optimises signal plans on-line while a distributed coordination mechanism establishes green waves in the road network.

  9. Traffic Signals in Motorcycle Dependent Cities

    Do, Quoc Cuong

    2009-01-01

    Traffic signal control was first invented in 1868 in Great Britain. Then, it has quickly spread across many other countries, what are now usually developed countries. Therefore, during a long history of development, traffic signals usually have been dealing with traffic in which four-wheel vehicles play an important role in motorised traffic. However, as a result of an unequal development among countries, many Motorcycle Dependent Cities (MDCs) nowadays still exist mostly in the developing co...

  10. An RFID-Based Intelligent Vehicle Speed Controller Using Active Traffic Signals

    Joshué Pérez

    2010-06-01

    Full Text Available These days, mass-produced vehicles benefit from research on Intelligent Transportation System (ITS. One prime example of ITS is vehicle Cruise Control (CC, which allows it to maintain a pre-defined reference speed, to economize on fuel or energy consumption, to avoid speeding fines, or to focus all of the driver’s attention on the steering of the vehicle. However, achieving efficient Cruise Control is not easy in roads or urban streets where sudden changes of the speed limit can happen, due to the presence of unexpected obstacles or maintenance work, causing, in inattentive drivers, traffic accidents. In this communication we present a new Infrastructure to Vehicles (I2V communication and control system for intelligent speed control, which is based upon Radio Frequency Identification (RFID technology for identification of traffic signals on the road, and high accuracy vehicle speed measurement with a Hall effect-based sensor. A fuzzy logic controller, based on sensor fusion of the information provided by the I2V infrastructure, allows the efficient adaptation of the speed of the vehicle to the circumstances of the road. The performance of the system is checked empirically, with promising results.

  11. An RFID-Based Intelligent Vehicle Speed Controller Using Active Traffic Signals

    Pérez, Joshué; Seco, Fernando; Milanés, Vicente; Jiménez, Antonio; Díaz, Julio C.; de Pedro, Teresa

    2010-01-01

    These days, mass-produced vehicles benefit from research on Intelligent Transportation System (ITS). One prime example of ITS is vehicle Cruise Control (CC), which allows it to maintain a pre-defined reference speed, to economize on fuel or energy consumption, to avoid speeding fines, or to focus all of the driver’s attention on the steering of the vehicle. However, achieving efficient Cruise Control is not easy in roads or urban streets where sudden changes of the speed limit can happen, due to the presence of unexpected obstacles or maintenance work, causing, in inattentive drivers, traffic accidents. In this communication we present a new Infrastructure to Vehicles (I2V) communication and control system for intelligent speed control, which is based upon Radio Frequency Identification (RFID) technology for identification of traffic signals on the road, and high accuracy vehicle speed measurement with a Hall effect-based sensor. A fuzzy logic controller, based on sensor fusion of the information provided by the I2V infrastructure, allows the efficient adaptation of the speed of the vehicle to the circumstances of the road. The performance of the system is checked empirically, with promising results. PMID:22219692

  12. Distributed structural control using multilayered piezoelectric actuators

    Cudney, Harley H.; Inman, Daniel J.; Oshman, Yaakov

    1990-01-01

    A method of segmenting piezoelectric sensors and actuators is proposed which can preclude the currently experienced cancelation of sensor signals, or the reduction of actuator effectiveness, due to the integration of the property undergoing measurement or control. The segmentation method is demonstrated by a model developed for beam structures, to which multiple layers of piezoelectric materials are attached. A numerical study is undertaken of increasing active and passive damping of a beam using the segmented sensors and actuators over unsegmented sensors and actuators.

  13. MATLAB Simulation of Fuzzy Traffic Controller for Multilane Isolated Intersection

    Azura Che Soh/Lai Guan Rhung

    2010-07-01

    Full Text Available This paper presents a MATLAB simulation of fuzzy traffic controller for controlling traffic flow at multilane isolated signalized intersection. The controller is developed based on the waiting time and vehicles queue length at current green phase, and vehicles queue lengths at the other phases. For control strategy, the controllercontrols the traffic light timings and phase sequence to ensure smooth flow of traffic with minimal waiting time, queue length and delay time. In this research, the isolated intersection model used consists of two lanes in each approach. Each approach has two different values of vehicles queue length and waiting time, respectively, at the intersection. The maximum values of vehicles queue length and waiting times are selected as the inputs to controller for optimized control of traffic flows at the intersection. A traffic model and fuzzy traffic controller are developed to evaluate the performance of traffic controllers underdifferent conditions. In the end, by comparing the experimental result obtained by the vehicle-actuated controller (VAC and fuzzy traffic controller (FTC which improves significant performance for intersections, we confirmed the efficiency of our intelligent controller based fuzzy inference system.

  14. SOLUTION OF SIGNAL UNCERTAINTY PROBLEM AT ANALYTICAL DESIGN OF CONSECUTIVE COMPENSATOR IN PIEZO ACTUATOR CONTROL

    S.V. Bystrov

    2016-05-01

    Full Text Available Subject of Research.We present research results for the signal uncertainty problem that naturally arises for the developers of servomechanisms, including analytical design of serial compensators, delivering the required quality indexes for servomechanisms. Method. The problem was solved with the use of Besekerskiy engineering approach, formulated in 1958. This gave the possibility to reduce requirements for input signal composition of servomechanisms by using only two of their quantitative characteristics, such as maximum speed and acceleration. Information about input signal maximum speed and acceleration allows entering into consideration the equivalent harmonic input signal with calculated amplitude and frequency. In combination with requirements for maximum tracking error, the amplitude and frequency of the equivalent harmonic effects make it possible to estimate analytically the value of the amplitude characteristics of the system by error and then convert it to amplitude characteristic of open-loop system transfer function. While previously Besekerskiy approach was mainly used in relation to the apparatus of logarithmic characteristics, we use this approach for analytical synthesis of consecutive compensators. Main Results. Proposed technique is used to create analytical representation of "input–output" and "error–output" polynomial dynamic models of the designed system. In turn, the desired model of the designed system in the "error–output" form of analytical representation of transfer functions is the basis for the design of consecutive compensator, that delivers the desired placement of state matrix eigenvalues and, consequently, the necessary set of dynamic indexes for the designed system. The given procedure of consecutive compensator analytical design on the basis of Besekerskiy engineering approach under conditions of signal uncertainty is illustrated by an example. Practical Relevance. The obtained theoretical results are

  15. 路口交通流不均衡饱和时的交通信号控制%Traffic Flow Equilibrium Saturation in Traffic Signal Control

    李雪佳

    2012-01-01

    Aiming at the existing intersection queue, and different directions of traffic flow is not balanced, queue length sum minimum sum of traffic flow model are built, and 2 kinds of optimization of signal timing control strategy are presented by using the optimal control theory and algorithms.%针对交叉路口存在排队车辆,且不同方向上的交通流不均衡,建立排队长度总和达到最小的交通流模型,利用最优控制理论和算法给出两种优化的信号配时控制策略。

  16. Dual use of LED traffic signal system

    Cheung, SW; Yang, ES; Tam, YY; Man, CW; D. Yang

    1999-01-01

    The dual use, signaling and communication, of LED traffic signal system is described and analyzed. The primary function of a traffic light system is to give traffic and pedestrian signals. A prototype of LED traffic signal head is developed to perform a secondary function: communication. A wireless communication link is set up using the LED traffic signal head as the transmitter. The LEDs are modulated to transmit information-carrying light. The receiver uses a silicon photodiode to detect th...

  17. Controlled Traffic Farming

    Controlled Traffic Farming Europe

    2011-01-01

    Metadata only record Controlled Traffic Farming (CTF) is a farming method used to reduce soil compaction, decrease inputs, and improve soil structure when coupled with reduced-till or no-till practices. This practices utilizes permanent traffic/wheel zones to limit soil compaction to a specific area. This website provides practical information on CTF, case studies, workshops, and links to additional resources.

  18. Signal processing for plane wave actuators

    T. Corbach; Holters, M.; U. Zölzer

    2010-01-01

    Plane wave actuators without an enclosure per se have a forward and backward radiation. The backward radiation is unwanted in many applications when a single direction radiation is desired. To avoid the disadvantages of an enclosure a system is proposed, which provides a high suppression of the unwanted backward radiation using a pair of plane wave actuators. This is achieved by adapted input signal filters. The influences of the second plane wave actuator to the forward rad...

  19. Miniaturized Swimming Soft Robot with Complex Movement Actuated and Controlled by Remote Light Signals

    Huang, Chaolei; Lv, Jiu-An; Tian, Xiaojun; Wang, Yuechao; Yu, Yanlei; Liu, Jie

    2015-12-01

    Powering and communication with micro robots to enable complex functions is a long-standing challenge as the size of robots continues to shrink. Physical connection of wires or components needed for wireless communication are complex and limited by the size of electronic and energy storage devices, making miniaturization of robots difficult. To explore an alternative solution, we designed and fabricated a micro soft swimming robot with both powering and controlling functions provided by remote light, which does not carry any electronic devices and batteries. In this approach, a polymer film containing azobenzene chromophore which is sensitive to ultra-violet (UV) light works as “motor”, and the UV light and visible light work as “power and signal lines”. Periodically flashing UV light and white light drives the robot flagellum periodically to swing to eventually push forward the robot in the glass tube filled with liquid. The gripper on robot head can be opened or closed by lights to grab and carry the load. This kind of remotely light-driven approach realizes complex driving and controlling of micro robotic structures, making it possible to design and fabricate even smaller robots. It will have great potential among applications in the micro machine and robot fields.

  20. EVALUATION OF INCOMING TRAFFIC FLOWS STABILITY IN SIGNAL CONTROL INTELLECTUAL TECHNOLOGIES

    Yeresov, V.; Didkovskaya, L.

    2009-01-01

    A problem of using intellectual technologies for traffic regulation through estimation of incoming traffic parameters have been considered. The parameters include the level of cycle phases saturation (xi), the coefficient of intrahour irregularity (fs), the coefficient of variation (ІN), and the criterion of stability (αgop).

  1. Pneumatic actuator with hydraulic control

    Everett, Hobart R., Jr.

    1992-11-01

    The present invention provides a pneumatically powered actuator having hydraulic control for both locking and controlling the velocity of an output rod without any sponginess. The invention includes a double-acting pneumatic actuator having a bore, a piston slidably engaged within the bore, and a control rod connected to the piston. The double-acting pneumatic actuator is mounted to a frame. A first double-acting hydraulic actuator having a bore, a piston slidably engaged within the bore, and a follower rod mounted to the piston is mounted to the frame such that the follower rod is fixedly connected to the control rod. The maximum translation of the piston within the bore of the first double-acting hydraulic actuator provides a volumetric displacement V1. The present invention also includes a second double-acting hydraulic actuator having a bore, a piston slidably engaged within the bore, and an output rod mounted to the piston. The maximum translation of the piston within the bore of the second double-acting hydraulic actuator provides a volumetric displacement V2, where V2=V1. A pair of fluid ports in each of the first and second double-acting hydraulic cylinders are operably connected by fluid conduits, one of which includes a valve circuit which may be used to control the velocity of the output rod or to lock the output rod in a static position by regulating the flow of hydraulic fluid between the double-acting cylinders.

  2. Control of Adjustable Compliant Actuators

    Berno J.E. Misgeld

    2014-05-01

    Full Text Available Adjustable compliance or variable stiffness actuators comprise an additional element to elastically decouple the actuator from the load and are increasingly applied to human-centered robotic systems. The advantages of such actuators are of paramount importance in rehabilitation robotics, where requirements demand safe interaction between the therapy system and the patient. Compliant actuator systems enable the minimization of large contact forces arising, for example, from muscular spasticity and have the ability to periodically store and release energy in cyclic movements. In order to overcome the loss of bandwidth introduced by the elastic element and to guarantee a higher range in force/torque generation, new actuator designs consider variable or nonlinear stiffness elements, respectively. These components cannot only be adapted to the walking speed or the patient condition, but also entail additional challenges for feedback control. This paper introduces a novel design method for an impedance-based controller that fulfills the control objectives and compares the performance and robustness to a classical cascaded control approach. The new procedure is developed using a non-standard positive-real Η2 controller design and is applied to a loop-shaping approach. Robust norm optimal controllers are designed with regard to the passivity of the actuator load-impedance transfer function and the servo control problem. Classical cascaded and positive-real Η2 controller designs are validated and compared in simulations and in a test bench using a passive elastic element of varying stiffness.

  3. A Cooperative Traffic Control Strategy

    BORG, Dora Lee; Bhouri, Neila; SCERRI, Kenneth

    2015-01-01

    With one-third of the global population living in cities by 2030 and the need for mobility fueling traffic growth all over the world, the traffic congestion problem in major cities is becoming more and more acute. Besides economic losses, traffic congestion has detrimental effects on our standard of living and on the environment. A viable solution to the traffic congestion problem is intelligent traffic control. The main aim of this work is to test a Model Predictive Control Strategy (MPC) on...

  4. Remotely powered and controlled EAPap actuator by amplitude modulated microwaves

    This paper reports on a remotely powered and controlled Electro-Active Paper (EAPap) actuator without onboard controller using amplitude modulated microwaves. A rectenna is a key element for microwave power transmission that converts microwaves into dc power through coupling and rectification. In this study, the concept of a remotely controlled and powered EAPap actuator is proposed by means of modulating microwaves with a control signal and demodulating it through the rectenna rectification. This concept is applied to a robust EAPap actuator, namely cellulose–polypyrrole–ionic liquid (CPIL) EAPap. Details of fabrication and characterization of the rectenna and the CPIL-EAPap actuator are explained. Also, the charge accumulation problem of the actuator is explained and resolved by connecting an additional resistor. Since this idea can eliminate the onboard controller by supplying the operating signal through modulation, a compact and lightweight actuator can be achieved, which is useful for biomimetic robots and remotely driven actuators. (technical note)

  5. The anti-motility signaling mechanism of TGFβ3 that controls cell traffic during skin wound healing.

    Han, Arum; Bandyopadhyay, Balaji; Jayaprakash, Priyamvada; Lua, Ingrid; Sahu, Divya; Chen, Mei; Woodley, David T; Li, Wei

    2012-12-15

    When skin is wounded, migration of epidermal keratinocytes at the wound edge initiates within hours, whereas migration of dermal fibroblasts toward the wounded area remains undetectable until several days later. This "cell type traffic" regulation ensures proper healing of the wound, as disruptions of the regulation could either cause delay of wound healing or result in hypertrophic scars. TGFβ3 is the critical traffic controller that selectively halts migration of the dermal, but not epidermal, cells to ensure completion of wound re-epithelialization prior to wound remodeling. However, the mechanism of TGFβ3's anti-motility signaling has never been investigated. We report here that activated TβRII transmits the anti-motility signal of TGFβ3 in full to TβRI, since expression of the constitutively activated TβRI-TD mutant was sufficient to replace TGFβ3 to block PDGF-bb-induced dermal fibroblast migration. Second, the three components of R-Smad complex are all required. Individual downregulation of Smad2, Smad3 or Smad4 prevented TGFβ3 from inhibiting dermal fibroblast migration. Third, Protein Kinase Array allowed us to identify the protein kinase A (PKA) as a specific downstream effector of R-Smads in dermal fibroblasts. Activation of PKA alone blocked PDGF-bb-induced dermal fibroblast migration, just like TGFβ3. Downregulation of PKA's catalytic subunit nullified the anti-motility signaling of TGFβ3. This is the first report on anti-motility signaling mechanism by TGFβ family cytokines. Significance of this finding is not only limited to wound healing but also to other human disorders, such as heart attack and cancer, where the diseased cells have often managed to avoid the anti-motility effect of TGFβ. PMID:23259050

  6. Electromechanical propellant control system actuator

    Myers, W. Neill; Weir, Rae Ann

    1990-01-01

    New control mechanism technologies are currently being sought to provide alternatives to hydraulic actuation systems. The Propulsion Laboratory at Marshall Space Flight Center (MSFC) is involved in the development of electromechanical actuators (EMA's) for this purpose. Through this effort, an in-house designed electromechanical propellant valve actuator has been assembled and is presently being evaluated. This evaluation will allow performance comparisons between EMA and hydraulics systems. The in-house design consists of the following hardware: a three-phase brushless motor, a harmonic drive, and an output spline which will mate with current Space Shuttle Main Engine (SSME) propellant control valves. A resolver and associated electronics supply position feedback for the EMA. System control is provided by a solid-state electronic controller and power supply. Frequency response testing has been performed with further testing planned as hardware and test facilities become available.

  7. Coordinated control model of regional traffic signals%交通区域协调控制模型

    刘芹; 徐建闽

    2012-01-01

    为提高交通区域通行效率,构建了适合各种交通状态的区域信号协调控制模型。以区域交叉口总排队车辆数与区域总输出车辆数为性能指标,考虑上下周期排队车辆数、各交叉口闭合相位差与有效绿灯时间,建立了模型约束条件。利用粒子群算法初始化有效绿灯时间与滞留车辆数,采用模拟退火算法求解有效绿灯时间,在不同交通状态下对某交叉口路网进行了仿真。仿真结果表明:与TRANSYT模型相比,低峰时段,采用本文模型排队车辆数降低了5.3%,区域总输出车辆数增加了5.5%;高峰时段,排队车辆数降低了17.9%,区域总输出车辆数增加了33.4%。交叉口的信号方案优化结果表明:与TRANSYT模型相比,采用本文模型时,各车道饱和度均降低,平均为1.8%,最大排队车辆数平均降低2.9%。分析结果表明:本文模型在各种交通状态下都是有效的,特别是在高峰状态下,控制效果优于TRANSYT模型。%In order to improve the traffic efficiency of traffic area, a coordinated control model of regional signals was constructed under all kinds of traffic conditions. The total queue vehicle number and the total output vehicle number of regional intersection were used as performance indexes of the model. The constraint conditions of the model were established by considering the variable relationship of the adjacent cycle queue vehicle numbers, closed phase difference of intersections and effective green time. The effective green time and waiting vehicle number were initialized by particle swarm algorithm. The effective green time was solved by simulated annealing algorithm. The road network of a certain intersection was simulated under different traffic states. Simulation result shows that the queue vehicle number reduces by 5.3% and the total output vehicle number of region increases by 5.5% in low peak period compared with the TRANSYT model. The queue vehicle number reduces by

  8. Traffic signals - alternative method for emissions reduction; Liikennevaloillako paeaestoet alas

    Niittymaeki, J. [Helsinki Univ. of Technology, Espoo (Finland)

    2001-07-01

    Traffic signalling is a process, which adapts to the prevailing traffic. The objective of traffic signalling is to direct traffic as safely as possible through a road junction. Other objectives are to maximize the road capacity, to clarify the traffic, and to effect the selection of routs. The target of design and timing of traffic signalling is to minimize the delays of the traffic. However, traffic signalling increases the emissions and fuel consumption. Traditionally the traffic adaptive control has been arranged on the basis of the extension principle, which means the extension of the green light as long as there is demand for the signal, however, only to a set maximum time. In practice the systems seeks an adequate distance in the traffic for cutting off the green light. New methods, such as mathematical optimization, fuzzy logic, neural networks and generic algorithms have been included traffic signalling. These new methods have proven to be 10-20% more efficient than the old ones. Results of the researches have shown that it is possible to achieve significant savings in social economy, including savings in fuels consumption and environmental impacts of the traffic, by development/renovation of traffic signalling. This article reviews the studies carried out in Finland on traffic signalling. A typical driving process through a signalized road junction: deceleration, idle running, acceleration and steady driving. The emissions of these phases differ from each other. Gasoline-fueled cars equipped with catalyst produces significantly more CO during idle running than in the other phases, and the HC content is highest during deceleration. On the other hand NO{sub x} formation is highest during acceleration. Formation of CO, HC and aldehydes is lowest during steady driving, and the formation of NO{sub x} during deceleration. CO and NO{sub x} emissions of diesel engines are highest during acceleration, and HC emissions during idle running. Total emissions of diesel

  9. Fuzzy Multiobjective Traffic Light Signal Optimization

    N. Shahsavari Pour; H. Asadi; M. Pour Kheradmand

    2013-01-01

    Traffic congestion is a major concern for many cities throughout the world. In a general traffic light controller, the traffic lights change at a constant cycle time. Hence it does not provide an optimal solution. Many traffic light controllers in current use are based on the “time-of-the-day” scheme, which use a limited number of predetermined traffic light patterns and implement these patterns depending upon the time of the day. These automated systems do not provide an optimal control for ...

  10. 一种新型嵌入式网络信号机研究与设计%Study and Design of Embedded Network Traffic Signal Controller

    肖圣兵; 陈锋

    2012-01-01

    Traffic signal controller is one of the main foundations for Intelligent Traffic System. In order to meet intellectualization and network requirements, a novel embedded network signal controller is investigated. ARM and CPLD are used to design hardware structure of signal controller, and humanized user interface is developed using QT/Embedded based on touch screen. Multiple communication interfaces are supported and the communication protocol is defined by XML. The mode of two level conflict check is introduced to avoid green conflict. Single point fuzzy control module is developed to deal with dynamic traffic flow, so as to increase traffic capacity in intersection. Connecting to traffic simulation software that simulates the actual intersectiont experiments show that traffic signal controller works stably, and has excellent performance.%交通信号机是智能交通系统的基础之一,为了满足信号机的网络化和智能化的要求,研究并提出了一种新型的嵌入式网络信号机,该信号机的硬件结构采用ARM和CPLD,以触摸屏为基础采用QT/Embedded设计了人性化的人机接口,信号机支持多种通信接口,其协议采用XML予以定义;为了避免绿冲突,以两级模式进行冲突判断;单点模糊控制机制的设计能够适应动态的交通流状况,有效提高交叉口的通行能力;连接交通仿真软件,模拟实际路口,实验显示该信号机工作稳定,性能优越.

  11. Traffic Monitoring and Control Using RFID

    Gaurav Thakur

    2013-09-01

    Full Text Available Traffic congestion and tidal flow management were recognized as major problems in modern urban areas, which have caused much frustration and loss of man hours. The operation of standard traffic lights which are currently deployed in many junctions, are based on predetermined timing schemes, which are fixed during the installation and remain until further resetting. The timing is no more than a default setup to control what may be considered as normal traffic. Although every road junction by necessity requires different traffic light timing setup, many existing systems operate with a default sequence. To design an intelligent and efficient traffic control system, a number of parameters that represent the status of the road conditions must be identified and taken into consideration. Approach: In order to solve the problem an intelligent RFID traffic control has been developed. This project is based on monitoring the traffic density at the signal using RFID Reader. RFID tags which is placed (instead of number plate at each vehicle will serve as the unique number of vehicle .Reader will count the number of tags at the signal and take decision of increasing or decreasing the signal time .This reader is also use to find the violation(VIN of violator of the signal. Each passive tag will have certain number of bytes information will be different for different vehicles. Whenever any tag will approach any signal, reader will take that bytes of information and simultaneously will also increment the number of vehicles for making decision to change the signal timing. Each tag of data will be stored in main memory (database.This unique data will also help in determining the violator of the signal .Thus it will save human efforts and resources to a greater extent and reduce waiting of the people at the signal. After implementation of this project, now all people waiting at the signal will get proper time (green light according to the traffic density

  12. The anti-motility signaling mechanism of TGFβ3 that controls cell traffic during skin wound healing

    Arum Han

    2012-09-01

    When skin is wounded, migration of epidermal keratinocytes at the wound edge initiates within hours, whereas migration of dermal fibroblasts toward the wounded area remains undetectable until several days later. This “cell type traffic” regulation ensures proper healing of the wound, as disruptions of the regulation could either cause delay of wound healing or result in hypertrophic scars. TGFβ3 is the critical traffic controller that selectively halts migration of the dermal, but not epidermal, cells to ensure completion of wound re-epithelialization prior to wound remodeling. However, the mechanism of TGFβ3's anti-motility signaling has never been investigated. We report here that activated TβRII transmits the anti-motility signal of TGFβ3 in full to TβRI, since expression of the constitutively activated TβRI-TD mutant was sufficient to replace TGFβ3 to block PDGF-bb-induced dermal fibroblast migration. Second, the three components of R-Smad complex are all required. Individual downregulation of Smad2, Smad3 or Smad4 prevented TGFβ3 from inhibiting dermal fibroblast migration. Third, Protein Kinase Array allowed us to identify the protein kinase A (PKA as a specific downstream effector of R-Smads in dermal fibroblasts. Activation of PKA alone blocked PDGF-bb-induced dermal fibroblast migration, just like TGFβ3. Downregulation of PKA's catalytic subunit nullified the anti-motility signaling of TGFβ3. This is the first report on anti-motility signaling mechanism by TGFβ family cytokines. Significance of this finding is not only limited to wound healing but also to other human disorders, such as heart attack and cancer, where the diseased cells have often managed to avoid the anti-motility effect of TGFβ.

  13. Analysis of Reconfigured Control Loop with a Virtual Actuator

    Anna Filasova

    2011-01-01

    Full Text Available Control reconfiguration changes the control structure in response to a fault detected in the plant. This becomes necessary, because a major fault like loss of an actuator breaks the corresponding control loop and therefore renders the whole system inoperable.  An important aim of control reconfiguration is to change the control structure as little as possible, since every change bears the potential of practical problems. The proposed solution is to keep the original controller in the loop and to add an extension called virtual actuator that implements the necessary changes of the control structure. The virtual actuator translates between the signals of the nominal controller and the signal of the faulty plants. This paper is concerned with the analysis of reconfigured loop with a virtual actuator for the system with the faulty actuator. The proposed analysis is illustrated on numerical example.

  14. Integrating Traffic Signal Performance Measures into Agency Business Processes

    Day, Christopher M.; Bullock, Darcy M; Li, Howell; Lavrenz, Steven M; Smith, W. Benjamin; Sturdevant, James R

    2016-01-01

    This report discusses uses of and requirements for performance measures in traffic signal systems facilitated by high-resolution controller event data. Uses of external travel time measurements are also discussed. The discussion is led by a high-level synthesis of the systems engineering concepts for traffic signal control, considering technical and non-technical aspects of the problem. This is followed by a presentation of the requirements for implementing data collection and processing of t...

  15. Intelligent traffic control system using PLC

    Barz, C.; Todea, C.; Latinovic, T.; Preradovic, D. M.; Deaconu, S.; Berdie, A.

    2016-08-01

    The paper presents the traffic control system controlled through a PLC which takes the signals from different sensors on roads. The global system developed ensures the coordination of four intersections, setting a path that respects coordination type green light, the integration of additional sensors, the implementation of probes radar to inform traffic participants about recommended speed for accessing the green state located in the intersection that will follow to cross.

  16. Controlling Disorder in Traffic Flow by Perturbation

    LI Ke-Ping; GAO Zi-You; CHEN Tian-Lun

    2004-01-01

    We propose a new technique for controlling disorder in traffic system. A kind of control signal which can be considered as a perturbation has been designated at a given site (perturbation point) of the single-lane highway. When a vehicle passes the perturbation point at a time, the velocity of the vehicle will be changed at the next time by the perturbation. This technique is tested for the deterministic NaSch traffic model. The simulation results indicate that the traffic system can be transited from the disorder states to the order states, such as fixed-point, periodic motion, etc.

  17. A novel spherical actuator: Design and control

    Wang, J B; Jewell, G. W.; Howe, D

    1997-01-01

    The paper describes the design and control of a novel spherical permanent magnet actuator which is capable of two-degrees-freedom and a high specific torque. Based on an analytical actuator model, an optimal design procedure is developed to yield maximum output torque or maximum system acceleration for a given payload. The control of the actuator, whose dynamics are similar to those of robotic manipulators, is facilitated by the establishment of a complete actuation system model. A robust con...

  18. Transputer Control of Hydraulic Actuators and Robots

    Conrad, Finn

    1996-01-01

    Results from a Danish mechatronics research program entitled IMCIA - Intelligent Control and Intelligent Actuators. The objective is development of intelligent actuators for intelligent motion control. A mechatronics test facility with a transputer controlled hydraulic robot suiteable for real......-time experiments and evaluation of control laws and algorithms is presented. Concepts of intelligent motion control and intelligent hydraulic actuators are proposed. Promising experimental path-tracking results obtained from model-based adaptive control algorithms are presented and discussed....

  19. Modelling of urban traffic networkof signalized intersections

    Ocran, Abena Kwantwiwaa

    2013-01-01

    This report presents how traffic network of signalized intersection in a chosen urban area called Tema is synchronized. Using a modular approach, two different types of traffic intersection commonly found in an urban area were modelled i.e. a simple intersection and a complex intersection. A direct road, even though not an intersection, was also included in the modelling because it’s commonly found in an urban area plus it connects any two intersections. Each of these scenarios was modelled u...

  20. Traffic Light Controller Using Fpga

    D.Bhavana

    2015-04-01

    Full Text Available The traffic light sequence works on the specific switching of Red, Green and Yellow lights in a particular way with stipulated time form. The normal function of traffic lights requires sophisticated control and coordination to ensure that traffic moves as smoothly and safely as possible and that pedestrians are protected when they cross the roads [1] .This Traffic Light sequence is generated using a specific switching mechanism which will help to control a traffic light system on a road in a specified sequence. This paper focuses on the fact that the traffic lights can be varied in the day and night mode depending on the intensity of the traffic. It plays a vital role in supervising and running the metropolitan traffic and evade the possibilities of any unfortunate mishaps happening in and around the cities. It is a sequential machine to be scrutinized as per the requirements and programmed through a multistep development process. The methods that are used in this project are proposing the circuit, write a code, simulate, synthesis and implement on the hardware [8] . In this project, XILINX Software was chosen to devise a schematic using schematic edit, write a code using Verilog HDL (Hardware Description Language text editor and implements the circuit on Programmable Logic Device [PLD].The system has been successfully tested and implemented in hardware using Nexys 2 Digilent FPGA.

  1. System and method for traffic signal timing estimation

    Dumazert, Julien

    2015-12-30

    A method and system for estimating traffic signals. The method and system can include constructing trajectories of probe vehicles from GPS data emitted by the probe vehicles, estimating traffic signal cycles, combining the estimates, and computing the traffic signal timing by maximizing a scoring function based on the estimates. Estimating traffic signal cycles can be based on transition times of the probe vehicles starting after a traffic signal turns green.

  2. REAL TIME TRAFFIC LIGHT CONTROL USING IMAGE PROCESSING

    PALLAVI CHOUDEKAR,; SAYANTI BANERJEE,; M.K.MUJU

    2011-01-01

    As the problem of urban traffic congestion spreads, there is a pressing need for the introduction of advanced technology and equipment to improve the state-of-the-art of traffic control. Traffic problems nowadays are increasing because of the growing number of vehicles and the limited resources provided by current nfrastructures. The simplest way for controlling a traffic light uses timer for each phase. Another way is to use electronic sensors in order to detect vehicles, and produce signal...

  3. Control of Adjustable Compliant Actuators

    Berno J.E. Misgeld; Kurt Gerlach-Hahn; Daniel Rüschen; Anake Pomprapa; Steffen Leonhardt

    2014-01-01

    Adjustable compliance or variable stiffness actuators comprise an additional element to elastically decouple the actuator from the load and are increasingly applied to human-centered robotic systems. The advantages of such actuators are of paramount importance in rehabilitation robotics, where requirements demand safe interaction between the therapy system and the patient. Compliant actuator systems enable the minimization of large contact forces arising, for example, from muscular spasticity...

  4. CONTROLLING TRAFFIC FLOW IN MULTILANE-ISOLATED INTERSECTION USING ANFIS APPROACH TECHNIQUES

    G. R. LAI; A. CHE SOH; H. MD. SARKAN; R. Z. ABDUL RAHMAN; Hassan, M. K.

    2015-01-01

    Many controllers have applied the Adaptive Neural-Fuzzy Inference System (ANFIS) concept for optimizing the controller performance. However, there are less traffic signal controllers developed using the ANFIS concept. ANFIS traffic signal controller with its fuzzy rule base and its ability to learn from a set of sample data could improve the performance of Existing traffic signal controlling system to reduce traffic congestions at most of the busy traffic intersections in city such as Kuala L...

  5. Distributed learning and multi-objectivity in traffic light control

    Brys, Tim; Pham, Tong T.; Taylor, Matthew E.

    2014-01-01

    Traffic jams and suboptimal traffic flows are ubiquitous in modern societies, and they create enormous economic losses each year. Delays at traffic lights alone account for roughly 10% of all delays in US traffic. As most traffic light scheduling systems currently in use are static, set up by human experts rather than being adaptive, the interest in machine learning approaches to this problem has increased in recent years. Reinforcement learning (RL) approaches are often used in these studies, as they require little pre-existing knowledge about traffic flows. Distributed constraint optimisation approaches (DCOP) have also been shown to be successful, but are limited to cases where the traffic flows are known. The distributed coordination of exploration and exploitation (DCEE) framework was recently proposed to introduce learning in the DCOP framework. In this paper, we present a study of DCEE and RL techniques in a complex simulator, illustrating the particular advantages of each, comparing them against standard isolated traffic actuated signals. We analyse how learning and coordination behave under different traffic conditions, and discuss the multi-objective nature of the problem. Finally we evaluate several alternative reward signals in the best performing approach, some of these taking advantage of the correlation between the problem-inherent objectives to improve performance.

  6. An Advanced Fuzzy Logic Based Traffic Controller

    Bilal Ahmed Khan; Nai Shyan Lai

    2014-01-01

    Traffic light plays an important role in the urban traffic management. Therefore, it is necessary to improve the traffic controller for effective traffic management and better traffic flow leading to greener environment. In this paper, an advanced and intelligent traffic light controller is proposed, utilising the fuzzy logic technology and image processing technique. A fuzzy logic control has been implemented to provide the attribute of intelligence to the system. For real-time image acquisi...

  7. Stochastic control of traffic patterns

    Gaididei, Yuri B.; Gorria, Carlos; Berkemer, Rainer; Christiansen, Peter L.; Kawamoto, Atsushi; Sørensen, Mads Peter; Starke, Jens

    2013-01-01

    A stochastic modulation of the safety distance can reduce traffic jams. It is found that the effect of random modulation on congestive flow formation depends on the spatial correlation of the noise. Jam creation is suppressed for highly correlated noise. The results demonstrate the advantage of heterogeneous performance of the drivers in time as well as individually. This opens the possibility for the construction of technical tools to control traffic jam formation.

  8. Stochastic control of traffic patterns

    Gaididei, Yuri B.; Gorria, Carlos; Berkemer, Rainer;

    2013-01-01

    A stochastic modulation of the safety distance can reduce traffic jams. It is found that the effect of random modulation on congestive flow formation depends on the spatial correlation of the noise. Jam creation is suppressed for highly correlated noise. The results demonstrate the advantage of...... heterogeneous performance of the drivers in time as well as individually. This opens the possibility for the construction of technical tools to control traffic jam formation....

  9. Electromechanical actuator for thrust vector control

    Zubkow, Zygmunt

    Attention is given to the development and testing of electromechanical actuator (EMA) systems for use in first- and second-stage thrust vector control of rocket engines. An overview of the test program is also presented. Designs for both first- and second-stage actuators employ redundant dc brushless, three-phase rare-earth permanent magnet motors. The first-stage actuator is about 28 hp per motor and uses a roller screw. Second-stage thrust vector control is implemented with a much smaller actuator of about 1 hp per motor. This actuator uses a gear drive with a recycling ball screw mechanism. An operational EMA is presented. This 6.5-in. actuator is capable of a stall force of 1350 pounds per motor and a frequency response of about 5 HZ.

  10. Plasma actuators for bluff body flow control

    Kozlov, Alexey V.

    The aerodynamic plasma actuators have shown to be efficient flow control devices in various applications. In this study the results of flow control experiments utilizing single dielectric barrier discharge plasma actuators to control flow separation and unsteady vortex shedding from a circular cylinder in cross-flow are reported. This work is motivated by the need to reduce landing gear noise for commercial transport aircraft via an effective streamlining created by the actuators. The experiments are performed at Re D = 20,000...164,000. Circular cylinders in cross-flow are chosen for study since they represent a generic flow geometry that is similar in all essential aspects to a landing gear oleo or strut. The minimization of the unsteady flow separation from the models and associated large-scale wake vorticity by using actuators reduces the radiated aerodynamic noise. Using either steady or unsteady actuation at ReD = 25,000, Karman shedding is totally eliminated, turbulence levels in the wake decrease significantly and near-field sound pressure levels are reduced by 13.3 dB. Unsteady actuation at an excitation frequency of St D = 1 is found to be most effective. The unsteady actuation also has the advantage that total suppression of shedding is achieved for a duty cycle of only 25%. However, since unsteady actuation is associated with an unsteady body force and produces a tone at the actuation frequency, steady actuation is more suitable for noise control applications. Two actuation strategies are used at ReD = 82,000: spanwise and streamwise oriented actuators. Near field microphone measurements in an anechoic wind tunnel and detailed study of the near wake using LDA are presented in the study. Both spanwise and streamwise actuators give nearly the same noise reduction level of 11.2 dB and 14.2 dB, respectively, and similar changes in the wake velocity profiles. The contribution of the actuator induced noise is found to be small compared to the natural shedding

  11. Lightweight Exoskeletons with Controllable Actuators

    Bar-Cohen, Yoseph; Mavrodis, Constantinos; Melli-Huber, Juan; Fisch, Avi (Alan)

    2004-01-01

    A proposed class of lightweight exoskeletal electromechanical systems would include electrically controllable actuators that would generate torques and forces that, depending on specific applications, would resist and/or assist wearers movements. The proposed systems would be successors to relatively heavy, bulky, and less capable human-strength-amplifying exoskeletal electromechanical systems that have been subjects of research during the past four decades. The proposed systems could be useful in diverse applications in which there are needs for systems that could be donned or doffed easily, that would exert little effect when idle, and that could be activated on demand: examples of such applications include (1) providing controlled movement and/or resistance to movement for physical exercise and (2) augmenting wearers strengths in the performance of military, law-enforcement, and industrial tasks. An exoskeleton according to the proposal would include adjustable lightweight graphite/epoxy struts and would be attached to the wearer's body by belts made of hook-and-pile material. At selected rotary and linear joints, the exoskeleton would be fitted, variously, with lightweight, low-power-consumption rotary and linear brakes, clutches, and motors. The exoskeleton would also be equipped with electronic circuitry for monitoring, control, and possibly communication with external electronic circuits that would perform additional monitoring and control functions.

  12. Traffic Control by Traffic Wardens in Minna, Niger State, Nigeria

    P. N. NDOKE

    2006-01-01

    Full Text Available Traffic control by traffic wardens on three at-grade interactions in Minna, Northern Nigeria has been analysed. During the morning peak periods, it was observed that with traffic warden control, none of the approaches of the intersections operated beyond level of service E. However, when the wardens did not control traffic, the approaches operated at level of service, F, which has been shown in studies to be unacceptable to most drivers. Taking other factors like stability of electricity supply, motorists’ behaviour and society’s acceptance of innovations into consideration, it has been concluded that for now, there is no alternative to the traffic warden in traffic control in developing cities.

  13. Distributed Air Traffic Control Simulator

    R. Radovanović

    2013-06-01

    Full Text Available During initial training air traffic control students acquire theoretical knowledge in various fields including air traffic management, aircraft performance, air traffic control equipment and systems, navigation and others. This paper proposes a simulator and explains its use and features that allows students to gain a practical insight into their coursework in order to complement their training. The goal of the simulator is to realistically implement all the key functionalities needed to cover the topics that were presented in class. The simulator offers a user friendly, distributed, and multi-role environment that can be deployed on regular PCs. Moreover, this paper discusses and resolves some of the main conceptual and implementational issues that were faced during simulator development.

  14. Traffic

    This chapter deals with passenger and freight traffic, public and private transportation, traffic related environmental impacts, future developments, traffic indicators, regional traffic planning, health costs due to road traffic related air pollution, noise pollution, measures and regulations for traffic control and fuels for traffic. In particular energy consumption, energy efficiency, pollutant emissions ( CO2, SO2, NOx, HC, CO, N2O, NH3 and particulates) and environmental effects of the different types of traffic and different types of fuels are compared and studied. Legal regulations and measures for an effective traffic control are discussed. (a.n.)

  15. A simulated actuator driven by motor cortical signals.

    Lukashin, A V; Amirikian, B R; Georgopoulos, A P

    1996-11-01

    One problem in motor control concerns the mechanism whereby the central nervous system translates the motor cortical command encoded in cell activity into a coordinated contraction of limb muscles to generate a desired motor output. This problem is closely related to the design of adaptive systems that transform neuronal signals chronically recorded from the motor cortex into the physiologically appropriate motor output of multijoint prosthetic limbs. In this study we demonstrated how this transformation can be carried out by an artificial neural network using as command signals the actual impulse activity obtained from recordings in the motor cortex of monkeys during the performance of a task that required the exertion of force in different directions. The network receives experimentally measured brain signals and recodes them into motor actions of a simulated actuator that mimics the primate arm. The actuator responds to the motor cortical commands with surprising fidelity, generating forces in close quantitative agreement with those exerted by trained monkeys, in both the temporal and spatial domains. Moreover, we show that the time-varying motor output may be controlled by the impulse activity of as few as 15 motor cortical cells. These results outline a potentially implementable computation scheme that utilizes raw neuronal signals to drive artificial mechanical systems. PMID:8981430

  16. Torque Control of Electrorheological Fluidic Actuators

    Vitrani, Marie-Aude; Nikitczuk, Jason; Morel, Guillaume; Mavroidis, Constantinos

    2004-01-01

    In this paper, the experimental closed loop torque control of electro-rheological fluids (ERF) based actuators for haptic applications is performed. ERFs are liquids that respond mechanically to electric fields by changing their properties, such as viscosity and shear stress, electroactively. Using the electrically controlled rheological properties of ERFs, we developed actuators for haptic devices that can resist human operator forces in a controlled and tunable fashion. In this study, the E...

  17. Position Control of Single Pneumatic Muscle Actuator

    FAN Wei; PENG Guang-zheng; NING Ru-xin

    2005-01-01

    The PID, fuzzy, self-organized fuzzy and self-organized fuzzy-PID controllers are adopted in the position control of single pneumatic muscle actuator. Experiments show that the self-organized fuzzy-PID is obviously effective for the position control of single pneumatic muscle actuator, which can realize precision within 0.3 mm and withstand 18N variable load plus about 36N fixed load. It is relatively precise and robust.

  18. TRAFFIC SIGNALS MODELLING WITH LONG DISTANCE COMMUNICATIONS USING PIC MICROCONTROLLER

    Ahmet ÖZEK

    2004-04-01

    Full Text Available Today, microcontrollers are widely used in control and automation systems. For the automation of traffic signalization, the crossroads need to be controlled by microcontrollers and for the automation of more than one crossroad the communication of more than one microcontroller is required. In some special cases, the intercommunication of microcontrollers is required to change crossroad status and obtain continuous flow (green weave synchronization. In this study, a method is proposed to control the traffic flow on a hospital road with two crossroads located several km. apart from each other. For the purpose of changing the crossroads status to have a continuous flow of the traffic, the series of PIC16F877 microcontroller is used.

  19. Biomimetic photo-actuation: sensing, control and actuation in sun-tracking plants

    Although the actuation mechanisms that drive plant movement have been investigated from a biomimetic perspective, few studies have looked at the wider sensing and control systems that regulate this motion. This paper examines photo-actuation—actuation induced by, and controlled with light—through a review of the sun-tracking functions of the Cornish Mallow. The sun-tracking movement of the Cornish Mallow leaf results from an extraordinarily complex—yet extremely elegant—process of signal perception, generation, filtering and control. Inspired by this process, a concept for a simplified biomimetic analogue of this leaf is proposed: a multifunctional structure employing chemical sensing, signal transmission, and control of composite hydrogel actuators. We present this multifunctional structure, and show that the success of the concept will require improved selection of materials and structural design. This device has application in the solar-tracking of photovoltaic panels for increased energy yield. More broadly it is envisaged that the concept of chemical sensing and control can be expanded beyond photo-actuation to many other stimuli, resulting in new classes of robust solid-state devices. (paper)

  20. Electromechanical flight control actuator, volume 1

    1978-01-01

    An electromechanical actuator was developed that will follow a proportional control command with minimum wasted energy to demonstrate the feasibility of meeting space vehicle actuator requirements using advanced electromechanical concepts. The approach was restricted to a four-channel redundant configuration. Each channel has independent drive and control electronics, a brushless electric motor with brake, and velocity and position feedback transducers. A differential gearbox sums the output velocities of the motors. Normally, two motors are active and the other two are braked.

  1. Three-phase theory of city traffic: Moving synchronized flow patterns in under-saturated city traffic at signals

    Kerner, Boris S.

    2014-03-01

    Three-phase traffic flow theory of city traffic has been developed. Based on simulations of a stochastic microscopic traffic flow model, features of moving synchronized flow patterns (MSP) have been studied, which are responsible for a random time-delayed breakdown of a green-wave (GW) organized in a city. A possibility of GW control leading to the prevention of GW breakdown has been demonstrated. A diagram of traffic breakdown in under-saturated traffic (transition from under- to over-saturated city traffic) at the signal has been found; the diagram presents regions of the average arrival flow rate, within which traffic breakdown can occur, in dependence of parameters of the time-function of the arrival flow rate or/and signal parameters. Physical reasons for a crucial difference between results of classical theory of city traffic and three-phase theory are explained. In particular, we have found that under-saturated traffic at the signal can exist during a long time interval, when the average arrival flow rate is larger than the capacity of the classical theory; the classical capacity is equal to a minimum capacity in three-phase theory. Within a range of the average arrival flow rate between the minimum and maximum signal capacities, under-saturated traffic is in a metastable state with respect to traffic breakdown. We have distinguished the following possible causes for the metastability of under-saturated traffic: (i) The arrival flow rate during the green phase is larger than the saturation flow rate. (ii) The length of the upstream front of a queue at the signal is a finite value. (iii) The outflow rate from a MSP (the rate of MSP discharge) is larger than the saturation flow rate.

  2. NEW POSSIBILITIES OF RAILWAY TRAFFIC CONTROL SYSTEMS

    Lionginas LIUDVINAVIČIUS; Stasys DAILYDKA; Aleksander SŁADKOWSKI

    2016-01-01

    This article analyses the train traffic control systems in 1435 mm and 1520 mm gauge railways. The article analyses the aspects of train traffic control and locomotive energy saving by using the coordinates of track profile change that have been received from GPS. In the article, achievements of Lithuanian railways (LG) in the area of train traffic control optimisation are presented.

  3. NEW POSSIBILITIES OF RAILWAY TRAFFIC CONTROL SYSTEMS

    Lionginas LIUDVINAVIČIUS

    2016-06-01

    Full Text Available This article analyses the train traffic control systems in 1435 mm and 1520 mm gauge railways. The article analyses the aspects of train traffic control and locomotive energy saving by using the coordinates of track profile change that have been received from GPS. In the article, achievements of Lithuanian railways (LG in the area of train traffic control optimisation are presented.

  4. Traffic signal synchronization in the saturated high-density grid road network.

    Hu, Xiaojian; Lu, Jian; Wang, Wei; Zhirui, Ye

    2015-01-01

    Most existing traffic signal synchronization strategies do not perform well in the saturated high-density grid road network (HGRN). Traffic congestion often occurs in the saturated HGRN, and the mobility of the network is difficult to restore. In order to alleviate traffic congestion and to improve traffic efficiency in the network, the study proposes a regional traffic signal synchronization strategy, named the long green and long red (LGLR) traffic signal synchronization strategy. The essence of the strategy is to control the formation and dissipation of queues and to maximize the efficiency of traffic flows at signalized intersections in the saturated HGRN. With this strategy, the same signal control timing plan is used at all signalized intersections in the HGRN, and the straight phase of the control timing plan has a long green time and a long red time. Therefore, continuous traffic flows can be maintained when vehicles travel, and traffic congestion can be alleviated when vehicles stop. Using the strategy, the LGLR traffic signal synchronization model is developed, with the objective of minimizing the number of stops. Finally, the simulation is executed to analyze the performance of the model by comparing it to other models, and the superiority of the LGLR model is evident in terms of delay, number of stops, queue length, and overall performance in the saturated HGRN. PMID:25663835

  5. TRAFFIC SIGNALS MODELLING WITH LONG DISTANCE COMMUNICATIONS USING PIC MICROCONTROLLER

    ÖZEK, Ahmet; Karal, Ömer

    2004-01-01

    Today, microcontrollers are widely used in control and automation systems. For the automation of traffic signalization, the crossroads need to be controlled by microcontrollers and for the automation of more than one crossroad the communication of more than one microcontroller is required. In some special cases, the intercommunication of microcontrollers is required to change crossroad status and obtain continuous flow (green weave) synchronization. In this study, a method is proposed to cont...

  6. Bluff Body Flow Control Using Plasma Actuators

    Thomas, Flint

    2005-11-01

    In this study, the use of single dielectric barrier discharge plasma actuators for the control of bluff body flow separation is investigated. In particular, surface mounted plasma actuators are used to reduce both drag and unsteady vortex shedding from circular cylinders in cross-flow. It is demonstrated that the plasma-induced surface blowing gives rise to a local Coanda effect that promotes the maintenance of flow attachment. Large reductions in vortex shedding and drag are demonstrated for Reynolds numbers ˜ 10^410^5. Both steady and unsteady plasma-induced surface blowing is explored. Results are presented from experiments involving both two and four surface mounted actuators.

  7. Analysis of Dynamic Road Traffic Congestion Control (DRTCC Techniques

    Pardeep Mittal

    2015-10-01

    Full Text Available : Dynamic traffic light control at intersection has become one of the most active research areas to develop the Dynamic transportation systems (ITS. Due to the consistent growth in urbanization and traffic congestion, such a system was required which can control the timings of traffic lights dynamically with accurate measurement of traffic on the road. In this paper, analysis of all the techniques that has been developed to automate the traffic lights has been done.. The efficacy of all the techniques has been evaluated, using MATLAB software. After comparison of artificial intelligent techniques , it is found that image mosaicking technique is quite effective (in terms of improving moving time and reducing waiting time for the control of the traffic signals to control congestion on the road.

  8. 30 CFR 57.9100 - Traffic control.

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Traffic control. 57.9100 Section 57.9100 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Dumping Traffic Safety § 57.9100 Traffic control. To provide for the safe movement of...

  9. 30 CFR 56.9100 - Traffic control.

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Traffic control. 56.9100 Section 56.9100 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Dumping Traffic Safety § 56.9100 Traffic control. To provide for the safe movement of...

  10. Vibration control of a flexible structure with electromagnetic actuators

    Gruzman, Maurício; Santos, Ilmar

    2016-01-01

    This work presents the model of a shear-frame-type structure composed of six flexible beams and three rigid masses. Fixed on the ground, outside the structure, two voltage-controlled electromagnetic actuators are used for vibration control. To model the flexible beams, unidimensional finite...... elements were used. Nonlinear equations for the actuator electromagnetic force, noise in the position sensor, time delays for the control signal update and voltage saturation were also considered in the model. For controlling purposes, a discrete linear quadratic regulator combined with a predictive full......-order discrete linear observer was employed. Results of numerical simulations, where the structure is submitted to an impulsive disturbance force and to a harmonic force, show that the oscillations can be significantly reduced with the use of the electromagnetic actuators....

  11. Mirrors Containing Biomimetic Shape-Control Actuators

    Bar-Cohen, Yoseph; Mouroulis, Pantazis; Bao, Xiaoqi; Sherrit, Stewart

    2003-01-01

    Curved mirrors of a proposed type would comprise lightweight sheets or films containing integral, biologically inspired actuators for controlling their surface figures. These mirrors could be useful in such applications as collection of solar energy, focusing of radio beams, and (provided sufficient precision could be achieved) imaging. These mirrors were originally intended for use in outer space, but it should also be possible to develop terrestrial versions. Several prior NASA Tech Briefs articles have described a variety of approaches to the design of curved, lightweight mirrors containing integral shape-control actuators. The primary distinction between the present approach and the prior approaches lies in the actuator design concept, which involves shapes and movements reminiscent of those of a variety of small, multi-armed animals. The shape and movement of an actuator of this type can also be characterized as reminiscent of that of an umbrella. This concept can be further characterized as a derivative of that of multifinger grippers, the fingers of which are bimorph bending actuators (see Figure 1). The fingers of such actuators can be strips containing any of a variety of materials that have been investigated for use as actuators, including such electroactive polymers as ionomeric polymer/metal composites (IPMCs), ferroelectric polymers, and grafted elastomers. A mirror according to this proposal would be made from a sheet of one of the actuator composites mentioned above. The design would involve many variables, including the pre-curvature and stiffness of the mirror sheet, the required precision of figure control, the required range of variation in focal length (see Figure 2), the required precision of figure control for imaging or non-imaging use, the bending and twisting moments needed to effect the required deformations, and voltage-tomoment coefficients of the actuators, and the voltages accordingly required for actuation. A typical design would call

  12. Multi-objective actuator placement optimization for local sound control evaluated in a stochastic domain

    Airaksinen, Tuomas; Aittokoski, Timo

    2012-01-01

    A method to find optimal locations and properties of anti-noise actuators in a local noise control system is considered. The local noise control performance is approximated by an approach based on a finite element method, attempting to estimate the average performance of an optimal active noise control (ANC) system. Local noise control uses a fixed number of circular actuators that are located on the boundary of a three-dimensional enclosed acoustic space. Actuator signals are used to minimiz...

  13. A Sarsa(λ)-Based Control Model for Real-Time Traffic Light Coordination

    Xiaoke Zhou; Fei Zhu; Quan Liu; Yuchen Fu; Wei Huang

    2014-01-01

    Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors t...

  14. Modeling and Control of Electromechanical Actuators for Heavy Vehicle Applications

    Pettersson, Alexander; Storm, Patrik

    2012-01-01

    The possibility to develop control systems for electromechanical actuators at Scania is studied, in particular the focus is on how to exchange the intelligent actuators used today with dumb ones. An intelligent actuator contains its own control electronics and computational power, bought as a unit from suppliers by Scania and controlled via the CAN bus. A dumb actuator contains no means of controlling itself and its I/O is the motor’s power pins. Intelligent actuators tend to have limited con...

  15. Comparison of Two Methods of Traffic Signal Design Cycle

    María Liliana Alba Menéndez

    2013-02-01

    Full Text Available To satisfy the traffic demand in intersections, with safety and efficiency it is common to use a signallike control device, such that the right of using the common space of the intersections is assignedalternatively to the currents of such traffic flow that they cross. In Cuba, for the calculation of the cyclelength and the phases of the signal the Method of Poisson is used, based on the probability ofrandom arrivals of vehicles to the access point, developed in the 50th century. Presently many countriesuse the Method developed by Webster in England during 60th century, based on empiric observationsthen and unto today has proven effective, where an optimal cycle length is calculated, that is minimumdelays and better levels of service.In this study several intersections in Havana with high levels ofcomplexity were studied, the cycle length and the intervals of green were calculated by each method,the parameters that define the quality of the operation were determined in each method. The resultwill be vital in the strategic planning as see fit the National Centre of Traffic Engineering in thedesigning of traffic lights, with efficiency in road traffic.

  16. An Assessment Methodology for Emergency Vehicle Traffic Signal Priority Systems

    McHale, Gene Michael

    2002-01-01

    Emergency vehicle traffic signal priority systems allow emergency vehicles such as fire and emergency medical vehicles to request and receive a green traffic signal indication when approaching an intersection. Such systems have been around for a number of years, however, there is little understanding of the costs and benefits of such systems once they are deployed. This research develops an improved method to assess the travel time impacts of emergency vehicle traffic signal priority system...

  17. Cylinder Flow Control Using Plasma Actuators

    Kozlov, Alexey; Thomas, Flint

    2007-11-01

    In this study the results of flow control experiments utilizing single dielectric barrier discharge plasma actuators to control flow separation and unsteady vortex shedding from a circular cylinder in cross-flow are reported. Two optimized quartz dielectric plasma actuators mounted on the cylinder surface utilizing an improved saw-tooth waveform high-voltage generator allowed flow control at Reynolds number approaching supercritical. Using either steady or unsteady actuation, it is demonstrated that the plasma-induced surface blowing gives rise to a local Coanda effect that promotes the maintenance of flow attachment. PIV based flow fields and wake velocity profiles obtained with hot-wire anemometry show large reductions in vortex shedding, wake width and turbulence intensity.

  18. Identification and optimization of traffic bottleneck with signal timing

    Shaoxin Yuan; Xiangmo Zhao; Yisheng An

    2014-01-01

    In urban transportation network, traffic congestion is likely to occur at traffic bottlenecks. The signal timing at intersections together with static properties of left-turn and straight-through lanes of roads are two significant factors causing traffic bottlenecks. A discrete-time model of traffic bottleneck is hence developed to analyze these two factors, and a bottleneck indicator is introduced to estimate the comprehensive bottleneck degree of individual road in regional transportation n...

  19. Local traffic control of microregion

    Homolová, Jitka; Nagy, Ivan

    Adelaide: Advanced Knowledge International, 2004 - (Andrýsek, J.; Kárný, M.; Kracík, J.), s. 161-171. (International Series on Advanced Intelligence.. 9). ISBN 0-9751004-5-9. [Workshop on Computer-Intensive Methods in Control and Data Processing 2004. Prague (CZ), 12.05.2004-14.05.2004] R&D Projects: GA MDS 1F43A/003/120 Grant ostatní: SOCRATES(XE) 110330-CP-1-2003-1-ES Institutional research plan: CEZ:AV0Z1075907 Keywords : traffic control * linear programming * Kalman filter Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/prace/20040054.pdf

  20. Emergency vehicle traffic signal preemption system

    Bachelder, Aaron D. (Inventor); Foster, Conrad F. (Inventor)

    2011-01-01

    An emergency vehicle traffic light preemption system for preemption of traffic lights at an intersection to allow safe passage of emergency vehicles. The system includes a real-time status monitor of an intersection which is relayed to a control module for transmission to emergency vehicles as well as to a central dispatch office. The system also provides for audio warnings at an intersection to protect pedestrians who may not be in a position to see visual warnings or for various reasons cannot hear the approach of emergency vehicles. A transponder mounted on an emergency vehicle provides autonomous control so the vehicle operator can attend to getting to an emergency and not be concerned with the operation of the system. Activation of a priority-code (i.e. Code-3) situation provides communications with each intersection being approached by an emergency vehicle and indicates whether the intersection is preempted or if there is any conflict with other approaching emergency vehicles. On-board diagnostics handle various information including heading, speed, and acceleration sent to a control module which is transmitted to an intersection and which also simultaneously receives information regarding the status of an intersection. Real-time communications and operations software allow central and remote monitoring, logging, and command of intersections and vehicles.

  1. A Proposed Model for Traffic Signal Preemption Using Global Positioning System (GPS

    Nikhil Mascarenhas

    2013-07-01

    Full Text Available A Traffic Signal Preemption system is an automated system that allows normal operation of traffic lights at automated signalized intersection s to be preempted. Preemption of signals is generally done to assist emergency vehicles, such a s ambulances, so that response times are reduced and right-of-way is provided in a smooth an d controlled manner. This paper proposes an innovative and cost-effective server-centric mod el to facilitate preemption using a simple mobile phone app which uses Global Positioning Syst em (GPS and a microcontroller which controls traffic signals.

  2. Crone control of a nonlinear hydraulic actuator

    Pommier-Budinger, Valérie; Sabatier, Jocelyn; Lanusse, Patrick; Oustaloup, Alain

    2002-01-01

    The CRONE control (fractional robust control) of a hydraulic actuator whose dynamic model is nonlinear is presented. An input-output linearization under diffeomorphism and feedback is first achieved for the nominal plant. The relevance of this linearization when the parameters of the plant vary is then analyzed using the Volterra input-output representation in the frequency domain. CRONE control based on complex fractional differentiation is finally applied to control the velocity of the inpu...

  3. Modelling and control of road traffic networks

    Haut, Bertrand

    2007-01-01

    Road traffic networks offer a particularly challenging research subject to the control community. The traffic congestion around big cities is constantly increasing and is now becoming a major problem. However, the dynamics of a road network exhibit some complex behaviours such as nonlinearities, delays and saturation effects that prevent the use of some classical control algorithms. This thesis presents different models and control algorithms used for road traffic networks. The dynamics ar...

  4. Traffic breakdown at a signal: classical theory versus the three-phase theory of city traffic

    Physical reasons for a crucial difference between the results of a three-phase theory developed recently (Kerner 2011 Phys. Rev. E 84 045102(R); 2013 Europhys. Lett. 102 28010; 2014 Physica A 397 76) and the classical theory are explained. Microscopic characteristics of traffic passing a traffic signal during the green signal phase and their dependence on the duration of the green phase have been found. It turns out that a moving synchronized flow pattern (MSP), which occurs in under-saturated traffic at the signal, causes ‘compression’ of traffic flow: the rate of MSP discharge can be considerably larger than the saturation flow rate of the classical traffic theory of city traffic. This leads to a considerably larger rate of traffic passing the signal in comparison with the saturation flow rate. This effect together with traffic behavior at the upstream queue front explains the metastability of under-saturated traffic with respect to a random time-delayed traffic breakdown. (paper)

  5. Traffic breakdown at a signal: classical theory versus the three-phase theory of city traffic

    Kerner, Boris S.; Klenov, Sergey L.; Schreckenberg, Michael

    2014-03-01

    Physical reasons for a crucial difference between the results of a three-phase theory developed recently (Kerner 2011 Phys. Rev. E 84 045102(R); 2013 Europhys. Lett. 102 28010; 2014 Physica A 397 76) and the classical theory are explained. Microscopic characteristics of traffic passing a traffic signal during the green signal phase and their dependence on the duration of the green phase have been found. It turns out that a moving synchronized flow pattern (MSP), which occurs in under-saturated traffic at the signal, causes ‘compression’ of traffic flow: the rate of MSP discharge can be considerably larger than the saturation flow rate of the classical traffic theory of city traffic. This leads to a considerably larger rate of traffic passing the signal in comparison with the saturation flow rate. This effect together with traffic behavior at the upstream queue front explains the metastability of under-saturated traffic with respect to a random time-delayed traffic breakdown.

  6. A Sarsa(λ)-based control model for real-time traffic light coordination.

    Zhou, Xiaoke; Zhu, Fei; Liu, Quan; Fu, Yuchen; Huang, Wei

    2014-01-01

    Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors that can affect the traffic control model, it is difficult to find the optimal solution. The disability of traffic light controllers to learn from past experiences caused them to be unable to adaptively fit dynamic changes of traffic flow. Considering dynamic characteristics of the actual traffic environment, reinforcement learning algorithm based traffic control approach can be applied to get optimal scheduling policy. The proposed Sarsa(λ)-based real-time traffic control optimization model can maintain the traffic signal timing policy more effectively. The Sarsa(λ)-based model gains traffic cost of the vehicle, which considers delay time, the number of waiting vehicles, and the integrated saturation from its experiences to learn and determine the optimal actions. The experiment results show an inspiring improvement in traffic control, indicating the proposed model is capable of facilitating real-time dynamic traffic control. PMID:24592183

  7. A Sarsa(λ-Based Control Model for Real-Time Traffic Light Coordination

    Xiaoke Zhou

    2014-01-01

    Full Text Available Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors that can affect the traffic control model, it is difficult to find the optimal solution. The disability of traffic light controllers to learn from past experiences caused them to be unable to adaptively fit dynamic changes of traffic flow. Considering dynamic characteristics of the actual traffic environment, reinforcement learning algorithm based traffic control approach can be applied to get optimal scheduling policy. The proposed Sarsa(λ-based real-time traffic control optimization model can maintain the traffic signal timing policy more effectively. The Sarsa(λ-based model gains traffic cost of the vehicle, which considers delay time, the number of waiting vehicles, and the integrated saturation from its experiences to learn and determine the optimal actions. The experiment results show an inspiring improvement in traffic control, indicating the proposed model is capable of facilitating real-time dynamic traffic control.

  8. Pulley With Active Antifriction Actuator And Control

    Ih, Che-Hang C.; Vivian, Howard C.

    1994-01-01

    Torque actuator and associated control system minimizes effective friction of rotary bearing. Motor exerts compensating torque in response to feedback from external optical sensor. Compensation torque nearly cancels frictional torque of shaft bearings. Also useful in reducing bearing friction in gyro-scopes, galvanometers, torquemeters, accelerometers, earth-motion detectors, and balances.

  9. Satellite Attitude Control Using Only Electromagnetic Actuation

    Wisniewski, Rafal

    The primary purpose of this work was to develop control laws for three axis stabilization of a magnetic actuated satellite. This was achieved by a combination of linear and nonlinear system theory. In order to reach this goal new theoretical results were produced in both fields. The focus of the ...

  10. Attitude control with active actuator saturation prevention

    Forbes, James Richard

    2015-02-01

    Spacecraft attitude control in the presence of actuator saturation is considered. The attitude controller developed has two components: a proportional component and an angular velocity component. The proportional control has a special form that depends on the attitude parameterization. The angular velocity control is realized by a strictly positive real system with its own input nonlinearity. The strictly positive real system can filter noise in the angular velocity measurement. With this control architecture the torques applied to the body are guaranteed to be below a predetermined value, thus preventing saturation of the actuators. The closed-loop equilibrium point corresponding to the desired attitude is shown to be asymptotically stable. Additionally, the control law does not require specific knowledge of the body's inertia properties, and is therefore robust to such modelling errors.

  11. Self——adaptive Control Method for Traffic Signal at Single Intersection Based on Cloud Model Adaptive%基于云模型的单路口交通信号自适应控制方法研究

    刘罗仁; 罗金玲

    2011-01-01

    为了减少车辆通过路口的延误,提出了一种基于云模型的单路口交通信号自适应控制方法;使用云模型作为信号控制的基础模型,利用云模型中的正态云发生器和前件云发生器算法分别对道路交通信息进行处理并产生自适应的控制规则,以实现单路口交通信号的自适应控制;通过仿真实验,结果表明,使用云模型作为控制方法,比较传统控制方式更具智能化,更接近于人脑思维过程的控制方法,这也是将来交通信号控制的发展方向.%In order to reduce traffic delays through the intersection, this paper presents, a single intersection based on cloud model adaptive traffic signal control. Signal control using the cloud model as the basis model, the cloud model in the normal cloud generator and the former pieces of cloud generator algorithms are processed on road traffic information and generates adaptive control rules in order to achieve a single self-intersection traffic signal adaptive control. The simulation experiment results show that the control method using the cloud model as the more traditional control method is more intelligent, more close to the brain control the process of thinking, this is the future direction of development of traffic signal control.

  12. CONTROLLING TRAFFIC FLOW IN MULTILANE-ISOLATED INTERSECTION USING ANFIS APPROACH TECHNIQUES

    G. R. LAI

    2015-08-01

    Full Text Available Many controllers have applied the Adaptive Neural-Fuzzy Inference System (ANFIS concept for optimizing the controller performance. However, there are less traffic signal controllers developed using the ANFIS concept. ANFIS traffic signal controller with its fuzzy rule base and its ability to learn from a set of sample data could improve the performance of Existing traffic signal controlling system to reduce traffic congestions at most of the busy traffic intersections in city such as Kuala Lumpur, Malaysia. The aim of this research is to develop an ANFIS traffic signals controller for multilane-isolated four approaches intersections in order to ease traffic congestions at traffic intersections. The new concept to generate sample data for ANFIS training is introduced in this research. The sample data is generated based on fuzzy rules and can be analysed using tree diagram. This controller is simulated on multilane-isolated traffic intersection model developed using M/M/1 queuing theory and its performance in terms of average waiting time, queue length and delay time are compared with traditional controllers and fuzzy controller. Simulation result shows that the average waiting time, queue length, and delay time of ANFIS traffic signal controller are the lowest as compared to the other three controllers. In conclusion, the efficiency and performance of ANFIS controller are much better than that of fuzzy and traditional controllers in different traffic volumes.

  13. STUDY ON THE CONTROL OF SINGLE PNEUMATIC MUSCLE ACTUATOR

    Fan Wei; Peng Guangzheng; Chai Senchun; Ning Ruxin

    2003-01-01

    The control of single pneumatic muscle actuator is studied, as one basic part of research on the parallel-robot arthrosis actuated by pneumatic muscle actuators. Experiments show that a self-modified fuzzy-PID controller is obviously effective for its position servo and a simple PID controller is good for its force track.

  14. Fpga-based control of piezoelectric actuators

    Juhász László

    2011-01-01

    Full Text Available In many industrial applications like semiconductor production and optical inspection systems, the availability of positioning systems capable to follow trajectory paths in the range of several centimetres, featuring at the same time a nanometre-range precision, is demanding. Pure piezoelectric stages and standard positioning systems with motor and spindle are not able to meet such requirements, because of the small operation range and inadequacies like backlash and friction. One concept for overcoming these problems consists of a hybrid positioning system built through the integration of a DC-drive in series with a piezoelectric actuator. The wide range of potential applications enables a considerable market potential for such an actuator, but due to the high variety of possible positioned objects and dynamic requirements, the required control complexity may be significant. In this paper, a real-time capable state-space control concept for the piezoelectric actuators, embedded in such a hybrid micropositioning system, is presented. The implementation of the controller together with a real-time capable hysteresis compensation measure is performed using a low-budget FPGA-board, whereas the superimposed integrated controller is realized with a dSPACE RCP-system. The advantages of the designed control over a traditional proportional-integral control structure are proven through experimental results using a commercially available hybrid micropositioning system. Positioning results by different dynamic requirements featuring positioning velocities from 1 μm/s up to 5 cm/s are given.

  15. Electromechanical actuation for thrust vector control applications

    Roth, Mary Ellen

    At present, actuation systems for the Thrust Vector Control (TVC) for launch vehicles are hydraulic systems. The Advanced Launch System (ALS), a joint initiative between NASA and the Air Force, is a launch vehicle that is designed to be cost effective, highly reliable and operationally efficient with a goal of reducing the cost per pound to orbit. As part of this initiative, an electromechanical actuation system is being developed as an attractive alternative to the hydraulic systems used today. NASA-Lewis is developing and demonstrating an Induction Motor Controller Actuation System with a 40 hp peak rating. The controller will integrate 20 kHz resonant link Power Management and Distribution (PMAD) technology and Pulse Population Modulation (PPM) techniques to implement Field Oriented Vector Control (FOVC) of a new advanced induction motor. Through PPM, multiphase variable frequency, variable voltage waveforms can be synthesized from the 20 kHz source. FOVC shows that varying both the voltage and frequency and their ratio (V/F), permits independent control of both torque and speed while operating at maximum efficiency at any point on the torque-speed curve. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a Built-in Test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA TVC system. The design and fabrication of the motor controller is being done by General Dynamics Space Systems Division. The University of Wisconsin-Madison will assist in the design of the advanced induction motor and in the implementation of the FOVC theory. A 75 hp electronically controlled dynamometer will be used to test the motor controller in all four quadrants of operation using flight type

  16. HIGH LEVEL MODELLING OF REAL TIME TRAFFIC LIGHT CONTROLLER

    ADITYA MANDLOI

    2012-12-01

    Full Text Available The objective of this paper is to design and implement traffic control system. The system developed is able to sense the presence of vehicles within certain range by setting the appropriate duration for the traffic signals to react accordingly. By employing logical functions to calculate the appropriate timing for the signals toilluminate, the system can help to solve the problem of traffic congestion. The use of FPGAs (Field Programmable Gate Arrays is an interesting new phenomenon in VLSI development. FPGAs offer all of thefeatures needed to implement most complex designs. Hardware simulation tests were successfully performed on the algorithm implemented into a FPGA (Field Programmable Gate Arrays. The main object of the paper is to design a Real Time Traffic Light Controller (RTTLC using VHDL and implement the RTTLC in XILINX SPARTAN - 3 FPGA.

  17. Vehicular Traffic Flow Controlled by Traffic Light on a Street with Open Boundaries

    Mhirech, Abdelaziz; Ismaili, Assia Alaoui

    2013-08-01

    The Nagel-Schreckenberg (NS) cellular automata (CA) model for describing the vehicular traffic flow in a street with open boundaries is studied. To control the traffic flow, a traffic signalization light operating for a fixed-time scheme is placed in the middle of the street. Extensive Monte Carlo simulations are carried out to calculate various model characteristics. Essentially, we investigate the formation of the cars queue behind traffic light dependence on the duration of green light Tg, injecting and extracting probabilities α and β, respectively. Two phases of average training queues were found. Besides, the dependence of car accident probability per site and per time step on Tg, α and β is computed.

  18. Influences of overtaking on two-lane traffic with signals

    Chen, Chen; Chen, Jianqiao; Guo, Xiwei

    2010-01-01

    Based on the cellular automata method (CA method), two-lane traffic flow with the consideration of overtaking is investigated. Discrete equations are proposed to describe the traffic dynamics by using the rules of CA model. Influences of signal cycle time ( ts) and vehicular density (ρ) on the mean velocity and mean overtaking times of the traffic flow are discussed. The effects of slow vehicles and road barricades on the traffic flow are also studied. Simulation results shows that the vehicular density and the signal cycle time have significant influences on the traffic flow. The mean velocity of the traffic flow could keep a comparatively large value when ρ≤0.45. For a certain value of ρ, displays a serrated fluctuation with ts. Therefore, there may exist a certain combination of ρ and ts which optimizes the traffic flow efficiency. As compared with the results in Nagatani (2009) [7], the model proposed here and the simulation results which took into account the effects of signal cycle time, slow vehicles, and road barricades on the traffic flow with overtaking allowed, can reflect the situation of traffic flow in a more realistic way.

  19. Satellite Attitude Control Using Only Electromagnetic Actuation

    Wisniewski, Rafal

    1997-01-01

    The primary purpose of this work was to develop control laws for three axis stabilization of a magnetic actuated satellite. This was achieved by a combination of linear and nonlinear system theory. In order to reach this goal new theoretical results were produced in both fields. The focus of the work was on the class of periodic systems reflecting orbital motion of the satellite. In addition to a theoretical treatment, the thesis contains a large portion of application considerations. The con...

  20. Induction thermoelastic actuator with controllable operation regime

    Doležel, Ivo; Kotlan, V.; Krónerová, E.; Ulrych, B.

    2010-01-01

    Roč. 29, č. 4 (2010), s. 1004-1014. ISSN 0332-1649 R&D Projects: GA ČR GA102/09/1305 Institutional research plan: CEZ:AV0Z20570509 Keywords : control of position * thermoelastic actuator * electromagnetic field Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.386, year: 2010 www.emeraldinsight.com/compel.htm

  1. Flexible parylene actuator for micro adaptive flow control

    Pornsin-Sirirak, T. N.; Tai, Y. C.; Nassef, H.; Ho, C M

    2001-01-01

    This paper describes the first flexible parylene electrostatic actuator valves intended for micro adaptive flow control for the future use on the wings of micro-air-vehicle (MAV). The actuator diaphragm is made of two layers of parylene membranes with offset vent holes. Without electrostatic actuation, air can move freely from one side of the skin to the other side through the vent holes. With actuation, these vent holes are sealed and the airflow is controlled. The membrane behaves as a comp...

  2. Increasing Market Penetration of LED Traffic Signals in New York State: Review of Articles and Information on LED Traffic Signals

    Bullough, John D; Suozzo, Margaret

    2002-01-01

    A primary purpose of this review is to identify and summarize recently published information about the use and performance of light-emitting diode (LED) traffic signals. It consists of two sections: a synopsis of experiences of municipalities using LED traffic signals in 1999 and 2000, and a discussion of technical, economic and market issues surrounding the deployment of LED signals. This review includes articles and reports published in 1999 and 2000.

  3. Synthetic jet actuation for load control

    The reduction of wind turbine blade loads is an important issue in the reduction of the costs of energy production. Reduction of the loads of a non-cyclic nature requires so-called smart rotor control, which involves the application of distributed actuators and sensors to provide fast and local changes in aerodynamic performance. This paper investigates the use of synthetic jets for smart rotor control. Synthetic jets are formed by ingesting low-momentum fluid from the boundary layer along the blade into a cavity and subsequently ejecting this fluid with a higher momentum. We focus on the observed flow phenomena and the ability to use these to obtain the desired changes of the aerodynamic properties of a blade section. To this end, numerical simulations and wind tunnel experiments of synthetic jet actuation on a non-rotating NACA0018 airfoil have been performed. The synthetic jets are long spanwise slits, located close to the trailing edge and directed perpendicularly to the surface of the airfoil. Due to limitations of the present experimental setup in terms of performance of the synthetic jets, the main focus is on the numerical flow simulations. The present results show that high-frequency synthetic jet actuation close to the trailing edge can induce changes in the effective angle of attack up to approximately 2.9°

  4. A Study of Active Rotor-Blade Vibration Control using Electro-Magnetic Actuation - Part II: Experiment

    Christensen, Rene Hardam; Santos, Ilmar

    2004-01-01

    mistuning, can easily be generated by substitution or rearranging the blades. Six sets of electro-magnetic actuators are applied to the system in order to control the blades as well as the rotor vibrations. Four sets of actuators are mounted in the rotating disc acting directly onto each one of the blades....... The remaining two sets of actuators are applied to act directly onto the hub, working as an active radial bearing controlling the rotor lateral movement. The rig is equipped with sensors measuring blade and rotor vibrations. Actuators and sensors are connected to a digital signal processor running the...... control algorithm. Measurement signals and actuator control signals from the sensors and actuators fixed in the rotating disc are transmitted to the control unit through a slip-ring device. Various measured responses of both the controlled and the non-controlled system with identical blades and with...

  5. Position and torque tracking: series elastic actuation versus model-based-controlled hydraulic actuation.

    Otten, Alexander; van Vuuren, Wieke; Stienen, Arno; van Asseldonk, Edwin; Schouten, Alfred; van der Kooij, Herman

    2011-01-01

    Robotics used for diagnostic measurements on, e.g. stroke survivors, require actuators that are both stiff and compliant. Stiffness is required for identification purposes, and compliance to compensate for the robots dynamics, so that the subject can move freely while using the robot. A hydraulic actuator can act as a position (stiff) or a torque (compliant) actuator. The drawback of a hydraulic actuator is that it behaves nonlinear. This article examines two methods for controlling a nonlinear hydraulic actuator. The first method that is often applied uses an elastic element (i.e. spring) connected in series with the hydraulic actuator so that the torque can be measured as the deflection of the spring. This torque measurement is used for proportional integral control. The second method of control uses the inverse of the model of the actuator as a linearizing controller. Both methods are compared using simulation results. The controller designed for the series elastic hydraulic actuator is faster to implement, but only shows good performance for the working range for which the controller is designed due to the systems nonlinear behavior. The elastic element is a limiting factor when designing a position controller due to its low torsional stiffness. The model-based controller linearizes the nonlinear system and shows good performance when used for torque and position control. Implementing the model-based controller does require building and validating of the detailed model. PMID:22275654

  6. Traffic Light Control by Multiagent Reinforcement Learning Systems

    Bakker, B.; Whiteson, S.; Kester, L.J.H.M.; Groen, F.C.A.

    2010-01-01

    Traffic light control is one of the main means of controlling road traffic. Improving traffic control is important because it can lead to higher traffic throughput and reduced traffic congestion. This chapter describes multiagent reinforcement learning techniques for automatic optimization of traffi

  7. Traffic light control by multiagent reinforcement learning systems

    B. Bakker; S. Whiteson; L. Kester; F.C.A. Groen

    2010-01-01

    Traffic light control is one of the main means of controlling road traffic. Improving traffic control is important because it can lead to higher traffic throughput and reduced traffic congestion. This chapter describes multiagent reinforcement learning techniques for automatic optimization of traffi

  8. Optimizing urban traffic control using a rational agent

    Salvador IBARRA-MARTÍNEZ; José A. CASTÁN-ROCHA; Julio LARIA-MENCHACA

    2014-01-01

    This paper is devoted to developing and evaluating a set of technologies with the objective of designing a method-ology for the implementation of sophisticated traffic lights by means of rational agents. These devices would be capable of op-timizing the behavior of a junction with multiple traffic signals, reaching a higher level of autonomy without losing reliability, accuracy, or efficiency in the offered services. In particular, each rational agent in a traffic signal will be able to analyze the requirements and constraints of the road, in order to know its level of demand. With such information, the rational agent will adapt its light cycles with the view of accomplishing more fluid traffic patterns and minimizing the pollutant environmental emissions produced by vehicles while they are stopped at a red light, through using a case-based reasoning (CBR) adaptation. This paper also integrates a microscopic simulator developed to run a set of tests in order to compare the presented methodology with traditional traffic control methods. Two study cases are shown to demonstrate the efficiency of the introduced approach, increasing vehicular mobility and reducing harmful activity for the environment. For instance, in the first scenario, taking into account the studied traffic volumes, our approach increases mobility by 23%and reduces emissions by 35%. When the roads are managed by sophisticated traffic lights, a better level of service and considerable environmental benefits are achieved, demon-strating the utility of the presented approach.

  9. Modeling and control of precision actuators

    Kiong, Tan Kok

    2013-01-01

    IntroductionGrowing Interest in Precise ActuatorsTypes of Precise ActuatorsApplications of Precise ActuatorsNonlinear Dynamics and ModelingHysteresisCreepFrictionForce RipplesIdentification and Compensation of Preisach Hysteresis in Piezoelectric ActuatorsSVD-Based Identification and Compensation of Preisach HysteresisHigh-Bandwidth Identification and Compensation of Hysteretic Dynamics in Piezoelectric ActuatorsConcluding RemarksIdentification and Compensation of Frict

  10. Adaptive Fuzzy Backstepping Control against Actuator Faults

    Fujiang Jin

    2011-01-01

    Full Text Available In this study, the problem of Fault-Tolerant Control (FTC for a class of uncertain nonlinear systems is studied. A novel FTC scheme is proposed to deal with both lock-in-place and loss of effectiveness faults of actuators. By employing fuzzy approximation and on-line adaptive updating, the proposed control scheme can tolerate the faults without detection and diagnosis mechanism. It is proved in theory that the FTC scheme can guarantee the closed-loop stability and desired output tracking performance in spite of all kinds of the faults and external disturbances. A simulation example is also included to show the effectiveness of the scheme.

  11. Shape-Memory-Alloy Actuator For Flight Controls

    Barret, Chris

    1995-01-01

    Report proposes use of shape-memory-alloy actuators, instead of hydraulic actuators, for aerodynamic flight-control surfaces. Actuator made of shape-memory alloy converts thermal energy into mechanical work by changing shape as it makes transitions between martensitic and austenitic crystalline phase states of alloy. Because both hot exhaust gases and cryogenic propellant liquids available aboard launch rockets, shape-memory-alloy actuators exceptionally suited for use aboard such rockets.

  12. Mechatronics and Bioinspiration in Actuator Design and Control

    J. L. Pons

    2008-01-01

    Full Text Available Actuators are components of motion control systems in which mechatronics plays a crucial role. They can be regarded as a paradigmatic case in which this mechatronic approach is required. Furthermore, actuator technologies can get new sources of inspiration from nature (bioinspiration. Biological systems are the result of an evolutionary process and show excellent levels of performance. In this paper, we analyse the actuator as a bioinspired mechatronic system through analogies between mechatronics and biological actuating mechanisms that include hierarchical control of actuators, switched control of power flow and some transduction principles. Firstly, some biological models are introduced as a source of inspiration for setting up both actuation principles and control technologies. Secondly, a particular actuator technology, the travelling wave ultrasonic motor, is taken to illustrate this approach. Eventually, the last section draws some conclusions and points out future directions.

  13. Review of road traffic control strategies.

    Papageorgiou, M.; Diakaki, C.; Dinopoulou, V.; Kotsialos, A.; Wang, Y.

    2003-01-01

    Traffic congestion in urban road and freeway networks leads to a strong degradation of the network infrastructure and accordingly reduced throughput, which can be countered via suitable control measures and strategies. After illustrating the main reasons for infrastructure deterioration due to traffic congestion, a comprehensive overview of proposed and implemented control strategies is provided for three areas: urban road networks, freeway networks, and route guidance. Selected application r...

  14. Self-organized control of traffic signals based on reinforcement learning and genetic algorithm%基于再励学习和遗传算法的交通信号自组织控制

    欧海涛; 杨煜普; 张文渊; 许晓鸣

    2000-01-01

    提出一种将再励学习与遗传算法相结合的遗传再励学习方法对交通信号进行自组织控制再励学习是针对每一个道路交叉口交通流的优化,修正每个信号灯周期的绿性比;而遗传算法产生局部学习过程的全局优化标准,即是修正信号灯周期的大小这种方法克服了现有的控制方法需要大量数据传输通讯、准确的交通模型等缺陷,将局部优化和全局优化统一起来通过计算机仿真实验表明了方法的有效性%A combination algorithm of reinforcement learning and genetic algorithm is proposed in this paper to self-organized control of the traffic signals.Reinforcement learning focuses on the optimization of an intersection traffic flow which modified the split of traffic signal cycle,while the genetic algorithm are intended to introduce a global optimization criterion to each of the local learning processes which modified the cycle itself of traffic signals.This method overcome the drawbacks in existing control methods such as huge data transfer and communication,accurately traffic model and so on,and unified the local optimization and global optimization.Through the computer simulation,the effectiveness of method is demonstated.

  15. Intelligent control of an IPMC actuated manipulator using emotional learning-based controller

    Shariati, Azadeh; Meghdari, Ali; Shariati, Parham

    2008-08-01

    In this research an intelligent emotional learning controller, Takagi- Sugeno- Kang (TSK) is applied to govern the dynamics of a novel Ionic-Polymer Metal Composite (IPMC) actuated manipulator. Ionic-Polymer Metal Composites are active actuators that show very large deformation in existence of low applied voltage. In this research, a new IPMC actuator is considered and applied to a 2-dof miniature manipulator. This manipulator is designed for miniature tasks. The control system consists of a set of neurofuzzy controller whose parameters are adapted according to the emotional learning rules, and a critic with task to assess the present situation resulted from the applied control action in terms of satisfactory achievement of the control goals and provides the emotional signal (the stress). The controller modifies its characteristics so that the critic's stress decreased.

  16. Variable Frequency Diverter Actuation for Flow Control

    Culley, Dennis E.

    2006-01-01

    The design and development of an actively controlled fluidic actuator for flow control applications is explored. The basic device, with one input and two output channels, takes advantage of the Coanda effect to force a fluid jet to adhere to one of two axi-symmetric surfaces. The resultant flow is bi-stable, producing a constant flow from one output channel, until a disturbance force applied at the control point causes the flow to switch to the alternate output channel. By properly applying active control the output flows can be manipulated to provide a high degree of modulation over a wide and variable range of frequency and duty cycle. In this study the momentary operative force is applied by small, high speed isolation valves of which several different types are examined. The active fluidic diverter actuator is shown to work in several configurations including that in which the operator valves are referenced to atmosphere as well as to a source common with the power stream.

  17. Advanced actuators for the control of large space structures

    Downer, James; Hockney, Richard; Johnson, Bruce; Misovec, Kathleen

    1993-01-01

    The objective of this research was to develop advanced six-degree-of-freedom actuators employing magnetic suspensions suitable for the control of structural vibrations in large space structures. The advanced actuators consist of a magnetically suspended mass that has three-degrees-of-freedom in both translation and rotation. The most promising of these actuators featured a rotating suspended mass providing structural control torques in a manner similar to a control moment gyro (CMG). These actuators employ large-angle-magnetic suspensions that allow gimballing of the suspended mass without mechanical gimbals. Design definitions and sizing algorithms for these CMG type as well as angular reaction mass actuators based on multi-degree-of-freedom magnetic suspensions were developed. The performance of these actuators was analytically compared with conventional reaction mass actuators for a simple space structure model.

  18. Theory of self-organized traffic at light signal

    Kerner, Boris S

    2012-01-01

    Based on numerical simulations of a three-phase traffic flow model, a probabilistic theory of traffic at the light signal is developed. We have found that very complex spatiotemporal self-organized phenomena determine features of city traffic. We have revealed that the breakdown of {\\it green wave} in a city is initiated by the emergence of a moving synchronized flow pattern (MSP) within the green wave. It turns out that a sequence of F$\\rightarrow$S$\\rightarrow$J transitions (F -- free flow, S -- synchronized flow, J -- moving queue) lead to traffic breakdown at the light signal. Both spontaneous and induced breakdowns of the green wave have been found. From a study of a variety of scenarios for arrival traffic, we have found that there are the infinite number of capacities of traffic at the light signal, which are in a capacity range between a minimum capacity and maximum capacity; each of the capacities gives a flow rate at which under-saturated traffic is in a metastable state with respect to the transiti...

  19. Traffic Control in ATM Networks : Engineering Impacts of Realistic Traffic Processes

    Jena, Ajit K.; Popescu, Adrian; Pruthi, Parag; Erramilli, Ashok

    1996-01-01

    This paper reviews the current state of the art in the rapidly developing areas of ATM traffic controls and traffic modeling, and identifies future research areas to facilitate the implementation of control methods that can support a desired quality of service without sacrificing network utilizations. Two sets of issues are identified, one on the impacts of realistic traffic on the efficacy of traffic controls in supporting specific traffic management objectives, and the other dealing with th...

  20. Experimental Investigation on Airfoil Shock Control by Plasma Aerodynamic Actuation

    An experimental investigation on airfoil (NACA64—215) shock control is performed by plasma aerodynamic actuation in a supersonic tunnel (Ma = 2). The results of schlieren and pressure measurement show that when plasma aerodynamic actuation is applied, the position moves forward and the intensity of shock at the head of the airfoil weakens. With the increase in actuating voltage, the total pressure measured at the head of the airfoil increases, which means that the shock intensity decreases and the control effect increases. The best actuation effect is caused by upwind-direction actuation with a magnetic field, and then downwind-direction actuation with a magnetic field, while the control effect of aerodynamic actuation without a magnetic field is the most inconspicuous. The mean intensity of the normal shock at the head of the airfoil is relatively decreased by 16.33%, and the normal shock intensity is relatively reduced by 27.5% when 1000 V actuating voltage and upwind-direction actuation are applied with a magnetic field. This paper theoretically analyzes the Joule heating effect generated by DC discharge and the Lorentz force effect caused by the magnetic field. The discharge characteristics are compared for all kinds of actuation conditions to reveal the mechanism of shock control by plasma aerodynamic actuation

  1. On Traffic Light Control of Regular Towns

    Mancinelli, Elina; Cohen, Guy; Gaubert, Stéphane; Quadrat, Jean-Pierre; Rofman, Edmundo

    2001-01-01

    We present a hierarchical way of designing the traffic light control of regular towns. We first give a a model for light synchronization based on Petri nets and minplus algebra. Using this modelling we decompose the problem in three parts : - computation of the cycle length of each traffic light, - computation of the starting time of each traffic light cycle, - computation of the proportion of the green and red length in a cycle. The example of the Bahía Blanca, city of Argentina, is given.

  2. 采用系统科学方法优化交通信号灯的控制策略%Optimization Control Strategy of Traffic Signal with System Scientific Methods

    张世良

    2012-01-01

    In order to control vehicles easily pass in the intersection,on the basis of the introduction of system structure for traffic signal lamp,run mode and workflow,this paper analyzes different ways in system control which can use different operation patterns at different times to adaptively control vehicle pass time.Traffic induction strategies which can use different open moment according to the space between the two intersections is used to reduce waiting time for vehicle,improve pass efficiency and ensure efficient circulation in the whole traffic system,and other traffic information,such as vehicle speed,type and traffic by vehicle labels can provide basic data of traffic forecast for the road long-term planning and is signality to direct intelligent traffic control.%为了控制车辆在交叉路口顺畅通行,本文在介绍交通信号灯系统结构、运行模式及工作流程的基础上,分析了系统控制中不同策略的方法,使用在不同的时段采用不同的路口控制模式,自适应地控制车辆通行时间,并根据路口间距采用不同的开启时刻以及使用交通诱导策略,减少车辆等待时间,提高车辆通行效率,保证整个交通系统的高效流通,而且通过车载标签及时掌握的车速、车型和交通量等交通信息可以为该路段远期规划的交通预测提供基础数据,对智能交通控制具有很大的指导意义。

  3. Traffic Signals Generation with Bicolor Leds using Pic 18f Series Microcontroller.

    Y.V Sripriya

    2013-10-01

    Full Text Available PIC 18F series microcontroller is used for control of signals to a specific time using port lines. In this contest we choose the Bicolor LEDs with Red and Green. The colors of the signals are illuminated by programming in the microcontroller. The aim of this paper is to generate three colors on a single traffic light instead of using three different color traffic signal lights. The purpose of this design is to reduce the manufacture cost of the signal lights and to use a minimum number of ports in a microcontroller and cable lines to transmit the signals to the light source. This paper describes a new design for the traffic signals.

  4. Position control of ionic polymer metal composite actuator based on neuro-fuzzy system

    Nguyen, Truong-Thinh; Yang, Young-Soo; Oh, Il-Kwon

    2009-07-01

    This paper describes the application of Neuro-Fuzzy techniques for controlling an IPMC cantilever configuration under water to improve tracking ability for an IPMC actuator. The controller was designed using an Adaptive Neuro-Fuzzy Controller (ANFC). The measured input data based including the tip-displacements and electrical signals have been recorded for generating the training in the ANFC. These data were used for training the ANFC to adjust the membership functions in the fuzzy control algorithm. The comparison between actual and reference values obtained from the ANFC gave satisfactory results, which showed that Adaptive Neuro-Fuzzy algorithm is reliable in controlling IPMC actuator. In addition, experimental results show that the ANFC performed better than the pure fuzzy controller (PFC). Present results show that the current adaptive neuro-fuzzy controller can be successfully applied to the real-time control of the ionic polymer metal composite actuator for which the performance degrades under long-term actuation.

  5. Prognostics Enhanced Reconfigurable Control of Electro-Mechanical Actuators

    National Aeronautics and Space Administration — Actuator systems are employed widely in aerospace, transportation and industrial processes to provide power to critical loads, such as aircraft control surfaces....

  6. Theory of self-organized traffic at light signal

    Kerner, Boris S.

    2012-01-01

    Based on numerical simulations of a three-phase traffic flow model, a probabilistic theory of traffic at the light signal is developed. We have found that very complex spatiotemporal self-organized phenomena determine features of city traffic. We have revealed that the breakdown of {\\it green wave} in a city is initiated by the emergence of a moving synchronized flow pattern (MSP) within the green wave. It turns out that a sequence of F$\\rightarrow$S$\\rightarrow$J transitions (F -- free flow,...

  7. Traffic Flow Control In Automated Highway Systems

    Alvarez, Luis; Horowitz, Roberto

    1997-01-01

    This report studies the problem of traffic control in the Automated Highway System (AHS) hierarchical architecture of the California PATH program. A link layer controller for the PATH AHS architecture is presented. It is shown that the proposed control laws stabilize the vehicular density and flow around predetermined profiles.

  8. CATS-based Air Traffic Controller Agents

    Callantine, Todd J.

    2002-01-01

    This report describes intelligent agents that function as air traffic controllers. Each agent controls traffic in a single sector in real time; agents controlling traffic in adjoining sectors can coordinate to manage an arrival flow across a given meter fix. The purpose of this research is threefold. First, it seeks to study the design of agents for controlling complex systems. In particular, it investigates agent planning and reactive control functionality in a dynamic environment in which a variety perceptual and decision making skills play a central role. It examines how heuristic rules can be applied to model planning and decision making skills, rather than attempting to apply optimization methods. Thus, the research attempts to develop intelligent agents that provide an approximation of human air traffic controller behavior that, while not based on an explicit cognitive model, does produce task performance consistent with the way human air traffic controllers operate. Second, this research sought to extend previous research on using the Crew Activity Tracking System (CATS) as the basis for intelligent agents. The agents use a high-level model of air traffic controller activities to structure the control task. To execute an activity in the CATS model, according to the current task context, the agents reference a 'skill library' and 'control rules' that in turn execute the pattern recognition, planning, and decision-making required to perform the activity. Applying the skills enables the agents to modify their representation of the current control situation (i.e., the 'flick' or 'picture'). The updated representation supports the next activity in a cycle of action that, taken as a whole, simulates air traffic controller behavior. A third, practical motivation for this research is to use intelligent agents to support evaluation of new air traffic control (ATC) methods to support new Air Traffic Management (ATM) concepts. Current approaches that use large, human

  9. Embedded System For Intelligent Ambulance And Traffic Control Management

    Sarika Baburao Kale; Gajanan P. Dhok

    2013-01-01

    The use of Embedded technology has proved to be very beneficial in  present Traffic Light Controller (TLC) and that will minimize waiting time of vehicle and also manage traffic load. In this paper we exploit the emergence of new technology called as Intelligent traffic light controller, This makes the use of sensor n/w along with embedded technology. Where traffic light will be intelligently decided based on the total traffic on all adjacent roads. Thus optimization of traffic light switchin...

  10. Development of a resonant trailing-edge flap actuation system for helicopter rotor vibration control

    Kim, J.-S.; Wang, K. W.; Smith, E. C.

    2007-12-01

    A resonant trailing-edge flap actuation system for helicopter rotors is developed and evaluated experimentally. The concept involves deflecting each individual trailing-edge flap using a compact resonant piezoelectric actuation system. Each resonant actuation system yields high authority, while operating at a single frequency. By tailoring the natural frequencies of the actuation system (including the piezoelectric actuator and the related mechanical and electrical elements) to the required operating frequencies, one can increase the output authority. The robustness of the device can be enhanced by increasing the high authority bandwidth through electric circuitry design. Such a resonant actuation system (RAS) is analyzed for a full-scale piezoelectric induced-shear tube actuator, and bench-top testing is conducted to validate the concept. An adaptive feed-forward controller is developed to realize the electric network dynamics and adapt to phase variation. The control strategy is then implemented via a digital signal processor (DSP) system. Analysis is also performed to examine the rotor system dynamics in forward flight with piezoelectric resonant actuators, using a perturbation method to evaluate the system's time-varying characteristics. Numerical simulations reveal that the resonant actuator concept can be applied to forward flights as well as to hover conditions.

  11. Traffic Signal Synchronization in the Saturated High-Density Grid Road Network

    Xiaojian Hu; Jian Lu; Wei Wang,; Ye Zhirui

    2015-01-01

    Most existing traffic signal synchronization strategies do not perform well in the saturated high-density grid road network (HGRN). Traffic congestion often occurs in the saturated HGRN, and the mobility of the network is difficult to restore. In order to alleviate traffic congestion and to improve traffic efficiency in the network, the study proposes a regional traffic signal synchronization strategy, named the long green and long red (LGLR) traffic signal synchronization strategy. The essen...

  12. Design and Simulation of a Decentralized Railway Traffic Control System

    T. Kara; M. Cengiz Savas

    2016-01-01

    With the increasing use of railway transportation, various methods have been developed for the control and management of train traffic. Train traffic control systems that are currently in use are overwhelmingly centralized systems. In this study, the development of the general structure of railway traffic control techniques is examined, centralized and decentralized control systems are investigated, and an alternative train traffic control system, the Decentralized Train Traffic Management Sy...

  13. Thrust vector control using electric actuation

    Bechtel, Robert T.; Hall, David K.

    1995-01-01

    Presently, gimbaling of launch vehicle engines for thrust vector control is generally accomplished using a hydraulic system. In the case of the space shuttle solid rocket boosters and main engines, these systems are powered by hydrazine auxiliary power units. Use of electromechanical actuators would provide significant advantages in cost and maintenance. However, present energy source technologies such as batteries are heavy to the point of causing significant weight penalties. Utilizing capacitor technology developed by the Auburn University Space Power Institute in collaboration with the Auburn CCDS, Marshall Space Flight Center (MSFC) and Auburn are developing EMA system components with emphasis on high discharge rate energy sources compatible with space shuttle type thrust vector control requirements. Testing has been done at MSFC as part of EMA system tests with loads up to 66000 newtons for pulse times of several seconds. Results show such an approach to be feasible providing a potential for reduced weight and operations costs for new launch vehicles.

  14. Evaluation of Intersection Traffic Control Measures through Simulation

    Asaithambi, Gowri; Sivanandan, R.

    2015-12-01

    Modeling traffic flow is stochastic in nature due to randomness in variables such as vehicle arrivals and speeds. Due to this and due to complex vehicular interactions and their manoeuvres, it is extremely difficult to model the traffic flow through analytical methods. To study this type of complex traffic system and vehicle interactions, simulation is considered as an effective tool. Application of homogeneous traffic models to heterogeneous traffic may not be able to capture the complex manoeuvres and interactions in such flows. Hence, a microscopic simulation model for heterogeneous traffic is developed using object oriented concepts. This simulation model acts as a tool for evaluating various control measures at signalized intersections. The present study focuses on the evaluation of Right Turn Lane (RTL) and Channelised Left Turn Lane (CLTL). A sensitivity analysis was performed to evaluate RTL and CLTL by varying the approach volumes, turn proportions and turn lane lengths. RTL is found to be advantageous only up to certain approach volumes and right-turn proportions, beyond which it is counter-productive. CLTL is found to be advantageous for lower approach volumes for all turn proportions, signifying the benefits of CLTL. It is counter-productive for higher approach volume and lower turn proportions. This study pinpoints the break-even points for various scenarios. The developed simulation model can be used as an appropriate intersection lane control tool for enhancing the efficiency of flow at intersections. This model can also be employed for scenario analysis and can be valuable to field traffic engineers in implementing vehicle-type based and lane-based traffic control measures.

  15. Acoustic Signal based Traffic Density State Estimation using SVM

    Prashant Borkar

    2013-06-01

    Full Text Available Based on the information present in cumulative acoustic signal acquired from a roadside-installed single microphone, this paper considers the problem of vehicular traffic density state estimation. The occurrence and mixture weightings of traffic noise signals (Tyre, Engine, Air Turbulence, Exhaust, and Honks etc are determined by the prevalent traffic density conditions on the road segment. In this work, we extract the short-term spectral envelope features of the cumulative acoustic signals using MFCC (Mel-Frequency Cepstral Coefficients. Support Vector Machines (SVM is used as classifier is used to model the traffic density state as Low (40 Km/h and above, Medium (20-40 Km/h, and Heavy (0-20 Km/h. For the developing geographies where the traffic is non-lane driven and chaotic, other techniques (magnetic loop detectors are inapplicable. SVM classifier with different kernels are used to classify the acoustic signal segments spanning duration of 20–40 s, which results in average classification accuracy of 96.67% for Quadratic kernel function and 98.33% for polynomial kernel function, when entire frames are considered for classification.

  16. Photostrictive actuators for photonic control of shallow spherical shells

    Shih, Hui-Ru; Tzou, Horn-Sen

    2007-10-01

    Photostrictive materials, exhibiting light-induced strain, are of interest for the future generation of wireless remote control photo-actuators. Photostrictive actuators are expected to be used as the driving component in optically controlled flexible structures. In this paper, the photonic control of flexible spherical shells using discrete photostrictive actuators is investigated. This paper presents a coupled opto-piezothermoelastic shell theory that incorporates photovoltaic, pyroelectric and piezoelectric effects, and has the capability to predict the response of a spherical shell driven by the photostrictive actuators. In this study, the effects of actuator location as well as membrane and bending components on the control action have been analyzed. The results obtained indicate that the control forces are mode and location dependent. Analysis also shows that the membrane control action is much more significant than the bending control action.

  17. A design of winch actuator speed control actuator on the gamma detection device geophysics logging

    The detection device consists of a detection system, data acquisition system and winch control system actuators. The winch speed actuator controller is for controlling the speed of detector 6 meters/minute and capable of carrying 20 kg load as far as 500 meters into the under ground using an electric motor. The purpose of this design is to determine and to select the electric motor according to speed control of winch actuator desired. The method of the design is using these used data to determine the motor power, motor rotation, and speed winch actuator used. A DC series motor of 1/20 HP, 24 V, 1140 RPM is the motor is provided with settings to the motor power supply voltage from 12 V up to 24 V and resistance from 0 Ω up to 12 Ω. The resistance is connected in series with motor yoke. (author)

  18. Electrical servo actuator bracket. [fuel control valves on jet engines

    Sawyer, R. V. (Inventor)

    1981-01-01

    An electrical servo actuator is mounted on a support arm which is allowed to pivot on a bolt through a fixed mounting bracket. The actuator is pivotally connected to the end of the support arm by a bolt which has an extension allowed to pass through a slot in the fixed mounting bracket. An actuator rod extends from the servo actuator to a crank arm which turns a control shaft. A short linear thrust of the rod pivots the crank arm through about 90 for full-on control with the rod contracted into the servo actuator, and full-off control when the rod is extended from the actuator. A spring moves the servo actuator and actuator rod toward the control crank arm once the actuator rod is fully extended in the full-off position. This assures the turning of the control shaft to a full-off position. A stop bolt and slot are provided to limit pivot motion. Once fully extended, the spring pivots the motion.

  19. A system look at electromechanical actuation for primary flight control

    Lomonova, E.A.

    1997-01-01

    An overview is presented of the emergence of the ALL Electric flight control system (FCS) or power-by-wire (PBW) concept. The concept of fly-by-power refers to the actuator using electrical rather than hydraulic power. The development of the primary flight control Electromechanical Actuators (EMAs)

  20. Design and Control of a Pneumatically Actuated Transtibial Prosthesis

    Zheng, Hao; Shen, Xiangrong

    2015-01-01

    This paper presents the design and control of a pneumatically actuated transtibial prosthesis, which utilizes a pneumatic cylinder-type actuator to power the prosthetic ankle joint to support the user's locomotion. The pneumatic actuator has multiple advantages over the traditional electric motor, such as light weight, low cost, and high power-to-weight ratio. The objective of this work is to develop a compact and lightweight transtibial prosthesis, leveraging the multiple advantages provided...

  1. Mechatronics and Bioinspiration in Actuator Design and Control

    J. L. Pons; A. Forner-Cordero; Rocon, E.; Moreno, J. C.

    2008-01-01

    Actuators are components of motion control systems in which mechatronics plays a crucial role. They can be regarded as a paradigmatic case in which this mechatronic approach is required. Furthermore, actuator technologies can get new sources of inspiration from nature (bioinspiration). Biological systems are the result of an evolutionary process and show excellent levels of performance. In this paper, we analyse the actuator as a bioinspired mechatronic system through analogies between mechat...

  2. Recent Advances in the Control of Piezoelectric Actuators

    Ziqiang Chi; Qingsong Xu

    2014-01-01

    The micro/nano positioning field has made great progress towards enabling the advance of micro/nano technology. Micro/nano positioning stages actuated by piezoelectric actuators are the key devices in micro/nano manipulation. The control of piezoelectric actuators has emerged as a hot topic in recent years. Piezoelectric materials have inherent hysteresis and creep nonlinearity, which can reduce the accuracy of the manipulation, even causing the instability of the whole system. Remarkable eff...

  3. A Fundamental Study on Area Traffic Control System

    HONDA, Yoshiaki

    1992-01-01

    To save traffic congestion, this report aims at the area traffic control which increasesarea. traffic capacity without expansion of traffic facilities. This method is called AREATRAFFIC CONTROL SYSTEM.Optimum solutions for the area control system are obtained by the use of operationsresearch method. But above calculation time takes too long to fit this optimumregulation to present traffic pattern.In this report, optimization is made by the approximate solution which is composedof the first op...

  4. Attitude Control for Magnetic Actuated Satellite

    Wisniewski, Rafal; Blanke, M.

    1996-01-01

    Magnetic actuation utilizes the mechanic torque that is the result of interaction of the current in a coil with an external magnetic field.......Magnetic actuation utilizes the mechanic torque that is the result of interaction of the current in a coil with an external magnetic field....

  5. The Use of Audible Traffic Signals in the United States.

    Peck, A. F.; Uslan, M.

    1990-01-01

    This paper discusses audible traffic signals (ATS) and their use by visually impaired pedestrians in the United States and other countries. Areas of concern are noted, including the types of intersections at which ATS should be installed, the locations of poles and buttons for activating the system, and the specific type of device used.…

  6. Distributed Environment Control Using Wireless Sensor/Actuator Networks for Lighting Applications

    Jiro Nakamura

    2009-10-01

    Full Text Available We propose a decentralized algorithm to calculate the control signals for lights in wireless sensor/actuator networks. This algorithm uses an appropriate step size in the iterative process used for quickly computing the control signals. We demonstrate the accuracy and efficiency of this approach compared with the penalty method by using Mote-based mesh sensor networks. The estimation error of the new approach is one-eighth as large as that of the penalty method with one-fifth of its computation time. In addition, we describe our sensor/actuator node for distributed lighting control based on the decentralized algorithm and demonstrate its practical efficacy.

  7. Multiagent Reinforcement Learning for Urban Traffic Control Using Coordination Graphs

    Kuyer, Lior; Whiteson, Shimon; Bakker, Bram; Vlassis, Nikos

    2008-01-01

    Since traffic jams are ubiquitous in the modern world, optimizing, the behavior of traffic lights for efficient traffic flow is a critically important goal. Though most current traffic lights use simple heuristic protocols, more efficient controllers can be discovered automatically via multiagent reinforcement learning where each agent controls a single traffic light. However, in previous work on this approach, agents select only locally optimal actions without coordinating their behavior. Th...

  8. Analysis of Dynamic Road Traffic Congestion Control (DRTCC) Techniques

    Pardeep Mittal; Yashpal Singh,; Yogesh Sharma

    2015-01-01

    : Dynamic traffic light control at intersection has become one of the most active research areas to develop the Dynamic transportation systems (ITS). Due to the consistent growth in urbanization and traffic congestion, such a system was required which can control the timings of traffic lights dynamically with accurate measurement of traffic on the road. In this paper, analysis of all the techniques that has been developed to automate the traffic lights has been done.. The efficacy...

  9. Improving bus travel times with passive traffic signal coordination

    Estrada Romeu, Miguel Ángel; Trapote Barreira, César; Roca Riu, Mireia; Robusté Antón, Francesc

    2009-01-01

    A simulation optimization model is outlined: traffic signal offsets in intersections are calculated to minimize the travel time of bus users in an urban network. The model considers a passive signal priority system and restricts the maximal incremental delay caused to car users. The simulation tool is able to trace discrete trajectories of both buses and cars in a network. It also evaluates potential perturbations that may cause time variations for average performance. Moreover, the optimizat...

  10. Situational Leadership in Air Traffic Control

    Arvidsson, Marcus; Johansson, Curt R.; Ek, Asa; Akselsson, Roland

    2007-01-01

    In high-risk environments such as air traffic control, leadership on different levels plays a certain role in establishing, promoting, and maintaining a good safety culture. The current study aimed to investigate how leadership styles, leadership style adaptability, and over and under task leadership behavior differed across situations, operative conditions, leadership structures, and working tasks in an air traffic control setting. Study locations were two air traffic control centers in Sweden with different operational conditions and leadership structures, and an administrative air traffic management unit. Leadership was measured with a questionnaire based on Leader Effectiveness and Adaptability Description (LEAD; Blanchard, Zigarmi & Zigarmi, 2003; Hersey & Blanchard, 1988). The results showed that the situation had strong impact on the leadership in which the leadership behavior was more relationship oriented in Success and Group situations than in Hardship and Individual situations. The leadership adaptability was further superior in Success and Individual situations compared with Hardship and Group situations. Operational conditions, leadership structures and working tasks were, on the other hand, not associated with leadership behavior.

  11. Multiagent reinforcement learning for urban traffic control using coordination graphs

    L. Kuyer; S. Whiteson; B. Bakker; N. Vlassis

    2008-01-01

    Since traffic jams are ubiquitous in the modern world, optimizing the behavior of traffic lights for efficient traffic flow is a critically important goal. Though most current traffic lights use simple heuristic protocols, more efficient controllers can be discovered automatically via multiagent rei

  12. Model and control of tendon actuated robots

    Palli, Gianluca

    2007-01-01

    The use of tendons for the transmission of the forces and the movements in robotic devices has been investigated from several researchers all over the world. The interest in this kind of actuation modality is based on the possibility of optimizing the position of the actuators with respect to the moving part of the robot, in the reduced weight, high reliability, simplicity in the mechanic design and, finally, in the reduced cost of the resulting kinematic chain. After a brie...

  13. Jet Vectoring Control Using a Novel Synthetic Jet Actuator

    2007-01-01

    A primary air jet vectoring control system with a novel synthetic jet actuator (SJA) is presented and simulated numerically. The results show that, in comparison with an existing traditional synthetic jet actuator, which is able to perform the duty of either "push" or "pull", one novel synthetic jet actuator can fulfill both "push" and "pull" functions to vector the primary jet by shifting a slide block inside it. Therefore, because the new actuator possesses greater efficiency, it has potentiality to replace the existing one in various applications, such as thrust vectoring and the reduction of thermal signature. Moreover, as the novel actuator can fulfill those functions that the existing one can not, it may well be expected to popularize it into more flow control systems.

  14. Infiuence of Bicycle Traffic on Capacity of Typical Signalized Intersection

    CHEN Xiaoming; SHAO Chunfu; YUE Hao

    2007-01-01

    Bicycle traffic has a significant effect on the capacity of signalized intersections. This paper divides the influence of bicyclists on vehicular flow into four types with the time durations estimated based on probability, shock wave, and gap acceptance theory. Vehicular saturation flow rate is predicted for various conditions on the basis of the speed-flow curve for the capacity of typical intersections influenced by bicycle traffic.The model overcomes the limitations of the Highway Capacity Manual (HCM, 2000) method for left-turns due to data collection, and takes into account the effect of trapped bicycles on the through vehicular traffic.The numerical results show that the left-turn and through capacities predicted by the model are lower than those of the HCM method. The right-turn capacity is close to that of the HCM method at Iow bicycle volumes and higher than that of the HCM method at high bicycle volumes.

  15. Recent Advances in the Control of Piezoelectric Actuators

    Ziqiang Chi

    2014-11-01

    Full Text Available The micro/nano positioning field has made great progress towards enabling the advance of micro/nano technology. Micro/nano positioning stages actuated by piezoelectric actuators are the key devices in micro/nano manipulation. The control of piezoelectric actuators has emerged as a hot topic in recent years. Piezoelectric materials have inherent hysteresis and creep nonlinearity, which can reduce the accuracy of the manipulation, even causing the instability of the whole system. Remarkable efforts have been made to compensate for the nonlinearity of piezoelectric actuation through the mathematical modelling and control approaches. This paper provides a review of recent advances on the control of piezoelectric actuators. After a brief introduction of basic components of typical piezoelectric micro/nano positioning platforms, the working principle and modelling of piezoelectric actuators are outlined in this paper. This is followed with the major control method and recent progress is presented in detail. Finally, some open issues and future work on the control of piezoelectric actuators are extensively discussed.

  16. Electromechanically Actuated Valve for Controlling Flow Rate

    Patterson, Paul

    2007-01-01

    A proposed valve for controlling the rate of flow of a fluid would include an electric-motor-driven ball-screw mechanism for adjusting the seating element of the valve to any position between fully closed and fully open. The motor would be of a type that can be electronically controlled to rotate to a specified angular position and to rotate at a specified rate, and the ball screw would enable accurate linear positioning of the seating element as a function of angular position of the motor. Hence, the proposed valve would enable fine electronic control of the rate of flow and the rate of change of flow. The uniqueness of this valve lies in a high degree of integration of the actuation mechanism with the flow-control components into a single, relatively compact unit. A notable feature of this integration is that in addition to being a major part of the actuation mechanism, the ball screw would also be a flow-control component: the ball screw would be hollow so as to contain part of the main flow passage, and one end of the ball screw would be the main seating valve element. The relationships among the components of the valve are best understood by reference to the figure, which presents meridional cross sections of the valve in the fully closed and fully open positions. The motor would be supported by a bracket bolted to the valve body. By means of gears or pulleys and a timing belt, motor drive would be transmitted to a sleeve that would rotate on bearings in the valve body. A ball nut inside the sleeve would be made to rotate with the sleeve by use of a key. The ball screw would pass through and engage the ball nut. A key would prevent rotation of the ball screw in the valve body while allowing the ball screw to translate axially when driven by the ball nut. The outer surface of the ball screw would be threaded only in a mid-length region: the end regions of the outer surface of the ball screw would be polished so that they could act as dynamic sealing surfaces

  17. Self-Organized Control of Irregular or Perturbed Network Traffic

    Helbing, Dirk; Lämmer, Stefan; Lebacque, Jean-Patrick

    2005-01-01

    We present a fluid-dynamic model for the simulation of urban traffic networks with road sections of different lengths and capacities. The model allows one to efficiently simulate the transitions between free and congested traffic, taking into account congestion-responsive traffic assignment and adaptive traffic control. We observe dynamic traffic patterns which significantly depend on the respective network topology. Synchronization is only one interesting example and implies the emergence of...

  18. Traffic noise control of a city

    Long exposure to noise due to traffic affects our health and comfort. A noise level up to 45 dB is acceptable for the buildings in the city. A traffic noise study was conducted in Karachi at places of high traffic flow. The noise level was between 75-85 dB. Residential and commercial buildings had sound level up to 79 dB. Reducing vehicle noise by using proper muffler and acoustic treatment should first control traffic noise. Then noise can be reduced by 10-15 dB by constructing barriers of wood or concrete along roadside. Barrier height for sound attenuation can be found from Fresnel Number. The barrier reduces noise better if width at the top is increased and an inward bend of 60 degree is placed at the top. Where feasible a 4-5 meter high concrete barrier is recommended otherwise the nearby buildings from the road should be insulated and acoustically treated. (author)

  19. Modeling Traffic Flow and Management at Un-signalized, Signalized and Roundabout Road Intersections

    R. Kakooza; L. S.  Laboobi; J. Y.T.  Mugisha

    2005-01-01

    Traffic congestion continues to hinder economic and social development and also has a negative impact on the environment. A simple mathematical model is used to analyze the different types of road intersections in terms of their Performance in relation to managing traffic congestion and to establish the condition for stability of the road intersections after sufficiently longer periods of time (steady-state). In the analysis, single and double lane un-signalized, signalized and roundabout int...

  20. Missile flight control using active flexspar actuators

    Barrett, Ron; Gross, R. Steven; Brozoski, Fred

    1996-04-01

    A new type of subsonic missile flight control surface using piezoelectric flexspar actuators is presented. The flexspar design uses an aerodynamic shell which is pivoted at the quarter-chord about a graphite main spar. The shell is pitched up and down by a piezoelectric bender element which is rigidly attached to a base mount and allowed to rotate freely at the tip. The element curvature, shell pitch deflection and torsional stiffness are modeled using laminated plate theory. A one-third scale TOW 2B missile model was used as a demonstration platform. A static wing of the missile was replaced with an active flexspar wing. The 1 in 0964-1726/5/2/002/img1 2.7 in active flight control surface was powered by a bimorph bender with 5 mil PZT-5H sheets. Bench and wind tunnel testing showed good correlation between theory and experiment and static pitch deflections in excess of 0964-1726/5/2/002/img2. A natural frequency of 78.5 rad 0964-1726/5/2/002/img3 with a break frequency of 157 rad 0964-1726/5/2/002/img3 was measured. Wind tunnel tests revealed no flutter or divergence tendencies. Maximum changes in lift coefficient were measured at 0964-1726/5/2/002/img5 which indicates that terminal and initial missile load factors may be increased by approximately 3.1 and 12.6 g respectively, leading to a greatly reduced turn radius of only 2400 ft.

  1. Influence of Link Flow and Traffic Signal Control on the Forecast of Travel Time%流量和信号控制对运行时间预测的影响

    徐丽群; 杨兆升; 管德永

    2001-01-01

    通过对实际交通状况的分析,说明路线运行时间不仅是路线交通流量的函数,而且是由于交叉口信号控制引起延误的函数。%The use of ATIS (Advanced Traveler Information Systems) for urban traffic management means that tripmakers can get in real time the pre-trip information and en-route information to ch oose the optimal route and reduce their travel time. Hence, reliable and frequently updated travel time information is the basis of effec tive implementation of ATIS. This paper proposes the method of foreca sting travel time at signalized network and concludes that travel time is not only the function of flow but also the function of delay caused by signal control at intersection.

  2. Transitory Control of Unsteady Separation using Pulsed Actuation

    The dynamic mechanisms of transitory flow attachment effected by pulsed actuation of the separated flow over a stalled airfoil are investigated experimentally. Actuation is effected by momentary pulsed jets generated by a spanwise array of combustion-based actuators such that the characteristic time of jet duration is nominally an order of magnitude shorter than the flow's convective time scale. The transitory flow field in the cross stream plane above the airfoil and in its near wake is investigated using multiple high-resolution PIV images that are obtained phase-locked to the actuation for continuous tracking of vorticity concentrations. The brief actuation pulse leads to severing of the separated vorticity layer and the subsequent shedding of large-scale vortical structures owing to the collapse of the separated flow domain which is accompanied by strong changes in the circulation about the entire airfoil. By exploiting the disparity between the characteristic times of flow response to actuation and relaxation, it is shown that successive actuation pulses can extend the flow attachment and enhance the global aerodynamic performance. It is also shown that coupling of the actuation to the airfoil's motion during cyclical pitch enhances the effect of transitory flow control and leads to a significant suppression of dynamic stall.

  3. Compact Fluidic Actuator Arrays for Flow Control Project

    National Aeronautics and Space Administration — The overall objective of the proposed research is to design, develop and demonstrate fluidic actuator arrays for aerodynamic separation control and drag reduction....

  4. Compact Fluidic Actuator Arrays For Flow Control Project

    National Aeronautics and Space Administration — The overall objective of the proposed research is to design, develop and demonstrate fluidic actuator arrays for aerodynamic separation control and drag reduction....

  5. Traffic Flow Control - Optimization on Horizon

    Homolová, Jitka

    Praha: ÚTIA AV ČR, 2006 - (Přikryl, J.; Šmídl, V.). s. 43-44 [International PhD Workshop on Interplay of Societal and Technical Decision - Making , Young Generation Viewpoint /7./. 25.09.2006-30.09.2006, Hrubá Skála] Grant ostatní: MD ČR(CZ) 1F43A/003/120 Institutional research plan: CEZ:AV0Z10750506 Keywords : linear programming * traffic flow control * control on horizon Subject RIV: BC - Control Systems Theory

  6. Adaptive Non-linear Control of Hydraulic Actuator Systems

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF).......Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF)....

  7. Adaptive Non-linear Control of Hydraulic Actuator Systems

    Hansen, Poul Erik; Conrad, Finn

    Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF).......Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF)....

  8. Active Control of Flow around NACA 0015 Airfoil by Using DBD Plasma Actuator

    Şanlısoy A.

    2013-04-01

    Full Text Available In this study, effect of plasma actuator on a flat plate and manipulation of flow separation on NACA0015 airfoil with plasma actuator at low Reynolds numbers were experimentally investigated. In the first section of the study, plasma actuator which consists of positive and grounded electrode couple and dielectric layer, located on a flat plate was actuated at different frequencies and peak to peak voltages in range of 3-5 kHz and 6-12 kV respectively. Theinduced air flow velocity on the surface of flat plate was measured by pitot tube at different locations behind the actuator. The influence of dielectricthickness and unsteady actuation with duty cycle was also examined. In the second section, the effect of plasma actuator on NACA0015 airfoil was studied atReynolds number 15000 and 30000. Four plasma actuators were placed at x/C = 0.1, 0.3, 0.5 and 0.9, and different electrode combinations were activated by sinusoidal signal. Flow visualizations were done when the attack angles were 0°, 5°, 10°, 15° and 20°. The results indicate that up to the 15° attack angle, the separated flow was reattached by plasma actuator at 12kV peak to peak voltage and 4 kHz frequency. However, 12 kVpp voltage was insufficient to reattach the flow at 20° angle of attack. The separated flow could be reattached by increasing the voltage up to 13 kV. Lift coefficient was also increased by the manipulated flow over the airfoil. Results showed that even high attack angles, the actuators can control the flow separation and prevent the airfoil from stall at low Reynolds numbers.

  9. Design and Construction of Intelligent Traffic Light Control System Using Fuzzy Logic

    Lin, Htin; Aye, Khin Muyar; Tun, Hla Myo; Theingi, Naing, Zaw Min

    2008-10-01

    Vehicular travel is increasing throughout the world, particularly in large urban areas. Therefore the need arises for simulation and optimizing traffic control algorithms to better accommodate this increasing demand. This paper presents a microcontroller simulation of intelligent traffic light controller using fuzzy logic that is used to change the traffic signal cycles adaptively at a two-way intersection. This paper is an attempt to design an intelligent traffic light control systems using microcontrollers such as PIC 16F84A and PIC 16F877A. And then traffic signal can be controlled depending upon the densities of cars behind green and red lights of the two-way intersection by using sensors and detectors circuits.

  10. Design and Simulation of a Decentralized Railway Traffic Control System

    T. Kara

    2016-04-01

    Full Text Available With the increasing use of railway transportation, various methods have been developed for the control and management of train traffic. Train traffic control systems that are currently in use are overwhelmingly centralized systems. In this study, the development of the general structure of railway traffic control techniques is examined, centralized and decentralized control systems are investigated, and an alternative train traffic control system, the Decentralized Train Traffic Management System (DTMS, is suggested. Simulation results on the possible application of the proposed method to a railway line in South-East Turkey are employed to evaluate the performance of the developed system.

  11. Force override rate controller for remote actuation

    Syvertsen, James M.

    1992-09-01

    Many remotely operated robotic manipulator systems are operated in rate control mode to achieve a commanded position and orientation of the end-effector. Performance of certain tasks, such as applying a torque to a screw, would be more efficient if performed in unilateral force control mode. A six axis force-torque model was developed to determine the require number and positioning of sensors and using force sensing resistors, a prototype force-torque transducer was built for testing. Using a force error signal, individual joint angles may be computed in and algorithm to achieve force replication in the end-effector.

  12. Piezoelectric actuators control applications of smart materials

    Choi, Seung-Bok

    2010-01-01

    Newer classes of smart materials are beginning to display the capacity for self-repair, self-diagnosis, self-multiplication, and self-degradation. While there are other candidates, piezoelectric actuators and sensors are proving to be the best choice. This title details the authors' research and development in this area.

  13. Bio-inspired bending actuator for controlling conical nose shape using piezoelectric patches.

    Na, Tae-Won; Jung, Jin-Young; Oh, Ii-Kwon

    2014-10-01

    In this paper, a bio-inspired bending actuator was designed and fabricated using piezoelectric patches and cantilever-shaped beam for controlling nose shape. The aim of this study is to investigate the use of the bending actuator. PZT and single crystal PMN-PT actuators were used to generate translational strain and shear stress. The piezoelectric patches were attached on the clamped cantilever beam to convert their translational strains to bending motion of the beam. First, finite element analysis was performed to identify and to make an accurate estimate of the feasibility on the bending actuation by applying various voltages and frequencies. Based on the results of the FEM analysis, the experiments were also performed. Static voltages and dynamic voltages with various frequencies were applied to the bending actuators with PZTs and PMN-PTs, and the rotation angles of the nose connected to the top of bending actuators were measured, respectively. As the results, the bending actuator using PMN-PT patches showed better performances in all cases. With the increases of signal frequency and input voltage, the rotation angle also found to be increased. Especially at the frequency of 5 Hz and input voltage of 600 V, the nose generated the maximum rotation angle of 3.15 degree. PMID:25942810

  14. Control techniques for an automated mixed traffic vehicle

    Meisenholder, G. W.; Johnston, A. R.

    1977-01-01

    The paper describes an automated mixed traffic vehicle (AMTV), a driverless low-speed tram designed to operate in mixed pedestrian and vehicular traffic. The vehicle is a six-passenger electric tram equipped with sensing and control which permit it to function on existing streets in an automatic mode. The design includes established wire-following techniques for steering and near-IR headway sensors. A 7-mph cruise speed is reduced to 2 mph or a complete stop in response to sensor (or passenger) inputs. The AMTV performance is evaluated by operation on a loop route and by simulation. Some necessary improvements involving sensors, sensor pattern, use of an audible signal, and control lag are discussed. It is suggested that appropriate modifications will eliminate collision incidents.

  15. An Adaptive Traffic Control System Using Raspberry PI

    S. Lokesh; , T.Prahlad Reddy

    2014-01-01

    By increasing of population the usage of vehicles have been increasing and controlling of traffic is one of the challenging works. The frequent traffic jams at major junctions call for an efficient traffic management system in place. The resulting wastage of time and increase in pollution levels can be eliminated on a city-wide scale by these systems. Previously the traffic control techniques used like magnetic loop detectors, induction loop detectors are buried on the road si...

  16. Two-stage actuation system using DC motors and piezoelectric actuators for controllable industrial and automotive brakes and clutches

    Neelakantan, Vijay A.; Washington, Gregory N.; Bucknor, Norman K.

    2005-05-01

    High bandwidth actuation systems that are capable of simultaneously producing relatively large forces and displacements are required for use in automobiles and other industrial applications. Conventional hydraulic actuation mechanisms used in automotive brakes and clutches are complex, inefficient and have poor control robustness. These lead to reduced fuel economy, controllability issues and other disadvantages. This paper involves the design, development, testing and control of a two-stage hybrid actuation mechanism by combining classical actuators like DC motors and advanced smart material actuators like piezoelectric actuators. The paper also discusses the development of a robust control methodology using the Internal Model Control (IMC) principle and emphasizes the robustness property of this control methodology by comparing and studying simulation and experimental results.

  17. Automated Conflict Resolution For Air Traffic Control

    Erzberger, Heinz

    2005-01-01

    The ability to detect and resolve conflicts automatically is considered to be an essential requirement for the next generation air traffic control system. While systems for automated conflict detection have been used operationally by controllers for more than 20 years, automated resolution systems have so far not reached the level of maturity required for operational deployment. Analytical models and algorithms for automated resolution have been traffic conditions to demonstrate that they can handle the complete spectrum of conflict situations encountered in actual operations. The resolution algorithm described in this paper was formulated to meet the performance requirements of the Automated Airspace Concept (AAC). The AAC, which was described in a recent paper [1], is a candidate for the next generation air traffic control system. The AAC's performance objectives are to increase safety and airspace capacity and to accommodate user preferences in flight operations to the greatest extent possible. In the AAC, resolution trajectories are generated by an automation system on the ground and sent to the aircraft autonomously via data link .The algorithm generating the trajectories must take into account the performance characteristics of the aircraft, the route structure of the airway system, and be capable of resolving all types of conflicts for properly equipped aircraft without requiring supervision and approval by a controller. Furthermore, the resolution trajectories should be compatible with the clearances, vectors and flight plan amendments that controllers customarily issue to pilots in resolving conflicts. The algorithm described herein, although formulated specifically to meet the needs of the AAC, provides a generic engine for resolving conflicts. Thus, it can be incorporated into any operational concept that requires a method for automated resolution, including concepts for autonomous air to air resolution.

  18. An Unconventional Inchworm Actuator Based on PZT/ERFs Control Technology

    Guojun Liu; Yanyan Zhang; Jianfang Liu; Jianqiao Li; Chunxiu Tang; Tengfei Wang; Xuhao Yang

    2016-01-01

    An unconventional inchworm actuator for precision positioning based on piezoelectric (PZT) actuation and electrorheological fluids (ERFs) control technology is presented. The actuator consists of actuation unit (PZT stack pump), fluid control unit (ERFs valve), and execution unit (hydraulic actuator). In view of smaller deformation of PZT stack, a new structure is designed for actuation unit, which integrates the advantages of two modes (namely, diaphragm type and piston type) of the volume c...

  19. On reliable control system designs. Ph.D. Thesis; [actuators

    Birdwell, J. D.

    1978-01-01

    A mathematical model for use in the design of reliable multivariable control systems is discussed with special emphasis on actuator failures and necessary actuator redundancy levels. The model consists of a linear time invariant discrete time dynamical system. Configuration changes in the system dynamics are governed by a Markov chain that includes transition probabilities from one configuration state to another. The performance index is a standard quadratic cost functional, over an infinite time interval. The actual system configuration can be deduced with a one step delay. The calculation of the optimal control law requires the solution of a set of highly coupled Riccati-like matrix difference equations. Results can be used for off-line studies relating the open loop dynamics, required performance, actuator mean time to failure, and functional or identical actuator redundancy, with and without feedback gain reconfiguration strategies.

  20. Modeling Traffic Flow and Management at Un-signalized, Signalized and Roundabout Road Intersections

    R. Kakooza

    2005-01-01

    Full Text Available Traffic congestion continues to hinder economic and social development and also has a negative impact on the environment. A simple mathematical model is used to analyze the different types of road intersections in terms of their Performance in relation to managing traffic congestion and to establish the condition for stability of the road intersections after sufficiently longer periods of time (steady-state. In the analysis, single and double lane un-signalized, signalized and roundabout intersections are evaluated on the basis of their performance (expected number of vehicles and waiting time. Experimental scenarios are carefully designed to analyze the performance of the different types of intersections. It is noted that under light traffic, roundabout intersections perform better than un-signalized and signalized in terms of easing congestion. However under heavy traffic, signalized intersection perform better in terms of easing traffic congestion compared to un-signalized and roundabout intersections. It is further noted that for stability of a road intersection, the proportion of the time a road link stopping at an intersection is delayed should not exceed the utilization factor (the ratio of the arrival rate of vehicles to the product of number of service channels and service rate.

  1. Self-Organized Control of Irregular or Perturbed Network Traffic

    Helbing, D; Lebacque, J P; Helbing, Dirk; L\\"ammer, Stefan; Lebacque, Jean-Patrick

    2005-01-01

    We present a fluid-dynamic model for the simulation of urban traffic networks with road sections of different lengths and capacities. The model allows one to efficiently simulate the transitions between free and congested traffic, taking into account congestion-responsive traffic assignment and adaptive traffic control. We observe dynamic traffic patterns which significantly depend on the respective network topology. Synchronization is only one interesting example and implies the emergence of green waves. In this connection, we will discuss adaptive strategies of traffic light control which can considerably improve throughputs and travel times, using self-organization principles based on local interactions between vehicles and traffic lights. Similar adaptive control principles can be applied to other queueing networks such as production systems. In fact, we suggest to turn push operation of traffic systems into pull operation: By removing vehicles as fast as possible from the network, queuing effects can be ...

  2. Analysis and decoupling control of a permanent magnet spherical actuator

    Zhang, Liang; Chen, Weihai; Liu, Jingmeng; Wu, Xingming

    2013-12-01

    This paper presents the analysis and decoupling control of a spherical actuator, which is capable of performing three degree-of-freedom motion in one joint. The proposed actuator consists of a rotor with multiple PM (Permanent Magnet) poles in a circle and a stator with circumferential coils in three layers. Based on this actuator design, a decoupling control approach is developed. Unlike existing control methods that each coil is responsible for both the spinning and tilting motion, the proposed control strategy specifies the function of each coil. Specifically, the spinning motion is governed by the middle layer coils with a step control approach; while the tilting motion is regulated by upper and lower coils with a computed torque control method. Experiments have been conducted on the prototype to verify the validity of the design procedure, and the experimental results demonstrate the effectiveness of the analysis and control strategy.

  3. DESIGN OF INTELLIGENT TRAFFIC CONTROL SYSTEM USING IMAGE SEGMENTATION

    Sachin Grover; Vinay Shankar Saxena; Tarun Vatwani

    2014-01-01

    Roadways are the most important mode of transport in the world. There has been a continuous increase in the number of vehicles all over the world, which has left the most important ingredient of the traffic management i.e. traffic lights outdated. Traffic congestion nowadays is more often than not caused by large red light delays as the switching time of traffic lights are predefined. There is a need for sophistication in the traffic light control where real time traffic conditions should be ...

  4. A Complete Analysis for Pump Controlled Single Rod Actuators

    Çalışkan,Hakan; Balkan, Tuna; Platin, Bülent E.

    2016-01-01

    In the current study a variable speed pump controlled hydrostatic circuit where an underlapped shuttle valve is utilized to compensate the unequal flow rate of a single rod actuator is analyzed. Parameters of the shuttle valve are included in the system analysis, rather than treating it as an ideal switching element as handled in literature. A linearized model of the system is obtained. An inverse kinematic model, which calculates the required pump drive speed for a desired actuator speed and...

  5. Actuation technology for flight control system on civil aircraft

    Xue, L.

    2009-01-01

    This report addresses the author’s Group Design Project (GDP) and Individual Research Project (IRP). The IRP is discussed primarily herein, presenting the actuation technology for the Flight Control System (FCS) on civil aircraft. Actuation technology is one of the key technologies for next generation More Electric Aircraft (MEA) and All Electric Aircraft (AEA); it is also an important input for the preliminary design of the Flying Crane, the aircraft designed in the author’s G...

  6. Design of Transputer Controllers for Hydraulic Actuator Systems

    Conrad, Finn

    1996-01-01

    test robot controlled by a transputer-basec controller is presented. Some experimental path-tracking results with adaptive control algorithms are presented and discussed. The results confirm that transputers have significant advantages for intelligent control of actuator systems and robots for high...

  7. DESIGN AND ANALYSIS OF NOVEL ACTIVE ACTUATOR TO CONTROL LOW FREQUENCY VIBRATIONS OF SHAFT SYSTEM

    2008-01-01

    Aiming at providing with high-load capability in active vibration control of large-scale rotor system, a new type of active actuator to simultaneously reduce the dangers of low frequency flexural and torsional vibrations is designed. The actuator employs electro-hydraulic system and can provide a high and circumferential load. To initialize new research, the characteristics of various kinds of active actuators to control rotor shaft vibration are briefly introduced. The purpose of this paper is to introduce the preliminary results via presenting the structure, functions and operating principles, in particular, the working process of the electro-hydraulic system of the new actuator which includes a set of high speed electromagnetic valves and a series of sloping cone-shaped openings, and presenting the transmission relationships among the control parameters from control signals into the valves to active load onto shaft. The course of the work is dynamic, and a series of spatial forces and moments are put on the shaft to get an external resultant force to reduce excitations that induce vibration of shafts. By checking states of vibration, the actuator can control the impulse width and the interval of injection time for applying different control force to a vibration shaft in two circumference directions through the regulating action of a set of combination directional control valves. The results from simulating analysis and experiment show evidence of that this design can satisfy the case of active process of decreasing of flexural and torsional vibrations.

  8. Induction Thermoelastic Actuator with Controllable Operation Regime

    Doležel, Ivo; Krónerová, E.; Ulrych, B.

    Arras: L’Université d’Artois, 2009, s. 1-6. ISBN 978-2-84832-115-8. [ISEF 2009 /15./. Arras (FR), 10.09.2009-12.09.2009] R&D Projects: GA ČR(CZ) GA102/07/0496 Institutional research plan: CEZ:AV0Z20570509 Keywords : thermoelastic actuator * cotrollable shift * coupled problem Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering http://www.lsee.fr/isef09/

  9. Dielectric barrier discharge plasma actuator for flow control

    Opaits, Dmitry Florievich

    Electrohydrodynamic (EHD) and magnetohydrodynamic phenomena are being widely studied for aerodynamic applications. The major effects of these phenomena are heating of the gas, body force generation, and enthalpy addition or extraction, [1, 2, 3]. In particular, asymmetric dielectric barrier discharge (DBD) plasma actuators are known to be effective EHD device in aerodynamic control, [4, 5]. Experiments have demonstrated their effectiveness in separation control, acoustic noise reduction, and other aeronautic applications. In contrast to conventional DBD actuators driven by sinusoidal voltages, we proposed and used a voltage profile consisting of nanosecond pulses superimposed on dc bias voltage. This produces what is essentially a non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The advantage of this non-self-sustained discharge is that the parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. Experimental studies were conducted of a flow induced in a quiescent room air by a single DBD actuator. A new approach for non-intrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low

  10. Public Transport Priority for Multimodal Urban Traffic Control

    BHOURI, Neila; MAYORANO, Fernando J; LOTITO, Pablo A; Haj Salem, Habib; LEBACQUE, Jean Patrick

    2015-01-01

    In order to improve the travel time of surface public transport vehicles (bus, tramway, etc.), several cities use Urban Traffic Control (UTC) systems enabling to give priority to public transport. This paper reviews these systems. Further on after a debate on their insufficiencies in the global regulation of the urban traffic on a whole network, the paper proposes intermodal regulation strategies, operating on intersection traffic lights to regulate the traffic, favouring the public transport...

  11. Proactive Traffic Information Control in Emergency Evacuation Network

    Zhengfeng Huang

    2015-01-01

    Traffic demand in emergency evacuation is usually too large to be effectively managed with reactive traffic information control methods. These methods adapt to the road traffic passively by publishing real-time information without consideration of the routing behavior feedback produced by evacuees. Other remedy measures have to be prepared in case of nonrecurring congestion under these methods. To use the network capacity fully to mitigate near-future evacuation traffic congestion, we propose...

  12. Development of an Actuator for Flow Control Utilizing Detonation

    Lonneman, Patrick J.; Cutler, Andrew D.

    2004-01-01

    Active flow control devices including mass injection systems and zero-net-mass flux actuators (synthetic jets) have been employed to delay flow separation. These devices are capable of interacting with low-speed, subsonic flows, but situations exist where a stronger crossflow interaction is needed. Small actuators that utilize detonation of premixed fuel and oxidizer should be capable of producing supersonic exit jet velocities. An actuator producing exit velocities of this magnitude should provide a more significant interaction with transonic and supersonic crossflows. This concept would be applicable to airfoils on high-speed aircraft as well as inlet and diffuser flow control. The present work consists of the development of a detonation actuator capable of producing a detonation in a single shot (one cycle). Multiple actuator configurations, initial fill pressures, oxidizers, equivalence ratios, ignition energies, and the addition of a turbulence generating device were considered experimentally and computationally. It was found that increased initial fill pressures and the addition of a turbulence generator aided in the detonation process. The actuators successfully produced Chapman-Jouguet detonations and wave speeds on the order of 3000 m/s.

  13. Operation Regimes and Slower-is-Faster-Effect in the Control of Traffic Intersections

    Helbing, Dirk; Mazloumian, Amin

    2009-01-01

    The efficiency of traffic flows in urban areas is known to crucially depend on signal operation. Here, elements of signal control are discussed, based on the minimization of overall travel times or vehicle queues. Interestingly, we find different operation regimes, some of which involve a "slower-is-faster effect", where a delayed switching reduces the average travel times. These operation regimes characterize different ways of organizing traffic flows in urban road networks. Besides the opti...

  14. Series elastic actuator control of a powered exoskeleton.

    Ragonesi, Daniel; Agrawal, Sunil; Sample, Whitney; Rahman, Tariq

    2011-01-01

    A motorized upper extremity orthosis based on the passive WREX system is being developed. The orthosis is a 4 dof arm controlled by user residual force inputs. The arm is intended for people with neuromuscular weakness due to muscular dystrophy or spinal muscular atrophy. Previous work determined that actuation in parallel with gravity balancing springs required less torque than actuation in series. Compliance is achieved by using a series elastic actuator (SEA) by placing torsional springs between the motors and the WREX. A torque control was implemented on the SEA at the joint level. The response of the control law was characterized without disturbances. The SEAs were then attached to the orthosis to test the response with disturbances, and the control provided accurate joint torques. PMID:22255098

  15. Magnetic Actuators and Suspension for Space Vibration Control

    Knospe, Carl R.; Allaire, Paul E.; Lewis, David W.

    1993-01-01

    The research on microgravity vibration isolation performed at the University of Virginia is summarized. This research on microgravity vibration isolation was focused in three areas: (1) the development of new actuators for use in microgravity isolation; (2) the design of controllers for multiple-degree-of-freedom active isolation; and (3) the construction of a single-degree-of-freedom test rig with umbilicals. Described are the design and testing of a large stroke linear actuator; the conceptual design and analysis of a redundant coarse-fine six-degree-of-freedom actuator; an investigation of the control issues of active microgravity isolation; a methodology for the design of multiple-degree-of-freedom isolation control systems using modern control theory; and the design and testing of a single-degree-of-freedom test rig with umbilicals.

  16. Decentralized event-triggered control over wireless sensor/actuator networks

    Mazo, Manuel

    2010-01-01

    In recent years we have witnessed a move of the major industrial automation providers into the wireless domain. While most of these companies already offer wireless products for measurement and monitoring purposes, the ultimate goal is to be able to close feedback loops over wireless networks interconnecting sensors, computation devices, and actuators. In this paper we present a decentralized event-triggered implementation, over sensor/actuator networks, of centralized nonlinear controllers. Event-triggered control has been recently proposed as an alternative to the more traditional periodic execution of control tasks. In a typical event-triggered implementation, the control signals are kept constant until the violation of a condition on the state of the plant triggers the re-computation of the control signals. The possibility of reducing the number of re-computations, and thus of transmissions, while guaranteeing desired levels of performance makes event-triggered control very appealing in the context of sen...

  17. An efficient method to detect periodic behavior in botnet traffic by analyzing control plane traffic

    AsSadhan, Basil; Moura, José M.F.

    2013-01-01

    Botnets are large networks of bots (compromised machines) that are under the control of a small number of bot masters. They pose a significant threat to Internet’s communications and applications. A botnet relies on command and control (C2) communications channels traffic between its members for its attack execution. C2 traffic occurs prior to any attack; hence, the detection of botnet’s C2 traffic enables the detection of members of the botnet before any real harm happens. We analyze C2 traffic and find that it exhibits a periodic behavior. This is due to the pre-programmed behavior of bots that check for updates to download them every T seconds. We exploit this periodic behavior to detect C2 traffic. The detection involves evaluating the periodogram of the monitored traffic. Then applying Walker’s large sample test to the periodogram’s maximum ordinate in order to determine if it is due to a periodic component or not. If the periodogram of the monitored traffic contains a periodic component, then it is highly likely that it is due to a bot’s C2 traffic. The test looks only at aggregate control plane traffic behavior, which makes it more scalable than techniques that involve deep packet inspection (DPI) or tracking the communication flows of different hosts. We apply the test to two types of botnet, tinyP2P and IRC that are generated by SLINGbot. We verify the periodic behavior of their C2 traffic and compare it to the results we get on real traffic that is obtained from a secured enterprise network. We further study the characteristics of the test in the presence of injected HTTP background traffic and the effect of the duty cycle on the periodic behavior. PMID:25685512

  18. A Dynamic Traffic Signal Timing Model and its Algorithm for Junction of Urban Road

    Cai, Yanguang; Cai, Hao

    2012-01-01

    As an important part of Intelligent Transportation System, the scientific traffic signal timing of junction can improve the efficiency of urban transport. This paper presents a novel dynamic traffic signal timing model. According to the characteristics of the model, hybrid chaotic quantum......-time and dynamic signal control of junction. To obtain the optimal solution of the model by hybrid chaotic quantum evolutionary algorithm, the model is converted to an easily solvable form. To simplify calculation, we give the expression of the partial derivative and change rate of the objective function...... such that the implementation of the algorithm only involves function assignments and arithmetic operations and thus avoids complex operations such as integral and differential. Simulation results show that the algorithm has less remain vehicles than Webster method, higher convergence rate and...

  19. Modeling and control of a self-sensing polymer metal composite actuator

    An ion polymer metal composite (IPMC) is an electro-active polymer (EAP) that bends in response to a small applied electrical field as a result of mobility of cations in the polymer network and vice versa. One drawback in the use of an IPMC is the sensing problem for such a small size actuator. The aim of this paper is to develop a physical model for a self-sensing IPMC actuator and to verify its applicability for practical position control. Firstly, ion dynamics inside a polymer membrane is investigated with an asymmetric solution in the presence of distributed surface resistance. Based on this analysis, a modified equivalent circuit and a simple configuration to realize the self-sensing IPMC actuator are proposed. Mathematical modelling and experimental evaluation indicate that the bending curvature can be obtained accurately using several feedback voltage signals along with the IPMC length. Finally, the controllability of the developed self-sensing IPMC actuator is investigated using a robust position control. Experimental results prove that the self-sensing characteristics can be applied in engineering control problems to provide a more convenient sensing method for IPMC actuating systems. (paper)

  20. Flutter and vibration control of an aluminum plate wing by piezoceramic actuators

    Sanda, Tomio; Takahashi, Kosaku

    1998-07-01

    We carried out tests and analysis of flutter and vibration control of rectangular aluminum plate wing. The dimensions of the plate wing (420.0 X 140.0 X 1.0 mmt) were determined based on the wind tunnel size and blowing air velocity. The plate wing was driven by eight piezoceramic actuators bonded on the surfaces at the wing root part. Acceleration sensor was located at the wing tip and the signal was sent to digital signal processor through filters and control signal was sent to power amplifier. Amplified signal drove the piezoceramic actuator and suppressed vibration of the plate wing. System consist of structure, piezoceramic actuator and unsteady aerodynamic force was modeled into the standard form of modern control theory. Piezoceramic actuator's force was modeled using analogy of thermal analysis. Unsteady aerodynamic force in case of flutter control was calculated by DLM (frequency domain), then transformed to Roger's approximation for the purpose of time domain analysis. Full order control law consist of optimum regulator and Kalman's filter was reduced to low order law for practical use. First, we carried out the test for vibration control. In this case, structural damping ratio of the system increased remarkably in both case of gain control and reduced LQG control. Using gain control, that of the system increased up to 0.3. Second, we carried out the wind tunnel test of flutter control. Flutter speed at test increased about 2.9 m/s (10.8%, in calculation 12.2%) using reduced LQG controller.

  1. A knowledge-based system for controlling automobile traffic

    Maravas, Alexander; Stengel, Robert F.

    1994-01-01

    Transportation network capacity variations arising from accidents, roadway maintenance activity, and special events as well as fluctuations in commuters' travel demands complicate traffic management. Artificial intelligence concepts and expert systems can be useful in framing policies for incident detection, congestion anticipation, and optimal traffic management. This paper examines the applicability of intelligent route guidance and control as decision aids for traffic management. Basic requirements for managing traffic are reviewed, concepts for studying traffic flow are introduced, and mathematical models for modeling traffic flow are examined. Measures for quantifying transportation network performance levels are chosen, and surveillance and control strategies are evaluated. It can be concluded that automated decision support holds great promise for aiding the efficient flow of automobile traffic over limited-access roadways, bridges, and tunnels.

  2. Electromechanical actuator concept for the controlled and direct actuation of a hydraulic main stage

    Ermert, Markus

    2016-01-01

    Hydraulic main stages for off highway machines have usually electromagnetic driven pilot valves. You rarely find stepper motor driven pilot systems that are directly positioning the main spool in the sectional control valve. The presented concept shows the development of an actuator in a unique setup to fulfill the requirements of most off- highway applications. Precise positioning, strength, speed and fail safe requirements were the main goals of the concept. The concept has a two phase BLDC...

  3. Sliding Mode Attitude Control for Magnetic Actuated Satellite

    Wisniewski, Rafal

    1998-01-01

    Magnetic torquing is attractive as a control principle on small satellites. The actuation principle is to use the interaction between the earth's magnetic field and magnetic field generated by a coil set in the satellite. This control principle is inherently nonlinear, and difficult to use because control torques can only be generated perpendicular to the local geomagnetic field vector. This has been a serious obstacle for using magnetorquer based control for three-axis attitude control. This...

  4. Active control of structural vibration by piezoelectric stack actuators

    NIU Jun-chuan; ZHAO Guo-qun; HU Xia-xia

    2005-01-01

    This paper presents a general analytical model of flexible isolation system for application to the installation of high-speed machines and lightweight structures. Piezoelectric stack actuators are employed in the model to achieve vibration control of flexible structures, and dynamic characteristics are also investigated. Mobility technique is used to derive the governing equations of the system. The power flow transmitted into the foundation is solved and considered as a cost function to achieve optimal control of vibration isolation. Some numerical simulations revealed that the analytical model is effective as piezoelectric stack actuators can achieve substantial vibration attenuation by selecting proper value of the input voltage.

  5. A system look at electromechanical actuation for primary flight control

    Lomonova, E.A.

    1997-01-01

    An overview is presented of the emergence of the ALL Electric flight control system (FCS) or power-by-wire (PBW) concept. The concept of fly-by-power refers to the actuator using electrical rather than hydraulic power. The development of the primary flight control Electromechanical Actuators (EMAs) is one of the essential steps in the implementation of the ALL Electric Aircraft. There is a great deal of interest in the application of brushless motors (BM) with rare-earth magnet rotors using e...

  6. Design and test of electromechanical actuators for thrust vector control

    Cowan, J. R.; Weir, Rae Ann

    1993-01-01

    New control mechanisms technologies are currently being explored to provide alternatives to hydraulic thrust vector control (TVC) actuation systems. For many years engineers have been encouraging the investigation of electromechanical actuators (EMA) to take the place of hydraulics for spacecraft control/gimballing systems. The rationale is to deliver a lighter, cleaner, safer, more easily maintained, as well as energy efficient space vehicle. In light of this continued concern to improve the TVC system, the Propulsion Laboratory at the NASA George C. Marshall Space Flight Center (MSFC) is involved in a program to develop electromechanical actuators for the purpose of testing and TVC system implementation. Through this effort, an electromechanical thrust vector control actuator has been designed and assembled. The design consists of the following major components: Two three-phase brushless dc motors, a two pass gear reduction system, and a roller screw, which converts rotational input into linear output. System control is provided by a solid-state electronic controller and power supply. A pair of resolvers and associated electronics deliver position feedback to the controller such that precise positioning is achieved. Testing and evaluation is currently in progress. Goals focus on performance comparisons between EMA's and similar hydraulic systems.

  7. Design and test of electromechanical actuators for thrust vector control

    Cowan, J. R.; Weir, Rae Ann

    1993-05-01

    New control mechanisms technologies are currently being explored to provide alternatives to hydraulic thrust vector control (TVC) actuation systems. For many years engineers have been encouraging the investigation of electromechanical actuators (EMA) to take the place of hydraulics for spacecraft control/gimballing systems. The rationale is to deliver a lighter, cleaner, safer, more easily maintained, as well as energy efficient space vehicle. In light of this continued concern to improve the TVC system, the Propulsion Laboratory at the NASA George C. Marshall Space Flight Center (MSFC) is involved in a program to develop electromechanical actuators for the purpose of testing and TVC system implementation. Through this effort, an electromechanical thrust vector control actuator has been designed and assembled. The design consists of the following major components: Two three-phase brushless dc motors, a two pass gear reduction system, and a roller screw, which converts rotational input into linear output. System control is provided by a solid-state electronic controller and power supply. A pair of resolvers and associated electronics deliver position feedback to the controller such that precise positioning is achieved. Testing and evaluation is currently in progress. Goals focus on performance comparisons between EMA's and similar hydraulic systems.

  8. Vibration control for precision manufacturing using piezoelectric actuators

    Martinez, D.R.; Hinnerichs, T.D.; Redmond, J.M.

    1995-12-31

    Piezoelectric actuators provide high frequency, force, and stiffness capabilities along with reasonable Stroke limits, all of which can be used to increase performance levels in precision manufacturing systems. This paper describes two examples of embedding piezoelectric actuators in structural components for vibration control. One example involves suppressing the self excited chatter phenomenon in the metal cutting process of a milling machine and the other involves damping vibrations induced by rigid body stepping of a photolithography platen. Finite element modeling and analyses are essential for locating and sizing the actuators and permit further simulation studies of the response of the dynamic system. Experimental results are given for embedding piezoelectric actuators in a cantilevered bar configuration, which was used as a surrogate machine tool structure. These results are incorporated into a previously developed milling process simulation and the effect of the control on the cutting process stability diagram is quantified. Experimental results are also given for embedding three piezoelectric actuators in a surrogate photolithography platen to suppress vibrations. These results demonstrate the potential benefit that can be realized by applying advances from the field of adaptive structures to problems in precision manufacturing.

  9. Optimal actuator location of minimum norm controls for heat equation with general controlled domain

    Guo, Bao-Zhu; Xu, Yashan; Yang, Dong-Hui

    2016-09-01

    In this paper, we study optimal actuator location of the minimum norm controls for a multi-dimensional heat equation with control defined in the space L2 (Ω × (0 , T)). The actuator domain is time-varying in the sense that it is only required to have a prescribed Lebesgue measure for any moment. We select an optimal actuator location so that the optimal control takes its minimal norm over all possible actuator domains. We build a framework of finding the Nash equilibrium so that we can develop a sufficient and necessary condition to characterize the optimal relaxed solutions for both actuator location and corresponding optimal control of the open-loop system. The existence and uniqueness of the optimal classical solutions are therefore concluded. As a result, we synthesize both optimal actuator location and corresponding optimal control into a time-varying feedbacks.

  10. Synaptic membrane rafts: traffic lights for local neurotrophin signalling?

    Liliana Minichiello

    2013-10-01

    Full Text Available Lipid rafts, cholesterol and lipid rich microdomains, are believed to play important roles as platforms for the partitioning of transmembrane and synaptic proteins involved in synaptic signalling, plasticity and maintenance. There is increasing evidence of a physical interaction between post-synaptic densities and post-synaptic lipid rafts. Localization of proteins within lipid rafts is highly regulated, and therefore lipid rafts may function as traffic lights modulating and fine-tuning neuronal signalling. The tyrosine kinase neurotrophin receptors (Trk and the low-affinity p75 neurotrophin receptor (p75NTR are enriched in neuronal lipid rafts together with the intermediates of downstream signalling pathways, suggesting a possible role of rafts in neurotrophin signalling. Moreover, neurotrophins and their receptors are involved in the regulation of cholesterol metabolism. Cholesterol is an important component of lipid rafts and its depletion leads to gradual loss of synapses, underscoring the importance of lipid rafts for proper neuronal function. Here, we review and discuss the idea that translocation of neurotrophin receptors in synaptic rafts may account for the selectivity of their transduced signals.

  11. Regulatory control of nuclear facility valves and their actuators

    The methods and procedures by which the Finnish Centre for Radiation and Nuclear Safety (STUK) regulates valves and their actuators in nuclear power plants and in other nuclear facilities are specified in the guide. The scope of regulation depends on the Safety Class of the valve and the actuator in question. The Safety Classification principles for the systems, structures and components of the nuclear power plants are described in the guide YVL 2.1 and the regulatory control of the nuclear facility safety valves is described in the guide YVL 5.4

  12. Optical Sensor/Actuator Locations for Active Structural Acoustic Control

    Padula, Sharon L.; Palumbo, Daniel L.; Kincaid, Rex K.

    1998-01-01

    Researchers at NASA Langley Research Center have extensive experience using active structural acoustic control (ASAC) for aircraft interior noise reduction. One aspect of ASAC involves the selection of optimum locations for microphone sensors and force actuators. This paper explains the importance of sensor/actuator selection, reviews optimization techniques, and summarizes experimental and numerical results. Three combinatorial optimization problems are described. Two involve the determination of the number and position of piezoelectric actuators, and the other involves the determination of the number and location of the sensors. For each case, a solution method is suggested, and typical results are examined. The first case, a simplified problem with simulated data, is used to illustrate the method. The second and third cases are more representative of the potential of the method and use measured data. The three case studies and laboratory test results establish the usefulness of the numerical methods.

  13. Heavy traffic on a controlled motorway

    Kelly, F P

    2010-01-01

    Unlimited access to a motorway network can, in overloaded conditions, cause a loss of capacity. Ramp metering (signals on slip roads to control access to the motorway) can help avoid this loss of capacity. The design of ramp metering strategies has several features in common with the design of access control mechanisms in communication networks. Inspired by models and rate control mechanisms developed for Internet congestion control, we propose a Brownian network model as an approximate model for a controlled motorway and consider it operating under a proportionally fair ramp metering policy.We present an analysis of the performance of this model.

  14. Geometry adaptive control of a composite reflector using PZT actuator

    Lan, Lan; Jiang, Shuidong; Zhou, Yang; Fang, Houfei; Tan, Shujun; Wu, Zhigang

    2015-04-01

    Maintaining geometrical high precision for a graphite fiber reinforced composite (GFRC) reflector is a challenging task. Although great efforts have been placed to improve the fabrication precision, geometry adaptive control for a reflector is becoming more and more necessary. This paper studied geometry adaptive control for a GFRC reflector with piezoelectric ceramic transducer (PZT) actuators assembled on the ribs. In order to model the piezoelectric effect in finite element analysis (FEA), a thermal analogy was used in which the temperature was applied to simulate the actuation voltage, and the piezoelectric constant was mimicked by a Coefficient of Thermal Expansion (CTE). PZT actuator's equivalent model was validated by an experiment. The deformations of a triangular GFRC specimen with three PZT actuators were also measured experimentally and compared with that of simulation. This study developed a multidisciplinary analytical model, which includes the composite structure, thermal, thermal deformation and control system, to perform an optimization analysis and design for the adaptive GFRC reflector by considering the free vibration, gravity deformation and geometry controllability.

  15. Structural/control system optimization with variable actuator masses

    Jin, Ik M.; Sepulveda, Abdon E.

    1993-01-01

    A method is presented to integrate the design space for structural/control system optimization problems in the case of linear state feedback control. Nonstructural lumped masses and control system design variables as well as structural sizing variables are all treated equally as independent design variables in the optimization process. Structural and control design variable linking schemes are used in order to avoid a prohibitively large increase in the total number of independent design variables. When actuator masses are treated as nonstructural lumped mass design variables, special consideration is given to the relation between the transient peak responses and the required actuator masses which is formulated as a behavior constraint form. The original nonlinear mathematical programming problem based on a finite element formulation and linear state feedback is replaced by a sequence of explicit approximate problems exploiting various approximation concepts such as design variable linkings, temporary constraint deletion and first order Taylor series expansion of nonlinear behavior constraints in terms of intermediate design variables. Examples which involve a variety of dynamic behavior constraints (including constraints on closed-loop eigenvalues, peak transient displacements, peak actuator forces, and relations between the peak responses and the actuator masses) are effectively solved by using the method presented.

  16. An integrated electroactive polymer sensor-actuator: design, model-based control, and performance characterization

    Hunt, A.; Chen, Z.; Tan, X.; Kruusmaa, M.

    2016-03-01

    Ionic electroactive polymers (IEAPs), particularly ionic polymer-metal composites (IPMCs) and carbon-polymer composites (CPCs), bend when a voltage is applied on their electrodes, and conversely, they generate an electrical signal when subjected to a mechanical bending. In this work we study and compare the capabilities of IPMC and CPC actuators and sensors in closed-loop control applications. We propose and realize an integrated IEAP sensor-actuator design, characterize its performance using three different materials, and compare the results. The design consists of two short IEAP actuators and one sensor mechanically coupled together in a parallel configuration, and an attached rigid extension significantly longer than the IEAPs. This allows the device to be compliant, simple to construct, lightweight, easy to miniaturize, and functionally similar to a one-degree-of-freedom rotational joint. For control design and accurate position sensing in feedback experiments, we adapt physics-based and control-oriented models of actuation and sensing dynamics, and perform experiments to identify their parameters. In performance characterization, both model-based {H}∞ control and proportional-integral control are explored. System responses to step inputs, sinusoids, and random references are measured, and long-duration sinusoidal tracking experiments are performed. The results show that, while IEAP position sensing is stable for only a limited time-span, H ∞ control significantly improves the performance of the device.

  17. Towards Autonomous Control of Hydraulic Actuator Systems

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of new developed control algorithms to increase autonomy and intelligence of hydraulic control systems. A refinement of relaytuning method is used to determine the control parameters of a lag/lead controller and a poleplacement controller. Further, a fail-safe function is developed...

  18. Towards Autonomous Control of Hydraulic Actuator Systems

    Hansen, Poul Erik; Conrad, Finn

    Presentation of new developed control algorithms to increase autonomy and intelligence of hydraulic control systems. A refinement of relaytuning method is used to determine the control parameters of a lag/lead controller and a poleplacement controller. Further, a fail-safe function is developed to...

  19. INTEGRATED APPROACH TO LANGUAGE TRAINING OF AIR TRAFFIC CONTROLLERS

    Olena Petrashchuk

    2014-06-01

    Full Text Available The article deals with the issue of integrative approach to language training of air traffic controllers in air traffic control simulator. The integrative approach is viewed in terms of two elements of English communicative competency: oral speech skills (listening comprehension and speaking and language of radiotelephony communication (radiotelephony phraseology and plain English in aviation context.

  20. Capacity Reliability of Signalized Intersections with Mixed Traffic Conditions

    CHEN Xiaoming; SHAO Chunfu; LI Da; DONG Chunjiao

    2009-01-01

    The reliability of capacity of signalized intersections in mixed traffic conditions involving vehicles, bicycles, and pedestrians was investigated to complete the conventional, deterministic capacity calculations. Simulations using VISSIM provided estimates of capacity distributions, and demonstrated the effects of the analysis intervals on the distributions. With the random vehicle arrivals taken into account, a capacity reli-ability assessment method was given as a function. Assessments were also performed regarding the effects of the conflicting pedestrian and bicycle volumes on capacity reliability. The simulation indicates that the pe-destrians and bicycles result in greater random fluctuations of exclusive tuming lane capacities, but have less effect on the variability of shared lane capacities. Normal distributions can be used to model the capaci-ties for intervals not less than 10 min. At higher vehicular volumes, the capacity reliability is more sensitive to the mean and standard deviation of the pedestrian and bicycle volumes.

  1. Selective data collection in vehicular networks for traffic control applications

    Płaczek, Bartłomiej

    2011-01-01

    Vehicular sensor network (VSN) is an emerging technology, which combines wireless communication offered by vehicular ad hoc networks (VANET) with sensing devices installed in vehicles. VSN creates a huge opportunity to extend the road-side sensor infrastructure of existing traffic control systems. The efficient use of the wireless communication medium is one of the basic issues in VSN applications development. This paper introduces a novel method of selective data collection for traffic control applications, which provides a significant reduction in data amounts transmitted through VSN. The underlying idea is to detect the necessity of data transfers on the basis of uncertainty determination of the traffic control decisions. According to the proposed approach, sensor data are transmitted from vehicles to the control node only at selected time moments. Data collected in VSN are processed using on-line traffic simulation technique, which enables traffic flow prediction, performance evaluation of control strateg...

  2. Application of reinforcement learning methods for optimization of traffic control on arterial roads

    Marsetič, Rok

    2016-01-01

    Nowadays, society faces several traffic related problems, such as traffic jams, time loss, lower traffic safety, increased pollution, etc., especially in urban areas. This is caused by high traffic volumes, which often exceed the capacity of the road infrastructure, particularly in peak hours. A common way of managing traffic in urban areas is traffic light control, which plays a key role in traffic safety and efficiency. To reduce delays the traffic light controllers should adjust to changin...

  3. Evaluation of linear DC motor actuators for control of large space structures

    Ide, Eric Nelson

    1988-01-01

    This thesis examines the use of a linear DC motor as a proof mass actuator for the control of large space structures. A model for the actuator, including the current and force compensation used, is derived. Because of the force compensation, the actuator is unstable when placed on a structure. Relative position feedback is used for actuator stabilization. This method of compensation couples the actuator to the mast in a feedback configuration. Three compensator designs are prop...

  4. Comparison by Simulation of Different Approaches to Urban Traffic Control

    Přikryl, Jan; Tichý, T.; Bělinová, Z.; Kapitán, J.

    Katowice: Silesian University of Technology, 2012. s. 76-76. ISBN 978-83-927504-1-3. [12th International Conference on Transport System s Telematics 2012. 10.10.2012-13.10.2012, Katowice] R&D Projects: GA TA ČR TA01030603 Institutional support: RVO:67985556 Keywords : urban traffic * traffic jams * rolling horizon method http://library.utia.cas.cz/separaty/2012/AS/prikryl-comparison by simulation of different approaches to urban traffic control-A.pdf

  5. Modelling and control of double-cone dielectric elastomer actuator

    Branz, F.; Francesconi, A.

    2016-09-01

    Among various dielectric elastomer devices, cone actuators are of large interest for their multi-degree-of-freedom design. These objects combine the common advantages of dielectric elastomers (i.e. solid-state actuation, self-sensing capability, high conversion efficiency, light weight and low cost) with the possibility to actuate more than one degree of freedom in a single device. The potential applications of this feature in robotics are huge, making cone actuators very attractive. This work focuses on rotational degrees of freedom to complete existing literature and improve the understanding of such aspect. Simple tools are presented for the performance prediction of the device: finite element method simulations and interpolating relations have been used to assess the actuator steady-state behaviour in terms of torque and rotation as a function of geometric parameters. Results are interpolated by fit relations accounting for all the relevant parameters. The obtained data are validated through comparison with experimental results: steady-state torque and rotation are determined at a given high voltage actuation. In addition, the transient response to step input has been measured and, as a result, the voltage-to-torque and the voltage-to-rotation transfer functions are obtained. Experimental data are collected and used to validate the prediction capability of the transfer function in terms of time response to step input and frequency response. The developed static and dynamic models have been employed to implement a feedback compensator that controls the device motion; the simulated behaviour is compared to experimental data, resulting in a maximum prediction error of 7.5%.

  6. Simulation and control of an electro-hydraulic actuated clutch

    Balau, Andreea-Elena; Caruntu, Constantin-Florin; Lazar, Corneliu

    2011-08-01

    The basic function of any type of automotive transmission is to transfer the engine torque to the vehicle with the desired ratio smoothly and efficiently and the most common control devices inside the transmission are clutches and hydraulic pistons. The automatic control of the clutch engagement plays a crucial role in Automatic Manual Transmission (AMT) vehicles, being seen as an increasingly important enabling technology for the automotive industry. It has a major role in automatic gear shifting and traction control for improved safety, drivability and comfort and, at the same time, for fuel economy. In this paper, a model for a wet clutch actuated by an electro-hydraulic valve used by Volkswagen for automatic transmissions is presented. Starting from the developed model, a simulator was implemented in Matlab/Simulink and the model was validated against data obtained from a test-bench provided by Continental Automotive Romania, which includes the Volkswagen wet clutch actuated by the electro-hydraulic valve. Then, a predictive control strategy is applied to the model of the electro-hydraulic actuated clutch with the aims of controlling the clutch piston displacement and decreasing the influence of the network-induced delays on the control performances. The simulation results obtained with the proposed method are compared with the ones obtained with different networked controllers and it is shown that the strategy proposed in this paper can indeed improve the performances of the control system.

  7. An Adaptive Traffic Control System Using Raspberry PI

    S.Lokesh *

    2014-06-01

    Full Text Available By increasing of population the usage of vehicles have been increasing and controlling of traffic is one of the challenging works. The frequent traffic jams at major junctions call for an efficient traffic management system in place. The resulting wastage of time and increase in pollution levels can be eliminated on a city-wide scale by these systems. Previously the traffic control techniques used like magnetic loop detectors, induction loop detectors are buried on the road side provide the limited traffic information and require separate systems for traffic counting and for traffic surveillance. Here the project proposes to implement an artificial density traffic control system using image processing and Raspberrypi. The hardware here we are using is webcam, pc, Raspberry pi and the software used is OCCIDENTALIS and MATLAB. In this project the camera is get interfaced with a Raspberry pi. The image sequences from a camera are analyzed using thresholding method to find the density of vehicles. Subsequently, the number of vehicles at the intersection is evaluated and traffic is efficiently managed. In this project we implemented a real-time emergency vehicle detection system. In case an emergency vehicle is detected, the lane is given priority over all the others.

  8. Electro-Mechanical Actuator. DC Resonant Link Controller

    Schreiner, Kenneth E.

    1996-01-01

    This report summarizes the work performed on the 68 HP electro-mechanical actuator (EMA) system developed on NASA contract for the Electrical Actuation (ELA) Technology Bridging Program. The system was designed to demonstrate the capability of large, high power linear ELAs for applications such as Thrust Vector Control (TVC) on rocket engines. It consists of a motor controller, drive electronics and a linear actuator capable of up to 32,00 lbs loading at 7.4 inches/second. The drive electronics are based on the Resonant DC link concept and operate at a nominal frequency of 55 kHz. The induction motor is a specially designed high speed, low inertia motor capable of a 68 peak HP. The actuator was originally designed by MOOG Aerospace under an internal R & D program to meet Space Shuttle Main Engine (SSME) TVC requirements. The design was modified to meet this programs linear rate specification of 7.4 inches/second. The motor and driver were tested on a dynamometer at the Martin Marietta Space Systems facility. System frequency response, step response and force-velocity tests were conducted at the MOOG Aerospace facility. A complete description of the system and all test results can be found in the body of the report.

  9. Biomimetic Control of Mechanical Systems Equipped with Musculotendon Actuators

    Javier Moreno-Valenzuela; Adriana Salinas-Avila

    2011-01-01

    This paper addresses the problem of modelling, control, and simulation of a mechanical system actuated by an agonist-antagonist musculotendon subsystem. Contraction dynamics is given by case I of Zajac's model. Saturated semi positive proportional-derivative-type controllers with switching as neural excitation inputs are proposed. Stability theory of switched system and SOSTOOLS, which is a sum of squares optimization toolbox of Matlab, are used to determine the stability of the obtained closed-loop system. To corroborate the obtained theoretical results numerical simulations are carried out. As additional contribution, the discussed ideas are applied to the biomimetic control of a DC motor, i.e., the position control is addressed assuming the presence of musculotendon actuators. Real-experiments corroborate the expected results.

  10. A Comparative Study of Actuator Configurations for Satellite Attitude Control

    Raymond Kristiansen; Olav Egeland; Per Johan Nicklasson

    2005-01-01

    In this paper a controllability study of different actuator configurations consisting of magnetic torquers, reaction wheels and a gravity boom is presented. The theoretical analysis is performed with use of controllability gramians, and simulation results with the different configurations are presented and compared regarding settling time and power consumption to substantiate the theoretical analysis. A reference model is also introduced to show how the power consumption can he lowered to the...