Sample records for activity control technique

  1. Active load control techniques for wind turbines.

    van Dam, C.P. (University of California, Davis, CA); Berg, Dale E.; Johnson, Scott J. (University of California, Davis, CA)


    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  2. Magnetic Levitation Technique for Active Vibration Control

    Hoque, Emdadul; Mizuno, Takeshi


    A zero-power controlled magnetic levitation system has been presented in this chapter. The unique characteristic of the zero-power control system is that it can generate negative stiffness with zero control current in the steady-state which is realized in this chapter. The detail characteristics of the levitation system are investigated. Moreover, two major contributions, the stiffness adjustment and nonlinear compensation of the suspension system have been introduced elaborately. Often, ther...

  3. Active structural control with stable fuzzy PID techniques

    Yu, Wen


    This book presents a detailed discussion of intelligent techniques to measure the displacement of buildings when they are subjected to vibration. It shows how these techniques are used to control active devices that can reduce vibration 60–80% more effectively than widely used passive anti-seismic systems. After introducing various structural control devices and building-modeling and active structural control methods, the authors propose offset cancellation and high-pass filtering techniques to solve some common problems of building-displacement measurement using accelerometers. The most popular control algorithms in industrial settings, PD/PID controllers, are then analyzed and then combined with fuzzy compensation. The stability of this combination is proven with standard weight-training algorithms. These conditions provide explicit methods for selecting PD/PID controllers. Finally, fuzzy-logic and sliding-mode control are applied to the control of wind-induced vibration. The methods described are support...

  4. Active vibration control techniques for flexible space structures

    Parlos, Alexander G.; Jayasuriya, Suhada


    Two proposed control system design techniques for active vibration control in flexible space structures are detailed. Control issues relevant only to flexible-body dynamics are addressed, whereas no attempt was made to integrate the flexible and rigid-body spacecraft dynamics. Both of the proposed approaches revealed encouraging results; however, further investigation of the interaction of the flexible and rigid-body dynamics is warranted.

  5. Active control technique of fractional-order chaotic complex systems

    Mahmoud, Gamal M.; Ahmed, Mansour E.; Abed-Elhameed, Tarek M.


    Several kinds of synchronization of fractional-order chaotic complex systems are challenging research topics of current interest since they appear in many applications in applied sciences. Our main goal in this paper is to introduce the definition of modified projective combination-combination synchronization (MPCCS) of some fractional-order chaotic complex systems. We show that our systems are chaotic by calculating their Lyapunov exponents. The fractional Lyapunov dimension of the chaotic solutions of these systems is computed. A scheme is introduced to calculate MPCCS of four different (or identical) chaotic complex systems using the active control technique. Special cases of this type, which are projective and anti C-C synchronization, are discussed. Some figures are plotted to show that MPCCS is achieved and its errors approach zero.

  6. The virtual microphone technique in active sound field control systems

    Lampropoulos, Iraklis E.; Shimizu, Yasushi


    Active Sound Field Control (AFC) has been proven very useful in reverberation enhancement applications in large rooms. However, feedback control is required in order to eliminate peaks in the frequency response of the system. The present research closely follows the studies of Shimizu in AFC, in which smoothing of the rooms transfer function is achieved by averaging the impulse responses of multiple microphones. ``The virtual or rotating microphone technique'' reduces the number of microphones in the aforementioned AFC technology, while still achieving the same acoustical effects in the room. After the impulse responses at previously specified pairs of microphone positions are measured, the ratio of transfer functions for every pair is calculated, thus yielding a constant K. Next, microphones are removed and their impulse responses are reproduced by processing the incoming signal of each pair through a convolver, where the computed K constants have been previously stored. Band limiting, windowing and time variance effects are critical factors, in order to reduce incoherence effects and yield reliable approximations of inverse filters and consequently calculations of K. The project is implemented in a church lacking low frequency reverberation for music and makes use of 2 physical and 2 virtual microphones.

  7. Modern control techniques in active flutter suppression using a control moment gyro

    Buchek, P. M.


    Development of organized synthesis techniques, using concepts of modern control theory was studied for the design of active flutter suppression systems for two and three-dimensional lifting surfaces, utilizing a control moment gyro (CMG) to generate the required control torques. Incompressible flow theory is assumed, with the unsteady aerodynamic forces and moments for arbitrary airfoil motion obtained by using the convolution integral based on Wagner's indicial lift function. Linear optimal control theory is applied to find particular optimal sets of gain values which minimize a quadratic performance function. The closed loop system's response to impulsive gust disturbances and the resulting control power requirements are investigated, and the system eigenvalues necessary to minimize the maximum value of control power are determined.

  8. Control and switching synchronization of fractional order chaotic systems using active control technique

    A.G. Radwan


    Full Text Available This paper discusses the continuous effect of the fractional order parameter of the Lü system where the system response starts stable, passing by chaotic behavior then reaching periodic response as the fractional-order increases. In addition, this paper presents the concept of synchronization of different fractional order chaotic systems using active control technique. Four different synchronization cases are introduced based on the switching parameters. Also, the static and dynamic synchronizations can be obtained when the switching parameters are functions of time. The nonstandard finite difference method is used for the numerical solution of the fractional order master and slave systems. Many numeric simulations are presented to validate the concept for different fractional order parameters.

  9. Control and switching synchronization of fractional order chaotic systems using active control technique

    Radwan, A.G.


    This paper discusses the continuous effect of the fractional order parameter of the Lü system where the system response starts stable, passing by chaotic behavior then reaching periodic response as the fractional-order increases. In addition, this paper presents the concept of synchronization of different fractional order chaotic systems using active control technique. Four different synchronization cases are introduced based on the switching parameters. Also, the static and dynamic synchronizations can be obtained when the switching parameters are functions of time. The nonstandard finite difference method is used for the numerical solution of the fractional order master and slave systems. Many numeric simulations are presented to validate the concept for different fractional order parameters.

  10. Control System Design of Shunt Active Power Filter Based on Active Disturbance Rejection and Repetitive Control Techniques

    Le Ge


    Full Text Available To rely on joint active disturbance rejection control (ADRC and repetitive control (RC, in this paper, a compound control law for active power filter (APF current control system is proposed. According to the theory of ADRC, the uncertainties in the model and from the circumstance outside are considered as the unknown disturbance to the system. The extended state observer can evaluate the unknown disturbance. Next, RC is introduced into current loop to improve the steady characteristics. The ADRC is used to get a good dynamic performance, and RC is used to get a good static performance. A good simulation result is got through choosing and changing the parameters, and the feasibility, adaptability, and robustness of the control are testified by this result.

  11. Contamination Control Techniques

    EBY, J.L.


    Welcome to a workshop on contamination Control techniques. This work shop is designed for about two hours. Attendee participation is encouraged during the workshop. We will address different topics within contamination control techniques; present processes, products and equipment used here at Hanford and then open the floor to you, the attendees for your input on the topics.

  12. Contamination Control Techniques

    Welcome to a workshop on contamination Control techniques. This work shop is designed for about two hours. Attendee participation is encouraged during the workshop. We will address different topics within contamination control techniques; present processes, products and equipment used here at Hanford and then open the floor to you, the attendees for your input on the topics

  13. Active Flow Control with Adaptive Design Techniques for Improved Aircraft Safety Project

    National Aeronautics and Space Administration — The increased aircraft safety potential of active flow control using synthetic jets - specifically, using synthetic jets on the leading edge of the wing to delay...

  14. Linear and Non-Linear Control Techniques Applied to Actively Lubricated Journal Bearings

    Nicoletti, Rodrigo; Santos, Ilmar


    The main objectives of actively lubricated bearings are the simultaneous reduction of wear and vibration between rotating and stationary machinery parts. For reducing wear and dissipating vibration energy until certain limits, one can count with the conventional hydrodynamic lubrication....... For further reduction of shaft vibrations one can count with the active lubrication action, which is based on injecting pressurised oil into the bearing gap through orifices machined in the bearing sliding surface. The design and efficiency of some linear (PD, PI and PID) and non-linear controllers, applied...... vibration reduction of unbalance response of a rigid rotor, where the PD and the non-linear P controllers show better performance for the frequency range of study (0 to 80 Hz). The feasibility of eliminating rotor-bearing instabilities (phenomena of whirl) by using active lubrication is also investigated...

  15. Linear and Non-Linear Control Techniques Applied to Actively Lubricated Journal Bearings

    Nicoletti, Rodrigo; Santos, Ilmar


    The main objectives of actively lubricated bearings are the simultaneous reduction of wear and vibration between rotating and stationary machinery parts. For reducing wear and dissipating vibration energy until certain limits, one can count with the conventional hydrodynamic lubrication. For...... further reduction of shaft vibrations one can count with the active lubrication action, which is based on injecting pressurised oil into the bearing gap through orifices machined in the bearing sliding surface. The design and efficiency of some linear (PD, PI and PID) and non-linear controllers, applied...... to a tilting-pad journal bearing, are analysed and discussed. Important conclusions about the application of integral controllers, responsible for changing the rotor-bearing equilibrium position and consequently the "passive" oil film damping coefficients, are achieved. Numerical results show an...

  16. Linear and non-linear control techniques applied to actively lubricated journal bearings

    Nicoletti, R.; Santos, I. F.


    The main objectives of actively lubricated bearings are the simultaneous reduction of wear and vibration between rotating and stationary machinery parts. For reducing wear and dissipating vibration energy until certain limits, one can use the conventional hydrodynamic lubrication. For further reduction of shaft vibrations one can use the active lubrication action, which is based on injecting pressurized oil into the bearing gap through orifices machined in the bearing sliding surface. The design and efficiency of some linear (PD, PI and PID) and a non-linear controller, applied to a tilting-pad journal bearing, are analysed and discussed. Important conclusions about the application of integral controllers, responsible for changing the rotor-bearing equilibrium position and consequently the "passive" oil film damping coefficients, are achieved. Numerical results show an effective vibration reduction of unbalance response of a rigid rotor, where the PD and the non-linear P controllers show better performance for the frequency range of study (0-80 Hz). The feasibility of eliminating rotor-bearing instabilities (phenomena of whirl) by using active lubrication is also investigated, illustrating clearly one of its most promising applications.

  17. Active Interrogation using Photofission Technique for Nuclear Materials Control and Accountability

    Yang, Haori [Oregon State Univ., Corvallis, OR (United States)


    Innovative systems with increased sensitivity and resolution are in great demand to detect diversion and to prevent misuse in support of nuclear materials management for the U.S. fuel cycle. Nuclear fission is the most important multiplicative process involved in non-destructive active interrogation. This process produces the most easily recognizable signature for nuclear materials. In addition to thermal or high-energy neutrons, high-energy gamma rays can also excite a nucleus and cause fission through a process known as photofission. Electron linear accelerators (linac) are widely used as the interrogating photon sources for inspection methods involving photofission technique. After photofission reactions, prompt signals are much stronger than the delayed signals, but it is difficult to quantify them in practical measurements. Delayed signals are easily distinguishable from the interrogating radiation. linac-based, advanced inspection techniques utilizing the delayed signals after photofission have been extensively studied for homeland security applications. Previous research also showed that a unique delayed gamma ray energy spectrum exists for each fissionable isotope.

  18. Key factors for causing poplar Ice Nucleation Active bacterial canker and its control techniques


    The isolation, culture and the active determination of poplar ice nucleation active (INA) bacteria and the inoculation tests in laboratory and field were conducted, and the varieties, distribution and number of poplar INA bacteria and its pathogenicity and freezing injury property were determined. The study results showed that the INA bacteria widely spread on poplar in Northeast China and caused the frozen injury for poplar under the frost condition in Spring or Autumn, which was the key factor to induce INA bacterial canker. Through evaluation and investigation of different poplar varieties and inoculation tests, fine disease-resistant varieties and strains of poplar suitable for Northeast China were selected. Further tests for strong seedling showed that burying cuttings in sand and covering with plastic film could effectively avoid the frostbite, frozen and drought damage, reduce INA bacteria infection, and promote poplar growth. INA bacterial canker was detected early by highly specialized antiserums of INA bacteria and the agglutinated test of ring-shaped boundary surface. The inducers such as streptomycin, phenylmercuric acetae, salicylic acid and heat-killed bacteria to immerse cuttings, have obvious induced disease-resistant effect. Before poplar sprouted in early spring, through spraying the solution of frostbite agent, the control effect also was obvious.

  19. Vibration Reduction Methods and Techniques for Rotorcraft Utilizing On-Blade Active Control Project

    National Aeronautics and Space Administration — Rotor blades adapted for vibration control have the added benefit of extended blade and rotor life, as well as improved passenger comfort. Approaches that have been...

  20. Technique of pneumatic pest control

    Schäfer, Winfried


    Objectives: Pest control in organic production of berries, potatoes and vegetables usually employs spreading technique of registered phytopharmaceutical agents. This technique may be supported or even replaced by pneumatic pest control. Up to now there is no evaluation of pneumatic pest control available from agricultural engineering point of view. This paper concerns the following questions: Which techniques of pneumatic pest control are available and how may these techniques be improved in ...

  1. Controlled and reversible induction of differentiation and activation of adult human hepatocytes by a biphasic culture technique

    Marcus K.H. Auth; Wolf-Otto Bechstein; Roman A. Blaheta; Kim A. Boost; Kerstin Leckel; Wolf-Dietrich Beecken; Tobias Engl; Dietger Jonas; Elsie Oppermann; Philip Hilgard; Bernd H. Markus


    AIM: Clinical application of human hepatocytes (HC) is hampered by the progressive loss of growth and differentiation in vitro. The object of the study was to evaluate the effect of a biphasic culture technique on expression and activation of growth factor receptors and differentiation of human adult HC.METHODS: Isolated HC were sequentially cultured in a hormone enriched differentiation medium (DM) containing nicotinamide, insulin, transferrin, selenium, and dexamethasone or activation medium (AM) containing hepatocyte growth factor (HGF), epidermal growth factor (EGF), andgranulocyte-macrophage colony-stimulating factor (GMCSF). Expression, distribution and activation of the HC receptors (MET and EGFR) and the pattern of characteristic cytokeratin (CK) filaments were measured by fluorometry, confocal microscopy and Western blotting.RESULTS: In the biphasic culture system, HC underwent repeated cycles of activation (characterized by expression and activation of growth factor receptors) and re-differentiation (illustrated by distribution of typical filaments CK-18 but low or absent expression of CK-19). In AM increased expression of MET and EGFR was associated with receptor translocation into the cytoplasm and induction of atypical CK-19. In DM low expression of MET and EGFR was localized on the cell membrane and CK-19 was reduced. Receptor phosphorylation required embedding of HC in collagen type Ⅰ gel.CONCLUSION: Control and reversible modulation of growth factor receptor activation of mature human HC can be accomplishedin vitro, when defined signals from the extracellular matrix and sequential growth stimuli are provided. The biphasic technique helps overcome dedifferentiation, which occurs during continuous stimulation by means of growth factors.

  2. Advanced Wavefront Control Techniques

    Olivier, S S; Brase, J M; Avicola, K; Thompson, C A; Kartz, M W; Winters, S; Hartley, R; Wihelmsen, J; Dowla, F V; Carrano, C J; Bauman, B J; Pennington, D M; Lande, D; Sawvel, R M; Silva, D A; Cooke, J B; Brown, C G


    Programs at LLNL that involve large laser systems--ranging from the National Ignition Facility to new tactical laser weapons--depend on the maintenance of laser beam quality through precise control of the optical wavefront. This can be accomplished using adaptive optics, which compensate for time-varying aberrations that are often caused by heating in a high-power laser system. Over the past two decades, LLNL has developed a broad capability in adaptive optics technology for both laser beam control and high-resolution imaging. This adaptive optics capability has been based on thin deformable glass mirrors with individual ceramic actuators bonded to the back. In the case of high-power lasers, these adaptive optics systems have successfully improved beam quality. However, as we continue to extend our applications requirements, the existing technology base for wavefront control cannot satisfy them. To address this issue, this project studied improved modeling tools to increase our detailed understanding of the performance of these systems, and evaluated novel approaches to low-order wavefront control that offer the possibility of reduced cost and complexity. We also investigated improved beam control technology for high-resolution wavefront control. Many high-power laser systems suffer from high-spatial-frequency aberrations that require control of hundreds or thousands of phase points to provide adequate correction. However, the cost and size of current deformable mirrors can become prohibitive for applications requiring more than a few tens of phase control points. New phase control technologies are becoming available which offer control of many phase points with small low-cost devices. The goal of this project was to expand our wavefront control capabilities with improved modeling tools, new devices that reduce system cost and complexity, and extensions to high spatial and temporal frequencies using new adaptive optics technologies. In FY 99, the second year of

  3. Statistical Techniques for Project Control

    Badiru, Adedeji B


    A project can be simple or complex. In each case, proven project management processes must be followed. In all cases of project management implementation, control must be exercised in order to assure that project objectives are achieved. Statistical Techniques for Project Control seamlessly integrates qualitative and quantitative tools and techniques for project control. It fills the void that exists in the application of statistical techniques to project control. The book begins by defining the fundamentals of project management then explores how to temper quantitative analysis with qualitati

  4. Technique of nuclear reactors controls

    This report deal about 'Techniques of control of the nuclear reactors' in the goal to achieve the control of natural uranium reactors and especially the one of Saclay. This work is mainly about the measurement into nuclear parameters and go further in the measurement of thermodynamic variables,etc... putting in relief the new features required on behalf of the detectors because of their use in the thermal neutrons flux. In the domain of nuclear measurement, we indicate the realizations and the results obtained with thermal neutron detectors and for the measurement of ionizations currents. We also treat the technical problem of the start-up of a reactor and of the reactivity measurement. We give the necessary details for the comprehension of all essential diagrams and plans put on, in particular, for the reactor of Saclay. (author)

  5. Speed Control Of Separately Excited Dc Motor Using A High Efficiency Flyback Converter With New Active Clamp Technique M.Subramanyam*, K.Eswaramma



    Full Text Available This paper deals with Speed control of separately excited DC motor using flyback converter with a new non complementary active clamp control method to achieve soft switching and high efficiency for heavy motor load and light load conditions. This is quite attractive for low power application with universal ac inputs, such as external adaptors. With the proposed control technique, the energy in the leakage inductance can be fully recycled. The soft switching can be achieved for the main switch and the absorbed leakage energy is transferred to the output and input side. In the Proposed model the resistive and DC motor is connected to flyback converter and it is simulated with different nominal voltages and rated speed is controlled at different levels for the N-type active clamp flyback converter and P-type active clamp flyback converter respectively. N-type active clamp flyback converter is suitable for high speed variation applications and P-type active clamp flyback converter is suitable for low speed variation applications.

  6. Design techniques for mutlivariable flight control systems


    Techniques which address the multi-input closely coupled nature of advanced flight control applications and digital implementation issues are described and illustrated through flight control examples. The techniques described seek to exploit the advantages of traditional techniques in treating conventional feedback control design specifications and the simplicity of modern approaches for multivariable control system design.

  7. Suitability of the cellular viability technique as a control tool of the chlorine dosage on the activated sludge of a biological process affected by bulking

    This work demonstrates the suitability of the cellular viability technique as a control tool of the chlorine dosage on the activated sludge of a biological process affected by the overabundance of the filamentous bacteria (Thiothrix-021N). This technique was used to establish the chlorine dosage according to the observed damages on cellular membranes of both, floc-forming bacteria as well as filamentous bacteria. To identify the filamentous bacteria responsible for the macro-structural alteration of the flocs, several criteria were, met, including morphologic characteristics as well as conventional microbiological stains: Gram, Neisser and polyhydroxy alkanoates. FISH was used to confirm the obtained results, providing a definitive identification of the filamentous bacteria responsible for the alteration. (Author) 11 refs

  8. Modern insect control: Nuclear techniques and biotechnology

    The Symposium dealt primarily with genetic methods of insect control, including sterile insect technique (SIT), F1 sterility, compound chromosomes, translocations and conditional lethals. Research and development activities on various aspects of these control technologies were reported by participants during the Symposium. Of particular interest was development of F1 sterility as a practical method of controlling pest Lepidoptera. Genetic methods of insect control are applicable only on an area wide basis. They are species specific and thus do not reduce populations of beneficial insects or cause other environmental problems. Other papers presented reported on the potential use of radiation as a quarantine treatment for commodities in international trade and the use of radioisotopes as ''tags'' in studying insects

  9. Quality control of baby food products on the basis of results obtained using the instrumental neutron-activation analysis technique

    The purpose of this study was to use the instrumental neutron-activation analysis (INAA) to determine the elemental composition of some kind of imported baby food products (BFP) and to compare the results with the permissible contents. The nuclear reactor WWR-SM of INP has been used to develop INAA to study the mineral composition of some children's food products. The concentration of 26 trace elements, including Mg, Ca, Fe, Zn, etc. was found. The comparison of the results with regulation contents and the daily data on food needs have shown that the investigated group of BFP does not meet the requirements for all trace and macro elements composition. (authors)

  10. Weed identification using an automated active shape matching (AASM) technique

    Swain, Kishore; Nørremark, Michael; Jørgensen, Rasmus N.; Midtiby, Henrik S.; Green, Ole


    Weed identification and control is a challenge for intercultural operations in agriculture. As an alternative to chemical pest control, a smart weed identification technique followed by mechanical weed control system could be developed. The proposed smart identification technique works on the concept of ‘active shape modelling’ to identify weed and crop plants based on their morphology. The automated active shape matching system (AASM) technique consisted of, i) a Pixelink camera ii) an LTI L...

  11. Research review: Indoor air quality control techniques

    Techniques for controlling the concentration of radon, formaldehyde, and combustion products in the indoor air are reviewed. The most effective techniques, which are generally based on limiting or reducing indoor pollutant source strengths, can decrease indoor pollutant concentrations by a factor of 3 to 10. Unless the initial ventilation rate is unusually low, it is difficult to reduce indoor pollutant concentrations more than approximately 50% by increasing the ventilation rate of an entire building. However, the efficiency of indoor pollutant control by ventilation can be enhanced through the use of local exhaust ventilation near concentrated sources of pollutants, by minimizing short circuiting of air from supply to exhaust when pollutant sources are dispersed and, in some situations, by promoting a displacement flow of air and pollutants toward the exhaust. Active air cleaning is also examined briefly. Filtration and electrostatic air cleaning for removal of particles from the indoor air are the most practical and effective currently available techniques of air cleaning. 49 refs., 7 figs

  12. Modern control techniques for accelerators

    Goodwin, R.W.; Shea, M.F.


    Beginning in the mid to late sixties, most new accelerators were designed to include computer based control systems. Although each installation differed in detail, the technology of the sixties and early to mid seventies dictated an architecture that was essentially the same for the control systems of that era. A mini-computer was connected to the hardware and to a console. Two developments have changed the architecture of modern systems: (a) the microprocessor and (b) local area networks. This paper discusses these two developments and demonstrates their impact on control system design and implementation by way of describing a possible architecture for any size of accelerator. Both hardware and software aspects are included.

  13. Temperature Control System Using Fuzzy Logic Technique

    Isizoh A N


    Full Text Available Fuzzy logic technique is an innovative technology used in designing solutions for multi-parameter and non-linear control models for the definition of a control strategy. As a result, it delivers solutions faster than the conventional control design techniques. This paper thus presents a fuzzy logic based-temperature control system, which consists of a microcontroller, temperature sensor, and operational amplifier, Analogue to Digital Converter, display interface circuit and output interface circuit. It contains a design approach that uses fuzzy logic technique to achieve a controlled temperature output function.

  14. Soft Computing Techniques for Process Control Applications

    Rahul Malhotra


    Full Text Available Technological innovations in soft computing techniques have brought automation capabilities to new levelsof applications. Process control is an important application of any industry for controlling the complexsystem parameters, which can greatly benefit from such advancements. Conventional control theory isbased on mathematical models that describe the dynamic behaviour of process control systems. Due to lackin comprehensibility, conventional controllers are often inferior to the intelligent controllers. Softcomputing techniques provide an ability to make decisions and learning from the reliable data or expert’sexperience. Moreover, soft computing techniques can cope up with a variety of environmental and stabilityrelated uncertainties. This paper explores the different areas of soft computing techniques viz. Fuzzy logic,genetic algorithms and hybridization of two and abridged the results of different process control casestudies. It is inferred from the results that the soft computing controllers provide better control on errorsthan conventional controllers. Further, hybrid fuzzy genetic algorithm controllers have successfullyoptimized the errors than standalone soft computing and conventional techniques.

  15. Insect control by using sterile male technique

    The sterile male technique used in insect control is presented as an alternative for chemical control of pest insect. Description and effects of sterile male technique on morphology and physiology of different classes of pest insects are given. Prerequisite conditions necessary to work out SMT are presented. As an example of the application of this technique: control of Ephestia Cartella is studied. Gamma radiation effects on deformation, sterilization and longevity of the male insect as well as fecondity and fertility with respects of gamma irradiation are presented. 11 refs. 3 tabs

  16. Applications of neutron activation analysis technique

    The technique was developed as far back as 1936 by G. Hevesy and H. Levy for the analysis of Dy using an isotopic source. Approximately 40 elements can be analyzed by instrumental neutron activation analysis (INNA) technique with neutrons from a nuclear reactor. By applying radiochemical separation, the number of elements that can be analysed may be increased to almost 70. Compared with other analytical methods used in environmental and industrial research, NAA has some unique features. These are multi-element capability, rapidity, reproducibility of results, complementarity to other methods, freedom from analytical blank and independency of chemical state of elements. There are several types of neutron sources namely: nuclear reactors, accelerator-based and radioisotope-based sources, but nuclear reactors with high fluxes of neutrons from the fission of 235U give the most intense irradiation, and hence the highest available sensitivities for NAA. In this paper, the applications of NAA of socio-economic importance are discussed. The benefits of using NAA and related nuclear techniques for on-line applications in industrial process control are highlighted. A brief description of the NAA set-ups at CERT is enumerated. Finally, NAA is compared with other leading analytical techniques

  17. Control techniques for invasive alien plants

    Michele de Sá Dechoum


    Full Text Available Invasive alien species are recognized as a major threat to the conservation of biodiversity. These species should be managed based on local and regional environmental conditions. Control techniques were tested for ten invasive species in Santa Catarina State: the trees Casuarina equisetifolia, Hovenia dulcis, Psidium guajava, Syzygium cumini, and Terminalia catappa, and shrubs and herbs Rubus fruticosus, Furcraea foetida, Hedychium coronarium, Impatiens walleriana, and Tradescantia zebrina. Treatments applied for trees were cut stump, frill and girdling or ring-barking followed by herbicide application, while the other species were treated with foliar spray, application of herbicide on the root system, cut stump and herbicide injection. The active ingredients tested were Triclopyr, Glyphosate, and the combination of Triclopyr + Fluroxipyr in concentrations from 2 to 6%, according to the species. The cut stump method was efficient for all of the woody species, while ring-barking and frilling followed by herbicide application and basal bark application resulted in different levels of efficiency for the species tested. The most efficient method for herbs and shrubs was foliar spray, and the least efficient methods were cut stump and herbicide injection.

  18. Ultrasonic techniques for process monitoring and control.

    Chien, H.-T.


    Ultrasonic techniques have been applied successfully to process monitoring and control for many industries, such as energy, medical, textile, oil, and material. It helps those industries in quality control, energy efficiency improving, waste reducing, and cost saving. This paper presents four ultrasonic systems, ultrasonic viscometer, on-loom, real-time ultrasonic imaging system, ultrasonic leak detection system, and ultrasonic solid concentration monitoring system, developed at Argonne National Laboratory in the past five years for various applications.

  19. Active interaction control for civil structures

    Wang, Luo-Jia


    This thesis presents a civil engineering approach to active control for civil structures. The proposed control technique, termed Active Interaction Control (AIC), utilizes dynamic interactions between different structures, or components of the same structure, to reduce the resonance response of the controlled or primary structure under earthquake excitations. The primary control objective of AIC is to minimize the maximum story drift of the primary structure. This is accomplished by timing th...

  20. Application of PQR Theory for control of a 3-phase 4-wire 4-legs shunt active power filter in the aß?-axes using 3D-SVM technique



    Full Text Available This article discusses and compares two control strategies applied to a 3-phase 4-wire 4-leg shunt active power filter. These two control strategies, including the cross-vector theory called CV theory and the direct method called PQR theory, are based on the instantaneous control of active and reactive power. On one hand, it is shown that, in some cases, cross-vector theory requires elimination of the zero sequence currents in a 3-phase 4-wire 4-leg shunt active power filter, which needs a power storage element, and on the other hand pretreatment system voltage is necessary to obtain compensated sinusoidal current and a degree of freedom. By relying on the cross-vector theory, the PQR theory is used to extract and remove harmonic currents components. In this control technique, there are two internal current control loops and an external voltage control loop, these control loops have been realized by PI controllers when applied 3D-SVM of switching technique. We choose as criteria for comparison the transient and the Total Harmonic Distortion in the line current. A series of simulations in MATLAB/ Simulink environment have been presented and discussed to show the performance of the two control strategies.

  1. Adaptive feedback active noise control

    Kuo, Sen M.; Vijayan, Dipa

    Feedforward active noise control (ANC) systems use a reference sensor that senses a reference input to the controller. This signal is assumed to be unaffected by the secondary source and is a good measure of the undesired noise to be cancelled by the system. The reference sensor may be acoustic (e.g., microphone) or non-acoustic (e.g., tachometer, optical transducer). An obvious problem when using acoustic sensors is that the reference signal may be corrupted by the canceling signal generated by the secondary source. This problem is known as acoustic feedback. One way of avoiding this is by using a feedback active noise control (FANC) system which dispenses with the reference sensor. The FANC technique originally proposed by Olson and May employs a high gain negative feedback amplifier. This system suffered from the drawback that the error microphone had to be placed very close to the loudspeaker. The operation of the system was restricted to low frequency range and suffered from instability due to the possibility of positive feedback. Feedback systems employing adaptive filtering techniques for active noise control were developed. This paper presents the FANC system modeled as an adaptive prediction scheme.

  2. Analysis of Dynamic Road Traffic Congestion Control (DRTCC Techniques

    Pardeep Mittal


    Full Text Available : Dynamic traffic light control at intersection has become one of the most active research areas to develop the Dynamic transportation systems (ITS. Due to the consistent growth in urbanization and traffic congestion, such a system was required which can control the timings of traffic lights dynamically with accurate measurement of traffic on the road. In this paper, analysis of all the techniques that has been developed to automate the traffic lights has been done.. The efficacy of all the techniques has been evaluated, using MATLAB software. After comparison of artificial intelligent techniques , it is found that image mosaicking technique is quite effective (in terms of improving moving time and reducing waiting time for the control of the traffic signals to control congestion on the road.

  3. Use of nuclear techniques in biological control

    As pointed out by Benbrook (1996), pest management is at a crossroads, and there is a great need for new, biointensive pest management strategies. Among these approaches, biological control is a keystone. However, because of increasing concerns about the introduction of exotic natural enemies of insect pests and weeds (Howarth 1991, Delfosse 1997), the overall thrust of biological control has moved toward augmentative biological control, involving releases of established natural enemy species (Knipling 1992). This in turn has created a need to develop more cost-effective mass rearing technologies for beneficial insects. Nuclear techniques could play an especially important role in augmentative biological control, not only in facilitating mass rearing, but in several other ways, as indicated below. Recognising the potential value for use of nuclear techniques in biological control, the Insect and Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, sponsored a Consultants' Group Meeting on this subject in April 1997. The Group produced a document entitled Use of Nuclear Techniques in Biological Control: Managing Pests, Facilitating Trade and Protecting the Environment. The consultants included the authors of this paper as well as Ernest Delfosse (at that time, with the USDA-APHIS National Biological Control Institute), Garry Hill (Intl. Institute for Biological Control), Sinthya Penn (Beneficial Insectary), and Felipe Jeronimo (USDA-APHIS PPQ, Guatemala). The remarks presented in this paper reflect the thoughts presented by these consultants and other participants at the IAEA-sponsored meeting. Several potential uses for nuclear techniques were identified by the Consultants' Group, including: 1) improvements in rearing media (either artificial diets or natural hosts/prey), 2) provision of sterilised natural prey to be used as food during shipment, to ameliorate concerns relating to the

  4. Active learning techniques for librarians practical examples

    Walsh, Andrew


    A practical work outlining the theory and practice of using active learning techniques in library settings. It explains the theory of active learning and argues for its importance in our teaching and is illustrated using a large number of examples of techniques that can be easily transferred and used in teaching library and information skills to a range of learners within all library sectors. These practical examples recognise that for most of us involved in teaching library and information skills the one off session is the norm, so we need techniques that allow us to quickly grab and hold our

  5. Admission Control Techniques for UMTS System

    P. Kejik


    Full Text Available Universal mobile telecommunications system (UMTS is one of the 3rd generation (3G cell phone technologies. The capacity of UMTS is interference limited. Radio resources management (RRM functions are therefore used. They are responsible for supplying optimum coverage, ensuring efficient use of physical resources, and providing the maximum planned capacity. This paper deals with admission control techniques for UMTS. An own UMTS simulation program and several versions of proposed admission control algorithms are presented in this paper. These algorithms are based on fuzzy logic and genetic algorithms. The performance of algorithms is verified via simulations.

  6. Control techniques for invasive alien plants

    Michele de Sá Dechoum; Sílvia Renate Ziller


    Invasive alien species are recognized as a major threat to the conservation of biodiversity. These species should be managed based on local and regional environmental conditions. Control techniques were tested for ten invasive species in Santa Catarina State: the trees Casuarina equisetifolia, Hovenia dulcis, Psidium guajava, Syzygium cumini, and Terminalia catappa, and shrubs and herbs Rubus fruticosus, Furcraea foetida, Hedychium coronarium, Impatiens walleriana, and Tradescantia zebrina. T...

  7. A Technique for Shunt Active Filter meld micro grid System

    A. Lumani


    Full Text Available The proposed system presents a control technique for a micro grid connected hybrid generation system ith case study interfaced with a three phase shunt active filter to suppress the current harmonics and reactive power present in the load using PQ Theory with ANN controller. This Hybrid Micro Grid is developed using freely renewable energy resources like Solar Photovoltaic (SPV and Wind Energy (WE. To extract the maximum available power from PV panels and wind turbines, Maximum power point Tracker (MPPT has been included. This MPPT uses the “Standard Perturbs and Observe” technique. By using PQ Theory with ANN Controller, the Reference currents are generated which are to be injected by Shunt active power filter (SAPFto compensate the current harmonics in the non linear load. Simulation studies shows that the proposed control technique performs non-linear load current harmonic compensation maintaining the load current in phase with the source voltage.\\

  8. Analysis of Dynamic Road Traffic Congestion Control (DRTCC) Techniques

    Pardeep Mittal; Yashpal Singh,; Yogesh Sharma


    : Dynamic traffic light control at intersection has become one of the most active research areas to develop the Dynamic transportation systems (ITS). Due to the consistent growth in urbanization and traffic congestion, such a system was required which can control the timings of traffic lights dynamically with accurate measurement of traffic on the road. In this paper, analysis of all the techniques that has been developed to automate the traffic lights has been done.. The efficacy...

  9. OOP techniques for control systems software design

    The process of software design for nuclear power plants has several stages that must be fulfilled for a successful application. The first deals with the suitability of the concepts being applied to control the process itself, i.e. the control theory approach used, rationale for imposed limits, etc., that could be termed the formal specification generation. The second encompasses the processes of insuring the correctness of the software according to its formal specification. There are several approaches to dealing with these issues being developed worldwide, from the purely analytical to exhaustive testing methods. The purpose of our research effort is to explore and develop new tools for designing and testing control algorithms based in object-oriented programming (OOP) techniques and iconic interfaces. These two technologies will empower the designer by providing powerful yet simple means to introduce faults, investigate their effects and introduce configuration changes. Software development approaches that both encourage and force modularity with explicit interfacing definition could be of great help towards automatic software verification techniques. It is in this context that OOP techniques could play an important role, since they could be thought of as independent units interacting through allowed communication channels. Object classes implementing most common algorithms have been developed and used in our research laboratory computing environment with good results. It is feasible, in principle at least, to design a topology advisor/verifier that parses the control algorithm to detect anomalous configurations. Future research topics include the development of a prototype topology parser to explore its potential applicability in software design. (Author) 6 refs., 2 figs

  10. Active control of the noise

    The problems of acoustic noise are more and more preponderant in the measure in that the amount of equipment and industrial machinery is increased such as fans, transformers, compressors etc. the use of devices passive mechanics for the reduction of the noise is effective and very appreciated because its effects embrace a wide range of acoustic frequency. However, to low frequencies, such devices become too big and expensive besides that present a tendency to do not effective. The control of active noise, CAN, using the electronic generation anti-noise, constitutes an interesting solution to the problem because their operation principle allows achieving an appreciable reduction of the noise by means of the use of compact devices. The traditional techniques for the control of acoustic noise like barriers and silenced to attenuate it, are classified as passive and their works has been accepted as norm as for the treatment of problems of noise it refers. Such techniques are considered in general very effective in the attenuation of noise of wide band. However, for low frequency, the required passive structures are too big and expensive; also, their effectiveness diminishes flagrantly, that which makes them impractical in many applications. The active suppression is profiled like a practical alternative for the reduction of acoustic noise. The idea in the active treatment of the noise it contemplates the use of a device electro-acoustic, like a speaker for example that it cancels to the noise by the generation of sounds of Same width and of contrary phase (anti-noise). The cancellation phenomenon is carried out when the ant-noise combines acoustically with the noise, what is in the cancellation of both sounds. The effectiveness of the cancellation of the primary source of noise depends on the precision with which the width and the phase of the generated ant-noise are controlled. The active control of noise, ANC (activates noise control), it is being investigated for


    Ajaegbu C


    Full Text Available Database techniques have been used to proffer solution to some challenging situations that has to do with management of data in industries. This idea can also be valuable and implemented in managing the operation mode of some devices during the design level stage. The proposition of Radio Frequency Identification Detection technology as a convenient and automatic instrument of identification and detection has shown value in usage in the society. However, it has been identified with some challenges such as collision despite its prospects. The need to mitigate collision between a reader and multiple tags is of importance for effective deployment of the technology. The paper aimed at integrating one of the concepts of database management technique of concurrency control known as Time-Stamp (TS in order to offer solution to the problem of collision in RFID implementation. This paper adopted a small scale business scenario which was used to illustrate the benefit this stands to offer in the real-life implementation. The paper concluded by arguing that this technique can be adopted and implemented and by such doing, will enhance further the performance of RFID technology.

  12. Concurrency Control Technique in RFID Implementation

    Ajaegbu C


    Full Text Available Database techniques have been used to proffer solution to some challenging situations that has to do with management of data in industries. This idea can also be valuable and implemented in managing the operation mode of some devices during t he design level stage. The proposition of Radio Frequency Identification Detection technology as a convenient and automatic instrument of identification and detection has shown value in usage in the society. However, it has been identified with some challenges such as collision despite its prospects. The need to mitigate collision between a reader and multiple tags is of importance for effective deployment of the technology. The paper aimed at integrating one of the concepts of database management technique of concurrency control known as Time-Stamp (TS in order to offer solution to the problem of collision in RFID implementation. This paper adopted a small scale business scenario which was used to illustrate the benefit this stands to offer in the real-life implementation. The paper concluded by arguing that this technique can be adopted and implemented and by such doing, will enhance further the performance of RFID technology.

  13. Artificial intelligence techniques for voltage control

    Ekwue, A.; Cheng, D.T.Y.; Macqueen, J.F.


    In electric power systems, the advantages of reactive power dispatching or optimisation include improved utilisation of reactive power sources and hence reduction in reactive power flows and real losses of the system; unloading of the system and equipment as a result of reactive flow reduction; the power factors of generation are improved and system security is enhanced; reduced voltage gradients and somewhat higher voltages which result across the system from improved operation; deferred capital investment is new reactive power sources as a result of improved utilisation of existing equipment; and for the National Grid Company plc (NGC), the main advantage is reduced out-of-merit operation. The problem of reactive power control has been studied and widely reported in the literature. Non-linear programming methods as well as linear programming techniques for constraint dispatch have been described. Static optimisation of reactive power sources by the use of sensitivity analysis was described by Kishore and Hill. Long range optimum var planning has been considered and the optimum amount and location of network reactive compensation so as to maintain the system voltage within the desired limits, while operating under normal and various insecurity states, have also been studied using several methods. The objective of this chapter is therefore to review conventional methods as well as AI techniques for reactive power control. (Author)

  14. Magnetic force control technique in industrial application

    Techniques of the magnetic force control have been examined for industrial application. The problems and the technique are different in dispersion medium of gas and that of liquid. In addition, the method is different depending on the magnetic characteristic of the target objects. In case of the liquid, the dispersion medium having different viscosity was examined. The separation speed is decided with the magnitude of the magnetic force because a drag force increases with the viscosity. When the water is the dispersion medium, magnetic seeding is possible and hence the nonmagnetic materials can be separated and even the dissolved material could be separated. The separation technique has been used for purifying the waste water form paper mill or wash water of drum. On the other hand when the water is not dispersion medium, mainly the ferromagnetism particle becomes the target object because the magnetic seeding becomes difficult. The iron fragments have been separated from the slurry of slicing machine of solar battery. It has been clarified high gradient magnetic separation (HGMS) can be applied for the viscous fluid of which viscosity was as high as 10 Pa s. When the dispersion medium is gaseous material, the air is important. The drag force from air depends greatly on Reynolds number. When speed of the air is small, the Reynolds number is small, and the drag force is calculated by the Stokes' law of resistance. The study with gaseous dispersion medium is not carried out much. The magnetic separation will discuss the possibility of the industrial application of this technique.

  15. Nuclear activation techniques in the life sciences

    The analysis of the elemental composition of biological materials is presently undertaken on a large scale in many countries around the world One recent estimate puts the number of such analyses at six thousand million single-element determinations per year, of which about sixteen million are for the so-called trace elements. Since many of these elements are known to play an important role in relation to health and disease, there is considerable interest in learning more about the ways in which they function in living organisms. Nuclear activation techniques, generally referred to collectively as 'activation analysis' constitute an important group of methods for the analysis of the elemental composition of biological materials. Generally they rely on the use of a research nuclear reactor as a source of neutrons for bombarding small samples of biological material, followed by a measurement of the induced radioactivity to provide an estimate of the concentrations of elements. Other methods of activation with Bremsstrahlung and charged particles may also be used, and have their own special applications. These methods of in vitro analysis are particularly suitable for the study of trace elements. Another important group of methods makes use of neutrons from isotopic neutron sources or neutron generators to activate the whole body, or a part of the body, of a living patient. They are generally used for the study of major elements such as Ca, Na and N. All these techniques have previously been the subject of two symposia organised by the IAEA in 1967 and 1972. The present meeting was held to review some of the more recent developments in this field and also to provide a viewpoint on the current status of nuclear activation techniques vis-a-vis other competing non-nuclear methods of analysis

  16. Escherichia coli activity characterization using a laser dynamic speckle technique

    Ramírez-Miquet, Evelio E; Contreras-Alarcón, Orestes R


    The results of applying a laser dynamic speckle technique to characterize bacterial activity are presented. The speckle activity was detected in two-compartment Petri dishes. One compartment was inoculated and the other one was left as a control blank. The speckled images were processed by the recently reported temporal difference method. Three inoculums of 0.3, 0.5, and 0.7 McFarland units of cell concentration were tested; each inoculum was tested twice for a total of six experiments. The dependences on time of the mean activity, the standard deviation of activity and other descriptors of the speckle pattern evolution were calculated for both the inoculated compartment and the blank. In conclusion the proposed dynamic speckle technique allows characterizing the activity of Escherichia coli bacteria in solid medium.

  17. Materials and techniques for controllable microwave surfaces

    Barnes, Alan; Ford, Kenneth L.; Wright, Peter V.; Chambers, Barry; Smith, Christopher D.; Thompson, Denise A.; Pavri, Francis


    Discs and waveguide samples of polymeric mixed conductor nanocomposite materials comprising a conducting polymer and redox active switching agent in a polymer electrolyte have been prepared and studied. These novel materials have been shown to exhibit large, rapid and reversible changes in their microwave impedance when small d.c. electric fields are applied across them from the edges. The results of simultaneous cyclic voltammetry or potential square waves and microwave transmission measurements have shown that the changes are apparantly instantaneous with the application or removal of the applied field. Analysis of the microwave results has shown that the impedance of the materials changes by a factor of up to almost 50 with the imposition or removal of the fields. Nanocomposite materials having either poly(pyrrole) or poly(aniline) as the conducting polymer component and either silver/silver tetrafluoroborate or copper/copper(II) tetrafluoroborate as the redox active components have been investigated. The results of the nanocomposite materials are compared with those of microparticulate composities of similar composition. A new configuration of single layer tunable microwave absorber using only resistive control has been investigated and shown to exhibit wideband, low reflectivity performance combined with reduced thickness. A major advantage of the new topology is the requirement for only a 3:1 change in controllable resistance.

  18. Active Correlation Technique: Status and Development

    Tsyganov, Yury


    During the recent years, at the FLNR a successful cycle of experiments has been accomplished on the synthesis of the superheavy elements with Z=112 to Z=118 using 48Ca ion beam. From the viewpoint of the detection of rare decays and background suppression, this success was achieved due to the application of a new radical technique, the method of active correlations. The method employs search in a real time mode for a pointer to a probable correlation like recoil alpha for switching the beam off. In the case of detection in the same detector strip an additional alpha decay event, of beam OFF time interval is prolonged automatically

  19. Efficiency in Controlling Activities

    Van Nguyen, Tuyen


    Controlling is essential for financial success of corporations. An efficient controlling system should be implemented in order to manage financial performance from income, expense to profitability. The purpose of the thesis is to provide insight knowledge towards corporate accounting management as well as to propose potential improvement for the existing controlling system of the case company, which is Bosch Rexroth Japan. The theoretical framework creates the knowledge foundation for re...

  20. Performance Comparison of Active Queue Management Techniques

    T. B. Reddy


    Full Text Available Congestion is an important issue which researchers focus on in the Transmission Control Protocol (TCP network environment. To keep the stability of the whole network, congestion control algorithms have been extensively studied. Queue management method employed by the routers is one of the important issues in the congestion control study. Active Queue Management (AQM has been proposed as a router-based mechanism for early detection of congestion inside the network. In this study, we are comparing AQM two popular queue management methods, Random Early Detection (RED and droptail, in different aspects, such as throughput and fairness Index. The comparison results indicate RED performed slightly better with higher throughput and higher fairness Index than droptail. Simulation is done by using Network Simulator (NS2 and the graphs are drawn using X- graph.

  1. Control of nucleus accumbens activity with neurofeedback

    Greer, Stephanie M.; Trujillo, Andrew J.; Glover, Gary H.; Knutson, Brian


    The nucleus accumbens (NAcc) plays critical roles in healthy motivation and learning, as well as in psychiatric disorders (including schizophrenia and attention deficit hyperactivity disorder). Thus, techniques that confer control of NAcc activity might inspire new therapeutic interventions. By providing second-to-second temporal resolution of activity in small subcortical regions, functional magnetic resonance imaging (fMRI) can resolve online changes in NAcc activity, which can then be pres...

  2. Active control of convection

    Bau, H.H. [Univ. of Pennsylvania, Philadelphia, PA (United States)


    Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.

  3. Active Combustion Control Valve Project

    National Aeronautics and Space Administration — Over the past decade, research into active combustion control has yielded impressive results in suppressing thermoacoustic instabilities and widening the...

  4. State and data techniques for control of discontinuous systems

    This paper describes a technique for structured analysis and design of automated control systems. The technique integrates control of continuous and discontinuous nuclear power plant subsystems and components. A hierarchical control system with distributed intelligence follows from applying the technique. Further, it can be applied to all phases of control system design. For simplicity, the example used in the paper is limited to phase 1 design (basic automatic control action), in which no maintenance, testing, or contingency capability is attempted. 11 figs

  5. Sterile insect technique in codling moth control

    Exposure of mature pupae or adult codling moths, Cydia pomonella (L.), to 30-40 krad of gamma radiation induces a high level of sterility in the male and complete sterility in the female without seriously affecting behaviour except for sperm competitiveness which is drastically reduced. Substerilizing doses (below about 25 krad) have very little adverse effect and induces higher level of sterility in the F1 male than in the irradiated male parent. The most satisfactory method of measuring the population density of native moths is by examining fruit for larval exit holes. Population increase per generation depends largely on evening temperatures during the moth's reproductive period. The codling moth is a sedentary species, and its distribution is very uneven in commercial orchards. Neglected host trees must be sprayed or destroyed to avoid reinfestation of sterile insect release orchards with immigrant moths. Laboratory-reared moths may be marked externally with fluorescent powders or internally with calco oil red without adverse effects. Mass rearing is still unreliable and expensive, and prolonged colonization affects the insects' behaviour. Successful codling moth suppression was achieved in North America and/or Europe by release of sterile males, sterile females or sterile mixed sexes; by substerile males; and by F1 male progeny (released as diapausing larvae) of substerile males X untreated females. Arthropod predators and parasites held aphids and spider mites at noninjurious levels in most insect release orchards, but leafrollers eventually built up to damaging numbers. The sterile insect technique for commercial control of the codling moth is not feasible at this time because of high costs. (author)

  6. Landfill pollution control with isotope techniques

    Groundwater and surface water contamination by sanitary landfills is being monitored since 1989 in Italy by using isotope techniques combined with chemical analyses. The results obtained are considered mostly satisfactory for identifying sources of contaminants and predicting their behaviour. We present in this work the results of chemical and isotopic measurements performed on rainwater, surface water and groundwater samples, with the aim of investigating the fate of contaminants released from some landfills located near Ancona, Central Italy. The isotope determinations included δ18O, δ2H and tritium (3H). The first objective of these investigations is establishing the background values of the main environmental parameters related to contamination, and obtaining indication about source and residence time (age) of groundwater in the landfill proximity. In particular, the methods used for detecting groundwater and/or surface waters contamination derived from the landfill, are based on the occurrence of tritium activity anomalies and chemical concentration changes. In order to estimate the regional background of environmental tritium in shallow groundwater, we measured the tritium content of monthly rainwater samples collected in stations on the Apennines in proximity of Ancona. The tritium concentration ranged from 3 to 6 TU in winter months (October to April), and reached the maximum values (up to 14 TU) in summer months. The investigations of groundwater and surface water contamination were undertaken on landfills dismissed from 1986 to 1998. The isotopic and chemical monitoring was started one year ago and was carried out on leachates, surface waters and groundwater (the last sampled in several downstream wells). The tritium concentration in leachates can be very high, due to a still active tritium release from the landfill. Tritium values in wells outside of the landfill area, lower than in leachate but higher than the regional background of environmental

  7. Active weld control

    Powell, Bradley W.; Burroughs, Ivan A.


    Through the two phases of this contract, sensors for welding applications and parameter extraction algorithms have been developed. These sensors form the foundation of a weld control system which can provide action weld control through the monitoring of the weld pool and keyhole in a VPPA welding process. Systems of this type offer the potential of quality enhancement and cost reduction (minimization of rework on faulty welds) for high-integrity welding applications. Sensors for preweld and postweld inspection, weld pool monitoring, keyhole/weld wire entry monitoring, and seam tracking were developed. Algorithms for signal extraction were also developed and analyzed to determine their application to an adaptive weld control system. The following sections discuss findings for each of the three sensors developed under this contract: (1) weld profiling sensor; (2) weld pool sensor; and (3) stereo seam tracker/keyhole imaging sensor. Hardened versions of these sensors were designed and built under this contract. A control system, described later, was developed on a multiprocessing/multitasking operating system for maximum power and flexibility. Documentation for sensor mechanical and electrical design is also included as appendices in this report.

  8. Automaticity or active control

    Tudoran, Ana Alina; Olsen, Svein Ottar

    This study addresses the quasi-moderating role of habit strength in explaining action loyalty. A model of loyalty behaviour is proposed that extends the traditional satisfaction–intention–action loyalty network. Habit strength is conceptualised as a cognitive construct to refer to the psychologic......, respectively, between intended loyalty and action loyalty. At high levels of habit strength, consumers are more likely to free up cognitive resources and incline the balance from controlled to routine and automatic-like responses....

  9. Active Control of Suspension Bridges

    Thoft-Christensen, Palle

    In this paper some recent research on active control of very long suspension bridges, is presented. The presentation is based on research work at Aalborg University, Denmark. The active control system is based on movable flaps attached to the bridge girder. Wind load on bridges with or without...... flaps attached to the girder is briefly presented. A simple active control system is discussed. Results from wind tunnel experiments with a bridge section show that flaps can be used effectively to control bridge girder vibrations. Flutter conditions for suspension bridges with and without flaps are...

  10. Improvement of controlled pollination techniques of poplar

    ZHOU Zhong-cheng; LIU Zong-you; HOU Kai-ju; SUN Xian-meng; ZHANG Ji-he; SHEN Bao-xian


    Over a number of years, in order to find substitutes for two traditional poplar pollination techniques: outdoor bridging trees and indoor cutting with water culture, research into two new pollination methods of uprooted outdoor seed trees and outdoor cutting branches was carried out. The advantages of two new and improved techniques were of efficiency, economy, safety and ease of operation. The methods can be applied in hybridization and breeding of poplar and other easy-to-root trees.

  11. Indoor air quality control techniques. Radon, formaldehyde, combustion products

    This book reviews and evaluates existing indoor air quality control techniques. The indoor air pollutants of most concern are radon, formaldehyde, and certain combustion products-nitrogen dioxide, carbon monoxide, carbon dioxide, and various respirable particles. Many techniques exist to control the concentration of these pollutants and other indoor pollutants that are only now being recognized as significant. The purpose of the book is to provide a current review and evaluation of these control techniques

  12. Cost averaging techniques for robust control of flexible structural systems

    Hagood, Nesbitt W.; Crawley, Edward F.


    Viewgraphs on cost averaging techniques for robust control of flexible structural systems are presented. Topics covered include: modeling of parameterized systems; average cost analysis; reduction of parameterized systems; and static and dynamic controller synthesis.

  13. Demand Management Based on Model Predictive Control Techniques

    Yasser A. Davizón


    Full Text Available Demand management (DM is the process that helps companies to sell the right product to the right customer, at the right time, and for the right price. Therefore the challenge for any company is to determine how much to sell, at what price, and to which market segment while maximizing its profits. DM also helps managers efficiently allocate undifferentiated units of capacity to the available demand with the goal of maximizing revenue. This paper introduces control system approach to demand management with dynamic pricing (DP using the model predictive control (MPC technique. In addition, we present a proper dynamical system analogy based on active suspension and a stability analysis is provided via the Lyapunov direct method.

  14. Optimisation techniques for advanced process supervision and control

    Abu-el-zeet, Z.H.


    This thesis is concerned with the use and development of optimisation techniques for process supervision and control. Two major areas related to optimisation are combined namely model predictive control and dynamic data reconciliation. A model predictive control scheme is implemented and used to simulate the control of a coal gasification plant. Static as well as dynamic data reconciliation techniques are developed and used in conjunction with steady-state optimisation and model predictive co...

  15. Microgrid Control Techniques at Power Converter Level

    Valouch, Viktor; Šimek, Petr; Škramlík, Jiří; Tlustý, J.

    Ostrava: VŠB - TU Ostrava, 2013, s. 611-616. ISBN 978-80-248-2988-3. [Electric Power Engineering - EPE 2013. Kouty nad Desnou (CZ), 28.05.2013-30.05.2013] Institutional support: RVO:61388998 Keywords : microgrid * power converter * droop control Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  16. Advanced Control Techniques for WEC Wave Dragon

    Tedd, James; Kofoed, Jens Peter; Jasinski, M.; Morris, A.; Friis-Madsen, E.; Wisniewski, Rafal; Bendtsen, Jan Dimon


    This paper presents the ongoing work on control of the Wave Dragon wave energy converter. Research is being conducted in and between several centers across Europe. This is building upon the knowledge gained in the prototype project, and will enable much better performance of the future deployment...

  17. Optical control of antibacterial activity

    Velema, Willem A.; van der Berg, Jan Pieter; Hansen, Mickel J.; Szymanski, Wiktor; Driessen, Arnold J. M.; Feringa, Ben L.


    Bacterial resistance is a major problem in the modern world, stemming in part from the build-up of antibiotics in the environment. Novel molecular approaches that enable an externally triggered increase in antibiotic activity with high spatiotemporal resolution and auto-inactivation are highly desirable. Here we report a responsive, broad-spectrum, antibacterial agent that can be temporally activated with light, whereupon it auto-inactivates on the scale of hours. The use of such a ‘smart’ antibiotic might prevent the build-up of active antimicrobial material in the environment. Reversible optical control over active drug concentration enables us to obtain pharmacodynamic information. Precisely localized control of activity is achieved, allowing the growth of bacteria to be confined to defined patterns, which has potential for the development of treatments that avoid interference with the endogenous microbial population in other parts of the organism.

  18. Benchmark of experimental techniques for measuring and controlling suction

    Muñoz, Juan Jorge; Tarantino, A.; Gallipoli, Domenico; Augarde, C.E.; V. Gennaro; Gómez, R.; Laloui, L.; Mancuso, C.; El Mountassir, G.; Wheeler, S. J.; Tombolato, S.; Toll, D.G.; Rojas Arias, Juan Carlos; Raveendiraraj, A.; Romero Morales, Enrique Edgar


    The paper presents a benchmarking study carried out within the ‘Mechanics of Unsaturated Soils for Engineering’ (MUSE) network aimed at comparing different techniques for measurement and control of suction. Techniques tested by the eight ‘Mechanics of Unsaturated Soils for Engineering’ research teams include axis-translation (pressure plate and suction-controlled oedometer), highcapacity tensiometer and osmotic technique. The soil used in the exercise was a mixture of uniform sand, sodium ...

  19. Active control: Wind turbine model

    Bindner, H.


    This report is a part of the reporting of the work done in the project 'Active Control of Wind Turbines'. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to designcontrollers. This report describes the model...... developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This hasbeen done with extensive use of measurements as the basis for selection of model complexity and model....... The models are all formulated as linear differential equations. The models are validated throughcomparisons with measurements performed on a Vestas WD 34 400 kW wind turbine. It is shown from a control point of view simple linear models can be used to describe the dynamic behavior of a pitch...

  20. Fractional active disturbance rejection control.

    Li, Dazi; Ding, Pan; Gao, Zhiqiang


    A fractional active disturbance rejection control (FADRC) scheme is proposed to improve the performance of commensurate linear fractional order systems (FOS) and the robust analysis shows that the controller is also applicable to incommensurate linear FOS control. In FADRC, the traditional extended states observer (ESO) is generalized to a fractional order extended states observer (FESO) by using the fractional calculus, and the tracking differentiator plus nonlinear state error feedback are replaced by a fractional proportional-derivative controller. To simplify controller tuning, the linear bandwidth-parameterization method has been adopted. The impacts of the observer bandwidth ωo and controller bandwidth ωc on system performance are then analyzed. Finally, the FADRC stability and frequency-domain characteristics for linear single-input single-output FOS are analyzed. Simulation results by FADRC and ADRC on typical FOS are compared to demonstrate the superiority and effectiveness of the proposed scheme. PMID:26928516


    Mukhin V. V.


    Full Text Available We have selected the new area of controlling - scientific activity controlling. We consider some problems of development in this field, primarily the problem of selection of key performance indicators. It’s been founded that administrative measures stimulated the pursuit of a number of articles published in scientific journals hinders the development of science. Methodological errors - emphasis on citation indexes, impact factors, etc. - lead to wrong management decisions. As the experience of the UK, an expertise should be applied in the management of science. The article briefly discusses some of the drawbacks of the system of scientific specialties. It is proposed to expand research on the science of science and scientific activity controlling. We have also discussed the problems of controlling in applied research organizations

  2. A comparison between active and passive techniques for measurements of radon emanation factors

    Lopez-Coto, I. [Dept. Fisica Aplicada, University of Huelva, Huelva (Spain)], E-mail:; Mas, J.L. [Dept. de Fisica Aplicada I, E.U.P., University of Seville, Seville (Spain); San Miguel, E.G.; Bolivar, J.P. [Dept. Fisica Aplicada, University of Huelva, Huelva (Spain); Sengupta, D. [Department of Geology and Geophysics, I.I.T. Kharagpur, West Bengal (India)


    Some radon related parameters have been determined through two different techniques (passive and active) in soil and phosphogypsum samples. Emanation factors determined through these techniques show a good agreement for soil samples while for phosphogympsum samples appear large discrepancies. In this paper, these discrepancies are analyzed and explained if non-controlled radon leakages in the passive technique are taken into account.

  3. Active control of electric potential of spacecraft

    Goldstein, R.


    Techniques are discussed for controlling the potential of a spacecraft by means of devices which release appropriate charged particles from the spacecraft to the environment. Attention is given to electron emitters, ion emitters, a basic electron emitter arrangement, techniques for sensing electric field or potential, and flight experiments on active potential control. It is recommended to avoid differential charging on spacecraft surfaces because it can severely affect the efficacy of emitters. Discharging the frame of a spacecraft with dielectric surfaces involves the risk of stressing the dielectric material excessively. The spacecraft should, therefore, be provided with grounded conductive surfaces. It is pointed out that particles released by control systems can return to the spacecraft.

  4. Control of Robot Interaction Forces Using Evolutionary Techniques

    de Gea, Jose; Kassahun, Yohannes; Kirchner, Frank


    The work presented describes the design of an ANN-based impedance controller by using evolutionary techniques. The impedance controller is first discretized and represented as a neural network. The use of evolutionary techniques provides a simple methodology to evolve the controller requiring only the definition of a proper performance criteria to be optimised. Currently, unclear or cumbersome methodologies are found to select impedance parameters. The proposed approach obtains optimal parame...

  5. Sterile insect technique for tsetse control and eradication

    The current publication contains the contributions made by scientists who participated in the fourth Co-ordinated Research Programme. A range of topics, covering both field and laboratory activities, was addressed: Eradication of Glossina palpalis palpalis (Robineau-Desvoidy) (Diptera: Glossinidae) from agropastoral land in Central Nigeria by means of the sterile insect technique; Research and development in the IAEA Laboratory at Seibersdorf in support of BICOT for the eradication of Glossina palpalis palpalis; Tsetse fly eradication in Burkina Faso and evaluation of traps and targets; Ecology of Glossina species inhabiting peridomestic agroecosystems in relation to options for tsetse fly control; Population dynamics of Glossina fuscipes fuscipes on Buvuma Island, Lake Victoria, Uganda; Population estimation from mark-recapture data: Equations for a pooled mark system and for pooled data, with applications to a study on island populations of tsetse flies in Zimbabwe; Surveillance of tsetse fly and cattle populations for trypanosomes in the BICOT area during the sterile insect technique control programme; Freeze dried blood and development of an artificial diet for blood feeding anthropods; Effects of the nutritional quality of locally obtained blood diets on the performance of Glossina palpalis palpalis fed in vitro; Mycetomes and symbionts of tsetse flies maintained on a membrane feeding system and the agents interfering with natural reproduction; Virus particles infection in laboratory reared Glossina pallidipes Austen (Diptera: Glossinidae); Influence of different nutritional sources on haemolymph composition and vitellogenesis in haematophagous arthropods; Effect of rearing diet on the injection rate in flies released for the control of tsetse populations by sterile males; Use of juvenile hormone mimics in the sterilization of tsetse flies; Studies of Glossina pallidipes and G. morsitans subspecies related to the genetic control of tsetse flies


    Namita P. Galphade; Subhash S. Sankeshwari


    Mostly, Brushless DC motors have been used in various industrial and domestic applications because of its advantages like simple structure, large torque, long use time, good speed regulation. Generally the BLDCM systems have uncertain and nonlinear characteristics which degrade performance of controllers. Based on these reasons, Sliding Mode Control (SMC) is one of the popular control strategies to deal with the nonlinear uncertain system. In This work implemented a SMC scheme for effective s...

  7. Activity Based Costing versus Traditional Technique

    Dragomirescu Simona Elena; Solomon Daniela Cristina


    One of the current methods of management is Activity-Based Costing (ABC), method that allows the company to understand more clearly how and on what activity/product profit is achieved. In essence, the method involves identifying all specific activities of a product or service and distribution expenses to achieve them with greater accuracy than with traditional accounting methods. This involves not only costs determining closer to reality, but a better understanding of the factors that determi...

  8. A Dynamic Absorber With Active Vibration Control

    Huang, S.-J.; Lian, R.-J.


    The design and construction of a dynamic absorber incorporating active vibration control is described. The absorber is a two-degrees-of-freedom spring — lumped mass system sliding on a guide pillar, with two internal vibration disturbance sources. Both the main mass and the secondary absorber mass are acted on by DC servo motors, respectively, to suppress the vibration amplitude. The state variable technique is used to model this dynamic system and a decoupling PID control method is used. First, the discrete time state space model is identified by using the commercial software MATLAB. Then the decoupling controller of this multi-input/multi-output system is derived from the identified model. Finally the results of some experiments are presented. The experimental results show that the system is effective in suppressing vibration. Also, the performance of this control strategy for position tracking control is evaluated based on experimental data.

  9. Power system stabilizers based on modern control techniques

    Malik, O.P.; Chen, G.P.; Zhang, Y.; El-Metwally, K. [Calgary Univ., AB (Canada). Dept. of Electrical and Computer Engineering


    Developments in digital technology have made it feasible to develop and implement improved controllers based on sophisticated control techniques. Power system stabilizers based on adaptive control, fuzzy logic and artificial networks are being developed. Each of these control techniques possesses unique features and strengths. In this paper, the relative performance of power systems stabilizers based on adaptive control, fuzzy logic and neural network, both in simulation studies and real time tests on a physical model of a power system, is presented and compared to that of a fixed parameter conventional power system stabilizer. (author) 16 refs., 45 figs., 3 tabs.

  10. Hybrid control using evolutionary tuned fuzzy controller techniques - a study

    Stirrup, R.; Chipperfield, A.; Tang, K.S.; Man, K.F.


    Many real world systems exist that have operating regions or regimes that exhibit varying degrees of non-lineararity. An example of this are the significant variations in the dynamic characteristics of a distributed collector field within a solar power plant. Her a gain schedule controller using pole placement with feedforward was chosen to control the more linear operating regimes of the plant. Then a study was carried out to find the best suited and most efficient evolutionary-tuned fuzz...

  11. Suitable activated carbon-13 tracer techniques

    Feasibility and applicability studies of the proton induced gamma ray emission (PIGE) have been performed. The graphite was firstly bombarded at various proton energies to determine gamma ray yield (and, thus, sensitivities) for the reaction of interest. The accuracy for the determination of 13C abundance was checked, and the precision with which this value and ratios 13C/12C may be obtained was established by repetitive analysis samples. The performance of different standards in this determination was assessed. The mathematical treatment was developed for the determination of 13C abundance in tracer studies, and to derive the equations that govern this method of analysis from first principles, to arrive finally at a simple expression by virtue of the observed regularities. The system was calibrated by measuring the gamma ray yield form the 12C (p, γ)13N and 13C(p,γ)14N reaction as a function of known 13C enrichment. Using this experimentally determined calibration curve, unknown materials can be assayed. This technique is applicable to the analysis of samples with 13C enrichments between 0.1% and 90%. The samples of human breath natural samples were analyzed against graphite and Cylinder CO2 standards. Relative standard deviations were 13C abundance, an increase in 13C per cent isotopic abundance from the natural 1.11% (average) to only 1.39% may be ascertained. Finally, PIGE is compared with more classical techniques for analysis of 13C tracer experiments. Ease and speed are important advantages of this technique over mass spectrometry, and its error is compatible with the natural variation of biological results. (9 refs., 11 figs., 9 tabs.)

  12. Optimal and suboptimal control technique for aircraft spin recovery

    Young, J. W.


    An analytic investigation has been made of procedures for effecting recovery from equilibrium spin conditions for three assumed aircraft configurations. Three approaches which utilize conventional aerodynamic controls are investigated. Included are a constant control recovery mode, optimal recoveries, and a suboptimal control logic patterned after optimal recovery results. The optimal and suboptimal techniques are shown to yield a significant improvement in recovery performance over that attained by using a constant control recovery procedure.

  13. Using statistical quality control techniques to monitor blood glucose levels.

    Oniki, T. A.; Clemmer, T. P.; Arthur, L. K.; Linford, L. H.


    Continuous Quality Improvement techniques developed in industry are increasingly being applied to the medical field. Statistical process control charts are a CQI technique aimed at monitoring a process and its variability. At our hospital, statistical quality control charts are being constructed from laboratory blood glucose measurements of patients receiving enteral or parenteral nutrition. The charts will be used to monitor glucose levels, reveal variations, and illustrate the effects of ne...

  14. Novel Active Combustion Control Valve

    Caspermeyer, Matt


    This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.

  15. Engine control techniques to account for fuel effects

    Kumar, Shankar; Frazier, Timothy R.; Stanton, Donald W.; Xu, Yi; Bunting, Bruce G.; Wolf, Leslie R.


    A technique for engine control to account for fuel effects including providing an internal combustion engine and a controller to regulate operation thereof, the engine being operable to combust a fuel to produce an exhaust gas; establishing a plurality of fuel property inputs; establishing a plurality of engine performance inputs; generating engine control information as a function of the fuel property inputs and the engine performance inputs; and accessing the engine control information with the controller to regulate at least one engine operating parameter.

  16. Nonlinear control techniques for an atomic force microscope system

    Yongchun FANG; Matthew FEEMSTER; Darren DAWSON; Nader M.JALILI


    Two nonlinear control techniques are proposed for an atomic force microscope system.Initially,a learning-based control algorithm is developed for the microcantilever-sample system that achieves asymptotic cantilever tip tracking for periodic trajectories.Specifically,the control approach utilizes a learning-based feedforward term to compensate for periodic dynamics and high-gain terms to account for non-periodic dynamics.An adaptive control algorithm is then developed to achieve asymptotic cantilever tip tracking for bounded tip trajectories despite uncertainty throughout the system parameters.Simulation results are provided to illustrate the efficacy and performance of the control strategies.

  17. Sliding mode control of switching power converters techniques and implementation

    Tan, Siew-Chong; Tse, Chi-Kong


    Sliding Mode Control of Switching Power Converters: Techniques and Implementation is perhaps the first in-depth account of how sliding mode controllers can be practically engineered to optimize control of power converters. A complete understanding of this process is timely and necessary, as the electronics industry moves toward the use of renewable energy sources and widely varying loads that can be adequately supported only by power converters using nonlinear controllers.Of the various advanced control methods used to handle the complex requirements of power conversion systems, sliding mode c

  18. A Digital Controller for Active Aeroelastic Controls

    Ueda, Tetsuhiko; MUROTA, Katsuichi; 上田, 哲彦; 室田, 勝一


    A high-speed digital controller for aeroelastic controls was designed and made. The purpose was to minimize adverse phase lag which is inevitably produced by the CPU time of digital processing. The delay deteriorates control performances on rather rapid phenomena like aircraft flutter. With fix-point operation the controller realized 417 microseconds of throughput time including the A/D and D/A conversion. This corresponds to a high sampling rate of 2.4kHz. The controller furnishes two channe...

  19. Recent advances in active control of aircraft cabin noise

    Mathur, Gopal; Fuller, Christopher


    Active noise control techniques can provide significant reductions in aircraft interior noise levels without the structural modifications or weight penalties usually associated with passive techniques, particularly for low frequency noise. Our main objective in this presentation is to give a review of active control methods and their applications to aircraft cabin noise reduction with an emphasis on recent advances and challenges facing the noise control engineer in the practical application of these techniques. The active noise control method using secondary acoustic sources, e.g., loudspeakers, as control sources for tonal noise reduction is first discussed with results from an active noise control flight test demonstration. An innovative approach of applying control forces directly to the fuselage structure using piezoelectric actuators, known as active structural acoustic control (ASAC), to control cabin noise is then presented. Experimental results from laboratory ASAC tests conducted on a full-scale fuselage and from flight tests on a helicopter will be discussed. Finally, a hybrid active/passive noise control approach for achieving significant broadband noise reduction will be discussed. Experimental results of control of broadband noise transmission through an aircraft structure will be presented.

  20. Technique-tactic indexes of competitive activity of combat wrestles.

    Boychenko N.V.


    Full Text Available Perfection of the system of training process management on the basis of analysis of context and structure of competitive activity is one of the perspective trends of perfection of training system. The variety of technique and tactics of competitive activity in combat sports demands in specialists the selection and devising of objective indexes of evaluation of technique-tactic preparedness. Considered here are the methods of investigation of competitive activity of combat athletes which include the estimation of volume, diversity and effectiveness of attacking and defensive actions. The major indexes of sportive technique and sportive-technical preparedness of sportsmen are revealed as was as indexes of sportsmen's proficiency.

  1. Evolutionary biology and genetic techniques for insect control

    Leftwich, Philip; Bolton, Michael; Chapman, Tracey


    Abstract The requirement to develop new techniques for insect control that minimize negative environmental impacts has never been more pressing. Here we discuss population suppression and population replacement technologies. These include sterile insect technique, genetic elimination methods such as the release of insects carrying a dominant lethal (RIDL), and gene driving mechanisms offered by intracellular bacteria and homing endonucleases. We also review the potential of newer or underutil...

  2. Object oriented programming techniques applied to device access and control

    In this paper a model, called the device server model, has been presented for solving the problem of device access and control faced by all control systems. Object Oriented Programming techniques were used to achieve a powerful yet flexible solution. The model provides a solution to the problem which hides device dependancies. It defines a software framework which has to be respected by implementors of device classes - this is very useful for developing groupware. The decision to implement remote access in the root class means that device servers can be easily integrated in a distributed control system. A lot of the advantages and features of the device server model are due to the adoption of OOP techniques. The main conclusion that can be drawn from this paper is that 1. the device access and control problem is adapted to being solved with OOP techniques, 2. OOP techniques offer a distinct advantage over traditional programming techniques for solving the device access problem. (J.P.N.)

  3. A time-delay suppression technique for DPWM control circuit

    Ishizuka, Yoichi; Hirose, Fumitoshi; Yamada, Yusuke; Matsuo, Hirofumi


    A proposed design of a low-cost digital pulse width modulation (DPWM) control circuit for non-isolated DC-DC converter without A/D converter is described. Also, propsed real-time PID control technique for DPWM is described. Some experimental results and simulation results are revealed the proposed circuit and scheme. The purpose of this research is striking a balance between minimizing cost increase by digitalizing of the control circuit of DC-DC converter and speeding up the control circuit.

  4. Metamodeling Techniques Applied to the Design of Reconfigurable Control Applications

    Luca Ferrarini


    Full Text Available In order to realize autonomous manufacturing systems in environments characterized by high dynamics and high complexity of task, it is necessary to improve the control system modelling and performance. This requires the use of better and reusable abstractions. In this paper, we explore the metamodel techniques as a foundation to the solution of this problem. The increasing popularity of model-driven approaches and a new generation of tools to support metamodel techniques are changing software engineering landscape, boosting the adoption of new methodologies for control application development.

  5. Comparative evaluation of passive, active, and passive-active distraction techniques on pain perception during local anesthesia administration in children

    Abdelmoniem, Soad A.; Mahmoud, Sara A.


    Local anesthesia forms the backbone of pain control techniques and is necessary for a painless dental procedure. Nevertheless, administering a local anesthetic injection is among the most anxiety-provoking procedures to children. This study was performed to compare the efficacy of different distraction techniques (passive, active, and passive-active) on children’s pain perception during local anesthesia administration. A total of 90 children aged four to nine years, requiring inferior alveola...

  6. Automatic Level Control for Video Cameras towards HDR Techniques

    de With PeterHN


    Full Text Available We give a comprehensive overview of the complete exposure processing chain for video cameras. For each step of the automatic exposure algorithm we discuss some classical solutions and propose their improvements or give new alternatives. We start by explaining exposure metering methods, describing types of signals that are used as the scene content descriptors as well as means to utilize these descriptors. We also discuss different exposure control types used for the control of lens, integration time of the sensor, and gain control, such as a PID control, precalculated control based on the camera response function, and propose a new recursive control type that matches the underlying image formation model. Then, a description of commonly used serial control strategy for lens, sensor exposure time, and gain is presented, followed by a proposal of a new parallel control solution that integrates well with tone mapping and enhancement part of the image pipeline. Parallel control strategy enables faster and smoother control and facilitates optimally filling the dynamic range of the sensor to improve the SNR and an image contrast, while avoiding signal clipping. This is archived by the proposed special control modes used for better display and correct exposure of both low-dynamic range and high-dynamic range images. To overcome the inherited problems of limited dynamic range of capturing devices we discuss a paradigm of multiple exposure techniques. Using these techniques we can enable a correct rendering of difficult class of high-dynamic range input scenes. However, multiple exposure techniques bring several challenges, especially in the presence of motion and artificial light sources such as fluorescent lights. In particular, false colors and light-flickering problems are described. After briefly discussing some known possible solutions for the motion problem, we focus on solving the fluorescence-light problem. Thereby, we propose an algorithm for

  7. Reinforcement Learning Technique in Multiple Motorway Access Control Strategy Design

    Veljanovska, Kostandina; M. Bombol, Kristi; Maher, Tomaž


    An appropriately designed motorway access control can decrease the total travel time spent in the system up to 30% and consequently increase the merging operations safety. To date, implemented traffic responsive motorway access control systems have been of local or regulatory type and not truly adaptive in the real sense of the meaning. Hence, traffic flow can be influenced positively by numerous intelligent transportation system (ITS) techniques. In this paper a contemporary approach is pres...

  8. Tsetse control, diagnosis and chemotherapy using nuclear techniques

    The focus of the seminar was on recent advances in the use of nuclear techniques in the diagnosis and control of tsetse-transmitted trypanosomiasis. The proceedings contain the full text of sixteen selected papers addressing the disease and its diagnosis, chemotherapy, vector biology, ecology and control. Synopses of the other papers presented are also included. The individual contributions are indexed separately. Refs, figs and tabs




    A novel current control technique is proposed to control power flow from a renewable energy source feeding a microgrid system through a three - phase parallel - connected inverter. The parallel - connected inverter ensures that the power flow from the grid with low - current total harmonic distortion even in the presence of nonlinear load. The renewable energy sources ar e paralleled, and the average of this constant sup...

  10. Development of irradiation technique on controlling food contamination residue

    The current state of the researches of irradiation technology on controlling food mycotoxin, pesticide, veterinary drugs and fishery drugs residue was summarized. And the degradation rate, mechanism, products and toxicities of food contamination were expatiated. The free radical from irradiation attack the site of weaker bond, and the less or more toxic substances were produced, which lead to the degradation of the food contamination. The limitations and future application of irradiation technique on controlling food contamination were also analyzed. (authors)




    Full Text Available In this paper, we propose two approach intelligent techniques of improvement of Direct Torque Control (DTC of Induction motor such as fuzzy logic (FL and artificial neural network (ANN, applied in switching select voltage vector .The comparison with conventional direct torque control (DTC, show that the use of the DTC_FL and DTC_ANN, reduced the torque, stator flux, and current ripples. The validity of the proposed methods is confirmed by the simulative results.


    R. Toufouti; S.Meziane; Benalla, H.


    In this paper, we propose two approach intelligent techniques of improvement of Direct Torque Control (DTC) of Induction motor such as fuzzy logic (FL) and artificial neural network (ANN), applied in switching select voltage vector .The comparison with conventional direct torque control (DTC), show that the use of the DTC_FL and DTC_ANN, reduced the torque, stator flux, and current ripples. The validity of the proposed methods is confirmed by the simulative results.

  13. Power electronic converters PWM strategies and current control techniques

    Monmasson, Eric


    A voltage converter changes the voltage of an electrical power source and is usually combined with other components to create a power supply. This title is devoted to the control of static converters, which deals with pulse-width modulation (PWM) techniques, and also discusses methods for current control. Various application cases are treated. The book is ideal for professionals in power engineering, power electronics, and electric drives industries, as well as practicing engineers, university professors, postdoctoral fellows, and graduate students.

  14. Sterile insect technique and radiation in insect control

    Out of 39 papers and 6 summaries of the poster presentations published in this proceeding series, 23 respectively fall within the INIS subject scope. Four main topics were covered: a review of the sterile insect technique against various insect pests; its application to tsetse flies in eradication programmes; quality control of mass-reared insects for release; and the development of genetic approaches to insect mass rearing and control. Other topics emphasized integrated pest management, computer models and radioisotope labelling

  15. Abstraction and control techniques for non-stationary scheduling problems

    Innocenti, Giacomo


    The paper faces the problem of scheduling from a new perspective, trying to bridge the gap between classical heuristic approaches and system identification and control strategies. To this aim, a complete mathematical formulation of a general scheduling process is derived, beginning from very broad assumptions. This allows a greater freedom of manipulation and guarantee the resolution of the identification (and control) techniques. Both an adaptive and a switching strategies are presented in relation to the performances of a simple Round Robin algorithm.

  16. Genetic techniques in insect pest control: an overview

    Marec, František


    Roč. 71, - (1998), s. 40. [ FAO /IAEA International Conference on area-wide control of insect pests integrating the sterile insect and related nuclear and other techniques. 28.05.1998-02.06.1998, Penang] Keywords : Cochliomyia hominivorax * Ceratitis capitata Subject RIV: EB - Genetics ; Molecular Biology

  17. Materials and techniques for spacecraft static charge control 2

    Schmidt, R. E.; Eagles, A. E.


    Results of exploratory development on the design, fabrication and testing of transparent conductive coatings, conductive bulk materials and grounding techniques for application to high resistivity spacecraft dielectric materials to obtain control of static charge buildup are presented. Deposition techniques for application of indium oxide, indium/tin oxide and other metal oxide films on Kapton, FEP Teflon, OSR and solar cell coverglasses discussed include RF and Magnetron sputtering and vapor deposition. Development, fabrication and testing of conductive glass tiles for OSR and solar cell coverglass applications is discussed. Several grounding techniques for rapid charge dissipation from the conductively coated polymer and glass dielectrics which were developed and tested in thermal cycled and electron plasma environments are described. The optical and electrical characterization and aging effects of these coatings, bulk materials and grounding techniques are reviewed as they apply to the performance of their design functions in a geosynchronous orbit environment.

  18. Active Spacecraft Potential Control Investigation

    Torkar, K.; Nakamura, R.; Tajmar, M.; Scharlemann, C.; Jeszenszky, H.; Laky, G.; Fremuth, G.; Escoubet, C. P.; Svenes, K.


    In tenuous plasma the floating potential of sunlit spacecraft reaches tens of volts, positive. The corresponding field disturbs measurements of the ambient plasma by electron and ion sensors and can reduce micro-channel plate lifetime in electron detectors owing to large fluxes of attracted photoelectrons. Also the accuracy of electric field measurements may suffer from a high spacecraft potential. The Active Spacecraft Potential Control (ASPOC) neutralizes the spacecraft potential by releasing positive charge produced by indium ion emitters. The method has been successfully applied on other spacecraft such as Cluster and Double Star. Two ASPOC units are present on each spacecraft. Each unit contains four ion emitters, whereby one emitter per instrument is operated at a time. ASPOC for the Magnetospheric Multiscale (MMS) mission includes new developments in the design of the emitters and the electronics. New features include the use of capillaries instead of needles, new materials for the emitters and their internal thermal insulators, an extended voltage and current range of the electronics, both for ion emission and heating purposes, and a more capable control software. This enables lower spacecraft potentials, higher reliability, and a more uniform potential structure in the spacecraft's sheath compared to previous missions. Results from on-ground testing demonstrate compliance with requirements. Model calculations confirm the findings from previous applications that the plasma measurements will not be affected by the beam's space charge. Finally, the various operating modes to adapt to changing boundary conditions are described along with the main data products.

  19. Control Techniques in Heating, Ventilating and Air Conditioning Systems

    H. Mirinejad


    Full Text Available Problem statement: Heating, Ventilating and Air Conditioning (HVAC systems are among the main installations in residential, commercial and industrial buildings. The purpose of the HVAC systems is normally to provide a comfortable environment in terms of temperature, humidity and other environmental parameters for the occupants as well as to save energy. Achieving these objectives requires a suitable control system design. Approach: In this overview, thermal comfort level and ISO comfort field is introduced, followed by a review and comparison of the main existing control techniques used in HVAC systems to date. Results: The present overview shows that intelligent controllers which are based on the human sensation of thermal comfort have a better performance in providing thermal comfort as well as energy saving than the traditional controllers and those based on a model of the HVAC system. Conclusion: Such an overview provides an insight into current control methods in HVAC systems and can help scholars and HVAC learners to have the comprehensive information about a variety of control techniques in the field of HVAC and therefore to better design a proper controller for their work

  20. Reinforcement learning output feedback NN control using deterministic learning technique.

    Xu, Bin; Yang, Chenguang; Shi, Zhongke


    In this brief, a novel adaptive-critic-based neural network (NN) controller is investigated for nonlinear pure-feedback systems. The controller design is based on the transformed predictor form, and the actor-critic NN control architecture includes two NNs, whereas the critic NN is used to approximate the strategic utility function, and the action NN is employed to minimize both the strategic utility function and the tracking error. A deterministic learning technique has been employed to guarantee that the partial persistent excitation condition of internal states is satisfied during tracking control to a periodic reference orbit. The uniformly ultimate boundedness of closed-loop signals is shown via Lyapunov stability analysis. Simulation results are presented to demonstrate the effectiveness of the proposed control. PMID:24807456

  1. Advanced analytical techniques for boiling water reactor chemistry control

    The analytical techniques applied can be divided into 5 classes: OFF-LINE (discontinuous, central lab), AT-LINE (discontinuous, analysis near loop), ON-LINE (continuous, analysis in bypass). In all cases pressure and temperature of the water sample are reduced. In a strict sense only IN-LINE (continuous, flow disturbance) and NON-INVASIVE (continuous, no flow disturbance) techniques are suitable for direct process control; - the ultimate goal. An overview of the analytical techniques tested in the pilot loop is given. Apart from process and overall water quality control, standard for BWR operation, the main emphasis is on water impurity characterization (crud particles, hot filtration, organic carbon); on stress corrosion crackling control for materials (corrosion potential, oxygen concentration) and on the characterization of the oxide layer on austenites (impedance spectroscopy, IR-reflection). The above mentioned examples of advanced analytical techniques have the potential of in-line or non-invasive application. They are different stages of development and are described in more detail. 28 refs, 1 fig., 5 tabs

  2. Finite element models applied in active structural acoustic control

    Oude Nijhuis, Marco H.H.; Boer, de André; Rao, Vittal S.


    This paper discusses the modeling of systems for active structural acoustic control. The finite element method is applied to model structures including the dynamics of piezoelectric sensors and actuators. A model reduction technique is presented to make the finite element model suitable for controll

  3. Management techniques and methods used to computerize work control processes

    With the thrust of this meeting being articulate the nuclear power industry's vigorous move toward excellence in operations and that such excellence is both cost-effective and safety enhancing, the subject of this paper is how the Point Beach Nuclear Power Plant instituted a computerized work control and data processing system. The paper deals with the goals established and the approaches used. Also included is a description of the mechanisms and techniques utilized and an assessment of successes. It is hoped that by articulating the management techniques and methods used to institute a major functional and organizational change at Point Beach Nuclear Plant, the presentation will be beneficial

  4. Insect population control by the sterile-male technique

    The successful use of the sterile male technique to eradicate the screw worm fly from the Southeastern part of the United States showed that a new biological method using radiation-sterilized insects could not only control but also eradicate harmful insect pests. A panel of experts met at the IAEA in Vienna in October 1962 to discuss the various aspects and applications of this new technique and to assess its usefulness and limitations. This report summarizes the panel proceedings. 42 refs, 18 figs, 1 tab

  5. An active control synchronization for two modified Chua circuits

    Li, Guo-Hui


    From modern control theory, an active control method to synchronize two modified Chua circuits with each other, which exhibit chaos, is presented. Some sufficient conditions of linear stability of the chaotic synchronization are obtained from rigorous mathematic justification. On the basis of the state-observer, the controller is analytically deduced using the active control. It is shown that this technique can be applied to achieve synchronization of the two systems with each other, whether they are identical or not. Finally, numerical simulations show the effectiveness of the proposed control scheme.

  6. An active control synchronization for two modified Chua circuits

    Li Guo-Hui


    From modern control theory, an active control method to synchronize two modified Chua circuits with each other, which exhibit chaos, is presented. Some sufficient conditions of linear stability of the chaotic synchronization are obtained from rigorous mathematic justification. On the basis of the state-observer, the controller is analytically deduced using the active control. It is shown that this technique can be applied to achieve synchroniztion of the tow systems with each other, whether they are identical or not. Finally, numerical simulations show the effectiveness of the proposed control scheme.

  7. New approaches in intelligent control techniques, methodologies and applications

    Kountchev, Roumen


    This volume introduces new approaches in intelligent control area from both the viewpoints of theory and application. It consists of eleven contributions by prominent authors from all over the world and an introductory chapter. This volume is strongly connected to another volume entitled "New Approaches in Intelligent Image Analysis" (Eds. Roumen Kountchev and Kazumi Nakamatsu). The chapters of this volume are self-contained and include summary, conclusion and future works. Some of the chapters introduce specific case studies of various intelligent control systems and others focus on intelligent theory based control techniques with applications. A remarkable specificity of this volume is that three chapters are dealing with intelligent control based on paraconsistent logics.

  8. Statistic techniques of process control for MTR type

    This work aims at introducing some improvements on the fabrication of MTR type fuel plates, applying statistic techniques of process control. The work was divided into four single steps and their data were analyzed for: fabrication of U3O8 fuel plates; fabrication of U3 Si2 fuel plates; rolling of small lots of fuel plates; applying statistic tools and standard specifications to perform a comparative study of these processes. (author)

  9. Active Vibration Control of a Monopile Offshore Structure

    Nielsen, Søren R. K.; Kirkegaard, Poul Henning; Thesbjerg, L.


    structure an active control technique has been proposed in corporation with the consulting company Rambøll, Esbjerg, Denmark. The proposed control technique is based on the relationship between the position of the separation points of the boundary layer flow and the drag term in the wave force on the......, it can be necessary to use an active or a passive vibration control system. However, for a monopile with severe space problems it can be difficult to locate a passive control system such as e.g. a tuned mass damper. Therefore, in order to active control wave introduced vibrations of a monopile...... cylinder. This concept has been experimentally investigated with a test model in stationary flow tests. The idea is to have a large drag coefficient when the cylinder moves opposite of the wave direction implying a relatively large damping excitation. When the structure moves in the wave direction a small...

  10. Control technique for enhancing the stable operation of distributed generation units within a microgrid

    Highlights: • A control technique for enhancing the stable operation of distributed generation units is proposed. • Passivity-based control technique is considered to analyze the dynamic and steady-state behaviors. • The compensation of instantaneous variations in the reference current components is considered. • Simulation results confirm the performance of the control scheme within the microgrid. - Abstract: This paper describes a control technique for enhancing the stable operation of distributed generation (DG) units based on renewable energy sources, during islanding and grid-connected modes. The Passivity-based control technique is considered to analyze the dynamic and steady-state behaviors of DG units during integration and power sharing with loads and/or power grid, which is an appropriate tool to analyze and define a stable operating condition for DG units in microgrid technology. The compensation of instantaneous variations in the reference current components of DG units in ac-side, and dc-link voltage variations in dc-side of interfaced converters, are considered properly in the control loop of DG units, which is the main contribution and novelty of this control technique over other control strategies. By using the proposed control technique, DG units can provide the continuous injection of active power from DG sources to the local loads and/or utility grid. Moreover, by setting appropriate reference current components in the control loop of DG units, reactive power and harmonic current components of loads can be supplied during the islanding and grid-connected modes with a fast dynamic response. Simulation results confirm the performance of the control scheme within the microgrid during dynamic and steady-state operating conditions

  11. Non-Destructive Testing Techniques for Research and Process Control

    Non-destructive test methods have been used primarily for the detection of defects and the rejection of faulty materials. The Oak Ridge National Laboratory has found it valuable to employ special non-destructive testing techniques as aids in materials research, component development, and process control. This paper gives three recent examples of the evolution of non-destructive testing techniques from research to process control. A current fuel-element design contains fuel pins filled with vibratorily compacted uranium and thorium oxide powder. A gamma-attenuation technique was developed to allow the homogeneity of fuel loading to be measured and was used to aid the development of fabrication techniques and equipment. Later an inspection device was built to operate remotely in a hermetically sealed and shielded facility and used for production process control. Another fuel element required fuel plates containing a uranium oxide-aluminium dispersion core with a programmed variation in the fuel loading across the width. A continuous scanning, X-ray attenuation technique was developed and used to measure fuel inhomogeneities and conformity to design contour. The technique assisted the development for both core pressing and plate-rolling practices. A system was constructed for rapid automatic evaluation of production fuel plates. These fuel plates were pressed into involute shape and assembled with alternate cooling channels. Stringent heat-transfer requirements imposed a tight tolerance on the channel dimensions. A unique eddy-current device using the ''lift-off'' characteristic was invented to insert in the very narrow channel and allow recording of dimensions both during fabrication development and actual manufacture. Another approach to fuel elements is the use of minute fuel-bearing particles coated with pyrolytic carbon to retain the fission products. Of concern are the core diameter, coating thickness and integrity, and presence of fuel in the coating

  12. Cooperative Control Method of Active and Semiactive Control: New Framework for Vibration Control

    Kazuhiko Hiramoto


    A new control design framework for vibration control, the cooperative control of active and semiactive control, is proposed in the paper. In the cooperative control, a structural system having both of an actuator and a semiactive control device, for example, MR damper and so forth, is defined as the control object. In the proposed control approach, the higher control performance is aimed by the cooperative control between the active control with the actuator and the semiactive control with th...

  13. Weed Identification Using An Automated Active Shape Matching (AASM) Technique

    Swain, K C; Nørremark, Michael; Jørgensen, R N;


    concept of ‘active shape modelling’ to identify weed and crop plants based on their morphology. The automated active shape matching system (AASM) technique consisted of, i) a Pixelink camera ii) an LTI (Lehrstuhlfuer technische informatik) image processing library, iii) a laptop pc with the Linux OS. A 2......-identification process required 0.062 s for eight iterations with the Linux platform used....

  14. Run control techniques for the Fermilab DART data acquisition system

    DART is the high speed, Unix based data acquisition system being developed by the Fermilab Computing Division in collaboration with eight High Energy Physics Experiments. This paper describes DART run-control which implements flexible, distributed, extensible and portable paradigms for the control and monitoring of data acquisition systems. We discuss the unique and interesting aspects of the run-control - why we chose the concepts we did, the benefits we have seen from the choices we made, as well as our experiences in deploying and supporting it for experiments during their commissioning and sub-system testing phases. We emphasize the software and techniques we believe are extensible to future use, and potential future modifications and extensions for those we feel are not

  15. Development of Active Noise Control System for Quieting Transformer Noise

    Lee, Bok Kyu; Song, Seik Young; Choi, Huo Yul [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Yun, Dae Hea; Lee, Hyuk Jae [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)


    The passive noise control technique made use of sound-absorbing or soundproofing materials, so it required a large area and high cost for installation and had a drawback of poor performance at low frequency. Compared to this, the Active Noise Control attenuates noise sound pressure by using secondary source which has same performance ay low-frequency. Furthermore, it is able to save space and expenses. - research on adaptive algorithms - evaluation of global attenuation of the control - computer simulation - real-time Active Noise Control System Hardware Implementation - ANC system setting in the noisy area.

  16. Development of automatic control techniques for HANARO NTD driving unit

    The results of the research on the NTD automatic control techniques started from the beginning of 2001. The motor control system is designed to operate with independent and simultaneous up-down and rotation of the silicon ingot motion and the setpoint of each motor speed could be easily adjusted by the control PC. Taking a few steps of field test, its performance has been successfully verified. Then, through the actual irradiation with the real silicon ingot under 24MW of reactor power, it has been confirmed that the motor control system developed could be applied to the commercial production. Two set of Rh-type SPNDs, known as a in-core neutron detector are used for real-time monitoring of the accumulated neutron irradiation. They are installed around the center position of the irradiation sleeve and the cables are carefully routed up to the top of the pool for connection to the DC amplifier. It has been verified, by the sample irradiation test for validation of the design that the neutron measurement system gives an accurate and stable signal, which shows a good consistency with the estimation. To precisely control the target fluence, the NTD control program has been designed so that the silicon ingot be automatically removed from its irradiation hole by the pre-defined irradiation time or accumulated neutron flux. Data acquisition program has been also developed for real-time monitoring and analysis of the analog signals, like SPND flux, control rod position and reactor power. The actual position of the silicon ingot is fedback from the motor control system via the digital communication port then used as a reference signal for the data analysis. It's been proved that a few times of sample irradiation tests under real condition that the NTD control software and the data acquisition program works satisfactorily and can be used for the commercial service next year

  17. Integrated controlling technique of ecological environment in Shendong Mining Area

    ZHANG Dong-sheng; LIU Yu-de; WANG An; WANG Yi


    To enclose the interactive relation between the underground mining with suitable protection for surface ecological environments and surface prevention of ecological environments adapting to mining disturbing was researched and developed core of this technique. There are three aspects of controlling ecological environments, to dispose and renew before exploitation, to protect surface ecological environments in the exploitative process and to repair and build up after exploitation. Based on the moving law of overburden strata in shallow seam, the surface subsidence law and the growth law of vegetation in subsidence mine area, the integrated controlling technique has been developed synthetically by methods of theoretic analysis, laboratory simulation, numerical calculation,commercial test etc.. It includes the key techniques of aquifer-protective mining, filtering and purging of mine water through goaf, preventing and extinguishing fire in shallow seam,no-rock roadway layout and waste disposal in underground, frame-building ecological functional sphere before exploitation, frame-building the ecological cycle using system after mining and so on.

  18. Optimal Design of PID Controller for the Speed Control of DC Motor by Using Metaheuristic Techniques

    Mirza Muhammad Sabir


    Full Text Available DC motors are used in numerous industrial applications like servo systems and speed control applications. For such systems, the Proportional+Integral+Derivative (PID controller is usually the controller of choice due to its ease of implementation, ruggedness, and easy tuning. All the classical methods for PID controller design and tuning provide initial workable values for Kp, Ki, and Kd which are further manually fine-tuned for achieving desired performance. The manual fine tuning of the PID controller parameters is an arduous job which demands expertise and comprehensive knowledge of the domain. In this research work, some metaheuristic algorithms are explored for designing PID controller and a comprehensive comparison is made between these algorithms and classical techniques as well for the purpose of selecting the best technique for PID controller design and parameters tuning.

  19. Microglial control of neuronal activity

    Catherine eBéchade


    Full Text Available Fine-tuning of neuronal activity was thought to be a neuron-autonomous mechanism until the discovery that astrocytes are active players of synaptic transmission. The involvement of astrocytes has changed our understanding of the roles of non-neuronal cells and shed new light on the regulation of neuronal activity. Microglial cells are the macrophages of the brain and they have been mostly investigated as immune cells. However recent data discussed in this review support the notion that, similarly to astrocytes, microglia are involved in the regulation of neuronal activity. For instance, in most, if not all, brain pathologies a strong temporal correlation has long been known to exist between the pathological activation of microglia and dysfunction of neuronal activity. Recent studies have convincingly shown that alteration of microglial function is responsible for pathological neuronal activity. This causal relationship has also been demonstrated in mice bearing loss-of-function mutations in genes specifically expressed by microglia. In addition to these long-term regulations of neuronal activity, recent data show that microglia can also rapidly regulate neuronal activity, thereby acting as partners of neurotransmission.

  20. The Use of Management Control Systems and Operations Management Techniques

    Edelcio Koitiro Nisiyama


    Full Text Available It is well known that both management control systems (MCSs and operations management (OM are related to firm performance; however, an integrated st udy that involves MCS and OM within the context of firm performance is still lacking. This research aimed to examine the relationships among the use of MCSs and OM techniques and firm performance in the Brazilian auto parts industry. Simons’ levers of cont rol framework was used to characterise the uses of MCSs, and OM techniques, such as total quality management (TQM and continuous improvement programmes, were adopted. The results obtained through the structural equation modelling indicated that the diagno stic use of MCSs is positively associated with the goals of cost reduction. In addition, the interactive use of MCSs is positively associated with the objectives of introducing new products, which is consistent with previous research. Additionally, OM tech niques are positively related to cost reduction but have no direct relationship with the introduction of new products.

  1. Vibration control of active structures an introduction

    Preumont, Andre


    This text is an introduction to the dynamics of active structures and to the feedback control of lightly damped flexible structures. The emphasis is placed on basic issues and simple control strategies that work.

  2. Developing Internal Controls through Activities

    Barnes, F. Herbert


    Life events can include the Tuesday afternoon cooking class with the group worker or the Saturday afternoon football game, but in the sense that Fritz Redl thought of them, these activities are only threads in a fabric of living that includes all the elements of daily life: playing, working, school-based learning, learning through activities,…

  3. Optimal cooperative control synthesis of active displays

    Garg, S.; Schmidt, D. K.


    A technique is developed that is intended to provide a systematic approach to synthesizing display augmentation for optimal manual control in complex, closed-loop tasks. A cooperative control synthesis technique, previously developed to design pilot-optimal control augmentation for the plant, is extended to incorporate the simultaneous design of performance enhancing displays. The technique utilizes an optimal control model of the man in the loop. It is applied to the design of a quickening control law for a display and a simple K/s(2) plant, and then to an F-15 type aircraft in a multi-channel task. Utilizing the closed loop modeling and analysis procedures, the results from the display design algorithm are evaluated and an analytical validation is performed. Experimental validation is recommended for future efforts.

  4. Techniques for measuring vitamin A activity from β-carotene.

    Tang, Guangwen


    Dietary β-carotene is the most important precursor of vitamin A. However, the determination of the efficiency of in vivo conversion of β-carotene to vitamin A requires sensitive and safe techniques. It presents the following challenges: 1) circulating β-carotene concentration cannot be altered by eating a meal containing ≤6 mg β-carotene; 2) because retinol concentrations are homeostatically controlled, the conversion of β-carotene into vitamin A cannot be estimated accurately in well-nourished humans by assessing changes in serum retinol after supplementation with β-carotene. In the past half-century, techniques using radioisotopes of β-carotene and vitamin A, depletion-repletion with vitamin A and β-carotene supplements, measurement of postprandial chylomicron fractions after consumption of a β-carotene dose, and finally, stable isotopes as tracers to follow the absorption and conversion of β-carotene in humans have been developed. The reported values for β-carotene to vitamin A conversion showed a wide variation from 2 μg β-carotene to 1 μg retinol (for synthetic pure β-carotene in oil) and 28 μg β-carotene to 1 μg retinol (for β-carotene from vegetables). In recent years, a stable isotope reference method (IRM) was developed that used labeled synthetic β-carotene. The IRM method provided evidence that the conversion of β-carotene to vitamin A is likely dose dependent. With the development of intrinsically labeled plant foods harvested from a hydroponic system with heavy water, vitamin A activity of stable isotope-labeled biosynthetic β-carotene from various foods consumed by humans was studied. The efficacy of plant foods rich in β-carotene, such as natural (spinach, carrots, spirulina), hybrid (high-β-carotene yellow maize), and bioengineered (Golden Rice) foods, to provide vitamin A has shown promising results. The results from these studies will be of practical importance in recommendations for the use of pure β-carotene and foods

  5. Quality assurance and quality control of nuclear analytical techniques

    Test and analytical laboratories in East and Central European countries need to prove the reliability and credibility of their economic, environmental, medical and legal decisions and their capacity of issuing reliable, verifiable reports. These demands imposed by the European Union aimed at avoiding a possible barrier to trade for the developing countries. In June 1999, in order to help Member States to develop according to EU objectives and the overall situation of the European market, IAEA launched a new co-operation programme designed to help the nuclear analytical laboratories in nuclear institutions and universities of Member States by training in the use of some Nuclear Analytical Techniques (NAT) that include: alpha, beta and gamma-ray spectrometry, radiochemical and neutron activation analysis, total reflection X-ray fluorescence. The Regional IAEA Project, named 'Quality Assurance/Quality Control of Nuclear Analytical Techniques' (NAT) aims at implementing the QA principles via a system of defined consecutive steps leading to a level on which the QA system is self-sustainable for formal accreditation or certification and satisfies the EU technical performance criteria; the requirements are in accordance with the new ISO/IEC 17025 Standard/Dec.1999 'General requirements for the competence of testing and calibration laboratories' - First edition. The Horia Hulubei National Institute for Nuclear Physics and Engineering, IFIN-HH, was admitted for participation in the IAEA Project in June 1999 account taken of its experience in the QA and metrology fields and its performance in the fields of beta and gamma-ray spectrometry, and radiochemical and neutron activation analysis, employed in both basic research and applications for external clients. Two working groups of specialists with the QA and Standardization and Metrology Departments and six analytical groups with the departments of Nuclear Applied Physics, Life Physics and Ionising Radiation Metrology are

  6. Nuclear and related techniques in the control of communicable diseases

    The IAEA has a programme component entitled ''Nuclear Techniques in Communicable Diseases'', the aims of which are to encourage research in the development of new methods of controlling communicable diseases and to transfer the technology to institutes in endemic regions. Implementation of the programme component includes information exchange through publications, symposiums and seminars. The two most recent seminars were held in Bombay in November 1988 and Belo Horizonte in November 1989, and a selection of the papers presented have been published in this Technical Document. Refs, figs and tabs

  7. Practical applications of activation analysis and other nuclear techniques

    Neeutron activation analysis (NAA) is a versatile, sensitive multielement, usually nondestructive analytical technique used to determine elemental concentrations in a variety of materials. Samples are irradiated with neutrons in a nuclear reactor, removed, and for the nondestructive technique, the induced radioactivity measured. This measurement of γ rays emitted from specific radionuclides makes possible the quantitative determination of elements present. The method is described, advantages and disadvantages listed and a number of examples of its use given. Two other nuclear methods, particle induced x-ray emission and synchrotron produced x-ray fluorescence are also briefly discussed

  8. 基于自抗扰技术的火箭炮伺服系统解耦控制%Decoupling Control of Rocket Launcher Servo System Based on Active Disturbance Rej ection Technique

    郑颖; 马大为; 姚建勇; 乐贵高


    Rocket launcher servo system is a kind of servo system with azimuth axis and pitch axis coupling.For the sake of researching two-axis coupling and strong disturbance of combus-tion gas flow impact,the two-axis coupling dynamics equations and differential equations of rocket launcher were established.The extended state observer and virtual control variable were designed based on active disturbance rej ection control for decoupling.The total disturbance was estimated through extended state observer and system compensation.The real control law was obtained from virtual control variable to control the coupling system.The simulation results indicated that the proposed control method can improve the tracking precision of rocket laun-cher and restrain the vibration of launching platform with two-axis coupling effect and combus-tion gas flow impact,and the control method can also provide theoretical support and actual value for rocket launcher coupling servo system.%火箭炮伺服系统为方位和俯仰两轴耦合的伺服系统。为研究发射时的两轴耦合问题及燃气流冲击强干扰影响,建立了火箭炮伺服系统双轴转台动力矩方程和耦合系统微分方程,采用基于自抗扰技术的解耦控制方法设计了扩张状态观测器及虚拟控制量。通过扩张状态观测器估计系统总扰动并进行实时补偿,通过虚拟控制量得到实际控制量对耦合系统进行控制。仿真结果表明,基于自抗扰技术的解耦控制提高了火箭炮伺服系统跟踪精度,使系统在两轴负载转矩耦合效应和燃气流冲击下有效地抑制了发射平台振动,满足控制性能指标,对火箭炮两轴耦合控制问题具有一定的理论意义和实用价值。

  9. Control techniques for an automated mixed traffic vehicle

    Meisenholder, G. W.; Johnston, A. R.


    The paper describes an automated mixed traffic vehicle (AMTV), a driverless low-speed tram designed to operate in mixed pedestrian and vehicular traffic. The vehicle is a six-passenger electric tram equipped with sensing and control which permit it to function on existing streets in an automatic mode. The design includes established wire-following techniques for steering and near-IR headway sensors. A 7-mph cruise speed is reduced to 2 mph or a complete stop in response to sensor (or passenger) inputs. The AMTV performance is evaluated by operation on a loop route and by simulation. Some necessary improvements involving sensors, sensor pattern, use of an audible signal, and control lag are discussed. It is suggested that appropriate modifications will eliminate collision incidents.

  10. Quality control technique for high-volume atmospheric particulate sampler

    Quality control technique was developed for high-volume atmospheric particulate sampler. The flow meter of PMS-800 sampler was calibrated by an ISA1932 nozzle flow meter, and the global collection efficiency of PMS-800 sampler was tested by a type 2031 mobile sampler. The results show that the flowrate relative deviation between ISA1932 nozzle flow meter and PMS-800 sampler flow meter is less than 5%., and the global collection efficiency relative deviation between type 2031 sampler and PMS-800 sampler is less than 10%. The performance of PMS-800 sampler meets the specifications with the request of the Comprehensive Nuclear-Test-Ban Treaty. This method can be applied to quality control for high-volume atmospheric particulate sampler. (authors)

  11. Randomized Dynamical Decoupling Techniques for Coherent Quantum Control

    Viola, L; Viola, Lorenza; Santos, Lea F.


    The need for strategies able to accurately manipulate quantum dynamics is ubiquitous in quantum control and quantum information processing. We investigate two scenarios where randomized dynamical decoupling techniques become more advantageous with respect to standard deterministic methods in switching off unwanted dynamical evolution in a closed quantum system: when dealing with decoupling cycles which involve a large number of control actions and/or when seeking long-time quantum information storage. Highly effective hybrid decoupling schemes, which combine deterministic and stochastic features are discussed, as well as the benefits of sequentially implementing a concatenated method, applied at short times, followed by a hybrid protocol, employed at longer times. A quantum register consisting of a chain of spin-1/2 particles interacting via the Heisenberg interaction is used as a model for the analysis throughout.

  12. A control technique for integration of DG units to the electrical networks

    Pouresmaeil, Edris; Miguel-Espinar, Carlos; Massot-Campos, Miquel;


    This paper deals with a multiobjective control technique for integration of distributed generation (DG) resources to the electrical power network. The proposed strategy provides compensation for active, reactive, and harmonic load current components during connection of DG link to the grid. The...... utility grid. By setting an appropriate compensation current references from the sensed load currents in control circuit loop of DG, the active, reactive, and harmonic load current components will be compensated with fast dynamic response, thereby achieving sinusoidal grid currents in phase with load...... voltages, while required power of the load is more than the maximum injected power of the DG to the grid. In addition, the proposed control method of this paper does not need a phase-locked loop in control circuit and has fast dynamic response in providing active and reactive power components of the grid...

  13. Root activity evaluation in tree crops using isotopic techniques

    This paper discusses the methdology used to evalute root activity of the crops utilizing the technique of soil injection with solutions marked with isotopes. Some of the experimental data obtained with coffee, citrus and oil palm are also presented. Ovel all, these tree crops present a higher root activity in soil layers close to the surface (0-20 cm) and to a distance from the trunk which varies with age, season and variety. The most important conclusions are: 1. The isotope injection technique using 32P, 15N, or 85Rb, allow direct and reliable determination of root activity in these tree crops. 2. Root activity of three crops depends on age of the tree, variety, moisture content of the soil and soil type. 3. Soil moisture is the most influencial factor affecting root activity. This is turn depends on the irrigation method employed. 4. From the practical view point, the best distance from the trunk to apply fertilizer in the one wich has highest root activity closest to the soil surface

  14. Robust intelligent backstepping tracking control for uncertain non-linear chaotic systems using H∞ control technique

    The cerebellar model articulation controller (CMAC) is a non-linear adaptive system with built-in simple computation, good generalization capability and fast learning property. In this paper, a robust intelligent backstepping tracking control (RIBTC) system combined with adaptive CMAC and H∞ control technique is proposed for a class of chaotic systems with unknown system dynamics and external disturbance. In the proposed control system, an adaptive backstepping cerebellar model articulation controller (ABCMAC) is used to mimic an ideal backstepping control (IBC), and a robust H∞ controller is designed to attenuate the effect of the residual approximation errors and external disturbances with desired attenuation level. Moreover, the all adaptation laws of the RIBTC system are derived based on the Lyapunov stability analysis, the Taylor linearization technique and H∞ control theory, so that the stability of the closed-loop system and H∞ tracking performance can be guaranteed. Finally, three application examples, including a Duffing-Holmes chaotic system, a Genesio chaotic system and a Sprott circuit system, are used to demonstrate the effectiveness and performance of proposed robust control technique.

  15. Power Control Technique for Efficient Call Admission Control in Advanced Wirless Networks

    Ch. Sreenivasa Rao


    Full Text Available In 4G networks, call admission control techniques have been proposed to provide Quality of Service (QoS in a network by restricting the access to network resources. Power control is essential in call admission control in order to provide fair access to all users, improve battery lifetime and system performance. But the existing call admission control algorithms rarely consider the power controlling techniques in the handoff process for different traffic classes. In this paper, we propose to develop a power controlled call admission control scheme for handoff in the advanced wireless networks. The incoming call measures the initial interference on it and then the base station starts transmitting the packets to the new call. The new call is rejected when the interference reaches a threshold value.Whenever an existing call meets the power constraint, the transmit power is decremented based on thetraffic class and incoming call obtains this information by monitoring the interference received on it. Theconvergence of the power control algorithm is checked and the power levels of all incoming calls areadjusted. From our simulation results we prove that this power control technique provides efficienthandoff in the 4G networks by increasing the throughput and reducing the delay of the existing users.

  16. Materials and techniques for spacecraft static charge control

    Amore, L. J.; Eagles, A. E.


    An overview of the design, development, fabrication, and testing of transparent conductive coatings and conductive lattices deposited or formed on high resistivity spacecraft dielectric materials to obtain control static charge buildup on spacecraft external surfaces is presented. Fabrication techniques for the deposition of indium/tin oxide coatings and copper grid networks on Kapton and FEP Teflon films and special frit coatings for OSR and solar cell cover glasses are discussed. The techniques include sputtering, photoetching, silkscreening, and mechanical processes. A facility designed and built to simulate the electron plasma at geosynchronous altitudes is described along with test procedures. The results of material characterizations as well as electron irradiation aging effects in this facility for spacecraft polymers treated to control static charge are presented. The data presents results for electron beam energies up to 30 kV and electron current densities of 30 nA/cm squared. Parameters measured include secondary emission, surface leakage, and through the sample currents as a function of primary beam energy and voltage.

  17. Evolutionary biology and genetic techniques for insect control.

    Leftwich, Philip T; Bolton, Michael; Chapman, Tracey


    The requirement to develop new techniques for insect control that minimize negative environmental impacts has never been more pressing. Here we discuss population suppression and population replacement technologies. These include sterile insect technique, genetic elimination methods such as the release of insects carrying a dominant lethal (RIDL), and gene driving mechanisms offered by intracellular bacteria and homing endonucleases. We also review the potential of newer or underutilized methods such as reproductive interference, CRISPR technology, RNA interference (RNAi), and genetic underdominance. We focus on understanding principles and potential effectiveness from the perspective of evolutionary biology. This offers useful insights into mechanisms through which potential problems may be minimized, in much the same way that an understanding of how resistance evolves is key to slowing the spread of antibiotic and insecticide resistance. We conclude that there is much to gain from applying principles from the study of resistance in these other scenarios - specifically, the adoption of combinatorial approaches to minimize the spread of resistance evolution. We conclude by discussing the focused use of GM for insect pest control in the context of modern conservation planning under land-sparing scenarios. PMID:27087849

  18. Active vibration control of smart grid structure by multiinput and multioutput positive position feedback controller

    Kwak, Moon K.; Heo, Seok


    This paper is concerned with the active vibration control of a grid structure equipped with piezoceramic sensors and actuators. The grid structure is a replica of the solar panel commonly mounted on satellites, which contains complex natural mode shapes. The multiinput and multioutput positive position feedback (PPF) controller is considered as an active vibration controller for the grid structure. A new concept, the block-inverse technique, is proposed to cope with more modes than the number of actuators and sensors. This study also deals with the stability and the spillover effect associated with the application of the multiinput multioutput PPF controller based on the block-inverse technique. It was found that the theories developed in this study are capable of predicting the control system characteristics and its performance. The new multiinput multioutput PPF controller was applied to the test structure using a digital signal processor and its efficacy was verified by experiments.

  19. Techniques for Surveying Urban Active Faults by Seismic Methods

    Xu Mingcai; Gao Jinghua; Liu Jianxun; Rong Lixin


    Using the seismic method to detect active faults directly below cities is an irreplaceable prospecting technique. The seismic method can precisely determine the fault position. Seismic method itself can hardly determine the geological age of fault. However, by considering in connection with the borehole data and the standard geological cross-section of the surveyed area, the geological age of reflected wave group can be qualitatively (or semi-quantitatively)determined from the seismic depth profile. To determine the upper terminal point of active faults directly below city, it is necessary to use the high-resolution seismic reflection technique.To effectively determine the geometric feature of deep faults, especially to determine the relation between deep and shallow fracture structures, the seismic reflection method is better than the seismic refraction method.

  20. Two-phase flow measurement by pulsed neutron activation techniques

    The Pulsed Neutron Activation (PNA) technique for measuring the mass flow velocity and the average density of two-phase mixtures is described. PNA equipment can be easily installed at different loops, and PNA techniques are non-intrusive and independent of flow regimes. These features of the PNA technique make it suitable for in-situ measurement of two-phase flows, and for calibration of more conventional two-phase flow measurement devices. Analytic relations governing the various PNA methods are derived. The equipment and procedures used in the first air-water flow measurement by PNA techniques are discussed, and recommendations are made for improvement of future tests. In the present test, the mass flow velocity was determined with an accuracy of 2%, and average densities were measured down to 0.08 g/cm3 with an accuracy of 0.04 g/cm3. Both the accuracy of the mass flow velocity measurement and the lower limit of the density measurement are functions of the injected activity and of the total number of counts. By using a stronger neutron source and a larger number of detectors, the measurable density can be decreased by a factor of 12 to .007 g/cm3 for 12.5 cm pipes, and to even lower ranges for larger pipes

  1. Fusion alpha loss diagnostic for ITER using activation technique

    Bonheure, G.; Hult, M.; González de Orduña, R.; Vermaercke, P.; Murari, A.; Popovichev, S.; Mlynář, Jan


    Roč. 86, 6-8 (2011), s. 1298-1301. ISSN 0920-3796. [Symposium on Fusion Technology (SOFT) /26th./. Porto, 27.09.2010-01.10.2010] Institutional research plan: CEZ:AV0Z20430508 Keywords : ITER * fusion product * burning plasma diagnostics * alpha losses * activation technique Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.490, year: 2011

  2. Feasibility of Applying Controllable Lubrication Techniques to Reciprocating Machines

    Pulido, Edgar Estupinan

    The use of active lubrication in journal bearings helps to enhance the thin fluid films by increasing the fluid film thickness and consequently reducing viscous friction losses and vibrations. One refers to active lubrication when conventional hydrodynamic lubrication is combined with dynamically...... conventional lubrication conditions, a mathematical model of a reciprocating mechanism connected to a rigid / flexible rotor via thin fluid films was developed. The mathematical model involves the use of multibody dynamics theory for the modelling of the reciprocating mechanism (rigid bodies), finite elements...... method for the modelling of the flexible rotor (crankshaft) and hydrodynamic fluid film theory for describing the dynamics of the thin fluid films. When active lubrication is introduced to modify conventional hydrodynamic lubrication, by means of aplying radial oil injection at controllable oil pressures...



    Nonlinear control methods are presented based on theory of sliding mode control (SMC) or variable structure control (VSC) for application to active automobile suspensions. Requirements of reducing manufacturing cost and energy consumption of the active suspension system may be satisfiedby reasonable design of the sliding surface and hydraulic servo system. Emphasis is placed on the study of the discrete sliding mode control method (DSMC) applicable for a new sort of speed on-off solenoid valves of anti-dust capability and low price. Robustness and effectiveness of the feedback linearized controller in typical road conditions are demonstrated by numerical results fora quarter-car suspension model.

  4. The role of neutron activation analysis technique Ex Industrial applications using the egyptian research reactor facilities

    This report covers several papers which deal with the industrial applications of the Neutron Activation Analysis Technique (NAAT) in Egypt. The applications include: exploration, mining, industrial environment and multielemental analysis of different materials, just for quality control, optimization, safety uses and help in improving the efficiency and economic evaluation. The technique principles, instrumentation, neutron irradiation facilities and experience of analysis are reviewed. Also, the current research activities using the ET-RR-1 facilities as well as a proposal for cold neutron applications in this field on the ET-RR-2 are given

  5. Finite element models applied in active structural acoustic control

    Oude Nijhuis, Marco H.H.; de Boer; Rao, Vittal S.


    This paper discusses the modeling of systems for active structural acoustic control. The finite element method is applied to model structures including the dynamics of piezoelectric sensors and actuators. A model reduction technique is presented to make the finite element model suitable for controller design. The reduced structural model is combined with an acoustic model which uses the radiation mode concept. For a test case consisting of a rectangular plate with one piezo patch the model re...

  6. Reduction of helicopter blade-vortex interaction noise by active rotor control technology

    Yu, Yung H.; Gmelin, Bernd; Splettstoesser, Wolf; Philippe, Jean J.; Prieur, Jean; Brooks, Thomas F.

    Helicopter blade-vortex interaction noise is one of the most severe noise sources and is very important both in community annoyance and military detection. Research over the decades has substantially improved basic physical understanding of the mechanisms generating rotor blade-vortex interaction noise and also of controlling techniques, particularly using active rotor control technology. This paper reviews active rotor control techniques currently available for rotor blade-vortex interaction noise reduction, including higher harmonic pitch control, individual blade control, and on-blade control technologies. Basic physical mechanisms of each active control technique are reviewed in terms of noise reduction mechanism and controlling aerodynamic or structural parameters of a blade. Active rotor control techniques using smart structures/materials are discussed, including distributed smart actuators to induce local torsional or flapping deformations.

  7. Reduction of Helicopter Blade-Vortex Interaction Noise by Active Rotor Control Technology

    Yu, Yung H.; Gmelin, Bernd; Splettstoesser, Wolf; Brooks, Thomas F.; Philippe, Jean J.; Prieur, Jean


    Helicopter blade-vortex interaction noise is one of the most severe noise sources and is very important both in community annoyance and military detection. Research over the decades has substantially improved basic physical understanding of the mechanisms generating rotor blade-vortex interaction noise and also of controlling techniques, particularly using active rotor control technology. This paper reviews active rotor control techniques currently available for rotor blade vortex interaction noise reduction, including higher harmonic pitch control, individual blade control, and on-blade control technologies. Basic physical mechanisms of each active control technique are reviewed in terms of noise reduction mechanism and controlling aerodynamic or structural parameters of a blade. Active rotor control techniques using smart structures/materials are discussed, including distributed smart actuators to induce local torsional or flapping deformations, Published by Elsevier Science Ltd.

  8. Nuclear Activation Techniques in the Life Sciences. Proceedings of the Symposium on Nuclear Activation Techniques in the Life Sciences

    Proceedings of a Symposium organized by the IAEA and held at Amsterdam. 8-12 May 1967. The meeting was attended by 190 participants from 26 Member States and 3 international organizations. These are the third IAEA Symposium Proceedings to have nuclear activation analysis as their main theme, the preceding ones being Radioactivation Analysis, Butterworth and Co. Ltd, London (1960) and Radiochemical Methods of Analysis, IAEA, Vienna (1965). Contents: Introductory lecture (1 paper); Physical techniques (6 papers); Chemical techniques (6 papers); Analytical reference materials (1 paper); Comparison of activation analysis with other methods of trace analysis (4 papers); Plant and animal studies (7 papers); Medical sciences (19 papers); Public health and forensic science (6 papers). Each paper is in its original language (43 English, 5 French, 1 Russian and 1 Spanish) and is preceded by an abstract in English with one in the original language if this is not English. Discussions are in English. (author)

  9. Three-axis active magnetic attitude control asymptotical study

    Ovchinnikov, M. Yu.; Roldugin, D. S.; Penkov, V. I.


    Active magnetic attitude control system providing given inertial attitude is considered. Control algorithm is constructed on the basis of a planar motion model. It decreases attitude discrepancy. Alternative approach is based on the PD-controller design. System behavior is analyzed for specific motion cases and sometimes for specific inertia tensor (axisymmetrical satellite) using averaging technique. Overall satellite angular motion is covered. Necessary attitude is found to be accessible for some control parameters. Stability is proven and optimal algorithm parameters are obtained. Floquet-based analysis is performed to verify and broaden analytical results.

  10. Nondestructive techniques for the control of conditioned radioactive wastes

    The final product of the radwaste conditioning process must satisfy certain requirments and physico-chemical properties in order to assure its safe long-term behaviour. Of course, the foreseen quality assurance and quality control should be conducted by means of non-destructive techniques. This work presents an over-view of various applicable non-destructive methods of analysis, showing their fields of investigation in testing waste packages, together with some arising practical problems. The most promising methods, such as eddy current testing, ultrasonic testing, γ-scanning, γ-spectroscopy, neutron counting and computerized tomography, are treated more deeply and some applications are presented. Particular attention is devoted to the development of a device based on computerized tomography; its essential components are reported and some design problems are also discussed

  11. A model for signal processing and predictive control of semi-active structural control system

    M-H Shih; W-P Sung; Ching-Jong Wang


    The theory for structural control has been well developed and applied to perform excellent energy dissipation using dampers. Both active and semi-active control systems may be used to decide on the optimal switch point of the damper based on the current and past structural responses to the excitation of external forces. However, numerous noises may occur when the control signals are accessed and transported thus causing a delay of the damper. Therefore, a predictive control technique that integrates an improved method of detecting the control signal based on the direction of the structural motion, and a calculator for detecting the velocity using the least-square polynomial regression is proposed in this research. Comparisons of the analytical data and experimental results show that this predictor is effective in switching the moving direction of the semi-active damper. This conclusion is further verified using the component and shaking table test with constant amplitude but various frequencies, and the El Centro earthquake test. All tests confirm that this predictive control technique is effective to alleviate the time delay problem of semi-active dampers. This predictive control technique promotes about 30% to 40% reduction of the structural displacement response and about 35% to 45% reduction of the structural acceleration response.

  12. Application Of Nuclear Techniques In Environmental Studies And Pollution Control

    Environmental pollution has become a world wide concern. One of the main sources of such pollution is sewage wastewater and sludge. Their utilization without proper treatment can pollute the ecosystem (plant, soil, surface and ground water). Sewage wastewater and sludge contains several pollutants such as: pathogens, toxic organic compounds, heavy metals, high level of BOD and COD, seed weed. The reuse of sewage water and sludge in agriculture can lead to the transfer of some of these pollutants into the food chain causing health hazard. In addition, most of these contaminants are not biodegradable, becoming dangerous to plant and human health. Nuclear techniques has recently been used to control environmental pollution. Ionizing radiation provide a fast and reliable means of sewage water and sludge treatment than the conventional methods. Gamma radiation ( 60Co) and electron beam (accelerator) has been successfully used for alleviation of environmental pollution. Such alleviation includes: disinfection of harmful pathogens, degradation of toxic organic pollutants, destruction of seed weed and reduction of soluble heavy metals, odor and BOD and COD. The use of radioactive and stable isotopes are a useful tools to investigate the contribution of sludge nutrients to plant nutrition. Nitrogen, using 15N-ammonium sulfate, uptake and translocation by plant from soil amended with sewage sludge was studied under field condition. The contribution of sludge to phosphorus nutrition of plants was quantified using 32p as tracer. In both cases the principal of isotopic dilution technique was applied. The information generated from these experiments could help preserve the environment. It could help optimize the application rate of sludge to meet plant requirements while avoiding the accumulation of N and P in the soil or leaching to the aquifer. Isotope exchange kinetic technique is used to evaluate nutrients availability from sludge. Neutron moisture meter is used to measure

  13. Nuclear fuel pellet quality control using artificial intelligence techniques

    Song, Xiaolong

    Inspection of nuclear fuel pellets is a complex and time-consuming process. At present, quality control in the fuel fabrication field mainly relies on human manual inspection, which is essentially a judgement call. Considering the high quality requirement of fuel pellets in the nuclear industry, pellet inspection systems must have a high accuracy rate in addition to a high inspection speed. Furthermore, any inspection process should have a low rejection rate of good pellets from the manufacturer point of view. It is very difficult to use traditional techniques, such as simple image comparison, to adequately perform the inspection process of the nuclear fuel pellet. Knowledge-based inspection and a defect-recognition algorithm, which maps the human inspection knowledge, is more robust and effective. A novel method is introduced here for pellet image processing. Three artificial intelligence techniques are studied and applied for fuel pellet inspection in this research. They are an artificial neural network, fuzzy logic, and the decision tree method. A dynamic reference model is located on each input fuel pellet image. Then, those pixels that belong to the abnormal defect are enhanced with high speed and high accuracy. Next, the content-based features for the defect are extracted from those abno1mal pixels and used in the inspection algorithm. Finally, an automated inspection prototype system---Visual Inspection Studio---which combines machine vision and these three AI techniques, is developed and tested. The experimental results indicate a very successful system with a high potential for on-line automatic inspection process.

  14. In situ active experiment techniques to study the ionosphere

    In situ active experiment techniques can be used to study the natural ionosphere, to simulate natural or artificial ionospheric disturbances, and to provide a test bed for radiowave propagation studies. The opportunity for remote optical diagnostics and a relatively short ionization time in full sunlight make barium the most popular ion-producing in situ experiment material. Active observation experiments for tracing plasma irregularities are discussed, taking into account the Periquito Dos experiment and the Chemically Active Material Ejected from Orbit (CAMEO) experiment. The Periquito Dos experiment utilized barium ions to trace out the 'throat' convection pattern in the low-altitude dayside magnetospheric cusp region. The CAMEO experiment involved thermite barium releases from a satellite at 965-km altitude over the polar cap. The simulation of ionospheric disturbances is also considered along with a topside auroral ionosphere modification experiment

  15. Physical Modeling Techniques in Active Contours for Image Segmentation

    Lu, Hongyu


    Physical modeling method, represented by simulation and visualization of the principles in physics, is introduced in the shape extraction of the active contours. The objectives of adopting this concept are to address the several major difficulties in the application of Active Contours. Primarily, a technique is developed to realize the topological changes of Parametric Active Contours (Snakes). The key strategy is to imitate the process of a balloon expanding and filling in a closed space with several objects. After removing the touched balloon surfaces, the objects can be identified by surrounded remaining balloon surfaces. A burned region swept by Snakes is utilized to trace the contour and to give a criterion for stopping the movement of Snake curve. When the Snakes terminates evolution totally, through ignoring this criterion, it can form a connected area by evolving the Snakes again and continuing the region burning. The contours extracted from the boundaries of the burned area can represent the child sn...

  16. Ecological Insights from Pelagic Habitats Acquired Using Active Acoustic Techniques

    Benoit-Bird, Kelly J.; Lawson, Gareth L.


    Marine pelagic ecosystems present fascinating opportunities for ecological investigation but pose important methodological challenges for sampling. Active acoustic techniques involve producing sound and receiving signals from organisms and other water column sources, offering the benefit of high spatial and temporal resolution and, via integration into different platforms, the ability to make measurements spanning a range of spatial and temporal scales. As a consequence, a variety of questions concerning the ecology of pelagic systems lend themselves to active acoustics, ranging from organism-level investigations and physiological responses to the environment to ecosystem-level studies and climate. As technologies and data analysis methods have matured, the use of acoustics in ecological studies has grown rapidly. We explore the continued role of active acoustics in addressing questions concerning life in the ocean, highlight creative applications to key ecological themes ranging from physiology and behavior to biogeography and climate, and discuss emerging avenues where acoustics can help determine how pelagic ecosystems function.

  17. Microscope-controlled glass bead blasting: a new technique

    Peter Kotschy


    Full Text Available Peter Kotschy1, Sascha Virnik2, Doris Christ3, Alexander Gaggl21Private Practice, Vienna, Austria; 2Department of Oral and Maxillofacial Surgery, Central Hospital, Klagenfurt, Austria; 3Klagenfurt, AustriaObjective: The aim of periodontal therapy is the healing of periodontal inflammation; the protection of the attachment and the alveolar bone; and the regeneration of the periodontal structures. In the therapy of periodontitis, supra- and subgingival scaling and root planing plays a main role. The procedure described combines perfect root cleaning without scaling and root planing and minimal invasive periodontal surgery without a scalpel.Material and methods: Glass beads of 90 µm were used with the kinetic preparation unit PrepStart® under a pressure of 0.5–5 bar. This technique was practised only under visual control using the OPMI® PRO Magis microscope. Seven examinations were carried out at baseline after 3, 6, 12, 18, 24, and 36 months.Results: Time shows a statistically significant influence on all of the considered target variables (P < 0.0001 for all. As the according estimate is negative, probing depth decreases over time. The major decrease seems to be during the first 6 months. Considering probing depth, plaque on the main effect root shows significant influence (again, P < 0.0001 for all. Observations with high probing depth at the beginning were faster than those with low probing depth. The same characteristic appears by attachment level. Patients with more loss of attachment show more gain.Conclusions: Using microscope-controlled glass bead blasting results in a perfectly clean root surface using visual control (magnification 20×. Microscope-controlled glass bead blasting is therefore a good alternative to periodontal surgery.Keywords: periodontal therapy, microscope, periodontitis

  18. Advanced terahertz techniques for quality control and counterfeit detection

    Ahi, Kiarash; Anwar, Mehdi


    This paper reports our invented methods for detection of counterfeit electronic. These versatile techniques are also handy in quality control applications. Terahertz pulsed laser systems are capable of giving the material characteristics and thus make it possible to distinguish between the materials used in authentic components and their counterfeit clones. Components with material defects can also be distinguished in section in this manner. In this work different refractive indices and absorption coefficients were observed for counterfeit components compared to their authentic counterparts. Existence of unexpected ingredient materials was detected in counterfeit components by Fourier Transform analysis of the transmitted terahertz pulse. Thicknesses of different layers are obtainable by analyzing the reflected terahertz pulse. Existence of unexpected layers is also detectable in this manner. Recycled, sanded and blacktopped counterfeit electronic components were detected as a result of these analyses. Counterfeit ICs with die dislocations were detected by depicting the terahertz raster scanning data in a coordinate plane which gives terahertz images. In the same manner, raster scanning of the reflected pulse gives terahertz images of the surfaces of the components which were used to investigate contaminant materials and sanded points on the surfaces. The results of the later technique, reveals the recycled counterfeit components.

  19. Active vibration control of lightweight floor systems

    Baader, J.; Fontana, M.


    Wide-span and lightweight floors are often prone to structural vibrations due to their low resonance frequency and poor material damping. Their dynamic behaviour can be improved using passive, semi-active or active vibration control devices. The following article proposes a novel method for the controller synthesis for active vibration control. An existing passive TMD (tuned mass damper) is modelled and equipped with an actuator in order to provide more efficient damping. Using an iterative optimization approach under constraints, an optimal controller is found which minimizes a quadratic cost function in frequency domain. A simulation of an existing test bench shows that the active vibration control device is able to provide increased damping compared to the passive TMD.

  20. History of activation analysis technique with charged particles in Uzbekistan

    Full text: The researches on activation analysis with charged particles (CPAA) were started immediately after beginning of constructing of 150-cm cyclotron U-150 in 60-th years of last century. CPAA laboratory organized on bases of the cyclotron and neutron generator NG-200 (in following I-150) in 1971 existed up to the end of 1985. We have used Ion beams of these devices to elaborate two types of nuclear analysis techniques: 1. Delayed Nuclear Analysis (DNA) involving Charged Particle Activation Analysis (CPAA) and Fast Neutron Activation Analysis (FNAA); 2. Prompt Nuclear Analysis (PNA) involving the spectrometry of particles induced X-Ray emission (PIXE). DNA with using accelerators has the following subdivisions: 1. Proton Activation Analysis (PAA); 2. Deuteron Activation Analysis (DAA); 3. 3He Activation Analysis (3HeAA); 4. 4He Activation Analysis (4HeAA or α-AA); 5. Fast Neutron Activation Analysis (FNAA). PAA and DAA found wide application were used to derive a good sensitivity in determination of contents of more than 20 chemical elements in some materials of high purity. For example, we have applied these techniques for the determination of Li, B, C, N, O, F at level of 10-8 - 10-10 g/g in different high purity semiconductors (Si, SiC, Ge, AsGa, InP et al.), nonferrous metals (Li, Be, Zr, Nb, Mo, Ta, W, Re, Al, Ti etc.), nonconductive materials (different glasses, optical materials, diamonds et al.) and environmental objects (soil, plants, water). The techniques provided good results on the determination of B, C and N contents and others. 3HeAA and 4HeAA were generally used to determine of O and C contents in semiconductors ands metals of high purity. We have elaborated rapid radiochemical techniques for separation of short-lived positron emitters. For example, the separation of 15O, formatting by nuclear reaction 16O(3He,α)15O, the reducing fusion technique was used. Radionuclide 11C was separated chemically by the oxidisation of samples in the

  1. Active Control of Fan Noise

    Nobuhiko YAMASAKI; Hirotoshi TAJIMA


    In the wake-rotor interaction fan noise, a number of the interacting modes at the blade passing frequency (BPF)and its harmonics are generated which are prescribed by the number of stator and rotor blades etc. In the present study, the dominant mode is tried to be suppressed by the secondary sound from the loudspeaker actuators. One of the novel features of the present system is the adoption of the control board with the Field Programmable Gate Array (FPGA) hardware and the LabVIEW software to synchronize the circumferentially installed loudspeaker actuators with the relative location of rotational blades under arbitrary fan rotational speeds. The experiments were conducted under the conditions of three rotational speeds of 2004, 3150, and 4002 [rpm]. The reduction in the sound pressure level (SPL) was observed for all three rotational speeds. The sound pressure level at the BPF was reduced approximately 13 [dB] for 2004 [rpm] case, but not so large reduction was attained for other cases probably due to the inefficiency of the loudspeaker actuators at high frequencies

  2. A graphical technique for post-analytical quality control

    No matter how great the effort, some errors will slip past quality assurance (QA), quality control (QC) and total quality management (TQM) into the analytical results. When older data or data whose QC procedures are unknown are used, the problem may be even worse. The paper demonstrates a graphical approach to 'post-analytical quality control' in elemental data for atmospheric aerosol and precipitation that relies on the chemical regularities of their three major sources, crust, sea and pollution, to display the underlying patterns of composition and to allow the analyst to visually identify data points that deviate far enough to warrant a closer look. The basic technique uses log-log scatter diagrams whose vertical axis is X/Al and whose horizontal axis is Se/Al or Na/Al. When large data sets are plotted in this way, asymptotes of either or both sources (crust/pollution or crust/marine) appear, from which elemental ratios X/Al, X/Se and X/Na in the pure crustal, pollution, and marine sources can be read directly from the plots. With practice, normal environmental variations can be distinguished from analytical errors, thus allowing various types of analytical problems to be revealed and preventing them from leading to incorrect conclusions. The paper shows several cases of analytical problems discovered in this way for aerosol and precipitation in Narragansett, Rhode Island, problems that would probably have otherwise gone unnoticed. (author)

  3. Robust satellite techniques for remote sensing of seismically active areas

    S. Piscitelli


    Full Text Available Several satellite techniques have been recently proposed to remotely map seismically active zones and to monitor geophysical phenomena possibly associated with earthquakes. Even if questionable in terms of their effective applicability, all these techniques highlight as the major problem, still to be overcome, the high number of natural factors (independent of any seismic activity whose variable contributions to the investigated signal can be so high as to completely mask (or simulate the space-time anomaly possibly associated to the seismic event under study. A robust approach (RAT has recently been proposed (and successfully applied in the field of the monitoring of the major environmental risks which, better than other methods, seems suitable for recognising space-time anomalies in the satellite observational field also in the presence of highly variable contributions from atmospheric (transmittance, surface (emissivity and morphology and observational (time/season, but also solar and satellite zenithal angles conditions.This work presents the first preliminary results, based on several years of NOAA/AVHRR observations, regarding its extension to satellite monitoring of thermal anomalies possibly associated to seismically active areas of Southern Italy. The main merits of this approach are its robustness against the possibility of false events detection (specially important for this kind of applications as well as its intrinsic exportability not only to different geographic areas but also to different satellite instrumental packages.

  4. Manually controlled neutron-activation system

    Johns, R. A.; Carothers, G. A.


    A manually controlled neutron activation system, the Manual Reactor Activation System, was designed and built and has been operating at one of the Savannah River Plant's production reactors. With this system, samples can be irradiated for up to 24 hours and pneumatically transferred to a shielded repository for decay until their activity is low enough for them to be handled at a radiobench. The Manual Reactor Activation System was built to provide neutron activation of solid waste forms for the Alternative Waste Forms Leach Testing Program. Neutron activation of the bulk sample prior to leaching permits sensitive multielement radiometric analyses of the leachates.

  5. DSP Control of Line Hybrid Active Filter

    Dan, Stan George; Benjamin, Doniga Daniel; Magureanu, R.;


    Active Power Filters have been intensively explored in the past decade. Hybrid active filters inherit the efficiency of passive filters and the improved performance of active filters, and thus constitute a viable improved approach for harmonic compensation. In this paper a parallel hybrid filter...... is studied for current harmonic compensation. The hybrid filter is formed by a single tuned Le filter and a small-rated power active filter, which are directly connected in series without any matching transformer. Thus the required rating of the active filter is much smaller than a conventional standalone...... active filter. Simulation and experimental results obtained in laboratory confirmed the validity and effectiveness of the control....

  6. Multi-element study in aluminium by activation analysis technique

    The instrumental activation analysis is a technique relatively quickly that help to know the elemental composition of materials. It is used mainly in the trace elements determination but in the case of major elements it is necessary to make some considerations as the different nuclear reactions carried out due to the neutron flux is a mixture of thermal and fast neutrons. This could be interpreted for the presence and or erroneous quantification about some elements. In this work, is described the way in which was analyzed a container piece with approximately a 85% of aluminium. The elements Zn, Mn, Sb, Ga, Cu, Cl and Sm were determined. (Author)

  7. Smart materials and active noise and vibration control in vehicles

    Doppenberg, E.J.J.; Berkhoff, A.P.; Overbeek, M. van [TNO Institute of Applied Physics, Delft (Netherlands)


    Results are presented for the reduction of sound radiated from a structure using different control methodologies. Two approaches for active structural acoustic control are mentioned to reduce sound radiated by the structure: the acoustic approach or the vibro-acoustic approach. In both cases integrated actuators in structure materials are necessary to realise feasible products. Furthermore the development of an efficient shaker for Active Isolation techniques is described. The prototype of TNO TPD can produce a force of 400 N up to 250 Hz at a good performance-volume ratio. To enhance the robustness of the active control applications, the use of the subspace identification based control methods are developed. The robustness property of subspace identification methods forms the basis of an accurate model updating mechanism, using small size data batches. The performed simulations reveal excellent robustness performance under very general noise conditions or during operation of the control system. Furthermore the development of the techniques can be exploited to realise sound comfort requirements to enhance audible communications of vehicle related applications. To anticipate to these developments in the automotive industry, TNO has set up a Sound and Vibrations Research Centre with Twente University and a research program on Smart Panels with the Delft University. To investigate the potential markets and applications for sound comfort in the means of transportation, TNO-TPD and the Institute of Sound and Vibration Research in England (ISVR) have agreed on a cooperative venture to develop and realise 'active control of electroacoustics' (ACE). (orig.)

  8. Passivity-based control technique for integration of DG resources into the power grid

    Mehrasa, Majid; Adabi, M. Ebrahim; Pouresmaeil, Edris;


    This paper deals with a control method for integration of Distributed Generation (DG) sources to the power grid. The proposed control strategy has been designed based on passivity technique and provides compensation for the active, reactive, and harmonic current components of loads during the...... connection of DG link to the grid. The proper switching functions of interfaced converter have been defined based on the passivity method through the achieving space equations and suitable series damping injection. The proposed control plan is completed by setting suitable reference current components for...... the d and q axis in the control loop of DG, which are defined based on the objectives of proposed method. The effectiveness of the proposed control scheme is validated with injection of maximum available power from the DG resources to the power grid, correction of power factor between the grid current...

  9. Active Power Filter Using Predicted Current Control

    Xiaojie, Y.; Pivoňka, P.; Valouch, Viktor


    Roč. 46, č. 1 (2001), s. 41-50. ISSN 0001-7043 Institutional research plan: CEZ:AV0Z2057903 Keywords : active power filter * control strategy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  10. UML activity diagrams in requirements specification of logic controllers

    Grobelna, Iwona; Grobelny, Michał


    Logic controller specification can be prepared using various techniques. One of them is the wide understandable and user-friendly UML language and its activity diagrams. Using formal methods during the design phase increases the assurance that implemented system meets the project requirements. In the approach we use the model checking technique to formally verify a specification against user-defined behavioral requirements. The properties are usually defined as temporal logic formulas. In the paper we propose to use UML activity diagrams in requirements definition and then to formalize them as temporal logic formulas. As a result, UML activity diagrams can be used both for logic controller specification and for requirements definition, what simplifies the specification and verification process.

  11. Active Noise Control in Propeller Aircraft

    Johansson, Sven; Claesson, Ingvar


    A noisy environment dominated by low frequency noise can often be improved through the use of active noise control. This situation arises naturally in propeller aircraft where the propellers induce periodic low frequency noise inside the cabin. The cabin noise is typically rather high, and the passenger flight comfort could be improved considerably if this level were significantly reduced. This paper addresses same design aspects for multiple-reference active noise control systems based on th...

  12. Transmission and Reflection of Neutrons Using Foil Activation Technique

    A new neutron irradiation facility has been designed, constructed .and located at the Experimental Nuclear Physics Department, NRC, AEA, cairo. The neutrons were obtained from CNIF2 (Second Cairo Neutron Irradiation Facility) that is based on one 241 Am-Be(α, n) isotopic neutron source with a present activity of about 175 GBq results in a neutron yield of about 1.04 x107 n/s. The geometrical arrangements of the facility consider the safety and protection rules aspects. MCNP5 code is used to estimate radiation doses and neutron fluxes. This new irradiation facility provides fast and epithermal neutrons that can be used in basic research and industrial applications. The aim of the present work is to study the characteristics of this new irradiation facility and to develop methods able to use fast and epithermal neutron in some different applications. Experimental measurements for the transmission and reflection of neutrons were carried out via a number of hydrogenous materials using the activation foil technique. A comparison of the experimental results with that calculated by using Monte Carlo simulation method is presented Using the neutron transmission technique in combination with foil activation method, our arrangement is used to measure the total neutron microscopic cross-sections for some compounds. The facility is calibrated and suitable to estimate the hydrogen content H (wt %) and the weight ratios C/H in hydrocarbon materials and was used to measure these ratios for some Egyptian crude oil samples. A brief overview of the neutron activation analysis methods for elemental concentrations in bulk samples in natural conditions is presented.

  13. Semi-active control of dynamically excited structures using active interaction control

    Zhang, Yunfeng


    This thesis presents a family of semi-active control algorithms termed Active Interaction Control (AIC) used for response control of dynamically excited structures. The AIC approach has been developed as a semi﷓active means of protecting building structures against large earthquakes. The AIC algorithms include the Active Interface Damping (AID), Optimal Connection Strategy (OCS), and newly developed Tuned Interaction Damping (TID) algorithms. All of the AIC algorithms are founded upon ...

  14. Site characterization techniques used in environmental remediation activities

    As a result of decades of nuclear energy research, weapons production, as well as ongoing operations, a significant amount of radioactive contamination has occurred throughout the United States Department of Energy (DOE) complex. DOE facility are in the process of assessing and potentially remediating various sites according to the regulations imposed by a Federal Facility Agreement and Consent order (FFA/CO) between DOE, the state in which the facility is located, and the U.S. Environmental Protection Agency (EPA). In support of these active site remediation efforts, the DOE has devoted considerable resources towards the development of innovative site characterization techniques that support environmental restoration activities. These resources and efforts have focused on various aspects of this complex problem. Research and technology development conducted at the Idaho National Engineering and Environmental Laboratory (INEEL) has resulted in the ability and state-of-the-art equipment required to obtain real-time, densely spaced, in situ characterization data (i.e. detection, speciation, and location) of various radionuclides and contaminants. The Remedial Action Monitoring System (RAMS), developed by the INEEL, consists of enhanced sensor technology, measurement modeling and interpretation techniques, and a suite of deployment platforms which can be interchanged to directly support remedial cleanup and site verification operations. In situ characterization techniques have advanced to the point where they are being actively deployed in support of remedial operations. The INEEL has deployed its system at various DOE and international sites. The deployment of in situ characterization systems during environmental restoration operations has shown that this approach results in several significant benefits versus conventional sampling techniques. A flexible characterization system permits rapid modification to satisfy physical site conditions, available site resources

  15. Control and supervision of a complex production process using hybrid systems techniques

    New processing activities for the decommissioning of the Experimental Breeder Reactor 2 are being carried out at Argonne National Laboratory. The task addressed in this paper is a process to convert metallic sodium to sodium carbonate. The main idea is to characterize this sodium operation as a system that integrates real-time continuous and discrete-event components and then apply hybrid system techniques to design and implement the control and supervisory policies. This paper introduces the research in progress at ANL on this conversion process, the flow of material, and the hybrid control solution

  16. WHO activities in teaching radioimmunoassay and related techniques

    The Special Programme of Research, Development and Research Training in Human Reproduction of the World Health Organization has recognized from its beginning that training is a key component of its activities, including its immunoassay standardization programme. Since the start of the Special Programme more than 250 scientists have received training in RIA and related procedures and 27 training courses have been held in various countries. Many of the courses have been held in collaboration with the International Atomic Energy Agency, and these co-operative activities have established a core of scientific expertise worldwide which has contributed to the increased availability of modern diagnostic techniques in many countries. The increasing number of medical and non-medical applications of immunoassays and the special expertise required for some immunoassay methods create a continuing demand for training in RIA techniques. Both WHO and the IAEA have responded by organizing courses to 'train the trainers' and by supporting national and regional courses based on centrally provided material, as well as by commissioning the production of additional teaching documents and audio-visual aids in English and Spanish. It is envisaged that such materials, complete with centrally provided materials for practicals and other teaching aids, will be made available to national reagent programmes and will be used in the future as a well characterized, standardized core around which local organizers can construct training programmes geared to local needs and drawing upon local experience. (author)

  17. Active and passive vibration control of structures

    Spelsberg-Korspeter, Gottfried


    Active and Passive Vibration Control of Structures form an issue of very actual interest in many different fields of engineering, for example in the automotive and aerospace industry, in precision engineering (e.g. in large telescopes), and also in civil engineering. The papers in this volume bring together engineers of different background, and it fill gaps between structural mechanics, vibrations and modern control theory.  Also links between the different applications in structural control are shown.

  18. Active control of vibrations in pedestrian bridges

    Álvaro Cunha; Carlos Moutinho


    This paper, apart from making a brief general reference to vibration problems in pedestrian bridges, as well as to the form of modelling of dynamic pedestrian loads, presents the use of a predictive control strategy for the numerical simulation of the dynamic response of actively controlled structures of this type. The consideration of this control strategy permitted the development of a computational model, which was applied to the study of a pedestrian cable-stayed bridge, in order to show ...

  19. Sustainable practices for fertilizer use through controlled release techniques

    Faez, Roselena; Messa, Lucas; Froes, José; Souza, Claudinei


    Controlled release fertilizers are efficient tools that increase the sustainability of agricultural practices. However, the biodegradability of the matrices and the determination of the release into soil still require some investigation. This work describes the preparation of potassium-containing microspheres based on chitosan- montmorillonite clay as fertilizer double coated. The release profile in water (ion conductivity measurement) and soil (ion movement performed with time-domain reflectometry (TDR) technique) were evaluated. The potassium-containing microspheres were placed in a 7.5-L container filled with soil (Typic dystrophic LVd). The container was prepared with a water drainage system consisting of a thin layer of gravel at the bottom, which was followed by a geotextile fabric to prevent the loss of soil. The container was filled with soil (9 kg) in layers of 0.05 m to simulate the original bulk density of 1.30 Each container received 4 g of microspheres placed at a single spot. They were placed at a depth of 10 cm. The fertilizer release was monitored using three electromagnetic probes for TDR that consisted of three continuous metal rods of 20 cm, which were in contact with the material and can be used to estimate the moisture and electrical conductivity. One probe was installed at the center of the container, which meant the rod was in contact with the microspheres in the soil. The other two probes were installed 5 cm from the central probe, and they were only in contact with the soil. Therefore, the purpose of these probes was to monitor the lateral displacement of the fertilizer from the microspheres in the soil. The release in water is fast than in soil, since the total amount of fertilizer in water was delivery during only one week and in soil during 60 days the fertilizer still continue drifting. The composite based on chitosan biopolymer as controlled release material is an efficient method to monitor the fertilizer consumption.

  20. Enhancing spill prevention and response preparedness through quality control techniques

    The year 1990 saw passage of federal and state oil spill legislation directing the US Environmental Protection Agency and the Florida Department of Environmental Regulation to require on shore bulk petroleum storage facilities to improve their oil spill response and prevention capabilities. The Florida Power ampersand Light Company (FPL), to address concerns arising out of several recent significant spills which had occurred worldwide, and to examine its current situation with regard compliance with the new laws, formed a quality improvement interdepartmental task team in July 1989. Its mission was to reduce the potential for oil spills during waterborne transportation between FPL's fuel oil terminals and its power plants and during transfer and storage of oil at these facilities. Another objective of the team was to enhance the company's spill response preparedness. Using quality control tools and reliability techniques, the team conducted a detailed analysis of seven coastal power plants and five fuel oil terminal facilities. This analysis began with the development of cause-and-effect diagrams designed to identify the root causes of spills so that corrective and preventive actions could be taken. These diagram are constructed by listing possible causes of oil spills under various major categories of possible system breakdown, such as man, method, equipment, and materials. Next, potential root causes are identified and then verified. The team identified the occurrence of surface water oil spill and reduced spill response capability as primary concerns and accordingly constructed cause-and-effect diagrams for both components. Lack of proper procedures, failure of control equipment, and inadequate facility design were identified as potential root causes leading to surface water oil spills. Lack of proper procedures, an inconsistent training program, and response equipment limitations were identified as potential root causes affecting oil spill response capabilities

  1. PID feedback controller used as a tactical asset allocation technique: The G.A.M. model

    Gandolfi, G.; Sabatini, A.; Rossolini, M.


    The objective of this paper is to illustrate a tactical asset allocation technique utilizing the PID controller. The proportional-integral-derivative (PID) controller is widely applied in most industrial processes; it has been successfully used for over 50 years and it is used by more than 95% of the plants processes. It is a robust and easily understood algorithm that can provide excellent control performance in spite of the diverse dynamic characteristics of the process plant. In finance, the process plant, controlled by the PID controller, can be represented by financial market assets forming a portfolio. More specifically, in the present work, the plant is represented by a risk-adjusted return variable. Money and portfolio managers’ main target is to achieve a relevant risk-adjusted return in their managing activities. In literature and in the financial industry business, numerous kinds of return/risk ratios are commonly studied and used. The aim of this work is to perform a tactical asset allocation technique consisting in the optimization of risk adjusted return by means of asset allocation methodologies based on the PID model-free feedback control modeling procedure. The process plant does not need to be mathematically modeled: the PID control action lies in altering the portfolio asset weights, according to the PID algorithm and its parameters, Ziegler-and-Nichols-tuned, in order to approach the desired portfolio risk-adjusted return efficiently.

  2. Applications of active adaptive noise control to jet engines

    Shoureshi, Rahmat; Brackney, Larry


    During phase 2 research on the application of active noise control to jet engines, the development of multiple-input/multiple-output (MIMO) active adaptive noise control algorithms and acoustic/controls models for turbofan engines were considered. Specific goals for this research phase included: (1) implementation of a MIMO adaptive minimum variance active noise controller; and (2) turbofan engine model development. A minimum variance control law for adaptive active noise control has been developed, simulated, and implemented for single-input/single-output (SISO) systems. Since acoustic systems tend to be distributed, multiple sensors, and actuators are more appropriate. As such, the SISO minimum variance controller was extended to the MIMO case. Simulation and experimental results are presented. A state-space model of a simplified gas turbine engine is developed using the bond graph technique. The model retains important system behavior, yet is of low enough order to be useful for controller design. Expansion of the model to include multiple stages and spools is also discussed.

  3. Measurement and timing-control techniques of femtosecond electron pulse

    Updated techniques and results on the measurement and timing-control of femtosecond electron pulses are presented. Radiation emitted by an electron pulse was measured by a femtosecond streak camera, a Michelson interferometer, a 10-channel polychromator and a fluctuation method in order to estimate a longitudinal pulse shape of the electron pulse. Measurements by the streak camera, the interferometer and the polychromator agree with one another within the error of 20%, while that by the fluctuation method was different. The numerical simulation explained the reason for it that the transverse emittance of the electron pulse affects the fluctuation of incoherent Cherenkov radiation. The synchronization of the electron pulse with the femtosecond laser pulse was also carried out. The timing jitter was 330 fs in rms and the hours-long drift was more than 1 ps. The suppression of the drift is under way by introducing a stable water cooler (within 0.01 deg. C) for the accelerator tubes and RF gun, and an air-conditioner (within 2 deg. C)

  4. A new microcomputer-controlled neutron activation and analysis system

    A microcomputer-controlled irradiation and measurement system and a microprocessor-controlled sample changer have been installed at the SLOWPOKE-2 Facility at the Royal Military College of Canada (RMC). These systems can provide the gamut of instrumental neutron activation analysis (INAA) techniques for the analyst. Custom software has been created for system control, data acquisition, and off-line spectral analysis using programs that incorporate Gaussian peak-fitting methods of analysis. The design and use of the equipment is discussed, and the performance is illustrated with results obtained from the analysis of marine sediment and biological reference materials

  5. Adaptive control of active filter using DSP

    In order to reduce output-voltage ripple of power supply, an active filter is necessary. In this paper, the active filter with DSP is proposed. The waveform from active filter can be flexibly improved by DSP programming. The output-voltage ripple can be enough reduced by mixing frequency components of the input-voltage ripple. The result of adaptive control using LMS algorism is presented. The improvement by using filtered-X method is discussed. (author)

  6. Wind Turbine Rotors with Active Vibration Control

    Svendsen, Martin Nymann

    This thesis presents a framework for structural modeling, analysis and active vibration damping of rotating wind turbine blades and rotors. A structural rotor model is developed in terms of finite beam elements in a rotating frame of reference. The element comprises a representation of general...... that these are geometrically well separated. For active vibration control in three-bladed wind turbine rotors the present work presents a resonance-based method for groups of one collective and two whirling modes. The controller is based on the existing resonant format and introduces a dual system...... system. As in the method for non-rotating systems, an explicit procedure for optimal calibration of the controller gains is established. The control system is applied to an 86m wind turbine rotor by means of active strut actuator mechanisms. The prescribed additional damping ratios are reproduced almost...


    Felicia Sabou


    Full Text Available The paper focused on importance and benefits of control and evaluation of marketing activities. The control of efficiency review the assessment of the resources for marketing activity, checking also the efficiency of the human resources, advertising, promotion activities and distribution activities. In the analyse of human resources the most important ratio are: the average of costumers visits on a day, the number of custom order received from 100 visits, the number of new customers from a period, the number of lost customers from a period, the marketing human expenditures from all the sales.The strategic control is made to check if the objectives and the company strategy are adapted to the marketing environment.

  8. Active vibration control of basic structures using macro fiber composites

    Yi, Guo; Wang, Jinming; Liu, Liwu; Liu, Yanju; Leng, Jinsong


    In the modern naval battle, as the anti-detection technique developing fleetly, enhancing submarine's hidden ability is becoming more and more important. However, in view of the worse control effect at low-frequency and weak adjustability to external influence, conventional passive vibration control can't satisfy the modern naval rigorous demands. Fortunately, active vibration control technology not only monitors the structure's real-time vibration, but also has more remarkable control effects and superior suitability. At the present time, it has a primary application in the vibration damping of ship engineering. In addition, due to functional materials rapidly developing, with the coming of piezoelectric composite materials, the advanced active control techniques have more applicability, lager damp amplitude and wider applied field, which basing on the piezoelectric-effect and inverse- piezoelectric-effect of piezoelectric materials. Especially, in the end of nineties, NASA had successfully manufactured the excellent macro fiber composite (MFC), which assembles actuating and sensing abilities. Comparing with the conventional piezoelectric ceramic materials, it provides the required durability, excellent flexibility, higher electromechanical coupling factors and stronger longitudinal actuating force by using interdigital electrodes. On the basis of the application of cantilever beam' active vibration control by using MFC actuators, this paper started with the mechanical characteristics of its actuating and sensing equations, and then investigated its piezoelectric feedback scale factor when equipped on the honeycomb aluminous panel. Finally, in order to validate the theoretical analysis method, the vibration control experiment of cantilever beam and honeycomb aluminous panel are built and tested with different activating force. The experimental results verify that MFC used in submarine structures' active vibration control are feasible and effective.

  9. Synthesis of active controls for flutter suppression on a flight research wing

    Abel, I.; Perry, B., III; Murrow, H. N.


    This paper describes some activities associated with the preliminary design of an active control system for flutter suppression capable of demonstrating a 20% increase in flutter velocity. Results from two control system synthesis techniques are given. One technique uses classical control theory, and the other uses an 'aerodynamic energy method' where control surface rates or displacements are minimized. Analytical methods used to synthesize the control systems and evaluate their performance are described. Some aspects of a program for flight testing the active control system are also given. This program, called DAST (Drones for Aerodynamics and Structural Testing), employs modified drone-type vehicles for flight assessments and validation testing.

  10. Performance Enhancement of PID Controllers by Modern Optimization Techniques for Speed Control of PMBL DC Motor

    M. Antony Freeda Rani


    Full Text Available Permanent Magnet Brushless DC motor (PMBL DC is used in a large number of industrial and automotive applications because of their high efficiency, compactness and excellent reliability. However to design an efficient PMBL DC motor, it is necessary to provide an effective controller that has to reduce the overshoot, settling and rise time. In this study, an improved PID controller has been designed by optimizing the parameters of PID controller based on two advanced optimization techniques ANFIS and Cuckoo Search optimization for speed control of a PMBL DC motor. The proposed approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency. The PMBL DC motor is modeled in SIMULINK implementing the algorithms in MATLAB and the performance evaluation has been studied.

  11. Determination and control of activity in radioactive waste as part of product control

    Research and development investigations have been performed for the control of the activity inventory using the following methods and techniques: non-destructive determination of actinide content in waste through passive neutron measurement including the examination of various parameters on detection efficiency; development of dissolution and decomposition techniques for the various waste groups; and development of methods for individual separation of radioisotopes and measurement of selected nuclides with main emphasis to Fe-55, Ni-59, Ni-63, Sr-90, I-129, Ra-226, Ra-228 and actinides. A comprehensive review of published literature concerning active and passive neutron emission as well as prompt and delayed neutron emission; dissolution and decomposition techniques; rapid chemical separation and measurements techniques for the above mentioned radionuclides; and basic radionuclide data is given. (orig.)

  12. MATLAB Simulation of UPQC for Power Quality Mitigation Using an Ant Colony Based Fuzzy Control Technique

    N. Kumarasabapathy


    Full Text Available This paper proposes a fuzzy logic based new control scheme for the Unified Power Quality Conditioner (UPQC for minimizing the voltage sag and total harmonic distortion in the distribution system consequently to improve the power quality. UPQC is a recent power electronic module which guarantees better power quality mitigation as it has both series-active and shunt-active power filters (APFs. The fuzzy logic controller has recently attracted a great deal of attention and possesses conceptually the quality of the simplicity by tackling complex systems with vagueness and ambiguity. In this research, the fuzzy logic controller is utilized for the generation of reference signal controlling the UPQC. To enable this, a systematic approach for creating the fuzzy membership functions is carried out by using an ant colony optimization technique for optimal fuzzy logic control. An exhaustive simulation study using the MATLAB/Simulink is carried out to investigate and demonstrate the performance of the proposed fuzzy logic controller and the simulation results are compared with the PI controller in terms of its performance in improving the power quality by minimizing the voltage sag and total harmonic distortion.

  13. MATLAB Simulation of UPQC for Power Quality Mitigation Using an Ant Colony Based Fuzzy Control Technique.

    Kumarasabapathy, N; Manoharan, P S


    This paper proposes a fuzzy logic based new control scheme for the Unified Power Quality Conditioner (UPQC) for minimizing the voltage sag and total harmonic distortion in the distribution system consequently to improve the power quality. UPQC is a recent power electronic module which guarantees better power quality mitigation as it has both series-active and shunt-active power filters (APFs). The fuzzy logic controller has recently attracted a great deal of attention and possesses conceptually the quality of the simplicity by tackling complex systems with vagueness and ambiguity. In this research, the fuzzy logic controller is utilized for the generation of reference signal controlling the UPQC. To enable this, a systematic approach for creating the fuzzy membership functions is carried out by using an ant colony optimization technique for optimal fuzzy logic control. An exhaustive simulation study using the MATLAB/Simulink is carried out to investigate and demonstrate the performance of the proposed fuzzy logic controller and the simulation results are compared with the PI controller in terms of its performance in improving the power quality by minimizing the voltage sag and total harmonic distortion. PMID:26504895

  14. Adaptive Piezoelectric Absorber for Active Vibration Control

    Sven Herold


    Full Text Available Passive vibration control solutions are often limited to working reliably at one design point. Especially applied to lightweight structures, which tend to have unwanted vibration, active vibration control approaches can outperform passive solutions. To generate dynamic forces in a narrow frequency band, passive single-degree-of-freedom oscillators are frequently used as vibration absorbers and neutralizers. In order to respond to changes in system properties and/or the frequency of excitation forces, in this work, adaptive vibration compensation by a tunable piezoelectric vibration absorber is investigated. A special design containing piezoelectric stack actuators is used to cover a large tuning range for the natural frequency of the adaptive vibration absorber, while also the utilization as an active dynamic inertial mass actuator for active control concepts is possible, which can help to implement a broadband vibration control system. An analytical model is set up to derive general design rules for the system. An absorber prototype is set up and validated experimentally for both use cases of an adaptive vibration absorber and inertial mass actuator. Finally, the adaptive vibration control system is installed and tested with a basic truss structure in the laboratory, using both the possibility to adjust the properties of the absorber and active control.

  15. Active Learning Techniques Applied to an Interdisciplinary Mineral Resources Course.

    Aird, H. M.


    An interdisciplinary active learning course was introduced at the University of Puget Sound entitled 'Mineral Resources and the Environment'. Various formative assessment and active learning techniques that have been effective in other courses were adapted and implemented to improve student learning, increase retention and broaden knowledge and understanding of course material. This was an elective course targeted towards upper-level undergraduate geology and environmental majors. The course provided an introduction to the mineral resources industry, discussing geological, environmental, societal and economic aspects, legislation and the processes involved in exploration, extraction, processing, reclamation/remediation and recycling of products. Lectures and associated weekly labs were linked in subject matter; relevant readings from the recent scientific literature were assigned and discussed in the second lecture of the week. Peer-based learning was facilitated through weekly reading assignments with peer-led discussions and through group research projects, in addition to in-class exercises such as debates. Writing and research skills were developed through student groups designing, carrying out and reporting on their own semester-long research projects around the lasting effects of the historical Ruston Smelter on the biology and water systems of Tacoma. The writing of their mini grant proposals and final project reports was carried out in stages to allow for feedback before the deadline. Speakers from industry were invited to share their specialist knowledge as guest lecturers, and students were encouraged to interact with them, with a view to employment opportunities. Formative assessment techniques included jigsaw exercises, gallery walks, placemat surveys, think pair share and take-home point summaries. Summative assessment included discussion leadership, exams, homeworks, group projects, in-class exercises, field trips, and pre-discussion reading exercises

  16. Active control for performance enhancement of electrically controlled rotor

    Lu Yang; Wang Chao


    Electrically controlled rotor (ECR) system has the potential to enhance the rotor perfor-mance by applying higher harmonic flap inputs. In order to explore the feasibility and effectiveness for ECR performance enhancement using closed-loop control method, firstly, an ECR rotor perfor-mance analysis model based on helicopter flight dynamic model is established, which can reflect the performance characteristics of ECR helicopter at high advance ratio. Based on the simulation platform, an active control method named adaptive T-matrix algorithm is adopted to explore the feasibility and effectiveness for ECR performance enhancement. The simulation results verify the effectiveness of this closed-loop control method. For the sample ECR helicopter, about 3%rotor power reduction is obtained with the optimum 2/rev flap inputs at the advance ratio of 0.34. And through analyzing the distributions of attack of angle and drag in rotor disk, the underlying physical essence of ECR power reduction is cleared. Furthermore, the influence of the key control parameters, including convergence factor and weighting matrix, on the effectiveness of closed-loop control for ECR performance enhancement is explored. Some useful results are summarized, which can be used to direct the future active control law design of ECR performance enhancement.

  17. Active control for performance enhancement of electrically controlled rotor

    Lu Yang


    Full Text Available Electrically controlled rotor (ECR system has the potential to enhance the rotor performance by applying higher harmonic flap inputs. In order to explore the feasibility and effectiveness for ECR performance enhancement using closed-loop control method, firstly, an ECR rotor performance analysis model based on helicopter flight dynamic model is established, which can reflect the performance characteristics of ECR helicopter at high advance ratio. Based on the simulation platform, an active control method named adaptive T-matrix algorithm is adopted to explore the feasibility and effectiveness for ECR performance enhancement. The simulation results verify the effectiveness of this closed-loop control method. For the sample ECR helicopter, about 3% rotor power reduction is obtained with the optimum 2/rev flap inputs at the advance ratio of 0.34. And through analyzing the distributions of attack of angle and drag in rotor disk, the underlying physical essence of ECR power reduction is cleared. Furthermore, the influence of the key control parameters, including convergence factor and weighting matrix, on the effectiveness of closed-loop control for ECR performance enhancement is explored. Some useful results are summarized, which can be used to direct the future active control law design of ECR performance enhancement.

  18. Active control of ionized boundary layers

    Mendes, R V


    The challenging problems, in the field of control of chaos or of transition to chaos, lie in the domain of infinite-dimensional systems. Access to all variables being impossible in this case and the controlling action being limited to a few collective variables, it will not in general be possible to drive the whole system to the desired behaviour. A paradigmatic problem of this type is the control of the transition to turbulence in the boundary layer of fluid motion. By analysing a boundary layer flow for an ionized fluid near an airfoil, one concludes that active control of the transition amounts to the resolution of an generalized integro-differential eigenvalue problem. To cope with the required response times and phase accuracy, electromagnetic control, whenever possible, seems more appropriate than mechanical control by microactuators.

  19. Survey of Active Structural Control and Repair Using Piezoelectric Patches

    Ahmed Abuzaid; Meftah Hrairi; M.S.I. Shaik Dawood


    The piezoelectric actuator has gained popularity over the last few years. Attention has been directed towards the study of their electromechanical response in active repair and the control of damaged structures. This has been made possible through the development of various numerical and analytical techniques for such studies. The shift of focus towards the piezoelectric based approaches has been due to their advantages, which include strategic cost benefits in maintenance, as well as an incr...

  20. Quality control activities in the environmental radiology laboratory

    During the last twenty years many analytical laboratories have implemented quality assurance systems. A quality system implementation requires documentation of all activities (technical and management), evaluation of these activities and its continual improvement. Implementation and adequate management of all the elements a quality system includes are not enough to guarantee quality of the analytical results generated at a time. That is the aim of a group of specific activities labelled as quality control activities. The Laboratori de Radiologia Ambiental (Environmental Radiology Laboratory; LRA) at the University of Barcelona was created in 1984 to carry out part of the quality control assays of the Environmental Radiology Monitoring Programs around some of the Spanish nuclear power plants, which are developed by the Servei Catala d'Activitats Energetiques (SCAR) and the Consejo de Seguridad Nuclear (CSN), organisations responsible for nuclear security and radiological protection. In these kind of laboratories, given the importance of the results they give, quality control activities become an essential aspect. In order to guarantee the quality of its analytical results, the LRA Direction decided to adopt the international standard UNE-EN ISO/IEC 17025 for its internal quality system and to accreditate some of the assays it carries out. In such as system, it is established, the laboratory shall monitor the validity of tests undertaken and data shall be recorded in such a way that trends are detectable. The present work shows the activities carried out in this way by the LRA, which are: Equipment control activities which in the special case of radiochemical techniques include measurement of backgrounds and blanks as well as periodical control of efficiency and resolution. Activities to assure the specifications settled by method validation, which are testing of reference materials and periodical analysis of control samples. Evaluation of the laboratory work quality

  1. Active control of an aircraft tail subject to harmonic excitation

    M. Eissa; H. S. Bauomy; Y. A. Amer


    Vibration of structures is often an undesirable phenomena and should be avoided or controlled. There are two techniques to control the vibration of a system, that is,active and passive control techniques. In this paper, a negative feedback velocity is applied to a dynamical system, which is represented by two coupled second order nonlinear differ-ential equations having both quadratic and cubic nonlinear-ties. The system describes the vibration of an aircraft tail.The system is subjected to multi-external excitation forces.The method of multiple time scale perturbation is applied to solve the nonlinear differential equations and obtain approx-imate solutions up to third order of accuracy. The stability of the system is investigated applying frequency response equations. The effects of the different parameters are stud-ied numerically. Various resonance cases are investigated. A comparison is made with the available published work.

  2. Tracing salmon to their birthplace by activable tracer technique

    Activable tracer technique was applied to trace the recurrent migration of white salmons, as a typical example of employing radioactivation analysis to the study of agricultural and marinefields. Europium was adopted because it is easy to use technically with less influence on fish body and easy to detect, and its remaining time is very long. Artificially hatched young white salmons were stocked in the Saibetsu River after being raised for a month with europium-containing feed. These stocked fish were labeled by fin-cutting method. Recurrent salmons (fin cutting-labeled fish) were then collected and dissected. The fishes were divided into otoliths, scales, flesh, internal organs, gills, bones, etc., and irradiated for 5 min in JRR-2 reactor of Japan Atomic Energy Research Institute. Europium was detected from the scales and otoliths of 3 to 4 year stocked adult fishes by γ-spectrometry of Eu. This proved the availability of activable tracer method for tracing the recurrent migration of salmons. (Kobatake, H.)

  3. Analysis of Protein in Soybean by Neutron Activation Technique

    Nitrogen content in soybean was studied by using Neutron Activation Analysis technique through fast neutron at the flux of 2.5 * 1011 n/cm2. sec in the CA-3 out-core irradiation tube of the Thai Research Reactor-1/Modification 1 (TRR-1/M1, Triga Mark 3 type). By measuring gamma ray of 511 keV from 13N of the nuclear reaction, 14N(n, 2n)13N caused by the annihilation of positron disintegrated, the semi-conductor detector (HPGe) was connected with the multi-channel analyzer (MCA) and monitor to display the spectrum range. NH4NO3 was used as the standard for the analysis. The inaccuracy of the analysis caused by other radioisotopes, i.e. potassium, phosphorus and reaction from recoiled proton scattering in soybean was corrected. The data of 27 samples analyzed by neutron activation showed no significant difference in the nitrogen content. The average nitrogen content of all the soybean samples is 7.02% equivalent to protein content of 43.88%

  4. Elemental analysis of brazing alloy samples by neutron activation technique

    Two brazing alloy samples (C P2 and C P3) have been investigated by Neutron activation analysis (NAA) technique in order to identify and estimate their constituent elements. The pneumatic irradiation rabbit system (PIRS), installed at the first egyptian research reactor (ETRR-1) was used for short-time irradiation (30 s) with a thermal neutron flux of 1.6 x 1011 n/cm2/s in the reactor reflector, where the thermal to epithermal neutron flux ratio is 106. Long-time irradiation (48 hours) was performed at reactor core periphery with thermal neutron flux of 3.34 x 1012 n/cm2/s, and thermal to epithermal neutron flux ratio of 79. Activation by epithermal neutrons was taken into account for the (1/v) and resonance neutron absorption in both methods. A hyper pure germanium detection system was used for gamma-ray acquisitions. The concentration values of Al, Cr, Fe, Co, Cu, Zn, Se, Ag and Sb were estimated as percentages of the sample weight and compared with reported values. 1 tab

  5. HPLC-MS technique for radiopharmaceuticals analysis and quality control

    Potentialities of liquid chromatography with mass spectrometric detector (MSD) were investigated with the objective of quality control of radiopharmaceuticals; 2-deoxy-2-[18F]fluoro-D-glucose (FDG) being an example. Screening of suitable MSD analytical lines is presented. Mass-spectrometric monitoring of acetonitrile-aqueous ammonium formate eluant by negatively charged FDG.HCO2- ions enables isotope analysis (specific activity) of the radiopharmaceutical at m/z 227 and 226. Kryptofix 222 provides an intense MSD signal of the positive ion associated with NH4+ at m/z 394. Expired FDG injection samples contain decomposition products from which at least one labelled by 18F and characterised by signal of negative ions at m/z 207 does not correspond to FDG fragments but to C5 decomposition products. A glucose chromatographic peak, characterised by m/z 225 negative ion is accompanied by a tail of a component giving a signal of m/z 227, which can belong to [18O]glucose; isobaric sorbitol signals were excluded but FDG-glucose association occurs in the co-elution of separation of model mixtures. The latter can actually lead to a convoluted chromatographic peak, but the absence of 18F makes this inconsistent. Quantification and validation of the FDG component analysis is under way. (author)

  6. A comprehensive overview of hybrid electric vehicle: Powertrain configurations, powertrain control techniques and electronic control units

    The studies for hybrid electrical vehicle (HEV) have attracted considerable attention because of the necessity of developing alternative methods to generate energy for vehicles due to limited fuel based energy, global warming and exhaust emission limits in the last century. HEV incorporates internal composition engine, electric machines and power electronic equipments. In this study, overview of HEVs with a focus on hybrid configurations, energy management strategies and electronic control units are presented. Advantages and disadvantages of each configuration are clearly emphasized. The existing powertrain control techniques for HEVs are classified and comprehensively described. Electronic control units used in HEV configuration are also elaborated. The latest trends and technological challenges in the near future for HEVs are discussed.

  7. Capital Control, Debt Financing and Innovative Activity

    Czarnitzki, Dirk; Kraft, Kornelius


    "The present paper discusses the effects of dispersed versus concentrated capital ownership on investment into innovative activity. While the market for equity capital might exert insufficient control on top managements’ behavior, this weakness may be mitigated by a suitable degree of debt financing. We report the results of an empirical study on the determinants of innovative activity measured by patent applications. Using a large sample of German manufacturing firms, we find that companies ...

  8. Span of Control and Span of Activity

    Oriana Bandiera; Andrea Prat; Raffaella Sadun; Julie Wulf


    For both practitioners and researchers, span of control plays an important role in defining and understanding the role of the CEO. In this paper, we combine organizational chart information for a sample of 65 companies with detailed data on how their CEOs allocate their work time, which we define as their span of activity. Span of activity provides a direct measure of the CEO's management style, including the attention devoted to specific subordinates and functions, the time devoted to indivi...

  9. Activated mechanisms in amorphous silicon: an activation-relaxation-technique study

    Mousseau, N.; Barkema, G. T.


    At low temperatures, dynamics in amorphous silicon occurs through a sequence of discrete activated events that locally reorganize the topological network. Using the activation-relaxation technique, a data base containing over 8000 such events is generated, and the events are analyzed with respect to their energy barrier and asymmetry, displacement and volume expansion/contraction. Special attention is paid to those events corresponding to diffusing coordination defects. The energetics is not ...

  10. Quality Assurance and Control in Laboratory using Neutron Activation Analysis

    In accordance with the increment of international trade associated with the worldwide globalization, the importance of quality assurance and control for the commodity produced from one's own country has been stressed. ISO (International Organization for Standards) defines quality control as 'the operational techniques and activities that are used to fulfill the requirements for quality'. Since 1996, the HANARO research reactor in the Korea Atomic Energy Research Institute has been operated thereafter initial critical operation on April 1995. Neutron activation analysis system and applied techniques which is one of a nuclear analytical technologies using reactor neutrons has been developed for user's supporting and the establishment of the quality system for a measurement and analysis, testing and inspection was implemented successfully. On the basis of the qualified NAA system, the test and measurement of more than 1500 samples which is requested from 30 organizations including industrial companies, universities and institutes carried out in NAA laboratory annually. Moreover, as the goal of mutual recognition agreement (MRA) which can be removed a technical barrier in international trade, the objectivity and the confidence of analytical quality in NAA laboratory became established through the installation of international accreditation system by implementing analytical quality system in accordance with international standards in 2001. The aim of the report was to summarize the technical management of introduction, methods and the results for a quality control and assurance which should be performed in NAA technique using the HANARO research reactor. The report will help building up effective quality control strategy in the future


    Juri. S. Ezrokh


    Full Text Available The research is aimed at specifying and developing the modern control system of current academic achievements of junior university students; and the main task is to find the adequate ways for stimulating the junior students’ learning activities, and estimating their individual achievements.Methods: The author applies his own assessment method for estimating and stimulating students’ learning outcomes, based on the rating-point system of gradually obtained points building up a student’s integrated learning outcomes.Results: The research findings prove that implementation of the given method can increase the motivational, multiplicative and controlling components of the learning process.Scientific novelty: The method in question is based on the new original game approach to controlling procedures and stimulation of learning motivation of the economic profile students.Practical significance: The recommended technique can intensify the incentivebased training activities both in and outside a classroom, developing thereby students’ professional and personal qualities.

  12. Active Vibration Control of Piezolaminated Smart Beams

    V. Balamurugan


    Full Text Available This paper deals with the active vibration control of beam like structures with distributed piezoelectric sensor and actuator layers bonded on top and bottom surfaces of the beam. A finite element model based on Euler-Bernoulli beam theory has been developed. The contribution of the piezoelectric sensor and actuator layers on the mass and stiffness of the beam is considered. Three types of classical control strategies, namely direct proportional feedback, constant-gain negative velocity feedback and Lyapunov feedback and an optimal control strategy, linear quadratic regulator (LQR scheme are applied to study their control effectiveness. Also, the control performance with different types of loading, such as impulse loading, step loading, harmonic and random loading is studied

  13. Effect of Control Techniques on the Performance of Semiactive Dampers

    Masi, John William


    A computer simulation is used to examine the effects that various control methods have on the performance of semiactive dampers in controlling the dynamics of a single suspension (quarter car) model. The level of dynamic control of this model has a direct bearing on the ride comfort and vehicle handling, when the single suspension is interpreted as a partial model of a vehicle. The dynamic results obtained when using two alternative semiactive control methods are compared to the results obt...

  14. Predictive Techniques for Spacecraft Cabin Air Quality Control

    Perry, J. L.; Cromes, Scott D. (Technical Monitor)


    As assembly of the International Space Station (ISS) proceeds, predictive techniques are used to determine the best approach for handling a variety of cabin air quality challenges. These techniques use equipment offgassing data collected from each ISS module before flight to characterize the trace chemical contaminant load. Combined with crew metabolic loads, these data serve as input to a predictive model for assessing the capability of the onboard atmosphere revitalization systems to handle the overall trace contaminant load as station assembly progresses. The techniques for predicting in-flight air quality are summarized along with results from early ISS mission analyses. Results from groundbased analyses of in-flight air quality samples are compared to the predictions to demonstrate the technique's relative conservatism.

  15. Practical translation of hemorrhage control techniques to the civilian trauma scene.

    Lockey, David J; Weaver, Anne E; Davies, Gareth E


    This article examines how established and innovative techniques in hemorrhage control can be practically applied in a civilian physician-based prehospital trauma service. A "care bundle" of measures to control hemorrhage on scene are described. Interventions discussed include the implementation of a system to achieve simple endpoints such as shorter scene times, appropriate triage, careful patient handling, use of effective splints and measures to control external hemorrhage. More complex interventions include prehospital activation of massive hemorrhage protocols and administration of on-scene tranexamic acid, prothrombin complex concentrate, and red blood cells. Radical resuscitation interventions, such as prehospital thoracotomy for cardiac tamponade, and the potential future role of other interventions are also considered. PMID:23301967

  16. Time-domain versus frequency-domain effort weighting in active noise control

    Friot, Emmanuel


    Although Active Noise Control aims at reducing the noise at a set of error sensors, it is often designed by minimizing an error index that includes a weightedpenalty on the actuator inputs. In this way, the control tends to be more robust and the effort-weighting parameter allows the maximum voltages applied to the control sources to be monitored. Two similar effort-weighting techniques have been widely implemented in active control studies: optimal control can be computed using Tikhonov regu...

  17. Modeling and vibration control of an active membrane mirror

    Ruggiero, Eric J.; Inman, Daniel J.


    The future of space satellite technology lies in ultra-large mirrors and radar apertures for significant improvements in imaging and communication bandwidths. The availability of optical-quality membranes drives a parallel effort for structural models that can capture the dominant dynamics of large, ultra-flexible satellite payloads. Unfortunately, the inherent flexibility of membrane mirrors wreaks havoc with the payload's on-orbit stability and maneuverability. One possible means of controlling these undesirable dynamics is by embedding active piezoelectric ceramics near the boundary of the membrane mirror. In doing so, active feedback control can be used to eliminate detrimental vibration, perform static shape control, and evaluate the health of the structure. The overall motivation of the present work is to design a control system using distributed bimorph actuators to eliminate any detrimental vibration of the membrane mirror. As a basis for this study, a piezoceramic wafer was attached in a bimorph configuration near the boundary of a tensioned rectangular membrane sample. A finite element model of the system was developed to capture the relevant system dynamics from 0 to 300 Hz. The finite element model was compared against experimental results, and fair agreement found. Using the validated finite element models, structural control using linear quadratic regulator control techniques was then used to numerically demonstrate effective vibration control. Typical results show that less than 12 V of actuation voltage is required to eliminate detrimental vibration of the membrane samples in less than 15 ms. The functional gains of the active system are also derived and presented. These spatially descriptive control terms dictate favorable regions within the membrane domain for placing sensors and can be used as a design guideline for structural control applications. The results of the present work demonstrate that thin plate theory is an appropriate modeling

  18. AC electric motors control advanced design techniques and applications

    Giri, Fouad


    The complexity of AC motor control lies in the multivariable and nonlinear nature of AC machine dynamics. Recent advancements in control theory now make it possible to deal with long-standing problems in AC motors control. This text expertly draws on these developments to apply a wide range of model-based control designmethods to a variety of AC motors. Contributions from over thirty top researchers explain how modern control design methods can be used to achieve tight speed regulation, optimal energetic efficiency, and operation reliability and safety, by considering online state var

  19. Herion Servo techniques with electronic control systems in hydraulic systems

    Ehrath, M.


    A description of an electro-hydraulic control circuit for the fuel pump and the injection valve of a large diesel engine is presented. Pressures of 500-1000 bar must be controlled in diesel engines. The newly-developed electronically controlled injection system uses quick-action control valves, a further developed version of the high-response valves. Electronically controlled ignition systems offer the following advantages: improved fuel-air ratio and better combustion; improved injection parameters within the total load range of the engine, better adaption to changing operational and environmental conditions and to changing fuel quality, fewer and less complicated components, and increased operational safety.


    The paper presents a mathematical model of total mercury removed from the flue gas at coal-fired plants equipped with powdered activated carbon (PAC) injection for Mercury control. The developed algorithms account for mercury removal by both existing equipment and an added PAC in...

  1. DNA-based control of protein activity.

    Engelen, W; Janssen, B M G; Merkx, M


    DNA has emerged as a highly versatile construction material for nanometer-sized structures and sophisticated molecular machines and circuits. The successful application of nucleic acid based systems greatly relies on their ability to autonomously sense and act on their environment. In this feature article, the development of DNA-based strategies to dynamically control protein activity via oligonucleotide triggers is discussed. Depending on the desired application, protein activity can be controlled by directly conjugating them to an oligonucleotide handle, or expressing them as a fusion protein with DNA binding motifs. To control proteins without modifying them chemically or genetically, multivalent ligands and aptamers that reversibly inhibit their function provide valuable tools to regulate proteins in a noncovalent manner. The goal of this feature article is to give an overview of strategies developed to control protein activity via oligonucleotide-based triggers, as well as hurdles yet to be taken to obtain fully autonomous systems that interrogate, process and act on their environments by means of DNA-based protein control. PMID:26812623

  2. Prospects of pharmaceuticals and biopharmaceuticals loaded microparticles prepared by double emulsion technique for controlled delivery.

    Giri, Tapan Kumar; Choudhary, Chhatrapal; Ajazuddin; Alexander, Amit; Badwaik, Hemant; Tripathi, Dulal Krishna


    Several methods and techniques are potentially useful for the preparation of microparticles in the field of controlled drug delivery. The type and the size of the microparticles, the entrapment, release characteristics and stability of drug in microparticles in the formulations are dependent on the method used. One of the most common methods of preparing microparticles is the single emulsion technique. Poorly soluble, lipophilic drugs are successfully retained within the microparticles prepared by this method. However, the encapsulation of highly water soluble compounds including protein and peptides presents formidable challenges to the researchers. The successful encapsulation of such compounds requires high drug loading in the microparticles, prevention of protein and peptide degradation by the encapsulation method involved and predictable release, both rate and extent, of the drug compound from the microparticles. The above mentioned problems can be overcome by using the double emulsion technique, alternatively called as multiple emulsion technique. Aiming to achieve this various techniques have been examined to prepare stable formulations utilizing w/o/w, s/o/w, w/o/o, and s/o/o type double emulsion methods. This article reviews the current state of the art in double emulsion based technologies for the preparation of microparticles including the investigation of various classes of substances that are pharmaceutically and biopharmaceutically active. PMID:23960828

  3. Genetic control of active neural circuits

    Leon Reijmers


    Full Text Available The use of molecular tools to study the neurobiology of complex behaviors has been hampered by an inability to target the desired changes to relevant groups of neurons. Specific memories and specific sensory representations are sparsely encoded by a small fraction of neurons embedded in a sea of morphologically and functionally similar cells. In this review we discuss genetics techniques that are being developed to address this difficulty. In several studies the use of promoter elements that are responsive to neural activity have been used to drive long lasting genetic alterations into neural ensembles that are activated by natural environmental stimuli. This approach has been used to examine neural activity patterns during learning and retrieval of a memory, to examine the regulation of receptor trafficking following learning and to functionally manipulate a specific memory trace. We suggest that these techniques will provide a general approach to experimentally investigate the link between patterns of environmentally activated neural firing and cognitive processes such as perception and memory.

  4. Active control of transmitted sound in buildings

    Thompsett, Russell Harvey George

    The problem of noise from neighbours has increased dramatically over the last few years. Many of the noise complaints are due to the high level, low frequency noise from modern stereo equipment, and are often described in terms of the low frequency characteristics of the music; the repetitive, booming, bass beat. The objective of this research was to establish the feasibility of applying active noise control to alleviate this problem. The initial approach was to evaluate the possibility of exploiting the dominance of individual modes in the response of rooms at low frequency to effect global control. However, initial investigations using a modal model of the sound field revealed that this would be difficult due to the contribution of many acoustic modes excited off resonance. This conclusion was supported by measurements of acoustic room responses in typical buildings, illustrating a non-resonant characteristic. Consequently, attention was turned to the feasibility of using local active control systems to create zones of quiet by concentrating control at a specific location near the observers ears, for example in a seat headrest, or near the pillows of a bed. The lack of a reference signal in either approach requires the use of a feedback control strategy. With a typically non-resonant system, the predictability in the disturbance necessary for successful feedback control must be contained in the primary excitation, namely the music. Examples of different music styles were investigated and of those with the potential to be a nuisance surprisingly few were significantly more predictable than a random disturbance. As expected the most encouraging control performance simulations were found for modern dance music, with a strong repetitive beat. A real-time, local controller was demonstrated in the laboratory with such a disturbance signal and the properties of the quiet zone were measured. The subjective response when hearing the controller in operation was found to be

  5. Active sampling technique to enhance chemical signature of buried explosives

    Lovell, John S.; French, Patrick D.


    Deminers and dismounted countermine engineers commonly use metal detectors, ground penetrating radar and probes to locate mines. Many modern landmines have a very low metal content, which severely limits the effectiveness of metal detectors. Canines have also been used for landmine detection for decades. Experiments have shown that canines smell the explosives which are known to leak from most types of landmines. The fact that dogs can detect landmines indicates that vapor sensing is a viable approach to landmine detection. Several groups are currently developing systems to detect landmines by "sniffing" for the ultra-trace explosive vapors above the soil. The amount of material that is available to passive vapor sensing systems is limited to no more than the vapor in equilibrium with the explosive related chemicals (ERCs) distributed in the surface soils over and near the landmine. The low equilibrium vapor pressure of TNT in the soil/atmosphere boundary layer and the limited volume of the boundary layer air imply that passive chemical vapor sensing systems require sensitivities in the picogram range, or lower. ADA is working to overcome many of the limitations of passive sampling methods, by the use of an active sampling method that employs a high-powered (1,200+ joules) strobe lamp to create a highly amplified plume of vapor and/or ERC-bearing fine particulates. Initial investigations have demonstrated that this approach can amplify the detectability of TNT by two or three orders of magnitude. This new active sampling technique could be used with any suitable explosive sensor.

  6. Three machine learning techniques for automatic determination of rules to control locomotion.

    Jonić, S; Janković, T; Gajić, V; Popović, D


    Automatic prediction of gait events (e.g., heel contact, flat foot, initiation of the swing, etc.) and corresponding profiles of the activations of muscles is important for real-time control of locomotion. This paper presents three supervised machine learning (ML) techniques for prediction of the activation patterns of muscles and sensory data, based on the history of sensory data, for walking assisted by a functional electrical stimulation (FES). Those ML's are: 1) a multilayer perceptron with Levenberg-Marquardt modification of backpropagation learning algorithm; 2) an adaptive-network-based fuzzy inference system (ANFIS); and 3) a combination of an entropy minimization type of inductive learning (IL) technique and a radial basis function (RBF) type of artificial neural network with orthogonal least squares learning algorithm. Here we show the prediction of the activation of the knee flexor muscles and the knee joint angle for seven consecutive strides based on the history of the knee joint angle and the ground reaction forces. The data used for training and testing of ML's was obtained from a simulation of walking assisted with an FES system [39]. The ability of generating rules for an FES controller was selected as the most important criterion when comparing the ML's. Other criteria such as generalization of results, computational complexity, and learning rate were also considered. The minimal number of rules and the most explicit and comprehensible rules were obtained by ANFIS. The best generalization was obtained by the IL and RBF network. PMID:10097465

  7. Active control of multiple resistive wall modes

    A two-dimensional array of saddle coils at Mc poloidal and Nc toroidal positions is used on the EXTRAP T2R reversed-field pinch (Brunsell P R et al 2001 Plasma Phys. Control. Fusion 43 1457) to study active control of resistive wall modes (RWMs). Spontaneous growth of several RWMs with poloidal mode number m = 1 and different toroidal mode number n is observed experimentally, in agreement with linear MHD modelling. The measured plasma response to a controlled coil field and the plasma response computed using the linear circular cylinder MHD model are in quantitative agreement. Feedback control introduces a linear coupling of modes with toroidal mode numbers n, n' that fulfil the condition |n - n'| = Nc. Pairs of coupled unstable RWMs are present in feedback experiments with an array of Mc x Nc = 4 x 16 coils. Using intelligent shell feedback, the coupled modes are generally not controlled even though the field is suppressed at the active coils. A better suppression of coupled modes may be achieved in the case of rotating modes by using the mode control feedback scheme with individually set complex gains. In feedback with a larger array of Mc x Nc = 4 x 32 coils, the coupling effect largely disappears, and with this array, the main internal RWMs n = -11, -10, +5, +6 are all simultaneously suppressed throughout the discharge (7-8 wall times). With feedback there is a two-fold extension of the pulse length, compared to discharges without feedback

  8. Optimal Lyapunov quantum control of two-level systems: Convergence and extended techniques

    Taking a two-level system as an example, we show that a strong control field may enhance the efficiency of optimal Lyapunov quantum control but could decrease its control fidelity. A relationship between the strength of the control field and the control fidelity is established. An extended technique, which combines free evolution and external control, is proposed to improve the control fidelity. We analytically demonstrate that the extended technique can be used to design a control law for steering a two-level system exactly to one predetermined eigenstate of the free Hamiltonian. In such a way, the convergence of the extended optimal Lyapunov quantum control can be guaranteed.

  9. Optimal Lyapunov quantum control of two-level systems: Convergence and extended techniques

    Wang, L.C., E-mail: [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Hou, S.C. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Yi, X.X., E-mail: [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Dong, Daoyi; Petersen, Ian R. [School of Engineering and Information Technology, University of New South Wales at the Australian Defence Force Academy, Canberra, ACT 2600 (Australia)


    Taking a two-level system as an example, we show that a strong control field may enhance the efficiency of optimal Lyapunov quantum control but could decrease its control fidelity. A relationship between the strength of the control field and the control fidelity is established. An extended technique, which combines free evolution and external control, is proposed to improve the control fidelity. We analytically demonstrate that the extended technique can be used to design a control law for steering a two-level system exactly to one predetermined eigenstate of the free Hamiltonian. In such a way, the convergence of the extended optimal Lyapunov quantum control can be guaranteed.

  10. Higher-order techniques for some problems of nonlinear control

    Sarychev Andrey V.


    Full Text Available A natural first step when dealing with a nonlinear problem is an application of some version of linearization principle. This includes the well known linearization principles for controllability, observability and stability and also first-order optimality conditions such as Lagrange multipliers rule or Pontryagin's maximum principle. In many interesting and important problems of nonlinear control the linearization principle fails to provide a solution. In the present paper we provide some examples of how higher-order methods of differential geometric control theory can be used for the study nonlinear control systems in such cases. The presentation includes: nonlinear systems with impulsive and distribution-like inputs; second-order optimality conditions for bang–bang extremals of optimal control problems; methods of high-order averaging for studying stability and stabilization of time-variant control systems.