WorldWideScience

Sample records for activity optical

  1. Vibrational optical activity

    Recent vibrational activity (VOA) research is discussed. The vibrational circular dichroism (VCD) experiments were carried out with a Fourier transform infrared spectrometer. One of the major anticipations from VOA spectroscopy is to be able to derive new pathways for determining the molecular structure. Shown is Fourier transform infrared absorption and VCD spectra of lyxopyranose in pyradine-d5 solvent. Raman optical activity measurements are discussed, and depolarized Raman and Raman optical activity spectra for (+)-alpha-pinene are presented. It was concluded that at present Raman optical activity can be measured in the entire vibrational spectral region, where as VCD has not been measured below 600 cm-1

  2. Active optical clock

    CHEN JingBiao

    2009-01-01

    This article presents the principles and techniques of active optical clock, a special laser combining the laser physics of one-atom laser, bad-cavity gas laser, super-cavity stabilized laser and optical atomic clock together. As a simple example, an active optical clock based on thermal strontium atomic beam shows a quantum-limited linewidth of 0.51 Hz, which is insensitive to laser cavity-length noise, and may surpass the recorded narrowest 6.7 Hz of Hg ion optical clock and 1.5 Hz of very recent optical lattice clock. The estimated 0.1 Hz one-second instability and 0.27 Hz uncertainty are limited only by the rela-tivistic Doppler effect, and can be improved by cold atoms.

  3. Active Optical Lattice Filters

    Gary Evans; MacFarlane, Duncan L.; Govind Kannan; Jian Tong; Issa Panahi; Vishnupriya Govindan; L. Roberts Hunt

    2005-01-01

    Optical lattice filter structures including gains are introduced and analyzed. The photonic realization of the active, adaptive lattice filter is described. The algorithms which map between gains space and filter coefficients space are presented and studied. The sensitivities of filter parameters with respect to gains are derived and calculated. An example which is relevant to adaptive signal processing is also provided.

  4. Active Optics in Modern, Large Optical Telescopes

    Noethe, Lothar

    2001-01-01

    Active optics is defined as the control of the shape and the alignment of the components of an optical system at low temporal frequencies. For modern large telescopes with flexible monolithic or segmented primary mirrors and also flexible structures this technique is indispensable to reach a performance which is either diffraction limited for an operation in space or limited by the atmosphere for an operation on the ground. This article first describes the theory of active optics, both of the...

  5. Active X-ray Optics

    Hudec, René; Inneman, A.; Pina, L.; Černá, D.; Tichý, V.

    Bellingham: SPIE, 2013 - (Juha, L.; Bajt, S.; London, R.; Hudec, R.; Pína, L.), 877718/1-877718/7. (Proceedings of SPIE. 8777). ISBN 9780819495792. [Damage to VUV, EUV, and X-ray Optics IV; and EUV and X-ray Optics: Synergy between Laboratory and Space III. Praha (CZ), 15.04.2013-18.04.2013] Institutional support: RVO:67985815 Keywords : X-ray optics * active optics * active X-ray optics Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  6. Active Optics in LAMOST

    Ding-Qiang Su; Xiang-Qun Cui

    2004-01-01

    Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST)is one of the major national projects under construction in China. Active optics is one of the most important technologies for new large telescopes. It is used for correcting telescope errors generated by gravitational and thermal changes. Here,however, we use this technology to realize the configuration of LAMOST, -a task that cannot be done in the traditional way. A comprehensive and intensive research on the active optics used in LAMOST is also reported, including an open-loop control method and an auxiliary closed-loop control method. Another important development is in our pre-calibration method of open-loop control, which is with some new features: simultaneous calculation of the forces and displacements of force actuators and displacement actuators; the profile of mirror can be arbitrary;the mirror surface shape is not expressed by a fitting polynomial, but is derived from the mirror surface shape formula which is highly accurate; a proof is given that the solution of the pre-calibration method is the same as the least squares solution.

  7. Optically Active Organic Microrings

    Balzer, Frank; Beermann, J.; Bozhevolnyi, S.I.;

    2003-01-01

    -hexaphenyl molecules are generated on mica surfaces, possessing narrow size distributions with mean diameters of a few micrometers, wall widths of 100 to 200 nm, and wall heights of several hundred nanometers. Polarized linear and nonlinear optics reveals that the rings are made up of radially o...

  8. Optical Design and Active Optics Methods in Astronomy

    Lemaitre, Gerard R.

    2013-01-01

    Optical designs for astronomy involve implementation of active optics and adaptive optics from X-ray to the infrared. Developments and results of active optics methods for telescopes, spectrographs and coronagraph planet finders are presented. The high accuracy and remarkable smoothness of surfaces generated by active optics methods also allow elaborating new optical design types with high aspheric and/or non-axisymmetric surfaces. Depending on the goal and performance requested for a deforma...

  9. Active Faraday optical frequency standards

    Zhuang, Wei

    2014-01-01

    We propose the mechanism of active Faraday optical clock, and experimentally demonstrate active Faraday optical frequency standards based on 852 nm narrow bandwidth Faraday atomic filter by the method of velocity-selective optical pumping of cesium vapor. The center frequency of the active Faraday optical frequency standards is determined by the cesium 6 $^{2}S_{1/2}$ $F$ = 4 to 6 $^{2}P_{3/2}$ $F'$ = 4 and 5 crossover transition line. The optical heterodyne beat between two similar independent setups shows that the frequency linewidth reaches 996(26) Hz, which is 5.3 $\\times$ 10$^{3}$ times smaller than the natural linewidth of the cesium 852 nm transition line. The maximum emitted light power reaches 75 $\\upmu$W. The active Faraday optical frequency standards reported here have advantages of narrow linewidth and reduced cavity pulling, which can readily be extended to other atomic transition lines of alkali and alkaline-earth metal atoms trapped in optical lattices at magic wavelengths, making it useful for...

  10. Optical Design and Active Optics Methods in Astronomy

    Lemaitre, Gerard R

    2013-01-01

    Optical designs for astronomy involve implementation of active optics and adaptive optics from X-ray to the infrared. Developments and results of active optics methods for telescopes, spectrographs and coronagraph planet finders are presented. The high accuracy and remarkable smoothness of surfaces generated by active optics methods also allow elaborating new optical design types with high aspheric and/or non-axisymmetric surfaces. Depending on the goal and performance requested for a deformable optical surface analytical investigations are carried out with one of the various facets of elasticity theory: small deformation thin plate theory, large deformation thin plate theory, shallow spherical shell theory, weakly conical shell theory. The resulting thickness distribution and associated bending force boundaries can be refined further with finite element analysis. Keywords: active optics, optical design, elasticity theory, astronomical optics, diffractive optics, X-ray optics

  11. Optical control of antibacterial activity

    Velema, Willem A.; van der Berg, Jan Pieter; Hansen, Mickel J.; Szymanski, Wiktor; Driessen, Arnold J. M.; Feringa, Ben L.

    2013-11-01

    Bacterial resistance is a major problem in the modern world, stemming in part from the build-up of antibiotics in the environment. Novel molecular approaches that enable an externally triggered increase in antibiotic activity with high spatiotemporal resolution and auto-inactivation are highly desirable. Here we report a responsive, broad-spectrum, antibacterial agent that can be temporally activated with light, whereupon it auto-inactivates on the scale of hours. The use of such a ‘smart’ antibiotic might prevent the build-up of active antimicrobial material in the environment. Reversible optical control over active drug concentration enables us to obtain pharmacodynamic information. Precisely localized control of activity is achieved, allowing the growth of bacteria to be confined to defined patterns, which has potential for the development of treatments that avoid interference with the endogenous microbial population in other parts of the organism.

  12. Optical design and active optics methods in astronomy

    Lemaitre, Gerard R.

    2013-03-01

    Optical designs for astronomy involve implementation of active optics and adaptive optics from X-ray to the infrared. Developments and results of active optics methods for telescopes, spectrographs and coronagraph planet finders are presented. The high accuracy and remarkable smoothness of surfaces generated by active optics methods also allow elaborating new optical design types with high aspheric and/or non-axisymmetric surfaces. Depending on the goal and performance requested for a deformable optical surface analytical investigations are carried out with one of the various facets of elasticity theory: small deformation thin plate theory, large deformation thin plate theory, shallow spherical shell theory, weakly conical shell theory. The resulting thickness distribution and associated bending force boundaries can be refined further with finite element analysis.

  13. International Standardization Activities for Optical Amplifiers

    Haruo Okamura

    2003-01-01

    International standardization activities for Optical Amplifiers at IECTC86 and ITU-T SG15 are reviewed. Current discussions include Optical Amplifier safety guideline, Reliability standard, Rest methods of Noise and PMD, Definitions of Raman amplifier parameters and OA classification.

  14. Measurement of optical activity of honey bee

    Ortiz-Gutiérrez, Mauricio; Olivares-Pérez, Arturo; Salgado-Verduzco, Marco Antonio; Ibarra-Torres, Juan Carlos

    2016-03-01

    Optical activity of some substances, such as chiral molecules, often exhibits circular birefringence. Circular birefringence causes rotation of the vibration plane of the plane polarized light as it passes through the substance. In this work we present optical characterization of honey as function of the optical activity when it is placed in a polariscope that consists of a light source and properly arranged polarizing elements.

  15. Efficient Synthesis of Optically Active Alcohols

    J.S. Chen; Z.R. Dong; Y.Y. Li; B.Z. Li; Y. Xing; W.Y. Shen; G. Chen; X.Q. Zhang; J. X. Gao

    2005-01-01

    @@ 1Introduction Optically active secondary alcohols are versatile building blocks for synthesis of unnatural biological active compounds and functional materials. Therefore, study on efficient synthesis of optically active alcohols is becoming an important subject in synthetic organic chemistry. Catalytic asymmetric reduction of carbonyl compounds is a practical method to create chiral alcohols. For the past decades, a large number of catalytic methods have been developed to achieve this goal.

  16. Integrated optical devices using bacteriorhodopsin as active nonlinear optical material

    Dér, András; Fábián, László; Valkai, Sándor; Wolff, Elmar; Ramsden, Jeremy; Ormos, Pál

    2006-08-01

    Coupling of optical data-processing devices with microelectronics, telecocommunication and sensory functions, is among the biggest challenges in molecular electronics. Intensive research is going on to find suitable nonlinear optical materials that could meet the demanding requirements of optoelectronic applications, especially regarding high sensitivity and stability. In addition to inorganic and organic crystals, biological molecules have also been considered for use in integrated optics, among which the bacterial chromoprotein, bacteriorhodopsin (bR) generated the most interest. bR undergoes enormous absorption and concomitant refractive index changes upon initiation of a cyclic series of photoreactions by a burst of actinic light. This effect can be exploited to create highly versatile all-optical logical elements. We demonstrate the potential of this approach by investigating the static and dynamic response of several basic elements of integrated optical devices. Our results show that, due to its relatively high refractive index changes, bR can be used as an active nonlinear optical material to produce a variety of integrated optical switching and modulation effects.

  17. Optical mapping of brain activity

    Fejtová, M.; Otáhal, Jakub; Kubová, Hana; Konopková, Renata

    Praha: ČVUT Praha, 2006. s. 21-22. ISBN 80-01-03439-9. [Workshop CVUT. 20.02.2006-24.02.2006, Praha] R&D Projects: GA AV ČR 1QS501210509 Institutional research plan: CEZ:AV0Z50110509 Keywords : optical mapping * intrinsic signals * brain Subject RIV: ED - Physiology

  18. OWL optical design, active optics, and error budget

    Dierickx, Philippe; Delabre, Bernard; Noethe, Lothar

    2000-07-01

    We explore solutions for the optical design of the OWL 100-m telescope, and discuss their properties, advantages and drawbacks in relation to top level requirements. Combining cost, design, fabrication and functionality issues, and taking into account the scale of the telescope, we conclude that the requirements are best met with a design based on spherical primary and secondary mirrors. The combined active and adaptive correction capability envisioned for the telescope allows substantial relaxation of otherwise critical subsystems specifications. We elaborate on the telescope correction capabilities, including alignment and focusing, and derive the structure of the optical error budget.

  19. Optical theorem detectors for active scatterers

    Marengo, Edwin A.; Tu, Jing

    2015-10-01

    We develop a new theory of the optical theorem for scalar fields in nonhomogeneous media which can be bounded or unbounded. It applies to arbitrary lossless backgrounds and quite general probing fields. The derived formulation holds for arbitrary passive scatterers, which can be dissipative, as well as for the more general class of active scatterers which are composed of a (passive) scatterer component and an active, radiating (antenna) component. The generalization of the optical theorem to active scatterers is relevant to many applications such as surveillance of active targets including certain cloaks and invisible scatterers and wireless communications. The derived theoretical framework includes the familiar real power optical theorem describing power extinction due to both dissipation and scattering as well as a novel reactive optical theorem related to the reactive power changes. The developed approach naturally leads to three optical theorem indicators or statistics which can be used to detect changes or targets in unknown complex media. The paper includes numerical simulation results that illustrate the application of the derived optical theorem results to change detection in complex and random media.

  20. Photovoltaic concentrator assembly with optically active cover

    Plesniak, Adam P

    2014-01-21

    A photovoltaic concentrator assembly that includes a housing that defines an internal volume and includes a rim, wherein the rim defines an opening into the internal volume, a photovoltaic cell positioned in the internal volume, and an optical element that includes an optically active body and a flange extending outward from the body, wherein the flange is sealingly engaged with the rim of the housing to enclose the internal volume.

  1. Synthesis and reactions of optically active cyanohydrins

    Effenberger, Franz

    1994-01-01

    Cyanohydrins have always held a place of importance both as technical products and as reagents in organic chemistry. It is surprising, therefore, that optically active Cyanohydrins have been extensively investigated and employed for syntheses relatively recently. This can be explained by the fact that only in the past few years have enzymatic methods made chiral Cyanohydrins readily available in high optical purity. Chiral Cyanohydrins are widespread in nature in the form of the respective gl...

  2. Dual-wavelength active optical clock

    Xu, Zhichao; Zhuang, Wei; Chen, Jingbiao

    2014-01-01

    We experimentally realize the dual-wavelength active optical clock for the first time. As the Cs cell temperature is kept between 118 $^{\\circ }C$ and 144 $^{\\circ }C$, both the 1359 nm and the 1470 nm stimulated emission output of Cs four-level active optical clock are detected. The 1470 nm output linewidth of each experimental setup of Cs four-level active optical clock is measured to be 590 Hz with the main cavity length unstabilized. To stabilize the cavity length of active optical clock, the experimental scheme of 633 nm and 1359 nm good-bad cavity dual-wavelength active optical clock is proposed, where 633 nm and 1359 nm stimulated emission is working at good-cavity and bad-cavity regime respectively. The cavity length is stabilized by locking the 633 nm output frequency to a super-cavity with the Pound-Drever-Hall (PDH) technique. The frequency stability of 1359 nm bad-cavity stimulated emission output is then expected to be further improved by at least 1 order of magnitude than the 633 nm PDH system d...

  3. Disulfide Chromophore and Its Optical Activity

    Maloň, Petr; Bednárová, Lucie; Straka, Michal; Krejčí, Lucie; Kumprecht, Lukáš; Kraus, Tomáš; Kubáňová, M.; Baumruk, V.

    2010-01-01

    Roč. 22, 1E (2010), E47-E55. ISSN 0899-0042 R&D Projects: GA ČR(CZ) GA203/07/1335; GA ČR GA203/06/1550; GA ČR GA203/09/2037; GA ČR GAP208/10/0376; GA AV ČR IAA400550810 Institutional research plan: CEZ:AV0Z40550506 Keywords : disulfide chromophore * Raman optical activity * vibrational optical activity * circular dichroism Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.892, year: 2010

  4. The Adaptive Optics Summer School Laboratory Activities

    Ammons, S Mark; Armstrong, J D; Crossfield, Ian; Do, Tuan; Fitzgerald, Mike; Harrington, David; Hickenbotham, Adam; Hunter, Jennifer; Johnson, Jess; Johnson, Luke; Li, Kaccie; Lu, Jessica; Maness, Holly; Morzinski, Katie; Norton, Andrew; Putnam, Nicole; Roorda, Austin; Rossi, Ethan; Yelda, Sylvana

    2011-01-01

    Adaptive Optics (AO) is a new and rapidly expanding field of instrumentation, yet astronomers, vision scientists, and general AO practitioners are largely unfamiliar with the root technologies crucial to AO systems. The AO Summer School (AOSS), sponsored by the Center for Adaptive Optics, is a week-long course for training graduate students and postdoctoral researchers in the underlying theory, design, and use of AO systems. AOSS participants include astronomers who expect to utilize AO data, vision scientists who will use AO instruments to conduct research, opticians and engineers who design AO systems, and users of high-bandwidth laser communication systems. In this article we describe new AOSS laboratory sessions implemented in 2006-2009 for nearly 250 students. The activity goals include boosting familiarity with AO technologies, reinforcing knowledge of optical alignment techniques and the design of optical systems, and encouraging inquiry into critical scientific questions in vision science using AO sys...

  5. Integration of active and passive polymer optics

    Christiansen, Mads Brøkner; Schøler, Mikkel; Kristensen, Anders

    2007-01-01

    We demonstrate a wafer scale fabrication process for integration of active and passive polymer optics: Polymer DFB lasers and waveguides. Polymer dye DFB lasers are fabricated by combined nanoimprint and photolithography (CNP). The CNP fabrication relies on an UV transparent stamp with nm sized...

  6. Transmission matrix of a uniaxial optically active crystal platelet

    Zomer, Fabian

    2005-01-01

    Expressions corresponding to the transmission of a uniaxial optically active crystal platelet are provided for an optical axis parallel and perpendicular to the plane of interface. The optical activity is taken into account by a consistent multipolar expansion of the crystal medium response due to the path of an electromagnetic wave. Numerical examples of the effect of the optical activity are given for quartz platelets of chosen thicknesses. The optical activity's effects on the variations o...

  7. Target for optically activated seekers and trackers

    Lakin, C. T.; Willett, N. F.

    1984-05-01

    This abstract discloses a target for optically activated seekers and trackers (TOAST) which provides for calibrated and variable target characteristics such as size, intensity, spatial position, color and interfering background. The TOAST has a first ilumination system providing a target light beam through an adjustable iris which controls image size. The target beam passes through a collimator lens which focuses the light at infinity. With the target beam focused at infinity, the motion of an elevation plate lengthens or shortens the distance from the collimator lens to a one motion mirror. The target beam is attenuated by a variable filter driven by a servo-motor, and a color selection process is provided by passing the beam through spectral filters. A background light beam with background imagery is provided to the beamsplitter mirror and mixed with the target image so as to simulate the target environment encountered by an operating optically activated seeker and tracker.

  8. Doppler-free magnetic optical activity

    Giraud-Cotton, S.; Kaftandjian, V.P.; Talin, B.

    1980-01-01

    The theory of Doppler-free magnetic optical activity associated with a single absorption line is presented. The transmission of tunable laser light, linearly polarized, through a dilute gaseous medium along a steady magnetic field is studied in the presence of a second counterpropagating saturating laser. The third order non linear susceptibility is calculated for a two-level system exhibiting a normal Zeeman effect, with arbitrary J values.

  9. Actively controlled thin-shell space optics

    Denoyer, Keith K.; Flint, Eric M.; Main, John A.; Lindler, Jason E.

    2003-08-01

    Increasingly, scientific and military missions require the use of space-based optical systems. For example, new capabilities are required for imaging terrestrial like planets, for surveillance, and for directed energy applications. Given the difficulties in producing and launching large optics, it is doubtful that refinements of conventional technology will meet future needs, particularly in a cost-effective manner. To meet this need, recent research has been investigating the feasibility of a new class of ultra-lightweight think-skin optical elements that combine recent advances in lightweight thermally formed materials, active materials, and novel sensing and control architectures. If successful, the approach may lead to an order of magnitude reduction in space optics areal density, improved large scale manufacturing capability, and dramatic reductions in manufacturing and launch costs. In a recent effort, a one meter thin-film mirror like structure was fabricated. This paper provides an overview of tools used to model and simulate this structure as well as results from structural dynamic testing. In addition, progress in the area of non-contact global shape control using smart materials is presented.

  10. Feasibility of Extreme Ultraviolet Active Optical Clock

    ZHUANG Wei; CHEN Jing-Biao

    2011-01-01

    @@ We propose an experimental scheme of vacuum ultraviolet(VUV)and extreme ultraviolet(XUV)optical fre-quency standards with noble gas atoms.Considering metastable state 3P2 noble atoms pumped by a conventional discharging method,the atomic beam is collimated with transverse laser cooling at the metastable state and en-ters into the laser cavity in the proposed setup.Due to stimulated emission from the metasable state to the ground state inside the laser cavity consisting of VUV reflection coating mirrors,our calculations show that with enough population inversion to compensate for the cavity loss,an active optical frequency standard at VUV and XUV is feasible.

  11. Distinguishing Epimers Through Raman Optical Activity.

    Mutter, Shaun T; Zielinski, François; Johannessen, Christian; Popelier, Paul L A; Blanch, Ewan W

    2016-03-24

    The Raman optical activity spectra of the epimers β-d-glucose and β-d-galactose, two monosaccharides of biological importance, have been calculated using molecular dynamics combined with a quantum mechanics/molecular mechanics approach. Good agreement between theoretical and experimental spectra is observed for both monosaccharides. Full band assignments have been carried out, which has not previously been possible for carbohydrate epimers. For the regions where the spectral features are opposite in sign, the differences in the vibrational modes have been noted and ascribed to the band sign changes. PMID:26928129

  12. Vibrational optical activity principles and applications

    Nafie, Laurence A

    2011-01-01

    This unique book stands as the only comprehensive introduction to vibrational optical activity (VOA) and is the first single book that serves as a complete reference for this relatively new, but increasingly important area of molecular spectroscopy. Key features:A single-source reference on this topic that introduces, describes the background and foundation of this area of spectroscopy.Serves as a guide on how to use it to carry out applications with relevant problem solving.Depth and breadth of the subject is presented in a logical, complete and progressive fashion. A

  13. The Parameters Selection of SMA Optically Activated an Its Application

    ZHAO Zhi-min; CHEN Yu-ming; YU Xiao-lei

    2002-01-01

    Shape Memory Alloy ( SMA ) optically activated is the key technology of optical SMA activator.According to the shape memory mechanism of SMA, researches are done on the activating response time and light wavelength of activating source etc of SMA optically activated to approach the parameters selection of optical activation. SMA has the optimum efficiency in the range of 13 seconds to 27 seconds when SMA is illuminated continuously by wavelength of 675um; The power of light wave has a low effect on SMA; The longer the activating wavelength, the quicker the response time of SMA activated. If the proper activating time and activating wavelength are adopted, and the structure deformation of composite material of SMA imbedded may be actively controlled, an ideal effect will be gotten. The research provides an evidence for the design of optical SMA activator and is of great significance to its application. The research on smart structure has a wide application prospect.

  14. Integrated optical devices using bacteriorhodopsin as active nonlinear optical material

    Dér, A; Fábián, L.; Valkai, S.; Wolff, E.; Ramsden, Jeremy J.; Ormos, P.

    2006-01-01

    Coupling of optical data-processing devices with microelectronics, telecocommunication and sensory functions, is among the biggest challenges in molecular electronics. Intensive research is going on to find suitable nonlinear optical materials that could meet the demanding requirements of optoelectronic applications, especially regarding high sensitivity and stability. In addition to inorganic and organic crystals, biological molecules have also been considered for use in in...

  15. Detecting eavesdropping activity in fiber optic networks

    MacDonald, Gregory G.

    The secure transmission of data is critical to governments, military organizations, financial institutions, health care providers and other enterprises. The primary method of securing in-transit data is though data encryption. A number of encryption methods exist but the fundamental approach is to assume an eavesdropper has access to the encrypted message but does not have the computing capability to decrypt the message in a timely fashion. Essentially, the strength of security depends on the complexity of the encryption method and the resources available to the eavesdropper. The development of future technologies, most notably quantum computers and quantum computing, is often cited as a direct threat to traditional encryption schemes. It seems reasonable that additional effort should be placed on prohibiting the eavesdropper from coming into possession of the encrypted message in the first place. One strategy for denying possession of the encrypted message is to secure the physical layer of the communications path. Because the majority of transmitted information is over fiber-optic networks, it seems appropriate to consider ways of enhancing the integrity and security of the fiber-based physical layer. The purpose of this research is to investigate the properties of light, as they are manifested in single mode fiber, as a means of insuring the integrity and security of the physical layer of a fiber-optic based communication link. Specifically, the approach focuses on the behavior of polarization in single mode fiber, as it is shown to be especially sensitive to fiber geometry. Fiber geometry is necessarily modified during the placement of optical taps. The problem of detecting activity associated with the placement of an optical tap is herein approached as a supervised machine learning anomaly identification task. The inputs include raw polarization measurements along with additional features derived from various visualizations of the raw data (the inputs are

  16. Aharonov-Bohm effect in optical activity

    Optically active media have the helical and dissymmetric crystal structure, which constrains the motions of the electrons to a helical path under the influence of the incident electric field. The charge flow along the helices induces a magnetic field in the direction of the axis of helices. The helical structure hence acts as natural micro-solenoids for the electromagnetic waves passing through them. Optical rotation is related to the difference in the accumulative Aharonov-Bohm (AB) phase between the right- and the left-circularly polarized waves. The AB phase is proportional to the angular momentum of an electron moving around the micro-solenoid. Originally the AB phase is shown to be a continuous function of the magnetic flux. However, quantization of the geometrical angular momentum leads to the quantized AB phase. The rotatory power and the Verdet constant are proportional to the refractive index of the medium. The quantized current in the micro-solenoid is proportional to the Bohr magneton and inversely proportional to the area of the helices.

  17. Active optics with a minimum number of actuators

    Lemaitre, Gerard R.

    2014-06-01

    Optics for astronomy implies powerful developments of active and adaptive optics methods applied to instrumentation from X-rays to the near infrared for the design of telescopes, spectrographs, and coronagraph planet finders. This presentation particularly emphasizes the development of active optics methods. Highly accurate and remarkably smooth surfaces from active optics methods allow new optical systems that use highly aspheric and non-axisymmetric - freeform - surfaces. Depending on the goal and performance required for a deformable optical surface, elasticity theory analysis is carried out either with small deformation thin plate theory, large deformation thin plate theory, shallow spherical shell theory, or the weakly conical shell theory. A mirror thickness distribution is then determined as a function of associated bending actuators and boundary conditions. For a given optical shape to generate, one searches for optical solutions with a minimum number of actuators.

  18. Optical method of recording electrical activity in isolated rabbit hearts

    Amanna, Ashwin E

    1993-01-01

    A recently developed optical method utilizes a single, implantable, optical fiber to record electrical activity from isolated hearts stained with voltage-sensitive dyes. This optical technique generates recordings of transmembrane potential from excitable myocardial tissue, and remain free from stimulus artifacts that accompany electro stimulation and hinder all standard electrode recording methods during the application of high-voltage electrical shocks. The fiber optic system...

  19. Polarization ray tracing in anisotropic optically active media. I. Algorithms

    Procedures for performing polarization ray tracing through birefringent media are presented in a form compatible with the standard methods of geometrical ray tracing. The birefringent materials treated include the following: anisotropic optically active materials such as quartz, non-optically active uniaxial materials such as calcite, and isotropic optically active materials such as mercury sulfide and organic liquids. Refraction and reflection algorithms are presented that compute both ray directions and wave directions. Methods for computing polarization modes, refractive indices, optical path lengths, and Fresnel transmission and reflection coefficients are also specified. A numerical example of these algorithms is given for analyzing the field of view of a quartz rotator. 37 refs., 3 figs

  20. A note on optical activity and extrinsic chirality

    Arteaga, Oriol

    2015-01-01

    It has been assumed that optical activity can be measured by illuminating alternatively a material with left- and right- handed circular polarized light and analyzing the differential response. This simple and intuitive approach is in general incorrect, and has led to misleading idea that extrinsic chirality involves optical activity.

  1. Active Learning Environment with Lenses in Geometric Optics

    Tural, Güner

    2015-01-01

    Geometric optics is one of the difficult topics for students within physics discipline. Students learn better via student-centered active learning environments than the teacher-centered learning environments. So this study aimed to present a guide for middle school teachers to teach lenses in geometric optics via active learning environment…

  2. Giant nonlinear optical activity in a plasmonic metamaterial

    Ren, Mengxin; Plum, Eric; Xu, Jingjun; Zheludev, Nikolay I.

    2012-05-01

    In 1950, a quarter of a century after his first-ever nonlinear optical experiment when intensity-dependent absorption was observed in uranium-doped glass, Sergey Vavilov predicted that birefringence, dichroism and polarization rotatory power should be dependent on light intensity. It required the invention of the laser to observe the barely detectable effect of light intensity on the polarization rotatory power of the optically active lithium iodate crystal, the phenomenon now known as the nonlinear optical activity, a high-intensity counterpart of the fundamental optical effect of polarization rotation in chiral media. Here we report that a plasmonic metamaterial exhibits nonlinear optical activity 30 million times stronger than lithium iodate crystals, thus transforming this fundamental phenomenon of polarization nonlinear optics from an esoteric phenomenon into a major effect of nonlinear plasmonics with potential for practical applications.

  3. Optically active Babinet planar metamaterial film for terahertz polarization manipulation

    Zalkovskij, Maksim; Malureanu, Radu; Kremers, C.; Chigrin, D. N.; Novitsky, Andrey; Zhukovsky, Sergei; Tang, P. T.; Jepsen, Peter Uhd; Lavrinenko, Andrei

    2013-01-01

    are characterized by terahertz time-domain spectroscopy, revealing anisotropic transmission with high optical activity. A simple coupled resonator model is applied to explain the principal optical features of the dimers, with predictive power of positions and number of resonances through a...... parametrical model. The model is validated for correct polarization-dependent quantitative results on the optical activity in transmission spectra. The fabrication method presented in this work as well as the slit dimer design has great potential for exploitation in terahertz optics....

  4. Active learning in optics and photonics: Fraunhofer diffraction

    Ghalila, H.; Ben Lakhdar, Z.; Lahmar, S.; Dhouaidi, Z.; Majdi, Y.

    2014-07-01

    "Active Learning in Optics and Photonics" (ALOP), funded by UNESCO within its Physics Program framework with the support of ICTP (Abdus Salam International Centre for Theoretical Physics) and SPIE (Society of Photo-Optical Instrumentation Engineers), aimed to helps and promotes a friendly and interactive method in teaching optics using simple and inexpensive equipment. Many workshops were organized since 2005 the year when Z. BenLakhdar, whom is part of the creators of ALOP, proposed this project to STO (Société Tunisienne d'Optique). These workshops address several issues in optics, covering geometrical optics, wave optics, optical communication and they are dedicated to both teachers and students. We focus this lecture on Fraunhofer diffraction emphasizing the facility to achieve this mechanism in classroom, using small laser and operating a slit in a sheet of paper. We accompany this demonstration using mobile phone and numerical modeling to assist in the analysis of the diffraction pattern figure.

  5. Active optical fibers doped with ceramic nanocrystals

    Mrázek, Jan; Kašík, Ivan; Procházková, L.; Čuba, V.; Aubrecht, Jan; Cajzl, Jakub; Podrazký, Ondřej; Peterka, Pavel; Nikl, Martin

    2014-01-01

    Roč. 12, č. 6 (2014), s. 567-574. ISSN 1336-1376 Grant ostatní: GA AV ČR(CZ) M100761202 Institutional support: RVO:67985882 ; RVO:68378271 Keywords : Erbium * Nanocrystals * Special optical fiber Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering; BM - Solid Matter Physics ; Magnetism (FZU-D)

  6. Modeling of Raman optical activity of globular proteins

    Kessler, Jiří; Kapitán, J.; Yamamoto, S.; Bouř, Petr

    Sapporo : Hokkaido University, 2015. s. 113. [International Conference on Chiroptical Spectroscopy /15./. 30.08.2015-03.09.2015, Sapporo] Institutional support: RVO:61388963 Keywords : vibrational optical activity * proteins * quantum chemistry Subject RIV: CF - Physical ; Theoretical Chemistry

  7. Optical activity of chitosan films with induced anisotropy

    Gegel, Natalia O.; Shipovskaya, Anna B.

    2016-04-01

    The optical anisotropy and optical activity of salt and basic chitosan films, both initial and modified in formic acid vapor were studied. The modification of such films was found to be accompanied by induced time-stable optical anisotropy, by varying the values of specific optical rotation [α] and an inversion of the sign of [α]. The angular dependences (indicatrices) of the specific optical rotation of films on the orientation angle of the sample relative to the direction of the polarization vector of the incident light beam in a plane perpendicular to the beam were obtained. The indicatrices of the initial chitosan films have an almost symmetrical character while those of the films modified in formic acid vapor are irregular. It is concluded of the formation of a vitrified cholesteric mesophase in the chitosan films with induced optical anisotropy.

  8. Raman optical activity of proteins and glycoproteins

    Raman optical activity (ROA), measured in this project as a small difference in the intensity of Raman scattering from chiral molecules in right- and left-circularly polarised incident laser light, offers the potential to provide more information about the structure of biological molecules in aqueous solution than conventional spectroscopic techniques. Chapter one contains a general discussion of the relative merits of different spectroscopic techniques for structure determination of biomolecules, as well as a brief introduction to ROA. In Chapter two a theoretical analysis of ROA is developed, which extends the discussion in chapter one. The spectrometer setup and sample preparation is then discussed in chapter three. Instrument and sample conditions are monitored to ensure that the best results are obtained. As with any experimental project problems occur, which may result in a degradation of the spectra obtained. The cause of these problems was explored and remedied whenever possible. Chapter four introduces a brief account of protein, glycoprotein and carbohydrate structure and function, with a particular emphasis on the structure of proteins. In the remaining chapters experimental ROA results on proteins and glycoproteins, with some carbohydrate samples, from a wide range of sources are examined. For example, in chapter five some β-sheet proteins are examined. Structural features in these proteins are examined in the extended amide III region of their ROA spectra, revealing that ROA is sensitive to the rigidity or flexibility inherent in proteins. Chapter six concentrates on a group of proteins (usually glycoproteins) known as the serine proteinase inhibitors (serpins). Medically, the serpins are one of the most important groups of proteins of current interest, with wide-ranging implications in conditions such as Down's syndrome, Alzheimer's disease, and emphysema with associated cirrhosis of the liver. With favourable samples and conditions ROA may offer the

  9. Ultrafast chiroptical spectroscopy: Monitoring optical activity in quick time

    Hanju Rhee

    2011-12-01

    Full Text Available Optical activity spectroscopy provides rich structural information of biologically important molecules in condensed phases. However, a few intrinsic problems of conventional method based on electric field intensity measurement scheme prohibited its extension to time domain technique. We have recently developed new types of optical activity spectroscopic methods capable of measuring chiroptical signals with femtosecond pulses. It is believed that these novel approaches will be applied to a variety of ultrafast chiroptical studies.

  10. Giant optical activity of sugar in thin soap films.

    Emile, Janine; Emile, Olivier; Ghoufi, Aziz; Moréac, Alain; Casanova, Federico; Ding, Minxia; Houizot, Patrick

    2013-01-01

    We report on enhanced experimental optical activity measurements of thin soap films in the presence of sugar. This unusual optical activity is linked to the intramolecular chiral conformation of the glucose molecules at the air/liquid interface. Choosing sodium dodecylsulfate (SDS) as a model surfactant and glucose as model sugar, favorable interactions between the anionic group -OSO3(-)- and the glucose molecules are highlighted. This induces an interfacial anchoring of glucose molecules lea...

  11. Optical Switching for Dynamic Distribution of Wireless-Over-Fiber Signals in Active Optical Networks

    Vegas Olmos, Juan José; Rodes, Guillermo; Tafur Monroy, Idelfonso

    2012-01-01

    In this paper, we report on an experimental validation of dynamic distribution of wireless-over-fiber by employing optical switching using semiconductor optical amplifiers; we also provide a channel distribution scheme and a generic topology for such an optical switch. The experiment consists of a...... results show a negligible power penalty on each channel for both the best and the worst case in terms of inter-channel crosstalk. The presented system is highly scalable both in terms of port count and throughput, a desirable feature in highly branched access networks, and is modulation- and frequency...... four wavelength-division-multiplexed channel system operating on a WiMax frequency band and employing an orthogonal-frequency-division-multiplexing modulation at 625 Mbits/s per channel, transmission of the data over 20 km of optical fiber, and active switching in a 1 × 16 active optical switch. The...

  12. Label-free optical activation of astrocyte in vivo

    Choi, Myunghwan; Yoon, Jonghee; Ku, Taeyun; Choi, Kyungsun; Choi, Chulhee

    2011-07-01

    As the most abundant cell type in the central nervous system, astrocyte has been one of main research topics in neuroscience. Although various tools have been developed, at present, there is no tool that allows noninvasive activation of astrocyte in vivo without genetic or pharmacological perturbation. Here we report a noninvasive label-free optical method for physiological astrocyte activation in vivo using a femtosecond pulsed laser. We showed the laser stimulation robustly induced astrocytic calcium activation in vivo and further verified physiological relevance of the calcium increase by demonstrating astrocyte mediated vasodilation in the brain. This novel optical method will facilitate noninvasive physiological study on astrocyte function.

  13. Active Learning Strategies for Introductory Light and Optics

    Sokoloff, David R.

    2016-01-01

    There is considerable evidence that traditional approaches are ineffective in teaching physics concepts, including light and optics concepts. A major focus of the work of the Activity Based Physics Group has been on the development of active learning curricula like RealTime Physics (RTP) labs and Interactive Lecture Demonstrations (ILDs). Among…

  14. Magneto-Optical Activity in High Index Dielectric Nanoantennas

    de Sousa, N; Sáenz, J J; García-Martín, A

    2016-01-01

    The magneto-optical activity, namely the polarization conversion capabilities of high-index, non-absorbing, core-shell dielectric nanospheres is theoretically analyzed. We show that, in analogy with their plasmonic counterparts, the polarization conversion in resonant dielectric particles is linked to the amount of electromagnetic field probing the magneto-optical material in the system. However, in strong contrast with plasmon nanoparticles, due to the peculiar distribution of the internal fields in resonant dielectric spheres, the magneto-optical response is fully governed by the magnetic (dipolar and quadrupolar) resonances with little effect of the electric ones.

  15. Novel implementations of optical switch control module and 3D-CSP for 10 Gbps active optical access system

    Wakayama, Koji; Okuno, Michitaka; Matsuoka, Yasunobu; Hosomi, Kazuhiko; Sagawa, Misuzu; Sugawara, Toshiki

    2009-11-01

    We propose an optical switch control procedure for high-performance and cost-effective 10 Gbps Active Optical Access System (AOAS) in which optical switches are used instead of optical splitters in PON (Passive Optical Network). We demonstrate the implemented optical switch control module on Optical Switching Unit (OSW) with logic circuits works effectively. We also propose a compact optical 3D-CSP (Chip Scale Package) to achieve the high performance of AOAS without losing cost advantage of PON. We demonstrate the implemented 3D-CSP works effectively.

  16. Inhibition of DNA gyrase by optically active ofloxacin.

    Imamura, M.; Shibamura, S; Hayakawa, I.; Osada, Y

    1987-01-01

    Inhibition of DNA gyrase activity by optically active ofloxacins was studied and compared with the inhibition of norfloxacin and ciprofloxacin. The (-)-isomer of ofloxacin inhibited the supercoiling activity of gyrase from Micrococcus luteus more effectively than did the (+)-isomer. The 50% inhibitory concentrations of (-)-, (+/-)-, and (+)-ofloxacin; norfloxacin; and ciprofloxacin for gyrase from Escherichia coli were 0.78, 0.98, 7.24, 0.78, and 1.15 microgram/ml, respectively. These values ...

  17. FTTA System Demo Using Optical Fiber-Coupled Active Antennas

    Niels Neumann

    2014-08-01

    Full Text Available The convergence of optical and wireless systems such as Radio-over-Fiber (RoF networks is the key to coping with the increasing bandwidth demands due to the increasing popularity of video and other high data rate applications. A high level of integration of optical technologies enables simple base stations with a fiber-to-the-antenna (FTTA approach. In this paper, we present a complete full-duplex RoF–FTTA system consisting of integrated active fiber-coupled optical receiving and transmitting antennas that are directly connected to a standard single mode fiber optical link. Data rates up to 1 Gbit/s could be shown without advanced modulation formats on a 1.5 GHz carrier frequency. The antennas as well as the whole system are explained and the results of the system experiments are discussed.

  18. Influence of optical activity on rogue waves propagating in chiral optical fibers

    Temgoua, D. D. Estelle; Kofane, T. C.

    2016-06-01

    We derive the nonlinear Schrödinger (NLS) equation in chiral optical fiber with right- and left-hand nonlinear polarization. We use the similarity transformation to reduce the generalized chiral NLS equation to the higher-order integrable Hirota equation. We present the first- and second-order rational solutions of the chiral NLS equation with variable and constant coefficients, based on the modified Darboux transformation method. For some specific set of parameters, the features of chiral optical rogue waves are analyzed from analytical results, showing the influence of optical activity on waves. We also generate the exact solutions of the two-component coupled nonlinear Schrödinger equations, which describe optical activity effects on the propagation of rogue waves, and their properties in linear and nonlinear coupling cases are investigated. The condition of modulation instability of the background reveals the existence of vector rogue waves and the number of stable and unstable branches. Controllability of chiral optical rogue waves is examined by numerical simulations and may bring potential applications in optical fibers and in many other physical systems.

  19. Human brain activity with functional NIR optical imager

    Luo, Qingming

    2001-08-01

    In this paper we reviewed the applications of functional near infrared optical imager in human brain activity. Optical imaging results of brain activity, including memory for new association, emotional thinking, mental arithmetic, pattern recognition ' where's Waldo?, occipital cortex in visual stimulation, and motor cortex in finger tapping, are demonstrated. It is shown that the NIR optical method opens up new fields of study of the human population, in adults under conditions of simulated or real stress that may have important effects upon functional performance. It makes practical and affordable for large populations the complex technology of measuring brain function. It is portable and low cost. In cognitive tasks subjects could report orally. The temporal resolution could be millisecond or less in theory. NIR method will have good prospects in exploring human brain secret.

  20. Modelling of vibrational optical activity of fibrillar systems

    Kessler, Jiří; Kapitán, J.; Yamamoto, S.; Kiederling, T. A.; Bouř, Petr

    Vienna : Vienna University of Technology, 2015 - (Lendl, B.; Koch, C.; Kraft, M.; Ofner, J.; Ramer, G.). s. 504-505 ISBN 978-3-200-04205-6. [ICAVS8. International Conference on Advanced Vibrational Spectroscopy /8./. 12.07.2015-17.07.2015, Vienna] Institutional support: RVO:61388963 Keywords : vibrational optical activity * proteins * fibrills Subject RIV: CF - Physical ; Theoretical Chemistry

  1. Flow Velocity Measurement by Image Processing of Optically Activated Tracers

    Gharib, M.; Hernan, M. A.; Yavrouian, A. H.; Sarohia, V.

    1985-01-01

    A computerized flow visualization technique capable of quantifying the flow field automatically has been developed. This technique uses afterglowing effect of optically activated phosphorescent particles to retrieve vectorial information on each trace. By using this information, in conjunction with computer image processing, the flow field of a free surface transient vortex was investigated.

  2. Multicolour Optical Photometry of Active Geostationary Satellites

    Jolley, A.; Wade, G.; Bedard, D.

    Although broadband photometry has been used to infer information about artificial satellites since soon after the launch of Sputnik 1, the development of photometric techniques for non-resolved space object identification or characterisation has been hampered by the large number of variables involved. Many individual studies, and some long ongoing experiments, have used costly metre-class telescopes to obtain data despite other experiments demonstrating that much more flexible and affordable small aperture telescopes may be suitable for the task. In addition, due to the highly time consuming and weather dependent nature of obtaining photometric observations, many studies have suffered from data sets of limited size, or relied upon simulations to support their claims. With this in mind, an experiment was conducted with the aim of determining the utility of small aperture telescopes for conducting broadband photometry of satellites for the purpose of non-resolved space object identification and characterisation. A 14 inch Celestron CG-14 telescope was used to gain multiple night-long, high temporal resolution data sets of six active geostationary satellites. The results of the experiment cast doubt on the efficacy of some of the previous approaches to obtaining and analysing photometric data. It was discovered that geostationary satellite lightcurves can vary to a greater degree than has generally been recognised, and colour ratios vary considerably with changes in the illumination/observation geometry, making it difficult to use colour for satellite discrimination. Evidence was also detected of variations in the spectral energy distribution of sunlight reflected off satellite surface materials, which could have implications for surface material characterisation and techniques that aim to separate satellite body and solar panel contributions to the total observed spectra.

  3. All-optical active switching in individual semiconductor nanowires

    Piccione, Brian; Cho, Chang-Hee; van Vugt, Lambert K.; Agarwal, Ritesh

    2012-10-01

    The imminent limitations of electronic integrated circuits are stimulating intense activity in the area of nanophotonics for the development of on-chip optical components, and solutions incorporating direct-bandgap semiconductors are important in achieving this end. Optical processing of data at the nanometre scale is promising for circumventing these limitations, but requires the development of a toolbox of components including emitters, detectors, modulators, waveguides and switches. In comparison to components fabricated using top-down methods, semiconductor nanowires offer superior surface properties and stronger optical confinement. They are therefore ideal candidates for nanoscale optical network components, as well as model systems for understanding optical confinement. Here, we demonstrate all-optical switching in individual CdS nanowire cavities with subwavelength dimensions through stimulated polariton scattering, as well as a functional NAND gate built from multiple switches. The device design exploits the strong light-matter coupling present in these nanowires, leading to footprints that are a fraction of those of comparable silicon-based dielectric contrast and photonic crystal devices.

  4. Optical imaging of neural and hemodynamic brain activity

    Schei, Jennifer Lynn

    Optical imaging technologies can be used to record neural and hemodynamic activity. Neural activity elicits physiological changes that alter the optical tissue properties. Specifically, changes in polarized light are concomitant with neural depolarization. We measured polarization changes from an isolated lobster nerve during action potential propagation using both reflected and transmitted light. In transmission mode, polarization changes were largest throughout the center of the nerve, suggesting that most of the optical signal arose from the inner nerve bundle. In reflection mode, polarization changes were largest near the edges, suggesting that most of the optical signal arose from the outer sheath. To overcome irregular cell orientation found in the brain, we measured polarization changes from a nerve tied in a knot. Our results show that neural activation produces polarization changes that can be imaged even without regular cell orientations. Neural activation expends energy resources and elicits metabolic delivery through blood vessel dilation, increasing blood flow and volume. We used spectroscopic imaging techniques combined with electrophysiological measurements to record evoked neural and hemodynamic responses from the auditory cortex of the rat. By using implantable optics, we measured responses across natural wake and sleep states, as well as responses following different amounts of sleep deprivation. During quiet sleep, evoked metabolic responses were larger compared to wake, perhaps because blood vessels were more compliant. When animals were sleep deprived, evoked hemodynamic responses were smaller following longer periods of deprivation. These results suggest that prolonged neural activity through sleep deprivation may diminish vascular compliance as indicated by the blunted vascular response. Subsequent sleep may allow vessels to relax, restoring their ability to deliver blood. These results also suggest that severe sleep deprivation or chronic

  5. Kepler Observations of Rapid Optical Variability in Active Galactic Nuclei

    Mushotzky, R. F.; Edelson, R.; Baumgartner, W. H.; Gandhi, P.

    2012-01-01

    Over three quarters in 2010 - 2011, Kepler monitored optical emission from four active galactic nuclei (AGN) with approx 30 min sampling, > 90% duty cycle and approx AGN optical fluctuation power spectral density functions (PSDs) over a wide range in temporal frequency. Fits to these PSDs yielded power law slopes of -2.6 to -3.3, much steeper than typically seen in the X-rays. We find evidence that individual AGN exhibit intrinsically different PSD slopes. The steep PSD fits are a challenge to recent AGN variability models but seem consistent with first order MRI theoretical calculations of accretion disk fluctuations.

  6. Pattern matching based active optical sorting of colloids/cells

    We report active optical sorting of colloids/cells by employing a cross correlation based pattern matching technique for selection of the desired objects and thereafter sorting using dynamically controllable holographic optical traps. The problem of possible collision between the different sets of objects during sorting was avoided by raising one set of particles to a different plane. We also present the results obtained on using this approach for some representative applications such as sorting of silica particles of two different sizes, of closely packed colloids and of white blood cells and red blood cells from a mixture of the two. (paper)

  7. Optical packaging activities at Institute of Microelectronics (IME), Singapore

    Teo, Keng-Hwa; Sudharsanam, Krishnamachari; Pamidighantam, Ramana V.; Yeo, Yongkee; Iyer, Mahadevan K.

    2002-08-01

    The development of optoelectronic components for gigabit Ethernet communications is converging towards access networks where the cost of device makes a significant impact on the market acceptance. Device fabrication and packaging cost have to be brought down with novel assembly and packaging methods. Singapore has established a reputation in semiconductor device development and fabrication with excellent process and packaging facilities. Institute of Microelectronics (IME) was founded in 1991 to add value to the Singapore electronics industry. IME is involved in the development of active and passive photonics components using Silicon and polymer materials. We present a brief report on the development activities taking place in the field of optical component packaging at IME in recent years. We present a review of our competence and some of the optical device packaging activities that are being undertaken.

  8. Optical nuclear activity in the radio galaxy 3C 465

    De Robertis, M.M.; Yee, H.K.C. (York Univ., North York (Canada) Toronto Univ. (Canada))

    1990-07-01

    The presently discussed discovery of weak, high-ionization emission lines in the nuclei of radio galaxies which had been classified as quiescent absorption-line systems demonstrates that AGN-like activity does occur in the central galaxies of rich clusters. 3C 465-like objects can be considered the extreme low-luminosity end of active nuclei in the centers of rich clusters; the estimated magnitude of 3C 465's nuclear component, at -15.7, is consistent with the precipitous drop of the luminosities of quasars in clusters. 3C 465 appears to represent a new class of optically active objects. 48 refs.

  9. Optical nuclear activity in the radio galaxy 3C 465

    The presently discussed discovery of weak, high-ionization emission lines in the nuclei of radio galaxies which had been classified as quiescent absorption-line systems demonstrates that AGN-like activity does occur in the central galaxies of rich clusters. 3C 465-like objects can be considered the extreme low-luminosity end of active nuclei in the centers of rich clusters; the estimated magnitude of 3C 465's nuclear component, at -15.7, is consistent with the precipitous drop of the luminosities of quasars in clusters. 3C 465 appears to represent a new class of optically active objects. 48 refs

  10. Active Optical Control of Quasi-Static Aberrations for ATST

    Johnson, L. C.; Upton, R.; Rimmele, T. R.; Hubbard, R.; Barden, S. C.

    2012-12-01

    The Advanced Technology Solar Telescope (ATST) requires active control of quasi-static telescope aberrations in order to achieve the image quality set by its science requirements. Four active mirrors will be used to compensate for optical misalignments induced by changing gravitational forces and thermal gradients. These misalignments manifest themselves primarily as low-order wavefront aberrations that will be measured by a Shack-Hartmann wavefront sensor. When operating in closed-loop with the wavefront sensor, the active optics control algorithm uses a linear least-squares reconstructor incorporating force constraints to limit force applied to the primary mirror while also incorporating a neutral-point constraint on the secondary mirror to limit pointing errors. The resulting system compensates for astigmatism and defocus with rigid-body motion of the secondary mirror and higher-order aberrations with primary mirror bending modes. We demonstrate this reconstruction method and present simulation results that apply the active optics correction to aberrations generated by finite-element modeling of thermal and gravitational effects over a typical day of ATST operation. Quasi-static wavefront errors are corrected to within limits set by wavefront sensor noise in all cases with very little force applied to the primary mirror surface and minimal pointing correction needed.

  11. Hemodynamic responses to functional activation accessed by optical imaging

    Ni, Songlin; Li, Pengcheng; Yang, Yuanyuan; Lv, Xiaohua; Luo, Qingming

    2006-01-01

    A multi-wavelength light-emitting diode (LED) and laser diode (LD) based optical imaging system was developed to visualize the changes in cerebral blood flow, oxygenation following functional activation simultaneously in rodent cortex. The 2-D blood flow image was accessed by laser speckle contrast imaging, and the spectroscopic imaging of intrinsic signal was used for the calculation of oxyhemoglobin (HbO), deoxyhemoglobin (Hb) and total hemoglobin (HbT) concentration. The combination of spectroscopic imaging and laser speckle contrast imaging provides the capability to simultaneously investigate the spatial and temporal blood flow and hemoglobin concentration changes with high resolution, which may lead to a better understanding of the coupling between neuronal activation and vascular responses. The optical imaging system been built is compact and convenient to investigators. And it is reliable to acquire raw data. In present study, the hemodynamic responses to cortical spreading depression (CSD) in parietal cortex of ~-chloralose/urethan anesthetized rats were demonstrated.

  12. Laser-heating-based active optics for synchrotron radiation applications.

    Yang, Fugui; Li, Ming; Gao, Lidan; Sheng, Weifan; Liu, Peng; Zhang, Xiaowei

    2016-06-15

    Active optics has attracted considerable interest from researchers in synchrotron radiation facilities because of its capacity for x-ray wavefront correction. Here, we report a novel and efficient technique for correcting or modulating a mirror surface profile based on laser-heating-induced thermal expansion. An experimental study of the characteristics of the surface thermal deformation response indicates that the power of a milliwatt laser yields a bump height as low as the subnanometer scale and that the variation of the spot size modulates the response function width effectively. In addition, the capacity of the laser-heating technique for free-form surface modulation is demonstrated via a one-dimensional surface correction experiment. The developed method is a promising new approach toward effective x-ray active optics coupled with at-wavelength metrology techniques. PMID:27304296

  13. Laser-heating-based active optics for synchrotron radiation applications

    Yang, Fugui; Zhang, Xiaowei

    2016-01-01

    Active optics has attracted considerable interest from researchers in synchrotron radiation facilities, because of its capacity for x-ray wavefront correction. Here, we report a novel and efficient technique for correcting or modulating a mirror surface profile based on laser-heating-induced thermal expansion. An experimental study of the characteristics of the surface thermal deformation response indicates that the power of a milliwatt laser yields a bump height as low as sub-nanometer scale, and that variation of the spot size modulates the response function width effectively. In addition, the capacity of the laser-heating technique for free-form surface modulation is demonstrated via a surface correction experiment. The developed method is a promising new approach towards effective x-ray active optics coupled with at-wavelength metrology techniques.

  14. Active optics system of the VLT Survey Telescope.

    Schipani, Pietro; Noethe, Lothar; Magrin, Demetrio; Kuijken, Konrad; Arcidiacono, Carmelo; Argomedo, Javier; Capaccioli, Massimo; Dall'Ora, Massimo; D'Orsi, Sergio; Farinato, Jacopo; Fierro, Davide; Holzlöhner, Ronald; Marty, Laurent; Molfese, Cesare; Perrotta, Francesco; Ragazzoni, Roberto; Savarese, Salvatore; Rakich, Andrew; Umbriaco, Gabriele

    2016-03-01

    This paper describes the active optics system of the VLT Survey Telescope, the 2.6-m survey telescope designed for visible wavelengths of the European Southern Observatory at Cerro Paranal, in the Atacama desert. The telescope is characterized by a wide field of view (1.42 deg diameter), leading to tighter active optics than in conventional telescopes, in particular for the alignment requirements. We discuss the effects of typical error sources on the image quality and present the specific solutions adopted for wavefront sensing and correction of the aberrations, which are based on the shaping of a monolithic primary mirror and the positioning of the secondary in five degrees of freedom. PMID:26974616

  15. Intrinsic optical signals of the nervous tissue during neuronal activation

    Konopková, Renata; Otáhal, Jakub

    Brno : Brno University of Technology, 2006 - (Burša, J.; Fuis, V.). s. 124-125 ISBN 80-214-3232-2. [Human Biomechanics 2006 : international conference /11./. 13.11.2006-16.11.2006, Hrotovice] R&D Projects: GA AV ČR(CZ) 1QS501210509 Institutional research plan: CEZ:AV0Z50110509 Keywords : intrinsic optical signals * neuronal activation * light transmission Subject RIV: ED - Physiology

  16. Dispersion relations and sum rules for natural optical activity

    Dispersion relations and sum rules are derived for the complex rotatory power of an arbitrary linear (nonmagnetic) isotropic medium showing natural optical activity. Both previously known dispersion relations and sum rules as well as new ones are obtained. It is shown that the Rosenfeld-Condon dispersion formula is inconsistent with the expected asymptotic behavior at high frequencies. A new dispersion formula based on quantum eletro-dynamics removes this inconsistency; however, it still requires modification in the low-frequency limit. (Author)

  17. Anatomical Atlas-Guided Diffuse Optical Tomography of Brain Activation

    Custo, Anna; Boas, David A.; Tsuzuki, Daisuke; Dan, Ippeita; Mesquita, Rickson; Fischl, Bruce; Grimson, W. Eric L.; Wells, Williams

    2009-01-01

    We describe a neuro imaging protocol that utilizes an anatomical atlas of the human head to guide Diffuse optical tomography of human brain activation. The protocol is demonstrated by imaging the hemodynamic response to median nerve stimulation in three healthy subjects, and comparing the images obtained using a head atlas with the images obtained using the subject-specific head anatomy. The results indicate that using the head atlas anatomy it is possible to reconstruct the location of the b...

  18. Synthesis of Optically Active Polystyrene Catalyzed by Monophosphine Pd Complexes.

    Jouffroy, Matthieu; Armspach, Dominique; Matt, Dominique; Osakada, Kohtaro; Takeuchi, Daisuke

    2016-07-11

    Cationic Pd(II) monophosphine complexes derived from α- and β-cyclodextrins (CDs) promote the homopolymerization of styrene under carbon monoxide pressure. Although reversible CO coordination takes place under catalytic conditions according to (13) C NMR studies with (13) C-enriched CO, both complexes catalyze the formation of CO-free styrene polymers. These macromolecules display optical activity as a result of the presence of stereoregular sequences within the overall atactic polymer. PMID:27218801

  19. Optically Active Metasurface with Non-Chiral Plasmonic Nanoantennas

    Shaltout, Amr; Liu, Jingjing; Shalaev, V.M.; Kildishev, Alexander V.

    2014-01-01

    We design, fabricate, and experimentally demonstrate an optically active metasurface of lambda/50 thickness that rotates linearly polarized fight by 450 over a broadband wavelength range in the near IR region. The rotation is achieved through the use of a planar array of plasmonic nanoantennas, which generates a fixed phase-shift between the left circular polarized and right circular polarized components of the incident light. Our approach is built on a new supercell metasurface design method...

  20. Final Report: Imaging of Buried Nanoscale Optically Active Materials

    Appelbaum, Ian

    2011-07-05

    This is a final report covering work done at University of Maryland to develop a Ballistic Electron Emission Luminescence (BEEL) microscope. This technique was intended to examine the carrier transport and photon emission in deeply buried optically-active layers and thereby provide a means for materials science to unmask the detailed consequences of experimentally controllable growth parameters, such as quantum dot size, statistics and orientation, and defect density and charge recombination pathways.

  1. Diamagnetic Raman Optical Activity of Chlorine, Bromine, and Iodine Gases

    Šebestík, Jaroslav; Kapitán, J.; Pačes, Ondřej; Bouř, Petr

    2016-01-01

    Roč. 55, č. 10 (2016), s. 3504-3508. ISSN 1433-7851 R&D Projects: GA ČR GA13-03978S; GA ČR(CZ) GA14-00431S Institutional support: RVO:61388963 Keywords : angular momentum theory * diamagnetic molecules * excited electronic states * magnetic field * Raman optical activity Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 11.261, year: 2014

  2. Puckering Energetics and Optical Activities of [7]Circulene Conformers.

    Hatanaka, Masashi

    2016-02-25

    The structural preference of [7]circulene is analyzed by taking into account vibronic interactions. DFT calculations reveal that pseudo-Jahn-Teller effects cause the D7h-symmetry structure to relax to C2- and Cs-symmetry structures, which are both ca. 9 kcal/mol lower in energy than the D7h structure. In energy terms, the C2-symmetry structure is 0.05 kcal/mol lower than that of the Cs-symmetry. The active vibrations are attributed to low-frequency puckering modes that are coupled with π-σ excitation states. The optical activities of the C2-symmetry structure were simulated by configuration interaction calculations, and the simulated CD/ORD spectra were reasonable and consistent with the experimental data. The optical rotatory strengths obeyed the helix rule; that is, the left-handed helix shows negative Cotton effects through the antisymmetric excited states. The calculated spectra will serve as a foundation for further investigation of optical activities of negatively curved structures. PMID:26829071

  3. Optical concept for an active headlamp with a DMD array

    Günther, A.

    2008-04-01

    Present car-headlamps can adapt their light distribution to the traffic situation only in a predefined way. The next generation of headlamps will offer a more flexible adaptation of their light distribution like an adaptive Cut-Off-Line in "Advanced Frontlighting Systems" (AFS). Addressable light sources in future active headlamps enable functions like glare free high beam or marking light. There are several possibilities to design such an addressable light source. In this contribution one solution using a digital micro mirror device (DMD) is presented. With this device an adaptive light distribution can be generated by modulating every pixel of the DMD individually. For the design of an optical system for a DMD headlamp a DMD-Projector was analyzed. The procedure of generating a light distribution can be divided into two processes: a.) illumination of DMD b.) projecting the image of the DMD on the street. In a DMD projector the illumination of a DMD is a very complex optical system with many optical elements. Some of these optical elements are not necessary for a car headlamp because of different requirements for car headlamps and DMD projectors. The illumination system can be simplified if these elements are eliminated. Also the aspect ratio of the imaging system for the DMD has to change 4:3 (DMD) to 7:2 (light distribution on the street).

  4. KEPLER OBSERVATIONS OF RAPID OPTICAL VARIABILITY IN ACTIVE GALACTIC NUCLEI

    Over three quarters in 2010-2011, Kepler monitored optical emission from four active galactic nuclei (AGNs) with ∼30 minute sampling, >90% duty cycle, and ∼<0.1% repeatability. These data determined the AGN optical fluctuation power spectral density (PSD) functions over a wide range in temporal frequency. Fits to these PSDs yielded power-law slopes of –2.6 to –3.3, much steeper than typically seen in the X-rays. We find evidence that individual AGNs exhibit intrinsically different PSD slopes. The steep PSD fits are a challenge to recent AGN variability models but seem consistent with first-order magnetorotational instability theoretical calculations of accretion disk fluctuations.

  5. Optical Control of Living Cells Electrical Activity by Conjugated Polymers.

    Martino, Nicola; Bossio, Caterina; Vaquero Morata, Susana; Lanzani, Guglielmo; Antognazza, Maria Rosa

    2016-01-01

    Hybrid interfaces between organic semiconductors and living tissues represent a new tool for in-vitro and in-vivo applications. In particular, conjugated polymers display several optimal properties as substrates for biological systems, such as good biocompatibility, excellent mechanical properties, cheap and easy processing technology, and possibility of deposition on light, thin and flexible substrates. These materials have been employed for cellular interfaces like neural probes, transistors for excitation and recording of neural activity, biosensors and actuators for drug release. Recent experiments have also demonstrated the possibility to use conjugated polymers for all-optical modulation of the electrical activity of cells. Several in-vitro study cases have been reported, including primary neuronal networks, astrocytes and secondary line cells. Moreover, signal photo-transduction mediated by organic polymers has been shown to restore light sensitivity in degenerated retinas, suggesting that these devices may be used for artificial retinal prosthesis in the future. All in all, light sensitive conjugated polymers represent a new approach for optical modulation of cellular activity. In this work, all the steps required to fabricate a bio-polymer interface for optical excitation of living cells are described. The function of the active interface is to transduce the light stimulus into a modulation of the cell membrane potential. As a study case, useful for in-vitro studies, a polythiophene thin film is used as the functional, light absorbing layer, and Human Embryonic Kidney (HEK-293) cells are employed as the biological component of the interface. Practical examples of successful control of the cell membrane potential upon stimulation with light pulses of different duration are provided. In particular, it is shown that both depolarizing and hyperpolarizing effects on the cell membrane can be achieved depending on the duration of the light stimulus. The reported

  6. Multistate transitions and quantum oscillations of optical activity

    Blanco, Celia; 10.1103/PhysRevA.00.002100

    2012-01-01

    We consider the effects of multistate transitions on the tunneling racemization of chiral molecules. This requires going beyond simple two-state models of enantiomers and to include transitions within a multiple-level quantum-mechanical system.We derive an effective two-level description which accounts for transitions from the enantiomers to an arbitrary number of excited states as an application of the Weisskopf-Wigner approximation scheme. Modifications to the optical activity from these additional states are considered in general terms under the assumption of \\textit{CPT} invariance and then under T invariance. Some formal dynamical analogies between enantiomers and the neutral K-meson system are discussed.

  7. Transition polarizability model of induced resonance Raman optical activity

    Yamamoto, S.; Bouř, Petr

    2013-01-01

    Roč. 34, č. 25 (2013), s. 2152-2158. ISSN 0192-8651 R&D Projects: GA ČR GAP208/11/0105; GA ČR GA13-03978S; GA MŠk(CZ) LH11033 Grant ostatní: AV ČR(CZ) M200551205 Institutional support: RVO:61388963 Keywords : induced resonance Raman optical activity * europium complexes * density functional computations * light scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.601, year: 2013

  8. Observation of Paramagnetic Raman Optical Activity of Nitrogen Dioxide

    Šebestík, Jaroslav; Bouř, Petr

    2014-01-01

    Roč. 53, č. 35 (2014), s. 9236-9239. ISSN 1433-7851 R&D Projects: GA ČR GAP208/11/0105; GA ČR(CZ) GA14-00431S; GA MŠk(CZ) LH11033 Grant ostatní: GA AV ČR(CZ) M200550902 Institutional support: RVO:61388963 Keywords : angular momentum theory * nitrogen dioxide * paramagnetic gases * Raman optical activity * spectral simulations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 11.261, year: 2014

  9. Active Learning Strategies for Introductory Light and Optics

    Sokoloff, David R.

    2016-01-01

    There is considerable evidence that traditional approaches are ineffective in teaching physics concepts, including light and optics concepts. A major focus of the work of the Activity Based Physics Group has been on the development of active learning curricula like RealTime Physics (RTP) labs and Interactive Lecture Demonstrations (ILDs). Among the characteristics of these curricula are: (1) use of a learning cycle in which students are challenged to compare predictions—discussed with their peers in small groups—to observations of the physical world, (2) use of guided hands-on work to construct basic concepts from observations, and (3) use of computer-based tools. It has been possible to change the lecture and laboratory learning environments at a large number of universities, colleges, and high schools without changing the structure of the introductory course. For example, in the United States, nearly 200 physics departments have adopted RTP, and many others use pre-publication, open-source versions or have adopted the RTP approach to develop their own labs. Examples from RTP and ILDs (including optics magic tricks) are described in this paper.

  10. Changing University Students’ Alternative Conceptions of Optics by Active Learning

    Zalkida Hadžibegović

    2013-01-01

    Full Text Available Active learning is individual and group participation in effective activities such as in-class observing, writing, experimenting, discussion, solving problems, and talking about to-be-learned topics. Some instructors believe that active learning is impossible, or at least extremely difficult to achieve in large lecture sessions. Nevertheless, the truly impressive implementation results of theSCALE-UP learning environment suggest that such beliefs are false (Beichner et al., 2000. In this study, we present a design of an active learning environment with positive effect on students. The design is based on the following elements: (1 helping students to learn from interactive lecture experiment; (2 guiding students to use justified explanation and prediction after observing and exploring a phenomenon; (3 developing a conceptual question sequencedesigned for use in an interactive lecture with students answering questions in worksheets by writing and drawing; (4 evaluating students’ conceptual change and gains by questions related to light reflection, refraction, and image formation in an exam held a week after the active learning session. Data were collected from 95 science freshmen with different secondary school backgrounds. They participated in geometrical optics classes organized for collecting research results during and after only one active learning session.The results have showed that around 60% of the students changed their initial alternative conceptions of vision and of image formation. It was also found that a large group of university students is likely to be engaged in active learning, shifting from a passive role they usually play during teacher’s lectures.

  11. Optically active vibrational modes of PPV derivatives on textile substrate

    In this work, MEH-PPV and BDMO-PPV films were deposited by spin-coating on “dirty” textile substrates of canvas, nylon, canvas with resin, jeans and on glass and the temperature dependence of the optical properties of them was studied by photoluminescence and Raman (300 K) techniques. The temperature dependence of the energy, of the half line width at half height of the purely electronic peak, of the integrated PL intensity and of the Huang-Rhys factor, S=I(01)/I(00), were obtained directly from the PL spectrum. For an analysis of the vibrational modes involved, Raman measurements were performed on substrates with and without polymers deposited and the results compared with those found in the literature. The films of MEH-PPV and BDMO-PPV showed optical properties similar to those films deposited on other substrates such as glass, metals, etc. It was observed an inversion of the first vibrational band in relation to the purely electronic peak with increasing temperature in the films deposited on nylon and canvas. The vibrational modes obtained by Raman were used to compose the simulation of the PL line shape of BDMO-PPV films on canvas and nylon, using a model proposed by Lin [29]. - Highlights: ► MEH-PPV and BDMO-PPV films were deposited by spin-coating on dirty textile. ► Their properties were studied by photoluminescence and Raman techniques. ► We observed inversion of first vibrational band in relation to purely electronic peak. ► Optically active vibrational modes of PPV derivatives were studied.

  12. Optical Properties of Active Regions in Terahertz Quantum Cascade Lasers

    Dyksik, M.; Motyka, M.; Rudno-Rudziński, W.; Sęk, G.; Misiewicz, J.; Pucicki, D.; Kosiel, K.; Sankowska, I.; Kubacka-Traczyk, J.; Bugajski, M.

    2016-03-01

    In this work, AlGaAs/GaAs superlattice, with layers' sequence and compositions imitating the active and injector regions of a quantum cascade laser designed for emission in the terahertz spectral range, was investigated. Three independent absorption-like optical spectroscopy techniques were employed in order to study the band structure of the minibands formed within the conduction band. Photoreflectance measurements provided information about interband transitions in the investigated system. Common transmission spectra revealed, in the target range of intraband transitions, mainly a number of lines associated with the phonon-related processes, including two-phonon absorption. In contrast, differential transmittance realized by means of Fourier-transform spectroscopy was utilized to probe the confined states of the conduction band. The obtained energy separation between the second and third confined electron levels, expected to be predominantly contributing to the lasing, was found to be ~9 meV. The optical spectroscopy measurements were supported by numerical calculations performed in the effective mass approximation and XRD measurements for layers' width verification. The calculated energy spacings are in a good agreement with the experimental values.

  13. Optical Properties of Active Regions in Terahertz Quantum Cascade Lasers

    Dyksik, M.; Motyka, M.; Rudno-Rudziński, W.; Sęk, G.; Misiewicz, J.; Pucicki, D.; Kosiel, K.; Sankowska, I.; Kubacka-Traczyk, J.; Bugajski, M.

    2016-07-01

    In this work, AlGaAs/GaAs superlattice, with layers' sequence and compositions imitating the active and injector regions of a quantum cascade laser designed for emission in the terahertz spectral range, was investigated. Three independent absorption-like optical spectroscopy techniques were employed in order to study the band structure of the minibands formed within the conduction band. Photoreflectance measurements provided information about interband transitions in the investigated system. Common transmission spectra revealed, in the target range of intraband transitions, mainly a number of lines associated with the phonon-related processes, including two-phonon absorption. In contrast, differential transmittance realized by means of Fourier-transform spectroscopy was utilized to probe the confined states of the conduction band. The obtained energy separation between the second and third confined electron levels, expected to be predominantly contributing to the lasing, was found to be ~9 meV. The optical spectroscopy measurements were supported by numerical calculations performed in the effective mass approximation and XRD measurements for layers' width verification. The calculated energy spacings are in a good agreement with the experimental values.

  14. Optical spectral properties of active galactic nuclei and quasars

    Four separate investigations dealing with the properties of optical continuum and emission-lines of active galactic nuclei (AGN) and quasars are presented. Multichannel scans of 3CR radio galaxies are decomposed by using a two-component model-an elliptical galaxy and a power-law nonthermal component. It is found that there is a strong correlation between the luminosity of the power-law component and the strength of the Balmer emission-lines. In most cases, by extrapolating to the Lyman continuum, the power-law models derived provide enough ionizing radiation to account for the Balmer line strengths. Extending the study of radio galaxies to include Seyfert galaxies and quasars, it is found that there is a strong continuity between broad-line AGN's and quasars in terms of similarities in the correlations between line luminosities and nonthermal continuum luminosity. Next, a study of the variability of absolute optical energy distribution and emission-lines of the N-galaxies 3C382 and 3C390.3 is made. Lastly, a preliminary study of surface photometry of Markarian Seyfert galaxies are presented. It is found that the properties of the underlying galaxies such as scale-length and surface brightness of the disk, color, and total brightness, do not depart systematically from those of luminous normal spiral galaxies

  15. Optically Active Hybrid Materials Constructed from Helically Substituted Polyacetylenes.

    Zhang, Huanyu; Zhao, Biao; Deng, Jianping

    2016-04-01

    Functional materials derived from synthetic helical polymers are attracting increasing interest. Helically substituted polyacetylenes (HSPAs) are especially interesting as typical artificial helical polymers. In recent years, we designed and prepared a series of functional materials based on HSPAs and inorganic materials. The target is to establish some novel hybrid materials that combine the superior properties of both. The examined inorganic materials include silica, graphene, and magnetic Fe3 O4 nanoparticles. Such new functional materials hold great promise and are expected to find practical applications, for instance, as chiral absorbents, chiral sensors, chiral selectors for inducing enantioselective crystallization, chiral catalysts towards asymmetric catalysis, and chiral carriers for enantioselective release. The Personal Account summarizes our major achievements in preparing optically active hybrid materials. We hope it will speed up progress in chiral-related research areas. PMID:26991679

  16. An analogy between optical turbulence and activator-inhibitor dynamics

    Spineanu, F

    2016-01-01

    The propagation of laser beams through madia with cubic nonlinear polarization is part of a wide range of practical applications. The processes that are involved are at the limit of extreme (cuasi-singular) concentration of intensity and the transversal modulational instability, the saturation and defocusing effect of the plasma generated through avalanche and multi-photon (MPI) ionization are competing leading to a complicated pattern of intensity in the transversal plane. This regime has been named \\textquotedblleft optical turbulence\\textquotedblright and it has been studied in experiments and numerical simulations. Led by the similarity of the portraits we have investigated the possibility that the mechanism that underlies the creation of the complex pattern of the intensity field is the manifestation of the dynamics \\textit{activator-inhibitor}. In a previous work we have considered a unique connection, the \\textit{complex Landau-Ginzburg equation}, a common ground for the nonlinear Schrodinger equation ...

  17. Optically active metasurface with non-chiral plasmonic nanoantennas.

    Shaltout, Amr; Liu, Jingjing; Shalaev, Vladimir M; Kildishev, Alexander V

    2014-08-13

    We design, fabricate, and experimentally demonstrate an optically active metasurface of λ/50 thickness that rotates linearly polarized light by 45° over a broadband wavelength range in the near IR region. The rotation is achieved through the use of a planar array of plasmonic nanoantennas, which generates a fixed phase-shift between the left circular polarized and right circular polarized components of the incident light. Our approach is built on a new supercell metasurface design methodology: by judiciously designing the location and orientation of individual antennas in the structural supercells, we achieve an effective chiral metasurface through a collective operation of nonchiral antennas. This approach simplifies the overall structure when compared to designs with chiral antennas and also enables a chiral effect which quantitatively depends solely on the supercell geometry. This allows for greater tolerance against fabrication and temperature effects. PMID:25051158

  18. Optically powered active sensing system for Internet Of Things

    Gao, Chen; Wang, Jin; Yin, Long; Yang, Jing; Jiang, Jian; Wan, Hongdan

    2014-10-01

    Internet Of Things (IOT) drives a significant increase in the extent and type of sensing technology and equipment. Sensors, instrumentation, control electronics, data logging and transmission units comprising such sensing systems will all require to be powered. Conventionally, electrical powering is supplied by batteries or/and electric power cables. The power supply by batteries usually has a limited lifetime, while the electric power cables are susceptible to electromagnetic interference. In fact, the electromagnetic interference is the key issue limiting the power supply in the strong electromagnetic radiation area and other extreme environments. The novel alternative method of power supply is power over fiber (PoF) technique. As fibers are used as power supply lines instead, the delivery of the power is inherently immune to electromagnetic radiation, and avoids cumbersome shielding of power lines. Such a safer power supply mode would be a promising candidate for applications in IOT. In this work, we built up optically powered active sensing system, supplying uninterrupted power for the remote active sensors and communication modules. Also, we proposed a novel maximum power point tracking technique for photovoltaic power convertors. In our system, the actual output efficiency greater than 40% within 1W laser power. After 1km fiber transmission and opto-electric power conversion, a stable electric power of 210mW was obtained, which is sufficient for operating an active sensing system.

  19. Active fiber optic technologies used as tamper-indicating devices

    The Sandia National Laboratories (SNL) Safeguards and Seals Evaluation Program is evaluating new fiber optic active seal technologies for use at Department of Energy (DOE) facilities. The goal of the program is to investigate active seal technologies that can monitor secured containers storing special nuclear materials (SNM) within DOE vaults. Specifically investigated were active seal technologies that can be used as tamper-indicating devices to monitor secured containers within vaults while personnel remain outside the vault area. Such a system would allow minimal access into vaults while ensuring container content accountability. The purpose of this report is to discuss tamper-indicating devices that were evaluated for possible DOE use. While previous seal evaluations (Phase I and II) considered overall facility applications, this discussion focuses specifically on their use in vault storage situations. The report will highlight general background information, specifications and requirements, and test procedures. Also discussed are the systems available from four manufacturers: Interactive Technologies, Inc., Fiber SenSys, Inc., Inovonics, Inc., and Valve Security Systems

  20. Active fiber optic technologies used as tamper-indicating devices

    Horton, P.R.V.; Waddoups, I.G.

    1995-11-01

    The Sandia National Laboratories (SNL) Safeguards and Seals Evaluation Program is evaluating new fiber optic active seal technologies for use at Department of Energy (DOE) facilities. The goal of the program is to investigate active seal technologies that can monitor secured containers storing special nuclear materials (SNM) within DOE vaults. Specifically investigated were active seal technologies that can be used as tamper-indicating devices to monitor secured containers within vaults while personnel remain outside the vault area. Such a system would allow minimal access into vaults while ensuring container content accountability. The purpose of this report is to discuss tamper-indicating devices that were evaluated for possible DOE use. While previous seal evaluations (Phase I and II) considered overall facility applications, this discussion focuses specifically on their use in vault storage situations. The report will highlight general background information, specifications and requirements, and test procedures. Also discussed are the systems available from four manufacturers: Interactive Technologies, Inc., Fiber SenSys, Inc., Inovonics, Inc., and Valve Security Systems.

  1. Comparative pharmacological activity of optical isomers of phenibut.

    Dambrova, Maija; Zvejniece, Liga; Liepinsh, Edgars; Cirule, Helena; Zharkova, Olga; Veinberg, Grigory; Kalvinsh, Ivars

    2008-03-31

    Phenibut (3-phenyl-4-aminobutyric acid) is a GABA (gamma-aminobutyric acid)-mimetic psychotropic drug which is clinically used in its racemic form. The aim of the present study was to compare the effects of racemic phenibut and its optical isomers in pharmacological tests and GABAB receptor binding studies. In pharmacological tests of locomotor activity, antidepressant and pain effects, S-phenibut was inactive in doses up to 500 mg/kg. In contrast, R-phenibut turned out to be two times more potent than racemic phenibut in most of the tests. In the forced swimming test, at a dose of 100 mg/kg only R-phenibut significantly decreased immobility time. Both R-phenibut and racemic phenibut showed analgesic activity in the tail-flick test with R-phenibut being slightly more active. An GABAB receptor-selective antagonist (3-aminopropyl)(diethoxymethyl)phosphinic acid (CGP35348) inhibited the antidepressant and antinociceptive effects of R-phenibut, as well as locomotor depressing activity of R-phenibut in open field test in vivo. The radioligand binding experiments using a selective GABAB receptor antagonist [3H]CGP54626 revealed that affinity constants for racemic phenibut, R-phenibut and reference GABA-mimetic baclofen were 177+/-2, 92+/-3, 6.0+/-1 microM, respectively. We conclude that the pharmacological activity of racemic phenibut relies on R-phenibut and this correlates to the binding affinity of enantiomers of phenibut to the GABAB receptor. PMID:18275958

  2. Circadian activity rhythm of the house fly continues after optic tract severance and lobectomy

    Helfrich, Charlotte; Cymborowski, Bronislaw; Engelmann, Wolfgang

    1985-01-01

    Under constant conditions, locomotor activity in about 50% of 63 adult Musca domestica continued to be rhythmic after bilateral severance of optic tracts or bilateral lobectomy. Apparently, the optic lobes of Musca do not contain the oscillator for rhythmic control of locomotor activity as has been proposed for other insects. In 20% of the individuals, several circadian components of activity rhythms were found after operation indicating a role of the optic lobes in the coupling of oscillator...

  3. Near-field optical imaging with a CdSe single nanocrystal-based active tip

    Sonnefraud, Y; Motte, J -F; Huant, S; Reiss, P; Bleuse, J; Chandezon, F; Burnett, M T; Ding, W; Maier, S A; 10.1364/OE.14.010596

    2012-01-01

    We report near-field scanning optical imaging with an active tip made of a single fluorescent CdSe nanocrystal attached at the apex of an optical tip. Although the images are acquired only partially because of the random blinking of the semiconductor particle, our work validates the use of such tips in ultra-high spatial resolution optical microscopy.

  4. Polarization ray tracing in anisotropic optically active media. II. Theory and physics

    Refraction, reflection, and amplitude relations are derived that apply to polarization ray tracing in anisotropic, optically active media such as quartz. The constitutive relations for quartz are discussed. The refractive indices and polarization states associated with the two modes of propagation are derived as a function of wave direction. A procedure for refracting at any uniaxial or optically active interface is derived that computes both the ray direction and the wave direction. A method for computing the optical path length is given, and Fresnel transmission and ref lection equations are derived from boundary conditions on the electromagnetic fields. These ray-tracing formulas apply to uniaxial, optically active media and therefore encompass uniaxial, non-optically active materials and isotropic, optically active materials

  5. Multilayer Active Control For Structural Damping And Optical-Path Regulation

    Rahman, Zahidul H.; Spanos, John T.; Fanson, James L.

    1995-01-01

    Two active-control concepts incorporated into system for suppression of vibrations in truss structure and regulation of length of optical path on structure to nanometer level. Optical-path-length-control subsystem contains two feedback control loops to obtain active damping in wide amplitude-and-frequency range. Concept described in more detail in number of previous articles, including "Stabilizing Optical-Path Length on a Vibrating Structure" (NPO-19040), "Controllable Optical Delay Line for Stellar Interferometry" (NPO-18686), "Test Bed for Control of Optical-Path Lengths" (NPO-18487).

  6. CdSe-single-nanoparticle based active tips for near-field optical microscopy

    Chevalier, N; Woehl, J C; Reiss, P; Bleuse, J; Chandezon, F; Huant, S

    2005-01-01

    We present a method to realize active optical tips for use in near-field optics that can operate at room temperature. A metal-coated optical tip is covered with a thin polymer layer stained with CdSe nanocrystals or nanorods at low density. The time analysis of the emission rate and emission spectra of the active tips reveal that a very small number of particles - possibly down to only one - can be made active at the tip apex. This opens the way to near-field optics with a single inorganic nanoparticle as a light source.

  7. Origin invariance in vibrational resonance Raman optical activity

    Vidal, Luciano N., E-mail: lnvidal@utfpr.edu.br; Cappelli, Chiara, E-mail: chiara.cappelli@unipi.it [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 3, 56124 Pisa (Italy); Egidi, Franco [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States); Barone, Vincenzo [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy)

    2015-05-07

    A theoretical investigation on the origin dependence of the vibronic polarizabilities, isotropic and anisotropic rotational invariants, and scattering cross sections in Resonance Raman Optical Activity (RROA) spectroscopy is presented. Expressions showing the origin dependence of these polarizabilities were written in the resonance regime using the Franck-Condon (FC) and Herzberg-Teller (HT) approximations for the electronic transition moments. Differently from the far-from-resonance scattering regime, where the origin dependent terms cancel out when the rotational invariants are calculated, RROA spectrum can exhibit some origin dependence even for eigenfunctions of the electronic Hamiltonian. At the FC level, the RROA spectrum is completely origin invariant if the polarizabilities are calculated using a single excited state or for a set of degenerate states. Otherwise, some origin effects can be observed in the spectrum. At the HT level, RROA spectrum is origin dependent even when the polarizabilities are evaluated from a single excited state but the origin effect is expected to be small in this case. Numerical calculations performed for (S)-methyloxirane, (2R,3R)-dimethyloxirane, and (R)-4-F-2-azetidinone at both FC and HT levels using the velocity representation of the electric dipole and quadrupole transition moments confirm the predictions of the theory and show the extent of origin effects and the effectiveness of suggested ways to remove them.

  8. Optical Breath Gas Sensor for Extravehicular Activity Application

    Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Pilgrim, Jeffrey S.; Chullen, Cinda; Falconi, Eric A.; McMillin, Summer

    2013-01-01

    The function of the infrared gas transducer used during extravehicular activity in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation portable life support system (PLSS) requires next generation CO2 sensing technology with performance beyond that presently in use on the Space Shuttle/International Space Station extravehicular mobility unit (EMU). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode spectrometer based on wavelength modulation spectroscopy is being developed for this purpose by Vista Photonics, Inc. Two prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The sensors incorporate a laser diode-based CO2 channel that also includes an incidental water vapor (humidity) measurement and a separate oxygen channel using a vertical cavity surface emitting laser. Both prototypes are controlled digitally with a field-programmable gate array/microcontroller architecture. The present development extends and upgrades the earlier hardware to the Advanced PLSS 2.0 test article being constructed and tested at JSC. Various improvements to the electronics and gas sampling are being advanced by this project. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU.

  9. Realistic Instrumentation Platform for Active and Passive Optical Remote Sensing.

    Brydegaard, Mikkel; Merdasa, Aboma; Gebru, Alem; Jayaweera, Hiran; Svanberg, Sune

    2016-02-01

    We describe the development of a novel versatile optical platform for active and passive remote sensing of environmental parameters. Applications include assessment of vegetation status and water quality. The system is also adapted for ecological studies, such as identification of flying insects including agricultural pests. The system is based on two mid-size amateur astronomy telescopes, continuous-wave diode lasers at different wavelengths ranging from violet to the near infrared, and detector facilities including quadrant photodiodes, two-dimensional and line scan charge-coupled device cameras, and a compact digital spectrometer. Application examples include remote Ramanlaser-induced fluorescence monitoring of water quality at 120 m distance, and insect identification at kilometer ranges using the recorded wing beat frequency and its spectrum of overtones. Because of the low cost this developmental platform is very suitable for advanced research projects in developing countries and has, in fact, been multiplied during hands-on workshops and is now being used by a number of groups at African universities. PMID:26772187

  10. Resonance Raman Optical Activity of Single Walled Chiral Carbon Nanotubes.

    Nagy, Péter R; Koltai, János; Surján, Péter R; Kürti, Jenő; Szabados, Ágnes

    2016-07-21

    Resonance (vibrational) Raman Optical Activity (ROA) spectra of six chiral single-walled carbon nanotubes (SWCNTs) are studied by theoretical means. Calculations are performed imposing line group symmetry. Polarizability tensors, computed at the π-electron level, are differentiated with respect to DFT normal modes to generate spectral intensities. This computational protocol yields a ROA spectrum in good agreement with the only experiment on SWCNT, available at present. In addition to the conventional periodic electric dipole operator we introduce magnetic dipole and electric quadrupole operators, suitable for conventional k-space calculations. Consequences of the complex nature of the wave function on the scattering cross section are discussed in detail. The resonance phenomenon is accounted for by the short time approximation. Involvement of fundamental vibrations in the region of the intermediate frequency modes is found to be more notable in ROA than in Raman spectra. Calculations indicate exceptionally strong resonance enhancement of SWCNT ROA signals. Resonance ROA profile of the (6,5) tube shows an interesting sign change that may be exploited experimentally for SWCNT identification. PMID:27315548

  11. Twisted split-ring-resonator photonic metamaterial with huge optical activity

    Decker, M; Soukoulis, C M; Linden, S; Wegener, M

    2010-01-01

    Coupled split-ring-resonator metamaterials have previously been shown to exhibit large coupling effects, which are a prerequisite for obtaining large effective optical activity. By a suitable lateral arrangement of these building blocks, we completely eliminate linear birefringence and obtain pure optical activity and connected circular optical dichroism. Experiments at around 100-THz frequency and corresponding modeling are in good agreement. Rotation angles of about 30 degrees for 205nm sample thickness are derived.

  12. The fiber-optic imaging and manipulation of neural activity during animal behavior.

    Miyamoto, Daisuke; Murayama, Masanori

    2016-02-01

    Recent progress with optogenetic probes for imaging and manipulating neural activity has further increased the relevance of fiber-optic systems for neural circuitry research. Optical fibers, which bi-directionally transmit light between separate sites (even at a distance of several meters), can be used for either optical imaging or manipulating neural activity relevant to behavioral circuitry mechanisms. The method's flexibility and the specifications of the light structure are well suited for following the behavior of freely moving animals. Furthermore, thin optical fibers allow researchers to monitor neural activity from not only the cortical surface but also deep brain regions, including the hippocampus and amygdala. Such regions are difficult to target with two-photon microscopes. Optogenetic manipulation of neural activity with an optical fiber has the advantage of being selective for both cell-types and projections as compared to conventional electrophysiological brain tissue stimulation. It is difficult to extract any data regarding changes in neural activity solely from a fiber-optic manipulation device; however, the readout of data is made possible by combining manipulation with electrophysiological recording, or the simultaneous application of optical imaging and manipulation using a bundle-fiber. The present review introduces recent progress in fiber-optic imaging and manipulation methods, while also discussing fiber-optic system designs that are suitable for a given experimental protocol. PMID:26427958

  13. Parallel particle identification and separation for active optical sorting

    Perch-Nielsen, Ivan R.; Palima, Darwin; Dam, Jeppe Seidelin; Glückstad, Jesper

    2009-01-01

    An instrument for rapidly and non-invasively sorting different cell specimens is a valuable tool in biological and medical research. Parallel identification of target specimens through image analysis can sort based on highly tuneable selection criteria and can enable high-speed optical sorting when...... matched with a rapidly reconfigurable optical sorting field. We demonstrate the potential of such a system using colloidal polystyrene microspheres. By combining machine vision with a parallel add-on optical manipulation scheme, we were able to move identified particles over a distance of several hundred...

  14. Computerized Stokes analysis of optically active polymer films

    Georgiev, Georgi

    2010-01-01

    Optics labs are an integral part of the advanced curriculum for physics majors. Students majoring in other disciplines, like chemistry, biology or engineering rarely have the opportunity to learn about the most recent optical techniques and mathematical representation used in today’s science and industry optics. Stokes analysis of polarization of light is one of those methods that are increasingly necessary but are seldom taught outside advanced physics or optics classes that are limited to physics majors. On the other hand biology and chemistry majors already use matrix and polarization techniques in the labs for their specialty, which makes the transition to matrix calculations seamless. Since most of the students in those majors postpone their enrollment in physics, most of the registered in those classes are juniors and seniors, enabling them to handle those techniques. We chose to study polymer samples to aid students majoring in other disciplines, especially chemistry and engineering, with understa...

  15. Nonlinear optics, active plasmonics and metamaterials with liquid crystals

    Khoo, Iam Choon

    2014-03-01

    Nematic liquid crystals possess large and versatile optical nonlinearities suitable for photonics applications spanning the femtoseconds to milliseconds time scales, and across a wide spectral window. We present a comprehensive review of the physical properties and mechanisms that underlie these multiple time scales nonlinearities, delving into individual molecular electronic responses as well as collective ordered-phase dynamical processes. Several exemplary theoretical formalisms and feasibility demonstrations of ultrafast all-optical transmission switching and tunable metamaterials and plasmonic photonic structures where the liquid crystal constituents play the critical role of enabling the processes are discussed. Emphasis is placed on all-optical processes, but we have also highlighted cases where electro-optical means could provide additional control, flexibility and enhancement possibility. We also point out how another phase of chiral nematic, namely, Blue-Phase liquid crystals could circumvent some of the limitations of nematic and present new possibilities.

  16. Direct optical observation of disclination effects in active photonic devices

    Snow, B.D.; Adikan, F.R.M.; J.C.Gates; Gawith, C.B.E.; Dyadyusha, A.; Major, Huw E.; Kaczmarek, M.; P.G.R.Smith

    2008-01-01

    Liquid crystals (LC) are increasingly finding uses in fields outside of display optics. Their strong electro-optic response can be used in applications such as tunable photonic devices, for example, to make tunable planar Bragg gratings. While Bragg gratings are well known as fixed wavelength reflectors, the application of a liquid crystal can convert these fixed reflectors into tunable filter elements, with potential applications in telecommunications networks [1]. We have previously demonst...

  17. Integrated Modeling Activities for the James Webb Space Telescope: Structural-Thermal-Optical Analysis

    Johnston, John D.; Howard, Joseph M.; Mosier, Gary E.; Parrish, Keith A.; McGinnis, Mark A.; Bluth, Marcel; Kim, Kevin; Ha, Kong Q.

    2004-01-01

    The James Web Space Telescope (JWST) is a large, infrared-optimized space telescope scheduled for launch in 2011. This is a continuation of a series of papers on modeling activities for JWST. The structural-thermal-optical, often referred to as STOP, analysis process is used to predict the effect of thermal distortion on optical performance. The benchmark STOP analysis for JWST assesses the effect of an observatory slew on wavefront error. Temperatures predicted using geometric and thermal math models are mapped to a structural finite element model in order to predict thermally induced deformations. Motions and deformations at optical surfaces are then input to optical models, and optical performance is predicted using either an optical ray trace or a linear optical analysis tool. In addition to baseline performance predictions, a process for performing sensitivity studies to assess modeling uncertainties is described.

  18. Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays.

    Papaioannou, Evangelos Th; Kapaklis, Vassilios; Melander, Emil; Hjörvarsson, Björgvin; Pappas, Spiridon D; Patoka, Piotr; Giersig, Michael; Fumagalli, Paul; Garcia-Martin, Antonio; Ctistis, Georgios

    2011-11-21

    The influence of surface plasmons on the magneto-optic activity in a two-dimensional hexagonal array is addressed. The experiments were performed using hexagonal array of circular holes in a ferromagnetic Ni film. Well pronounced troughs are observed in the optical reflectivity, resulting from the presence of surface plasmons. The surface plasmons are found to strongly enhance the magneto-optic response (Kerr rotation), as compared to a continuous film of the same composition. The influence of the hexagonal symmetry of the pattern on the coupling between the plasmonic excitations is demonstrated, using optical diffraction measurements and theoretical calculations of the magneto-optic and of the angular dependence of the optical activity. PMID:22109411

  19. Optically active substituted polyacetylene@carbon nanotube hybrids: Preparation, characterization and infrared emissivity property study

    Bu, Xiaohai; Zhou, Yuming, E-mail: ymzhou@seu.edu.cn; Zhang, Tao; Wang, Yongjuan; Zhang, Zewu; He, Man

    2014-08-15

    Optically active substituted polyacetylene@multiwalled carbon nanotubes (SPA@MWCNTs) nanohybrids were fabricated by wrapping helical SPA copolymers onto the surface of modified nanotubes through ester bonding linkage. SPA copolymer based on chiral phenylalanine and serine was pre-polymerized by a rhodium zwitterion catalyst in THF, and evidently proved to possess strong optical activity and adopt a predominately one-handed helical conformation. Various characterizations including Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) demonstrated that the SPA had been covalently grafted onto the nanotubes without destroying their original graphite structure. The wrapped SPA was found to exhibit an enhancement in thermal stability and still maintained considerable optical activity after grafting. The infrared emissivity property of the nanohybrids at 8–14 μm was investigated in addition. The results indicated that the SPA@MWCNTs hybrid matrix could possess a much lower infrared emissivity value (ε=0.707) than raw MWCNTs, which might be due to synergistic effect of the unique helical conformation of optically active SPA and strengthened interfacial interaction between the organic polymers and inorganic nanoparticles. - Graphical abstract: Optically active SPA@MWCNTs nanohybrids with low infrared emissivity. - Highlights: • Synthesis of optically active SPA copolymer derived from serine and phenylalanine. • Preparation and characterization of optically active SPA@MWCNTs nanohybrids. • Application study of the SPA@MWCNTs nanohybrids (ε=0.707) in lowering the infrared emissivity.

  20. Optically active substituted polyacetylene@carbon nanotube hybrids: Preparation, characterization and infrared emissivity property study

    Optically active substituted polyacetylene@multiwalled carbon nanotubes (SPA@MWCNTs) nanohybrids were fabricated by wrapping helical SPA copolymers onto the surface of modified nanotubes through ester bonding linkage. SPA copolymer based on chiral phenylalanine and serine was pre-polymerized by a rhodium zwitterion catalyst in THF, and evidently proved to possess strong optical activity and adopt a predominately one-handed helical conformation. Various characterizations including Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) demonstrated that the SPA had been covalently grafted onto the nanotubes without destroying their original graphite structure. The wrapped SPA was found to exhibit an enhancement in thermal stability and still maintained considerable optical activity after grafting. The infrared emissivity property of the nanohybrids at 8–14 μm was investigated in addition. The results indicated that the SPA@MWCNTs hybrid matrix could possess a much lower infrared emissivity value (ε=0.707) than raw MWCNTs, which might be due to synergistic effect of the unique helical conformation of optically active SPA and strengthened interfacial interaction between the organic polymers and inorganic nanoparticles. - Graphical abstract: Optically active SPA@MWCNTs nanohybrids with low infrared emissivity. - Highlights: • Synthesis of optically active SPA copolymer derived from serine and phenylalanine. • Preparation and characterization of optically active SPA@MWCNTs nanohybrids. • Application study of the SPA@MWCNTs nanohybrids (ε=0.707) in lowering the infrared emissivity

  1. Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays

    Papaioannou, E. Th.; Kapaklis, Vassilios; Melander, Emil; Hjörvarsson, Björgvin; Pappas, Spiridon D.; Patoka, Piotr; Giersig, Michael; Fumagalli, Paul; García-Martín, Antonio; Ctistis, Georgios

    2011-01-01

    The influence of surface plasmons on the magneto-optic activity in a two-dimensional hexagonal array is addressed. The experiments were performed using hexagonal array of circular holes in a ferromagnetic Ni film. Well pronounced troughs are observed in the optical reflectivity, resulting from the presence of surface plasmons. The surface plasmons are found to strongly enhance the magneto-optic response (Kerr rotation), as compared to a continuous film of the same composition. The influence o...

  2. Variability of Active Galactic Nuclei from the Optical to X-ray Regions

    Gaskell, C. Martin; Klimek, Elizabeth S.

    2009-01-01

    Some progress in understanding AGN variability is reviewed. Reprocessing of X-ray radiation to produce significant amounts of longer-wavelength continua seems to be ruled out. In some objects where there has been correlated X-ray and optical variability, the amplitude of the optical variability has exceeded the amplitude of X-ray variability. We suggest that accelerated particles striking material could be linking X-ray and optical variability (as in activity in the solar chromosphere). Beami...

  3. Correction method of secondary reflection effects in measurement of electro-optic coefficient in optically active materials

    Lemaire, Ph.; Georges, M.

    1992-07-01

    The propagation of light in linearly birefringent and optically active media, such as Bi 12SiO 20 crystals (BSO), has been widely studied by several workers. Various measurement methods of the electro-optic coefficient r41 have been described. One family of those methods consisting in measurement of the light polarization ellipticity after through the crystal has been analysed. Due to the high reflectivity of such crystals, we show that the effect of the secondary reflections can not be neglected. We present the theoretical description and analysis of this effect for one of these methods and we propose a corrective algorithm.

  4. Active optics: deformable mirrors with a minimum number of actuators

    Laslandes, Marie; Ferrari, Marc; 10.2971/jeos.2012.12036

    2012-01-01

    We present two concepts of deformable mirror to compensate for first order optical aberrations. Deformation systems are designed using both elasticity theory and Finite Element Analysis in order to minimize the number of actuators. Starting from instrument specifications, we explain the methodology to design dedicated deformable mirrors. The work presented here leads to correcting devices optimized for specific functions. The Variable Off-Axis paraboLA concept is a 3-actuators, 3-modes system able to generate independently Focus, Astigmatism and Coma. The Correcting Optimized Mirror with a Single Actuator is a 1-actuator system able to generate a given combination of optical aberrations.

  5. Controllable optical activity of gold nanorod and chiral quantum dot assemblies.

    Zhu, Zhening; Guo, Jun; Liu, Wenjing; Li, Zhengtao; Han, Bing; Zhang, Wei; Tang, Zhiyong

    2013-12-16

    The optical coupling between Au nanorods (Au NRs) and chiral quantum dots (QDs) in assemblies is investigated by both experiment and theoretical calculations. The coupled optical activity in the visible-light region can be manipulated by changing either the aspect ratio of Au NRs or the size of QDs (left). PMID:24346941

  6. Optics

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  7. Intercalation of optically active pyridines into layered phosphates and phosphonates

    Zima, Vítězslav; Bureš, F.; Melánová, Klára; Cvejn, D.; Svoboda, Jan; Beneš, L.

    Strasbourg : University of Strasbourg, Francie, 2015. O25. [International Symposium on Intercalation Compounds. 31.05.2015-04.06.2015, Strasbourg] R&D Projects: GA ČR(CZ) GA13-01061S Institutional support: RVO:61389013 Keywords : intercalation * nonlinear optics * prosphonates Subject RIV: CA - Inorganic Chemistry

  8. An electrically-activated dynamic tissue-equivalent phantom for assessment of diffuse optical imaging systems

    Hebden, Jeremy C; Brunker, Joanna; Correia, Teresa; Price, Ben D; Gibson, Adam P; Everdell, N L [Department of Medical Physics and Bioengineering, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2008-01-21

    A novel design of solid dynamic phantom with tissue-like optical properties is presented, which contains variable regions of contrast which are activated electrically. Reversible changes in absorption are produced by localized heating of targets impregnated with thermochromic pigment. A portable, battery-operated prototype has been constructed, and its optical and temporal characteristics have been investigated. The phantom has been developed as a means of assessing the performance of diffuse optical imaging systems, such as those used to monitor haemodynamic changes in the brain and other tissues. Images of the phantom have been reconstructed using data acquired with a continuous wave optical topography system.

  9. An electrically-activated dynamic tissue-equivalent phantom for assessment of diffuse optical imaging systems

    Hebden, Jeremy C.; Brunker, Joanna; Correia, Teresa; Price, Ben D.; Gibson, Adam P.; Everdell, N. L.

    2008-01-01

    A novel design of solid dynamic phantom with tissue-like optical properties is presented, which contains variable regions of contrast which are activated electrically. Reversible changes in absorption are produced by localized heating of targets impregnated with thermochromic pigment. A portable, battery-operated prototype has been constructed, and its optical and temporal characteristics have been investigated. The phantom has been developed as a means of assessing the performance of diffuse optical imaging systems, such as those used to monitor haemodynamic changes in the brain and other tissues. Images of the phantom have been reconstructed using data acquired with a continuous wave optical topography system.

  10. Integration of Optical Manipulation and Electrophysiological Tools to Modulate and Record Activity in Neural Networks

    Difato, F.; Schibalsky, L.; Benfenati, F.; Blau, A.

    2011-07-01

    We present an optical system that combines IR (1064 nm) holographic optical tweezers with a sub-nanosecond-pulsed UV (355 nm) laser microdissector for the optical manipulation of single neurons and entire networks both on transparent and non-transparent substrates in vitro. The phase-modulated laser beam can illuminate the sample concurrently or independently from above or below assuring compatibility with different types of microelectrode array and patch-clamp electrophysiology. By combining electrophysiological and optical tools, neural activity in response to localized stimuli or injury can be studied and quantified at sub-cellular, cellular, and network level.

  11. An electrically-activated dynamic tissue-equivalent phantom for assessment of diffuse optical imaging systems

    A novel design of solid dynamic phantom with tissue-like optical properties is presented, which contains variable regions of contrast which are activated electrically. Reversible changes in absorption are produced by localized heating of targets impregnated with thermochromic pigment. A portable, battery-operated prototype has been constructed, and its optical and temporal characteristics have been investigated. The phantom has been developed as a means of assessing the performance of diffuse optical imaging systems, such as those used to monitor haemodynamic changes in the brain and other tissues. Images of the phantom have been reconstructed using data acquired with a continuous wave optical topography system

  12. Emulsification-Induced Homohelicity in Racemic Helical Polymer for Preparing Optically Active Helical Polymer Nanoparticles.

    Zhao, Biao; Deng, Jinrui; Deng, Jianping

    2016-04-01

    Optically active nano- and microparticles have constituted a significant category of advanced functional materials. However, constructing optically active particles derived from synthetic helical polymers still remains as a big challenge. In the present study, it is attempted to induce a racemic helical polymer (containing right- and left-handed helices in equal amount) to prefer one predominant helicity in aqueous media by using emulsifier in the presence of chiral additive (emulsification process). Excitingly, the emulsification process promotes the racemic helical polymer to unify the helicity and directly provides optically active nanoparticles constructed by chirally helical polymer. A possible mechanism is proposed to explain the emulsification-induced homohelicity effect. The present study establishes a novel strategy for preparing chirally helical polymer-derived optically active nanoparticles based on racemic helical polymers. PMID:26829250

  13. Single Molecule Instrument for Surface Enhanced Raman Optical Activity of Biomolecules Project

    National Aeronautics and Space Administration — Stereochemistry is an essential element of our organic life. Only certain enantiomers are useful as drugs for the human body. Raman Optical Activity (ROA) and...

  14. Single Molecule Instrument for Surface Enhanced Raman Optical Activity of Biomolecules Project

    National Aeronautics and Space Administration — Stereochemistry is an essential element of our organic life. Only certain enantiomers are useful as drugs for the human body. Raman optical activity (ROA) provides...

  15. Active control of electromagnetic radiation through an enhanced thermo-optic effect.

    Sheng, Chong; Liu, Hui; Zhu, Shining; Genov, Dentcho A

    2015-01-01

    The control of electromagnetic radiation in transformation optical metamaterials brings the development of vast variety of optical devices. Of a particular importance is the possibility to control the propagation of light with light. In this work, we use a structured planar cavity to enhance the thermo-optic effect in a transformation optical waveguide. In the process, a control laser produces apparent inhomogeneous refractive index change inside the waveguides. The trajectory of a second probe laser beam is then continuously tuned in the experiment. The experimental results agree well with the developed theory. The reported method can provide a new approach toward development of transformation optical devices where active all-optical control of the impinging light can be achieved. PMID:25746689

  16. Vibrational and Electronic optical Activity of the Chiral Disulphide Group: Implications for Disulphide Bridge Conformation

    Bednárová, Lucie; Bouř, Petr; Maloň, Petr

    2010-01-01

    Roč. 22, č. 5 (2010), s. 514-526. ISSN 0899-0042 R&D Projects: GA ČR(CZ) GA203/07/1335; GA ČR GA202/07/0732; GA AV ČR IAA400550702 Institutional research plan: CEZ:AV0Z40550506 Keywords : disulphide bridge * circular dichroism * vibrational optical activity * Raman optical activity Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.892, year: 2010

  17. Optical rotation and electron spin resonance of an electro-optically active polythiophene

    Graphical abstract: The electro-chiroptical polythiophene displays optical rotation at wavelengths corresponding to the doping band observable in the absorption spectra. The formation of polarons on the main-chain is confirmed by electron spin resonance measurements. - Abstract: A chiroptical polythiophene, is synthesized by electrolytic polymerization in a cholesteric liquid crystal electrolyte solution. The polymer displays a fingerprint texture similar to that of the cholesteric electrolyte solution. Upon electrochemical doping, the polymer displays optical rotation at wavelengths corresponding to the doping band observable in the absorption spectra. The formation of polarons on the main-chain is confirmed by electron spin resonance measurements. The results demonstrate the intermolecular chirality of polarons in this π-conjugated polymer, indicating continuum delocalized polarons are in a three-dimensional helical environment.

  18. Optics

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  19. Monocular distance estimation from optic flow during active landing maneuvers

    Vision is arguably the most widely used sensor for position and velocity estimation in animals, and it is increasingly used in robotic systems as well. Many animals use stereopsis and object recognition in order to make a true estimate of distance. For a tiny insect such as a fruit fly or honeybee, however, these methods fall short. Instead, an insect must rely on calculations of optic flow, which can provide a measure of the ratio of velocity to distance, but not either parameter independently. Nevertheless, flies and other insects are adept at landing on a variety of substrates, a behavior that inherently requires some form of distance estimation in order to trigger distance-appropriate motor actions such as deceleration or leg extension. Previous studies have shown that these behaviors are indeed under visual control, raising the question: how does an insect estimate distance solely using optic flow? In this paper we use a nonlinear control theoretic approach to propose a solution for this problem. Our algorithm takes advantage of visually controlled landing trajectories that have been observed in flies and honeybees. Finally, we implement our algorithm, which we term dynamic peering, using a camera mounted to a linear stage to demonstrate its real-world feasibility. (paper)

  20. High Nonlinear Optic Activity Chromophore- Design and Synthesis

    He Mingqian; Thomas M. Leslie

    2004-01-01

    Chromophores are the center piece of second order nonlinear optical (NLO) materials.The common chromophore consists of a Donor-Bridge-Acceptor structure. Donors and acceptors are connected by a bridge and together they make a fully conjugated system. Based on our previously synthesized novelacceptors [1], we have synthesized a large number of high electro-optic chromophores. In this paper, we report four general types of chromophore that were.synthesized during the last few years in our laboratory. Due to The general nature of our chromophore's structure it is best described as:In these structures, R2 and R3 are different groups or a spiro ring junction. Since they are connected to the chromophore with an SP3 hybridized carbon at the furan ring, they are both out of the plane of the conjugated chromophore system. This unique design greatly increases the chromophore's solubility and processability. We believe this design also prevents the highly dipolar,flat chromophores from achieving - stacking resulting on easier poling and a higher EO coefficient.Our poling results proved our hypothesis with a world record 70 pm/V EO coefficient has been obtained at 1550nm in this class of chromophores.

  1. The crystal structure and optical activity of tellurium

    The element tellurium has a crystal structure made up of spiral chains of bonded atoms packed in a hexagonal array. Its symmetry leads to the existence of enantiomorphic forms containing spirals of opposite handedness, the right-handed one belonging to space group P3121 and the other to P3221, which have opposite optical rotatory powers. The normal methods of crystal structure determination cannot distinguish between the enantiomorphs, nor is this feasible using anomalous dispersion unless there is sufficient asphericity in the tellurium electron density due to bonding. Such asphericity also gives rise to small but measurable differences from unity in the flipping ratios for polarized neutron scattering due to the polarization dependence of the Schwinger scattering. This effect is easier to measure than is the intensity difference between Bijvoet pairs and it has been used to determine the absolute structural configuration that corresponds to a particular sense of optical rotation in a tellurium single crystal. The plane of polarization of the transmitted light rotates in the same sense as the bonded atoms in the spiral chains. This observation disagrees with a previous theoretical calculation based on the single polarizable ion model. (orig.)

  2. Changing University Students’ Alternative Conceptions of Optics by Active Learning

    Zalkida Hadžibegović; Josip Sliško

    2013-01-01

    Active learning is individual and group participation in effective activities such as in class observing, writing, experimenting, discussion, solving problems, and talking about to-be-learned topics. Some instructors believe that active learning is impossible, or at least extremely difficult to achieve in large lecture sessions. Nevertheless, the truly impressive implementation results of the SCALE-UP learning environment suggest that such beliefs are false (Beichner et al., 2000). In this st...

  3. Research based activities in teacher professional development on optics

    Michelini, Marisa; Stefanel, Alberto

    2016-05-01

    The aim of this research is to understand how teachers take ownership of content given them in formative intervention modules and transform it into suggestions and materials for teaching. To this end a module on optics was designed for a group of kindergarten, primary and lower secondary school teachers which sought to integrate meta-cultural, experiential and situated approaches with various context specific factors. The study investigated how teachers deal with conceptual difficulties in the module and how they adapt it to their school situations with data being gathered through a variety of tools. It emerged that the most difficult concepts teachers encountered at the formative stage were those they most often incorporated into their materials. The steps taken in this process of appropriation were then reviewed via a collaborative discussion among the teachers themselves on the materials they had produced.

  4. Complementary chiral metasurface with strong broadband optical activity and enhanced transmission

    Jia, Yan-Peng [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100190 (China); Zhang, Yong-Liang; Dong, Xian-Zi, E-mail: dongxianzi@mail.ipc.ac.cn, E-mail: xmduan@mail.ipc.ac.cn; Zheng, Mei-Ling; Li, Jing; Liu, Jie; Zhao, Zhen-Sheng [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Beijing 100190 (China); Duan, Xuan-Ming, E-mail: dongxianzi@mail.ipc.ac.cn, E-mail: xmduan@mail.ipc.ac.cn [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Beijing 100190 (China); Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No. 266 Fangzheng Ave, Shuitu Technology Development Zone, Beibei District, Chongqing 400714 (China)

    2014-01-06

    We present the design and realization of ultra-thin chiral metasurfaces with giant broadband optical activity in the infrared wavelength. The chiral metasurfaces consisting of periodic hole arrays of complementary asymmetric split ring resonators are fabricated by femtosecond laser two-photon polymerization. Enhanced transmission with strong polarization conversion up to 97% is observed owing to the chiral surface plasmons resulting from mirror symmetry broken. The dependence of optical activity on the degree of structural asymmetry is investigated. This simple planar metasurface is expected to be useful for designing ultra-thin active devices and tailoring the polarization behavior of complex metallic nanostructures.

  5. A cerium glass fiber-optic active target for high energy physics experiments

    A fiber-optic plate imaging system has been developed for active target and tracking applications, in which the active element is Ce(3+) in a silicate glass. Particle tracks and interactions have been recorded with a hit density of /approx gt/4/mm for minimum ionizing particles and with a spatial resolution σ /similar to/ 28μm

  6. Wavefront instability of iodine laser radiation and dynamics of optical inhomogeneity evolution in the active medium

    Zuev, V.S.; Netemin, V.N.; Nosach, O.Y.

    1979-04-01

    The mechanism for the onset of small-scale optical inhomogeneities in the active zone of iodine photodissociation lasers is identified. It is found that in iodine lasers, the radiation undergoes a nonlinear defocusing self-interaction as a result of the closed chain radiation--chemical reaction--gasdynamic perturbation--radiation. As a result of the slow response of the medium, the parametric buildup of small-scale optical inhomogeneities is possible. It is noted that under such conditions, a similar effect may be observed in other types of lasers. It is shown that under inversion storage conditions and short pulse amplification, small-scale optical inhomogeneities should not be observed.

  7. High-Speed Semiconductor Lasers based on Low-Dimensional Active Materials for Optical Telecommunication

    Gilfert, Christian Jürgen

    2012-01-01

    The scope of this work is the fundamental growth, tailoring and characterization of self-organized indium arsenide quantum dots (QDs) and their exploitation as active region for diode lasers emitting in the 1.55 µm range. This wavelength regime is especially interesting for long-haul telecommunications as optical fibers made from silica glass have the lowest optical absorption. Molecular Beam Epitaxy is utilized as fabrication technique for the quantum dots and laser structures. The results p...

  8. Active-optical debris detection: a means for highly accurate position determination of space debris orbits

    Riede, Wolfgang; Hampf, Daniel; Wagner, Paul; Giesen, Adolf

    2014-01-01

    In low Earth orbit (LEO), space debris is usually being tracked by radar facilities. However, optical systems can yield a complementary approach, especially towards high resolution measurements. A particular interesting approach is the method of active-optical observation using a pulsed laser source to derive the distance to the orbital object by a time-of-flight measurement. By combining it with the telescope pointing angles this yields the possibility of fast and accurate 3-D position measu...

  9. A case of unilateral optic disc swelling with chronic active Epstein–Barr virus infection

    Aizawa, Naoko; Nakazawa, Toru; Shimura, Masahiko

    2010-01-01

    Ocular complications of chronic active Epstein–Barr virus (EBV) infection have rarely been reported and are usually associated with systemic symptoms. We described a 17-year-old boy with unilateral optic disc swelling without any systemic symptoms at the initial onset. Antibody titers to EBV were markedly elevated. Treatment with immunosuppressants and corticosteroids dramatically relieved all his symptoms, including unilateral optic swelling and visual field abnormalities.

  10. Active microdisk resonators in an optical code division multiple access system

    Akhavan, Hooman

    2013-02-01

    An optical code division multiple access design consisting of a set of active microdisks coupled to a waveguide bus for both encoder and decoder is presented. This integrated design is beneficial for secure transmission of data through an optical fiber channel. Device optimization and performance analysis shows dependence of the output signal quality on number of users and necessity of proper adjustment of quality factor of the resonators considering intended transmitted data rate.

  11. Parallel robots in a ground-based telescope active optics system: theory and experiments

    Schipani, P.; Ferragina, L.; Marty, L.; Grado, A.; Di Fiore, L.; De Rosa, R.; La Rana, A.; Busatta, A.

    2007-10-01

    This work deals with the application of parallel robots for the correction of defocus and coma optical aberrations in the case study of the VST (VLT Survey Telescope) telescope, to be installed at the ESO observatory of Cerro Paranal (Chile). The parallel robots are used to change position and orientation of the secondary mirror. The secondary mirror positioning capability is a fundamental part in an active optics system, i.e. a closed loop control system for the minimization of the telescope optical aberrations, where the outer optical feedback coming from the wavefront sensor is used to generate references for the inner motion control loop of the secondary mirror positioning robots. Two devices are presented: a 6-6 Stewart platform where both fixed and mobile platforms are regular and similar hexagons whose vertexes belong to the same plane and are on a circle, and a two stages device composed by a XY table plus a tilt platform. The basic theory of active optics corrections is presented. The kinematics of both devices is solved in connection with the active optics application; first test data are presented.

  12. Optically-Induced Neuronal Activity Is Sufficient to Promote Functional Motor Axon Regeneration In Vivo.

    Ward, Patricia J; Jones, Laura N; Mulligan, Amanda; Goolsby, William; Wilhelm, Jennifer C; English, Arthur W

    2016-01-01

    Peripheral nerve injuries are common, and functional recovery is very poor. Beyond surgical repair of the nerve, there are currently no treatment options for these patients. In experimental models of nerve injury, interventions (such as exercise and electrical stimulation) that increase neuronal activity of the injured neurons effectively enhance axon regeneration. Here, we utilized optogenetics to determine whether increased activity alone is sufficient to promote motor axon regeneration. In thy-1-ChR2/YFP transgenic mice in which a subset of motoneurons express the light-sensitive cation channel, channelrhodopsin (ChR2), we activated axons in the sciatic nerve using blue light immediately prior to transection and surgical repair of the sciatic nerve. At four weeks post-injury, direct muscle EMG responses evoked with both optical and electrical stimuli as well as the ratio of these optical/electrical evoked EMG responses were significantly greater in mice that received optical treatment. Thus, significantly more ChR2+ axons successfully re-innervated the gastrocnemius muscle in mice that received optical treatment. Sections of the gastrocnemius muscles were reacted with antibodies to Synaptic Vesicle Protein 2 (SV2) to quantify the number of re-occupied motor endplates. The number of SV2+ endplates was greater in mice that received optical treatment. The number of retrogradely-labeled motoneurons following intramuscular injection of cholera toxin subunit B (conjugated to Alexa Fluor 555) was greater in mice that received optical treatment. Thus, the acute (1 hour), one-time optical treatment resulted in robust, long-lasting effects compared to untreated animals as well as untreated axons (ChR2-). We conclude that neuronal activation is sufficient to promote motor axon regeneration, and this regenerative effect is specific to the activated neurons. PMID:27152611

  13. Optically-Induced Neuronal Activity Is Sufficient to Promote Functional Motor Axon Regeneration In Vivo.

    Patricia J Ward

    Full Text Available Peripheral nerve injuries are common, and functional recovery is very poor. Beyond surgical repair of the nerve, there are currently no treatment options for these patients. In experimental models of nerve injury, interventions (such as exercise and electrical stimulation that increase neuronal activity of the injured neurons effectively enhance axon regeneration. Here, we utilized optogenetics to determine whether increased activity alone is sufficient to promote motor axon regeneration. In thy-1-ChR2/YFP transgenic mice in which a subset of motoneurons express the light-sensitive cation channel, channelrhodopsin (ChR2, we activated axons in the sciatic nerve using blue light immediately prior to transection and surgical repair of the sciatic nerve. At four weeks post-injury, direct muscle EMG responses evoked with both optical and electrical stimuli as well as the ratio of these optical/electrical evoked EMG responses were significantly greater in mice that received optical treatment. Thus, significantly more ChR2+ axons successfully re-innervated the gastrocnemius muscle in mice that received optical treatment. Sections of the gastrocnemius muscles were reacted with antibodies to Synaptic Vesicle Protein 2 (SV2 to quantify the number of re-occupied motor endplates. The number of SV2+ endplates was greater in mice that received optical treatment. The number of retrogradely-labeled motoneurons following intramuscular injection of cholera toxin subunit B (conjugated to Alexa Fluor 555 was greater in mice that received optical treatment. Thus, the acute (1 hour, one-time optical treatment resulted in robust, long-lasting effects compared to untreated animals as well as untreated axons (ChR2-. We conclude that neuronal activation is sufficient to promote motor axon regeneration, and this regenerative effect is specific to the activated neurons.

  14. Optically-Induced Neuronal Activity Is Sufficient to Promote Functional Motor Axon Regeneration In Vivo

    Ward, Patricia J.; Jones, Laura N.; Mulligan, Amanda; Goolsby, William; Wilhelm, Jennifer C.; English, Arthur W.

    2016-01-01

    Peripheral nerve injuries are common, and functional recovery is very poor. Beyond surgical repair of the nerve, there are currently no treatment options for these patients. In experimental models of nerve injury, interventions (such as exercise and electrical stimulation) that increase neuronal activity of the injured neurons effectively enhance axon regeneration. Here, we utilized optogenetics to determine whether increased activity alone is sufficient to promote motor axon regeneration. In thy-1-ChR2/YFP transgenic mice in which a subset of motoneurons express the light-sensitive cation channel, channelrhodopsin (ChR2), we activated axons in the sciatic nerve using blue light immediately prior to transection and surgical repair of the sciatic nerve. At four weeks post-injury, direct muscle EMG responses evoked with both optical and electrical stimuli as well as the ratio of these optical/electrical evoked EMG responses were significantly greater in mice that received optical treatment. Thus, significantly more ChR2+ axons successfully re-innervated the gastrocnemius muscle in mice that received optical treatment. Sections of the gastrocnemius muscles were reacted with antibodies to Synaptic Vesicle Protein 2 (SV2) to quantify the number of re-occupied motor endplates. The number of SV2+ endplates was greater in mice that received optical treatment. The number of retrogradely-labeled motoneurons following intramuscular injection of cholera toxin subunit B (conjugated to Alexa Fluor 555) was greater in mice that received optical treatment. Thus, the acute (1 hour), one-time optical treatment resulted in robust, long-lasting effects compared to untreated animals as well as untreated axons (ChR2-). We conclude that neuronal activation is sufficient to promote motor axon regeneration, and this regenerative effect is specific to the activated neurons. PMID:27152611

  15. Passive radiation detection using optically active CMOS sensors

    Dosiek, Luke; Schalk, Patrick D.

    2013-05-01

    Recently, there have been a number of small-scale and hobbyist successes in employing commodity CMOS-based camera sensors for radiation detection. For example, several smartphone applications initially developed for use in areas near the Fukushima nuclear disaster are capable of detecting radiation using a cell phone camera, provided opaque tape is placed over the lens. In all current useful implementations, it is required that the sensor not be exposed to visible light. We seek to build a system that does not have this restriction. While building such a system would require sophisticated signal processing, it would nevertheless provide great benefits. In addition to fulfilling their primary function of image capture, cameras would also be able to detect unknown radiation sources even when the danger is considered to be low or non-existent. By experimentally profiling the image artifacts generated by gamma ray and β particle impacts, algorithms are developed to identify the unique features of radiation exposure, while discarding optical interaction and thermal noise effects. Preliminary results focus on achieving this goal in a laboratory setting, without regard to integration time or computational complexity. However, future work will seek to address these additional issues.

  16. Optical activity of catalytic elements of hetero-metallic nanostructures

    Antosiewicz, Tomasz J.; Apell, S. Peter; Wadell, Carl; Langhammer, Christoph

    2015-05-01

    Interaction of light with metals in the form of surface plasmons is used in a wide range of applications in which the scattering decay channel is important. The absorption channel is usually thought of as unwanted and detrimental to the efficiency of the device. This is true in many applications, however, recent studies have shown that maximization of the decay channel of surface plasmons has potentially significant uses. One of these is the creation of electron-hole pairs or hot electrons which can be used for e.g. catalysis. Here, we study the optical properties of hetero-metallic nanostructures that enhance light interaction with the catalytic elements of the nanostructures. A hybridized LSPR that matches the spectral characteristic of the light source is excited. This LSPR through coupling between the plasmonic elements maximizes light absorption in the catalytic part of the nanostructure. Numerically calculated visible light absorption in the catalytic nanoparticles is enhanced 12-fold for large catalytic disks and by more 30 for small nanoparticles on the order of 5 nm. In experiments we measure a sizable increase in the absorption cross section when small palladium nanoparticles are coupled to a large silver resonator. These observations suggest that heterometallic nanostructures can enhance catalytic reaction rates.

  17. Active optics experiments. II - Measurement of mirror deformation by holographic method

    Itoh, Noboru; Mikami, Izumi; Miyawaki, Keizou; Sasaki, Aki; Tabata, Masao

    An active optics experiment was performed to study the feasibility of using an active correction system for the Japanese National Large Telescope (Wilson, 1986). A thin mirror was deformed with an active support mechanism and the mirror surface was measured by a holographic method. The experiment is performed for several cases of excess force distributions assigned at the supporting points. The results show good agreement with predictions from FEM analysis.

  18. Synthesis and Antifeedant Activity of Racemic and Optically Active Hydroxy Lactones with the p-Menthane System

    Grudniewska, Aleksandra; Kłobucki, Marek; Dancewicz, Katarzyna; Szczepanik, Maryla; Gabryś, Beata; Wawrzeńczyk, Czesław

    2015-01-01

    Two racemic and two enantiomeric pairs of new δ-hydroxy-γ-lactones based on the p-menthane system were prepared from racemic and optically active cis- and trans-piperitols. The Johnson-Claisen rearrangement of the piperitols, epoxidation of the γδ-unsaturated esters, and acidic lactonization of the epoxy esters were described. The structures of the compounds were confirmed spectroscopically. The antifeedant activities of the hydroxy lactones and racemic piperitone were evaluated against three...

  19. Sensitive optical detection of alkaline phosphatase activity with quantum dots

    Ren, Xiangling [Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Haidian District, Beijing 100190 (China); The State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096 (China); Chen, Zhenzhen; Chen, Xiaoying; Liu, Jing [Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Haidian District, Beijing 100190 (China); Tang, Fangqiong, E-mail: tangfq@mail.ipc.ac.cn [Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Haidian District, Beijing 100190 (China)

    2014-01-15

    A simple method has been developed to detect the activity of alkaline phosphatase (ALP) by the changing of fluorescence intensities of the quantum dots (QDs). In this system, the fluorescence intensities of the QDs were quenched by p-nitrophenol (pNP) which was produced in the process of ALP catalytic reaction. A series of linear calibration curves of the activity of ALP were obtained in different pH buffer solutions. The wide linear range was 3–1000 U L{sup −1} and the detection limit was 3 U L{sup −1} (S/N=3). Furthermore, the experimental conditions of biosensor were optimized, and anti-interference ability was presented. The activity of ALP was also detected in serum and the recovery of ALP in serum samples was more than 95%. The excellent performance of this biosensor indicates that it can be used in practice detection of ALP. -- Highlights: • A sensitive ALP biosensor is constructed based on QDs without complex processes. • The analysis processing is very convenient, simple and rapid. • The detection mechanism of the ALP biosensor is studied by XPS. • The paper proposes a feasible approach for some substrates or enzymes detecting.

  20. Sensitive optical detection of alkaline phosphatase activity with quantum dots

    A simple method has been developed to detect the activity of alkaline phosphatase (ALP) by the changing of fluorescence intensities of the quantum dots (QDs). In this system, the fluorescence intensities of the QDs were quenched by p-nitrophenol (pNP) which was produced in the process of ALP catalytic reaction. A series of linear calibration curves of the activity of ALP were obtained in different pH buffer solutions. The wide linear range was 3–1000 U L−1 and the detection limit was 3 U L−1 (S/N=3). Furthermore, the experimental conditions of biosensor were optimized, and anti-interference ability was presented. The activity of ALP was also detected in serum and the recovery of ALP in serum samples was more than 95%. The excellent performance of this biosensor indicates that it can be used in practice detection of ALP. -- Highlights: • A sensitive ALP biosensor is constructed based on QDs without complex processes. • The analysis processing is very convenient, simple and rapid. • The detection mechanism of the ALP biosensor is studied by XPS. • The paper proposes a feasible approach for some substrates or enzymes detecting

  1. Exploring the active site structure of photoreceptor proteins by Raman optical activity

    Unno, Masashi

    2015-03-01

    Understanding protein function at the atomic level is a major challenge in a field of biophysics and requires the combined efforts of structural and functional methods. We use photoreceptor proteins as a model system to understand in atomic detail how a chromophore and a protein interact to sense light and send a biological signal. A potential technique for investigating molecular structures is Raman optical activity (ROA), which is a spectroscopic method with a high sensitivity to the structural details of chiral molecules. However, its application to photoreceptor proteins has not been reported. Thus we have constructed ROA spectrometer using near-infrared (NIR) laser excitation at 785 nm. The NIR excitation enables us to measure ROA spectra for a variety of biological samples, including photoreceptor proteins, without fluorescence from the samples. In the present study, we have applied the NIR-ROA to bacteriorhodopsin (BR) and photoactive yellow protein (PYP). BR is a light-driven proton pump and contains a protonated Schiff base of retinal as a chromophore. PYP is a blue light receptor, and this protein has the 4-hydroxycinnamyl chromophore, which is covalently linked to Cys69 through a thiolester bond. We have successfully obtained the ROA spectra of the chromophore within a protein environment. Furthermore, calculations of the ROA spectra utilizing density functional theory provide detailed structural information, such as data on out-of-plane distortions of the chromophore. The structural information obtained from the ROA spectra includes the positions of hydrogen atoms, which are usually not detected in the crystal structures of biological samples.

  2. Aggregation-Induced Resonance Raman Optical Activity (AIRROA): A New Mechanism for Chirality Enhancement.

    Zajac, Grzegorz; Kaczor, Agnieszka; Pallares Zazo, Ana; Mlynarski, Jacek; Dudek, Monika; Baranska, Malgorzata

    2016-05-01

    Raman optical activity (ROA) spectroscopy is hampered by low sensitivity, with limited possibilities for enhancing the signal. In the present study, we report a new mechanism whereby chirality is enhanced using the resonance resulting from supramolecular aggregation. We have named this mechanism aggregation-induced resonance Raman optical activity (AIRROA). As an example, we study J-aggregates of astaxanthin (AXT), which show strong absorption of circularly polarized light in the range of ROA excitation. The implications of aggregation-induced signal enhancement for chiroptical spectroscopy are discussed. PMID:27057926

  3. Solution structures of potato virus X and narcissus mosaic virus from Raman optical activity

    Blanch, Ewan W.; Robinson, David J.; Hecht, Lutz;

    2002-01-01

    Potato virus X (PVX) and narcissus mosaic virus (NMV) were studied using vibrational Raman optical activity (ROA) in order to obtain new information on the structures of their coat protein subunits. The ROA spectra of the two intact virions are very similar to each other and similar to that of to......Potato virus X (PVX) and narcissus mosaic virus (NMV) were studied using vibrational Raman optical activity (ROA) in order to obtain new information on the structures of their coat protein subunits. The ROA spectra of the two intact virions are very similar to each other and similar...

  4. Functional imaging of glucose-evoked rat islet activities using transient intrinsic optical signals

    Yao, Xin-Cheng; Cui, Wan-Xing; Li, Yi-Chao; Zhang, Wei; Lu, Rong-Wen; Thompson, Anthony; Amthor, Franklin; Wang, Xu-Jing

    2012-01-01

    We demonstrate intrinsic optical signal (IOS) imaging of intact rat islet, which consists of many endocrine cells working together. A near-infrared digital microscope was employed for optical monitoring of islet activities evoked by glucose stimulation. Dynamic NIR images revealed transient IOS responses in the islet activated by low-dose (2.75mM) and high-dose (5.5mM) glucose stimuli. Comparative experiments and quantitative analysis indicated that both glucose metabolism and calcium/insulin...

  5. Dual and chiral objects for optical activity in general scattering directions

    Fernandez-Corbaton, Ivan; Rockstuhl, Carsten

    2016-01-01

    Optically active artificial structures have attracted tremendous research attention. Such structures must meet two requirements: Lack of spatial inversion symmetries and, a condition usually not explicitly considered, the structure shall preserve the helicity of light, which implies that there must be a vanishing coupling between the states of opposite polarization handedness among incident and scattered plane waves. Here, we put forward and demonstrate that a unit cell made from chiraly arranged electromagnetically dual scatterers serves exactly this purpose. We prove this by demonstrating optical activity of such unit cell in general scattering directions.

  6. Standardization in fiber-optic sensing for structural safety: activities in the ISHMII and IEC

    Habel, Wolfgang R.; Krebber, K.; Daum, W.

    2015-03-01

    Fiber-optic sensors are increasingly established in the sensor market. Their advantages have unquestionably been verified by numerous demonstrations to enhance the operational performance of aged structures or to monitor the structural behavior of safety-relevant structures or their components. However, there are some barriers in use due to a lack of extensive standardization of fiber-optic sensors. This leads very often to restraints in the user's community. The paper shows the status in international standardization of fiber-optic sensors as well as current activities in leading institutions such as IEC and ISHMII and others with the purpose of providing relevant standards for a broader use of selected fiber-optic sensor technologies.

  7. An optical tweezer-based study of antimicrobial activity of silver nanoparticles

    Yogesha; Sarbari Bhattacharya; M K Rabinal; Sharath Ananthamurthy

    2012-08-01

    Understanding and characterizing microbial activity reduction in the presence of antimicrobial agents can help in the design and manufacture of antimicrobial drugs. We demonstrate the use of an optical tweezer setup in recording the changes in bacterial activity with time, induced by the presence of foreign bodies in a bacterial suspension. This is achieved by monitoring the fluctuations of an optically trapped polystyrene bead immersed in it. Examining the changes in the fluctuation pattern of the bead with time provides an accurate characterization of the reduction in the microbial activity. Here, we report on the effect of addition of silver nanoparticles on bacterial cultures of Pseudomonas aeroginosa, Escherichia coli and Bacillus subtilis. We observe a decrease in the bacterial activity with time for the investigated bacterial samples. This method in our opinion, enables one to track changes in bacterial activity levels as a function of time of contact with the antibacterial agent with greater efficacy than traditional cell counting methods.

  8. Giant Optical Activity of Quantum Dots, Rods, and Disks with Screw Dislocations

    Baimuratov, Anvar S.; Rukhlenko, Ivan D.; Noskov, Roman E.; Ginzburg, Pavel; Gun'Ko, Yurii K.; Baranov, Alexander V.; Fedorov, Anatoly V.

    2015-10-01

    For centuries mankind has been modifying the optical properties of materials: first, by elaborating the geometry and composition of structures made of materials found in nature, later by structuring the existing materials at a scale smaller than the operating wavelength. Here we suggest an original approach to introduce optical activity in nanostructured materials, by theoretically demonstrating that conventional achiral semiconducting nanocrystals become optically active in the presence of screw dislocations, which can naturally develop during the nanocrystal growth. We show the new properties to emerge due to the dislocation-induced distortion of the crystal lattice and the associated alteration of the nanocrystal’s electronic subsystem, which essentially modifies its interaction with external optical fields. The g-factors of intraband transitions in our nanocrystals are found comparable with dissymmetry factors of chiral plasmonic complexes, and exceeding the typical g-factors of chiral molecules by a factor of 1000. Optically active semiconducting nanocrystals—with chiral properties controllable by the nanocrystal dimensions, morphology, composition and blending ratio—will greatly benefit chemistry, biology and medicine by advancing enantiomeric recognition, sensing and resolution of chiral molecules.

  9. Lasing and suppressed cavity-pulling effect of Cesium active optical clock

    Xu, Zhichao; Chen, Jingbiao

    2014-01-01

    We experimentally demonstrate the collective emission behavior and suppressed cavity-pulling effect of four-level active optical clock with Cesium atoms. Thermal Cesium atoms in a glass cell velocity selective pumped with a 455.5 nm laser operating at 6S$_{1/2}$ to 7P$_{3/2}$ transition are used as lasing medium. Population inverted Cesium atoms between 7S$_{1/2}$ and 6P$_{3/2}$ levels are optical weakly coupled by a pair cavity mirrors working at deep bad-cavity regime with a finesse of 4.3, and the ratio between cavity bandwidth and gain bandwidth is approximately 45. With increased 455.5 nm pumping laser intensity, the output power of cesium active optical clock at 1469.9 nm from 7S$_{1/2}$ level to 6P$_{3/2}$ level shows a threshold and reach a power of 13 $\\mu$W. Active optical clock would dramatically improve the optical clock stability since the lasing frequency does not follow the cavity length variation exactly, but in a form of suppressed cavity pulling effect. In this letter the cavity pulling effe...

  10. Active optics: variable curvature mirrors for ELT laser guide star refocusing systems

    Challita, Zalpha; Hugot, Emmanuel; Madec, Fabrice; Ferrari, Marc; Le Mignant, David; Vivès, Sébastien; Cuby, Jean-Gabriel

    2011-10-01

    The future generation of Extremely Large Telescopes will require a complex combination of technologies for adaptive optics (AO) systems assisted by laser guide stars (LGS). In this context, the distance from the LGS spot to the telescope pupil ranges from about 80 to 200 km, depending on the Sodium layer altitude and the elevation of the telescope. This variation leads to a defocusing effect on the LGS wave-front sensor which needs to be compensated. We propose an active mirror able to compensate for this variation, based on an original optical design including this active optics component. This LGS Variable Curvature Mirror (LGS-VCM) is a 120 mm spherical active mirror able to achieve 820 μm deflection sag with an optical quality better than 150 nm RMS, allowing the radius of curvature variation from F/12 to F/2. Based on elasticity theory, the deformation of the metallic mirror is provided by an air pressure applied on a thin meniscus with a variable thickness distribution. In this article, we detail the analytical development leading to the specific geometry of the active component, the results of finite element analysis and the expected performances in terms of surface error versus the range of refocalisation. Three prototypes have been manufactured to compare the real behavior of the mirror and the simulations data. Results obtained on the prototypes are detailed, showing that the deformation of the VCM is very close to the simulation, and leads to a realistic active concept.

  11. Optical Sensor/Actuator Locations for Active Structural Acoustic Control

    Padula, Sharon L.; Palumbo, Daniel L.; Kincaid, Rex K.

    1998-01-01

    Researchers at NASA Langley Research Center have extensive experience using active structural acoustic control (ASAC) for aircraft interior noise reduction. One aspect of ASAC involves the selection of optimum locations for microphone sensors and force actuators. This paper explains the importance of sensor/actuator selection, reviews optimization techniques, and summarizes experimental and numerical results. Three combinatorial optimization problems are described. Two involve the determination of the number and position of piezoelectric actuators, and the other involves the determination of the number and location of the sensors. For each case, a solution method is suggested, and typical results are examined. The first case, a simplified problem with simulated data, is used to illustrate the method. The second and third cases are more representative of the potential of the method and use measured data. The three case studies and laboratory test results establish the usefulness of the numerical methods.

  12. Optics outreach activities with elementary school kids from public education in Mexico

    Viera-González, P.; Sánchez-Guerrero, G.; Ruiz-Mendoza, J.; Cárdenas-Ortiz, G.; Ceballos-Herrera, D.; Selvas-Aguilar, R.

    2014-09-01

    This work shows the results obtained from the "O4K" Project supported by International Society for Optics and Photonis (SPIE) and the Universidad Autonoma de Nuevo Leon (UANL) through its SPIE Student Chapter and the Dr. Juan Carlos Ruiz-Mendoza, outreach coordinator of the Facultad de Ciencias Fisico Matematicas of the UANL. Undergraduate and graduate students designed Optics representative activities using easy-access materials that allow the interaction of children with optics over the exploration, observation and experimentation, taking as premise that the best way to learn Science is the interaction with it. Several activities were realized through the 2011-2013 events with 1,600 kids with ages from 10 to 12; the results were analyzed using surveys. One of the principal conclusions is that in most of the cases the children changed their opinions about Sciences in a positive way.

  13. The age of enlightenment: evolving opportunities in brain research through optical manipulation of neuronal activity

    Jason eJerome

    2011-12-01

    Full Text Available Optical manipulation of neuronal activity has rapidly developed into the most powerful and widely used approach to study mechanisms related to neuronal connectivity over a range of scales. Since the early use of single site uncaging to map network connectivity, rapid technological development of light modulation techniques has added important new options, such as fast scanning photostimulation, massively parallel control of light stimuli, holographic uncaging and 2-photon stimulation techniques. Exciting new developments in optogenetics complement neurotransmitter uncaging techniques by providing cell-type specificity and in vivo usability, providing optical access to the neural substrates of behavior. Here we review the rapid evolution of methods for the optical manipulation of neuronal activity, emphasizing crucial recent developments.

  14. Magic Wavelengths for a Lattice Trapped Rubidium Four-Level Active Optical Clock

    After being pumped from the 5s1/2 ground state to the 6p1/2 state, the population inversion between 6s1/2 and 5p1/2,3/2 can be established for a rubidium four-level active optical clock. We calculate the ac Stark shift due to lattice trapping laser which dominates the frequency shift of clock transition in a lattice trapped rubidium four-level active optical clock. Several magic wavelengths are found, which can form desired optical lattice trapping potential. By choosing a proper intensity and linewidth of the trapping laser, the fractional frequency uncertainty of clock transition due to the ac Stark shift of the trapping laser, is estimated to be below 10−18

  15. Electro-optic light modulation and THz generation in locally plasma-activated silicon nanophotonic devices.

    Matheisen, Christopher; Waldow, Michael; Chmielak, Bartos; Sawallich, Simon; Wahlbrink, Thorsten; Bolten, Jens; Nagel, Michael; Kurz, Heinrich

    2014-03-10

    Silicon is not an electro-optic material by itself but the required second-order optical nonlinearity can be induced by breaking the inversion symmetry of the crystal lattice. Recently, an attractive approach has been demonstrated based on a surface-activation in a CMOS-compatible HBr dry etching process. In this work, we further investigate and quantify the second-order nonlinearity induced by this process. Using THz near-field probing we demonstrate that this simple and versatile process can be applied to locally equip silicon nanophotonic chips with micro-scale areas of electro-optic activity. The realization of a first fully integrated Mach-Zehnder modulator device - based on this process - is applied to quantify the nonlinearity to an effective χ((2)) of 9 ± 1 pm/V. Analysis of the thermal stability of the induced nonlinearity reveals post-processing limitations and paths for further efficiency improvements. PMID:24663865

  16. Optical activity and circular dichroism of plasmonic nanorod assemblies

    Khosravi Khorashad, Larousse; Liu, Na; Govorov, Alexander O.

    Plasmonic circular dichroism (CD) has offered an efficient spectroscopy method for the electronic, chemical, and structural properties of different types of light active molecules in the subwavelength regime. Among the different chiral geometries of metal nanoparticles utilized by the plasmonic CD spectroscopy, gold nanorods (AuNRs) have shown strong CD signals in the visible frequency range. In this work, we theoretically study the CD signals of AuNR arrangements in order to mimic structures and chemical bonds of chiral biomolecules. In particular, our twisted three-AuNR geometries resemble a molecular structure of tartaric acid. This molecule played an important role in the discovery of chemical chirality. In our study, we show that the strength of CD signals changes dramatically by tuning the interparticle distances and angles. Since the CD signals are typically weak, we develop reliable computational approaches to calculate the plasmonic CD. Manipulating interparticle distances, size, and molecular bond angles result in full control over peak positions, handedness, and positive and negative bands which are observed in the CD spectra. This work has been supported under the grant from Volkswagen Foundation. We also acknowledge the financial support of Condensed Matter and Surface Science program of Ohio University.

  17. Vibrational Raman Optical Activity of 1-Phenylethanol and 1-Phenylethylamine: Revisiting Old Friends

    Kapitán, J.; Johannessen, Ch.; Bouř, Petr; Hecht, L.; Barron, L. D.

    2009-01-01

    Roč. 21, S1 (2009), E4-E12. ISSN 0899-0042 R&D Projects: GA AV ČR IAA400550702 Institutional research plan: CEZ:AV0Z40550506 Keywords : ROA * Raman * anharmonic correction * optical activity Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.677, year: 2009

  18. Optical activity of microemulsion induced by electric field and its tunable behaviors

    ZHAO; Xiaopeng(赵晓鹏); ZHAO; Qian(赵乾); XIANG; Liqin(向礼琴)

    2003-01-01

    It has been shown that optical activity can occur in microemulsion under external electric field and rotation angle can also be tuned by the electric field. A set of microemulsions (water/Span80/transformer oil) with different water concentration were prepared and their optical activity was measured with the changes of applied electric field and θ, the angle between the electric vector of the incident linearly polarized light and the external electric field, using an automatic polarimeter. The experiments indicate that when none of the external electric field, water concentration and θ are zero, there is optical activity in microemulsions. For a given concentration, rotation angle ψ increases with electric field, and it firstly increases, passes through a maximum at C = C0,then monotonically decreases as C increases when electric field keeps constant. The relationship between the rotation angle and θ is also obtained. It is thought that the electric field-induced destroy of spatial symmetry of microemulsion is responsible for the optical activity of microemulsion.

  19. New insight into the solution structures of wheat gluten proteins from Raman optical activity

    Blanch, E.W.; Kasarda, D.D.; Hecht, L.;

    2003-01-01

    Vibrational Raman optical activity (ROA) spectra of the wheat proteins a-gliadin (A-gliadin), omega-liadin, and a 30 kDa peptide called T-A-1 from the high molecular weight glutenin subunit (HMW-GS) Dx5 were measured to obtain new information about their solution structures. The spectral data sho...

  20. InP based lasers and optical amplifiers with wire-/dot-like active regions

    Reithmaier, J. P.; Somers, A.; Deubert, S.; Schwertberger, R.; Kaiser, W.; Forchel, A.; Calligaro, M.; Resneau, P.; Parillaud, O.; Bansropun, S.; Krakowski, M.; Alizon, R.; Hadass, D.; Bilenca, A.; Dery, H.; Mikhelashvili, V.; Eisenstein, G.; Gioannini, M.; Montrosset, I.; Berg, Tommy Winther; Poel, Mike van der; Mørk, Jesper; Tromborg, Bjarne

    2005-01-01

    Long wavelength lasers and semiconductor optical amplifiers based on InAs quantum wire/dot-like active regions were developed on InP substrates dedicated to cover the extended telecommunication wavelength range between 1.4 - 1.65 mm. In a brief overview different technological approaches will be ...

  1. Detection of Molecular Chirality by Induced Resonance Raman Optical Activity in Europium Complexes

    Yamamoto, Shigeki; Bouř, Petr

    2012-01-01

    Roč. 51, č. 44 (2012), s. 11058-11061. ISSN 1433-7851 R&D Projects: GA MŠk(CZ) LH11033; GA ČR GAP208/11/0105 Institutional support: RVO:61388963 Keywords : europium * complexes * raman optical activity * resonance Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 13.734, year: 2012

  2. Optics: Light, Color, and Their Uses. An Educator's Guide with Activities in Science and Mathematics.

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    This educator's guide from discusses optics, light, color and their uses. Activities include: (1) "Reflection of Light with a Plane (Flat) Mirror--Trace a Star"; (2) "Reflection of Light with Two Plane Mirrors--Double Mirrors Placed at a 90-Degree Angle"; (3) "Reflection of Light with Two Plane Mirrors--Double Mirrors Placed at a Number of…

  3. Optically active push-pull molecules intercalated into layered phosphates and phosphonates

    Zima, Vítězslav; Melánová, Klára; Svoboda, Jan; Beneš, L.; Bureš, F.

    Praha: Ústav fyzikální chemie Jaroslava Heyrovského AV ČR,v.v.i, 2015. OP1. [Workshop on Layered Materials . 15.09.2015-19.09.2015, Třešť] Institutional support: RVO:61389013 Keywords : phosphate * phosphonate * optically active molecules Subject RIV: CA - Inorganic Chemistry

  4. Nonplanar Tertiary Amides in Rigid Chiral Tricyclic Dilactams. Peptide Group Distortions and Vibrational Optical Activity

    Pazderková, Markéta; Profant, V.; Hodačová, J.; Šebestík, Jaroslav; Pazderka, T.; Novotná, P.; Urbanová, M.; Šafařík, Martin; Buděšínský, Miloš; Tichý, Miloš; Bednárová, Lucie; Baumruk, V.; Maloň, Petr

    2013-01-01

    Roč. 117, č. 33 (2013), s. 9626-9642. ISSN 1520-6106 R&D Projects: GA ČR GAP205/10/1276 Institutional support: RVO:61388963 Keywords : spirodilactams * amide bond * vibrational circular dichroism * non-planarity * Raman optical activity Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.377, year: 2013

  5. New method in synthesizing an optical active intermediate for (R,R)-formoterol

    Wei Fan; Lei Chen; Li Hai; Yong Wu

    2008-01-01

    (R)-1-(4-Methoxyphenyl)propan-2-amine 2a, an optical active intermediate for (R,R)-formoterol, was synthesized from D-alanine in 65% overall yield by using a simple route, which contained protecting amino group, cyclization, coupling with Grignard reagent, reduction and deprotection.

  6. Synchronizing retinal activity in both eyes disrupts binocular map development in the optic tectum

    Brickley, S.; Dawes, E.; Keating, M; Grant, S

    1998-01-01

    Spatiotemporal correlations in the pattern of spontaneous and evoked retinal ganglion cell (RGC) activity are believed to influence the topographic organization of connections throughout the developing visual system. We have tested this hypothesis by examining the effects of interfering with these potential activity cues during development on the functional organization of binocular maps in the Xenopus frog optic tectum. Paired recordings combined with cross-correlation analyses demonstrated ...

  7. Relationships between optical aggregometry (type Born) and flow cytometry in evaluating ADP-induced platelet activation

    Sbrana, Silverio; Della Pina, Francesca; Rizza, Antonio; Buffa, Manuela; De Filippis, Rossella; Gianetti, Jacopo; Clerico, Aldo

    2008-01-01

    Background: Platelet response to activating agents is used to monitor the efficacy of anti-aggregation therapies. The aim of our study has been to demonstrate the existence of relationships between early events of ADP-induced platelet activation, measured by flow cytometry and platelet-rich plasma aggregation,quantified by optical aggregometry. Methods: We evaluated peripheral blood of 12 donors. The following parameters were quantified by cytometry after stimulation with adenosine diphosphat...

  8. A cerium glass fiber-optic active target for high energy physics experiments

    A fiber-optic plate imaging system has been developed for active target and tracking applications, in which the active element is Ce(3+) in a silicate glass. Particle tracks and interactions have been recorded with a hit density of greater than or equal to 4/mm for minimum ionizing particles and with a spatial resolution sigma approx. = 28μ m.) The properties of cerium scintillation glass are discussed

  9. Active Figure Control Effects on Mounting Strategy for X-Ray Optics

    Kolodziejczak, Jeffery J.; Atkins, Carolyn; Roche, Jacqueline M.; ODell, Stephen L.; Ramsey, Brian D.; Elsner, Ronald F.; Weisskopf, Martin C.; Gubarev, Mikhail V.

    2014-01-01

    As part of ongoing development efforts at MSFC, we have begun to investigate mounting strategies for highly nested xray optics in both full-shell and segmented configurations. The analytical infrastructure for this effort also lends itself to investigation of active strategies. We expect that a consequence of active figure control on relatively thin substrates is that errors are propagated to the edges, where they might affect the effective precision of the mounting points. Based upon modeling, we describe parametrically, the conditions under which active mounts are preferred over fixed ones, and the effect of active figure corrections on the required number, locations, and kinematic characteristics of mounting points.

  10. New light sources and sensors for active optical 3D inspection

    Osten, Wolfgang; Jueptner, Werner P. O.

    1999-11-01

    The implementation of active processing strategies in optical 3D-inspection needs the availability of flexible hardware solutions. The system components illumination and sensor/detector are actively involved in the processing chain by a feedback loop that is controlled by the evaluation process. Therefore this article deals with new light sources and sensor which appeared recently on the market and can be applied successfully for the implementation of active processing principles. Some applications where such new components are used to implement an active measurement strategy are presented.

  11. A NEW APPROACH TO CONSTRAIN BLACK HOLE SPINS IN ACTIVE GALAXIES USING OPTICAL REVERBERATION MAPPING

    A tight relation between the size of the broad-line region (BLR) and optical luminosity has been established in about 50 active galactic nuclei studied through reverberation mapping of the broad Hβ emission line. The R BLR-L relation arises from simple photoionization considerations. Using a general relativistic model of an optically thick, geometrically thin accretion disk, we show that the ionizing luminosity jointly depends on black hole mass, accretion rate, and spin. The non-monotonic relation between the ionizing and optical luminosity gives rise to a complicated relation between the BLR size and the optical luminosity. We show that the reverberation lag of Hβ to the varying continuum depends very sensitively on black hole spin. For retrograde spins, the disk is so cold that there is a deficit of ionizing photons in the BLR, resulting in shrinkage of the hydrogen ionization front with increasing optical luminosity, and hence shortened Hβ lags. This effect is specially striking for luminous quasars undergoing retrograde accretion, manifesting in strong deviations from the canonical R BLR-L relation. This could lead to a method to estimate black hole spins of quasars and to study their cosmic evolution. At the same time, the small scatter of the observed R BLR-L relation for the current sample of reverberation-mapped active galaxies implies that the majority of these sources have rapidly spinning black holes

  12. The fabrication and characterisation of piezoelectric actuators for active x-ray optics

    Zhang, Dou; Rodriguez Sanmartin, Daniel; Button, Tim W.; Meggs, Carl; Atkins, Carolyn; Doel, Peter; Brooks, David; Feldman, Charlotte; Willingale, Richard; Michette, Alan; Pfauntsch, Slawka; Sahraei, Shahin; James, Ady; Dunare, Camelia; Stevenson, Tom; Parkes, William; Smith, Andrew; Wang, Hongchang

    2009-08-01

    Piezoelectric actuators are widely employed in adaptive optics to enable an actively controlled mirror surface and improve the optical resolution and sensitivity. Currently two new prototype adaptive X-ray optical systems are under development through the Smart X-ray Optics project in a UK based consortium. One proposed technology is micro-structured optical arrays (MOAs) which uses aligned micro-channels structures obtained by deep silicon etching using both dry and wet techniques and bonded piezoelectric actuators to produce a micro-focused X-ray source for biological applications. The other technology is large scale optics which uses a thin shell mirror segment with 20-40 bonded piezo-actuators for the next generation of X-ray telescopes with an aim to achieve a resolution greater than that currently available by Chandra (0.5"). The Functional Materials Group of Birmingham University has the capability of fabricating a wide range of piezo-actuators including, for example, unimorph, bimorph and active fibre composites (AFC) by using a viscous plastic processing technique. This offers flexibility in customising the shapes (from planar to 3-D helix) and feature sizes (>20 μm) of the actuators, as well as achieving good piezoelectric properties. PZT unimorph actuators are being developed in this programme according to the design and implementation of the proposed mirror and array structures. Precise controls on the dimension, thickness, surface finishing and the curvature have been achieved for delivering satisfactory actuators. Results are presented regarding the fabrication and characterisation of such piezo-actuators, as well as the progress on the large optic and MOAs prototypes employing the piezo-actuators.

  13. MAGNETIC LIQUID DEFORMABLE MIRRORS FOR ASTRONOMICAL APPLICATIONS: ACTIVE CORRECTION OF OPTICAL ABERRATIONS FROM LOWER-GRADE OPTICS AND SUPPORT SYSTEM

    Borra, E. F., E-mail: borra@phy.ulaval.ca [Departement de Physique, de Genie Physique et d' Optique, Universite Laval, Quebec, QC G1V 0A6 (Canada)

    2012-08-01

    Deformable mirrors are increasingly used in astronomy. However, they still are limited in stroke for active correction of high-amplitude optical aberrations. Magnetic liquid deformable mirrors (MLDMs) are a new technology that has the advantages of high-amplitude deformations and low costs. In this paper, we demonstrate extremely high strokes and interactuator strokes achievable by MLDMs which can be used in astronomical instrumentation. In particular, we consider the use of such a mirror to suggest an interesting application for the next generation of large telescopes. We present a prototype 91 actuator deformable mirror made of a magnetic liquid (ferrofluid). This mirror uses a technique that linearizes the response of such mirrors by superimposing a large and uniform magnetic field on the magnetic field produced by an array of small coils. We discuss experimental results that illustrate the performance of MLDMs. A most interesting application of MLDMs comes from the fact they could be used to correct the aberrations of large and lower optical quality primary mirrors held by simple support systems. We estimate basic parameters of the needed MLDMs, obtaining reasonable values.

  14. Influence of Physical and Chemical Modification on the Optical Rotatory Dispersion and Biological Activity of Chitosan Films

    A. B. Shipovskaya

    2013-01-01

    Full Text Available The optical and bactericidal properties of acetic and basic chitosan films were studied. By the ORD technique, we found that these films differed in the values of their specific optical rotation and of their rotary and dispersive constants. A sign inversion of was observed when the acetic chitosan films were heat-treated. The bactericidal activity of the initial and dehydrated acetic films was analyzed, and their moisture content and optical and biological activities were compared.

  15. Optical Activation of Germanium Plasmonic Antennas in the Mid-Infrared.

    Fischer, Marco P; Schmidt, Christian; Sakat, Emilie; Stock, Johannes; Samarelli, Antonio; Frigerio, Jacopo; Ortolani, Michele; Paul, Douglas J; Isella, Giovanni; Leitenstorfer, Alfred; Biagioni, Paolo; Brida, Daniele

    2016-07-22

    Impulsive interband excitation with femtosecond near-infrared pulses establishes a plasma response in intrinsic germanium structures fabricated on a silicon substrate. This direct approach activates the plasmonic resonance of the Ge structures and enables their use as optical antennas up to the mid-infrared spectral range. The optical switching lasts for hundreds of picoseconds until charge recombination redshifts the plasma frequency. The full behavior of the structures is modeled by the electrodynamic response established by an electron-hole plasma in a regular array of antennas. PMID:27494498

  16. Optical spectra of radio-loud and radio-quiet active galactic nuclei

    Many radio galaxies have strong emission lines in their optical spectra. The fraction with such lines is much larger than in ''normal'' galaxies. Radio galaxies generally also have very bright nuclei; thus those with strong emission lines are similar in both respects to Seyfert galaxies. Hence radio and Seyfert galaxies are both generally considered to be similar physical objects: active galactic nuclei. Their observational properties show they are closely related to quasars (quasi-stellar radio sources) and (radio-quiet) QSOs. A short table of the space density of these objects is presented and their optical spectra are discussed. (Auth.)

  17. Extreme optical activity and circular dichroism of chiral metal hole arrays

    Gorkunov, M V; Artemov, V V; Rogov, O Y; Yudin, S G

    2014-01-01

    We report extremely strong optical activity and circular dichroism exhibited by subwavelength arrays of four-start-screw holes fabricated with one-pass focused ion beam milling of freely suspended silver films. Having the fourth order rotational symmetry, the structures exhibit the polarization rotation up to 90 degrees and peaks of full circular dichroism and operate as circular polarizers within certain ranges of wavelengths in the visible. We discuss the observations on the basis of general principles (symmetry, reciprocity and reversibility) and conclude that the extreme optical chirality is determined by the chiral localized plasmonic resonances.

  18. Light scattering by two concentric optically active spheres: I. general theory

    An analytic solution to the general problem of light scattering by two concentric optically active, i.e., chiral, spheres is solved, and the nature of the solution in some special cases is analyzed. Since no restriction is imposed on the properties of the incident light, such as an amplitude distribution or the state of polarization, the solution obtained here can be applied to any conceivable experimental situations by adjusting the expansion coefficients of the incident light in terms of vector spherical harmonics in accordance with its nature. This solution is especially relevant to the optical characterization of biological cells which contain chiral constituents, such as DNA in the nuclei.

  19. InP based lasers and optical amplifiers with wire-/dot-like active regions

    Long wavelength lasers and semiconductor optical amplifiers based on InAs quantum wire-/dot-like active regions were developed on InP substrates dedicated to cover the extended telecommunication wavelength range between 1.4 and 1.65 μm. In a brief overview different technological approaches will be discussed, while in the main part the current status and recent results of quantum-dash lasers are reported. This includes topics like dash formation and material growth, device performance of lasers and optical amplifiers, static and dynamic properties and fundamental material and device modelling

  20. Optical activity and defect/dopant evolution in ZnO implanted with Er

    The effects of annealing on the optical properties and defect/dopant evolution in wurtzite (0001) ZnO single crystals implanted with Er ions are studied using a combination of Rutherford backscattering/channeling spectrometry and photoluminescence measurements. The results suggest a lattice recovery behavior dependent on ion dose and involving formation/evolution of an anomalous multipeak defect distribution, thermal stability of optically active Er complexes, and Er outdiffusion. An intermediate defect band occurring between the surface and ion-induced defects in the bulk is stable up to 900 °C and has a photoluminescence signature around 420 nm well corresponding to Zn interstitials. The optical activity of the Er atoms reaches a maximum after annealing at 700 °C but is not directly associated to the ideal Zn site configuration, since the Er substitutional fraction is maximal already in the as-implanted state. In its turn, annealing at temperatures above 700 °C leads to dissociation of the optically active Er complexes with subsequent outdiffusion of Er accompanied by the efficient lattice recovery

  1. Optical activity and defect/dopant evolution in ZnO implanted with Er

    Azarov, Alexander; Galeckas, Augustinas; Kuznetsov, Andrej; Monakhov, Edouard; Svensson, Bengt G. [Department of Physics, Centre for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1048, Blindern, N-0316 Oslo (Norway); Hallén, Anders [Royal Institute of Technology, KTH-ICT, Electrum 229, SE-164 40 Stockholm (Sweden)

    2015-09-28

    The effects of annealing on the optical properties and defect/dopant evolution in wurtzite (0001) ZnO single crystals implanted with Er ions are studied using a combination of Rutherford backscattering/channeling spectrometry and photoluminescence measurements. The results suggest a lattice recovery behavior dependent on ion dose and involving formation/evolution of an anomalous multipeak defect distribution, thermal stability of optically active Er complexes, and Er outdiffusion. An intermediate defect band occurring between the surface and ion-induced defects in the bulk is stable up to 900 °C and has a photoluminescence signature around 420 nm well corresponding to Zn interstitials. The optical activity of the Er atoms reaches a maximum after annealing at 700 °C but is not directly associated to the ideal Zn site configuration, since the Er substitutional fraction is maximal already in the as-implanted state. In its turn, annealing at temperatures above 700 °C leads to dissociation of the optically active Er complexes with subsequent outdiffusion of Er accompanied by the efficient lattice recovery.

  2. Optical activity of a single MnAs cluster: Birefringence or Kerr effect

    Leuschner, M.; Klar, P. J.; Heimbrodt, W.; Rühle, W. W.; Hara, S.; Stolz, W.; Volz, K.; Kurz, T.; Loidl, A.; Krug von Nidda, H.-A.

    2006-06-01

    We have grown In 0.54Ga 0.46As:Mn/MnAs granular paramagnetic-ferromagnetic hybrid structures by metal-organic vapor-phase epitaxy. The MnAs clusters have a Curie temperature of about 320 K. We have studied the optical activity of individual ferromagnetic MnAs clusters embedded in the paramagnetic In 0.54Ga 0.46As:Mn matrix at room temperature by far-field depolarization measurements. A scanning near-field optical microscopy set-up in constant height mode ( ≈100 nm above the sample surface) was used to achieve a high spatial resolution. Individual MnAs clusters rotate the linear polarization of the incoming light by almost 2∘ in this reflection geometry. This optical activity was analyzed in terms of birefringence and polar Kerr effect and correlated with the structural and magnetic properties of the MnAs clusters as determined by ferromagnetic resonance measurements. The optical activity of the MnAs clusters turns out to be dominated by linear birefringence caused by the uniaxial symmetry of the hexagonal crystal structure of MnAs. The polar Kerr effect plays a minor role in this experiment.

  3. Optical activity of a single MnAs cluster: Birefringence or Kerr effect

    Leuschner, M. [Department of Physics and Material Sciences Center, Philipps University, Renthof 5, 35032 Marburg (Germany); Klar, P.J. [Department of Physics and Material Sciences Center, Philipps University, Renthof 5, 35032 Marburg (Germany)]. E-mail: peter.klar@physik.uni-marburg.de; Heimbrodt, W. [Department of Physics and Material Sciences Center, Philipps University, Renthof 5, 35032 Marburg (Germany); Ruehle, W.W. [Department of Physics and Material Sciences Center, Philipps University, Renthof 5, 35032 Marburg (Germany); Hara, S. [Department of Physics and Material Sciences Center, Philipps University, Renthof 5, 35032 Marburg (Germany); Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi 243-0197 (Japan); Stolz, W. [Department of Physics and Material Sciences Center, Philipps University, Renthof 5, 35032 Marburg (Germany); Volz, K. [Department of Physics and Material Sciences Center, Philipps University, Renthof 5, 35032 Marburg (Germany); Kurz, T. [Experimentalphysik V, Elektronische Korrelationen und Magnetismus, Institut fuer Physik, Universitaet Augsburg, 86135 Augsburg (Germany); Loidl, A. [Experimentalphysik V, Elektronische Korrelationen und Magnetismus, Institut fuer Physik, Universitaet Augsburg, 86135 Augsburg (Germany); Krug von Nidda, H.-A. [Experimentalphysik V, Elektronische Korrelationen und Magnetismus, Institut fuer Physik, Universitaet Augsburg, 86135 Augsburg (Germany)

    2006-06-15

    We have grown In{sub 0.54}Ga{sub 0.46}As:Mn/MnAs granular paramagnetic-ferromagnetic hybrid structures by metal-organic vapor-phase epitaxy. The MnAs clusters have a Curie temperature of about 320K. We have studied the optical activity of individual ferromagnetic MnAs clusters embedded in the paramagnetic In{sub 0.54}Ga{sub 0.46}As:Mn matrix at room temperature by far-field depolarization measurements. A scanning near-field optical microscopy set-up in constant height mode ({approx}100nm above the sample surface) was used to achieve a high spatial resolution. Individual MnAs clusters rotate the linear polarization of the incoming light by almost 2{sup -}bar in this reflection geometry. This optical activity was analyzed in terms of birefringence and polar Kerr effect and correlated with the structural and magnetic properties of the MnAs clusters as determined by ferromagnetic resonance measurements. The optical activity of the MnAs clusters turns out to be dominated by linear birefringence caused by the uniaxial symmetry of the hexagonal crystal structure of MnAs. The polar Kerr effect plays a minor role in this experiment.

  4. Determination of bacterial activity by use of an evanescent-wave fiber-optic sensor.

    John, M Shelly; Kishen, Anil; Sing, Lim Chu; Asundi, Anand

    2002-12-01

    A novel technique based on fiber-optic evanescent-wave spectroscopy is proposed for the detection of bacterial activity in human saliva. The sensor determines th e specific concentration of Streptococcus mutans in saliva, which is a major causative factor in dental caries. In this design, one prepares the fiber-optic bacterial sensor by replacing a portion of the cladding region of a multimode fiber with a dye-encapsulated xerogel, using the solgel technique. The exponential decay of the evanescent wave at the core-cladding interface of a multimode fiber is utilized for the determination of bacterial activity in saliva. The acidogenic profile of Streptococcus mutans is estimated by use of evanescent-waveabsorption spectra at various levels of bacterial activity. PMID:12477126

  5. Influence of prolonged optic flow stimuli on spontaneous activities of cat PMLS neurons

    2003-01-01

    Changes in neuronal spontaneous activities after prolonged optic flow stimulation (using the three basic flow modes: translation, radiation and rotation) were investigated by extracellular single-unit recording in cortical area PMLS of the cat. The results showed that the evoked responses decreased with the prolongation of visual stimuli, and the spontaneous activities usually dropped to a lower level after the stimuli were withdrawn. Generally, the reduction in spontaneous activities was larger after adaptation in the preferred direction than in the non-preferred direction. This difference was much pronounced to translation stimuli, but relatively insignificant to radiation and rotation. These points suggest that non-specific fatigue may act as the key factor in adaptation to simple translation, while some kinds of more complicated, direction-specific mechanism may be involved in adaptation to the complex optic flow patterns. In addition, PMLS may play an important role in perception and adaptation to complex motion and the relevant motion after-effects.

  6. Lorentz factor distribution of blazars from the optical Fundamental plane of black hole activity

    Saikia, Payaswini; Falcke, Heino

    2016-01-01

    Blazar radiation is dominated by a relativistic jet which can be modeled at first approximation using just two intrinsic parameters - the Lorentz factor $\\Gamma$ and the viewing angle $\\theta$. Blazar jet observations are often beamed due to relativistic effects, complicating the understanding of these intrinsic properties. The most common way to estimate blazar Lorentz factors needs the estimation of apparent jet speeds and Doppler beaming factors. We present a new and independent method of constructing the blazar Lorentz factor distribution, using the optical fundamental plane of black hole activity. The optical fundamental plane is a plane stretched out by both the supermassive black holes and the X-ray binaries, in the 3D space provided by their [OIII] line luminosity, radio luminosity and black hole mass. We use the intrinsic radio luminosity obtained from the optical fundamental plane to constrain the boosting parameters of the VLBA Imaging and Polarimetry Survey (VIPS) blazar sample. We find a blazar b...

  7. Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide

    Fuchs, F.; Stender, B.; Trupke, M.; Simin, D.; Pflaum, J.; Dyakonov, V.; Astakhov, G. V.

    2015-07-01

    Vacancy-related centres in silicon carbide are attracting growing attention because of their appealing optical and spin properties. These atomic-scale defects can be created using electron or neutron irradiation; however, their precise engineering has not been demonstrated yet. Here, silicon vacancies are generated in a nuclear reactor and their density is controlled over eight orders of magnitude within an accuracy down to a single vacancy level. An isolated silicon vacancy serves as a near-infrared photostable single-photon emitter, operating even at room temperature. The vacancy spins can be manipulated using an optically detected magnetic resonance technique, and we determine the transition rates and absorption cross-section, describing the intensity-dependent photophysics of these emitters. The on-demand engineering of optically active spins in technologically friendly materials is a crucial step toward implementation of both maser amplifiers, requiring high-density spin ensembles, and qubits based on single spins.

  8. Modeling of On-Chip Optical Nonreciprocity with an Active Microcavity

    Jianming Wen

    2015-05-01

    Full Text Available On-chip nonreciprocal light transport holds a great impact on optical information processing and communications based upon integrated photonic devices. By harvesting gain-saturation nonlinearity, we recently demonstrated on-chip optical asymmetric transmission at telecommunication bands with superior nonreciprocal performances using only one active whispering-gallery-mode microtoroid resonator, beyond the commonly adopted magneto-optical (Faraday effect. Here, detailed theoretical analysis is presented with respect to the reported scheme. Despite the fact that our model is simply the standard coupled-mode theory, it agrees well with the experiment and describes the essential one-way light transport in this nonreciprocal device. Further discussions, including the connection with the second law of thermodynamics and Fano resonance, are also briefly made in the end.

  9. Optical observations of comet 67P/Churyumov-Gerasimenko with the Nordic Optical Telescope. Comet activity before the solar conjunction

    Zaprudin, B.; Lehto, H. J.; Nilsson, K.; Pursimo, T.; Somero, A.; Snodgrass, C.; Schulz, R.

    2015-11-01

    Context. 67P/Churyumov-Gerasimenko (67P) is a short-period Jupiter-family comet that was chosen as a target for the Rosetta mission by the European Space Agency (ESA). Monitoring of 67P with the Nordic Optical Telescope (NOT; La Palma, Spain) intends to aid this mission by providing ground-based reference information about the overall activity of the target and its astrometric position before the rendezvous. One motivation for our observations was to monitor sudden major increases in activity because they might have affected the Rosetta mission planning. None were observed. Ground-based photometric observations register the global activity of the comet, while the Rosetta spacecraft mostly measures local events. These data combined can lead to new insights into the comet behavior. Aims: The aim of this work is to perform the photometric and the astrometric monitoring of comet 67P with the NOT and to compare the results with the latest predictions for its position and activity. A new method of fitting extended-source components to the target surface brightness distribution was developed and applied to the data to estimate the size and contribution of the coma to the total brightness of the target. Methods: Comet 67P was monitored by the NOT in service mode during the period between 12.5.2013 and 11.11.2014. The very first observations were performed in the V band alone, but in the latest observations, the R band was used as well to estimate the color and nature of activity of the target. We applied a new method for estimating the coma size by deconvolving the point spread function profile from the image, which used Markov chain Monte Carlo and Bayesian statistics. This method will also be used for coma size estimations in further observations after the solar conjunction of 67P. Results: Photometric magnitudes in two colors were monitored during the period of observations. At the end of April 2014, the beginning of activity was observed. In late September 2014, a

  10. High-temperature optically activated GaAs power switching for aircraft digital electronic control

    Berak, J. M.; Grantham, D. H.; Swindal, J. L.; Black, J. F.; Allen, L. B.

    1983-01-01

    Gallium arsenide high-temperature devices were fabricated and assembled into an optically activated pulse-width-modulated power control for a torque motor typical of the kinds used in jet engine actuators. A bipolar heterojunction phototransistor with gallium aluminum arsenide emitter/window, a gallium arsenide junction field-effect power transistor and a gallium arsenide transient protection diode were designed and fabricated. A high-temperature fiber optic/phototransistor coupling scheme was implemented. The devices assembled into the demonstrator were successfully tested at 250 C, proving the feasibility of actuator-located switching of control power using optical signals transmitted by fibers. Assessments of the efficiency and technical merits were made for extension of this high-temperature technology to local conversion of optical power to electrical power and its control at levels useful for driving actuators. Optical power sources included in the comparisons were an infrared light-emitting diode, an injection laser diode, tungsten-halogen lamps and arc lamps. Optical-to-electrical power conversion was limited to photovoltaics located at the actuator. Impedance matching of the photovoltaic array to the load was considered over the full temperature range, -55 C to 260 C. Loss of photovoltaic efficiency at higher temperatures was taken into account. Serious losses in efficiency are: (1) in the optical source and the cooling which they may require in the assumed 125 C ambient, (2) in the decreased conversion efficiency of the gallium arsenide photovoltaic at 260 C, and (3) in impedance matching. Practical systems require improvements in these areas.

  11. CHARACTERIZING THE OPTICAL VARIABILITY OF BRIGHT BLAZARS: VARIABILITY-BASED SELECTION OF FERMI ACTIVE GALACTIC NUCLEI

    We investigate the use of optical photometric variability to select and identify blazars in large-scale time-domain surveys, in part to aid in the identification of blazar counterparts to the ∼30% of γ-ray sources in the Fermi 2FGL catalog still lacking reliable associations. Using data from the optical LINEAR asteroid survey, we characterize the optical variability of blazars by fitting a damped random walk model to individual light curves with two main model parameters, the characteristic timescales of variability τ, and driving amplitudes on short timescales σ-circumflex. Imposing cuts on minimum τ and σ-circumflex allows for blazar selection with high efficiency E and completeness C. To test the efficacy of this approach, we apply this method to optically variable LINEAR objects that fall within the several-arcminute error ellipses of γ-ray sources in the Fermi 2FGL catalog. Despite the extreme stellar contamination at the shallow depth of the LINEAR survey, we are able to recover previously associated optical counterparts to Fermi active galactic nuclei with E ≥ 88% and C = 88% in Fermi 95% confidence error ellipses having semimajor axis r < 8'. We find that the suggested radio counterpart to Fermi source 2FGL J1649.6+5238 has optical variability consistent with other γ-ray blazars and is likely to be the γ-ray source. Our results suggest that the variability of the non-thermal jet emission in blazars is stochastic in nature, with unique variability properties due to the effects of relativistic beaming. After correcting for beaming, we estimate that the characteristic timescale of blazar variability is ∼3 years in the rest frame of the jet, in contrast with the ∼320 day disk flux timescale observed in quasars. The variability-based selection method presented will be useful for blazar identification in time-domain optical surveys and is also a probe of jet physics.

  12. The Subaru/XMM-Newton Deep Survey (SXDS) - VI. Properties of Active Galactic Nuclei Selected by Optical Variability

    Morokuma, Tomoki; Doi, Mamoru; Yasuda, Naoki; Akiyama, Masayuki; Sekiguchi, Kazuhiro; Furusawa, Hisanori; Ueda, Yoshihiro; Totani, Tomonori; Oda, Takeshi; Nagao, Tohru; Kashikawa, Nobunari; Murayama, Takashi; Ouchi, Masami; Watson, Mike G.

    2007-01-01

    We present the properties of active galactic nuclei (AGN) selected by optical variability in the Subaru/XMM-Newton Deep Field (SXDF). Based on the locations of variable components and light curves, 211 optically variable AGN were reliably selected. We made three AGN samples; X-ray detected optically non-variable AGN (XA), X-ray detected optically variable AGN (XVA), and X-ray undetected optically variable AGN (VA). In the VA sample, we found a bimodal distribution of the ratio between the var...

  13. Modification of the structural and optical properties of commercial ZnO powder by mechanical activation

    Šćepanović M.

    2006-01-01

    Full Text Available Mechanical activation was used as a method for modification of the structural and optical properties of commercial ZnO powder. For this purpose zinc oxide powder was mechanically treated by grinding in a high-energy vibro-mill in a continual regime in air up to 300 minutes. Starting and modified ZnO samples were characterized using XRD, BET and TEM measurements. Optical properties of these samples were investigated by Raman and photoluminescence (PL spectroscopy. The color of commercial ZnO powder was white while mechanically activated ZnO powder was dark yellow, indicating the presence of nonstoichiometry. In the Raman spectra of non-activated sample Raman modes of bulk ZnO were observed, while the spectra of modified samples point out structural and stoichiometric changes. The PL spectra of modified samples excited by 325 and 442 nm lines of a He-Cd laser show great difference with respect to the spectra of the original sample. This study confirms that change in the defect structure of the ZnO crystal lattice introduced by mechanical activation affects the optical properties of this material.

  14. Horizon: A Proposal for Large Aperture, Active Optics in Geosynchronous Orbit

    Chesters, Dennis; Jenstrom, Del

    2000-01-01

    In 1999, NASA's New Millennium Program called for proposals to validate new technology in high-earth orbit for the Earth Observing-3 (NMP EO3) mission to fly in 2003. In response, we proposed to test a large aperture, active optics telescope in geosynchronous orbit. This would flight-qualify new technologies for both Earth and Space science: 1) a future instrument with LANDSAT image resolution and radiometric quality watching continuously from geosynchronous station, and 2) the Next Generation Space Telescope (NGST) for deep space imaging. Six enabling technologies were to be flight-qualified: 1) a 3-meter, lightweight segmented primary mirror, 2) mirror actuators and mechanisms, 3) a deformable mirror, 4) coarse phasing techniques, 5) phase retrieval for wavefront control during stellar viewing, and 6) phase diversity for wavefront control during Earth viewing. Three enhancing technologies were to be flight- validated: 1) mirror deployment and latching mechanisms, 2) an advanced microcontroller, and 3) GPS at GEO. In particular, two wavefront sensing algorithms, phase retrieval by JPL and phase diversity by ERIM International, were to sense optical system alignment and focus errors, and to correct them using high-precision mirror mechanisms. Active corrections based on Earth scenes are challenging because phase diversity images must be collected from extended, dynamically changing scenes. In addition, an Earth-facing telescope in GEO orbit is subject to a powerful diurnal thermal and radiometric cycle not experienced by deep-space astronomy. The Horizon proposal was a bare-bones design for a lightweight large-aperture, active optical system that is a practical blend of science requirements, emerging technologies, budget constraints, launch vehicle considerations, orbital mechanics, optical hardware, phase-determination algorithms, communication strategy, computational burdens, and first-rate cooperation among earth and space scientists, engineers and managers

  15. A study of aliphatic amino acids using simulated vibrational circular dichroism and Raman optical activity spectra

    Ganesan, Aravindhan; Wang, Feng

    2013-01-01

    Vibrational optical activity (VOA) spectra, such as vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra, of aliphatic amino acids are simulated using density functional theory (DFT) methods in both gas phase (neutral form) and solution (zwitterionic form), together with their respective infrared (IR) and Raman spectra of the amino acids. The DFT models, which are validated by excellent agreements with the available experimental Raman and ROA spectra of alanine in solution, are employed to study other aliphatic amino acids. The inferred (IR) intensive region (below 2000 cm-1) reveals the signature of alkyl side chains, whereas the Raman intensive region (above 3000 cm-1) contains the information of the functional groups in the amino acids. Furthermore, the chiral carbons of the amino acids (except for glycine) dominate the VCD and ROA spectra in the gas phase, but the methyl group vibrations produce stronger VCD and ROA signals in solution. The C-H related asymmetric vibrations domina...

  16. Influence of the interface on the optical activity of confined glucose films.

    Emile, Olivier; Emile, Janine; Ghoufi, Aziz

    2016-09-01

    We report on the time evolution of the optical activity of a thinning liquid film containing glucose, and confined between two glass slides. This dynamics strongly depends on the presence of surfactant molecules. With sodium dodecyl sulfate (SDS), we evidence favorable interactions of sugar molecules with the sulfate group. As previously observed for a freely suspended soap film in the air (see Emile et al., 2013), this corresponds to an anchoring of glucose molecules at the interface. For glucose alone, we also highlight a molecular rearrangement that is not instantaneous and occurs after several minutes. This interfacial organization leads to an unusual giant optical activity that is different with or without SDS. Molecular simulations confirm the anchoring of the glucose molecules at the glass/liquid interface, and show a different molecular orientation in each case. PMID:27254252

  17. Functional imaging of glucose-evoked rat islet activities using transient intrinsic optical signals

    Yao, Xin-Cheng; Cui, Wan-Xing; Li, Yi-Chao; Zhang, Wei; Lu, Rong-Wen; Thompson, Anthony; Amthor, Franklin; Wang, Xu-Jing

    2012-05-01

    We demonstrate intrinsic optical signal (IOS) imaging of intact rat islet, which consists of many endocrine cells working together. A near-infrared digital microscope was employed for optical monitoring of islet activities evoked by glucose stimulation. Dynamic NIR images revealed transient IOS responses in the islet activated by low-dose (2.75 mM) and high-dose (5.5 mM) glucose stimuli. Comparative experiments and quantitative analysis indicated that both glucose metabolism and calcium/insulin dynamics might contribute to the observed IOS responses. Further investigation of the IOS imaging technology may provide a high resolution method for ex vivo functional examination of the islet, which is important for advanced study of diabetes associated islet dysfunctions and for improved quality control of donor islets for transplantation.

  18. Vibrational spectroscopic and non-linear optical activity studies on nicotinanilide : A DFT approach

    The molecular structure of nicotinanilide was optimized by the DFT/B3LYP method with cc-pVTZ basis set using Gaussian 09 program. The first order hyperpolarizability of the molecule was calculated, which exhibits the higher nonlinear optical activity. The natural bond orbital analysis confirms the presence of intramolecular charge transfer and the hydrogen bonding interaction, which leads to the higher nonlinear optical activity of the molecule. The Frontier molecular orbitals analysis of the molecule shows that the delocalization of electron density occurs within the molecule. The lower energy gap indicates that the hydrogen bond formation between the charged species. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculation using the VEDA 4.0 program and the corresponding vibrational spectra were simulated. Hence, the nicotinanilide molecule can be a good candidate for second-order NLO material

  19. Physiochemical, Optical and Biological Activity of Chitosan-Chromone Derivative for Biomedical Applications

    Joonseok Koh; Santosh Kumar

    2012-01-01

    This paper describes the physiochemical, optical and biological activity of chitosan-chromone derivative. The chitosan-chromone derivative gels were prepared by reacting chitosan with chromone-3-carbaldehyde, followed by solvent exchange, filtration and drying by evaporation. The identity of Schiff base was confirmed by UV-Vis absorption spectroscopy and Fourier-transform infrared (FTIR) spectroscopy. The chitosan-chromone derivative was evaluated by X-ray diffraction (XRD), thermogravimetric...

  20. Ramachandran Plot for Alanine Dipeptide as Determined from Raman Optical Activity

    Parchaňský, Václav; Kapitán, J.; Kaminský, Jakub; Šebestík, Jaroslav; Bouř, Petr

    2013-01-01

    Roč. 4, č. 16 (2013), s. 2763-2768. ISSN 1948-7185 R&D Projects: GA ČR GAP208/11/0105; GA MŠk(CZ) LH11033 Grant ostatní: AV ČR(CZ) M200551205; GA MŠk(CZ) LM2010005 Institutional support: RVO:61388963 Keywords : Raman optical activity * Ramachandran plot * molecular modelling Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.687, year: 2013

  1. Optically Active Chiral Auxiliary Benzyloxyphenylglycinol for Preparation of Oxazolidine and Its Derivatives

    FU Ying-huan; CHEN Jin; WU Tong-hao; BAI Xu

    2005-01-01

    To investigate the recovery of amino alcohols as chiral auxiliaries, optically active p-benzyloxyphenylglycinol and its corresponding oxazolidine of 1-naphthylcarboxaldehyde were prepared. Grignard additions to the oxazolidine followed by electrophilic quench and acidic hydrolysis afforded an aldehyde(compound 8)(later it was reduced to an alcohol, compound 9) in an excellent enantiomeric excess and a good recovery of the chiral amino alcohol. This research provides a model study of chiral amino alcohols in solid phase asymmetric synthesis.

  2. Modelling of the TrpZip2C Peptide Unfolding and its Optical Activity

    Horníček, Jan; Bouř, Petr

    Oxford: Diamond, 2011. s. 88-88. [CD 2011. The International Conference on Chiroptical Spectroscopy /13./. 24.07.2011-28.07.2011, Oxford] R&D Projects: GA MŠk(CZ) LH11033; GA ČR GAP208/11/0105 Grant ostatní: AV ČR(CZ) M200550902; European Reintegration Grant(XE) 230955 Institutional research plan: CEZ:AV0Z40550506 Keywords : raman * vibrational optical activity * calculations Subject RIV: CF - Physical ; Theoretical Chemistry

  3. Optical monitoring of flocs and filaments in the activated sludge process

    Koivuranta, E. (Emma)

    2016-01-01

    Abstract Flocculation plays a critical role in the activated sludge process, where flocs are removed by settling and where unsatisfactory flocculation is resulting in poor effluent quality. Control and operation of the process is also challenging as it is sensitive to external and internal disturbances. Furthermore, stricter environmental demands are also being placed on wastewater treatment and discharge quality thus solutions are needed to improve the current systems. A novel optical...

  4. NDVI FROM ACTIVE OPTICAL SENSORS AS A MEASURE OF CANOPY COVER AND BIOMASS

    E. M. Perry; Fitzgerald, G J; Poole, N.; Craig, S; A. Whitlock

    2012-01-01

    Commercially available proximal sensors are being used in precision agriculture to provide non-destructive, real-time spatial information on 'green biomass' that may be of interest to the remote sensing community. The sensors are described as biomass sensors, but questions remain on which canopy characteristics can be best estimated by the sensor measurements. In this study Normalized Difference Vegetation Index (NDVI) measurements from active optical sensors were examined across mul...

  5. Electronic and Vibrational Optical Activity of Several Peptides Related to Neurohypophyseal Hormones: Disulfide Group Conformation

    Pazderková, Markéta; Bednárová, Lucie; Dlouhá, Helena; Flegel, Martin; Lebl, M.; Hlaváček, Jan; Setnička, V.; Urbanová, M.; Hynie, S.; Klenerová, V.; Baumruk, V.; Maloň, Petr

    2012-01-01

    Roč. 97, č. 11 (2012), s. 923-932. ISSN 0006-3525 R&D Projects: GA ČR GAP205/10/1276 Grant ostatní: GA UK(CZ) 578212 Institutional research plan: CEZ:AV0Z40550506 Keywords : neurohypophyseal hormones * disulfide bridge * Raman optical activity * vibrational circular dichroism Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.879, year: 2012

  6. Versatile illumination platform and fast optical switch to give standard observation camera gated active imaging capacity

    Grasser, R.; Peyronneaudi, Benjamin; Yon, Kevin; Aubry, Marie

    2015-10-01

    CILAS, subsidiary of Airbus Defense and Space, develops, manufactures and sales laser-based optronics equipment for defense and homeland security applications. Part of its activity is related to active systems for threat detection, recognition and identification. Active surveillance and active imaging systems are often required to achieve identification capacity in case for long range observation in adverse conditions. In order to ease the deployment of active imaging systems often complex and expensive, CILAS suggests a new concept. It consists on the association of two apparatus working together. On one side, a patented versatile laser platform enables high peak power laser illumination for long range observation. On the other side, a small camera add-on works as a fast optical switch to select photons with specific time of flight only. The association of the versatile illumination platform and the fast optical switch presents itself as an independent body, so called "flash module", giving to virtually any passive observation systems gated active imaging capacity in NIR and SWIR.

  7. Space Active Optics: toward optimized correcting mirrors for future large spaceborne observatories

    Laslandes, Marie; Hugot, Emmanuel; Ferrari, Marc; Lemaitre, Gérard; Liotard, Arnaud

    2011-10-01

    Wave-front correction in optical instruments is often needed, either to compensate Optical Path Differences, off-axis aberrations or mirrors deformations. Active optics techniques are developed to allow efficient corrections with deformable mirrors. In this paper, we will present the conception of particular deformation systems which could be used in space telescopes and instruments in order to improve their performances while allowing relaxing specifications on the global system stability. A first section will be dedicated to the design and performance analysis of an active mirror specifically designed to compensate for aberrations that might appear in future 3m-class space telescopes, due to lightweight primary mirrors, thermal variations or weightless conditions. A second section will be dedicated to a brand new design of active mirror, able to compensate for given combinations of aberrations with a single actuator. If the aberrations to be corrected in an instrument and their evolutions are known in advance, an optimal system geometry can be determined thanks to the elasticity theory and Finite Element Analysis.

  8. Synthesis and Antifeedant Activity of Racemic and Optically Active Hydroxy Lactones with the p-Menthane System.

    Aleksandra Grudniewska

    Full Text Available Two racemic and two enantiomeric pairs of new δ-hydroxy-γ-lactones based on the p-menthane system were prepared from racemic and optically active cis- and trans-piperitols. The Johnson-Claisen rearrangement of the piperitols, epoxidation of the γδ-unsaturated esters, and acidic lactonization of the epoxy esters were described. The structures of the compounds were confirmed spectroscopically. The antifeedant activities of the hydroxy lactones and racemic piperitone were evaluated against three insect pests: lesser mealworm, Alphitobius diaperinus (Panzer; Colorado potato beetle, Leptinotarsa decemlineata (Say; and peach-potato aphid, Myzus persicae (Sulz.. The chemical transformation of piperitone by the introduction of a lactone moiety and a hydroxy group changed its antifeedant properties. Behavioral bioassays showed that the feeding deterrent activity depended on the insect species and the structure of the compounds. All hydroxy lactones deterred the settling of M. persicae. Among chewing insects, the highest sensitivity showed A. diaperinus adults.

  9. Synthesis and Antifeedant Activity of Racemic and Optically Active Hydroxy Lactones with the p-Menthane System.

    Grudniewska, Aleksandra; Kłobucki, Marek; Dancewicz, Katarzyna; Szczepanik, Maryla; Gabryś, Beata; Wawrzeńczyk, Czesław

    2015-01-01

    Two racemic and two enantiomeric pairs of new δ-hydroxy-γ-lactones based on the p-menthane system were prepared from racemic and optically active cis- and trans-piperitols. The Johnson-Claisen rearrangement of the piperitols, epoxidation of the γδ-unsaturated esters, and acidic lactonization of the epoxy esters were described. The structures of the compounds were confirmed spectroscopically. The antifeedant activities of the hydroxy lactones and racemic piperitone were evaluated against three insect pests: lesser mealworm, Alphitobius diaperinus (Panzer); Colorado potato beetle, Leptinotarsa decemlineata (Say); and peach-potato aphid, Myzus persicae (Sulz.). The chemical transformation of piperitone by the introduction of a lactone moiety and a hydroxy group changed its antifeedant properties. Behavioral bioassays showed that the feeding deterrent activity depended on the insect species and the structure of the compounds. All hydroxy lactones deterred the settling of M. persicae. Among chewing insects, the highest sensitivity showed A. diaperinus adults. PMID:26132506

  10. Active thermal lensing elements for mode matching optimization in optical systems

    Fulda, Paul

    2014-03-01

    In interferometric gravitational wave detectors of the advanced era and beyond, the high laser powers used lead to the generation of thermal lenses in the optics. This can lead to a reduction in the coupling between the various optical cavities comprising the detector, thus reducing its overall sensitivity. We present here an active device which can be used to compensate for such thermal effects, as well as static mismatches between cavities. The device uses a 4 segmented heater to heat a transmissive optic, generating a spherical or astigmatic lens which can be used to compensate other thermal lenses within an optical system. We report on in-vacuum tests of the device, including an interferometric measurement of the wavefront distortions induced by the device, and measurements of the dynamic range and response time. The device was shown to have no observable detrimental effect on wavefront distortion, a focal power dynamic range of 0 to -40 mD, and a response time of the order 1000 s. Supported by NSF grant PHY-1205512.

  11. In-flight aberrations corrections for large space telescopes using active optics

    Laslandes, M.; Ferrari, M.; Hugot, E.; Lemaitre, G.

    2010-07-01

    The need for both high quality images and light structures is a constant concern in the conception of space telescopes. The goal here is to determine how an active optics system could be embarked on a satellite in order to correct the wave front deformations of the optical train. The optical aberrations appearing in a space environment are due to mirrors' deformations, with three main origins: the thermal variations, the weightlessness in space with respect to the Assemblage, Integration and Testing (AIT) conditions on ground and the use of large weightlighted primary mirrors. We are developing a model of deformable mirror as minimalist as possible, especially in term of number of actuators, which is able to correct the first Zernike polynomials in the specified range of amplitude and precision. Flight constraints as weight, volume and power consumption have to be considered. Firstly, such a system is designed according to the equations from the elasticity theory: we determine the geometrical and mechanical characteristics of the mirror, the location of the forces to be applied and the way to apply them. The concept is validated with a Finite Element Analysis (FEA), allowing optimizing the system by taking into account parameters absent from the theory. At the end of the program the mirror will be realized and characterized in a representative optical configuration.

  12. Space active optics: in situ compensation of lightweight primary mirrors' deformations

    Laslandes, M.; Ferrari, M.; Hugot, E.; Lemaitre, G.

    2010-12-01

    The need for both high quality images and light structures is a constant concern in the conception of space telescopes. The goal here is to determine how an active optics system could be embarked on a satellite in order to correct the wave front deformations of the optical train. The optical aberrations appearing in a space environment are due to mirrors' deformations, with three main origins: the thermal variations, the weightlessness conditions and the use of large weightlighted primary mirrors. We are developing a model of deformable mirror as minimalist as possible, especially in term of number of actuators, which is able to correct the first Zernike polynomials in a specified range of amplitude and precision. Flight constraints as weight, volume and power consumption are considered. Firstly, such a system is designed according to the equations from the elasticity theory: we determine the geometrical and mechanical characteristics of the mirror, the location of the forces to be applied and the way to apply them. Then the concept is validated with a Finite Element Analysis, allowing to optimize the system by taking into account parameters absent from the theory. At the end, the mirror will be realized and characterized in a representative optical configuration.

  13. Variability of Active Galactic Nuclei from the Optical to X-ray Regions

    Gaskell, C Martin; 10.1080/1055679031000153851

    2009-01-01

    Some progress in understanding AGN variability is reviewed. Reprocessing of X-ray radiation to produce significant amounts of longer-wavelength continua seems to be ruled out. In some objects where there has been correlated X-ray and optical variability, the amplitude of the optical variability has exceeded the amplitude of X-ray variability. We suggest that accelerated particles striking material could be linking X-ray and optical variability (as in activity in the solar chromosphere). Beaming effects could be significant in all types of AGN. The diversity in optical/X-ray relationships at different times in the same object, and between different objects, might be explained by changes in geometry and directions of motion relative to our line of sight. Linear shot-noise models of the variability are ruled out; instead there must be large-scale organization of variability. Variability occurs on light-crossing timescales rather than viscous timescales and this probably rules out the standard Shakura-Sunyaev acc...

  14. Rare earth ion implantation and optical activation in nitride semiconductors for multicolor emission

    In order to understand the behavior of nitride semiconductors when submitted to ion implantation, we have used 300 keV europium at fluences from 1012 to above 1017 ions cm−2. Subsequently, Rutherford backscattering (RBS), x-ray diffraction (XRD), and transmission electron microscopy (TEM) were used to investigate the evolution of damage. The optical properties were investigated prior to and after annealing. It was found that the behavior of the three compounds (AlN, GaN InN) under ion implantation is rather different: whereas InN breaks down at very low fluences (∼1012 ions cm−2), the damage formation mechanisms are similar in AlN and GaN. In both compounds, extended defects such as stacking faults play a critical role. However, they exhibit different stability, as a consequence, GaN transforms to nanocrystalline state from the surface at a fluence of around 2.5 × 1015 ions cm−2, whereas AlN undergoes a chemical amorphization starting at the projected range (Rp), when implanted to extremely high Eu fluences >1017 ionscm−2. As for the optical activation, the formation of highly stable extended defects in these compounds constitutes a real challenge for the annealing of heavily doped layers, and it was noticed that for a substantial optical activation, the implantation fluences should be kept low (<1015 Eu at cm−2). (invited article)

  15. Development of active/adaptive lightweight optics for the next generation of telescopes

    Ghigo, M.; Basso, S.; Citterio, O.; Mazzoleni, F.; Vernani, D.

    2006-02-01

    The future large optical telescopes will have such large dimensions to require innovative technical solutions either in the engineering and optical fields. Their optics will have dimensions ranging from 30 to 100 m. and will be segmented. It is necessary to develop a cost effective industrial process, fast and efficient, to create the thousands of segments neeededs to assemble the mirrors of these instruments. INAF-OAB (Astronomical Observatory of Brera) is developing with INAF-Arcetri (Florence Astronomical Observatory) a method of production of lightweight glass optics that is suitable for the manufacturing of these segments. These optics will be also probably active and therefore the segments have to be thin, light and relatively flexible. The same requirements are valid also for the secondary adaptive mirrors foreseen for these telescopes and that therefore will benefit from the same technology. The technique under investigation foresees the thermal slumping of thin glass segments using a high quality ceramic mold (master). The sheet of glass is placed onto the mold and then, by means of a suitable thermal cycle, the glass is softened and its shape is changed copying the master shape. At the end of the slumping the correction of the remaining errors will be performed using the Ion Beam Figuring technique, a non-contact deterministic technique. To reduce the time spent for the correction it will be necessary to have shape errors on the segments as small as possible. A very preliminary series of experiments already performed on reduced size segments have shown that it is possible to copy a master shape with high accuracy (few microns PV) and it is very likely that copy accuracies of 1 micron or less are possible. The paper presents in detail the concepts of the proposed process and describes our current efforts that are aimed at the production of a scaled demonstrative adaptive segment of 50 cm of diameter.

  16. Analysis of nearly simultaneous x-ray and optical observations of active galactic nuclei

    Rosemary Hill optical and EINSTEIN X-ray observations of a sample of 36 galactic nuclei (AGN) were reduced and analyzed. Seventy-two x-ray observations of these sources were reduced, nineteen of which yielded spectral information. Of these spectra observations, significant hydrogen column densities above the galactic value were required for nine of the active galactic nuclei. X-ray variability was detected in eight of the eleven sources which were observed more than once by EINSTEIN. Correlations between the x-ray and optical luminosities were investigated using the Jefferys method of least squares. This method allows for errors in both variables. The results indicate a strong correlation between the x-ray and optical luminosities for the entire sample. Division of the sample into groups with similar optical variability characteristics show that the less violently violent variable AGN are more highly correlated than the violently variable blazars. Infrared and radio observations were combined with the x-ray and optical observations of six AGN. These sources were modelled in terms of the synchrotron-self-Compton model. The turnover frequency falls between the infrared and radio data and reliable estimates of this parameter are difficult to estimate. Therefore the results were found as a function of the turnover frequency. Four sources required relativistic bulk motion or beaming. Multifrequency spectra made at different times for one individual source, 0235+164, required different amounts of beaming to satisfy the x-ray observations. Sizes of the emitting regions for the sources modelled ranged from 0.5 parsec to 1.0 parsec

  17. Activation of Organic Photovoltaic Light Detectors Using Bend Leakage from Optical Fibers.

    Griffith, Matthew J; Willis, Matthew S; Kumar, Pankaj; Holdsworth, John L; Bezuidenhout, Henco; Zhou, Xiaojing; Belcher, Warwick; Dastoor, Paul C

    2016-03-30

    This work investigates the detection and subsequent utilization of leaked light from bends in a silica optical fiber using organic photovoltaic detectors. The optic power lost by single mode and multimode silica optical fibers was calibrated for bend radii between 1 and 7 mm for 532 and 633 nm light, exhibiting excellent agreement with previous theoretical solutions. The spatial location of maximum power leakage on the exterior of the fiber was found to exist in the same plane as the fiber, with a 10° offset from the normal. Two different organic photovoltaic detectors fabricated using a poly(3-hexylthiophene):indene-C60-bisadduct donor-acceptor blend cast from chloroform and chlorobenzene were fabricated to detect the leaked light. The two detectors exhibited different photovoltaic performances, predominantly due to different active layer thicknesses. Both devices showed sensitivity to leakage light, exhibiting voltages between 200 and 300 mV in response to leaked light from the fiber. The temporal responses of the devices were observed to differ, with a rise time from 10% to 90% of maximum voltage of 1430 μs for the chlorobenzene device, and a corresponding rise time of 490 μs for the higher performing chloroform device. The two OPVs were used to simultaneously detect leaked light from induced bends in the optical fiber, with the differing temporal profiles employed to create a unique time-correlated detection signal with enhanced security. The delay between detection of each OPV voltage could be systematically varied, allowing for either a programmable and secure single detection signal or triggering of multiple events with variable time resolution. The results reported in this study present exciting avenues toward the deployment of this simple and noninvasive optical detection system in a range of different applications. PMID:26891938

  18. A note on periodicity of long-term variations of optical continuum in active galactic nuclei

    Lu, Kai-Xing; Bi, Shao-Lan; Wang, Jian-Min

    2016-01-01

    Graham et al. found a sample of active galactic nuclei (AGNs) and quasars from the Catalina Real-time Transient Survey (CRTS) that have long-term periodic variations in optical continuum, the nature of the periodicity remains uncertain. We investigate the periodic variability characteristics of the sample by testing the relations of the observed variability periods with AGN optical luminosity, black hole mass and accretion rates, and find no significant correlations. We also test the observed periods in several different aspects related to accretion disks surrounding single black holes, such as the Keplerian rotational periods of 5100~\\AA\\ photon-emission regions and self-gravity dominated regions and the precessing period of warped disks. These tests shed new lights on understanding AGN variability in general. Under the assumption that the periodic behavior is associated with SMBHB systems in particular, we compare the separations ($\\mathscr{D}_{\\bullet}$) against characteristic radii of broad-line regions (...

  19. Cosmic optical activity in the spacetime of a scalar-tensor screwed cosmic string

    Bezerra, V B

    2003-01-01

    Measurements of the quasars optical activities verify that their polarization vectors are not randomly oriented as naturally expected. In order to give a possible explanation to this phenomenon we investigate the role played by a Chern-Simons-type term in the scalar-tensor screwed cosmic string(SCS) background. In this scenario we discuss the possibility that the quasar optical polarization can be explained by considering that the electromagnetic waves emitted by these quasars interact with a scalar-tensor screwed cosmic string throught a Chern-Simons-type coupling. We use this screwed cosmic string to put limit in the coupling constant. The superconducting case has also been discussed and the results compared with general relativity effects.

  20. Magnetically induced optical activity and dichroism of gadolinium oxide nanoparticle-based ferrofluids

    Paul, Nibedita; Devi, Manasi; Mohanta, Dambarudhar [Nanoscience and Soft Matter Laboratory, Department of Physics, Tezpur University, PO Napaam, Tezpur 784 028, Assam (India); Saha, Abhijit [UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8 Bidhannagar, Kolkata 700 098 (India)

    2012-02-15

    The present work reports on magnetically induced optical activity (such as Faraday rotation and linear dichroism) of pristine and gamma-irradiated gadolinium oxide (Gd{sub 2}O{sub 3}) nanoparticle-based ferrofluids. The ferrofluids were produced by dispersing N-cetyl-N,N,N-trimethyl ammonium bromide (CTAB)-coated {approx}9-nm-sized Gd{sub 2}O{sub 3} particles in a carrier fluid of ethanol. The ferrofluids were then irradiated with 1.25 MeV energetic gamma rays (dose: 868 Gy and 2.635 kGy). Irradiation-led formation of a number of point defects was revealed through high resolution electron microscopy. The interaction of light with the ionized point defects is believed to have caused substantial improvement in the magneto-optic response of irradiated magnetic fluids.

  1. On X-ray Optical Depth in the Coronae of Active Stars

    Testa, Paola; Peres, Giovanni; Huenemoerder, David P

    2007-01-01

    We have investigated the optical thickness of the coronal plasma through the analysis of high-resolution X-ray spectra of a large sample of active stars observed with the High Energy Transmission Grating Spectrometer on Chandra. In particular, we probed for the presence of significant resonant scattering in the strong Lyman series lines arising from hydrogen-like oxygen and neon ions. The active RS CVn-type binaries II Peg and IM Peg and the single M dwarf EV Lac show significant optical depth. For these active coronae, the Lya/Lyb ratios are significantly depleted as compared with theoretical predictions and with the same ratios observed in similar active stars. Interpreting these decrements in terms of resonance scattering of line photons out of the line-of-sight, we are able to derive an estimate for the typical size of coronal structures, and from these we also derive estimates of coronal filling factors. For all three sources we find that the both the photon path length as a fraction of the stellar radiu...

  2. Noticeable positive Doppler effect on optical bistability in an N-type active Raman gain atomic system

    Chang Zeng-Guang; Niu Yue-Ping; Zhang Jing-Tao; Gong Shang-Qing

    2012-01-01

    We theoretically investigate the Doppler effect on optical bistability in an N type active Raman gain atomic system inside an optical ring cavity.It is shown that the Doppler effect can greatly enhance the dispersion and thus create the bistable behaviour or greatly increase the bistable region,which has been known as the positive Doppler effect on optical bistability.In addition,we find that a positive Doppler effect can change optical bistability from the hybrid dispersion-gain type to a dispersive type.

  3. Noticeable positive Doppler effect on optical bistability in an N-type active Raman gain atomic system

    We theoretically investigate the Doppler effect on optical bistability in an N-type active Raman gain atomic system inside an optical ring cavity. It is shown that the Doppler effect can greatly enhance the dispersion and thus create the bistable behaviour or greatly increase the bistable region, which has been known as the positive Doppler effect on optical bistability. In addition, we find that a positive Doppler effect can change optical bistability from the hybrid dispersion-gain type to a dispersive type

  4. Active differential optical absorption spectroscopy for NO2 gas pollution using blue light emitting diodes

    Aljalal, Abdulaziz; Gasmi, Khaled; Al-Basheer, Watheq

    2015-05-01

    Availability of high intensity light emitting diodes in the blue region offer excellent opportunity for using them in active Differential Optical Absorption Spectroscopy (DOAS) to detect air pollution. Their smooth and relatively broad spectral emissions as well as their long life make them almost ideal light sources for active DOAS. In this study, we report the usage of a blue light emitting diode in an active DOAS setup to measure traces of NO2 gas and achieving few parts per billion detection limit for a path length of 300 m. Details of the setup will be presented along with the effects on measurement accuracy due to shifts in the measured spectra calibration and due to using theoretical instrument Gaussian function instead of the measured instrument function.

  5. Early optical follow-up of the nearby active star DG CVn during its 2014 superflare

    Caballero-Garcia, M D; Jelinek, M; Castro-Tirado, A J; Cwiek, A; Claret, A; Opiela, R; Zarnecki, A F; Gorosabel, J; Oates, S R; Cunniffe, R; Jeong, S; Hudec, R; Sokolov, V V; Makarov, D I; Tello, J C; Lara-Gil, O; Kubanek, P; Guziy, S; Bai, J; Fan, Y; Wang, C; Park, I H

    2015-01-01

    DG CVn is a binary system in which one of the components is an M type dwarf ultra fast rotator, only three of which are known in the solar neighborhood. Observations of DG CVn by the Swift satellite and several ground-based observatories during its super-flare event on 2014 allowed us to perform a complete hard X-ray - optical follow-up of a super-flare from the red-dwarf star. The observations support the fact that the super-flare can be explained by the presence of (a) large active region(s) on the surface of the star. Such activity is similar to the most extreme solar flaring events. This points towards a plausible extrapolation between the behaviour from the most active red-dwarf stars and the processes occurring in the Sun.

  6. Development and performance of the EAGLE active optics LGS WFS refocusing system

    Madec, Fabrice; Le Mignant, David; Chardin, Elodie; Hugot, Emmanuel; Mazzanti, Silvio; Gimenez, Jean-Luc; Ferrari, Marc; Moreaux, Gabriel; Vives, Sébastien; Cuby, Jean-Gabriel

    2010-07-01

    We designed, developed, and tested a Variable Curvature Mirror (VCM) as an active refocusing system for the Laser Guide Star (LGS) Wave Front Sensor (WFS) of the E-ELT EAGLE instrument [1]. This paper is the second of two from our team on this R&D activity: Hugot et al. this conf. [2] presented the mirror design and performance simulations. Here, we report on the fabrication integration, testing and performance of the VCM system. During this activity, we developed all necessary parts for the VCM system: a metallic mirror, its housing and mounts, a computer-controlled pressure system, an internal metrology, a testbench etc. The functional testing of the VCM system is successful: we can control the internal pressure to less than 1 mBar, and measure the mirror displacement with a 100 nm accuracy. The mirror displacement is a near-linear and well-simulated function of internal pressure for the desired range of focus. The intrinsic optical quality of the mirror meniscus is well within the specifications. Once mounted in its housing, we observe additional mechanical constraints for the current design that generate optical aberrations. We measured the amplitude of the Zernike modes, and we showed that the axisymetric terms display a variation trend very similar to simulations, with amplitude close to simulations. All these results are very promising for a design of focus compensation without any moving part.

  7. A study of aliphatic amino acids using simulated vibrational circular dichroism and Raman optical activity spectra*

    Ganesan, Aravindhan; Brunger, Michael J.; Wang, Feng

    2013-11-01

    Vibrational optical activity (VOA) spectra, such as vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra, of aliphatic amino acids are simulated using density functional theory (DFT) methods in both gas phase (neutral form) and solution (zwitterionic form), together with their respective infrared (IR) and Raman spectra of the amino acids. The DFT models, which are validated by excellent agreements with the available experimental Raman and ROA spectra of alanine in solution, are employed to study other aliphatic amino acids. The inferred (IR) intensive region (below 2000 cm-1) reveals the signature of alkyl side chains, whereas the Raman intensive region (above 3000 cm-1) contains the information of the functional groups in the amino acids. Furthermore, the chiral carbons of the amino acids (except for glycine) dominate the VCD and ROA spectra in the gas phase, but the methyl group vibrations produce stronger VCD and ROA signals in solution. The C-H related asymmetric vibrations dominate the VOA spectra (i.e., VCD and ROA) > 3000 cm-1 reflecting the side chain structures of the amino acids. Finally the carboxyl and the C(2)H modes of aliphatic amino acids, together with the side chain vibrations, are very active in the VCD/IR and ROA/Raman spectra, which makes such the vibrational spectroscopic methods a very attractive means to study biomolecules.

  8. A low-luminosity type-1 QSO sample. III. Optical spectroscopic properties and activity classification

    Tremou, E.; Garcia-Marin, M.; Zuther, J.; Eckart, A.; Valencia-Schneider, M.; Vitale, M.; Shan, C.

    2015-08-01

    Context. We report on the optical spectroscopic analysis of a sample of 99 low-luminosity quasi-stellar objects (LLQSOs) at z ≤ 0.06 base the Hamburg/ESO QSO Survey (HES). To better relate the low-redshift active galactic nucleus (AGN) to the QSO population it is important to study samples of the latter type at a level of detail similar to that of the low-redshift AGN. Powerful QSOs, however, are absent at low redshifts due to evolutionary effects and their small space density. Our understanding of the (distant) QSO population is, therefore, significantly limited by angular resolution and sensitivity. The LLQSOs presented here offer the possibility of studying the faint end of this population at smaller cosmological distances and, therefore, in greater detail. Aims: In comparing two spectroscopic methods, we aim to establish a reliable activity classification scheme of the LLQSOs sample. Our goal is to enrich our systematic multiwavelength analysis of the AGN/starburst relation in these systems and give a complementary information on this particular sample of LLQSOs from the Hamburg ESO survey. Methods: Here, we present results of the analysis of visible wavelength spectroscopy provided by the HES and the 6 Degree Field Galaxy Survey (6dFGS). These surveys use different spectroscopic techniques, long-slit and circular fiber, respectively. These allow us to assess the influence of different apertures on the activity of the LLQSOs using classical optical diagnostic diagrams. We perform a Gaussian fitting of strong optical emission lines and decompose narrow and broad Balmer components. Results: A small number of our LLQSO present no broad component, which is likely to be present but buried in the noise. Two sources show double broad components, whereas six comply with the classic NLS1 requiremnts. As expected in NLR of broad line AGNs, the [Sii]-based electron density values range between 100 and 1000 Ne/cm3. Using the optical characteristics of Populations A and B

  9. Simulation of Raman optical activity of multi-component monosaccharide samples\

    Melcrová, Adéla; Kessler, Jiří; Bouř, Petr; Kaminský, Jakub

    2016-01-01

    Roč. 18, DEC 2015 (2016), s. 2130-2142. ISSN 1463-9076 R&D Projects: GA ČR GA13-03978S; GA ČR(CZ) GA14-03564S; GA ČR GA15-09072S Grant ostatní: GA MŠk LM2011033; GA MŠk(CZ) LM2010005 Institutional support: RVO:61388955 ; RVO:61388963 Keywords : Raman optical activity * monosccharides * MD/DFT Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.493, year: 2014

  10. Synthesis and aggregation study of optically active tetra--[()-2-octanyloxy]-substituted copper and nickel phthalocyanines

    Fang-Di Cong; Gui Gao; Jian-Xin Li; Guo-Qing Huang; Zhen Wei; Feng-Yang Yu; Xi-Guang Du; Ke-Zhi Xing

    2010-11-01

    The optically active tetra--[()-2-octanyloxy]-substituted copper and nickel phthalocyanines were synthesized via a two-step route with 4-nitro-phthalonitrile and ()-2-octanol as the starting materials. Both compounds are fully characterized by MS, 1H NMR, UV-Vis, IR, CD and elemental analysis, and soluble in common organic solvents except methanol. The results showed that they were dispersed into single molecules in chloroform and dichloromethane, but prone to congregate into H-type aggregates in ethanol and diethyl ether. They assembled to H-type aggregates with left-handed helix when deposited as thin films.