WorldWideScience

Sample records for activity radioactive waste

  1. Radioactive Wastes.

    Choudri, B S; Baawain, Mahad

    2015-10-01

    Papers reviewed herein present a general overview of radioactive waste activities around the world in 2014. These include safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation and management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in water, soil and ecosystem alongwith other progress made in the management of radioactive wastes. PMID:26420096

  2. Radioactive Wastes.

    Choudri, B S; Baawain, Mahad

    2016-10-01

    Papers reviewed herein present a general overview of radioactive waste activities around the world in 2015. These include safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation and management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in water, soil and ecosystem alongwith other progress made in the management of radioactive wastes. PMID:27620100

  3. Volume reduction through incineration of low-activity radioactive wastes

    The aim of the waste treatment plant, designed by Technicatome (CEA) for an Indonesian Nuclear Research Center, is to reduce through incineration the volume of low-activity radioactive wastes such as technological solids (cotton, PVC, paper board), biological solids (animal bones) and liquids (cutting fluids...). The complete combustion is realized with a total air multi-fuel burner (liquid wastes) and flash pyrolysis-complete combustion (solid wastes). A two stage flue gas filtration system, a flue gas washing system, and an ash recovery system are used. A test platform has been built. 3 figs

  4. This is how we manage Sweden's radioactive waste. Activities 1995

    SKB operates systems and facilities for the management and final disposal of spent nuclear fuel and other radioactive waste in Sweden. SKB has conducted extensive R, D and D work with regard to constructing a spent fuel encapsulation plant and a deep repository in crystalline bedrock. This annual report treats all the different activities without going into technical details

  5. Method to determine the activity concentration and total activity of radioactive waste

    A characteristic system of radioactive waste is described to determine the concentration of radionuclides activity and the total activity of bundles of radioactive waste. The system this integrated by three subsystems: - Elevator of drums. - Electromechanics. - Gamma spectroscopy. In the system it is analyzed waste of issuing gamma specifically, and this designed for materials of relative low density and it analyzes materials of cylindrical recipients

  6. Radioactive wastes and discharges

    The guide sets out the radiation safety requirements and limits for the treatment of radioactive waste. They shall be observed when discharging radioactive substances into the atmosphere or sewer system, or when delivering solid, low-activity waste to a landfill site without a separate waste treatment plan. The guide does not apply to the radioactive waste resulting from the utilisation of nuclear energy or natural resources

  7. Radioactive wastes and discharges

    NONE

    2000-07-01

    The guide sets out the radiation safety requirements and limits for the treatment of radioactive waste. They shall be observed when discharging radioactive substances into the atmosphere or sewer system, or when delivering solid, low-activity waste to a landfill site without a separate waste treatment plan. The guide does not apply to the radioactive waste resulting from the utilisation of nuclear energy or natural resources.

  8. Development for low-activation concrete design reducing radioactive waste

    Full text: Concrete is very valuable and inexpensive material, however it can be changed to be expensive and hard to deal with in use of a nuclear plant after long operation. One of the counter plans for the above is to use low-activation concrete instead of the ordinary concrete, that will reduce radioactive waste and could be even below clearance level in decommissioning and that is very useful in term of life cycle cost. Radioactive analysis showed that Co and Eu were the major target elements which decide the radioactivity level of reinforced concrete in decommissioning stage, and a several material were selected as a low-activation raw material from wide survey of raw materials for concrete (typically aggregates and cements). With the canditate of raw materials, several low-activation concrete were proposed for various portion of light water reactor plant, which reduction ratio were 1/10 to 1/30 which were mainly consist of limestone and low heat cement or white cement, and 1/100 to 1/300 which were mainly consist of alumina aggregate or quartz and high almina cement, comparing to the ordinary concrete in ΣDi/Ci unit, where 'Di' indicates concentration of each residual radioisotope, Ci defined by IAEA as a clearance level, and suffition of 'i' indicates each radioisotope. National funded project for development of low-activation design method for reduction of radioactive waste below clearance level were started from 2005 with aiming (1) development of a database on the content of target elements, which transform radioactive nuclides, in raw materials of reinforced concrete, (2) development of calculation tools for estimation of residual radioactivity of plant components, and (3) development of low-activation materials for concrete such as cements and reinforcing steel bars for structural components. For the optimized design for applying low-activation concrete to the reactor portion, effective evaluation of neutron spectrum in the certain portion including

  9. Treatment of radioactive wastes

    This report is a review of some waste management activities including sources, system of collection and treatment of radioactive wastes. The report also includes methods and options used for treatment of liquid and solid radioactive wastes. (author). 26 refs., 5 figs., 6 tabs

  10. Radioactive waste management

    This eighth chapter presents the radioactive wastes and waste disposal; classification of radioactive wastes; basis requests of the radioactive waste management; conditions for a radioactive waste disposal; registers and inventories; transport of radioactive wastes from a facility to another and the radioactive waste management plan

  11. Recycling of radioactive mineral waste by activity separation

    The AST process is a device for the recycling of building rubble originating from the dismantling of nuclear installations. Due to the activity separation in the process, a major part of rubble which would have otherwise been radioactive waste can now be cleared. The AST process has been developed in the course of the combined research project ''Aufbereitung radioaktiver mineralischer Rueckstaede durch Aktivitaetsseparation (Recycling of radioactive mineral waste by activity separation)'' which was sponsored by the BMBF (Federal Ministry for Education and Research). The first step was to investigate the activity distribution between the various constituents of activated heavy concrete (additions: hematite, magnetite, iron cuttings), of contaminated heavy and normal concrete, as well as of composition floor. Heavy concrete with metal additions showed a selective activation of the various constituents. Contaminated rubble often exhibits a selective enrichment of the activity in the cement in contrast to the aggregate. The AST facility for activity separation was designed on the basis of these results. Trial operation with various types of building rubble was carried out using three methods for sorting, screening according to grain size, magnetic separation and radiometric sorting. The use of these three methods was adapted to the material. (orig.)

  12. Low-level radioactive waste activities in Texas

    In September 1982, the Texas Low-Level Radioactive Waste Disposal Authority began the process for the selection, construction, and operation of a low-level radioactive waste disposal facility in Texas. The statute creating the Authority is a very comprehensive law which calls for the orderly completion of a step-by-step process in the development of the disposal facility. The organization of the Authority and its use of external resources, both professional organizations and citizens groups, are functioning extremely well in the performance of the Authority's objectives. Continued success will lead to the development and operation of a low-level radioactive waste disposal site in Texas prior to 1988

  13. Radioactive waste

    Focusing on radioactive waste management and disposal policies in the United Kingdom, Sweden and the Federal Republic of Germany, this book gives a detailed historical account of the policy process in these three countries, and draws out the implications for theory and public policy. This comparative approach underlines how profoundly different the policy process has been in different countries. By comparing the evolution of policy in three countries, fundamental questions about the formation and resolution of technical decisions under uncertainty are clarified. The analysis of nuclear strategy, the politics of nuclear power, and the shifting emphasis of government regulation redefines the issue of radwaste management and sets it at the heat of the current debate about power, the environment and society. The combination of up-to-date technological assessment with an account of the social and political implications of radwaste management makes'Radioactive Waste'particularly useful to students of environmental studies, geography and public administration. (author)

  14. USDOE activities in low-level radioactive waste treatment

    This paper describes current research, development and demonstration (R, D and D) programs sponsored by the US Department of Energy in the area of low-level radioactive waste treatment. The US Department of Energy Low-Level Radioactive Waste Management Program is directed toward a coordinated program covering the period from low-level radioactive waste generation through the decommissioning of the disposal site. This paper addresses the treatment portion of the program. The development efforts include: mechanical methods for metal and compactible waste volume reduction; incineration of trash or other combustibles through the use of controlled air, cyclone, or molten glass furnaces; ultrafiltration, reverse osmosis, biological or chemical destruction of nitrates; adsorption treatment of low-concentration aqueous waste streams; combustion of organic liquids; and smelting of metal wastes to reduce their volume and conserve our natural resources. (author)

  15. Radioactive waste management in Hungary

    Activities underway at various levels in Hungary in the field of the safe management and disposal of radioactive waste and spent fuel are outlined. Various specific aspects, including financing of radioactive waste management, handling of spent fuel, high level radioactive waste disposal, site selection for a disposal facility for low and intermediate level waste, and public information activities are described. (author)

  16. Hospitalar radioactive waste of low activity, a daily practice

    Rezio, M.T.; Vieira, M.R. [Instituto Portugues de Oncologia de Francisco Gentil - CROL, Lisboa (Portugal)

    2006-07-01

    Introduction According to the law we should have a specific area for storing and treating waste. That area should have special containers for temporary storage in order to assure the radioactive decay for all the radioactive waste, biological contaminated or non biological and in solid or liquid form. According with that law the limits established for discharge are: For solid waste, we must not discharge more than 370 MBq in a minimum volume of 0,1 m{sup 3} and is not allowed waste with activities higher than 3,7 kBq; For liquid waste discharges from the department to the public sewer, the average concentrations calculated taking into account the water flow of the sewer system that serves the installation, should be the following:The annual medium concentration must not exceed 3 times the reference concentration (C.R.) for that nuclide; The monthly medium concentration must not exceed 15 times the reference concentration (C.R.); The daily medium concentration must not exceed 60 times the reference concentration (C.R.); The reference concentration (C.R.), expressed in Bq.m{sup -3}, should be calculated taking into account the relevant incorporation per ingestion. The calculation of C.R. in liquid waste should have into account the following: For the general public the effective dose E achieved, per ingestion by an individual in the group of age g is determined according to the following formula(1):E= {sigma}{sub i} h(g){sub j,ing} X J{sub j,ing}, where h(g){sub j,ing} is the committed effective dose per unit-intake for the ingested radionuclide j (Sv/Bq) by an individual in the group of age g; J{sub j,ing} is the relevant intake via ingestion of the radionuclide j (Bq). The effective dose E achieved by an individual in the group of age g should not be higher than 0,1 mSv/year. If the average water volume ingested by an individual adult is 800 l, the value J{sub j,ing}, calculated by the formula (1) should be referred to 1000 l, in order to obtain the C.R., for the

  17. Underwater cutting up of high-activity radioactive waste

    Radioactive waste has be treated in order to ensure that the radio-elements it contains are not released over a very long period. In the case of high-activity waste containing radio-elements of short half-life a preliminary storage permitting a sufficient decrease in activity makes it possible subsequently to use the same treatment as for low-activity waste. Since the active or contaminated portions are in most cases well localized, it is useful to separate them according to their activity level. There results a considerable decrease in the amounts which have be stocked. At the Marcoule Centre, these dismantling operations are carried out using a plasma torch or a pneumatic saw, in a swimming pool containing de-ionized water. The main advantages of this process are: decrease in the risks of atmospheric pollution, in particular for α contamination; flexibility in adjusting the protection as a function of the β γ irradiation; ease of handling across a fluid protection; much lower capital and running costs than in the case of a reinforced enclosure built for the same purpose. (author)

  18. Radioactive wastes and discharges

    According to the Section 24 of the Finnish Radiation Decree (1512/91), the Finnish Centre for Radiation and Nuclear Safety shall specify the concentration and activity limits and principles for the determination whether a waste can be defined as a radioactive waste or not. The radiation safety requirements and limits for the disposal of radioactive waste are given in the guide. They must be observed when discharging radioactive waste into the atmosphere or sewer system, or when delivering solid low-activity waste to a landfill site without a separate waste disposal plan. The guide does not apply to the radioactive waste resulting from the utilization of nuclear energy of natural resources. (4 refs., 1 tab.)

  19. The potential significance of microbial activity in radioactive waste disposal

    The aim of this report is to assess the potential significance of microbial activity in radioactive waste disposal. It outlines the major factors which need to be considered in order to evaluate the importance of microbiological action. These include water and nutritional sources (particularly carbon) hostile conditions (particularly the effects of radiation and pH), the establishment of pH micro-environments and the degradative effect of microbial metabolic by-products on the disposed waste forms. Before an active microbial population can develop there are certain basic requirements for life. These are outlined and the possibility of colonisation occurring within the chemical, radiological and nutritional constraints of a repository are considered. Once colonisation is assumed, the effect of microbial activity is discussed under five headings, i.e. (i) direct attack, (ii) physical disruption (which includes consideration of fissuring processes and void formation), (iii) gas generation (which may be of particular importance), (iv) radionuclide uptake and finally (v) alteration of groundwater chemistry. Particular attention is paid to the possibility of environments becoming established both within the waste form itself (allowing microbes to attack from the inside of the repository outward) or attack on the encapsulant materials (microbes attacking from the outside inward). (author)

  20. Radioactive wastes

    Here are gathered 1)the decrees (99-686 and 99-687) of the 3 rd of August 1999 relative to the researches on radioactive waste management. A local committee of information and follow-up has to be established on the site of each underground facility. The composition of this committee is determined here (99-686). 3 people will from now on be jointly ordered by the Minister of Economy, Finance and Industry and by the Secretary of State of Industry to conduct a preliminary dialogue for the choice of one or several sites on which previous works should be made before the construction of an underground facility (99-687). They take the opinion of the people's representatives, the associations and the concerned population and inform the Ministers of Environment, Energy and Research of the collected information. 2)the decree of the 3 rd of August 1999 authorizing the 'Agence nationale pour la gestion des dechets radioactifs' (ANDRA) to install and exploit an underground facility located in Bure (Meuse) and intended to study the deep geological deposits where could be stored radioactive wastes. (O.M.)

  1. Underground storage of radioactive wastes

    An introductory survey of the underground disposal of radioactive wastes is given. Attention is paid to various types of radioactive wastes varying from low to highly active materials, as well as mining techniques and salt deposits

  2. Radioactive wastes

    The execution of the Brazilian nuclear power program involves the generation of radwastes, some of which must be isolated, for several centuries, from human activities and environment. The Materials Directory from National Nuclear Energy Commission (CNEN) organized a project in order to collect information concerning the waste disposal practices that may fulfill national technical-social-economic conditions and to recommend them, if requested, to the competent authorities. The paper provides general information concerning the waste producers, the project organization, the regions in Brazil that should be investigated in more detail during the site selection studies, as well as the preliminary conclusion in waste management area

  3. Radioactive waste management

    First, some general informations are given about radioactive waste, e.g. arising of waste, classification, intermediate deposition and transport, as well as about the multi-barrier concept. Then, emphasis is laid on the internationally favoured vitrification of high-active waste. Safety requirements and the physical-chemical characteristics of the waste forms are described as are the different technical vitrification processes. Moreover, alternative solidification products such as ceramic materials and synthetic rocks were discussed. In addition, the worldwide technical concepts for the management and final disposal of radioactive waste are summarized. (orig./HP)

  4. An overview of the AECB's strategy for regulating radioactive waste management activities

    The goal of the Canadian Atomic Energy Control Board in regulating the management of radioactive wastes is to ensure the protection of people and the environment. A program of cooperation with other agencies, identification and adoption of baselines for describing radioactive wastes, development of explicit criteria and requirements, publication of related regulatory documents, establishment of independent consultative processes with technical experts and the public, and maintenance of awareness and compatibility with international activities is underway. Activities related to high-level radioactive waste, uranium mine and mill tailings, low- and medium-level wastes, radioactive effluents from nuclear facilities, and decommissioning and decontamination are described

  5. Radioactive waste management

    This book highlights the main issues of public concern related to radioactive waste management and puts them into perspective. It provides an overview of radioactive waste management covering, among other themes, policies, implementation and public communication based on national experiences. Its purpose is to assists in increasing the understanding of radioactive waste management issues by public and national authorities, organizations involved in radioactive waste management and the nuclear industry; it may also serve as a source book for those who communicate with the public. Even in the unlikely event that nuclear power does not further develop around the world, the necessity for dealing with nuclear waste from past usages, from uranium mining and milling, decontamination and decommissioning of existing nuclear facilities and from the uses of radioactive materials in medicine, industry and research would still exist. In many countries, radioactive waste management planning involves making effective institutional arrangements in which responsibilities and liabilities are well established for the technical operation and long term surveillance of disposal systems. Financing mechanisms are part of the arrangements. Continuous quality assurance and quality control, at all levels of radioactive waste management, are essential to ensure the required integrity of the system. As with any other human activity, improvements in technology and economics may be possible and secondary problems avoided. Improvements and confirmation of the efficiency of processes and reduction of uncertainties can only be achieved by continued active research, development and demonstration, which are the goals of many national programmes. International co-operation, also in the form of reviews, can contribute to increasing confidence in the ongoing work. The problem of radioactive wastes is not a unique one; it may be compared with other problems of toxic wastes resulting from many other

  6. Radioactive waste management plan for TRIGA Mark-II and III deecommissioning activities

    A radioavtive waste management plan was set-up for the decontamination and decommissioning of the TRIGA Mark II and III. They were categorized by the radioactivity and by the physical properties, solid , liquid, gaseous radioactive waste. The gaseous waste will be treated by the existing filtration equipment. The use of temporary containment with a portable ventilation system is planned during the dismantling work where there is the potential to generate particles. Liquid radioactive waste will be concentrated by a natural evaporator and the concentrate will then be solidified by using cement. All of the solid wastes will be packed in a 4 m3 ISO container and stored until a final disposal facility for low- and intermediate-level radioactive waste is operational. This paper covers a general plan of the radioactive waste management during the TRIGA Mark-II and III decontamination and decommissioning activities. (author)

  7. Management of hospital radioactive wastes

    The general structure of a regulatory scheme for the management of hospital radioactive wastes is presented. The responsabilities of an institution in the radioactive waste management, and storage conditions are defined. The radioactive wastes are classified in physical terms, and the criteria for evaluating the activity of solid wastes are described. The container characteristics and, the types of treatments given to the wastes are specified. (M.C.K.)

  8. Alternatives evaluation of high activity radioactive wastes disposal

    Different alternatives considered in the world to be used as barriers to isolate the high level radioactive from the environment wastes produced during the electric energy generation of nuclear origin are presented. Engineering and geologic barriers, are analyzed, considering nuclear fuel cycles with or without plutonium recycling; to that purpose the consideration of elements such as durability and resistance of the various engineering, availability of the fabrication processes, associated radiological impact, geological media apt to be used as geological barrier. Finally, the scopes of the Feasibility Study and Engineering draft are presented for the construction of a repository for high-level radioactive wastes, for the Argentine Nuclear Program needs, which contemplates the construction of six nuclear power plants with a potential installed towards the year 2000 GW(e), with natural and/or lowly enriched uranium power plants and recycling of plutonium generated in the cycle. (Author)

  9. Radioactive waste management

    Throughout this century, the application of nuclear energy has produced many benefits, in industry, in research, in medicine, and in the generation of electricity. These activities generate wastes in the same way as do other human activities. The primary objective of radioactive waste management is to protect human health and environment now and in the future without imposing undue burden on future generations, through sound, safe and efficient radioactive waste management. This paper briefly describes the different steps of the management of short lived low and intermediate level wastes, and presents and overview of the state of art in countries involved in nuclear energy, describing their organizations, methodologies used in the processing of these wastes and the final disposal concepts. It also presents the Argentine strategy, its technical and legal aspects. Worldwide experience during the past 50 years has shown that short lived low and intermediate level wastes can be successfully isolated from human and environment in near surface disposal facilities. (author)

  10. Radioactive waste management activities of the OECD Nuclear Energy Agency

    The objectives of the Organisation for Economic Co-operation and Development (OECD), which groups most of the developed countries of the world, are to promote high economic growth and a rising standard of living in Member countries while contributing to the economic development and the expansion of world trade on a multilateral basis. International co-operation in nuclear energy activities takes place through the OECD Nuclear Energy Agency (NEA) in which a total of 23 countries now participate: Australia, Canada, Japan, the United States, in addition to all the European Member countries of OECD. The Commission of the European Communities also takes part in the work of NEA. One of the primary objectives of the NEA is to promote co-operation between its Member governments on the safety and regulatory aspects of nuclear development. This is achieved by encouraging harmonization of governments' regulatory policies and practices in the nuclear field, with particular reference to the safety of nuclear installations, protection of many against ionizing radiations, radioactive waste management, and nuclear third party liability and insurance

  11. Procedure to convert mean and low activity radioactive wastes

    A procedure to convert mean and low activity radioactive effluents into a suitable solid is described. Radioactive compounds are precipitated in this procedure in which 0.6 to 2 parts (by weight) of cement are mixed with 0.5 to 5% (by weight) of asbestos (relative to the cement) together with the necessary quantity of water for the cement to set, and in addition, with 5 to 30% (by weight) of bitumen (relative to the cement)

  12. Management on radioactive wastes

    The basic philosophy governing the radioactive waste management activities in India is to concentrate and contain as much activity as possible and to discharge to the environment only such of these streams that have radioactive content much below the nationally and internationally accepted standards. The concept of ''Zero Release'' is also kept in view. At Tarapur, the effluents are discharged into coastal waters after the radioactivity of the effluents is brought down by a factor 100. The effluents fΩm Rajasthan reactors are discharged into a lake keeping their radioactivity well within permissible limits and a solar evaporation plant is being set up. The plant, when it becomes operational, will be a step towards the concept of ''Zero Release''. At Kalpakkam, the treated wastes are proposed to be diluted by circulating sea water and discharged away from the shore through a long pipe. At Narora, ion exchange followed by chemical precipitation is to be employed to treat effluents and solar evaporation process for total containment. Solid wastes are stored/dispsed in the concrete trenches, underground with the water proofing of external surfaces and the top of the trench is covered with concrete. Highly active wastes are stored/disposed in tile holes which are vaults made of steel-lined, reinforced concrete pipes. Gas cleaning, dilution and dispersion techniques are adopted to treat gaseous radioactive wastes. (M.G.B.)

  13. Radioactive waste processing method

    When granular materials comprising radioactive wastes containing phosphorus are processed at first in a fluidized bed type furnace, if the granular materials are phosphorus-containing activated carbon, granular materials comprising alkali compound such as calcium hydroxide and barium hydroxide are used as fluidizing media. Even granular materials of slow burning speed can be burnt stably in a fluidizing state by high temperature heat of the fluidizing media, thereby enabling to take a long burning processing time. Accordingly, radioactive activated carbon wastes can be processed by burning treatment. (T.M.)

  14. Regulation and practices regarding the management of very low activity radioactive wastes. Report nr 309

    This document reports a study which aims at analysing the recommendations made by international bodies (IAEA, Euratom) and the regulations of several countries (Germany, United States, United Kingdom, Sweden, Spain, Canada, Slovakia, Belgium, Japan and France) regarding the management of low activity radioactive wastes, with a focus on practices in releasing and recycling very low activity materials and the French national program for radioactive waste management

  15. Radioactive waste management

    This booklet is a publication by International Atomic Energy Agency for general awareness of citizens and policy-makers to clarify their concept of nuclear wastes. In a very simple way it tells what is radioactivity, radiations and radioactive wastes. It further hints on various medial and industrial uses of radiations. It discusses about different types of radioactive wastes and radioactive waste management. Status of nuclear power plants in Central and Eastern European countries are also discussed

  16. Historically Black Colleges and Universities Radioactive Waste Management Research Program: Summary of activities, 1985-1986

    This report summarizes the 1985 to 1986 activities of the Historically Black Colleges and Universities (HBCUs) Radioactive Waste Management Research Program sponsored by the Office of Civilian Radioactive Waste Management of the US Department of Energy (DOE). The first set of three awards was made in September,1984. In September, 1985, two of these projects were renewed and a new proposal was funded. The program has been enthusiastically received by the community of HBCUs and the program sponsor

  17. Disposal of low activity radioactive waste. Proceedings of an international symposium

    Speakers from several countries described the existing and planned arrangements for managing low activity waste in their countries. The potential of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (Joint Convention) to help establishing adequate national infrastructures and to resolving disputes between countries on radioactive waste management matters was highlighted. The increasing interest of nuclear power countries in developing national strategies for managing the waste from decommissioning has prompted proposals for new waste categories and, in particular, a category of very low level waste. Several countries are actively exploring the scheme, which brings clear economic benefits, and one country has already adopted it. The recent international agreement on clearance levels, as documented in the IAEA's Safety Guide RS-G-1.7, has greatly helped national policy development in this area. Other waste types are not explicitly considered in the current international waste categorization scheme, examples are: disused sealed sources, uranium mining and milling waste and waste containing naturally occurring radioactive materials (NORM) from non-nuclear industries. In summary, the international categorization scheme for radioactive waste is useful since it provides a scientific and technical rationale for separating waste types, but it needs to be elaborated to include other important waste types and their potential disposal routes. Long lived low activity radioactive waste arises as a by-product from several industrial processes, for example, the uranium processing industry, the phosphate industry, the gas and oil industry and from the cleanup of historic sites contaminated with radium. National regulatory approaches to the management of this waste vary and disposal practices being adopted vary considerably. A strong desire was expressed for international guidance towards establishing a coherent and

  18. Regulation of radioactive waste management

    This bulletin contains information about activities of the Nuclear Regulatory Authority of the Slovak Republic (UJD). In this leaflet the regulation of radioactive waste management of the UJD are presented. Radioactive waste (RAW) is the gaseous, liquid or solid material that contains or is contaminated with radionuclides at concentrations or activities greater than clearance levels and for which no use is foreseen. The classification of radioactive waste on the basis of type and activity level is: - transition waste; - short lived low and intermediate level waste (LlLW-SL); - long lived low and intermediate level waste (LlLW-LL); - high level waste. Waste management (in accordance with Act 130/98 Coll.) involves collection, sorting, treatment, conditioning, transport and disposal of radioactive waste originated by nuclear facilities and conditioning, transport to repository and disposal of other radioactive waste (originated during medical, research and industrial use of radioactive sources). The final goal of radioactive waste management is RAW isolation using a system of engineered and natural barriers to protect population and environment. Nuclear Regulatory Authority of the Slovak Republic regulates radioactive waste management in accordance with Act 130/98 Coll. Inspectors regularly inspect and evaluate how the requirements for nuclear safety at nuclear facilities are fulfilled. On the basis of safety documentation evaluation, UJD issued permission for operation of four radioactive waste management facilities. Nuclear facility 'Technologies for treatment and conditioning contains bituminization plants and Bohunice conditioning centre with sorting, fragmentation, evaporation, incineration, supercompaction and cementation. Final product is waste package (Fibre reinforced container with solidified waste) acceptable for near surface repository in Mochovce. Republic repository in Mochovce is built for disposal of short lived low and intermediate level waste. Next

  19. Radioactive waste management profiles

    In 1989, the International Atomic Energy Agency began development of the Waste Management Data Base (WMDB) to, primarily, establish a mechanism for the collection, integration, storage, and retrieval of information relevant to radioactive waste management in Member States. This report is a summary and compilation of the information contained in the data base. The WMDB contains information and data on several aspects of waste management and offer a ready source of information on such activities as R and D efforts, waste disposal plans and programmes, important programme milestones, waste volume projections, and national and regulatory policies. This report is divided into two parts. Part one describes the Waste Management Data Base system and the type of information it contains. The second part contains data provided by Member States between August 1989 and December 1990 in response to a questionnaire sent by the Agency. However, if a Member State did not respond to the questionnaire, data from IAEA sources, such as technical assistance mission reports, were used - where such data exist. The WMDB system became operational in January 1991. The type of information contained in the data base includes radioactive waste management plans, policies and activities in Member States

  20. Neutronic measurements of radioactive waste

    This document presents the general matters involved in the radioactive waste management and the different non destructive assays of radioactivity. The neutronic measurements used in the characterization of waste drums containing emitters are described with more details, especially the active neutronic interrogation assays with prompt or delayed neutron detection: physical principle, signal processing and evaluation of the detection limit. (author)

  1. Where, when, how: the place of radioactive wastes in France. Andra, 1998 activity report

    The 1998 activity report of the French national agency of radioactive wastes (Andra) presents successively: the role and missions of the Andra (history, status of radioactive wastes in France, surface storage and know-how, underground research laboratories, site selection and public information); the aspects of safety (inventory, identification and labelling of wastes, environmental policy, public relation, safety rules and reports, information storage); the scientific programs (collaborations, financing, site studies, rock mechanics and reversibility of storage, design of storage facilities, services); financial report. (J.S.)

  2. Participation of the ININ in the activities of radioactive waste management of the Laguna Verde Central

    From the beginning of the operation of the Laguna Verde Central (CLV) the National Institute of Nuclear Research (ININ) has come supporting the CLV in the activities of administration of the humid and dry radioactive waste generated by the operation of the two units of the CLV, from the elaboration of procedures to the temporary storage in site, the implementation of a program of minimization and segregation of dry solid wastes, until the classification of the lots of humid waste and bulk dry wastes. In this work the description of the management activities of radioactive wastes carried out by the ININ in the facilities of the CLV to the date is presented, as well as some actions that they are had drifted in the future near, among those that it stands out the determination of the total alpha activity in humid samples by means of scintillation analysis. (Author)

  3. Low and intermediate level radioactive waste. Waste characterization and activity measurements

    The report deals with waste categories in Finland and methods for determining or estimating the waste content. The study mainly focuses on long-lived low and intermediate level waste. Methods for the determination of activity content and chemical content are discussed. The report presents recommendations for the characterization of waste under treatment as well as recommendations for the characterization of waste packages

  4. Radioactive Demonstrations Of Fluidized Bed Steam Reforming (FBSR) With Hanford Low Activity Wastes

    Jantzen, C. M.; Crawford, C. L.; Burket, P. R.; Bannochie, C. J.; Daniel, W. G.; Nash, C. A.; Cozzi, A. D.; Herman, C. C.

    2012-10-22

    Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One immobilization technology being considered is Fluidized Bed Steam Reforming (FBSR) which offers a low temperature (700-750?C) continuous method by which wastes high in organics, nitrates, sulfates/sulfides, or other aqueous components may be processed into a crystalline ceramic (mineral) waste form. The granular waste form produced by co-processing the waste with kaolin clay has been shown to be as durable as LAW glass. The FBSR granular product will be monolithed into a final waste form. The granular component is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals such as sodalite. Production of the FBSR mineral product has been demonstrated both at the industrial, engineering, pilot, and laboratory scales on simulants. Radioactive testing at SRNL commenced in late 2010 to demonstrate the technology on radioactive LAW streams which is the focus of this study.

  5. The radioactive wastes management

    The different types of radioactive waste are presented in this paper in the frame of the official categories which take into account their dangerousness and the lifetimes of their radioactivity. It is indicated how the less dangerous of them are handled in France. The ways of protecting the environment from the more dangerous ones (high activity and long lifetimes) are object of studies. Scientific questions, in the field of chemistry and physical chemistry, related to the implementation of deep underground repository facilities with full respect of nuclear safety are presented. (authors)

  6. Understanding radioactive waste

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  7. Understanding radioactive waste

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes)

  8. Optimization of sorption technology processing of liquid radioactive waste of low and middle activity level

    A substantial amount of liquid radioactive wastes (LRW) is formed during the regeneration of irradiated nuclear fuel (INF). Liquid wastes of low activity level (LAL) include: wash water and leakages; water for hydrotransport; water in storage basins; water from special laundries and disinfestation posts; and waste deactivation solutions. The radioactivity of these LRWs is equal to 1 x 10-7 1 x 10-5 Ci/l. Depending on the sources of the water supply for processing of INF, as well as technology and time (seasons) of processing, productivity and other factors, variations exist in the chemical and radiochemical compositions of LAL. This article discusses various processing treatments for low and intermediate level radioactive wastes

  9. Predisposal Radioactive Waste Management

    Recognition of the importance of the safe management of radioactive waste means that, over the years, many well-established and effective techniques have been developed, and the nuclear industry and governments have gained considerable experience in this field. Minimization of waste is a fundamental principle underpinning the design and operation of all nuclear operations, together with waste reuse and recycling. For the remaining radioactive waste that will be produced, it is essential that there is a well defined plan (called a waste treatment path) to ensure the safe management and ultimately the safe disposal of radioactive waste so as to guarantee the sustainable long term deployment of nuclear technologies

  10. Derivation of activity limits for the disposal of radioactive waste in near surface disposal facilities

    criteria for disposal of radioactive wastes to near surface facilities. These criteria are qualitative in nature and, for example, they do not address limitations on radionuclide content of waste, waste packages or the facility as a whole. This publication is to present an approach for establishing radiological waste acceptance criteria using a safety assessment methodology and to illustrate its application in establishing limits on the total activity and the activity concentrations of radioactive waste to be disposed in near surface disposal facilities. The approach makes use of accepted methods and computational schemes currently used in assessing the safety of near surface disposal facilities both during the operational and post-closure periods. The scope of this publication covers the use of safety assessment methodology to calculate total and specific activities limits for radioactive waste in near surface disposal facilities. It is used to evaluate the potential operational and post-closure radiological impact of solid and solidified radioactive waste in near surface facilities. The radioactive waste types used to illustrate the approach range from waste containing radionuclides used for medical, industrial and research purposes to waste arising from nuclear fuel cycle activities. They also include waste arising from the decommissioning of nuclear facilities. The focus of the publication is on using of safety assessment methodology in derivation of quantitative radioactivity limits. This report deals with the role of activity limits in disposal system safety (Section 2), the relevant radiation protection criteria (Section 3), the approach to derive activity limits (Section 4), illustrations of the application of this approach (Section 5), and guidance on the use of the approach (Section 6)

  11. Low level radioactive waste

    More than 10 new disposal facilities for low level radioactive waste are now under development in the USA. They were planned in the wake of the highly visible failures of three such sites and a widespread loss of public confidence, both in shallow burial technology and the federal government's ability to regulate commercial waste disposal enterprises. The development of new technology and active involvement of state governments presents the nuclear power industry with its best opportunity for regaining the public confidence that it lost during the 1970s. This paper critically explores the fundamental technical, economic, political and value issues at stake in this process. (author)

  12. Solidification of radioactive liquid wastes

    Purpose: To decrease the amount of surface active agents required for solidifying sodium sulfate-containing concentrated radioactive liquid wastes with asphalts. Method: Water soluble calcium compounds (calcium nitrate, etc.) are added to alkaline radioactive concentrated liquid wastes essentially consisting of sodium sulfate to adjust the pH value of the liquid wastes to 4.5 - 8.5. The addition amount of the water soluble calcium compounds (based on the weight of the calcium ions) is set to about 2 - 5% of the sulfate ions in the liquid wastes. Then, surface active agents are added by 3 - 10 weight % to the solid contents in the liquid wastes. (Ikeda, J.)

  13. Radioactive waste management in Argentina

    An overview is provided on the major nuclear facilities operating in Argentina and data are given on radioactive wastes arising from these operations. The respective legal framework and the nuclear activities, including research and development, are outlined. The programme for the management of the different categories of radioactive wastes is described. Main milestones for establishing geological repositories for intermediate level and high level waste are highlighted. (author)

  14. Controlling radioactive waste

    The guideline of the Ministry for Environmental Protection for controlling radioactive waste with a negligible development of heat defines in detail what data are relevant to the control of radioactive waste and should be followed up on and included in a system of documentation. By introducing the AVK (product control system for tracing the course of waste disposal) the operators of German nuclear power plants have taken the requirements of this guideline into account. In particular, possibilities for determining the degree of radioactivity of radioactive waste, which the BMU-guidelines call for, were put into practice by means of the programming technology of the product control system's module MOPRO. (orig.)

  15. Management of Radioactive Wastes in Developing Countries

    The management of radioactive wastes is one area of increasing interest especially in developing countries having more and more activities in the application of radioisotopes in medicine, research and industry. For a better understanding of radioactive waste management in developing countries this work will discuss the following items:Classification of countries with respect to waste management programs. Principal Radionuclides used in medicine, biological research and others and the range of radioactivity commonly used. Estimation of radioactive waste volumes and activities. Management of liquid wastes Collection. Treatment. Management of small volumes of organic liquid waste. Collection Treatment. Packaging and storage of radioactive wastes

  16. Radioactive waste management

    The purpose of this document is to set out the Government's current strategy for the long term in the management of radioactive wastes. It takes account of the latest developments, and will be subject to review in the light of future developments and studies. The subject is discussed under the headings: what are radioactive wastes; who is responsible; what monitoring takes place; disposal as the objective; low-level wastes; intermediate-level wastes; discharges from Sellafield; heat generating wastes; how will waste management systems and procedures be assessed; how much more waste is there going to be in future; conclusion. (U.K.)

  17. Radioactive waste disposal

    The current disposal concept for radioactive waste in the FRG was discussed in the framework of this seminar. In addition to this concept for the treatment of radioactive waste also the volume of this waste is indicated. The present state of the two repositories 'Konrad' and 'Gorleben' is explained, as well as the requirements on waste packages for transportation, intermediate and ultimate storage. The final part discusses the conditioning of this radioactive waste and the control of the barrels as regards the observance of the requirements. (orig.)

  18. Storage of radioactive wastes

    Even if the best waste minimization measures are undertaken throughout radioisotope production or usage, significant radioactive wastes arise to make management measures essential. For developing countries with low isotope usage and little or no generation of nuclear materials, it may be possible to handle the generated waste by simply practicing decay storage for several half-lives of the radionuclides involved, followed by discharge or disposal without further processing. For those countries with much larger facilities, longer lived isotopes are produced and used. In this situation, storage is used not only for decay storage but also for in-process retention steps and for the key stage of interim storage of conditioned wastes pending final disposal. The report will serve as a technical manual providing reference material and direct step-by-step know-how to staff in radioisotope user establishments and research centres in the developing Member States without nuclear power generation. Considerations are limited to the simpler storage facilities. The restricted quantities and low activity associated with the relevant wastes will generally permit contact-handling and avoid the need for shielding requirements in the storage facilities or equipment used for handling. A small quantity of wastes from some radioisotope production cells and from reactor cooling water treatment may contain sufficient short lived activity from activated corrosion products to require some separate decay storage before contact-handling is suitable. 16 refs, 12 figs, 8 tabs

  19. Radioactive Demonstrations Of Fluidized Bed Steam Reforming As A Supplementary Treatment For Hanford's Low Activity Waste And Secondary Wastes

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides

  20. Policies and strategy for low activity radioactive waste management in Spain

    Electric power generation is the main potential source of radioactive waste in Spain. There are nine power reactors in operation with an output of 7.8 GW(e) and one nuclear power plant is being decommissioned. Other radioactive waste comes from nuclear fuel fabrication facilities, the use of radioisotopes in medicine, education, industry and research (minor producers) and incidents involving radioactive materials. An accumulated volume of 170,000 m3 from all origins, including the decommissioning of the existing nuclear facilities, is assumed for planning purposes in the next decades. The Spanish Government, through the Ministry of Industry, Tourism and Trade (MITC), establishes the radioactive waste management policy, which is issued in a document entitled the General Radioactive Waste Plan (GRWP). Other important actors are the Nuclear Safety Council (CSN) and the Ministry of Environment. ENRESA was created in 1984 with the role of managing the radioactive waste in Spain. It has a broad scope of responsibilities in this field. These include the management of low, intermediate and high level radioactive waste and their final disposal, decommissioning of nuclear power plants and other redundant facilities, and, when so required by the MITC, the rehabilitation of other type of facilities. Low activity radioactive waste (LAW) management in Spain can be described as an integrated system; control is exercised the production of radioactive waste until its final disposal. Major producers are responsible for waste treatment and conditioning; they follow ENRESA's specifications, which are approved by the MITC after prior approval by the CSN. From a nuclear safety and radiological protection point of view, the CSN controls the different actors in all steps of the process. The MITC establishes the management policy and surveys the economical and financial needs to support the plan. A key element in the management of LAW in Spain is the El Cabril disposal facility. The main

  1. This is how we manage Sweden`s radioactive waste. Activities 1995

    NONE

    1996-12-31

    SKB operates systems and facilities for the management and final disposal of spent nuclear fuel and other radioactive waste in Sweden. SKB has conducted extensive R, D and D work with regard to constructing a spent fuel encapsulation plant and a deep repository in crystalline bedrock. This annual report treats all the different activities without going into technical details.

  2. ORNL radioactive waste operations

    Since its beginning in 1943, ORNL has generated large amounts of solid, liquid, and gaseous radioactive waste material as a by-product of the basic research and development work carried out at the laboratory. The waste system at ORNL has been continually modified and updated to keep pace with the changing release requirements for radioactive wastes. Major upgrading projects are currently in progress. The operating record of ORNL waste operation has been excellent over many years. Recent surveillance of radioactivity in the Oak Ridge environs indicates that atmospheric concentrations of radioactivity were not significantly different from other areas in East Tennesseee. Concentrations of radioactivity in the Clinch River and in fish collected from the river were less than 4% of the permissible concentration and intake guides for individuals in the offsite environment. While some radioactivity was released to the environment from plant operations, the concentrations in all of the media sampled were well below established standards

  3. Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements

    This paper reviews progresses on the use of alkali-activated cements for stabilization/solidification of hazardous and radioactive wastes. Alkali-activated cements consist of an alkaline activator and cementing components, such as blast furnace slag, coal fly ash, phosphorus slag, steel slag, metakaolin, etc., or a combination of two or more of them. Properly designed alkali-activated cements can exhibit both higher early and later strengths than conventional portland cement. The main hydration product of alkali-activated cements is calcium silicate hydrate (C-S-H) with low Ca/Si ratios or aluminosilicate gel at room temperature; C-S-H, tobmorite, xonotlite and/or zeolites under hydrothermal condition, no metastable crystalline compounds such as Ca(OH)2 and calcium sulphoaluminates exist. Alkali-activated cements also exhibit excellent resistance to corrosive environments. The leachability of contaminants from alkali-activated cement stabilized hazardous and radioactive wastes is lower than that from hardened portland cement stabilized wastes. From all these aspects, it is concluded that alkali-activated cements are better matrix for solidification/stabilization of hazardous and radioactive wastes than Portland cement

  4. Determination of Solid Radioactive Waste Activities Using Gamma In-Situ Spectrometer

    Measurements of solid radioactive waste activities using in-situ gamma ray spectrometer by mechanically drum rotating system had been conducted. Both measurements should be done namely: first, In-situ gamma spectrometer calibrated by using standard 152Eu source in several drums (drum 1 to drum 5) of 100 liter volume at distance 15 cm from detector and counted them for 2253 seconds then background counting measurement in each drum also counted where a drum was not containing radioactive materials to achieve the lowest detection level. The data result of measurements can be shown as follows: the lowest detection level of insitu gamma ray spectrometer on radionuclide of 137Cs and 60Co was (57 ± 8) Bq and (97 ± 9) Bq. Radiation exposure rate on surface between 0.26 - 100 mR/jam. Total activity of radioactive waste between (423 ± 29) to (114,289 ± 7,459) Bq. So these radioactive materials waste have a high activity waste of group I, because radiation exposure rate less than 0.2 R/hour. (author)

  5. Radioactive waste programme in Latvia

    An overview is made on the use of radioactive sources and waste management in Latvia. Brief overview of the development of national legal documents - the framework law of environmental protection; international agreements; the new law on radiation safety and nuclear safety; regulation of the Cabinet of Ministers - is given. The regulatory infrastructure in the nearest future is outlined. The institutional framework for radioactive waste management is described. Basic design of the repository and radioactive waste inventory are also given. The activities on the EU DG Environment project CASIOPEE are reported

  6. Radioactive waste disposal policy

    The responsibilities of the Minister of Agriculture, Fisheries and Food and Ministry policy on radioactive waste disposal are described. The disposal of solid radioactive waste at sea is subject to detailed safeguards developed within two international agreements to which the United Kingdom is a contracting party. The agreements are discussed together with a research and monitoring programme to provide scientific data for informed decisions on waste disposal authorisations and dumping licences. (U.K.)

  7. Treatment and conditioning of historical radioactive waste

    The paper describes the management of historical radioactive waste from the storage facility of Radioactive Waste Treatment Plant. The historical waste stored into storage facility of IFIN-HH consists of spent sealed radioactive sources, empty contaminated containers, wooden radioactive waste, low specific activity radioactive waste, contaminated waste as well as radioactive waste from operation of WWR-S research reactor. After decommissioning of temporary storage facility about 5000 packages with radioactive waste were produced and transferred to the disposal facility. A large amount of packages have been transferred and disposed of to repository but at the end of 2000 there were still about 800 packages containing cement conditioned radioactive waste in an advanced state of degradation declared by authorities as 'historical waste'. During the management of historical waste campaign there were identified: radium spent radioactive sources, containers containing other spent sealed radioactive sources, packages containing low specific activity waste consist of thorium scrap allow, 30 larger packages (316 L), packages with activity lower than activity limit for disposal, packages with activity higher than activity limit for disposal. At the end of 2008, the whole amount of historical waste which met the waste acceptance criteria has been conditioned and transferred to disposal facility. (authors)

  8. Scaling factors for the activity determination of radioactive waste from nuclear power reactors

    Specific information of the total activity and activity concentration of the radionuclides contained is required for conditioning, transporting and final disposal of radioactive waste. Due to the complexity associated to alpha and beta measurements for these emitters it is worldwide used, particularly in the case of heterogeneous radioactive waste, the Scaling Factor Method. As in other cases, inputs of the results of the analysis of waste samples taking from waste streams are necessary. The Scaling Factor Method is based on the determination of averaged correlations between the activity concentrations of Difficult to Measure (DTM) nuclides (i.e. alpha and beta emitters) and the activity concentration of easy to measure nuclides (i.e. strong gamma emitters) called Key Nuclides (KN). In the application of this method two phases may be identified: in the first one the degree of correlation between averaged activities of DTM and a given KN is verified, and specific Scaling Factors are derived for every DTM radionuclide. In the second stage the total activity and the activity concentration of the selected KN is determined in each waste item and, by applying the SFs obtained previously, the activities of DTM nuclides are calculated. It is concluded that this method is appropriate and cost-effective and it is stressed that it is only applicable while the Nuclear Power Reactor is in operation. (author)

  9. Specified radioactive waste final disposal act

    Radioactive wastes must be finally and safely disposed far from human activities. Disposal act is a long-range task and needs to be understood and accepted by public for site selection. This paper explains basic policy of Japanese Government for final disposal act of specified radioactive wastes, examination for site selection guidelines to promote residential understanding, general concept of multi-barrier system for isolating the specific radioactive wastes, and research and technical development for radioactive waste management. (S. Ohno)

  10. Radioactive waste: show time? - 16309

    Time will render radioactive waste harmless. How can we manage the time radioactive substances remain harmful? Just 'wait and see' or 'marking time' is not an option. We need to isolate the waste from our living environment and control it as long as necessary. For the situation in the Netherlands, it is obvious that a period of long term storage is needed. Both the small volume of waste and the limited financial possibilities are determining factors. Time is needed to let the volume of waste grow and to let the money, needed for disposal, grow in a capital growth fund. An organisation such as COVRA - the radioactive waste organisation in the Netherlands - can only function when it has good, open and transparent relationship with the public and particularly with the local population. If we tell people that we safely store radioactive waste for 100 years, they often ask: 'That long?' How can we explain the long-term aspect of radioactive waste management in a way people can relate to? In this paper, an overview is given of the activities of COVRA on the communication of radioactive waste management. (authors)

  11. Storage of Radioactive Waste. Safety Guide

    Radioactive waste is generated in a broad range of activities involving a wide variety of materials. The wastes arising from these activities have differing physical, chemical and radiological characteristics. This publication gives guidance on the storage of solid, liquid and gaseous radioactive wastes in a wide range of facilities, including those at which waste is generated, treated and conditioned. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Roles and responsibilities; 4. Common safety considerations for waste storage facilities; 5. Design and operation of small storage facilities for radioactive waste; 6. Design and operation of large storage facilities for radioactive waste; Appendix.

  12. Encapsulation of radioactive waste

    A method is described for encapsulating a particular radioactive waste which consists of suspending the waste in a viscous liquid encapsulating material, of synthetic resin monomers or prepolymers, and setting the encapsulating material by addition or condensation polymerization to form a solid material in which the waste is dispersed. (author)

  13. Classification of radioactive waste

    Radioactive wastes are generated in a number of different kinds of facilities and arise in a wide range of concentrations of radioactive materials and in a variety of physical and chemical forms. To simplify their management, a number of schemes have evolved for classifying radioactive waste according to the physical, chemical and radiological properties of significance to those facilities managing this waste. These schemes have led to a variety of terminologies, differing from country to country and even between facilities in the same country. This situation makes it difficult for those concerned to communicate with one another regarding waste management practices. This document revises and updates earlier IAEA references on radioactive waste classification systems given in IAEA Technical Reports Series and Safety Series. Guidance regarding exemption of materials from regulatory control is consistent with IAEA Safety Series and the RADWASS documents published under IAEA Safety Series. 11 refs, 2 figs, 2 tab

  14. Krsko NPP radioactive waste characteristics

    In May 2005 Krsko NPP initiated the Radioactive Waste Characterization Project and commissioned its realization to the consulting company Enconet International, Zagreb. The Agency for Radwaste Management was invited to participate on the Project. The Project was successfully closed out in August 2006. The main Project goal consisted of systematization the existing and gathering the missing radiological, chemical, physical, mechanical, thermal and biological information and data on radioactive waste. In a general perspective, the Project may also be considered as a part of broader scope of activities to support state efforts to find a disposal solution for radioactive waste in Slovenia. The operational low and intermediate level radioactive waste has been structured into 6 waste streams that contain evaporator concentrates and tank sludges, spent ion resins, spent filters, compressible and non-compressible waste as well as specific waste. For each of mentioned waste streams, process schemes have been developed including raw waste, treatment and conditioning technologies, waste forms, containers and waste packages. In the paper the main results of the Characterization Project will be briefly described. The results will indicate that there are 17 different types of raw waste that have been processed by applying 9 treatment/conditioning technologies. By this way 18 different waste forms have been produced and stored into 3 types of containers. Within each type of container several combinations should be distinguished. Considering all of this, there are 34 different types of waste packages altogether that are currently stored in the Solid Radwaste Storage Facility at the Krsko NPP site. Because of these findings a new identification system has been recommended and consequently the improvement of the existing database on radioactive waste has been proposed. The potential areas of further in depth characterization are indicated. In the paper a brief description on the

  15. Radioactive waste management

    This chapter discussed the basic subjects covered in the radioactive waste management. The subjects are policy and legislation, pre-treatment, classification, segregation, treatment, conditioning, storage, siting and disposal, and quality assurance

  16. Prompt gamma neutron activation analysis of toxic elements in radioactive waste packages.

    Ma, J-L; Carasco, C; Perot, B; Mauerhofer, E; Kettler, J; Havenith, A

    2012-07-01

    The French Alternative Energies and Atomic Energy Commission (CEA) and National Radioactive Waste Management Agency (ANDRA) are conducting an R&D program to improve the characterization of long-lived and medium activity (LL-MA) radioactive waste packages. In particular, the amount of toxic elements present in radioactive waste packages must be assessed before they can be accepted in repository facilities in order to avoid pollution of underground water reserves. To this aim, the Nuclear Measurement Laboratory of CEA-Cadarache has started to study the performances of Prompt Gamma Neutron Activation Analysis (PGNAA) for elements showing large capture cross sections such as mercury, cadmium, boron, and chromium. This paper reports a comparison between Monte Carlo calculations performed with the MCNPX computer code using the ENDF/B-VII.0 library and experimental gamma rays measured in the REGAIN PGNAA cell with small samples of nickel, lead, cadmium, arsenic, antimony, chromium, magnesium, zinc, boron, and lithium to verify the validity of a numerical model and gamma-ray production data. The measurement of a ∼20kg test sample of concrete containing toxic elements has also been performed, in collaboration with Forschungszentrum Jülich, to validate the model in view of future performance studies for dense and large LL-MA waste packages. PMID:22406218

  17. Prompt-gamma neutron activation analysis for the non-destructive characterization of radioactive wastes

    In Germany, stringent official regulations govern the handling and final storage of radioactive waste. For this reason, the Federal Government has opted for final storage of radioactive waste with negligible heat generation in deep geological formations. At present the Konrad mine in Salzgitter will be rebuilt as a final disposal, the start of operation is scheduled for 2014. Radioactive waste with negligible heat generation originates from the operation and decommissioning of nuclear power plants, the medical sector or from research establishments. The requirements of the planning approval decision to build up the disposal Konrad, published on the 22nd of May 2002, obligate the waste producer to consider the limits for chemotoxic substances and to document the waste content. Before the radioactive waste can be stored in the final disposal, it is necessary to characterize the waste composition, relating to the concentration of water polluting substances. In particular for the wastes produced in the year before 1990, the so-called old wastes, there is a lack of documentation. The chemotoxicity of old wastes can mostly only characterized by time consuming and destructive methods. Furthermore these methods produce high costs, which depend on the arrangements to avoid contamination, to comply with the radiation protection and for the conditioning of the wastes. A prototype system, based on the Prompt-Gamma-Neutron-Activation-Analysis (PGNAA) with 14 MeV neutrons, has been developed in this work. This system allows the characterization of large samples, like 25 and 50 l drums. The signature of the element composition is in this processed by gamma-ray spectroscopy. This work was focused, in addition to the feasibility of the system, to the neutron and photon transport in large samples. Therefore the neutron and photon self-absorption in dependence of the sample composition were the main part of interest. Computer simulations (MCNP) and experiments were performed to

  18. Radioactive Waste Management in Romania

    In Romania, the radioactive waste results from nuclear industry and from the applications of the nuclear energy in research, medicine, industry and agriculture. The main producers of radioactive waste are: - Nuclear Power Plant - Unit 1 and 2 of Cernavoda NPP; - Nuclear Research Reactors - WWR-S IFIN-HH and TRIGA INR-Pitesti; - The Factory for production of nuclear fuel, FCN-Pitesti; - Mining facilities and uranium processing facilities - The Uranium National Company; - Hospitals using radioisotopes in medical applications (radiology, oncology); - Classical industry, as a consequence of the industrial applications (the use of radioactive, sources in weld testing, leak detection, wall thickness measurements, etc). According to the Romanian legislation in force, the licensees producing radioactive waste are responsible for the safe management of the radioactive waste up to the moment of disposal. National Agency Radioactive Waste ANDRAD was created on the basis of Governmental Ordinance No.11/2003 on the 28th of August 2004. ANDRAD is responsible for the disposal of the radioactive waste and the spent nuclear fuel. In order to achieve this objective ANDRAD has to develop a lot of activities, defined in the Governmental Ordinance No. 11/2003 modified and completed in 2007. The paper deals with the most important aspects of radioactive waste and spent nuclear fuel management and the ANDRAD responsibilities in this area. Last year by the Governmental Ordinance a task was approved regarding the management of nuclear waste produced in nuclear power stations. There are finalized safety studies for LILW final repository and licensing procedures are in progress. (authors)

  19. Radioactive Waste Management BasisApril 2006

    Perkins, B K

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  20. IAEA decadal activities in the field of radioactive gaseous waste management

    The IAEA has long recognized that gaseous waste management is vital in the design and safe operation of all nuclear facilities such that in the decade of the 1980's the IAEA program covered the important aspects of the entire field. The activities reviewed in this paper were marked at the outset by a comprehensive international symposium on the subject in February 1980 organized by the IAEA jointly with the Nuclear Energy Agency of the OECD when the detailed state-of-the-art was established in 43 papers. In the interim, experts have been convened in IAEA sponsored meetings to result in sixteen technical documents which included summaries of three substantial Co-ordinated Research Programs. Early IAEA activities paid particular attention to management of gas radionuclides which from a matured nuclear industry, could be judged to build-up to long-term sources of irradiation for regional and global populations. Mid-term ongoing activities in handling and retention of gaseous radionuclides arising from abnormal operations in nuclear power plants were given much emphasis following the Chernobyl accident. In the latter years the IAEA activities included detailed examinations of the design and operation of gas cleaning systems for the range of nuclear facilities. Technical reports on gaseous waste management were issued relating to high-level liquid waste conditioning plants (including control of semi-volatiles), nuclear power plants, low- and intermediate-level radioactive materials handling facilities and radioactive waste incinerators

  1. Disposal of Radioactive Waste

    This Safety Requirements publication applies to the disposal of radioactive waste of all types by means of emplacement in designed disposal facilities, subject to the necessary limitations and controls being placed on the disposal of the waste and on the development, operation and closure of facilities. The classification of radioactive waste is discussed. This Safety Requirements publication establishes requirements to provide assurance of the radiation safety of the disposal of radioactive waste, in the operation of a disposal facility and especially after its closure. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. This is achieved by setting requirements on the site selection and evaluation and design of a disposal facility, and on its construction, operation and closure, including organizational and regulatory requirements.

  2. Radioactive wastes management

    This article presents the French way to deal with nuclear wastes. 4 categories of radioactive wastes have been defined: 1) very low-level wastes (TFA), 2) low or medium-wastes with short or medium half-life (A), 3) low or medium-level wastes with long half-life (B), and 4) high-level wastes with long half-life (C). ANDRA (national agency for the management of radioactive wastes) manages 2 sites of definitive surface storage (La-Manche and Aube centers) for TFA-wastes. The Aube center allows the storage of A-wastes whose half-life is less than 30 years. This site will receive waste packages for 50 years and will require a regular monitoring for 300 years after its decommissioning. No definitive solutions have been taken for B and C wastes, they are temporarily stored at La Hague processing plant. Concerning these wastes the French parliament will have to take a decision by 2006. At this date and within the framework of the Bataille law (1991), scientific studies concerning the definitive or retrievable storage, the processing techniques (like transmutation) will have been achieved and solutions will be proposed. These studies are numerous, long and complex, they involve fresh knowledge in geology, chemistry, physics,.. and they have implied the setting of underground facilities in order to test and validate solutions in situ. This article presents also the transmutation technique. (A.C.)

  3. Radioactive waste management in Romania

    In Romania, the radioactive waste results from nuclear industry and from the applications of the nuclear energy in research, medicine, industry and agriculture. The main producers of radioactive waste are: Nuclear Power Plant - Unit 1 and 2 of Cernavoda Nuclear Power Plant; Nuclear Research Reactors - VVRS IFIN-HH and TRIGA SCN-Pitesti; The Factory which produces nuclear fuel Nuclear Fuel Plant (FCN-Pitesti Mining facilities and uranium processing facilities - The Uranium National Company; Hospitals which use applications of the radioisotopes in medical field (radiology, oncology); Classical industry, as a consequence of the industrial applications (the use of radioactive, sources in weld testing, leak detection, wall thickness measurement, etc.). According to the Romanian legislation in force, the licensees who produce radioactive waste are responsible for the safe management of the radioactive waste up to the moment of disposal. National Agency Radioactive Waste ANDRAD was created on the basis of the Governmental Ordinance No.11/2003 on the 28. of August 2004. ANDRAD is responsible for the disposal of the radioactive waste and the spent nuclear fuel. In order to achieve this objective ANDRAD has to develop a lot of activities, defined in the Governmental Ordinance No. 11/2003 modified and completed in 2007. The paper deals with the most important aspects of radioactive waste and spent nuclear fuel management, the ANDRAD responsibilities in this area. The main nuclear waste management facilities the National Nuclear Waste Repository (DNDR) Baita, the nuclear waste storage, treatment and conditioning plants are presented. The Low and Intermediate Level Waste (LILW) storage facility (DIDR) and spent fuel storage (DICA) are presented, also. ANDRAD is responsible for the future LILW DFDSMA which is to be built at Saligny, near Cernavoda NPP site and future High Level Waste (HLW) and spent fuel repository (DFCA). This year was approved by the Governmental Ordinance the

  4. Low- and Intermediate Level Radioactive Waste Disposal Environmental and Safety Assessment Activities in Slovenia

    The protection of the environment is one of the main concerns in the management of radioactive waste, especially in repository planning. In different stages of repository lifetime the environmental assessment has different functions: it can be used as a decision making process and as a planning, communication and management tool. Safety assessment as a procedure for evaluating the performance of a disposal system, and its potential radiological impact on human health and environment, is also required. Following the international recommendations and Slovene legislation, a presentation is given of the role and importance of the environmental and safety assessment activities in the early stages following concept development and site selection for a low- and intermediate level radioactive waste (LILW) repository in Slovenia. As a case study, a short overview is also given of the preliminary safety assessment that has been carried out in the analysis of possibilities for long-lived LILW disposal in Slovenia. (author)

  5. Radioactive waste gas processing systems

    Purpose: To effectively separate and remove only hydrogen from hydrogen gas-containing radioactive waste gases produced from nuclear power plants without using large scaled facilities. Constitution: From hydrogen gas-enriched waste gases which contain radioactive rare gases (Kr, Xe) sent from the volume control tank of a chemical volume control system, only the hydrogen is separated in a hydrogen separator using palladium alloy membrane and rare gases are concentrated, volume-decreased and then stored. In this case, an activated carbon adsorption device is connected at its inlet to the radioactive gas outlet of the hydrogen separator and opened at its outlet to external atmosphere. In this system, while only the hydrogen gas permeates through the palladium alloy membrane, other gases are introduced, without permeation, into the activated carbon adsorption device. Then, the radioactive rare gases are decayed by the adsorption on the activated carbon and then released to the external atmosphere. (Furukawa, Y.)

  6. Radioactive waste management - an educational challenge

    University Radioactive Waste Management educational programs are being actively advanced by the educational support activities of the Offices of Civilian Radioactive Waste Management (OCRWM) and Environmental Restoration and Waste Management (ERWM) of the DOE. The DOE fellowship program formats of funding students and requiring a practical research experience (practicum) at a DOE site has helped to combine the academic process with a practical work experience. Support for faculty in these programs is augmenting the benefits of the fellowship programs. The many job opportunities and funding sources for students which currently exists in the radioactive waste management area are fueling an increase in academic programs seeking recognition of their radioactive waste management curriculums

  7. Radioactive waste storage issues

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state's boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected

  8. Radioactive waste storage issues

    Kunz, D.E.

    1994-08-15

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

  9. Radioactive Waste management - v. 1

    The state of the art for each stage and activities correlated to the nuclear fuel cycle, describing the activities of main countries of the world in this area, is presented. In this volume, the principles which described the several sources of radioactive wastes from nuclear industry, the standardization of waste categories, the strategies adopted for treatment and disposal, the repository types and the practices and proposals of several countries in this field, are presented. (M.C.K.)

  10. Public acceptance activities for final disposal of high-level radioactive waste in Japan

    In Japan, the Specified Radioactive Waste Final Disposal Act (hereafter the Act) was promulgated in June 2000, with a view to ensuring systematic and safe disposal of high-level radioactive waste. The Act calls for the establishment of an implementing body responsible for disposal of high-level waste (HLW). The body specified under the Act, the Nuclear Waste Management Organization of Japan (NUMO), was established in October 2000. In order to initiate the disposal project for HLW in Japan, NUMO selected an open solicitation approach for finding candidate sites and sent an information package to all municipalities in Japan in December 2002. For successful implementation of the HLW project, it is essential to gain public understanding of the need for HLW disposal in Japan, the disposal system planned by NUMO and NUMO's activities, with the focus on the following: the development of repository concepts in Japan, the site selection process, the open solicitation approach and the public outreach scheme. NUMO has organized fact-to-face forums and conducted information campaigns in leading newspapers, on TV and in magazines to raise awareness of its mission and activities. As a result of these actions, some municipalities have expressed an interested in the project, but this has not yet led to the first step of conducting literature surveys. Experience with municipalities that expressed an interest indicates the need to step up efforts towards improving the understanding of the final disposal project by the general public and local residents. (author)

  11. Submission of the national commission of the public debate on the options concerning the long life high and medium activity radioactive wastes management

    This document deals with the presentation of a public debate on the radioactive wastes management and the opportunities of its organization. It presents successively the long life high and medium activity radioactive wastes, the today radioactive wastes management policy and some questions and topics which could be discussed during the debate. (A.L.B.)

  12. Radioactive waste packaging and transport in Argentina

    This article is aimed at summarising the activities related to the transport of radioactive materials carried out in Argentina and, especially, with regard to the transport of radioactive wastes. In particular, the legislation applicable within the national territory is described. Additionally, figures are provided on the features and amounts of transported radioactive materials, including radioactive wastes, concerning both the nuclear fuel cycle and activities related to their industrial and medical applications. (Author)

  13. Radioactive wastes in Oklo

    The acceptance of the Nuclear Energy as electric power supply implies to give answer to the population on the two main challenges to conquer in the public opinion: the nuclear accidents and the radioactive wastes. Several of the questions that are made on the radioactive wastes, its are the mobility migration of them, the geologic stability of the place where its are deposited and the possible migration toward the aquifer mantels. Since the half lives of the radioactive waste of a Nuclear Reactor are of several hundred of thousands of years, the technical explanations to the previous questions little convince to the public in general. In this work summary the results of the radioactive waste generated in a natural reactor, denominated Oklo effect that took place in Gabon, Africa, it makes several thousands of millions of years, a lot before the man appeared in the Earth. The identification of at least 17 reactors in Oklo it was carried out thanks to the difference in the concentrations of Uranium 235 and 238 prospective, and to the analysis of the non-mobility of the radioactive waste in the site. It was able by this way to determine that the reactors with sizes of hardly some decimeter and powers of around 100 kilowatts were operating in intermittent and spontaneous form for space of 150,000 years, with operation cycles of around 30 minutes. Recent studies have contributed information valuable on the natural confinement of the radioactive waste of the Oklo reactors in matrixes of minerals of aluminum phosphate that caught and immobilized them for thousands of millions of years. This extracted information from the nature contributes guides and it allows 'to verify' the validity of the current proposals on the immobilization of radioactive wastes of a nuclear reactor. This work presents in clear and accessible form to the public in general on the secure 'design', operation, 'decommissioning' and 'storage' of the radioactive waste of the reactors that the nature put

  14. Radioactive waste management and handling

    In this paper, mainly from the radioactive solid waste separation, treatment details of Shaanxi uranium Enrichment Co., Ltd. the actual situation of radioactive waste management, and solid radioactive waste by raising the whole preparation, storage for planning. Through the planning to address the company's accumulation of radioactive waste, more and more waste repository issue of storage space is shrinking each year. Planning is mainly to establish compression volume reduction system, to be accumulated to a certain amount of radioactive waste, the compressed volume reduction package, packaged material blocks passing through the surface contamination testing was conducted after the weighing to measure, and paste the labels, establishing a database and record sets account, record the weight, type, date, etc. after the warehouse store. Would be a good package of radioactive solid waste brought to the state designated for storage of radioactive waste storage sites. By planning the company's radioactive solid waste control and management has been continued to improve. (authors)

  15. Artificial neural networks in the evaluation of the radioactive waste drums activity

    The mathematical techniques are becoming more important to solve geometry and standard identification problems. The gamma spectrometry of radioactive waste drums would be a complex solution problem. The main difficulty is the detectors calibration for this geometry; the waste is not homogeneously distributed inside the drums, therefore there are many possible combinations between the activity and the position of these radionuclides inside the drums, making the preparation of calibration standards impracticable. This work describes the development of a methodology to estimate the activity of a 200 L radioactive waste drum, as well as a mapping of the waste distribution, using Artificial Neural Network. The neural network data set entry obtaining was based on the possible detection efficiency combination with 10 sources activities varying from 0 to 74 x 103 Bq. The set up consists of a 200 L drum divided in 5 layers. Ten detectors were positioned all the way through a parallel line to the drum axis, from 15 cm of its surface. The Cesium -137 radionuclide source was used. The 50 efficiency obtained values (10 detectors and 5 layers), combined with the 10 source intensities resulted in a 100,000 lines for 15 columns matrix, with all the possible combinations of source intensity and the Cs-137 position in the 5 layers of the drum. This archive was divided in 2 parts to compose the set of training: input and target files. The MatLab 7.0 module of neural networks was used for training. The net architecture has 10 neurons in the input layer, 18 in the hidden layer and 5 in the output layer. The training algorithm was the 'traincgb' and after 300 'epoch s' the medium square error was 0.00108172. This methodology allows knowing the detection positions answers in a heterogeneous distribution of radionuclides inside a 200 L waste drum; in consequence it is possible to estimate the total activity of the drum in the training neural network limits. The results accuracy depends on

  16. Thermal treatment of organic radioactive waste

    The organic radioactive waste which is generated in nuclear and isotope facilities (power plants, research centers and other) must be treated in order to achieve a waste form suitable for long term storage and disposal. Therefore the resulting waste treatment products should be stable under influence of temperature, time, radioactivity, chemical and biological activity. Another reason for the treatment of organic waste is the volume reduction with respect to the storage costs. For different kinds of waste, different treatment technologies have been developed and some are now used in industrial scale. The paper gives process descriptions for the treatment of solid organic radioactive waste of low beta/gamma activity and alpha-contaminated solid organic radioactive waste, and the pyrolysis of organic radioactive waste

  17. Radioactive liquid waste processing system

    The present invention provides a system for processing radioactive liquid wastes containing laundry liquid wastes, shower drains or radioactive liquid wastes containing chemical oxygen demand (COD) ingredients and oil content generated from a nuclear power plant. Namely, a collecting tank collects radioactive liquid wastes. A filtering device is connected to the exit of the collective tank. A sump tank is connected to the exit of the filtering device. A powdery active carbon supplying device is connected to the collecting tank. A chemical fluid tank is connected to the collecting tank and the filtering device by way of chemical fluid injection lines. Backwarding pipelines connect a filtered water flowing exit of the filtering device and the collecting tank. The chemical solution is stored in the chemical solution tank. Then, radioactive materials in radioactive liquid wastes generated from a nuclear power plant are removed by the filtering device. The water quality standard specified in environmental influence reports can be satisfied. In the filtering device, when the filtering flow rate is reduced, the chemical fluid is supplied from the chemical fluid tank to the filtering device to recover the filtering flow rate. (I.S.)

  18. Liability coverage for high-level radioactive waste management activities: An update

    A continuing concern surrounding development of facilities for management of high-level radioactive waste is the scope of liability coverage that might have to be called upon to compensate the public. The Price-Anderson Act, which now establishes an exemplary system of private insurance or government indemnity for various nuclear activities, expires on August 1, 1987. Thus, Congress has been considering whether to extend the Act; and, if so, what provisions it should contain and whether it should be amended to apply more explicitly to waste management activities. Additional Congressional activities are expected in the coming months. This paper explores the current status of Congressional consideration of this important matter, which is taking place at the same time growing attention is being devoted to the overall liability crisis in this country

  19. Radioactive waste processing device

    Liquid wastes are supplied to a ceramic filter to conduct filtration. In this case, a device for adding a powdery inorganic ion exchanger is disposed to the upstream of the ceramic filter. When the powdery inorganic ion exchanger is charged to the addition device, it is precoated to the surface of the ceramic filter, to conduct separation of suspended matters and separation of ionic nuclides simultaneously. Liquid wastes returned to a collecting tank are condensed while being circulated between the ceramic filter and the tank and then contained in a condensation liquid waste tank. With such a constitution, both of radioactive nuclides accompanied by suspended matters in the radioactive liquid wastes and ionic nuclides can be captured efficiently. (T.M.)

  20. Comparison exercise on activity determination of radioactive waste drums in Taiwan.

    Chu, Wei-Han; Yeh, Chin-Hsien; Yuan, Ming-Chen

    2016-03-01

    The National Radiation Standard Laboratory of Taiwan organized in 2014 a comparison exercise by distributing 210 L drum-typed samples to seven radioactive waste analysis laboratories in Taiwan. Four drums were filled with uniformly distributed active carbon, water, resin and concrete, respectively and five drums were filled with cracked metals and heterogeneously distributed radioactive sources. Measurement uncertainties of participants results are in the range 3–40% (k=2) and about 96% of the reported results produced En values (ISO, 1997) smaller than one for drums with activity uniformly distributed. The minimum discrepancies, expressed as Bi values (ISO, 1997), of drums with heterogeneously distributed 137Cs and 60Co were 0.34 and 0.17, respectively. PMID:27358943

  1. Radioactive wastes, disposal sites wanted

    Two towns that were selected by the French government to home a disposal site for low-level radioactive wastes, have withdrawn their bid. ANDRA (French national agency for the management of radioactive wastes) attributes this withdrawal to the unbearable pressure made by the opponents on the city councils despite the public information meetings that were held in the 2 cities. The selection rules included the presence of clay layers with a thickness of at least 50 m, the absence of seismic activity and zones containing exploitable resources like petroleum or metal ores were barred in order to avoid future unexpected drilling. (A.C.)

  2. Law on the management of radioactive waste

    This law regulate the relations of legal persons, enterprises without the rights of legal persons, and natural persons in the management of radioactive waste in Lithuania and establish the legal grounds for the management of radioactive waste. Thirty one article of the law deals with the following subjects: principles of radioactive waste management, competence of the Government, State Nuclear Power Safety Inspectorate, Ministry of Economy, Ministry of Environment and Radiation Protection Center in the sphere of regulation of the radioactive waste management, activities subject to licensing, issue of licences and authorisations, duties and responsibilities of the waste producer, founding of the radioactive waste management agency, its basic status and principles of the activities, functions of the agency, management of the agency, transfer of the radioactive waste to the agency, assessment of the existing waste management facilities and their past practices, siting, design and construction, safety assessment, commissioning and operation of the radioactive waste management facilities, radiation protection, quality assurance, emergency preparedness, decommissioning of radioactive waste storage and other facilities, post-closure surveillance of the repository, disused sealed sources, transportation, export and transit of radioactive waste

  3. Method of packaging radioactive wastes

    Purpose: To decrease the leaching of radioactive waste in marine environment. Method: Fillers are placed between a drum can and an inner cage for charging radioactive wastes in order to prevent the leakage of the radioactive wastes from the drum can. Leaching inhibitors for radioactive materials are mixed with the fillers made of organic substance such as asphalts and plastics. The leaching inhibitors are made of materials in the similar chemical form to that of the radioactive materials in the wastes and mixed into the fillers to the saturation limit of dissolution. For the radioactive wastes containing spent adsorbents for iodine, the inhibitors are made of silver nitrates. (Ikeda, J.)

  4. Radioactive waste management

    The main issues of the radioactive waste safe management are covered in the monograph. The international knowledge, as well as the national experience in this field are summarized. The technologies and methods used for the safety objective achievement are described. The main attention is paid to the safety norms and rules, to the descriptions of the radwaste management facilities under operation

  5. Estimation of activity in radioactive solid waste at Rajasthan Atomic Power Station- 1 and 2

    In view of the present regulatory norms, it is required that any radioactive solid waste should be labeled for activity content and radionuclide composition in it. An easy method for this purpose is to measure the radiation field at a fixed distance from the waste package and convert it to the activity content by applying suitable predetermined conversion factor. A user friendly PC-based code ACTDOR was developed by Health Physics Division, Bhabha Atomic Research Centre. This code requires a library of radionuclides and their composition present in the waste of different systems. A special sample collection technique and the analysis of samples has been evolved at Rajasthan Atomic Power Station (RAPS)-1 and 2. The sample collection technique, the behaviour of radionuclides in the waste package and the validation of the code at RAPS-1 and 2 have been described. Experimental values are in reasonable agreement with the values given by the code in the light of high degree of non-homogeneity present in the waste package. (author)

  6. Radioactive waste processing field

    Storing space for radioactive wastes (storage tunnels) are formed underground of the sea bottom along coast. A plurality of boreholes through which sea water flows are pored vertically in a direction intersecting underground streams of brine in the ground between the tunnels and seaside. Sea water introduction pipes are joined to the upper side walls of the boreholes. The sea water introduction pipes have introduction ports protruded under the sea level of the coastal sea area region. Since sea water flows from the introduction ports to the boreholes passing through the sea water introduction pipes, sea water is always filled in the boreholes. Therefore, brine is sufficiently supplied toward the land by sea water from the boreholes, the underground stream of brine is negligibly small. This can prevent radioactive contamination due to flow of the underground water when radioactive wastes are buried in the underground near coast. (I.N.)

  7. Radioactive waste management glossary

    The Waste Management Glossary defines over 300 terms in the English language that have special meanings when they are used in the context of radioactive waste management. The Glossary is intended to provide a consistent reference for these terms for specialists in this field. It also will assist non-specialists who read IAEA reports dealing with waste management. This is the second edition of the Glossary. It is intended to update and replace its predecessor, TECDOC-264, that was issued in 1982. (author)

  8. Qualification tests for packages used for transport and storage of radioactive waste (low activity) in INR Pitesti

    Vieru, G. (Institute for Nuclear Research, Pitesti (Romania))

    1993-01-01

    Radioactive wastes generated by the TRIGA INR research reactor are packaged according to the national and international standards and the IAEA Regulations. The technology for packaging and treatment of radioactive wastes used in this institute can be applied, prospectively, at the Nuclear Power Plant Cernavoda, after commissioning. The qualification tests (low tests) are described for packages used for transport and storage (for a long period of about 30 years) of radioactive wastes (low activity, up to 0.5068 x 10[sup 10] Bq per drum, or 0.164 Ci per drum). As a result of the tests, Romanian technology for treatment and packaging of radioactive wastes is considered to be in accordance with IAEA Regulations. (author).

  9. Radioactive wastes handling facility

    There are disposed an area where a conveyor is disposed for separating miscellaneous radioactive solid wastes such as metals, on area for operators which is disposed in the direction vertical to the transferring direction of the conveyor, an area for receiving the radioactive wastes and placing them on the conveyor and an area for collecting the radioactive wastes transferred by the conveyor. Since an operator can conduct handling while wearing a working cloth attached to a partition wall as he wears his ordinary cloth, the operation condition can be improved and the efficiency for the separating work can be improved. When the area for settling conveyors and the area for the operators is depressurized, cruds on the surface of the wastes are not released to the outside and the working clothes can be prevented from being involved. Since the wastes are transferred by the conveyor, the operator's moving range is reduced, poisonous materials are fallen and moved through a sliding way to an area for collecting materials to be separated. Accordingly, the materials to be removed can be accumulated easily. (N.H.)

  10. Solid radioactive waste: evaluation of residual activity in nuclear medicine services

    An experimental programme to estimate, with a better degree of accuracy, the activity that remains adsorbed in flasks and syringes used in Nuclear Medicine Services for the administration of radionuclides to patients submitted to diagnostic or therapy is been conducted under the coordination of the Radioactive Waste Division of the Brazilian Nuclear Energy Commission, CNEN. The adopted recommendation in Brazil to allow an expedite solid waste management in nuclear medicine facilities, up to the present, is to consider that 2% of the initial activity remains adsorbed in the solid waste, which easily allows the calculation of the storage time to achieve regulatory clearance levels by decay. This research evaluates 17 different kinds of radiopharmaceuticals and three radioisotopes: 99mTc, 67Ga and 201Tl. Results obtained by means of a weighting method to estimate the residual mass in flasks show that the ratio of the mass of the liquid that remains in the solid waste to the mass of the empty flask is constant. This suggests that the residual activity depends on the initial activity concentration of radiopharmaceutical contained in each flask, as assumed by the regulatory body. Additionally, results obtained by determining the remaining activity in flasks, shortly after the injection of its radionuclide contents in patients, indicate that an average value for the residual activity of the order of 10% of the initial activity contained in the flasks or syringes should be adopted to determine the decay storage time before the release of solid waste in the urban conventional land fill disposal system. The 'rule of thumb' of 10 half-lives for storage before clearance is also discussed in the present work. (author)

  11. Development of joint regulatory guidance on the management of higher activity radioactive wastes on nuclear licensed sites - 16095

    In 2006 the UK Government's response (1) to recommendations by its Committee on Radioactive Waste Management (CoRWM) established, in England and Wales, that geological disposal, supported by safe and secure interim storage, is the preferred route for the long-term management of higher-activity radioactive waste (i.e. that which is not suitable for near-surface disposal). It also gave the responsibility for delivering the programme for a deep geological repository to the Nuclear Decommissioning Authority (NDA). The Scottish Government has a policy of long term, near site, near surface safe and secure interim storage. To support the open and transparent approach promised by Government, the Health and Safety Executive (HSE), the Environment Agency and the Scottish Environment Protection Agency (SEPA) are developing joint guidance on the management of higher-activity radioactive waste to explain regulatory objectives in securing safe and secure interim storage and the associated management of radioactive wastes. The guidance comes in two parts: - Guidance on the regulatory process; - Technical guidance modules. The guidance promotes a cradle to grave approach to radioactive waste management and by aligning the regulatory interests of environmental and safety regulators it delivers one of the Government's 'Better Regulation' objectives. This paper describes the process by which the joint guidance was produced with particular emphasis on stakeholder engagement. It describes the key features of the guidance, including the concept of the radioactive waste management case (RWMC). Finally the problems encountered with dissemination and implementation are discussed together with measures taken by the regulators to improve these aspects. (1) : UK Government and the devolved administrations, 'Response to the Report and Recommendations from the Committee on Radioactive Waste Management (CoRWM)', (PB 12303) October 2006. www.defra.gov.uk/environment/radioactivity/waste

  12. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING WITH ACUTAL HANFORD LOW ACTIVITY WASTES VERIFYING FBSR AS A SUPPLEMENTARY TREATMENT

    Jantzen, C.; Crawford, C.; Burket, P.; Bannochie, C.; Daniel, G.; Nash, C.; Cozzi, A.; Herman, C.

    2012-01-12

    The U.S. Department of Energy's Office of River Protection is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the cleanup mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA). Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. Fluidized Bed Steam Reforming (FBSR) is one of the supplementary treatments being considered. FBSR offers a moderate temperature (700-750 C) continuous method by which LAW and other secondary wastes can be processed irrespective of whether they contain organics, nitrates/nitrites, sulfates/sulfides, chlorides, fluorides, and/or radio-nuclides like I-129 and Tc-99. Radioactive testing of Savannah River LAW (Tank 50) shimmed to resemble Hanford LAW and actual Hanford LAW (SX-105 and AN-103) have produced a ceramic (mineral) waste form which is the same as the non-radioactive waste simulants tested at the engineering scale. The radioactive testing demonstrated that the FBSR process can retain the volatile radioactive components that cannot be contained at vitrification temperatures. The radioactive and nonradioactive mineral waste forms that were produced by co-processing waste with kaolin clay in an FBSR process are shown to be as durable as LAW glass.

  13. Radioactive Demonstrations Of Fluidized Bed Steam Reforming With Acutal Hanford Low Activity Wastes Verifying Fbsr As A Supplementary Treatment

    The U.S. Department of Energy's Office of River Protection is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the cleanup mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA). Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. Fluidized Bed Steam Reforming (FBSR) is one of the supplementary treatments being considered. FBSR offers a moderate temperature (700-750 C) continuous method by which LAW and other secondary wastes can be processed irrespective of whether they contain organics, nitrates/nitrites, sulfates/sulfides, chlorides, fluorides, and/or radio-nuclides like I-129 and Tc-99. Radioactive testing of Savannah River LAW (Tank 50) shimmed to resemble Hanford LAW and actual Hanford LAW (SX-105 and AN-103) have produced a ceramic (mineral) waste form which is the same as the non-radioactive waste simulants tested at the engineering scale. The radioactive testing demonstrated that the FBSR process can retain the volatile radioactive components that cannot be contained at vitrification temperatures. The radioactive and nonradioactive mineral waste forms that were produced by co-processing waste with kaolin clay in an FBSR process are shown to be as durable as LAW glass.

  14. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank Farm Blend) By Fluidized Bed Steam Reformation (FBSR)

    Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Daniel, W. E.; Hall, H. K.; Miller, D. H.; Missimer, D. M.; Nash, C. A.; Williams, M. F.

    2013-08-21

    . The granular ESTD and BSR products (radioactive and non-radioactive) were analyzed for total constituents and durability tested as a granular waste form. A subset of the granular material was stabilized in a clay based geopolymer matrix at 42% and 65% FBSR loadings and durability tested as a monolith waste form. The 65 wt% FBSR loaded monolith made with clay (radioactive) was more durable than the 67-68 wt% FBSR loaded monoliths made from fly ash (non-radioactive) based on short term PCT testing. Long term, 90 to 107 day, ASTM C1308 testing (similar to ANSI/ANS 16.1 testing) was only performed on two fly ash geopolymer monoliths at 67-68 wt% FBSR loading and three clay geopolymer monoliths at 42 wt% FBSR loading. More clay geopolymers need to be made and tested at longer times at higher FBSR loadings for comparison to the fly ash monoliths. Monoliths made with metakaolin (heat treated) clay are of a more constant composition and are very reactive as the heat treated clay is amorphous and alkali activated. The monoliths made with fly ash are subject to the inherent compositional variation found in fly ash as it is a waste product from burning coal and it contains unreactive components such as mullite. However, both the fly ash and the clay based monoliths perform well in long term ASTM C1308 testing. Extensive testing and characterization of the granular and monolith material were made including the following American Society of Testing and Materials (ASTM) tests: ASTM C1285 testing (Product Consistency Test) of granular and monolithic waste forms; Comparison of granular BSR radioactive to ESTD and pilot scale granular non-radioactive waste form made from the Rassat simulant  Comparison of granular radioactive to granular non-radioactive waste form made from the Rassat simulant made using the SRNL BSR; Comparison of monolithic BSR radioactive waste forms to monolithic BSR and ESTD non-radioactive waste forms made of fly ash; Comparison of granular BSR radioactive

  15. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank Farm Blend) By Fluidized Bed Steam Reformation (FBSR)

    day, ASTM C1308 testing (similar to ANSI/ANS 16.1 testing) was only performed on two fly ash geopolymer monoliths at 67-68 wt% FBSR loading and three clay geopolymer monoliths at 42 wt% FBSR loading. More clay geopolymers need to be made and tested at longer times at higher FBSR loadings for comparison to the fly ash monoliths. Monoliths made with metakaolin (heat treated) clay are of a more constant composition and are very reactive as the heat treated clay is amorphous and alkali activated. The monoliths made with fly ash are subject to the inherent compositional variation found in fly ash as it is a waste product from burning coal and it contains unreactive components such as mullite. However, both the fly ash and the clay based monoliths perform well in long term ASTM C1308 testing. Extensive testing and characterization of the granular and monolith material were made including the following American Society of Testing and Materials (ASTM) tests: ASTM C1285 testing (Product Consistency Test) of granular and monolithic waste forms; Comparison of granular BSR radioactive to ESTD and pilot scale granular non-radioactive waste form made from the Rassat simulant; Comparison of granular radioactive to granular non-radioactive waste form made from the Rassat simulant made using the SRNL BSR; Comparison of monolithic BSR radioactive waste forms to monolithic BSR and ESTD non-radioactive waste forms made of fly ash; Comparison of granular BSR radioactive waste forms to monolithic BSR non-radioactive waste forms made of fly ash; Comparison of granular BSR radioactive waste forms to monolithic BSR non-radioactive waste forms made of clay; ASTM C1308 Accelerated Leach Test for Diffusive Releases from Solidified Waste and a Computer Program to Model Diffusive, Fractional Leaching from Cylindrical Waste Forms; Comparison of BSR non-radioactive waste forms to monolithic ESTD non-radioactive waste forms made from fly ash; Testing of BSR non-radioactive monoliths made from clay

  16. Unrestricted disposal of minimal activity levels of radioactive wastes: exposure and risk calculations

    The US Nuclear Regulatory Commission is currently considering revision of rule 10 CFR Part 20, which covers disposal of solid wastes containing minimal radioactivity. In support of these revised rules, we have evaluated the consequences of disposing of four waste streams at four types of disposal areas located in three different geographic regions. Consequences are expressed in terms of human exposures and associated health effects. Each geographic region has its own climate and geology. Example waste streams, waste disposal methods, and geographic regions chosen for this study are clearly specified. Monetary consequences of minimal activity waste disposal are briefly discussed. The PRESTO methodology was used to evaluate radionuclide transport and health effects. This methodology was developed to assess radiological impacts to a static local population for a 1000-year period following disposal. Pathways and processes of transit from the trench to exposed populations included the following considerations: groundwater transport, overland flow, erosion, surface water dilution, resuspension, atmospheric transport, deposition, inhalation, and ingestion of contaminated beef, milk, crops, and water. 12 references, 2 figures, 8 tables

  17. Radioactive waste management in FR Yugoslavia

    Results presented in this paper represent the nowadays status of the radioactive waste management, especially quality testing methods, which are in common with radioactive waste solidification processes, performing in the Institute of nuclear sciences ''Vinca'' in Belgrade. These investigations represent the part of important activity in a ten years mortar and concrete testing project and research work that is dealing with the radioactive waste mixture forms. The data obtained in these investigations are intended to use during the designing of the proposed central radioactive waste materials repository in FR Yugoslavia. (author)

  18. Radioactive waste management

    The OECD Nuclear Energy Agency (NEA) attaches considerable importance to its cooperation with Japan. It was said in the annual conference in 1977 that the presentation of the acceptable policy regarding radioactive waste management is the largest single factor for gaining public confidence when nuclear power is adopted with assurance. The risk connected with radioactive wastes was often presented as the major obstacle to the development of nuclear energy, however, an overall impression of optimism and confidence prevailed by the technical appraisal of the situation in this field by the committee of the NEA. This evolution can be easily explained by the significant progress achieved in radioactive waste management both at the technical level and with respect to the implementation of special legislation and the establishment of specialized institutions and financing schemes. More research will focus on the optimization of the technical, safety and economic aspects of specific engineering designs at specific sites on the long term isolation of wastes, and the NEA contributes to this general effort. The implementation of disposal programs is also in progress. (Kako, I.)

  19. Categorizing operational radioactive wastes

    The primary objective of this publication is to improve communications among waste management professionals and Member States relative to the properties and status of radioactive waste. This is accomplished by providing a standardized approach to operational waste categorization using accepted industry practices and experience. It is a secondary objective to draw a distinction between operational waste categorization and waste disposal classification. The approach set forth herein is applicable to waste generation by mature (major, advanced) nuclear programmes, small-to-medium sized nuclear programmes, and programmes with waste from other nuclear applications. It can be used for planning, developing or revising categorization methodologies. For existing categorization programmes, the approach set forth in this publication may be used as a validation and evaluation tool for assessing communication effectiveness among affected organizations or nations. This publication is intended for use by waste management professionals responsible for creating, implementing or communicating effective categorization, processing and disposal strategies. For the users of this publication, it is important to remember that waste categorization is a communication tool. As such, the operational waste categories are not suitable for regulatory purposes nor for use in health and safety evaluations. Following Section 1 (Introduction) Section 2 of this publication defines categorization and its relationship to existing waste classification and management standards, regulations and practices. It also describes the benefits of a comprehensive categorization programme and fundamental record considerations. Section 3 provides an overview of the categorization process, including primary categories and sub-categories. Sections 4 and 5 outline the specific methodology for categorizing unconditioned and conditioned wastes. Finally, Section 6 provides a brief summary of critical considerations that

  20. Training activities and perspectives in the radioactive waste management area of Moscow SIA 'Radon' - 16131

    The education service for specialists dealing with radioactive waste was established in Russia (former USSR) in 1983 and was based on the capabilities of two organisations: Moscow Scientific and Industrial Association 'Radon' (SIA 'Radon') and Lomonosov's Moscow State University. These two organizations are able jointly to offer training programs in the science fundamentals, applied research and in practical operational areas of the all pre-disposal activities of the radioactive waste management (RWM). Since 1997 this system was upgraded to the international level and now acts as the International Education Training Centre (IETC) at SIA 'Radon' under the guidance of the IAEA. During last 12 years more than 350 specialists from 33 European and Asian countries enhanced their knowledge and skills in RWM. The IAEA supported many specialized regional training courses and workshops, fellowships, on-the-job training, and scientific visits which are additional means to assure development of personnel capabilities. Efficiency of training was analysed at IETC using the structural adaptation of educational process as well as factors, which have influence on education quality. In addition social-psychological aspects were also taken into account in assessing the overall efficiency. The analysis of the effect of individual factors and the efficiency of education activity were carried out based on appraisal results and post-course questioning of attendees. (authors)

  1. Radioactive waste management in Albania

    The policy and strategy of radioactive waste management in Albania are described in the Ministers Council's Decree No. 83, 1971. According to this Decree the liquid waste are all contaminated liquids with concentrations 10-100 times higher than maximal permissible concentrations for ordinary water. The management of liquid waste is done through their collection in special tanks without any treatment and subsequent discharge to sewer. The principal radioisotopes in liquid waste are I-131 and Tc-99m. The solid waste are all materials, which contain of or are contaminated with radioisotopes up to levels greater than exempted quantities. The management of solid waste is done through its safe storage in the premises, where radioactive decay occurs, especially for short lived radionuclides. Last years, many spent radiation sources were gathered in the Institute of Nuclear Physics (INP) for conditioning and interim storage. For conditioning 200 litres standard drums with steel bars and concrete filling having a hole in the centre are used. Spent radiation sources were emplaced in the hole until the activity of 20 GBq has been reached. Interim storage of conditioned sources is carried out in the engineering facility near the INP with trenches of capacity 5 cubic meters each. Last year a national inventory of sealed radiation sources begin to compile. A national programme for radioactive waste management in the future has been developed, taking into account the future extension of production and use of radioisotopes and radiopharmaceuticals and the participation of Albania in the IAEA Interregional Model Project on Radioactive Waste Management. (author). 6 refs, 2 figs, 2 tabs

  2. Sorting method for radioactive waste

    This paper describes a method for detecting radioactive components in dry active waste, comprising the steps of: providing a substantially airtight housing, withdrawing air from the housing, reducing the waste to pieces of substantially uniform size, providing a first conveyor in the housing, the first conveyor having a receiving portion and a discharge portion, discharging the pieces of reduced waste onto the first conveyor, flattening the pieces of reduced waste, detecting radiation emanating from the pieces of reduced waste from a position closely overlying the first conveyor, after the pieces are flattened, removing from the first conveyor the pieces of reduced waste from which radioactive radiation above a determined level is detected, providing a second conveyor in the housing, the second conveyor having a receiving portion and a discharge portion, disposing the second conveyor so that its receiving portion is below and spaced from the discharge portion of the first conveyor, discharging the pieces of reduced waste from the discharge portion of the first conveyor so that they fall onto the receiving portion of the second conveyor; the space between the last named discharge portion and the last named receiving portion being sufficiently great so that the pieces of reduced waste are substantially overturned and dispersed as they fall to the last named receiving portion

  3. Radioactive Waste Management Objectives

    considered and the specific goals to be achieved at different stages of implementation, all of which are consistent with the Basic Principles. The four Objectives publications include Nuclear General Objectives, Nuclear Power Objectives, Nuclear Fuel Cycle Objectives, and Radioactive Waste Management and Decommissioning Objectives. This publication sets out the objectives that need to be achieved in the area of radioactive waste management, including decommissioning and environmental remediation, to ensure that the Nuclear Energy Basic Principles are satisfied.

  4. Final disposal of radioactive waste

    Freiesleben H.

    2013-01-01

    In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste – LLW, intermediate-level waste – ILW, high-level waste – HLW) are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of c...

  5. Chemical decontamination method for radioactive metal waste

    The invention relates to a decontamination method for radioactive metal waste products derived from equipment that handles radioactive materials whose surfaces have been contaminated; in particular it concerns a decontamination method that reduces the amount of radioactive waste by decontaminating radioactive waste substances to a level of radioactivity in line with normal waste products. In order to apply chemical decontamination to metal waste products whose surfaces are divided into carbon steel waste and stainless steel waste; the carbon steel waste is treated using only a primary process in which the waste is immersed in a sulfuric acid solution, while the stainless steel waste must be treated with both the primary process and then electrolytically reduces it for a specific length of time and a secondary process that uses a solution of sulfuric acid mixed with oxidizing metal salts. The method used to categorize metal waste into carbon steel waste and stainless steel waste involves determining the presence, or absence, of magnetism. Voltage is applied for a fixed duration; once that has stopped, electrolytic reduction repeats the operative cycle of applying, then stopping voltage until the potential of the radioactive metal waste is retained in the active region. 1 fig. 2 tabs

  6. Radioactive waste management policies

    Eight senior government representatives outlined the views and policies of their countries in the field of radioactive waste management at a 'scientific afternoon' during the 27th Regular Session of the General Conference of the IAEA in Vienna in October. The countries represented were Argentina, France, the Federal Republic of Germany, India, Japan, Sweden, the United Kingdom, and the USA; statements made by the participants are reproduced in this article

  7. Radioactive waste management strategy in Argentina

    In this paper, an outline is given concerning the treatment, conditioning, characterization, storage, transport and final disposal of radioactive wastes arising in the fuel cycle, radioisotopes production plant, research centers, etc. The overall strategy of the Argentina program is to plan, develop and implement the technology and provide the facilities for the permanent isolation of commercially generated wastes, with the aim that this waste not compromise the health and safety of the general public. To implement all these activities, CNEA has established in 1986 a Radioactive Waste Management Program. This long term project is aimed at meeting all the requirements for the radioactive waste management of Argentina

  8. Radioactive waste management glossary

    Terminology used in documents published by the IAEA is frequently defined in glossaries in the separate documents so that understanding is enhanced, particularly for terms having unique meanings in the field of radioactive waste management. This has been found to be a good practice but frequently a burdensome one, too. In addition, terms in various documents occasionally were used differently. Thus, a common glossary of terms for radioactive waste management documents is believed to have merit. This glossary has been developed for use in IAEA documentation on radioactive waste management topics. The individual items have been compiled by selecting terms and definitions from thirty sources, listed on the next page, and numerous people. An effort has been made to use the definitions in internationally-accepted glossaries (e.g. ICRP, ICRU, ISO), with minimum modification; similarly, definitions in recently published IAEA documents have been respected. Nevertheless, when modifications were believed appropriate, they have been made. The glossary, stored on magnetic tape, is intended to be used as a standard for terminology for IAEA use; it is hoped that some benefits of common international terminology may result from its use in IAEA documentation

  9. Radioactive wastes management development in Chile

    A Facility for immobilizing and conditioning of radioactive wastes generated in Chile, has recently started in operation. It is a Radioactive Wastes Treatment Plant, RWTP, whose owner is Comision Chilena de Energia Nuclear, CCHEN. A Storgement Building of Conditioned Wastes accomplishes the facility for medium and low level activity wastes. The Project has been carried with participation of chilean professionals at CCHEN and Technical Assistance of International Atomic Energy Agency, IAEA. Processes developed are volume reduction by compaction; immobilization by cementation and conditioning. Equipment has been selected to process radioactive wastes into a 200 liters drum, in which wastes are definitively conditioned, avoiding exposition and contamination risks. The Plant has capacity to treat low and medium activity radioactive wastes produced in Chile due to Reactor Experimental No. 1 operation, and annex Laboratories in Nuclear Research Centers, as also those produced by users of nuclear techniques in Industries, Hospitals, Research Centers and Universities, in the whole country. With the infrastructure developed in Chile, a centralization of Radioactive Wastes Management activities is achieved. A data base system helps to control and register radioactive wastes arising in Chile. Generation of radioactive wastes in Chile, has found solution for the present production and that of near future

  10. The Treatment of Low Level Radioactive Liquid Waste Containing Detergent by Biological Activated Sludge Process

    The treatment of low level radioactive liquid waste containing persil detergent from laundry operation of contaminated clothes by activated sludge process has been done, for alternative process replacing the existing treatment by evaporation. The detergent concentration in water solution from laundry operation is 14.96 g/l. After rinsing operation of clothes and mixing of laundry water solution with another liquid waste, the waste water solution contains about ≤ 1.496 g/l of detergent and 10-3 Ci/m3 of Cs-137 activity. The simulation waste having equivalent activity of Cs-137 10-3 Ci/m3, detergent content (X) 1.496, 0.748, 0.374, 0.187, 0.1496 and 0.094 g/l on BOD value respectively 186, 115, 71, 48, 19, and 16 ppm was processed by activated sludge in reactor of 18.6 l capacity on ambient temperature. It is used Super Growth Bacteria (SGB) 102 and SGB 104, nitrogen and phosphor nutrition, and aeration. The result show that bacteria of SGB 102 and SGB 104 were able to degrade the persil detergent for attaining standard quality of water release category B in which BOD values 6 ppm. It was need 30 hours for X ≤ 0.187 g/l, 50 hours for 0.187 < X ≤ 0.374 g/l, 75 hours for 0.374 < X ≤ 0.748, and 100 hours for 0.748 < X ≤ 1.496 g/l. On the initial period the bacteria of SGB 104 interact most quickly to degrade the detergent comparing SGB 102. Biochemical oxidation process decontaminate the solution on the decontamination factor of 350, Cs-137 be concentrate in sludge by complexing with the bacteria wall until the activity of solution be become very low. (author)

  11. Regulation of Federal radioactive waste activities. Report to Congress on extending the Nuclear Regulatory Commission's licensing or regulatory authority to Federal radioactive waste storage and disposal activities

    The report contains two recommendations for extending the Commission's regulatory authority: (1) NRC licensing authority should be extended to cover all new DOE facilities for disposal of transuranic (TRU) waste and nondefense low-level waste. (2) A pilot program, focused on a few specific DOE waste management activities, should be established to test the feasibility of extending NRC regulatory authority on a consultative basis to DOE waste management activities not now covered by NRC's licensing authority or its extension as recommended in Recommendation 1

  12. Qualification tests of packages used for transport and storage of low activity radioactive wastes in INR Pitesti

    Radioactive wastes generated by the TRIGA INR research reactor are packaged according to the national and international rules and standards. The technology for packaging and treatment of radioactive wastes can also be used at the Nuclear Power Plant Cernavoda. The qualification tests for the package used for transport and storage of radioactive wastes (low activity, up to 6.07 GBq (0.164 Ci) per drum) are described. The package used is a drum manufactured from 1 mm thick mild steel with the dimensions: height 915 ± 10 mm; diameter 600 ± 5 mm; volume 220 litres. To achieve adequate safety in the transport of radioactive wastes strict precautions must be taken according to the IAEA Regulations for the Safe Transport of Radioactive Materials. The adequacy of the package design is therefore of primary importance, the design requirements being supplemented by careful construction, quality assurance and inspection procedures. Taking into consideration the above requirements, qualification tests for the prototype package were carried out. These tests include compression, penetration, free fall, leaching, safety in use (biological protection), checking of chemical and mechanical characteristics, and the effect of the product on the environment. Performance of these tests, and the results obtained, prove that our technology for treatment and packaging of radioactive waste is in accordance with international rules. (author)

  13. Qualification tests of packages used for transport and storage of low activity radioactive wastes in INR Pitesti

    Vieru, G. (Institute for Nuclear Research, Pitesti (Romania))

    1994-01-01

    Radioactive wastes generated by the TRIGA INR research reactor are packaged according to the national and international rules and standards. The technology for packaging and treatment of radioactive wastes can also be used at the Nuclear Power Plant Cernavoda. The qualification tests for the package used for transport and storage of radioactive wastes (low activity, up to 6.07 GBq (0.164 Ci) per drum) are described. The package used is a drum manufactured from 1 mm thick mild steel with the dimensions: height 915 [+-] 10 mm; diameter 600 [+-] 5 mm; volume 220 litres. To achieve adequate safety in the transport of radioactive wastes strict precautions must be taken according to the IAEA Regulations for the Safe Transport of Radioactive Materials. The adequacy of the package design is therefore of primary importance, the design requirements being supplemented by careful construction, quality assurance and inspection procedures. Taking into consideration the above requirements, qualification tests for the prototype package were carried out. These tests include compression, penetration, free fall, leaching, safety in use (biological protection), checking of chemical and mechanical characteristics, and the effect of the product on the environment. Performance of these tests, and the results obtained, prove that our technology for treatment and packaging of radioactive waste is in accordance with international rules. (author).

  14. Argentina's radioactive waste disposal policy

    The Argentina policy for radioactive waste disposal from nuclear facilities is presented. The radioactive wastes are treated and disposed in confinement systems which ensure the isolation of the radionucles for an appropriate period. The safety criteria adopted by Argentina Authorities in case of the release of radioactive materials under normal conditions and in case of accidents are analysed. (M.C.K.)

  15. Management of radioactive waste; Beheer van radioactief afval

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P.; Volckaert, G.; Wacquier, W

    1998-09-01

    The document gives an overview of of different aspects of radioactive waste management in Belgium. The document discusses the radioactive waste inventory in Belgium, the treatment and conditioning of radioactive waste as well as activities related to the characterisation of different waste forms. A separate chapter is dedicated to research and development regarding deep geological disposal of radioactive waste. In the Belgian waste management programme, particular emphasis is on studies for disposal in clay. Main results of these studies are highlighted and discussed.

  16. Radioactive waste: Issues and debates

    Waste management in general has always been in terms of regulation Environmental, a subject of attention but also voltages. Radioactive waste management is no exception to the rule and concentrates, sometimes irrationally, the vast majority industry fears nuclear. The first difficulty is to define radioactive waste, which raises further questions with regard to the case law on this topic and reactions of stakeholders. One of the other components of the debate on radioactive waste is the ability of different actors to ensure sustainable waste management Radioactive in optimum conditions in terms of nuclear safety.This results in the acceptance management solutions by the public.

  17. Application of active and passive neutron non destructive assay methods to concrete radioactive waste drums

    This paper deals with the application of non-destructive neutron measurement methods to control and characterize 200 l radioactive waste drums filled with a concrete matrix. Due to its composition, and particularly to hydrogen, concrete penalizes the use of such methods to quantify uranium (U) and plutonium (Pu) components, which are mainly responsible of the α-activity of the waste. The determination of the alpha activity is the main objective of neutron measurements, in view to verify acceptance criteria in surface storage. Calibration experiments of the Active Neutron Interrogation (ANI) method lead to Detection Limit Masses (DLM) of about 1 mg of 239Pueff in the total counting mode, and of about 10 mg of 239Pueff in the coincidence counting mode, in case of a homogeneous Pu source and measurement times between one and two hours. Monte Carlo calculation results show a very satisfactory agreement between experimental values and calculated ones. Results of the application of passive and active neutron methods to control two real drums are presented in the last part of the paper. They show a good agreement between measured data and values declared by the waste producers. The main difficulties that had to be overcome are the low neutron signal in passive and active coincidence counting modes due to concrete, the analysis of the passive neutron signal in presence of 244Cm in the drum, which is a strong spontaneous fission neutron emitter, the variation of the active background with the concrete composition, and the analysis of the active prompt neutron signal due to the simultaneous presence of U and Pu in the drums.

  18. Radioactive waste management: Spanish experiences

    Radioactive waste generation began in Spain during the 1950's, in association with the first applications of radioactive isotopes in industry, medicine and research. Spain's first nuclear power plant began its operations in 1968. At present, there are in operation some one thousand installations possessing the administrative authorization required to use radioactive isotopes (small producers), nine nuclear groups and a tenth is now entering the dismantling phase. There are also activities and installations pertaining to the front end of the nuclear fuel cycle (mining, milling and the manufacturing of fuel elements). Until 1985, the research center Junta de Energia Nuclear (now CIEMAT) rendered radioactive waste removal, and subsequent conditioning and temporary storage services to the small producers. Since the beginning of their operations the nuclear power plants and fuel cycle facilities have had the capacity to condition and temporarily store their own radioactive wastes. ENRESA (Empresa Nacional de Residuos Radiactivos, S. A.) began its operations in the second half of 1985. It is a state-owned company created by the Government in accordance with a previous parliamentary resolution and commissioned to establish a system for management of such wastes throughout Spain, being in charge also of the dismantling of nuclear power plants and other major installations at the end of their operating lifetimes. Possibly the most outstanding characteristic of ENRESA's evolution over these last seven years has been the need to bring about a compromise between solving the most immediate and pressing day-to-day problems of operation (the first wastes were removed at the beginning of 1986) and establishing the basic organization, resources, technology and installations required for ENRESA to operate efficiently in the long term. (author)

  19. Regulatory aspects and activities in the field of radioactive waste management in Bulgaria

    Bulgaria uses nuclear power for electricity generation and for a variety of nuclear applications in industry, research and medicine. Six WWER type Nuclear Power Plants (NPPs) went into operation at Kozloduy between 1974 and 1991. Until 1988 spent fuel was transported back to the former Soviet Union, but since then has been stored on site. Operational low level waste is stored on site, but since 1993 a volume reduction strategy using supercompaction has been employed, which has reduced stored waste volumes by a factor of four. Institutional radioactive wastes are disposed at the Novi Han near surface repository, located 35 km from Sofia. It was commissioned in 1964 and is now about half full. Siting studies have begun for a new near surface repository that would accept both institutional and NPP waste. A legislative and regulatory framework, as well as organizational and institutional arrangements, are in place. A national strategy that includes provisions for compiling a national inventory of spent fuel and radioactive waste and provisions for funding spent fuel and radioactive waste management, has been developed. The paper elaborates on the current situation regarding radioactive waste management in Bulgaria. (author)

  20. Study on rich alumina alkali-activated slag clay minerals cementitious materials for immobilization of radioactive waste

    The composition and some properties of its pastes of rich alumina alkali-activated slag clay minerals (RAAASCM) cementitious materials for immobilization of radioactive waste are studied. Experimental results show that heat activated kaolinite, Xingjiang zeolite, modified attapulgite clay are better constituents of RAAASCM. RAAASCM cementitious materials pastes exhibit high strength, low porosity, fewer harmful pore, and high resistance to sulphate corrosion as well as gamma irradiation. The Sr2+, Cs+ leaching portion of the simulated radioactive waste forms based on RAAASCM, is low

  1. Maintaining knowledge of radioactive waste

    Full text: [Knowledge - 'awareness or familiarity gained by experience (of a person, fact or thing)... a person's range of information ... the sum of what is known ... true, justified belief; certain understanding, as opposed to opinion.' The Oxford Concise English Dictionary.] Organisations responsible for the safe and effective management of radioactive waste will be aware of the value of information characterising the waste and the need for its preservation. In the United Kingdom the principal legal instrument controlling nuclear site activities is the Nuclear Installations Act (1990), which requires certain licence conditions to be fulfilled. One of the 35 conditions of the nuclear site licence demands that operators ensure that adequate records are kept relating to, inter alia, 'the location of all radioactive material, including nuclear fuel and radioactive waste'. Through the application of this licence condition, the relevant nuclear regulator, Nuclear Installations Inspectorate (NII), requires licensees to make arrangements for recording and preserving all the information that may be required in the future to ensure the safe management of radioactive material and radioactive waste. The majority of operators responsible for the long-term management of radioactive waste will establish systems for preserving information. In order for the system to deliver real benefits, there must be absolute clarity concerning what information is to be preserved, the reasons why it must be preserved, how it is to be managed over the long-term and who is responsible for its management. However, the decisive characteristic of this information management system that could make the difference between preserved liability and valued asset is the ability to access and interpret the information now and in the future. On first inspection, this characteristic appears obvious but how often are these systems established with the primary objective of preserving information when it should

  2. Natural radioactivity of wastes

    By-products of the combustion of coal (wastes) are often used for various types of construction (dwellings, roads, etc.). The legal regulations (The Ordinance of the Council of Ministers of 2 January 2007 'On the requirements for the content of natural radioactive isotopes of potassium K-40, radium Ra-226 and thorium Th-228 in raws and materials used in buildings for the residence of people and livestock, as well as in the industrial by-products used in the construction, and the control of the content of the aforementioned isotopes' - Law Gazette no. 4/2007 item 29) are in force in Poland. The regulations permit the possibility of utilization of raws and by-products basing upon the level of the natural radioactivity of the examined raws and materials. The article is a survey of the results obtained during the measurements of many types of raws and building materials for almost 30 years by the network of the laboratories in Poland. It is based upon the results stored in the database of the Central Laboratory for Radiological Protection (CLRP), Warsaw. The article tends to outline the radioactivity of the waste materials with respect to other raws and materials used in the construction industry. The article shows the possibilities for the use of by-products originating in the power stations and heat- and power stations (mainly ashes, slag and hinter) in the construction of dwellings and roads. (authors)

  3. Radioactive waste from non-licensed activities - identification of waste, compilation of principles and guidance, and proposed system for final management

    Presently national guidelines for the handling of radioactive waste from non-licensed activities are lacking in Sweden. Results and information presented in this report are intended to form a part of the basis for decisions on further work within the Swedish Radiation Protection Institute on regulations or other guidelines on final management and final disposal of this type of waste. An inventory of radioactive waste from non-licensed activities is presented in the report. In addition, existing rules and principles used in Sweden - and internationally - on the handling of radioactive and toxic waste and non-radioactive material are summarized. Based on these rules and principles a system is suggested for the final management of radioactive material from non-licensed activities. A model is shown for the estimation of dose as a consequence of leaching of radio-nuclides from different deposits. The model is applied on different types of waste, e.g. peat ashes, light concrete and low-level waste from a nuclear installation

  4. Treatment of radioactive wastes by incineration

    Great part of the radioactive wastes of low and intermediate level generated during the nuclear fuel cycle, in laboratories and other sites where the radionuclides are used for the research in the industry, in medicine and other activities, are combustible wastes. The incineration of these radioactive wastes provides a very high reduction factor and at the same time converts the wastes in radioactive ashes and no-flammable residuals, chemically inert and much more homogeneous that the initial wastes. With the increment of the costs in the repositories and those every time but strict regulations, the incineration of radioactive wastes has been able to occupy an important place in the strategy of the wastes management. However, in a particular way, the incineration is a complex process of high temperature that demands the execution of safety and operation requirements very specific. (author)

  5. TREATMENT OF RADIOACTIVE WASTE SOLUTIONS CONTAINING CESIUM AND STRONTIUM BY CHEMICALLY MODIFIED ACTIVATED CARBON

    The aim of this study is to develop activated carbon prepared from peach stone shell as an adsorbent for Cs+ and Sr2+ ions from their aqueous waste solutions. In this respect, five samples of peach stone shell were investigated. The first four samples were prepared by immersing the samples in different concentrations of either ZnCl2 or KOH, individually, prior to heat treatment at 500oC. The fifth sample was prepared only by thermal treatment at 500oC.The physical and chemical characteristics of the prepared samples were carried out. A comparative study for the removal of Cs+ and Sr2+ ions from their aqueous waste solutions using the investigated samples have been carried out using batch experiments.The different parameters affecting adsorption process such as contact time and metal ion concentration were studied. The results obtained showed that the activated carbon prepared using ZnCl2 was more effective than the other investigated samples for adsorbing Cs+ and Sr2+ ions since the removal percentages reached 85% and 98% , respectively, while the activated carbon prepared using KOH was less effective for the removal of the same elements since the removal percentages reached 69% and 60%, respectively. In case of using physically activated carbon, the removal percentages reached 18% and 25% for Cs+ and Sr2+, respectively.From the obtained data, it can be concluded that the activated carbon prepared using ZnCl2 can be used as a good adsorbent for the removal of the investigated elements that may present in radioactive waste solutions before their discharge to the environment

  6. Management of radioactive wastes

    The law from December 30, 1991, precisely defines 3 axes of researches for the management of high level and long-lived radioactive wastes: separation/transmutation, surface storage and underground disposal. A global evaluation report about these researches is to be supplied in 2006 by the French government to the Parliament. A first synthesis of the knowledge gained after 14 years of research has led the national commission of the public debate (CNDP) to organize a national debate about the general options of management of high-level and long-lived radioactive wastes before the 2006 date line. The debate comprises 4 public hearings (September 2005: Bar-le-Duc, Saint-Dizier, Pont-du-Gard, Cherbourg), 12 round-tables (October and November 2005: Paris, Joinville, Caen, Nancy, Marseille), a synthesis meeting (December 2005, Dunkerque) and a closing meeting (January 2006, Lyon). This document is the synthesis of the round table debates which took place at Joinville, i.e. in the same area as the Bure underground laboratory of Meuse/Haute-Marne. Therefore, the discussion focuses more on the local impacts of the setting up of a waste disposal facility (environmental aspects, employment, economic development). (J.S.)

  7. Education activities of the US Department of Energy's Office of Civilian Radioactive Waste Management

    This paper reports that science education has long been a critical element in the U.S. Department of Energy's (DOE) Civilian Radioactive Waste Management Program. OCRWM has developed educational programs aimed at improving the science literacy of students from kindergarten through college and post-graduate levels, enhancing the skills of teachers, encouraging careers in science and engineering, and developing a keener awareness of science issues among the general population. Activities include interaction with educators in the development of curricula material; workshops for elementary and secondary students; cooperative agreements and projects with universities; OCRWM exhibit showings at technical and non-technical meetings and at national and regional teacher/educator conferences; the OCRWM Fellowship Program; and support for Historically Black Colleges and Universities

  8. National inventory of radioactive wastes

    There are in France 1064 sites corresponding to radioactive waste holders that appear in this radioactive waste inventory. We find the eighteen sites of E.D.F. nuclear power plants, The Cogema mine sites, the Cogema reprocessing plants, The Cea storages, the different factories and enterprises of nuclear industry, the sites of non nuclear industry, the Andra centers, decommissioned installations, disposals with low level radioactive wastes, sealed sources distributors, national defence. (N.C.)

  9. Chemical treatment of radioactive wastes

    This is the third manual of three commissioned by the IAEA on the three principal techniques used in concentrating radioactive liquid wastes, namely chemical precipitation, evaporation and ion exchange. The present manual deals with chemical precipitation by coagulation-flocculation and sedimentation, commonly called ''chemical treatment'' of low-activity wastes. Topics discussed in the manual are: (i) principles of coagulation on flocculation and sedimentation and associated processes; (ii) process and equipment; (iii) conditioning and disposal of flocculation sludge; (iv) sampling and the equipment required for experiments; and (v) factors governing the selection of processes. 99 refs, 17 figs, 4 tabs

  10. Radioactive waste management in European Union countries

    Although the Euratom Treaty does not assign direct authorities to the European Union in the Field of radioactive waste, the Commission has developed a series of activities related to this type of waste. The article deals with these Community initiatives, and the problems of radioactive waste management in the different Member States, and future plans in the field in the light of forthcoming European Union enlargement in 2004. (Author)

  11. Radioactive Waste Repositories Administration - SURAO

    The Atomic Act specifies, among other things, responsibilities of the government in the field of safe disposal of radioactive wastes. To satisfy this responsibility, the Ministry of Industry and Trade has established the Radioactive Waste Repositories Administration (SURAO). SURAO's major responsibilities include: (a) the preparation, construction, commissioning, operation, and decommissioning of radioactive waste repositories and the monitoring of their environmental impacts; (b) radioactive waste management; (c) spent or irradiated nuclear fuel processing into a form suitable for storage/disposal or reuse; (d) record-keeping of received radioactive wastes and their producers; (e) administration of fund transfers as stipulated by the Atomic Act, Article 27; (f) development of proposals for specification of fees to be paid to the Nuclear Account; (g) responsibility for and coordination of research and development in the field of radioactive waste handling and management; (h) supervision of licensees' margin earmarked for the decommissioning of their facilities; (i) providing services in radioactive waste handling and management; (j) handling and management of radioactive wastes that have been transferred to the Czech Republic from abroad and cannot be sent back; (k) interim administration of radioactive wastes that have become state property. The Statute of the Administration is reproduced in full. (P.A.)

  12. Radioactive waste: show time?

    The basic concept within both EC funded SAPIERR I and SAPIERR II projects (FP6) is that of one or more geological repositories developed in collaboration by two or more European countries to accept spent nuclear fuel, vitrified high-level waste and other long-lived radioactive waste from those partner countries. The SAPIERR II project (Strategic Action Plan for Implementation of Regional European Repositories) examines in detail issues that directly influence the practicability and acceptability of such facilities. This paper describes the work in the SAPIERR II project (2006-2008) on the development of a possible practical implementation strategy for shared, regional repositories in Europe and lays out the first steps in implementing that strategy. (authors)

  13. Radioactive waste: show time?

    Verhoef, E.V. [COVRA N.V., Spanjeweg 1, 4455 TW Nieuwdorp (Netherlands); McCombie, Charles; Chapman, Neil [Arius Association, Taefernstrasse 1, CH-4050 Baden (Switzerland)

    2010-07-01

    The basic concept within both EC funded SAPIERR I and SAPIERR II projects (FP6) is that of one or more geological repositories developed in collaboration by two or more European countries to accept spent nuclear fuel, vitrified high-level waste and other long-lived radioactive waste from those partner countries. The SAPIERR II project (Strategic Action Plan for Implementation of Regional European Repositories) examines in detail issues that directly influence the practicability and acceptability of such facilities. This paper describes the work in the SAPIERR II project (2006-2008) on the development of a possible practical implementation strategy for shared, regional repositories in Europe and lays out the first steps in implementing that strategy. (authors)

  14. Study on the management of radioactive solid wastes for the KRR-I and II dismantling activities

    KRR-1(TRIGA Mark II) and KRR-2(TRIGA Mark-III) have been operated 33 years and 23 years, respectively, and now are about to be decommissioned as they reach the end of their useful lives. In the decommissioning of the reactors, the treatment of radioactive wastes is practical issues and, therefore, the plan on it has to be essentially established prior to the actual decontamination and decommissioning activities. In the present study, the classification, radiological status, classification criteria and package on the radioactive solid wastes in the TRIGA Mark-II and III are investigated for the investigated for the purpose of the effective management plan of them

  15. 2009 National inventory of radioactive material and wastes. In short

    This booklet gives a summary of the national inventory report on radioactive wastes that are present on the French territory (as recorded until december, 2007). Intended for public information, the booklet explains the basics of radioactive materials and wastes and waste management, and gives some data on present and future waste volumes, information about radioactive waste classification, the geographical distribution of waste sites in France, etc. The various types of radioactive wastes are described (classified by their lifetime and activity level) as well as historical storage sites, polluted areas where wastes are stored, radioactive objects, etc. and their respective management approaches are presented

  16. National policy and experience with the management of radioactive wastes from non-fuel cycle activities in the Czech Republic

    Research, production, and application of radioisotopes in many fields of science, industry, agriculture, medicine, education, etc. proceeded in the former Czechoslovak Republic (CSFR) since the mid-fifties. These activities resulted in a great accumulation of relatively large volumes and activities of radioactive wastes. Therefore, in 1959 the Czechoslovak government appointed the Institute for Research, Production, and Application of Radioisotopes (IRPAR), now NYCOM, to be the central authority for collection and disposal of these radioactive wastes. In 1972 these responsibilities were defined in more detail by the decree of the Ministry of Health of the Czech Republic No. 59/1972 on the protection of public health against the effects of ionizing radiation. From the very beginning the services for collection, transport, and disposal provided by IRPAR (NYCOM) were based on the concept of waste concentration and their safe disposal in well-controlled facilities. The aim of disposal is to guarantee that man and his environment will not suffer, neither at present nor in the future, from these wastes. This aim is achieved by isolation of radioactive wastes from the human environment by a system of multiple barriers for a sufficiently long period of time to allow activity to decay below acceptable limits. The disposal of radioactive wastes in the central repositories started in 1959, when the first repository located near the village Hostim in the Beroun District was put in operation. The operational period of this repository was ended in 1963 and it was closed in 1965. At present, there are other two repositories in operation. The repository Richard serves for disposal of wastes containing artificial radionuclides, i.e., nuclides with induced radioactivity and fission products. The repository Bratrstvi serves for disposal of naturally occurring radionuclides, i.e., nuclides of uranium and thorium and their daughter products. (author). 2 refs, 2 figs

  17. Performance of phosphoric acid activated montmorillonite as buffer materials for radioactive waste repository

    In this study, the performance of phosphoric acid activated montmorillonite (PAmmt) was evaluated by cesium ions adsorption experiments. The PAmmt samples were obtained by activating with 1, 3 and 5 mol L-1 of phosphoric acid, respectively under reflux for 3, 12, and 24 h. Experimental results demonstrated that the treatment of raw K-10 montmorillonite with phosphoric acid increased the materials' affinity for Cs uptake and no significant amount of suspension solids were produced. A relatively insignificant variation in the CEC value was observed. Furthermore, PAmmt also showed high adsorption selectivity toward Cs ions. The improved sorptive properties were mainly related to the increased surface area and the relatively higher surface charge density. Increased specific surface area was the resulted from partial decomposition of lamellar structure of mmt; while the higher surface charge density was caused by the protonation of octahedral Al-OH sites during the acid activation. Generally speaking, stronger acid concentration and longer activation times would produce relatively more decomposed PAmmt particles. However, as the activation exceeds 3 h, the precipitation of Si4+ would passivate PAmmt against further acid attacks. Based upon our results, acid activation by phosphoric acid could produce PAmmt samples with high sorption capacity and selectivity, and good structural integrity, which are beneficial to be used at radioactive waste repository.

  18. Radioactive waste management in Canada

    Reports and other Canadian literature on radioactive waste processing and disposal covering the period 1953-1979 are listed. A selected list of international conferences relating to waste management (1959-1979) is attached. (LL)

  19. The low to intermediate activity and short living waste storage facility. For a controlled management of radioactive wastes

    Sited at about 50 km of Troyes (France), the Aube facility started in 1992 and has taken over the Manche facility for the surface storage of low to intermediate and short living radioactive wastes. The Aube facility (named CSFMA) is the answer to the safe management of these wastes at the industrial scale and for 50 years onward. This brochure presents the facility specifications, the wastes stored at the center, the surface storage concept, the processing and conditioning of waste packages, and the environmental monitoring performed in the vicinity of the site. (J.S.)

  20. The Guatemala Programme of radioactive waste management

    Guatemala aims at ensuring safety of present and future generations as well as the environment, this is to be achieved by preventing the release of radioactive substances contained in radioactive wastes into the environment. The main activities that produce radioactive wastes in Guatemala are medical practices (radiodiagnostic and radiotherapy), wastes are also generated in industry and research, but to lesser extent. The most frequently used radioisotopes are cesium-137, cobalt-60, iodine-131, technetium-99m. Some spent sources are radium-226, cobalt-60 and contaminated material generated in medicine and research. The radioactive wastes generated are basically low and intermediate level wastes. The collection of the wastes is done periodically, the users must deliver them correctly packed and marked. When the radioactive wastes are short lived the user must manage them himself, as in the case of technetium-99m. Presently, Guatemala is trying to achieve by means of National Centre of Radioactive Wastes (CENDRA) the adequate practices in managing, storing and subsequent disposal of radioactive wastes. 3 figs

  1. Regulation on radioactive waste management

    A national calculator control system for the metropolitan radioactive waste banks was developed in 1999. The NNSA reviewed by the regulations the feasibility of some rectification projects for uranium ore decommissioning and conducted field inspections on waste treating systems and radioactive waste banks at the 821 plant. The NNSA realized in 1999 the calculator control for the disposal sites of low and medium radioactive waste. 3 routine inspections were organized on the reinforced concrete structures for disposal units and their pouring of concrete at waste disposal site and specific requirements were put forth

  2. Radioactive waste engineering and management

    Nakayama, Shinichi

    2015-01-01

    This book describes essential and effective management for reliably ensuring public safety from radioactive wastes in Japan. This is the first book to cover many aspects of wastes from the nuclear fuel cycle to research and medical use, allowing readers to understand the characterization, treatment and final disposal of generated wastes, performance assessment, institutional systems, and social issues such as intergenerational ethics. Exercises at the end of each chapter help to understand radioactive waste management in context.

  3. Portable radioactive waste tracking and inspection system

    Hardware has components such as host computer, Personal Digital Assistant(PDA), bar code scanner, and digital camera. Software consists of database about radioactive waste which covers date, generator, container type, activity, images, physical characteristics, and nuclide. The portable radioactive waste tracking and inspection system needs programs such as web communication between the host computer and PDA, database application of PDA, processing of bar codes and images. The inspector can track, inspect, and modify information such as date, generator, container type, activity, images, physical characteristics, and nuclide by reading two dimensional bar code on container of radioactive waste with bar code scanner on PDA

  4. Criteria for the siting, construction, management and evaluation of low and intermediate activity radioactive waste stores

    The experience acquired by Spain for the storage of low and intermediate level radioactive wastes, is presented. General considerations related to the technology, financing, administrative measures and risk determination are done. The criteria of site selection for construction and management of the waste storage facility are described, evaluating the specific criteria for the licensing procedure, and taking in account the safety and the radiation protection during periods of the system operation. (M.C.K.)

  5. Assessment of Malaysia Institutional radioactive waste management

    A complete inventory of radioactive wastes from different source bas been set up in Malaysia. Wastes from external agencies were sent to the National Radioactive Waste Management Center at MINT for final disposal. MINT has been collecting information on the accumulated wastes received since 1982. Assessment of radioactive waste management in Malaysia has been conducted based on the inventory record. The information in the inventory include description of users, type volume, characteristics of the wastes; and the current and accumulated activities of the radioisotopes in the wastes forms while storing. The records indicate that there is a significant increase in the volume of wastes from medical and industrial applications. The category of users varies; there are about 270 industrial users, about 60 in medical fields and 13 in research institutes and universities. Major users generating sealed source wastes for the industrial sector are services, manufacturing and consumer companies; including government department and universities. It is estimated that by the year 2005, approximately a total accumulated processed waste package volume for disposal will be between 210-215 m sup 3. This estimate includes low level and intermediate level wastes. From this study, future waste management activities in Malaysia can be planned with proper policy decision, treatment conditioning, storage and disposal facilities. This will enable radioactive wastes to be kept under control and their potential impact on man and the environment to be minimal

  6. Quality control in the radioactive waste management

    Radioactive waste management as in industrial activities must mantain in all steps a quality control programme. This control extended from materials acquisition, for waste treatment, to the package deposition is one of the most important activities because it aims to observe the waste acceptance criteria in repositories and allows to guarantee the security of the nuclear facilities. In this work basic knowledges about quality control in waste management and some examples of adopted procedures in other countries are given. (author)

  7. Radioactive Waste Management Fellowship Program: Summary of program activities for calendar year 1986

    This document describes a graduate fellowship program designed to guide future scientists and engineers toward a career in high level radioactive waste management. Oak Ridge Associated Universities administers this program on behalf of 17 participating universities. The report summarizes the background and qualifications of the last year's applicants and awardees and provides examples of the distributed literature describing the program. 8 figs

  8. Public debate - radioactive wastes management

    Between September 2005 and January 2006 a national debate has been organized on the radioactive wastes management. This debate aimed to inform the public and to allow him to give his opinion. This document presents, the reasons of this debate, the operating, the synthesis of the results and technical documents to bring information in the domain of radioactive wastes management. (A.L.B.)

  9. Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics

    Hulse, R.A.

    1991-08-01

    Planning for storage or disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of that waste to estimate volumes, radionuclide activities, and waste forms. Data from existing literature, disposal records, and original research were used to estimate the characteristics and project volumes and radionuclide activities to the year 2035. GTCC LLW is categorized as: nuclear utilities waste, sealed sources waste, DOE-held potential GTCC LLW; and, other generator waste. It has been determined that the largest volume of those wastes, approximately 57%, is generated by nuclear power plants. The Other Generator waste category contributes approximately 10% of the total GTCC LLW volume projected to the year 2035. Waste held by the Department of Energy, which is potential GTCC LLW, accounts for nearly 33% of all waste projected to the year 2035; however, no disposal determination has been made for that waste. Sealed sources are less than 0.2% of the total projected volume of GTCC LLW.

  10. Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics

    Planning for storage or disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of that waste to estimate volumes, radionuclide activities, and waste forms. Data from existing literature, disposal records, and original research were used to estimate the characteristics and project volumes and radionuclide activities to the year 2035. GTCC LLW is categorized as: nuclear utilities waste, sealed sources waste, DOE-held potential GTCC LLW; and, other generator waste. It has been determined that the largest volume of those wastes, approximately 57%, is generated by nuclear power plants. The Other Generator waste category contributes approximately 10% of the total GTCC LLW volume projected to the year 2035. Waste held by the Department of Energy, which is potential GTCC LLW, accounts for nearly 33% of all waste projected to the year 2035; however, no disposal determination has been made for that waste. Sealed sources are less than 0.2% of the total projected volume of GTCC LLW

  11. Measurement of activity in large packages of radioactive waste, taking into account heterogeneities in mass and activity

    The activity of a radioactive waste package is usually evaluated from gamma measurements associated with transfer functions. These functions are calculated assuming that both activity and mass distributions are homogeneous. But generally, activity and mass distributions are not homogeneous and potentially huge errors may arise from such evaluations. In this paper, we propose a method for creating a numeric model to simulate mass and activity distributions, which enables to both evaluate and reduce the level of uncertainty due to non homogeneous distributions. The model can be adjusted in order to be fully representative, and its representativeness can be justified. We show 2 examples of application of this method to acquisition data obtained from field experimentation. (author)

  12. Evaluation of Terrorist Interest in Radioactive Wastes

    Since September 11, 2001, intelligence gathered from Al Qaeda training camps in Afghanistan, and the ensuing terrorist activities, indicates nuclear material security concerns are valid. This paper reviews available information on sealed radioactive sources thought to be of interest to terrorists, and then examines typical wastes generated during environmental management activities to compare their comparative 'attractiveness' for terrorist diversion. Sealed radioactive sources have been evaluated in numerous studies to assess their security and attractiveness for use as a terrorist weapon. The studies conclude that tens of thousands of curies in sealed radioactive sources are available for potential use in a terrorist attack. This risk is mitigated by international efforts to find lost and abandoned sources and bring them under adequate security. However, radioactive waste has not received the same level of scrutiny to ensure security. This paper summarizes the activity and nature of radioactive sources potentially available to international terrorists. The paper then estimates radiation doses from use of radioactive sources as well as typical environmental restoration or decontamination and decommissioning wastes in a radioactive dispersal device (RDD) attack. These calculated doses indicate that radioactive wastes are, as expected, much less of a health risk than radioactive sources. The difference in radiation doses from wastes used in an RDD are four to nine orders of magnitude less than from sealed sources. We then review the International Atomic Energy Agency (IAEA) definition of 'dangerous source' in an adjusted comparison to common radioactive waste shipments generated in environmental management activities. The highest waste dispersion was found to meet only category 1-3.2 of the five step IAEA scale. A category '3' source by the IAEA standard 'is extremely unlikely, to cause injury to a person in the immediate vicinity'. The obvious conclusion of the

  13. Method of removing radioactive waste

    A paste prepared by mixing a mixed acid containing HF and at least one of HCl and HNO3 with a paste aid is coated at the surface of radioactive wastes, to dissolve the surface thereof. Water is jetted to remove the dissolved radioactive contaminants and the pastes from the surface of the radioactive wastes. Since the pastes are thus used, the amount of liquid wastes can be remarkably reduced compared with that in a conventional electrolysis method. Further, if it is confirmed that dose rate of the radioactive wastes after decontamination is lower than a predetermined level by adding a step of measuring the extent of contamination of the wastes before and after the steps, they can be handled hereinafter being regarded as ordinary wastes. (T.M.)

  14. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES

    Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

    2011-02-24

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates

  15. Process for packaging radioactive waste

    The waste is filled into auxiliary barrels made of sheet steel. It is compressed with the auxiliary barrels into steel jacket bodies. A number of steel jacket bodies are accommodated in storage barrels, which are simultaneously stiffened by them. The radioactive waste is therefore no longer free in the storage barrels, the storage barrels are reinforced and appreciably greater quantities of radioactive waste can be accommodated in the storage barrels and therefore in the stores. (orig./PW)

  16. Radioactive wastes on Kazakhstan territory

    Common amount of radioactive wastes in Kazakhstan makes up 235 million tons. In Semipalatinsk test site in the result of surface and underground explosions low-radioactive wastes have accumulated in the form of soils contaminated with radionuclides and these wastes could be buried during re-cultivation works. In the same time there are places contaminated with plutonium. These soils should be buried in special points. Volume of these wastes is estimated in 5,000 m3. In Kazakhstan there are one power nuclear reactor in Aktau, 3 research reactors on Semipalatinsk site territory and 1 in Almaty city. During operation of BN-350 power reactor in Aktau city till present day 10,000 m3 of different wastes have been accumulated. Great amount of wastes will appear in 2005 during the reactor decommissioning, common volume of processed and packaged wastes after BN-350 reactor out of operation will be estimated in 623,000 m3. In Kazakhstan system of gathering, processing, and transporting of radioactive wastes is not taken into operation yet. According of conception on radioactive wastes burial and IAEA recommendation part of wastes with volume 67,450 m3 (intermediate- and high-level radioactive wastes) are subjected to burial in points in geological formations

  17. Model of behavior of concrete barriers for the isolation of radioactive waste of low activity

    In most countries the final disposal of low level radioactive waste is performed in surface or near-surface disposal facilities, with an extended use of disposal designs in which concrete is the basic material of the isolation barriers. This thesis collects a good deal of the results of the research works on barriers behaviour performed in the frame of the different ENRESA R+D Plans in support of the enhancement of the safety assessment of the low activity radioactive was te disposal facility. In this work the functions of the different components of the disposal system are analysed together with their characteristics. Also there is a description of the evolution processes and the laws that control those processes, based on previous research works. The flow and content of water in low permeability porous media with particular regard to concrete is also developed for the expected environmental conditions after sealing the disposal vaults with an engineered cap and when they are exposed to non isothermal conditions having an influence in the behaviour of the system water content. A sum mary of the R+D work previously performed for ENRESA on the behaviour of low activity waste isolation barriers behaviour. Some enhancements on previous models and an integration scheme are also proposed. This work also contains the on going research tasks for the calibration of the models and the collection of experimental data that may al low a fruitful use of the models, beyond an academic exercise, and provide reference data for future development as well. The initial aim of this work was to propose a general model on the behaviour of the concrete barriers. Such general model still presents lack of experts consensus on basic aspects such as the CSH chemistry. It concludes that an approach based on the use of models representing separately the different processes, based on experimental work and expressed in phenomenological simple models is more rigorous at this point. Nevertheless

  18. The 1985 United Kingdom radioactive waste inventory

    This report provides a compilation of stocks of radioactive wastes in the UK by volume, as at 1 January 1985, and estimates of future arisings to the year 2030. It includes radionuclide contents as available, together with specific activities, notional conditioning factors and disposal routes. In the main the stock volumes are given as unconditioned waste. However for clarity and precision some of the data relates to treated wastes (ie compacted wastes, incinerator ash, etc). These are clearly marked in the Tables. (author)

  19. Upgrade activities for the Criticality Safety Program of Hanford High-Level Radioactive Waste Tank Farm

    This document describes the plan for implementing the findings and recommendations made by a team of experts for the US Department of Energy in their Nuclear Criticality Safety Review Of Hanford High-Level Radioactive Waste Tank Farms. The team was chartered to review the nuclear criticality safety of the tank farms and recommend programmatic changes where appropriate, including the specific incident leading to an Unusual Occurrence Report filed in June 1991 on the 241-C-104 specification violation. Although no imminent risks of criticality were found, the review team identified several problems with respect to nuclear criticality safety. Primary among the problems is the Tack of dofinitive knowledge of the fissile material inventory and distribution within the tanks. The lack of good characterization data prompted Westinghouse Hanford Company to declare an Unreviewed Safety Question with respect to criticality safety. Activities by the responsible Hanford Site contractor that address each of the findings, recommendations, and activities required to resolve the Unreviewed Safety Question are described. Schedules and estimated costs are also included with the plan

  20. Radioactive wastes. Management prospects

    This article describes the perspectives of management of radioactive wastes as defined in the French law from December 30, 1991. This law defines three ways of research: abatement of the radiotoxicity of wastes (first way), reversible geological storage (second way) or long duration geological disposal (third way). This article develops these three solutions: 1 - strategic perspectives; 2 - separation, transmutation and specific conditioning: isotopes to be separated (evolution of the radio-toxicity inventory of spent fuels, migration of long-living radionuclides, abatement of radio-toxicity), research on advanced separation (humid and dry way), research on transmutation of separate elements (transmutation and transmutation systems, realistic scenarios of Pu consumption and actinides transmutation, transmutation performances), research on materials (spallation targets, fuels and transmutation targets), research on conditioning matrices for separated elements; 3 - long-term storage: principles and problems, containers, surface and subsurface facilities; 4 - disposal: reversibility and disposal, geological disposal (principle and problems, site and concept selection), adaptation to reversibility, research on materials (bentonite and cements for geologic barrier, metals for containers), underground research and qualification laboratories, quantity of containers to be stored. (J.S.)

  1. Radioactive waste package assay facility. Volume 2. Investigation of active neutron and active gamma interrogation

    Volume 2 of this report describes the theoretical and experimental work carried out at Harwell on active neutron and active gamma interrogation of 500 litre cemented intermediate level waste drums. The design of a suitable neutron generating target in conjunction with a LINAC was established. Following theoretical predictions of likely neutron responses, an experimental assay assembly was built. Responses were measured for simulated drums of ILW, based on CAGR, Magnox and PCM wastes. Good correlations were established between quantities of 235-U, nat-U and D2O contained in the drums, and the neutron signals. Expected sensitivities are -1g of fissile actinide and -100g of total actinide. A measure of spatial distribution is obtainable. The neutron time spectra obtained during neutron interrogation were more complex than expected, and more analysis is needed. Another area of discrepancy is the difference between predicted and measured thermal neutron flux in the drum. Clusters of small 3He proportional counters were found to be much superior for fast neutron detection than larger diameter counters. It is necessary to ensure constancy of electron beam position relative to target(s) and drum, and prudent to measure the target neutron or gamma output as appropriate. 59 refs., 77 figs., 11 tabs

  2. Report of safety of the characterizing system of radioactive waste

    Report of safety of the system of radioactive waste of the ININ: Installation, participant personnel, selection of the place, description of the installation, equipment. Proposed activities: operations with radioactive material, calibration in energy, calibration in efficiency, types of waste. Maintenance: handling of radioactive waste, physical safety. Organization: radiological protection, armor-plating, personal dosemeter, risks and emergency plan, environmental impact, medical exams. (Author)

  3. Management of radioactive wastes

    When I first became concerned with radioactive waste management, in the early 1950's, very little was really known about the subject. There was a general feeling that it was a serious 'problem'. Articles were appearing in the press and talks were being given on the radio suggesting that the wastes generated by the proposed nuclear power reactors might be a serious menace to humanity. The prophets pointed with alarm to the enormous quantities of fission products that would accumulate steadily over the years in tank farms associated with reactor fuel reprocessing plants, and calculations were made of the possible results from rupture of the tanks due to corrosion, earthquakes or enemy attack. Responsible people suggested seriously that the waste disposal problem might be fatal to the development of a nuclear power industry, and this attitude was reinforced by the popular outcry that arose from experience with fallout from nuclear weapons testing. The Canadian nuclear power industry was not critically involved in this controversy because our heavy-water reactors are fuelled with natural uranium, and reprocessing of the fuel is not necessary. The spent fuel contains plutonium, a potential fuel, but the cost of recovering it was such that it was not competitive with natural uranium, which is not in short supply in Canada. Our spent fuel is not dissolved in acid - it is stored. still in its zirconium cladding, under water at the reactor site, or placed in sealed concrete-and-steel pipes below ground. If the price of uranium rises sufficiently it will become profitable to recover the plutonium, and only then shall we have an appreciable amount of waste from this source. However. during the first five or six years of research and development at Chalk River we did investigate fuel processing methods, and like everybody else we grad stainless steel tanks containing high and medium level wastes. These were located quite close to the Ottawa River, and we worried about what

  4. Radioactive waste disposal

    A deep gap, reflecting a persisting fear, separates the viewpoints of the experts and that of the public on the issue of the disposal of nuclear WASTES. The history of this field is that of the proliferation with time of spokesmen who pretend to speak in the name of the both humans and non humans involved. Three periods can be distinguished: 1940-1970, an era of contestation and confusion when the experts alone represents the interest of all; 1970-1990, an era of contestation and confusion when spokespersons multiply themselves, generating the controversy and the slowing down of most technological projects; 1990-, an era of negotiation, when viewpoints, both technical and non technical, tend to get closer and, let us be optimistic, leading to the overcome of the crisis. We show that, despite major differences, the options and concepts developed by the different actors are base on two categories of resources, namely Nature and Society, and that the consensus is built up through their 'hydridation'. we show in this part that the perception of nuclear power and, in particular of the underground disposal of nuclear wastes, involves a very deep psychological substrate. Trying to change mentalities in the domain by purely scientific and technical arguments is thus in vain. The practically instinctive fear of radioactivity, far from being due only to lack of information (and education), as often postulated by scientists and engineers, is rooted in archetypical structures. These were, without doubt, reactivated in the 40 s by the traumatizing experience of the atomic bomb. In addition, anthropological-linked considerations allow us to conclude that he underground disposal of wastes is seen as a 'rape' and soiling of Mother Earth. This contributes to explaining, beyond any rationality, the refusal of this technical option by some persons. However, it would naturally be simplistic and counter-productive to limit all controversy in this domain to these psychological aspects

  5. Radioactive wastes vitrification

    Borosilicate glass is capable to solidify the liquid wastes and to confine the radionuclides present in fission product solutions, not by coating, but thanks to the existence of chemical bonds with the glass oxides. Glass materials have a large chemical flexibility in comparison with crystal structures. In parallel to the studies of nuclear glass formulation, a continuous vitrification process has been developed in France which allows to generate glass in a highly radioactive environment. The first demonstration of the feasibility of this process was done at Marcoule in 1969 with the vitrification pilot system PIVER. The industrial vitrification facility of Marcoule started in 1978 for the confinement of spent fuel reprocessing wastes. This process was implemented at the R7 and T7 facilities of La Hague in 1989 and 1992, respectively. The process used today at La Hague comprises two steps: a calcination of fission products liquid solutions at 400 deg. C and a melting at 1100 deg. C in a crucible heated by magnetic induction. The molten mixture of glass and fission products is cast and solidified in 400 kg containers. Other vitrification processes have been developed like the cold crucible vitrification process and the vitrification in electrode heated ceramic melter. This article presents: 1 - the formulation of nuclear glasses: constraints, choice of vitreous systems, chemical reactivity between the waste and the vitrification catalyst, some basic properties of nuclear glasses, confining properties, perspectives of evolution of glass compositions; 2 - vitrification processes: vitrification with induction-heated metal crucible, with cold crucible, with electrode-heated ceramic melters; 3 - conclusion. (J.S.)

  6. Final disposal of radioactive waste

    Freiesleben H.

    2013-06-01

    Full Text Available In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste – LLW, intermediate-level waste – ILW, high-level waste – HLW are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of countries is mentioned. Also, the role of the International Atomic Energy Agency with regard to the development and monitoring of international safety standards for both spent nuclear fuel and radioactive waste management is described.

  7. Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics. Revision 1

    The Department of Energy's (DOE's) planning for the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of the waste. This report estimates volumes, radionuclide activities, and waste forms of GTCC LLW to the year 2035. It groups the waste into four categories, representative of the type of generator or holder of the waste: Nuclear Utilities, Sealed Sources, DOE-Held, and Other Generator. GTCC LLW includes activated metals (activation hardware from reactor operation and decommissioning), process wastes (i.e., resins, filters, etc.), sealed sources, and other wastes routinely generated by users of radioactive material. Estimates reflect the possible effect that packaging and concentration averaging may have on the total volume of GTCC LLW. Possible GTCC mixed LLW is also addressed. Nuclear utilities will probably generate the largest future volume of GTCC LLW with 65--83% of the total volume. The other generators will generate 17--23% of the waste volume, while GTCC sealed sources are expected to contribute 1--12%. A legal review of DOE's obligations indicates that the current DOE-Held wastes described in this report will not require management as GTCC LLW because of the contractual circumstances under which they were accepted for storage. This report concludes that the volume of GTCC LLW should not pose a significant management problem from a scientific or technical standpoint. The projected volume is small enough to indicate that a dedicated GTCC LLW disposal facility may not be justified. Instead, co-disposal with other waste types is being considered as an option

  8. Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics. Revision 1

    1994-09-01

    The Department of Energy`s (DOE`s) planning for the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of the waste. This report estimates volumes, radionuclide activities, and waste forms of GTCC LLW to the year 2035. It groups the waste into four categories, representative of the type of generator or holder of the waste: Nuclear Utilities, Sealed Sources, DOE-Held, and Other Generator. GTCC LLW includes activated metals (activation hardware from reactor operation and decommissioning), process wastes (i.e., resins, filters, etc.), sealed sources, and other wastes routinely generated by users of radioactive material. Estimates reflect the possible effect that packaging and concentration averaging may have on the total volume of GTCC LLW. Possible GTCC mixed LLW is also addressed. Nuclear utilities will probably generate the largest future volume of GTCC LLW with 65--83% of the total volume. The other generators will generate 17--23% of the waste volume, while GTCC sealed sources are expected to contribute 1--12%. A legal review of DOE`s obligations indicates that the current DOE-Held wastes described in this report will not require management as GTCC LLW because of the contractual circumstances under which they were accepted for storage. This report concludes that the volume of GTCC LLW should not pose a significant management problem from a scientific or technical standpoint. The projected volume is small enough to indicate that a dedicated GTCC LLW disposal facility may not be justified. Instead, co-disposal with other waste types is being considered as an option.

  9. Disposal or radioactive wastes, tendencies and challenges

    The administration of radioactive wastes is an important part of the uses of the nuclear energy, even not carrying out some application due to the natural radioisotopes. The result will be that to more radioactive wastes production major will be the expense in its administration. In this work the main activities in an item of selected countries are described and it concludes with the necessities that should be carried out in this field in Mexico. (Author)

  10. Method of solidifying radioactive waste

    Purpose: To obtain satisfactory plastic solidification products rapidly and more conveniently from radioactive wastes. Method: liquid wastes contain, in addition to sodium sulfate as the main ingredient, nitrates hindering the polymerizing curing reactions and various other unknown ingredients, while spent resins contain residual cationic exchange groups hindering the polymerizing reaction. Generally, as the acid value of unsaturated liquid polyester resins is lower, the number of terminal alkyd resins is small, formation of nitrates is reduced and the polymerizing curing reaction is taken place more smoothly. In view of the above, radioactive wastes obtained by dry powderization or dehydration of radioactive liquid wastes or spent resins are polymerized with unsaturated liquid polyester resins with the acid value of less than 13 to obtain plastic solidification. Thus, if the radioactive wastes contain a great amount of polymerization hindering material such as NaNO2, they can be solidified rapidly and conveniently with no requirement for pre-treatment. (Kamimura, Y.)

  11. Experience gained and future activities in radioactive waste management in Uruguay

    The origin and the characteristics of the radioactive waste produced in the Nuclear Research Center are described, as well as those resulting from the application of radioisotopes in different external institutions. The methods utilized in the waste management, and the future actions that will be performed, in order to solve the specific problems of the management are also explained. The Nuclear Research Center is a university institution that has many research opportunities in different applications of radioisotopes: in medicine, biology, industry, agronomy and radiochemistry, and beside that, was here where the 10 km research reactor, that nowadays is being decommissioned, was in operation. Due to the infrastructure of this center, it has been usually responsible for the waste management produced in other institutions, but at present the capacity was exceeded, so that a program was carried out in order to confront this problem. The program for the radioactive waste management qualifies the personnel in formation courses and receives the support of specialists of the IAEA. It also records the sealed radiation sources using a data base by means of a computer to exhausted sources, developed by the same organization. The country regulating organization is carrying out a study to establish a national policy related to the treatment and disposal of wastes. (authors). 4 refs. 1 tab

  12. Method and techniques of radioactive waste treatment

    This study illustrates the characterization of radioactive wastes produced by the application of radioisotopes in industry and research. The treatment methods of such radioactive wastes, chemical co-precipitation and ion exchange depending on the technical state of radioactive waste management facility in Syria were described. The disposal of conditioned radioactive wastes, in a safe way, has been discussed including the disposal of the radioactive sources. The characterizations of the repository to stock conditioned radioactive wastes were mentioned. (author)

  13. Management of radioactive waste: A review

    Luis Paulo Sant'ana; Taynara Cristina Cordeiro

    2016-01-01

    The issue of disposal of radioactive waste around the world is not solved by now and the principal reason is the lack of an efficient technologic system. The fact that radioactive waste decays of radioactivity with time are the main reasons for setting nuclear or radioactive waste apart from the other common hazardous wastes management. Radioactive waste can be classified according to the state of matter and level of radioactivity and this classification can be differently interpreted from co...

  14. Low level radioactive waste management

    This talk is an overview of the problem of radioactive waste management in general as a step in dealing with the issues it presents to emergency preparedness. Major topics covered include the following: types of radioactive waste; Low-level radioactive waste including an overview of regulations and the problems/possibilities of developing disposal sites; Barriers to LLRW disposal site development including technical issues, not in my backyard, not in my term of office, and legal issues; impacts created by lack of disposal; and possible solutions

  15. Rapid separation of nickel for 59Ni and 63Ni activity measurement in radioactive waste samples

    A separation procedure of Ni has been described for the quantification of 59Ni and 63Ni in radioactive wastes discharged from nuclear power plants and various research activities related to the nuclear fuel cycle. For a rapid separation of the Ni-nuclides in sixteen sample solutions in 0.2 M NH4-oxalate, a separation system composed of a peristaltic pump with sixteen channels and the same number of Ni-Resin columns was constructed. After sorption of the Ni-nuclides by sequentially passing 100 mL of the sample solution in 0.2 M NH4-oxalate, 130 mL of 0.1 M NH4-oxalate solution and 10 mL of deionized water as a wash into the columns, these were purely recovered by passing 10 mL of 9 M HCl into the Ni-Resin columns stacked in series on the anion exchange resin columns. The separation of the Ni-nuclides in sixteen sample solutions can be achieved within 7 h. The chemical yield of the proposed procedure is 92.3 ± 0.8 % (n = 5) and the gravimetric recovery in the preparation stage of the Ni-nuclide sources is also acceptable, 88.5 ± 1.3 % (n = 5). (author)

  16. Final treatment of liquid radioactive wastes

    Final treatment of liquid radioactive wastes which are produced by 1st and 2nd bloc of the Mochovce NPP, prepares the NPP in its natural range. The purpose of the equipment is liquidation of wastes, which are formed at production. Wastes are warehoused in the building of active auxiliary plants in the present time, where are reservoirs in which they are deposited. Because they are already feeling and in 2006 year they should be filled definitely, it is necessary to treat them in that manner, so as they may be liquidated. Therefore the Board of directors of the Slovenske elektrarne has disposed about construction of final treatment of liquid radioactive wastes in the Mochovce NPP. Because of transport the wastes have to be treated in the locality of power plant. Technically, the final treatment of the wastes will be interconnected with building of active operation by bridges. These bridges will transport the wastes for treatment into processing centre

  17. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank Farm Blend) By Fluidized Bed Steam Reformation (FBSR)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hall, H. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-08-01

    testing. The granular ESTD and BSR products (radioactive and non-radioactive) were analyzed for total constituents and durability tested as a granular waste form. A subset of the granular material was stabilized in a clay based geopolymer matrix at 42% and 65% FBSR loadings and durability tested as a monolith waste form. The 65 wt% FBSR loaded monolith made with clay (radioactive) was more durable than the 67-68 wt% FBSR loaded monoliths made from fly ash (non-radioactive) based on short term PCT testing. Long term, 90 to 107 day, ASTM C1308 testing (similar to ANSI/ANS 16.1 testing) was only performed on two fly ash geopolymer monoliths at 67-68 wt% FBSR loading and three clay geopolymer monoliths at 42 wt% FBSR loading. More clay geopolymers need to be made and tested at longer times at higher FBSR loadings for comparison to the fly ash monoliths. Monoliths made with metakaolin (heat treated) clay are of a more constant composition and are very reactive as the heat treated clay is amorphous and alkali activated. The monoliths made with fly ash are subject to the inherent compositional variation found in fly ash as it is a waste product from burning coal and it contains unreactive components such as mullite. However, both the fly ash and the clay based monoliths perform well in long term ASTM C1308 testing.

  18. Safety of radioactive waste management in France

    Radioactive waste produced in France vary considerably by their activity level, their half lives, their volume or even their nature. In order to manage them safely, the treatment and final disposal solution must be adapted to the type of waste considered by setting up specific waste management channels. A strong principle in France is that it is the responsibility of the nuclear operators as waste producers to dispose of their waste or have them disposed of in a suitable manner. The competent authorities regulate and control the radioactive waste management activities. At present, only short-lived low and intermediate level waste have a definitive solution, the surface repository, where adequate waste packages are disposed of in concrete structures. Other types of radioactive waste are in interim storage facilities at the production sites. For very low level waste coming mainly from dismantling of nuclear facilities a dedicated repository is planned to be built in the coming years. Dedicated repositories are also planned for radiferous, tritiated and graphite waste. As for high level waste and long-lived waste coming mainly from reprocessing of spent nuclear fuel the disposal options are being sought along the lines specified by law 91-1381 concerning research on radioactive waste management, passed on December 30, 1991: research of solutions to partition and transmute long-lived radionuclides in the waste; studies of retrievable and non retrievable disposal in deep geological layers with the help of underground laboratories; studies of processes for conditioning and long term surface storage of these waste. In 2006, the French Parliament will assess the results of the research conducted by ANDRA relative to deep geological disposal as well as the work conducted by CEA in the two other areas of research and, if this research is conclusive, pass a law defining the final disposal option. (author)

  19. Underground disposal of radioactive wastes

    This report is an overview document for the series of IAEA reports dealing with underground waste disposal to be prepared in the next few years. It provides an introduction to the general considerations involved in implementing underground disposal of radioactive wastes. It suggests factors to be taken into account for developing and assessing waste disposal concepts, including the conditioned waste form, the geological containment and possible additional engineered barriers. These guidelines are general so as to cover a broad range of conditions. They are generally applicable to all types of underground disposal, but the emphasis is on disposal in deep geological formations. Some information presented here may require slight modifications when applied to shallow ground disposal or other types of underground disposal. Modifications may also be needed to reflect local conditions. In some specific cases it may be that not all the considerations dealt with in this book are necessary; on the other hand, while most major considerations are believed to be included, they are not meant to be all-inclusive. The book primarily concerns only underground disposal of the wastes from nuclear fuel cycle operations and those which arise from the use of isotopes for medical and research activities

  20. Radioactive waste management in Tanzania

    Radioactive waste, like many other hazardous wastes, is of great concern in Tanzania because of its undesirable health effects. The stochastic effects due to prolonged exposure to ionizing radiation produce cancer and hereditary effects. The deterministic effects due to higher doses cause vomiting, skin reddening, leukemia, and death to exposed victims. The aim of this paper is to give an overview of the status of radioactive wastes in Tanzania, how they are generated and managed to protect humans and the environment. As Tanzania develops, it is bound to increase the use of ionizing radiation in research and teaching, industry, health and agriculture. Already there are more than 42 Centers which use one form of radioisotopes or another for these purposes: Teletherapy (Co-60), Brach-therapy (Cs-137, Sr-89), Nuclear Medicine (P-32, Tc-99m, 1-131, 1-125, Ga-67, In-111, Tl-206), Nuclear gauge (Am-241, Cs- 137, Sr-90, Kr-85), Industrial radiography (Am-241, C-137, Co-60, lr-92), Research and Teaching (1-125, Am241/Be, Co-60, Cs-137, H-3 etc). According to IAEA definition, these radioactive sources become radioactive waste if they meet the following criteria: if they have outlived their usefulness, if they have been abandoned, if they have been displaced without authorization, and if they contaminate other substances. Besides the origin of radioactive wastes, special emphasis will also be placed on the existing radiation regulations that guide disposal of radioactive waste, and the radioactive infrastructure Tanzania needs for ultimate radioactive waste management. Specific examples of incidences (theft, loss, abandonment and illegal possession) of radioactive waste that could have led to serious deterministic radiation effects to humans will also be presented. (author)

  1. Radioactive liquid waste processing device

    The present invention provides a device for processing radioactive liquid wastes generated in a facility of a nuclear power plant, especially suitable to liquid wastes at relatively high electroconductivity and solid content concentration. Namely, the device comprises a vessel for receiving radioactive liquid wastes, a device for concentrating the radioactive liquid wastes and a device for solidifying the liquid wastes. The concentrated liquid wastes can be charged from the concentration device to the receiving container. The concentration device has a precipitation separation function and comprises a supernatant withdrawing section and a solid content withdrawing section. In addition, the concentration device is connected with the receiving device for transferring the supernatant in the concentration device. Further, the receiving device is connected to the solidification device by way of a solid content transferring line, and the precipitated and separated solid content is transferred to a cement solidification device, plastic solidification device, asphalt solidification device, a glass solidification device etc. (I.S.)

  2. The safe management of radioactive waste from mining and milling activities

    The IAEA is developing a Safety Guide for the management of radioactive waste from the mining and milling of uranium and thorium ores. This new Safety Guide will provide information that has been requested by Member States concerning the safe management of these wastes. The guide includes some new concepts, but they are intended to be reasonable and provide appropriate safety conditions for the workers, general public and the environment. The Regulatory Authorities of individual countries are responsible for establishing and implementing the regulatory framework through the development of appropriate rules, criteria and guidelines and establishing a licensing framework. The IAEA has issued a number of publications that provide requirements and guidance for the protection of workers, public and the environment. The overall objective and subsidiary principles developed explicitly for the management of radioactive waste should emphasize that the protection of the public from the beginning of operation to post-closure should be considered in its entity from the beginning of the design of the facility. The Safety Guide acknowledges that mining and milling wastes will contain non radiological hazards, in addition to the radiological hazards. The development of the waste management strategy is usually a complex process that aims to achieve a reasonable balance between the often conflicting goals - maximizing risk reduction versus minimizing financial expenditures. The evaluation criteria and procedures used to select the preferred option/and or development of the waste management strategy should be clearly defined and acceptable for the different parties interested in the project. This includes the public. A safety assessment should be performed to indicate how the design of the waste management facilities provides the optimum protection for the workers, public and environment using safety-type indicators. (author)

  3. Treatment of Radioactive Gaseous Waste

    Radioactive waste, with widely varying characteristics, is generated from the operation and maintenance of nuclear power plants, nuclear fuel cycle facilities, research laboratories and medical facilities. The waste needs to be treated and conditioned as necessary to provide waste forms acceptable for safe storage and disposal. Although radioactive gaseous radioactive waste does not constitute the main waste flow stream at nuclear fuel cycle and radioactive waste processing facilities, it represents a major source for potential direct environmental impact. Effective control and management of gaseous waste in both normal and accidental conditions is therefore one of the main issues of nuclear fuel cycle and waste processing facility design and operation. One of the duties of an operator is to take measures to avoid or to optimize the generation and management of radioactive waste to minimize the overall environmental impact. This includes ensuring that gaseous and liquid radioactive releases to the environment are within authorized limits, and that doses to the public and the effects on the environment are reduced to levels that are as low as reasonably achievable. Responsibilities of the regulatory body include the removal of radioactive materials within authorized practices from any further regulatory control — known as clearance — and the control of discharges — releases of gaseous radioactive material that originate from regulated nuclear facilities during normal operation to the environment within authorized limits. These issues, and others, are addressed in IAEA Safety Standards Series Nos RS-G-1.7, WS-G-2.3 and NS-G-3.2. Special systems should be designed and constructed to ensure proper isolation of areas within nuclear facilities that contain gaseous radioactive substances. Such systems consist of two basic subsystems. The first subsystem is for the supply of clean air to the facility, and the second subsystem is for the collection, cleanup and

  4. Radioactive waste management in Austria

    Neubauer Josef

    2004-01-01

    At the Austrian Research Centers Seibersdorf, there are several facilities in stalled for treatment of waste of low and intermediate radioactivity level (radwaste). A separate company within Centers, Nuclear Engineering Seibersdorf, has been formed recently, acting as a centralized facility for treatment, conditioning and storing of such waste within the country. The relevant treatment technology is applied depending on the waste category. In total about 6900 m3 of solid waste of low and inte...

  5. From uranium to radioactive waste

    A brief outline is given of the fuel cycle of conventional thermal reactors explaining the role of the individual stages leading from the uranium enrichment stage to fuel elements reprocessing and radioactive waste disposal. (S.R.)

  6. Radioactive waste processing and disposal

    This compilation contains 4144 citations of foreign and domestic reports, journal articles, patents, conference proceedings, and books pertaining to radioactive waste processing and disposal. Five indexes are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number

  7. National radioactive waste management strategy

    This article briefs out the strategic management of radioactive wastes in Malaysia. The criteria and methods discussed are those promoted by UTN (Nuclear Energy Unit) which has been given the authority to carry out local research programs in nuclear energy

  8. Radioactive Waste and Clean-up: Introduction

    geological disposal of high active waste. Therefore SCK-CEN, NIRAS/ONDRAF and the Economic Interest Grouping EURIDICE join their effort to demonstrate the feasibility of geological disposal of radioactive waste and spent fuel in Boom clay. A first step of this demonstration is the PRACLAY project. The objectives of the PRACLAY project are the demonstration of the reference design for vitrified HLW, as well as the characterization, verification, confirmation and demonstration of relevant elements of the disposal system and their behaviour by means of a combination of small surface and large in situ experiments

  9. Qualification of radioactive waste cement conditioning processes

    Nucleco Qualification Process Laboratory activities are focused on qualification of cement matrix conditioning processes of Low and Intermediate Level Waste produced by the decommissioning of old Nuclear Power Plants and research centres. Radioactive waste management strategies for Second- and Third Category wastes (according to the ENEA Technical Guide n. 26), involve specific processes (treatment and conditioning) aimed at producing a final waste form in which the radionuclides are incorporated into a solid matrix in order to reduce their potential migration or dispersion. The qualification of conditioning processes consists of all those activities demonstrating that the final waste form and waste package have the minimum requirements (mechanical, chemical and physical characteristics) compliant with all the subsequent management phases: long term interim storage, transport and long term disposal of the waste (in accordance with UNI 11193- 2006 standard). First, the paper recalls the classification into 3 categories of radioactive wastes by the Italian authorities. Cementation is one of the most common method for conditioning radioactive wastes into a solid, safe form suitable for long term storage. 3 tables list the qualification tests that are assigned to waste form, containers and final packages, the minimum requirements for second category wastes and the results of qualification tests

  10. NRI's research on radioactive wastes

    A survey is given (including 41 references) of work carried out at the Nuclear Research Institute. Discussed are sorption processes (a selective sorbent for 90Sr based on BaSO4, etc.), sorption on inorganic ion exchangers (heteropolyacid salts, ferrocyanides for 137Cs capture), on organic cation exchangers (separation of lanthanides), electrocoagulation. The process is described of vitrification of highly radioactive wastes, the arrest of emissions, the deposition of radioactive wastes and surface decontamination. (M.K.)

  11. Progress on Radioactive Waste Treatment Facilities Construction

    2011-01-01

    In 2011, five projects were undertaken by radioactive waste projects management department, which are "Cold Commissioning of the Pilot Project on Radioactive Waste Retrieval and Conditioning (abbreviation 'Pilot Project')", "Radioactive Ventilation Project Construction (abbreviation 'Ventilation

  12. Radioactive wastes problem in Poland

    The localization of CSOP Near Surface Repository of radioactive wastes in Rozan (Poland) and description of storage facilities was presented. This place is systematically controlled (e.g. measurements of radioactive contamination of the surface air, ground water, soil, grass and cereals). Contamination by tritium near by storage facilities was observed

  13. Collection and Segregation of Radioactive Waste. Principals for Characterization and Classification of Radioactive Waste

    Radioactive wastes are generated by all activities which utilize radioactive materials as part of their processes. Generally such activities include all steps in the nuclear fuel cycle (for power generation) and non-fuel cycle activities. The increasing production of radioisotopes in a Member State without nuclear power must be accompanied by a corresponding development of a waste management system. An overall waste management scheme consists of the following steps: segregation, minimization, treatment, conditioning, storage, transport, and disposal. To achieve a satisfactory overall management strategy, all steps have to be complementary and compatible. Waste segregation and minimization are of great importance mainly because they lead to cost reduction and reduction of dose commitments to the personnel that handle the waste. Waste characterization plays a significant part in the waste segregation and waste classification processes, it implicates required waste treatment process including the need for the safety assessment of treatment conditioning and storage facilities

  14. Overview of radioactive waste management

    The question of what to do with radioactive wastes is discussed. The need to resolve this issue promptly is pointed out. Two significant events which have occurred during the Carter administration are discussed. An Interagency Review Group (IRG) on waste management was formed to formulate recommendations leading to the establishment of a National policy for managing radioactive wastes. The technical findings in the IRG report are listed. The author points out some issues not addressed by the report. President Carter issued a national policy statement on Radioactive Waste Management in February 1980. The most significant elements of this statement are summarized. The cancellation of the Waste Isolation Pilot Plant is currently meeting opposition in Congress. This and other items in the National Policy Statement are discussed

  15. Iron-clay reactivity in radioactive waste disposal - Impacts of bacterial activities and heterogeneities

    This study focuses on the interactions between two materials that may be introduced in a geological disposal of radioactive waste: metallic materials such as the high-level waste overpack, and clay materials such as the clay host rock. Indeed, the interactions between these two materials in such conditions could induce a change of their initial confinement properties. This work aimed at determining the influence of heterogeneities (technological gaps and fractures) and bacterial activities on these interactions, in terms of evolution of chemical and hydraulic properties of clayey materials. To this end, two percolation cells have been conducted during 13 months: the first one with two bacteria (SRB, IRB), the second one without bacteria. These experiments, carried out at 60 C, involved circulating synthetic water representative of the Tournemire pore water through iron powder and through Toarcian artificially cracked argillite from Tournemire. An iron rod was also placed into the argillite. Thus, solid characterizations (SEM, SEM/EDS, Raman, XRD, X-ray tomography) allowed the study of both interfaces: the iron powder/argillite interface and the iron rod/argillite interface. The water probably circulated into the crack during the entire test, which was confirmed by reactive transport modeling with the HYTEC reactive transport code. However, no secondary phase was identified in the crack. In addition, bacteria survival in the biotic cell was confirmed during the experiment by monitoring their population and by analyzing their genetic diversity at the end of the experiment. A strong decrease in sulfate concentration was measured in the output, which confirms the SRB activity. Solid characterization conducted at the end of the experiments have highlighted, with and without bacteria, the occurrence of magnetite and chukanovite in the iron powder, the latter being mainly located close to the argillite interface. In the argillite, a Fe-enriched zone (10 μm) was

  16. Technologies for the management of radioactive waste from nuclear power plants and back end nuclear fuel cycle activities. Proceedings

    This document includes 79 presentations delivered at the symposium. The topics discussed include: requirements, options and strategies for waste management; supporting infrastructural needs; waste arising and waste minimization at sources; treatment, conditioning and interim storage of low and intermediate level waste from operation of facilities; treatment, conditioning and interim storage of spent fuel and high level waste; disposal of radioactive waste; decommissioning waste management. Each paper has been indexed separately

  17. 2009 National inventory of radioactive material and wastes. Synthesis report

    Third edition of the ANDRA's national inventory report on radioactive wastes that are present on the French territory (as recorded until december, 2007). After a brief historical review of the national inventory and the way it is constructed, the report gives the basics on radioactive wastes, their classification, origins and management processes, followed by a general presentation and discussion of the inventory results (radioactive wastes and materials). Results are then detailed for the different activity sectors using radioactive materials (nuclear industry, medical domain, scientific research, conventional industry, Defense...). Information is also given concerning radioactive polluted areas (characterization and site management) and radioactive waste inventories in various foreign countries

  18. Radioactive wastes assay technique and equipment

    The waste inventory records such as the activities and radio- nuclides contained in the waste packages are to be submitted with the radioactive wastes packages for the final disposal. The nearly around 10,000 drums of waste stocked in KAERI now should be assayed for the preparation of the waste inventory records too. For the successive execution of the waste assay, the investigation into the present waste assay techniques and equipment are to be taken first. Also the installation of the waste assay equipment through the comprehensive design, manufacturing and procurement should be proceeded timely. As the characteristics of the KAERI-stocked wastes are very different from that of the nuclear power plant and those have no regular waste streams, the application of the in-direct waste assay method using the scaling factors are not effective for the KAERI-generated wastes. Considering for the versal conveniency including the accuracy over the wide range of waste forms and the combination of assay time and sensitivity, the TGS(Tomographic Gamma Scanner) is appropriate as for the KAERI -generated radioactive waste assay equipment

  19. Characterization of radioactive hazardous waste

    The characterization of radioactive hazardous waste, also known as transuranic 'mixed waste' has to be completed before it can be classified for proper treatment (incinerator, mechanical compaction or thermal treatment), packing, and transport. The characterization of the TRU mixed waste is not only complex process but rather an expensive undertaking. The process knowledge is the basic foundation of characterization. It is the documented knowledge of processes and materials that generated the waste. The transuranic waste Quality Assurance Program Plan (QAPP) defines the Data Quality Objectives (DQO's) and provides the scope of analytical parameters and methods required to accurately characterize the radioactive mixed waste. Based on the historical data and process knowledge a sampling and analysis plan can be developed to characterize the radioactive hazardous waste. Based on the characterization, an assessment of the regulatory status can be made before the waste could be accepted for disposal at the WIPP facility. The Waste Acceptance Criteria (WAC) developed by WIPP defines the parameters for receiving and final disposal of the TRU waste. The sets of criteria, such as: heat generated, fissile gram equivalent (FGE), plutonium-equivalent (PE) curies, and specifications of a dose rate have to be met before the waste is accepted for deep geological disposal. The characterization of radioactive waste becomes even more complex due to the presence of iron base metals/alloys, aluminum base metals/alloys, organic, chelating agents that are mixed with plastic, rubber, cellulose, soils and cement. Some of the modern characterization technologies that are under development and currently used for TRU mixed wastes are: nondestructive examination, nondestructive assay, headspace gas analysis, and drum coring for Resources Conservation Recovery Act (RCRA) sampling. (author)

  20. Radioactive waste management in Canada

    This bibliography is an up-date to AECL-6186(Rev 3), 1952-1982, 'Radioactive Waste Management in Canada AECL Publications and Other Literature' compiled by Dianne Wallace. Canadian publications from outside contractors concerning the Canadian Nuclear Fuel Waste Management Program are included in addition to Atomic Energy of Canada Limited reports and papers. 252 refs

  1. Microbiology and radioactive waste disposal

    The present Nirex Safety Assessment Research Programme on microbiology is based on experimental as well as theoretical work. It has concentrated on the study of how mixed, natural populations of microbes might survive and grow on the organic component of Low Level Radioactive Wastes (LLW) and PCM (Plutonium Contaminated Waste) in a cementitious waste repository. The present studies indicate that both carbon dioxide and methane will be produced by microbial action within the repository. Carbon dioxide will dissolve and react with the concrete to a limited extent so methane will be the principal component of the produced gas. The concentration of hydrogen, derived from corrosion, will be depressed by microbial action and that this will further elevate methane levels. Actual rates of production will be lower than that in a domestic landfill due to the more extreme pH. Microbial action will clearly affect the aqueous phase chemistry where organic material is present in the waste. The cellulosic fraction is the main determinant of cell growth and the appearance of soluble organics. The structure of the mathematical model which has been developed, predicts the general features which are intuitively expected in a developing microbial population. It illustrates that intermediate compounds will build up in the waste until growth of the next organism needed for sequential degradation is initiated. The soluble compounds in the pore water and the mixture of microbes present in the waste will vary with time and sustain biological activity over a prolonged period. Present estimates suggest that most microbial action in the repository will be complete after 400 years. There is scope for the model to deal with environmental factors such as temperature and pH and to introduce other energy sources such as hydrogen. (author)

  2. Decontamination method for radioactive waste

    Metallic radioactive wastes are immersed in a liquid nitrogen vessel above a freezing crusher and they are frozen to about -196degC. Then, impact shocks are applied to crush the radioactive wastes frozen by a rotary shearing shock crusher disposed below the freezing crusher. The thus obtained crushed materials are sent to a decontamination device and decontaminated. In this case, since the objective materials are crushed, any of a blast decontamination method, an electrolytic polishing decontamination method, a redox decontamination method and a chemical agent immersion decontamination method can be applied. Thereafter, the dose of remaining radioactivity of the decontaminated crushed materials is measured. With such procedures, the decontamination and the subsequent measurement for the radiation contamination dose can easily and certainly be conducted for metallic radioactive wastes such as pipes of a small diameter and complicated structures. (I.N.)

  3. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank SX-105 And AN-103) By Fluidized Bed Steam Reformation

    Jantzen, Carol; Herman, Connie; Crawford, Charles; Bannochie, Christopher; Burket, Paul; Daniel, Gene; Cozzi, Alex; Nash, Charles; Miller, Donald; Missimer, David

    2014-01-10

    One of the immobilization technologies under consideration as a Supplemental Treatment for Hanford’s Low Activity Waste (LAW) is Fluidized Bed Steam Reforming (FBSR). The FBSR technology forms a mineral waste form at moderate processing temperatures thus retaining and atomically bonding the halides, sulfates, and technetium in the mineral phases (nepheline, sodalite, nosean, carnegieite). Additions of kaolin clay are used instead of glass formers and the minerals formed by the FBSR technology offers (1) atomic bonding of the radionuclides and constituents of concern (COC) comparable to glass, (2) short and long term durability comparable to glass, (3) disposal volumes comparable to glass, and (4) higher Na2O and SO{sub 4} waste loadings than glass. The higher FBSR Na{sub 2}O and SO{sub 4} waste loadings contribute to the low disposal volumes but also provide for more rapid processing of the LAW. Recent FBSR processing and testing of Hanford radioactive LAW (Tank SX-105 and AN-103) waste is reported and compared to previous radioactive and non-radioactive LAW processing and testing.

  4. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank SX-105 And AN-103) By Fluidized Bed Steam Reformation

    One of the immobilization technologies under consideration as a Supplemental Treatment for Hanford's Low Activity Waste (LAW) is Fluidized Bed Steam Reforming (FBSR). The FBSR technology forms a mineral waste form at moderate processing temperatures thus retaining and atomically bonding the halides, sulfates, and technetium in the mineral phases (nepheline, sodalite, nosean, carnegieite). Additions of kaolin clay are used instead of glass formers and the minerals formed by the FBSR technology offers (1) atomic bonding of the radionuclides and constituents of concern (COC) comparable to glass, (2) short and long term durability comparable to glass, (3) disposal volumes comparable to glass, and (4) higher Na2O and SO4 waste loadings than glass. The higher FBSR Na2O and SO4 waste loadings contribute to the low disposal volumes but also provide for more rapid processing of the LAW. Recent FBSR processing and testing of Hanford radioactive LAW (Tank SX-105 and AN-103) waste is reported and compared to previous radioactive and non-radioactive LAW processing and testing

  5. Human factors engineering applications to the cask design activities of the Civilian Radioactive Waste Management Program

    The use of human factors engineering (HFE) in the design and use of spent fuel casks being developed for the Department of Energy's Civilian Radioactive Waste Management Program is addressed. The safety functions of cask systems are presented as background for HFE considerations. Because spent fuel casks are passive safety devices they could be subject to latent system failures due to human error. It is concluded that HFE should focus on operations and verifications tests, but should begin, to the extent possible, at the beginning of cask design. Use of HFE during design could serve to eliminate or preclude opportunity for human error

  6. Environmental aspects of commercial radioactive waste management

    Volume 2 contains chapters 6 through 10: environmental effects related to radioactive waste management associated with LWR fuel reprocessing - mixed-oxide fuel fabrication plant; environmental effects related to transporting radioactive wastes associated with LWR fuel reprocessing and fabrication; environmental effects related to radioactive waste management associated with LWR fuel reprocessing - retrievable waste storage facility; environmental effects related to geologic isolation of LWR fuel reprocessing wastes; and integrated systems for commercial radioactive waste management

  7. Environmental aspects of commercial radioactive waste management

    1979-05-01

    Volume 2 contains chapters 6 through 10: environmental effects related to radioactive waste management associated with LWR fuel reprocessing - mixed-oxide fuel fabrication plant; environmental effects related to transporting radioactive wastes associated with LWR fuel reprocessing and fabrication; environmental effects related to radioactive waste management associated with LWR fuel reprocessing - retrievable waste storage facility; environmental effects related to geologic isolation of LWR fuel reprocessing wastes; and integrated systems for commercial radioactive waste management. (LK)

  8. Radioactive waste shredding: Preliminary evaluation

    The critical constraints for sizing solid radioactive and mixed wastes for subsequent thermal treatment were identified via a literature review and a survey of shredding equipment vendors. The types and amounts of DOE radioactive wastes that will require treatment to reduce the waste volume, destroy hazardous organics, or immobilize radionuclides and/or hazardous metals were considered. The preliminary steps of waste receipt, inspection, and separation were included because many potential waste treatment technologies have limits on feedstream chemical content, physical composition, and particle size. Most treatment processes and shredding operations require at least some degree of feed material characterization. Preliminary cost estimates show that pretreatment costs per unit of waste can be high and can vary significantly, depending on the processing rate and desired output particle size

  9. Radioactive Waste in Oil Exploration

    Naturally occurring radioactive material commonly known as NORM composes the majority of the dose received by a person each year at approximately 80% of the total amount. However, there is a noticeably higher concentration of radioisotopes present in technologically enhanced NORM, often called TENORM, which results directly from human industrial activities. NORM is formed in the process of mineral mining including phosphate production, where the end goal is to concentrate high quantities of metals or elements (e.g. phosphorous). However, NORM has also become a widely recognized problem in the oil and gas industry. It is approximately one hundred and fifty years since oil was discovered in the continental United States and the mention of radioactivity in mineral oils and natural gases occurred in 1904, just eight years after the discovery of radioactivity by Henri Bequerel in 1896. In just over three decades the problems from naturally occurring radioactive material (NORM) wastes arising from the oil and gas industry have been much more scrutinized. In the 1980’s 226Ra began to be noticed when scrap metal dealers would detect unacceptably high levels of radiation from oil-field piping1. In 1991 Raloff2 published an article on the new hot wastes in NORM and in 1992 Wilson et. al3 described the health physics aspects of radioactive petroleum piping scale. NORM will develop in high concentrations in by-product oil and gas waste streams4-7. The NORM will chemically separate from other piped material in the process of the extraction of oil, resulting in high concentrations of 226Ra, 228 Ra and 210Pb and other radioisotopes in a densely caked layer on the inner surfaces of the piping1 . The activity of the 226Ra from NORM ranges from 185 to several tens of thousands Bq/kg of sample. By comparison, the NORM concentrations of radium in rock and soil is, at a natural level, 18.5 - 185 Bq/kg1. Disposal of NORM becomes more problematic as higher concentrations of

  10. Iron/argillite interactions in radioactive waste disposal context: Oxidising transient and bacterial activities influence

    disposal conditions. Indeed, the nature, the quantity of nutrients and the environmental conditions (space, temperature, water, radioactivity and pressure) are key parameters for bacterial development. Even though disposal conditions may be not favourable during a part of the thermal transient characterised by high temperature, irradiation conditions and heterogeneous water saturation, bacterial activity may resume when environmental conditions become more suitable. Moreover, argillite cracks and residual voids between the waste packages and the liner create additional space for bacterial development. Concerning the nutrient content, significant amounts of hydrogen (an energetic substrate for bacteria) produced by anoxic corrosion of metallic materials are expected, which will favour the development of hydrogenotrophic bacteria. Furthermore, it is widely accepted that micro-organisms may locally affect the corrosion processes and the corrosion rates due to their influence on the water composition, pH and redox potential of the metal/environment interface. More specifically, sulphate-reducing bacteria (SRB) may produce ferrous sulphide, a corrosive product that may lead to significant pits on steel surface. Also, under anaerobic conditions, the iron-reducing bacteria (IRB) can reduce Fe(III) from iron oxides composing passive layers, which may impact corrosion by re-exposing the metal surfaces to corrosion. Therefore, the survival of bacteria cannot be excluded and their impact on corrosion phenomena must be investigated. In this context, this paper focuses on two studies regarding iron/argillite interactions. The first one addresses these interactions under oxidising and reducing conditions, while the second one tackles bacteria effects on corrosion in conditions that may prevail in a repository. These studies are both based on laboratory and in situ experiments. Iron and carbon steel have been chosen as typical of metallic components, and the Tournemire Toarcian argillite

  11. Nuclear data for radioactive waste management

    Highlights: • The role nuclear data plays in determining the source term of radiation from spent fuel and radioactive waste is described. • Isotopes most contributing to this source for different fuel cycles are identified. • Current international activities aiming at improving the existing data bases are addressed. - Abstract: The role nuclear data plays in determining the source term of radiation emitted by spent fuel and radioactive waste arising from nuclear activities is described. The isotopes most contributing to this source for different fuel cycles are identified. Current international activities aiming at improving the existing data bases, in particular as concerns data uncertainties are addressed

  12. Radioactive waste disposal in granite

    Within the framework of completing its knowledge of various rock formations, the Federal Government also considers the suitability of granite for radioactive waste disposal. For this purpose, the Federal Minister of Research and Technology participated from 1983 to 1990 in relevant research and development activities in the NAGRA rock laboratory at Grimsel, Switzerland. After about 17 field tests, it can be stated that the understanding of basic connections and interactions between the mechanical behaviour of the rock, which is determined, for instance, by natural or artificially induced rock movements, and the hydrogeological or rock hydraulic relations could be clearly improved. So far, the German share in the project costs amounts to a total of approximately DM 20.7 million. Till the end of 1993, further activities are scheduled to be carried out which will require financial funds of about DM 6.3 million. (orig./HSCH)

  13. Plastic solidification of radioactive wastes

    Over 20 years have elapsed after the start of nuclear power development, and the nuclear power generation in Japan now exceeds the level of 10,000 MW. In order to meet the energy demands, the problem of the treatment and disposal of radioactive wastes produced in nuclear power stations must be solved. The purpose of the plastic solidification of such wastes is to immobilize the contained radionuclides, same as other solidification methods, to provide the first barrier against their move into the environment. The following matters are described: the nuclear power generation in Japan, the radioactive wastes from LWR plants, the position of plastic solidification, the status of plastic solidification in overseas countries and in Japan, the solidification process for radioactive wastes with polyethylene, and the properties of solidified products, and the leachability of radionuclides in asphalt solids. (J.P.N.)

  14. Research programme on radioactive wastes

    This report for the Swiss Federal Department of the Environment, Transport, Energy and Communication (DETEC) takes a look at work done within the framework of the research programme on radioactive wastes. The paper discusses the development of various projects and the associated organisations involved. Both long-term and short-term topics are examined. The long-term aspects of handling radioactive wastes include organisation and financing as well as the preservation of know-how and concepts for marking the repositories. Communication with the general public on the matter is looked at along with public perception, opinion-making and acceptance. Waste storage concepts are looked at in detail and aspects such as environmental protection, monitoring concepts, retrievability and encasement materials are discussed. Finally, ethical and legal aspects of radioactive waste repositories are examined. The paper is completed with appendixes dealing with planning, co-ordination and the responsibilities involved

  15. Radioactive waste management in Slovenia

    The problem of radioactive waste management is both scientifically and technically complex and also deeply emotional issue. In the last twenty years the first two aspects have been mostly resolved up to the point of safe implementation. In the Republic of Slovenia, certain fundamentalist approaches in politics and the use of radioactive waste problem as political marketing tool, make things even more complex. Public involvement in planning and development of radioactive waste management program must be perceived as essential for the success of the program. Education is a precursor to public comprehension and confidence which lead to adequate waste management decisions that will protect the public health, safety and environment without jeopardizing further progress and development. (author)

  16. Underground radioactive waste disposal concept

    The paper presents some solutions for radioactive waste disposal. An underground disposal of radioactive waste is proposed in deep boreholes of greater diameter, fitted with containers. In northern part of Croatia, the geological data are available on numerous boreholes. The boreholes were drilled during investigations and prospecting of petroleum and gas fields. The available data may prove useful in defining safe deep layers suitable for waste repositories. The paper describes a Russian disposal design, execution and verification procedure. The aim of the paper is to discuss some earlier proposed solutions, and present a solution that has not yet been considered - lowering of containers with high level radioactive waste (HLW) to at least 500 m under the ground surface.(author)

  17. Standardization of radioactive waste categories

    A large amount of information about most aspects of radioactive waste management has been accumulated and made available to interested nations in recent years. The efficiency of this service has been somewhat hampered because the terminology used to describe the different types of radioactive waste has varied from country to country and indeed from installation to installation within a given country. This publication is the outcome of a panel meeting on Standardization of Radioactive Waste Categories. It presents a simple standard to be used as a common language between people working in the field of waste management at nuclear installations. The purpose of the standard is only to act as a practical tool for increasing efficiency in communicating, collecting and assessing technical and economical information in the common interest of all nations and the developing countries in particular. 20 refs, 1 fig., 3 tabs

  18. Clays in radioactive waste disposal

    Delage, Pierre; CUI, Yu-Jun; Tang, Anh-Minh

    2010-01-01

    Clays and argillites are considered in some countries as possible host rocks for nuclear waste disposal at great depth. The use of compacted swelling clays as engineered barriers is also considered within the framework of the multi-barrier concept. In relation to these concepts, various research programs have been conducted to assess the thermo-hydro-mechanical properties of radioactive waste disposal at great depth. After introducing the concepts of waste isolation developed in Belgium, Fran...

  19. Radioactive Waste Management in the Republic of Lithuania

    Description of regulation of radioactive waste management in Lithuania, waste processing in Ignalina NPP is presented. On 2001 VATESI approved the regulations governing pre disposal waste management at the Ignalina NPP. The classification of radioactive waste was modified in accordance with the practice of the IAEA. Short information on radioactive waste forms in the cause of operation of Ignalina NPP is presented. Comparison with previous years is made. On July 2001 Radioactive Waste Management Agency (RATA) was established. Description of RATA's aims and activities is provided

  20. Operational experience at radioactive waste treatment plant, after 15 years

    Available in abstract form only. Full text of publication follows: The experience of the radioactive waste treatment plant (PTDR) in Chile, which centralizes all activities related to pre-disposal activities in the radioactive waste management, in the country is presented. It is the solely waste treatment plant in the country, where radioactive waste are received from all nuclear and radioactive waste generators facilities located in the country. Radioactive waste in Chile proceeds from radioisotope application at industrial, health, universities research, and from two nuclear research centers. Lately, there have been included the radioactive wastes discovered in metal recycling facilities, which sometimes make big amounts. Radioactive Waste Treatment Plant was planned in 1990; adoption of decision and started operation in 1992. At that time, a facility to store waste packages as conditioned waste in cementitious matrices in standardized 200 l drums was built (43 m3 total capacity) for a storage period estimated in 15 years. The methodology and procedures developed has been transferred to Latin American and El Caribe professionals, through demonstration training courses held in this Waste Treatment Plant which recognized as Demonstration facilities to prepare people in the processing of radioactive waste from nuclear applications, previous to disposal. These procedures were the first one developed following international recommendations and complying requirements to immobilize the radioactive material to avoid the external intrusion of thirds, and requirements of dose radiation according to transport regulations for radioactive material. (authors)

  1. Management of radioactive waste: A review

    Luis Paulo Sant'ana

    2016-06-01

    Full Text Available The issue of disposal of radioactive waste around the world is not solved by now and the principal reason is the lack of an efficient technologic system. The fact that radioactive waste decays of radioactivity with time are the main reasons for setting nuclear or radioactive waste apart from the other common hazardous wastes management. Radioactive waste can be classified according to the state of matter and level of radioactivity and this classification can be differently interpreted from country to country. Furthermore, microbiological procedures, plasma vitrification process, chemical precipitation, ion exchange, evaporation and reverse osmosis are strategies used for the treatment of radioactive wastes. The major challenge is to manage these radioactive substances after being used and discharged. This report brings data from the literature published worldwide from 2009 to 2014 on radioactive waste management studies and it covers production, classification and management of radioactive solid, liquid and gas waste.

  2. Disposal of radioactive waste material

    Radioactive waste is disposed below ground at a position adjacent the coast line such that, 1. drainage of any water which has flowed through the disposal volume can be drained to the sea, or 2. the waste is disposed below the foreshore or coastal shallow water. Disposal facilities are described which advantageously include surrounding the waste with absorber to increase protection against migration of radionuclides. An example of a radioactive waste disposal facility is shown and includes a number of cells formed from concrete walls and floors, the cells being loaded successively with drums containing the waste, each cell being roofed with concrete after filling, there being absorber placed beneath the floors between the walls and after complete filling, above the said roof, with a soil mound surmounting. Drainage channels extend to sea via monitoring means. (author)

  3. Development of Specifications for Radioactive Waste Packages

    The main objective of this publication is to provide guidelines for the development of waste package specifications that comply with waste acceptance requirements for storage and disposal of radioactive waste. It will assist waste generators and waste package producers in selecting the most significant parameters and in developing and implementing specifications for each individual type of waste and waste package. This publication also identifies and reviews the activities and technical provisions that are necessary to meet safety requirements; in particular, selection of the significant safety parameters and preparation of specifications for waste forms, waste containers and waste packages using proven approaches, methods and technologies. This report provides guidance using a systematic, stepwise approach, integrating the technical, organizational and administrative factors that need to be considered at each step of planning and implementing waste package design, fabrication, approval, quality assurance and control. The report reflects the considerable experience and knowledge that has been accumulated in the IAEA Member States and is consistent with the current international requirements, principles, standards and guidance for the safe management of radioactive waste

  4. Radioactive waste management: A status report

    This publication briefly summarizes the activities of the IAEA and its Member States in the area of radioactive waste management. The information is presented in two major sections. One section presents a brief overview of the Agency's programme, and the other section provides a status report on the activities in many of the Agency's Member States

  5. Measurement of alpha emitters in radioactive waste

    The alpha emitters measurement in radioactive waste (10-2Ci/T) is essential for a good fissil materials management. This paper describes 3 classes of devices: device using a neutronic passive counting, device using a neutronic activation and detection of fission gamma, device using a neutronic activation and detection of prompt neutrons fission

  6. Mental Models of Radioactivity and Attitudes towards Radioactive Waste

    radiation on people irrespective of the public which was involved in the survey. Among the most important factors which influence public acceptability of the construction of the LILW repository in the domestic location is perceived risk to the nuclear power plant. This factor is more important than knowledge on radioactivity and radioactive waste for different groups, also for the local public with experience of living beside nuclear power plant. Although it can be seen that the factor of knowledge has higher importance in the local community which means that communication activities among local citizens do influence the acceptability. Based on the analyses of the results, the starting points for improvement of communication plans were prepared, which should be used by the implementer of the site selection, and later during the repository construction. These communication starting points have a broader validity, since they could be suitable also for risk communications for other technologies.(author).

  7. The European Communities' research and development activities relative to the disposal of radioactive wastes into geological formations

    The European Communities' research and development activities in radioactive waste disposal are part of its more general multiyear programmes on radioactive waste management and storage. The immediate purpose of these activities is to determine the best conditions for disposal of high-level and/or long-lived wastes into geological formations so that they do not present any danger to man and his environment. The studies are carried out either under contract with various organizations and firms of Member States on a cost-sharing basis or directly at the facilities of the Joint Research Centre at Ispra. The Communities' programme at present embraces most of the activities of the Nine in Europe on waste disposal in deep geological formations. There is a co-ordinated division of the work among the national organizations responsible for waste disposal, and this arrangement takes into account existing national commitments to specific formations (such as salt in the Federal Republic of Germany), the particular nature of the subsoil in the territories concerned (such as clay in Belgium) and considerations of economy to avoid duplication of costly research. Thus, argillaceous formations are being studied at present mainly by Belgium and Italy, crystalline rocks (granite) by France and the United Kingdom and salt domes by the Federal Republic of Germany and the Netherlands. Back-up studies applicable to all these different formations are being conducted by Denmark, Ireland and the Communities' Joint Research Centre at Ispra. The paper describes the activities and studies being carried out under the Communities' programme on the various formations concerned, indicates the progress achieved and surveys the results obtained. (author)

  8. National inventory of radioactive wastes and recoverable materials 2006. Descriptive catalogue of radioactive waste families

    Real comprehensive overview of radioactive wastes, the national inventory of radioactive wastes and recoverable materials describes the situation in France of the wastes that can be conditioned (in their definitive form) or not. It presents also the waste production quantities foreseen for 2010, 2020 and beyond. This document is a complement to the synthesis report and to the geographic inventory of radioactive wastes in France and details the classification of wastes by families (wastes with similar characteristics). For each family of wastes, the description comprises a general presentation and some photos. It comprises also some data such as the position of the family in the French classification, the industrial activity at the origin of the waste, the production situation of the waste in concern (finished, in progress, not started). Some information about the raw waste are given and the conditioning process used is described. Some figures complete the description, like: the past and future production quantities, the evaluation of the radioactivity of the waste family in 2004 and 2020, and the evaluation of the thermal power when available. Finally, some information are given about the presence of compounds with a specific risk of toxicity. (J.S.)

  9. Comparison among the rice bark in the raw and active forms in the removal of 241Am and 137Cs from liquid radioactive wastes

    New techniques involving treatment of radioactive wastes which associate simplicity and low cost have been directed the attention for the bio sorption, which is a process were solid vegetable or micro-organism for the retention, removing, or recovering of heavy metals from a liquid environment. This study evaluated the capacity of a bio sorbent to remove Am-241 and Cs-137 from liquid radioactive waste. The chosen material was the rice bark employed in the raw or activated forms. The obtained results suggest that the bio sorption, with the activated rice bark, can be a viable technique for the treatment of liquid radioactive wastes containing Am-241 and Cs-137 present in liquid radioactive wastes

  10. Radioactive waste processing by incineration

    Since 1986, low-level combustible radioactive waste has in Czechoslovakia been burnt in an experimental facility of a capacity of 40 kg/h. A modified two-stage SPG02 furnace is installed as the incinerator. It is a fixed-grate furnace with mechanical removal of solid residues. Propane-butane is used as the fuel. A 100 kg/h incinerator has been designed using the experience gained with the above type. The new prototype incinerator has two chambers and its operation is based on pyrolysis: radioactive waste is distilled at partial access of air, the evolving gas is then burnt thus obtaining a dry coke residue which will be fired in the furnace. Both chambers of the furnace are heated with one light fuel oil burner and one burner for contaminated oils and liquid radioactive wastes. The whole process is remote-controlled. (Z.M.). 6 figs., 3 refs

  11. Radioactive liquid waste processing device

    In a radioactive liquid waste processing device comprising a freeze-drying vessel for freezing and then vacuum drying acidic liquid wastes containing radioactive materials and a cold trap condensing steams evaporated in the freeze-drying vessel, a dust collecting electrode of an electric dust collector is disposed in the freeze-drying vessel for capturing fine solid particles and inorganic salts in steams. With such a constitution, upon sublimation of the water content contained in a freezing product of an acidic solution, since fine solid particles and inorganic salts entrained by steams are collected by the dust collecting electrode, radioactive materials entrained by recovered steams are almost eliminated, decontamination efficiency of the liquid waste processing device can be increased. Further, heat for the sublimation can be supplied to the solution-freezing product by a radiation heat caused by electric discharge of the dust collecting electrode, thereby enabling to eliminate the heater which was unnecessary so far. (T.M.)

  12. Public debate on radioactive wastes

    The definition and implementation of safe and perennial solutions for the management of radioactive wastes is a necessity from the point of view of both the nuclear industrialists and the public authorities, but also of the overall French citizens. For the low- or medium-level or short living radioactive wastes, some solutions have been defined are are already implemented. On the other hand, no decision has been taken so far for the long living medium to high-level radioactive wastes. Researches are in progress in this domain according to 3 ways of research defined by the law from December 30, 1991: separation-transmutation, disposal in deep underground, and long duration surface or sub-surface storage. This paper presents in a digest way, the principle, the results obtained so far, and the perspectives of each of the three solutions under study. (J.S.)

  13. Method of solidifying radioactive wastes

    Purpose: To prevent radioactive leaching and to attain excellent heat-dissipating and mechanical performances of radioactive wastes. Method: Solution or powder of radioactive wastes is dispersed, for example, into molten borosilicate glass or phosphate glass of about 70 to 30 % by weight per the dried oxides of the wastes and then molded into glass spheres of 2 - 50 mm in diameter. The surface of the glass solidified particles are made with electroconductive membranes by way of electroless plating, sputtering, vapor deposition, paste sintering or the like, thereafter, formed with membranes of metals such as copper, nickel, iron and silver by way of electroplating. The particles are sintered at a temperature between glass-softening point and metal-melting point. (Horiuchi, T.)

  14. Problems Arising from Disposal of Low-Activity Radioactive Waste in the Coastal Waters of the Netherlands

    Low-activity waste discharged in coastal waters will find its way into the marine food chain in two entirely different ways: 1. Adsorption to the surface of plankton organisms and adsorption to silt particles. In the latter case, fish and other creatures may ingest the loaded particles with their regular food. If the elements under consideration are not of primary biological importance to the organisms concerned, accumulation will not increase geometrically. Much of the radioactive material attached to ingested silt particles will leave the organisms later. 2. Accumulation through active uptake of elements collected in dissolved state by shell-bearing organisms. Copper, zinc, manganese, cobalt and the like are accumulated very strongly by shell-forming creatures like molluscs, and are stored in the connective tissues. If a part worth mentioning of these elements is of a radioactive nature, accumulation could attain alarming levels. Shrimps, Dover soles, plaice, and mussels being the main fishery products in the vicinity of the pipeline planned for the Netherlands centre for reactor research, noticeable accumulation of radioactive waste in these organisms should be prevented. The special international position of the Netherlands fish market requires extra care, and migration of fishes and shrimps makes it impossible to avoid a contaminated area. (author)

  15. Representation of estuarine, coastal and marine biosphere systems within post-closure performance assessments supporting geological disposal of higher activity radioactive wastes in the UK

    Walke, R. C.; Thorne, M. C.; Smith, J T; Kowe, R.

    2015-01-01

    Radioactive Waste Management Limited (RWM) is tasked with implementing geological disposal of the United Kingdom's (UK) higher activity radioactive wastes. This paper describes how RWM's biosphere modelling capability has been extended from a solely terrestrial model to allow potential contaminant releases to estuarine, coastal and marine systems around the UK to be represented. The new models aim to strike a balance between being as simple as can be justified, erring on the side of conservat...

  16. Radioactive and mixed waste management plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility

    This Radioactive and Mixed Waste Management Plan for the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory is written to meet the requirements for an annual report of radioactive and mixed waste management activities outlined in DOE Order 5820.2A. Radioactive and mixed waste management activities during FY 1994 listed here include principal regulatory and environmental issues and the degree to which planned activities were accomplished

  17. Radioactive waste disposal and constitution

    The radioactive waste disposal has many dimensions with regard to the constitutional law. The central problem is the corret delimitation between adequate governmental precautions against risks and or the permitted risk which the state can impose on the citizen, and the illegal danger which nobody has to accept. The solution requires to consider all aspects which are relevant to the constitutional law. Therefore, the following analysis deals not only with the constitutional risks and the risks of the nuclear energy, but also with the liberal, overall-economic, social, legal, and democratic aspects of radioactive waste disposal. (HSCH)

  18. Radioactive waste integrated management system

    In this paper, we present an integrated management system for radioactive waste, which can keep watch on the whole transporting process of each drum from nuclear power plant temporary storage house to radioactive waste storage house remotely. Our approach use RFID(Radio Frequency Identification) system, which can recognize the data information without touch, GSP system, which can calculate the current position precisely using the accurate time and distance measured from satellites, and the spread spectrum technology CDMA, which is widely used in the area of mobile communication

  19. Public involvement in radioactive waste management decisions

    NONE

    1994-04-01

    Current repository siting efforts focus on Yucca Mountain, Nevada, where DOE`s Office of Civilian Radioactive Waste Management (OCRWM) is conducting exploratory studies to determine if the site is suitable. The state of Nevada has resisted these efforts: it has denied permits, brought suit against DOE, and publicly denounced the federal government`s decision to study Yucca Mountain. The state`s opposition reflects public opinion in Nevada, and has considerably slowed DOE`s progress in studying the site. The Yucca Mountain controversy demonstrates the importance of understanding public attitudes and their potential influence as DOE develops a program to manage radioactive waste. The strength and nature of Nevada`s opposition -- its ability to thwart if not outright derail DOE`s activities -- indicate a need to develop alternative methods for making decisions that affect the public. This report analyzes public participation as a key component of this openness, one that provides a means of garnering acceptance of, or reducing public opposition to, DOE`s radioactive waste management activities, including facility siting and transportation. The first section, Public Perceptions: Attitudes, Trust, and Theory, reviews the risk-perception literature to identify how the public perceives the risks associated with radioactivity. DOE and the Public discusses DOE`s low level of credibility among the general public as the product, in part, of the department`s past actions. This section looks at the three components of the radioactive waste management program -- disposal, storage, and transportation -- and the different ways DOE has approached the problem of public confidence in each case. Midwestern Radioactive Waste Management Histories focuses on selected Midwestern facility-siting and transportation activities involving radioactive materials.

  20. Public involvement in radioactive waste management decisions

    Current repository siting efforts focus on Yucca Mountain, Nevada, where DOE's Office of Civilian Radioactive Waste Management (OCRWM) is conducting exploratory studies to determine if the site is suitable. The state of Nevada has resisted these efforts: it has denied permits, brought suit against DOE, and publicly denounced the federal government's decision to study Yucca Mountain. The state's opposition reflects public opinion in Nevada, and has considerably slowed DOE's progress in studying the site. The Yucca Mountain controversy demonstrates the importance of understanding public attitudes and their potential influence as DOE develops a program to manage radioactive waste. The strength and nature of Nevada's opposition -- its ability to thwart if not outright derail DOE's activities -- indicate a need to develop alternative methods for making decisions that affect the public. This report analyzes public participation as a key component of this openness, one that provides a means of garnering acceptance of, or reducing public opposition to, DOE's radioactive waste management activities, including facility siting and transportation. The first section, Public Perceptions: Attitudes, Trust, and Theory, reviews the risk-perception literature to identify how the public perceives the risks associated with radioactivity. DOE and the Public discusses DOE's low level of credibility among the general public as the product, in part, of the department's past actions. This section looks at the three components of the radioactive waste management program -- disposal, storage, and transportation -- and the different ways DOE has approached the problem of public confidence in each case. Midwestern Radioactive Waste Management Histories focuses on selected Midwestern facility-siting and transportation activities involving radioactive materials

  1. Management and control of radioactive wastes in Ghana

    The National Radioactive Waste Management Centre (NRWMC) and the Radiation Protection Institute (RPI) of the Ghana Atomic Energy Commission (GAEC) in conjunction with other state regulatory agencies have embarked on security measures to protect the citizens from any radiation exposure resulting from sabotage or illegal disposal of radioactive wastes. Actions taken to educate the public, industrialists, health workers and other users of radioactive materials on the national system of control of radioactive wastes are presented. The roles of NRWMC as the institution responsible for collection, treatment and safe disposal of spent and disused radioactive materials are specified, while RPI is responsible for monitoring and tracking all radioactive materials imported, stored or exported. The profile of radioactive sources in active use are also presented, in addition to spent radioactive sources currently in the custody of the NRWMC as part of the inventory for creating databases on radioactive wastes in Ghana. (au)

  2. Management of radioactive waste from reprocessing plants

    Reprocessing and recycling of both fissile and fertile components back into appropriate reactor systems is an integral part of three stage nuclear energy programme of India. Different steps involved in processing of spent nuclear fuel (SNF) are decladding, dissolution and recovery of fissile and fertile materials. Reprocessing of SNF is a complex process involving handling of large quantity of radioactive materials and processing chemicals. There are three reprocessing plants in operation in the country at Trombay, Tarapur and Kalpakkam. Out of these plants, Trombay reprocessing plant is engaged in reprocessing of SNF from research reactors and other two plants are processing of SNF from PHWRs. A facility is being built for reprocessing of thorium based spent fuel at BARC, Trombay based on the experience of pilot plant scale. Like other industrial activities of nuclear fuel cycle, fuel reprocessing facilities too generate various types of radioactive waste streams. These are generated in all the three physical forms namely solid, liquid and gas. These waste streams are primarily categorized on the basis of concentration of radionuclides, their half lives and toxicity. Management of these wastes aims at (a) recovery and recycle of useful materials, (b) concentration and confinement of radioactivity in inert and stable matrices, (c) minimization of final waste volume for disposal, (d) decontamination of effluents following ALARA principle and (e) minimization of radioactive discharge to the environment. The present paper outlines the salient features of management of different types of radioactive waste generated in reprocessing plants handling SNF from research reactors and PHWR

  3. International co-operation for safe radioactive waste management

    As a specialised inter-governmental body, NEA pursues three main objectives for its radioactive waste management programme: - The promotion of studies to improve the data base available in support of national programmes. - The support of Research and Development through co-ordination of national activities and promotion of international projects. - An improvement in the general level of understanding of waste management issues and options, particularly in the field of waste disposal. The management of radioactive waste from nuclear activities covers several sequences of complex technical operations. However, as the ultimate objective of radioactive waste management is the disposal of the waste, the largest part of the work programme is directed towards the analysis of disposal options. In addition, NEA is active in various other areas of waste management, such as the treatment and conditioning of waste, the decommissioning of nuclear facilities and the institutional aspects of the long term management of radioactive waste

  4. Solidifying method for radioactive waste

    Purpose: To obtain stable solidifying material capable of solidifying pellet-like radioactive waste intermediate storing products or miscellaneous solid wastes such of metals into uniform solidification products with no gaps. Method: In this method, radioactive wastes are solidified integrally by means of solidifying material comprising water-curable inorganic compound, aggregate, inorganic fluidizing material and reaction suppressing agent for suppressing the coagulating reaction between these materials. Aluminum lactate which is a basic metal salt is used as the reaction suppressing agent and lithium citrate is used together as an auxiliary agent for the reaction suppressing agent. Thus, particles constituting solidifying material are uniformly dispersed into added water and in a easily movable state. Accordingly, the solidifying material easily flows to the surface of wastes as the processing object upon packing the solidifying material, can easily fill the container for the package of solidification product with no gaps, to thereby from stable package for the solidification products. (Takahashi, M.)

  5. Radioactive waste management at ANSTO - Managing current and historic waste

    The Australian Nuclear Science and Technology Organisation (ANSTO) carries out nuclear research and development at Lucas Heights about 40 km southeast of Sydney, Australia. The 10 MW heavy water research reactor (HIFAR) has operated at Lucas Heights site for over 40 years with associated radioisotope and radiopharmaceutical production facilities and a wide range of nuclear science and technology R and D is carried out. Most of the radioactive waste generated by these activities is stored at the site. Following a review of ANSTO's waste management facilities and practices in 1996, an integrated five-year Waste Management Action Plan (WMAP) was established to address legacy issues and ensure that ANSTO waste management met international standards. Topics undertaken under the Waste Management Action Plan (WMAP) included construction and operation of improved storage facilities for low-level solid radioactive waste, better monitoring of storage facilities for spent research reactor fuel and intermediate level liquid wastes, development of processes to convert liquid and solid wastes into forms more suitable for long term storage and disposal, improved characterisation of wastes and development of a database for radioactive waste. (author)

  6. System for disposing of radioactive waste

    A system is described for disposing of radioactive waste material from nuclear reactors by solidifying the liquid components to produce an encapsulated mass adapted for disposal by burial. The method contemplates mixing of radioactive waste materials, with or without contained solids, with a setting agent capable of solidifying the waste liquids into a free standing hardened mass, placing the resulting liquid mixture in a container with a proportionate amount of a curing agent to effect solidification under controlled conditions, and thereafter burying the container and contained solidified mixture. The setting agent is a water-extendable polymer consisting of a suspension of partially polymerized particles of urea formaldehyde in water, and the curing agent is sodium bisulfate. Methods are disclosed for dewatering slurry-like mixtures of liquid and particulate radioactive waste materials, such as spent ion exchange resin beads, and for effecting desired distribution of non-liquid radioactive materials in the central area of the container prior to solidification, so that the surrounding mass of lower specific radioactivity acts as a partial shield against higher radioactivity of the non-liquid radioactive materials. The methods also provide for addition of non-radioactive filler materials to dilute the mixture and lower the overall radioactivity of the hardened mixture to desired Lowest Specific Activity counts. An inhibiting agent is added to the liquid mixture to adjust the solidification time, and provision is made for adding additional amounts of setting agent and curing agent to take up any free water and further encapsulate the hardened material within the container

  7. System for disposing of radioactive waste

    A system is described for disposing of radioactive waste material from nuclear reactors by solidifying the liquid components to produce an encapsulated mass adapted for disposal by burial. The method contemplates mixing of radioactive waste materials, with or without contained solids, with a setting agent capable of solidifying the waste liquids into a free standing hardened mass, placing the resulting liquid mixture in a container with a proportionate amount of a curing agent to effect solidification under controlled conditions, and thereafter burying the container and contained solidified mixture. The setting agent is a water-extendable polymer consisting of a suspension of partially polymerized particles of urea formaldehyde in water, and the curing agent is sodium bisulfate. Methods are disclosed for dewatering slurry-like mixtures of liquid and particulate radioactive waste materials, such as spent ion exchange resin beads, and for effecting desired distribution of non-liquid radioactive materials in the central area of the container prior to solidification, so that the surrounding mass of lower specific radioactivity acts as a partial shield against higher radioactivity of the non-liquid radioactive materials. The methods also provide for addition of non-radioactive filler materials to dilute the mixture and lower the overall radioactivity of the hardened mixture to desired Lowest Specific Activity counts. An inhibiting agent is added to the liquid mixture to adjust the solidification time, and provision is made for adding additional amounts of setting agent and curing agent to take up any free water and further encapsulate the hardened material within the container. 30 claims

  8. Pump Jet Mixing and Pipeline Transfer Assessment for High-Activity Radioactive Wastes in Hanford Tank 241-AZ-102

    Onishi, Yasuo; Recknagle, Kurtis P.; Wells, Beric E.

    2000-08-09

    This report evaluates how two 300-hp mixer pumps would mix solid and liquid radioactive wastes stored in Hanford double-shell Tank 241-AZ-102. It also assesses and confirms the adequacy of a 3-inch pipeline to transfer the resulting mixed waste slurry to the AP Tank Farm and ultimately to a planned waste treatment/vitrification plant on the Hanford Site.

  9. Nuclear power and radioactive waste

    The gap between the relative perceptions in the area of nuclear waste is wide. The broad view of the industry is that the disposal of nuclear waste is not a serious technical problem, and that solutions are already available to provide safe disposal of all our waste. The broad view of those who oppose the industry is that radioactive waste is so unpleasant, and will remain lethal for so long, that no acceptable policy will ever be developed, and so production of such waste (except, oddly, the significant amounts arising from uses of radioactive materials in medicine, agriculture, industrial safety research, etc) should stop immediately. This booklet will not attempt to describe in great detail the technicalities of the United Kingdom nuclear industry's current approach to radioactive waste: such issues are described in detail in other publications, especially those by Nirex. It is our intention to outline some of the main issues involved, and to associate these issues with the divergence in perceptions of various parties. (author)

  10. Legal and regulator framework of radioactive waste

    The present work intends to develop the legislative and regulatory framework in the matter of radioactive waste. The legal frame of the radioactive waste conformed by the National Constitution, the treaties and conventions, laws and decrees and regulatory norm in Argentine . The subject is approached from the international point of view considering the slogan of 36 The Annual Meeting of the Association Argentine de Nuclear Technology: 'The Nuclear Energy in the Present World'. This work also contains a special paragraph dedicated to the analysis of practical cases related to the subject and the activity of the National Commission of Atomic Energy. (author)

  11. Cancer mortality and incidence survey around the Aube's low- and medium-activity radioactive waste storage site

    This report presents the main results of a survey performed in 2010 to describe the health status of the population around the Aube's low- and medium-activity radioactive waste storage site. The aim of this survey was to determine whether the frequencies of death and hospitalization on account of cancer are different for this population (15 km around the site) with respect to two reference populations (the population of the Champagne-Ardennes region and the French metropolitan population). Results of mortality, hospitalization, and lung cancer are presented under the form of maps and tables giving global data or data for males, females, adults, or children

  12. Sellafield. Disposal of radio-active waste for the next century. Project exploration phase (1991-1995). Information report

    Information on the course of survey activities associated with the construction of the Sellafield radioactive waste repository is presented. The organizational structure of the consortium of companies involved is outlined. The geological survey was aimed at assessing the regional geological situation, drawing attention to matters requiring clarification, and identifying problematic sites in the geological structure of the area. The geological structure of the site is characterized, and the drilling technologies and service operations are briefly described. The underground water flows were simulated on geologic models in order to identify any possible radioactivity leak into the environment. The construction cost of the complex underground facility is estimated to GBP 2.5bn. (J.B.)

  13. Radioactive waste management in the former USSR

    Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world's largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes

  14. Radioactive waste management in the former USSR

    Bradley, D.J.

    1992-06-01

    Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world's largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

  15. Waste water shows traces of radioactive substances

    Sludge at sewage treatment plants has been found to contain radioactive substances originating in hospitals, nuclear weapon tests, the Chernobyl accident, the Finnish nuclear power plants and natural sources. Radioactive substances also enter sewers together with excretions after patients have left the hospital. Hospitals used to let the excretions of patients receiving the iodine 131 treatment into the sewer system only after the activity of the excretions had decreased. Today, excretions can be led into the sewer directly. Calculations have shown that hospital staff receive higher radiation doses when the waste is collected than sewage treatment plant staff receive when the radioactive iodine is led directly into the sewer

  16. Attention: no radioactive waste accepted on 7 September

    2012-01-01

    Anouncement by the RW section of the Radiation Protection Group: The Treatment Centre for Radioactive Waste will not be accepting waste on Friday, 7 September 2012. Thank you for adjusting your activities accordingly.

  17. Indian programme on radioactive waste management

    P K Wattal

    2013-10-01

    The primary objective of radioactive waste management is protection of human health, environment and future generation. This article describes, briefly, the Indian programme on management of different radioactive wastes arising in the entire nuclear fuel cycle adhering to this objective.

  18. Liquid radioactive waste concentration methods

    Methods for concentrating liquid radioactive wastes (LRW) - an important step in waste processing procedures aimed at reducing hazards to personnel and the public - are reviewed, and some of their advantages and drawbacks pointed out. Chemical LRW-treatment methods include coagulation (by aluminium sulfate, ferric chloride, etc.), soda-lime softening of water, as well as techniques based on specific reactions with particular nuclides. By addition of sorbents (clay, activated charcoal, etc.) the chemical scavenging effect is enhanced, while use of flocculating agents (sodium polyalginate, polyacrylamide, synthetic polymers, etc.) produces accelerated deposition of resulting precipitates. A second major LRW-concentration method is evaporation, which is relatively expensive and, moreover, inapplicable in the case of volatile radionuclides escaping into the fume-and-vapor phase. It is emphasized that to overcome difficulties due to presence of contaminants such as saponaceous, organic or mineral oil matter, use of defoaming agents is indicated. A third important LRW-concentration method is that by ion exchange; synthetic is well as natural organic ion exchan.gers are in use. There are a number of other methods that also find application, such as biological techniques, electrodialysis, embedding in bitumen or asphalt, sand filtration, etc. (A.B.)

  19. Treatment and conditioning of radioactive solid wastes

    Radioactive materials are extensively used in industrial and research activities mainly related to medical, agricultural, environmental and other studies and applications. During the application and production of radioisotopes, significant amounts of radioactive wastes will inevitably arise, which must be managed (i.e. handled, treated, conditioned, intermediately stored and finally disposed of) with particular care. Serious efforts to minimize and appropriately segregate the waste arisings during the application of radioisotopes are the most important first step in waste management. The essential objective of the management of radioactive waste is the protection of mankind, the biosphere and the environment from the detrimental effects of nuclear radiation both now and in the future. This report deals with radioactive wastes outside the nuclear fuel cycle and it is directed primarily to countries without nuclear power programmes, e.g. countries belonging to the Groups A, B and C. Group A includes Member States which utilize radioisotopes at a few hospital locations, universities and industries. Group B includes Member States which have multi-use of radioisotopes in hospitals and other institutional areas and need a central collection and processing system. Group C includes Member States which have multi-use of radioisotopes and a nuclear research centre which is capable of indigenous production of several radioisotopes. When developing a waste management strategy, consideration should be given to the entire sequence of waste management operations from waste sources to disposal and all the related issues: every aspect of waste generation, processing, transportation, storage and disposal, including regulatory, socio-political and economic issues. The interaction of all these aspects must be analysed and understood before the entire waste management system can be properly built up and safely managed. 16 refs, 13 figs, 5 tabs

  20. Chemical decontamination of radioactive waste

    Radioactive wastes are generated in a number of different kinds of facilities and arise in a wide range of concentrations of radioactive materials and in a variety of physical and chemical forms. There is also a variety of alternatives for treatment and conditioning of the wastes prior disposal. The importance of treatment of radioactive waste for protection of human and environment has long been recognized and considerable experience has gained in this field. Generally, the methods used for treatment of radioactive wastes can be classified into three type's biological, physical and chemical treatment this physical treatment it gives good result than biological treatment. Chemical treatment is fewer hazards and gives good result compared with biological and physical treatments. Chemical treatment is fewer hazards and gives good result compared with biological and physical treatments. In chemical treatment there are different procedures, solvent extraction, ion exchange, electro dialysis but solvent extraction is best one because high purity can be optioned on the other hand the disadvantage that it is expensive. Beside the solvent extraction technique one can be used is ion exchange which gives reasonable result, but requires pretreatment that to avoid in closing of column by colloidal and large species. Electro dialysis technique gives quite result but less than solvent extraction and ion exchange technique the advantage is a cheep.(Author)

  1. Method of separating useful radioactive nuclide in radioactive liquid waste

    Purpose: To separate useful radioactive nuclides from radioactive liquid wastes for reducing the amount of radioactive secondary wastes generated upon disposal of radioactive liquid wastes. Method: Nitric acid is added to radioactive liquid wastes containing radioactive metal ions, iron ions, nickel ion, chromium ions and oxidative tetravalent serium ions dissolved therein, to convert tetravalent serium ions into complex ions. The liquid wastes are circulated through an ion exchange resin column. This enables to efficiently recover tetravalent serium ions which are useful oxidative nuclides thereby enabling the reuse of serium. Further, since the oxidative nature of the radioactive liquid wastes is eliminated, there is no requirement of adding a reducing agent and it is possible for drying treatment and solidification processing such as plastic solidification. (Takahashi, M.)

  2. Radioactive waste management perspectives in Malaysian Nuclear Agency

    Waste Technology Development Centre (WasTeC) has been mandated to carry out radioactive waste management activities since 1984. The main objective of WasTeC is to deal with radioactive waste in a manner that protects health and the environment now and in the future, without imposing undue burdens on the future generations. This centre provides services for waste generators within Nuclear Malaysia and also for external waste generators. Services provided include transportation of radioactive waste, decontamination, treatment and storage. This paper will discuss on procedure for applying for services, responsibility of waste generator, responsibility of waste operator, need to comply with waste acceptance criteria and regulations related to management of radioactive waste. (Author)

  3. Radioactive waste management - a safe solution

    This booklet sets out current United Kingdom government policy regarding radioactive waste management and is aimed at reassuring members of the public concerned about the safety of radioactive wastes. The various disposal or, processing or storage options for low, intermediate and high-level radioactive wastes are explained and sites described, and the work of the Nuclear Industry Radioactive Waste Executive (NIREX) is outlined. (UK)

  4. Siting and engineering design activities for the development of the Texas low-level radioactive waste disposal facility

    This paper is a case study of the design of a landfill repository for low-level radioactive waste. Low-level radioactive waste is defined as any radioactive material that has a half-life of 35 years or less or that has less than 10 nanocuries per gram of transuranics. Low-level radioactive waste does not include irradiated reactor fuel. About 70% of the waste that will be sent to the Texas facility will be low-level waste generated at the state's two nuclear power plants; the remainder will be low-level wastes generated in hospital and medical research facilities in Texas. The low-level wastes will be placed in steel-reinforced concrete canisters, which have a design life of 500 years. This landfill will not have a synthetic lining because this type of liner will not last for 500 years. This landfill will be located in an areas of the state that receives very little precipitation. The depth to groundwater at the site is 600-1,000 feet. The natural geology of the site will provide an excellent barrier between the waste and the groundwater. The landfill is being designed to receive low-level radioactive waste for 30 years

  5. Radioactive hospital wastes. Radiations under control

    A set of articles proposes an overview of legal and regulatory evolutions regarding radioactive hospital wastes. These legal measures and evolutions are notably present in the Public Health code, in the Labour code. An article outlines the role of the radiation protection expert in the process of elimination of contaminated wastes (four major steps for this elimination are indicated; peculiarities of the hospital are outlined, as well as control procedures and the importance of training and information). An article describes the specific activity of the Creteil incinerator which comprises a unit for the incineration of care activity wastes under a very constraining regulation

  6. Radioactive waste management. UK policy examined

    This book presents the papers given at a conference on radioactive waste management in the United Kingdom. Topics considered at the conference included the UK Radioactive Waste Inventory, radioactive waste management and disposal strategies in the European Community, radioactive waste disposal in the Federal Republic of Germany, environmental options for waste disposal and storage, marine disposal, public opinion, the reduction of BNFL discharges, planning aspects, the ALARA principle, air pollution from fossil-fuel power plants, United Kingdom government policy with regard to radioactive wastes, and the role of the media in the public over the UK nuclear industry

  7. Geomechanical problems in study of radioactive wastes disposal

    Methods for both low-intermediate level radioactive wastes disposal and high level radioactive waste disposal were introduced briefly. Geomechanical problems in radioactive wastes disposal were discussed. Some suggestions were proposed for the radioactive wastes disposal in China

  8. Radioactive waste disposal in Greece

    Radioactive waste is any material which contains or is contaminated by radionuclides and for which no use is foreseen. According to this definition, a large number of sources, solid, liquid and gaseous, within the Greek territory can be - and, actually, is - declared as waste. The types of such solid sources are presented. It is estimated that these solid sources represent above 90% of all disused sources in Greece. The medical sources of Co-60 and Cs-137 were used in Teletherapy units, while the Ra-226 ones are in the form of needles or tubes used in Brachytherapy. All the industrial sources had been used for measuring moisture, density, thickness, elementary composition, etc. The small sources used by research labs are mainly in the form of discs. The above sources had been imported a long time ago (even 3 decades ago), had been used, and then stored as useless inside the user's premises. Since 1990 all the users of radioactive sources are obliged to return them back to the suppliers when they are no longer in use. In fact, no source is imported unless there is a written declaration of acceptance by its producer. A project concerning the export of all disused sealed sources is in progress. For every source a certificate will be issued, proper container will be purchased and all the necessary documents will be prepared so that it can be transported for final disposal or reuse in a foreign repository facility. Apart from this 'old generated' waste, unsealed radionuclides have always been used in nuclear medicine producing waste. The above radionuclides are used either in vivo (injected or ingested by patients) or in vitro (labeling of blood and other cells). Both uses leave some radioactive waste inside the needles, the tubes, or other material. Since 1991, Greece has a well-established regulatory system for controlling waste from nuclear medicine labs, so that disposing such solid or liquid waste does no harm to the environment. A revision of these regulations has

  9. Automatic radioactive waste recycling

    The production of a plutonium ingot by calcium reduction process at CEA/Valduc generates a residue called 'slag'. This article introduces the recycling unit which is dedicated to the treatment of slags. The aim is to separate and to recycle the plutonium trapped in this bulk on the one hand, and to generate a disposable waste from the slag on the other hand. After a general introduction of the facilities, some elements will be enlightened, particularly the dissolution step, the filtration and the drying equipment. Reflections upon technological constraints will be proposed, and the benefits of a fully automatic recycling unit of nuclear waste will also be stressed. (authors)

  10. The radioactive waste management programme in Spain

    In 1984 the Empresa Nacional de Residuos Radiactivos (ENRESA) was set up in order to be responsible for all radioactive waste management activities in the country. ENRESA is a state-owned company, the shareholders of which are CIEMAT (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, formerly (JEN) and SEPI (Sociedad Estatal de Participaciones Industriales), both institutions dependent on the Spanish Government. ENRESA has a broad scope of responsibilities, including not only the management of L/ILW, HLW and spent fuel but also the decommissioning of nuclear installations, as well as the rehabilitation of uranium mining and milling facilities when required. The policy on radioactive waste management is defined by the Government, and the strategies are developed by ENRESA in accordance with the General Radioactive Waste Management Plan. This Plan is a strategic document which must be submitted yearly by ENRESA to the Government, for its approval when the Ministry of Economy decided so. The plan, in general terms, contains the main aspects related to waste generation and forecasts, as well as the strategies and technical solutions to be prepared, along with the associated economic and financial aspects. ENRESA's activities are financed by the waste producers. On the one hand the nucleoelectric sector pays a percentage fee on all the electricity sales, while small producers pay tariffs according to the services provided, both are approved by the Government. The Fifth General Radioactive Waste Plan, approved by the Government in July 1999, is currently in force and contains the strategies for the management of radioactive wastes and decommissioning of nuclear installations in Spain. (author)

  11. The Radioactive Waste Management Programme in Spain

    In 1984 the Empresa Nacional de Residuos Radiactivos (ENRESA) was set up in order to be responsible for all radioactive waste management activities in the country. ENRESA is a state-owned company, the shareholders of which are CIEMAT (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, formerly (JEN) and SEPI (Sociedad Estatal de Participaciones Industriales), both institutions dependent on the Ministry of Industry and Energy. ENRESA has a broad scope of responsibilities, including not only the management of L/ILW, HLW and spent fuel but also the decommissioning of nuclear installations, as well as the rehabilitation of uranium mining and milling facilities when required. The policy on radioactive waste management is defined by the Government, and the strategies are developed by ENRESA in accordance with the General Radioactive Waste Management Plan. This Plan is a strategic document which must be submitted yearly by ENRESA to the Government, for its approval when the Ministry of Industry and Energy decided so. The plan, in general terms, contains the main aspects related to waste generation and forecasts, as well as the strategies and technical solutions to be prepared, along with the associated economic and financial aspects. ENRESA's activities are financed by the waste producers. On the one hand the nucleoelectric sector pays a percentage fee on all the electricity sales, while small producers pay tariffs according to the services provided, both are approved by the Government. The fifth General Radioactive Waste Plan, approved by the Government in July 1999, is currently in force and contains the strategies for the management of radioactive wastes and decommissioning of nuclear installations in Spain. (author)

  12. Radioactive waste management practices in India: achievements and challenges

    Safe and effective management of radioactive waste has been given utmost importance from the very inception of nuclear industry in India. This article gives an account of the basic principles, practices being followed in our country to achieve this objective. A brief description of the existing methods for management of diverse kinds of radioactive wastes including high level radioactive waste and also the research and development activities to address the future challenges is presented in the article. (author)

  13. Socioeconomic aspects and public opinion concerning radioactive wastes

    Nuclear energy aspects in Spain are presented. The role of ENRESA (Empresa Nacional de Residuos Radiactivos, S.A.) a public company, that manages low and intermediate-level radioactive wastes in Spain is discussed. ENRESA activities such as radioactive wastes transportation and processing, radioactive wastes disposal, decommissioning of an uranium plant, environmental recovery procedures, geological studies, information dissemination of nuclear energy, sponsoring of conferences, courses, etc, are briefly reported

  14. Management of small quantities of radioactive waste

    The main objective of this publication is to provide practical guidance primarily to developing Member States on the predisposal management of small quantities of radioactive waste arising from hospitals, laboratories, industries, institutions, research reactors and research centres.The publication covers the management of liquid, solid and gaseous radioactive wastes at the users' premises and gives general guidance on procedures at a centralized waste management facility. Predisposal management of radioactive waste includes handling, treatment, conditioning, storage and transportation. This publication provides information and guidance on the following topics: national waste management framework; origin and characteristics of radioactive waste arising from users generating small quantities of waste; radioactive waste management concepts appropriate for small quantities; local waste management; the documentation and approval necessary for the consignment of waste to a centralized waste management facility; centralized waste management; exemption of radionuclides from the regulatory body; transportation; environmental monitoring; quality assurance for the whole predisposal process; regional co-operation aspects

  15. Management of radioactive waste

    The text comprises three sections, i.e. theological and moral aspects, scientific and technical aspects, and administrative and political aspects. The book informs on the scientific and legal situation concerning nuclear waste management and intends to give some kind of decision aid from a theological point of view. (PW)

  16. Public attitudes about radioactive wastes

    Public attitudes about radioactive waste are changeable. That is the author's conclusion from eight years of social science research which the author has directed on this topic. The fact that public attitudes about radioactive waste are changeable is well-known to the hands-on practitioners who have opportunities to talk with the public and respond to their concerns--practitioners like Ginger King who is sharing the podium with me today. The public's changeability and open-mindedness are frequently overlooked in studies that focus narrowly on fear and dread. Such studies give the impression that the outlook for waste disposal solutions s dismal. The author believes that impression is misleading, and in this paper shares research findings that give a broader perspective

  17. Public attitudes about radioactive waste

    Public attitudes about radioactive waste are changeable. That is my conclusion from eight years of social science research which I have directed on this topic. The fact that public attitudes about radioactive waste are changeable is well-known to the hands-on practitioners who have opportunities to talk with the public and respond to their concerns-practitioners like Ginger King, who is sharing the podium with me today. The public's changeability and open-mindedness are frequently overlooked in studies that focus narrowly on fear and dread. Such studies give the impression that the outlook for waste disposal solutions is dismal. I believe that impression is misleading, and I'd like to share research findings with you today that give a broader perspective

  18. Radioactive waste examination pilot plant

    The Stored Waste Examination Pilot Plant (SWEPP) is a contact-handled radioactive waste examination pilot facility at the Department of Energy's Idaho National Engineering Laboratory. The plant determines through computerized nondestructive examination (NDE) whether transuranic waste now stored at the INEL qualifies for shipment to DOE's Waste Isolation Pilot Plant in New Mexico or whether it needs further processing. As a container proceeds through the plant it is weighed, x-rayed with real-time radiography to determine actual contents, assayed to determine fissile contents, ultrasonically examined to determine container integrity, and surveyed for surface radiation and contamination. Because the facility handles transuranic waste, proper information management is essential. A microprocessor-based data management system has been developed for this purpose; a key feature is its direct communication with the computerized NDE equipment and with a mainframe computer on which the data is stored permanently. 4 references, 2 figures

  19. Education and training in radioactive waste topics

    Tecnologically developed countries rely on nuclear fission as an important source for the production of electrical power. some of th epower plants in current generation will continue to be operated for at least 20 years, and there exist plans for the future. As a consequence, these countries take part in R and D projects oriented towards progress to be made in the management of radioactive waste, and particularly in the industrial implementation of technical solutions for the management of long-lived waste. The great experience of CIEMAT in this field has made it possible that different standard and re-creation training actions were carried out in the last years. At national level, these actions have covered both the question of reducing the impact of radioactive waste and the problem of its management. In the first subject, actions have been focused to the following aspects: Characterization of radioactive waste, where the present-day knowledge on efficient technologies of physicochemical and radiological characterization of low and medium activity waste are provided. Partitioning and Transmutation, where the development of new technologies like the Accelerator Driven Systems (ADS) and the climination by transmutation, that reduce the hazards associated with waste of high activity are shown. Decommissioning of nuclear ficilities, development of techniques which will allow to mange these wastes with minimum radioactive waste generation, using new techniques for the decontamination and cutting of contaminated materials that have to be immobilized. On the second subject Management of Radioactive Wastes, a doctorate course organised in collaboration with the Polytechnic University of Madrid, and sponsored by ENRESA. At the international level, CIEMAT usually takes part in training activities of the technical assistance programmes of the International Atomic Energy agency (IAEA). In particular, actions related to Safety assessment methodologies for near surface

  20. Determination and control of activity in radioactive waste as part of product control

    Research and development investigations have been performed for the control of the activity inventory using the following methods and techniques: non-destructive determination of actinide content in waste through passive neutron measurement including the examination of various parameters on detection efficiency; development of dissolution and decomposition techniques for the various waste groups; and development of methods for individual separation of radioisotopes and measurement of selected nuclides with main emphasis to Fe-55, Ni-59, Ni-63, Sr-90, I-129, Ra-226, Ra-228 and actinides. A comprehensive review of published literature concerning active and passive neutron emission as well as prompt and delayed neutron emission; dissolution and decomposition techniques; rapid chemical separation and measurements techniques for the above mentioned radionuclides; and basic radionuclide data is given. (orig.)

  1. Issues and trends in radioactive waste management in Turkey

    This paper focuses on issues associated with the waste management aspects of Turkey. Predisposal management of radioactive wastes covers a broad range of activities. This also includes waste identification, characterization and conditioning. Experience gained over years shows that current predisposal waste management practices are well advanced. The paper concludes these activities based on experience gained by CWPSF (CNAEM Waste Processing and Storage Facility) and includes issues and trends in radioactive waste management. In addition general information is presented on ongoing national projects and IAEA research projects on various issues of waste management. (author)

  2. Geological disposal of radioactive waste. Safety requirements

    This Safety Requirements publication is concerned with providing protection to people and the environment from the hazards associated with waste management activities related to disposal, i.e. hazards that could arise during the operating period and following closure. It sets out the protection objectives and criteria for geological disposal and establishes the requirements that must be met to ensure the safety of this disposal option, consistent with the established principles of safety for radioactive waste management. It is intended for use by those involved in radioactive waste management and in making decisions in relation to the development, operation and closure of geological disposal facilities, especially those concerned with the related regulatory aspects. This publication contains 1. Introduction; 2. Protection of human health and the environment; 3. The safety requirements for geological disposal; 4. Requirements for the development, operation and closure of geological disposal facilities; Appendix: Assurance of compliance with the safety objective and criteria; Annex I: Geological disposal and the principles of radioactive waste management; Annex II: Principles of radioactive waste management

  3. Overview of solid radioactive wastes management program for Cernavoda NPP

    The Radioactive Waste Management Concept for Cernavoda Nuclear Power Plant has been established as part of Documentation of Radiation Safety Program for Cernavoda Nuclear Power Plant Solid Radioactive Waste Management - Reference Document RD-01364-RP1. The Program is based on operating experience from nuclear power facilities including CANDU Plants. It is based on operating experience from nuclear power facilities including CANDU Plants. The Radioactive Waste Management Concept for Cernavoda NPP established the general approach required for the collection, handling, conditioning and storage of solid radioactive waste while maintaining acceptable levels of safety for workers, public and environment. The concept developed ensures the necessary facilities to adequately manage solid radioactive waste from Cernavoda NPP Unit 1 and will be capable of expansion when other units will be brought into service. This concept does not address the management of spent nuclear fuel and the permanent disposal of the solid radioactive wastes. For Cernavoda NPP there were defined three types of solid radioactive waste as fallows: - Low Activity Radioactive Waste, type 1, namely, solid radioactive waste with a gamma dose rate of less than 2 mSv/h on contact with the container; - Medium Activity Radioactive Waste, type 2, namely, solid radioactive waste with gamma dose rate of 2 mSv/h to 125 mSv/h on contact with the container; - Medium Activity Radioactive Waste, type 3, namely, solid radioactive waste with gamma dose rate higher than 125 mSv/h on contact with the container. The design objectives for the solid radioactive waste management facilities are defined according to their specific characteristics. Design considerations are presented for solid radioactive waste interim storage facilities as well as the operating program and monitoring program for solid radioactive waste facility. Future plans are presented for short-term strategy including gamma improvement characterisation

  4. Radioactive waste with 14C in Argentina

    14C is a long half-life radioisotope, which is present in radioactive waste generated during the operation and decommissioning of nuclear power plants. 14C can also be found in waste generated by medical diagnostic laboratories or any one generated by fields that deal with research and development (mainly connected with the biochemists area). According to international precedents the disposal of 14C based on the final amount found in radioactive waste and its chemical form have conditioned the design and operation of the facilities (either because of the amount of it or the chemical form in which 14C was present). We have to take into account that the design of facilities for radioactive waste disposal is included among the obligations of the National Radioactive Waste Management Program (PNGRR). It is absolutely necessary to count with enough information about the characteristics of any waste containing 14C that is generated in Argentina, in order to be able to fulfil the requirements previously mentioned. The main characteristics of interest in the frame of the present project are: a) the principal reactions that take place for the formation of 14C; b) The specific concentration of activity in materials where this radio nuclei is formed or is accumulated; c) To know which is the current step in the process of managing these wastes (in Argentina and all over the world). Either if it refers to bulk or conditioned storage, inside the generating facility; d) Transportation possibilities of 14C under these conditions; e) The accumulated volume and the generation rate of this kind of waste in Argentina. This paper presents an initial collection and evaluation of the information related to the characteristics already mentioned, having gathered published material from the literature and information in the PNGRR up to this moment. The description of the characteristics of the radioactive waste containing 14C from nuclear power plants, hospitals and research and

  5. Geologic disposal of radioactive waste

    The heat dissipation arising from the radioactive decay constitutes an important problem of the geological disposal of high level radioactive waste. A heating experiment was carried out in a clay quarry near Monterotondo (Rome), at 6.4 M in depth by means of a heater whose thermal power ranged from 250 to 500 watt. The experimental results fit well the theoretical values and show that the clay is a homogeneous and isotropic medium. The clay thermal conductivity, which was deducted by means of the ''curve fitting'' method, ranges from 0.015 to 0.017 watt/C

  6. Innocuous management of radioactive wastes

    The relations between peaceful uses and bellicose uses of the nuclear energy are complexes in relation to international establishment of norms to control the destiny of the radioactive materials, above all in the context of the existing international legislation of respect to the autonomy of the countries, and in the determination of the institution or institutions upon the ones that would fall on. The nuclear safeguards of materials and the possibilities of performing their function. Important efforts have been done to unify, to help and to impose international measures on the behalf of an environmentally harmless processing of the radioactive wastes

  7. Effect of microbial activity on the containment of radioactive waste in a deep geological repository

    The sorption experiments described were intended as part of a pilot study and are consequently of a preliminary nature and difficult to interpret. However, they have shown very clearly that micro-organisms play a significant quantitative role in the uptake and transport of radionuclides and that the topic requires serious onsideration. Several features have emerged that point to further studies and technique development. For example, sorption data are presented here in terms of the total biomass in solution. Techniques are required for the separate quantification of each part of the biomass (viable, non-viable and dead organisms and organic and associated inorganic material) in both solution or on the rock phase. A realistic explanation of sorption processes where micro-organisms are involved is lacking at present and is likely to be very complex. Eventually partition coefficients could be calculated for each individual biogenic component. More data is required on the identification and quantification of microbial populations in relevant deep formations. Problems arise in such analysis due to the unusual metabolisms of such organisms and very slow growth in culture (expecially in the case of autotrophs). Information on the bioenergetics of these organisms and possible sources and inputs of energy into deep geplogical environments may allow the constraints of the population to be calculated and assessed. With such data the in-situ effect of micro-organisms on the containment of radioactive waste in a deep geological repository could be examined realistically

  8. Strategy and methodology for radioactive waste characterization

    Over the past decade, significant progress has been achieved in the development of waste characterization as well as control procedures and equipment. This has been as a direct response to ever-increasing requirements for quality and reliability of information on waste characteristics. Failure in control procedures at any step can have important, adverse consequences and may result in producing waste packages which are not compliant with the waste acceptance criteria for disposal, thereby adversely impacting the repository. The information and guidance included in this publication corresponds to recent achievements and reflects the optimum approaches, thereby reducing the potential for error and enhancing the quality of the end product. This publication discusses the strategy and methodology to be adopted in conceiving a characterization programme for the various kinds of radioactive waste fluxes or packages. No international publications have dealt with this topic in such depth. The strategy elaborated here takes into account the international State of the art in the different characterization methodologies. The strategy and methodology of the characterization programme will depend on the type of radioactive waste. In addition, the accuracy and quality of the characterization programme very much depends on the requirements to demonstrate compliance with the waste acceptance criteria. This publication presents a new subdivision of radioactive waste based on its physicochemical composition and its time dependence: simple/stable, complex/stable, simple/variable and complex/variable. Decommissioning and historical waste deserve special attention in this publication, and they can belong to any of the four categories. Identifying the life cycle of the radioactive waste is a cornerstone in defining the strategy for radioactive waste characterization. The waste acceptance criteria and the performance assessment of the repository are other key factors in the strategy and

  9. Radioactive waste management at nuclear power plant Cernavoda

    Many human activities generate waste, but people are worried about wastes produced in nuclear power plants (NPPs). Their concern is an unjustified fear toward the hazards from radioactive waste, probably because in any country generating electric power by NPPs a lot of attention is paid to relevant parties involved in radioactive waste management. Significant attention is also given to the management of radioactive waste at the Cemavoda NPP. The general approach required for the collection, handling, conditioning and storage of radioactive wastes, while maintaining acceptable levels of safety for workers, members of the public and the environment, is conceptually established. The overall programme provides the necessary facilities to adequately manage solid radioactive waste from Cemavoda NPP Unit 1 and will be capable of expansion when other units are brought into service. (author)

  10. Status of radioactive waste management in Zambia

    Zambia being part of the world community clearly understands that careless handling of radioactive waste would cause problems - worldwide - for human health, for the environment and natural resources management. It is for this reason that the Radiation Protection Board has initiated a Radioactive Waste Management Programme covering the following areas: (i) Legislation of Radioactive Waste Management; (ii) Immobilization of spent sealed radioactive sources; and (iii) Siting and construction of an interim storage facility. (author)

  11. Radioactive waste management turning options into solution

    Most of the statements from representatives of different countries and institutions focused on the status of high level radioactive waste management, including spent fuel repositories. Speakers dealing with such topics were representatives from countries applying nuclear power for electricity production. They all reported about there national programs on technical and safety aspects of radioactive waste management. The panel discussion extended to questions on political sensitivities and public acceptance; in this respect, interesting developments are taking place in Finland and Sweden. It is expected that Finland will operate a final repository for spent fuel in 10 - 15 years from now, followed close by Sweden. Other countries, however, face decisions by policy makers and elected officials to postpone dealing with waste disposal concerns. In this connection there is relevant experience in our country, too - even in the absence of spent fuel or other high level waste to be dealt with. During personal discussions with representatives of other countries not using nuclear power it was confirmed that there are similar or shared experiences. Development of publicly -accepted solutions to radioactive waste management remains an important issue. Independent of the amount or the activity of radioactive waste, the public at large remains skeptical despite the agreement among experts that disposal can be safe, technically feasible and environmentally sound. In countries not using nuclear power there are only small quantities of low and intermediate level radioactive waste. Therefore, international co-operation among such countries should be an option. There was common understanding by representatives from Norway, Italy and Austria that international co-operation should be developed for treatment and disposal of such waste. For the moment however it has to be accepted that, for political reasons, it is not possible. Forced to deal with the lack of near-term solutions, the

  12. Radioactive waste management at KANUPP

    This paper describes the existing radioactive waste management scheme of KANUPP. The radioactive wastes generated at KANUPP are in solid, liquid and gaseous forms. The spent fuel of the plant is stored underwater in the Spent Fuel Bay. For long term storage of low and intermediate level solid waste, 3m deep concrete lined trenches have been provided. The non-combustible material is directly stored in these trenches while the combustible material is first burnt in an incinerator and the ash is collected, sealed and also stored in the trenches. The low-level liquid and gaseous effluents are diluted and are discharged into the sea and the atmosphere. The paper also describes a modification carried out in the spent resin collection system in which a locally designed removable tank replaced the old permanent tanks. Presently the low level combustible solid waste is incinerated and stored, but it is planned to replace the present method by using compactor and storing the compacted waste in steel drums underground. (author)

  13. Radioactive waste and public acceptance

    Radioactive waste just happens to be the major issue in the public eye now--it could be replaced by another issue later. A survey is quoted to prove that wastes are not really one of the burning national issues of the day. The people opposing the nuclear program cannot be said to represent the public. The taste of the press for the melodramatic is pointed out. The issue needs to be presented with the proper perspective, in the context of the benefits and risks of nuclear power

  14. Radioactive waste management in Canada

    This bibliography is a review of the Canadian literature on radioactive waste management from 1953 to the present. It incorporates the references from the previous AECL--6186 revisions, and adds the current data and some of the references that had been omitted. Publications from outside organizations of concern to the Canadian Nuclear Fuel Waste Program are included in addition to AECL Research reports and papers. This report is intended as an aid in the preparation of the Concept Assessment Document and is complementary to AECL Research's internal document-ready references on the MASS-11 word processing systems

  15. Leaching tests of cemented organic radioactive waste

    The use of radioisotopes in research, medical and industrial activities generates organic liquid radioactive wastes. At Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) are produced organic liquid wastes from different sources, one of these are the solvent extraction activities, whose the waste volume is the largest one. Therefore a research was carried out to treat them. Several techniques to treat organic liquid radioactive wastes have been evaluated, among them incineration, oxidation processes, alkaline hydrolysis, distillation, absorption and cementation. Laboratory experiments were accomplished to establish the most adequate process in order to obtain qualified products for storage and disposal. Absorption followed by cementation was the procedure used in this study, i.e. absorbent substances were added to the organic liquid wastes before mixing with the cement. Initially were defined the absorbers, and evaluated the formulation in relation to the compressive strength of its products. Bentonite from different suppliers (B and G) and vermiculite in two granulometries (M - medium and F - small) were tested. In order to assess the product quality the specimens were submitted to the leaching test according the Standard ISO 6961 and its results were evaluated. Then they were compared with the values established by Standard CNEN NN 6.09 Acceptance criteria for waste products to be disposed, to verify if they meet the requirements for safely storage and disposal. Through this study the best formulations to treat the organic wastes were established. (author)

  16. Shallow disposal of radioactive waste

    A review and evaluation of computer codes capable of simulating the various processes that are instrumental in determining the dose rate to individuals resulting from the shallow disposal of radioactive waste was conducted. Possible pathways of contamination, as well as the mechanisms controlling radionuclide movement along these pathways have been identified. Potential transport pathways include the unsaturated and saturated ground water systems, surface water bodies, atmospheric transport and movement (and accumulation) in the food chain. Contributions to dose may occur as a result of ingestion of contaminated water and food, inhalation of contaminated air and immersion in contaminated air/water. Specific recommendations were developed regarding the selection and modification of a model to meet the needs associated with the prediction of dose rates to individuals as a consequence of shallow radioactive waste disposal. Specific technical requirements with regards to risk, sensitivity and uncertainty analyses have been addressed

  17. Conflict, public communication, and radioactive waste management

    Of the technical, political, and social problems associated with radioactive waste management, least is known about the latter two. Lay persons tend to generalize negative attitudes about other nuclear activity to radioactive waste management. Thus, conflict appears inevitable between the general public, citizen action groups, and decision-makers on radioactive waste management. The basis of conflict can be found in the value orientation of certain groups and in differing perceptions of risk. The paper is in three parts. First the sources of conflict over radioactive waste management issues are reviewed. The negative attitudes and fears of the public toward different types of projects involving radioactivity, value conflicts, and differential perceptions of risk are cited as sources. Next are discussed the consequences of conflict in terms of sociological theory. Finally, discussed is how conflict can be directed and managed to produce an informed decision-making process. When the public is sensitized to an issue, when prevailing attitudes on the issue are negative, and when perceived risks are high - all of which are characteristic of waste management issues - specific steps should be taken to establish a legitimate process of communication and interaction between the public and the sponsor agency. When conflict is recognized as inevitable, the goal of a communications programs is no longer to avoid it. It is to use the increased awareness to increase knowledge about waste management issues and public participation in decisions so that the final solution is acceptable at some level to all parties. Other benefits, such as increased agency/group cohesion, can also be realized as consequence of conflict

  18. Radioactive lightning rods waste treatment

    Full text: In this paper, we present alternative processes that could be adopted for the management of radioactive waste that arises from the replacement of lightning rods with attached Americium-241 sources. Lightning protectors, with Americium-241 sources attached to the air terminals, were manufactured in Brazil until 1989, when the regulatory authority overthrew the license for fabrication, commerce, and installation of radioactive lightning rods. It is estimated that, during the license period, about 75,000 such devices were set up in public, commercial and industrial buildings, including houses and schools. However, the policy of CNEN in regard to the replacement of the installed radioactive rods, has been to leave the decision to municipal governments under local building regulations, requiring only that the replaced rods be sent immediately to one of its research institutes to be treated as radioactive waste. As a consequence, the program of replacement proceeds in a low pace and until now only about twenty thousand rods have reached the waste treatment facilities The process of management that was adopted is based primarily on the assumption that the Am-241 sources will be disposed of as radioactive sealed sources, probably in a deep borehole repository. The process can be described broadly by the following steps: a) Receive and put the lightning rods in initial storage; b) Disassemble the rods and pull out the sources; c) Decontaminate and release the metal parts to metal recycling; d) Store the sources in intermediate storage; e) Package the sources in final disposal packages; and f) Send the sources for final disposal. Up to now, the disassembled devices gave rise to about 90,000 sources which are kept in storage while the design of the final disposal package is in progress. (author)

  19. Classification of Radioactive Waste. General Safety Guide

    This publication is a revision of an earlier Safety Guide of the same title issued in 1994. It recommends revised waste management strategies that reflect changes in practices and approaches since then. It sets out a classification system for the management of waste prior to disposal and for disposal, driven by long term safety considerations. It includes a number of schemes for classifying radioactive waste that can be used to assist with planning overall national approaches to radioactive waste management and to assist with operational management at facilities. Contents: 1. Introduction; 2. The radioactive waste classification scheme; Appendix: The classification of radioactive waste; Annex I: Evolution of IAEA standards on radioactive waste classification; Annex II: Methods of classification; Annex III: Origin and types of radioactive waste

  20. Vitrification of hazardous and radioactive wastes

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification

  1. Public Education and Radioactive Waste

    Throughout the country the mention of anything nuclear or the word radiation ignites fear in the minds of many Americans. Political hype, news stories and the lack of basic understanding about nuclear power and radiation causes many people to reject what they do not understand. Often little, if any, thought may have been given to nearby nuclear weapons facilities where family members and neighbors were gainfully employed at these sites. As older nuclear facilities are closed being a result of the end of the Cold War, with indications that radioactive materials might be transported to other parts of the country, the public in expressing concern. It is important that the public have an understanding of how these materials are handled to insure public safety. It becomes important that both the companies handling these materials and the U.S. Department of Energy create an environment that will involve community participation in developing strategies that will promote and support an understanding of how radioactive wastes will be packaged, transported, and disposed. This is being performed in Oak Ridge, TN. through the efforts of the Oak Ridge Site Specific Advisory Board (ORSSAB). The ORSSAB is a DOE sponsored board of private citizens from all walks of life and professionalism's. The objective of this paper is to offer suggestions as to how public confidence, through education about nuclear, radioactive and associated and wastes are effectively handle the problems related to waste disposal, removal or on-site storage. It is essential that the public fully understand and become involved in the need for the reduction of the waste stream volumes and the technical problems being faced in reaching this goal. The effort of gaining public understanding and support of this important task cannot be limited to just those within close proximity to the facility presently housing these materials, but must extend to those outlying areas and along any potential route that might be

  2. Storage facilities for radioactive waste in tertiary education environment

    The research and teaching endeavors of the university environment generate an assortment of radioactive waste that is unique in the range of isotopes and activities present, although the physical quantities of the waste may not be large. Universities may also be subject to unexpected, close public scrutiny of their operations due to the diverse nature of the university campus. This is rarely the case for other generators of radioactive waste. The experience of Monash University in formulating solutions for long term storage of radioactive waste is examined with respect to design, location and administration of the waste stores that were finally constructed. 7 refs., 1 tab., 1 fig

  3. Final storage of radioactive waste

    As explained in the present article, operators of nuclear power plants are responsible for the safe final disposal of the radioactive wastes they produce on the strength of the polluter pays principle. To shift the burden of responsibility for safe disposal to society as a whole would violate this principle and is therefore not possible. The polluter pays principle follows from more general principles of the fair distribution of benefits and burdens. Instances of its implementation are to be found in the national Atomic Energy Law as well as in the European Radioactive Waste and Spent Fuel Management Directive. The polluters in this case are in particular responsible for financing the installation and operation of final disposal sites. The reserves accumulated so far for the decommissioning and dismantling of nuclear power plants and disposal of radioactive wastes, including the installation and operation of final disposal sites, should be transferred to a public-law fund. This fund should be supplemented by the polluters to cover further foreseeable costs not covered by the reserves accumulated so far, including a realistic cost increase factor, appropriate risk reserves as well as the costs of the site selection procedure and a share in the costs for the safe closure of the final disposal sites of Morsleben and Asse II. This would merely be implementing in the sphere of atomic law that has long been standard practice in other areas of environmental law involving environmental hazards.

  4. Media analysis of radioactive wastes

    The radioactive waste cleanup community has not effectively utilized its most powerful communications tool to inform the general public; the print and broadcast media. Environmental interest groups have known of the value of accessing the media for their message for years and have used it effectively. The radioactive waste cleanup community's efforts to date have not been focused on education of the media so that they in turn can inform the public of our cleanup mission. Their focus must be to learn of the importance of the media, develop training programs that train technical people in how to know and respond to the media's needs for information, and then incorporate that training into a comprehensive program of public information in which access to the media is a key communications tool. This paper discusses how media education and access is a cost-effective means of accomplishing community relations goals of public information and public participation in radioactive waste cleanup and has been effectively utilized at the Weldon Spring Site Remedial Action Project

  5. Predisposal management of high level radioactive waste

    The objective of this safety guide is to provide guidance on predisposal management of high-level radioactive waste to meet the safety requirements spelt out in the safety code on 'management of radioactive waste'. This safety guide provides recommendations to the waste generator/manager at various stages in the predisposal management of high level radioactive waste for ensuring safety of the occupational workers, public and the environment

  6. Decommissioning standards: the radioactive waste impact

    Several considerations are important in establishing standards for decommissioning nuclear facilities, sites and materials. The review includes discussions of some of these considerations and attempts to evaluate their relative importance. Items covered include the form of the standards, timing for decommissioning, occupational radiation protection, costs and financial provisions, and low-level radioactive waste. Decommissioning appears more closely related to radiation protection than to waste management, although it is often carried under waste management programs or activities. Basically, decommissioning is the removal of radioactive contamination from facilities, sites and materials so that they can be returned to unrestricted use or other actions designed to minimize radiation exposure of the public. It is the removed material that is the waste and, as such, it must be managed and disposed of in an environmentally safe manner. It is important to make this distinction even though, for programmatic purposes, decommissioning may be carried under waste management activities. It was concluded that the waste disposal problem from decommissioning activities is significant in that it may produce volumes comparable to volumes produced during the total operating life of a reactor. However, this volume does not appear to place an inordinate demand on shallow land burial capacity. It appears that the greater problems will be associated with occupational exposures and costs, both of which are sensitive to the timing of decommissioning actions

  7. Actual situation of radioactive waste management in Guatemala

    This paper focuses on the actual radioactive waste management situation in Guatemala, as well as on the sources and facilities that have obtained the license, and the way to disposal them, when they are considered as radioactive waste. The Direccion General de Energia Nuclear is the entity responsible for the proper and normal performance of the regulatory activity in the country. (author). 3 refs

  8. Log live high activity radioactive wastes / Researches and results law of the 30 December 1991. Separation and transmutation of long lived radionuclides

    The law of the 30 December 1991 on the high activity long lived radioactive wastes reached the end. This synthesis final document presents the scientific and technological results, obtained still the end of 2005, on the separation and the transmutation of long lived radionuclides of high activity long lived radioactive wastes. It is organized in five chapters: a presentation of the context and the historical aspects, the researches, the objectives and the strategy of the axis 1, the researches results on the advanced separation, the researches results on the transmutation, the scenario of separation-transmutation and their environmental, technical and economical impacts. (A.L.B.)

  9. Radioactive liquid waste processing method

    Radioactive liquid wastes containing radioactive materials and sodium compounds are dried into a dried material, and then, the dried material is heated to form molten salts, which is used as a anolyte. Electrolysis is conducted having a sodium ion conductive β-alumina as a diaphragm. When a molten material containing sodium hydroxide is used as a catholyte, electrolysis is conducted while supplying steams or steams and oxygen to the catholyte. Extremely low radioactive and highly pure (solid) metal sodium or sodium hydroxide can be formed on the side of the cathode by the electrolysis. The radioactive materials are gradually concentrated on the side of the anode along with the progress of the electrolysis. After the lapse of a predetermined time, the concentrated radioactive materials on the side of the anode is taken out from the device and treated into a harmless form by an optional means such as confinement with cement or the like. With such procedures, highly purified metal sodium or sodium hydroxide can be recovered at a high electric efficiency. (T.M.)

  10. Overview in Argentina on radioactive waste management

    The National Atomic Energy Commission (CNEA) of the Argentina Republic was established in 1950. It has in operation two nuclear power plants; a third one is under construction (70% completed) and a fourth one is under study. In order to supply the fuel elements to the nuclear power plants mentioned before, CNEA has implemented the front part of the Fuel Cycle. Regarding the back-end, the actual policy concerning to the spent fuel elements, is to storage them waiting for further decision. Together with these activities, the CNEA has developed, in practice, all the peaceful applications of nuclear energy. Mentioned activities, generate important volumes of radioactive wastes of different characteristics and the overall strategy of the Argentine Program is to plan, develop and implement the technology and provide the facilities for the permanent isolation of the generated wastes, with the aim that not compromise the health and safety of general public. To implement and coordinate all these activities CNEA has established a Radioactive Waste Management Program. In this paper an outline is given concerning the policy, treatment, conditioning, characterization, storage, transport and final disposal of radioactive wastes in our country. (author)

  11. Radioactive Waste and Clean-up Division

    The main objectives of the Radioactive Waste and Clean-up division of SCK-CEN are outlined. The division's programme consists of research, development and demonstration projects and aims to contribute to the objectives of Agenda 21 on sustainable development in the field of radioactive waste and rehabilitation of radioactively contaminated sites

  12. Progress in radioactive graphite waste management

    Radioactive graphite constitutes a major waste stream which arises during the decommissioning of certain types of nuclear installations. Worldwide, a total of around 250 000 tonnes of radioactive graphite, comprising graphite moderators and reflectors, will require management solutions in the coming years. 14C is the radionuclide of greatest concern in nuclear graphite; it arises principally through the interaction of reactor neutrons with nitrogen, which is present in graphite as an impurity or in the reactor coolant or cover gas. 3H is created by the reactions of neutrons with 6Li impurities in graphite as well as in fission of the fuel. 36Cl is generated in the neutron activation of chlorine impurities in graphite. Problems in the radioactive waste management of graphite arise mainly because of the large volumes requiring disposal, the long half-lives of the main radionuclides involved and the specific properties of graphite - such as stored Wigner energy, graphite dust explosibility and the potential for radioactive gases to be released. Various options for the management of radioactive graphite have been studied but a generally accepted approach for its conditioning and disposal does not yet exist. Different solutions may be appropriate in different cases. In most of the countries with radioactive graphite to manage, little progress has been made to date in respect of the disposal of this material. Only in France has there been specific thinking about a dedicated graphite waste-disposal facility (within ANDRA): other major producers of graphite waste (UK and the countries of the former Soviet Union) are either thinking in terms of repository disposal or have no developed plans. A conference entitled 'Solutions for Graphite Waste: a Contribution to the Accelerated Decommissioning of Graphite Moderated Nuclear Reactors' was held at the University of Manchester 21-23 March 2007 in order to stimulate progress in radioactive graphite waste management, especially in

  13. Filler for solidifying radioactive waste

    In an existent filler for solidifying radioactive wastes, fine powders generated upon pulverizing concrete waste materials and recovering coarse aggregates and fine aggregates are used as substitutes for a portion of cements and/or at least a portion of sands. Namely, the concrete waste materials are crushed by a crusher, and sieved to recover grains having a grain size of not less than 5mm as regenerated aggregate materials. Further, grains having a grain size of not more than 5mm are selectively collected as fine aggregate materials. Since a large quantity of fine powders and mortar are contained in the fine aggregate materials, they are cleaned by a recovering device. In this case, grains having a grain size of about 0.3mm are separately recovered as fine powders. Since the fine powders are porous and have good water retainability, fillers for radioactive wastes highly flowable and having excellent material-solidifying resistance can be obtained by using the fine powders. Further, they can also contribute with a view point of recycling of sources. (T.M.)

  14. Radioactive Waste Burial Grounds. Environmental Information Document

    Jaegge, W.J.; Kolb, N.L.; Looney, B.B.; Marine, I.W.; Towler, O.A.; Cook, J.R.

    1987-03-01

    This document provides environmental information on postulated closure options for the Radioactive Waste Burial Grounds at the Savannah River Plant and was developed as background technical documentation for the Department of Energy`s proposed Environmental Impact Statement (EIS) on waste management activities for groundwater protection at the plant. The results of groundwater and atmospheric pathway analyses, accident analysis, and other environmental assessments discussed in this document are based upon a conservative analysis of all foreseeable scenarios as defined by the National Environmental Policy Act (CFR, 1986). The scenarios do not necessarily represent actual environmental conditions. This document is not meant to be used as a closure plan or other regulatory document to comply with required federal or state environmental regulations. The closure options considered for the Radioactive Waste Burial Grounds are waste removal and closure, no waste removal and closure, and no action. The predominant pathways for human exposure to chemical and/or radioactive constituents are through surface, subsurface, and atmospheric transport. Modeling calculations were made to determine the risks to human population via these general pathways for the three postulated closure options. An ecological assessment was conducted to predict the environmental impacts on aquatic and terrestrial biota. The relative costs for each of the closure options were estimated.

  15. ANSTO's radioactive waste management policy. Preliminary environmental review

    For over forty years, radioactive wastes have been generated by ANSTO (and its predecessor, the AAEC) from the operation of nuclear facilities, the production of radioisotopes for medical and industrial use, and from various research activities. the quantities and activities of radioactive waste currently at Lucas Heights are very small compared to many other nuclear facilities overseas, especially those in countries with nuclear power program. Nevertheless, in the absence of a repository for nuclear wastes in Australia and guidelines for waste conditioning, the waste inventory has been growing steadily. This report reviews the status of radioactive waste management at ANSTO, including spent fuel management, treatment of effluents and environmental monitoring. It gives details of: relevant legislative, regulatory and related requirements; sources and types of radioactive waste generated at ANSTO; waste quantities and activities (both cumulative and annual arisings); existing practices and procedures for waste management and environmental monitoring; recommended broad strategies for dealing with radioactive waste management issues. Detailed proposals on how the recommendations should be implemented is the subject of a companion internal document, the Radioactive Waste Management Action Plan 1996-2000 which provides details of the tasks to be undertaken, milestones and resource requirements. 44 refs., 2 tabs., 18 figs

  16. ANSTO`s radioactive waste management policy. Preliminary environmental review

    Levins, D.M.; Airey, P.; Breadner, B.; Bull, P.; Camilleri, A.; Dimitrovski, L.; Gorman, T.; Harries, J.; Innes, R.; Jarquin, E.; Jay, G.; Ridal, A.; Smith, A.

    1996-05-01

    For over forty years, radioactive wastes have been generated by ANSTO (and its predecessor, the AAEC) from the operation of nuclear facilities, the production of radioisotopes for medical and industrial use, and from various research activities. the quantities and activities of radioactive waste currently at Lucas Heights are very small compared to many other nuclear facilities overseas, especially those in countries with nuclear power program. Nevertheless, in the absence of a repository for nuclear wastes in Australia and guidelines for waste conditioning, the waste inventory has been growing steadily. This report reviews the status of radioactive waste management at ANSTO, including spent fuel management, treatment of effluents and environmental monitoring. It gives details of: relevant legislative, regulatory and related requirements; sources and types of radioactive waste generated at ANSTO; waste quantities and activities (both cumulative and annual arisings); existing practices and procedures for waste management and environmental monitoring; recommended broad strategies for dealing with radioactive waste management issues. Detailed proposals on how the recommendations should be implemented is the subject of a companion internal document, the Radioactive Waste Management Action Plan 1996-2000 which provides details of the tasks to be undertaken, milestones and resource requirements. 44 refs., 2 tabs., 18 figs.

  17. Waste safety activities

    Safety standards develop by the IAEA in the Safety Standard Series and other publication are reviewed. The Waste Safety Action plan includes: Action 1: Develop a common framework for the management and disposal of different types of radioactive waste, paying particular attention to large volumes of waste containing long-lived naturally occurring radionuclides. Action 2: Assess the safety implications of the extended storage of radioactive waste and of any future reconditioning which may be necessary and develop safety standards for the long-term storage of radioactive waste. Action 3: Promptly develop safety standards for geological disposal, addressing inter alia, issues of human intrusion, institutional control, retrievability, the content of the safety case and any implications of nuclear safeguards requirements for the design of the repositories. Action 4: Develop an internationally accepted and harmonized approach for controlling the removal of materials and sites from regulatory control. Action 5: Develop a structured and systematic programme to ensure adequate application of the Agency waste safety standards and facilitate their application in implementation of the Joint Convention. Action 6: Explore ways to ensure that information, knowledge and skills concerning radioactive waste management are made available to future generations. Action 7: Address the broader societal dimensions of radioactive waste management. Action 8: Review the new developments related to policies for the control of radioactive discharges to the environment, taking into account the availability and cost-effectiveness of discharge reduction technologies and the broader implications for radioactive waste management of reducing discharges. Action 9: Explore international mechanisms for facilitating the management of spent sealed radioactive sources. Some other activities as training courses and technical cooperation are also presented

  18. Solidification method for radioactive waste

    As a method for processing low level radioactive wastes, it has been known that they are solidified by using inorganic solidifying materials such as cement and water glass. In the present invention, it is considered that not only the low level wastes but also middle level wastes are solidified by cement or the like and then put to land disposal. Therefore, hydrophobic materials such as oils and silicon are coated in the solidification vessel, and solidification is conducted subsequently. With such procedures, even if water intrudes by some causes from the outside, since thin layers made of hydrophobic materials have a permanent water-repellent effect, the intrusion of water to the inside of the solidification material can be prevented as much as possible. Accordingly, integrity of the solidification materials can further be improved. (T.M.)

  19. Regional radioactive waste account and control system

    Regional structure of the state system of radioactive waste account and control for Moscow Region is suggested. Problems, information contacts, the role of the inter-regional information and analytical centre and approaches to ensure radioactive waste account in terms of the mentioned systems are discussed. Approach to control waste production based on the observance of the temporal storage standards and limits and on the time-appropriate disposal of radioactive waste is suggested. Algorithm of the efficient planning of radioactive waste disposal with regard to the observance of the radiation safety requirements is given

  20. Waterproofing improvement of radioactive waste asphalt solid

    Purpose: To improve the waterproofing of asphalt solid by adding an alkaline earth metal salt and, further, paraffin, into radioactive liquid waste when processing asphalt solidification of the radioactive liquid waste. Method: Before processing molten asphalt solidification of radioactive liquid waste, soluble salts of alkaline earth metal such as calcium chloride, magnesium chloride, or the like is added to the radioactive liquid waste. Paraffin having a melting point of higher than 600C, for example, is added to the asphalt, and waterproofing can be remarkably improved. The waste asphalt solid thus fabricated can prevent the swelling thereof, and can improve its waterproofing. (Yoshihara, H.)

  1. Aspects of radioactive waste management research institutions

    In Brazil, data recovered from the last follow-up survey (2006) from researchers that hold authorization for handling radioactive materials shows that considerable quantities of radioactive waste from laboratories was not enough minimized. In the present paper, some measurements for reducing the impact of improper waste management are presented including the discussion of a comprehensive waste management program, named PROGER (in Portuguese, for Radioactive Waste Management Program for Research Institutions) implemented by CNEN for educating and advising the staff of research institutions, on how to develop their own radioactive waste management programs on a safe and technically sound manner.

  2. Predictive Modelling Techniques in Radioactive Waste Management

    This paper presents the 'state-of-art' computational modelling techniques AMEC Nuclear has used in radioactive waste management projects. These techniques have been employed to conduct option studies and assessments of radioactive waste packages to justify compliance with the UK and IAEA regulations. An important aspect of a safety case for any packaging is its performance under accident conditions. One of the key principles underlying regulations for performance under normal and accident conditions is that activity release should be low and predictable. This paper addresses the challenge faced by designers and manufacturers to predict behaviour of waste of waste packages has usually been demonstrated by test. Carrying out a full-scale drop test or a fire test of a prototype package with a representative simulant wasteform is time consuming, costly, and can lead to variability in the results. The post-test measurements of release are not straightforward and may be difficult to interpret. Furthermore, these tests are unique for a particular design and cannot be easily applied to other designs. Therefore, predictive modelling based on computational techniques like the finite element analysis (FEA) can be of great benefit. Through examples, the paper examples, the paper explains how assessments of radioactive waste packaging under fire and impact hazards have been conducted to calculate release of radioactive nuclides. The examples include computational modeling to assess free drop and transportation loads on a packaging designed to transportation loads on a packaging designed transport a 50 Te steel pot containing radioactive silicate slag. Methodology used to estimate release fractions from a 500 litre drum following a standard fire assessment is also presented

  3. Public acceptance in radioactive waste management

    disposal of spent fuel and radioactive waste. National programmes, must give increasing focus not only to the scientific and technical issues, but also to societal, political, legal and economic aspects that influence public perceptions of the safety and feasibility of implementing the disposal concepts. In Romania the National Agency for Radioactive Waste, ANDRAD, drawn-up a public communication strategy which pay an important stress to transparency, openness and accountability issues. This strategy includes an information component and a public involvement one. The public information campaigns will make use of the known communication tools, such as internet, mass-media co-operation, brochures and leaflets dissemination, seminars and conferences. The public involvement in the decision making process will be facilitated through public debates, presentation of the EIA reports, supporting the activity of Local Information Committees and by considering the socio-economic issues related with the repository development programme. Many of these actions have been already started, they are continuously assessed and improved/updated, aiming, together with technical solutions to robust, publicly acceptable projects

  4. Instructive for radioactive solid waste management

    An instructive is established for the management system of radioactive solid residues waste of the Universidad de Costa Rica, ensuring the collection, segregation, storage and disposal of waste. The radioactive solid waste have been segregated and transferred according to features and provisions of the Universidad de Costa Rica and CICANUM

  5. Note from the Radioactive Waste Section

    TS Department

    2008-01-01

    The Radioactive Waste Section of the Radiation Protection Group wishes to announce that the radioactive waste treatment centre will be closed on Friday, 19 December. In addition, waste reception will be limited to a strict minimum on Thursday, 18 December. Users of the centre are requested to adjust their plans accordingly. For more information, call 73875.

  6. Process for fixation of radioactive waste

    Fixation of radioactive waste comprises mixing of the water saturated waste with a resin and a monomer in order to form an emulsion. By addition of a hydraulic binder, formation of concrete is achieved. This process enables the fixation of the waste in a stable manner without release of radioactivity

  7. Integrating the radioactive waste management system into other management systems

    Radioactive waste management is to be included in the Integrated Management System (IMS) which pursues the continuous improvement of the company's quality, occupational safety and health, and environment protection processes. Radioactive waste management is based on the following aspects: optimization of human and material resources for execution of tasks, including the provision of a radiation protection supervisor to watch over the management of radioactive waste; improved documentation (management plan and procedures); optimization of operational levels for waste classification and release; maintenance of generation records and history through a database that facilitates traceability of information; implementation of radioactive waste segregation at source (source identification, monitoring and decontamination) activities intended to reduce the amount of radioactive waste; licensing of initial storage site for radioactive waste control and storage; employee awareness training on radioactive waste generation; identification and evaluation of emergency situations and response planning; implementation of preventive maintenance program for safety related items; development and application of new, advanced treatment methodologies or systems. These aspects are inherent in the concepts underlying quality management (establishment of administrative controls and performance indicators), environment protection (establishment of operational levels and controls for release), occupational health and safety (establishment of operational controls for exposure in emergency and routine situations and compliance with strict legal requirements and standards). It is noted that optimizing the addressed aspects of a radioactive waste management system further enhances the efficiency of the Integrated Management System for Quality, Environment, and Occupational Safety and Health. (author)

  8. Storing solid radioactive wastes at the Savannah River Plant

    Horton, J.H.; Corey, J.C.

    1976-06-01

    The facilities and the operation of solid radioactive waste storage at the Savannah River Plant (SRP) are discussed in the report. The procedures used to segregate and the methods used to store radioactive waste materials are described, and the monitoring results obtained from studies of the movement of radionuclides from buried wastes at SRP are summarized. The solid radioactive waste storage site, centrally located on the 192,000-acre SRP reservation, was established in 1952 to 1953, before any radioactivity was generated onsite. The site is used for storage and burial of solid radioactive waste, for storage of contaminated equipment, and for miscellaneous other operations. The solid radioactive waste storage site is divided into sections for burying waste materials of specified types and radioactivity levels, such as transuranium (TRU) alpha waste, low-level waste (primarily beta-gamma), and high-level waste (primarily beta-gamma). Detailed records are kept of the burial location of each shipment of waste. With the attention currently given to monitoring and controlling migration, the solid wastes can remain safely in their present location for as long as is necessary for a national policy to be established for their eventual disposal. Migration of transuranium, activation product, and fission product nuclides from the buried wastes has been negligible. However, monitoring data indicate that tritium is migrating from the solid waste emplacements. Because of the low movement rate of ground water, the dose-to-man projection is less than 0.02 man-rem for the inventory of tritium in the burial trenches. Limits are placed on the amounts of beta-gamma waste that can be stored so that the site will require minimum surveillance and control. The major portion (approximately 98 percent) of the transuranium alpha radioactivity in the waste is stored in durable containers, which are amenable to recovery for processing and restorage should national policy so dictate.

  9. Mixed radioactive and chemotoxic wastes (RMW)

    During the first decades of development of nuclear energy, organizations involved in the management of nuclear wastes had their attention focused essentially on radioactive components. The impression may have prevailed that, considering the severe restrictions on radioactive materials, the protection measured applied for radioactive components of wastes would be more than adequate to cope with potential hazards from non radioactive components associated with radioactive wastes. More recently it was acknowledged that such interpretation is not necessarily justified in all cases since certain radioactive wastes also contain non-negligible amounts of heavy metals or hazardous organic components which, either, do not decay, or are subject to completely different decay (decomposition) mechanisms. The main purposes of the present study are to analyze whether mixed radioactive wastes are likely to occur in Europe and in what form, whether one needs a basis for integration for evaluating various forms of toxicity and by which practical interventions possible problems can be avoided or at least reduced. (au)

  10. Operation of the radioactive waste treatment facility

    The radioactive wasted generated at Korea Atomic Energy Research Institute (KAERI) in 1996 are about 118m3 of liquid waste and 204 drums of solid waste. Liquid waste were treated by the evaporation process, the bituminization process, and the solar evaporation process. In 1996, 100.5m3 of liquid waste was treated. (author). 84 tabs., 103 figs

  11. Operation of the radioactive waste treatment facility

    Kim, Kil Jeong; Ahn, Seom Jin; Lee, Kang Moo; Lee, Young Hee; Sohn, Jong Sik; Bae, Sang Min; Kang, Kwon Ho; Lim, Kil Sung; Sohn, Young Joon; Kim, Tae Kook; Jeong, Kyung Hwan; Wi, Geum San; Park, Seung Chul; Park, Young Woong; Yoon, Bong Keun

    1996-12-01

    The radioactive wasted generated at Korea Atomic Energy Research Institute (KAERI) in 1996 are about 118m{sup 3} of liquid waste and 204 drums of solid waste. Liquid waste were treated by the evaporation process, the bituminization process, and the solar evaporation process. In 1996, 100.5m{sup 3} of liquid waste was treated. (author). 84 tabs., 103 figs.

  12. Investigation of environmental radioactivity in waste dumping areas of the far eastern seas. JAERI`s activities in the 1st Japanese-Korean-Russian joint expedition 1994

    Amano, Hikaru; Matsunaga, Takeshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Yabuuchi, Noriaki

    1996-10-01

    Large quantities of radioactive waste have been dumped in the Far Eastern Sea by the former USSR and Russia. In order to survey marine radioactive contamination in the Far Eastern Sea, the first Japanese-Korean-Russian joint expedition was conducted according to the governmental agreement. The joint expedition was conducted at the areas of the Russian radioactive waste dumping site from March 18 1994 to April 6, 1994. JAERI participated in this expedition according to the request from STA Japan, and conducted mainly on-board measurement of marine radioactivities. The results showed that the radionuclides concentrations in seawater and seabed sediment samples from the study site were not different from those in the western North Pacific. This report summarises JAERI`s activities in the expedition. Final report by Japanese-Korean-Russian government and IAEA is annexed. (author)

  13. Investigation of environmental radioactivity in waste dumping areas of the far eastern seas. JAERI's activities in the 1st Japanese-Korean-Russian joint expedition 1994

    Large quantities of radioactive waste have been dumped in the Far Eastern Sea by the former USSR and Russia. In order to survey marine radioactive contamination in the Far Eastern Sea, the first Japanese-Korean-Russian joint expedition was conducted according to the governmental agreement. The joint expedition was conducted at the areas of the Russian radioactive waste dumping site from March 18 1994 to April 6, 1994. JAERI participated in this expedition according to the request from STA Japan, and conducted mainly on-board measurement of marine radioactivities. The results showed that the radionuclides concentrations in seawater and seabed sediment samples from the study site were not different from those in the western North Pacific. This report summarises JAERI's activities in the expedition. Final report by Japanese-Korean-Russian government and IAEA is annexed. (author)

  14. Decision Assessment of Clearance Level on Radioactive Waste Management

    Radioactive waste on the safe level activity containing very small radioactive material gives small radiology influence to the human, it is not necessary to control by regulatory body. The radioactive waste on the safe level activity is safe to release as the common waste. For exemption of the control, it is required the safe activity level limits in which the value of clearance level is fulfilled by regulatory body, however until now it is not decided yet. The exemption decision is obtained if its activity is lower than or same with clearance level based on the annual effective dose receiving by public on the value is lower than or same with 0,01 mSv. The exposure pathways of radioactive waste to the human have important role for determination of clearance level. The decision assessment of clearance level on the radioactive waste management has been done by analysis of radioactive exposure pathways to the human for activities of the disposal and the recycle of solid wastes, also the release of liquid and gas effluent. For solid waste disposal, the exposure pathway was evaluated since the transportation of packed waste from the treatment facility to the disposal facility and during its operation. Exposure pathways for solid waste recycle consist of the pathways for handling and transportation of cleared material to the recycling facility, the fabrication and the utilization of its product. Exposure pathways for liquid and gas releases occur since its releases to the environment up to the human (public) by specific traffic lane. (author)

  15. Controlled Containment, Radioactive Waste Management in the Netherlands

    Codee, H.

    2002-02-26

    All radioactive waste produced in The Netherlands is managed by COVRA, the central organization for radioactive waste. The Netherlands forms a good example of a country with a small nuclear power program which will end in the near future. However, radioisotope production, nuclear research and other industrial activities will continue to produce radioactive waste. For the small volume, but broad spectrum of radioactive waste, including TENORM, The Netherlands has developed a management system based on the principles to isolate, to control and to monitor the waste. Long term storage is an essential element of the management system and forms a necessary step in the strategy of controlled containment that will ultimately result in final removal of the waste. Since the waste will remain retrievable for long time new technologies and new disposal options can be applied when available and feasible.

  16. The Radioactive Waste Management at Studsvik

    The report was originally prepared as a contribution to the discussions in an IAEA panel on economics of radioactive waste management held in Vienna from 13 - 17 December 1965. It contains the answers and comments to the questions of a questionnaire for the panel concerning the various operations associated with the management (collection, transport, treatment, discharge, storage, and operational monitoring) of: - radioactive liquid wastes, except high-level effluents from reactor fuel recovering operations; - solid wastes, except those produced from treatment of high level wastes; - gaseous wastes produced from treatment of the foregoing liquid and solid wastes; - equipment decontamination facilities and radioactive laundries

  17. Influence of hydrogen in the presence of organic matter on bacterial activity under radioactive waste disposal conditions

    According to the French design for the disposal of high-level radioactive waste (HLW), waste will be emplaced in an environment involving metallic materials into a geological clay formation. The presence of microorganisms has recently been evidenced in such environments. Therefore, based on current knowledge, the introduction of microbial species during the construction and operational phases, as well as the survival of bacteria after the disposal closure, have to be accounted for within the context of safety assessment. Sulphate-reducing bacteria (SRB) activity is notably expected to have an impact on corrosion processes, and thus influence the evolution of metallic and clay materials involved in a HLW disposal cell. The present work investigates the potential development of a SRB, Thermo-desulfovibrio hydrogeniphilus, in order to better assess its metabolism in the presence of dissolved organic matter (DOM) that is representative of the DOM present in an argillaceous pore water, as well as hydrogen that will be produced by the anaerobic corrosion of metallic materials. After 49 days of batch experiments, hydrogen enhances the bacterial development in presence of a low amount of DOM, whereas the DOM alone does not seem to sustain bacteria activities. (authors)

  18. Device for radioactive waste processing

    Object: To remove burr on the pellet surface obtained by pelletizing radioactive powder by the use of a rotatable roller type pellet molding machine, to prevent occurrence of powder from the pellets. Structure: Condensed radioactive liquid waste is vaporized and dried into powder form, which is fed to a granulator. The powder is forced in by means of a screw nad pelletized by a rotating roll. Pellets are charged into a rotating cage through a hopper, and rotation of the cage causes pellets to be rubbed with each other and to contact with meshes of the cage to remove burr, whereby they are formed into shaped pellets when the latter come out of the cage, which pellets are transported towards the drum filler via the hopper. Incomplete pellets or burr drop onto the lower hopper through the meshes of the cage and are turned to the granulator again. (Yoshino, Y.)

  19. Nuclear energy from radioactive waste

    The global energy demand is increasing. Sound forecasts indicate that by the year 2020 almost eight thousand million people will be living on our planet, and generating their demand for energy will require conversion of about 20 thousand million tonnes of coal equivalents a year. Against this background scenario, a new concept for energy generation elaborated by nuclear scientists at CERN attracts particular interest. The concept describing a new nuclear energy source and technology intends to meet the following principal requirements: create a new energy source that can be exploited in compliance with extremely stringent safety requirements; reduce the amount of long-lived radioactive waste; substantially reduce the size of required radwaste repositories; use easily available natural fuels that will not need isotopic separation; prevent the risk of proliferation of radioactive materials; process and reduce unwanted actinides as are generated by the operation of current breeder reactors; achieve high efficiency both in terms of technology and economics. (orig./CB)

  20. Financing of radioactive waste disposal

    Waste disposal is modelled as a financial calculus. In this connection the particularity is not primarily the dimension to be expected of financial requirement but above all the uncertainty of financial requirement as well as the ecological, socio-economic and especially also the temporal dimension of the Nuclear Waste Disposal project (disposal of spent fuel elements from light-water reactors with and without reprocessing, decommissioning = safe containment and disposal of nuclear power plants, permanent isolation of radioactive waste from the biosphere, intermediate storage). Based on the above mentioned factors the author analyses alternative approaches of financing or financial planning. He points out the decisive significance of the perception of risks or the evaluation of risks by involved or affected persons - i.e. the social acceptance of planned and designed waste disposal concepts - for the achievement and assessment of alternative solutions. With the help of an acceptance-specific risk measure developed on the basis of a mathematical chaos theory he illustrates, in a model, the social influence on the financing of nuclear waste disposal. (orig./HP)

  1. Research and development on radioactive waste management and storage

    This book contains a progress report of the second European Community's five-year R and D program (1980-1984) on radioactive waste management and storage. The aim of the program is the joint development and improvement of a management system of radioactive waste produced by the nuclear industry which ensures the safety and protection of both man and the environment. The research program covers work to solve certain technological problems in the processing, storage and disposal of radioactive wastes, and work to define the general framework for the projects relating to the storage and disposal of radioactive wastes. Topics considered include the characterization of conditioned low and medium activity waste forms, the conditioning of high activity solid wastes, the treatment and conditioning processes for low and medium activity liquid wastes, the processing of alpha-contaminated wastes, the immobilization and storage of gaseous wastes, the shallow land burial of solid low activity waste, storage and disposal in geological formations, and performance and safety evaluations of radioactive wastes disposed in geological formations

  2. Management of the radioactive waste treatment facility

    Kim, Kil Jeong; An, Sum Jin; Lee, Kang Mu; Jeong, Kyeong Hwan; Lee, Young Hee; Sohn, Jong Sik; Bae, Sang Min; Kang, Kwon Ho; Yim, Kil Sung; Ui, Keum San; Kim, Tae Kuk; Sohn, Young Jun; You, Young Keol; Park, Young Yoong; Yoon, Bong Keun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-12-01

    The radioactive wastes generated in Korea Atomic Energy Research Institute (KAERI) in 1993 are about 107 m{sup 3} of liquid waste and 169 drums of solid waste. Liquid waste is treated by the evaporation process, the bituminization process, and the solar evaporation process. The solid waste is treated by the compaction process and the cementation process. The radioactive wastes treated in 1993 are about 194 m{sup 3} of liquid waste and 31 drums of solid waste, respectively. 28 tabs., 12 figs. (Author) .new.

  3. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009

    West, B.; Waltz, R.

    2010-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.

  4. Radioactive waste disposal: Global experience and challenges

    This document discusses radioactive waste disposal practices followed in various countries. Various technical factors like geology, hydrogeology, seismicity, etc, are taken into account during site selection. Then the sites are prepared for disposal. After disposal and closure of, the disposal facility, the site needs to be regularly monitored. This document presents various issues linked to the disposal facilities and radioactive wastes, for example, classification of radioactive wastes, design of the disposal facility, licensing procedure, disposal costs, public acceptance issues etc

  5. Radioactive wastes management: what is the situation?

    This presentation takes stock on the situation of the radioactive wastes management in France. It gives information on the deep underground disposal, the public information, the management of the radioactive wastes in France, the researches in the framework of the law of the 30 december 1991, the underground laboratory of Meuse/Haute-Marne, the national agency for the radioactive wastes management (ANDRA) and its sites. (A.L.B.)

  6. Management of radioactive wastes produced by users of radioactive materials

    This report is intended as a document to provide guidance for regulatory, administrative and technical authorities who are responsible for, or are involved in, planning, approving, executing and reviewing national waste management programmes related to the safe use of radioactive materials in hospitals, research laboratories, industrial and agricultural premises and the subsequent disposal of the radioactive wastes produced. It provides information and guidance for waste management including treatment techniques that may be available to establishments and individual users

  7. Risk assessment and radioactive waste management

    Problems of radioactive waste management, both real and apparent, have provided a serious constraint in the development of nuclear power. Several studies have been conducted in an attempt to evaluate the actual (quantifiable) risks of radioactive waste management and place them in a reasonable perspective. These studies are reviewed and discussed. Generally, the studies indicate the risks to be of a level of seriousness which might normally be considered acceptable in current society. However, it is apparent that this acceptability has not been attained and public apprehension prevails. To understand the reasons for this apprehension requires an assessment of those factors of ''perceived'' risks which play a major role in determining public attitudes toward radioactive waste management programs and nuclear power, in general. Such factors might include the spector of legacies of harm to future generations, genetic effects, nuclear garbage dumps, proliferation of plutonium inventories, nuclear terrorism, etc. A major problem in development of acceptable waste management policies and programs requires not only the recognition of the importance of perceived risk factors but development of a methodology for their incorporation in planning and conduct of such activities. Some approaches to the development of this methodology are discussed

  8. Television systems for radioactive waste management

    Radiation-tolerant television cameras, widely used for the inspection of nuclear plants, are now used for monitoring radioactive waste management processes. Two systems are described in this paper that differ in the methods of maintaining the camera equipment. At the British Nuclear Fuels plc (BNFL) Sellafield plant, a major capital investment program is under way that includes plants for spent-fuel reprocessing and radioactive waste management. The Windscale vitrification plant (WVP) will convert highly active liquid waste to a solid glass-like form. The WVP television system was based on in-cell cameras designed to be removable by remote-handling equipment. The plant to encapsulate medium active solid waste, encapsulation plant 1 (EP1) used through-wall and through-roof viewing systems with a glass viewing dome as the biological shield, allowing the camera and optics to be withdrawn to a safe area for maintenance. Both systems used novel techniques to obtain a record of the waste-processing operations. The WVP system used a microcomputer to overlay reference information onto the television picture and a motion detector to automatically trigger the video recording. The television system for EP1 included automatic character recognition to generate a computer data record of drum serial numbers

  9. The management of radioactive waste treatment facility

    The radioactive wastes generated at Korea Atomic Energy Research Institute (KAERI) in 1994 are about 56 m3 of liquid waste and 323 drums of solid waste. Liquid waste were treated by the evaporation process, the bituminization process, and the solar evaporation process. The solid wastes were treated in 1994 are about 87 m3 of liquid waste and 81 drums of solid waste, respectively. 2 tabs., 26 figs., 12 refs. (Author) .new

  10. Equipment for radioactive waste treatment

    The equipment is used for the concentration, calcination, possibly denitration of high, medium and low level radioactive wastes. It is provided with a heated body and driving mechanism. In the heated body there is a horizontal or oblique shaft with a system of vanes, possibly with a screw. On one side of the heated body there is an opening for drop and vapour extraction. A lead screen may be placed in this area, opposite to it a shielding and between them a deactivation slot. The advantage of the discovery is in that the shaft including the bearings are placed outside of the working part of the equipment. (M.D.)

  11. SHS immobilization of radioactive wastes

    Samples of mineral-like ceramics based on perovskite and model radioactive wastes were synthesized and studied. Influence of aluminum, silicon and titanium oxides additives on the properties of the obtained ceramics was investigated. It was shown, that cesium losses decreased during the synthesis while aluminum, silicon and titanium oxides content in the initial mixture was increased, and cesium uniform distribution by the sample volume was achieved. It was found, that the synthesized ceramics was characterized by dense structure and fine chemical stability; it contained mainly a perovskite phase of a present composition. (orig.)

  12. The 1989 United Kingdom radioactive waste inventory

    This report describes the stocks of radioactive wastes in the United Kingdom, together with projections of future arisings. Operational and decommissioning wastes are considered for both committed and prospective plant. Arisings are from power reactors, commercial reprocessing, fuel manufacture, medical and industrial sources and research and development. Data are presented for the wastes in their raw form and as conditioned for disposal. The data which refer to the situation on 1.1.89 are shown by producer and globally, in summary tables. The information presented for each producer includes a discussion of how stocks and arisings have changed from earlier predictions. This is supplemented by a stream by stream tabulation showing the waste type, volume, density, conditioning factor and specific activity for stocks and arisings. The global projections are presented in tabular and graphical manner, and the changes from earlier projections are discussed. The scenarios which underly the projections are presented. (author)

  13. MANAGEMENT OF RADIOACTIVE WASTES IN CHINA

    潘自强

    1994-01-01

    The policy and principles on management of radioactive wastes are stipulated.Cement solidification and bituminization unit has come into trial run.Solid radioactive waste is stored in tentative storage vault built in each of nuclear facilities.Seventeen storages associated with applications of nuclear technology and radioisotopes have been built for provinces.Disposal of low and intermediate level radioactive wastes pursues the policy of “regional disposal”.Four repositories have been planned to be built in northwest.southwest,south and east China respectively.A program for treatment and disposal of high level radioactive waste has been made.

  14. Microbiological treatment of radioactive wastes

    The ability of microorganisms which are ubiquitous throughout nature to bring about information of organic and inorganic compounds in radioactive wastes has been recognized. Unlike organic contaminants, metals cannot be destroyed, but must be either removed or converted to a stable form. Radionuclides and toxic metals in wastes may be present initially in soluble form or, after disposal may be converted to a soluble form by chemical or microbiological processes. The key microbiological reactions include (i) oxidation/reduction; (ii) change in pH and Eh which affects the valence state and solubility of the metal; (iii) production of sequestering agents; and (iv) bioaccumulation. All of these processes can mobilize or stabilize metals in the environment

  15. Treatment of radioactive wastes from uranium concentrating

    Radioactive wastes from uranium and thorium ore processing pose potential environmental and public health problems because of their radioactivity and chemical composition. The radionuclides exist in these wastes are those resulting from the uranium 238, uranium 235 and thorium 232 decay series. The most important radionuclide in U 238 decay series are uranium 234, thorium 230, radium 226 and some short lived radionuclides such as radon-222. Radium 226 is the nuclide of principal concern from the standpoint of the assessment and control of the radiological hazard associated with the wastes. Thus determination of uranium, thorium and radium concentration in wastes resulting from nuclear fuel cycle is very important because of its potential hazard. Various analytical methods such as fluorimetry, neutron activation analysis, radon emanation, spectrophotometry and spectroscopy are used for determination of these radionuclides. Uranium and thorium are separated from interfering element by ion exchange chromatography and measured by spectrophotometry method using arsenazo III and thorin as indicator. Radium is separated from interfering elements and α-emitters by coprecipitation of radium barium sulphate and measured by counting α-particles with surface barrier detector. Regarding to physical and chemical characteristic of waste being investigated, decontamination factors and treatment methods, chemical precipitation and coprecipitation procedure were carried out in this research work. By adding barium chloride, radium is separated from liquid waste and optimum condition were determined. Precipitation with lime and sodium-hydroxide were also studied and good result were obtained. The results show that by neutralization of waste by lime and sodium hydroxide more than 99.9% of activity was removed from stream. Advantage and disadvantage of each methods were studied and finally, effluent resulted from treatment were discharged after analysis with γ-spectroscopy and

  16. Calcination of Radioactive Waste in Molten Sulphur

    The Savannah River Laboratory is developing a novel process based on the unique properties of sulphur for converting radioactive wastes to a solid form of low solubility for ''ultimate'' disposal. In this process the aqueous acidic wastes are reacted with molten sulphur at 150°C so that the water and volatile acids are driven off and the chemical compounds present in the waste are calcined and/or chemically reduced. The resulting sulphur-waste slurry is then heated at 400 to 444°C for from 1 to 5 hr to drive off sulphuric acid and residual water and further calcine and/or reduce the chemical compounds in the sulphur-waste slurry. In these steps the molten sulphur serves as a heat-transfer medium, prevents the entrainment of the radioactive solids in the steam and reaction gases and eliminates the volatilization of radioactive ruthenium by preventing the formation of the tetroxide. Laboratory scale runs with concentrated high activity waste as feed (1.3 x 109 γ c/(min)(ml), 2.0M Al(N03)3, and 1.5M HNO3) have shown that only one part in approximately 100 000 parts of the activity in the feed is carried overhead in the off-gas in these process steps. After the completion of the high-temperature treatment, the sulphur-waste slurry is cooled to 120-150°C and transferred as a liquid to the final containment system where it is allowed to solidify. Although it is our intent to protect the containment system against the action of water, the resistance of the solidified sulphur- waste slurry to the action of water has been used as a measure of the effectiveness of this process. Small cylinders of the solidified slurry have been prepared from simulated wastes containing Al (NO3)3 or dissolved stainless-steel nitrates with tracer levels of Sr and Cs, and for concentrated high-activity waste containing Al(NO3s)3. These cylinders have been exposed to water over extended periods of time. Leaching rates are calculated as, though there is complete removal of material from a

  17. About the Application of 'D' Values to Radioactive Waste

    A system for categorizing radioactive sources and quantities of radioactive materials aimed at specifying generic security levels has been developed during the last years. The minimum activity of a given radionuclide that is considered 'dangerous' (i.e. the 'D value' of such radionuclide) is derived from a set of well-defined scenarios, but the low activity concentration of radioactive waste, particularly of very low level waste (VLLW), low level waste (LLW) and intermediate level waste (ILW), makes inappropriate the direct application of the D Values. Taking into account the quantitative definition of a 'dangerous source' and the role of the activity concentration, a quantitative approach for the determination of the level of security applicable to the case of radioactive waste is proposed. (authors)

  18. About the application of 'D' values to radioactive waste

    A system for categorizing radioactive sources and quantities of radioactive materials aimed at specifying generic security levels has been developed during the last years. The minimum activity of a given radionuclide that it is considered 'dangerous' (i.e. the 'D value' of such radionuclide) is derived from a set of well-defined exposure scenarios, but the low activity concentration of radioactive waste, particularly of very low level waste (VLLW), low level waste (LLW) and intermediate level waste (ILW), makes inappropriate the direct application of the D Values. Taking into account the qualitative definition of a 'dangerous source' and the role of the activity concentration, a quantitative approach for the determination of the level of security applicable to the case of radioactive waste is proposed. (author)

  19. Supercompaction of radioactive waste at NPP Krsko

    The problem of radioactive waste management is both scientifically and technically complex and also deeply emotional issue. In the last twenty years the first two aspects have been mostly resolved up to the point of safe implementation. In the Republic of Slovenia, certain fundamentalist approaches in politics and the use of radioactive waste problem as a political tool, brought the final radioactive repository siting effort to a stop. Although small amounts of radioactive waste are produced in research institutes, hospitals and industry, major source of radioactive waste in Slovenia is the Nuclear Power Plant Krsko. When Krsko NPP was originally built, plans were made to construct a permanent radioactive waste disposal facility. This facility was supposed to be available to receive waste from the plant long before the on site storage facility was full. However, the permanent disposal facility is not yet available, and it became necessary to retain the wastes produced at the plant in the on-site storage facility for an extended period of time. Temporary radioactive storage capacity at the plant site has limited capacity and having no other options available NPP Krsko is undertaking major efforts to reduce waste volume generated to allow normal operation. This article describes the Radioactive Waste Compaction Campaign performed from November, 1994 through November, 1995 at Krsko NPP, to enhance the efficiency and safety of storage of radioactive waste. The campaign involved the retrieval, segmented gamma-spectrum measurement, dose rate measurement, compaction, re-packaging, and systematic storage of radioactive wastes which had been stored in the NPP radioactive waste storage building since plant commissioning. (author)

  20. Controlling low-level radioactive waste

    This series of information sheets describes at a popular level the sources of low-level radioactive wastes, their associated hazards, methods of storage, transportation and disposal, and the Canadian regulations that cover low-level wastes

  1. Some aspects regarding the qualifications tests of packages used for transport and storage of radioactive waste (low activity) in INR Pitesti

    Radioactive wastes generated by TRIGA INR research reactor are packaged according to the national and international standards and to the IAEA Regulations for the Safe Transport of Radioactive Materials and Advisory Material for the Application of the IAEA Transport Regulations. The technology for packaging and treatment of Radioactive wastes used in our institute can be applied, in perspective, also at the Nuclear Power Plant Cernavoda, after commissioning. This paper describes the qualifications tests (type tests) for packages used for transport and storage (for a long period of about 30 years) of radioactive wastes (low activity, up to 0.5068x1010 Bq/drum, 0.164 Ci/drum, respectively). The package used is a drum manufactured by Romanian industry (according to the national standard 7683-79) of 1 mm thick mild steel with the following dimensions: height: 915 ± 10 mm, diameter: 600 ± 5 mm, volume: 220 liters, approximately. There are presented the type tests carried-out, e.g. compression, penetration, free fall, lixiviation, safety in utilizing (biological protection), checking of chemical and mechanical characterization and the effect of the product on the environment, the results, interpretation and conclusions. The performing of the above mentioned tests and other additional ones, the results obtained, prove that our technology for treatment and packaging of radioactive wastes is in accordance with IAEA Regulations in the field. (author). 6 refs, 6 figs

  2. The 1986 United Kingdom radioactive waste inventory

    This report gives information on the radioactive wastes which arise in the United Kingdom, updated to 1 January 1986. It has been compiled from information provided by the principal producers of the wastes, Amersham International plc, British Nuclear Fuels plc, the Central Electricity Generating Board, the South of Scotland Electricity Board, and the United Kingdom Atomic Energy Authority. The report lists the waste types, or streams, which these organisations produce, or will produce, as part of their normal operations or from decommissioning of their plant. For each stream is given the volume (or in a few cases mass) of existing stocks, estimated arisings to the year 2030 (2080 in the case of some decommissioning wastes), specific activity, and conditioning factor (volume change from ''raw'' waste volume to volume conditioned for disposal). Details of the radionuclide compositions of individual waste streams are separately listed. Waste streams are allocated to one of the three categories High, Intermediate or Low-Level, although this does not necessarily imply any commitment to a particular disposal route. The report includes tables summarising the data, arranged in a hierarchical manner to enable totals to be readily extracted as required. Summary tables of both ''raw'' and ''conditioned'' waste volumes are given. Also included are a commentary on the data and important changes from the 1985 inventory, and information on scenarios on which estimates of future arisings are based. (author)

  3. Radioactive waste management system: Project Decision Schedule

    This is the first revision of the Project Decision Schedule (PDS) for the Civilian Radioactive Waste Management Program. The status date for milestones in the PDS is as of April 1991. This revision replaces the original PDS issued in March 1986. The PDS, which is required by Section 114(e) of the Nuclear Waste Policy Act (NWPA) of 1982, as amended, is to portray the optimum way to attain the operation of the repository. The PDS includes a description of objectives and a sequence of deadlines for all Federal agencies that are required to take action in achieving this goal. The activity deadlines in this issue of the PDS are based on the Nuclear Waste Policy Amendments Act of 1987 and the Office of Civilian Radioactive Waste Management's Program Schedule Baseline. The Program Schedule Baseline supports the Secretary of Energy's Report to Congress on Reassessment of the Civilian Radioactive Waste Management Program, November 1989. That report, among other things, contains the results of a comprehensive review of the schedule for repository-related activities, including a realistic assessment of activity durations and past experience. This schedule shows a significant slip for the expected start of repository operations -- from the year 2003 to approximately 2010. To promote the Department of Energy's ability to achieve the new milestones and goals, the Secretary of Energy announced an action plan that centers on gaining access to the Yucca Mountain candidate site to continue the scientific investigations needed to evaluate the site's suitability for a repository and on establishing integrated Monitored Retrievable Storage with a target for spent fuel acceptance in 1998. 5 figs., 6 tabs

  4. Radioactive wastes: a proposal to its classification

    On the basis of the quantities and the characteristics of the stored radioactive wastes in Cuba and the IAEA system of wastes classification, the concentration activities that would be used as limits for those categories are evaluated. This approach suggests a limit of 10 TBq/m3 for short lived liquid wastes of Low and Intermediate Level (less than 30 years) and 5 TBq/m3 for long lived liquid wastes (more than 30 years). For solid wastes the suggested limits are ten times lower. Taking into account the small quantities of arising wastes and to make easy its segregation, collection and disposal, a low level waste sub-classification in three new categories, whether or not they may be direct discharged, is suggested. As lower classification limit, while not specific exemption levels are established in the country, the use of an ALImin fraction is emphasized, meanwhile the total discharged activity will be no greater than 10 MBq or 100 MBq when the discharge occurs over the whole year. (authors). 6 refs., 5 tabs

  5. The conceptual design of waste repository for radioactive waste from medical, industrial and research facilities containing comparatively high radioactivity

    Advisory Committee on Nuclear Fuel Cycle Backend Policy reported the basic approach to the RI and Institute etc. wastes on March 2002. According to it, radioactive waste form medical, industrial and research facilities should be classified by their radioactivity properties and physical and chemical properties, and should be disposed in the appropriate types of repository with that classification. For the radioactive waste containing comparatively high radioactivity generated from reactors, NSC has established the Concentration limit for disposal. NSC is now discussing about the limit for the radioactive waste from medical, industrial and research facilities containing comparatively high radioactivity. Japan Nuclear Cycle Development Institute (JNC) preliminary studied about the repository for radioactive waste from medical, industrial and research facilities and discussed about the problems for design on H12. This study was started to consider those problems, and to develop the conceptual design of the repository for radioactive waste from medical, industrial and research facilities. Safety assessment for that repository is also performed. The result of this study showed that radioactive waste from medical, industrial and research facilities of high activity should be disposed in the repository that has higher performance of barrier system comparing with the vault type near surface facility. If the conditions of the natural barrier and the engineering barrier are clearer, optimization of the design will be possible. (author)

  6. Integrated radioactive defense waste management plan

    The plan for controlling the releases of radioactivity and ensuring the safe storage of radioactive wastes generated by past, present, and future operation of the Savannah River Plant (SRP) is presented. The waste was categorized as solid, liquid, and gaseous, and the different waste management operations are categorized as treatment, storage, and release operations. Following a summary of the environmental effects of SRP emissions, the document includes in succession (1) a description of processes that generate wastes, (2) a description of the various waste treatment techniques, (3) a description of the waste holding facilities, and (4) a description of the plant's waste storage facilities

  7. Organization of the services of collection, deposit, treatment, disposal of radioactive wastes originated by medical and industrial activities in Italy

    Full text: The history of the private companies operating in the field in Italy since 1980; The technical features of the involved services; The 'Integrated service of radioactive wastes' established by E.N.E.A. (Italian Governative Organization); How the system operates: the role of the private companies; The problems of the field. (author)

  8. Communication from the Radioactive Waste Service

    2011-01-01

    The Radioactive Waste service of the Radiation protection Group informs you that as of 15 April 2011 radioactive waste can be delivered to the waste treatment centre (Bldg. 573) only during the following hours: Mon- Thu: 08:00 – 11:30 / 13:30 – 16:00 Fri : 08:00 – 11:30 An electronic form must be filled in before the arrival of the waste at the treatment centre: https://edh.cern.ch/Document/General/RadioactiveWaste for further information, please call 73171.

  9. Bulgaria: Novi Han radioactive waste repository

    , activity and radionuclide inventory and waste form restrictions. IAEA Model Technical Project BUL/4/005 on Increasing Safety of the Novi Han Repository contributed to the upgrading process. The main tasks and achievements of the programme are discussed including identification of radionuclide inventory, characterization of the disposal vaults, safety assessment, option study and conceptual design of a new waste processing and storage facility, and direct measures for improvement of safety. Work accomplished to date has improved safety and allowed transport of radioactive waste stored in Sofia to Novi Han for temporary above ground storage. INRNE will apply for relicensing of the facility. Further development will cover construction of a facility for long term storage/disposal of spent sealed sources. An above ground storage facility might be constructed. A possible long term solution is the utilization of a deep shaft at Gabra for construction of a monitored disposal facility

  10. Quantities and sources of radioactive waste

    Radioactive waste inventories have increased appreciably over the years and now require application of known technologies for their effective management. The largest remaining steps to be taken in handling these radioactive waste inventories are the appropriate way to manage spent fuel, initiation of reprocessing technology on a commercial basis, siting, construction, licensing, and operation of geologic repositories, concurrent conversion of high-level waste to solid forms appropriate for geologic repositories, and siting of low-level waste disposal areas

  11. The conceptual design of waste repository for radioactive waste from medical, industrial and research facilities containing comparatively high radioactivity. 3

    Advisory Committee on Nuclear Fuel Cycle Backend Policy reported the basic approach to the RI and Institute etc. wastes on March 2002. According to it, radioactive waste form medical, industrial and research facilities should be classified by their radioactivity properties and physical and chemical properties, and should be disposed in the appropriate types of repository with that classification. For the radioactive waste containing comparatively high radioactivity generated from reactors, NSC has established the Concentration limit for disposal. NSC is now discussing about the limit for the radioactive waste from medical, industrial and research facilities containing comparatively high radioactivity. Japan Nuclear Cycle Development Institute (JNC) has studied about the feasibility and the cost of the disposal for radioactive waste from medical, industrial and research facilities. This study was started to renew to latest data of the radioactive waste. And at the point of shielding from radiation, the waste was categorized by activity of nuclide in waste container. Then the safety assessment and the prediction of cost of the disposal performed. The result of this study showed as follow; (1) According to groundwater scenario, the summed does for the repository are below of the regulatory guideline of 10μSv/year. (2) A rough estimate values of a disposal cost under the assumed situation were indicated with the arguments. (author)

  12. Storage of radioactive waste. Safety guide

    The objective of this Safety Guide is to provide regulatory bodies and the operators that generate and manage radioactive waste with recommendations on how to meet the safety requirements for the safe storage of radioactive waste. The guidance provided is applicable to all storage facilities, although there are separate sections for small and large storage facilities. The storage of radioactive waste means the holding of radioactive waste in a facility that provides for its containment, with the intention of retrieval. This Safety Guide applies to the storage of solid, liquid and gaseous radioactive wastes in a wide range of facilities, including those at which waste is generated, treated and conditioned. The storage facility could range from a secure cupboard or closet in a laboratory, through to larger designated areas such as rooms or buildings, up to and including a large site dedicated to the storage of radioactive waste. This Safety Guide provides guidance that is specific to small and to large storage facilities and guidance that is common to both small and large facilities. Sections 2 and 3 address, respectively, the protection of human health and the environment, and roles and responsibilities. Section 4 outlines general safety considerations in the storage of radioactive waste that are common to both small and large storage facilities. Sections 5 and 6 provide guidance on safety in the design and operation of small and large storage facilities, respectively. Information on safety assessment as applied to the storage of radioactive waste is provided in the Appendix

  13. Volume reduction of low-level radioactive wastes

    The Biology Division of Oak Ridge National Laboratory (ORNL), located at the Y-12 site of the Oak Ridge Reservation, produces modest amounts of radioactive mixed (radioactive and hazardous) wastes which present unique disposal problems under current Federal (Dept. of Energy (DOE)), Nuclear Regulatory Commission (NRC) and Environmental Protection Agency (EPA) and State of Tennessee rules and regulations governing the disposal of these types of wastes. These wastes fall into five categories, as generated: (a) liquid (laboratory process) wastes, (b) dry (lab trash) wastes, (c) animal carcases. The liquid waste is considered to contain approx. = 90% of the total radioactivity of the wastes. The most feasible long-term method of dealing with these wastes, consists of four inter-related processes. These are (1) distillation of the liquid wastes to remove a volatile, slightly radioactive organic fraction (to be incinerated); (2) scintillation fluid (''cocktail'') recovery and component separation; (3) incineration (high temperature, high efficiency) of the relatively low activity dry waste, animal bedding, animal carcasses; and the slightly radioactive (3H and 14C) flammable components from the liquid and scintillation fluid wastes; and (4) cold chemical oxidation and solidification in cement of the aqueous waste fractions from distillation and scintillation fluid separation steps. This alternative provides for the elimination of all hazardous components with the minimum release of radioactivity into the environment. Only a small fraction of the original waste would be landfilled as either immobiled radioactive waste (low activity tritiated water in carbon-14 carbonate and other ''institutional'' radioisotopes or non-hazardous ash

  14. The Spanish General Radioactive Waste Management Plan

    This paper mainly describes the strategies, the necessary actions and the technical solutions to be developed by ENRESA in the short, medium and long term, aimed at ensuring the adequate management of radioactive waste, the dismantling and decommissioning of nuclear and radioactive facilities and other activities, including economic and financial measures required to carry them out. Starting with the Spanish administrative organization in this field, which identifies the different agents involved and their roles, and after referring to the waste generation, the activities to be performed in the areas of LILW, SF and HLW management, decommissioning of installations and others are summarized. Finally, the future management costs are estimated and the financing system currently in force is explained. The so-called Sixth General Radioactive Waste Plan (6. GRWP), approved by the Spanish Government, is the 'master document' of reference where all the above mentioned issues are contemplated. In summary: The 6. GRWP includes the strategies and actions to be performed by Enresa in the coming years. The document, revised by the Government and subject to a process of public information, underlines the fact that Spain possesses an excellent infrastructure for the safe and efficient management of radioactive waste, from the administrative, technical and economic-financial points of view. From the administrative point of view there is an organisation, supported by ample legislative developments, that contemplates and governs the main responsibilities of the parties involved in the process (Government, CSN, ENRESA and waste producers). As regards the technical aspect, the experience accumulated to date by Enresa is particularly significant, as are the technologies now available in the field of management and for dismantling processes. As regards the economic-financial basis, a system is in place that guarantees the financing of radioactive waste management costs. This system is

  15. Management of radioactive waste in Kazakhstan: Problems and solutions

    The paper studies the history of the accumulation and research of distribution of radioactive waste in Kazakhstan. Currently, on the territory of Kazakhstan, a large volume (up to 240 million tons) of radioactive waste has accumulated. These wastes have various origins ranging from nuclear explosions waste up to those formed under uranium mining and milling. The main wastes are those formed under uranium extraction. In addition, an important part of wastes is that formed under the mining of non-uranium ores including radioactive mineralization (coal, base metals and rare earths, etc), as well as under oil extraction. The aggregate volume of such wastes is 98% of the total. Currently, the management of radioactive wastes in Kazakhstan is becoming more active. Use of the in-situ leaching method instead of uranium mining is very important for the uranium industry of Kazakhstan. This method allows to decrease radioactive waste formation under uranium extraction and to reduce the environmental impact of the uranium industry. At the same time, it is necessary for Kazakhstan to resolve a large variety of questions concerning radioactive waste problems. (author)

  16. Non-fuel cycle radioactive waste policy in Turkey

    Radioactive wastes generated in Turkey are mostly low level radioactive waste generated from the operation of one research reactor, research centers and universities, hospitals, and from radiological application of various industries. Disused sealed sources which potentially represent medium and high radiological risks in Turkey are mainly Am-241, Ra-226, Kr-85, Co-60, Ir-192 and Cs-137. All radioactive waste produced in Turkey is collected, segregated, conditioned and stored at CWPSF. Main components of the facility are listed below: Liquid waste is treated in chemical processing unit where precipitation is applied. Compactable solids are compressed in a compaction cell. Spent sources are embedded into cement mortar with their original shielding. If the source activities are in several millicuries, sometimes dismantling is applied and segregated sources are conditioned in shielded drums. Due to increasing number of radiation and nuclear related activities, the waste facility of CNAEM is now becoming insufficient to meet the storage demand of the country. TAEA is now in a position to establish a new radioactive waste management facility and studies are now being carried out on the selection of best place for the final storage of processed radioactive wastes. Research and development studies in TAEA should continue in radioactive waste management with the aim of improving data, models, and concepts related to long-term safety of disposal of long-lived waste

  17. Environmental chemistry of radioactive waste disposal

    Duffield, J.R.; Williams, D.R.

    1986-09-01

    In this review the environmental chemistry problems associated with radioactive waste disposal are considered from the point of view of the threat to man of waste disposal, contamination pathways, the chemistry of waste containment, speciation of radio-isotopes, chemisorption, risk assessment and computerized simulation of waste disposal phenomena. A strategy for the future is discussed.

  18. Preparation and leaching of radioactive INEL waste forms

    Appreciable quantities of radioactive waste are in storage at the Idaho National Engineering Laboratory (INEL). Plans are being made to convert this waste into durable solid forms for final disposal in a geological repository. Part of the inventory consists of low- and intermediate-level fission, activation, and decay products and transuranic (TRU) wastes, either stored retrievably or buried at the INEL Radioactive Waste Management area. One of the TRU wastes is a sludge from the Department of Energy Rocky Flats Plant, currently stored retrievably in 55-gallon drums. Immobilizing the TRU sludge is the primary concern of the work reported here

  19. Removal of organics from radioactive waste. V. 2

    This report reviews the available literature concerning the removal of organic substances from radioactive waste streams. A substantial portion of low level wastes generated in the various parts of the nuclear fuel cycle, nuclear laboratories and other places where radionuclides are used for research, industrial medical and defense related activities is organic (paper, wood, plastics, rubber etc.) and combustible. These combustible wastes can be processed by incineration. Incineration converts combustible wastes into radioactive ashes and residues that are non-flammable, chemically inert and more homogenous than the initial waste. (author)

  20. Handling and treatment of radioactive aqueous wastes

    This report aims to provide essential guidance to developing Member States without a nuclear power programme regarding selection, design and operation of cost effective treatment processes for radioactive aqueous liquids arising as effluents from small research institutions, hospitals and industries. The restricted quantities and low activity associated with the relevant wastes will generally permit contact-handling and avoid the need for shielding requirements. The selection of liquid waste treatment involves: Characterization of arising with the possibility of segregation; Discharge requirements for decontaminated liquors, both radioactive and non-radioactive; Available technologies and costs; Conditioning of the concentrates resulting from the treatment; Storage and disposal of the conditioned concentrates. The report will serve as a technical manual providing reference material and direct step-by-step know-how to staff in radioisotope user establishments and research centres in the developing Member States without nuclear power generation. Therefore, emphasis is limited to the simpler treatment facilities, which will be included with only the robust, well-established waste management processes carefully chosen as appropriate to developing countries. 20 refs, 12 figs, 7 tabs

  1. Common errors in transport of radioactive waste

    The transport of radioactive waste is a stage of the waste management and must fit the same protection and safety requirements of any radioactive material shipment. In Brazil, the radioactive waste shipments must comply with the national regulations for transport of dangerous goods and the specific regulation for the safe transport of radioactive material of the nuclear regulatory authority. In these regulations, the consignor is responsible for the safety during the transport, however, the unload operations are consignee's responsibility. The Radioactive Waste Laboratory of the Nuclear and Energy Research Institute, IPEN-CNEN/SP, receives institutional radioactive waste from several radioactive facilities in the country. During the unload operations, protection and safety items are verified, such as the data written into the transport documents and the maximum levels of radiation on packages. The records show that almost all shipments of radioactive waste presented irregularities that varied from mistakes in fulfilling transport documents, up to the total disregard to the regulations. The shipments that could result in radiological risk to the operators of IPEN-CNEN/SP gave origin to reports that had been sent to the nuclear regulatory authority to take steps to prevent new occurrences and to enforce consignors and carriers. The adoption of this procedure in any type of occurrence, as well as its institutionalization in all radioactive waste management facilities of the nuclear regulatory authority could be an improvement against the errors observed in this type of transport. (author)

  2. Radioactive waste today - an asset tomorrow

    Holmstrand, M. [Norwegian Radiation Protection Authority (Norway)

    2014-07-01

    Mining of Rare Earth Elements (REE) causes radioactive pollution, as ores which contain REE also contain an elevated concentration of naturally occurring radioactive materials (NORM). Wastes from REE mining are therefore regarded as being inherently radioactive. One of the potential economically viable REE resources in Norway is in the Fensfield area in Telemark County, which is recognized as one of the world's largest thorium resources. If REE was mined in this area, a large volume of radioactive waste would be created. The authorities would then need to know how to regulate the waste so that the environmental impact would be as low as reasonably achievable when societal and economic factors having been accounted for (ALARA). Radioactive pollution from REE tailings could be a threat to the environment, biota and humans. However, naturally occurring thorium is practically not mobile nor bioavailable and has a relatively low specific activity and might therefore safely be deposited in a landfill. An environmental risk assessment should be used to evaluate if it is justifiable to deposit the radioactive tailings in a landfill or if alternative ways of handling, such as extraction of thorium in addition to extraction of REE from the ore, might be better. The risk assessment must start with a source term, the native carbonatite rocks, and an investigation on how the chemical properties of the rock changes when it's milled and treated with chemicals. Changes in the physical and chemical properties and changes in the environment where the processed rock are deposited might mobilize and/or make thorium bioavailable, thus increasing the environmental risk. Removal of thorium from the raw materials or tailings from the REE mining industry prior to deposition could be seen as one form of environmental protection with many benefits, for instance reducing the potential of external and internal radiation in biota and humans. We could also speculate about the

  3. Radioactive waste today - an asset tomorrow

    Mining of Rare Earth Elements (REE) causes radioactive pollution, as ores which contain REE also contain an elevated concentration of naturally occurring radioactive materials (NORM). Wastes from REE mining are therefore regarded as being inherently radioactive. One of the potential economically viable REE resources in Norway is in the Fensfield area in Telemark County, which is recognized as one of the world's largest thorium resources. If REE was mined in this area, a large volume of radioactive waste would be created. The authorities would then need to know how to regulate the waste so that the environmental impact would be as low as reasonably achievable when societal and economic factors having been accounted for (ALARA). Radioactive pollution from REE tailings could be a threat to the environment, biota and humans. However, naturally occurring thorium is practically not mobile nor bioavailable and has a relatively low specific activity and might therefore safely be deposited in a landfill. An environmental risk assessment should be used to evaluate if it is justifiable to deposit the radioactive tailings in a landfill or if alternative ways of handling, such as extraction of thorium in addition to extraction of REE from the ore, might be better. The risk assessment must start with a source term, the native carbonatite rocks, and an investigation on how the chemical properties of the rock changes when it's milled and treated with chemicals. Changes in the physical and chemical properties and changes in the environment where the processed rock are deposited might mobilize and/or make thorium bioavailable, thus increasing the environmental risk. Removal of thorium from the raw materials or tailings from the REE mining industry prior to deposition could be seen as one form of environmental protection with many benefits, for instance reducing the potential of external and internal radiation in biota and humans. We could also speculate about the possibility that

  4. Low level radioactive waste disposal

    The Mochovce National Radwaste Repository is a near surface multi-barrier disposal facility for disposal of processed low and very low level radioactive wastes (radwastes) resulting from the operation and decommissioning of nuclear facilities situated in the territory of the Slovak Republic and from research institutes, laboratories, hospitals and other institutions (institutional RAW) which are in compliance with the acceptance criteria. The basic safety requirement of the Repository is to avoid a radioactive release to the environment during its operation and institutional inspection. This commitment is covered by the protection barrier system. The method of solution designed and implemented at the Repository construction complies with the latest knowledge and practice of the repository developments all over the world and meets requirements for the safe radwaste disposal with minimum environmental consequences. All wastes are solidified and have to meet the acceptance criteria before disposal into the Repository. They are processed and treated at the Bohunice RAW Treatment Centre and Liquid RAW Final Treatment Facility at Mochovce. The disposal facility for low level radwastes consists of two double-rows of reinforced concrete vaults with total capacity 7 200 fibre reinforced concrete containers (FCCs) with RAW. One double-row contains 40 The operation of the Repository was started in year 2001 and after ten years, in 2011 was conducted the periodic assessment of nuclear safety with positive results. Till the end of year 2014 was disposed to the Repository 11 514 m3 RAW. The analysis of total RAW production from operation and decommissioning of all nuclear installation in SR, which has been carried out in frame of the BIDSF project C9.1, has showed that the total volume estimation of conditioned waste is 108 thousand m3 of which 45.5 % are low level waste (LLW) and 54,5 % very low level waste (VLLW). On the base of this fact there is the need to build 7.5 double

  5. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010

    West, B.; Waltz, R.

    2011-06-23

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.

  6. The Net Enabled Waste Management Database as an international source of radioactive waste management information

    The IAEA's Net Enabled Waste Management Database (NEWMDB) is an integral part of the IAEA's policies and strategy related to the collection and dissemination of information, both internal to the IAEA in support of its activities and external to the IAEA (publicly available). The paper highlights the NEWMDB's role in relation to the routine reporting of status and trends in radioactive waste management, in assessing the development and implementation of national systems for radioactive waste management, in support of a newly developed indicator of sustainable development for radioactive waste management, in support of reporting requirements for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, in support of IAEA activities related to the harmonization of waste management information at the national and international levels and in relation to the management of spent/disused sealed radioactive sources. (author)

  7. Method of processing radioactive wastes

    Purpose: After removing clads from radioactive wastes, to dry and pulverize the same thereby to reduce hazard of radiation exposure and to obtain a large volume reduction ratio. Method: Regenerated liquid wastes, sludges and spent ion-exchange resin slurries within the tanks are respectively introduced into separation tanks, and the regenerated liquid wastes are sent into a mixing tank after clads within the separation tanks have been precipitated and separated. The sludges are applied with a supersonic wave in the separation tanks, and thereafter are passed through an electromagnetic filter. Then, clads are removed from the sludges, and thereafter the sludges are sent into the mixing tank. The spent ion-exchange resin slurries are applied with a supersonic wave and stirred in the separation tanks, and sent into the mixing tank after the clads have been precipitated and separated. The mixture which has been prepared in the mixing tank is dried and pulverized by a centrifugal film drier, and mixed with burnt ashes discharged from a hopper. Then, the mixture is pelletized and asphalt-hardened. (Yoshino, Y.)

  8. Minimization and segregation of radioactive wastes

    The report will serve as one of a series of technical manuals providing reference material and direct know-how to staff in radioisotope user establishments and research centres in Member States without nuclear power and the associated range of complex waste management operations. Considerations are limited to the minimization and segregation of wastes, these being initial steps on which the efficiency of the whole waste management system depends. The minimization and segregation operations are examined in the context of the restricted quantities and predominantly shorter lived activities of wastes from nuclear research, production and usage of radioisotopes. Liquid and solid wastes only are considered in the report. Gaseous waste minimization and treatment are specialized subjects and are not examined in this document. Gaseous effluent treatment in facilities handling low and intermediate level radioactive materials has been already the subject of a detailed IAEA report. Management of spent sealed sources has specifically been covered in a previous manual. Conditioned sealed sources must be taken into account in segregation arrangements for interim storage and disposal where there are exceptional long lived highly radiotoxic isotopes, particularly radium or americium. These are unlikely ever to be suitable for shallow land burial along with the remaining wastes. 30 refs, 5 figs, 8 tabs

  9. Management of radioactive waste from nuclear applications

    Radioactive waste arises from the generation of nuclear energy and from the production of radioactive materials and their applications in industry, agriculture, research and medicine. The importance of safe management of radioactive waste for the protection of human health and the environment has long been recognized and considerable experience has been gained in this field. Technical expertise is a prerequisite for safe and cost-effective management of radioactive waste. A training course is considered an effective tool for providing technical expertise in various aspects of waste management. The IAEA, in co-operation with national authorities concerned with radioactive waste management, has organized and conducted a number of radioactive waste management training courses. The results of the courses conducted by the IAEA in 1991-1995 have been evaluated at consultants meetings held in December 1995 and May 1996. This guidance document for use by Member States in arranging national training courses on the management of low and intermediate level radioactive waste from nuclear applications has been prepared as the result of that effort. The report outlines the various requirements for the organization, conduct and evaluation of training courses in radioactive waste management and proposes an annotated outline of a reference training course

  10. DOE reassesses civilian radioactive waste management program

    This article reports on the announcement by the Department of Energy (DOE) that the opening of a high-level radioactive nuclear waste repository site will be delayed for seven years. The article discusses DOE's reassessment plan, the restructuring of the Office of Civilian Radioactive Waste Management, site access and evaluation, the Monitored Retrievable Storage Commission proposal, and the industry's response

  11. The computerized follow up of radioactive wastes

    After a short introduction about the goals and missions of the Andra, the French agency for the management of radioactive wastes, this educational booklet describes the principle and the different steps of the computerized follow up of radioactive waste containers: labelling, identification file, control, follow up during transport, compacting and storage. (J.S.)

  12. Probabilistic safety assessment in radioactive waste disposal

    Probabilistic safety assessment codes are now widely used in radioactive waste disposal assessments. This report gives an overview of the current state of the field. The relationship between the codes and the regulations covering radioactive waste disposal is discussed and the characteristics of current codes is described. The problems of verification and validation are considered. (author)

  13. Geomechanics of clays for radioactive waste disposal

    Clay formations have been studied for many years in the European Community as potential disposal media for radioactive waste. This document brings together results of on-going research about the geomechanical behaviour of natural clay bodies, at normal and elevated temperatures. The work is carried out within the third Community R and D programme on Management and storage of radioactive waste

  14. The conditioning of radioactive waste by bitumen

    The separation of radioactive sludge and waste by bitumen is studied. Results are given concerning various trials carried out on the lixiviation of the final product by water as a function of the pH, of the time, and of the composition. The conditions for carrying out this process of coating the waste are controlled from a radioactive point of view. (author)

  15. Repository for radioactive waste from petroleum operations

    In March 2008, the Norwegian Radiation Protection Authority (NRPA) gave the first authorisation to a new repository for radioactive waste from the petroleum industry on the Norwegian continental shelf. The authorisation is for four years initially. The repository will be the final storage destination for radioactive waste which contains enhanced levels of naturally occurring radioactive substances from petroleum extraction operations. Thus, it gives a safe and final storage facility for radioactive waste temporarily stored in facilities along the Norwegian coast. The repository is the first of its kind in Norway and is situated at Stangeneset Industrial Site in Gulen, Sogn og Fjordane County

  16. Management of radioactive waste in Israel

    Radioactive materials are used extensively in Israel in labelled chemicals in hospitals, research laboratories, industrial and agricultural premises and for environmental studies. A by products of many of these methods is radioactive waste (RW). The responsible authority for RW management in Israel is the Chief Radiation Executive (CRE). Each RW producing institute in Israel has to acquire a license for its operation. This license limits the amount to radioactive materials purchased by the institute and approves the nomination of a radiation officer. Radiation waste disposal services are offered by the IAEC's Nuclear Research Center-Negev (NRCN) which operates and monitors a National Radioactive Waste Disposal Site (NRWDS). 2 figs, 4 tabs

  17. Radioactive waste treatment technology at Czech nuclear power plants

    This presentation describes the main technologies for the treatment and conditioning of radioactive wastes at Czech nuclear power plants. The main technologies are bituminisation for liquid radioactive wastes and supercompaction for solid radioactive wastes. (author)

  18. Establishment of Radioactive Waste Running Safely in Whole Year

    2008-01-01

    <正>In 2008, the radioactive wastes treatment and operation center received about 90 m3 of radioactiveliquid waste, about 30 m3 of radioactive solid waste, and about 160 million m3 of treated radioactive

  19. Management of radioactive wastes of iodine therapy

    The main objective of waste radioactive management is to ensure the protection of man and the preservation of the environment. The regulation that established the basis for the good radioactive waste management was elaborated by the Comissao Nacional de Energia Nuclear (CNEN), in 1985. It is the CNEN-NE-6:05: 'Management radioactive waste in radioactive facilities', which although it an important standard related to radioactive waste management and help largely in the design of a management system in radioactive facilities of radioisotope users, covers the topics in a general way and does not consider individuals aspects of the different plants, as is the case of nuclear medicine units. The main objective of this study is to show the segregation and safe packaging, avoiding unnecessary exposure of professionals involved and public individuals in general

  20. Measurement of radioactive contaminated wastes

    At Los Alamos, a comprehensive program is underway for the development of sensitive, practical, nondestructive assay techniques for the quantification of low-level transuranics in bulk solid wastes. The program encompasses a broad range of techniques, including sophisticated active and passive gamma-ray spectroscopy, passive neutron detection systems, pulsed portable neutron generator interrogation systems, and electron accelerator-based techniques. The techniques can be used with either low-level or high-level beta-gamma wastes in either low-density or high-density matrices. The techniques are quite sensitive (< 10 nCi/g detection) and, in many cases, isotopic specific. Waste packages range in size from small cardboard boxes to large metal or wooden crates. Considerable effort is being expended on waste matrix identification to improve assay accuracy

  1. Technology applications for radioactive waste minimization

    The nuclear power industry has achieved one of the most successful examples of waste minimization. The annual volume of low-level radioactive waste shipped for disposal per reactor has decreased to approximately one-fifth the volume about a decade ago. In addition, the curie content of the total waste shipped for disposal has decreased. This paper will discuss the regulatory drivers and economic factors for waste minimization and describe the application of technologies for achieving waste minimization for low-level radioactive waste with examples from the nuclear power industry

  2. LLNL radioactive waste management plan as per DOE Order 5820. 2

    1984-12-10

    The following aspects of LLNL's radioactive waste management plan are discussed: program administration; description of waste generating processes; radioactive waste collection, treatment, and disposal; sanitary waste management; site 300 operations; schedules and major milestones for waste management activities; and environmental monitoring programs (sampling and analysis).

  3. LLNL radioactive waste management plan as per DOE Order 5820.2

    The following aspects of LLNL's radioactive waste management plan are discussed: program administration; description of waste generating processes; radioactive waste collection, treatment, and disposal; sanitary waste management; site 300 operations; schedules and major milestones for waste management activities; and environmental monitoring programs (sampling and analysis)

  4. Radioactive waste management and clearance of accelerator waste at CERN

    The European Organization for Nuclear Research (CERN, Geneva, CH) has been operating accelerators for high-energy physics for more than 50 years. The interactions of the accelerated particles (for example protons up to 450 GeV and soon up to 7 TeV) and their secondaries with matter in various nuclear processes lead to the activation of accelerator components and other material. The resulting range of radionuclides depends on the irradiation history and the composition of the material. If accelerator components come to the end of their operational lifetime they will be disposed of as waste. This waste requires radiological characterization in order to be either declared as radioactive waste or, if appropriate, to be cleared and released. Different methods for the evaluation of the radionuclide inventory of activated components are currently under investigation at CERN. Due to its international status, CERN defines and applies its own set of regulations for operational radiation protection, which are comparable, but not necessarily identical, to those of the two CERN Host States: France and Switzerland. In the context of radioactive waste management in general - and of clearance in particular - however, CERN has to take account of host regulations. The differences between the French and Swiss regulations have a practical impact on the procedures to be applied at CERN. This paper provides a description of operational radioactive waste management at CERN, with focus on the methods for the radiological characterisation of the waste. Examples of the application of 'clearance' and a comparison between the Swiss and the French regulations in this field are provided. (author)

  5. Modelling gas generation in radioactive waste repositories

    In a repository containing low- and intermediate-level waste, gas generation will occur principally by the coupled processes of metal corrosion and microbial degradation of cellulosic waste. This Paper describes a mathematical model design to address gas generation by these mechanisms. The metal corrosion model incorporates a three-stage process encompassing both aerobic and anaerobic corrosion regimes; the microbial degradation model simulates the activities of eight different microbial populations, which are maintained as functions both of pH and of the concentrations of particular chemical species. Gas concentrations have been measured over a period of three years in large-scale drum experiments designed to simulate repository conditions. Model predictions are confirmed against the experimental measurements, and a prediction is then made of gas concentrations and generation rates over an assessment period of one million years in a radioactive waste repository. (author)

  6. Modelling gas generation in radioactive waste repositories

    In a repository containing low- and intermediate-level waste, gas generation will occur principally by the coupled processes of metal corrosion and microbial degradation of cellulosic waste. This paper describes a mathematical model designed to address gas generation by these mechanisms. The metal corrosion model incorporates a three-stage process encompassing both aerobic and anaerobic corrosion regimes; the microbial degradation model simulates the activities of eight different microbial populations, which are maintained as functions both of pH and of the concentrations of particular chemical species. Gas concentrations have been measured over a period of three years in large-scale drum experiments designed to simulate repository conditions. Model predictions are confirmed against the experimental measurements, and a prediction is then made of gas concentrations and generation rates over an assessment period of one million years in a radioactive waste repository. (Author)

  7. Treatment, as radio-active waste, of large pieces of ∝-contaminated apparatus (1962)

    Two solutions have been adopted: - removal of the material from its original container, treatment in a special container; - treatment of the material directly inside its original protective packing. The treatment of a fluorination oven illustrates the second process. After a thorough cleaning of the enclosure, the oven is fixed in and the contamination held in place by a varnish. The assembly is placed in a special container and covered with shaken-down concrete. The container is shut by means of a welded cover. The operations are carried out under reduced pressure. At the end of this process it is impossible to detect any residual radioactivity. (authors)

  8. CAN WE CONSIDER WASTES GENERATED DURING RADIOIMMUNOASSAYS AS A RADIOACTIVE WASTE?

    V. V. Shapilov

    2010-01-01

    Full Text Available The work presents issues of the radiation protection provision for the management of radioactive waste produced by the radioimmunological analysis with the use of 125I marker, calculated and experimental data on radioactive waste specific activities are analyzed.

  9. Storage facility for radioactive wastes

    Canisters containing high level radioactive wastes are sealed in overpacks in a receiving building constructed on the ground. A plurality of storage pits are formed in a layered manner vertically in multi-stages in deep underground just beneath the receiving building, for example underground of about 1000m from the ground surface. Each of the storage pits is in communication with a shaft which vertically communicates the receiving building and the storage pits, and is extended plainly in a horizontal direction from the shaft. The storage pit comprises an overpack receiving chamber, a main gallery and a plurality of galleries. A plurality of holes for burying the overpacks are formed on the bottom of the galleries in the longitudinal direction of the galleries. A plurality of overpack-positioning devices which run in the main gallery and the galleries by remote operation are disposed in the main gallery and the galleries. (I.N.)

  10. Storage facility for radioactive waste

    An ion stream is formed at the surface of a metal container tube for containing radioactive wastes to promote heat transfer. That is, radiation energy is converted into an electric voltage by using photovoltaic elements which produce voltage by irradiation of radiation rays. Ion blows are caused by a corona discharge without relying on an external electric power source, to cause small air fluctuations. Since this air is an uprising air stream by convection, it moves upwardly and intersects electrode wires where they are laid along other directions and undergo stirring. Heat transfer by air convection between the surface of the metal container tube and the cooling air can be improved while keeping safety due to natural convection. (T.M.)

  11. Radioactive wastes. Management prospects. Appendixes

    These appendixes complete the article BN3661 entitled 'Radioactive wastes. Management prospects'. They develop the principles of the different separation processes under study and make a status of the conditioning matrices that are envisaged: 1 - principles of advanced separation (separation of U, Np, Pu, Tc and I; separation of Am and Cm in two extraction steps (Diamex and Sanex processes); separation of Am and Cm in a single extraction step (Paladin process); separation of Am and Cm (Sesame process); separation of Cs (Calixarene process); 2 - principles of separation in pyro-chemistry: separation under inert atmosphere (non-oxidizing); separation in oxidizing conditions; 3 - conditioning matrices under study for separate elements: objectives and methodology, matrices for iodine, for cesium and for actinides. (J.S.)

  12. Process of disposing radioactive washed waste

    Object: To use a surface active agent, which produces no bubble when vaporized and concentrated, as a cleaning material, to effect processes of vaporization and concentration without removing the surface active agent from the cleaned waste. Structure: A cleaning agent containing 10 - 30% of a non-ion surface active agent comprising a combination of polyethylene-alkyl-ether and polyethylene-alkyl-phenylether in a ratio of 1 to 1, 0 - 30% of chelate, 1% of re-adhesion prohibitor (CMC), and 1 - 5% of emulsion stabilizer is used to wash a radioactive contamination, an anti-foaming agent in a small amount is added to the washed waste only when in start to directly vaporize and concentrate the same, after which it is heated and dried and thereafter, it is decomposed at a temperature less than 4000C for treatment of reduction in volume. (Kawakami, Y.)

  13. Liquid Radioactive Wastes Treatment: A Review

    Yung-Tse Hung

    2011-05-01

    Full Text Available Radioactive wastes are generated during nuclear fuel cycle operation, production and application of radioisotope in medicine, industry, research, and agriculture, and as a byproduct of natural resource exploitation, which includes mining and processing of ores, combustion of fossil fuels, or production of natural gas and oil. To ensure the protection of human health and the environment from the hazard of these wastes, a planned integrated radioactive waste management practice should be applied. This work is directed to review recent published researches that are concerned with testing and application of different treatment options as a part of the integrated radioactive waste management practice. The main aim from this work is to highlight the scientific community interest in important problems that affect different treatment processes. This review is divided into the following sections: advances in conventional treatment of aqueous radioactive wastes, advances in conventional treatment of organic liquid wastes, and emerged technological options.

  14. A review of Cmnd 884. The control of radioactive wastes

    The report is in sections, as follows: changes since 1959; radiological protection and the objectives of radioactive waste management; legislation and administrative responsibilities relating to radioactive waste management; the production of radioactive waste and current waste management practice; review of existing disposal practice; future developments in radioactive waste management; recommendations and summary of main conclusions (underlying considerations and objectives for radioactive waste management; changes since Cmnd 884; categories and quantities of waste; disposal practices (low level solid wastes; Drigg; sea dumping; discharges to atmosphere; low level liquid wastes); general; storage and waste management practices; future developments (high level waste; plutonium contaminated material; intermediate level wastes; Nuclear Waste Disposal Corporation)); appendices. (U.K.)

  15. Pump Jet Mixing and Pipeline Transfer Assessment for High-Activity Radioactive Wastes in Hanford Tank 241-AZ-102

    Y Onishi; KP Recknagle; BE Wells

    2000-08-09

    The authors evaluated how well two 300-hp mixer pumps would mix solid and liquid radioactive wastes stored in Hanford double-shell Tank 241-AZ-102 (AZ-102) and confirmed the adequacy of a three-inch (7.6-cm) pipeline system to transfer the resulting mixed waste slurry to the AP Tank Farm and a planned waste treatment (vitrification) plant on the Hanford Site. Tank AZ-102 contains 854,000 gallons (3,230 m{sup 3}) of supernatant liquid and 95,000 gallons (360 m{sup 3}) of sludge made up of aging waste (or neutralized current acid waste). The study comprises three assessments: waste chemistry, pump jet mixing, and pipeline transfer. The waste chemical modeling assessment indicates that the sludge, consisting of the solids and interstitial solution, and the supernatant liquid are basically in an equilibrium condition. Thus, pump jet mixing would not cause much solids precipitation and dissolution, only 1.5% or less of the total AZ-102 sludge. The pump jet mixing modeling indicates that two 300-hp mixer pumps would mobilize up to about 23 ft (7.0 m) of the sludge nearest the pump but would not erode the waste within seven inches (0.18 m) of the tank bottom. This results in about half of the sludge being uniformly mixed in the tank and the other half being unmixed (not eroded) at the tank bottom.

  16. Shallow land disposal of radioactive waste

    The application of basic radiation protection concepts and objectives to the disposal of radioactive wastes requires the development of specific reference levels or criteria for the radiological acceptance of each type of waste in each disposal option. This report suggests a methodology for the establishment of acceptance criteria for the disposal of low-level radioactive waste containing long-lived radionuclides in shallow land burial facilities

  17. Management of radioactive waste nuclear power plants

    The authors give a survey of the sources, types and amounts of radioactive waste in LWR nuclear power stations (1,300 MWe). The amount of solid waste produced by a Novovorenezh-type PWR reactor (2 x 400 resp. 1 x 1,000 MWe) is given in a table. Treatment, solidification and final storage of radioactive waste are shortly discussed with special reference to the problems of final storage in the CSR. (HR)

  18. Liquid Radioactive Wastes Treatment: A Review

    Yung-Tse Hung; R. O. Abdel Rahman; Ibrahium, H.A.

    2011-01-01

    Radioactive wastes are generated during nuclear fuel cycle operation, production and application of radioisotope in medicine, industry, research, and agriculture, and as a byproduct of natural resource exploitation, which includes mining and processing of ores, combustion of fossil fuels, or production of natural gas and oil. To ensure the protection of human health and the environment from the hazard of these wastes, a planned integrated radioactive waste management practice should be applie...

  19. Cements in Radioactive Waste Disposal

    The use of cement and concrete to immobilise radioactive waste is complicated by the wide- ranging nature of inorganic cementing agents available as well as the range of service environments in which cement is used and the different functions expected of cement. For example, Portland cement based concretes are widely used as structural materials for construction of vaults and tunnels. These constructions may experience a long pre-closure performance lifetime during which they are required to protect against collapse and ingress of water: strength and impermeability are key desirable characteristics. On the other hand, cement and concrete may be used to form backfills, ranging in permeability. Permeable formulations allow gas readily to escape, while impermeable barriers retard radionuclide transport and reduce access of ground water to the waste. A key feature of cements is that, while fresh, they pass through a fluid phase and can be formed into any shape desired or used to infiltrate other materials thereby enclosing them into a sealed matrix. Thereafter, setting and hardening is automatic and irreversible. Where concrete is used to form structural elements, it is also natural to use cement in other applications as it minimises potential for materials incompatibility. Thus cement- mainly Portland cement- has been widely used as an encapsulant for storage, transport and as a radiation shield for active wastes. Also, to form and stabilise structures such as vaults and silos. Relative to other potential matrices, cement also has a chemical immobilisation potential, reacting with and binding with many radionuclides. The chemical potential of cements is essentially sacrificial, thus limiting their performance lifetime. However performance may also be required in the civil engineering sense, where strength is important, so many factors, including a geochemical description of service conditions, may require to be assessed in order to predict performance lifetime. The

  20. Glasses and ceramics for immobilisation of radioactive wastes for disposal

    The U.K. Research Programme on Radioactive Waste Management includes the development of processes for the conversion of high level liquid reprocessing wastes from thermal and fast reactors to borosilicate glasses. The properties of these glasses and their behaviour under storage and disposal conditions have been examined. Methods for immobilising activity from other wastes by conversion to glass or ceramic forms is described. The U.K. philosophy of final solutions to waste management and disposal is presented. (author)

  1. Regional activity on safe management of radioactive waste under the framework of the Forum for Nuclear Co-operation in Asia (FNCA)

    Nine Asian countries including Australia are participating in various projects among 8 fields under the framework of FNCA. Radioactive Waste Management (RWM) project is one of these projects. Annual workshop provides to member states a good and informative platform for enhancing improvement of good and safe management of radioactive waste. Through the past activities, this project published three reports, namely 'RWM Consolidated Report', 'SRSM Activity Report', and 'Activity Report of TENORM Task Group'. RWM Newsletters are published twice a year, and provide a good information and communication among member states, too. Further, an internet communication through FNCA web-site is a good tool for mutual understanding and sends messages not only to FNCA RWM colleagues, but also to other international organizations. (author)

  2. Process for treatment of detergent-containing radioactive liquid wastes

    A detergent-containing radioactive liquid waste originating from atomic power plants is concentrated to have about 10 wt. % detergent concentration, then dried in a thin film evaporator, and converted into powder. Powdered activated carbon is added to the radioactive waste in advance to prevent the liquid waste from foaming in the evaporator by the action of surface active agents contained in the detergent. The activated carbon is added in accordance with the COD concentration of the radioactive liquid waste to be treated, and usually at a concentration 2-4 times as large as the COD concentration of the liquid waste to be treated. A powdery product having a moisture content of not more than 15 wt. % is obtained from the evaporator, and pelletized and then packed into drums to be stored for a predetermined period

  3. Radioactive wastes and spent fuels management in Argentina

    CNEA was created in 1950 and since then has carried out research and development activities, production of radioisotopes, medical and industrial applications, and those activities related with the nuclear fuel cycle, including the operation of two nuclear power stations. More ever, different public and private institutions use radioactive materials in medical, industrial and research activities. These activities generate different types of radioactive waste, desuse sealed sources and spent fuel. The management of radioactive waste of all types produced in the country, as the spent nuclear fuel of power and research reactors and the used radioactive sources was always and it is at present a CNEA's responsibility. In February 2003, according to the Law No. 25.018, called 'Management of Radioactive Waste Regimen', the 'Radioactive Waste Management National Programme' was created by CNEA to fulfill the institutional functions and responsibilities established in the Law, in order to guarantee the safe management of radioactive waste according to the regulations established by the Argentine Nuclear Regulatory Agency and to the legislation in force. (author)

  4. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation

  5. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste

  6. BN-350 decommissioning problems of radioactive waste management

    Pursuant of modern concept on radioactive waste management applied in IAEA Member States all radioactive wastes produced during the BN-350 operation and decommissioning are subject to processing in order to be transformed to a form suitable for long-term storage and final disposal. The first two priority objectives for BN-350 reactor are as follows: cesium cleaning from sodium followed by sodium drain, and processing; processing of liquid and solid radioactive waste accumulated during BN-350 operation. Cesium cleaning from sodium and sodium processing to NaOH will be implemented under USA engineering and financial support. However the outputted product might be only subject to temporary storage under special conditions. Currently the problem is being solved on selection of technology for sodium hydroxide conversion to final product incorporated into cement-like matrix ready for disposal pursuant to existing regulatory requirements. Industrial installation is being designed for liquid radioactive waste processing followed by incorporation to cement matrix subject to further disposal. The next general objective is management of radioactive waste expected from BN-350 decommissioning procedure. Complex of engineering-radiation investigation that is being conducted at BN-350 site will provide estimation of solid and liquid radioactive waste that will be produced during the course of the BN-350 decommission. Radioactive wastes that will be produced may be shared for primary (metal structures of both reactor and reactor plant main and auxiliary systems equipment as well as construction wastes of dismantled biological protection, buildings and structures) and secondary (deactivation solutions, tools, materials, cloth, special accessory, etc.). Processing of produced radioactive wastes (including high activity waste) requires the use of special industrial facilities and construction of special buildings and structures for arrangement of facilities mentioned as well as for

  7. The Swedish programme for radioactive waste management

    The following systems and facilities are currently in operation and under implementation: a sea transportation system for all kinds of nuclear waste, a central facility for interim storage of spent fuel (CLAB) and a central underground repository for final disposal of low and medium level reactor waste (SFR). For the remaining steps - final disposal of highly active and longlived radioactive residues - a concept, based on encapsulation of the fuel elements in copper canisters and final storage of the canisters in a repository situated 500 m down in crystalline rock (KBS-3), has been developed and approved by the government in accordance with the Swedish nuclear legislation. Although a feasible method for final disposal of the highly active residues has been shown, the Swedish legislation requires that research be carried out to reach the best possible base for the final decision around the year 2000. In parallel with this a geological investigation programme is carried out to find a suitable site for a final repository. The final site selection is foreseen at the end of the 1990's. All costs for the management of radioactive waste from the nuclear power plants are carried by a fee determined annually. The fee is 0.019 SEK/kWh for 1986

  8. Technical evaluation of proposed Ukrainian Central Radioactive Waste Processing Facility

    This technical report is a comprehensive evaluation of the proposal by the Ukrainian State Committee on Nuclear Power Utilization to create a central facility for radioactive waste (not spent fuel) processing. The central facility is intended to process liquid and solid radioactive wastes generated from all of the Ukrainian nuclear power plants and the waste generated as a result of Chernobyl 1, 2 and 3 decommissioning efforts. In addition, this report provides general information on the quantity and total activity of radioactive waste in the 30-km Zone and the Sarcophagus from the Chernobyl accident. Processing options are described that may ultimately be used in the long-term disposal of selected 30-km Zone and Sarcophagus wastes. A detailed report on the issues concerning the construction of a Ukrainian Central Radioactive Waste Processing Facility (CRWPF) from the Ukrainian Scientific Research and Design institute for Industrial Technology was obtained and incorporated into this report. This report outlines various processing options, their associated costs and construction schedules, which can be applied to solving the operating and decommissioning radioactive waste management problems in Ukraine. The costs and schedules are best estimates based upon the most current US industry practice and vendor information. This report focuses primarily on the handling and processing of what is defined in the US as low-level radioactive wastes

  9. Radioactive waste management: a utility view

    The management of radioactive waste continues to be a matter of public concern and discussion. There is broad agreement among members of the technical community that the various types of waste radioactive species can be managed without jeopardizing public health and safety. Despite this consensus, one of the major reasons cited by opponents of commercial nuclear power for their opposition is the lack of a fully deployed waste management program. Such a program has been suggested but implementation is not yet complete. It is essential that a program be undertaken so as to dispel the impression that past inaction on waste disposal represents an inability to deal safely with wastes

  10. Infrastructure and strategy for radioactive waste management for non-nuclear applications in Zambia

    Generation of radioactive waste in Zambia is limited by application of radioisotopes in medicine and research, and by use of sealed radioactive sources in industry, agriculture and at health care facilities. Use of radioactive materials and management of associated wastes are governed by National Ionising Radiation Act. Totally more then 100 institutions in the country are using different radioactive materials and consequently are dealing with radioactive waste. Responsibility for managing these wastes rested with organisations and institutions producing radioactive waste, with the supervision of this activity by National Radiation Service (RPS). (author)

  11. Future radioactive liquid waste streams study

    Rey, A.S.

    1993-11-01

    This study provides design planning information for the Radioactive Liquid Waste Treatment Facility (RLWTF). Predictions of estimated quantities of Radioactive Liquid Waste (RLW) and radioactivity levels of RLW to be generated are provided. This information will help assure that the new treatment facility is designed with the capacity to treat generated RLW during the years of operation. The proposed startup date for the RLWTF is estimated to be between 2002 and 2005, and the life span of the facility is estimated to be 40 years. The policies and requirements driving the replacement of the current RLW treatment facility are reviewed. Historical and current status of RLW generation at Los Alamos National Laboratory are provided. Laboratory Managers were interviewed to obtain their insights into future RLW activities at Los Alamos that might affect the amount of RLW generated at the Lab. Interviews, trends, and investigation data are analyzed and used to create scenarios. These scenarios form the basis for the predictions of future RLW generation and the level of RLW treatment capacity which will be needed at LANL.

  12. Future radioactive liquid waste streams study

    This study provides design planning information for the Radioactive Liquid Waste Treatment Facility (RLWTF). Predictions of estimated quantities of Radioactive Liquid Waste (RLW) and radioactivity levels of RLW to be generated are provided. This information will help assure that the new treatment facility is designed with the capacity to treat generated RLW during the years of operation. The proposed startup date for the RLWTF is estimated to be between 2002 and 2005, and the life span of the facility is estimated to be 40 years. The policies and requirements driving the replacement of the current RLW treatment facility are reviewed. Historical and current status of RLW generation at Los Alamos National Laboratory are provided. Laboratory Managers were interviewed to obtain their insights into future RLW activities at Los Alamos that might affect the amount of RLW generated at the Lab. Interviews, trends, and investigation data are analyzed and used to create scenarios. These scenarios form the basis for the predictions of future RLW generation and the level of RLW treatment capacity which will be needed at LANL

  13. Safety in long term radioactive waste management : insight and oversight

    Schröder, Jantine; Rossignol, Nicolas; Van Oudheusden, Michiel

    2016-01-01

    Abstract: High-level, long-lived radioactive waste remains hazardous for periods that go well beyond our human conception of time (many thousands of years). Because active safety measures are considered unreliable, unjustifiable and simply impossible over such long time spans, experts worldwide recommend geological disposal as the preferred strategy for long-term radioactive waste management, to a large extent due to its promise of delivering 'passive safety'. Passive safety refers to the rep...

  14. Present status of radioactive waste management

    Summarized are the present knowledge in the field of radioactive waste handling, an outlook into the further development, the generally adopted technological requirements placed on a safe radioactive waste handling and the handling practice in selected countries, viz. in Argentina, Belgium, Canada, China, CIS, Finland, France, Germany, India, Italy, Japan, Korea, the Netherlands, Poland, Spain, Sweden, Switzerland, Taiwan, the UK and the USA. The data reported for these countries include the scope of their nuclear programme, the legal and organizational basis, nature and volumes of wastes, and the national conceptions for their disposal. The majority of data were derived from OECD/NEA information documents. An overview of three major international programmes which include radioactive waste problems is also presented; these are managed by the IAEA, NEA/OECD and CEC. Problems associated with the handling of radioactive wastes arising from the fuel cycle are briefly outlined. (Z.S.). 1 tab., 2 figs., 3 refs

  15. Virginia's experiences in siting radioactive waste facilities

    The Virginia public participation program was developed in conjunction with the 1982 siting study for disposal of low-level radioactive waste. The announcement of sixteen counties within the Piedmont Plateau area as the candidate region coincided with the Christmas holidays and was little noticed by the public. Attendance increased as siting activities progressed. The Virginia experience identified several key points to incorporate into the public participation program: identify the public to be solicited; define the level of commitment, both personnel and budget; identify budget constraints; and understand the legal requirements

  16. Management of radioactive materials and wastes: status, stakes and perspectives

    These technical days were organized by the Environment section of the French Society of Radiation Protection (SFRP). Time was given to some exchange about the societal aspects of radioactive waste management as well as about the legal context but the most part of the debates delt with the actual management modalities of the different types of wastes, both in France and in foreign countries, and with the related stakes, in particular in terms of impact. This document brings together the presentations (slides) of the following talks: - Contributions of radiation protection to the long-term safety management of radioactive wastes (Jean-Paul MINON - ONDRAF); - The national inventory of radioactive materials and wastes (Arnaud LECLAIRE - ANDRA); - The high activity, medium activity-long living wastes in debate - a co-building approach (ANCCLI/Clis of Bure/IRSN) to share stakes, enlighten, and develop thought (Ludivine GILLI - IRSN, Yves LHEUREUX - ANCCLI); - Social aspects of Radioactive Waste Management - The International Learning (Claudio PESCATORE - AEN/OCDE); - Citizens involvement and ACRO's point of view on radioactive wastes management (Pierre BARBEY - ACRO); - New CIPR recommendations about the geologic disposal of long-living radioactive wastes (Thierry SCHNEIDER - CEPN); - Overview of processes under the views of radiation protection principles (Didier GAY - IRSN); - The national plan of radioactive materials and wastes management (Loic TANGUY - ASN); - Joint convention on spent fuel management safety and on radioactive waste management safety - status and main stakes (Isabelle FOREST - ASN); - Transport of radioactive wastes (Bruno DESNOYERS - AREVA); - Optimisation and limitation of the environmental impacts of very-low level wastes - valorisation and processes selection (Michel PIERACCINI - EDF), Philippe PONCET - AREVA); - Management of hospital wastes - Example of Montpellier's University Regional Hospital (Bertille SEGUIN - CHRU de Montpellier); - Waste

  17. Spent fuel and radioactive waste inventories, projections, and characteristics

    Current inventories and characteristics of commercial spent fuels and both commercial and US Department of Energy (DOE) radioactive wastes were compiled through December 31, 1983, based on the most reliable information available from government sources and the open literature, technical reports, and direct contacts. Future waste and spent fuel to be generated over the next 37 years and characteristics of these materials are also presented, consistent with the latest DOE/Energy Information Administration (EIA) or projection of US commercial nuclear power growth and expected defense-related and private industrial and institutional activities. Materials considered, on a chapter-by-chapter basis, are: spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, airborne waste, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated, based on reported or calculated isotopic compositions. 48 figures, 107 tables

  18. Survey on non-nuclear radioactive waste

    On request from the Swedish Radiation Protection Authority, the Swedish government has in May 2002 set up a non-standing committee for non-nuclear radioactive waste. The objective was to elaborate proposals for a national system for the management of all types of non-nuclear radioactive wastes with special consideration of inter alia the polluter pays principle and the responsibility of the producers. The committee will deliver its proposals to the government 1 December 2003. SSI has assisted the committee to the necessary extent to fulfill the investigation. This report is a summery of SSI's background material concerning non-nuclear radioactive waste in Sweden

  19. Radioactive waste management in member states

    The objective of this part of the report is to present a brief overview of key issues in radioactive waste management on a nation-by-nation basis. Member State representatives were asked to address nine questions in no more than three or four pages. Hence, by design, the presentations are not comprehensive. Even so, the information set out here should provide the reader valuable insights into the nature of problems associated with radioactive waste management. The materials may also be used as a ready reference for specific information about radioactive waste management in individual Member States as well as for comparative purposes. (author)

  20. Offgas treatment for radioactive waste incinerators

    Incineration of radioactive materials for resource recovery or waste volume reduction is recognized as an effective waste treatment method that will increase in usage and importance throughout the nuclear industry. The offgas cleanup subsystem of an incineration process is essential to ensure radionuclide containment and protection of the environment. Several incineration processes and associated offgas cleanup systems are discussed along with potential application of commercial pollution control components to radioactive service. Problems common to radioactive waste incinerator offgas service are identified and areas of needed research and development effort are noted

  1. Radioactive waste management in member states

    NONE

    1995-12-31

    The objective of this part of the report is to present a brief overview of key issues in radioactive waste management on a nation-by-nation basis. Member State representatives were asked to address nine questions in no more than three or four pages. Hence, by design, the presentations are not comprehensive. Even so, the information set out here should provide the reader valuable insights into the nature of problems associated with radioactive waste management. The materials may also be used as a ready reference for specific information about radioactive waste management in individual Member States as well as for comparative purposes. (author).

  2. Prompt-gamma neutron activation analysis for the non-destructive characterization of radioactive wastes; Prompt-Gamma-Neutronen-Aktivierungs-Analyse zur zerstoerungsfreien Charakterisierung radioaktiver Abfaelle

    Kettler, John Paul Hermann

    2010-07-01

    In Germany, stringent official regulations govern the handling and final storage of radioactive waste. For this reason, the Federal Government has opted for final storage of radioactive waste with negligible heat generation in deep geological formations. At present the Konrad mine in Salzgitter will be rebuilt as a final disposal, the start of operation is scheduled for 2014. Radioactive waste with negligible heat generation originates from the operation and decommissioning of nuclear power plants, the medical sector or from research establishments. The requirements of the planning approval decision to build up the disposal Konrad, published on the 22{sup nd} of May 2002, obligate the waste producer to consider the limits for chemotoxic substances and to document the waste content. Before the radioactive waste can be stored in the final disposal, it is necessary to characterize the waste composition, relating to the concentration of water polluting substances. In particular for the wastes produced in the year before 1990, the so-called old wastes, there is a lack of documentation. The chemotoxicity of old wastes can mostly only characterized by time consuming and destructive methods. Furthermore these methods produce high costs, which depend on the arrangements to avoid contamination, to comply with the radiation protection and for the conditioning of the wastes. A prototype system, based on the Prompt-Gamma-Neutron-Activation-Analysis (PGNAA) with 14 MeV neutrons, has been developed in this work. This system allows the characterization of large samples, like 25 and 50 l drums. The signature of the element composition is in this processed by gamma-ray spectroscopy. This work was focused, in addition to the feasibility of the system, to the neutron and photon transport in large samples. Therefore the neutron and photon self-absorption in dependence of the sample composition were the main part of interest. Computer simulations (MCNP) and experiments were performed to

  3. Development of characterization protocol for mixed liquid radioactive waste classification

    Mixed liquid organic waste generated from health-care and research activities containing tritium, carbon-14, and other radionuclides posed specific challenges in its management. Often, these wastes become legacy waste in many nuclear facilities and being considered as ‘problematic’ waste. One of the most important recommendations made by IAEA is to perform multistage processes aiming at declassification of the waste. At this moment, approximately 3000 bottles of mixed liquid waste, with estimated volume of 6000 litres are currently stored at the National Radioactive Waste Management Centre, Malaysia and some have been stored for more than 25 years. The aim of this study is to develop a characterization protocol towards reclassification of these wastes. The characterization protocol entails waste identification, waste screening and segregation, and analytical radionuclides profiling using various analytical procedures including gross alpha/ gross beta, gamma spectrometry, and LSC method. The results obtained from the characterization protocol are used to establish criteria for speedy classification of the waste

  4. Treatment of conventional and low-activity-radioactive wastes by advanced oxidation technologies

    In this work, a low-cost, bench-scale photo reactor, which allows the almost complete mineralization, in reasonable irradiation times, of chemical components of decontamination and cleaning mixtures of nuclear power plants, has been designed and built. With this system, EDTA and oxalic acid model solutions, at concentrations and p H analogous to those of the decontamination process, have been treated. In addition, photo-Fenton experiments have been performed, i.e., irradiation at the same wavelength, in the absence of TiO2 and with addition of Fe(II)+H2O2. In the case of EDTA, the photo-Fenton process (UV/H2O2/Fe2+) was more efficient than the photo catalytic one, but it required a higher amount of H2O2. In the case of oxalic acid, addition of Fe(III) and H2O2 improved also the heterogeneous photo catalysis, although the presence of H2O2 seems to be less important in this system. It was concluded that it would be possible to choose between two alternative treatments for liquid wastes of nuclear power plants: a) homogeneous photo-Fenton and b) heterogeneous photo catalysis. The election depends on the compromise between the degradation efficiency and the adequate industrial safety. (author)

  5. Quality checking of radioactive and hazardous waste

    This report describes the work of the HMIP Waste Quality Checking Laboratory (WQCL) for the period September 1989 -August 1991. The WQCL has conducted research and development of procedures for the receipt, sampling and analysis of low level solid radioactive waste (LLW), intermediate level radioactive waste (ILW) and hazardous chemical waste (HW). Operational facilities have been commissioned for quality checking both LLW and HW. Waste quality checking has been completed on LLW packages seized from the UK waste disposal route by HMIP Inspectors. Packages have ranged in size from the 200 litre steel drum to half-height ISO freight container. Development work was continued on methods of sample extraction and radio-chemical analysis for cement encapsulated ILW in the form of magnox, graphite and stainless steel. This work was undertaken on non-radioactive simulants. (author)

  6. Radioactive waste management aspects of the Shoreham decommissioning

    The Shoreham Nuclear Power Plant's entire operational history encompassed only two effective full power days. Contamination was almost entirely confined to the reactor vessel, the spent fuel pool and the internal surfaces of 12 systems. This brief operational history resulted in; 1500 tons of radioactive materials removed; 50 activated metal linear shipments; and 215 total radioactive waste shipments during and eight month period. The Shoreham Decommissioning Radioactive Waste Management Plan (RWMP) identified the minimization of impact upon dismantlement efforts as its principal objective. In order to achieve this objective waste packages were selected which maximized internal volume. Contractual arrangements were based on weight rather than volume where possible. Control of vehicle traffic was also given a high priority. Future successful decommissioning radioactive waste management schemes will take advantage of the lessons learned at Shoreham: full scale chemical decontamination, minimization of onsite volume reduction efforts and a specialized organization which focuses on minimizing dismantlement efforts

  7. State system for radioactive waste management in Republic of Bulgaria

    The sources of radioactive wastes in Bulgaria are the Kozloduy NPP, IRT-2000 Research reactor and more than 2300 industrial or medical facilities. The Government has decided to continue the construction of the new nuclear power plant at Belene site. The development of the nuclear power production and use necessitates the development of a new infrastructure in the field of the radioactive waste management. Bulgarian policy in this field is presented in several laws: Act on the Safe Use of Nuclear Energy; Environment Protection Law and Law of Public Health. The protection of the personnel and population during work with radioactive wastes is realised according to the Basic Norm for Radiation Protection (edition 2000). The institutional framework and the financial activities as well as the National strategy in the field of radioactive waste management are presented

  8. New materials for the containment of radioactive wastes

    Asbestos-cement is a new material that can be used in the containment or storage of radioactive waste, because it can act as intermediate storage for high activity waste dispersed in this material or else be used in the shape of definitive storage containers

  9. Regulatory framework for the management of radioactive wastes in Argentina

    The legal and regulatory framework within which the radioactive waste management is carried out in Argentina are exposed. The activities of the Nuclear Regulatory Authority (ARN) in relation to facility inspections, safety assessments and collaboration with international agencies in the matter are also presented. Further, the regulatory criteria applied to waste management are reported. (author)

  10. Radioactive waste from non-power applications in Sweden

    Full text: The system for handling of radioactive waste from the Nuclear Fuel Cycle in Sweden is well established and has been in use for many years. Radioactive waste from other sources is not always handled as rigorously. The Swedish Radiation Protection Institute, SSI has identified the issue and therefore initiated a study with the aim to achieve a sufficient system for handling and disposal of radioactive waste from all sources of radioactive waste. In this paper we discuss some of the sources of radioactive waste and the specific problems they represent. We give a brief description on how they are regulated and handled today and identify some interesting issues. Conventional industry, hospitals, research and education: In the conventional industry the use of different types of radioactive sources is common. The size and type of radioactive source depends on the application (from some megaBq up to thousands of terraBq). The radioactive waste from hospitals, research institutions and pharmaceutical or bio-technical industries consists mainly of very short-lived radionuclides. Also most sealed sources used in the medical field contains short-lived radionuclides. According to the Swedish Radiation Protection Act a licence is needed for the use of sealed sources exceeding 50 kiloBq. For hospitals and research institutes the SSI issues one license covering all radioactive sources below 500 megaBq up to a summary limit depending on the application. All sources with activity exceeding 500 megaBq require a separate license. SSI has issued about 2500 licences. For each licence an annual fee is paid to the SSI. When the radioactive source has fulfilled its purpose the licensee is obliged to inform the SSI that the source is no longer in use and show a certificate from the recognised waste facility. Not until this has been done the licensee is released from its responsibilities. SSI has issued regulations on Radioactive Waste Not Associated with Nuclear Energy. These

  11. Radioactive waste burial grounds: Environmental information document

    This document provides environmental information on postulated closure options for the Radioactive Waste Burial Grounds at the Savannah River Plant and was developed as background technical documentation for the Department of Energy's proposed Environmental Impact Statement (EIS) on waste management activities for groundwater protection at the plant. The results of groundwater and atmospheric pathway analyses, accident analysis, and other environmental assessments discussed in this document are based upon a conservative analysis of all foreseeable scenarios as defined by the National Environmental Policy Act (40 CFR 1500-1508). The scenarios do not necessarily represent actual environmental conditions. This document is not meant to be used as a regulatory closure plan or other regulatory document to comply with required federal or state environmental regulations

  12. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    Haagenstad, H.T.; Gonzales, G.; Suazo, I.L. [Los Alamos National Lab., NM (United States)

    1993-11-01

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.

  13. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R ampersand D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R ampersand D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action

  14. National inventory of the radioactive wastes and the recycling materials

    This synthesis report presents the 2006 inventory of the radioactive wastes and recycling materials, in France. It contains 9 chapters: a general introduction, the radioactive wastes (definition, classification, origins and management), the inventory methodology (organization, accounting and prospecting, exhaustiveness and control tools), main results (stocks, prevision for the period 2005-2020, perspectives after 2020), the inventory for producers or owners (front end fuel cycle, electric power plants, back end fuel cycle, wastes processing and maintenance facilities, researches centers, medical activities, industrial activities, non nuclear industries using nuclear materials, defense center, storage and disposal), the polluted sites, examples of foreign inventories, conclusion and annexes. (A.L.B.)

  15. Radioactive solid waste storing structure

    Hulls as radioactive solid wastes generated by reprocessing of spent fuels in nuclear facilities are pressed to form circular compressed materials. A pedestal having ventilation holes for communicating the center and the side surfaces of the storage vessel in which the compression materials are sealed and contained while being stacked is disposed to the bottom of the storage vessel. Springs are disposed to the inner circumference of the storage vessel for urging the side surfaces of the compressed materials contained while being stacked on the pedestal. With such a constitution, cooling performance can be improved by spontaneous circulation of the air and sealed gases in the storage vessel thereby enabling to store the storage vessels at a higher density. In addition, since the compressed materials are urged by the disposed springs, rattling of the compression materials can be eliminated, and they can be transported or transferred stably, and since uniform gaps can be formed on the circumference of the compression bodies, they can be cooled uniformly. (T.M.)

  16. Radioactive gaseous waste processing device

    In a radioactive gaseous waste processing device, a dehumidifier in which a lot of hollow thread membranes are bundled and assembled is disposed instead of a dehumidifying cooling device and a dehumidifying tower. The dehumidifier comprises a main body, a great number of hollow thread membranes incorporated in the main body, a pair of fixing members for bundling and fixing both ends of the hollow thread membranes, a pair of caps for allowing the fixing members to pass through and fixing them on both ends of the main body, an off gas flowing pipe connected to one of the caps, a gas exhaustion pipe connected to the other end of the cap and a moisture removing pipeline connected to the main body. A flowrate control valve is connected to the moisture removing pipeline, and the other end of the moisture removing pipeline is connected between a main condensator and an air extraction device. Then, cooling and freezing devices using freon are no more necessary, and since the device uses the vacuum of the main condensator as a driving source and does not use dynamic equipments, labors for the maintenance is greatly reduced to improve economical property. The facilities are reduced in the size thereby enabling to use space effectively. (N.H.)

  17. Radioactive gaseous waste processing device

    The present invention provides a device for continuously removing a moisture content in radioactive gaseous wastes (off gas) generated from a BWR type power generation plant. Namely, in a dehumidification device by utilizing hollow thread membranes of an off gas processing device, thermometers are disposed for measuring each of the temperature of off gases and the temperature of entrance of the off gas dehumidification device. A heater is disposed for heating the inside of the dehumidification device to a state corresponding to the temperature of off gases. A control device for controlling the heater by comparing the temperate of inflown gases and the temperature of the body of the dehumidification device. The inside of the dehumidifying device is heated to a temperature at or higher than the temperature of inflown off gases. Then, condensation of the moisture content contained in off gases in the dehumidification device can be prevented. In addition, if demister is disposed to an entrance nozzle portion of an off gas entrance chamber of the dehumidification device, mist of inflown off gases can be removed thereby enabling to improve steam permeation property of a hollow thread module. (I.S.)

  18. Manless radioactive waste transporting system

    The system of the present invention comprises a self-forklift for transporting vessels which contain radioactive wastes generated in a power facility to a storage warehouse and a unmanned remote control salvaging vehicle for drawing out the forklift when it is disabled in the storage warehouse for repair. Namely, the self forklift runs by itself on a predetermined route to transport and unload the vessels to a predetermined position in the storage warehouse. When the self forklift is stopped by failure in the storage warehouse, the unmanned salvaging vehicle takes the self forklift to the outside by operator's remote control while observing a monitor of an TV camera attached to the vehicle. In this case, the self forklift has a salvaging hook at a position of the body corresponding to a driving front wheel. The unmanned salvaging vehicle has a hoisting hook which enables the self forklift to move only with the front wheel as a loading wheel while raising the back wheel away from the floor surface. The self forklift is connected to the unmanned salvaging vehicle by both of the hooks. (I.S.)

  19. ICRP guidance on radioactive waste disposal

    The International Commission on Radiological Protection (ICRP) issued recommendations for a system of radiological protection in 1991 as the 1990 Recommendations. Guidance on the application of these recommendations in the general area of waste disposal was issued in 1997 as Publication 77 and guidance specific to disposal of solid long-lived radioactive waste was issued as Publication 81. This paper summarises ICRP guidance in radiological protection requirements for waste disposal concentrating on the ones of relevance to the geological disposal of solid radioactive waste. Suggestions are made for areas where further work is required to apply the ICRP guidance. (author)

  20. Juridical and institutional aspects of radioactive wastes

    The author proposes a discussion of a new branch of the public law - the nuclear law. The main subject is the radioactive waste. Its production is a decisive problem in the utilization of nuclear energy being one of the discussed questions from the technical, economical, political, social and juridical points of view. Countries have been striving to establish their own policies related to radioactive wastes having always in mind the man and the environmental protection. In this scenario the author developed the investigations trying to discuss juridical and institutional aspects of radioactive wastes on the international level as well as in different countries with the aim to establish the juridical basis of a radioactive wastes policy in Brazil

  1. New treatment methods of radioactive wastes

    Techniques of Radioactive waste treatment continues to make advances in year by year. First of all we would explain the new plant constructed by Studsvik of America in Tenn. U.S.A. This plant consist of pyrolysis and hydro-reforming process. These combination technique are capable for incineration and decompose the inflammable material such as ion-exchange resin. ZWILAG is the central control facility of Radioactive wastes in Switzerland. This facility has wastes storage halls and incineration plant which operated by plasma torch. This system is the first plant in the would. Radon Science Research Center of Russia has been developed many kinds of technique in radwaste treatment. Powdered metal fuel is very unique material for incineration of ionexchange resin. Magnetic stirrer is applied for cement solidification. Ebara designed special equipment for nuclear accident such as movable radioactive measurement car and radioactive liquid waste treatment installed on car are explained. (author)

  2. Environmental aspects of commercial radioactive waste management

    Environmental effects (including accidents) associated with facility construction, operation, decommissioning, and transportation in the management of commercially generated radioactive waste were analyzed for plants and systems assuming a light water power reactor scenario that produces about 10,000 GWe-yr through the year 2050. The following alternative fuel cycle modes or cases that generate post-fission wastes requiring management were analyzed: a once-through option, a fuel reprocessing option for uranium and plutonium recycle, and a fuel reprocessing option for uranium-only recycle. Volume 1 comprises five chapters: introduction; summary of findings; approach to assessment of environmental effects from radioactive waste management; environmental effects related to radioactive management in a once-through fuel cycle; and environmental effects of radioactive waste management associated with an LWR fuel reprocessing plant

  3. Solid and liquid radioactive waste treatment

    The technology for the treatment of low - and intermediate-level radioactive solid and liquid wastes is somewhat extensive. Some main guidance on the treatment methods are shown, based on informations contained in technical reports and complementary documents. (author)

  4. Towards a reduction of radioactive waste inventory

    In this work is given an outlook on the progresses and future prospects of researches on the volume reduction and toxicity of ultimate radioactive wastes: recycling, transmutation, fast neutrons reactors. (O.M.)

  5. Environmental aspects of commercial radioactive waste management

    1979-05-01

    Environmental effects (including accidents) associated with facility construction, operation, decommissioning, and transportation in the management of commercially generated radioactive waste were analyzed for plants and systems assuming a light water power reactor scenario that produces about 10,000 GWe-yr through the year 2050. The following alternative fuel cycle modes or cases that generate post-fission wastes requiring management were analyzed: a once-through option, a fuel reprocessing option for uranium and plutonium recycle, and a fuel reprocessing option for uranium-only recycle. Volume 1 comprises five chapters: introduction; summary of findings; approach to assessment of environmental effects from radioactive waste management; environmental effects related to radioactive management in a once-through fuel cycle; and environmental effects of radioactive waste management associated with an LWR fuel reprocessing plant. (LK)

  6. Partnering with stakeholders in radioactive waste management

    Site selection for radioactive waste management (RWM) facilities draws considerable attention from implementers, government bodies, local communities and the public at large. Facility siting processes have generally tended to be marred by conflicts, disagreements and delays. In response, efforts have been made to shift from a more traditional 'decide, announce and defend' model to one of 'engage, interact and co-operate'. The essence of the new approach is co-operation or partnership between the implementer and the affected communities, involving dialogue between experts and citizens, mutual learning and public participation in the decision-making process. National ministries and authorities have also been called to and do play a more visible role. The intensity and degree of partnering can vary from country to country and in different phases of project development. Important changes have taken place in citizen participation in radioactive waste management over the past decade. These changes can be summarised as follows: - shift from information and consultation towards partnership, i.e. from token involvement to citizen influence and power; - shift from a passive to an active role of local communities: from resigned acceptance to collaboration, volunteering and veto; - development of a great variety of administrative formats for collaboration; - recognition of the need for, and legitimacy of, community empowerment measures and socio-economic benefits; - emergence of new ideals and bases for collaboration including mutual learning, adding values to the host community/region and sustainable development. Involving local actors in the design of the facility and community benefits are likely to result in solutions that will add value to the host region. In all cases, social capital is augmented as local stakeholders develop new skills and increase their knowledge about the interests and ideals of their community. Implementers and other institutional players also

  7. Method of processing liquid radioactive wastes by calcination and vitrification

    The original liquid radioactive waste is added to the radioactive waste calcinate and glass-forming additions. The said components are converted into a paste form which is proportioned in the melting furnace. Moisturising the mixture with liquid radioactive waste eliminates dust, avoids radionuclide volatility and has an additional advantage that more radioactive waste can be processed. (E.S.)

  8. Review on the treatment of radioactive wastes from fuel reprocessing plants

    The author gives a comparative survey of the radioactive waste occuring in a 1,500 tons per year reprocessing plant and on the distribution of the radioactivity on the waste flows. Details on the state of treatment and storage of highly, medium and weakly active liquid wastes, as well as of the α-waste follow. Diagrams supplement the text. (HR)

  9. Strategy for development of a UK radioactive waste management system

    The paper describes the background to development of a strategy for radioactive waste management in the UK. 'Strategy' is defined as a plan of activities with a timescale for their execution and with identification of those responsible for formulating, approving and undertaking them. The formulation of strategy and the activities and responsibilities for establishing waste management procedures are described. Technically achievable timescales for providing disposal facilities for a full range of solid wastes are presented and it is demonstrated that the earliest decisions which need to be taken relate to non-heat generating wastes, including low-level wastes. (author)

  10. Radioactive wastes from possible future UK Light Water Reactors

    The predictive radioactive wastes from the operation and decommissioning of various designs of Light Water Reactor (LWR) are reviewed and compared to the Sizewell 'B' Pressurised Water Reactor. The designs considered are the N4, Konvoi, System 80+, Advanced PWR, AP600, Advanced Boiling Water Reactor, the European Pressurised Water Reactor (EPR) and the Sizewell 'XL' design. The sources of activity, active arisings, waste treatment plants, discharges to the environment, the optimisation of waste treatment, lifetime arisings of solid waste and the characteristics of spent fuel are addressed. Conclusions are drawn on the implications for UK waste management policy. (author)

  11. Deep-sea burial of radioactive wastes

    State of the art of sea dumping of radioactive wastes, legal bases, problems of ecology and environmental safety, possibilities and prospects were the goal of this seminar. Moreover, experts in ministries and members of the parliament in the Federal Republic of Germany should be supported by the results and experiences given here in order to find the legal requirements for a marine disposal of special radioactive wastes. (RB)

  12. Radioactive wastes handling problems in Venezuela

    A brief description of the radioactive wastes problem in Venezuela is presented. The origins of the problem are shown in a squematic form. The requirements for its solution are divided into three parts: information system, control system, radioactive wastes hadling system. A questionnaire summarizing factors to be considered when looking for a solution to the problem in Venezuela is included, as well as conclusions and recomendations for further discussion

  13. Microbiological treatment of low level radioactive waste

    This report summarises the work of an experimental programme investigating the anaerobic digestion of low-level radioactive wastes. The project focused on the selection of the optimum bioreactor design to achieve 95% removal or stabilisation of the biodegradable portion of low-level radioactive wastes. Performance data was obtained for the bioreactors and process scale-up factors for the construction of a full-scale reactor were considered. (author)

  14. Media perspectives on the radioactive waste issue

    Although one does not believe that the media has created or sustained opposition to the disposal of radioactive waste it has certain responsibilities regarding the ignorance of the public on the subject of radioactive materials management. This paper describes the role of media in creating the public attitude and the technology of news production

  15. Low-impact sampling under an active solid low-level radioactive waste disposal unit using horizontal drilling technology

    The purpose of this project was to determine the performance of the solid low-level radioactive waste (LLRW) disposal units located on a mesa top at TA-54, Area G, Los Alamos National Laboratory (LANL), Los Alamos, NM, and to provide in-situ (vadose zone) site characterization information to Area G's Performance Assessment. The vadose zone beneath an active disposal unit (DU 37), was accessed by utilizing low-impact, air-rotary horizontal drilling technology. Core samples were pulled, via wire-line core method, in 3 horizontal holes fanning out below DU 37 at approximately 5 foot intervals depending on recovery percentage. Samples were surveyed and prepared in-field following Environmental Restoration (ER) guidelines. Samples were transferred from the field to the CST-9 Radvan for initial radiological screening. Following screening, samples were delivered to CST-3 analytical lab for analyses including moisture content, 23 inorganics, 60 volatile organic compounds (VOC's), 68 semivolatile organic compounds (SVOC's), tritium, lead 210, radium 226 ampersand 228, cesium 137, isotopic plutonium, americium 241, strontium 90, isotopic uranium, and isotopic thorium. Other analyses included matric potential, alpha spectroscopy, gamma spectroscopy, and gross alpha/beta. The overall results of the analysis identified only tritium as having migrated from the DU. Am-241, Eu-152, and Pu-238 were possibly identified above background but the results are not definitive. Of all organics analysed for, only ethyl acetate was tentatively identified slightly above background. All inorganics were found to be well below regulatory limits. Based on the results of the above mentioned analyses, it was determined that Area G's disposal units are performing well and no significant liquid phase migration of contaminants has occurred

  16. Disposal of radioactive waste in Romania. Present and future strategy

    The paper begins with the presentation of the actual situation of radioactive waste management in Romania. The organizations responsible for radioactive waste management and their capabilities are described, including radioactive waste disposal. The main provisions of the 'Draft law regarding the management of nuclear spent fuel and radioactive waste, in view of their final disposal' are also presented, with accent on the responsibilities of the National Radioactive Waste Agency (ANDRAD) and on the fund for radioactive waste and spent fuel management and for decommissioning. The paper ends with the presentation of the future radioactive waste and spent fuel management strategy. (author)

  17. Concept and Planning of Site Preparation for Radioactive Waste Disposal in Jawa and Surrounding Area

    Concept and planning for radioactive waste disposal in Jawa and surrounding area have been done. These activities were part of the investigation for preparation of repository location in Jawa. In this report, the summary of previous sitting activities, the waste inventory in Radioactive Waste Technology Centre, and list of important factors for sitting on radioactive waste disposal location. Several potential areas such as Karawang, Subang, Majalengka, Rembang, Tuban, Madura will be the focus for next activities. The result will be part of activities report regarding the preparation of repository location in Jawa and surrounding area, that will be used as recommendation prior to radioactive waste management policy. (author)

  18. Geological aspects of radioactive waste disposal

    Geological formations suitable for burying various types of radioactive wastes are characterized applying criteria for the evaluation and selection of geological formations for building disposal sites for radioactive wastes issued in IAEA technical recommendations. They are surface disposal sites, disposal sites in medium depths and deep disposal sites. Attention is focused on geological formations usable for injecting self-hardening mixtures into cracks prepared by hydraulic decomposition and for injecting liquid radioactive wastes into permeable rocks. Briefly outlined are current trends of the disposal of radioactive wastes in Czechoslovakia and the possibilities are assessed from the geological point of view of building disposal sites for radioactive wastes on the sites of Czechoslovak nuclear power plants at Jaslovske Bohunice, Mochovce, Dukovany, Temelin, Holice (eastern Bohemia), Blahoutovice (northern Moravia) and Zehna (eastern Slovakia). It is stated that in order to design an optimal method of the burial of radioactive waste it will be necessary to improve knowledge of geological conditions in the potential disposal sites at the said nuclear plants. There is usually no detailed knowledge of geological and hydrological conditions at greater depths than 100 m. (Z.M.)

  19. The International Conference on Radioactive Waste Management

    The IAEA has been concerned with radioactive waste management since its inception. Its programme in this area was expanded in the mid 1970s as questions related to the management and disposal of radioactive wastes came into focus in conjunction with the further industrial development of nuclear power. The objectives of the Agency's wastes management programme are to assist its Member States in the safe and effective management of wastes by organizing the exchange and dissemination of information, providing guidance and technical assistance and supporting research. The current programme addresses all aspects of the industrial use of nuclear power under the aspects (a) technology of handling and treatment of wastes, (b) underground disposal of wastes, (c) environmental aspects of nuclear energy, including sea disposal of radioactive wastes. Systematic reviews have been made and publications issued concerning the technology of handling, treating, conditioning, and storing various categories of wastes, including liquid and gaseous wastes, wastes from nuclear power plants, spent fuel reprocessing and mining and milling of uranium ores, as well as wastes from decommissioning of nuclear facilities. As waste disposal is the current issue of highest interest, an Agency programme was set up in 1977 to develop a set of guidelines on the safe underground disposal of low-, intermediate- and high-level wastes in shallow ground, rock cavities or deep geological repositories. This programme will continue until 1990. Eleven Safety Series and Technical documents and reports have been published under this programme so far, which also addresses safety and other criteria for waste disposal. The environmental part of the waste management programme is concerned with the assessment of radiological and non-radiological consequences of discharges from nuclear facilities, including de minimis concepts in waste disposal and environmental models and data for radionuclide releases. The Agency

  20. Implications of the use of low-pH cementitious materials in high activity radioactive waste repositories

    One of the most accepted engineering construction concepts for high radioactive nuclear waste of underground repositories considers the use of low pH cementitious materials, in order to avoid the formation of an alkaline plume fluid which perturbs one of the engineered barriers of the repository, the bentonite. The accepted solution to maintain the bentonite stability, which is function of the pH, is to develop cementitious materials that generate pore waters with pH ≤ 11, because the corrosion velocity of the clay is significantly reduced below this value. The IETcc-CSIC has focused the research activity on low-pH cementitious materials using two cements: Ordinary Portland Cements (OPC) and Calcium Aluminates Cements (CAC). In both cases, the achievement of a low-pH environment implies the use of high content of mineral admixtures to prepare the binder. Obviously, the inclusion of high contents of mineral admixtures in the cement formulation modifies most of the concrete 'standard' properties and the microstructure of the obtained cement products. When designing a concrete based on low-pH binders, not only the functional requirements have to be reached but also the modifications of the basic properties of the concrete must be taken into account. Besides, due to the location and the long service life of this type of products, their durability properties must be also guaranteed. This paper deals with the procedure followed in the design of a specific application of low pH cements; for instance, the shotcrete plug fabrication. The challenge of this type of use (shotcreting) is more complex taking into account that requires the employment of additives that must be compatible with the concrete mixture. Furthermore, their effectiveness must be assured without increase the pH above the admissible levels. Therefore, their compatibility with admixtures is tested in the present work. The compliance of the requirements for a shotcrete plug was evaluated at laboratory scale