WorldWideScience

Sample records for activity complex-formation reactions

  1. Redox, disproportionation, and complex formation reactions of neptunium ions

    Reduction-oxidation, complex formation, and disproportionation reactions of neptunium ions in various aqueous media were investigated by electrochemical method in combination with the spectrophotometric measurement. By flow-coulometry with multi-step column electrodes, electrolytic redox potentials, number of electrons involved in the electrode processes, and reversibilities of the processes were determined, from which the complex formation of neptunium ions and the species participating in the reactions were discussed. Based on the characteristics of the redox behavior of neptunium in sulfuric acid media, the procedure for the flow-coulometric determination and differentiation of neptunium ions was developed. The redox potentials of neptunium in concentrated carbonate solutions were determined by means of controlled-potential electrolysis and spectrophotometry, and formations of NpO2(CO3)35- and NpO2(CO3)34- complexes were evaluated. The disproportionation rate of NpO2+ in concentrated acid solutions with and without such complexing agents as SO42- and Cl- was measured and the reaction mechanism was predicted. (author)

  2. Differential reaction kinetics, cleavage complex formation, and nonamer binding domain dependence dictate the structure-specific and sequence-specific nuclease activity of RAGs.

    Naik, Abani Kanta; Raghavan, Sathees C

    2012-01-20

    During V(D)J recombination, RAG (recombination-activating gene) complex cleaves DNA based on sequence specificity. Besides its physiological function, RAG has been shown to act as a structure-specific nuclease. Recently, we showed that the presence of cytosine within the single-stranded region of heteroduplex DNA is important when RAGs cleave on DNA structures. In the present study, we report that heteroduplex DNA containing a bubble region can be cleaved efficiently when present along with a recombination signal sequence (RSS) in cis or trans configuration. The sequence of the bubble region influences RAG cleavage at RSS when present in cis. We also find that the kinetics of RAG cleavage differs between RSS and bubble, wherein RSS cleavage reaches maximum efficiency faster than bubble cleavage. In addition, unlike RSS, RAG cleavage at bubbles does not lead to cleavage complex formation. Finally, we show that the "nonamer binding region," which regulates RAG cleavage on RSS, is not important during RAG activity in non-B DNA structures. Therefore, in the current study, we identify the possible mechanism by which RAG cleavage is regulated when it acts as a structure-specific nuclease. PMID:22119487

  3. Integrin activation and focal complex formation in cardiac hypertrophy

    Laser, M.; Willey, C. D.; Jiang, W.; Cooper, G. 4th; Menick, D. R.; Zile, M. R.; Kuppuswamy, D.

    2000-01-01

    Cardiac hypertrophy is characterized by both remodeling of the extracellular matrix (ECM) and hypertrophic growth of the cardiocytes. Here we show increased expression and cytoskeletal association of the ECM proteins fibronectin and vitronectin in pressure-overloaded feline myocardium. These changes are accompanied by cytoskeletal binding and phosphorylation of focal adhesion kinase (FAK) at Tyr-397 and Tyr-925, c-Src at Tyr-416, recruitment of the adapter proteins p130(Cas), Shc, and Nck, and activation of the extracellular-regulated kinases ERK1/2. A synthetic peptide containing the Arg-Gly-Asp (RGD) motif of fibronectin and vitronectin was used to stimulate adult feline cardiomyocytes cultured on laminin or within a type-I collagen matrix. Whereas cardiocytes under both conditions showed RGD-stimulated ERK1/2 activation, only collagen-embedded cells exhibited cytoskeletal assembly of FAK, c-Src, Nck, and Shc. In RGD-stimulated collagen-embedded cells, FAK was phosphorylated only at Tyr-397 and c-Src association occurred without Tyr-416 phosphorylation and p130(Cas) association. Therefore, c-Src activation is not required for its cytoskeletal binding but may be important for additional phosphorylation of FAK. Overall, our study suggests that multiple signaling pathways originate in pressure-overloaded heart following integrin engagement with ECM proteins, including focal complex formation and ERK1/2 activation, and many of these pathways can be activated in cardiomyocytes via RGD-stimulated integrin activation.

  4. Studies on the kinetics and mechanism of complex formation in the reactions of ferron with iron (III) and uranium (VI)

    The equilibria and kinetics of the reactions of ferron (7-iodo-8-hydroxyquindine-5-sulphonic acid) with iron(III) and uranium(VI) have been followed by stopped flow spectrophotometry under the conditions of mono-complex formation. The equilibrium constants obtained spectrophotmetrically have been compared with those obtained from kinetic studies. In the case of iron(III), in the acidity range, [H+]=(2.8-10.0)x10-2 mol dm-3, among the different possible reaction path-ways, the reaction has been found to proceed mainly through the interaction of Fe(OH)(aq)2+ and partially deprotonated form (LH-) of the ligand. In the case of uranium(VI), in the acidity range, [H+]=(2.5-25.0)x10-5 mol dm-3, a dual path mechanism involving UO2(aq)2+ and UO2(OH)(aq)- and the partially deprotonated (LH-) form of the ligand is consistent with the observations. The results in each case are in agreement with the Eigen mechanism and the characteristic water exchange rates have been obtained in each case, as a rough estimate, from the experimental data. Activation parameters (ΔHsup(≠) and ΔSsup(≠) for each path have been determined and compared. (author). 23 refs., 5 figs., 2 tabs

  5. Mapping of contact sites in complex formation between light-activated rhodopsin and transducin by covalent crosslinking: Use of a chemically preactivated reagent

    ITOH, Yoshiki; Cai, Kewen; Khorana, H. Gobind

    2001-01-01

    Contact sites in interaction between light-activated rhodopsin and transducin (T) have been investigated by using a chemically preactivated crosslinking reagent, N-succinimidyl 3-(2-pyridyldithio)propionate. The 3 propionyl-N-succinimidyl group in the reagent was attached by a disulfide exchange reaction to rhodopsin mutants containing single reactive cysteine groups in the cytoplasmic loops. Complex formation between the derivatized rhodopsin mutants and T was ...

  6. Cerimetric determination of simvastatin in pharmaceuticals based on redox and complex formation reactions

    Two sensitive spectrophotometric methods are described for the determination of simvastatin (SMT) in bulk drug and in tablets. The methods are based on the oxidation of SMT by a measured excess of cerium (IV) in acid medium followed by determination of unreacted oxidant by two different reaction schemes. In one procedure (method A), the residual cerium (IV) is reacted with a fixed concentration of ferroin and the increase in absorbance is measured at 510 nm. The second approach (method B) involves the reduction of the unreacted cerium (IV) with a fixed quantity of iron (II), and the resulting iron (III) is complexed with thiocyanate and the absorbance measured at 470 nm. In both methods, the amount of cerium (IV) reacted corresponds to SMT concentration. The experimental conditions for both methods were optimized. In method A, the absorbance is found to increase linearly with SMT concentration (r = 0.9995) whereas in method B, the same decreased (r = -0.9943). The systems obey Beer's law for 0.6-7.5 and 0.5-5.0 μg mL-1 for method A and method B, respectively. The calculated molar absorptivity values are 2.7 X 104 and 1.06 X 105 Lmol-1 cm-1, respectively; and the corresponding sandel sensitivity values are 0.0153 and 0.0039 μg cm-2, respectively. The limit of detection (LOD) and quantification (LOQ) are reported for both methods. Intra-day and inter-day precision, and accuracy of the methods were established as per the current ICH guidelines. The methods were successfully applied to the determination of SMT in tablets and the results were statistically compared with those of the reference method by applying the Student's t-test and F-test. No interference was observed from the common excipients added to tablets. The accuracy and validity of the methods were further ascertained by performing recovery experiments via standard addition procedure. (author)

  7. Col1a1-cre mediated activation of β-catenin leads to aberrant dento-alveolar complex formation

    Kim, Tak-Heun; Bae, Cheol-Hyeon; Jang, Eun-Ha; Yoon, Chi-Young; Bae, Young; Ko, Seung-O; Taketo, Makoto M.; Cho, Eui-Sic

    2012-01-01

    Wnt/β-catenin signaling plays a critical role in bone formation and regeneration. Dentin and cementum share many similarities with bone in their biochemical compositions and biomechanical properties. Whether Wnt/β-catenin signaling is involved in the dento-alveolar complex formation is unknown. To understand the roles of Wnt/β-catenin signaling in the dento-alveolar complex formation, we generated conditional β-catenin activation mice through intercross of Catnb+/lox(ex3) mice with Col1a1-cre...

  8. Collectin-11/MASP complex formation triggers activation of the lectin complement pathway--the fifth lectin pathway initiation complex

    Ma, Ying Jie; Skjoedt, Mikkel-Ole; Garred, Peter

    2013-01-01

    complement pathway regulator MAP-1. Furthermore, we found that complex formation between recombinant collectin-11 and recombinant MASP-2 on Candida albicans leads to deposition of C4b. Native collectin-11 in serum mediated complement activation and deposition of C4b and C3b, and formation of the terminal...... complement complex on C. albicans. Moreover, spiking collectin-11-depleted serum, which did not mediate complement activation, with recombinant collectin-11 restored the complement activation capability. These results define collectin-11 as the fifth recognition molecule in the lectin complement pathway in...

  9. DNA topoisomerase II structures and anthracycline activity: insights into ternary complex formation.

    Dal Ben, D; Palumbo, M; Zagotto, G; Capranico, G; Moro, S

    2007-01-01

    DNA Topoisomerase II (Top2) is an essential nuclear enzyme that regulates the topological state of the DNA, and a target of very effective anticancer drugs including anthracycline antibiotics. Even though several aspects of drug activity against Top2 are understood, the drug receptor site is not yet known. Several Top2 mutants have altered drug sensitivity and have provided information of structural features determining drug action. Here, we have revised the published crystal structures of eukaryotic and prokaryotic Top2s and relevant biochemical investigations of enzyme activity and anthracycline action. In particular, we have considered Top2 mutations conferring resistance to anthracyclines and related agents. Following a previous study (Moro et al, Biochemistry, 2004; 43: 7503-13), we have then re-built a molecular model of the entire enzyme in complex with DNA after the cleavage reaction, and used it to define the receptor site of anthracyclines. The results suggest a model wherein the drug specifically contacts the cleaved DNA as well as amino acid residues of the enzyme CAP-like domain. The findings can explain several established structure-activity relationships of antitumour anthracyclines, and provide a framework for further developments of effective Top2 poison. PMID:17897022

  10. In vitro platelet activation, aggregation and platelet-granulocyte complex formation induced by surface modified single-walled carbon nanotubes.

    Fent, János; Bihari, Péter; Vippola, Minnamari; Sarlin, Essi; Lakatos, Susan

    2015-08-01

    Surface modification of single-walled carbon nanotubes (SWCNTs) such as carboxylation, amidation, hydroxylation and pegylation is used to reduce the nanotube toxicity and render them more suitable for biomedical applications than their pristine counterparts. Toxicity can be manifested in platelet activation as it has been shown for SWCNTs. However, the effect of various surface modifications on the platelet activating potential of SWCNTs has not been tested yet. In vitro platelet activation (CD62P) as well as the platelet-granulocyte complex formation (CD15/CD41 double positivity) in human whole blood were measured by flow cytometry in the presence of 0.1mg/ml of pristine or various surface modified SWCNTs. The effect of various SWCNTs was tested by whole blood impedance aggregometry, too. All tested SWCNTs but the hydroxylated ones activate platelets and promote platelet-granulocyte complex formation in vitro. Carboxylated, pegylated and pristine SWCNTs induce whole blood aggregation as well. Although pegylation is preferred from biomedical point of view, among the samples tested by us pegylated SWCNTs induced far the most prominent activation and a well detectable aggregation of platelets in whole blood. PMID:25956790

  11. P–C-Activated Bimetallic Rhodium Xantphos Complexes: Formation and Catalytic Dehydrocoupling of Amine–Boranes**

    Johnson, Heather C; Weller, Andrew S

    2015-01-01

    {Rh(xantphos)}-based phosphido dimers form by P–C activation of xantphos (4,5-bis(diphenylphosphino)-9,9-dimethylxanthene) in the presence of amine–boranes. These dimers are active dehydrocoupling catalysts, forming polymeric [H2BNMeH]n from H3B⋅NMeH2 and dimeric [H2BNMe2]2 from H3B⋅NMe2H at low catalyst loadings (0.1 mol %). Mechanistic investigations support a dimeric active species, suggesting that bimetallic catalysis may be possible in amine–borane dehydropolymerization. PMID:26140498

  12. EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages

    Activated macrophage cytotoxicity is characterized by loss of intracellular iron and inhibition of certain enzymes that have catalytically active nonheme-iron coordinated to sulfur. This phenomenon involves the oxidation of one of the terminal guanidino nitrogen atoms of L-arginine, which results in the production of citrulline and inorganic nitrogen oxides (NO2-, NO3-, and NO). We report here the results of an electron paramagnetic resonance spectroscopic study performed on cytotoxic activated macrophage (CAM) effector cells, which develop the same pattern of metabolic inhibition as their targets. Examination of activated macrophages from mice infected with Mycobacterium bovis (strain bacillus Calmette-Guerin) that were cultured in medium with lipopolysaccharide and L-arginine showed the presence of an axial signal at g = 2.039, which is similar to previously described iron-nitrosyl complexes formed from the destruction of iron-sulfur centers by nitric oxide (NO). Inhibition of the L-arginine-dependent pathway by addition of NG-monomethyl-L-arginine (methyl group on a terminal guanidino nitrogen) inhibits the production of nitrite, nitrate, citrulline, and the g = 2.039 signal. Comparison of the hyperfine structure of the signal from cells treated with L-arginine with terminal guanidino nitrogen atoms of natural abundance N14 atoms or labeled with N15 atoms showed that the nitrosyl group in this paramagnetic species arises from one of these two atoms. These results show that loss of iron-containing enzyme function in CAM is a result of the formation of iron-nitrosyl complexes induced by the synthesis of nitric oxide from the oxidation of a terminal guanidino nitrogen atom of L-arginine

  13. Glucosylation activity and complex formation of two classes of reversibly glycosylated polypeptides.

    Langeveld, Sandra M J; Vennik, Marco; Kottenhagen, Marijke; Van Wijk, Ringo; Buijk, Ankie; Kijne, Jan W; de Pater, Sylvia

    2002-05-01

    Reversibly glycosylated polypeptides (RGPs) have been implicated in polysaccharide biosynthesis. In plants, these proteins may function, for example, in cell wall synthesis and/or in synthesis of starch. We have isolated wheat (Triticum aestivum) and rice (Oryza sativa) Rgp cDNA clones to study the function of RGPs. Sequence comparisons showed the existence of two classes of RGP proteins, designated RGP1 and RGP2. Glucosylation activity of RGP1 and RGP2 from wheat and rice was studied. After separate expression of Rgp1 and Rgp2 in Escherichia coli or yeast (Saccharomyces cerevisiae), only RGP1 showed self-glucosylation. In Superose 12 fractions from wheat endosperm extract, a polypeptide with a molecular mass of about 40 kD is glucosylated by UDP-glucose. Transgenic tobacco (Nicotiana tabacum) plants, overexpressing either wheat Rgp1 or Rgp2, were generated. Subsequent glucosylation assays revealed that in RGP1-containing tobacco extracts as well as in RGP2-containing tobacco extracts UDP-glucose is incorporated, indicating that an RGP2-containing complex is active. Gel filtration experiments with wheat endosperm extracts and extracts from transgenic tobacco plants, overexpressing either wheat Rgp1 or Rgp2, showed the presence of RGP1 and RGP2 in high-molecular mass complexes. Yeast two-hybrid studies indicated that RGP1 and RGP2 form homo- and heterodimers. Screening of a cDNA library using the yeast two-hybrid system and purification of the complex by an antibody affinity column did not reveal the presence of other proteins in the RGP complexes. Taken together, these results suggest the presence of active RGP1 and RGP2 homo- and heteromultimers in wheat endosperm. PMID:12011358

  14. Arsenic-Lipid Complex Formation During the Active Transport of Arsenate in Yeast

    Cerbón, Jorge

    1969-01-01

    In studying formation of an arsenic-lipid complex during the active transport of 74As-arsenate in yeast, it was found that adaptation of yeast to arsenate resulted in cell populations which showed a deficient inflow of arsenate as compared to the nonadapted yeast. Experiments with both types of cells showed a direct correlation between the arsenate taken up and the amount of As-lipid complex formed. 74As-arsenate was bound exclusively to the phosphoinositide fraction of the cellular lipids. When arsenate transport was inhibited by dinitrophenol and sodium azide, the formation of the As-lipid complex was also inhibited. Phosphate did not interfere with the arsenate transport at a non-inhibitory concentration of external arsenate (10−9m). The As-adapted cells but not the unadapted cells were able to take up phosphate when growing in the presence of 10−2m arsenate. PMID:5773018

  15. Complex formation reactions of uranyl(VI) with neutral N-donors in dimethyl sulfoxide. Influence of small amounts of water

    Quantitative information about the existence and thermodynamic stability of uranyl(VI) ion complexes based solely upon nitrogen coordination has been obtained in the solvent dimethyl sulfoxide. Calorimetric, potentiometric, and FT-IR investigations, under controlled anhydrous conditions, show that the uranyl(VI) ion can form both mono and bis chelates with the ethylenediamine ligand and only a mono chelate of rather low stability with propylenediamine. With the monodentate ligand n-butylamine only a very weak metal-ligand interaction has been detected. The stability constants and the enthalpy and entropy changes have been calculated for the identified coordinated species. All data refer to 25.0 degree C and a tetraethylammonium perchlorate medium of ionic strength 0.1 M. All the complexes are enthalpy stabilized whereas the entropy contributions oppose the complex formation. Calorimetric and FT-IR measurements carried out to investigate the effects of small amounts of water present show that a very low water concentration, comparable to that of the coordinating metal ion, can give rise to hydrolysis reactions that may compete with complex formation. This is due to the combined action of different factors that are discussed. 39 refs., 6 figs., 1 tab

  16. Complex formation and catalytic activation by the PII signaling protein of N-acetyl-L-glutamate kinase from Synechococcus elongatus strain PCC 7942.

    Maheswaran, Mani; Urbanke, Claus; Forchhammer, Karl

    2004-12-31

    The signal transduction protein P(II) from the cyanobacterium Synechococcus elongatus strain PCC 7942 forms a complex with the key enzyme of arginine biosynthesis, N-acetyl-l-glutamate kinase (NAGK). Here we report the effect of complex formation on the catalytic properties of NAGK. Although pH and ion dependence are not affected, the catalytic efficiency of NAGK is strongly enhanced by binding of P(II), with K(m) decreasing by a factor of 10 and V(max) increasing 4-fold. In addition, arginine feedback inhibition of NAGK is strongly decreased in the presence of P(II), resulting in a tight control of NAGK activity under physiological conditions by P(II). Analysis of the NAGK-P(II) complex suggests that one P(II) trimer binds to one NAGK hexamer with a K(d) of approximately 3 nm. Complex formation is strongly affected by ATP and ADP. ADP is a strong inhibitor of complex formation, whereas ATP inhibits complex formation only in the absence of divalent cations or in the presence of Mg(2+) ions, together with increased 2-oxoglutarate concentrations. Ca(2+) is able to antagonize the negative effect of ATP and 2-oxoglutarate. ADP and ATP exert their adverse effect on NAGK-P(II) complex formation through binding to the P(II) protein. PMID:15502156

  17. VEGF-A/NRP1 stimulates GIPC1 and Syx complex formation to promote RhoA activation and proliferation in skin cancer cells

    Ayumi Yoshida

    2015-09-01

    Full Text Available Neuropilin-1 (NRP1 has been identified as a VEGF-A receptor. DJM-1, a human skin cancer cell line, expresses endogenous VEGF-A and NRP1. In the present study, the RNA interference of VEGF-A or NRP1 suppressed DJM-1 cell proliferation. Furthermore, the overexpression of the NRP1 wild type restored shNRP1-treated DJM-1 cell proliferation, whereas NRP1 cytoplasmic deletion mutants did not. A co-immunoprecipitation analysis revealed that VEGF-A induced interactions between NRP1 and GIPC1, a scaffold protein, and complex formation between GIPC1 and Syx, a RhoGEF. The knockdown of GIPC1 or Syx reduced active RhoA and DJM-1 cell proliferation without affecting the MAPK or Akt pathway. C3 exoenzyme or Y27632 inhibited the VEGF-A-induced proliferation of DJM-1 cells. Conversely, the overexpression of the constitutively active form of RhoA restored the proliferation of siVEGF-A-treated DJM-1 cells. Furthermore, the inhibition of VEGF-A/NRP1 signaling upregulated p27, a CDK inhibitor. A cell-penetrating oligopeptide that targeted GIPC1/Syx complex formation inhibited the VEGF-A-induced activation of RhoA and suppressed DJM-1 cell proliferation. In conclusion, this new signaling pathway of VEGF-A/NRP1 induced cancer cell proliferation by forming a GIPC1/Syx complex that activated RhoA to degrade the p27 protein.

  18. Competition between Decapping Complex Formation and Ubiquitin-Mediated Proteasomal Degradation Controls Human Dcp2 Decapping Activity

    Erickson, Stacy L.; Corpuz, Elizabeth O.; Maloy, Jeffrey P.; Fillman, Christy; Webb, Kristofer; Bennett, Eric J.; Lykke-Andersen, Jens

    2015-01-01

    mRNA decapping is a central step in eukaryotic mRNA decay that simultaneously shuts down translation initiation and activates mRNA degradation. A major complex responsible for decapping consists of the decapping enzyme Dcp2 in association with decapping enhancers. An important question is how the activity and accumulation of Dcp2 are regulated at the cellular level to ensure the specificity and fidelity of the Dcp2 decapping complex. Here, we show that human Dcp2 levels and activity are contr...

  19. Complex formation by the human Rad51B and Rad51C DNA repair proteins and their activities in vitro

    Lio, Yi-Ching; Mazin, Alexander V.; Kowalczykowski, Stephen C.; Chen, David J.

    2003-01-01

    The human Rad51 protein is essential for DNA repair by homologous recombination. In addition to Rad51 protein, five paralogs have been identified: Rad51B/Rad51L1, Rad51C/Rad51L2, Rad51D/Rad51L3, XRCC2, and XRCC3. To further characterize a subset of these proteins, recombinant Rad51, Rad51B-(His)(6), and Rad51C proteins were individually expressed employing the baculovirus system, and each was purified from Sf9 insect cells. Evidence from nickel-nitrilotriacetic acid pull-down experiments demonstrates a highly stable Rad51B.Rad51C heterodimer, which interacts weakly with Rad51. Rad51B and Rad51C proteins were found to bind single- and double-stranded DNA and to preferentially bind 3'-end-tailed double-stranded DNA. The ability to bind DNA was elevated with mixed Rad51 and Rad51C, as well as with mixed Rad51B and Rad51C, compared with that of the individual protein. In addition, both Rad51B and Rad51C exhibit DNA-stimulated ATPase activity. Rad51C displays an ATP-independent apparent DNA strand exchange activity, whereas Rad51B shows no such activity; this apparent strand exchange ability results actually from a duplex DNA destabilization capability of Rad51C. By analogy to the yeast Rad55 and Rad57, our results suggest that Rad51B and Rad51C function through interactions with the human Rad51 recombinase and play a crucial role in the homologous recombinational repair pathway.

  20. Modeling of complex formation equilibria and proton and ligand exchange reactions in aqueous solutions of oxovanadium(4) with L- and D-L-histidine

    The STABLAB program is created, which makes it possible to calculate jointly both thermodynamic equilibria parameters and kinetic characteristics of proton and ligand exchange reactions by results of parallel measurements of the T1 and T2 spin relaxation times of solvent nuclei. Stability constants, rates of proton and ligand exchange reactions for the complexes formed in the systems oxovanadium(4)-L- and DL-histidine (LH) within the range of pH 0.5-10; VOLH, VO(LH)2, VOL, VOL2H, VOL2, VOL2H-1 and (VO)2L2H-2 were calculated through this program

  1. Enhanced uptake and translocation of arsenic in Cretan brake fern (Pteris cretica L.) through siderophorearsenic complex formation with an aid of rhizospheric bacterial activity.

    Jeong, Seulki; Moon, Hee Sun; Nam, Kyoungphile

    2014-09-15

    Siderophores, produced by Pseudomonas aeruginosa, released slightly more Fe (53.6 μmol) than that chelated by ethylenediaminetetraacetic acid (EDTA; i.e. 43.7 μmol) in batch experiment using As-adsorbed ferrihydrite. More importantly, about 1.79 μmol of As was found to be associated with siderophores in the aqueous phase due to siderophore-As complex formation when siderophores were used to release As from ferrihydrite. In contrast, As was not detected in the aqueous phase when EDTA was used, probably due to the readsorption of released As to ferrihydrite. A series of pot experiment was conducted to investigate the effect of siderophores as a microbial iron-chelator on As uptake by Cretan brake fern (Pteris cretica L.) during phtoextraction. Results revealed that P. cretica, a known As hyperaccumulator, grown in the siderophore-amended soil showed about 3.7 times higher As uptake (5.62 mg-Asg(-1)-plant) than the plant grown in the EDTA-treated soil (1.51 mg-Asg(-1)-plant). In addition, As taken up by roots of P. cretica in the presence of siderophores seemed to be favorably translocated to shoots (i.e. stems and leaves). About 79% of the accumulated As was detected in the shoots in the presence of siderophores after ten weeks. Fluorescence microscopic analysis confirmed that As in the roots was delivered to the leaves of P. cretica as a siderophore-As complex. PMID:25215655

  2. A common role of CRP in transcription activation: CRP acts transiently to stimulate events leading to open complex formation at a diverse set of promoters.

    Tagami, H; Aiba, H.

    1998-01-01

    We have shown previously that the cyclic AMP receptor protein (CRP) is not required after the formation of the open complex at the lac promoter (Tagami and Aiba, 1995, Nucleic Acids Res., 19, 6705-6712). In this paper, we investigate the role of CRP in transcription activation at the malT and gal promoters. At the malT promoter, RNA polymerase (RNAP) forms a nonproductive RNAP-promoter binary complex in the absence of CRP and a productive CRP-RNAP-promoter ternary complex in the presence of C...

  3. PIAS1 regulates CP2c localization and active promoter complex formation in erythroid cell-specific α-globin expression

    Chul Kang, Ho; Hyung Chae, Ji; Jeon, Jinseon; Kim, Won; Hyun Ha, Dae; Ho Shin, June; Gil Kim, Chan; Geun Kim, Chul

    2010-01-01

    Data presented here extends our previous observations on α-globin transcriptional regulation by the CP2 and PIAS1 proteins. Using RNAi knockdown, we have now shown that CP2b, CP2c and PIAS1 are each necessary for synergistic activation of endogenous α-globin gene expression in differentiating MEL cells. In this system, truncated PIAS1 mutants lacking the ring finger domain recruited CP2c to the nucleus, as did wild-type PIAS1, demonstrating that this is a sumoylation-independent process. In v...

  4. Electron-donor and -acceptor functions of physiologically active substances. XI. Influence of an alkyl substituent in phosphorylated oximes on their complex formation with chloroform-d

    Phosphorylated alkanoyl chloride oximes were prepared from trialkyl phosphites and the corresponding 1,1-dichloro-1-nitrosoalkenes. In the formation of complexes of chloroform-d with the oximes synthesized the intensity of the stretching vibrations of the carbon-deuterium bond rises considerably, and this provides a basis for the correct evaluation of the stability constants of the complexes. In the series of compounds studied a substantial change was observed in the stability of the complexes with chloroform-d with variation of the chain length and degree of branching of the alkyl group Alk, and this change goes in parallel with the change in the inhibiting activity of the given oximes with respect to certain enzymes

  5. EGF-stimulated activation of Rab35 regulates RUSC2-GIT2 complex formation to stabilize GIT2 during directional lung cancer cell migration.

    Duan, Biao; Cui, Jie; Sun, Shixiu; Zheng, Jianchao; Zhang, Yujie; Ye, Bixing; Chen, Yan; Deng, Wenjie; Du, Jun; Zhu, Yichao; Chen, Yongchang; Gu, Luo

    2016-08-28

    Non-small cell lung cancer (NSCLC) remains one of the most metastasizing tumors, and directional cell migration is critical for targeting tumor metastasis. GIT2 has been known to bind to Paxillin to control cell polarization and directional migration. However, the molecular mechanisms underlying roles of GIT2 in controlling cell polarization and directional migration remain elusive. Here we demonstrated GIT2 control cell polarization and direction dependent on the regulation of Golgi through RUSC2. RUSC2 interacts with SHD of GIT2 in various lung cancer cells, and stabilizes GIT2 (Mazaki et al., 2006; Yu et al., 2009) by decreasing degradation and increasing its phosphorylation. Silencing of RUSC2 showed reduced stability of GIT2, defective Golgi reorientation toward the wound edge and decreased directional migration. Moreover, short-term EGF stimulation can increase the interaction between RUSC2 and GIT2, prolonged stimulation leads to a decrease of their interaction through activating Rab35. Silencing of Rab35 also reduced stability and phosphorylation of GIT2 and decreased cell migration. Taken together, our study indicated that RUSC2 participates in EGFR signaling and regulates lung cancer progression, and may be a new therapeutic target against lung cancer metastasis. PMID:27238570

  6. complex formation of americium (III) with humic acid

    The presence of humic substances in natural waters will modify the migration behavior of actinides in the geosphere due to the strong reaction properties of these ligands with actinides. Therefore, the possible reactions of humic acid with actinides have been studied widely in recent years. The complex formation of Am(III) with humic acid is studied with solvent extraction technique. The experiments are performed in the pH range from 4.0 to 8.0 in 0.1 mol/kg NaClO4 solution at ambient temperature. Experimental results show that the complex formation constants of Am(III) with humic acid are varied with the variation of pH value in solution. 1:2 complex is obtained in the experiments and the complex formation constants determined at each pH are: lgβ1 = 6.56 +- 0.05, lgβ2 = 10.77 +- 0.31 at pH 4.0. lgβ1 = 7.94 +- 0.11, lgβ2 = 11.80 +- 0.21 at pH = 5.0. lgβ1 = 10.74 +- 0.28, lgβ2 = 12.88 +- 0.49 at pH = 6.0. lgβ1 = 12.85 +- 0.30, lgβ2 = 14.80 +- 0.62 at pH = 7.0. lgβ1 = 14.88 +- 0.48, lgβ2 = 15.65 +- 0.69 at pH = 8.0, respectively. The dependence of the complex formation constant on pH is: lgβ1 = 2.16 (+-0.98)pH-2.34(+-0.93),lgβ2 1.28(+-1.04)pH+5.52(+-1.21), respectively

  7. Pinacol Coupling Reactions Catalyzed by Active Zinc

    Hui ZHAO; Wei DENG; Qing Xiang GUO

    2005-01-01

    Pinacol coupling reactions catalyzed by active zinc revealed high activity and extensive suitability. The efficiency of the reaction was improved apparently owing to decreasing reductive potential of zinc. In addition, the results indicated that the zinc activity has a direct relation to the coupling reactivity compared to untreated zinc or other general active zinc.

  8. Complex formation of americium (III) with humic acid

    The presence of humic substances in natural waters will modify the migration behavior of actinides in the geosphere due to the strong reaction properties of these ligands with actinides. Therefore, the possible reactions of humic acid with actinides have been studied widely in recent years. The complex formation of Am (III) with humic acid is studied with solvent extraction technique in this paper. The experiments are performed in the pH range from 4.0 to 8.0 in 0.1 M NaClO4 solution at ambient temperature. Experimental results show that the complex formation constants of Am (III) with humic acid are varied with the variation of pH value in solution. 1:2 complex is obtained in the experiments and the complex formation constants determined at each pH are: lgβ1=6.56±0.05, lgβ2=10.77±0.31 at pH=4.0; lgβ1=7.94±0.11, lgβ2=11.80±0.21 at pH=5.0; lgβ1=10.74±0.28, lgβ2=12.88±0.49 at pH=6.0; lgβ1=12.85±0.30, lgβ2=14.80±0.62 at pH=7.0; lgβ1=14.88±0.48, lgβ2=15.65±0.69 at pH=8.0, respectively. The dependence of the complex of the complex formation constant on pH is: lgβ1=2.16(±0.98)pH-2.34(±1.03), lgβ2=1.28(±1.04)pH+5.52(±1.21), respectively. (author)

  9. Electrochemical activation of reactions involving organometallic compounds

    Data on the electrochemical activation of various reactions involving organometallic compounds are generalised. Primary attention is devoted to the main types of transformation that can be performed by electrochemical electron transfer: redox activation of 16- and 18-electron complexes of transition metals, molybdenum, tungsten, and ruthenium in particular, as the first step of a broad range of reactions, electrocatalysis, mediator processes, and electrosynthesis of compounds containing carbon-metal σ-bonds

  10. Cadmium(II) complex formation with glutathione.

    Mah, Vicky; Jalilehvand, Farideh

    2010-03-01

    Complex formation between heavy metal ions and glutathione (GSH) is considered as the initial step in many detoxification processes in living organisms. In this study the structure and coordination between the cadmium(II) ion and GSH were investigated in aqueous solutions (pH 7.5 and 11.0) and in the solid state, using a combination of spectroscopic techniques. The similarity of the Cd K-edge and L(3)-edge X-ray absorption spectra of the solid compound [Cd(GS)(GSH)]ClO(4).3H(2)O, precipitating at pH 3.0, with the previously studied cysteine compound {Cd(HCys)(2).H(2)O}(2).H(3)O(+).ClO(4) (-) corresponds to Cd(S-GS)(3)O (dominating) and Cd(S-GS)(4) four-coordination within oligomeric complexes with mean bond distances of 2.51 +/- 0.02 A for Cd-S and 2.24 +/- 0.04 A for Cd-O. For cadmium(II) solutions (C (Cd(II)) approximately 0.05 M) at pH 7.5 with moderate excess of GSH (C (GSH)/C (Cd(II)) = 3.0-5.0), a mix of Cd(S-GS)(3)O (dominating) and Cd(S-GS)(4) species is consistent with the broad (113)Cd NMR resonances in the range 632-658 ppm. In alkaline solutions (pH 11.0 and C (GSH)/C (Cd(II)) = 2.0 or 3.0), two distinct peaks at 322 and 674 ppm are obtained. The first peak indicates six-coordinated mononuclear and dinuclear complexes with CdS(2)N(2)(N/O)(2) and CdSN(3)O(2) coordination in fast exchange, whereas the second corresponds to Cd(S-GS)(4) sites. At high ligand excess the tetrathiolate complex, Cd(S-GS)(4), characterized by a sharp delta((113)Cd) NMR signal at 677 ppm, predominates. The average Cd-S distance, obtained from the X-ray absorption spectra, varied within a narrow range, 2.49-2.53 A, for all solutions (pH 7.5 and 11.0) regardless of the coordination geometry. PMID:20035360

  11. Complex Formation of Selected Radionuclides with Ligands Commonly Found in Ground Water: Low Molecular Organic Acids

    Jensen, Bror Skytte; Jensen, H.

    1985-01-01

    A general approach to the analysis of potentiometric data on complex formation between cations and polybasic amphoteric acids is described. The method is used for the characterisation of complex formation between Cs+, Sr2+, Co2+, La 3+, and Eu3+ with a α-hydroxy acids, tartaric acid and citric acid......, and with the α-amino acids, aspartic acid and L-cysteine. The cations have been chosen as typical components of reactor waste, and the acids because they are often found as products of microbial activity in pits or wherever organic material decays...

  12. First investigations of complex formation of At(I) with phosphorous organic compounds

    Reaction of At(I) with triphenylphosphine, triethylphosphite and tri-n-octylphosphine oxide was investigated in ethanolic solution by means of electromigration. A cationic complex with triphenylphosphine was identified being stable at pH = 1,9 in the concentration range of the ligand between c = 10-5 to 10-3 M. At a higher ligand concentration and at pH>2, the reduction effect of phosphine is superimposed on the complex formation. Complex formation is confirmed by ligand exchange reactions with Br- and I-. A comparatively weak complex is formed by triethylphosphite and At(I). No compound is formed by tri-n-octylphosphine oxide and At(I). (orig.)

  13. Ligand exchange and complex formation kinetics studied by NMR exemplified on fac-[(CO)3M(H2O)]+ (M = Mn, Tc, Re)

    Helm, Lothar

    2008-01-01

    In this review ligand exchange and complex formation reactions on fac-[(CO)3M(H2O)3]+ (M = Mn, Tc, Re) and on fac-[(CO)2(NO)Re(H2O)3]2+ are presented. A variety of experimental NMR techniques are described and it is shown that sometimes combinations of techniques applied at variable temperature or variable pressure allowed to measure exchange rate constants and their activation parameters as well as thermodynamic parameters. Furthermore, the use of uncommon nuclei for NMR like 17O or 99Tc ext...

  14. Study of complex formation between different pectins with lactoglobulin

    This study describes the complex formation of different pectins obtained from apple pomace, sunflower head and citruses pectin at the low ph. The insoluble complexes formed were investigated using turbid-dimeric, potentiometric and conductometric methods. The nature of resulted complexes manly depends on the pectin methyl ether formation pattern and molecular weight

  15. Zinc isotope effects in complex formation with a crown ether

    Isotope effects for zinc upon complex formation with dicyclohexano-18-crown-6 were investigated. The single stage separation factor for unit mass difference (α = 1.013) was great compared with that of calcium isotopes. One of the isotopes, 67Zn, showed a larger isotope effect than the other isotopes of even mass number. 7 refs., 1 fig

  16. REACTION AROILMETHYLENTRIPHENILPHOSPHRILIDES WITH ARILDIASONIY BORPHTORIDES AND ANTIMICROBIAL ACTIVITY PHOSPHONIYHIDROSONES

    Malanchuk SG

    2013-06-01

    Full Text Available The reactions of electrophilic accession borftoryds aryldizoniy by P-C connection aroyilmetylentryphenylfosforilids were studied. Found that the reaction formed borftoryds hidrazonofosfoniy salts. Studied the chemical and physical properties and antimicrobial activity of synthesized compounds.

  17. Liesegang patterns: Complex formation of precipitate in an electric field

    István Lagzi

    2005-02-01

    Formation of 1D Liesegang patterns was studied numerically in precipitation and reversible complex formation of precipitate scenarios in an electric field. The Ostwald’s supersaturation model reported by Büki, Kárpáti-Smidróczki and Zrínyi (BKZ model) was extended further. In the presence of an electric field the position of the first and the last bands () measured from the junction point of the outer and the inner electrolytes can be described by the function = 1 $_{}^{1/2}$ + 2 + 3 , where is the time elapsed until the nth band formation, 1, 2 and 3 are constants. The variation of the total number of bands with different electric field strengths () has a maximum. For higher one can observe a moving precipitation zone that becomes wider due to precipitation and reversible complex formation.

  18. Complexometric determination: Part I - EDTA and complex formation with the Cu2+ ion

    Rajković Miloš B.

    2002-01-01

    Full Text Available Compounds forming very stable complexes - chelates, have a wide field of application in analytical chemistry. The most famous group of these compounds are complexons. Complexons represent organic polyaminocarbonic acids as for example ethylenediaminetetraacetic acid (EDTA and its salts. The EDTA molecule has six coordinative sites. It is a hexadentate ligands i.e. it has two binding nitrogen atoms and four oxygen atoms from carboxyl groups and it forms complexes with almost all metal ions. EDTA as a tetraprotonic acid, H4Y disociates through four steps, yielding the ions HsY-, H2Y2-, HY3- and Y4-. Which of the EDTA forms will be encountered in a solution, depends on the pH. Due to the poor solubility of EDTA in pure water, as well as in most organic solvents, the disodium salt of EDTA Na2H2Y-2H2O, under the commercial name complexon III, is utilized for analytical determinations. In water, EDTA forms soluble, stabile chelate complexes with all cations, at the molar ratio 1:1, regardless of the charge of the metal ion. In contrast to other equilibria, which are mainly defined by Le Chatellier's principle, equilibria related to metal-EDTA complex formation are also dependent on the influence of the secondary equilibria of EDTA complex formation. Complexing reactions, which are equilibrium reactions, are simultaneously influenced by the following factors: solution pH and the presence of complexing agents which may also form a stabile complex with metal ions. The secondary reaction influence may be viewed and monitored through conditional stability constants. In the first part of the paper, the reaction of the formation of the Cu2+-ion complex with EDTA is analyzed beginning from the main reaction through various influences of secondary reactions on the complex Cu2+-EDTA: pH effect, complexation effect and hydrolysis effect. The equations are given for conditional stability constants, which include equilibrium reactions under actual conditions.

  19. Activation analysis based on secondary nuclear reactions

    Various types of analytical techniques founded on achievements of nuclear physics are used. There are two directions of the using of the main sources of the nuclear projectiles at development of the nuclear methods. In the first, the particles from the source are used directly for the excitation of nuclear reactions. In the second, the particles from the source are used for the generating of intermediate particles of other types which are used in turn for excitation of secondary nuclear reactions. In our research the neutrons are used for the generating of secondary charged particles which serve for excitation of nuclear reactions on elements with small atomic numbers. There are two variants in which both types of neutrons, as thermal, so and fast neutrons are used: 1) The triton flow is produced by thermal neutrons flux, which excites the nuclear reaction 6Li(n, α)T on lithium; 2) The recoil protons are produced as the result of (n, p) elastic or inelastic scattering interaction of fast neutrons with nucleus of light elements, for example, hydrogen. In this work the theoretical base of the application of secondary nuclear reactions excited by recoil protons was investigated

  20. Enhancing Activity for the Oxygen Evolution Reaction

    Frydendal, Rasmus; Busch, Michael; Halck, Niels Bendtsen;

    2014-01-01

    of all reaction intermediates cannot be optimized individually. However, experimental investigations have shown that drastic improvements can be realized for manganese and cobalt-based oxides if gold is added to the surface or used as substrate. We propose an explanation for these enhancements based...

  1. Activation entropy of electron transfer reactions

    Milischuk, A A; Newton, M D; Milischuk, Anatoli A.; Matyushov, Dmitry V.; Newton, Marshall D.

    2005-01-01

    We report microscopic calculations of free energies and entropies for intramolecular electron transfer reactions. The calculation algorithm combines the atomistic geometry and charge distribution of a molecular solute obtained from quantum calculations with the microscopic polarization response of a polar solvent expressed in terms of its polarization structure factors. The procedure is tested on a donor-acceptor complex in which ruthenium donor and cobalt acceptor sites are linked by a four-proline polypeptide. The reorganization energies and reaction energy gaps are calculated as a function of temperature by using structure factors obtained from our analytical procedure and from computer simulations. Good agreement between two procedures and with direct computer simulations of the reorganization energy is achieved. The microscopic algorithm is compared to the dielectric continuum calculations. We found that the strong dependence of the reorganization energy on the solvent refractive index predicted by conti...

  2. Chemical reactions in solvents and melts

    Charlot, G

    1969-01-01

    Chemical Reactions in Solvents and Melts discusses the use of organic and inorganic compounds as well as of melts as solvents. This book examines the applications in organic and inorganic chemistry as well as in electrochemistry. Organized into two parts encompassing 15 chapters, this book begins with an overview of the general properties and the different types of reactions, including acid-base reactions, complex formation reactions, and oxidation-reduction reactions. This text then describes the properties of inert and active solvents. Other chapters consider the proton transfer reactions in

  3. Activation entropy of electron transfer reactions

    We report microscopic calculations of free energies and entropies for intramolecular electron transfer reactions. The calculation algorithm combines the atomistic geometry and charge distribution of a molecular solute obtained from quantum calculations with the microscopic polarization response of a polar solvent expressed in terms of its polarization structure factors. The procedure is tested on a donor-acceptor complex in which ruthenium donor and cobalt acceptor sites are linked by a four-proline polypeptide. The reorganization energies and reaction energy gaps are calculated as a function of temperature by using structure factors obtained from our analytical procedure and from computer simulations. Good agreement between two procedures and with direct computer simulations of the reorganization energy is achieved. The microscopic algorithm is compared to the dielectric continuum calculations. We found that the strong dependence of the reorganization energy on the solvent refractive index predicted by continuum models is not supported by the microscopic theory. Also, the reorganization and overall solvation entropies are substantially larger in the microscopic theory compared to continuum models

  4. SPECTROPHOTOMETRIC STUDIES OF SANGUINARINE-Β-CYCLODEXTRIN COMPLEX FORMATION

    Veaceslav Boldescu

    2008-06-01

    Full Text Available The main aim of this study was to investigate the influence of pH and the presence of hydrophilic polymer polyvinylpyrrolidone on the formation of sanguinarine-β-cyclodextrin (SANG-β-CD inclusion complex. Spectrophotometric studies of the SANG-β-CD systems in the presence and without 0.1 % PVP at the pH 5.0 did not show any evidence of the complex formation. However, the same systems showed several obvious evidences at the pH 8.0: the hyperchromic and the hypochromic effects and the presence of the isosbestic point in the region of 200 – 210 nm. The association constants calculated by three linear methods: Benesi-Hildebrand, Scott and Scatchard, were two times higher for the systems with addition of 0.1% PVP than for the systems without it.

  5. Complex formation between uranyl and various thiosemicarbazide derivatives

    Chuguryan, D.G.; Dzyubenko, V.I.

    1987-01-01

    Complex formation between hexavalent uranium and salicylaldehyde thiosemicarbazone (H/sub 2/L), salicylaldehyde S-methyl-isothiosemicarbazone (H/sub 2/Q), S-methyl-N/sub 1/,N/sub 4/-bis(salicylidene)isothiosemicarbazide(H/sub 2/Z), and thiosemicarbazidodiacetic acid (H/sub 2/R) has been studied spectrophotometrically in solution. Stability constants for complexes having the composition UO/sub 2/A have been calculated. Solid uranyl derivatives having the composition UO/sub 2/L x 2H/sub 2/O, UO/sub 2/Q x 2H/sub 2/O, UO/sub 2/Z x 2H/sub 2/O, and UO/sub 2/R x 2H/sub 2/O have been obtained. These derivatives were isolated and their IR spectroscopic behavior and thermal properties were investigated.

  6. Synthesis and reactions of optically active cyanohydrins

    Effenberger, Franz

    1994-01-01

    Cyanohydrins have always held a place of importance both as technical products and as reagents in organic chemistry. It is surprising, therefore, that optically active Cyanohydrins have been extensively investigated and employed for syntheses relatively recently. This can be explained by the fact that only in the past few years have enzymatic methods made chiral Cyanohydrins readily available in high optical purity. Chiral Cyanohydrins are widespread in nature in the form of the respective gl...

  7. Stereo and regioselectivity in ''Activated'' tritium reactions

    To investigate the stereo and positional selectivity of the microwave discharge activation (MDA) method, the tritium labeling of several amino acids was undertaken. The labeling of L-valine and the diastereomeric pair L-isoleucine and L-alloisoleucine showed less than statistical labeling at the α-amino C-H position mostly with retention of configuration. Labeling predominated at the single β C-H tertiary (methyne) position. The labeling of L-valine and L-proline with and without positive charge on the α-amino group resulted in large increases in specific activity (greater than 10-fold) when positive charge was removed by labeling them as their sodium carboxylate salts. Tritium NMR of L-proline labeled both as its zwitterion and sodium salt showed also large differences in the tritium distribution within the molecule. The distribution preferences in each of the charge states are suggestive of labeling by an electrophilic like tritium species(s). 16 refs., 5 tabs

  8. High energy halogen atom reactions activated by nuclear transformations. Progress report, February 15, 1979-February 14, 1980

    The program consists of six interrelated areas: (1) Reactions of iodine with alkenes and alkynes activated by radiative neutron capture and isomeric transition in low pressure gaseous systems employing additives and rare gas moderators, high pressure, and liquid systems. Special attention was given to the reactivity of excited complex formation and structural effects of electrophilic iodine attack on various pi-bond systems. (2) The gas-to-condensed phase transition in halogen high energy chemistry. Current interest involves the study of caging effects of an ice lattice on recombination reactions involving neutron-irradiated frozen aqueous solutions of halogenated organic and biochemical solutes in order to learn more about kinetic energy effects, halogen size, solute molecule size, steric effects and hydrogen bonding within an ice lattice cage. (3) Systematics of halogen hot atom reactions. The reactions of /sup 80m/Br, 80Br, /sup 82m/Br + 82Br, 82Br, 82Br, 128I, 130I, and /sup 130m/I + 130I activated by radiative neutron capture or isomeric transition in hydrocarbons and halo-substituted alkanes in low pressure and high pressure gaseous systems employing additives and rare gas moderators are currently being studied. (4) Mathematical and computer simulation studies of caging events within an ice lattice are being investigated. (5) At Brookhaven National Laboratory, cyclotron-produced chlorine and fluorine hot atoms substitution reactions with molecules possessing a single chiral center are under investigation. (6) The applications of high energy techniques and concepts to neutron activation analysis for trace elements and trace molecule determinations in biological systems was continued

  9. High energy halogen atom reactions activated by nuclear transformations. Progress report, February 15, 1980-February 14, 1981

    The stereochemistry of high energy 18F, /sup 34m/Cl, and 76Br substitution reactions involving enantiomeric molecules in the gas and condensed phase is studied. The gas to condensed state transition in halogen high energy chemistry, involving chlorine, bromine, and iodine activated by the (n,γ) and (I.T.) processes in halomethanes, saturated and unsaturated hydrocarbons is being investigated in more detail. Special attention is given to defining the nature of the enhancement yields in the condensed phase. High energy halogen reactions in liquid and frozen aqueous solutions of organic and biomolecular solutes are studied in an attempt to learn more about these reactions. The applications of high energy chemistry techniques and theory to neutron activation analysis of biological systems are being continued. Special attention is given to developing procedures for trace molecular determinations in biological systems. The applications of hot halogen atoms as indicators of solute-solute interactions in liquid and frozen aqueous solutions of halogenated bases and nucleosides are being developed. Experiments are designed to explain the mechanisms of the radioprotection offered biomolecular solutes trapped within the frozen ice lattice. Reactions of bromine and iodine activated by isomeric transition with halogenated biomolecular solutes in liquid and frozen aqueous solutions are studied. The high energy reactions of iodine with the isomers of pentene have been studied in low pressure gaseous systems employing additives and rare gas moderators and liquid systems. Reactivity of excited complex formation and structural effects of electrophilic iodine attack on the pi-bond systems are studied

  10. Complex formation between polyelectrolytes and oppositely charged oligoelectrolytes

    Zhou, Jiajia; Barz, Matthias; Schmid, Friederike

    2016-04-01

    We study the complex formation between one long polyanion chain and many short oligocation chains by computer simulations. We employ a coarse-grained bead-spring model for the polyelectrolyte chains and model explicitly the small salt ions. We systematically vary the concentration and the length of the oligocation and examine how the oligocations affects the chain conformation, the static structure factor, the radial and axial distribution of various charged species, and the number of bound ions in the complex. At low oligocation concentration, the polyanion has an extended structure. Upon increasing the oligocation concentration, the polyanion chain collapses and forms a compact globule, but the complex still carries a net negative charge. Once the total charge of the oligocations is equal to that of the polyanion, the collapse stops and is replaced by a slow expansion. In this regime, the net charge on the complexes is positive or neutral, depending on the microion concentration in solution. The expansion can be explained by the reduction of the oligocation bridging. We find that the behavior and the structure of the complex are largely independent of the length of oligocations, and very similar to that observed when replacing the oligocations by multivalent salt cations, and conclude that the main driving force keeping the complex together is the release of monovalent counterions and coions. We speculate on the implications of this finding for the problem of controlled oligolyte release and oligolyte substitution.

  11. Complex formation between polyelectrolytes and oppositely charged oligoelectrolytes.

    Zhou, Jiajia; Barz, Matthias; Schmid, Friederike

    2016-04-28

    We study the complex formation between one long polyanion chain and many short oligocation chains by computer simulations. We employ a coarse-grained bead-spring model for the polyelectrolyte chains and model explicitly the small salt ions. We systematically vary the concentration and the length of the oligocation and examine how the oligocations affects the chain conformation, the static structure factor, the radial and axial distribution of various charged species, and the number of bound ions in the complex. At low oligocation concentration, the polyanion has an extended structure. Upon increasing the oligocation concentration, the polyanion chain collapses and forms a compact globule, but the complex still carries a net negative charge. Once the total charge of the oligocations is equal to that of the polyanion, the collapse stops and is replaced by a slow expansion. In this regime, the net charge on the complexes is positive or neutral, depending on the microion concentration in solution. The expansion can be explained by the reduction of the oligocation bridging. We find that the behavior and the structure of the complex are largely independent of the length of oligocations, and very similar to that observed when replacing the oligocations by multivalent salt cations, and conclude that the main driving force keeping the complex together is the release of monovalent counterions and coions. We speculate on the implications of this finding for the problem of controlled oligolyte release and oligolyte substitution. PMID:27131564

  12. Green synthesis of ZnO nanoparticles via complex formation by using Curcuma longa extract

    Fatimah, Is, E-mail: isfatimah@uii.ac.id; Yudha, Septian P.; Mutiara, Nur Afisa Lintang [Chemistry Department, Islamic University of Indonesia Kampus Terpadu UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta (Indonesia)

    2016-02-08

    Synthesis of ZnO nanoparticles(NPs) were conducted via Zn(II) complex formation by using Curcuma longa extract as template. Curcuma longa extract has the ability to form zinc ions complex with curcumin as ligating agent. Study on synthesis was conducted by monitoring thermal degradation of the material. Successful formation of zinc oxide nanoparticles was confirmed by employing x-ray diffraction, surface area analysis and transmission electron microscopy(TEM) studies. From the XRD analysis it is denoted that ZnO in hexagonal wurtzite phase was formed and particle size was varied as varied temperature. The data are also confirmed by TEM analysis which shows the particle sie at the range 20-80nm. The NPs exhibited excelent photocatalytic activity for methylene blue degradation and also significant antibacterial activity for Eschericia coli. The activity in methylene blue degradation was also confirmed from fast chemical oxygen demand (COD) reduction.

  13. Green synthesis of ZnO nanoparticles via complex formation by using Curcuma longa extract

    Fatimah, Is; Yudha, Septian P.; Mutiara, Nur Afisa Lintang

    2016-02-01

    Synthesis of ZnO nanoparticles(NPs) were conducted via Zn(II) complex formation by using Curcuma longa extract as template. Curcuma longa extract has the ability to form zinc ions complex with curcumin as ligating agent. Study on synthesis was conducted by monitoring thermal degradation of the material. Successful formation of zinc oxide nanoparticles was confirmed by employing x-ray diffraction, surface area analysis and transmission electron microscopy(TEM) studies. From the XRD analysis it is denoted that ZnO in hexagonal wurtzite phase was formed and particle size was varied as varied temperature. The data are also confirmed by TEM analysis which shows the particle sie at the range 20-80nm. The NPs exhibited excelent photocatalytic activity for methylene blue degradation and also significant antibacterial activity for Eschericia coli. The activity in methylene blue degradation was also confirmed from fast chemical oxygen demand (COD) reduction.

  14. Green synthesis of ZnO nanoparticles via complex formation by using Curcuma longa extract

    Synthesis of ZnO nanoparticles(NPs) were conducted via Zn(II) complex formation by using Curcuma longa extract as template. Curcuma longa extract has the ability to form zinc ions complex with curcumin as ligating agent. Study on synthesis was conducted by monitoring thermal degradation of the material. Successful formation of zinc oxide nanoparticles was confirmed by employing x-ray diffraction, surface area analysis and transmission electron microscopy(TEM) studies. From the XRD analysis it is denoted that ZnO in hexagonal wurtzite phase was formed and particle size was varied as varied temperature. The data are also confirmed by TEM analysis which shows the particle sie at the range 20-80nm. The NPs exhibited excelent photocatalytic activity for methylene blue degradation and also significant antibacterial activity for Eschericia coli. The activity in methylene blue degradation was also confirmed from fast chemical oxygen demand (COD) reduction

  15. Spectrophotometric Determination of 6-Propyl-2-Thiouracil in Pharmaceutical Formulations Based on Prussian Blue Complex Formation: An Undergraduate Instrumental Analysis Laboratory Experiment

    Zakrzewski, Robert; Skowron, Monika; Ciesielski, Witold; Rembisz, Zaneta

    2016-01-01

    The laboratory experiment challenges students to determine 6-propyl-2-thiouracil (PTU) based on Prussian blue complex formation. Prussian blue is formed by ferricyanide and Fe(II) ions which are generated in situ from Fe(III) ions reduced by PTU. The absorbance of this product was measured at a wavelength of 840 nm, after a reaction time of 30…

  16. Complex formation of Eu(III) with polyacrylic acid

    For the quantitative description of the interaction of metal ions with humic substances, it is necessary to clarify the effects of both polyelectrolyte and heterogeneous nature of humic substances. To estimate the polyelectrolyte effect separately, polyacrylic acid (MW = 90 000) has been selected as a representative of well-defined, homogeneous polymeric weak acids, and its interaction with Eu(III) has been investigated by a solvent extraction method using 152Eu (∝ 10-8 M) with TTA and TBP in xylene. By defining the apparent complex formation constant as βα = [ML]/([M][R]), where [M] = [Eu3+], [ML] is the concentration of Eu(III) associated with polyacrylic acid and [R] = CRα (CR is a total concentration of proton exchanging sites and α is a degree of dissociation determined by potentiometric titration), the apparent constants have been obtained at several pcH and ionic strength (0.1 M and 1.0 M NaClO4). The constants increased with pcH and decreased with an increase of ionic strength, that is, the values of log βα varied from 6.0 (at pcH = 4.7) to 7.6 (pcH = 5.5) at 0.1 M NaClO4 and from 4.8 (pcH = 4.4) to 6.5 (pcH = 5.4) at 1.0 M. The plots of log βα versus log α revealed almost linear relationship both at 0.1 and 1.0 M NaClO4. (orig.)

  17. Polyelectrolyte complex formation mediated immobilization of chitosan-invertase neoglycoconjugate on pectin-coated chitin.

    Gómez, Leissy; Ramírez, Hector L; Neira-Carrillo, Andrónico; Villalonga, Reynaldo

    2006-05-01

    Saccharomyces cerevisiae invertase, chemically modified with chitosan, was immobilized on pectin-coated chitin support via polyelectrolyte complex formation. The yield of immobilized enzyme protein was determined as 85% and the immobilized biocatalyst retained 97% of the initial chitosan-invertase activity. The optimum temperature for invertase was increased by 10 degrees C and its thermostability was enhanced by about 10 degrees C after immobilization. The immobilized enzyme was stable against incubation in high ionic strength solutions and was 4-fold more resistant to thermal treatment at 65 degrees C than the native counterpart. The biocatalyst prepared retained 96 and 95% of the original catalytic activity after ten cycles of reuse and 74 h of continuous operational regime in a packed bed reactor, respectively. PMID:16775742

  18. Functional cooperation between FACT and MCM is coordinated with cell cycle and differential complex formation

    Lin Chih-Li

    2010-02-01

    Full Text Available Abstract Background Functional cooperation between FACT and the MCM helicase complex constitutes an integral step during DNA replication initiation. However, mode of regulation that underlies the proper functional interaction of FACT and MCM is poorly understood. Methods & Results Here we present evidence indicating that such interaction is coordinated with cell cycle progression and differential complex formation. We first demonstrate the existence of two distinct FACT-MCM subassemblies, FACT-MCM2/4/6/7 and FACT-MCM2/3/4/5. Both complexes possess DNA unwinding activity and are subject to cell cycle-dependent enzymatic regulation. Interestingly, analysis of functional attributes further suggests that they act at distinct, and possibly sequential, steps during origin establishment and replication initiation. Moreover, we show that the phosphorylation profile of the FACT-associated MCM4 undergoes a cell cycle-dependent change, which is directly correlated with the catalytic activity of the FACT-MCM helicase complexes. Finally, at the quaternary structure level, physical interaction between FACT and MCM complexes is generally dependent on persistent cell cycle and further stabilized upon S phase entry. Cessation of mitotic cycle destabilizes the complex formation and likely leads to compromised coordination and activities. Conclusions Together, our results correlate FACT-MCM functionally and temporally with S phase and DNA replication. They further demonstrate that enzymatic activities intrinsically important for DNA replication are tightly controlled at various levels, thereby ensuring proper progression of, as well as exit from, the cell cycle and ultimately euploid gene balance.

  19. Activated carbon becomes active for oxygen reduction and hydrogen evolution reactions.

    Yan, Xuecheng; Jia, Yi; Odedairo, Taiwo; Zhao, Xiaojun; Jin, Zhao; Zhu, Zhonghua; Yao, Xiangdong

    2016-06-21

    We utilized a facile method for creating unique defects in the activated carbon (AC), which makes it highly active for the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). The ORR activity of the defective AC (D-AC) is comparable to the commercial Pt/C in alkaline medium, and the D-AC also exhibits excellent HER activity in acidic solution. PMID:27277286

  20. Al-O complex formation in ion implanted Czochralski and floating-zone Si substrates

    La Ferla, A.; Torrisi, L.; Galvagno, G.; Rimini, E.; Ciavola, G.; Carnera, A.; Gasparotto, A.

    1993-01-01

    Aluminum ions at 100 MeV were implanted into floating-zone (FZ) and Czochralski (CZ) grown Si substrates. At this energy the influence of the surface on the subsequent thermal treatment is negligible. In FZ samples the electrical active dose, as measured by spreading resistance profilometry, is independent of the annealing time at 1200 °C. In the CZ samples instead it considerably decreases with time. Secondary ion mass spectrometry analysis in CZ samples have revealed the presence of a multipeak structure around the projected range region for both Al and O signals. In FZ the structure is just detectable. The results imply that the Al-O complex formation is enhanced by the presence of oxygen but that it is catalyzed by the damage created during the implant. The carrier profiles coincide in both CZ and FZ diffused substrates by predeposition of Al from a solid source, i.e., in damage-free samples.

  1. Inactivation efficiencies of radical reactions with biologically active DNA

    Lafleur, M. V. M.; Retèl, J.; Loman, H.

    Dilute aqueous solutions of biologically active θX174 DNA may serve as a simplified model system of the cell. Damage to the DNA after irradiation with γ-rays, may be ascribed to reactions with .OH, .H and e -aq or secondary radicals, arising from reactions of water radicals with added scavengers. Conversion of primary (water) radicals into secondary (scavenger) radicals leads to a considerable protection of the DNA, which, however, would have been larger if these secondary radicals did not contribute to DNA inactivation. The inactivation yield due to isopropanol or formate (secondary) radicals depends on dose rate as well as DNA concentration. Furthermore the inactivation efficiencies of the reactions of both the primary and the secondary radicals with single-stranded DNA could be established.

  2. Inactivation efficiencies of radical reactions with biologically active DNA

    Dilute aqueous solutions of biologically active ΦX174 DNA may serve as a simplified model system of the cell. Damage to the DNA after irradiation with γ-rays, may be ascribed to reactions with radical OH, radical H and esub(aq)- or secondary radicals, arising from reactions of water radicals with added scavengers. Conversion of primary (water) radicals into secondary (scavenger) radicals leads to a considerable protection of the DNA, which however, would have been larger if these secondary radicals did not contribute to DNA inactivation. The inactivation yield due to isopropanol or formate (secondary) radicals depends on dose rate as well as DNA concentration. Furthermore the inactivation efficiencies of the reactions of both the primary and the secondary radicals with single-stranded DNA could be established. (author)

  3. Direct activation of allylic alcohols in palladium catalyzed coupling reactions

    Gümrükçü, Y.

    2014-01-01

    The direct use of allylic alcohols in substitution reactions without pre-activation of the hydroxyl-group into a better leaving group or the use of additional stoichiometric in situ activators remains challenging due to the poor leaving group ability of the hydroxyl-group. Hence, it is important to develop new methods to activate (bio-mass derived) allyl-alcohols, which allow ‘green’ chemical processes for a broad substrate range. This may have a considerable impact on the methodology for fin...

  4. Complex formation in the system double charged metal cation-Stenhouse base in water-alcohol solution

    Using the method of potentiometric titration complex formation reaction of the system metal(II) salt cation (Me2+ = Fe2+, Cd2+, Hg2+, Zn2+, Mn2+, Co2+, Ni2+) Stenhouse base in water-alcohol solution has been studied. Compositions of equilibrium complexes, the constants of their formation and instability have been determined. CoCl2 x 6H2O, NiCl2 x 6H2O and Mn(NO3)2 x 6H2O have been shown to have the most stabilizing effect on Stenhouse base

  5. Cadmium(II) complex formation with cysteine and penicillamine.

    Jalilehvand, Farideh; Leung, Bonnie O; Mah, Vicky

    2009-07-01

    The complex formation between cadmium(II) and the ligands cysteine (H(2)Cys) and penicillamine (H(2)Pen = 3,3'-dimethylcysteine) in aqueous solutions, having C(Cd(II)) approximately 0.1 mol dm(-3) and C(H(2)L) = 0.2-2 mol dm(-3), was studied at pH = 7.5 and 11.0 by means of (113)Cd NMR and Cd K- and L(3)-edge X-ray absorption spectroscopy. For all cadmium(II)-cysteine molar ratios, the mean Cd-S and Cd-(N/O) bond distances were found in the ranges 2.52-2.54 and 2.27-2.35 A, respectively. The corresponding cadmium(II)-penicillamine complexes showed slightly shorter Cd-S bonds, 2.50-2.53 A, but with the Cd-(N/O) bond distances in a similar wide range, 2.28-2.33 A. For the molar ratio C(H(2)L)/C(Cd(II)) = 2, the (113)Cd chemical shifts, in the range 509-527 ppm at both pH values, indicated complexes with distorted tetrahedral CdS(2)N(N/O) coordination geometry. With a large excess of cysteine (molar ratios C(H(2)Cys)/C(Cd(II)) >or= 10), complexes with CdS(4) coordination geometry dominate, consistent with the (113)Cd NMR chemical shifts, delta approximately 680 ppm at pH 7.5 and 636-658 ppm at pH 11.0, and their mean Cd-S distances were 2.53 +/- 0.02 A. At pH 7.5, the complexes are almost exclusively sulfur-coordinated as [Cd(S-cysteinate)(4)](n-), while at higher pH, the deprotonation of the amine groups promotes chelate formation. At pH 11.0, a minor amount of the [Cd(Cys)(3)](4-) complex with CdS(3)N coordination is formed. For the corresponding penicillamine solutions with molar ratios C(H(2)Pen)/C(Cd(II)) >or= 10, the (113)Cd NMR chemical shifts, delta approximately 600 ppm at pH 7.5 and 578 ppm at pH 11.0, together with the average bond distances, Cd-S 2.53 +/- 0.02 A and Cd-(N/O) 2.30-2.33 A, indicate that [Cd(penicillaminate)(3)](n-) complexes with chelating CdS(3)(N/O) coordination dominate already at pH 7.5 and become mixed with CdS(2)N(N/O) complexes at pH 11.0. The present study reveals differences between cysteine and penicillamine as ligands to the

  6. Innovative Strategy on Hydrogen Evolution Reaction Utilizing Activated Liquid Water

    Bing-Joe Hwang; Hsiao-Chien Chen; Fu-Der Mai; Hui-Yen Tsai; Chih-Ping Yang; John Rick; Yu-Chuan Liu

    2015-01-01

    Splitting water for hydrogen production using light, or electrical energy, is the most developed ‘green technique’. For increasing efficiency in hydrogen production, currently, the most exciting and thriving strategies are focused on efficient and inexpensive catalysts. Here, we report an innovative idea for efficient hydrogen evolution reaction (HER) utilizing plasmon-activated liquid water with reduced hydrogen-bonded structure by hot electron transfer. This strategy is effective for all HE...

  7. Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation

    Highlights: • Radiation increases cellular uptake of exosomes. • Radiation induces colocalization of CD29 and CD81. • Exosomes selectively bind the CD29/CD81 complex. • Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation. - Abstract: Exosomes mediate intercellular communication, and mesenchymal stem cells (MSC) or their secreted exosomes affect a number of pathophysiologic states. Clinical applications of MSC and exosomes are increasingly anticipated. Radiation therapy is the main therapeutic tool for a number of various conditions. The cellular uptake mechanisms of exosomes and the effects of radiation on exosome–cell interactions are crucial, but they are not well understood. Here we examined the basic mechanisms and effects of radiation on exosome uptake processes in MSC. Radiation increased the cellular uptake of exosomes. Radiation markedly enhanced the initial cellular attachment to exosomes and induced the colocalization of integrin CD29 and tetraspanin CD81 on the cell surface without affecting their expression levels. Exosomes dominantly bound to the CD29/CD81 complex. Knockdown of CD29 completely inhibited the radiation-induced uptake, and additional or single knockdown of CD81 inhibited basal uptake as well as the increase in radiation-induced uptake. We also examined possible exosome uptake processes affected by radiation. Radiation-induced changes did not involve dynamin2, reactive oxygen species, or their evoked p38 mitogen-activated protein kinase-dependent endocytic or pinocytic pathways. Radiation increased the cellular uptake of exosomes through CD29/CD81 complex formation. These findings provide essential basic insights for potential therapeutic applications of exosomes or MSC in combination with radiation

  8. Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation

    Hazawa, Masaharu; Tomiyama, Kenichi; Saotome-Nakamura, Ai; Obara, Chizuka; Yasuda, Takeshi; Gotoh, Takaya; Tanaka, Izumi; Yakumaru, Haruko; Ishihara, Hiroshi; Tajima, Katsushi, E-mail: tajima@nirs.go.jp

    2014-04-18

    Highlights: • Radiation increases cellular uptake of exosomes. • Radiation induces colocalization of CD29 and CD81. • Exosomes selectively bind the CD29/CD81 complex. • Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation. - Abstract: Exosomes mediate intercellular communication, and mesenchymal stem cells (MSC) or their secreted exosomes affect a number of pathophysiologic states. Clinical applications of MSC and exosomes are increasingly anticipated. Radiation therapy is the main therapeutic tool for a number of various conditions. The cellular uptake mechanisms of exosomes and the effects of radiation on exosome–cell interactions are crucial, but they are not well understood. Here we examined the basic mechanisms and effects of radiation on exosome uptake processes in MSC. Radiation increased the cellular uptake of exosomes. Radiation markedly enhanced the initial cellular attachment to exosomes and induced the colocalization of integrin CD29 and tetraspanin CD81 on the cell surface without affecting their expression levels. Exosomes dominantly bound to the CD29/CD81 complex. Knockdown of CD29 completely inhibited the radiation-induced uptake, and additional or single knockdown of CD81 inhibited basal uptake as well as the increase in radiation-induced uptake. We also examined possible exosome uptake processes affected by radiation. Radiation-induced changes did not involve dynamin2, reactive oxygen species, or their evoked p38 mitogen-activated protein kinase-dependent endocytic or pinocytic pathways. Radiation increased the cellular uptake of exosomes through CD29/CD81 complex formation. These findings provide essential basic insights for potential therapeutic applications of exosomes or MSC in combination with radiation.

  9. From PII signaling to metabolite sensing: a novel 2-oxoglutarate sensor that details PII-NAGK complex formation.

    Lüddecke, Jan; Forchhammer, Karl

    2013-01-01

    The widespread PII signal transduction proteins are known for integrating signals of nitrogen and energy supply and regulating cellular behavior by interacting with a multitude of target proteins. The PII protein of the cyanobacterium Synechococcus elongatus forms complexes with the controlling enzyme of arginine synthesis, N-acetyl-L-glutamate kinase (NAGK) in a 2-oxoglutarate- and ATP/ADP-dependent manner. Fusing NAGK and PII proteins to either CFP or YFP yielded a FRET sensor that specifically responded to 2-oxoglutarate. The impact of the fluorescent tags on PII and NAGK was evaluated by enzyme assays, surface plasmon resonance spectroscopy and isothermal calorimetric experiments. The developed FRET sensor provides real-time data on PII - NAGK interaction and its modulation by the effector molecules ATP, ADP and 2-oxoglutarate in vitro. Additionally to its utility to monitor 2-oxoglutarate levels, the FRET assay provided novel insights into PII - NAGK complex formation: (i) It revealed the formation of an encounter-complex between PII and NAGK, which holds the proteins in proximity even in the presence of inhibitors of complex formation; (ii) It revealed that the PII T-loop residue Ser49 is neither essential for complex formation with NAGK nor for activation of the enzyme but necessary to form a stable complex and efficiently relieve NAGK from arginine inhibition; (iii) It showed that arginine stabilizes the NAGK hexamer and stimulates PII - NAGK interaction. PMID:24349456

  10. From PII signaling to metabolite sensing: a novel 2-oxoglutarate sensor that details PII-NAGK complex formation.

    Jan Lüddecke

    Full Text Available The widespread PII signal transduction proteins are known for integrating signals of nitrogen and energy supply and regulating cellular behavior by interacting with a multitude of target proteins. The PII protein of the cyanobacterium Synechococcus elongatus forms complexes with the controlling enzyme of arginine synthesis, N-acetyl-L-glutamate kinase (NAGK in a 2-oxoglutarate- and ATP/ADP-dependent manner. Fusing NAGK and PII proteins to either CFP or YFP yielded a FRET sensor that specifically responded to 2-oxoglutarate. The impact of the fluorescent tags on PII and NAGK was evaluated by enzyme assays, surface plasmon resonance spectroscopy and isothermal calorimetric experiments. The developed FRET sensor provides real-time data on PII - NAGK interaction and its modulation by the effector molecules ATP, ADP and 2-oxoglutarate in vitro. Additionally to its utility to monitor 2-oxoglutarate levels, the FRET assay provided novel insights into PII - NAGK complex formation: (i It revealed the formation of an encounter-complex between PII and NAGK, which holds the proteins in proximity even in the presence of inhibitors of complex formation; (ii It revealed that the PII T-loop residue Ser49 is neither essential for complex formation with NAGK nor for activation of the enzyme but necessary to form a stable complex and efficiently relieve NAGK from arginine inhibition; (iii It showed that arginine stabilizes the NAGK hexamer and stimulates PII - NAGK interaction.

  11. Complete reaction mechanisms of mercury oxidation on halogenated activated carbon.

    Rungnim, Chompoonut; Promarak, Vinich; Hannongbua, Supa; Kungwan, Nawee; Namuangruk, Supawadee

    2016-06-01

    The reaction mechanisms of mercury (Hg) adsorption and oxidation on halogenated activated carbon (AC) have been completely studied for the first time using density functional theory (DFT) method. Two different halogenated AC models, namely X-AC and X-AC-X (X=Cl, Br, I), were adopted. The results revealed that HgX is found to be stable-state on the AC edge since its further desorption from the AC as HgX, or further oxidation to HgX2, are energetically unfavorable. Remarkably, the halide type does not significantly affect the Hg adsorption energy but it strongly affects the activation energy barrier of HgX formation, which obviously increases in the order HgIelimination significantly decreases as I-AC>Br-AC>Cl-AC. Thus, the study of the complete reaction mechanism is essential because the adsorption energy can not be used as a guideline for the rational material design in the halide impregnated AC systems. The activation energy is an important descriptor for the predictions of sorbent reactivity to the Hg oxidation process. PMID:26943019

  12. Transient assembly of active materials fueled by a chemical reaction

    Boekhoven, Job; Hendriksen, Wouter E.; Koper, Ger J. M.; Eelkema, Rienk; van Esch, Jan H.

    2015-09-01

    Fuel-driven self-assembly of actin filaments and microtubules is a key component of cellular organization. Continuous energy supply maintains these transient biomolecular assemblies far from thermodynamic equilibrium, unlike typical synthetic systems that spontaneously assemble at thermodynamic equilibrium. Here, we report the transient self-assembly of synthetic molecules into active materials, driven by the consumption of a chemical fuel. In these materials, reaction rates and fuel levels, instead of equilibrium composition, determine properties such as lifetime, stiffness, and self-regeneration capability. Fibers exhibit strongly nonlinear behavior including stochastic collapse and simultaneous growth and shrinkage, reminiscent of microtubule dynamics.

  13. Localization and dynamics of amylose-lipophilic molecules inclusion complex formation in starch granules

    Manca, Marianna; Woortman, Albert J. J.; Mura, Andrea; Loos, Katja; Loi, Maria Antonietta

    2015-01-01

    Inclusion complex formation between lipophilic dye molecules and amylose polymers in starch granules is investigated using laser spectroscopy and microscopy. By combining confocal laser scanning microscopy (CLSM) with spatial resolved photoluminescence (PL) spectroscopy, we are able to discriminate

  14. Complex formation of platelet thrombospondin with histidine-rich glycoprotein.

    Leung, L L; Nachman, R L; Harpel, P C

    1984-01-01

    Thrombospondin and histidine-rich glycoprotein are two proteins with diverse biological activities which have been associated with human platelets and other cell systems. Using an enzyme-linked immunosorbent assay, we have demonstrated that purified human platelet thrombospondin formed a complex with purified human plasma histidine-rich glycoprotein. The formation of the thrombospondin-histidine-rich glycoprotein complex was specific, concentration dependent, and saturable. Significant bindin...

  15. Characterization of Hydrogen Complex Formation in III-V Semiconductors

    Williams, Michael D

    2006-09-28

    Atomic hydrogen has been found to react with some impurity species in semiconductors. Hydrogenation is a methodology for the introduction of atomic hydrogen into the semiconductor for the express purpose of forming complexes within the material. Efforts to develop hydrogenation as an isolation technique for AlGaAs and Si based devices failed to demonstrate its commercial viability. This was due in large measure to the low activation energies of the formed complexes. Recent studies of dopant passivation in long wavelength (0.98 - 1.55m) materials suggested that for the appropriate choice of dopants much higher activation energies can be obtained. This effort studied the formation of these complexes in InP, This material is extensively used in optoelectronics, i.e., lasers, modulators and detectors. The experimental techniques were general to the extent that the results can be applied to other areas such as sensor technology, photovoltaics and to other material systems. The activation energies for the complexes have been determined and are reported in the scientific literature. The hydrogenation process has been shown by us to have a profound effect on the electronic structure of the materials and was thoroughly investigated. The information obtained will be useful in assessing the long term reliability of device structures fabricated using this phenomenon and in determining new device functionalities.

  16. Acceptors in II-IV Semiconductors - Incorporation and Complex Formation

    2002-01-01

    A strong effort is currently devoted to the investigation of defects and the electrical activation of dopant atoms in II-VI semiconductors. In particular, the knowledge about the behaviour of acceptors, prerequisite for the fabrication of p-type semiconductors, is rather limited. The perturbed $\\,{\\gamma\\gamma}$ -angular correlation technique (PAC) and the photoluminescence spectroscopy (PL) using the radioactive isotopes $^{77}\\!$Br and $^{111}\\!$Ag will be applied for investigating the behaviour of acceptor dopant atoms and their interactions with defects in II-VI semiconductors. The main topic will be the identification of the technical conditions for the incorporation of electrically active acceptors in the II-VI semiconductors ~ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe with particular emphasis on the compounds~ CdTe, ZnSe, and ZnTe. The investigations will be supplemented by first exploratory PL experiments with the group V acceptors $^{71}\\!$As and $^{121}\\!$Sb. With help of the probe $^{111}\\!$Ag, the pos...

  17. Structural basis of complement membrane attack complex formation

    Serna, Marina; Giles, Joanna L.; Morgan, B. Paul; Bubeck, Doryen

    2016-02-01

    In response to complement activation, the membrane attack complex (MAC) assembles from fluid-phase proteins to form pores in lipid bilayers. MAC directly lyses pathogens by a `multi-hit' mechanism; however, sublytic MAC pores on host cells activate signalling pathways. Previous studies have described the structures of individual MAC components and subcomplexes; however, the molecular details of its assembly and mechanism of action remain unresolved. Here we report the electron cryo-microscopy structure of human MAC at subnanometre resolution. Structural analyses define the stoichiometry of the complete pore and identify a network of interaction interfaces that determine its assembly mechanism. MAC adopts a `split-washer' configuration, in contrast to the predicted closed ring observed for perforin and cholesterol-dependent cytolysins. Assembly precursors partially penetrate the lipid bilayer, resulting in an irregular β-barrel pore. Our results demonstrate how differences in symmetric and asymmetric components of the MAC underpin a molecular basis for pore formation and suggest a mechanism of action that extends beyond membrane penetration.

  18. Porous platinum mesoflowers with enhanced activity for methanol oxidation reaction

    Porous Pt and Pt–Ag alloy mesoflowers (MFs) with about 2 μm in diameter and high porosity were synthesized using Ag mesoflowers as sacrificial template by galvanic reaction. The silver content in Pt–Ag alloys can be facilely controlled by nitric acid treatment. And the pure Pt MFs can be obtained by selective removal of silver element from Pt72Ag28 MFs electrochemically. Both Pt45Ag55, Pt72Ag28 and pure Pt show a high catalytic performance in methanol oxidation reaction (MOR). Especially, pure Pt MFs exhibited a 2 to 3 times current density enhancement in MOR compared with the commercial used Pt black, which can be attributed to their porous nanostructure with 3-dimentional nature and small crystal sizes. - Graphical Abstract: The CVs of MOR on Pt (red) and Pt black (green) catalysts in 0.1 M HClO4 and 0.5 M CH3OH for specific mass current. The insert shows the SEM images of two porous Pt MFs. Platinum mesoflowers (MFs) with about 2 μm in diameter and high porosity were synthesised with Ag mesoflowers as sacrificial template by galvanic replacement. The porous Pt MFs exhibited a more than 3 times enhancement in electrocatalytic performance for methanol oxidation reaction compared the commercial used Pt black. Highlights: ► Porous Pt and Pt–Ag mesoflowers (MFs) were synthesized using Ag MFs sacrifical template. ► Pt MFs presents an improved catalytic activity in MOR compared with Pt black. ► We provided a facile approach for the development of high performance Pt electrocatalysts for fuel cells.

  19. Circulating polymerase chain reaction chips utilizing multiple-membrane activation

    Wang, Chih-Hao; Chen, Yi-Yu; Liao, Chia-Sheng; Hsieh, Tsung-Min; Luo, Ching-Hsing; Wu, Jiunn-Jong; Lee, Huei-Huang; Lee, Gwo-Bin

    2007-02-01

    This paper reports a new micromachined, circulating, polymerase chain reaction (PCR) chip for nucleic acid amplification. The PCR chip is comprised of a microthermal control module and a polydimethylsiloxane (PDMS)-based microfluidic control module. The microthermal control modules are formed with three individual heating and temperature-sensing sections, each modulating a specific set temperature for denaturation, annealing and extension processes, respectively. Micro-pneumatic valves and multiple-membrane activations are used to form the microfluidic control module to transport sample fluids through three reaction regions. Compared with other PCR chips, the new chip is more compact in size, requires less time for heating and cooling processes, and has the capability to randomly adjust time ratios and cycle numbers depending on the PCR process. Experimental results showed that detection genes for two pathogens, Streptococcus pyogenes (S. pyogenes, 777 bps) and Streptococcus pneumoniae (S. pneumoniae, 273 bps), can be successfully amplified using the new circulating PCR chip. The minimum number of thermal cycles to amplify the DNA-based S. pyogenes for slab gel electrophoresis is 20 cycles with an initial concentration of 42.5 pg µl-1. Experimental data also revealed that a high reproducibility up to 98% could be achieved if the initial template concentration of the S. pyogenes was higher than 4 pg µl-1. The preliminary results of the current paper were presented at the 19th IEEE International Conference on Micro Electro Mechanical Systems (IEEE MEMS 2006), Istanbul, Turkey, 22-26 January, 2006.

  20. Oxygen reduction reaction activity on Pt{111} surface alloys.

    Attard, Gary A; Brew, Ashley; Ye, Jin-Yu; Morgan, David; Sun, Shi-Gang

    2014-07-21

    PtM overlayers (where M=Fe, Co or Ni) supported on Pt{111} are prepared via thermal annealing in either a nitrogen/water or hydrogen ambient of dilute aqueous droplets containing M(Z+) cations directly attached to the electrode. Two different PtM phases are detected depending on the nature of the post-annealing cooling environment. The first of these consists of small (hydroxides. The second type of PtM phase is prepared by cooling in a stream of hydrogen gas. Although this second phase also consists of numerous microcrystals covering the Pt{111} electrode surface, these are both flatter than before and moreover are entirely metallic in character. A positive shift in the onset of PtM oxide formation correlates with increased activity towards the oxygen reduction reaction (ORR), which we ascribe to the greater availability of platinum metallic sites under ORR conditions. PMID:24986646

  1. Innovative Strategy on Hydrogen Evolution Reaction Utilizing Activated Liquid Water

    Hwang, Bing-Joe; Chen, Hsiao-Chien; Mai, Fu-Der; Tsai, Hui-Yen; Yang, Chih-Ping; Rick, John; Liu, Yu-Chuan

    2015-11-01

    Splitting water for hydrogen production using light, or electrical energy, is the most developed ‘green technique’. For increasing efficiency in hydrogen production, currently, the most exciting and thriving strategies are focused on efficient and inexpensive catalysts. Here, we report an innovative idea for efficient hydrogen evolution reaction (HER) utilizing plasmon-activated liquid water with reduced hydrogen-bonded structure by hot electron transfer. This strategy is effective for all HERs in acidic, basic and neutral systems, photocatalytic system with a g-C3N4 (graphite carbon nitride) electrode, as well as in an inert system with an ITO (indium tin oxide) electrode. Compared to deionized water, the efficiency of HER increases by 48% based on activated water ex situ on a Pt electrode. Increase in energy efficiency from activated water is 18% at a specific current yield of -20 mA in situ on a nanoscale-granulated Au electrode. Moreover, the onset potential of -0.023 V vs RHE was very close to the thermodynamic potential of the HER (0 V). The measured current density at the corresponding overpotential for HER in an acidic system was higher than any data previously reported in the literature. This approach establishes a new vista in clean green energy production.

  2. Activation energy of tantalum-tungsten oxide thermite reactions

    Cervantes, Octavio G.; Munir, Zuhair A. [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, CA (United States); Chemical Engineering and Materials Science, University of California, Davis, CA (United States); Kuntz, Joshua D.; Gash, Alexander E. [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, CA (United States)

    2011-01-15

    The activation energy of a sol-gel (SG) derived tantalum-tungsten oxide thermite composite was determined using the Kissinger isoconversion method. The SG derived powder was consolidated using the high-pressure spark plasma sintering (HPSPS) technique at 300 and 400 C. The ignition temperatures were investigated under high heating rates (500-2000 C min{sup -1}). Such heating rates were required in order to ignite the thermite composite. Samples consolidated at 300 C exhibit an abrupt change in temperature response prior to the main ignition temperature. This change in temperature response is attributed to the crystallization of the amorphous WO{sub 3} in the SG derived Ta-WO{sub 3} thermite composite and not to a pre-ignition reaction between the constituents. Ignition temperatures for the Ta-WO{sub 3} thermite ranged from approximately 465 to 670 C. The activation energies of the SG derived Ta-WO{sub 3} thermite composite consolidated at 300 and 400 C were determined to be 38{+-} 2 kJ mol{sup -1} and 57 {+-} 2 kJ mol{sup -1}, respectively. (author)

  3. Ablation of MMP9 gene ameliorates paracellular permeability and fibrinogen-amyloid beta complex formation during hyperhomocysteinemia.

    Muradashvili, Nino; Tyagi, Reeta; Metreveli, Naira; Tyagi, Suresh C; Lominadze, David

    2014-09-01

    Increased blood level of homocysteine (Hcy), called hyperhomocysteinemia (HHcy) accompanies many cognitive disorders including Alzheimer's disease. We hypothesized that HHcy-enhanced cerebrovascular permeability occurs via activation of matrix metalloproteinase-9 (MMP9) and leads to an increased formation of fibrinogen-β-amyloid (Fg-Aβ) complex. Cerebrovascular permeability changes were assessed in C57BL/6J (wild type, WT), cystathionine-β-synthase heterozygote (Cbs+/-, a genetic model of HHcy), MMP9 gene knockout (Mmp9-/-), and Cbs and Mmp9 double knockout (Cbs+/-/Mmp9-/-) mice using a dual-tracer probing method. Expression of vascular endothelial cadherin (VE-cadherin) and Fg-Aβ complex formation was assessed in mouse brain cryosections by immunohistochemistry. Short-term memory of mice was assessed with a novel object recognition test. The cerebrovascular permeability in Cbs+/- mice was increased via mainly the paracellular transport pathway. VE-cadherin expression was the lowest and Fg-Aβ complex formation was the highest along with the diminished short-term memory in Cbs+/- mice. These effects of HHcy were ameliorated in Cbs+/-/Mmp9-/- mice. Thus, HHcy causes activation of MMP9 increasing cerebrovascular permeability by downregulation of VE-cadherin resulting in an enhanced formation of Fg-Aβ complex that can be associated with loss of memory. These data may lead to the identification of new targets for therapeutic intervention that can modulate HHcy-induced cerebrovascular permeability and resultant pathologies. PMID:24865997

  4. Sensitive NADH detection in a tumorigenic cell line using a nano-biosensor based on the organic complex formation.

    Akhtar, Mahmood H; Mir, Tanveer A; Gurudatt, N G; Chung, Saeromi; Shim, Yoon-Bo

    2016-11-15

    A robust amperometric sensor for β-nicotinamide adenine dinucleotide (NADH) detection was developed through the organic complex formation with ethylenediaminetetraacetic acid (EDTA) bonded on the polyethylenimine (PEI)/activated graphene oxide (AGO) layer. The EDTA immobilized sensor probe (GCE/AGO/PEI-EDTA) revealed a catalytic property towards NADH oxidation that allows for the highly sensitive electrochemical detection of NADH at a low oxidation potential. Surface characterization demonstrated that the negatively charged AGO acted as nanofillers in the positively charged PEI matrix through the charge interaction. The immobilization of EDTA on the polymer layer provided more surface area for NADH to interact with through the enhanced chemical interlocking between them. We observed the strong interaction between NADH and EDTA on the AGO/PEI layer using a quartz crystal microbalance (QCM), X-ray photoelectron spectroscopy (XPS), and the calculation of the minimized energy for complex formation. The dynamic range of NADH was determined to be between 0.05μM and 500μM with a detection limit (LD) of 20.0±1.1nM. The reliability of the developed sensor for biomedical applications was examined by detecting NADH in tumorigenic lung epithelial cells using the standard addition method. PMID:27209575

  5. PECULIARITIES OF LITTER INVERTEBRATES’ MULTISPECIES COMPLEXES FORMATION ON THE KHORTITSA ISLAND (ZAPORIZHZHYA PROVINCE)

    D. О. Fedorchenko; V. V. Brygadyrenko

    2008-01-01

    Peculiarities of litter invertebrates’ complexes formation under conditions of the Khortitsa National Reserve (Zaporizhzhya province) are studied. The dispersion of taxonomic groups of different levels (families and species) in litter mesofauna is swayed by the inter- and intrasystem factors; the largest influence has the power of litter and its humidity. The rate of ecological factors’ influence at different taxonomic levels may diverge.

  6. On the complex formation approach in modeling predator prey relations, mating, and sexual disease transmission

    Horst R. Thieme

    2000-10-01

    Full Text Available Complex formation is used as a unified approach to derive representations and approximations of the functional response in predator prey relations, mating, and sexual disease transmission. Applications are given to the impact of a generalist predator on a prey population and the spread of a sexually transmitted disease in a multi-group heterosexual population.

  7. Measurement of the activation cross section for the (p,xn) reactions in niobium with potential applications as monitor reactions

    Avila-Rodriguez, M.A. [Edmonton PET Centre, Cross Cancer Institute, Edmonton, AB, T6G 1Z2 (Canada)], E-mail: miguel.avila-rodriguez@utu.fi; Wilson, J.S. [Edmonton PET Centre, Cross Cancer Institute, Edmonton, AB, T6G 1Z2 (Canada); Schueller, M.J. [Brookhaven National Laboratory, Upton, NY 11973 (United States); McQuarrie, S.A. [Edmonton PET Centre, Cross Cancer Institute, Edmonton, AB, T6G 1Z2 (Canada)

    2008-08-15

    Excitation functions of the {sup 93}Nb(p,n){sup 93m}Mo, {sup 93}Nb(p,pn){sup 92m}Nb and {sup 93}Nb(p,{alpha}n){sup 89}Zr nuclear reactions were measured up to 17.4 MeV by the conventional activation method using the stacked-foil technique. Stacks were irradiated at different incident energies on the TR19/9 cyclotron at the Edmonton PET Centre. The potential of the measured excitation functions for use as monitor reactions was evaluated and tested by measuring activity ratios at a different facility. Single Nb foils were irradiated at incident energies in the range from 12 to 19 MeV on the TR19/9 cyclotron at Brookhaven National Laboratory. Results are compared with the published data and with theoretical values as determined by the nuclear reaction model code EMPIRE.

  8. Actinide complexation kinetics: rate and mechanism of dioxoneptunium (V) reaction with chlorophosphonazo III

    Rates of complex formation and dissociation in NpO2+- Chlorophosphonazo III (2,7-bis(4-chloro-2-phosphonobenzeneazo)-1,8- dihydroxynapthalene-3,6-disulfonic acid)(CLIII) were investigated by stopped-flow spectrophotometry. Also, limited studies were made of the rates of reaction of La3+, Eu3+, Dy3+, and Fe3+ with CLIII. Rate determining step in each system is an intramolecular process, the NpO2+-CLIII reaction proceeding by a first order approach to equilibrium in the acid range from 0.1 to 1.0 M. Complex formation occurs independent of acidity, while both acid dependent and independent dissociation pathways are observed. Activation parameters for the complex formation reaction are ΔH=46.2±0.3 kJ/m and ΔS=7± J/mK (I=1.0 M); these for the acid dependent and independent dissociation pathways are ΔH=38.8±0.6 kJ/m, ΔS=-96±18 J/mK, ΔH=70.0± kJ/m, and ΔS=17±1 J/mK, respectively. An isokinetic relationship is observed between the activation parameters for CLIII complex formation with NpO2+, UO22+, Th4+, and Zr4+. Rates of CLIII complex formation reactions for Fe3+, Zr4+, NpO2+, UO22+, Th4+, La3+, Eu3+, and Dy3+ correlate with cation radius rather than charge/radius ratio

  9. Activated by Combined Magnrtic Field Gravitropic Reaction Reply on Nanodose of Biologicaly Active Compounds

    Sheykina, Nadezhda; Bogatina, Nina

    The new science direction nanotechnologies initiated a big jump in the pharmacology and medicine. This leads to the big development of homeopathy. The most interest appeared while investigating of the reaction of biological object on the nano dose of iologically substances. The changing of concentration (in nmol/l) of biologically active material is also possible during weak energy action. For instance, weak combined magnetic field may change a little the concentration of ions that are oriented parallel to the external magnetic field and, by the analogy with said above, lead to the similar effects. Simple estimations give the value for the threshold to the magnetic field by two orders smaller than the geomagnetic field. By this investigation we wanted to understand whether the analogy in the action of nano dose of biologically active substances and weak combined magnetic field presents and whether the action of one of these factors may be replaced by other one. The effect of one of biologically active substances NPA (Naphtyl-Phtalame Acid) solution with the concentration 0.01 mol/l on the gravitropic reaction of cress roots was investigated. It was shown that its effect was the inhibition of cress roots gravitropic reaction. The same inhibition was achieved by the combined magnetic field action on the cress roots, germinated in water. The alternative component of the combined magnetic field coincided formally with the cyclotron frequency of NPA ions. So the analogy in the action of nano dose of biologically active substances and weak combined magnetic field was shown. The combined magnetic field using allows to decrease sufficiently the dose of biologically active substances. This fact can be of great importance in pharmacy and medicine.

  10. Study of thermodynamics of complex formation of flavonoids of steviа (Stevіa rebaudіana Bertonі) leaves

    Kuznetsova, Inga

    2014-01-01

    Scientists have studied the mechanisms of forming complexes between flavonoids of  different plants and ions of iron and copper. Stevia is one of many plants, rich in biologically active substances and which is practically uninvestigated. In particular, the antioxidant effect of flavonoids of stevia leaves is not studied and there are no data on its thermodynamic properties, namely the possibility of natural flow of the complex formation process. There are no data on the possibility of formin...

  11. Hair dye-incorporated poly-γ-glutamic acid/glycol chitosan nanoparticles based on ion-complex formation

    Lee HY

    2011-11-01

    Full Text Available Hye-Young Lee1,*, Young-IL Jeong2,*, Ki-Choon Choi31Anyang Science University, Anyang, Gyeonggi, South Korea; 2Chonnam National University Hwasun Hospital, Jeonnam, South Korea; 3Grassland and Forages Research Center, National Institute of Animal Science, Rural Development Administration, Chungnam, South Korea*These authors contributed equally to this work.Background: p-Phenylenediamine (PDA or its related chemicals are used more extensively than oxidative hair dyes. However, permanent hair dyes such as PDA are known to have potent contact allergy reactions in humans, and severe allergic reactions are problematic.Methods: PDA-incorporated nanoparticles were prepared based on ion-complex formation between the cationic groups of PDA and the anionic groups of poly(γ-glutamic acid (PGA. To reinforce PDA/PGA ion complexes, glycol chitosan (GC was added. PDA-incorporated nanoparticles were characterized using field-emission scanning electron microscopy, Fourier-transform infrared (FT-IR spectroscopy, dynamic light scattering, and powder X-ray diffractometry (XRD.Results: Nanoparticles were formed by ion-complex formation between the amine groups of PDA and the carboxyl groups of PGA. PDA-incorporated nanoparticles are small in size (<100 nm, and morphological observations showed spherical shapes. FT-IR spectra results showed that the carboxylic acid peak of PGA decreased with increasing PDA content, indicating that the ion complexes were formed between the carboxyl groups of PGA and the amine groups of PDA. Furthermore, the intrinsic peak of the carboxyl groups of PGA was also decreased by the addition of GC. Intrinsic crystalline peaks of PDA were observed by XRD. This crystalline peak of PDA was completely nonexistent when nanoparticles were formed by ion complex between PDA, PGA, and GC, indicating that PDA was complexed with PGA and no free drug existed in the formulation. During the drug-release experiment, an initial burst release of PDA was

  12. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    Bhattacharjee, Rajesh [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Xiang, Wenpei [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People' s Republic of China (China); Wang, Yinna [Vascular Medicine Institute, University of Pittsburgh School of Medicine, 10051-5A BST 3, 3501 Fifth Avenue, Pittsburgh, PA 15261 (United States); Zhang, Xiaoying [Department of Medicine/Endocrinology Division, University of Pittsburgh Medical Center, 200 Lothrop St., Pittsburgh, PA 15213 (United States); Billiar, Timothy R., E-mail: billiartr@upmc.edu [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States)

    2012-06-22

    that cAMP exerts its affect at the proximal level of TNF signaling by inhibiting the formation of the DISC complex upon the binding of TNF to TNFR1. In conclusion, our study shows that cAMP prevents TNF + ActD-induced apoptosis in rat hepatocytes by inhibiting DISC complex formation.

  13. Brain Activity, Personality Traits and Affect: Electrocortical Activity in Reaction to Affective Film Stimuli

    Makvand Hosseini, Sh.; Azad Fallah, P.; Rasoolzadeh Tabatabaei, S. K.; Ghannadyan Ladani, S. H.; Heise, C.

    We studied the patterns of activation over the cerebral cortex in reaction to affective film stimuli in four groups of extroverts, introverts, neurotics and emotionally stables. Measures of extraversion and neuroticism were collected and resting EEG was recorded from 40 right handed undergraduate female students (19-23) on one occasion for five 30s periods in baseline condition and in affective states. Mean log-transformed absolute alpha power was extracted from 12 electrode sites and analyzed. Patterns of activation were different in personality groups. Different patterns of asymmetries were observed in personality groups in reaction to affective stimuli. Results were partly consistent with approach and withdrawal model and provided supportive evidence for the role of right frontal asymmetry in negative affects in two groups (introverts and emotionally stables) as well as the role of right central asymmetry (increase on right and decrease on left) in active affective states (anxiety and happiness) in all personality groups. Results were also emphasized on the role of decrease activity relative to baseline in cortical regions (bilaterally in frontal and unilaterally in left parietal and temporal regions) in moderating of positive and negative emotion.

  14. The Element Effect Revisited: Factors Determining Leaving Group Ability in Activated Nucleophilic Aromatic Substitution Reactions

    Senger, Nicholas A.; Bo, Bo; Cheng, Qian; Keeffe, James R.; Gronert, Scott; Wu, Weiming

    2012-01-01

    The “element effect” in nucleophilic aromatic substitution reactions (SNAr) is characterized by the leaving group order, F > NO2 > Cl ≈ Br > I, in activated aryl halides. Multiple causes for this result have been proposed. Experimental evidence shows that the element effect order in the reaction of piperidine with 2,4-dinitrophenyl halides in methanol is governed by the differences in enthalpies of activation. Computational studies of the reaction of piperidine and dimethylamine with the same...

  15. Copper(II)-catalyzed reactions of activated aromatics.

    Puzari, A; Baruah, J B

    2000-04-21

    The catalytic reaction of cis-bisglycinato copper(II) monohydrate in the presence of hydrogen peroxide leads to hydroxylation of phenol to give catechol and hydroquinone (1:1.2 ratio) in good yield. 2,6-Dimethylphenol can be hydroxylated by hydrogen peroxide and a catalytic amount of cis-bisglycinato copper(II) monohydrate to give an aggregate of 1,4-dihydroxy-2,6-dimethylbenzene and 2,6-dimethylphenol. A similar reaction of o-cresol gives 2,5-dihydroxytoluene. The reactivity of cis-bisglycinato copper(II) monohydrate in hydrogen peroxide with o-cresol is 4.5 times faster than that of a similar reaction by trans-bisglycinato copper(II) monohydrate. A catalytic reaction of cis-bisglycinato copper(II) monohydrate with aniline in aqueous hydrogen peroxide gives polyanilines in the form of pernigraniline with different amounts of Cu(OH)2 attached to them. The two major components of polyanilines obtained have Mn values of 1040 and 1500, respectively. Resistance of films of these polyanilines increases with temperatures from 40 degrees C to a maximum value at 103 degrees C and then decreases in the region of 103-150 degrees C, showing the property of a thermolectric switch. The aggregate prepared from hydroxylation of 2,6-dimethylphenol shows a similar property in the region of 30-180 degrees C. PMID:10789445

  16. Events during Initiation of Archaeal Transcription: Open Complex Formation and DNA-Protein Interactions

    Hausner, Winfried; Thomm, Michael

    2001-01-01

    Transcription in Archaea is initiated by association of a TATA box binding protein (TBP) with a TATA box. This interaction is stabilized by the binding of the transcription factor IIB (TFIIB) orthologue TFB. We show here that the RNA polymerase of the archaeon Methanococcus, in contrast to polymerase II, does not require hydrolysis of the β-γ bond of ATP for initiation of transcription and open complex formation on linearized DNA. Permanganate probing revealed that the archaeal open complex s...

  17. Complex formation constant and hydration number change of aqua-rare earth ions

    Full text: It is now well established that the inner-sphere hydration number of aqua-rare earth ions changes from nine to eight in the middle of the rare earth series. This hydration number change greatly affects the complex formation of rare earth ions as we observe irregular variations in most series behaviours of the complex formation constant (K) in aqueous solution systems when K being plotted against 1/r or r (r is ionic radius of rare earth ion). Furthermore, it shows very anomalous concentration dependence in the sense that nona-aqua Ln3+ ion increases in number with increase in salt concentration in aqueous rare earth salt solution (salt chloride, perchlorate). In this report, a theoretical derivation of the formation constant (K) for the inner-sphere complex formation of rare earth ions with a monodentate ligand was made by taking account of both the hydration number change in the middle of the series and its anomalous salt concentration dependence. The series behaviour of the formation constant against 1/r (or r) is successfully explained with using the empirical finding that K varies almost linearly with 1/r (or r) in the region where only one hydration number dominates. This success is also taken as evidence that the anomalous salt concentration dependence of the hydration number change is caused by the outer-sphere complex formation of rare earth ions with the condition that nona-aqua rare earth ions form outer-sphere complexes more easily than octa-aqua ions

  18. Peculiarities of litter invertebrates’ multispecies complexes formation on the Khortitsa island (Zaporizhzhya province

    D. О. Fedorchenko

    2008-02-01

    Full Text Available Peculiarities of litter invertebrates’ complexes formation under conditions of the Khortitsa National Reserve (Zaporizhzhya province are studied. The dispersion of taxonomic groups of different levels (families and species in litter mesofauna is swayed by the inter- and intrasystem factors; the largest influence has the power of litter and its humidity. The rate of ecological factors’ influence at different taxonomic levels may diverge.

  19. Sorption of small quantities of silver on silicic acid under the conditions of complex formation

    Present article is devoted to sorption of small quantities of silver on silicic acid under the conditions of complex formation. Study of precipitation of small quantities of silver (4.2·10-5mg/l) from the solutions of oxalic, tartaric and citric acids depending on ph showed that under these conditions the precipitation does not occur. This is due to formation of stable and soluble in the water silver complex compounds with oxalic, tartaric and citric acids.

  20. Ox red-metric study of complex formation processes of manganese (II, III) in glycin aqueous solution

    Present article is devoted to ox red-metric study of complex formation processes of manganese (II, III) in glycin aqueous solution. The possibility of application of ox red-metric method for study of complex formation processes of manganese (II, III) was shown. The composition of complex compounds was determined.

  1. Halogen atom reactions activated by nuclear transformations. Progress report, February 15, 1975--February 14, 1976

    High energy reactions of halogen atoms or ions, activated by nuclear transformations, are being studied in gaseous, high pressure, and condensed phase saturated and unsaturated hydrocarbons, halomethanes, and other organic systems. Experimental and theoretical data are presented in the following areas: systematics of iodine hot atom reactions in halomethanes, reactions and systematics of iodine reactions with pentene and butene isomers, radiative neutron capture activated reactions of iodine with acetylene, gas to liquid to solid transition in hot atom chemistry, kinetic theory applications of hot atom reactions and the mathematical development of caging reactions, solvent dependence of the stereochemistry of the 38Cl for Cl substitution following 37Cl(n,γ)38Cl in liquid meso and dl-(CHFCl)2. A technique was also developed for the radioassay of Al in urine specimens

  2. Reactions of 3-Formylchromone with Active Methylene and Methyl Compounds and Some Subsequent Reactions of the Resulting Condensation Products

    M. Lácova

    2005-08-01

    Full Text Available This review presents a survey of the condensations of 3-formylchromone with various active methylene and methyl compounds, e.g. malonic or barbituric acid derivatives, five-membered heterocycles, etc. The utilisation of the condensation products for the synthesis of different heterocyclic systems, which is based on the ability of the γ-pyrone ring to be opened by the nucleophilic attack is also reviewed. Finally, the applications of microwave irradiation as an unconventional method of reaction activation in the synthesis of condensation products is described and the biological activity of some chromone derivatives is noted.

  3. Reactions of 3-formylchromone with active methylene and methyl compounds and some subsequent reactions of the resulting condensation products.

    Gasparová, Renata; Lácová, Margita

    2005-01-01

    This review presents a survey of the condensations of 3-formylchromone with various active methylene and methyl compounds, e.g. malonic or barbituric acid derivatives, five-membered heterocycles, etc. The utilisation of the condensation products for the synthesis of different heterocyclic systems, which is based on the ability of the gamma-pyrone ring to be opened by the nucleophilic attack is also reviewed. Finally, the applications of microwave irradiation as an unconventional method of reaction activation in the synthesis of condensation products is described and the biological activity of some chromone derivatives is noted. PMID:18007363

  4. Self-activated, self-limiting reactions on Si surfaces

    Morgen, Per; Hvam, Jeanette; Bahari, Ali;

    mechanism for the direct growth of ultrathin films (0-3 nm) of oxides and nitrides under ultrahigh vacuum conditions. Neutral oxygen and a microwave excited nitrogen plasma interact directly with Si surfaces kept at different temperatures during the reaction. The gas pressures are around 10-6 Torr, and the...... temperatures vary from room temperature to 10000C.The growth is in these cases self-limiting, with the optimal oxide thickness around 0.7-0.8 nm, at 5000C, and up to a few nm for nitride. The self-limiting oxide case was recently predicted by Alex Demkov in a structural optimization to minimise the total...... energy of an oxide system, which happened for an ordered structure, at a thickness of 0.7-0.8 nm. Thus this thin oxide structure has definite crystalline features. We have closely monitored the reaction kinetics with normal x-ray induced photoelectron spectroscopies, and also the structure, composition...

  5. The dual effects of Maillard reaction and enzymatic hydrolysis on the antioxidant activity of milk proteins.

    Oh, N S; Lee, H A; Lee, J Y; Joung, J Y; Lee, K B; Kim, Y; Lee, K W; Kim, S H

    2013-08-01

    The objective of this study was to determine the enhanced effects on the biological characteristics and antioxidant activity of milk proteins by the combination of the Maillard reaction and enzymatic hydrolysis. Maillard reaction products were obtained from milk protein preparations, such as whey protein concentrates and sodium caseinate with lactose, by heating at 55°C for 7 d in sodium phosphate buffer (pH 7.4). The Maillard reaction products, along with untreated milk proteins as controls, were hydrolyzed for 0 to 3h with commercial proteases Alcalase, Neutrase, Protamex, and Flavorzyme (Novozymes, Bagsværd, Denmark). The antioxidant activity of hydrolyzed Maillard reaction products was determined by reaction with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, their 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, and the ability to reduce ferric ions. Further characteristics were evaluated by the o-phthaldialdehyde method and sodium dodecyl sulfate-PAGE. The degree of hydrolysis gradually increased in a time-dependent manner, with the Alcalase-treated Maillard reaction products being the most highly hydrolyzed. Radical scavenging activities and reducing ability of hydrolyzed Maillard reaction products increased with increasing hydrolysis time. The combined products of enzymatic hydrolysis and Maillard reaction showed significantly greater antioxidant activity than did hydrolysates or Maillard reaction products alone. The hydrolyzed Maillard reaction products generated by Alcalase showed significantly higher antioxidant activity when compared with the other protease products and the antioxidant activity was higher for the whey protein concentrate groups than for the sodium caseinate groups. These findings indicate that Maillard reaction products, coupled with enzymatic hydrolysis, could act as potential antioxidants in the pharmaceutical, food, and dairy industries. PMID:23769366

  6. Power Installations based on Activated Nuclear Reactions of Fission and Synthesis

    Grigoriev, Yuriy

    2016-01-01

    The general scheme of power installations based on nuclear reactions of fission and synthesis activated by external sources is analyzed. The external activation makes possible to support nuclear reactions at temperatures and pressures lower than needed for chain reactions, so simplifies considerably practical realization of power installations. The possibility of operation on subcritical masses allows making installations compact and safe at emergency situations. Installations are suitable for transmutation of radioactive nuclides, what solves the problem of utilization of nuclear waste products. It is proposed and considered schemes of power installations based on nuclear reactions of fission and fusion, activated by external sources, different from ADS systems. Variants of activation of nuclear reactions of fission (U-235, 238, Pu-239) and fusion (Li-6,7, B-10,11) are considered.

  7. Energetic Mechanism of Cytochrome c-Cytochrome c Oxidase Electron Transfer Complex Formation under Turnover Conditions Revealed by Mutational Effects and Docking Simulation.

    Sato, Wataru; Hitaoka, Seiji; Inoue, Kaoru; Imai, Mizue; Saio, Tomohide; Uchida, Takeshi; Shinzawa-Itoh, Kyoko; Yoshikawa, Shinya; Yoshizawa, Kazunari; Ishimori, Koichiro

    2016-07-15

    Based on the mutational effects on the steady-state kinetics of the electron transfer reaction and our NMR analysis of the interaction site (Sakamoto, K., Kamiya, M., Imai, M., Shinzawa-Itoh, K., Uchida, T., Kawano, K., Yoshikawa, S., and Ishimori, K. (2011) Proc. Natl. Acad. Sci. U.S.A. 108, 12271-12276), we determined the structure of the electron transfer complex between cytochrome c (Cyt c) and cytochrome c oxidase (CcO) under turnover conditions and energetically characterized the interactions essential for complex formation. The complex structures predicted by the protein docking simulation were computationally selected and validated by the experimental kinetic data for mutant Cyt c in the electron transfer reaction to CcO. The interaction analysis using the selected Cyt c-CcO complex structure revealed the electrostatic and hydrophobic contributions of each amino acid residue to the free energy required for complex formation. Several charged residues showed large unfavorable (desolvation) electrostatic interactions that were almost cancelled out by large favorable (Columbic) electrostatic interactions but resulted in the destabilization of the complex. The residual destabilizing free energy is compensated by the van der Waals interactions mediated by hydrophobic amino acid residues to give the stabilized complex. Thus, hydrophobic interactions are the primary factors that promote complex formation between Cyt c and CcO under turnover conditions, whereas the change in the electrostatic destabilization free energy provides the variance of the binding free energy in the mutants. The distribution of favorable and unfavorable electrostatic interactions in the interaction site determines the orientation of the binding of Cyt c on CcO. PMID:27226541

  8. Layered metal laurates as active catalysts in the methyl/ethyl esterification reactions of lauric acid

    Lisboa, Fabio da Silva; Cordeiro, Claudiney S.; Wypych, Fernando, E-mail: wypych@ufpr.br [Centro de Pesquisas em Quimica Aplicada (CEPESQ), Departamento de Quimica, Universidade Federal do Parana, Curitiba, PR (Brazil); Gardolinski, Jose Eduardo F. da Costa [Laboratorio de Analise de Minerais e Rochas (LAMIR), Departamento de Geologia, Universidade Federal do Parana, Curitiba, PR (Brazil)

    2012-07-01

    In this work we report the synthesis, characterization and investigation of the catalytic activity of layered copper(II), manganese(II), lanthanum(III) and nickel(II) laurates in the methyl and ethyl esterification reactions of lauric acid. In the methyl esterification, conversions between 80 and 90% were observed for all catalysts, while for the ethyl esterification only manganese laurate showed reasonable catalytic activity, with conversions close to 75%. Reuse of copper and lanthanum laurates in three cycles of reaction was also investigated and both catalysts preserved the structure and retained catalytic activity close to that observed for the first reaction cycle. (author)

  9. Activity of CAJAD [Center for Nuclear Structure and Reaction Data

    After the last meeting 2005 we prepared A061 Trans files, containing astrophysical data, fission data, monitor reaction data. The files include new entries and some corrected old entries according to the new rules .During the time of 2005/2006, 100 entries were prepared for the NEA DATA-BANK and included in O-library. These entries mainly contain differential data for elastic and inelastic scattering and production cross section radioactive and stable isotopes, data for material analysis by charged beams. This work is orientated mainly for nuclear waste transformation , medical applications and material analysis. According to the conclusion of the last meeting EPJ/A and YF journals reviews were performed by CAJAD and the distribution is done right now

  10. Complex Formation of Adenosine 3',5'-Cyclic Monophosphate with β-Cyclodextrin: Kinetics and Mechanism by Ultrasonic Relaxation

    Adenosine 3',5'-cyclic monophosphate (cAMP) is a second messenger responsible for a multitude of cellular responses. In this study, we utilized β-cyclodextrin (β-CD) as an artificial receptor with a hydrophobic cavity to elucidate the inclusion kinetics of cAMP in a hydrophobic environment using the ultrasonic relaxation method. The results revealed that the interaction of cAMP with β-CD followed a single relaxation curve as a result of host-guest interactions. The inclusion of cAMP into the β-CD cavity was found to be a diffusion-controlled reaction. The dissociation of cAMP from the β-CD cavity was slower than that of adenosine 5'-monophosphate (AMP). The syn and anti glycosyl conformations of adenine nucleotides are considered to play an important role in formation of the inclusion complex. Taken together, our findings indicate that hydrophobic interactions are involved in the inclusion complex formation of cAMP with β-CD and provide insight into the interactions of cAMP with cAMP-binding proteins

  11. Hydrolysis of (CH{sub 3})Hg{sup +} in different ionic media: Salt effects and complex formation

    Robertis, A. de; Foti, C.; Patane, G.; Sammartano, S. [Univ. di Messina, Agata (Italy)

    1998-11-01

    The hydrolysis of monomethylmercury(II) was studied potentiometrically, in NaNO{sub 3}, Na{sub 2}SO{sub 4}, and NaCl aqueous solution, in a wide range of ionic strengths (NaNO{sub 3}, 0 {le} I {le} 1; NaCl, 0 {le} 1 {le} 3 mol/dm{sup 3}) and at t = 25 C. For the reaction (CH{sub 3})Hg{sup +} = (CH{sub 3})Hg(OH){degree} + H{sup +}, the authors found log K{sub 1} = {minus}4.528 (I = 0 mol/dm{sup 3}). The species [(CH{sub 3})Hg]{sub 2}(OH){sup +} was also found, with log {beta}{sub 2} = {minus}2.15. Monomethylmercury(II) forms quite strong complexes with Cl{sup {minus}} (log K = 5.45, I = 0 mol/dm{sup 3}) and SO{sub 4}{sup 2{minus}} (log K = 2.64, I = 0 mol/dm{sup 3}). The dependence on ionic strength of formation constants was considered by using a Debye-Hueckel type equation. Hydrolysis and complex formation constants (at different ionic strengths) obtained were used to calculate the interaction parameters of Pitzer equations.

  12. Chemical equilibrium constants of rare earth nitrates and tri-n-butyl phosphate complex formation

    Kalaya Changkrueng; Deacha Chatsiriwech

    2011-01-01

    Mixed rare earth nitrates (REi(NO3)3) in the aqueous solution was mixed with tri-n-butyl phosphate (TBP,(n-C4H9O)3PO) dissolved in kerosene for the formation of their corresponding complexes (REi(NO3)3·n1(n-C4H9O)3PO) at 303 K.The effects of initial concentrations of both TBP and mixed rare earth nitrates on the equilibrium constants of their complex formations were investigated.The complexes were formed almost immediately after mixing.The simultaneous formations reached their chemical equilibria within a few minutes by shaking the mixture at 200 r/min.The chemical equilibrium constants of the complex formations were independent of the initial TBP concentrations.However,they were decreased by reducing the concentration of REi(NO3)3.All equilibrium constants of the simultaneous complex formations were less than 0.7,while the average molar ratio of TBP to REi(NO3)3 of the complexes varied between 1.0 and 1.6.The chemical equilibrium constant for the formation of La(NO3)3·(n-C4HgO)3PO was 0.09,while that of Dy(NO3)3·(n-CaH9O)3PO was 0.68.The ascending sequence of chemical equilibrium constants for the simultaneous formations was La,Ce,Pr,Nd,Eu,Y,Srn,Gd,and Dy.

  13. On the promoter complex formation rate of E. coli RNA polymerases with T7 phage DNA.

    Belintsev, B N; Zavriev, S.K.; Shemyakin, M.F.

    1980-01-01

    Influence of ionic strength on the kinetics of the promoter complex formation between E. coli RNA polymerase and T7 phage DNA was investigated using a membrane filter assay. The enzyme-promoter association rate constant was determined. It varies from 10(9) to 3 x 10(7) M-1 sec-1 when the ionic strength is changed from zero to 0.15 M NaCl. Basing on the theoretical analysis of experimental data obtained the model for the promoter site selection assuming the enzyme sliding along the DNA is disc...

  14. Temperature induced complex formation-deformation behavior of collagen model peptides and polyelectrolytes in aqueous solution

    Terao, Ken; Kanenaga, Ryoko; Yoshida, Tasuku; Mizuno, Kazunori; Bächinger, Hans Peter

    2015-01-01

    Since the triple-helical collagen model peptides with a free N-terminus have three cationic groups at one end, it may have strong interactions with polyelectrolytes. In this study, complex formation behavior was investigated for sodium carboxymethyl amylose (NaCMA) + H-(Pro-Pro-Gly)10-OH (PPG10), a collagen model peptide, in aqueous NaCl with ionic strength of 10 mM and 100 mM by means of small-angle X-ray scattering (SAXS) and circular dichroism at different temperatures. The previously repo...

  15. Activation of pozzolanic and latent-hydraulic reactions by Alkalis in order to repair concrete cracks

    Gruyaert, Elke; Van Tittelboom, Kim; Rahier, Hubert; De Belie, Nele

    2015-01-01

    The low degree of hydration of fly ash (FA) and slag (BFS) particles in high-volume FA and BFS concrete offers the possibility to activate the unreacted particles upon crack formation to close the crack. In this paper, a preliminary study is performed to evaluate the use of alkaline activators to stimulate the formation of reaction products in the crack. First, the reaction rates of crushed pastes mixed with alkaline solutions or water were monitored by calorimetry. These tests showed that al...

  16. A mini review on NiFe-based materials as highly active oxygen evolution reaction electrocatalysts

    Gong, Ming; Dai, Hongjie

    2014-01-01

    Oxygen evolution reaction (OER) electrolysis, as an important reaction involved in water splitting and rechargeable metal-air battery, has attracted increasing attention for clean energy generation and efficient energy storage. Nickel/iron (NiFe)-based compounds have been known as active OER catalysts since the last century, and renewed interest has been witnessed in recent years on developing advanced NiFe-based materials for better activity and stability. In this review, we present the earl...

  17. Mechanism of anti-influenza virus activity of Maillard reaction products derived from Isatidis roots

    Ke, Lijing

    2011-01-01

    The cyto-protective compositions and effects of antiviral Maillard reaction products (MRPs) derived from roots of Isatis indigotica F. were examined using biochemical and biophysical methods. The Maillard reaction was identified as the main source of compounds with antiviral activity, an observation which has led to the proposal of a new class of active compounds that protect cells from influenza virus infection. In the roots, arginine and glucose were revealed to be the predom...

  18. Generalization of the Activated Complex Theory of Reaction Rates. I. Quantum Mechanical Treatment

    Marcus, R. A.

    1964-01-01

    In its usual form activated complex theory assumes a quasi-equilibrium between reactants and activated complex, a separable reaction coordinate, a Cartesian reaction coordinate, and an absence of interaction of rotation with internal motion in the complex. In the present paper a rate expression is derived without introducing the Cartesian assumption. The expression bears a formal resemblance to the usual one and reduces to it when the added assumptions of the latter are introduced.

  19. Activation measurements of (p,n) reaction cross sections at low energies

    Full text: The stellar enhancement factor, a quantity that measures the influence of excited states to the reaction rate compared to the ground state as a function of temperature, is suppressed in some reverse channel processes of reactions involving one neutral particle, like (p,n) reactions. In these reactions, the reaction rate at the laboratory and under astrophysical conditions are believed to be the same, and therefore the information obtained on the nuclear properties of the process can be extrapolated to the high temperature environment considered. We have started a series of experiments to determine the cross section of (p, n) reactions on heavy elements (similar to those identified in [1]) at energies close to the reaction threshold using the activation technique. Owing to the relatively short half-lives of the reaction products and the reduced gamma branching ratios an online measurement procedure has been put into operation. We have taken advantage of Proton Induced Gamma Emission (PIGE) setups at the ITN laboratory in Lisbon, Portugal, and at the CMAM laboratory in Madrid, Spain, to perform gamma spectroscopy measurements with a HPGe in a close geometry with thin reaction targets. A careful monitoring of the proton beam current has been performed during the irradiation. In this paper preliminary results of the first measurements performed on the reactions 104Ru(p,n)104Rh, 122Te(p,n)122I and 128Te(p,n)128I will be presented, together with the predictions of global models.

  20. High energy halogen atom reactions activated by nuclear transformations

    This program, which has been supported for twenty-four years by the Us Atomic Energy Commission and its successor agencies, has produced significant advances in the understanding of the mechanisms of chemical activation by nuclear processes; the stereochemistry of radioactivity for solution of specific problems. This program was contributed to the training of approximately seventy scientists at various levels. This final report includes a review of the areas of research and chronological tabulation of the publications

  1. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2010-08-03

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  2. Evaluation of complex formation ability of dissolved organic matter with radionuclide in ground water based on loading capacity (LC) method

    It is important to evaluate complex formation ability of dissolved organic matter (DOM) with radionuclide, in terms of long-term safety assessment of nuclear waste. In this review, the dependence of the complex stability on environmental factors such as pH, ionic strength, and characteristics of humic substances was described based on Loading Capacity (LC) method. The effects of humic concentration on actinide speciation and its solubility in a groundwater were evaluated with consideration of mixed complex formation. (author)

  3. Activation measurements of α-induced reactions relevant for p-process nucleosynthesis

    Scholz, Philipp; Endres, Janis; Mayer, Jan; Netterdon, Lars; Sauerwein, Anne; Zilges, Andreas [Koeln Univ. (Germany). Inst. fuer Kernphysik

    2013-07-01

    The production of p nuclei, those proton-rich nuclei that are not produced by neutron-capture reactions, is mainly attributed to sequences of photodisintegration reactions - the so called γ process. Most of the predicted reaction rates for reaction network calculations for the γ process are derived from Hauser-Feshbach calculations which strongly depend on γ-strength functions, nuclear-level densities and adopted nuclear models for optical-model potentials. Experimental data for α-induced reactions at low energies are rare. Hence, the construction of a global optical potential and therefore reliable predictions of reaction rates are difficult. For the improvement of the experimental situation the reactions {sup 141}Pr(α,n){sup 144}Pm, {sup 168}Yb(α,n){sup 171}Hf, and {sup 168}Yb(α,γ){sup 172}Hf were studied with the activation technique [1]. Additionally, an activation experiment for the reaction {sup 187}Re(α,n) was recently performed. The counting setup at the Institut fuer Kernphysik in Cologne as well as experimental results are presented.

  4. Directed electrostatic activation in enantioselective organocatalytic cyclopropanation reactions: a computational study.

    Georgieva, Miglena K; Duarte, Filipe J S; Santos, A Gil

    2016-07-01

    Cyclopropane rings are versatile building blocks in organic chemistry. Their synthesis, by the reaction of sulfur ylides with α,β-unsaturated carbonyl compounds, has recently aroused renewed interest after the discovery of efficient catalysis by using (S)-indoline-2-carboxylic acid. In order to rationalize the behavior of this catalyst, MacMillan proposed a directed electrostatic activation (DEA) mechanism, in which the negative carboxylate group interacts with the positive thionium moiety, thus reducing the activation energy and increasing the reaction rate. More recently, Mayr refuted some of MacMillan conclusions, but accepted the DEA mechanism as a justification for the experimental high reaction rates. In contrast, our results indicate that the selectivity obtained in the process seems to result from several strong hydrogen bond interactions between the two reacting species, while no strong evidence for a DEA mechanism was found. We also concluded that the hydrogen bonds don't improve the reaction rate by lowering the activation energy of the rate-determining step, but can do it by promoting efficient reaction trajectories due to long-range complexation of the reagents. Finally, our results confirm that the cyclopropanation reaction occurs by a two-step mechanism, and that the overall enantioselectivity depends on the relative energies of the two steps, averaged by the relative populations of the iminium intermediates that are initially formed in the reaction. PMID:27223461

  5. Traveling Wave Solutions in a Reaction-Diffusion Model for Criminal Activity

    Berestycki, H.; Rodríguez, N.; Ryzhik, L

    2013-01-01

    We study a reaction-diffusion system of partial differential equations, which can be taken to be a basic model for criminal activity. We show that the assumption of a populations natural tendency towards crime significantly changes the long-time behavior of criminal activity patterns. Under the right assumptions on these natural tendencies we first show that there exists traveling wave solutions connecting zones with no criminal activity and zones with high criminal activity, known as hotspot...

  6. Stability of furosemide polymorphs and the effects of complex formation with β-cyclodextrin and maltodextrin.

    Garnero, Claudia; Chattah, Ana Karina; Longhi, Marcela

    2016-11-01

    The effect of the formation of supramolecular binary complexes with β-cyclodextrin and maltodextrin on the chemical and physical stability of the polymorphs I and II of furosemide was evaluated in solid state. The solid samples were placed under accelerated storage conditions and exposed to daylight into a stability chamber for a 6-month. Chemical stability was monitored by high performance liquid chromatography, while the physical stability was studied by solid state nuclear magnetic resonance, powder X-ray diffraction and scanning electron microscopy. Changes in the physical appearance of the samples were evaluated. The studies showed a significant stabilizing effect of β-cyclodextrin on furosemide form II. Our results suggest that the complex formation is a useful tool for improving the stability of furosemide polymorphs. These new complexes are promising candidates that can be used in the pharmaceutical industry for the preparation of alternative matrices that improve physicochemical properties. PMID:27516309

  7. Investigation of the proton-induced activation reactions on natural molybdenum

    Excitation functions of the proton-induced activation reactions on a natural molybdenum target were measured using the stacked foil activation technique in the energy range 22-67 MeV at the Tohoku University cyclotron laboratory. In addition the thick target integral yield was desired using the measured cross-section data. (author)

  8. Can arsenic-phytochelatin complex formation be used as an indicator for toxicity in Helianthus annuus?

    Raab, Andrea; Ferreira, Katia; Meharg, Andrew A; Feldmann, Jörg

    2007-01-01

    The formation of arsenic-phytochelatin (As-PC) complexes is thought to be part of the plant detoxification strategy for arsenic. This work examines (i) the arsenic (As) concentration-dependent formation of As-PC complex formation and (ii) redistribution and metabolism of As after arrested As uptake in Helianthus annuus. HPLC with parallel ICP-MS/ES-MS detection was used to identify and quantify the species present in plant extracts exposed to arsenate (As(V)) (between 0 and 66.7 micromol As l-1 for 24 h). At As concentrations below the EC50 value for root growth (22 micromol As l-1) As uptake is exponential, but it is reduced at concentrations above. Translocation between root and shoot seemed to be limited to the uptake phase of arsenic. No redistribution of As between root and shoot was observed after arresting As exposure. The formation of As-PC complexes was concentration-dependent. The amount and number of As-PC complexes increased exponentially with concentration up to 13.7 micromol As l-1. As(III)-PC3 and GS-As(III)-PC2 complexes were the dominant species in all samples. The ratio of PC-bound As to unbound As increased up to 1.3 micromol As l-1 and decreased at higher concentrations. Methylation of inorganic As was only a minor pathway in H. annuus with about 1% As methylated over a 32 d period. The concentration dependence of As-PC complex formation, amount of unbound reduced and oxidized PC2, and the relative uptake rate showed that As starts to influence the cellular metabolism of H. annuus negatively at As concentrations well below the EC50 value determined by more traditional means. Generally, As-PC complexes and PC-synthesis rate seem to be the more sensitive parameters to be studied when As toxicity values are to be estimated. PMID:17283372

  9. Cadmium(II) N-acetylcysteine complex formation in aqueous solution.

    Jalilehvand, Farideh; Amini, Zahra; Parmar, Karnjit; Kang, Eun Young

    2011-12-21

    The complex formation between Cd(II) ions and N-acetylcysteine (H(2)NAC) in aqueous solution was investigated using Cd K- and L(3)-edge X-ray absorption and (113)Cd NMR spectroscopic techniques. Two series of 0.1 M Cd(II) solutions with the total N-acetylcysteine concentration c(H2NAC) varied between 0.2-2 M were studied at pH 7.5 and 11.0, respectively. At pH = 11 a novel mononuclear [Cd(NAC)(4)](6-) complex with the average Cd-S distance 2.53(2) Å and the chemical shift δ((113)Cd) = 677 ppm was found to dominate at a concentration of the free deprotonated ligand [NAC(2-)] > 0.1 M, consistent with our previous reports on cadmium tetrathiolate complex formation with cysteine and glutathione. At pH 7.5 much higher ligand excess ([HNAC(-)] > 0.6 M) is required to make this tetrathiolate complex the major species. The (113)Cd NMR spectrum of a solution containing c(Cd(II)) = 0.5 M and c(H2NAC) = 1.0 M measured at 288 K showed three broad signals at 421, 583 and 642 ppm, which can be attributed to CdS(3)O(3), CdS(3)O and CdS(4) coordination sites, respectively, in oligomeric Cd(II)-NAC species with single thiolate bridges between the cadmium ions. PMID:22012146

  10. Dynamics of nanoparticle-protein corona complex formation: analytical results from population balance equations.

    Faryad Darabi Sahneh

    Full Text Available BACKGROUND: Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. METHOD: This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. RESULTS: The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. CONCLUSION: The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid.

  11. Solvent-Induced Reversal of Activities between Two Closely Related Heterogeneous Catalysts in the Aldol Reaction

    Kandel, Kapil [Ames Laboratory; Althaus, Stacey M [Ames Laboratory; Peeraphatdit, Chorthip [Ames Laboratory; Kobayashi, Takeshi [Ames Laboratory; Trewyn, Brian G [Ames Laboratory; Pruski, Marek [Ames Laboratory; Slowing, Igor I [Ames Laboratory

    2013-01-11

    The relative rates of the aldol reaction catalyzed by supported primary and secondary amines can be inverted by 2 orders of magnitude, depending on the use of hexane or water as a solvent. Our analyses suggest that this dramatic shift in the catalytic behavior of the supported amines does not involve differences in reaction mechanism, but is caused by activation of imine to enamine equilibria and stabilization of iminium species. The effects of solvent polarity and acidity were found to be important to the performance of the catalytic reaction. This study highlights the critical role of solvent in multicomponent heterogeneous catalytic processes.

  12. Improved radical scavenging activity of β-lactoglobulin-xylobiose modified by the Maillard reaction

    Yajima, Kensuke; Onodera, Shuichi; Takeda, Yasuyuki; Shiomi, Norio

    2007-01-01

    β-Lactoglobulin (β-LG) was modified and conjugated to xylobiose using the Maillard reaction. The antioxidant activity of the Maillard reaction product, β-LG-xylobiose, was measured in vitro and compared to that of conjugated β-LG-lactose. The reaction for 7 days led to conjugated β-LG-xylobiose with a relative molecular mass ranging between 19 and 22 kDa based on SDS-PAGE analysis. It is confirmed that xylobiose bound to β-LG by gas-liquid chromatography. One milligram of conjugated β-LG-xylo...

  13. Study of reactions induced by the halo nucleus 11Li with the active target MAYA

    Active targets are perfect tools for the study of nuclear reactions induced by very low intensity radioactive ion beams. They also enable the simultaneous study of direct and compound nuclear reactions. The active target MAYA, built at GANIL, has been used to study the reactions induced by a 4.3*A MeV 11Li beam at the ISAC2 accelerator TRIUMF (Canada). The angular distributions for the elastic scattering and the one and two neutron transfer reaction have been reconstructed. The elastic scattering angular distribution indicates a strong enhancement of the flux absorption with respect to the neighbouring nuclei. From a coupled channel analysis of the two neutron transfer reaction for different three body models, the information on the structure of the halo of the Borromean nucleus 11Li have been extracted. Meanwhile, the energy dependence of the elastic scattering reaction has been studied, using the active target MAYA as a thick target. The resulting spectrum shows a resonance around 3 MeV centre of mass. This resonance could be an isobaric analog state of 12Li, observed in 12Be. R matrix calculations have been performed in order to extract the parameters (spin and parity) of this state. (author)

  14. Acridine orange staining reaction as an index of physiological activity in Escherichia coli

    McFeters, G. A.; Singh, A.; Byun, S.; Callis, P. R.; Williams, S.

    1991-01-01

    The assumption that the acridine orange (AO) color reaction may be used as an index of physiological activity was investigated in laboratory grown Escherichia coli. Spectrofluorometric observations of purified nucleic acids, ribosomes and the microscopic color of bacteriophage-infected cells stained with AO confirmed the theory that single-stranded nucleic acids emit orange to red fluorescence while those that are double-stranded fluoresce green in vivo. Bacteria growing actively in a rich medium could be distinguished from cells in stationary phase by the AO reaction. Cells from log phase appeared red, whereas those in stationary phase were green. However, this differentiation was not seen when the bacteria were grown in a minimal medium or when a variation of the staining method was used. Also, shifting bacteria in stationary phase to starvation conditions rapidly changed their AO staining reaction. Boiling and exposure to lethal concentrations of azide and formalin resulted in stationary-phase cells that appeared red after staining but bacteria killed with chlorine remained green. These findings indicate that the AO staining reaction may be suggestive of physiological activity under defined conditions. However, variables in staining and fixation procedures as well as uncertainties associated with mixed bacterial populations in environmental samples may produce results that are not consistent with the classical interpretation of this reaction. The importance of validating the putative physiological implications of this staining reaction is stressed.

  15. Quantitative analysis of silicates by instrumental epithermal neutron activation using (n,p) reactions

    Instrumental epithermal neutron activation (IENA) involves the use of a neutron filter to screen out the thermal portion of the reactor neutron energy spectrum. Both Cd and B are efficient neutron filters. The principal advantage of epithermal over conventional thermal neutron activation for elemental analysis of geological materials is that the most common rock forming elements, which activate strongly with thermal neutrons (Na, Al, P, K, Fe, and Sc), have their activities suppressed, relative to elements which have cross-sectional resonances in the epithermal energy region. One-gram samples of various silicate standard reference materials were encapsulated in polyethylene vials and irradiated in the Los Alamos Omega West Reactor epithermal facility. Only six elements (F, Si, Na, Fe, Ni, and Ti) were successfully determined in geological matrices via (n,p) reactions. The single standard deviations among the measurements were less than 10% in all cases. The production ratio of (n,p) to (n,γ) and (n,p) to (n,α) interfering reactions are included for silicate materials having Mason's average crustal abundance of elements. Epithermal activation via (n,p) reactions provides an alternative method for the determination of Fe, Al, Na, Ni, and F. The preferred techniques are probably thermal neutron activation for the first three elements, atomic absorption for Ni, and ion selective electrode for F.Titanium and Si can be measured much more sensitively using the (n,p) reaction than by thermal neutron activation. 4 tables

  16. Analysis of the total activation cross section of all possible reactions producing the same radioactive nuclide for the%Analysis of the total activation cross section of all possible reactions producing the same radioactive nuclide for the

    周丰群; 宋月丽; 拓飞; 孔祥忠

    2011-01-01

    Firstly, according to the regulation of growth and decay of radioactive nuclides produced in reactions, a formula used to calculate the total activation cross section of all possible reactions producing the same radioactive nuclide for the same element is

  17. Rate of pozzolanic reaction of two kinds of activated coal gangue

    ZHOU Shuang-xi

    2009-01-01

    Two kinds of activated ways are used to prepare activated coal gangue fine powder,one is calcining coal gangue at 800 ℃ (gangue A),and the other is calcining coal gangue with a certain calcite at 800 ℃ (gangue B).The experiment shows that strengths of blended cement mortar with coal gangue B are higher than that of blended cement with coal gangue A.Hydration of cements with the two kinds of activated coal gangue is investigated through a differential thermal analysis.The weight loss due to Ca(OH)2 decomposition of hydration products by differential thermal anaiysis/thermo gravimetric (DTA/TG) can be used to quantify the pozzolanic reaction.A new method based on the composition of hydration cement is proposed to determine the degree of pozzolanic reaction.The results obtained suggest that the degree of pozzolanic reaction of gangue B is faster than that of gangue A.

  18. The reaction of iodoplatination of triple bond by platinum(4) complexes: formation of σ-vinyl derivatives

    According to IR and 1H NMR data, propargyl alcohol reacts with platinum(4) iodide complexes in aqueous solution at 10-15 deg C to yield the product of the addition of platinum(4) and iodine to the triple bond, which has been isolated in the form of Pt(CH=CI-CH2OH)2I2(CH3OH). The σ-vinyl ligands in the complex are situated in cis-position. The complex obtained decomposed at 80 deg C to form products of reductive elimination - E,E-2,5-diiodo-1,6-diolhexadiene-2,4 and PtI2. 3 refs

  19. Quantitative determination of phases in the alkaline activation of fly ash. Part II: Degree of reaction

    A. Fernandez-Jimenez; A.G. de la Torre; A. Palomo; G. Lopez-Olmo; M.M. Alonso; M.A.G. Aranda [Eduardo Torroja Institute (CSIC), Madrid (Spain)

    2006-10-15

    A working procedure was developed for determining the degree of reaction of fly ash subjected to alkali activation (with 8 M NaOH) at mild temperatures. Since the reaction products dissolve in HCl, the residue left after this acid attack contains only the fraction of the original ash that failed to react with the basic solution. This residue was analysed with Rietveld XRPD quantification and NMR and the findings were compared to the results of the analyses run on the activated ash to obtain a very precise quantification of all of the (crystalline, vitreous and amorphous) phases present in the systems studied. 25 refs., 4 figs., 7 tabs.

  20. Rhodium-catalyzed C-C coupling reactions via double C-H activation.

    Li, Shuai-Shuai; Qin, Liu; Dong, Lin

    2016-05-18

    Various rhodium-catalyzed double C-H activations are reviewed. These powerful strategies have been developed to construct C-C bonds, which might be widely embedded in complex aza-fused heterocycles, polycyclic skeletons and heterocyclic scaffolds. In particular, rhodium(iii) catalysis shows good selectivity and reactivity to functionalize the C-H bond, generating reactive organometallic intermediates in most of the coupling reactions. Generally, intermolecular, intramolecular and multi-component coupling reactions via double C-H activations with or without heteroatom-assisted chelation are discussed in this review. PMID:27099126

  1. Assessment of DFT methods for computing activation energies of Mo/W-mediated reactions.

    Hu, Lianrui; Chen, Hui

    2015-10-13

    Using high level ab initio coupled cluster calculations as reference, the performances of 15 commonly used density functionals (DFs) on activation energy calculations for typical Mo/W-mediated reactions have been systematically assessed for the first time in this work. The selected representative Mo/W-mediated reactions cover a wide range from enzymatic reactions to organometallic reactions, which include Mo-catalyzed aldehyde oxidation (aldehyde oxidoreductase), Mo-catalyzed dimethyl sulfoxide (DMSO) reduction (DMSO reductase), W-catalyzed acetylene hydration (acetylene hydratase), Mo/W-mediated olefin metathesis, Mo/W-mediated olefin epoxidation, W-mediated alkyne metathesis, and W-mediated C-H bond activation. Covering both Mo- and W-mediated reactions, four DFs of B2GP-PLYP, M06, B2-PLYP, and B3LYP are uniformly recommended with and without DFT empirical dispersion correction. Among these four DFs, B3LYP is notably improved in performance by DFT empirical dispersion correction. In addition to the absolute value of calculation error, if the trend of DFT results is also a consideration, B2GP-PLYP, B2-PLYP, and M06 keep better performance than other functionals tested and constitute our final recommendation of DFs for both Mo- and W-mediated reactions. PMID:26574251

  2. Toward an Automatic Determination of Enzymatic Reaction Mechanisms and Their Activation Free Energies.

    Zinovjev, Kirill; Ruiz-Pernía, J Javier; Tuñón, Iñaki

    2013-08-13

    We present a combination of the string method and a path collective variable for the exploration of the free energy surface associated to a chemical reaction in condensed environments. The on-the-fly string method is employed to find the minimum free energy paths on a multidimensional free energy surface defined in terms of interatomic distances, which is a convenient selection to study bond forming/breaking processes. Once the paths have been determined, a reaction coordinate is defined as a measure of the advance of the system along these paths. This reaction coordinate can be then used to trace the reaction Potential of Mean Force from which the activation free energy can be obtained. This combination of methodologies has been here applied to the study, by means of Quantum Mechanics/Molecular Mechanics simulations, of the reaction catalyzed by guanidinoacetate methyltransferase. This enzyme catalyzes the methylation of guanidinoacetate by S-adenosyl-l-methionine, a reaction that involves a methyl transfer and a proton transfer and for which different reaction mechanisms have been proposed. PMID:26584125

  3. Differences in the Abilities to Mechanically Eliminate Activation Energies for Unimolecular and Bimolecular Reactions

    Kochhar, Gurpaul S.; Mosey, Nicholas J.

    2016-03-01

    Mechanochemistry, i.e. the application of forces, F, at the molecular level, has attracted significant interest as a means of controlling chemical reactions. The present study uses quantum chemical calculations to explore the abilities to mechanically eliminate activation energies, ΔE‡, for unimolecular and bimolecular reactions. The results demonstrate that ΔE‡ can be eliminated for unimolecular reactions by applying sufficiently large F along directions that move the reactant and/or transition state (TS) structures parallel to the zero-F reaction coordinate, S0. In contrast, eliminating ΔE‡ for bimolecular reactions requires the reactant to undergo a force-induced shift parallel to S0 irrespective of changes in the TS. Meeting this requirement depends upon the coupling between F and S0 in the reactant. The insights regarding the differences in eliminating ΔE‡ for unimolecular and bimolecular reactions, and the requirements for eliminating ΔE‡, may be useful in practical efforts to control reactions mechanochemically.

  4. Increase of rutin antioxidant activity by generating Maillard reaction products with lysine.

    Zhang, Ru; Zhang, Bian-Ling; He, Ting; Yi, Ting; Yang, Ji-Ping; He, Bin

    2016-06-01

    Rutin exists in medicinal herbs, fruits, vegetables, and a number of plant-derived sources. Dietary sources containing rutin are considered beneficial because of their potential protective roles in multiple diseases related to oxidative stresses. In the present study, the change and antioxidation activity of rutin in Maillard reaction with lysine through a heating process were investigated. There is release of glucose and rhamnose that interact with lysine to give Maillard reaction products (MRPs), while rutin is converted to less-polar quercetin and a small quantity of isoquercitrin. Because of their high cell-membrane permeability, the rutin-lysine MRPs increase the free radical-scavenging activity in HepG2 cells, showing cellular antioxidant activity against Cu(2+)-induced oxidative stress higher than that of rutin. Furthermore, the MRPs significantly increased the Cu/Zn SOD (superoxide dismutase) activity and Cu/Zn SOD gene expression of HepG2 cells, consequently enhancing antioxidation activity. PMID:27106712

  5. Ranking the importance of nuclear reactions for activation and transmutation events

    Arter, Wayne; Relton, Samuel D; Higham, Nicholas J

    2015-01-01

    Pathways-reduced analysis is one of the techniques used by the Fispact-II nuclear activation and transmutation software to study the sensitivity of the computed inventories to uncertainties in reaction cross-sections. Although deciding which pathways are most important is very helpful in for example determining which nuclear data would benefit from further refinement, pathways-reduced analysis need not necessarily define the most critical reaction, since one reaction may contribute to several different pathways. This work examines three different techniques for ranking reactions in their order of importance in determining the final inventory, viz. a pathways based metric (PBM), the direct method and one based on the Pearson correlation coefficient. Reasons why the PBM is to be preferred are presented.

  6. Thermally activated reaction–diffusion-controlled chemical bulk reactions of gases and solids

    S. Möller

    2015-01-01

    Full Text Available The chemical kinetics of the reaction of thin films with reactive gases is investigated. The removal of thin films using thermally activated solid–gas to gas reactions is a method to in-situ control deposition inventory in vacuum and plasma vessels. Significant scatter of experimental deposit removal rates at apparently similar conditions was observed in the past, highlighting the need for understanding the underlying processes. A model based on the presence of reactive gas in the films bulk and chemical kinetics is presented. The model describes the diffusion of reactive gas into the film and its chemical interaction with film constituents in the bulk using a stationary reaction–diffusion equation. This yields the reactive gas concentration and reaction rates. Diffusion and reaction rate limitations are depicted in parameter studies. Comparison with literature data on tokamak co-deposit removal results in good agreement of removal rates as a function of pressure, film thickness and temperature.

  7. In Situ Imidazole Activation of Ribonucleotides for Abiotic RNA Oligomerization Reactions

    Burcar, Bradley T.; Jawed, Mohsin; Shah, Hari; McGown, Linda B.

    2015-06-01

    The hypothesis that RNA played a significant role in the origin of life requires effective and efficient abiotic pathways to produce RNA oligomers. The most successful abiotic oligomerization reactions to date have utilized high-energy, modified, or pre-activated ribonucleotides to generate strands of RNA up to 50-mers in length. In spite of their success, these modifications and pre-activation reactions significantly alter the ribonucleotides in ways that are highly unlikely to have occurred on a prebiotic Earth. This research seeks to address this problem by exploring an aqueous based method for activating the canonical ribonucleotides in situ using 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and imidazole. The reactions were run with and without a montmorillonite clay catalyst and compared to reactions that used ribonucleotides that were pre-activated with imidazole. The effects of pH and ribonucleotide concentration were also investigated. The results demonstrate the ability of in situ activation of ribonucleotides to generate linear RNA oligomers in solution, providing an alternative route to produce RNA for use in prebiotic Earth scenarios.

  8. The role of surface reactions on the active and selective catalyst design for bioethanol steam reforming

    Benito, M.; Padilla, R.; Serrano-Lotina, A.; Rodríguez, L.; Brey, J. J.; Daza, L.

    In order to study the role of surface reactions involved in bioethanol steam reforming mechanism, a very active and selective catalyst for hydrogen production was analysed. The highest activity was obtained at 700 °C, temperature at which the catalyst achieved an ethanol conversion of 100% and a selectivity to hydrogen close to 70%. It also exhibited a very high hydrogen production efficiency, higher than 4.5 mol H 2 per mol of EtOH fed. The catalyst was operated at a steam to carbon ratio (S/C) of 4.8, at 700 °C and atmospheric pressure. No by-products, such as ethylene or acetaldehyde were observed. In order to consider a further application in an ethanol processor, a long-term stability test was performed under the conditions previously reported. After 750 h, the catalyst still exhibited a high stability and selectivity to hydrogen production. Based on the intermediate products detected by temperature programmed desorption and reaction (TPD and TPR) experiments, a reaction pathway was proposed. Firstly, the adsorbed ethanol is dehydrogenated to acetaldehyde producing hydrogen. Secondly, the adsorbed acetaldehyde is transformed into acetone via acetic acid formation. Finally, acetone is reformed to produce hydrogen and carbon dioxide, which were the final reaction products. The promotion of such reaction sequence is the key to develop an active, selective and stable catalyst, which is the technical barrier for hydrogen production by ethanol reforming.

  9. The role of surface reactions on the active and selective catalyst design for bioethanol steam reforming

    Benito, M. [Instituto de Catalisis y Petroleoquimica (CSIC), C/Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain); Ciemat, Av. Complutense 22, 28040 Madrid (Spain); Padilla, R.; Serrano-Lotina, A.; Rodriguez, L.; Daza, L. [Instituto de Catalisis y Petroleoquimica (CSIC), C/Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain); Brey, J.J. [Hynergreen Technologies, Av. Buhaira 2, 41018 Sevilla (Spain)

    2009-07-01

    In order to study the role of surface reactions involved in bioethanol steam reforming mechanism, a very active and selective catalyst for hydrogen production was analysed. The highest activity was obtained at 700 C, temperature at which the catalyst achieved an ethanol conversion of 100% and a selectivity to hydrogen close to 70%. It also exhibited a very high hydrogen production efficiency, higher than 4.5 mol H{sub 2} per mol of EtOH fed. The catalyst was operated at a steam to carbon ratio (S/C) of 4.8, at 700 C and atmospheric pressure. No by-products, such as ethylene or acetaldehyde were observed. In order to consider a further application in an ethanol processor, a long-term stability test was performed under the conditions previously reported. After 750 h, the catalyst still exhibited a high stability and selectivity to hydrogen production. Based on the intermediate products detected by temperature programmed desorption and reaction (TPD and TPR) experiments, a reaction pathway was proposed. Firstly, the adsorbed ethanol is dehydrogenated to acetaldehyde producing hydrogen. Secondly, the adsorbed acetaldehyde is transformed into acetone via acetic acid formation. Finally, acetone is reformed to produce hydrogen and carbon dioxide, which were the final reaction products. The promotion of such reaction sequence is the key to develop an active, selective and stable catalyst, which is the technical barrier for hydrogen production by ethanol reforming. (author)

  10. Complex formation of Eu(III) with humic acid and polyacrylic acid

    With the intention of estimating the effect of the heterogeneous composition in the humic acid separately from its polyelectrolyte effect, comparative study on the interaction of Eu(III) with humic acid and polyacrylic acid has been carried out by the solvent extraction method with 10-3 M TTA and 10-3 M TBP in xylene at various total concentrations of Eu(III) (10-8 M to 10-5 M), pcH (5.0 to 5.5) and ionic strengths (0.02 to 1.0 M NaClO4). The interaction has been discussed in terms of the apparent complex formation constants, βα = [ML]/([M][R]), where [M] and [ML] are the concentrations of free and bound Eu3+ ion and [R] is the concentration of dissociated proton exchanging site. For both humate and polyacrylate, log βα increased with pcH or the degree of ionization and decreased with ionic strength. The Eu3+ ion concentration had no appreciable influence on the complex formation of Eu(III)-polyacrylate, and the values of log βα were obtained to be 7.57 ± 0.05 (I = 0.1, pcH = 5.53), 7.13 ± 0.04 (I = 0.1, pcH = 5.20), 6.68 ± 0.04 (I = 1.0, pcH = 5.54) and 5.61 ± 0.09 (I = 1.0, pcH = 4.73). On the other hand, log βα of humate remarkably decreased with the Eu3+ ion concentration; from 9.32 ([Eu3+] = 10-11.9 M) to 7.20 ([Eu3+] = 10-7.5 M) at pcH = 5.53 in 0.02 M NaClO4, from 8.63 ([Eu3+] = 10-12.5 M) to 6.35 ([Eu3+] = 10-7.2 M) at pcH = 5.53 in 0.1 M and from 7.59 ([Eu3+] = 10-10.7 M) to 5.20 ([Eu3+] = 10-7.0 M) at pcH = 5.52 in 1.0 M. The observed dependence of log βα of humate on the concentration of metal ion strongly suggests the heterogeneity of the complexing sites (the coexistence of weak and strong binding sites) in the humic acid. (orig.)

  11. The activity of nanocrystalline Fe-based alloys as electrode materials for the hydrogen evolution reaction

    Müller, Christian Immanuel; Sellschopp, Kai; Tegel, Marcus; Rauscher, Thomas; Kieback, Bernd; Röntzsch, Lars

    2016-02-01

    In view of alkaline water electrolysis, the activities for the hydrogen evolution reaction of nanocrystalline Fe-based electrode materials were investigated and compared with the activities of polycrystalline Fe and Ni. Electrochemical methods were used to elucidate the overpotential value, the charge transfer resistance and the double layer capacity. Structural properties of the electrode surface were determined with SEM, XRD and XPS analyses. Thus, a correlation between electrochemical and structural parameters was found. In this context, we report on a cyclic voltammetric activation procedure which causes a significant increase of the surface area of Fe-based electrodes leading to a boost in effective activity of the activated electrodes. It was found that the intrinsic activity of activated Fe-based electrodes is very high due to the formation of a nanocrystalline surface layer. In contrast, the activation procedure influences only the intrinsic activity of the Ni electrodes without the formation of a porous surface layer.

  12. Investigation of molecular interactions in the complex formation of tartaric acid derivatives with di(2-ethylhexyl) phosphoric acid

    2008-01-01

    The molecular interactions in the complex formation of two tartaric acid derivatives with di(2-ethylhexyl) phosphoric acid are investigated. The complex formation with a 1:1 stoichiometry between tartaric acid derivatives and D2EHPA can be obtained through UV-Vis titration, NMR chemical shifts and molecular dynamic simulations. Furthermore, the differences of the two complexes on the binding constants and strength of hydrogen bonds can also be determined. Such research will ideally provide insight into ways of regulating the complex forming properties of tartaric acid derivatives for composing or syn- thesizing new chiral resolving agents.

  13. Investigation of molecular interactions in the complex formation of tartaric acid derivatives with di(2-ethylhexyl) phosphoric acid

    TAN Bin; ZHAI Zheng; LUO GuangSheng; WANG JiaDing

    2008-01-01

    The molecular interactions in the complex formation of two tartaric acid derivatives with di(2-ethylhexyl) phosphoric acid are investigated. The complex formation with a 1:1 stoichiometry between tartaric acid derivatives and D2EHPA can be obtained through UV-Vis titration, NMR chemical shifts and molecular dynamic simulations. Furthermore, the differences of the two complexes on the binding constants and strength of hydrogen bonds can also be determined. Such research will ideally provide insight into ways of regulating the complex forming properties of tartaric acid derivatives for composing or syn-thesizing new chiral resolving agents.

  14. Analysis of the Enhanced Stability of R(+)-Alpha Lipoic Acid by the Complex Formation with Cyclodextrins

    Hiroshi Shimosegawa; Rie Nakane; Yoshiyuki Ishida; Yukiko Uekaji; Daisuke Nakata; Kathrin Pallauf; Gerald Rimbach; Seiichi Matsugo; Naoko Ikuta; Hironori Sugiyama; Keiji Terao

    2013-01-01

    R(+)-alpha lipoic acid (RALA) is one of the cofactors for mitochondrial enzymes and, therefore, plays a central role in energy metabolism. RALA is unstable when exposed to low pH or heat, and therefore, it is difficult to use enantiopure RALA as a pharma- and nutra-ceutical. In this study, we have aimed to stabilize RALA through complex formation with cyclodextrins (CDs). α-CD, β-CD and γ-CD were used for the formation of these RALA-CD complexes. We confirmed the complex formation using diffe...

  15. Optimization of [67Ga]-oxinate complex formation conditions for white blood cell labeling

    In this work, the effective factors on the preparation of 67Ga-oxinate complex for white blood cell labeling were determined. Gallium-67 was produced at AMIRS 30 MeV cyclotron via 68Zn(p,2n)67Ga reaction in the from of 67GaCl3, and was used for radiolabeling of oxinate complex at optimized conditions. A mixture of 67GaCl3 (3uL, 200uCi) and ethanolic oxine solution (lmg/ml, 100μl) was evaporated and reacted at 25degreeC for 1 h in the presence of NaOAc solution (pH. 5.5). ITLC was performed using a mixture of ammonium acetate and methanol solution (1:1) followed by recording the activity using radio thin layer chromatography scanner. The radiochemical purity of %95.18 at these conditions was obtained (specific activity of 1432 GBq/rnmol). Freshly prepared white blood cells were separated from human volunteers and used for labeling by the above mentioned complex at 37dgreeC. 67Ga- oxinate complex due to it's lipophilicity and suitable gamma rays is a suitable cell labeling agent and available for blood stem cell and microorganism studies.

  16. Photocatalytic activity of layered perovskite-like oxides in practically valuable chemical reactions

    Rodionov, I. A.; Zvereva, I. A.

    2016-03-01

    The photocatalytic properties of layered perovskite-like oxides corresponding to the Ruddlesen–Popper, Dion–Jacobson and Aurivillius phases are considered. Of the photocatalytic reactions, the focus is on the reactions of water splitting, hydrogen evolution from aqueous solutions of organic substances and degradation of model organic pollutants. Possibilities to conduct these reactions under UV and visible light in the presence of layered perovskite-like oxides and composite photocatalysts based on them are shown. The specific surface area, band gap energy, particle morphology, cation and anion doping and surface modification are considered as factors that affect the photocatalytic activity. Special attention is paid to the possibilities to enhance the photocatalytic activity by intercalation, ion exchange and exfoliation, which are inherent in this class of compounds. Conclusions are made about the prospects for the use of layered perovskite-like oxides in photocatalysis. The bibliography includes 253 references.

  17. Catalytic Activity of Iridium Dioxide With Different Morphologies for Oxygen Reduction Reaction

    WANG Guangjin; HUANG Fei; XU Tian; YU Yi; CHENG Feng; ZHANG Yue; PAN Mu

    2015-01-01

    Iridium dioxide with different morphologies (nanorod and nanogranular) is successfully prepared by a modiifed sol-gel and Adams methods. The catalytic activity of both samples for oxygen reduction reaction is investigated in an alkaline solution. The electrochemical results show that the catalytic activity of the nanogranular IrO2 sample is superior to that of the nanorod sample due to its higher onset potential for oxygen reduction reaction and higher electrode current density in low potential region. The results of Koutecky-Levich analysis indicate that the oxygen reduction reaction catalyzed by both samples is a mixture transfer pathway. It is dominated by four electron transfer pathway for both samples in high overpotential area, while it is controlled by two electron transfer process for both samples in low overpotential area.

  18. Activation of CO2 in reaction with butadiene catalyzed by palladium

    Studies on the fixation of CO2 by transition-metal complexes has stimulated the authors to research the catalytic activation of CO2 in reactions with monoolefins, alkynes, allene, butadiene, and isoprene. To develop highly efficient and selectively acting catalysts, capable of activating CO2 under mild conditions, the authors studied the reaction of CO2 with butadiene in a DMFA solution by the action of the catalytic system Pd(acac)2-PPh3, widely used in telomerization of 1,3-dienes with H2O. Under the reaction conditions, low-valence phosphonic complexes of palladium catalyze the oxidation of triphenylphosphine to triphenylphosphine oxide and the reduction of CO2 to CO

  19. Cross-section studies of relativistic deuteron reactions on copper by activation method

    The cross-sections of relativistic deuteron reactions on natural copper were studied in detail by means of activation method. The copper foils were irradiated during experiments with the model spallation targets in the Joint Institute for Nuclear Research. The irradiation of activation samples was performed by beams in the energy range from 1 to 8 GeV. Residual nuclides were measured by the gamma spectrometry. While the EXFOR database contains sets of data for relativistic proton reactions, data for deuteron reactions in this energy range are almost missing. Lack of such experimental cross-section values prevents the use of copper foils from beam integral monitoring. For this reason our experiments focused on their measurement and completely new data were obtained in the energy region where no experimental data have been available so far. The copper monitors with their low sensitivity to fast neutrons will contribute to improvement of the beam integral determination during accelerator-driven system studies

  20. Study of radionuclides complexes formation by organic compounds in intermediate and low-level radioactive wastes

    In the general framework of the safety of nuclear wastes of low and intermediate activity, we have studied the effects of organic compounds on the solubilization of metallic cations. Organic compounds originate from the degradation of cellulose in concrete interstitial waters. Degradation reactions generate a number of products, among which carboxylic acids. These acids are known for their chelating properties. We have first analysed the degradation of cellulose in alkaline conditions: we have qualitatively and quantitatively determined the degradation products for various reaction progress indices, including a dozen of carboxylic acids. The principal goal of our work was the prediction of the behaviour of metallic cations in such cellulose degradation solutions. Owing the complexity of the system, a priori theoretical calculation are not possible. We have thus decided to choose tetra hydroxy pentanoic acid as a reference compound in order to simulate as accurately as possible the behaviour of more complex acids which contain similar functional groups. We have experimentally determined the complexing properties of this reference acid toward divalent cobalt and copper, and trivalent samarium and europium. Simple and mixed complex (hydroxyl) have been evidenced in alkaline medium. Their stability constants have been determined and extrapolated at zero ionic strength using the SIT theory. These results allowed us to theoretically predict the behaviour of our four reference cations in cellulose degradation products formed in concrete interstitial waters. In parallel, we have measured their solubility in real cellulose degradation solutions. Solubility predictions are correct for transition metals, but not for rare earth cations. In this case the complexes which have been identified with tetra hydroxy pentanoic acid are not stable enough to dissolve metallic hydroxides. In real degradation solutions, other compounds would account for the enhancement of rare earth

  1. Antibacterial Characteristics and Activity of Water-Soluble Chitosan Derivatives Prepared by the Maillard Reaction

    Ying-Chien Chung

    2011-10-01

    Full Text Available The antibacterial activity of water-soluble chitosan derivatives prepared by Maillard reactions against Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Escherichia coli, Shigella dysenteriae, and Salmonella typhimurium was examined. Relatively high antibacterial activity against various microorganisms was noted for the chitosan-glucosamine derivative as compared to the acid-soluble chitosan. In addition, it was found that the susceptibility of the test organisms to the water-soluble chitosan derivative was higher in deionized water than in saline solution. Metal ions were also found to reduce the antibacterial activity of the water-soluble chitosan derivative on S. aureus. The marked increase in glucose level, protein content and lactate dehydrogenase (LDH activity was observed in the cell supernatant of S. aureus exposed to the water-soluble chitosan derivative in deionized water. The results suggest that the water-soluble chitosan produced by Maillard reaction may be a promising commercial substitute for acid-soluble chitosan.

  2. Determination of Cobalt and Manganese percentages in paint driers by complex formation titration

    The use of paint can be seen in everyday life. However, authorities in many countries have laid down strict regulations on toxic metal content of paints for toys, domestic appliances and other applications. An insisting demand for quick and reliable monitoring techniques arose since. Driers, which are the main additive used in paints, contain heavy metals. Complex formation titration is carried out to determine the percentages of cobalt and manganese in different paint driers utilizing EDTA titration method. For cobalt determination, eight different samples were dissolved in an acetic acid solution diluted with ethanol and water, then treated with an excess of EDTA solution. PAN indicator was used as the metal indicator. The excess was titrated with cupric acid. The average cobalt content was 0.0710 %. The manganese-containing samples were a benzene-soluble and EDTA was used. Eight dissolved samples were treated with EDTA and then titrated with zinc chloride solution. Eriochrome Black-T was the indicator. The mean manganese content was 0.0431 %. (author)

  3. Localization and dynamics of amylose-lipophilic molecules inclusion complex formation in starch granules.

    Manca, Marianna; Woortman, Albert J J; Mura, Andrea; Loos, Katja; Loi, Maria Antonietta

    2015-03-28

    Inclusion complex formation between lipophilic dye molecules and amylose polymers in starch granules is investigated using laser spectroscopy and microscopy. By combining confocal laser scanning microscopy (CLSM) with spatial resolved photoluminescence (PL) spectroscopy, we are able to discriminate the presence of amylose in the peripheral region of regular and waxy granules from potato and corn starch, associating a clear optical fingerprint with the interaction between starch granules and lipophilic dye molecules. We show in particular that in the case of regular starch the polar head of the lipophilic dye molecules remains outside the amylose helix experiencing a water-based environment. The measurements performed on samples that have been extensively washed provide a strong proof of the specific interaction between lipid dye molecules and amylose chains in regular starch. These measurements also confirm the tendency of longer amylopectin chains, located in the hilum of waxy starch granules, to form inclusion complexes with ligands. Through real-time recording of CLSM micrographs, within a time frame of tens of seconds, we measured the dynamics of occurrence of the inclusion process between lipids and amylose located at the periphery of starch granules. PMID:25715960

  4. Complex formation during dissolution of metal oxides in molten alkali carbonates

    Li, Qingfeng; Borup, Flemming; Petrushina, Irina;

    1999-01-01

    as the partial pressure of carbon dioxide varies. By combination of solubility and electromotive force measurements, a model is constructed assuming the dissolution involves complex formation. The possible species for lead are proposed to be [Pb(CO3)(2)](-2) and/or [Pb(CO3)(3)](-4). A similar complex......Dissolution of metal oxides in molten carbonates relates directly to the stability of materials for electrodes and construction of molten carbonate fuel cells. In the present work the solubilities of PbO, NiO, Fe2O3,and Bi2O3 in molten Li/K carbonates have been measured at 650 degrees C under...... carbon dioxide atmosphere. It is found that the solubilities of NiO and PbO decrease while those of Fe2O3 and Bi2O3 remain approximately constant as the lithium mole fraction increases from 0.43 to 0.62 in the melt. At a fixed composition of the melt, NiO and PbO display both acidic and basic dissolution...

  5. Complex formation between neptunium(V) and various thiosemicarbazide derivatives in aqueous solution

    Complex formation between neptunium(V) and various thiosemicarbazide derivatives in solution has been studied spectrophotometrically in the pH range 4-10. Stepwise formation of three types of complexes, with composition NpO2HA, NpO2A-, and NpOHA2-, has been demonstrated with salicylaldehyde thiosemicarbazone (H2L) and salicylaldehyde S-methyl-isothiosemicarbazone (H2Q) at t = 25 +/- 10C and μ = 0.05. The logarithmic stability constants of the first two complexes are 5.14 +/- 0.06, 11.85 +/- 0.04 and 8.42 +/- 0.09, 13.33 +/- 0.015 for H2L and H2Q, respectively; equilibrium constants for the formation of hydroxo complexes of the form NpO2OHL2- and NpO2OHQ2- were also determined, and found to be equal to (2.23 +/-0.37) x 10-5 and (5.02 +/- 0.9) x 10-5, respectively. In the case of S-methyl-N1,N4-bis(salicylidene)isothiosemicarbazide (H2Z), only one type of complex is formed under these experimental conditions, namely, NpO2Z-, with a logarithmic stability constant of 4.78 +/- 0.03. Dissociation constants for H2Q and H2Z were also determined

  6. Substrate-Na{sup +} complex formation: Coupling mechanism for {gamma}-aminobutyrate symporters

    Pallo, Anna; Simon, Agnes [Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences (Hungary); Bencsura, Akos [Department of Theoretical Chemistry, Institute of Structural Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest (Hungary); Heja, Laszlo [Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences (Hungary); Kardos, Julianna, E-mail: jkardos@chemres.hu [Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences (Hungary)

    2009-07-24

    Crystal structures of transmembrane transport proteins belonging to the important families of neurotransmitter-sodium symporters reveal how they transport neurotransmitters across membranes. Substrate-induced structural conformations of gated neurotransmitter-sodium symporters have been in the focus of research, however, a key question concerning the mechanism of Na{sup +} ion coupling remained unanswered. Homology models of human glial transporter subtypes of the major inhibitory neurotransmitter {gamma}-aminobutyric acid were built. In accordance with selectivity data for subtype 2 vs. 3, docking and molecular dynamics calculations suggest similar orthosteric substrate (inhibitor) conformations and binding crevices but distinguishable allosteric Zn{sup 2+} ion binding motifs. Considering the occluded conformational states of glial human {gamma}-aminobutyric acid transporter subtypes, we found major semi-extended and minor ring-like conformations of zwitterionic {gamma}-aminobutyric acid in complex with Na{sup +} ion. The existence of the minor ring-like conformation of {gamma}-aminobutyric acid in complex with Na{sup +} ion may be attributed to the strengthening of the intramolecular H-bond by the electrostatic effect of Na{sup +} ion. Coupling substrate uptake into cells with the thermodynamically favorable Na{sup +} ion movement through substrate-Na{sup +} ion complex formation may be a mechanistic principle featuring transmembrane neurotransmitter-sodium symporter proteins.

  7. Protein complex formation and intranuclear dynamics of NAC1 in cancer cells.

    Nakayama, Naomi; Kato, Hiroaki; Sakashita, Gyosuke; Nariai, Yuko; Nakayama, Kentaro; Kyo, Satoru; Urano, Takeshi

    2016-09-15

    Nucleus accumbens-associated protein 1 (NAC1) is a cancer-related transcription regulator protein that is also involved in the pluripotency and differentiation of embryonic stem cells. NAC1 is overexpressed in various carcinomas including ovarian, cervical, breast, and pancreatic carcinomas. NAC1 knock-down was previously shown to result in the apoptosis of ovarian cancer cell lines and to rescue their sensitivity to chemotherapy, suggesting that NAC1 may be a potential therapeutic target, but protein complex formation and the dynamics of intranuclear NAC1 in cancer cells remain poorly understood. In this study, analysis of HeLa cell lysates by fast protein liquid chromatography (FPLC) on a sizing column showed that the NAC1 peak corresponded to an apparent molecular mass of 300-500 kDa, which is larger than the estimated molecular mass (58 kDa) of the protein. Furthermore, live cell photobleaching analyses with green fluorescent protein (GFP)-fused NAC1 proteins revealed the intranuclear dynamics of NAC1. Collectively our results demonstrate that NAC1 forms a protein complex to function as a transcriptional regulator in cancer cells. PMID:27424155

  8. Spectroscopic Study on the Ternary Complex Formation of U(VI) with Salicylic Acid

    From the nuclear chemical point of view, ternary complex formation of actinide ions with ligands has attracted attention for understanding radionuclides' migration in the environment. There are various ligands in natural aquatic systems which can form stable ternary actinide complexes. Humic substance in a near-neutral groundwater is one of them and carboxylic groups in a humic substance are considered as the most likely functional group which interacts with actinides. In this work, the formation of the ternary complex of U(VI) with salicylic acid (SAH2) was investigated by two different laser-based spectroscopic methods, i.e., laser-induced breakdown detection (LIBD) and time-resolved laser fluorescence spectroscopy (TRLFS). The notable features are as follows: (i) the breakdown probability increases slightly, (ii) the absorbance of U(VI) increases, whereas the fluorescence intensity decreases with increasing salicylic acid concentration. The increase of the breakdown probability indicates that insoluble species are formed due to the complexation of U(VI) with SAH2. The decrease of the fluorescence intensity is due to the quenching effect of the SAH2 in the complexes. With regards to the instrumentation, the characteristics of a newly developed LIBD system adopting a probe beam deflection method are presented. We report also on the improved speciation sensitivity (∼10-9M for UO22+) of the TRLFS system

  9. A spectrophotometric investigation of the complex formation between lanthanum (III) and eriochrome cyanine R

    The complex formation between La(III) and Eriochrome Cyanine R has been investigated. Three complexes have been detected. A first one (Complex I) in the pH range of 5.3-5.5 with lambda sub(max) = 460nm. a second one (Complex II) in the pH range of 6.2-6.5 with lambda sub(max) = 490nm and a third one (complex III) in the pH range of 8.2 - 9.0 with lambda sub(max) = 545nm and a shoulder between 570-580nm. The composition and stability constants of the complexes, respectively: complex I: La(ECR)2 and 4.9 x 107, complex II: La(ECR)2 and 7.0 x 107, complex III: La.ECR and 1.0 x 104. All measurements were taken at 25.0 +- 0.10C and μ = 0.2 (NaClO4). (Author)

  10. Investigation of the red mud catalytic activity in carbon monoxide reaction decomposition

    Кириченко, Алексей Геннадьевич; Колесник, Дмитрий Николаевич

    2011-01-01

    The process of iron carburization using СО-contaning gas as a catalyst red mud is investigated. Determined the catalytic activity of red mud in the decomposition reaction of CO. The effect of red mud addition to iron ore materials to improve their recoverability and carburization

  11. Generalization of the Activated Complex Theory of Reaction Rates. II. Classical Mechanical Treatment

    Marcus, R. A.

    1964-01-01

    In its usual classical form activated complex theory assumes a particular expression for the kinetic energy of the reacting system -- one associated with a rectilinear motion along the reaction coordinate. The derivation of the rate expression given in the present paper is based on the general kinetic energy expression.

  12. Adaptive and innate immune reactions regulating mast cell activation: from receptor-mediated signaling to responses

    Tkaczyk, Christine; Jensen, Bettina M; Iwaki, Shoko; Gilfillan, Alasdair M

    2006-01-01

    In this article, we have described studies that have demonstrated that mast cells can be activated as a consequence of adaptive and innate immune reactions and that these responses can be modified by ligands for other receptors expressed on the surface of mast cells. These various stimuli differe...

  13. Applications of the photo-nuclear reaction data for activation analysis

    In this paper, we suggest a new method for photo-activation analysis in which is used the correction factor. This factor takes into account the difference in the photonuclear reaction cross-section dependence on the gamma-ray energy for standard reference isotope and sample elements. The correction factor is determined by three methods of experimental, theoretical and TALYS evaluation

  14. Employing Magnetic Levitation to Monitor Reaction Kinetics and Measure Activation Energy

    Benz, Lauren; Cesafsky, Karen E.; Le, Tran; Park, Aileen; Malicky, David

    2012-01-01

    This article describes a simple and inexpensive undergraduate-level kinetics experiment that uses magnetic levitation to monitor the progress and determine the activation energy of a condensation reaction on a polymeric solid support. The method employs a cuvette filled with a paramagnetic solution positioned between two strong magnets. The…

  15. MSU SINP CDFE nuclear data activities in the nuclear reaction data centres network

    This paper is the progress report of the Centre for Photonuclear Experiments Data, Moscow. It is a short review of the works carried out by the CDFE concerning the IAEA nuclear reaction data centers network activities from May 2001 until May 2002. and the description of the main results obtained. (a.n.)

  16. Thin layer activation analysis of α induced reactions for surface wear studies in some natural isotopes

    The thin layer activation technique is widely used to study surface wear and erosion by employing medium energy, light charged particle accelerators in the micrometer range. In the present work, TLA technique has been explored using gamma spectroscopy for a large number of reactions in several isotopes, which may be of interest for the reactor technology

  17. Antibacterial Characteristics and Activity of Water-Soluble Chitosan Derivatives Prepared by the Maillard Reaction

    Ying-Chien Chung; Cheng-Fang Tsai; Jan-Ying Yeh

    2011-01-01

    The antibacterial activity of water-soluble chitosan derivatives prepared by Maillard reactions against Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Escherichia coli, Shigella dysenteriae, and Salmonella typhimurium was examined. Relatively high antibacterial activity against various microorganisms was noted for the chitosan-glucosamine derivative as compared to the acid-soluble chitosan. In addition, it was found that the susceptibility of the test organisms to the water-s...

  18. Measurement of high-threshold-energy activation reaction rates in combined materials with 14 MeV neutrons

    High-threshold-energy activation reaction rates were measured in cylindric combined materials bombarded by D-T neutrons with 6 threshold-energy detectors Fe, Al, Nb, F, Zr and Cu. The experimental results are discussed. MCNP/4B code was used to calculate the activation reaction rates on the experimental device. The calculated results are compared with the experimental ones. It shows that the discrepancies are 10%-30% except for the F activation reaction rate. (authors)

  19. Electro-catalytic activity of Ni–Co-based catalysts for oxygen evolution reaction

    Ju, Hua [School of Urban Rail Transportation, Soochow University, Suzhou 215006 (China); Li, Zhihu [College of Physics, Optoelectronics and Energy, Soochow University, Moye Rd. 688, Suzhou 215006 (China); Xu, Yanhui, E-mail: xuyanhui@suda.edu.cn [College of Physics, Optoelectronics and Energy, Soochow University, Moye Rd. 688, Suzhou 215006 (China)

    2015-04-15

    Graphical abstract: The electro-catalytic activity of different electro-catalysts with a porous electrode structure was compared considering the real electrode area that was evaluated by cyclic measurement. - Highlights: • Ni–Co-based electro-catalysts for OER have been studied and compared. • The real electrode area is calculated and used for assessing the electro-catalysts. • Exchange current and reaction rate constant are estimated. • Ni is more useful for OER reaction than Co. - Abstract: In the present work, Ni–Co-based electrocatalysts (Ni/Co = 0:6, 1:5, 2:4, 3:3, 4:2, 5:1 and 6:0) have been studied for oxygen evolution reaction. The phase structure has been analyzed by X-ray diffraction technique. Based on the XRD and SEM results, it is believed that the synthesized products are poorly crystallized. To exclude the disturbance of electrode preparation technology on the evaluation of electro-catalytic activity, the real electrode surface area is calculated based on the cyclic voltammetry data, assumed that the specific surface capacitance is 60 μF cm{sup −2} for metal oxide electrode. The real electrode area data are used to calculate the current density. The reaction rate constant of OER at different electrodes is also estimated based on basic reaction kinetic equations. It is found that the exchange current is 0.05–0.47 mA cm{sup −2} (the real surface area), and the reaction rate constant has an order of magnitude of 10{sup −7}–10{sup −6} cm s{sup −1}. The influence of the electrode potential on OER rate has been also studied by electrochemical impedance spectroscopy (EIS) technique. Our investigation has shown that the nickel element has more contribution than the cobalt; the nickel oxide has the best electro-catalytic activity toward OER.

  20. Electro-catalytic activity of Ni–Co-based catalysts for oxygen evolution reaction

    Graphical abstract: The electro-catalytic activity of different electro-catalysts with a porous electrode structure was compared considering the real electrode area that was evaluated by cyclic measurement. - Highlights: • Ni–Co-based electro-catalysts for OER have been studied and compared. • The real electrode area is calculated and used for assessing the electro-catalysts. • Exchange current and reaction rate constant are estimated. • Ni is more useful for OER reaction than Co. - Abstract: In the present work, Ni–Co-based electrocatalysts (Ni/Co = 0:6, 1:5, 2:4, 3:3, 4:2, 5:1 and 6:0) have been studied for oxygen evolution reaction. The phase structure has been analyzed by X-ray diffraction technique. Based on the XRD and SEM results, it is believed that the synthesized products are poorly crystallized. To exclude the disturbance of electrode preparation technology on the evaluation of electro-catalytic activity, the real electrode surface area is calculated based on the cyclic voltammetry data, assumed that the specific surface capacitance is 60 μF cm−2 for metal oxide electrode. The real electrode area data are used to calculate the current density. The reaction rate constant of OER at different electrodes is also estimated based on basic reaction kinetic equations. It is found that the exchange current is 0.05–0.47 mA cm−2 (the real surface area), and the reaction rate constant has an order of magnitude of 10−7–10−6 cm s−1. The influence of the electrode potential on OER rate has been also studied by electrochemical impedance spectroscopy (EIS) technique. Our investigation has shown that the nickel element has more contribution than the cobalt; the nickel oxide has the best electro-catalytic activity toward OER

  1. Tandem Reactions Using Nitrile Imines: Synthesis of Some Novel Heterocyclic Compounds with Expected Biological Activity

    Adil A. H. Gobouri

    2016-03-01

    Full Text Available New functionalized 7,9-dimethylpyrimido[4,5-d][1,2,4]triazolo[4,3-a]pyrimidine-5,6,8(1H,7H,9H-trione derivatives were synthesized via reaction of the hydrazonoyl halides with 7,8-dihydro-1,3-dimethyl-7-thioxopyrimido[4,5-d]pyrimidine-2,4,5(1H,3H,6Htrione. The biological activity of the products has been evaluated. The mechanism and the regioselectivity of the studied reactions have been discussed.

  2. Monte Carlo simulation in the reaction rate's calculation with neutron-activation method

    With MCNP/4B code, the influence of cut-off energy, flux tallies, nuclear databases and perturbation on the reaction rate's calculation with neutron-activation method are analysed. When the effective reaction threshold is chosen as the cut-off energy, calculation time is considerably reduced and yet the results are not changed. Comparing calculations with cell tallies (F4) with those performed with detector tallies (F5), the counting efficiency of cell tallies is higher and the results are slightly higher, but still credible. With different nuclear databases, calculated results can be different. The perturbation among the detectors doesn't effect on the calculated results. (authors)

  3. Chemistry of phosphorus ylides 31: Reaction of azidocoumarin with active phosphonium ylides, synthesis and antitumour activities of chromenones

    Soher S Maigali; Mansoura A Abd-El-Maksoud; Fouad M Soliman

    2013-11-01

    The reaction of 4- azidochromen-2-one (1) with the nucleophilic phosphacumulene ylides 2, 8, and 12 afforded the new heterocyclic triazoles, triazepines, aziridine, pyrrolone containing a coumarin moiety. Cycloaddition reactions took place first to give triazoline 3 and 9. The triazolines rearranged to the triazepines 4, 10, and 13 accompanied by elimination of triphenylphosphine leading to the phosphorus-free triazepines 5, 11, and moreover, aziridine 6 was produced via nitrogen extrusion from the triazoline 3, followed by ring expansion to the pyrrolone 7. On the other hand, the reaction of the azidocoumarin 1 with the phosphallene yield 15 behaves differently and afforded the triazine 17 and azetone 18. The antitumour activity of compounds 3, 4, 6, and 11 was evaluated, in vitro, against (breast: MCF-7 and liver: HPEG2) human solid tumour cell lines. They showed values closed to that recorded by the reference drug doxorubicin.

  4. Structure, activity, and stability of platinum alloys as catalysts for the oxygen reduction reaction

    Vej-Hansen, Ulrik Grønbjerg

    essential for wide-spread use of this technology. platinum alloys have shown great promise as more active catalysts, which are still stable under reaction conditions. We have investigated these systems on multiple scales, using either Density Functional Theory (DFT) or Effective Medium Theory (EMT......In this thesis I present our work on theoretical modelling of platinum alloys as catalysts for the Oxygen Reduction Reaction (ORR). The losses associated with the kinetics of the ORR is the main bottleneck in low-temperature fuel cells for transport applications, and more active catalysts are...... increased activity that has been seen experimentally. We show how the platinum-platinum distance at the surface is decreased for a variety of alloy phases in the core, with greater compression of the overlayer for core phases with lattice parameters which are either much smaller or much larger than pure...

  5. Effect of denitrifying bacteria on the electrochemical reaction of activated carbon fiber in electrochemical biofilm system

    YING Diwen; JIA Jinping; ZHANG Lehua

    2007-01-01

    An electrochemical-activated denitrifying biofilm system consisting of activated carbon fiber electrodes immobilized with denitrifying bacteria film as cathode was studied.A revised model for an electrochemical-activated denitrifying biofilm was developed and validated by electrochemical analysis of cathodal polarization curves and nitrate consumption rate.The cathodal polarization curve and nitrate consumption rate were introduced to verify the rate of electrochemical reaction and the activity of denitrifying bacteria,respectively.It was shown that the denitrification process effectively strengthened the electrochemical reaction while the electron also intensified denitrification activity.Electron was transferred between electrochemical process and biological process not only by hydrogen molecule but also by new produced active hydrogen atom.Additionally,a parameter of apparent exchange current density was deprived from the cathodal polarization curve with high overpotential,and a new bio-effect current density was defined through statistical analysis,which was linearly dependent to the activity of denitrification bacteria.Activated carbon fiber (ACF) electrode was also found to be more suitable to the electrochemical denitrifying system compared with graphite and platinum.

  6. Complex formation between neptunium(V) and various thiosemicarbazide derivatives in aqueous solution

    Chuguryan, D.G.; Dzyubenko, V.I.; Gerbeleu, N.V.

    1987-01-01

    Complex formation between neptunium(V) and various thiosemicarbazide derivatives in solution has been studied spectrophotometrically in the pH range 4-10. Stepwise formation of three types of complexes, with composition NpO/sub 2/HA, NpO/sub 2/A/sup -/, and NpOHA/sup 2 -/, has been demonstrated with salicylaldehyde thiosemicarbazone (H/sub 2/L) and salicylaldehyde S-methyl-isothiosemicarbazone (H/sub 2/Q) at t = 25 +/- 1/sup 0/C and ..mu.. = 0.05. The logarithmic stability constants of the first two complexes are 5.14 +/- 0.06, 11.85 +/- 0.04 and 8.42 +/- 0.09, 13.33 +/- 0.015 for H/sub 2/L and H/sub 2/Q, respectively; equilibrium constants for the formation of hydroxo complexes of the form NpO/sub 2/OHL/sup 2 -/ and NpO/sub 2/OHQ/sup 2 -/ were also determined, and found to be equal to (2.23 +/-0.37) x 10/sup -5/ and (5.02 +/- 0.9) x 10/sup -5/, respectively. In the case of S-methyl-N/sub 1/,N/sub 4/-bis(salicylidene)isothiosemicarbazide (H/sub 2/Z), only one type of complex is formed under these experimental conditions, namely, NpO/sub 2/Z/sup -/, with a logarithmic stability constant of 4.78 +/- 0.03. Dissociation constants for H/sub 2/Q and H/sub 2/Z were also determined.

  7. Benchmarking of activation reaction distribution in an intermediate energy neutron field.

    Ogawa, Tatsuhiko; Morev, Mikhail N; Hirota, Masahiro; Abe, Takuya; Koike, Yuya; Iwai, Satoshi; Iimoto, Takeshi; Kosako, Toshiso

    2011-07-01

    Neutron-induced reaction rate depth profiles inside concrete shield irradiated by intermediate energy neutron were calculated using a Monte-Carlo code and compared with an experiment. An irradiation field of intermediate neutron produced in the forward direction from a thick (stopping length) target bombarded by 400 MeV nucleon(-1) carbon ions was arranged at the heavy ion medical accelerator in Chiba. Ordinary concrete shield of 90 cm thickness was installed 50 cm downstream the iron target. Activation detectors of aluminum, gold and gold covered with cadmium were inserted at various depths. Irradiated samples were extracted after exposure and gamma-ray spectrometry was performed for each sample. Comparison of experimental and calculated shows good agreement for both low- and high-energy neutron-induced reaction except for (27)Al(n,X)(24)Na reaction at the surface. PMID:21515619

  8. Search for reaction-in-flight neutrons using thulium activation at the National Ignition Facility

    Grim, Gary; Rundberg, Robert; Tonchev, Anton; Fowler, Malcolm; Wilhelmy, Jerry; Archuleta, Tom; Bionta, Richard; Boswell, Mitzi; Gostic, Julie; Griego, Jeff; Knittel, Kenn; Klein, Andi; Moody, Ken; Shaughnessy, Dawn; Wilde, Carl; Yeamans, Charles

    2013-10-01

    We report on measurements of reaction-in-flight (RIF) neutrons at the National Ignition Facility. RIF neutrons are produced in cryogenically layered implision by up-scattered deuterium, or tritium ions that undergo subsequent fusion reactions. The rate of RIF neutron production is proportional to the fuel areal density (| | R) and ion-stopping length in the dense fuel assembly. Thus, RIF neutrons provide information on charge particle stopping in a strongly coupled plasma, where perturbative modeling breaks down. To measure RIF neutrons, a set of thulium activation foils was placed 50 cm from layered cryogenic implosions at the NIF. The reaction 169Tm(n,3n)167Tm has a neutron kinetic energy threshold of 14.96 MeV. We will present results from initial experiments performed during the spring of 2013. Prepared by LANL under Contract DE-AC-52-06-NA25396, TSPA, LA-UR-13-22085.

  9. Active specific immunotherapy using the immune reaction of a low-dose irradiated tumor tissue

    Active specific immunotherapy using the immune reaction of a low-dose irradiated tumor tissue was studied on the transplanted MM46 tumor of female C3H/He mice after radiotherapy. MM46 tumor cells were inoculated into the right hind paws of mice. On the 5th day, irradiation with the dose irradiated tumor tissue (2000 rad on the fifth day), were injected into the left hind paws of the tumor-bearing mice. Effectiveness of this active specific immunotherapy against tumor was evaluated by the regression of tumor and survival rate of mice. Tumor was markedly regressed and survival rate was significantly increased by the active specific immunitherapy

  10. Effect of mechanical activation on TiC synthesis reaction in Al-Ti-C powder mixture

    2001-01-01

    After milling in a high-energy ball miller for various times, the synthesis reaction process of the Al-Ti-C powder mixture were investigated by difference thermal analysis (DTA) and X-ray diffractometry (XRD). According to the patterns of reaction peaks on the DTA curves, the activation energy of each reaction was calculated. The experimental results of DTA show that the synthesis reaction of Al-Ti-C powder mixture can be enhanced after high-energy milling. The longer the milling time, the lower the reaction temperature. The synthesis reaction of TiC is transformed from Ti+C→TiC to Al3Ti+C→TiC+3Al with long period milling. Meanwhile, the activation energy of the reaction reduces with increasing milling time. The effect of milling time on reduced activation energy for low temperature region is more significant than that for high temperature region.

  11. Suppression of Oxygen Reduction Reaction Activity on Pt-Based Electrocatalysts from Ionomer Incorporation

    Shinozaki, Kazuma; Morimoto, Yu; Pivovar, Bryan S.; Kocha, Shyam S.

    2016-09-01

    The impact of Nafion on the oxygen reduction reaction (ORR) activity is studied for Pt/C and Pt-alloy/C catalysts using thin-film rotating disk electrode (TF-RDE) methods in 0.1 M HClO4. Ultrathin uniform catalyst layers and standardized activity measurement protocols are employed to obtain accurate and reproducible ORR activity. Nafion lowers the ORR activity which plateaus with increasing loading on Pt catalysts. Pt particle size is found not to have significant influence on the extent of the SA decrease upon Nafion incorporation. Catalysts using high surface area carbon (HSC) support exhibit attenuated activity loss resulting from lower ionomer coverage on catalyst particles located within the deep pores. The impact of metallic composition on the activity loss due to Nafion incorporation is also discussed.

  12. Hydrogen desorption reactions of Li-N-H hydrogen storage system: Estimation of activation free energy

    The dehydrogenation reactions of the mixtures of lithium amide (LiNH2) and lithium hydride (LiH) were studied under an Ar atmosphere by means of temperature programmed desorption (TPD) technique. The dehydrogenation reaction of the LiNH2/LiH mixture was accelerated by addition of 1 mol% Ti(III) species (k = 3.1 x 10-4 s-1 at 493 K), and prolonged ball-milling time (16 h) further enhanced reaction rate (k = 1.1 x 10-3 s-1 at 493 K). For the hydrogen desorption reaction of Ti(III) doped samples, the activation energies estimated by Kissinger plot (95 kJ mol-1) and Arrhenius plot (110 kJ mol-1) were in reasonable agreement. The LiNH2/LiH mixture without Ti(III) species, exhibited slower hydrogen desorption process and the kinetic traces deviated from single exponential behavior. The results indicated the Ti(III) additives change the hydrogen desorption reaction mechanism of the LiNH2/LiH mixture

  13. Complement activation-related pseudoallergy: a stress reaction in blood triggered by nanomedicines and biologicals.

    Szebeni, Janos

    2014-10-01

    Intravenous injection of a variety of nanotechnology enhanced (liposomal, micellar, polymer-conjugated) and protein-based (antibodies, enzymes) drugs can lead to hypersensitivity reactions (HSRs), also known as infusion, or anaphylactoid reactions. The molecular mechanism of mild to severe allergy symptoms may differ from case to case and is mostly not known, however, in many cases a major cause, or contributing factor is activation of the complement (C) system. The clinical relevance of C activation-related HSRs, a non-IgE-mediated pseudoallergy (CARPA), lies in its unpredictability and occasional lethal outcome. Accordingly, there is an unmet medical need to develop laboratory assays and animal models that quantitate CARPA. This review provides basic information on CARPA; a short history, issues of nomenclature, incidence, classification of reactogenic drugs and symptoms, and the mechanisms of C activation via different pathways. It is pointed out that anaphylatoxin-induced mast cell release may not entirely explain the severe reactions; a "second hit" on allergy mediating cells may also contribute. In addressing the increasing requirements for CARPA testing, the review evaluates the available assays and animal models, and proposes a possible algorithm for the screening of reactogenic drugs and hypersensitive patients. Finally, an analogy is proposed between CARPA and the classic stress reaction, suggesting that CARPA represents a "blood stress" reaction, a systemic fight of the body against harmful biological and chemical agents via the anaphylatoxin/mast-cell/circulatory system axis, in analogy to the body's fight of physical and emotional stress via the hypothalamo/pituitary/adrenal axis. In both cases the response to a broad variety of noxious effects are funneled into a uniform pattern of physiological changes. PMID:25124145

  14. Some Investigations of the Reaction of Activated Charcoal with Fluorine and Uranium Hexafluoride

    Del Cul, G.D.; Fiedor, J.N.; Simmons, D.W.; Toth, L.M.; Trowbridge, L.D.; Williams

    1998-09-01

    The Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory has been shut down since 1969, when the fuel salt was drained from the core into two Hastelloy N drain tanks at the reactor site. Over time, fluorine (F{sub 2}) and uranium hexafluoride (UF{sub 6}) moved from the salt through the gas piping to a charcoal bed, where they reacted with the activated charcoal. Some of the immediate concerns related to the migration of F{sub 2} and UF{sub 6} to the charcoal bed were the possibility of explosive reactions between the charcoal and F{sub 2}, the existence of conditions that could induce a criticality accident, and the removal and recovery of the fissile uranium from the charcoal. This report addresses the reactions and reactivity of species produced by the reaction of fluorine and activated charcoal and between charcoal and F{sub 2}-UF{sub 6} gas mixtures in order to support remediation of the MSRE auxiliary charcoal bed (ACB) and the recovery of the fissile uranium. The chemical identity, stoichiometry, thermochemistry, and potential for explosive decomposition of the primary reaction product, fluorinated charcoal, was determined.

  15. Age and physical activity effects on reaction time and digit symbol substitution performance in cognitively active adults.

    Lupinacci, N S; Rikli, R E; Jones, C J; Ross, D

    1993-06-01

    University professors (N = 56), divided into two age groups ( 50 years) and two physical activity level groups (high and low), were tested on three tasks requiring increasingly complex cognitive processing--simple reaction time (SRT), choice reaction time (CRT), and on a digit symbol substitution test (DSST). A significant main effect for exercise, with high active subjects performing better than low active subjects, was found for SRT (p effects for age, with younger subjects performing better than older subjects, were found on DSST (p effect of age was more pronounced with increasing task complexity is consistent with previous research. However, the tendency for exercise effects to decrease with increasing task complexity is not consistent with former findings, suggesting that perhaps the controlled high level of cognitive activity of subjects in this study may have offset the usual effects of exercise on information processing speed. No significant Age x Activity Level interactions were found on any of the dependent raw score data. However, compared to normative scores of the population at large, there was a slight increase in DSST percentile ranks with age for the older aerobically active professors, whereas a decrease occurred for the inactive subjects. PMID:8341837

  16. ASYMPTOTIC SOLUTION OF ACTIVATOR INHIBITOR SYSTEMS FOR NONLINEAR REACTION DIFFUSION EQUATIONS

    Jiaqi MO; Wantao LIN

    2008-01-01

    A nonlinear reaction diffusion equations for activator inhibitor systems is considered. Under suitable conditions, firstly, the outer solution of the original problem is obtained, secondly, using the variables of multiple scales and the expanding theory of power series the formal asymptotic expansions of the solution are constructed, and finally, using the theory of differential inequalities the uniform validity and asymptotic behavior of the solution are studied.

  17. Highly branched PtCu bimetallic alloy nanodendrites with superior electrocatalytic activities for oxygen reduction reactions

    Fu, Shaofang; Zhu, Chengzhou; Shi, Qiurong; Xia, Haibing; Du, Dan; Lin, Yuehe

    2016-02-01

    Morphology control is a promising strategy to improve the catalytic performance of Pt-based catalysts. In this work, we reported a facile synthesis of PtCu bimetallic alloy nanodendrites using Brij 58 as a template. The highly branched structures and porous features offer relatively large surface areas, which is beneficial to the enhancement of the catalytic activity for oxygen reduction reactions in fuel cells. In addition, the elimination of carbon supports showed an important effect on the stability of the catalysts. By tuning the ratio of Pt and Cu precursors, PtCu nanodendrites were almost four times more active on the basis of an equivalent Pt mass for oxygen reduction reactions than the commercial Pt/C catalyst.Morphology control is a promising strategy to improve the catalytic performance of Pt-based catalysts. In this work, we reported a facile synthesis of PtCu bimetallic alloy nanodendrites using Brij 58 as a template. The highly branched structures and porous features offer relatively large surface areas, which is beneficial to the enhancement of the catalytic activity for oxygen reduction reactions in fuel cells. In addition, the elimination of carbon supports showed an important effect on the stability of the catalysts. By tuning the ratio of Pt and Cu precursors, PtCu nanodendrites were almost four times more active on the basis of an equivalent Pt mass for oxygen reduction reactions than the commercial Pt/C catalyst. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07682j

  18. High energy halogen atom reactions activated by nuclear transformations. Progress report, February 15-December 31, 1984

    Energetic halogen atoms or ions, activated by various nuclear transformations are studied in gas, high pressure and condensed phase saturated and unsaturated hydrocarbons, halomethanes, and liquid and solid aqueous solutions of biomolecular and organic solutes in order to understand better the mechanisms and dynamics of high energy monovalent species. The experimental program and its goals remain the same, consisting of four interrelated areas: (1) The stereochemistry of energetic 18F, /sup 34m/Cl, and 38Cl substitution reactions with chiral molecules in the gas and condensed phase is studied. (2) The gas to condensed state transition in halogen high energy chemistry, involving energetic chlorine, bromine, and iodine reactions in halomethanes, saturated and unsaturated hydrocarbons and aqueous solutions of biomolecules and alkyl halides is being investigated in more detail. Current attention is given to defining the nature of the enhancement yields in the condensed phase. Specifically, energetic halogen reactions in liquid and frozen aqueous solutions or organic and biomolecular solutes are studied. (3) Reactions of bromine and iodine activated by isomeric transition with halogenated biomolecular and organic solutes in liquid and frozen aqueous solutions are being studied in an attempt to learn more about the activation events in the condensed phase. (4) The applications of hot chemistry techniques and theory to neutron activation analysis of biological systems are being continued. Current attention is given to developing procedures for trace molecular determinations in biological systems. The applications of hot halogen atoms as site indicators in liquid and frozen aqueous solutions of halogenated bases and nucleosides are currently being developed. 14 references

  19. Reaction Mechanisms of Metalloenzymes and Synthetic Model Complexes Activating Dioxygen : A Computational study

    Georgiev, Valentin

    2009-01-01

    Quantum chemistry has nowadays become a powerful and efficient tool that can be successfully used for studies of biosystems. It is therefore possibleto model the enzyme active-site and the reactions undergoing into it, as well as obtaining quite accurate energetic profiles. Important conclusions can be drawn from such profiles about the  plausibility of different putative mechanisms. Density Functional Theory is used in the present thesis for investigation of the catalytic mechanism of dioxyg...

  20. Complex formation of uranium(VI) with fructose and glucose phosphates

    obtain: log [UO2(lig)x(2-y)+]/ [UO22+] = x log [lig(noncomplexed)] - y log [H+] + log K. From this we conclude that the 1:1 uranyl sugar phosphate species UO2(ROPO3) (R is either glucose or fructose) has formed. Using these data, the complex formation constants for the complexes were calculated to lie in the range of log K=3.7 for G6P and 3.2 for F6P. (author)

  1. Implantable biodegradable sponges: effect of interpolymer complex formation of chitosan with gelatin on the release behavior of tramadol hydrochloride.

    Foda, Nagwa H; El-laithy, Hanan M; Tadros, Mina I

    2007-01-01

    The effect of interpolymer complex formation between positively charged chitosan and negatively charged gelatin (Type B) on the release behavior of tramadol hydrochloride from biodegradable chitosan-gelatin sponges was studied. Mixed sponges were prepared by freeze-drying the cross-linked homogenous stable foams produced from chitosan and gelatin solutions where gelatin acts as a foam builder. Generation of stable foams was optimized where concentration, pH of gelatin solution, temperature, speed and duration of whipping process, and, chitosan-gelatin ratio drastically affect the properties and the stability of the produced foams. The prepared sponges were evaluated for their morphology, drug content, and microstructure using scanning electron microscopy, mechanical properties, uptake capacity, drug release profile, and their pharmacodynamic activity in terms of the analgesic effect after implantation in Wistar rats. It was revealed that whipping 7% (w/w) gelatin solution, of pH 5.5, for 15 min at 25 degrees C with a stirring speed of 1000 rpm was the optimum conditions for stable gelatin foam generation. Moreover, homogenous, uniform chitosan-gelatin foam with small air bubbles were produced by mixing 2.5% w/w chitosan solution with 7% w/w gelatin solution in 1:5 ratio. Indeed, polyionic complexation between chitosan and gelatin overcame the drawbacks of chitosan sponge mechanical properties where, pliable, soft, and compressible sponge with high fluid uptake capacity was produced at 25 degrees C and 65% relative humidity without any added plasticizer. Drug release studies showed a successful retardation of the incorporated drug where the t50% values of the dissolution profiles were 0.55, 3.03, and 4.73 hr for cross-linked gelatin, un-cross-linked chitosan-gelatin, and cross-linked chitosan-gelatin sponges, respectively. All the release experiments followed Higuchi's diffusion mechanism over 12 hr. The achieved drug prolongation was a result of a combined effect

  2. Structure-activity relationship in high-performance iron-based electrocatalysts for oxygen reduction reaction

    Song, Ping; Wang, Ying; Pan, Jing; Xu, Weilin; Zhuang, Lin

    2015-12-01

    A sustainable Iron (Fe), Nitrogen (N) co-doped high performance Fe-Nx/C electrocatalyst for oxygen reduction reaction (ORR) is synthesized simply based on nitric acid oxidation of cheap carbon black. The obtained optimal nonprecious metal electrocatalyst shows high ORR performance in both alkaline and acidic conditions and possesses appreciable performance/price ratio due to its low cost. Furthermore, the structure-activity relationship of different active sites on Fe-Nx/C is revealed systematically: Fe-N4/2-C > Fe4-N-C > N-C >> Fe4-C ≥ C, from both experimental and theoretical points of view.

  3. Study of Activation and Inhibition of Certain Metal Ions to Amylase Catalyzed Reaction by Microcalorimetry

    张洪林; 于秀芳; 聂毅; 刘晓静; 张刚

    2003-01-01

    With or without activation or inhibition of metal ion, the power-time curves of amylase catalyzed reaction were determined by a 2277 thermal activity monitor (Sweden). The Michaelis constant ( K ), apparent Michaelis constant ( Km ), maximum velocity (vm) and apparent maximum velocity ( vam) of amylase catalyzed reaction were obtained using thermokinetic theory and reduced extent method. On the basis of data obtained, the following relationships between Km and concentration of metal ion (c) were established:for inhibitor of Ni2+ Km= 2.9648 × 10-3 - 1.3912 × 10-4c R = 0.9998 for inhibitor of Co2+ Km = 1.0227 × 10-3 + 8.2676 × 10-6c R = 0.9955 for activator of Ca2+ Km= 1.0630 × 10-7c2 - 1.8311 × 10-6c + 9.3058 × 10-6 R = 0.9999 for activator of Li+ Km= 5.6300 × 10-8c2 - 1.5329 × 10-6c + 1.2662 × 10-5 R =0.9999 The Km-c relationships show a strenuous inhibitory effect for Ni2+ and a strenuous active effect for Ca2+ .

  4. Kinetics of actinide complexation reactions

    Though the literature records extensive compilations of the thermodynamics of actinide complexation reactions, the kinetics of complex formation and dissociation reactions of actinide ions in aqueous solutions have not been extensively investigated. In light of the central role played by such reactions in actinide process and environmental chemistry, this situation is somewhat surprising. The authors report herein a summary of what is known about actinide complexation kinetics. The systems include actinide ions in the four principal oxidation states (III, IV, V, and VI) and complex formation and dissociation rates with both simple and complex ligands. Most of the work reported was conducted in acidic media, but a few address reactions in neutral and alkaline solutions. Complex formation reactions tend in general to be rapid, accessible only to rapid-scan and equilibrium perturbation techniques. Complex dissociation reactions exhibit a wider range of rates and are generally more accessible using standard analytical methods. Literature results are described and correlated with the known properties of the individual ions

  5. Lipid Peroxidation Inhibitation Activity of Maillard Reaction Products Derived from Sugar-amino Acid Model Systems

    Nanjing Zhong

    2015-08-01

    Full Text Available The present study aimed to evaluate the lipid peroxidation inhibitation activity of Maillard Reaction Products (MRPs derived from sugar (glucose, fructose, lactose and maltose and 18 amino acid model systems in soybean oil. MRPs were produced by heating at 130°C for 2 h. Of the 18 amino acids-fructose model systems studied, MRPs derived from fructose-leucine, fructose-methionine, fructose-phenylalanine and fructose-isoleucine model sytems showed high lipid peroxidation inhibitation activity and best performance was observed from fructose-phenylalanine MRPs. Interestingly, glucose-phenylalanine MRPs also exhibited high inhibitation activity and inhibitation activity of both glucose-phenylalanine and fructose-phenylalanine MRPs exceeded 87% even with concentration at 1.1 wt % after 8 days storage.

  6. Thermochemical study of processes of complex formation of Cu2+ ions with L-glutamine in aqueous solutions

    Gorboletova, G. G.; Gridchin, S. N.; Lutsenko, A. A.

    2010-11-01

    Heats of the interaction of Cu(NO3)2 solutions with L-glutamine solutions were measured directly by calorimetry at a temperature of 298.15 K and ionic strength values of 0.5, 1.0, and 1.5 (KNO3). Using RRSU universal software, the experimental data were subjected to rigorous mathematical treatment with allowances made for several concurrent processes in the system. The heats of formation of the CuL+ and CuL2 complexes were calculated from the calorimetric measurements. The standard heats of the complex formation of Cu2+ with L-glutamine were obtained by extrapolation to zero ionic strength. The complete thermodynamic characteristic (Δr H o, Δr G o, Δr S o) of the complex formation processes in a Cu2+—L-glutamine system was obtained.

  7. Determination of complex formation constants by phase sensitive alternating current polarography: Cadmium-polymethacrylic acid and cadmium-polygalacturonic acid.

    Garrigosa, Anna Maria; Gusmão, Rui; Ariño, Cristina; Díaz-Cruz, José Manuel; Esteban, Miquel

    2007-10-15

    The use of phase sensitive alternating current polarography (ACP) for the evaluation of complex formation constants of systems where electrodic adsorption is present has been proposed. The applicability of the technique implies the previous selection of the phase angle where contribution of capacitive current is minimized. This is made using Multivariate Curve Resolution by Alternating Least Squares (MCR-ALS) in the analysis of ACP measurements at different phase angles. The method is checked by the study of the complexation of Cd by polymethacrylic (PMA) and polygalacturonic (PGA) acids, and the optimal phase angles have been ca. -10 degrees for Cd-PMA and ca. -15 degrees for Cd-PGA systems. The goodness of phase sensitive ACP has been demonstrated comparing the determined complex formation constants with those obtained by reverse pulse polarography, a technique that minimizes the electrode adsorption effects on the measured currents. PMID:19073101

  8. Characterization for Binding Complex Formation with Site-Directly Immobilized Antibodies Enhancing Detection Capability of Cardiac Troponin I

    Il-Hoon Cho; Sung-Min Seo; Jin-Woo Jeon; Se-Hwan Paek

    2009-01-01

    The enhanced analytical performances of immunoassays that employed site-directly immobilized antibodies as the capture binders have been functionally characterized in terms of antigen-antibody complex formation on solid surfaces. Three antibody species specific to cardiac troponin I, immunoglobulin G (IgG), Fab, and F(ab′)2 were site-directly biotinylated within the hinge region and then immobilized via a streptavidin-biotin linkage. The new binders were more efficient capture antibodies ...

  9. Self-motion of a phenanthroline disk on divalent metal ion aqueous solutions coupled with complex formation

    Nakata, Satoshi; Arima, Yoshie

    2008-01-01

    The self-motion of a 1,10-phenanthroline disk on divalent metal ion aqueous solutions was investigated as a simple autonomous motor coupled with complex formation. The characteristic features of motion (continuous and oscillatory motion) and their concentration regions differed among metal ions, and the frequency of oscillatory motion depended on the temperature of the aqueous solution. The nature of the characteristic motion is discussed in relation to the stability constant of complex forma...

  10. Development of Spectrophotometry Method For Iodide Determination Based on I2-Starch Complex Formation with Hypochlorite as oxidator

    Qurrata Ayun; Hermin Sulistyarti; Atikah Atikah

    2015-01-01

    Iodine is one of the most important elements for human body. Both, the overage and the deficiency supply of iodine give negative impact for human health. In this research, a simple and inexpensive spectrophotometric method is developed is based on starch-iodine complex formation, where iodide was oxidized with hypochlorite to form iodine, which then reacted with starch to form a blue starch-iodine complex. In this research, the common analytical parameters were optimized regarding to sensitiv...

  11. Complex formation constants and thermodynamic parameters for La(III) and Y(III) L-serine complexes

    The stoichiometric stability constants for La(III) and Y(III) L-serine complexes were determined by potentiometric methods at different ionic strenghts adjusted with NaClO4 and at different temperatures. The overall changes in free energy (ΔGO), enthalpy (ΔHO), and entropy (ΔSO) during the protonation of L-serine and that accompanying the complex formation with the metal ions have been evaluated. (author)

  12. Catalyst activation, deactivation, and degradation in palladium-mediated Negishi cross-coupling reactions.

    Böck, Katharina; Feil, Julia E; Karaghiosoff, Konstantin; Koszinowski, Konrad

    2015-03-27

    Pd-mediated Negishi cross-coupling reactions were studied by a combination of kinetic measurements, electrospray-ionization (ESI) mass spectrometry, (31)P NMR and UV/Vis spectroscopy. The kinetic measurements point to a rate-determining oxidative addition. Surprisingly, this step seems to involve not only the Pd catalyst and the aryl halide substrate, but also the organozinc reagent. In this context, the ESI-mass spectrometric observation of heterobimetallic Pd-Zn complexes [L2 PdZnR](+) (L=S-PHOS, R=Bu, Ph, Bn) is particularly revealing. The inferred presence of these and related neutral complexes with a direct Pd-Zn interaction in solution explains how the organozinc reagent can modulate the reactivity of the Pd catalyst. Previous theoretical calculations by González-Pérez et al. (Organometallics- 2012, 31, 2053) suggest that the complexation by the organozinc reagent lowers the activity of the Pd catalyst. Presumably, a similar effect also causes the rate decrease observed upon addition of ZnBr2 . In contrast, added LiBr apparently counteracts the formation of Pd-Zn complexes and restores the high activity of the Pd catalyst. At longer reaction times, deactivation processes due to degradation of the S-PHOS ligand and aggregation of the Pd catalyst come into play, thus further contributing to the appreciable complexity of the title reaction. PMID:25709062

  13. Assessment of the apparent activation energies for gas/solid reactions-carbonate decomposition

    2003-01-01

    The guidelines for assessing the apparent activation energies of gas/solid reactions have been proposed based on the ex-perimental results from literatures. In CO2 free inlet gas flow, CaCO3 decomposition between 950 and 1250 K with thin sample layercould be controlled by the interfacial chemical reaction with apparent activation energy E = (215+10) kJ/mol and E = (200±10)kJ/mol at T = 813 to 1020 K, respectively. With relatively thick sample layer between 793 and 1273 K, the CaCO3 decompositioncould be controlled by one or more steps involving self-cooling, nucleation, intrinsic diffusion and heat transfer of gases, and E couldvary between 147 andl90 kJ/mol. In CO2 containing inlet gas flow (5%-100% of CO2), E was determined to be varied from 949 to2897 kJ/mol. For SrCO3 and BaCO3 decompositions controlled by the interfacial chemical reaction, E was (213+15) kJ/mol (1000-1350 K) and (305+15) kJ/mol (1260-1400 K), respectively.

  14. Fabrication of aggregation induced emission active luminescent chitosan nanoparticles via a "one-pot" multicomponent reaction.

    Wan, Qing; Liu, Meiying; Xu, Dazhuang; Mao, Liucheng; Tian, Jianwen; Huang, Hongye; Gao, Peng; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2016-11-01

    Chitosan based nanomaterials have been extensively examined for biomedical applications for their biodegradability, low toxicity, biological activity and low cost. In this work, a novel strategy for fabrication of luminescent polymeric nanoparticles (LPNs) based on aggregation induced emission (AIE) dye and water soluble chitosan (WS-Chitosan) were firstly developed via a highly efficient mercaptoacetic acid (MA) locking imine reaction. In this multicomponent reaction (MCR), MA serves as "lock" to connect 9,10-Bis(aldehydephenl)anthracene dye (An-CHO) and amino-containing WS-Chitosan under mild reaction conditions. The obtained WS-Chitosan@An-CHO LPNs show strong yellow emission and great water dispersibility. Biological evaluation results demonstrated that synthetic luminescent polymeric nanoparticles possess desirable cytocompatibility and distinct imaging properties. Therefore, we have developed a facile and useful method to fabricate AIE active nanoprobes with desirable properties for various biomedical applications. This strategy should be a general and easy handling tool to fabricate many other AIE dye based materials. PMID:27516264

  15. Method for Determining the Activation Energy Distribution Function of Complex Reactions by Sieving and Thermogravimetric Measurements.

    Bufalo, Gennaro; Ambrosone, Luigi

    2016-01-14

    A method for studying the kinetics of thermal degradation of complex compounds is suggested. Although the method is applicable to any matrix whose grain size can be measured, herein we focus our investigation on thermogravimetric analysis, under a nitrogen atmosphere, of ground soft wheat and ground maize. The thermogravimetric curves reveal that there are two well-distinct jumps of mass loss. They correspond to volatilization, which is in the temperature range 298-433 K, and decomposition regions go from 450 to 1073 K. Thermal degradation is schematized as a reaction in the solid state whose kinetics is analyzed separately in each of the two regions. By means of a sieving analysis different size fractions of the material are separated and studied. A quasi-Newton fitting algorithm is used to obtain the grain size distribution as best fit to experimental data. The individual fractions are thermogravimetrically analyzed for deriving the functional relationship between activation energy of the degradation reactions and the particle size. Such functional relationship turns out to be crucial to evaluate the moments of the activation energy distribution, which is unknown in terms of the distribution calculated by sieve analysis. From the knowledge of moments one can reconstruct the reaction conversion. The method is applied first to the volatilization region, then to the decomposition region. The comparison with the experimental data reveals that the method reproduces the experimental conversion with an accuracy of 5-10% in the volatilization region and of 3-5% in the decomposition region. PMID:26671287

  16. Catalytic activity of pyrite for coal liquefaction reaction; Tennen pyrite no shokubai seino ni kansuru kento

    Hirano, K.; Kozu, M.; Okada, T.; Kobayashi, M. [Nippon Coal Oil Co. Ltd., Tokyo (Japan)

    1996-10-28

    Since natural pyrite is easy to obtain and cheap as coal liquefaction catalyst, it is to be used for the 150 t/d scale NEDOL process bituminous coal liquefaction pilot plant. NEDO and NCOL have investigated the improvement of catalytic activity of pulverized natural pyrite for enhancing performance and economy of the NEDOL process. In this study, coal liquefaction tests were conducted using natural pyrite catalyst pulverized by dry-type bowl mill under nitrogen atmosphere. Mechanism of catalytic reaction of the natural pyrite was discussed from relations between properties of the catalyst and liquefaction product. The natural pyrite provided an activity to transfer gaseous hydrogen into the liquefaction product. It was considered that pulverized pyrite promotes the hydrogenation reaction of asphaltene because pulverization increases its contact rate with reactant and the amount of active points on its surface. It was inferred that catalytic activity of pyrite is affected greatly by the chemical state of Fe and S on its surface. 3 refs., 4 figs., 1 tab.

  17. STUDIES ON THE CATALYTIC REACTION OF NITROGEN OXIDE ON METAL MODIFIED ACTIVATED CARBON FIBERS

    FU Ruowen; DU Xiuying; LIN Yuansheng; XU Hao; HU Yiongjun

    2003-01-01

    The catalytic reaction of NO with CO and decomposition of NO over metal modified ACFs were investigated and compared with other carriers supported catalysts. It is demonstrated that Pd/ACF and Pd/Cu/ACF have high catalytic activity for the reaction of NO/CO, while Pt/ACF.Pt/Cu/ACF and Co/Cu/ACF have very Iow catalytic activity in similar circumstance. Pd-modified ACF possesses high catalytic decomposition of NO at 300 ℃. Pd/CB and Pd/GAC present good catalytic decomposition ability for NO only at low flowrate. Pd/G, Pd/ZMS and Pd/A however, do not show any catalytic activity for NO decomposition even at 400 ℃. Catalytic temperature, NO flowrate and loading of metal components affect the decomposition rate of NO. The coexistence of Cu with Pd on Cu/Pd/ACF leads to crystalline of palladium to more unperfected so as to that increase the catalytic activity.

  18. Metal and carbene organocatalytic relay activation of alkynes for stereoselective reactions.

    Namitharan, Kayambu; Zhu, Tingshun; Cheng, Jiajia; Zheng, Pengcheng; Li, Xiangyang; Yang, Song; Song, Bao-An; Chi, Yonggui Robin

    2014-01-01

    Transition metal and organic catalysts have established their own domains of excellence. It has been expected that merging the two unique domains should provide complimentary or unprecedented opportunities in converting simple raw materials to functional products. N-heterocyclic carbenes alone are excellent organocatalysts. When used with transition metals such as copper, N-heterocyclic carbenes are routinely practiced as strong-coordinating ligands. Combination of an N-heterocyclic carbene and copper therefore typically leads to deactivation of either or both of the two catalysts. Here we disclose the direct merge of copper as a metal catalyst and N-heterocyclic carbenes as an organocatalyst for relay activation of alkynes. The reaction involves copper-catalysed activation of alkynes to generate ketenimine intermediates that are subsequently activated by an N-heterocyclic carbene organocatalyst for stereoselective reactions. Each of the two catalysts (copper metal catalyst and N-heterocyclic carbene organocatalyst) accomplishes its own missions in the activation steps without quenching each other. PMID:24865392

  19. Alpha capture reaction cross section measurements on Sb isotopes by activation method

    Korkulu, Z.; Özkan, N.; Kiss, G. G.; Szücs, T.; Fülöp, Zs; Güray, R. T.; Gyürky, Gy; Halász, Z.; Somorjai, E.; Török, Zs; Yalçin, C.

    2016-01-01

    Alpha induced reactions on natural and enriched antimony targets were investigated via the activation technique in the energy range from 9.74 MeV to 15.48 MeV, close to the upper end of the Gamow window at a temperature of 3 GK relevant to the γ-process. The experiments were carried out at the Institute for Nuclear Research, the Hungarian Academy of Sciences (MTA Atomki). 121Sb(α,γ)125I, 121Sb(α,n)124I and 123Sb(α,n)126I reactions were measured using a HPGe detector. In this work, the 121Sb(α,n)124 cross section results and the comparison with the theoretical predictions (obtained with standard settings of the statistical model codes NON-SMOKER and TALYS) were presented.

  20. Activation cross sections of proton induced nuclear reactions on palladium up to 80MeV.

    Tárkányi, F; Ditrói, F; Takács, S; Csikai, J; Hermanne, A; Uddin, M S; Baba, M

    2016-08-01

    Activation cross sections of proton induced nuclear reactions on palladium were measured up to 80MeV by using the stacked foil irradiation technique and gamma ray spectrometry. The beam intensity, the incident energy and the energy degradation were controlled by a method based on flux constancy via normalization to the excitation functions of monitor reactions measured in parallel. Excitation functions for direct and cumulative cross-sections were measured for the production of (104m,104g,105g,106m,110m)Ag, (100,101)Pd, (99m,99g,100,101m,101g,102m,102g,105)Rh and (103,97)Ru radioisotopes. The cross section data were compared with the theoretical predictions of TENDL-2014 and -2015 libraries. For practical applications thick target yields were derived from the measured excitation functions. Application in the field of medical radionuclide production is shortly discussed. PMID:27235887

  1. Synthesis, structure and complex formation properties of alkyl derivatives of ethylxantogenic acids

    efficiency of metal extraction influences the structure of reactant, the concentration and the nature an acid. The derivatives of xanthogenic acid have shown to be weak extractants of noble metals from acid mediums. The most effective extractants were: S-heptyl - (3,0 M, Au, 64 %) and S-amyl-(1,0 M, Ag, 81,8 %; 3,0 M, Os, 66,7 %) from sulfuric acid medium; and S-amylxanthogenate (6,0 M, Ag, 65,5 %) from hydrochloric medium. Branching of alkyl chain (i-C4H9) results in some increase of efficiency of extraction of Au and Ag from acid mediums. Thus, alkyl derivatives of xanthogenic acid are synthesized and the structure of the obtained substances are confirmed by IR, H1 NMR, and mass spectrometry data have been studied their complex formation properties in relation to noble metals

  2. Temperature dependence of bromine activation due to reaction with ozone in a proxy for organic aerosols

    Edebeli, Jacinta; Ammann, Markus; Gilgen, Anina; Eichler, Anja; Schneebeli, Martin; Bartels-Rausch, Thorsten

    2016-04-01

    The discovery of boundary layer ozone depletion events in the Polar Regions [1] and in the mid-latitudes [2], two areas of very different temperature regimes, begs the question of temperature dependence of reactions responsible for these observations [3]. These ODEs have been attributed to ozone reacting with halides leading to reactive halogens (halogen activation) of which bromide is extensively studied, R1 - R3 [4, 5] (R1 is a multiphase reaction). O3 + Br‑→ O2 + OBr‑ (R1) OBr‑ + H+ ↔ HOBr (R2) HOBr + H+ + Br‑→ Br2 + H2O (R3) Despite extensive studies of ozone-bromide interactions, the temperature dependence of bromine activation is not clear [3]. This limits parameterization of the involved reactions and factors in atmospheric models [3, 6]. Viscosity changes in the matrix (such as organic aerosols) due to temperature have been shown to influence heterogeneous reaction rates and products beyond pure temperature effect [7]. With the application of coated wall flow-tubes, the aim of this study is therefore to investigate the temperature dependence of bromine activation by ozone interaction while attempting to characterize the contributions of the bulk and surface reactions to observed ozone uptake. Citric acid is used in this study as a hygroscopically characterized matrix whose viscosity changes with temperature and humidity. Here, we present reactive ozone uptake measured between 258 and 289 K. The data show high reproducibility. Comparison of measured uptake with modelled bulk uptake at different matrix compositions (and viscosities) indicate that bulk reactive uptake dominates, but there are other factors which still need further consideration in the model. References 1. Barrie, L.A., et al., Nature, 1988. 334: p. 138 - 141. 2. Hebestreit, K., et al., Science, 1999. 283: p. 55-57. 3. Simpson, W.R., et al., Atmospheric Chemistry and Physics, 2007. 7: p. 4375 - 4418. 4. Haag, R.W. and J. Hoigné, Environ Sci Technol, 1983. 17: p. 261-267. 5. Oum

  3. Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries.

    Lu, Yi-Chun; Gasteiger, Hubert A; Shao-Horn, Yang

    2011-11-30

    We report the intrinsic oxygen reduction reaction (ORR) activity of polycrystalline palladium, platinum, ruthenium, gold, and glassy carbon surfaces in 0.1 M LiClO(4) 1,2-dimethoxyethane via rotating disk electrode measurements. The nonaqueous Li(+)-ORR activity of these surfaces primarily correlates to oxygen adsorption energy, forming a "volcano-type" trend. The activity trend found on the polycrystalline surfaces was in good agreement with the trend in the discharge voltage of Li-O(2) cells catalyzed by nanoparticle catalysts. Our findings provide insights into Li(+)-ORR mechanisms in nonaqueous media and design of efficient air electrodes for Li-air battery applications. PMID:22044022

  4. Ru complexes of Hoveyda–Grubbs type immobilized on lamellar zeolites: activity in olefin metathesis reactions

    Hynek Balcar

    2015-11-01

    Full Text Available Hoveyda–Grubbs type catalysts with cationic tags on NHC ligands were linker-free immobilized on the surface of lamellar zeolitic supports (MCM-22, MCM-56, MCM-36 and on mesoporous molecular sieves SBA-15. The activity of prepared hybrid catalysts was tested in olefin metathesis reactions: the activity in ring-closing metathesis of citronellene and N,N-diallyltrifluoroacetamide decreased in the order of support MCM-22 ≈ MCM-56 > SBA-15 > MCM-36; the hybrid catalyst based on SBA-15 was found the most active in self-metathesis of methyl oleate. All catalysts were reusable and exhibited low Ru leaching (− counter anion; in contrast, PF6− counter anion underwent partial decomposition.

  5. Biographic radiation-induced defect formation as a method of red phosphorus activation in its reaction with arylalkenes

    Effect of preliminary irradiation on reaction ability of red phosphorus, prepared by radiation-induced polymerization of white phosphorus in benzene under 60Co radiation was studied. It was shown that red phosphorus containing radiation-induced defects of P-P-R type (R - fragments of benzene) in reactions with arylalkenes manifests a high reaction activity, which exceeds largely the reactive capability of industrially produced red phosphorus, and of white phosphorus in some cases

  6. Kinetic method for the determination of nanogram amounts of cadmium(II) by its catalytic effect on the complex formation of manganese(II) with. cap alpha. ,. beta. ,. gamma. , $delta-tetra-(p-sulfonatophenyl)porphine

    Tabata, M. (Saga Univ. (Japan). Faculty of Science and Engineering); Tanaka, M. (Nagoya Univ. (Japan). Faculty of Science)

    1982-01-01

    Cadmium(II) accelerates the complex formation reaction of manganese(II) with ..cap alpha.., ..beta.., ..gamma.., $delta-tetra(p-sulfonatophenyl)porphine (H/sub 2/TPPS/sub 4/). Cadmium(II) concentration as low as 1O/sup -7/ mol dm/sup -3/ can be determined from the decrease in absorbance at 413 nm ($lambdasub(max) H/sub 2/TPPS/sub 4/) at a fixed time after the start of the reaction of manganese(II) with H/sub 2/TPPS/sub 4/. After the separation of lead(II) by coprecipitation of manganese(IV) oxide, the method is highly selective and is free from interference of most substances usually encountered. Sandell's sensitivity calculated from the calibration curve at 30 min after the start of the reaction is 1.43 x 10/sup -/ /sup 1/ ng cm/sup -2/.

  7. Developing mononuclear copper-active-oxygen complexes relevant to reactive intermediates of biological oxidation reactions.

    Itoh, Shinobu

    2015-07-21

    Active-oxygen species generated on a copper complex play vital roles in several biological and chemical oxidation reactions. Recent attention has been focused on the reactive intermediates generated at the mononuclear copper active sites of copper monooxygenases such as dopamine β-monooxygenase (DβM), tyramine β-monooxygenase (TβM), peptidylglycine-α-hydroxylating monooxygenase (PHM), and polysaccharide monooxygenases (PMO). In a simple model system, reaction of O2 and a reduced copper(I) complex affords a mononuclear copper(II)-superoxide complex or a copper(III)-peroxide complex, and subsequent H(•) or e(-)/H(+) transfer, which gives a copper(II)-hydroperoxide complex. A more reactive species such as a copper(II)-oxyl radical type species could be generated via O-O bond cleavage of the peroxide complex. However, little had been explored about the chemical properties and reactivity of the mononuclear copper-active-oxygen complexes due to the lack of appropriate model compounds. Thus, a great deal of effort has recently been made to develop efficient ligands that can stabilize such reactive active-oxygen complexes in synthetic modeling studies. In this Account, I describe our recent achievements of the development of a mononuclear copper(II)-(end-on)superoxide complex using a simple tridentate ligand consisting of an eight-membered cyclic diamine with a pyridylethyl donor group. The superoxide complex exhibits a similar structure (four-coordinate tetrahedral geometry) and reactivity (aliphatic hydroxylation) to those of a proposed reactive intermediate of copper monooxygenases. Systematic studies based on the crystal structures of copper(I) and copper(II) complexes of the related tridentate supporting ligands have indicated that the rigid eight-membered cyclic diamine framework is crucial for controlling the geometry and the redox potential, which are prerequisites for the generation of such a unique mononuclear copper(II)-(end-on)superoxide complex

  8. In Situ Probing of the Active Site Geometry of Ultrathin Nanowires for the Oxygen Reduction Reaction.

    Liu, Haiqing; An, Wei; Li, Yuanyuan; Frenkel, Anatoly I; Sasaki, Kotaro; Koenigsmann, Christopher; Su, Dong; Anderson, Rachel M; Crooks, Richard M; Adzic, Radoslav R; Liu, Ping; Wong, Stanislaus S

    2015-10-01

    To create truly effective electrocatalysts for the cathodic reaction governing proton exchange membrane fuel cells (PEMFC), namely the oxygen reduction reaction (ORR), necessitates an accurate and detailed structural understanding of these electrocatalysts, especially at the nanoscale, and to precisely correlate that structure with demonstrable performance enhancement. To address this key issue, we have combined and interwoven theoretical calculations with experimental, spectroscopic observations in order to acquire useful structural insights into the active site geometry with implications for designing optimized nanoscale electrocatalysts with rationally predicted properties. Specifically, we have probed ultrathin (∼2 nm) core-shell Pt∼Pd9Au nanowires, which have been previously shown to be excellent candidates for ORR in terms of both activity and long-term stability, from the complementary perspectives of both DFT calculations and X-ray absorption spectroscopy (XAS). The combination and correlation of data from both experimental and theoretical studies has revealed for the first time that the catalytically active structure of our ternary nanowires can actually be ascribed to a PtAu∼Pd configuration, comprising a PtAu binary shell and a pure inner Pd core. Moreover, we have plausibly attributed the resulting structure to a specific synthesis step, namely the Cu underpotential deposition (UPD) followed by galvanic replacement with Pt. Hence, the fundamental insights gained into the performance of our ultrathin nanowires from our demonstrated approach will likely guide future directed efforts aimed at broadly improving upon the durability and stability of nanoscale electrocatalysts in general. PMID:26402364

  9. Preparation of Pt-Ru hydrophobic catalysts and catalytic activities for liquid phase catalytic exchange reaction

    Pt/C and Pt-Ru/C catalysts with different ratios of Pt to Ru were synthesized, using ethylene glycol as both the dispersant and reducing agent at 1-2 MPa by microwave-assisted method. The catalysts were characterized by XRD, TEM and XPS. The mean particle sizes of the Pt/C and Pt-Ru/C catalysts were 1.9-2.0 nm. Pt and Ru existed as Pt(0), Pt(II), Pt(IV), Ru(0) and Ru(IV) for Pt-Ru/C catalysts, respectively. The face-centered cubic structure of the active mental particles would be changed upon the addition of Ru gradually. Then polytetrafluoroethylene and carbon-supported Pt and Pt-Ru catalysts were supported on foamed nickel to obtain hydrophobic catalysts. The catalytic activity was increased for liquid phase catalytic exchange (LPCE) when uniform Pt based hydrophobic catalysts was mixed into appropriate Ru. Hydrogen isotope exchange reaction occurs between hydration layer(H2O)nH+(ads)(n≥2) and D atoms due to intact water molecules being on Pt surface for LPCE. Water molecules have a tendency to dissociate to OH(ads) and H(ads) on metal Ru surface, and there is the other reaction path for Pt-Ru binary catalysts, which is probably the main reason of the increase of the catalytic activity of the hydrophobic Pt-Ru catalyst. (authors)

  10. Linear free energy relationships between aqueous phase hydroxyl radical reaction rate constants and free energy of activation.

    Minakata, Daisuke; Crittenden, John

    2011-04-15

    The hydroxyl radical (HO(•)) is a strong oxidant that reacts with electron-rich sites on organic compounds and initiates complex radical chain reactions in aqueous phase advanced oxidation processes (AOPs). Computer based kinetic modeling requires a reaction pathway generator and predictions of associated reaction rate constants. Previously, we reported a reaction pathway generator that can enumerate the most important elementary reactions for aliphatic compounds. For the reaction rate constant predictor, we develop linear free energy relationships (LFERs) between aqueous phase literature-reported HO(•) reaction rate constants and theoretically calculated free energies of activation for H-atom abstraction from a C-H bond and HO(•) addition to alkenes. The theoretical method uses ab initio quantum mechanical calculations, Gaussian 1-3, for gas phase reactions and a solvation method, COSMO-RS theory, to estimate the impact of water. Theoretically calculated free energies of activation are found to be within approximately ±3 kcal/mol of experimental values. Considering errors that arise from quantum mechanical calculations and experiments, this should be within the acceptable errors. The established LFERs are used to predict the HO(•) reaction rate constants within a factor of 5 from the experimental values. This approach may be applied to other reaction mechanisms to establish a library of rate constant predictions for kinetic modeling of AOPs. PMID:21410278

  11. Selective molecular recognition, C-H bond activation, and catalysis in nanoscale reaction vessels

    Fiedler, Dorothea; Leung, Dennis H.; Raymond, Kenneth N.; Bergman, Robert G.

    2004-11-27

    Supramolecular chemistry represents a way to mimic enzyme reactivity by using specially designed container molecules. We have shown that a chiral self-assembled M{sub 4}L{sub 6} supramolecular tetrahedron can encapsulate a variety of cationic guests, with varying degrees of stereoselectivity. Reactive iridium guests can be encapsulated and the C-H bond activation of aldehydes occurs, with the host cavity controlling the ability of substrates to interact with the metal center based upon size and shape. In addition, the host container can act as a catalyst by itself. By restricting reaction space and preorganizing the substrates into reactive conformations, it accelerates the sigmatropic rearrangement of enammonium cations.

  12. Development of CNS Active Target for Deuteron Induced Reactions with High Intensity Exotic Beam

    Ota, Shinsuke; Tokieda, H.; Lee, C. S.; Kojima, R.; Watanabe, Y. N.; Corsi, A.; Dozono, M.; Gibelin, J.; Hashimoto, T.; Kawabata, T.; Kawase, S.; Kubono, S.; Kubota, Y.; Maeda, Y.; Matsubara, H.; Matsuda, Y.; Michimasa, S.; Nakao, T.; Nishi, T.; Obertelli, A.; Otsu, H.; Santamaria, C.; Sasano, M.; Takaki, M.; Tanaka, Y.; Leung, T.; Uesaka, T.; Yako, K.; Yamaguchi, H.; Zenihiro, J.; Takada, E.

    An active target system called CAT, has been developed aiming at the measurement of deuteron induced reactions with high intensity beams in inverse kinematics. The CAT consists of a time projection chamber using THGEM and an array of Si detectors or NaI scintilators. The effective gain for the recoil particle is deisgned to be 5 - 10 × 103, while one for the beam is reduced by 102 using mesh grid to match the amplified signal to the dynamic range same as the one for recoil particle. The structure of CAT and the effect of the mesh grid are reported.

  13. Characterization and development of an active scintillating target for nuclear reaction studies on actinides

    This article presents the development of a new kind of active actinide target, based on organic liquid scintillators containing the dissolved isotope. Amongst many advantages one can mention the very high detection efficiency, the Pulse Shape Discrimination capability, the fast response allowing high count rates and good time resolution and the ease of fabrication. The response of this target to fission fragments has been studied. The discrimination of alpha, fission and proton recoil events is demonstrated. The alpha decay and fission detection efficiencies are simulated and compared to measurements. Finally the use of such a target in the context of fast neutron induced reactions is discussed.

  14. Program package and supplements to activation analysis for calculations of nuclear reaction cross sections

    A program package for computer calculations of spallation, fission and fragmentation reactions cross sections by means of activation analysis has been created. Several complements to the method have been made, the role of single and double escape peaks contributions to γ-lines of the residual nuclei and also dependence of the cross sections on the spectrometer deadtime have been taken into account. A way for complete identification of all the γ-lines of nuclei produced has been proposed based on an internal intensity ratio using a nuclear data base. (author)

  15. Cross-section studies of relativistic deuteron reactions obtained by activation method

    Wagner, V; Svoboda, O; Vrzalová, J; Majerle, M; Krása, A; Chudoba, P; Honusek, M; Kugler, A; Adam, J; Baldin, A; Furman, W; Kadykov, M; Khushvaktov, J; Sol-nyskhin, A; Tsoupko-Sitnikov, V; Závorka, L; Tyutyunnikov, S; Vladimirova, N

    2014-01-01

    The cross-sections of relativistic deuteron reactions on natural copper were studied in detail by means of activation method. The copper foils were irradiated during experiments with the big Quinta uranium target at Joint Institute for Nuclear Research (JINR) in Dubna, Russia. The deuteron beams with energies ranging from 1 GeV up to 8 GeV were produced by JINR Nuclotron. Residual nuclides were identified by the gamma spectrometry. Lack of such experimental cross-section values prevents the usage of copper foils from beam integral monitoring.

  16. An Investigation onγinduced activation reactions on human essential elements

    吕翠娟; 马春旺; 刘一璞; 张文岗; 左嘉旭

    2015-01-01

    In radiotherapy, the energy of theγrays used could be larger than 10 MeV, which would potentially activate stable nucleus into a radioactive one. Theγinduced reactions on some of the human essential elements are studied to show the probability of changes of nuclei. The Talys 1.4 toolkit was adopted as the theoretical model for calculation. The reactions investigated include the (γ, n) and (γ, p) channels for the stable Na, Mg, Cl, K, Ca, and Fe isotopes, with the incident energy ofγranging from 1 to 30 MeV. It was found that the cross sections for the reactions are very low, and the maximum cross section is no larger than 100 mb. By considering the threshold energy of the channel, the half-life time of the residue nucleus, and the percentage of the element accounting for the weight and its importance in the body, it is suggested to track the radioactive nuclei 22Na, 41Ca, and 42,43K afterγtherapy. The results might be useful for medical diagnosis and disease treatment.

  17. Assessment of released acrosin activity as a measurement of the sperm acrosome reaction

    Rui-Zhi Liu; Wan-Li Na; Hong-Guo Zhang; Zhi-Yong Lin; Bai-Oong Xue; Zong-Oe Xu

    2008-01-01

    Aim: To develop a method for assessing sperm function by measuring released acrosin activity during the acrosome reaction (AR). Methods: Human semen samples were obtained from 24 healthy donors with proven fertility after 3-7 days of sexual abstinence. After collection, samples were liquefied for 30 min at room temperature. Standard semen parameters were evaluated according to World Health Organization (WHO) criteria. Calcium ionophore A23187 and progesterone (P4) were used to stimulate the sperm to undergo AR. After treatment, sperm were incubated with the supravital dye Hoechst33258, fixed in a glutaraldehyde-phosphate-buffered saline solution, and the acrosomal status was determined by fluorescence microscopy with fluorescein isothiocyanate-labeled Pisum sativum agglutinin (FITC-PSA). The percentage of sperm undergoing AR (AR%) was compared to sperm acrosin activities as assessed by spectrocolorimetry. The correlation between AR% and acrosin activity was determined by statistical analysis. Results: The AR% and released acrosin activity were both markedly increased with A23187 and P4 stimulation. Sperm motility and viability were significantly higher after stimulation with P4 versus stimula-tion with A23187 (P < 0.001). There was a significant positive correlation between released acrosin activity and AR% determined by FITC-PSA staining (r = 0.916, P < 0.001). Conclusion: Spectrocolorimetric measurement of released acrosin activity might serve as a reasonable alternative method to evaluate AR.

  18. Atomic Ordering Enhanced Electrocatalytic Activity of Nanoalloys for Oxygen Reduction Reaction

    Loukrakpam, Rameshwori; Shan, Shiyao; Petkov, Valeri; Yang, Lefu; Luo, Jin; Zhong, Chuan-Jian

    2013-10-01

    For oxygen reduction reaction (ORR) over alloy electrocatalysts, the understanding of how the atomic arrangement of the metal species in the nanocatalysts is responsible for the catalytic enhancement is challenging for achieving better design and tailoring of nanoalloy catalysts. This paper reports results of an investigation of the atomic structures and the electrocatalytic activities of ternary and binary nanoalloys, aiming at revealing a fundamental insight into the unique atomic-scale structure-electrocatalytic activity relationship. PtIrCo catalyst and its binary counterparts (PtCo and PtIr) are chosen as a model system for this study. The effect of thermochemical treatment temperature on the atomic-scale structure of the catalysts was examined as a useful probe to the structure-activity correlation. The structural characterization of the binary and ternary nanoalloy catalysts was performed by combining surface sensitive techniques such as XPS and 3D atomic ordering sensitive techniques such as high-energy X-ray diffraction (HE-XRD) coupled to atomic pair distribution function (PDF) analysis (HE-XRD/PDFs) and computer simulations. The results show that the thermal treatment temperature tunes the nanoalloy’s atomic and chemical ordering in a different way depending on the chemical composition, leading to differences in the nanoalloy’s mass and specific activities. A unique structural tunability of the atomic ordering in a platinum-iridium-cobalt nanoalloy has been revealed for enhancing greatly the electrocatalytic activity toward oxygen reduction reaction, which has significant implication for rational design and nanoengineering of advanced catalysts for electrochemical energy conversion and storage.

  19. Synchronizing Substrate Activation Rates in Multicomponent Reactions with Metal-Organic Framework Catalysts.

    Aguirre-Díaz, Lina María; Iglesias, Marta; Snejko, Natalia; Gutiérrez-Puebla, Enrique; Monge, M Ángeles

    2016-05-01

    A study on the influence of the cation coordination number, number of Lewis acid centers, concurrent existence of Lewis base sites, and structure topology on the catalytic activity of six new indium MOFs, has been carried out for multicomponent reactions (MCRs). The new indium polymeric frameworks, namely [In8 (OH)6 (popha)6 (H2 O)4 ]⋅3 H2 O (InPF-16), [In(popha)(2,2'-bipy)]⋅3 H2 O (InPF-17), [In3 (OH)3 (popha)2 (4,4'-bipy)]⋅4 H2 O (InPF-18), [In2 (popha)2 (4,4'-bipy)2 ]⋅3 H2 O (InPF-19), [In(OH)(Hpopha)]⋅0.5 (1,7-phen) (InPF-20), and [In(popha)(1,10-phen)]⋅4 H2 O (InPF-21) (InPF=indium polymeric framework, H3 popha=5-(4-carboxy-2-nitrophenoxy)isophthalic acid, phen=phenanthroline, bipy=bipyridine), have been hydrothermally obtained by using both conventional heating (CH) and microwave (MW) procedures. These indium frameworks show efficient Lewis acid behavior for the solvent-free cyanosilylation of carbonyl compounds, the one pot Passerini 3-component (P-3CR) and the Ugi 4-component (U-4CR) reactions. In addition, InPF-17 was found to be a highly reactive, recyclable, and environmentally benign catalyst, which allows the efficient synthesis of α-aminoacyl amides. The relationship between the Lewis base/acid active site and the catalytic performance is explained by the 2D seven-coordinated indium framework of the catalyst InPF-17. This study is an attempt to highlight the main structural and synthetic factors that have to be taken into account when planning a new, effective MOF-based heterogeneous catalyst for multicomponent reactions. PMID:27010759

  20. Rationalizing the Hydrogen and Oxygen Evolution Reaction Activity of Two-Dimensional Hydrogenated Silicene and Germanene.

    Rupp, Caroline J; Chakraborty, Sudip; Anversa, Jonas; Baierle, Rogério J; Ahuja, Rajeev

    2016-01-20

    We have undertaken first-principles electronic structure calculations to show that the chemical functionalization of two-dimensional hydrogenated silicene (silicane) and germanene (germanane) can become a powerful tool to increase the photocatalytic water-splitting activity. Spin-polarized density functional theory within the GGA-PBE and HSE06 types of exchange correlation functionals has been used to obtain the structural, electronic, and optical properties of silicane and germanane functionalized with a series of nonmetals (N, P, and S), alkali metals (Li, Na, and K) and alkaline-earth metals (Mg and Ca). The surface-adsorbate interaction between the functionalized systems with H2 and O2 molecules that leads to envisaged hydrogen and oxygen evolution reaction activity has been determined. PMID:26704530

  1. Platinum-coated copper nanowires with high activity for hydrogen oxidation reaction in base.

    Alia, Shaun M; Pivovar, Bryan S; Yan, Yushan

    2013-09-11

    Platinum (Pt)-coated copper (Cu) nanowires (Pt/CuNWs) are synthesized by the partial galvanic displacement of CuNWs and have a 100 nm diameter and are 25-40 μm length. Pt/CuNWs are studied as a hydrogen oxidation reaction (HOR) catalyst in base along with Cu templated Pt nanotubes (PtNT (Cu)), a 5% Cu monolayer on a bulk polycrystalline Pt electrode (5% ML Cu/BPPt), BPPt, and carbon supported Pt (Pt/C). Comparison of these catalysts demonstrates that the inclusion of Cu benefited the HOR activity of Pt/CuNWs likely by providing compressive strain on Pt; surface Cu further aids in hydroxyl adsorption, thereby improving the HOR activity of Pt/CuNWs. Pt/CuNWs exceed the area and mass exchange current densities of carbon supported Pt by 3.5 times and 1.9 times. PMID:23952885

  2. EFFECT OF FLUORINE AND CHLORINE IONS ON THE REACTION SINTERING OF MECHANICALLY ACTIVATED ZIRCON-ALUMINA MIXTURE

    R. Zamani Foroshani

    2015-09-01

    Full Text Available The aim of this work was to study the effect of fluorine and chlorine ions on the formation of mullite during the reaction sintering of mechanically activated zircon-alumina powder mixture. The results showed that mechanical activation of zirconalumina powder mixture for 20 h led to grain refinement and partial amorphization. In the presence of fluorine and chlorine ions, complete formation of mullite in the mechanically activated sample occurred after 2 h of reaction sintering at 1300oC and 1400oC, respectively. In the sample lacking fluorine and chlorine ions, mullitization was not completed even after 2 h of reaction sintering at 1400oC. It was concluded that presence of fluorine and chlorine ions enhance the dissociation of zircon and formation of mullite during the reaction sintering of mechanically activated zircon-alumina mixture.

  3. Role of active sites in the reaction of methanol to olefin over modified ZSM-5 zeolite

    ZSM-5 zeolites were modified with metals Mg, K, Ca, Ba and La by an incipient impregnation and characterized by X-ray diffraction, N/sub 2/ adsorption and temperature - programmed desorption of NH/sub 3/ and CO/sub 2/. The obtained samples were investigated for their selectivity and catalytic stability in the methanol-to-olefin (MTO) reaction. The catalytic performance was influenced by the properties of active sites on the catalyst, which was indicated by the changes of the light olefin selectivity and catalytic stability in the methanol conversion. Correlating the reaction evaluation with the catalyst characterization, it can be seen that the catalyst with too strong basic sites shows an inferior catalytic performance. In addition, steam treatment further increased the catalytic performance, especially for Ca modified ZSM-5. It may be concluded that basic sites must suitably match with acidic sites for a special ZSM-5 in the methanol conversion and the formed active sites were relative with the modification metal based on the obtained results. (author)

  4. Relative activities of siloxane monomers toward the cation exchange resin-catalyst in the equilibration reactions

    M. N. GOVEDARICA

    2001-07-01

    Full Text Available The relative activities of a number of siloxane monomers, both cyclic and linear, toward the cation exchange resin-equilibration catalyst were determined. The determination was based on the fact that when a particular siloxane compound is added to an arbitrarily chosen equilibrate, it takes part in the equilibration process, provoking certain viscosity changes of the reaction mixture. Taking these viscosity changes as a measure of activities, the following order was obtained: hexamethylcyclotrisiloxane > hexamethyldisiloxane > octamethylcyclotetrasiloxane > one linear all-methyl oligosiloxane of number average molecular weight of approximately 800 > decamethylcyclopentasiloxane. The results obtained by using the described viscosimetrical determination method were controlled by measuring the number average molecular weights of the reaction mixtures at the beginning and at the end of the equilibration process. The deviations of the experimentally measured from the calculated values were less than 20 %, as was found in one equilibration system. In most other systems the deviations were about 10 % which is a very good result which strengthens the validity of the applied determination method.

  5. [Plasma antioxidant activity--a test for impaired biological functions of endoecology, exotrophy, and inflammation reactions].

    Titov, V N; Krylin, V V; Dmitriev, V A; Iashin, Ia I

    2010-07-01

    The authors discuss the diagnostic value of a test for total serum antioxidant activity determined by an electrochemistry method on a liquid chromatograph (without a column), by using an amperometric detector, as well as the composition of the endogenously synthesized hydrophilic and hydrophobic acceptors of reactive oxygen species (ROS). Uric acid is a major hydrophilic acceptor of ROS; monoenic oleic fatty acid acts as its major lipophilic acceptor. The constant determined by the authors for of 03 oleic acid oxidation during automatic titration in the organic medium is an order of magnitude higher than that for alpha-tocopherol, beta-carotene and linoleic fatty acid; its concentration is also an order of magnitude higher. In oxidative stress, the adrenal steroid hormone dehydroepiandrosterone initiates oleic acid synthesis via expression of palmitoyl elongase and steatoryl desaturase. In early steps of phylogenesis in primates, spontaneous mutation resulted in ascorbic acid synthesis gene knockout; phylogenetically, further other mutation knocked out the gene encoding the synthesis of uricase and the conversion of uric acid to alantoin. In primates, uric acid became not only a catabolite of purine bases in vivo, but also the major endogenous hydrophilic acceptor of ROS. This philogenetic order makes it clear why the epithelium in the proximal nephron tubule entirely reabsorbs uric acid (a catabolite?) from primary urine and then secretes it again to urine depending on the impairment of biological functions of endoecology (the intercellular medium being contaminated with biological rubbish), the activation of a biological inflammatory reaction, the cellular production of ROS, and the reduction in serum total antioxidant activity. With each biological reaction, there was an increase in the blood content of uric acid as a hydrophilic acceptor of ROS, by actively lowering its secretion into urine. Uric acid is a diagnostic test of inflammation, or rather compensatory

  6. Investigating 13C +12C reaction by the activation method. Sensitivity tests

    Chesneanu, Daniela; Trache, L.; Margineanu, R.; Pantelica, A.; Ghita, D.; Straticiuc, M.; Burducea, I.; Blebea-Apostu, A. M.; Gomoiu, C. M.; Tang, X.

    2015-02-01

    We have performed experiments to check the limits of sensitivity of the activation method using the new 3 MV Tandetron accelerator and the low and ultra-low background laboratories of the "Horia Hulubei" National Institute of Physics and Nuclear Engineering (IFIN-HH). We have used the 12C +13C reaction at beam energies Elab= 6, 7 and 8 MeV. The knowledge of this fusion cross section at deep sub-barrier energies is of interest for astrophysical applications, as it provides an upper limit for the fusion cross section of 12C +12C over a wide energy range. A 13C beam with intensities 0.5-2 particleμA was provided by the accelerator and used to bombard graphite targets, resulting in activation with 24Na from the 12C (13C ,p) reaction. The 1369 and 2754 keV gamma-rays from 24Na de-activation were clearly observed in the spectra obtained in two different laboratories used for measurements at low and ultralow background: one at the surface and one located underground in the Unirea salt mine from Slanic Prahova, Romania. In the underground laboratory, for Elab = 6 MeV we have measured an activity of 0.085 ± 0.011 Bq, corresponding to cross sections of 1-3 nb. This demonstrates that it is possible to measure 12C targets irradiated at lower energies for at least 10 times lower cross sections than before β-γ coincidences will lead us another factor of 10 lower, proving that this installations can be successfully used for nuclear astrophysics measurements.

  7. Activity diagrams for clinoptilolite: Susceptibility of this zeolite to further diagenetic reactions

    Clinoptilolite is the predominant zeolite in diagenetically altered volcanic rocks at Yucca Mountain, Nevada, having formed by posteruptive reactions of ground water with vitric tuffs in the pyroclastic deposits. Compositional variations of clinoptilolites in the fractured and zeolitized tuffs not presently in contact with ground water and the vulnerability of zeolites to burial diagenesis raise questions about the long-term stability of clinoptilolite. Equilibrium activity diagrams were calculated for clinoptilolite solid solutions in the seven-component system Ca-Na-K-Mg-Fe-Al-Si plus H2O, employing available thermodynamic data for related minerals, aqueous species, and water. Stability fields are portrayed graphically, assuming the presence of potassium feldspar, saponite, and hematite, and using ranges of activities for SiO2 and Al3+ defined by the saturation limits for several silica polymorphs, gibbsite, kaolinite, and pyrophyllite. The clinoptilolite stability field broadens with increasing atomic substitution of Ca for Na, and K for Ca, reaches a maximum for intermediate activities of dissolved Al, and decreases with increasing temperature. The thermodynamic calculations show that ground water of the sodium-bicarbonate type is approximately in equilibrium at 25C with calcite and several zeolites, including heulandite and calcic clinoptilolite. Mg-rich clinoptilolites are stabilized in ground water depleted in Ca2+. The activity diagrams indicate that prolonged diagenetic reactions with ground water depleted in Al, enriched in Na or Ca, and heated by the thermal envelope surrounding buried nuclear waste may eliminate sorptive calcic clinoptilolites in fractured tuffs and underlying basal vitrophyre

  8. Design Insights for Tuning the Electrocatalytic Activity of Perovskite Oxides for the Oxygen Evolution Reaction

    Malkhandi, S; Trinh, P; Manohar, AK; Manivannan, A; Balasubramanian, M; Prakash, GKS; Narayanan, SR

    2015-04-16

    Rechargeable metal-air batteries and water electrolyzers based on aqueous alkaline electrolytes hold the potential to be sustainable solutions to address the challenge of storing large amounts of electrical energy generated from solar and wind resources. For these batteries and electrolyzers to be economically viable, it is essential to have efficient, durable, and inexpensive electrocatalysts for the oxygen evolution reaction. In this article, we describe new insights for predicting and tuning the activity of inexpensive transition metal oxides for designing efficient and inexpensive electrocatalysts. We have focused on understanding the factors determining the electrocatalytic activity for oxygen evolution in a strong alkaline medium. To this end, we have conducted a systematic investigation of nanophase calcium-doped lanthanum cobalt manganese oxide, an example of a mixed metal oxide that can be tuned for its electrocatalytic activity by varying the transition metal composition. Using X-ray absorption spectroscopy (XANES), X-ray photoelectron spectroscopy (XPS), electrochemical polarization experiments, and analysis of mechanisms, we have identified the key determinants of electrocatalytic activity. We have found that the Tafel slopes are determined by the oxidation states and the bond energy of the surface intermediates of Mn-OH and Co-OH bonds while the catalytic activity increased with the average d-electron occupancy of the sigma* orbital of the M-OH bond. We anticipate that such understanding will be very useful in predicting the behavior of other transition metal oxide catalysts.

  9. Activity and stability of the oxygen evolution reaction on electrodeposited Ru and its thermal oxides

    Kim, Jin Yeong; Choi, Jihui; Kim, Ho Young; Hwang, Eunkyoung; Kim, Hyoung-Juhn; Ahn, Sang Hyun; Kim, Soo-Kil

    2015-12-01

    The activity and stability of Ru metal and its thermal oxide films for the oxygen evolution reaction (OER) were investigated. The metallic Ru films were prepared by electrodeposition on a Ti substrate and then thermally oxidized at various temperatures under atmospheric conditions. During long-term operation of the OER with cyclic voltammetry (CV) in H2SO4 electrolyte, changes in the properties of the Ru and its thermal oxides were monitored in terms of their morphology, crystal structure, and electronic structure. In the initial stages of the OER, all of the Ru thermal oxide films underwent an activation process that was related to the continuous removal of low-activity Ru oxides from the surface. With further cycling, the OER activity decreased. The rate of decrease was different for each Ru film and was related to the annealing temperatures. Monitoring of material properties indicates that the amount of stable anhydrous RuO2 is important for OER stability because it prevents both the severe dissolution of metallic Ru beneath the oxide surface and the formation of a less active hydrous RuO2 at the surface.

  10. Solution phase synthesis of halogenated graphene and the electrocatalytic activity for oxygen reduction reaction

    Kuang-Hsu Wu; Da-Wei Wang; Qingcong Zeng; Yang Li; Ian R. Gentle

    2014-01-01

    Metal-free carbon electrocatalyts for the oxygen reduction reaction (ORR) are attractive for their high activity and economic advantages. However, the origin of the activity has never been clearly elucidated in a systematic manner. Halogen group elements are good candidates for elucidating the effect, although it has been a difficult task due to safety issues. In this report, we demonstrate the synthesis of Cl-, Br-and I-doped reduced graphene oxide through two solution phase syntheses. We have evaluated the effectiveness of doping and performed electrochemical measurements of the ORR activity on these halogenated graphene materials. Our results suggest that the high electroneg-ativity of the dopant is not the key factor for high ORR activity;both Br-and I-doped graphene pro-moted ORR more efficiently than Cl-doped graphene. Furthermore, an unexpected sulfur-doping in acidic conditions suggests that a high level of sulfide can degrade the ORR activity of the graphene material.

  11. Stability and Activity of Pt/ITO Electrocatalyst for Oxygen Reduction Reaction in Alkaline Media

    Because of the activity for carbon materials to rapidly form peroxide-like species in alkaline media which cause considerable membrane degradation, there is a significant need to find stable non-carbon support materials for Pt and other oxygen reduction reaction (ORR) catalysts. The objective of this study was to investigate the performance of platinum supported on tin-doped indium oxide (ITO) electrocatalysts for the ORR in alkaline media. Platinum was deposited onto ITO by galvanic displacement and the Pt/ITO was physically characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Electrochemical experiments showed that Pt/ITO catalysts outperform commercial Pt/Vulcan in terms of both activity and stability. The specific activity and mass activity of Pt/ITO were about 2.5 times that of Pt/Vulcan. After 300 potentiometric cycles in O2-saturated alkaline electrolyte, only 17.4% loss in the electrochemical surface area (ECSA) was observed for Pt/ITO, which compares favorably to Pt/Vulcan at 37.5%. The good durability of Pt/ITO at a relatively high specific activity provides one of the first examples of successful deployment of a non-carbon support for anion exchange membrane fuel cell catalysts

  12. Complex Formation of Myrosinase Isoenzymes in Oilseed Rape Seeds Are Dependent on the Presence of Myrosinase-Binding Proteins1

    Eriksson, Susanna; Andréasson, Erik; Ekbom, Barbara; Granér, Georg; Pontoppidan, Bo; Taipalensuu, Jan; Zhang, Jiaming; Rask, Lars; Meijer, Johan

    2002-01-01

    The enzyme myrosinase (EC 3.2.3.1) degrades the secondary compounds glucosinolates upon wounding and serves as a defense to generalist pests in Capparales. Certain myrosinases are present in complexes together with other proteins such as myrosinase-binding proteins (MBP) in extracts of oilseed rape (Brassica napus) seeds. Immunhistochemical analysis of wild-type seeds showed that MBPs were present in most cells but not in the myrosin cells, indicating that the complex formation observed in extracts is initiated upon tissue disruption. To study the role of MBP in complex formation and defense, oilseed rape antisense plants lacking the seed MBPs were produced. Western blotting and immunohistochemical staining confirmed depletion of MBP in the transgenic seeds. The exclusive expression of myrosinase in idioblasts (myrosin cells) of the seed was not affected by the down-regulation of MBP. Using size-exclusion chromatography, we have shown that myrosinases with subunit molecular masses of 62 to 70 kD were present as free dimers from the antisense seed extract, whereas in the wild type, they formed complexes. In accordance with this, MBPs are necessary for myrosinase complex formation of the 62- to 70-kD myrosinases. The product formed from sinalbin hydrolysis by myrosinase was the same whether MBP was present or not. The performance of a common beetle generalist (Tenebrio molitor) fed with seeds, herbivory by flea beetles (Phyllotreta undulata) on cotyledons, or growth rate of the Brassica fungal pathogens Alternaria brassicae or Lepthosphaeria maculans in the presence of seed extracts were not affected by the down-regulation of MBP, leaving the physiological function of this protein family open. PMID:12177471

  13. Complex formation of myrosinase isoenzymes in oilseed rape seeds are dependent on the presence of myrosinase-binding proteins.

    Eriksson, Susanna; Andréasson, Erik; Ekbom, Barbara; Granér, Georg; Pontoppidan, Bo; Taipalensuu, Jan; Zhang, Jiaming; Rask, Lars; Meijer, Johan

    2002-08-01

    The enzyme myrosinase (EC 3.2.3.1) degrades the secondary compounds glucosinolates upon wounding and serves as a defense to generalist pests in Capparales. Certain myrosinases are present in complexes together with other proteins such as myrosinase-binding proteins (MBP) in extracts of oilseed rape (Brassica napus) seeds. Immunhistochemical analysis of wild-type seeds showed that MBPs were present in most cells but not in the myrosin cells, indicating that the complex formation observed in extracts is initiated upon tissue disruption. To study the role of MBP in complex formation and defense, oilseed rape antisense plants lacking the seed MBPs were produced. Western blotting and immunohistochemical staining confirmed depletion of MBP in the transgenic seeds. The exclusive expression of myrosinase in idioblasts (myrosin cells) of the seed was not affected by the down-regulation of MBP. Using size-exclusion chromatography, we have shown that myrosinases with subunit molecular masses of 62 to 70 kD were present as free dimers from the antisense seed extract, whereas in the wild type, they formed complexes. In accordance with this, MBPs are necessary for myrosinase complex formation of the 62- to 70-kD myrosinases. The product formed from sinalbin hydrolysis by myrosinase was the same whether MBP was present or not. The performance of a common beetle generalist (Tenebrio molitor) fed with seeds, herbivory by flea beetles (Phyllotreta undulata) on cotyledons, or growth rate of the Brassica fungal pathogens Alternaria brassicae or Lepthosphaeria maculans in the presence of seed extracts were not affected by the down-regulation of MBP, leaving the physiological function of this protein family open. PMID:12177471

  14. SIMPL enhancement of tumor necrosis factor-α dependent p65-MED1 complex formation is required for mammalian hematopoietic stem and progenitor cell function.

    Weina Zhao

    Full Text Available Significant insight into the signaling pathways leading to activation of the Rel transcription factor family, collectively termed NF-κB, has been gained. Less well understood is how subsets of NF-κB-dependent genes are regulated in a signal specific manner. The SIMPL protein (signaling molecule that interacts with mouse pelle-like kinase is required for full Tumor Necrosis Factor-α (TNFα induced NF-κB activity. We show that SIMPL is required for steady-state hematopoiesis and the expression of a subset of TNFα induced genes whose products regulate hematopoietic cell activity. To gain insight into the mechanism through which SIMPL modulates gene expression we focused on the Tnf gene, an immune response regulator required for steady-state hematopoiesis. In response to TNFα SIMPL localizes to the Tnf gene promoter where it modulates the initiation of Tnf gene transcription. SIMPL binding partners identified by mass spectrometry include proteins involved in transcription and the interaction between SIMPL and MED1 was characterized in more detail. In response to TNFα, SIMPL is found in p65-MED1 complexes where SIMPL enhances p65/MED1/SIMPL complex formation. Together our results indicate that SIMPL functions as a TNFα-dependent p65 co-activator by facilitating the recruitment of MED1 to p65 containing transcriptional complexes to control the expression of a subset of TNFα-induced genes.

  15. Ficolin-1-PTX3 complex formation promotes clearance of altered self-cells and modulates IL-8 production

    Ma, Ying Jie; Doni, Andrea; Romani, Luigina; Jürgensen, Henrik Jessen; Behrendt, Niels; Mantovani, Alberto; Garred, Peter

    2013-01-01

    was affected in a pH- and divalent cation-sensitive manner. The primary binding site for ficolin-1 on PTX3 was located in the N-terminal domain portion of PTX3. Ficolin-1 and PTX3 heterocomplex formation occurred on dying host cells, but not on A. fumigatus. The heterocomplex formation was a...... demonstrate that ficolin-1 and PTX3 heterocomplex formation acts as a noninflammatory "find me and eat me" signal to sequester altered-host cells. The fact that the ficolin-1-PTX3 complex formation did not occur on A. fumigatus shows that PTX3 uses different molecular effector mechanisms, depending on which...

  16. Study of inclusion complex formation between chlorpromazine hydrochloride, as an antiemetic drug, and β-cyclodextrin, using conductometric technique

    The behavior of micellization of chlorpromazine hydrochloride (CPH) as an antiemetic drug and its inclusion complex formation with β-cyclodextrin (β-CD) was studied using conductometric technique. The binding or association constant of the complexation equilibrium is evaluated from conductometric measurements by using a nonlinear regression method. The resulting K values for micellization as well as complexation are analyzed. The experiments were carried out at different temperatures. It has been found that CPH form only the 1:1 complex. The association constant values are used for evaluation of thermodynamic parameters of complexation, such as ΔGcomplexo, ΔHcomplexo and ΔScomplexo.

  17. Charge-transfer complex formation in gelation: the role of solvent molecules with different electron-donating capacities.

    Basak, Shibaji; Bhattacharya, Sumantra; Datta, Ayan; Banerjee, Arindam

    2014-05-01

    A naphthalenediimide (NDI)-based synthetic peptide molecule forms gels in a particular solvent mixture (chloroform/aromatic hydrocarbon, 4:1) through charge-transfer (CT) complex formation; this is evident from the corresponding absorbance and fluorescence spectra at room temperature. Various aromatic hydrocarbon based solvents, including benzene, toluene, xylene (ortho, meta and para) and mesitylene, have been used for the formation of the CT complex. The role of different solvent molecules with varying electron-donation capacities in the formation of CT complexes has been established through spectroscopic and computational studies. PMID:24677404

  18. Steroid-Derived Naphthoquinoline Asphaltene Model Compounds: Hydriodic Acid Is the Active Catalyst in I2-Promoted Multicomponent Cyclocondensation Reactions.

    Schulze, Matthias; Scott, David E; Scherer, Alexander; Hampel, Frank; Hamilton, Robin J; Gray, Murray R; Tykwinski, Rik R; Stryker, Jeffrey M

    2015-12-01

    A multicomponent cyclocondensation reaction between 2-aminoanthracene, aromatic aldehydes, and 5-α-cholestan-3-one has been used to synthesize model asphaltene compounds. The active catalyst for this reaction has been identified as hydriodic acid, which is formed in situ from the reaction of iodine with water, while iodine is not a catalyst under anhydrous conditions. The products, which contain a tetrahydro[4]helicene moiety, are optically active, and the stereochemical characteristics have been examined by VT-NMR and VT-CD spectroscopies, as well as X-ray crystallography. PMID:26584791

  19. Influence of temperature and crown ether complex formation on the charge partitioning between z and c fragments formed after electron capture by small peptide dications

    Ehlerding, Anneli; Jensen, Camilla S.; Wyer, Jean A.; Holm, Anne I. S.; Jørgensen, Palle; Kadhane, Umesh; Larsen, Mikkel K.; Panja, Subhasis; Poully, Jean Christophe; Worm, Esben S.; Zettergren, Henning; Hvelplund, Preben; Brøndsted Nielsen, Steen

    2009-04-01

    Electron capture by peptide dications results in N-C[alpha] bond cleavage to give c+ and z or c and z+ fragments. In this work we have investigated how crown ether (18-crown-6 = CE) complex formation and a change in the internal energy affect the charge division between the z and c fragments. Both complex formation and a high temperature have the effect of breaking internal ionic hydrogen bonds. The crown ether complex also lowers the probability of internal proton transfer between the two fragments, and reduces the recombination energy of the charged group it targets. The systems under study were doubly protonated di- and tripeptides, [AK+2H]2+, [AR+2H]2+, [KK+2H]2+ and [GHK+2H]2+ (A = alanine, K = lysine, R = arginine, G = glycine and H = histidine). For crown ether complexes the formation of z+ ions was always preferred over c+ ions. In the case of [GHK+2H]2+, the bare ion dissociated into z2+ + c1 and z1 + c2+ from cleavage of the first and second N-C[alpha] bond, respectively, whereas z1+ fragment ions had higher yield than c2+ for [GHK+2H]2+(CE). The internal energy of the ions was changed by storing them in a 22-pole ion trap in which they were equilibrated to a temperature between -60 and 90 °C in collisions with helium gas. The average internal energy increased by about 0.4 eV from the lowest to the highest temperature for the dipeptides and 0.6 eV for the tripeptide. More fragmentation occurred at the higher temperature, as observed by an increase in the formation of b+ and y+ ions after breakage of the peptide bond of vibrationally hot even-electron cations and from secondary reactions of z+ radical cations within the time window of the experiment. However, the z+ to c+ partitioning was not found to depend significantly on temperature in the measured range. In addition the decay of [GHK+H]+/[GHK+2H]+ and [AK+H]+ formed after electron capture by [GHK+2H]2+ and [AK+2H]2+ was found to occur on a microsecond to millisecond timescale. The data are well

  20. Complex formation of Cm(III) with formate studied by time-resolved laser fluorescence spectroscopy

    Highlights: • Cm(III) complexation with formate is investigated at T = 20–90 °C. • The impact of formate on Cm(III) speciation increases with increasing temperature. • The complexation reactions of Cm(III) with formate are endothermic/entropy-driven. - Abstract: Pore waters of natural clays, which are investigated as potential host rock formations for high-level nuclear waste, are known to contain large amounts of low-molecular weight organic compounds. These small organic ligands might impact the aqueous geochemistry of the stored radionuclides and, thus, their migration behavior. In the present work, the complexation of Cm(III) with formate in aqueous NaCl solution is investigated by time-resolved laser fluorescence spectroscopy (TRLFS) as a function of the ionic strength (0.5–3.0 mol/kg), the ligand concentration (0–0.2 mol/kg) and the temperature (20–90 °C). The Cm(III) speciation is determined by deconvolution of the emission spectra. The obtained distribution of Cm(III) species is used to calculate the conditional stability constants (log K′(T)) at a given temperature and ionic strength which are extrapolated to zero ionic strength by using the specific ion interaction theory (SIT). Thus, the thermodynamic log K0n(T) values for the formation of [Cm(Form)n](3−n)+ (n = 1, 2) and the ion interaction coefficients (ε(i,k)) for [Cm(Form)n](3−n)+ (n = 1, 2) with Cl− are obtained. The log K01(T) (2.11 (20 °C)–2.49 (90 °C)) and log K02(T) values (1.17 (30 °C–2.01 (90 °C)) increase continuously with increasing temperature. The log K0n(T) values are used to derive the standard reaction enthalpies and entropies (ΔrH0m, ΔrS0m) of the respective complexation reactions according to the Van’t Hoff equation. In all cases, positive ΔrH0m and ΔrS0m values are obtained. Thus, both complexation steps are endothermic and entropy-driven

  1. Heating Treated Carbon Nanotubes As Highly Active Electrocatalysts for Oxygen Reduction Reaction

    Graphical abstract: Heating treatment for multi-walled carbon nanotubes in the air introduces abundant structure defects which improve catalytic performances for oxygen reduction reaction (ORR). There is a positive correlation between the defect levels and ORR activities. The product shows better methanol tolerance and long-term durability than commercial Pt/C which makes it applicable in fuel cells. - Abstract: Carbon nanotubes (CNTs) have been widely developed for electrochemical energy conversion and storage devices for replacement of high-cost Pt-based catalysts. In this paper, a simple and convenient method is developed for improving the catalytic activity of CNTs in a controlled way. By simple heating treatment in the air, the multi-walled carbon nanotubes (MWCNTs) change with special morphologies, compositions and abundant defects (denoted as h-CNT). Those defects significantly improve the electrocatalytic performances for oxygen reduction reaction (ORR) which proceeds in a nearly four-electron pathway. The heating conditions have important effects on the structures and defect properties of h-CNTs which show a positive correlation between the defect levels and ORR performances. The small amounts of iron residues originated from nanotube growth and nitrogen doping during heating treatment also contribute to some catalytic activity. The inner walls of h-CNT remain intact during heating treatment and provide sufficient conductivity which facilitates charge transport during ORR. The h-CNT electrocatalyst shows better methanol tolerance and long-term durability than commercial Pt/C in alkaline media which makes it an alternative cathode catalyst in fuel cells

  2. Directed surfaces structures and interfaces for enhanced electrocatalyst activity, selectivity, and stability for energy conversion reactions

    Jaramillo, Thomas F. [Stanford Univ., CA (United States). Dept. of Chemical Engineering. Shriram Center

    2016-04-20

    In this project, we have employed a systematic approach to develop active, selective, and stable catalyst materials for important electrochemical reactions involving energy conversion. In particular, we have focused our attention on developing active catalyst materials for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). HER: We have synthesized and investigated several highly active and acid stable non-precious metal HER catalysts, including: [Mo3S13]2- nanoclusters (Nature Chemistry, 2014) and molybdenum phosphosulfide (MoP|S) (Angewandte Chemie, 2014). We have also aimed to engineer these catalyst formulations in a membrane electrode assembly (MEA) for fundamental studies of water electrolysis at high current densities, approximately 1 A/cm2 (ChemSusChem, 2015). We furthermore investigated transition metal phosphide (TMP) catalysts for HER by a combined experimental–theoretical approach (Energy & Environmental Science, 2015). By synthesizing different TMPs and comparing experimentally determined HER activities with the hydrogen adsorption free energies, ΔGH, calculated by density functional theory, we showed that the TMPs follow a volcano relationship for the HER. Using our combined experimental–theoretical model, we predicted that the mixed metal TMP, Fe0.5Co0.5P, should have a near-optimal ΔGH. We synthesized several mixtures of Co and Fe phosphides alloys and confirmed that Fe0.5Co0.5P exhibits the highest HER activity of the investigated TMPs (Energy & Environmental Science, 2015). The understanding gained as to how to improve catalytic activity for the HER, particularly for non-precious metal materials, is important to DOE targets for sustainable H2 production. OER: We have developed a SrIrO3/IrOx catalyst for acidic conditions (submitted, 2016). The Sr

  3. O2 activation by binuclear Cu sites: Noncoupled versus exchange coupled reaction mechanisms

    Chen, Peng; Solomon, Edward I.

    2004-09-01

    Binuclear Cu proteins play vital roles in O2 binding and activation in biology and can be classified into coupled and noncoupled binuclear sites based on the magnetic interaction between the two Cu centers. Coupled binuclear Cu proteins include hemocyanin, tyrosinase, and catechol oxidase. These proteins have two Cu centers strongly magnetically coupled through direct bridging ligands that provide a mechanism for the 2-electron reduction of O2 to a µ-2:2 side-on peroxide bridged species. This side-on bridged peroxo-CuII2 species is activated for electrophilic attack on the phenolic ring of substrates. Noncoupled binuclear Cu proteins include peptidylglycine -hydroxylating monooxygenase and dopamine -monooxygenase. These proteins have binuclear Cu active sites that are distant, that exhibit no exchange interaction, and that activate O2 at a single Cu center to generate a reactive CuII/O2 species for H-atom abstraction from the C-H bond of substrates. O2 intermediates in the coupled binuclear Cu enzymes can be trapped and studied spectroscopically. Possible intermediates in noncoupled binuclear Cu proteins can be defined through correlation to mononuclear CuII/O2 model complexes. The different intermediates in these two classes of binuclear Cu proteins exhibit different reactivities that correlate with their different electronic structures and exchange coupling interactions between the binuclear Cu centers. These studies provide insight into the role of exchange coupling between the Cu centers in their reaction mechanisms.

  4. Reactions of hypochlorous acid with biological substrates are activated catalytically by tertiary amines.

    Prütz, W A

    1998-09-15

    The activation of reactions of HOCl with a variety of model substrates by tertiary amines was investigated spectroscopically by tandem-mix and stopped-flow techniques. HOCl-induced chlorination of salicylate can be sped up by several orders of magnitude by catalytic amounts of trimethylamine (TMN). The effect is obviously due to the fast generation of reactive quarternary chloramonium ions, TMN+ Cl, which act as chain carrier in a catalytic reaction cycle. Of various catalysts tested, quinine shows the highest activity; this is attributable to the quinuclidine (QN) substituent, a bicyclic tertiary amine, forming a particularly reactive chloro derivative, QN+ Cl, which does not decompose autocatalytically. The rate of catalytic salicylate chlorination as a function of pH (around pH 7) depends not at least on the basicity of the tertiary amine; the rate increases with pH in the cases of TMN and quinuclidine (high basicity), but decreases with pH in the case of MES (low basicity). Tertiary amines also catalyze the interaction between HOCl and alkenes, as shown using sorbate as model. Reaction of HOCl with the nucleotides GMP and CMP is sped up remarkably by catalytic amounts of tertiary amines. In the case of GMP the same product spectrum is produced by HOCl in absence and presence of catalyst, but a change in the product spectra is obtained when AMP and CMP are reacted with HOCl in presence of catalyst. Using poly(dA-dT).poly(dA-dT) as DNA model, it is shown that HOCl primarily induces an absorbance increase at 263 nm, which indicates unfolding of the double strand due to fast chlorination of thymidine; a subsequent secondary absorbance decrease can be explained by slow chlorination of adenosine. Both the primary and secondary processes are activated by catalytic amounts of quinine. No evidence was found for a radical pathway in TMN-mediated oxidation of formate by HOCl. The present results suggest that low concentrations of certain tertiary amines have the potential

  5. Coimmobilization of acetylcholinesterase and choline oxidase on gold nanoparticles: stoichiometry, activity, and reaction efficiency.

    Keighron, Jacqueline D; Åkesson, Sebastian; Cans, Ann-Sofie

    2014-09-30

    Hybrid structures constructed from biomolecules and nanomaterials have been used in catalysis and bioanalytical applications. In the design of many chemically selective biosensors, enzymes conjugated to nanoparticles or carbon nanotubes have been used in functionalization of the sensor surface for enhancement of the biosensor functionality and sensitivity. The conditions for the enzyme:nanomaterial conjugation should be optimized to retain maximal enzyme activity, and biosensor effectiveness. This is important as the tertiary structure of the enzyme is often altered when immobilized and can significantly alter the enzyme catalytic activity. Here we show that characterization of a two-enzyme:gold nanoparticle (AuNP) conjugate stoichiometry and activity can be used to gauge the effectiveness of acetylcholine detection by acetylcholine esterase (AChE) and choline oxidase (ChO). This was done by using an analytical approach to quantify the number of enzymes bound per AuNP and monitor the retained enzyme activity after the enzyme:AuNP synthesis. We found that the amount of immobilized enzymes differs from what would be expected from bulk solution chemistry. This analysis was further used to determine the optimal ratio of AChE:ChO added at synthesis to achieve optimum sequential enzyme activity for the enzyme:AuNP conjugates, and reaction efficiencies of greater than 70%. We here show that the knowledge of the conjugate stoichiometry and retained enzyme activity can lead to more efficient detection of acetylcholine by controlling the AChE:ChO ratio bound to the gold nanoparticle material. This approach of optimizing enzyme gold nanoparticle conjugates should be of great importance in the architecture of enzyme nanoparticle based biosensors to retain optimal sensor sensitivity. PMID:25167196

  6. Dynamics of activity free radical oxidation reactions in students with cerebral palsy results over the course of the educational process

    Makarova E.V.

    2012-12-01

    Full Text Available The dynamics of changes activity of reactions is studied freely radical oxidize for students with the consequences of child's cerebral paralysis. 20 students took part in an experiment. Found that the course of study they have more active free radical oxidation reactions and decreases the activity of antiradical protection. Given the use of additional physical activity in aerobic training indicators intracellular antioxidant defense system increased, decreased content of reaction products of lipid peroxidation. However, increased rates of maximum oxygen consumption and increased tolerance of students with cerebral palsy to the consequences of physical activity. It is set that the pathological changes of metabolism for students ground the necessity of application of the differentiated physical loadings. The optimum forms of physical rehabilitation of the aerobic training is the dosed walking, medical swimming, dosed after distance, sometimes and by the corner of getting up pedestrian ascents. Loading is increased due to a volume, but not intensity of exercises.

  7. Palladium- and copper-mediated N-aryl bond formation reactions for the synthesis of biological active compounds

    Burkhard Koenig

    2011-01-01

    Full Text Available N-Arylated aliphatic and aromatic amines are important substituents in many biologically active compounds. In the last few years, transition-metal-mediated N-aryl bond formation has become a standard procedure for the introduction of amines into aromatic systems. While N-arylation of simple aromatic halides by simple amines works with many of the described methods in high yield, the reactions may require detailed optimization if applied to the synthesis of complex molecules with additional functional groups, such as natural products or drugs. We discuss and compare in this review the three main N-arylation methods in their application to the synthesis of biologically active compounds: Palladium-catalysed Buchwald–Hartwig-type reactions, copper-mediated Ullmann-type and Chan–Lam-type N-arylation reactions. The discussed examples show that palladium-catalysed reactions are favoured for large-scale applications and tolerate sterically demanding substituents on the coupling partners better than Chan–Lam reactions. Chan–Lam N-arylations are particularly mild and do not require additional ligands, which facilitates the work-up. However, reaction times can be very long. Ullmann- and Buchwald–Hartwig-type methods have been used in intramolecular reactions, giving access to complex ring structures. All three N-arylation methods have specific advantages and disadvantages that should be considered when selecting the reaction conditions for a desired C–N bond formation in the course of a total synthesis or drug synthesis.

  8. Reaction pathway and oxidation mechanisms of dibutyl phthalate by persulfate activated with zero-valent iron.

    Li, Huanxuan; Wan, Jinquan; Ma, Yongwen; Wang, Yan

    2016-08-15

    This study investigated reaction pathway and oxidation mechanisms of dibutyl phthalate (DBP) by persulfate (PS) activated with zero-valent iron (ZVI). The DBP degradation was studied at three pH values (acidic, neutral and basic) in the presence of different organic scavengers. Using a chemical probe method, both sulfate radical (SO4(-)) and hydroxyl radical (·OH) were found to be primary oxidants at pH3.0 and pH7.0, respectively while ·OH was the major specie to oxidize DBP at pH11.0. A similar result was found in an experiment of Electron Spin Resonance spin-trapping where in addition to OH, superoxide radical (O2(-)) was detected at pH11.0. The transformation of degradation products including dimethyl phthalate (DMP), diethyl phthalate (DEP), phthalic anhydride, and acetophenone exhibited diverse variation during the reaction processes. The phthalic anhydride concentration appeared to be maximum at all pHs. Another eleven intermediate products were also found at pH3.0 by GC-MS and HPLC analysis, and their degradation mechanisms and pathways were proposed. It was suggested that dealkylation, hydroxylation, decarboxylation and hydrogen extraction were the dominant degradation mechanisms of DBP at pH3.0. PMID:27125682

  9. PREPARATION, CHARACTERIZATION AND CATALYTIC ACTIVITY OF CuO/TS-1 ON BENZENE HYDROXYLATION REACTION

    Nuni Widiarti

    2011-11-01

    Full Text Available CuO/TS-1 catalysts have been prepared and tested in the benzene hydroxylation. TS-1 was synthesized by hydrothermalmethod, while CuO/TS-1 was prepared by impregnation method using Cu(NO2.3H2O as precursor. Catalysts werecharacterized by using X-ray diffraction (XRD, infrared spectroscopy (IR, and N2 adsorption-desorption techniques.The catalytic activity was tested in the hydroxylation reaction of benzene. The products were analyzed using gaschromatography. Catalyst characterization by XRD and IR techniques have showed that the catalyst structure was aMFI type of zeolite. XRD pattern have showed the orthorombic structure and indicated the presence of CuOaggregation. The results of the pyridine adsorption have found that the acidity of TS-1 and CuO/TS-1 were a Lewis acidand it’s increased with an increasing amount of CuO loading. The results of nitrogen adsorption analysis have showeddecreasing of surface areas of catalyst with increasing amount of CuO loading. The optimum conditions of benzenehydroxylation was observed by 1%CuO/TS-1 catalyst at 70 °C, reaction time 2 h and acetic acid as the solvent yielded27.6% of phenol with phenol selectivity was 75.5%.

  10. Screening of catalytic oxygen reduction reaction activity of metal-doped graphene by density functional theory

    Chen, Xin; Chen, Shuangjing; Wang, Jinyu

    2016-08-01

    Graphene doping is a promising direction for developing effective oxygen reduction reaction (ORR) catalysts. In this paper, we computationally investigated the ORR performance of 10 kinds of metal-doped graphene (M-G) catalysts, namely, Al-, Si-, Mn-, Fe-, Co-, Ni-, Pd-, Ag-, Pt-, and Au-G. The results shown that the binding energies of the metal atoms incorporated into the graphene vacancy are higher than their bulk cohesive energies, indicating the formed M-G catalysts are even more stable than the corresponding bulk metal surfaces, and thus avoid the metals dissolution in the reaction environment. We demonstrated that the linear relation among the binding energies of the ORR intermediates that found on metal-based materials does not hold for the M-G catalysts, therefore a single binding energy of intermediate alone is not sufficient to evaluate the ORR activity of an arbitrary catalyst. By analysis of the detailed ORR processes, we predicted that the Au-, Co-, and Ag-G materials can be used as the ORR catalysts.

  11. Temperature dependent halogen activation by N2O5 reactions on halide-doped ice surfaces

    J. A. Thornton

    2012-06-01

    Full Text Available We examined the reaction of N2O5 on frozen halide salt solutions as a function of temperature and composition using a coated wall flow tube technique coupled to a chemical ionization mass spectrometer (CIMS. The molar yield of photo-labile halogen compounds was near unity for almost all conditions studied, with the observed reaction products being nitryl chloride (ClNO2 and/or molecular bromine (Br2. The relative yield of ClNO2 and Br2 depended on the ratio of bromide to chloride ions in the solutions used to form the ice. At a bromide to chloride ion molar ratio greater than 1/30 in the starting solution, Br2 was the dominant product otherwise ClNO2 was primarily produced on these near pH-neutral brines. We demonstrate that the competition between chlorine and bromine activation is a function of the ice/brine temperature presumably due to the preferential precipitation of NaCl hydrates from the brine below 250 K. Our results provide new experimental confirmation that the chemical environment of the brine layer changes with temperature and that these changes can directly affect multiphase chemistry. These findings have implications for modeling air-snow-ice interactions in polar regions and likely in polluted mid-latitude regions during winter as well.

  12. Simultaneous comparison of thrombogenic reactions to different combinations of anticoagulants, activated clotting times, and materials.

    Nagai, Mirei; Iwasaki, Kiyotaka; Umezu, Mitsuo; Ozaki, Makoto

    2014-11-01

    Thrombogenic reactions under multiple interactions of pharmacological agents, doses, and materials have not been well understood yet. The aim of this study was to investigate the ability to simultaneously compare thrombogenic reactions to different combinations of anticoagulants, doses, and blood-contacting materials, in a single human blood using an in vitro test method. Four venous blood samples were drawn from each of six healthy volunteers into syringes that contained two different amounts of heparin and argatroban to set the activated clotting time (ACT) to approximately 200 or 500 s, respectively. The four blood samples from each volunteer were immediately poured into two clinical-grade extracorporeal circulation tubes: a polyvinyl chloride (PVC) tube and a poly(2-methoxyethyl acrylate)-coated (PMEA) PVC tube. These tubes with an inner diameter of 12.7 mm were rotated at 183 rpm in a 37°C chamber for 10 min. The results indicated that the in vitro thrombogenicity test method was capable of assessing differences in platelet factor 4 and β-thromboglobulin increases among different combinations of the two materials, two anticoagulants, and two ACTs. Higher amounts of total plasma proteins were absorbed on PVC tubes than on PMEA-coated tubes when using the same anticoagulant and dose. These data elucidate that the in vitro thrombogenicity test method is useful for the simultaneous quantitative evaluation of the influences of various combinations of materials, pharmacological agents, and doses on thrombogenicity in a single human blood. PMID:24652689

  13. Temperature dependent halogen activation by N2O5 reactions on halide-doped ice surfaces

    J. A. Thornton

    2012-02-01

    Full Text Available We examined the reaction of N2O5 on frozen halide salt solutions as a function of temperature and composition using a coated wall flow tube technique coupled to a chemical ionization mass spectrometer (CIMS. The molar yield of photo-labile halogen compounds was near unity for almost all conditions studied, with the observed reaction products being nitryl chloride (ClNO2 and/or molecular bromine (Br2. The relative yield of ClNO2 and Br2 depended on the ratio of bromide to chloride ions in the solutions used to form the ice. At a bromide to chloride ion molar ratio greater than 1/30 in the starting solution, Br2 was the dominant product otherwise ClNO2 was primarily produced on these near pH-neutral brines. We demonstrate that the competition between chlorine and bromine activation is a function of the ice/brine temperature presumably due to the preferential precipitation of NaCl hydrates from the brine below 250 K. Our results provide new experimental confirmation that the chemical environment of the brine layer changes with temperature and that these changes can directly affect multiphase chemistry. These findings have implications for modeling air-snow-ice interactions in polar regions and likely in polluted mid-latitude regions during winter as well.

  14. Development of Spectrophotometry Method For Iodide Determination Based on I2-Starch Complex Formation with Hypochlorite as oxidator

    Qurrata Ayun

    2015-05-01

    Full Text Available Iodine is one of the most important elements for human body. Both, the overage and the deficiency supply of iodine give negative impact for human health. In this research, a simple and inexpensive spectrophotometric method is developed is based on starch-iodine complex formation, where iodide was oxidized with hypochlorite to form iodine, which then reacted with starch to form a blue starch-iodine complex. In this research, the common analytical parameters were optimized regarding to sensitivity and selectivity. It was noted that maximum wavelength for starch-iodine complex was 618 nm, optimum time for complex formation and oxidation was 15 minutes, and optimum hypochlorite concentration was 6 ppm. Under the obtained optimum conditions, the proposed method showed linearity from 0-20 ppm iodide (r2 = 0.994, with limit detection of 0.20 ppm. Determination of iodide with this method was unaffected by Cl-, and Br-; but SCN- affected the measurement of iodide at concentration of 1 ppm. Application to synthetic and urinary samples showed that the proposed method has good agreement with the standard spectrophotometry (leuco crystal violet method, and can be used as an alternative method for iodide measurement.

  15. 11B, 13C-NMR study of the complex formation of phenylboronate with catechol and L-dopa

    In the solution of phenylboronic acid and either catechol or L-dopa at various pH, the equilibrium between phenylboronate anion and catechol or L-dopa to form the anionic complex has been demonstrated by the existence of 11B-NMR signals for the complex and either phenylboronate anion or phenylboronic acid. By the pH dependence of the 11B-NMR chemical shift of phenylboronate-phenylboronic acid solution, the ionization constant of phenylboronic acid (pKa) has been estimated as 8.90. By the 11B-NMR spectra at pH below 7, the complex formation constant, log K, has been obtained as 4.5 for catechol, and as 4.6 for L-dopa. The 13C-NMR spectra have also demonstrated the complex formations, but in the pH 8 and 9 solution of phenylboronic acid and L-dopa, the 13C-NMR signal of carbonyl carbon of L-dopa disappeared. (author)

  16. Mixed ligand complex formation of FeIII with boric acid and typical N-donor multidentate ligands

    G N Mukherjee; Ansuman Das

    2002-06-01

    Equilibrium study of the mixed ligand complex formation of FeIII with boric acid in the absence and in the presence of 2,2'-bipyridine, 1,10-phenanthroline, diethylenetriamine and triethylenetetramine (L) in different molar ratios provides evidence of formation of Fe(OH)2+, Fe(OH)$^{+}_{2}$, Fe(L)3+, Fe(H2BO4), Fe(OH)(H2BO4)-, Fe(OH)2(H2BO4)2-, Fe(L)(H2BO4) and Fe2(L)2(BO4)+ complexes. Fe(L)$^{3+}_{2}$, Fe(L)2(H2BO4) and Fe2(L)4(BO4)+ complexes are also indicated with 2,2'-bipyridine and 1,10-phenanthroline. Complex formation equilibria and stability constants of the complexes at 25 ± 0 × 1° C in aqueous solution at a fixed ionic strength, = 0.1 mol -3 (NaNO3) have been determined by potentiometric method.

  17. Analysis of the Enhanced Stability of R(+-Alpha Lipoic Acid by the Complex Formation with Cyclodextrins

    Hiroshi Shimosegawa

    2013-02-01

    Full Text Available R(+-alpha lipoic acid (RALA is one of the cofactors for mitochondrial enzymes and, therefore, plays a central role in energy metabolism. RALA is unstable when exposed to low pH or heat, and therefore, it is difficult to use enantiopure RALA as a pharma- and nutra-ceutical. In this study, we have aimed to stabilize RALA through complex formation with cyclodextrins (CDs. α-CD, β-CD and γ-CD were used for the formation of these RALA-CD complexes. We confirmed the complex formation using differential scanning calorimetry and showed by using HPLC analysis that complexed RALA is more stable than free RALA when subjected to humidity and high temperature or acidic pH conditions. Scanning electron microscopy studies showed that the particle size and shape differed depending on the cyclodextrin used for complexation. Further, the complexes of CD and RALA showed a different particle size distribution pattern compared with that of CD itself or that of the physical mixture of RALA and CD.

  18. Angiopoietin-like protein 4 inhibition of lipoprotein lipase: evidence for reversible complex formation.

    Lafferty, Michael J; Bradford, Kira C; Erie, Dorothy A; Neher, Saskia B

    2013-10-01

    Elevated triglycerides are associated with an increased risk of cardiovascular disease, and lipoprotein lipase (LPL) is the rate-limiting enzyme for the hydrolysis of triglycerides from circulating lipoproteins. The N-terminal domain of angiopoietin-like protein 4 (ANGPTL4) inhibits LPL activity. ANGPTL4 was previously described as an unfolding molecular chaperone of LPL that catalytically converts active LPL dimers into inactive monomers. Our studies show that ANGPTL4 is more accurately described as a reversible, noncompetitive inhibitor of LPL. We find that inhibited LPL is in a complex with ANGPTL4, and upon dissociation, LPL regains lipase activity. Furthermore, we have generated a variant of ANGPTL4 that is dependent on divalent cations for its ability to inhibit LPL. We show that LPL inactivation by this regulatable variant of ANGPTL4 is fully reversible after treatment with a chelator. PMID:23960078

  19. The Olefin Metathesis Reactions Combined with Organo-Iron Arene Activation Towards Dendrimers, and Polymers

    Astruc, Didier; Martinez, Victor

    The subjects treated in the two lectures of the North Atlantic Treaty Organization (NATO) summer course are (1) the combination of arene activation and perfunctionalization using organo-iron chemistry with olefin metathesis incuding metathesis of dendritic polyolefin molecules; (2) the synthesis of metallodendritic benzylidene complexes that catalyse ring-opening metathesis polymerization (ROMP) under ambient conditions and the formation of dendritic stars; (3) the use of stoichiometric and catalytic electron-transfer processes with standard reservoirs of electrons (reductants) or electron holes (oxidants) iron complexes to achieve noteworthy metathesis reactions or synthesize compounds that are useful in metathesis. Only the two first topics are treated in this chapter, and interested readers can find references concerning the third aspect called in the introduction and subsequently cited in the reference list.

  20. Palladium nanoparticle anchored polyphosphazene nanotubes: preparation and catalytic activity on aryl coupling reactions

    V Devi; A Ashok Kumar; S Sankar; K Dinakaran

    2015-06-01

    Highly accessible-supported palladium (Pd) nanoparticles anchored polyphosphazene (PPZ) nanotubes (NTs) having average diameter of 120 nm were synthesized rapidly at room temperature and homogeneously decorated with Pd nanoparticles. The resultant PPZ–Pd nanocomposites were morphologically and structurally characterized by means of transmission electron microscope equipped with energy-dispersive X-ray spectroscopy and X-ray diffraction analysis. Characterization results showed that the Pd nanoparticles with good dispersibility could be well anchored onto the surfaces of the PPZ NTs. The PPZ–Pd NTs show enhanced catalytic activity for the Suzuki coupling of aryl bromides with arylboronic acid. In addition, these PPZ–Pd NTs show excellent behaviour as reusable catalysts of the Suzuki and Heck coupling reactions.

  1. Measurements of cross-sections of the proton-induced activation reactions

    Uddin, M S; Ditrói, F; Hagiwara, M; Tarkanyi, F

    2005-01-01

    Excitation functions for the /sup 89/Y(p, x)/sup 89,88,86/Zr, /sup 89 /Y(p, x)/sup 88,87,87m,86/Y, /sup 89/Y(p, x)/sup 85,83,82/Sr and /sup 89/Y(p, x)/sup 84,83/Rb reactions were measured by a stacked foil activation technique in the energy range 15-80 MeV. The production for the long lived products like /sup 88/Zr, and /sup 88/Y are significantly larger than that of /sup nat/Mo+p, /sup nat/Nb+p and /sup nat/Zr+p processes. The productions of the medical isotopes, /sup 85/Sr and /sup 83/Sr are also effective by Y+p process using 80 MeV beam. The model calculations using ALICE-IPPE code compiled in MENDL-2P have the general trend of the measured results.

  2. Activation cross sections of proton induced nuclear reactions on gold up to 65MeV.

    Ditrói, F; Tárkányi, F; Takács, S; Hermanne, A

    2016-07-01

    Activation cross sections of proton induced reactions on gold for production of (197m,197g,195m,195g, 193m,193g,192)Hg, (196m,196g(cum),195g(cum),194,191(cum))Au, (191(cum))Pt and (192)Ir were measured up to 65MeV proton energy, some of them for the first time. The new data are in acceptably good agreement with the recently published earlier experimental data in the overlapping energy region. The experimental data are compared with the predictions of the TALYS 1.6 (results in TENDL-2015 on-line library) and EMPIRE 3.2 code. PMID:27156194

  3. Left anterior cingulate activity predicts intra-individual reaction time variability in healthy adults.

    Johnson, Beth P; Pinar, Ari; Fornito, Alex; Nandam, L Sanjay; Hester, Robert; Bellgrove, Mark A

    2015-06-01

    Within-subject, or intra-individual, variability in reaction time (RT) is increasingly recognised as an important indicator of the efficiency of attentional control, yet there have been few investigations of the neural correlates of trial-to-trial RT variability in healthy adults. We sought to determine the neural correlates of intra-individual RT variability during a go/no-go response inhibition task in 27 healthy, male participants. We found that reduced trial-to-trial RT variability (i.e. greater response stability) was significantly associated with greater activation in the left pregenual anterior cingulate. These results support the role of the left anterior cingulate in the dynamic control of attention and efficient response selection. Greater understanding of intra-individual RT variability and top-down attentional control in healthy adults may help to inform disorders that impact executive/attentional control, such as attention deficit hyperactivity disorder and schizophrenia. PMID:25791710

  4. Metal doped carbon nanoneedles and effect of carbon organization with activity for hydrogen evolution reaction (HER).

    Araujo, Rafael A; Rubira, Adley F; Asefa, Tewodros; Silva, Rafael

    2016-02-10

    Cellulose nanowhiskers (CNW) from cotton, was prepared by acid hydrolysis and purified using a size selection process to obtain homogeneous samples with average particle size of 270 nm and 85.5% crystallinity. Purified CNW was used as precursor to carbon nanoneedles (CNN) synthesis. The synthesis of CNN loaded with different metals dopants were carried out by a nanoreactor method and the obtained CNNs applied as electrocatalysts for hydrogen evolution reaction (HER). In the carbon nanoneedles synthesis, Ni, Cu, or Fe worked as graphitization catalyst and the metal were found present as dopants in the final material. The used metal appeared to have direct influence on the degree of organization of the particles and also in the surface density of polar groups. It was evaluated the influence of the graphitic organization on the general properties and nickel was found as the more appropriate metal since it leads to a more organized material and also to a high activity toward HER. PMID:26686184

  5. Reaction of argininosuccinase with bromomesaconic acid: role of an essential lysine in the active site

    We have undertaken studies on bovine liver argininosuccinase (L-argininosuccinate arginine-lyase with the active site-directed reagent bromo[U-14C]mesaconic acid, an analogue of fumaric acid. Reactivity, measured by enzyme inactivation, followed pseudo-first-order kinetics, and the rate increased with reagent concentration. Argininosuccinate completely protected the enzyme against inactivation, but neither arginine nor fumarate was protective. A plot of the degree of inactivation as a function of alkyl groups incorporated was extrapolated to 4 mol per mol of enzyme, or 1 mol per active site. After large-scale alkylation of the enzyme (and digestion with trypsin), two 14C-labeled tryptic peptides were isolated. These were chemically sequenced by the Edman method. The amino acid sequences proved to be identical with regions of the deduced amino acid sequences or argininosuccinases from human and yeast sources The 14C-labeled tryptic peptide in the active site region had the sequence Gly-Leu-Glu-Xaa-Ala-Gly-Leu-Leu-Thr-Lys; Xaa represents an unknown phenylthiohydantoin derivative detected in cycle 4. The corresponding amino acid was identified as lysine-51 on the basis of sequence similarity with human and yeast amino acid sequences in this region. The reaction of the enzyme with the alkylating agent and the specific protection against inactivation by argininosuccinate suggest that this lysine residue has an essential role in the binding of argininosuccinate to the enzyme and, consequently, is essential for catalysis

  6. Voltammetric investigation of avidin-biotin complex formation using an electroactive bisbiotinyl compound

    Formation of avidin-biotin complex was investigated using bisbiotinyl thionine (BBT) by means of voltammetric techniques. Thionine is an electroactive compound and has two amino groups that are necessary for the reaction with a biotinylation reagent. The biotinylation of thionine produces a new reagent with two biotin moieties at each end of thionine. Three BBTs of different lengths of the spacer that connects the biotin moiety to the thionine moiety were prepared. The avidin-biotin binding assay was achieved by measuring the electrode response of the thionine moiety in BBT. The binding affinity and the conformation of complex, which depended on the length of spacer, are discussed. BBT in which the spacer is shortest (BBT-S, distance between carbonyl group of the two biotin moieties: 11 A) binds with only one avidin molecule. BBT with medium length of spacer (BBT-M, 28.8 A) forms the complex with two avidin molecules. BBT with the longest spacer (BBT-L, 46.6 A) allows binding with two avidin molecules as well as intramolecular binding within one avidin molecule. The affinity constants of BBT-S, BBT-M and BBT-L for avidin were estimated to be 7.0 x 1012 M-1, 3.2 x 1012 M-1 and 4.0 x 1012 M-1, respectively

  7. DETECTION OF PHENOL DEGRADING BACTERIA AND PSEUDOMONAS PUTIDA IN ACTIVATED SLUDGE BY POLYMERASE CHAIN REACTION

    H. Movahedyan ، H. Khorsandi ، R. Salehi ، M. Nikaeen

    2009-04-01

    Full Text Available Phenol is one of the organic pollutants in various industrial wastewaters especially petrochemical and oil refining. Biological treatment is one of the considerable choices for removing of phenol present in these wastewaters. Identification of effective microbial species is considered as one of the important priorities for production of the biomass in order to achieve desirable kinetic of biological reactions. Basic purpose of this research is identification of phenol-degrading Pseudomonas Putida in activated sludge by polymerase chain reaction (PCR that has high speed and specificity. In this research, 10 various colonies of phenol-degrading bacteria were isolated from municipal activated sludge and the rate of phenol removal and growth rate of these bacteria were assessed in different concentrations of phenol (200 – 900 mg/L. Confirmation of the largest subunit of multicomponent phenol hydroxylase (LmPH gene and gene coding the N fragment in Pseudomonas Putida-derived methyl phenol operon (DmpN gene through PCR were used for general identification of phenol-degrading bacteria and Pseudomonas Putida, respectively. Presence of a 600 bp (base pairs bond in all of isolated strains indicated that they contain phenol hydroxylase gene. 6 of 10 isolated bacteria were Pseudomonas Putida because they produced a 199 bp PCR product by DmpN primers. According to PCR results in this study, the best phenol-degrading bacteria that can utilize 500 – 600 mg/L phenol completely after 48 hours incubation, belong to Pseudomonas Putida strains. It is clear that use of isolated bacteria can lead to considerable decrease of treatment time as well as promotion of phenol removal rate.

  8. Enhanced electrocatalytic activity of MoSx on TCNQ-treated electrode for hydrogen evolution reaction

    Chang, Yunghuang

    2014-10-22

    Molybdenum sulfide has recently attracted much attention because of its low cost and excellent catalytical effects in the application of hydrogen evolution reaction (HER). To improve the HER efficiency, many researchers have extensively explored various avenues such as material modification, forming hybrid structures or modifying geometric morphology. In this work, we reported a significant enhancement in the electrocatalytic activity of the MoSx via growing on Tetracyanoquinodimethane (TCNQ) treated carbon cloth, where the MoSx was synthesized by thermolysis from the ammonium tetrathiomolybdate ((NH4)2MoS4) precursor at 170 °C. The pyridinic N- and graphitic N-like species on the surface of carbon cloth arising from the TCNQ treatment facilitate the formation of Mo5+ and S2 2- species in the MoSx, especially with S2 2- serving as an active site for HER. In addition, the smaller particle size of the MoSx grown on TCNQ-treated carbon cloth reveals a high ratio of edge sites relative to basal plane sites, indicating the richer effective reaction sites and superior electrocatalytic characteristics. Hence, we reported a high hydrogen evolution rate for MoSx on TCNQ-treated carbon cloth of 6408 mL g-1 cm-2 h-1 (286 mmol g-1 cm-2 h-1) at an overpotential of V = 0.2 V. This study provides the fundamental concepts useful in the design and preparation of transition metal dichalcogenide catalysts, beneficial in the development in clean energy.

  9. Dynamics of DNA-protein complex formation in rat liver during induction by phenobarbital and triphenyldioxane.

    Pustylnyak, V O; Zacharova, L Yu; Gulyaeva, L F; Lyakhovich, V V; Slynko, N M

    2004-10-01

    CYP2B gene expression in liver of rats treated with phenobarbital and triphenyldioxane at early stage of induction (40 min-18 h) was studied using electrophoretic mobility shift assay (EMSA) and RT-PCR. During first 6 h after induction, differences in the dynamics of formation of DNA-protein complexes were shown for each inducer. Later (18 h after induction), the intensity pattern of these complexes became the same for both phenobarbital and triphenyldioxane treated animals. This suggests the existence of specific signaling for each inducer only in early stages of CYP2B activation. Increase in nuclear protein (possible transcription factor) binding to Barbie-box regulatory sequence of CYP2B genes was accompanied by their increased expression. Thus, we have demonstrated for the first time that early stages of induction (40 min and 3 h after administration of phenobarbital and triphenyldioxane, respectively) are accompanied by activation of nuclear proteins that can bind to Barbie-box element of CYP2B. Although various chemical inducers cause distinct activation of such binding, this process involves activation of gene transcription. PMID:15527410

  10. Taste-Active Maillard Reaction Products in Roasted Garlic (Allium sativum).

    Wakamatsu, Junichiro; Stark, Timo D; Hofmann, Thomas

    2016-07-27

    In order to gain first insight into candidate Maillard reaction products formed upon thermal processing of garlic, mixtures of glucose and S-allyl-l-cysteine, the major sulfur-containing amino acid in garlic, were low-moisture heated, and nine major reaction products were isolated. LC-TOF-MS, 1D/2D NMR, and CD spectroscopy led to their identification as acortatarin A (1), pollenopyrroside A (2), epi-acortatarin A (3), xylapyrroside A (4), 5-hydroxymethyl-1-[(5-hydroxymethyl-2-furanyl)methyl]-1H-pyrrole-2-carbalde-hyde (5), 3-(allylthio)-2-(2-formyl-5-hydroxymethyl-1H-pyrrol-1-yl)propanoic acid (6), (4S)-4-(allylthiomethyl)-3,4-dihydro-3-oxo-1H-pyrrolo[2,1-c][1,4]oxazine-6-carbaldehyde (7), (2R)-3-(allylthio)-2-[(4R)-4-(allylthiomethyl)-6-formyl-3-oxo-3,4-dihydropyrrolo-[1,2-a]pyrazin-2(1H)-yl]propanoic acid (8), and (2R)-3-(allylthio)-2-((4S)-4-(allylthiomethyl)-6-formyl-3-oxo-3,4-dihydropyrrolo-[1,2-a]pyrazin-2(1H)-yl)propanoic acid (9). Among the Maillard reaction products identified, compounds 5-9 have not previously been published. The thermal generation of the literature known spiroalkaloids 1-4 is reported for the first time. Sensory analysis revealed a bitter taste with thresholds between 0.5 and 785 μmol/kg for 1-5 and 7-9. Compound 6 did not show any intrinsic taste (water) but exhibited a strong mouthfullness (kokumi) enhancing activity above 186 μmol/kg. LC-MS/MS analysis showed 1-9 to be generated upon pan-frying of garlic with the highest concentration of 793.7 μmol/kg found for 6, thus exceeding its kokumi threshold by a factor of 4 and giving evidence for its potential taste modulation activity in processed garlic preparations. PMID:27381763

  11. Reactions of 3-Formylchromone with Active Methylene and Methyl Compounds and Some Subsequent Reactions of the Resulting Condensation Products

    M. Lácova; R. Gasparová

    2005-01-01

    This review presents a survey of the condensations of 3-formylchromone with various active methylene and methyl compounds, e.g. malonic or barbituric acid derivatives, five-membered heterocycles, etc. The utilisation of the condensation products for the synthesis of different heterocyclic systems, which is based on the ability of the γ-pyrone ring to be opened by the nucleophilic attack is also reviewed. Finally, the applications of microwave irradiation as an unconventional method of reac...

  12. Synthesis and anti-inflammatory activity of 3-indolyl pyridine derivatives through one-pot multi component reaction

    Prakasam Thirumurugan; S Mahalaxmi; Paramasivan T Perumal

    2010-11-01

    A simple protocol for the efficient preparation of 2-(1-Indol-3-yl)-6-methoxy-4-arylpyridine-3,5-dicarbonitrile has been achieved through one-pot multi-component reaction under reflux condition. These compounds showed a good anti-inflammatory activity. Also a series of bis-Hantzsch dihydropyridine derivatives were synthesized and they exhibit analgesic activity.

  13. Interaction between mosquito-larvicidal Lysinibacillus sphaericus binary toxin components: analysis of complex formation.

    Kale, Avinash; Hire, Ramesh S; Hadapad, Ashok B; D'Souza, Stanislaus F; Kumar, Vinay

    2013-11-01

    The two components (BinA and BinB) of Lysinibacillus sphaericus binary toxin together are highly toxic to Culex and Anopheles mosquito larvae, and have been employed world-wide to control mosquito borne diseases. Upon binding to the membrane receptor an oligomeric form (BinA2.BinB2) of the binary toxin is expected to play role in pore formation. It is not clear if these two proteins interact in solution as well, in the absence of receptor. The interactions between active forms of BinA and BinB polypeptides were probed in solution using size-exclusion chromatography, pull-down assay, surface plasmon resonance, circular dichroism, and by chemically crosslinking BinA and BinB components. We demonstrate that the two proteins interact weakly with first association and dissociation rate constants of 4.5×10(3) M(-1) s(-1) and 0.8 s(-1), resulting in conformational change, most likely, in toxic BinA protein that could kinetically favor membrane translocation of the active oligomer. The weak interactions between the two toxin components could be stabilized by glutaraldehyde crosslinking. The cross-linked complex, interestingly, showed maximal Culex larvicidal activity (LC50 value of 1.59 ng mL(-1)) reported so far for combination of BinA/BinB components, and thus is an attractive option for development of new bio-pesticides for control of mosquito borne vector diseases. PMID:23974012

  14. Mechanically activated SHS reaction in the Fe-Al system: in-situ time resolved diffraction using synchrotron radiation

    The mechanical activation self propagating high temperature synthesis (M.A.S.H.S.) processing is a new way to produce nanocrystalline iron aluminide intermetallic compounds. This process is maily the combination of two steps; in the one hand, a mechanical activation where the Fe - Al powder mixture was milled during a short time at given energy and frequency of shocks and in the other hand, a self propagating high temperature synthesis (S.H.S.) reaction, for which the exothermicity of the Fe + Al reaction is used. This fast propagated MASHS reaction has been in-situ investigated using the time resolved X-ray diffraction (TRXRD) using a X-ray synchrotron beam and an infrared thermography camera, allowing the coupling of the materials structure and the temperature field. The effects of the initial mean compositions, of the milling conditions as well as of the compaction parameters on the MASHS reaction are reported. (orig.)

  15. Active Sites Implanted Carbon Cages in Core-Shell Architecture: Highly Active and Durable Electrocatalyst for Hydrogen Evolution Reaction.

    Zhang, Huabin; Ma, Zuju; Duan, Jingjing; Liu, Huimin; Liu, Guigao; Wang, Tao; Chang, Kun; Li, Mu; Shi, Li; Meng, Xianguang; Wu, Kechen; Ye, Jinhua

    2016-01-26

    Low efficiency and poor stability are two major challenges we encounter in the exploration of non-noble metal electrocatalysts for the hydrogen evolution reaction (HER) in both acidic and alkaline environment. Herein, the hybrid of cobalt encapsulated by N, B codoped ultrathin carbon cages (Co@BCN) is first introduced as a highly active and durable nonprecious metal electrocatalysts for HER, which is constructed by a bottom-up approach using metal organic frameworks (MOFs) as precursor and self-sacrificing template. The optimized catalyst exhibited remarkable electrocatalytic performance for hydrogen production from both both acidic and alkaline media. Stability investigation reveals the overcoating of carbon cages can effectively avoid the corrosion and oxidation of the catalyst under extreme acidic and alkaline environment. Electrochemical active surface area (EASA) evaluation and density functional theory (DFT) calculations revealed that the synergetic effect between the encapsulated cobalt nanoparticle and the N, B codoped carbon shell played the fundamental role in the superior HER catalytic performance. PMID:26649629

  16. Activity-Directed Synthesis with Intermolecular Reactions: Development of a Fragment into a Range of Androgen Receptor Agonists

    Karageorgis, George; Dow, Mark; Aimon, Anthony; Warriner, Stuart; Nelson, Adam

    2015-01-01

    Activity-directed synthesis (ADS), a novel discovery approach in which bioactive molecules emerge in parallel with associated syntheses, was exploited to develop a weakly binding fragment into novel androgen receptor agonists. Harnessing promiscuous intermolecular reactions of carbenoid compounds enabled highly efficient exploration of chemical space. Four substrates were prepared, yet exploited in 326 reactions to explore diverse chemical space; guided by bioactivity alone, the products of j...

  17. Effect of support on the activity of MoVCeZr catalyst for propane ammoxidation reaction

    Mixed metal oxide catalysts based on Mo-V have been known as the most active and selective in the ammoxidation of propane to ACN. A series of MoVCeZr (5 % wt/ wt) supported with MOR, TiO2 and MgO have been prepared by incipient wetness impregnation method for propane ammoxidation reaction to ACN. The catalyst was calcined in a two step calcination process in static air between 350 - 600 degree Celsius for 10 hour. The surface area and pore size of these catalysts were measured using physical adsorption of nitrogen following Brunauer, Emmet and Teller (BET) equation. The textural and morphological of these catalysts were determined using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). The activities of all catalysts were tested using a fixed-bed reactor with online gas chromatography (GC) at 420 degree Celsius and atmospheric pressure in the presence of 0.5 ml catalyst with composition consisting of 5.8:7:17.4 (propane: ammonia: air) and helium as carrier to give a total flow of 120 ml. Result shows that MoVCeZr support gives a better conversion due to the surface area and pore size characteristic of the catalyst. (author)

  18. Activation cross-sections of proton induced reactions on natural Ni up to 65 MeV

    Production cross-sections of the natNi(p,x)60,61Cu, 56,57Ni, 55,56,57,58Co nuclear reactions were measured in five experiments up to 65 MeV by using a stacked foil activation technique. The results were compared with the available literature values, predictions of the nuclear reaction model codes ALICE-IPPE, TALYS-1.4, and extracted data from the TENDL-2012 library. Spline fits were made on the basis of selected data, from which physical yields were calculated and compared with the literature values. The applicability of the natNi(p,x)57Ni, 57Co reactions for thin layer activation (TLA) was investigated. The production rate for 55Co was compared for proton and deuteron induced reactions on Ni. - Highlights: • Production cross-sections of natNi(p,x)60,61Cu, 56,57Ni, 55,56,57,58Co reactions up to 65 MeV. • Comparison of results with theoretical codes ALICE-IPPE, TALYS 1.4 and TENDL-2012 library. • Calculation and comparison of physical yields with literature experiments. • Thin layer activation (TLA) curves for57Ni and 57Co for industrial applications. • The production rate for 55Co was compared for proton and deuteron induced reactions on Ni

  19. Complex formation of cadmium with sugar residues, nucleobases, phosphates, nucleotides, and nucleic acids.

    Sigel, Roland K O; Skilandat, Miriam; Sigel, Astrid; Operschall, Bert P; Sigel, Helmut

    2013-01-01

    Cadmium(II), commonly classified as a relatively soft metal ion, prefers indeed aromatic-nitrogen sites (e.g., N7 of purines) over oxygen sites (like sugar-hydroxyl groups). However, matters are not that simple, though it is true that the affinity of Cd(2+) towards ribose-hydroxyl groups is very small; yet, a correct orientation brought about by a suitable primary binding site and a reduced solvent polarity, as it is expected to occur in a folded nucleic acid, may facilitate metal ion-hydroxyl group binding very effectively. Cd(2+) prefers the guanine(N7) over the adenine(N7), mainly because of the steric hindrance of the (C6)NH(2) group in the adenine residue. This Cd(2+)-(N7) interaction in a guanine moiety leads to a significant acidification of the (N1)H meaning that the deprotonation reaction occurs now in the physiological pH range. N3 of the cytosine residue, together with the neighboring (C2)O, is also a remarkable Cd(2+) binding site, though replacement of (C2)O by (C2)S enhances the affinity towards Cd(2+) dramatically, giving in addition rise to the deprotonation of the (C4)NH(2) group. The phosphodiester bridge is only a weak binding site but the affinity increases further from the mono- to the di- and the triphosphate. The same also holds for the corresponding nucleotides. Complex stability of the pyrimidine-nucleotides is solely determined by the coordination tendency of the phosphate group(s), whereas in the case of purine-nucleotides macrochelate formation takes place by the interaction of the phosphate-coordinated Cd(2+) with N7. The extents of the formation degrees of these chelates are summarized and the effect of a non-bridging sulfur atom in a thiophosphate group (versus a normal phosphate group) is considered. Mixed ligand complexes containing a nucleotide and a further mono- or bidentate ligand are covered and it is concluded that in these species N7 is released from the coordination sphere of Cd(2+). In the case that the other ligand

  20. The Synthesis and Electrocatalytic Activities of Molybdenum Sulfide for Hydrogen Evolution Reaction

    Li, Zhengxing

    2014-07-01

    In the context of the future hydrogen economy, effective production of hydrogen (H2) from readily available and sustainable resources is of crucial importance. Hydrogen generation via water splitting by solar energy or electricity has attracted great attention in recent years. In comparison with photocatalytic water-splitting directly using solar light, which is ideal but the relevant technologies are not yet mature, electrolysis of water with catalyst is more practical at the current stage. The Pt-group noble metals are the most effective electrocatalysts for hydrogen evolution reaction (HER) from water, but their high costs limit their applications. Due to the earth-abundance and low price, MoS2 is expected to be a good alternative of the Pt-group metals for HER. Plenty of researches have been conducted for improving the HER activities of MoS2 by optimizing its synthesis method. However, it remains challenging to prepare MoS2 catalysts with high and controllable activity, and more investigations are still needed to better understand the structure-performance correlation in this system. In this thesis, we report a new strategy for fabricating MoS2 eletrocatalysts which gives rise to much improved HER performance and allows us to tune the electrocatalytic activity by varying the preparation conditions. Specifically, we sulfurized molybdenum oxide on the surface of a Ti foil electrode via a facile chemical vapor deposition (CVD) method, and directly used the electrode for HER testing. Depending on the CVD temperature, the MoO2-MoS2 nanocomposites show different HER activities. Under the optimal synthesis condition (400ºC), the resulting catalyst exhibited excellent HER activity: an onset potential (overpotential) of 0.095 V versus RHE and the Tafel slope of 40 mv/dec. Such a performance exceeds those of most reported MoS2 based HER electrocatalysts. We demonstrated that the CVD temperature has significant influence on the catalysts in crystallinity degree, particle

  1. Complex formation of CdSe/ZnS/TOPO nanocrystal vs. molecular chaperone in aqueous solution by hydrophobic interaction

    Feasibilities to stabilize CdSe/ZnS/trioctylphosphineoxide (TOPO) nanocrystals (quantum dots, QDs) in aqueous solutions with prefoldin macromolecules in their bioactive states are reported. Prefoldin is a jellyfish-shaped hexameric co-chaperone of the group II chaperonins. As a protein folding intermediate is captured within its central cavity, so CdSe/ZnS/TOPO QDs would also be included within this cavity. It is also found the QDs can be much more dispersed in aqueous solutions and suspended for certain period of time by adding trace amount of t-butanol in the buffer prior to the mixing of the QDs mother solution. While biochemical procedures are evaluated with ordinary fluorescence measurements, possible complex formations are also evaluated with TIRFM single-molecule detection techniques

  2. Complex formation equilibria of some beta-amino-alcohols with lead(II) and cadmium(II) in aqueous solution.

    Canepari, S; Carunchio, V; Castellano, P; Messina, A

    1998-12-01

    A study of complex formation equilibria of some beta-amino-alcohols with lead(II) and cadmium(II) ions at 25 degrees C and in 0.5 M KNO(3) is reported. The amino-alcohols considered are 2-amino-1-propanol, 2-amino-1-butanol, 2-amino-1-pentanol and 2-amino-1,3-propanediol. sec-Buthylamine and 2-amino-1-methoxy-propane have been also considered for comparison. The results are discussed in terms of ligand structure, paying attention to the number of hydroxyl groups and to the length of the alkyl residual. A weak contribution of the alcoholic oxygen in the coordination of cadmium(II) and the presence of a mixed hydroxyl species in lead(II) containing systems are hypothesized. PMID:18967412

  3. The spectroscopic study of complex formation of rhodamine and oxazine dyes with rare-earth elements in solution

    The results of spectroscopic study of a complex formation of rhodamine and oxazine dyes with rare-earth ions in solutions are presented. Rhodamine dyes in the lactone form and oxazine dyes in the base form are found to form complex compounds of different compositions with metal ion in solution with cations of rare-earth metal. Besides, the spectral-luminescent characteristics of rhodamine and oxazine dyes, specific to their cationic form are restored. Methods of iso molar series and of the saturation curve the composition and stability of the formed complexes are determined. The monovalent metal ions form complexes with the dye molecules of composition 1:1, the divalent ions - 2:1 composition, and the trivalent ions - 3:1. (authors)

  4. Effect of pH and chemical mechanical planarization process conditions on the copper–benzotriazole complex formation

    Cho, Byoung-Jun; Kim, Jin-Yong; Hamada, Satomi; Shima, Shohei; Park, Jin-Goo

    2016-06-01

    Benzotriazole (BTA) has been used to protect copper (Cu) from corrosion during Cu chemical mechanical planarization (CMP) processes. However, an undesirable Cu–BTA complex is deposited after Cu CMP processes and it should be completely removed at post-Cu CMP cleaning for next fabrication process. Therefore, it is very important to understand of Cu–BTA complex formation behavior for its applications such as Cu CMP and post-Cu CMP cleaning. The present study investigated the effect of pH and polisher conditions on the formation of Cu–BTA complex layers using electrochemical techniques (potentiodynamic polarization and electrochemical impedance spectroscopy) and the surface contact angle. The wettability was not a significant factor for the polishing interface, as no difference in the contact angles was observed for these processes. Both electrochemical techniques revealed that BTA had a unique advantage of long-term protection for Cu corrosion in an acidic condition (pH 3).

  5. Studies of the Catalytic Activity and Deactivation of Calcined Layered Double Hydroxides in the Reaction of Ethanol with Propylene Oxide

    2002-01-01

    The reaction of ethanol with propylene oxide over calcined layered double hydroxides(CLDH) was investigated. The results show that CLDH has a good activity and a good selectivity, but the activity and the selectivity of CLDH decrease when CLDH reforms LDH- the so called "memory effect". The influence of the "memory effect" on the CLDH returning to LDH was studied by the hydration reaction. It is shown that the "memory effect" is not complete, and the decreases of the Mg/Al molar ratio of LDH and the crystallite size due to the increase of the hydration reaction time result in the drop of the activity and the selectivity.Keyworcds Ethanol, Propylene oxide, Calcined layered double hydroxide, "Memory effect", Hydration

  6. Dynamic Modelling Reveals 'Hotspots' on the Pathway to Enzyme-Substrate Complex Formation.

    Shane E Gordon

    2016-03-01

    Full Text Available Dihydrodipicolinate synthase (DHDPS catalyzes the first committed step in the diaminopimelate pathway of bacteria, yielding amino acids required for cell wall and protein biosyntheses. The essentiality of the enzyme to bacteria, coupled with its absence in humans, validates DHDPS as an antibacterial drug target. Conventional drug design efforts have thus far been unsuccessful in identifying potent DHDPS inhibitors. Here, we make use of contemporary molecular dynamics simulation and Markov state models to explore the interactions between DHDPS from the human pathogen Staphylococcus aureus and its cognate substrate, pyruvate. Our simulations recover the crystallographic DHDPS-pyruvate complex without a priori knowledge of the final bound structure. The highly conserved residue Arg140 was found to have a pivotal role in coordinating the entry of pyruvate into the active site from bulk solvent, consistent with previous kinetic reports, indicating an indirect role for the residue in DHDPS catalysis. A metastable binding intermediate characterized by multiple points of intermolecular interaction between pyruvate and key DHDPS residue Arg140 was found to be a highly conserved feature of the binding trajectory when comparing alternative binding pathways. By means of umbrella sampling we show that these binding intermediates are thermodynamically metastable, consistent with both the available experimental data and the substrate binding model presented in this study. Our results provide insight into an important enzyme-substrate interaction in atomistic detail that offers the potential to be exploited for the discovery of more effective DHDPS inhibitors and, in a broader sense, dynamic protein-drug interactions.

  7. ParB Partition Proteins: Complex Formation and Spreading at Bacterial and Plasmid Centromeres.

    Funnell, Barbara E

    2016-01-01

    In bacteria, active partition systems contribute to the faithful segregation of both chromosomes and low-copy-number plasmids. Each system depends on a site-specific DNA binding protein to recognize and assemble a partition complex at a centromere-like site, commonly called parS. Many plasmid, and all chromosomal centromere-binding proteins are dimeric helix-turn-helix DNA binding proteins, which are commonly named ParB. Although the overall sequence conservation among ParBs is not high, the proteins share similar domain and functional organization, and they assemble into similar higher-order complexes. In vivo, ParBs "spread," that is, DNA binding extends away from the parS site into the surrounding non-specific DNA, a feature that reflects higher-order complex assembly. ParBs bridge and pair DNA at parS and non-specific DNA sites. ParB dimers interact with each other via flexible conformations of an N-terminal region. This review will focus on the properties of the HTH centromere-binding protein, in light of recent experimental evidence and models that are adding to our understanding of how these proteins assemble into large and dynamic partition complexes at and around their specific DNA sites. PMID:27622187

  8. THE PRINCIPLES OF POWER-RISE BUILDINGS COMPLEXES FORMATION USING WIND ENERGY

    NEVGAMONNIY G. U.

    2015-11-01

    Full Text Available Raising of problem. The methodology of designing energy-efficient tower building should be based on systematic analysis of the building as a unified energy system. The prominent architect Norman Foster (Sir Norman Foster writes: "Architects cannot solve all the world's environmental problems, but we can design buildings that require only a fraction of current energy consumption, in addition, through proper urban planning we can affect traffic flows. The location and functionality of buildings, its structural flexibility and technological resources, orientation, shape and structure, heating and ventilation characteristics used in the construction materials - all these parameters affect the amount of energy required for the construction, operation and maintenance of the building, and as for transportation, moving to it and from it" [1]. Purpose. The purpose of the study is scientific justification principles of architectural formation decisions of the power-rise energy efficient complexes and developing methods of architectural design of PRBC using wind energy. To develop the science-based principles forming the architectural buildings with the use of alternative energy and determine the specific features of the architectural design of buildings. Conclusion. The principles of architectural forming in the use of wind power and identify possible trends for the development of buildings with integrated wind installations. Polyfunctional wind power plants are in special properties of certain material and structural elements of the building structure, improve aerodynamic performance of the outer shell and therefore wind energy devices. Thus, the power efficiency of energy active building depends on its space solutions.

  9. Method for increasing -SiC yield on solid state reaction of coal fly ash and activated carbon powder

    Sulardjaka; Jamasri; M W Wildan; Kusnanto

    2011-07-01

    A novel process for increasing -SiC yield on solid state reaction of coal fly ash and micro powder activated carbon powder has been proposed. -SiC powder was synthesized at temperature 1300°C for 2 h under vacuum condition with 1 l/min argon flow. Cycling synthesis process has been developed for increasing -SiC yield on solid state reaction of coal fly ash and activated carbon powder. Synthesized products were analyzed by XRD with Cu-K radiation, FTIR spectrometer and SEM fitted with EDAX. The results show that the amount of relative -SiC is increased with the number of cycling synthesis.

  10. Comparative Study Using Different Infrared Zones of the Solventless Activation of Organic Reactions

    René Miranda Ruvalcaba; Vladimir Carranza Tellez; Francisco J. Pérez Flores; Gabriel A. Arroyo Razo; María Olivia Noguez Córdova; Benjamín Velasco Bejarano; Carlos I. Flores Ramírez

    2011-01-01

    In this work, the results of a study comparing the use of irradiation from different regions of the infrared spectrum for the promotion of several organic reactions, are presented and discussed. This use of eco-conditions provides a green approach to chemical synthesis. A set of ten different organic reactions were evaluated, including the Knoevenagel, Hantzsch, Biginelli and Meldrum reactions. It is important to highlight the use of a commercial device that produces infrared irradiation in t...

  11. Si-H bond activation on Cu: Reaction of silane on Cu(111)

    Wiegand, B.C.; Lohokare, S.P.; Nuzzo, R.G. (Univ. of Illinois, Urbana, IL (United States))

    1993-11-04

    The activation and decomposition of silane on Cu(111) have been studied using Fourier transform infrared (FTIR), Auger electron (AES), and temperature-programmed reaction (TPRS) spectroscopies, as well as low-energy electron diffraction (LEED). Silane dissociatively chemisorbs on Cu(111) at 90 K. Cleavage of the Si-H bond yields two structurally distinct adsorbed silyl fragments. Infrared spectroscopy identifies the predominant intermediates formed under these conditions as being adsorbed SiH[sub 2] and SiH species. The relative and absolute concentrations of these intermediates depend sensitively on the surface coverage of both Si and H, which themselves depend upon the silane exposure. SiH[sub 2] is stable over a wide range of coverage up to 180 K, where it then undergoes Si-H bond cleavage to form surface bound SiH. At higher temperatures, bond scission in the Si-H moiety results in the formation of adsorbed silicon atoms and the desorption of dihydrogen in a peak centered at [approximately]330 K. Auger electron spectra show that the amount of silicon deposited on the Cu(111) surface in this way is approximately one-third of the amount deposited on a stable Cu[sub 3]Si surface. This latter surface is readily formed by carrying out the silane exposure at temperatures above 300 K. 39 refs., 15 figs., 1 tab.

  12. Single-trial prediction of reaction time variability from MEG brain activity.

    Ohata, Ryu; Ogawa, Kenji; Imamizu, Hiroshi

    2016-01-01

    Neural activity prior to movement onset contains essential information for predictive assistance for humans using brain-machine-interfaces (BMIs). Even though previous studies successfully predicted different goals for upcoming movements, it is unclear whether non-invasive recording signals contain the information to predict trial-by-trial behavioral variability under the same movement. In this paper, we examined the predictability of subsequent short or long reaction times (RTs) from magnetoencephalography (MEG) signals in a delayed-reach task. The difference in RTs was classified significantly above chance from 550 ms before the go-signal onset using the cortical currents in the premotor cortex. Significantly above-chance classification was performed in the lateral prefrontal and the right inferior parietal cortices at the late stage of the delay period. Thus, inter-trial variability in RTs is predictable information. Our study provides a proof-of-concept of the future development of non-invasive BMIs to prevent delayed movements. PMID:27250872

  13. Film formation of silicon carbide on steel by activation reaction ion plating with thermal electron

    The formation of SiC (amorphous) film on steel was performed by reaction ion plating with electron activating ionization. Acetylene was superior to methane as the reactant gas at low gas partial pressures, and the SiC produced in this experiment was amorphous. Film characteristics was controlled by regulating gas partial pressure and ionization current. The optimum condition for the production of a hard SiC amorphous film on steel were: reactant gas: acetylene of 5.2 x 10-2 Pa; bias voltage: -0.8kV; ion current: 23 - 28 mA; ionization voltage: -0.3kV. The maximum hardness of SiC films produced in this experiment was Hv 4260. For the SiC films produced in solutions without Cl- ion the anodic polarization curves showed good corrosion resistance, but values were less for solution with Cl- ion. Wear resistance was as good as that of TiC films. (author)

  14. High energy halogen atom reactions activated by nuclear transformations. Progress report, February 15, 1978--February 14, 1979

    High energy reactions of halogen atoms or ions, activated by nuclear transformations, were studied in gaseous, high pressure and condensed phase saturated and unsaturated hydrocarbons, halomethanes and other organic systems in order to better understand the mechanisms and dynamics of high energy monovalent species. The experimental and theoretical program consists of six interrelated areas: (1) the reactions of iodine with alkenes and alkynes activated by radiative neutron capture and isomeric transition in low pressure gaseous systems employing additives and rare gas moderators, high pressure and liquid systems; (2) the gas to condensed state transition in halogen high chemistry, involving bromine activated by the (n,γ) and (I.T.) processes in ethane was investigated in more detail; (3) systematics of halogen hot atom reactions. The reactions of 80Br/sup m/, 80Br, 82Br/sup m/ + 82Br, 82Br, 128I, 130I, and 130I/sup m/ + 130I activated by radiative neutron capture or isomeric transition in hydrocarbons and halo-substituted alkanes in low pressure and high pressure gaseous systems employing additives and rare gas moderators; (4) kinetic theory applications of high energy reactions and mathematical development of caging mechanisms were developed; (5) the sterochemistry of 38Cl substitution reactions involving diastereomeric 1,2-dichloro-1,2-difluorethane in liquid mixtures was completed, suggesting that the stereochemical course of the substitution process is controlled by the properties of the solvent molecules; and (6) the applications of high energy chemistry techniques and theory to neutron activation analysis of biological systems was continued, especially involving aluminum and vanadium trace determinations

  15. Size exclusion chromatography to gain insight into the complex formation of carrot pectin methylesterase and its inhibitor from kiwi fruit as influenced by thermal and high-pressure processing.

    Jolie, Ruben P; Duvetter, Thomas; Verlinde, Philippe H C J; Van Buggenhout, Sandy; Van Loey, Ann M; Hendrickx, Marc E

    2009-12-01

    A size exclusion chromatography (HPSEC) method was implemented to study complex formation between carrot pectin methylesterase (PME) and its inhibitor (PMEI) from kiwi fruit in the context of traditional thermal and novel high-pressure processing. Evidence was gained that both thermal and high-pressure treatments of PME give rise to two distinct enzyme subpopulations: a catalytically active population, eluting from the size exclusion column, and an inactive population, aggregated and excluded from the column. When mixing a partly denatured PME sample with a fixed amount of PMEI, a PME-PMEI complex peak was observed on HPSEC, of which the peak area was highly correlated with the residual enzyme activity of the corresponding PME sample. This observation indicates complex formation to be restricted to the active PME fraction. When an equimolar mixture of PME and PMEI was subjected to either a thermal or a high-pressure treatment, marked differences were observed. At elevated temperature, enzyme and inhibitor remained united and aggregated as a whole, thus gradually disappearing from the elution profile. Conversely, elevated pressure caused the dissociation of the PME-PMEI complexes, followed by a separate action of pressure on enzyme and inhibitor. Remarkably, PMEI appeared to be pressure-resistant when compressed at acidic pH (ca. 4). PMID:19908835

  16. Surface-active ionic liquids in micellar catalysis: impact of anion selection on reaction rates in nucleophilic substitutions.

    Cognigni, Alice; Gaertner, Peter; Zirbs, Ronald; Peterlik, Herwig; Prochazka, Katharina; Schröder, Christian; Bica, Katharina

    2016-05-21

    A series of surface-active ionic liquids based on the 1-dodecyl-3-methylimidazolium cation and different anions such as halides and alkylsulfates was synthesized. The aggregation behavior of these ionic liquids in water was characterized by surface tension, conductivity measurements and UV-Vis spectroscopy in order to determine the critical micelle concentration (CMC) and to provide aggregation parameters. The determination of surface activity and aggregation properties of amphiphilic ionic liquids was accompanied by SAXS studies on selected surface-active ionic liquids. The application of these surface-active ionic liquids with different anions was tested in nucleophilic substitution reactions for the degradation of organophosphorus compounds. Kinetic studies via UV-Vis spectrophotometry showed a strong acceleration of the reaction in the micellar system compared to pure water. In addition, an influence of the anion was observed, resulting in a correlation between the anion binding to the micelle and the reaction rate constants, indicating that the careful choice of the surface-active ionic liquid can considerably affect the outcome of reactions. PMID:27121134

  17. Enhancement of reaction conditions for the radiolabelling of DOTA-peptides with high activities of yttrium-90

    Nardelli, Anna, E-mail: a.nardelli@libero.i [Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (CNR), Naples (Italy); Dipartimento di Scienze Biomorfologiche e Funzionali, Universita ' Federico II' , Via Pansini 5, 80131 Naples (Italy); Castaldi, Elena; Ortosecco, Giovanni; Speranza, Antonio [Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (CNR), Naples (Italy); Storto, Giovanni [IRCCS-CROB, Rionero in Vulture (Italy); Pace, Leonardo; Salvatore, Marco [Dipartimento di Scienze Biomorfologiche e Funzionali, Universita ' Federico II' , Via Pansini 5, 80131 Naples (Italy)

    2011-01-15

    Peptide receptor radionuclide therapy (PRRT) has recently expanded due to radiolabelling of DOTA-peptides, such as the somatostatin analogues [DOTA{sup 0}, Tyr{sup 3}]octreotate (DOTATATE). The achievement of high specific activities during procedures has been indicated as the critical factor to consent effective therapy. Several radiochemical factors may negatively impact reaction procedures such as pH, temperature and time of reaction. Our study was undertaken to explore the influence of radiochemical parameters, such as time of incubation, on reaction kinetics during the radiolabelling of DOTATATE with {sup 90}Y. Methods: Forty-five radiolabelling procedures were carried out using small volumes of yttrium-90, typically 60-78 {mu}L. At nearly constant pH and temperature two different settings of radiolabelling procedures were implemented, removing the products from the heating water bath approximately after 30 min (group E, early; n=20) and after 39 min (group L, later; n=25). Quality controls were performed by means of both high-performance liquid chromatography (HPLC) and thin-layer chromatography (TLC). Results: Reaction kinetics for {sup 90}Y were found to a provide suitable percentage of incorporation at pH 4.5 for both groups. Reaction temperature was not different between groups E and L. A significant difference was found between the two groups in radiochemical yield, which was 95.6%{+-}0.8 for group E and 98.2%{+-}1.1 for group L (p<0.0001). The specific activity of the final product was 46.9 MBq/nmol. Conclusion: In order to achieve optimal specific activities, pH, temperature and time of reaction necessitate careful evaluation and setting. A statistically significant difference in labelling yield was found between a set of procedures completed at 39 min as compared to that executed at 30 min, keep the reaction pH and temperature constant.

  18. NI (II AND PB (II INHIBIT THE ENZYMATIC ACTIVITY OF DNA IN AN ELECTRON TRANSFER REACTION

    B FARZAMI

    2002-03-01

    Full Text Available Introduction. Ni and Pb are metals with several suggested mechanisms for their toxicity on the biological systems. We have recently investigated involvement of DNA in an electron transfer reaction as an enzyme. In this reaction non- fluorescent dichlorofluorescin (LDCF is converted to the dichlorofluorescein (DCF in the presence of peroxides and hematin. Methods. The fluorometric technique was used in this study. The pH effect on the reaction rate was investigated. The results showed that DCF has the maximum emission on tris buffer 0.05 Mat pH 8.4. Results. DNA and carnosine catalyze the reaction, which proceeds by the electron transfer mechanism. The presence of carnosine is necessary for the catalytic action of DNA as a cofactor. Ni (II and Pb (11 are the potent inhibitors of the reaction. The kinetic parameters and determined in the presence and absence of the above ligands. Discussion. DNA, which has the electrical properties only in the double helical forms, acts as a catalyst in the conversion of LDCF to DCF. The existence of the carnosine, an endogenous dipeptide with antioxidant and free radical scavenging roles, is an important factor for the progress of the reaction. Both Ni (11 and Pb (II inhibit the reaction. These metals could act as the electron pool to cause inhibition in such electron transfer reaction. This phenomenon could be related to the carcinogenic effect of these metals.

  19. Reaction kinetics aspect of U3O8 kernel with gas H2 on the characteristics of activation energy, reaction rate constant and O/U ratio of UO2 kernel

    The reaction kinetics aspect of U3O8 kernel with gas H2 on the characteristics of activation energy, reaction rate constant and O/U ratio of UO2 kernel had been studied. U3O8 kernel was reacted with gas H2 in a reduction furnace at varied reaction time and temperature. The reaction temperature was varied at 600, 700, 750 and 850 °C with a pressure of 50 mmHg for 3 hours in gas N2 atmosphere. The reation time was varied at 1, 2, 3 and 4 hours at a temperature of 750 °C using similar conditions. The reaction product was UO2 kernel. The reaction kinetic aspect between U3O8 and gas H2 comprised the minimum activation energy (ΔE), the reaction rate constant and the O/U ratio of UO2 kernel. The minimum activation energy was determined from a straight line slope of equation ln [{Db. Ro{(1 - (1 - Xb)⅓} / (b.t.Cg)] = -3.9406 x 103 / T + 4.044. By multiplying with the straight line slope -3.9406 x 103, the ideal gas constant (R) 1.985 cal/mol and the molarity difference of reaction coefficient 2, a minimum activation energy of 15.644 kcal/mol was obtained. The reaction rate constant was determined from first-order chemical reaction control and Arrhenius equation. The O/U ratio of UO2 kernel was obtained using gravimetric method. The analysis result of reaction rate constant with chemical reaction control equation yielded reaction rate constants of 0.745 - 1.671 s-1 and the Arrhenius equation at temperatures of 650 - 850 °C yielded reaction rate constants of 0.637 - 2.914 s-1. The O/U ratios of UO2 kernel at the respective reaction rate constants were 2.013 - 2.014 and the O/U ratios at reaction time 1 - 4 hours were 2.04 - 2.011. The experiment results indicated that the minimum activation energy influenced the rate constant of first-order reaction and the O/U ratio of UO2 kernel. The optimum condition was obtained at reaction rate constant of 1.43 s-1, O/U ratio of UO2 kernel of 2.01 at temperature of 750 °C and reaction time of 3 hours. The UO2 kernel produced was

  20. Zeolite H-BEA catalysed multicomponent reaction: One-pot synthesis of amidoalkyl naphthols - Biologically active drug-like molecules

    Sunil R Mistry; Rikesh S Joshi; Kalpana C Maheria

    2011-07-01

    Zeolite has been used as an efficient and a novel heterogeneous catalyst for one-pot synthesis of biologically active drug-like molecules, amidoalkyl naphthols. This green route involves multicomponent reaction of 2-naphthol, aromatic aldehydes and amide in the presence of a catalytic amount of zeolite H-Beta (H-BEA) under solvent reflux as well as solvent-free conditions.

  1. Particle size dependence on oxygen reduction reaction activity of electrodeposited TaOx catalysts in acidic media

    Seo, J.

    2013-11-13

    The size dependence of the oxygen reduction reaction activity was studied for TaOx nanoparticles electrodeposited on carbon black for application to polymer electrolyte fuel cells (PEFCs). Compared with a commercial Ta2O5 material, the ultrafine oxide nanoparticles exhibited a distinctively high onset potential different from that of the bulky oxide particles.

  2. The effects of arm movement on reaction time in patients with latent and active upper trapezius myofascial trigger point

    Yassin, Marzieh; Talebian, Saeed; Ebrahimi Takamjani, Ismail; Maroufi, Nader; Ahmadi, Amir; Sarrafzadeh, Javad; Emrani, Anita

    2015-01-01

    Background: Myofascial pain syndrome is a significant source of mechanical pain. The aim of this study was to investigate the effects of arm movement on reaction time in females with latent and active upper trapezius myofascial trigger point. Methods: In this interventional study, a convenience sample of fifteen women with one active MTP, fifteen women with one latent MTP in the upper trapezius, and fifteen normal healthy women were participated. Participants were asked to stand for 10 second...

  3. Lipoprotein complex formation

    Transfers of lipids and proteins between different lipoproteins are known to occur in the course of their metabolism. It is likely that these transfers take place during transient physical associations between lipoprotein particles, but the nature and chemical basis for such interactions are poorly understood. The fact that lipid and apolipoprotein movements are particularly prevalent during the intravascular lipolysis of triglyceride-rich lipoproteins suggested to us that lipolysis products accumulating on these particles might promote physical binding with other lipoproteins. To test this hypothesis, we studied interactions between very low-density, low density, and high-density lipoproteins in the setting of partial lipolysis by bovine milk lipoprotein lipase in the presence of limited unesterified fatty acid acceptor. 2 figs., 1 tab

  4. A highly active and magnetically recoverable tris(triazolyl)-Cu(I) catalyst for alkyne-azide cycloaddition reactions.

    Wang, Dong; Etienne, Laetitia; Echeverria, María; Moya, Sergio; Astruc, Didier

    2014-04-01

    Nanoparticle-supported tris(triazolyl)-CuBr, with a diameter of approximately 25 nm measured by TEM spectroscopy, has been easily prepared, and its catalytic activity was evaluated in the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. In initial experiments, 0.5 mol % loading successfully promoted the CuAAC reaction between benzyl azide and phenylacetylene, in water at room temperature (25 °C). During this process, the iron oxide nanoparticle-supported tris(triazolyl)-CuBr displayed good monodispersity, excellent recoverability, and outstanding reusability. Indeed, it was simply collected and separated from the reaction medium by using an external magnet, then used for another five catalytic cycles without significant loss of catalytic activity. Inductively coupled plasma (ICP) analysis for the first cycle revealed that the amount of copper leached from the catalyst into the reaction medium is negligible (1.5 ppm). The substrate scope has been examined, and it was found that the procedure can be successfully extended to various organic azides and alkynes and can also be applied to the one-pot synthesis of triazoles, through a cascade reaction involving benzyl bromides, alkynes, and sodium azide. In addition, the catalyst was shown to be an efficient CuAAC catalyst for the synthesis of allyl- and TEG-ended (TEG=triethylene glycol) 27-branch dendrimers. PMID:24574335

  5. Activation cross-sections of deuteron induced reaction of natural Ni up to 40 MeV

    Production cross-sections of natNi(d,x)56,57Ni, 55,56,57,58Co, 52,54Mn, and 51Cr nuclear reactions were measured up to 40 MeV by using the stacked foil technique. The results were compared with the literature values, TALYS 1.4 and TENDL-2012. Spline fits were made on the selected data, from which physical yields were calculated and compared with the literature and our directly measured thick target yield values. natNi(d,x)56,57,58Co reactions were analyzed for beam monitoring and thin layer activation (TLA). Rate of production of 55Co was compared between proton and deuteron induced reactions. - Highlights: • Comparison of experimental results with theoretical code TALYS 1.4 and TENDL-2012 libraries. • Calculation, new measurements and comparison of physical yields. • Set of recommended values of natNi(d,x)56,57,58Co reactions for beam monitoring. • Thin layer activation (TLA) curves for 56,57,58Co for industrial applications. • Proton induced reactions give higher rate of production of 55Co than deuteron

  6. Multifunctional phosphine stabilized gold nanoparticles: an active catalytic system for three-component coupling reaction.

    Borah, Bibek Jyoti; Borah, Subrat Jyoti; Dutta, Dipak Kumar

    2013-07-01

    Multifunctional phosphine based ligands, 1,1,1-tris(diphenylphosphinomethyl)ethane [CH3C(CH2 PPh2)3][P3] and 1,1,1-tris(diphenylphosphinomethyl)ethane trisulphide [CH3C(CH2P(S)Ph2)3][P3S3] have been introduced to stabilize Au(o)-nanoparticles having small core diameter and narrow size distribution. The Au(o)-nanoparticles were synthesized by the reduction of HAuCl4 precursor with NaBH4 in the presence of ligand P3 or P3S3 using two phases, one pot reaction at room temperature. The Au(o)-nanoparticles exhibit face centered cubic (fcc) lattice having different crystalline shape i.e., single crystallite stabilized by P3 while P3S3 forms decahedral shapes. Surface plasmon bands at -520 nm and TEM study indicate particle size below 2 and 4 nm for Au(o)-nanoparticles stabilized by P3 and P3S3 respectively, which are attributable to the stronger interaction of Au(o) (Soft) with P (Soft) than Au(o) (Soft) with S (less Softer than P). Au(o)-nanoparticles stabilized by P3S3 shows higher thermal stability than that of P3. The synthesized Au(o)-nanoparticles serve as an efficient catalyst for one-pot, three-component (A3) coupling of an aldehyde, an amine and an alkyne via C-H alkyne-activation to synthesize propargylamines (85-96%) without any additives and precaution to exclude air. PMID:23901533

  7. Electrocatalytic Activity of Carbonized Nanostructured Polyanilines for Oxidation Reactions: Sensing of Nitrite Ions and Ascorbic Acid

    Highlights: • Carbonized PANIs prepared from various nanostructured PANI precursors • Electroanalytical performances of carbonized PANIs evaluated using voltammetry • Study of carbonized PANIs physico-chemical properties related to electroactivity • The lowest over-potential for NO2− oxidation at c-PANI (+0.87 V vs. SCE) • The lowest over-potential for ascorbic acid oxidation at both c-PANI and c-PANI-SSA - Abstract: A comparative study of the electrocatalytic activity of nitrogen-containing carbon nanomaterials, prepared by the carbonization of nanostructured polyaniline (PANI) salts, for the electrooxidation reactions is presented. Nanostructured PANI salts were synthesized by the oxidative polymerization of aniline with ammonium peroxydisulfate in an aqueous solution in the presence of 5-sulfosalicylic acid (PANI-SSA), 3,5-dinitrosalicylic acid (PANI-DNSA) as well as without added acid (PANI), and subsequently carbonized to c-PANI-SSA, c-PANI-DNSA and c-PANI, respectively. Glassy carbon tip was modified with nanostructured c-PANIs and used for the investigation of sensing of nitrite and ascorbic acid in aqueous solutions as model analytes by linear sweep voltammetry. All three types of the investigated c-PANIs gave excellent response to the nitrite ions and ascorbic acid electrooxidation. The lowest peak potential for nitrite ion oxidation exhibited c-PANI (+0.87 V vs. SCE), and for ascorbic acid oxidation both c-PANI and c-PANI-SSA (ca. + 0.13 V vs. SCE). Electrochemical data were correlated with structural and textural data obtained by Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, elemental and nitrogen sorption analysis

  8. A Modified activation method for reaction total cross section and yield measurements at low astrophysically relevant energies

    Artemov, S. V.; Igamov, S. B.; Karakhodjaev, A. A.; Radyuk, G. A.; Tojiboyev, O. R.; Salikhbaev, U. S.; Ergashev, F. Kh.; Nam, I. V.; Aliev, M. K.; Kholbaev, I.; Rumi, R. F.; Khalikov, R. I.; Eshkobilov, Sh. Kh.; Muminov, T. M.

    2016-07-01

    The activation method is proposed for collection of the sufficient statistics during the investigation of the nuclear astrophysical reactions at low energies with the short-living residual nuclei formation. The main feature is a multiple cyclical irradiation of a target by an ion beam and measurement of the radioactivity decay curve. The method was tested by the yield measurement of the 12C(p,γ)13N reaction with detecting the annihilation γγ- coincidences from 13N(β+ν)13C decay at the two-arm scintillation spectrometer.

  9. Optimal control of a Cope rearrangement by coupling the reaction path to a dissipative bath or a second active mode

    We compare the strategy found by the optimal control theory in a complex molecular system according to the active subspace coupled to the field. The model is the isomerization during a Cope rearrangement of Thiele’s ester that is the most stable dimer obtained by the dimerization of methyl-cyclopentadienenylcarboxylate. The crudest partitioning consists in retaining in the active space only the reaction coordinate, coupled to a dissipative bath of harmonic oscillators which are not coupled to the field. The control then fights against dissipation by accelerating the passage across the transition region which is very wide and flat in a Cope reaction. This mechanism has been observed in our previous simulations [Chenel et al., J. Phys. Chem. A 116, 11273 (2012)]. We compare here, the response of the control field when the reaction path is coupled to a second active mode. Constraints on the integrated intensity and on the maximum amplitude of the fields are imposed limiting the control landscape. Then, optimum field from one-dimensional simulation cannot provide a very high yield. Better guess fields based on the two-dimensional model allow the control to exploit different mechanisms providing a high control yield. By coupling the reaction surface to a bath, we confirm the link between the robustness of the field against dissipation and the time spent in the delocalized states above the transition barrier

  10. Fast neutron induced reactions leading to activation products: selected cases relevant to development of low activation materials, transmutation and hazard assessment of nuclear wastes

    Neutron induced cross sections are of interest for practical applications and for testing nuclear models. In this work (n,p), (n,np), (n,α), (n,nα), (n,n'γ), (n,2n) and (n,3n) reactions on vanadium, molybdenum, technetium and lead have been measured in the energy range of 0.5 to 20.6 MeV using the activation technique. The radioactive reaction products with half-lives between 58 seconds and 20300 years have been measured offline via high-resolution γ-ray-spectrometry and Liquid Scintillation Counting, the latter in combination with radiochemical separation. Irradiations with neutron energies in the range of 0.5 to 6 MeV were done using the 3H(p,n)3He reaction with a solid-state Ti/T target while energies between 7.4 and 12.5 MeV were covered with the 2H(d,n)3He reaction utilizing a D2 gas target. Irradiations in the energy range from 13.4 to 20.6 MeV were performed using the 3H(d,n)4He reaction, again with a solid Ti/T target. Most of the reactions were investigated using a light mass setup to minimise scattering effects, but for short half-lives a pneumatic sample transport system was used as well. A special sample holder was developed for the measurement of the natMo(n,x)94Nb reaction. All cross sections were measured relative to the 27Al(n,β)24Na standard cross section and all necessary corrections due to the irradiation process and the measurement of the induced activity have been applied. Nuclear model calculations were performed for all investigated reactions. For reactions on 99Tc and Pb the original STAPRE code was used, while for reactions on V and Mo a modified version STAPRE-H was employed. As a result of this thesis work an extended database for neutron induced cross sections on four elements was obtained. It was possible to establish first excitation functions for reactions on a radioactive target nucleus, one very long-lived product and one purely β- emitting product. It was found that existing evaluations are not always reliable in the

  11. Mechanistic study on the activity of manganese oxide catalysts for oxygen reduction reaction in an aprotic electrolyte

    Despite a large effort in catalyst research over the past decade, the benefit of electrocatalysts for the oxygen evolution reaction (OER) and especially the oxygen reduction reaction (ORR) in the aprotic Li/air battery system has not yet been clarified. Here, three nanostructured manganese oxide catalysts – namely Mn3O4, Mn5O8 and α-Mn2O3 – are investigated with regard to their activity for the ORR in a LiTFSI/DMSO electrolyte. In cyclic voltammetry (CV) measurements an overall decrease of potential gaps and an increase of re-oxidation efficiencies on carbon powder-based electrodes in comparison to glassy carbon (GC) was observed, which is attributed to the presence of more active centers, e.g. edges and kinks. Increased ORR potentials and the kinetic evaluation of the rate-determining step, namely the one-electron reduction of oxygen, point to a significantly enhanced activity of α-Mn2O3/C compared to pure carbon powder, Mn3O4/C and Mn5O8/C electrodes. This is discussed in terms of the electrocatalytic effect of α-Mn2O3 for aprotic ORR processes. The ORR activity is proposed to originate from a different reaction pathway due to coordinatively unsaturated Mn3+ ions on the surface of α-Mn2O3, which act as active centers for associative adsorption and reduction of molecular O2

  12. Active MnO{sub x} electrocatalysts prepared by atomic layer deposition for oxygen evolution and oxygen reduction reactions

    Pickrahn, Katie L.; Park, Sang Wook; Gorlin, Yelena; Lee, Han-Bo-Ram; Jaramillo, Thomas F.; Bent, Stacey F. [Department of Chemical Engineering, Stanford University, Stanford, CA 94305-5025 (United States)

    2012-10-15

    The ability to deposit conformal catalytic thin films enables opportunities to achieve complex nanostructured designs for catalysis. Atomic layer deposition (ALD) is capable of creating conformal thin films over complex substrates. Here, ALD-MnO{sub x} on glassy carbon is investigated as a catalyst for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR), two reactions that are of growing interest due to their many applications in alternative energy technologies. The films are characterized by X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, ellipsometry, and cyclic voltammetry. The as-deposited films consist of Mn(II)O, which is shown to be a poor catalyst for the ORR, but highly active for the OER. By controllably annealing the samples, Mn{sub 2}O{sub 3} catalysts with good activity for both the ORR and OER are synthesized. Hypotheses are presented to explain the large difference in the activity between the MnO and Mn{sub 2}O{sub 3} catalysts for the ORR, but similar activity for the OER, including the effects of surface oxidation under experimental conditions. These catalysts synthesized though ALD compare favorably to the best MnO{sub x} catalysts in the literature, demonstrating a viable way to produce highly active, conformal thin films from earth-abundant materials for the ORR and the OER. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Activation cross-sections of deuteron induced nuclear reactions on rhenium up to 40 MeV

    Highlights: ► Excitation function measurement of deuteron induced reactions on rhenium up to 40 MeV. ► Model code calculations with EMPIRE-D, ALICE-D and TALYS (TENDL-2011). ► Integral production yield calculation. ► Thin layer activation (TLA) curves; 185Os and 186Re. -- Abstract: As a part of a thorough work of excitation functions on deuteron induced reactions, experimental cross-sections of 185,183m,183g,182Os and 188,186,184m,184g,183Re activation products on natRe were measured up to 40 MeV for the first time with the activation method using a stacked foil irradiation technique and high resolution γ-spectrometry. Comparison with the former results of other laboratories and with the predictions of the ALICE-IPPE and EMPIRE-3 model codes, modified for improved calculations for deuteron reactions, and with data in the TENDL-2011 library are also presented. Thick target yields were given deduced from our experimental cross-sections and compared with the few literature values. For practical applications (thin layer activation) also activity versus depth distributions were calculated for selected isotopes

  14. Thermodynamics of mixed-ligand complex formation of zinc nitrilotriacetate with amino acids and dipeptides in solution

    Highlights: • Stable mixed ligand complexes of ZnNta with amino acids and dipeptides. • Histamine-like coordination mode of His in the complex ZnNtaHis. • Glycine-like coordination of Lys and Orn in the complexes ZnNtaL and ZnNtaHL • NH2, CO-coordination mode of GlyGly in the complex ZnNtaGG. • NH2, N− or NH2, N−, COO-coordination modes of GlyGly in the complex ZnNtaGGH−1. - Abstract: The isothermal calorimetry, pH-potentiometric titration and 1H and 13C NMR methods has been used to study the mixed-ligand complex formation in the systems Zn2+–Nta3––L− (L = His, Orn, Lys, GlyGly, AlaAla) in aqueous solution at 298.15 K and the ionic strength of I = 0.5 (KNO3). The thermodynamic parameters of formation of the mixed complexes have been determined. The relationship between the probable coordination modes of the complexone and amino acid or dipeptide molecules in the mixed-ligand complex and the thermodynamic parameters has been discussed

  15. Mixed-ligand complex formation equilibria of CuII with biguanide in presence of glycine as the auxiliary ligand

    Tannistha Roy Barman; G N Mukherjee

    2006-09-01

    Equilibrium study on the mixed ligand complex formation of CuII with biguanide(Bg) and glycine (HG), indicated the formation of the complexes: Cu(Bg)2+, Cu(Bg)$_{2}^{2+}$, Cu(Bg-H)(Bg)+, Cu(Bg-H)2, Cu(Bg)(OH)+, Cu(Bg-H)(OH); Cu(G)+, Cu(G)(OH), Cu(G)2; Cu(G)(Bg)+, Cu(G)(Bg-H); (G)Cu(Bg)Cu(G)2+, (G)Cu(Bg-H)Cu(G)+, and (G)Cu(Bg-2H)Cu(G). From the deprotonation constants of coordinated biguanide (Bg) in the complexes Cu(Bg)(OH)+, Cu(Bg-H)(Bg)+ and Cu(G)(Bg)+, the Lewis basicities of the coordinated ligand species (Bg-H)-, OH- and glycinate (G-) were found to be of the order: (Bg-H)- >> OH- > G-. Bridging (N1-N4, N2-N5) tetradentate mode of coordination by biguanide species Bg, (Bg-H)- and (Bg-2H)2- was indicated from the occurrence of biguanide-bridged dinuclear mixed ligand complexes (G)Cu(Bg)Cu(G)2+, (G)Cu(Bg-H)Cu(G)+, (G)Cu(Bg-2H)Cu(G) in the complexation equilibria.

  16. Thermodynamics of mixed-ligand complex formation of zinc nitrilotriacetate with amino acids and dipeptides in solution

    Pyreu, Dmitrii, E-mail: pyreu@mail.ru [Department of Inorganic and Analytic Chemistry, Ivanovo State UniversityErmak 39, Ivanovo 153025 (Russian Federation); Gruzdev, Matvey; Kumeev, Roman [G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo (Russian Federation); Gridchin, Sergei [Ivanovo State University of Chemistry and Technology, Ivanovo (Russian Federation)

    2014-10-20

    Highlights: • Stable mixed ligand complexes of ZnNta with amino acids and dipeptides. • Histamine-like coordination mode of His in the complex ZnNtaHis. • Glycine-like coordination of Lys and Orn in the complexes ZnNtaL and ZnNtaHL • NH{sub 2}, CO-coordination mode of GlyGly in the complex ZnNtaGG. • NH{sub 2}, N{sup −} or NH2, N{sup −}, COO-coordination modes of GlyGly in the complex ZnNtaGGH{sub −1}. - Abstract: The isothermal calorimetry, pH-potentiometric titration and {sup 1}H and {sup 13}C NMR methods has been used to study the mixed-ligand complex formation in the systems Zn{sup 2+}–Nta{sup 3–}–L{sup −} (L = His, Orn, Lys, GlyGly, AlaAla) in aqueous solution at 298.15 K and the ionic strength of I = 0.5 (KNO{sub 3}). The thermodynamic parameters of formation of the mixed complexes have been determined. The relationship between the probable coordination modes of the complexone and amino acid or dipeptide molecules in the mixed-ligand complex and the thermodynamic parameters has been discussed.

  17. Study of photo-activated electron transfer reactions in the first excited singlet state by picosecond and nanosecond laser spectroscopy

    Picosecond laser spectroscopy has been used to study two photo-activated electron transfer reactions: - a bimolecular electron transfer reaction between a sensitizer, DODCI, and an electron acceptor, methylviologen. The two radical ions created with an electron transfer efficiency γ ≅ 0.07 have been identified in picosecond and nanosecond laser absorption spectroscopy by adding selective solutes such as para-benzoquinone (an electron acceptor) or L(+) ascorbic acid (an electron donor). - an intramolecular electron transfer reaction in a triad molecule consisting of a tetra-aryl-porphyrin covalently linked to both a carotenoid and a quinone. The photoinduced charge separation occurs within 30 ps and leads, with a yield of 25 pc, to the formation of a zwitterion whose half-life is 2.5 μs. The experimental results obtained in these two studies show an effective decrease in the recombination rate of the two radical ions created in the encounter pair. (author)

  18. Heavy ion induced nuclear reactions: cross-section measurements and its applicability in thin layer activation analysis

    Aiming to investigate the surface wear study, we have measured the cross-sections of various reactions from the 16O induced reactions on isotopically pure targets 130Te, 159Tb, 169Tm and 181Ta in order to apply HI activation in the TLA technique. The experimental cross-sections of nuclear reactions leading to residues are very important to be known for the yields of the products before its application in a particular material. The experiments have been performed, employing energetic 16O7+ beam, from the 15UD-Pelletron accelerator, of the IUAC, New Delhi, India. For the measurement of cross-sections, targets of 130Te, 159Tb, 169Tm and 181Ta of thicknesses ≈1.5-2.0 mg/cm2 have been used

  19. Measurement of reaction-in-flight neutrons using thulium activation at the National Ignition Facility

    Grim, G. P.; Rundberg, R.; Fowler, M. M.; Hayes, A. C.; Jungman, G.; Boswell, M.; Klein, A.; Wilhelmy, J.; Tonchev, A.; Yeamans, C. B.

    2014-09-01

    We report on the first observation of tertiary reaction-in-flight (RIF) neutrons produced in compressed deuterium and tritium filled capsules using the National Ignition Facility at Lawrence Livermore National Laboratory, Livermore, CA. RIF neutrons are produced by third-order, out of equilibrium ("in-flight") fusion reactions, initiated by primary fusion products. The rate of RIF reactions is dependent upon the range of the elastically scattered fuel ions and therefore a diagnostic of Coulomb physics within the plasma. At plasma temperatures of ˜5 keV, the presence of neutrons with kinetic energies greater than 15 MeV is a unique signature for RIF neutron production. The reaction 169Tm(n,3n)167Tm has a threshold of 15.0 MeV, and a unique decay scheme making it a suitable diagnostic for observing RIF neutrons. RIF neutron production is quantified by the ratio of 167Tm/168Tm observed in a 169Tm foil, where the reaction 169Tm(n,2n)168Tm samples the primary neutron fluence. Averaged over 4 implosions1-4 at the NIF, the 167Tm/168Tm ratio is measured to be 1.5 +/- 0.3 x 10-5, leading to an average ratio of RIF to primary neutron ratio of 1.0 +/- 0.2 x 10-4. These ratios are consistent with the predictions for charged particle stopping in a quantum degenerate plasma.

  20. Source-term analysis for Hanford low-activity tank waste using the reaction-transport code AREST-CT

    A general, integrated performance assessment code, AREST-CT, was used to analyze the influence of various factors on the release rates of radionuclides from a proposed facility for disposal of low-activity tank wastes. The code couples various process models together based on the framework of reaction-transport theory. The disposal facility was modeled as a 1-D column surrounded by soil. A borosilicate waste glass, LD6-5412 was the waste form considered in the analysis. Included in the simulations were 38 aqueous species, 14 minerals, 21 equilibrium reactions, and 16 kinetic reactions. Dissolution rate of the glass and the release rates of Tc, Pu, U, Np, I. Se under different conditions were calculated for 50,000 years. The simulations revealed that (1) open exchange between the atmosphere and pore-water within the vault significantly improves the performance; (2) an ion-exchange reaction between the glass and aqueous phase increases the release rates significantly; and (3) at the hydrogeologic conditions under consideration, variation of the pore-water velocity has little effect on the release rate of radionuclides. These results provide a scientific basis for formulation of waste forms and engineering design of the disposal facility. Reaction-transport modeling can provide information on the long-term performance of disposal systems that are not obtainable from laboratory experiments alone or by conventional decoupled process models

  1. Increased metabolic activity detected by FLIM in human breast cancer cells with desmoplastic reaction: a pilot study

    Natal, Rodrigo de Andrade; Pelegati, Vitor B.; Bondarik, Caroline; Mendonça, Guilherme R.; Derchain, Sophie F.; Lima, Carmen P.; Cesar, Carlos L.; Sarian, Luís. O.; Vassallo, José

    2015-07-01

    Introduction: In breast cancer (BC), desmoplastic reaction, assembled primarily by fibroblasts, is associated with unfavorable prognosis, but the reason of this fact remains still unclear. In this context, nonlinear optics microscopy, including Fluorescence Lifetime Imaging Microscopy (FLIM), has provided advancement in cellular metabolism research. In this paper, our purpose is to differentiate BC cells metabolism with or without contact to desmoplastic reaction. Formalin fixed, paraffin embedded samples were used at different points of hematoxylin stained sections. Methodology: Sections from 14 patients with invasive ductal breast carcinoma were analyzed with FLIM methodology to NAD(P)H and FAD fluorescence lifetime on a Confocal Upright LSM780 NLO device (Carl Zeiss AG, Germany). Quantification of the fluorescence lifetime and fluorescence intensity was evaluated by SPC Image software (Becker &Hickl) and ImageJ (NIH), respectively. Optical redox ratio was calculated by dividing the FAD fluorescence intensity by NAD(P)H fluorescence intensity. Data value for FLIM measurements and fluorescence intensities were calculated using Wilcoxon test; p< 0.05 was considered significant. Results: BC cells in contact with desmoplastic reaction presented a significantly lower NAD(P)H and FAD fluorescence lifetime. Furthermore, optical redox ratio was also lower in these tumor cells. Conclusion: Our results suggest that contact of BC cells with desmoplastic reaction increase their metabolic activity, which might explain the adverse prognosis of cases associated with higher peritumoral desmoplastic reaction.

  2. Production of Medical Radioisotopes with High Specific Activity in Photonuclear Reactions with $\\gamma$ Beams of High Intensity and Large Brilliance

    Habs, D

    2010-01-01

    We study the production of radioisotopes for nuclear medicine in $(\\gamma,x{\\rm n}+y{\\rm p})$ photonuclear reactions or ($\\gamma,\\gamma'$) photoexcitation reactions with high flux [($10^{13}-10^{15}$)$\\gamma$/s], small diameter $\\sim (100 \\, \\mu$m$)^2$ and small band width ($\\Delta E/E \\approx 10^{-3}-10^{-4}$) $\\gamma$ beams produced by Compton back-scattering of laser light from relativistic brilliant electron beams. We compare them to (ion,$x$n$ + y$p) reactions with (ion=p,d,$\\alpha$) from particle accelerators like cyclotrons and (n,$\\gamma$) or (n,f) reactions from nuclear reactors. For photonuclear reactions with a narrow $\\gamma$ beam the energy deposition in the target can be managed by using a stack of thin target foils or wires, hence avoiding direct stopping of the Compton and pair electrons (positrons). $(\\gamma,\\gamma')$ isomer production via specially selected $\\gamma$ cascades allows to produce high specific activity in multiple excitations, where no back-pumping of the isomer to the ground st...

  3. Activity of N-coordinated multi-metal-atom active site structures for Pt-free oxygen reduction reaction catalysis: role of *OH ligands.

    Holby, Edward F; Taylor, Christopher D

    2015-01-01

    We report calculated oxygen reduction reaction energy pathways on multi-metal-atom structures that have previously been shown to be thermodynamically favorable. We predict that such sites have the ability to spontaneously cleave the O2 bond and then will proceed to over-bind reaction intermediates. In particular, the *OH bound state has lower energy than the final 2 H2O state at positive potentials. Contrary to traditional surface catalysts, this *OH binding does not poison the multi-metal-atom site but acts as a modifying ligand that will spontaneously form in aqueous environments leading to new active sites that have higher catalytic activities. These *OH bound structures have the highest calculated activity to date. PMID:25788358

  4. Active sites in Cu-SSZ-13 deNOx catalyst under reaction conditions: a XAS/XES perspective

    Lomachenko, Kirill A.; Borfecchia, Elisa; Bordiga, Silvia; Soldatov, Alexander V.; Beato, Pablo; Lamberti, Carlo

    2016-05-01

    Cu-SSZ-13 is a highly active catalyst for the NH3-assisted selective catalytic reduction (SCR) of the harmful nitrogen oxides (NOx, x=1, 2). Since the catalytically active sites for this reaction are mainly represented by isolated Cu ions incorporated into the zeolitic framework, element-selective studies of Cu local environment are crucial to fully understand the enhanced catalytic properties of this material. Herein, we highlight the recent advances in the characterization of the most abundant Cu-sites in Cu-SSZ-13 upon different reaction-relevant conditions made employing XAS and XES spectroscopies, complemented by computational analysis. A concise review of the most relevant literature is also presented.

  5. Algebraic structures generating reaction-diffusion models: the activator-substrate system

    Palese, Marcella

    2015-01-01

    We shall construct a class of nonlinear reaction-diffusion equations starting from an infinitesimal algebraic skeleton. Our aim is to explore the possibility of an algebraic foundation of integrability properties and of stability of equilibrium states associated with nonlinear models describing patterns formation.

  6. The role of reaction pathways and support interactions in the development of high activity hydrotreating catalysts

    Topsøe, Henrik; Hinnemann, Berit; Nørskov, Jens Kehlet; Lauritsen, Jeppe V.; Besenbacher, Flemming; Hansen, Poul L.; Hyltoft, Glen; Egeberg, Rasmus; Knudsen, Kim G.

    2005-01-01

    Scanning tunneling microscopy (STM) investigations have recently provided the first atom-resolved images of reaction intermediates in the key steps of the hydrogenation (HYD) and direct desulfurization (DDS) pathways in hydrodesulfurization over MoS(2) nanoclusters. Surprisingly, special brim sites...

  7. Cross-section studies of relativistic deuteron reactions on copper by activation method

    Suchopár, Martin; Wagner, Vladimír; Svoboda, Ondřej; Vrzalová, Jitka; Chudoba, Petr; Kugler, Andrej; Adam, Jindřich; Závorka, L.; Baldine, A.; Furman, W.; Kadykov, M. G.; Khushvaktov, J.; Solnyshkin, A. A.; Tsoupko-Sitnikov, V. V.; Tyutyunnikov, S. I.

    2015-01-01

    Roč. 344, FEB (2015), s. 63-69. ISSN 0168-583X R&D Projects: GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : relativistic deuteron reactions * cross-sections * copper Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.124, year: 2014

  8. Remarkable fluorescence enhancement versus complex formation of cationic porphyrins on the surface of ZnO nanoparticles

    Aly, Shawkat Mohammede

    2014-06-12

    Fluorescence enhancement of organic fluorophores shows tremendous potential to improve image contrast in fluorescence-based bioimaging. Here, we present an experimental study of the interaction of two cationic porphyrins, meso-tetrakis(1-methylpyridinium-4-yl)porphyrin chloride (TMPyP) and meso-tetrakis(4-N,N,N-trimethylanilinium)porphyrin chloride (TMAP), with cationic surfactant-stabilized zinc oxide nanoparticles (ZnO NPs) based on several steady-state and time-resolved techniques. We show the first experimental measurements demonstrating a clear transition from pronounced fluorescence enhancement to charge transfer (CT) complex formation by simply changing the nature and location of the positive charge of the meso substituent of the cationic porphyrins. For TMPyP, we observe a sixfold increase in the fluorescence intensity of TMPyP upon addition of ZnO NPs. Our experimental results indicate that the electrostatic binding of TMPyP with the surface of ZnO NPs increases the symmetry of the porphyrin macrocycle. This electronic communication hinders the rotational relaxation of the meso unit and/or decreases the intramolecular CT character between the cavity and the meso substituent of the porphyrin, resulting in the enhancement of the intensity of the fluorescence. For TMAP, on the other hand, the different type and nature of the positive charge resulting in the development of the CT band arise from the interaction with the surface of ZnO NPs. This observation is confirmed by the femtosecond transient absorption spectroscopy, which provides clear spectroscopic signatures of photoinduced electron transfer from TMAP to ZnO NPs. © 2014 American Chemical Society.

  9. Peripheral Blood Leukocytes and Serum Nested Polymerase Chain Reaction Are Complementary Methods for Monitoring Active Cytomegalovirus Infection in Transplant Patients

    PD Andrade

    2013-01-01

    Full Text Available BACKGROUND: Human cytomegalovirus is an important cause of morbidity and mortality in immunocompromised patients. Qualitative polymerase chain reaction (PCR has proven to be a sensitive and effective technique in defining active cytomegalovirus infection, in addition to having low cost and being a useful test for situations in which there is no need for quantification. Real-time PCR has the advantage of quantification; however, the high cost of this methodology makes it impractical for routine use.

  10. Pt monolayer shell on hollow Pd core electrocatalysts: Scale up synthesis, structure, and activity for the oxygen reduction reaction

    Vukmirovic Miomir B.; Yu Zhang; Wang Jia X.; Buceta David; Wu Lijun; Adzic Radoslav R.

    2013-01-01

    We report on synthesis, characterization and the oxygen reduction reaction (ORR) kinetics of Pt monolayer shell on Pd(hollow), or Pd-Au(hollow) core electrocatalysts. Comparison between the ORR catalytic activity of the electrocatalysts with hollow cores and those of Pt solid and Pt hollow nanoparticles has been obtained using the rotating disk electrode technique. Hollow nanoparticles were made using Ni or Cu nanoparticles as sacrificial templates. The Pt ...

  11. For love or money? How activation of relational versus instrumental concerns affects reactions to decision-making procedures

    Ståhl, Tomas; Vermunt, Riël; Ellemers, Naomi

    2007-01-01

    We investigate how the direct activation of relational versus instrumental concerns affects reactions to decisions made by an authority. It is demonstrated that when instrumental concerns are experimentally induced, people's evaluations of the authority (Studies 1 and 2) as well as their intentions to protest (Study 3) are more strongly affected by how the procedures used by the authority affect anticipated outcomes (i.e., whether procedures are favorably or unfavorably inaccurate) than when ...

  12. Synthesis, characterization, and catalytic activity in Suzuki coupling and catalase-like reactions of new chitosan supported Pd catalyst.

    Baran, Talat; Inanan, Tülden; Menteş, Ayfer

    2016-07-10

    The aim of this study is to analyze the synthesis of a new chitosan supported Pd catalyst and examination of its catalytic activity in: Pd catalyst was synthesized using chitosan as a biomaterial and characterized with FTIR, TG/DTG, XRD, (1)H NMR, (13)C NMR, SEM-EDAX, ICP-OES, Uv-vis spectroscopies, and magnetic moment, along with molar conductivity analysis. Biomaterial supported Pd catalyst indicated high activity and long life time as well as excellent turnover number (TON) and turnover frequency (TOF) values in Suzuki reaction. Biomaterial supported Pd catalyst catalyzed H2O2 decomposition reaction with considerable high activity using comparatively small loading catalyst (10mg). Redox potential of biomaterial supported Pd catalyst was still high without negligible loss (13% decrease) after 10 cycles in reusability tests. As a consequence, eco-friendly biomaterial supported Pd catalyst has superior properties such as high thermal stability, long life time, easy removal from reaction mixture and durability to air, moisture and high temperature. PMID:27106147

  13. Activation cross-sections of proton induced reactions on natSm up to 65 MeV

    Highlights: •Proton induced reactions on natural samarium up to 65 MeV. •Stacked foil irradiation technique. •Comparison of experimental results with the ALICE, EMPIRE and TALYS theoretical model codes. •Calculation and comparison of thick target integral yields. -- Abstract: Activation cross sections for proton induced reactions on Sm are presented for the first time for natSm(p,xn)154,152m2,152m1,152g,150m,150g,149,148,147,146,145Eu, natSm(p,x)153,145Sm, natSm(p,x)151,150,149,148g,148m,146,144,143Pm and natSm(p,x)141Nd up to 65 MeV. The cross sections were measured via activation method by using a stacked-foil irradiation technique and high resolution gamma ray spectroscopy. The results were compared with results of the nuclear reaction codes ALICE, EMPIRE and TALYS (results taken from TENDL libraries). Integral yields of the activation products were calculated from the excitation functions

  14. Kinetics and Quantitative Structure—Activity Relationship Study on the Degradation Reaction from Perfluorooctanoic Acid to Trifluoroacetic Acid

    Chen Gong

    2014-08-01

    Full Text Available Investigation of the degradation kinetics of perfluorooctanoic acid (PFOA has been carried out to calculate rate constants of the main elementary reactions using the multichannel Rice-Ramsperger-Kassel-Marcus theory and canonical variational transition state theory with small-curvature tunneling correction over a temperature range of 200~500 K. The Arrhenius equations of rate constants of elementary reactions are fitted. The decarboxylation is role step in the degradation mechanism of PFOA. For the perfluorinated carboxylic acids from perfluorooctanoic acid to trifluoroacetic acid, the quantitative structure–activity relationship of the decarboxylation was analyzed with the genetic function approximation method and the structure–activity model was constructed. The main parameters governing rate constants of the decarboxylation reaction from the eight-carbon chain to the two-carbon chain were obtained. As the structure–activity model shows, the bond length and energy of C1–C2 (RC1–C2 and EC1–C2 are positively correlated to rate constants, while the volume (V, the energy difference between EHOMO and ELUMO (ΔE, and the net atomic charges on atom C2 (QC2 are negatively correlated.

  15. Activity and Stability of Rare Earth-Based Hydride Alloys as Catalysts of Hydrogen Absorption-Oxidation Reactions

    Ying Taokai(应桃开); Gao Xueping(高学平); Hu Weikang(胡伟康); Noréus Dag

    2004-01-01

    Rare earth-based AB5-type hydrogen storage alloys as catalysts of hydrogen-diffusion electrodes for hydrogen absorption and oxidation reactions in alkaline fuel cells were investigated. It is demonstrated that the meta-hydride hydrogen-diffusion electrodes could be charged by hydrogen gas and electrochemically discharged at the same time to retain a stable oxidation potential for a long period. The catalytic activities and stability are almost comparable with a Pt catalyst on the active carbon. Further improvement of performances is expected via reduction of catalyst size into nanometers.

  16. Catalytic activities enhanced by abundant structural defects and balanced N distribution of N-doped graphene in oxygen reduction reaction

    Bai, Xiaogong; Shi, Yantao; Guo, Jiahao; Gao, Liguo; Wang, Kai; Du, Yi; Ma, Tingli

    2016-02-01

    N-doped graphene (NG) is a promising candidate for oxygen reduction reaction (ORR) in the cathode of fuel cells. However, the catalytic activity of NG is lower than that of commercial Pt/C in alkaline and acidic media. In this study, NG samples were obtained using urea as N source. The structural defects and N distribution in the samples were adjusted by regulating the pyrolysis temperature. The new NG type exhibited remarkable catalytic activities for ORR in both alkaline and acidic media.

  17. Reactions of Chemically Activated Formic Acid Formed via HĊO + ȮH.

    Döntgen, Malte; Leonhard, Kai

    2016-03-24

    The chemistry of formyl radicals plays an important role in the kinetic modeling of oxygenated hydrocarbons. Here, the fate of rovibrationally excited formic acid produced via HĊO + ȮH is evaluated in a RRKM/Master Equation study. For that purpose, the HĊO + ȮH potential energy surface is studied theoretically using high-level quantum mechanics. Direct reaction from HĊO + ȮH to the bimolecular products is found to dominate for most relevant conditions due to formic acid well-skipping. The kinetics of these well-skipping reactions can only be evaluated when including the unimolecular intermediate, formic acid. Further, hydrogen abstraction from rovibrationally excited formic acid is found to be important at low-temperature conditions and for high radical concentrations. PMID:26954251

  18. Gas-Phase Reactions of (n, γ) and Isomeric Transition-Activated Br80 with Alkanes and Haloalkanes

    Experimental data are presented on the gas-phase reactions of alkanes and haloalkanes with bromine atoms and ions activated by nuclear transformations. The target molecules include CH4 CD4, C2H6, C2D6, CH3Cl, CH2Cl2, CHCI3, CCl4, CH2F2, CHF3, CF4, C2F6, CF3Br, and CH3Br. The nuclear reactions and transformations used in producing the energetic recoil atoms and ions were Br80m (isomeric transition), Br80, and Br79 (n, γ) Br80. The percentage of the radioactivity found in organic combination (the organic yield, O. Y.) was determined as a function of the concentration of the target molecule in the mole-fraction range of about 0.95 to 1.00. Elemental Br2 served both as a source of hot atoms and as a scavenger. Usually 20-50 separate samples of each reaction system were examined and the data of O.Y. as a function of the concentration of scavenger were plotted and extrapolated to unit mole fraction of target molecule. In all cases, die O.Y. decreased with increasing halogen concentration. Data on the (n, γ) activated reactions of Br80 with isotopic alkanes suggest a comparable extrapolated O.Y. for C2H6 and C2D6, but an O.Y. for CD4 about half of the O.Y. with CH4. Gas chromatographic analysis of the organic products indicates that about 90% of the O.Y. in CH4 is caused by CH3Br and 10% by CH2Br2 For CD4 as the target the distribution of organic activity is approx. 75% CD3Br and 25% CD2Br2. These various data are discussed in terms of possible mechanisms involving hot halogen atoms and ions

  19. Chemical Reactions of N13 Recoils from the C12 (d, n)N13 Reaction

    Earlier studies of N13 recoils produced by the nuclear reaction C12 (d, n) N13 in CH4, CH3OH, CCl4, etc. showed that the final radioactive gaseous products were entirely cyanides such as HCN, CH3CN and ClCN. No ammonia or amines were detected. In this study the investigation has been extended to benzene and CF4. In addition reactions of N+ ions with CCl4 and CF4 have been examined in a tandem mass spectrometer. In the case of N13 recoils reacting with benzene HCN was the main product and small amounts of benzonitrile were formed. No aniline or pyridine were produced. This will be contrasted with reported studies in which active nitrogen produced by electrical discharge reacted with benzene. In the case of CF4, the only radioactive product detected was FCN. In both cases polymeric materials were produced on the walls of the reaction vessels. No other products such as NF3 were detected. Studies of the effect of rare gas additives in the case of methanol indicated that ion-molecule reactions were involved at least in part. For this reason, the reactions of N+ ions with CCI4 and CF4 were studied in a tandem mass spectrometer in the bombarding ion energy range from 2 eV to. 200 eV. In this study the relative cross-sections for various ion production were investigated as a function of energy. In addition to ions composed of carbon and chlorine, various nitrogen-containing ions such as NCl+. CNCl+ and CN+ were detected. The shapes of the cross-section curves were such as to indicate complex formation possibly (CCl4N)+, which decomposed to give the product ions. The above complex was not detected directly. (author)

  20. ACTIVATION REACTION ON THE ELECTROENCEPHALOGRAM IN SUBSTANCE DEPENDENT PATIENTS: LINKS TO ADDICTION STUDIES AND PSYCHOLOGICAL FACTORS AND CHANGES IN NEUROFEEDBACK TRAINING

    M. e Melnikov

    2014-01-01

    Full Text Available Depth of activation reaction (α-activity suppression during the eyes-opening task is considered to be an important quantitative characteristic of α-band brainwaves. Activation reaction was assessed from O1 and O2 leads in 31 male substance dependent subjects. In 7 cases it was measured twice: before and after α- or β-brainwave biofeedback training. The correlations were found between grade of α suppression in eyes-opening task and attitude towards disease and treatment, personality maturity, and level of pathological personality traits. Activation reaction was significantly improved by α-training and non-significantly diminished after β-1-training.

  1. Psychosocial versus physiological stress - Meta-analyses on deactivations and activations of the neural correlates of stress reactions.

    Kogler, Lydia; Müller, Veronika I; Chang, Amy; Eickhoff, Simon B; Fox, Peter T; Gur, Ruben C; Derntl, Birgit

    2015-10-01

    Stress is present in everyday life in various forms and situations. Two stressors frequently investigated are physiological and psychosocial stress. Besides similar subjective and hormonal responses, it has been suggested that they also share common neural substrates. The current study used activation-likelihood-estimation meta-analysis to test this assumption by integrating results of previous neuroimaging studies on stress processing. Reported results are cluster-level FWE corrected. The inferior frontal gyrus (IFG) and the anterior insula (AI) were the only regions that demonstrated overlapping activation for both stressors. Analysis of physiological stress showed consistent activation of cognitive and affective components of pain processing such as the insula, striatum, or the middle cingulate cortex. Contrarily, analysis across psychosocial stress revealed consistent activation of the right superior temporal gyrus and deactivation of the striatum. Notably, parts of the striatum appeared to be functionally specified: the dorsal striatum was activated in physiological stress, whereas the ventral striatum was deactivated in psychosocial stress. Additional functional connectivity and decoding analyses further characterized this functional heterogeneity and revealed higher associations of the dorsal striatum with motor regions and of the ventral striatum with reward processing. Based on our meta-analytic approach, activation of the IFG and the AI seems to indicate a global neural stress reaction. While physiological stress activates a motoric fight-or-flight reaction, during psychosocial stress attention is shifted towards emotion regulation and goal-directed behavior, and reward processing is reduced. Our results show the significance of differentiating physiological and psychosocial stress in neural engagement. Furthermore, the assessment of deactivations in addition to activations in stress research is highly recommended. PMID:26123376

  2. Sol–gel synthesis of palladium nanoparticles supported on reduced graphene oxide: an active electrocatalyst for hydrogen evolution reaction

    Fereshteh Chekin

    2015-08-01

    In this work, the synthesis and characterization of palladium nanoparticle-reduced graphene oxide hybrid (Pd–rGO) material is reported. Techniques of X-ray diffraction, transmission electron microscope (TEM), energy-dispersive X-ray, FT-IR spectroscopy, thermogravimetric analysis and cyclic voltammetry were used to characterize the structure and properties of the Pd–rGO. Results demonstrate the effect of Pd on the reduced GO. The average particle size of the Pd nanoparticles supported on rGO obtained from TEM is about 12–18 nm. Moreover, glassy carbon electrode (GCE) modified with palladium nanoparticle–graphene oxide hybrid (Pd–rGO/GCE) was prepared by casting of the Pd–rGO solution on GCE. The electrochemical and catalytic activity of the Pd–rGO/GCE was studied in 0.1 M H2SO4 solution. The Pd–rGO/GCE electrode exhibited remarkable electrocatalytic activity for the hydrogen evolution reaction (HER). At potential more negative than −0.4 V vs. Ag|AgCl|KCl3M, the current is mainly due to hydrogen evolution reaction. Finally, the kinetic parameters of hydrogen evolution reaction are also discussed on the Pd–rGO/GCE.

  3. Boron-doped graphene as promising support for platinum catalyst with superior activity towards the methanol electrooxidation reaction

    Sun, Yongrong; Du, Chunyu; An, Meichen; Du, Lei; Tan, Qiang; Liu, Chuntao; Gao, Yunzhi; Yin, Geping

    2015-12-01

    We report the synthesis of boron-doped graphene by thermally annealing the mixture of graphene oxide and boric acid, and its usage as the support of Pt catalyst towards the methanol oxidation reaction. The composition, structure and morphology of boron-doped graphene and its supported Pt nanoparticles (Pt/BG) are characterized by transmission electron microscopy, inductively coupled plasma mass spectrometry, Raman spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. It is revealed that boron atoms are doped into graphene network in the form of BC2O and BCO2 bonds, which lead to the increase in defect sites and facilitate the subsequent deposition of Pt nanoparticles. Therefore, the Pt/BG catalyst presents smaller particle size and narrower size distribution than the graphene supported Pt (Pt/G) catalyst. When evaluated as the electrocatalyst for the methanol oxidation reaction, the Pt/BG catalyst exhibits excellent electrochemical activity and stability demonstrated by cyclic voltammetry and chronoamperometry tests. The enhanced activity is mainly ascribed to the electronic interaction between boron-doped graphene and Pt nanoparticles, which lowers the d-band center of Pt and thus weakens the absorption of the poisoning intermediate CO. Our work provides an alternative approach of improving the reaction kinetics for the oxidation of small organic molecules.

  4. Biological activities and physicochemical properties of Maillard reaction products in sugar-bovine casein peptide model systems.

    Jiang, Zhanmei; Wang, Lizhe; Wu, Wei; Wang, Yu

    2013-12-15

    The purpose of this study was to evaluate the biological activities and physicochemical properties of Maillard reaction products (MRPs), derived from aqueous reducing sugar (ribose, galactose and lactose) and bovine casein peptide (BCP) model systems. The fluorescence intensity of ribose-BCP MRPs reached the maximum value within 1h, while it took 3h for galactose-BCP MRPs. Size exclusion chromatography of all the MRPs indicated molecular rearrangements and production of new smaller molecules, as a function of the heating time. The consumption of ribose and amino groups was the highest in the ribose-BCP MRPs. BCP lost its known angiotensin-I-converting enzyme (ACE) inhibitory activity by the Maillard reaction with reducing sugars. Ribose-BCP MRPs had the lowest ACE inhibitory activity, but they showed the highest 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging activity and ferrous reducing power among all the MRPs. Galactose-BCP MRPs inhibited, slightly the growth of Caco-2 cells, while ribose-BCPand lactose-BCP MRPs had no cytotoxicity. PMID:23993556

  5. Enhancement in the Catalytic Activity of Pd/USY in the Heck Reaction Induced by H2 Bubbling

    Miki Niwa

    2010-12-01

    Full Text Available Pd was loaded on ultra stable Y (USY zeolites prepared by steaming NH4-Y zeolite under different conditions. Heck reactions were carried out over the prepared Pd/USY. We found that H2 bubbling was effective in improving not only the catalytic activity of Pd/USY, but also that of other supported Pd catalysts and Pd(OAc2. Moreover, the catalytic activity of Pd/USY could be optimized by choosing appropriate steaming conditions for the preparation of the USY zeolites; Pd loaded on USY prepared at 873 K with 100% H2O gave the highest activity (TOF = 61,000 h−1, which was higher than that of Pd loaded on other kinds of supports. The prepared Pd/USY catalysts were applicable to the Heck reactions using various kinds of substrates including bromo- and chloro-substituted aromatic and heteroaromatic compounds. Characterization of the acid properties of the USY zeolites revealed that the strong acid site (OHstrong generated as a result of steaming had a profound effect on the catalytic activity of Pd.

  6. Theoretical Modelling and Facile Synthesis of a Highly Active Boron-Doped Palladium Catalyst for the Oxygen Reduction Reaction.

    Vo Doan, Tat Thang; Wang, Jingbo; Poon, Kee Chun; Tan, Desmond C L; Khezri, Bahareh; Webster, Richard D; Su, Haibin; Sato, Hirotaka

    2016-06-01

    A highly active alternative to Pt electrocatalysts for the oxygen reduction reaction (ORR), which is the cathode-electrode reaction of fuel cells, is sought for higher fuel-cell performance. Our theoretical modelling reveals that B-doped Pd (Pd-B) weakens the absorption of ORR intermediates with nearly optimal binding energy by lowering the barrier associated with O2 dissociation, suggesting Pd-B should be highly active for ORR. In fact, Pd-B, facile synthesized by an electroless deposition process, exhibits 2.2 times and 8.8 times higher specific activity and 14 times and 35 times less costly than commercial pure Pd and Pt catalysts, respectively. Another computational result is that the surface core level of Pd is negatively shifted by B doping, as confirmed by XPS, and implies that filling the density of states related to the anti-bonding of oxygen to Pd surfaces with excess electrons from B doping, weakens the O bonding to Pd and boosts the catalytic activity. PMID:27086729

  7. High-flux white neutron source based on p(35)-Be reactions for activation experiments at NPI

    The concept of International Fusion Material Irradiation Facility (IFMIF) is based on the d(40)-Li neutron source reaction which produces the white neutron spectrum with mean energy of 14 MeV, energy range with high intensity of neutron beam up to 35 MeV, and weak tail up to 55 MeV. At the Nuclear Physics Institute of the ASCR in Rez near Prague, the source reaction of p+Be was investigated for proton energy of 35 MeV and beam current intensity of 9.2μA. The produced white spectrum with neutron flux up to 1011 cm−2 s−1 was determined by the dosimetry foils activation technique at two sample-to-target distances and validated against the Monte Carlo predictions. The neutron field of these high-flux p(35)-Be white neutron source represents the useful tool for experimental simulation of the spectrum of the IFMIF facility, validating the activation cross-section data in the energy range relevant to the IFMIF, studying the radiation hardness of electronics against the high-energy neutron fields, and various activation experiments. - Highlights: • Development of accelerator-driven neutron sources. • Fast neutron spectrometry. • Multi-foil activation technique. • Nuclear data measurement and validation in the energy range of IFMIF

  8. A spectroscopic method to determine the activity of the restriction endonuclease EcoRV that involves a single reaction.

    Huang, Qing; Quiñones, Edwin

    2016-03-15

    A one-step protocol is presented to determine the activity of EcoRV as a model of restriction enzymes. The protocol involved a molecular beacon as DNA substrate, with the target sequence recognized by EcoRV in the stem. EcoRV cleaved the stem forming two fragments, one of which contained the fluorophore and quencher, initially bound by 3bp. This shorter fragment rapidly dissociated at 37°C, causing an increase of fluorescence intensity that was used to gauge the reaction kinetics. The reaction can be described using the Michaelis-Menten mechanism, and the kinetic parameters obtained were compared with literature values involving other protocols. PMID:18489897

  9. Reaction between lawsone and aminophenol derivatives: Synthesis, characterization, molecular structures and antiproliferative activity

    Kathawate, Laxmi; Joshi, Pranya V.; Dash, Tapan Kumar; Pal, Sanjima; Nikalje, Milind; Weyhermüller, Thomas; Puranik, Vedavati G.; Konkimalla, V. Badireenath; Salunke-Gawali, Sunita

    2014-10-01

    Reaction between two bioreductive reactants lawsone (2-hydroxy-1,4-napthoquinone) and derivatives 2-aminophenol without catalyst is reported. The reaction between lawsone and 4-chloro-2-aminophenol leads to formation of red colored major product 1A:[2-[(5-chloro-hydroxyphenyl)amino]naphthalene-1,4-dione] and fluorescent orange colored minor compound 1B:[10-chloro-benzo[α]phenoxazine-5-one]. Molecular structure of 1A and 1B were determined by single crystal X-ray diffraction. Two mechanisms were proposed to the formation of red 1A and 1B. ‘Ortho-para’ tautomeric equilibrium was observed in DMSO-d6 solution in 1A, which was revealed by 1H, 13C NMR and LC-MS studies. Molecules of 1A formed dimers via Nsbnd H⋯O interaction and polymeric chain of dimers was formed by Osbnd H⋯O interactions. Cl⋯Cl interactions were observed between the polymeric chains of dimers in 1A. Molecules of 1B show Cl⋯N interaction. Antiproliferative properties is studied for 1A-5A compounds (obtained by the reaction of lawsone with 2-amino-4-methylphenol;2A, 2-aminophenol;3A, 3-aminophenol;4A and 4-aminophenol;5A) and evaluated against two cancer cell lines, THP1 (human monocytic leukemia cells) and COLO205 (colorectal adenocarcinoma) and one normal cell line, HEK293T (human embryonic kidney). The values of 50% inhibitory concentration (IC50) of compounds 1A-5A was determined using XTT assay. The cytotoxic effects of compounds 2A and 3A were observed against COLO205 and compounds 4A and 5A on THP1 were observed to be higher in comparison to their effect on HEK293T cell lines.

  10. The Use of Gel Electrophoresis to Study the Reactions of Activated Amino Acids with Oligonucleotides

    Zieboll, Gerhard; Orgel, Leslie E.

    1994-01-01

    We have used gel electrophoresis to study the primary covalent addition of amino acids to oligonu-cleotides or their analogs and the subsequent addition of further molecules of the amino acids to generate peptides covalently linked to the oligonucleotides. We have surveyed the reactions of a variety of amino acids with the phosphoramidates derived from oligonucleotide 5 inches phosphates and ethylenediamine. We find that arginine and amino acids can interact with oligonucleotidesl through stacking interactions react most efficiently. D- and L-amino acids give indistinguishable families of products.

  11. Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction

    Alia, Shaun M.; Rasimick, Brian; Ngo, Chilan; Neyerlin, Kenneth C.; Kocha, Shyam S.; Pylypenko, Svitlana; Xu, Hui; Pivovar, Bryan S.

    2016-07-15

    Unsupported iridium (Ir) nanoparticles, that serve as standard oxygen evolution reaction (OER) catalysts in acidic electrolyzers, were investigated for electrochemical performance and durability in rotating disk electrode (RDE) half-cells. Fixed potential holds and potential cycling were applied to probe the durability of Ir nanoparticles, and performance losses were found to be driven by particle growth (coarsening) at moderate potential (1.4 to 1.6 V) and Ir dissolution at higher potential (>/=1.8 V). Several different commercially available samples were evaluated and standardized conditions for performance comparison are reported. The electrocatalyst RDE results have also been compared to results obtained for performance and durability in electrolysis cells.

  12. The effect of activating solution on the mechanical strength, reaction rate, mineralogy, and microstructure of alkali-activated fly ash

    Ma, Y.; Hu. J.; Ye, G.

    2012-01-01

    Alkali-activated fly ash (AAF) is a promising material that exhibits comparable material properties as cement-based materials but with much less CO2 emission. In the present work, the effect of activating solution (SiO2 and Na2O content) on the performance of AAF was studied by means of isothermal c

  13. Mechanism of the Iron(II)-Catalyzed Hydrosilylation of Ketones: Activation of Iron Carboxylate Precatalysts and Reaction Pathways of the Active Catalyst.

    Bleith, Tim; Gade, Lutz H

    2016-04-13

    A detailed mechanistic study of the catalytic hydrosilylation of ketones with the highly active and enantioselective iron(II) boxmi complexes as catalysts (up to >99% ee) was carried out to elucidate the pathways for precatalyst activation and the mechanism for the iron-catalyzed hydrosilylation. Carboxylate precatalysts were found to be activated by reduction of the carboxylate ligand to the corresponding alkoxide followed by entering the catalytic cycle for the iron-catalyzed hydrosilylation. An Eyring-type analysis of the temperature dependence of the enantiomeric ratio established a linear relationship of ln(S/R) and T(-1), indicating a single selectivity-determining step over the whole temperature range from -40 to +65 °C (ΔΔG(‡)sel, 233 K = 9 ± 1 kJ/mol). The rate law as well as activation parameters for the rate-determining step were derived and complemented by a Hammett analysis, radical clock experiments, kinetic isotope effect (KIE) measurements (kH/kD = 3.0 ± 0.2), the isolation of the catalytically active alkoxide intermediate, and DFT-modeling of the whole reaction sequence. The proposed reaction mechanism is characterized by a rate-determining σ-bond metathesis of an alkoxide complex with the silane, subsequent coordination of the ketone to the iron hydride complex, and insertion of the ketone into the Fe-H bond to regenerate the alkoxide complex. PMID:27013140

  14. Sea urchin-like cobalt-iron phosphide as an active catalyst for oxygen evolution reaction

    Mendoza-Garcia, Adriana; Su, Dong; Sun, Shouheng

    2016-02-01

    Sea urchin-like (CoxFe1-x)2P shows Co/Fe-composition dependent catalysis for oxygen evolution reaction (OER) in 0.1 M KOH. The (Co0.54Fe0.46)2P is the most efficient OER catalyst, reaching 10 mA cm-2 at an overpotential of 0.37 V (vs. RHE). The report offers a new synergistic approach to tune and optimize the electrocatalysis of OER.Sea urchin-like (CoxFe1-x)2P shows Co/Fe-composition dependent catalysis for oxygen evolution reaction (OER) in 0.1 M KOH. The (Co0.54Fe0.46)2P is the most efficient OER catalyst, reaching 10 mA cm-2 at an overpotential of 0.37 V (vs. RHE). The report offers a new synergistic approach to tune and optimize the electrocatalysis of OER. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08763e

  15. Lewis base activation of Lewis acids: catalytic, enantioselective vinylogous aldol addition reactions.

    Denmark, Scott E; Heemstra, John R

    2007-07-20

    The generality of Lewis base catalyzed, Lewis acid mediated, enantioselective vinylogous aldol addition reactions has been investigated. The combination of silicon tetrachloride and chiral phosphoramides is a competent catalyst for highly selective additions of a variety of alpha,beta-unsaturated ketone-, 1,3-diketone-, and alpha,beta-unsaturated amide-derived dienolates to aldehydes. These reactions provided high levels of gamma-site selectivity for a variety of substitution patterns on the dienyl unit. Both ketone- and morpholine amide-derived dienol ethers afforded high enantio- and diastereoselectivity in the addition to conjugated aldehydes. Although alpha,beta-unsaturated ketone-derived dienolate did not react with aliphatic aldehydes, alpha,beta-unsaturated amide-derived dienolates underwent addition at reasonable rates affording high yields of vinylogous aldol product. The enantioselectivities achieved with the morpholine derived-dienolate in the addition to aliphatic aldehydes was the highest afforded to date with the silicon tetrachloride-chiral phosphoramide system. Furthermore, the ability to cleanly convert the morpholine amide to a methyl ketone was demonstrated. PMID:17583959

  16. Changes in brain activation patterns according to cross-training effect in serial reaction time task An functional MRI study

    Yong Hyun Kwon; Jung Won Kwon; Ji Won Park

    2013-01-01

    Cross-training is a phenomenon related to motor learning, where motor performance of the untrained limb shows improvement in strength and skill execution following unilateral training of the homologous contralateral limb. We used functional MRI to investigate whether motor performance of the untrained limb could be improved using a serial reaction time task according to motor sequential learning of the trained limb, and whether these skill acquisitions led to changes in brain activation patterns. We recruited 20 right-handed healthy subjects, who were randomly allocated into training and control groups. The training group was trained in performance of a serial reaction time task using their non-dominant left hand, 40 minutes per day, for 10 days, over a period of 2 weeks. The control group did not receive training. Measurements of response time and percentile of response accuracy were performed twice during pre- and post-training, while brain functional MRI was scanned during performance of the serial reaction time task using the untrained right hand. In the training group, prominent changes in response time and percentile of response accuracy were observed in both the untrained right hand and the trained left hand between pre- and post-training. The control group showed no significant changes in the untrained hand between pre- and post-training. In the training group, the activated volume of the cortical areas related to motor function (i.e., primary motor cortex, premotor area, posterior parietal cortex) showed a gradual decrease, and enhanced cerebellar activation of the vermis and the newly activated ipsilateral dentate nucleus were observed during performance of the serial reaction time task using the untrained right hand, accompanied by the cross-motor learning effect. However, no significant changes were observed in the control group. Our findings indicate that motor skills learned over the 2-week training using the trained limb were transferred to the

  17. Highly active and reusable catalyst from Fe-Mg-hydrotalcite anionic clay for Friedel-Crafts type benzylation reactions

    Vasant R Choudhary; Rani Jha; Pankaj A Choudhari

    2005-11-01

    Fe-Mg-hydrotalcite (Mg/Fe = 3) anionic clay with or without calcination (at 200-800°C) has been used for the benzylation of toluene and other aromatic compounds by benzyl chloride. Hydrotalcite before and after its calcination was characterized for surface area, crystalline phases and basicity. Both the hydrotalcite, particularly after its use in the benzylation reaction, and the catalyst derived from it by its calcination at 200-800°C show high catalytic activity for the benzylation of toluene and other aromatic compounds. The catalytically active species present in the catalyst in its most active form are the chlorides and oxides of iron on the catalyst surface.

  18. Pt monolayer shell on hollow Pd core electrocatalysts: Scale up synthesis, structure, and activity for the oxygen reduction reaction

    Vukmirovic Miomir B.

    2013-01-01

    Full Text Available We report on synthesis, characterization and the oxygen reduction reaction (ORR kinetics of Pt monolayer shell on Pd(hollow, or Pd-Au(hollow core electrocatalysts. Comparison between the ORR catalytic activity of the electrocatalysts with hollow cores and those of Pt solid and Pt hollow nanoparticles has been obtained using the rotating disk electrode technique. Hollow nanoparticles were made using Ni or Cu nanoparticles as sacrificial templates. The Pt ORR specific and mass activities of the electrocatalysts with hollow cores were found considerably higher than those of the electrocatalysts with the solid cores. We attribute this enhanced Pt activity to the smooth surface morphology and hollow-induced lattice contraction, in addition to the mass-saving geometry of hollow particles.

  19. Science Letters: Nitrogen doping of activated carbon loading Fe2O3 and activity in carbon-nitric oxide reaction

    WAN Xian-kai; ZOU Xue-quan; SHI Hui-xiang; WANG Da-hui

    2007-01-01

    Nitrogen doping of activated carbon loading Fe2O3 was performed by annealing in ammonia, and the activity of the modified carbon for NO reduction was studied in the presence of oxygen. Results show that Fe2O3 enhances the amount of surface oxygen complexes and facilitates nitrogen incorporation in the carbon, especially in the form of pyridinic nitrogen. The modified carbon shows excellent activity for NO reduction in the low temperature regime (<500 ℃) because of the cooperative effect of Fe2O3 and the surface nitrogen species.

  20. Effect of carbamazepineon bioelectric activity of hypothalamus of rats in the conditions of stress reaction development

    T. G. Chaus; V. P. Lyashenko; S. М. Lukashov; G. G. Chaus

    2006-01-01

    The influence of carbamazepine medication on bioelectric activity of the posterior and anterior hypothalamus in rats under stress conditions was studied. It is shown, that carbamazepine changes amplitude of the basic rhythms of electric activity of the hypothalamus posterior zone, which value were less compared with the capacities amplitude of the hypothalamic anterior zone.

  1. Fundamental Differences between Group 8 Metals: Unexpected Oxidation State Preferences and Mechanisms in Ruthenium Borylene Complex Formation.

    Braunschweig, Holger; Damme, Alexander; Dewhurst, Rian D; Radacki, Krzysztof; Weißenberger, Felix; Wennemann, Benedikt; Ye, Qing

    2016-06-13

    The reaction of the salts K[Ru(CO)3 (PMe3 )(SiR3 )] (R=Me, Et) with Br2 BDur or Cl2 BDur (Dur=2,3,5,6-Me4 C6 H) leads to both boryl and borylene complexes of divalent ruthenium, the former through simple salt elimination and the latter through subsequent CO loss and 1,2-halide shift. The balance of products can be altered by varying the reaction conditions; boryl complexes can be favored by the addition of CO, and borylene complexes by removal of CO under vacuum. All of these products are in competition with the corresponding (aryl)(halo)(trialkylsilyl)borane, a reductive elimination product. The Ru(II) borylene products and the mechanisms that form them are distinctly different from the analogous reactions with iron, which lead to low-valent borylene complexes, highlighting fundamental differences in oxidation state preferences between iron and ruthenium. PMID:27124888

  2. Chemical characteristics and enhanced hepatoprotective activities of Maillard reaction products derived from milk protein-sugar system.

    Oh, Nam Su; Young Lee, Ji; Lee, Hyun Ah; Joung, Jae Yeon; Shin, Yong Kook; Kim, Sae Hun; Kim, Younghoon; Lee, Kwang Won

    2016-02-01

    The objective of this study was to investigate the characteristics, antioxidative properties, and hepatoprotective effects of Maillard reaction products (MRP) from milk protein reacted with sugars. The MRP were obtained from milk protein, whey protein concentrates and sodium caseinate, using 2 types of sugars, lactose and glucose, by heating the mixture at 55°C for 7d in a sodium phosphate buffer (pH 7.4). Changes in the chemical modification of the milk protein were monitored by measuring the protein-bound carbonyls and PAGE protein profiles. The results showed that the amount of protein-bound carbonyls increased after Maillard reaction (MR). In addition, sodium dodecyl sulfate-PAGE analysis indicated a formation of high-molecular weight complexes through MR. The modification sites induced by MR of milk protein were monitored by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of tryptic-digested gel spots of MRP. As a result, modification and their localization in AA sequence of MRP was identified. Also, the MRP showed higher antioxidant activities than the intact milk protein, and they reduced intracellular reactive oxygen species production and inhibited the depletion of the reduced glutathione concentrations in the HepG2 cells. In particular, glucose-sodium caseinate MRP showed the highest biological activities among all MRP. Therefore, these results suggest that the MRP from milk protein reacting with sugars possess effective antioxidant activity and have a protective ability against oxidative damage. PMID:26627852

  3. Ex Vivo Antioxidant Activity of Selected Medicinal Plants against Fenton Reaction-Mediated Oxidation of Biological Lipid Substrates

    Namratha Pai Kotebagilu

    2015-01-01

    Full Text Available Free radical-mediated oxidation is often linked to various degenerative diseases. Biological substrates with lipids as major components are susceptible to oxygen-derived lipid peroxidation due to their composition. Lipid peroxide products act as biomarkers in evaluating the antioxidant potential of various plants and functional foods. The study focused on evaluation of the antioxidant potential of two extracts (methanol and 80% methanol of four medicinal plants, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, against Fenton reaction-mediated oxidation of three biological lipid substrates; cholesterol, low-density lipoprotein, and brain homogenate. The antioxidant activity of the extracts was measured by thiobarbituric acid reactive substances method. Also, the correlation between the polyphenol, flavonoid content, and the antioxidant activity in biological substrates was analyzed. Results indicated highest antioxidant potential by 80% methanol extract of Canthium parviflorum (97.55%, methanol extract of Andrographis paniculata (72.15%, and methanol extract of Canthium parviflorum (49.55% in cholesterol, low-density lipoprotein, and brain, respectively. The polyphenol and flavonoid contents of methanol extract of Andrographis paniculata in cholesterol (r=0.816 and low-density lipoprotein (r=0.948 and Costus speciosus in brain (r=0.977, polyphenols, and r=0.949, flavonoids correlated well with the antioxidant activity. The findings prove the antioxidant potential of the selected medicinal plants against Fenton reaction in biological lipid substrates.

  4. Ex Vivo Antioxidant Activity of Selected Medicinal Plants against Fenton Reaction-Mediated Oxidation of Biological Lipid Substrates.

    Pai Kotebagilu, Namratha; Reddy Palvai, Vanitha; Urooj, Asna

    2015-01-01

    Free radical-mediated oxidation is often linked to various degenerative diseases. Biological substrates with lipids as major components are susceptible to oxygen-derived lipid peroxidation due to their composition. Lipid peroxide products act as biomarkers in evaluating the antioxidant potential of various plants and functional foods. The study focused on evaluation of the antioxidant potential of two extracts (methanol and 80% methanol) of four medicinal plants, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, against Fenton reaction-mediated oxidation of three biological lipid substrates; cholesterol, low-density lipoprotein, and brain homogenate. The antioxidant activity of the extracts was measured by thiobarbituric acid reactive substances method. Also, the correlation between the polyphenol, flavonoid content, and the antioxidant activity in biological substrates was analyzed. Results indicated highest antioxidant potential by 80% methanol extract of Canthium parviflorum (97.55%), methanol extract of Andrographis paniculata (72.15%), and methanol extract of Canthium parviflorum (49.55%) in cholesterol, low-density lipoprotein, and brain, respectively. The polyphenol and flavonoid contents of methanol extract of Andrographis paniculata in cholesterol (r = 0.816) and low-density lipoprotein (r = 0.948) and Costus speciosus in brain (r = 0.977, polyphenols, and r = 0.949, flavonoids) correlated well with the antioxidant activity. The findings prove the antioxidant potential of the selected medicinal plants against Fenton reaction in biological lipid substrates. PMID:26933511

  5. Reaction Mechanism for Ammonia Activation in the Selective Ammoxidation of Propene on Bismuth Molybdates

    Pudar, Sanja; Goddard, William A.

    2015-01-01

    In this paper, we report quantum mechanical studies (using the B3LYP flavor of density functional theory) for various pathways of ammonia activation on bismuth molybdates, a process required for ammoxidation of propene to acrylonitrile. Using a Mo_3O_9 cluster to model the bulk surface, we examined the activation of ammonia by both fully oxidized (MoIV) and reduced (Mo^(IV)) molybdenum sites. Our results show that ammonia activation does not take place on the fully oxidized Mo(VI) sites. Here...

  6. Substituent group effects on reorganization and activation energies: Theoretical study of charge transfer reaction through DNA

    Khan, Arshad

    2010-02-01

    The density functional theory (DFT) calculations (B3LYP) with aug-cc-pVDZ basis sets on various substituted neutral and radical cationic guanine-cytosine (GC ∗+) base pairs suggest that an electron-withdrawing ring deactivating substituent group like -NO 2, -COOH attached to a G ring lowers the reorganization/activation energy values whereas an electron releasing ring activating group like -OH increases these values. An electron releasing , but a ring deactivating group -F, exhibits its effect in between the above two extreme cases. A weak electron releasing, ring activating methyl group, as well as substituent groups attached to C (cytosine)-ring show almost no effect.

  7. Morphological transformation during activation and reaction of an iron Fischer-Tropsch catalyst

    Jackson, N.B.; Kohler, S.; Harrington, M. [Sandia National Lab., Albuquerque, NM (United States)] [and others

    1995-12-31

    The purpose of this project is to support the development of slurry-phase bubble column processes being studied at the La Porte Alternative Fuel Development Unit. This paper describes the aspects of Sandia`s recent work regarding the advancement and understanding of the iron catalyst used in the slurry phase process. A number of techniques were used to understand the chemical and physical effects of pretreatment and reaction on the attrition and carbon deposition characteristics of iron catalysts. Unless otherwise stated, the data discussed was derived form experiments carried out on the catalyst chosen for the summer 1994 Fischer-Tropsch run at LaPorte, UCI 1185-78-370, (an L 3950 type) that is 88% Fe{sub 2}O{sub 3}, 11% CuO, and 0.052%K{sub 2}O.

  8. Fused triazoles via tandem reactions of activated Cinchona alkaloids with azide ion. Second Cinchona rearrangement exemplified.

    Röper, S; Franz, M H; Wartchow, R; Hoffmann, H M R

    2003-08-01

    [reaction: see text] Intramolecular 1,3-dipolar cycloadditions of cinchona azides to the C10-C11 alkyne and C10-C11 olefin unit of the alkaloid have been designed via tandem strategy. A variety of fused triazoles and triazolines with a bis-azahomotwistane skeleton have been prepared. In trifluoroethanol, O-mesylcinchonidine 7-OMs and NaN(3) furnish triazole 8 as well as cage-expanded 1,5-diazatricyclo[4.4.1.0(3,8)]undecane derivative 10. Both fused triazoles 8 and 10 are formed with retention of configuration at C9 and C3, respectively. 1-Azabicyclo[3.2.2]cage expansion is shown to be reversible. PMID:12889871

  9. Synthesis and Some Reactions of 1-aryl-4-acetyl-5-methyl-1,2,3-triazole Derivatives with Anticonvulsant Activity.

    Nassar, Ekhlass M; Abdelrazek, Fathy M; Ayyad, Rezk R; El-Farargy, Ahmed F

    2016-01-01

    The triazoles 3a-d underwent condensation reactions with 4-(piperidin-1-yl)-benzaldehyde to afford the chalcones 5a-d. Chalcone derivatives 5a-d were reacted with 2,3-diaminomaleonitrile, thiourea and hydrazine hydrate to afford the novel diazepine-dicarbonitrile derivatives 7a-d, the pyrimidine-2-thiol derivatives 9a-d and hydrazino-pyrimidines 10a-d respectively. Structures of the prepared compounds were elucidated by physical and spectral data like FT-IR, (1)H NMR, (13)C NMR, and mass spectroscopy. Some of the synthesized compounds were screened for their anticonvulsant activity and SAR. PMID:26776225

  10. Surface chemistry of Au/TiO2: Thermally and photolytically activated reactions

    Panayotov, Dimitar A.; Morris, John R.

    2016-03-01

    The fascinating particle size dependence to the physical, photophysical, and chemical properties of gold has motivated thousands of studies focused on exploring the ability of supported gold nanoparticles to catalyze chemical transformations. In particular, titanium dioxide-supported gold (Au/TiO2) nanoparticles may provide the right combination of electronic structure, structural dynamics, and stability to affect catalysis in important practical applications from environmental remediation to selective hydrogenation to carbon monoxide oxidation. Harnessing the full potential of Au/TiO2 will require a detailed atomic-scale understanding of the thermal and photolytic processes that accompany chemical conversion. This review describes some of the unique properties exhibited by particulate gold before delving into how those properties affect chemistry on titania supports. Particular attention is given first to thermally driven reactions on single crystal system. This review then addresses nanoparticulate samples in an effort begin to bridge the so-called materials gap. Building on the foundation provided by the large body of work in the field of thermal catalysis, the review describes new research into light-driven catalysis on Au/TiO2. Importantly, the reader should bear in mind throughout this review that thermal chemistry and thermal effects typically accompany photochemistry. Distinguishing between thermally-driven stages of a reaction and photo-induced steps remains a significant challenge, but one that experimentalists and theorists are beginning to decipher with new approaches. Finally, a summary of several state-of-the-art studies describes how they are illuminating new frontiers in the quest to exploit Au/TiO2 as an efficient catalyst and low-energy photocatalyst.

  11. Measurement of activation cross-sections for high-energy neutron-induced reactions of Bi and Pb

    Zaman, Muhammad; Kim, Guinyun; Kim, Kwangsoo; Naik, Haladhara; Shahid, Muhammad; Lee, Manwoo

    2015-08-01

    The cross-sections for 209Bi(n, 4n)206Bi, 209Bi(n, 5n)205Bi, natPb(n, xn)204mPb, natPb(n, xn)203Pb, natPb(n, xn)202mPb,natPb(n, xn)201Pb, natPb(n, xn)200Pb, natPb(n, αxn)203Hg and natPb(n, p xn)202Tl reactions were determined at the Korean Institute of Radiological and Medical Sciences (KIRAMS), Korea in the neutron energy range of 15.2 to 37.2 MeV. The above cross-sections were obtained by using the activation and off-line γ-ray spectrometric technique. The quasi-monoenergetic neutron used for the above reactions are based on the 9Be(p, n) reaction. Simulations of the spectral flux from the Be target were done using the MCNPX program. The cross-sections were estimated with the TALYS 1.6 code using the default parameter. The data from the present work and literature were compared with the data from the EAF-2010 and the TENDL-2013 libraries, and calculated values of TALYS 1.6 code. It shows that appropriate level density model, the γ-ray strength function, and the spin cut-off parameter are needed to obtain a good agreement between experimental data and theoretical values from TALYS 1.6 code.

  12. New activation cross section data on longer lived radio-nuclei produced in proton induced nuclear reaction on zirconium

    The excitation functions of 96Nb, 95mNb, 95gNb, 92mNb, 91mNb, 90Nb, 95Zr, 89Zr, 88Zr, 86Zr, 88Y, 87mY, 87gY, 86Y were measured up to 70 MeV proton energy by using the stacked foil technique and the activation method. The new data were compared with the critically analyzed experimental data in the literature and with the TALYS based model results in TENDL-2013 library. The possible role of the investigated reactions in the production of medically relevant 90Nb, 95mNb, 89Zr, and 88Y radionuclides is discussed. - Highlights: • Proton induced reactions on natural zirconium up to 65 MeV. • Stacked foil irradiation technique coupled with gamma-spectrometry. • Comparison of experimental data with the nuclear reaction model results in the TENDL-2013 library. • Calculation and comparison of thick target integral yields. • Comparison of the production routes of 90Nb, 95mNb, 89Zr and 88Y medically relevant radioisotopes

  13. Activation of 112Cd by deuteron induced reactions up to 50 MeV: An alternative for 111In production?

    Highlights: • Enriched 112Cd targets were irradiated with 50 MeV deuterons. • Reaction cross sections for activation products 109,110g,111In and 111,110g,106Ag. • Comparisons with the results of the TENDL-2013 library based on TALYS 1.4 code. • Weighted sums of cross sections from TENDL-2013 were compared to literature results on natCd. • Production capabilities for 111In are compared to the 112Cd(p,2n)111In route. - Abstract: In stacked foil irradiations with an incident 50 MeV deuteron beam on highly enriched 112Cd targets, the excitation functions for 109,110g,111In and 111,110g,106Ag were determined, relative to the monitor reactions natAl(d,x)22,24Na. The results were compared to the scarce literature values on enriched Cd isotopes. Through combination of reaction cross section data on all stable Cd isotopes listed in the on-line library TENDL-2013 (calculated with the TALYS 1.4 theoretical code) a comparison with our earlier study on natCd is made. The possible production of 111In through 112Cd(d,3n), as an alternative to 112Cd(p,2n), is discussed

  14. Click reaction based synthesis, antimicrobial, and cytotoxic activities of new 1,2,3-triazoles.

    El Sayed Aly, Mohamed Ramadan; Saad, Hosam Ali; Mohamed, Mosselhi Abdelnabi Mosselhi

    2015-07-15

    Three-motif pharmacophoric models 20a-e and 21-25 were prepared in good yields by CuAAC of two azido substrates 2 and 11 with seven terminal acetylenic derivatives including chalcones 17a-e, theophylline 18 and cholesterol 19. The structure of these compounds was elucidated by NMR, MS, IR spectroscopy and micro analyses. This series was screened as antimicrobial and cytotoxic agents in vitro. Most derivatives showed appreciable antibacterial activity, but they displayed weak cytotoxic, and antifungal activities. Notably, conjugate 25 (cream of the crop) was found to be more active than Ampicillin against Escherichia coli and Staphylococcus aureus and showed appreciable antifungal and cytotoxic activities as well. PMID:26025874

  15. Alkali – activated binders: a review part 1. Historical background, terminology, reaction mechanisms and hydration products

    Torgal, Fernando Pacheco; Gomes, J. P. Castro; Jalali, Said

    2008-01-01

    The disintegration of concrete structures made of ordinary Portland cement (OPC) is a worrying topic of increasing significance. The development of new binders with longer durability is therefore needed. Alkali-activated binders have emerged as an alternative to OPC binders, which seems to have superior durability and environmental impact. This paper reviews current knowledge about alkali-activated binders. The subjects of Part 1 in this paper are historical background, terminology a...

  16. Bifunctional enhancement of oxygen reduction reaction activity on Ag catalysts due to water activation on LaMnO3 supports in alkaline media

    Park, Shin-Ae; Lee, Eun-Kyung; Song, Hannah; Kim, Yong-Tae

    2015-08-01

    Ag is considered to be one of the best candidates for oxygen reduction reaction electrocatalysts in alkaline media for application in various electrochemical energy devices. In this study, we demonstrate that water activation is a key factor in enhancing the ORR activity in alkaline media, unlike in acid environments. Ag supported on LaMnO3 having a high oxophilicity showed a markedly higher ORR activity than that on carbon with inert surfaces. Through various electrochemical tests, it was revealed that the origin of the enhanced ORR activity of Ag/LaMnO3 is the bifunctional effect mainly due to the water activation at the interface between Ag and LaMnO3. Furthermore, the ligand effect due to the charge transfer from Mn to Ag leads to the enhancement of both oxygen activation on Ag and water activation on Mn sites, and hence, an improvement in the ORR activity of Ag/LaMnO3. On the other hand, the strain effect based on the fine structure variation in the lattice was negligible. We therefore suggest that the employment of a co-catalyst or support with highly oxophilic nature and the maximization of the interface between catalyst and support should be considered in the design of electrocatalysts for the ORR in alkaline media.

  17. Bimolecular recombination reactions: K-adiabatic and K-active forms of the bimolecular master equations and analytic solutions

    Ghaderi, Nima

    2016-03-01

    Expressions for a K-adiabatic master equation for a bimolecular recombination rate constant krec are derived for a bimolecular reaction forming a complex with a single well or complexes with multiple well, where K is the component of the total angular momentum along the axis of least moment of inertia of the recombination product. The K-active master equation is also considered. The exact analytic solutions, i.e., the K-adiabatic and K-active steady-state population distribution function of reactive complexes, g(EJK) and g(EJ), respectively, are derived for the K-adiabatic and K-active master equation cases using properties of inhomogeneous integral equations (Fredholm type). The solutions accommodate arbitrary intermolecular energy transfer models, e.g., the single exponential, double exponential, Gaussian, step-ladder, and near-singularity models. At the high pressure limit, the krec for both the K-adiabatic and K-active master equations reduce, respectively, to the K-adiabatic and K-active bimolecular Rice-Ramsperger-Kassel-Marcus theory (high pressure limit expressions). Ozone and its formation from O + O2 are known to exhibit an adiabatic K. The ratio of the K-adiabatic to the K-active recombination rate constants for ozone formation at the high pressure limit is calculated to be ˜0.9 at 300 K. Results on the temperature and pressure dependence of the recombination rate constants and populations of O3 will be presented elsewhere.

  18. Activation cross sections of α-particle induced nuclear reactions on hafnium and deuteron induced nuclear reaction on tantalum: Production of 178W/178mTa generator

    In the frame of a systematic study of charged particle production routes of medically relevant radionuclei, the excitation function for indirect production of 178mTa through natHf(α,xn)178W–178mTa nuclear reaction was measured for the first time up to 40 MeV. In parallel, the side reactions natHf(α,x)179,177,176,175W, 183,182,178g,177,176,175Ta, 179m,177m,175Hf were also assessed. Stacked foil irradiation technique and γ-ray spectrometry were used. New experimental cross section data for the natTa(d,xn)178W reaction are also reported up to 40 MeV. The measured excitation functions are compared with the results of the ALICE-IPPE, and EMPIRE nuclear reaction model codes and with the TALYS 1.4 based data in the TENDL-2013 library. The thick target yields were deduced and compared with yields of other charged particle ((p,4n), (d,5n) and (3He,x)) production routes for 178W. - Highlights: • α-Particle induced reactions on natural Hf up to 40 MeV by stacked foil technique. • Deuteron induced reactions on natural Ta up to 50 MeV by stacked foil technique. • Comparison of experimental results with the ALICE, EMPIRE and TALYS codes. • Calculation and comparison of thick target integral yields. • Comparison of the production routes of 178W

  19. The effect of activating solution on the mechanical strength, reaction rate, mineralogy, and microstructure of alkali-activated fly ash

    Ma, Y.; Hu J.; Ye, G.

    2012-01-01

    Alkali-activated fly ash (AAF) is a promising material that exhibits comparable material properties as cement-based materials but with much less CO2 emission. In the present work, the effect of activating solution (SiO2 and Na2O content) on the performance of AAF was studied by means of isothermal calorimetry and X-ray diffraction analysis. Meanwhile, the pore structure of AAF was examined by mercury intrusion porosimetry combined with environmental scanning electron microscope. The results i...

  20. The size of active bubbles for the production of hydrogen in sonochemical reaction field.

    Merouani, Slimane; Hamdaoui, Oualid

    2016-09-01

    The sonication of aqueous solution generates microscopic cavitation bubbles that may growth and violently collapse to produce highly reactive species (i.e. OH, HO2 and H2O2), hydrogen and emit light, sonoluminescence. The bubble size is a key parameter that influences the chemical activity of the system. This wok aims to study theoretically the size of active bubbles for the production of hydrogen in ultrasonic cavitation field in water using a single bubble sonochemistry model. The effect of several parameters such as frequency of ultrasound, acoustic intensity and liquid temperature on the range of sonochemically active bubbles for the production of hydrogen was clarified. The numerical simulation results showed that the size of active bubbles is an interval which includes an optimum value at which the production rate of H2 is maximal. It was shown that the range of ambient radius for an active bubble as well as the optimum bubble radius for the production of hydrogen increased with increasing acoustic intensity and decreased with increasing ultrasound frequency and bulk liquid temperature. It was found that the range of ambient bubble radius dependence of the operational conditions followed the same trend as those reported experimentally for sonoluminescing bubbles. Comparison with literature data showed a good agreement between the theoretical determined optimum bubble sizes for the production of hydrogen and the experimental reported sizes for sonoluminescing bubbles. PMID:27150777

  1. Activity and Stability of RuOx Based Electrocatalysts for the Oxygen Evolution Reaction

    Paoli, Elisa Antares

    delocalized hydrogen refueling stations. The sluggish kinetics of OER and the high costs of the materials represent some of the biggest technological challenges for PEM electrolysers. The current technology relies on Pt group based materials and in particular ruthenium and iridium are the most active...... and stable OER catalysts. To contain costs and precious metals supply, the mass activity should be maximized. However, in order to define the properties of a catalyst, knowing the distinction between geometric and electronic effects is fundamental. It is not trivial to determine the intrinsic catalytic...... activity on oxides and studies on well-defined surfaces are required. Notably, industrial applications demand maximized surface-to-bulk ratio, hence fabrication of catalysts in nanoparticulate form. In this perspective, this project aimed at investigating well-defined mass-selected ruthenium and ruthenium...

  2. Effect of Static Magnetic Field on α-Amylase Activity and Enzymatic Reaction

    JIA Shaoyi; LIU Yong; WU Songhai; WANG Zhibin

    2009-01-01

    The effect of magnetic field on α-amylase was studied. Under the experimental conditions, α-amylase solution was treated by 0.15 T, 0.30 T and 0.45 T static magnetic fields for a known period of time, then the activ-ity, kinetic parameters, and the secondary conformation were investigated. The results showed that there was a con-siderable effect of the magnetic exposure on the α-amylase. The activity was increased by 27%, 34.1%, 37.8% compared with the control. It was also found that both kinetic parameters Km and Vm could be decreased due to the increasing magnetic field, Km decreased from 2.20×102 to 0.87×102, whereas Vm decreased from 2.0×103 g/min to 1.1×103g/min. At the same time, there were some irregular changes in α-amylase secondary conformation.

  3. Multiply twinned AgNi alloy nanoparticles as highly active catalyst for multiple reduction and degradation reactions.

    Kumar, Mukesh; Deka, Sasanka

    2014-09-24

    Size dependent surface characteristics of nanoparticles lead to use of these nanomaterials in many technologically important fields, including the field of catalysis. Here Ag(1-x)Ni(x) bimetallic alloy nanoparticles have been developed having a 5-fold twinned morphology, which could be considered as an important alloy because of their excellent and unique catalytic and magnetic properties. Alloying between Ag and Ni atoms on a nanoscale has been confirmed with detailed X-ray diffraction, high resolution transmission electron microscopy, energy-dispersive X-ray analysis, X-ray photoelectron spectroscopy, and magnetization measurements. Although introduced for the first time as a catalyst due to having high active surface sites, the as-synthesized nanoparticles showed one of the best multiple catalytic activity in the industrially important (electro)-catalytic reduction of 4-nitrophenol (4-NP) and 4-nitroaniline (4-NA) to corresponding amines with noticeable reduced reaction time and increased rate constant without the use of any large area support. Additionally the same catalyst showed enhanced catalytic activity in degradation of environment polluting dye molecules. The highest ever activity parameter we report here for Ag0.6Ni0.4 composition is 156 s(-1)g(-1) with an apparent rate constant of 31.1 × 10(-3) s(-1) in a 4-NP reduction reaction where the amount of catalyst used was 0.2 mg and the time taken for complete conversion of 4-NP to 4-aminophenol was 60 s. Similarly, an incredible reaction rate constant (115 s(-1)) and activity parameter (576.6 s(-1)g(-1)) were observed for the catalytic degradation of methyl orange dye where 15 s is the maximum time for complete degradation of the dye molecules. The high catalytic performance of present AgNi alloy NPs over the other catalysts has been attributed to size, structural (twinned defect) and electronic effects. This study may lead to use of these bimetallic nanostructures with excellent recyclable catalytic

  4. Interleukin-13 Activates Distinct Cellular Pathways Leading to Ductular Reaction, Steatosis, and Fibrosis.

    Gieseck, Richard L; Ramalingam, Thirumalai R; Hart, Kevin M; Vannella, Kevin M; Cantu, David A; Lu, Wei-Yu; Ferreira-González, Sofía; Forbes, Stuart J; Vallier, Ludovic; Wynn, Thomas A

    2016-07-19

    Fibroproliferative diseases are driven by dysregulated tissue repair responses and are a major cause of morbidity and mortality because they affect nearly every organ system. Type 2 cytokine responses are critically involved in tissue repair; however, the mechanisms that regulate beneficial regeneration versus pathological fibrosis are not well understood. Here, we have shown that the type 2 effector cytokine interleukin-13 simultaneously, yet independently, directed hepatic fibrosis and the compensatory proliferation of hepatocytes and biliary cells in progressive models of liver disease induced by interleukin-13 overexpression or after infection with Schistosoma mansoni. Using transgenic mice with interleukin-13 signaling genetically disrupted in hepatocytes, cholangiocytes, or resident tissue fibroblasts, we have revealed direct and distinct roles for interleukin-13 in fibrosis, steatosis, cholestasis, and ductular reaction. Together, these studies show that these mechanisms are simultaneously controlled but distinctly regulated by interleukin-13 signaling. Thus, it may be possible to promote interleukin-13-dependent hepatobiliary expansion without generating pathological fibrosis. VIDEO ABSTRACT. PMID:27421703

  5. Interesterification reaction activity, fatty acid composition and selectivity ratio of soybean oil

    El-Shattory, Y.

    1998-12-01

    Full Text Available The interesterification reaction was carried out by adding oleic acid to soybean oil by ratio 1:2 w/w under different conditions of temperature, stirring and catalyst percentages. Assessment of the interesterification of oils was reported by determination of saponification value, iodine value and fatty acids composition. This study showed that linolenic acid which is responsible for flavour instability of soybean oil and consider as primary factor contributing to deterioration of this oil could be reduced to less than or equals 3%.

    Se han llevado a cabo reacciones de interesterificación mediante la adición de ácido oleico a aceite de soja en la relación 1:2 w/w bajo diferentes condiciones de temperatura, agitación y porcentaje de catalizador. La evaluación de la interesterificación de los aceites se realizó por determinación del índice de saponificación, el índice de iodo y la composición en ácidos grasos. Este estudio mostró que el ácido linolénico, que es responsable de la inestabilidad del flavor del aceite de soja y considerado como factor primario que contribuye a la deterioración de este aceite, podría ser reducido a cantidades menores o iguales al 3%.

  6. Surface-enhanced Raman scattering active gold nanostructure fabricated by photochemical reaction of synchrotron radiation

    The deposition of gold nanoparticles in an electroplating solution containing gold (I) trisodium disulphite under synchrotron X-ray radiation was investigated. The nanoparticles grew and aggregated into clusters with increasing radiation time. This behavior is explained by evaluating the effect of Derjaguin-Landau-Verweyand-Overbeek (DLVO) interactions combining repulsive electrostatic and attractive van der Waals forces on the particle deposition process. The surface-enhanced Raman scattering (SERS) of 4,4′ -bipyridine (4bpy) in aqueous solution was measured using gold nanoparticles immobilized on silicon substrates under systematically-varied X-ray exposure. The substrates provided an in situ SERS spectrum for 1 nM 4bpy. This demonstration creates new opportunities for chemical and environmental analyses through simple SERS measurements. - Highlights: • Gold nanoparticles were produced by photochemical reaction of synchrotron radiation. • The gold nanoparticles grew and aggregated into the higher-order nanostructure. • The behavior is qualitatively explained by analytical estimation. • The surface-enhanced Raman spectroscopy of 4,4′-bipyridine (4bpy) was demonstrated. • The substrate fabricated in a suitable condition provides in situ SERS for 1 nM 4bpy

  7. Surface-enhanced Raman scattering active gold nanostructure fabricated by photochemical reaction of synchrotron radiation

    Yamaguchi, Akinobu, E-mail: yamaguti@lasti.u-hyogo.ac.jp [Laboratory of Advance Science and Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori, Ako, Hyogo 678-1205 (Japan); Matsumoto, Takeshi [Laboratory of Advance Science and Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori, Ako, Hyogo 678-1205 (Japan); Okada, Ikuo; Sakurai, Ikuya [Synchrotoron Radiation Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Utsumi, Yuichi [Laboratory of Advance Science and Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori, Ako, Hyogo 678-1205 (Japan)

    2015-06-15

    The deposition of gold nanoparticles in an electroplating solution containing gold (I) trisodium disulphite under synchrotron X-ray radiation was investigated. The nanoparticles grew and aggregated into clusters with increasing radiation time. This behavior is explained by evaluating the effect of Derjaguin-Landau-Verweyand-Overbeek (DLVO) interactions combining repulsive electrostatic and attractive van der Waals forces on the particle deposition process. The surface-enhanced Raman scattering (SERS) of 4,4′ -bipyridine (4bpy) in aqueous solution was measured using gold nanoparticles immobilized on silicon substrates under systematically-varied X-ray exposure. The substrates provided an in situ SERS spectrum for 1 nM 4bpy. This demonstration creates new opportunities for chemical and environmental analyses through simple SERS measurements. - Highlights: • Gold nanoparticles were produced by photochemical reaction of synchrotron radiation. • The gold nanoparticles grew and aggregated into the higher-order nanostructure. • The behavior is qualitatively explained by analytical estimation. • The surface-enhanced Raman spectroscopy of 4,4′-bipyridine (4bpy) was demonstrated. • The substrate fabricated in a suitable condition provides in situ SERS for 1 nM 4bpy.

  8. Surface spectators and their role in relationships between activity and selectivity of the oxygen reduction reaction in acid environments.

    Ciapina, Eduardo G.; Lopes, Pietro P.; Subbaraman, Ram; Ticianelli, Edson A.; Stamenkovic, Vojislav; Strmcnik, Dusan; Markovic, Nenad M.

    2015-11-01

    We use the rotating ring disk (RRDE) method to study activity-selectivity relationships for the oxygen reduction reaction (ORR) on Pt(111) modified by various surface coverages of adsorbed CNad (ΘCNad). The results demonstrate that small variations in ΘCNad have dramatic effect on the ORR activity and peroxide production, resulting in “volcano-like” dependence with an optimal surface coverage of ΘCNad = 0.3 ML. These relationships can be simply explained by balancing electronic and ensemble effects of co-adsorbed CNad and adsorbed spectator species from the supporting electrolytes, without the need for intermediate adsorption energy arguments. Although this study has focused on the Pt(111)-CNad/H2SO4 interface, the results and insight gained here are invaluable for controlling another dimension in the properties of electrochemical interfaces.

  9. Titanium oxynitride interlayer to influence oxygen reduction reaction activity and corrosion stability of Pt and Pt-Ni alloy.

    Tan, XueHai; Wang, Liya; Zahiri, Beniamin; Kohandehghan, Alireza; Karpuzov, Dimitre; Lotfabad, Elmira Memarzadeh; Li, Zhi; Eikerling, Michael H; Mitlin, David

    2015-01-01

    A key advancement target for oxygen reduction reaction catalysts is to simultaneously improve both the electrochemical activity and durability. To this end, the efficacy of a new highly conductive support that comprises of a 0.5 nm titanium oxynitride film coated by atomic layer deposition onto an array of carbon nanotubes has been investigated. Support effects for pure platinum and for a platinum (50 at %)/nickel alloy have been considered. Oxynitride induces a downshift in the d-band center for pure platinum and fundamentally changes the platinum particle size and spatial distribution. This results in major enhancements in activity and corrosion stability relative to an identically synthesized catalyst without the interlayer. Conversely, oxynitride has a minimal effect on the electronic structure and microstructure, and therefore, on the catalytic performance of platinum-nickel. Calculations based on density functional theory add insight with regard to compositional segregation that occurs at the alloy catalyst-support interface. PMID:25470445

  10. Effects of some inhibitors of protein synthesis on the chloroplast fine structure, CO2 fixation and the Hill reaction activity

    S. Więckowski

    2015-05-01

    Full Text Available A comparative study concerning the effects of chloramphenicol (100 μg ml-1, actidione (10 μg ml-1, 5-bromouracil (190 μg ml-1, actinomycin D (30 μg ml-1 and DL-ethionine (800 μg ml-1 on the chloroplast fine structure, 14CO2 incorporation and the Hill reaction activity was the subject of the experiments presented in this paper. The experiments were conducted on bean seedlings under the conditions when chlorophyll accumulation was inhibited only partially. The results obtained indicate that chloromphenicol is responsible for the reduction of the number of grana per section of plastid and for the formation of numerous vesicles in the stroma. In the presence of actidione, actinomycin D or DL-ethionine the lamellae are poorly differentiated into .stroma and granum regions and there occur disturbances in the typical orientation of lamellae within chloroplasts. Only in the presence of 5-bromouracil the development of chloroplast structure resemble that in control plants. A comparison of the results obtained with those published earlier (Więckowski et al., 1974; Ficek and Więckowski, 1974 shows that such processes as assimilatory pigment accumulation, the rate of CO2 fixation, the Hill reaction activity, and the development of lamellar system are suppressed in a different extent by the inhibitors used.

  11. AB INITIO STUDY OF CHEMICAL ACTIVATION AND HYDROGENATION OF WHITE PHOSPHORUS IN REACTION WITH RHODIUM TRIHYDRIDE COMPLEX

    Iolanta I. Balan

    2011-12-01

    Full Text Available The four-stage mechanism of reaction of the rhodium trihydride complex [(triphosRhH3] (triphos=1,1,1-tris(diphenylphosphanylmethylethane with the white phosphorus molecule resulting in the phosphane and the cyclo-P3 complex [(triphosM(η3-P3] is analyzed on the basis of ab initio calculations of reactants, products, and intermediate complexes of reaction. It is shown that generation of the transient complex [(triphosRhH(η1:η1-P4] followed by intramolecular hydrogen atom migration from the metal to one of the phosphorus atoms is the energetically favourable process. Calculations also show that P4 molecule is activated by coordination to the above complex: the metal-bonded P-P edge is broken, and the tetrahedron P4 is opened to form the butterfly geometry. This activation is realized mainly due to the one-orbital back donation of 4d-electron density from the atom of Rh to the unoccupied antibonding triple degenerate t1*-MO of P4.

  12. Dexmedetomidine attenuates inflammatory reaction in the lung tissues of septic mice by activating cholinergic anti-inflammatory pathway.

    Liu, Zhaoguo; Wang, Yueping; Wang, Yaoqi; Ning, Qiaoqing; Zhang, Yong; Gong, Chunzhi; Zhao, Wenxiang; Jing, Guangjian; Wang, Qianqian

    2016-06-01

    Dexmedetomidine (Dex) is a highly selective α2-adrenergic receptor agonist that is widely used for sedation in intensive care units and in clinical anesthesia. Dex has also been shown to possess anti-inflammatory benefits. However, the underlying mechanism by which Dex relieves the inflammatory reaction in the lung tissues of septic mice has not been fully elucidated. In this study, we aimed to evaluate the protective effects and possible mechanism of Dex on the sepsis-induced lung inflammatory response in mice. Sepsis was induced in mice models through the intraperitoneal injection of lipopolysaccharide (LPS). The preemptive administration of Dex substantially abated sepsis-induced pulmonary edema, pulmonary histopathological changes, and NF-κB p65 activity. The production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) at both the mRNA and protein levels was also reduced. Moreover, these effects were significantly blocked by the α7 nicotinic acetylcholine receptor (α7nAChR) antagonist α-bungarotoxin (α-Bgt). α-Bgt aggravated pulmonary edema and pulmonary histopathological changes, as well as increased NF-κB p65 activity and TNF-α and IL-6 expression at both the mRNA and protein levels. The overall results demonstrate that Dex inhibits the LPS-induced inflammatory reaction in the lung tissues of septic mice partly through the α7nAChR-dependent cholinergic anti-inflammatory pathway. PMID:27074053

  13. Measurement of Brain Activation During an Upright Stepping Reaction Task Using Functional Near-Infrared Spectroscopy

    Huppert, Theodore; Schmidt, Benjamin; Beluk, Nancy; Furman, Joseph; Sparto, Patrick

    2016-01-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive brain imaging technology that uses light to measure changes in cortical hemoglobin concentrations. FNIRS measurements are recorded through fiber optic cables, which allow the participant to wear the fNIRS sensors while standing upright. Thus, fNIRS technology is well suited to study cortical brain activity during upright balance, stepping, and gait tasks. In this study, fNIRS was used to measure changes in brain activation from the frontal, motor, and premotor brain regions during an upright step task that required subjects to step laterally in response to visual cues that required executive function control. We hypothesized that cognitive processing during complex stepping cues would elicit brain activation of the frontal cortex in areas involved in cognition. Our results show increased prefrontal activation associated with the processing of the stepping cues. Moreover, these results demonstrate the potential to use fNIRS to investigate cognitive processing during cognitively demanding balance and gait studies. Hum Brain Mapp 34:2817–2828, 2013. VC 2012 Wiley Periodicals, Inc. PMID:23161494

  14. Reactions to Humorous Sexual Stimuli as a Function of Sexual Activeness and Satisfaction.

    Prerost, Frank J.

    1984-01-01

    Assessed male (N=60) and female (N=60) responses to pictorial humorous sexual material in relationship to degree of sexual expression and personal satisfaction with sexual behavior. Results showed persons with active and satisfying sexual expression enjoyed sexually explicit cartoons and showed less preference for aggressive themes. (LLL)

  15. Morphology-dependent photocatalytic activity of octahedral anatase particles prepared by ultrasonication-hydrothermal reaction of titanates

    Wei, Zhishun; Kowalska, Ewa; Verrett, Jonathan; Colbeau-Justin, Christophe; Remita, Hynd; Ohtani, Bunsho

    2015-07-01

    Octahedral anatase particles (OAPs) were prepared by an ultrasonication (US)-hydrothermal (HT) reaction of partially proton-exchanged potassium titanate nanowires (TNWs). The structural/physical properties of OAP-containing samples, including specific surface area, crystallinity, crystallite size, particle aspect ratio, composition and total OAP content, were analyzed. Photocatalytic activities of samples were measured under irradiation (>290 nm) for oxidative decomposition of acetic acid (CO2 system) and dehydrogenation of methanol (H2 system) under aerobic and deaerated conditions, respectively. Total density of electron traps (ETs) was measured by double-beam photoacoustic spectroscopy (DB-PAS). Mobility and lifetime of charge carriers (electrons) were investigated by the time-resolved microwave conductivity (TRMC) method. The effects of synthesis parameters, i.e., HT duration, HT temperature and US duration, on properties and photocatalytic activities of final products were examined in detail. The sample prepared with 1 h US duration and 6 h HT duration at 433 K using 267 mg of TNWs in 80 mL of Milli-Q water exhibited the highest photocatalytic activity. It was found that change in HT duration or HT temperature while keeping the other conditions the same resulted in changes in all properties and photocatalytic activity. On the other hand, duration of US treatment, before HT reaction, influenced the morphology of both the reagent (by TNWs breaking) and final products (change in total OAP content); samples prepared with various US durations exhibited almost the same structural/physical properties evaluated in this study but were different in morphology and photocatalytic activity. This enabled clarification of the correlation between morphology and photocatalytic activity, i.e., the higher the total OAP content was, the higher was the level of photocatalytic activity, especially in the CO2 system. Although the decay after maximum TRMC signal intensity (Imax) was

  16. Highly Durable and Active PtFe Nanocatalyst for Electrochemical Oxygen Reduction Reaction.

    Chung, Dong Young; Jun, Samuel Woojoo; Yoon, Gabin; Kwon, Soon Gu; Shin, Dong Yun; Seo, Pilseon; Yoo, Ji Mun; Shin, Heejong; Chung, Young-Hoon; Kim, Hyunjoong; Mun, Bongjin Simon; Lee, Kug-Seung; Lee, Nam-Suk; Yoo, Sung Jong; Lim, Dong-Hee; Kang, Kisuk; Sung, Yung-Eun; Hyeon, Taeghwan

    2015-12-16

    Demand on the practical synthetic approach to the high performance electrocatalyst is rapidly increasing for fuel cell commercialization. Here we present a synthesis of highly durable and active intermetallic ordered face-centered tetragonal (fct)-PtFe nanoparticles (NPs) coated with a "dual purpose" N-doped carbon shell. Ordered fct-PtFe NPs with the size of only a few nanometers are obtained by thermal annealing of polydopamine-coated PtFe NPs, and the N-doped carbon shell that is in situ formed from dopamine coating could effectively prevent the coalescence of NPs. This carbon shell also protects the NPs from detachment and agglomeration as well as dissolution throughout the harsh fuel cell operating conditions. By controlling the thickness of the shell below 1 nm, we achieved excellent protection of the NPs as well as high catalytic activity, as the thin carbon shell is highly permeable for the reactant molecules. Our ordered fct-PtFe/C nanocatalyst coated with an N-doped carbon shell shows 11.4 times-higher mass activity and 10.5 times-higher specific activity than commercial Pt/C catalyst. Moreover, we accomplished the long-term stability in membrane electrode assembly (MEA) for 100 h without significant activity loss. From in situ XANES, EDS, and first-principles calculations, we confirmed that an ordered fct-PtFe structure is critical for the long-term stability of our nanocatalyst. This strategy utilizing an N-doped carbon shell for obtaining a small ordered-fct PtFe nanocatalyst as well as protecting the catalyst during fuel cell cycling is expected to open a new simple and effective route for the commercialization of fuel cells. PMID:26670103

  17. Chemical and Free Radical-scavenging Activity Changes of Ginsenoside Re by Maillard Reaction and Its Possible Use as a Renoprotective Agent

    Yamabe, Noriko; Song, Kyung Il; Lee, Woojung; Han, Im-Ho; Lee, Ji Hwan; Ham, Jungyeob; Kim, Su-Nam; Park, Jeong Hill; Kang, Ki Sung

    2012-01-01

    Reactive oxygen species play critical role in kidney damage. Free radical-scavenging activities of Panax ginseng are known to be increased by heat-processing. The structural change of ginsenoside and the generation of Maillard reaction products (MRPs) are closely related to the increased free radical-scavenging activities. In the present study, we have demonstrated the Maillard reaction model experiment using ginsenoside Re and glycine mixture to identify the renoprotective effect of MRPs fro...

  18. Amorphous Molybdenum Sulfide on Graphene-Carbon Nanotube Hybrids as Highly Active Hydrogen Evolution Reaction Catalysts.

    Pham, Kien-Cuong; Chang, Yung-Huang; McPhail, David S; Mattevi, Cecilia; Wee, Andrew T S; Chua, Daniel H C

    2016-03-01

    In this study, we report on the deposition of amorphous molybdenum sulfide (MoSx, with x ≈ 3) on a high specific surface area conductive support of Graphene-Carbon Nanotube hybrids (GCNT) as the Hydrogen Evolution Reaction (HER) catalysts. We found that the high surface area GCNT electrode could support the deposition of MoSx at much higher loadings compared with simple porous carbon paper or flat graphite paper. The morphological study showed that MoSx was successfully deposited on and was in good contact with the GCNT support. Other physical characterization techniques suggested the amorphous nature of the deposited MoSx. With a typical catalyst loading of 3 mg cm(-2), an overpotential of 141 mV was required to obtain a current density of 10 mA cm(-2). A Tafel slope of 41 mV decade(-1) was demonstrated. Both measures placed the MoSx-deposited GCNT electrode among the best performing molybdenum sulfide-based HER catalysts reported to date. The electrode showed a good stability with only a 25 mV increase in overpotential required for a current density of 10 mA cm(-2), after undergoing 500 potential sweeps with vigorous bubbling present. The current density obtained at -0.5 V vs SHE (Standard Hydrogen Electrode potential) decreased less than 10% after the stability test. The deposition of MoSx on high specific surface area conductive electrodes demonstrated to be an efficient method to maximize the catalytic performance toward HER. PMID:26864503

  19. Electrochemical deposition of cadmium sulfide thin films from organic solution I. Sulfur reduction and cadmium-polysulfide complex formation

    Mondon, F.

    1985-02-01

    The reduction of sulfur in an aprotic solvent (DMSO) is known to be a two-stage process; each stage involves a bielectronic electrochemical step followed by a chemical dismutation reaction. When reduction is performed at a rotating electrode, it is shown that the electrochemical steps alone are involved in the electrode process. The voltammetric waves then correspond to the simple scheme 1st wave: S/sub 8/ + 2e/sup -/ ..-->.. S/sub 8//sup 2 -/ 2nd wave: S/sub 8//sup 2 -/ + 2e/sup -/ ..-->.. 2S/sub 4//sup 2 -/ The slower dismutation reactions appear only in the bulk of solution. They lead to electron number which differ from 2 when S/sub 8/ is electrolyzed. The addition of Cd/sup 2 -/ ions to a polysulfide ion solution yields soluble polysulfide-cadmium 2:1 complexes (Cd(S /SUB x/ )/sub 2/)/sup 2 -/ with /chi/ = 8, 6, and 4. The stability of the complex is increased when /chi/ decreases from 8 to 4, which leads to dismutation and exchange reactions between complexes, polysulfide ions, and sulfur.

  20. An Activation Inventory Estimation Including Spallation Reactions by Modification of FISPACT 2010 Code

    FISPACT 2010 was released by Culham Centre for Fusion Energy (CCFE). The EAF-2010 library, which has energy range 10-5 eV . 60 MeV, can be used in FISPACT 2010 code. In this study, the FISPACT 2010 code was modified to consider spallation products for the high energy particle activations. In the modified FISPACT 2010, the 'elast', 'resid', and 'gas' files are automatically collapsed and used as the FISPACT activation data file. The results compared with experiment results give good agreements within 200 %. Also, for the validation, the inter-comparison of the other codes was performed. The analysis shows that the modified FISPACT 2010 code can solve the decay channel problem generated in SP-FISPACT 2003 code analysis

  1. Electrochemical activity and durability of platinum nanoparticles supported on ordered mesoporous carbons for oxygen reduction reaction

    Liu, Shou-Heng [Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 10617 (China); Chiang, Chien-Chang; Wu, Min-Tsung; Liu, Shang-Bin [Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 10617 (China); Department of Chemistry, National Taiwan Normal University, Taipei 11677 (China)

    2010-08-15

    A facile procedure for synthesizing platinum nanoparticles (NPs) studded in ordered mesoporous carbons (Pt-OMCs) based on the organic-organic self-assembly (one-pot) approach is reported. These Pt-OMCs, which can be easily fabricated with controllable Pt loading, were found to possess high surface areas, highly accessible and stable active sites and superior electrocatalytic properties pertinent as cathode catalysts for hydrogen-oxygen fuel cells. The enhanced catalytic activity and durability observed for the Pt-OMC electrocatalysts are attributed to the strengthened interactions between the Pt catalyst and the mesoporous carbon that effectively precludes migration and/or agglomeration of Pt NPs on the carbon support. (author)

  2. Highly Active Iridium/Iridium Tin/Tin Oxide Heterogeneous Nanoparticles as Alternative Electrocatalysts for the Ethanol Oxidation Reaction

    Du W.; Su D.; Wang Q.; Saxner D.; Deskins N.A.; Krzanowski J.E.; Frenkel A.I.; Teng X.

    2011-08-03

    Ethanol is a promising fuel for low-temperature direct fuel cell reactions due to its low toxicity, ease of storage and transportation, high-energy density, and availability from biomass. However, the implementation of ethanol fuel cell technology has been hindered by the lack of low-cost, highly active anode catalysts. In this paper, we have studied Iridium (Ir)-based binary catalysts as low-cost alternative electrocatalysts replacing platinum (Pt)-based catalysts for the direct ethanol fuel cell (DEFC) reaction. We report the synthesis of carbon supported Ir{sub 71}Sn{sub 29} catalysts with an average diameter of 2.7 {+-} 0.6 nm through a 'surfactant-free' wet chemistry approach. The complementary characterization techniques, including aberration-corrected scanning transmission electron microscopy equipped with electron energy loss spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy, are used to identify the 'real' heterogeneous structure of Ir{sub 71}Sn{sub 29}/C particles as Ir/Ir-Sn/SnO{sub 2}, which consists of an Ir-rich core and an Ir-Sn alloy shell with SnO{sub 2} present on the surface. The Ir{sub 71}Sn{sub 29}/C heterogeneous catalyst exhibited high electrochemical activity toward the ethanol oxidation reaction compared to the commercial Pt/C (ETEK), PtRu/C (Johnson Matthey) as well as PtSn/C catalysts. Electrochemical measurements and density functional theory calculations demonstrate that the superior electro-activity is directly related to the high degree of Ir-Sn alloy formation as well as the existence of nonalloyed SnO{sub 2} on surface. Our cross-disciplinary work, from novel 'surfactant-free' synthesis of Ir-Sn catalysts, theoretical simulations, and catalytic measurements to the characterizations of 'real' heterogeneous nanostructures, will not only highlight the intriguing structure-property correlations in nanosized catalysts but also have a transformative

  3. Activation of Aryl Halides by Nickel(I) Pincer Complexes: Reaction Pathways of Stoichiometric and Catalytic Dehalogenations.

    Rettenmeier, Christoph A; Wenz, Jan; Wadepohl, Hubert; Gade, Lutz H

    2016-08-15

    Homolytic C-X bond cleavage of organohalides by the T-shaped nickel(I) complexes [LigNi(I)] 1 bearing the iso-PyrrMeBox ligand had been found previously to be the crucial activation step in the asymmetric hydrodehalogenation of geminal dihalides. Here, this mechanistic investigation is extended to aryl halides, which allowed a systematic study of the activation process by a combination of experimental data and density functional theory modeling. While the activation of both aryl chlorides and geminal dichlorides appears to proceed via an analogous transition state, the generation of a highly stabile nickel(II)aryl species in the reaction of the aryl chlorides for the former represents a major difference in the reactive behavior. This difference was found to have a crucial impact on the activity of these nickel pincer systems as catalysts in the dehalogenation of aryl chlorides compared to geminal dichlorides and highlights the importance of the regulatory pathways controlling the nickel(I) concentration throughout the catalysis. These results along with the identification and characterization of novel nickel(II)aryl species are presented. PMID:27483018

  4. Electrocatalytic activity of LaNiO3 toward H2O2 reduction reaction: Minimization of oxygen evolution

    Amirfakhri, Seyed Javad; Meunier, Jean-Luc; Berk, Dimitrios

    2014-12-01

    The catalytic activity of LaNiO3 toward H2O2 reduction reaction (HPRR), with a potential application in the cathode side of fuel cells, is studied in alkaline, neutral and acidic solutions by rotating disk electrode. The LaNiO3 particles synthesised by citrate-based sol-gel method have sizes between 30 and 70 nm with an active specific surface area of 1.26 ± 0.05 m2 g-1. LaNiO3 shows high catalytic activity toward HPRR in 0.1 M KOH solution with an exchange current density based on the active surface area (j0A) of (7.4 ± 1) × 10-6 A cm-2 which is noticeably higher than the j0A of N-doped graphene. The analysis of kinetic parameters suggests that the direct reduction of H2O2, H2O2 decomposition, O2 reduction and O2 desorption occur through HPRR on this catalyst. In order to control and minimize oxygen evolution from the electrode surface, the effects of catalyst loading, bulk concentration of H2O2, and using a mixture of LaNiO3 and N-doped graphene are studied. Although the mechanism of HPRR is independent of the aforementioned operating conditions, gas evolution decreases by increasing the catalyst loading, decreasing the bulk concentration of H2O2, and addition of N-doped graphene to LaNiO3.

  5. Anti-Oxidative, Anti-Tumor-Promoting, and Anti-Carcinogensis Activities of Nitroastaxanthin and Nitrolutein, the Reaction Products of Astaxanthin and Lutein with Peroxynitrite

    Hideo Etoh

    2012-06-01

    Full Text Available Astaxanthin captured peroxynitrite to form nitroastaxanthins. 15-Nitroastaxanthin was a major reaction product of astaxanthin with peroxynitrite. Here, the anti-oxidative, anti-tumor-promoting, and anti-carcinogensis activities of 15-nitroastaxanthin were investigated. In addition to astaxanthin, 15-nitroastaxanthin showed excellent singlet oxygen quenching activity. Furthermore, 15-nitroastaxanthin showed inhibitory effects of in vitro Epstein-Barr virus early antigen activation and two-stage carcinogensis on mouse skin papillomas. These activities were slightly higher than those of astaxanthin. Similar results were obtained for the 15-nitrolutein, a major reaction product of lutein with peroxynitrite.

  6. Activation cross sections of $\\alpha$-particle induced nuclear reactions on hafnium and deuteron induced nuclear reaction on tantalum: production of $^{178}$W/$^{178m}$Ta generator

    Tárk'anyi, F; Ditrói, F; Hermanne, A; Ignatyuk, A V; Uddin, M S

    2014-01-01

    In the frame of a systematic study of charged particle production routes of medically relevant radionuclei, the excitation function for indirect production of $^{178m}$Ta through $^{nat}$Hf($\\alpha$,xn)$^{178}$W-$^{178m}$Ta nuclear reaction was measured for the first time up to 40 MeV. In parallel, the side reactions $^{nat}$Hf($\\alpha$,x)$^{179,177,176,175}$W, $^{183,182,178g,177,176,175}$Ta, $^{179m,177m,175}$Hf were also assessed. Stacked foil irradiation technique and $\\gamma$-ray spectrometry were used. New experimental cross section data for the $^{nat}$Ta(d,xn)$^{178}$W reaction are also reported up to 40 MeV. The measured excitation functions are compared with the results of the ALICE-IPPE, and EMPIRE nuclear reaction model codes and with the TALYS 1.4 based data in the TENDL-2013 library. The thick target yields were deduced and compared with yields of other charged particle ((p,4n), (d,5n) and ($^3$He,x)) production routes for $^{178}$W.

  7. An Upstream By-product from Ester Activation via NHC-Catalysis Catalyzes Downstream Sulfonyl Migration Reaction.

    Han, Runfeng; He, Liwenze; Liu, Lin; Xie, Xingang; She, Xuegong

    2016-01-01

    A sequential reaction combining N-heterocyclic carbene (NHC) and N-hydroxyphthalimide (NHPI) catalysis allowed for the upstream by-product NHPI, which was generated in the NHC-catalyzed cycloaddition reaction, to act as the catalyst for a downstream nitrogen-to-carbon sulfonyl migration reaction. Enantiomeric excess of the major product in the cycloaddition reaction remained intact in the follow-up sulfonyl migration reaction. PMID:26522328

  8. Synthesis of dual-doped non-precious metal electrocatalysts and their electrocatalytic activity for oxygen reduction reaction

    Li Xu; Guoshun Pan; Xiaolu Liang; Guihai Luo; Chunli Zou; Gaopan Chen

    2014-01-01

    The pyrolyzed carbon supported ferrum polypyrrole (Fe-N/C) catalysts are synthesized with or without selected dopants, p-toluenesulfonic acid (TsOH), by a facile thermal annealing approach at desired temperature for optimizing their activity for the oxygen reduction reaction (ORR) in O2-saturated 0.1 mol/L KOH solution. The electrochemical techniques such as cyclic voltammetry (CV) and rotating disk electrode (RDE) are employed with the Koutecky-Levich theory to quantitatively obtain the ORR kinetic constants and the reaction mechanisms. It is found that catalysts doped with TsOH show significantly improved ORR activity relative to the TsOH-free one. The average electron transfer numbers for the catalyzed ORR are determined to be 3.899 and 3.098, respectively, for the catalysts with and without TsOH-doping. The heat-treatment is found to be a necessary step for catalyst activity improvement, and the catalyst pyrolyzed at 600◦C gives the best ORR activity. An onset potential and the potential at the current density of -1.5 mA/cm2 for TsOH-doped catalyst after pyrolysis are 30 mV and 170 mV, which are more positive than those without pyrolized. Furthermore, the catalyst doped with TsOH shows higher tolerance to methanol compared with commercial Pt/C catalyst in 0.1 mol/L KOH. To understand this TsOH doping and pyrolyzed effect, X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) are used to characterize these catalysts in terms of their structure and composition. XPS results indicate that the pyrrolic-N groups are the most active sites, a finding that is supported by the correspondence between changes in pyridinic-N content and ORR activity that occur with changing temperature. Sulfur species are also structurally bound to carbon in the forms of C-Sn-C, an additional beneficial factor for the ORR.

  9. The role of chemokines and chemokine receptors in eosinophil activation during inflammatory allergic reactions

    Oliveira S.H.P.

    2003-01-01

    Full Text Available Chemokines are important chemotactic cytokines that play a fundamental role in the trafficking of leukocytes to sites of inflammation. They are also potent cell-activating factors, inducing cytokine and histamine release and free radical production, a fact that makes them particularly important in the pathogenesis of allergic inflammation. The action of chemokines is regulated at the level of agonist production and processing as well as at the level of receptor expression and coupling. Therefore, an analysis of the ligands must necessarily consider receptors. Eosinophils are target cells involved in the allergic inflammatory response since they are able to release a wide variety of mediators including CC and CXC chemokines and express their receptors. These mediators could damage the airway epithelial cells and might be important to stimulate other cells inducing an amplification of the allergic response. This review focuses on recently emerging data pertaining to the importance of chemokines and chemokine receptors in promoting eosinophil activation and migration during the allergic inflammatory process. The analysis of the function of eosinophils and their chemokine receptors during allergic inflammation might be a good approach to understanding the determinants of asthma severity and to developing novel therapies.

  10. High-performance lithium storage in an ultrafine manganese fluoride nanorod anode with enhanced electrochemical activation based on conversion reaction.

    Rui, Kun; Wen, Zhaoyin; Huang, Xiao; Lu, Yan; Jin, Jun; Shen, Chen

    2016-02-01

    A facile, one-step solvothermal reaction route for the preparation of manganese fluoride nanorods is successfully developed using manganese(ii) chloride tetrahydrate (MnCl2·4H2O) as the manganese source and the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BmimBF4) as the fluorine source. X-ray diffraction, field-emission scanning electron microscopy and high-resolution transmission electron microscopy (HRTEM) are conducted to characterize the structural and microstructural properties of the synthesized MnF2. The pure-phase tetragonal MnF2 displays nanorod-like morphology with a diameter of about 20 nm and a length of several hundreds of nanometers. The electrochemical performance of the MnF2 nanorod anode for rechargeable lithium batteries is investigated. A reversible discharge capacity as high as 443 mA h g(-1) at 0.1 C is obtained for the lithium uptake reaction with an initial discharge plateau around 0.7 V. The striking enhancement in electrochemical Li storage performance in ultrafine MnF2 nanorods can be attributed to the small diameters of the nanorods and efficient one-dimensional electron transport pathways. Long cycle performance for 2000 cycles at 10 C with a stabilized capacity of about 430 mA h g(-1) after activation is also achieved. Furthermore, lithiated and delithiated MnF2 anodes are analyzed with HRTEM to elucidate the conversion mechanism for the electrochemical reaction of MnF2 nanorods with Li at a microscopic level. PMID:26766389

  11. Effect of reaction environments on the reactivity of PCB (2-chlorobiphenyl) over activated carbon impregnated with palladized iron

    Reactive activated carbon (RAC) impregnated with palladized iron nanoparticles has been developed to treat polychlorinated biphenyls (PCBs). In this study, we evaluated the effects of various reaction environments on the adsorption-mediated dechlorination of 2-chlorobiphenyl (2-ClBP) in the RAC system. The results were discussed in close connection to the implementation issue of the RAC system for the remediation of contaminated sites with PCBs. Adsorption event of 2-ClBP onto RAC limited the overall performance under condition with a 2-ClBP/RAC mass ratio of less than 1.0 x 10-4 above which dechlorination of 2-ClBP adsorbed to RAC was the reaction rate-determining step. Acidic and basic conditions were harmful to 2-ClBP adsorption and iron stability while neutral pH showed the highest adsorption-promoted dechlorination of 2-ClBP and negligible metal leaching. Coexisting natural organic matter (NOM) slightly inhibited 2-ClBP adsorption onto RAC due to the partial partitioning of 2-ClBP into NOM in the liquid phase while the 2-ClBP absorbed into NOM, which also tended to adsorb onto RAC, was less available for the dechlorination reaction. Common anions slowed down 2-ClBP adsorption but adsorbed 2-ClBP was almost simultaneously dechlorinated. Some exceptions included strong inhibitory effect of carbonate species on 2-ClBP adsorption and severe detrimental effect of sulfite on 2-ClBP dechlorination. Results on treatment of 2-ClBP spiked to actual sediment supernatants implied site-specific reactivity of RAC.

  12. Sulfato Complex Formation of V(V) and V(IV) in Pyrosulfate Melts Investigated by Potentiometry and Spectroscopic Methods

    Rasmussen, Søren Birk; Eriksen, Kim Michael; Fehrmann, Rasmus

    1999-01-01

    the oxo sulfato vanadate equilibria VO(SO4)2,2- + SO4,2- = VO(SO4)3,4- for V(IV) and (VO)2O(SO4)4,4- + 2SO4,2- = 2VO2(SO4)2,3- + S2O7,2- for V(V), and 2VO2(SO4)2,3- + SO2 + SO4,2- 2VO(SO4)3,4- for the V(V)-V(IV) redox reaction in melts saturated with sulfate. Constants for these equilibria have also...

  13. Impedance approach to activity of hydrogen evolution reaction on spatially heterogeneous GC electrode surfaces: metal free vs. Ru catalysed case

    Activities of hydrogen evolution reaction, HER, on two differently modified metal-free GC electrodes and on the same electrodes supplied with ruthenium catalyst, have been studied in H2SO4 electrolyte solution. GC electrodes were gradually modified by electrochemical oxidation/reduction procedure, changing morphology properties and forming spatially heterogeneous surfaces. Ruthenium was deposited on the top of two differently modified GC electrodes in nearly the same specific mass of ∼25 μg cm−2 of active ruthenium, showing almost uniform dispersion of ruthenium particle clusters on less modified electrode and pronounced agglomeration on more modified electrode surface. Results of cyclic voltammetry and polarization experiments, aiding mostly in adjustments of the specific masses of active ruthenium on two GC electrodes and characteristic potential regions of “double-layer” vs. HER responses, were found strongly correlated with electrochemical impedance data. Evaluations of impedance data were done using standard regression procedure based on strictly postulated statistical criteria, in conditions of complex interfacial impedance/frequency functions accounting for: a) spatial surface heterogeneity, b) diffusion controlled hydrogen absorption and c) hydrogen evolution involving hydrogen adsorption. Activities for HER on bare GC electrodes were found much lower than on the corresponding Ru/GC electrodes, but increased with stage of surface modification. At Ru/GC electrodes, HER is proceeding exclusively on ruthenium particles with activity related to the mass of active ruthenium and total ruthenium utilization of ∼25%. Not any effect of the supporting GC electrode morphology has been observed for HER on Ru/GC electrodes

  14. Antioxidant activity of Maillard reaction products (MRPs) in a lipid-rich model system.

    Vhangani, Lusani Norah; Van Wyk, Jessy

    2016-10-01

    Ribose-lysine (RL), ribose-glycine (RG), fructose-lysine (FL) and fructose-glycine (FG) Maillard models (whole mixture (WM) pH 4 and 9) were heated at 60, 80, 121°C for 30, 60, 120min, and dialysed into low (LMW) and high molecular weight (HMW) fractions. Reducing power (RP), DPPH and peroxyl radical scavenging (PRS) evaluated indirect antioxidant activity (AA). Direct AA in a water-in-oil emulsion was evaluated through peroxide value (PV), p-anisidine, TBARs inhibition and oxidative stability (OS). PRS and RP increased significantly with temperature and time from FLWM>HMW. With DPPH, only MRPs at 121°C exhibited higher AA than BHA. MRPs exhibited low PV, p-anisidine and inhibited the formation of TBARs. BHA showed the highest OS, with p-anisidine, PV and inhibition of TBARS similar to that of MRPs. PMID:27132854

  15. Active and Durable Hydrogen Evolution Reaction Catalyst Derived from Pd-Doped Metal-Organic Frameworks.

    Chen, Jitang; Xia, Guoliang; Jiang, Peng; Yang, Yang; Li, Ren; Shi, Ruohong; Su, Jianwei; Chen, Qianwang

    2016-06-01

    The water electrolysis is of critical importance for sustainable hydrogen production. In this work, a highly efficient and stable PdCo alloy catalyst (PdCo@CN) was synthesized by direct annealing of Pd-doped metal-organic frameworks (MOFs) under N2 atmosphere. In 0.5 M H2SO4 solution, PdCo@CN displays remarkable electrocatalytic performance with overpotential of 80 mV, a Tafel slope of 31 mV dec(-1), and excellent stability of 10 000 cycles. Our studies reveal that noble metal doped MOFs are ideal precursors for preparing highly active alloy electrocatalysts with low content of noble metal. PMID:27112733

  16. Reaction of physiological factors on the solar-geomagnetic activity (the physical mechanisms)

    Avakyan, Sergey; Voronin, Nikolai; Dubarenko, Konstantin

    This presentation proposes and provides substantiation for a hypothesis concerning the mechanism by which solar and geomagnetic activity (mainly of solar flares and magnetic storms) affects the biosphere, including man. The hypothesis, including a physical mechanism introduced by the authors, is that high-lying (Rydberg) states of all gases of the earth’s upper atmosphere are excited by ionospheric energetic electrons. Rydberg atoms, molecules and ions of all atmospheric gases emit characteristic radio emission in the spectral range from decimeters to millimeters. This radiation can easily penetrate to low atmosphere and biosphere carrying complete information about power and duration of solar flare and geomagnetic storms to biosphere. The microwave radioemission have the resonances at the spectral range 109 ÷ 1012 Hz at the cells and membranes, DNA and RNA, molecules of haemoglobin, erythrocytes, and this fact can explain the extremely small threshold for influence of ionospheric radioemission at the monochromatic (characteristic) transitions on biological objects, including the viscosity of blood. The energy estimates of the flux intensity of microwave radiation of the ionosphere from Rydberg states are used to prove for the first time that the values of this flux agree with the experimental data. A method is proposed for distinguishing the contributions of microwave radiation and magnetic perturbation in the geo-biocorrelations, taking into account the effect that the magnetic-field variations are not in phase with the flux of corpuscles from the radiation belts in the ionosphere during the period of a geomagnetic storm. Quanta of microwave radiation are emitted from the heights of 90 - 360 km, i.e. in the basic ionosphere regions. Their energy by almost 10 orders of magnitude exceeds that of the quanta of low-frequency electromagnetic background of the ionosphere (with the frequencies lower than 100 Hz, which coincide with those of biorhythms). Thereby

  17. Neural activity patterns evoked by a spouse's incongruent emotional reactions when recalling marriage-relevant experiences.

    Petrican, Raluca; Rosenbaum, Rachel Shayna; Grady, Cheryl

    2015-10-01

    Resonance with the inner states of another social actor is regarded as a hallmark of emotional closeness. Nevertheless, sensitivity to potential incongruities between one's own and an intimate partner's subjective experience is reportedly also important for close relationship quality. Here, we tested whether perceivers show greater neurobehavioral responsiveness to a spouse's positive (rather than negative) context-incongruent emotions, and whether this effect is influenced by the perceiver's satisfaction with the relationship. Thus, we used fMRI to scan older long-term married female perceivers while they judged either their spouse's or a stranger's affect, based on incongruent nonverbal and verbal cues. The verbal cues were selected to evoke strongly polarized affective responses. Higher perceiver marital satisfaction predicted greater neural processing of the spouse's (rather than the strangers) nonverbal cues. Nevertheless, across all perceivers, greater neural processing of a spouse's (rather than a stranger's) nonverbal behavior was reliably observed only when the behavior was positive and the context was negative. The spouse's positive (rather than negative) nonverbal behavior evoked greater activity in putative mirror neuron areas, such as the bilateral inferior parietal lobule (IPL). This effect was related to a stronger inhibitory influence of cognitive control areas on mirror system activity in response to a spouse's negative nonverbal cues, an effect that strengthened with increasing perceiver marital satisfaction. Our valence-asymmetric findings imply that neurobehavioral responsiveness to a close other's emotions may depend, at least partly, on cognitive control resources, which are used to support the perceiver's interpersonal goals (here, goals that are relevant to relationship stability). PMID:26219536

  18. Application of soft- and hard-modelling approaches to resolution of kinetics of electron donor-acceptor complex formation of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone with imipramine in different solutions

    Hasani, Masoumeh [Faculty of Chemistry, Bu-Ali Sina University, Mahdieh, Hamedan, 65174 (Iran, Islamic Republic of)], E-mail: hasani@basu.ac.ir; Shariati-Rad, Masoud [Faculty of Chemistry, Bu-Ali Sina University, Mahdieh, Hamedan, 65174 (Iran, Islamic Republic of); Abdollahi, Hamid [Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan (Iran, Islamic Republic of)

    2009-03-23

    Kinetics of electron donor-acceptor (EDA) complex formation of imipramine and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) was investigated spectrophotometrically in acetonitrile, 1,2-dichloroethane, and chloroform solutions using soft- and hard-modelling approaches. From the results of exploratory analysis of kinetic data and the spectral changes by soft-modelling approaches, evolving factor analysis (EFA) and orthogonal projection approach (OPA), a consecutive two-steps reaction with two intermediates was proposed for the process in acetonitrile and 1,2-dichloroethane media and one with a single intermediate in chloroform solution. Secondly, by applying, multivariate nonlinear least squares hard-modelling approach on the collected experimental kinetic data matrix, the nonlinear parameters (rate constants) as well as the linear parameters (spectral profiles) were obtained by fitting the collected experimental kinetic data matrix to the proposed model. Small values of standard deviation in the resulting parameters and sum of squares of the residuals (ssq) obtained showed the proper selection of the model. Furthermore, the values of lack of fit and percent of explained variance confirmed the correct identified models. Identification of the model with the aid of soft-modelling approaches followed by application of the hard-modelling approaches decreases significantly the rotational ambiguity associated with the obtained concentration and spectral profiles. Variations in the kinetic constants were in complete agreement with the model proposed and the solvent polarities.

  19. Indirect Voltammetric Sensing Platforms For Fluoride Detection on Boron-Doped Diamond Electrode Mediated via [FeF6]3− and [CeF6]2− Complexes Formation

    Very simple and sensitive electroanalytical technique based on synergistic combination of reaction electrochemistry (specificity) and bare boron-doped diamond electrode (sensitivity) for the detection of fluorides in drinking water was developed as variant based on dynamic electrochemistry to ISE analysis. It is based on the formation of electroinactive fluoride complexes with Fe(III) and Ce(IV) ions decreasing such diffusion current of free metal on boron-doped diamond electrode. Due to low background signal of boron-doped diamond electrode reasonably low detection limits of the order of 10−6 mol L−1 for linear sweep voltammetric method using formation of [FeF6]3− and 10−7 mol L−1 in a square-wave variant of this technique have been achieved. This is approximately 1–2 orders lower than in the case of platinum comb-shaped interdigitated microelectrode array. Linear sweep voltammetric method based on [CeF6]2− complex formation has lower sensitivity and may be suitable for samples with higher content of fluoride and not to analysis of drinking water

  20. Application of soft- and hard-modelling approaches to resolution of kinetics of electron donor-acceptor complex formation of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone with imipramine in different solutions

    Kinetics of electron donor-acceptor (EDA) complex formation of imipramine and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) was investigated spectrophotometrically in acetonitrile, 1,2-dichloroethane, and chloroform solutions using soft- and hard-modelling approaches. From the results of exploratory analysis of kinetic data and the spectral changes by soft-modelling approaches, evolving factor analysis (EFA) and orthogonal projection approach (OPA), a consecutive two-steps reaction with two intermediates was proposed for the process in acetonitrile and 1,2-dichloroethane media and one with a single intermediate in chloroform solution. Secondly, by applying, multivariate nonlinear least squares hard-modelling approach on the collected experimental kinetic data matrix, the nonlinear parameters (rate constants) as well as the linear parameters (spectral profiles) were obtained by fitting the collected experimental kinetic data matrix to the proposed model. Small values of standard deviation in the resulting parameters and sum of squares of the residuals (ssq) obtained showed the proper selection of the model. Furthermore, the values of lack of fit and percent of explained variance confirmed the correct identified models. Identification of the model with the aid of soft-modelling approaches followed by application of the hard-modelling approaches decreases significantly the rotational ambiguity associated with the obtained concentration and spectral profiles. Variations in the kinetic constants were in complete agreement with the model proposed and the solvent polarities

  1. Multi-Day Activity Scheduling Reactions to Planned Activities and Future Events in a Dynamic Model of Activity-Travel Behavior

    Nijland, L.; Arentze, T.; Timmermans, H.

    2014-01-01

    Modeling multi-day planning has received scarce attention in activity-based transport demand modeling so far. However, new dynamic activity-based approaches are being developed at the current moment. The frequency and inflexibility of planned activities and events in activity schedules of individual

  2. Critical solvent thermodynamic effect on molecular recognition: The case of the complex formation of carboxylates and ammonium-squaramido based receptors

    Graphical abstract: - Highlights: • The enthalpy–entropy compensation in the complex is independent of the spacer used. • The enthalpy–entropy compensation is dependent on the microscopic nature of the binary mixture. • The enthalpy–entropy compensation is dependent on the proportion of the components of the binary mixture. - Abstract: An isothermal titration microcalorimetry (ITC) study on the supramolecular complex formation between carboxylates and ammonium-squaramido based receptors at different ethanol:water proportions is reported. The results obtained show that the formation enthalpy sign of a supramolecular complex in a water–ethanol binary mixture can be influenced by the proportion of the cosolvent. Moreover there is an enthalpy–entropy compensation process in the supramolecular complex formation; in poor water mixtures the process is endothermic, whilst in reach water mixtures the process is exothermic. This behavior is mostly due to the intrinsic nature of the mixture between water and ethanol, and particularly the process of solvation and desolvation of receptor, substrate and complex. When this study is repeated with binary mixtures of water–methanol and water–DMSO it is observed that the nature of the organic solvent affects the results. While the mixture water–methanol has a behavior similar to water–ethanol mixture, the water–DMSO mixture shows clear differences. In order to check this compensation process, △Cp values are calculated at two different proportions water–ethanol, and they are consistent with an enthalpy–entropy compensation process similar to that described by the inclusion process for certain hydrophilic cyclodextrines. The results obtained show that the enthalpy–entropy compensation detected in the supramolecular complex formation between carboxylates and ammonium-squaramido receptors is independent of the spacer used, and more dependent on the microscopic nature and proportion of the binary mixture

  3. Palladium(II) complexes with tris(2-carboxyethyl)phosphine, structure, reactions and cytostatic activity.

    Pruchnik, Hanna; Lis, Tadeusz; Latocha, Małgorzata; Zielińska, Aleksandra; Pruchnik, Florian P

    2016-03-01

    Water soluble and air stable P(RCOOH)3 (R=C2H4) (TCEP) is an efficient reducing agent used in biochemistry to break S-S bond in peptides, proteins and other compounds containing S-S bonds. The similarity between the coordination chemistry of Pd(II) and Pt(II) led to the investigations of antitumor activity of palladium(II) compounds however the Pd(II) complexes with TCEP were not investigated. New palladium(II) complexes with (TCEP): trans-[PdCl2(TCEP)2] (1) and trans-[Pd2(μ-Cl)2Cl2(TCEP)2] (2) were fully characterized by (1)H, (13)C, (31)P NMR, IR and ESI-MS spectroscopic techniques. Complexes are stable in non-aqueous DMSO and DMF. In aqueous solutions Cl ligands are substituted by COO groups of phosphines. Complex 2, after crystallization from water gives polymeric compound with bridging phosphine ligand [PdCl{P(RCOO-κO-μ-O')(RCOOH)2-κP}] (3). Structures of trans-[PdCl2{P(RCOOD)3}2] (1a), trans-[Pd2(μ-Cl)2PdCl2{P(RCOOD)3}2] (2a), and [PdCl{P(RCOO-κO-μ-O')(RCOOD)2-κP}]n (3a) have been determined by X-ray crystallography. NMR and ESI-MS spectra reveal that [PdP2(RCOO-κO)2(RCOO)n(RCOOH)4-n](n)(-) complexes are formed in aqueous solution of 1. Geometry optimization in the gas phase at the B3LYP/3-21G** level indicated that complex 2 with butterfly structure is more stable than that with coplanar coordination. In aqueous solution of 2, the main products [Pd2{P(RCOO-κO-μ-O')(RCOO-κO)(RCOOH)}2] and [Pd{P(RCOO-κO)2(RCOOH)}(H2O)] exist in equilibrium which depends on temperature: content of mononuclear compound increases as the temperature is raised. Complexes 1 and 2 are active agents against melanoma and breast cancer cells. PMID:26710241

  4. Thermal annealing and recoil reactions of 128I atoms in thermal neutron activated iodate-nitrate mixed crystals

    Recoil reaction of 128I atoms in neutron irradiated mixed crystals (iodate-nitrate) have been studied by thermal annealing methods. The retention of 128I (i.e. radioactivity of 128I retained in the parent chemi cal form) decreases sharply in the beginning and then attains saturation value with the increase in concentration of nitrate. The annealing followed the usual characteristic pattern, viz., a steep rise in retention within the first few minutes and then a saturation value thereafter but these saturation values in case of mixed crystals are lower in comparison to those of pure iodate targets. The process obeys simple first order kinetics and the activation energy obtained are of lower order than those obtained in case of pure targets. The results are discussed in the light of present ideas and the role of nitrate ion and its radiolytic products have also been invoked. (author)

  5. In situ generated highly active copper oxide catalysts for the oxygen evolution reaction at low overpotential in alkaline solutions.

    Liu, Xiang; Cui, Shengsheng; Qian, Manman; Sun, Zijun; Du, Pingwu

    2016-04-25

    Developing efficient water oxidation catalysts made up of earth-abundant elements has attracted much attention as a step toward for future clean energy production. Herein we report a simple one-step method to generate a low cost copper oxide catalyst film in situ from a copper(ii) ethylenediamine complex. The resulting catalyst has excellent activity toward the oxygen evolution reaction in alkaline solutions. A catalytic current density of 1.0 mA cm(-2) and 10 mA cm(-2) for the catalyst film requires the overpotentials of only ∼370 mV and ∼475 mV in 1.0 M KOH, respectively. This catalytic performance shows that the new catalyst is one of the best Cu-based heterogeneous OER catalysts to date. PMID:27020763

  6. The Investigation of Active Sites on Nickel Oxide Based Catalysts towards the In-situ Reactions of Methanation and Desulfurization

    Wan Azelee Wan Abu Bakar; Mohd. Yusuf Othman; Rusmidah Ali; Ching Kuan Yong; Susilawati Toemen

    2009-01-01

    Supported nickel oxide based catalysts of Fe/ Co/ Ni (10: 30: 60)-Al2O3 and Pr/ Co/ Ni (5: 35: 60)-Al2O3 that were prepared by wetness impregnation method showed potential catalysts for the in-situ reactions of H2S desulfurization and CO2 methanation from ambient temperature up to 300 oC.  X-ray Photoelectron Spectroscopy revealed Ni2O3 and Fe3O4 as the surface active components on the Fe/ Co/ Ni (10: 30: 60)-Al2O3 catalyst, while Ni2O3 and Co3O4 on the Pr/ Co/ Ni (5: 35: 60)-Al2O3 catalyst. ...

  7. Activation cross sections of deuteron induced reactions on niobium in the 30-50 MeV energy range

    Ditrói, F.; Tárkányi, F.; Takács, S.; Hermanne, A.; Ignatyuk, A. V.

    2016-04-01

    Activation cross-sections of deuterons induced reactions on Nb targets were determined with the aim of different applications and comparison with theoretical models. We present the experimental excitation functions of 93Nb(d,x)93m,90Mo, 92m,91m,90Nb, 89,88Zr and 88,87m,87gY in the energy range of 30-50 MeV. The results were compared with earlier measurements and with the cross-sections calculated by means of the theoretical model codes ALICE-D, EMPIRE-D and TALYS (on-line TENDL-2014 and TENDL-2015 libraries). Possible applications of the radioisotopes are discussed in detail.

  8. Investigation of catalytic activity towards oxygen reduction reaction of Pt dispersed on boron doped graphene in acid medium.

    Pullamsetty, Ashok; Sundara, Ramaprabhu

    2016-10-01

    Boron doped graphene was prepared by a facile method and platinum (Pt) decoration over boron doped graphene was done in various chemical reduction methods such as sodium borohydride (NaBH4), polyol and modified polyol. X-ray diffraction analysis indicates that the synthesized catalyst particles are present in a nanocrystalline structure and transmission and scanning electron microscopy were employed to investigate the morphology and particle distribution. The electrochemical properties were investigated with the help of the rotating disk electrode (RDE) technique and cyclic voltammetry. The results show that the oxygen reduction reaction (ORR) takes place by a four-electron process. The kinetics of the ORR was evaluated using K-L and Tafel plots. The electrocatalyst obtained in modified polyol reduction method has shown the better catalytic activity compared to other two electrocatalysts. PMID:27393888

  9. Complex Formation in a Liquid-Liquid Extraction System Containing Cobalt(II), 4-(2-Pyridylazo)resorcinol, and Nitron

    Petya Vassileva Racheva; Kiril Blazhev Gavazov; Vanya Dimitrova Lekova; Atanas Nikolov Dimitrov

    2013-01-01

    Complex formation and liquid-liquid extraction were studied in a system containing cobalt(II), 4-(2-pyridylazo)resorcinol (PAR), 1,4-diphenyl-3-(phenylamino)-1H-1,2,4-triazole (Nitron, Nt), water, and chloroform. The effect of some experimental parameters (pH, shaking time, concentration of PAR, and concentration of Nt) was systematically investigated, and the optimum conditions for cobalt extraction as an ion-association complex, (NtH+)[Co3+(PAR)2], were found. The following key equilibrium ...

  10. A multiple reaction monitoring (MRM method to detect Bcr-Abl kinase activity in CML using a peptide biosensor.

    Tzu-Yi Yang

    Full Text Available The protein kinase Bcr-Abl plays a major role in the pathogenesis of chronic myelogenous leukemia (CML, and is the target of the breakthrough drug imatinib (Gleevec™. While most patients respond well to imatinib, approximately 30% never achieve remission or develop resistance within 1-5 years of starting imatinib treatment. Evidence from clinical studies suggests that achieving at least 50% inhibition of a patient's Bcr-Abl kinase activity (relative to their level at diagnosis is associated with improved patient outcomes, including reduced occurrence of resistance and longer maintenance of remission. Accordingly, sensitive assays for detecting Bcr-Abl kinase activity compatible with small amounts of patient material are desirable as potential companion diagnostics for imatinib. Here we report the detection of Bcr-Abl activity and inhibition by imatinib in the human CML cell line K562 using a cell-penetrating peptide biosensor and multiple reaction monitoring (MRM on a triple quadrupole mass spectrometer. MRM enabled reproducible, selective detection of the peptide biosensor at fmol levels from aliquots of cell lysate equivalent to ~15,000 cells. This degree of sensitivity will facilitate the miniaturization of the entire assay procedure down to cell numbers approaching 15,000, making it practical for translational applications in patient cells in which the limited amount of available patient material often presents a major challenge.

  11. Metallic Co4N Porous Nanowire Arrays Activated by Surface Oxidation as Electrocatalysts for the Oxygen Evolution Reaction.

    Chen, Pengzuo; Xu, Kun; Fang, Zhiwei; Tong, Yun; Wu, Junchi; Lu, Xiuli; Peng, Xu; Ding, Hui; Wu, Changzheng; Xie, Yi

    2015-12-01

    Designing highly efficient electrocatalysts for oxygen evolution reaction (OER) plays a key role in the development of various renewable energy storage and conversion devices. In this work, we developed metallic Co4N porous nanowire arrays directly grown on flexible substrates as highly active OER electrocatalysts for the first time. Benefiting from the collaborative advantages of metallic character, 1D porous nanowire arrays, and unique 3D electrode configuration, surface oxidation activated Co4N porous nanowire arrays/carbon cloth achieved an extremely small overpotential of 257 mV at a current density of 10 mA cm(-2), and a low Tafel slope of 44 mV dec(-1) in an alkaline medium, which is the best OER performance among reported Co-based electrocatalysts to date. Moreover, in-depth mechanistic investigations demonstrate the active phases are the metallic Co4N core inside with a thin cobalt oxides/hydroxides shell during the OER process. Our finding introduces a new concept to explore the design of high-efficiency OER electrocatalysts. PMID:26437900

  12. Impact of reaction vessel pressure on the synthesis of sliced activated carbon from date palm tree fronds

    Shoaib Muhammad

    2015-01-01

    Full Text Available The effects of the reaction vessel pressure on the BET surface area, pore volume and pore size of the synthesis of sliced activated carbons (SAC at 850°C starting from 0.10 to 0.40 bars were investigated. Other synthetic variables like dwell time, CO2 flow rate and heating ramp rate were kept constant during the whole study. Methodology involves a single step procedure using the mixture of gases (N2 and CO2. During activation flow rate of both gases are kept at 150 and 50ml/min respectively. The BET surface areas of the SAC prepared at 0.10, 0.15, 0.20, 0.25, 0.30, 0.35 and 0.40 bar after 30 minutes activation time are 666, 745, 895, 1094, 835, 658 and 625 m2/g, respectively. Scanning electron microscopy (SEM for surface morphology, Energy dispersive spectroscopy (EDS, Transmission electron microscopy (TEM for nano particle size were also carried out that also confirms the same trend.

  13. A novel approach to PTSD modeling in rats reveals alternating patterns of limbic activity in different types of stress reaction.

    Ritov, G; Boltyansky, B; Richter-Levin, G

    2016-05-01

    Human reactions to trauma exposure are extremely diverse, with some individuals exhibiting only time-limited distress and others qualifying for posttraumatic stress disorder diagnosis (PTSD). Furthermore, whereas most PTSD patients mainly display fear-based symptoms, a minority of patients display a co-morbid anhedonic phenotype. We employed an individual profiling approach to model these intriguing facets of the psychiatric condition in underwater-trauma exposed rats. Based on long-term assessments of anxiety-like and anhedonic behaviors, our analysis uncovered three separate phenotypes of stress response; an anxious, fear-based (38%), a co-morbid, fear-anhedonic (15%), and an exposed-unaffected group (47%). Immunohistochemical assessments for cellular activation (c-Fos) and activation of inhibition (c-Fos+GAD67) revealed a differential involvement of limbic regions and distinct co-activity patterns for each of these phenotypes, validating the behavioral categorization. In accordance with recent neurocognitive hypotheses for posttraumatic depression, we show that enhanced pretrauma anxiety predicts the progression of posttraumatic anhedonia only in the fear-anhedonic phenotype. PMID:26552592

  14. Diazomethyl ketone substrate derivatives as active-site-directed inhibitors of thiol proteases. Papain

    Leary, R.; Larsen, D.; Watanabe, H.; Shaw, E.

    1977-12-27

    The diazomethyl ketones of z-Phe and z-Phe-Phe inactivate papain by a stoichiometric reaction at the active-center thiol. Since the reagents are stable in mercaptoethanol, their reaction with papain is judged to be the result of complex formation characteristic of affinity-labeling reagents. The diazomethyl ketones react by a mechanism different from that of chloromethyl ketones, since the pH dependence of their inactivation of papain is different, the rate increasing with decreasing pH. This relationship has been observed in other cases, such as the reaction of azaserine with glutamine amidotransferases (Buchanan, J. M. (1973), Adv. Enzmol. Relat. Areas Mol. Biol. 39, 91), and is interpreted as an indication of reaction with a thiol group in its protonated form.

  15. Enhanced electrocatalytic activity of MoS(x) on TCNQ-treated electrode for hydrogen evolution reaction.

    Chang, Yung-Huang; Nikam, Revannath D; Lin, Cheng-Te; Huang, Jing-Kai; Tseng, Chien-Chih; Hsu, Chang-Lung; Cheng, Chia-Chin; Su, Ching-Yuan; Li, Lain-Jong; Chua, Daniel H C

    2014-10-22

    Molybdenum sulfide has recently attracted much attention because of its low cost and excellent catalytical effects in the application of hydrogen evolution reaction (HER). To improve the HER efficiency, many researchers have extensively explored various avenues such as material modification, forming hybrid structures or modifying geometric morphology. In this work, we reported a significant enhancement in the electrocatalytic activity of the MoSx via growing on Tetracyanoquinodimethane (TCNQ) treated carbon cloth, where the MoSx was synthesized by thermolysis from the ammonium tetrathiomolybdate ((NH4)2MoS4) precursor at 170 °C. The pyridinic N- and graphitic N-like species on the surface of carbon cloth arising from the TCNQ treatment facilitate the formation of Mo(5+) and S2(2-) species in the MoSx, especially with S2(2-) serving as an active site for HER. In addition, the smaller particle size of the MoSx grown on TCNQ-treated carbon cloth reveals a high ratio of edge sites relative to basal plane sites, indicating the richer effective reaction sites and superior electrocatalytic characteristics. Hence, we reported a high hydrogen evolution rate for MoSx on TCNQ-treated carbon cloth of 6408 mL g(-1) cm(-2) h(-1) (286 mmol g(-1) cm(-2) h(-1)) at an overpotential of V = 0.2 V. This study provides the fundamental concepts useful in the design and preparation of transition metal dichalcogenide catalysts, beneficial in the development in clean energy. PMID:25266066

  16. Methane efflux from marine sediments in passive and active margins: Estimations from bioenergetic reaction-transport simulations

    Dale, A. W.; Van Cappellen, P.; Aguilera, D. R.; Regnier, P.

    2008-01-01

    A simplified version of a kinetic-bioenergetic reaction model for anaerobic oxidation of methane (AOM) in marine sediments [Dale, A.W., Regnier, P., Van Cappellen, P., 2006. Bioenergetic controls on anaerobic oxidation of methane (AOM) in coastal marine sediments: a theoretical analysis. Am. J. Sci. 306, 246-294.] is used to assess the impact of transport processes on biomass distributions, AOM rates and methane release fluxes from the sea floor. The model explicitly represents the functional microbial groups and the kinetic and bioenergetic limitations of the microbial metabolic pathways involved in AOM. Model simulations illustrate the dominant control exerted by the transport regime on the activity and abundance of AOM communities. Upward fluid flow at active seep systems restricts AOM to a narrow subsurface reaction zone and sustains high rates of methane oxidation. In contrast, pore-water transport dominated by molecular diffusion leads to deeper and broader zones of AOM, characterized by much lower rates and biomasses. Under steady-state conditions, less than 1% of the upward dissolved methane flux reaches the water column, irrespective of the transport regime. However, a sudden increase in the advective flux of dissolved methane, for example as a result of the destabilization of methane hydrates, causes a transient efflux of methane from the sediment. The benthic efflux of dissolved methane is due to the slow growth kinetics of the AOM community and lasts on the order of 60 years. This time window is likely too short to allow for a significant escape of pore-water methane following a large scale gas hydrate dissolution event such as the one that may have accompanied the Paleocene/Eocene Thermal Maximum (PETM).

  17. Differential cell reaction upon Toll-like receptor 4 and 9 activation in human alveolar and lung interstitial macrophages

    Meyerhans Andreas

    2010-09-01

    Full Text Available Abstract Background Investigations on pulmonary macrophages (MΦ mostly focus on alveolar MΦ (AM as a well-defined cell population. Characteristics of MΦ in the interstitium, referred to as lung interstitial MΦ (IM, are rather ill-defined. In this study we therefore aimed to elucidate differences between AM and IM obtained from human lung tissue. Methods Human AM and IM were isolated from human non-tumor lung tissue from patients undergoing lung resection. Cell morphology was visualized using either light, electron or confocal microscopy. Phagocytic activity was analyzed by flow cytometry as well as confocal microscopy. Surface marker expression was measured by flow cytometry. Toll-like receptor (TLR expression patterns as well as cytokine expression upon TLR4 or TLR9 stimulation were assessed by real time RT-PCR and cytokine protein production was measured using a fluorescent bead-based immunoassay. Results IM were found to be smaller and morphologically more heterogeneous than AM, whereas phagocytic activity was similar in both cell types. HLA-DR expression was markedly higher in IM compared to AM. Although analysis of TLR expression profiles revealed no differences between the two cell populations, AM and IM clearly varied in cell reaction upon activation. Both MΦ populations were markedly activated by LPS as well as DNA isolated from attenuated mycobacterial strains (M. bovis H37Ra and BCG. Whereas AM expressed higher amounts of inflammatory cytokines upon activation, IM were more efficient in producing immunoregulatory cytokines, such as IL10, IL1ra, and IL6. Conclusion AM appear to be more effective as a non-specific first line of defence against inhaled pathogens, whereas IM show a more pronounced regulatory function. These dissimilarities should be taken into consideration in future studies on the role of human lung MΦ in the inflammatory response.

  18. Increased platelet count and leucocyte-platelet complex formation in acute symptomatic compared with asymptomatic severe carotid stenosis.

    McCabe, D J H

    2005-09-01

    The risk of stroke in patients with recently symptomatic carotid stenosis is considerably higher than in patients with asymptomatic stenosis. In the present study it was hypothesised that excessive platelet activation might partly contribute to this difference.

  19. Antidrug antibodies against TNF-blocking agents: correlations between disease activity, hypersensitivity reactions, and different classes of immunoglobulins

    Benucci M

    2015-02-01

    Full Text Available Maurizio Benucci,1 Francesca Li Gobbi,1 Francesca Meacci,2 Mariangela Manfredi,2 Maria Infantino,2 Maurizio Severino,3 Sergio Testi,3 Piercarlo Sarzi-Puttini,4 Cristian Ricci,5 Fabiola Atzeni4 1Rheumatology Unit, 2Immunology and Allergology Laboratory Unit, 3Allergy and Clinical Immunology Unit, Nuovo Ospedale S Giovanni di Dio, Florence, Italy; 4Rheumatology Unit, L Sacco University Hospital, Milan, Italy; 5Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany Abstract: Although anti-TNF drugs have changed the clinical course of rheumatoid arthritis (RA, survival rates and resistance-to-therapy data confirm that about 30% of RA patients fail to respond. The aim of this study was to evaluate the correlations between the development of antidrug antibodies, specific IgG4 antibodies against TNF inhibitors, and resistance to therapy in RA patients. This retrospective study involved 129 patients with established RA naïve to biological agents (98 females and 32 males, mean age 56.7±12.3 years, disease duration 6.3±1.2 years, baseline Disease Activity Score [DAS]-28 3.2–5.6 who received treatment with anti-TNF agents after the failure of conventional disease-modifying antirheumatic drugs (32 received infliximab [IFX], 58 etanercept [ETN], and 39 adalimumab [ADA]. After 6 months of treatment, the patients were classified as being in remission (DAS28 <2.6, having low disease activity (LDA; DAS28 2.6–3.2, or not responding (NR: DAS28 >3.2. The patients were also tested for serum antidrug antibodies and IgG4 antibodies against TNF inhibitors. After 24 weeks of treatment, 38% of the ETN-treated patients and 28% of those treated with ADA had injection-site reactions; the rate of systemic reactions in the IFX group was 25%. The differences among the three groups were not statistically significant (P=0.382; ETN versus ADA P=0.319. The percentages of patients with adverse events stratified by drug response were

  20. Simple microwave preparation of high activity Se-rich CoSe2/C for oxygen reduction reaction

    Carbon supported cobalt selenide (CoSe2/C) nanoparticles were prepared by a simple microwave method using cobalt acetate and selenium dioxide as precursors with different molar ratios of Se/Co. The effects of Se/Co ratios on surface morphology, crystal structure, chemical composition and electrocatalytic activity toward oxygen reduction reaction (ORR) of CoSe2/C catalyst nanoparticles were systematically investigated. It was found that the experimental compositions of CoSe1.8/C∼CoSe2.7/C with average crystallite sizes of 15.4∼12.9 nm were obtained with the Se/Co ratios of 2.0∼4.0. The major phases of CoSe2/C nanoparticles were identified to be orthorhombic CoSe2 with minor cubic CoSe2. The potentials corresponding to ORR (EORR) reached 0.6∼0.7 V, while the electron transfer numbers (n) were 3.1∼4.0 in oxygen saturated sulfuric acid solutions. The formation of Se-rich CoSe2/C nanoparticles was confirmed with Se/Co ≥ 2.5, and the best ORR activities with EORR = 0.705 V and n = 4.0 could be achieved with Se/Co = 3.0. Slightly excess amount of Se oxide presented in CoSe2/C would prevent CoSe2 nanoparticles from growing and smaller sizes with less agglomerated Se-rich CoSe2/C were obtained, resulting in good ORR activity. However, too much Se oxide would cause severe aggregation of CoSe2 nanoparticles, leading to poor ORR activity

  1. Platinum-monolayer Electrocatalysts: Palladium Interlayer on IrCo Alloy Core Improves Activity in Oxygen-reduction Reaction

    Gong, K.; Chen, W.-F.; Sasaki, K.; Su, D.; Vukmirovic, M.B.; Zhou, W.; Izzo, E.L.; Perez-Acosta, C.; Hirunsit, P.; Balbuena, P.B.; Adzic, R.R.

    2010-11-15

    We describe the synthesis and electrocatalytic properties of a new low-Pt electrocatalyst consisting of an IrCo core, a Pd interlayer, and a surface Pt monolayer, emphasizing the interlayer's role in improving electrocatalytic activity for the oxygen-reduction reaction on Pt in HClO{sub 4} solution. We prepared the IrCo alloys by decomposing, at 800 C, hexacyanometalate, KCoIr(CN){sub 6}, adsorbed on the carbon surfaces. The synthesis of Ir{sub 3}Co/C involved heating a mix of metal salts and carbon in hydrogen at 500 C. Thereafter, we placed a palladium and/or platinum monolayer on them via the galvanic displacement of an underpotentially deposited copper monolayer. The electrocatalysts were characterized using structural- and electrochemical-techniques. For PtML/PdML/IrCo/C, we observed a Pt mass activity of 1.18 A/mg{sub (Pt)} and the platinum-group-metals mass of 0.16 A/mg{sub (Pt, Pd, Ir)}. In comparison, without a Pd interlayer, i.e., Pt{sub ML}/IrCo/C, the activities of 0.15 A/mg{sub (Pt)} and 0.036 A/mg{sub (Pt, Pd, Ir)} were considerably lower. We consider that the palladium interlayer plays an essential role in achieving high catalytic activity by adjusting the electronic interaction of the platinum monolayer with the IrCo core, so that it accelerates the kinetics of adsorption and desorption of the intermediates of oxygen reduction. A similar trend was observed for Pt{sub ML}/Pd{sub ML} and Pt{sub ML} deposited on Ir{sub 3}Co/C alloy core. We used density functional theory to interpret the observed phenomena.

  2. Polyethylene glycol(PEG-400): An efficient and recyclable reaction medium for the synthesis of novel 1,5-benzodiazepines and their antimicrobial activity

    Shankaraiah G. Konda; Baseer M. Shaikh; Sanjay A. Chavan; Bhaskar S. Dawane

    2011-01-01

    A new series of imidazole-containing 1,5-benzodiazepines have been synthesized by the condensation of chalcones with ophenylenediamine using piperidine in polyethylene glycol(PEG-400)as an efficient and green reaction solvent.The advantages of this protocol are environmental friendliness,easy work-up,high yields,mild reaction condition and avoidance of expensive catalyst.Furthermore,newly synthesized compounds were evaluated for their antimicrobial activity.

  3. Effective production of S-allyl-L-cysteine through a homogeneous reaction with activated endogenous γ-glutamyltranspeptidase in garlic (Allium Sativum).

    Xu, Xiaobian; Miao, Yelian; Chen, Jie Yu; Zhang, Qimei; Wang, Jining

    2015-03-01

    S-allyl-L-cysteine (SAC) is a bioactive compound in garlic (Allium sativum). A novel process including soaking and homogeneous reaction was applied for the effective production of SAC with endogenous γ-glutamyltranspeptidase (γ-GTP, EC 2.3.2.2) in garlic. The effects of temperature and CaCl2 concentration on γ-GTP activity in soaking, and the relationship of SAC production with γ-GTP activity in homogeneous reaction were investigated, using fresh garlic as raw material. The experimental results showed that the γ-GTP in fresh garlic was activated by soaking. The yield rate and the final content of SAC increased linearly with increasing initial γ-GTP activity in the homogeneous reaction at 37 °C. The final SAC content reached 606.3 μg/g (i.e. 32 times higher than that in fresh garlic) after soaking for 72 h in a 10-mM CaCl2 solution at 10 °C, and the homogeneous reaction for 8 h at 37 °C. SAC was produced effectively through the homogeneous reaction with activated endogenous γ-GTP in garlic. PMID:25745247

  4. Crosstalk between Fibroblast Growth Factor (FGF Receptor and Integrin through Direct Integrin Binding to FGF and Resulting Integrin-FGF-FGFR Ternary Complex Formation

    Seiji Mori

    2013-08-01

    Full Text Available Fibroblast growth factors (FGFs play a critical role in diverse physiological processes and the pathogenesis of diseases. Integrins are involved in FGF signaling, since integrin antagonists suppress FGF signaling. This is called integrin-FGF crosstalk, while the specifics of the crosstalk are unclear. This review highlights recent findings that FGF1 directly interacts with integrin αvβ3, and the resulting integrin-FGF-fibroblast growth factor receptor (FGFR ternary complex formation is essential for FGF1-induced cell proliferation, migration and angiogenesis. An integrin-binding defective FGF1 mutant (Arg-50 to Glu, R50E is defective in ternary complex formation and in inducing cell proliferation, migration and angiogenesis, while R50E still binds to the FGF receptor and heparin. In addition, R50E suppressed tumorigenesis in vivo, while wild-type (WT FGF1 enhanced it. Thus, the direct interaction between FGF1 and integrin αvβ3 is a potential therapeutic target, and R50E is a potential therapeutic agent.

  5. Fac-mer equilibria of coordinated iminodiacetate (ida2-) in ternary CuII(ida)(H-1B)- complex formation (B = imidazole, benzimidazole) in aqueous solution

    Susmita Bandyopadhyay; G N Mukherjee

    2003-08-01

    pH potentiometric and spectrophotometric investigations on the complex formation equilibria of CuII with iminodiacetate (ida2-) and heterocyclic N-bases, viz. imidazole and benzimidazole (B), in aqueous solution in binary and ternary systems using different molar ratios of the reactants indicated the formation of complexes of the types, Cu(ida), Cu(ida)(OH)-, (ida)Cu(OH)Cu(ida)-, Cu(B)2+, Cu(H-1B)+, Cu(ida)(H-1B)-, (ida)Cu(B)Cu(ida) and (ida)Cu(H-1B)Cu(ida)-. Formation constants of the complexes at 25 ± 1° at a fixed ionic strength, = 0.1 mol dm-3 (NaNO3) in aqueous solution were evaluated and the complex formation equilibria were elucidated with the aid of speciation curves. Departure of the experimental values of the reproportionation constants (log Cu) of ternary Cu(ida)(H-1B)- complexes from the statistically expected values, despite their formation in appreciable amounts at equilibrium, were assigned to fac(f)-mer(m) equilibria of the ida2- ligand coordinated to CuII, as the N-heterocyclic donors, (H-1B)-, coordinate trans- to the N-(ida2-) atom in the binary Cu(ida) complex to form the ternary Cu(ida) (H-1B)- complexes.

  6. Activation of noble metals on metal-carbide surfaces: novel catalysts for CO oxidation, desulfurization and hydrogenation reactions.

    Rodriguez, José A; Illas, Francesc

    2012-01-14

    This perspective article focuses on the physical and chemical properties of highly active catalysts for CO oxidation, desulfurization and hydrogenation reactions generated by depositing noble metals on metal-carbide surfaces. To rationalize structure-reactivity relationships for these novel catalysts, well-defined systems are required. High-resolution photoemission, scanning tunneling microscopy (STM) and first-principles periodic density-functional (DF) calculations have been used to study the interaction of metals of Groups 9, 10 and 11 with MC(001) (M = Ti, Zr, V, Mo) surfaces. DF calculations give adsorption energies that range from 2 eV (Cu, Ag, Au) to 6 eV (Co, Rh, Ir). STM images show that Au, Cu, Ni and Pt grow on the carbide substrates forming two-dimensional islands at very low coverage, and three-dimensional islands at medium and large coverages. In many systems, the results of DF calculations point to the preferential formation of admetal-C bonds with significant electronic perturbations in the admetal. TiC(001) and ZrC(001) transfer some electron density to the admetals facilitating bonding of the adatom with electron-acceptor molecules (CO, O(2), C(2)H(4), SO(2), thiophene, etc.). For example, the Cu/TiC(001) and Au/TiC(001) systems are able to cleave both S-O bonds of SO(2) at a temperature as low as 150 K, displaying a reactivity much larger than that of TiC(001) or extended surfaces of bulk copper and gold. At temperatures below 200 K, Au/TiC is able to dissociate O(2) and perform the 2CO + O(2)→ 2CO(2) reaction. Furthermore, in spite of the very poor hydrodesulfurization performance of TiC(001) or Au(111), a Au/TiC(001) surface displays an activity for the hydrodesulfurization of thiophene higher than that of conventional Ni/MoS(x) catalysts. In general, the Au/TiC system is more chemically active than systems generated by depositing Au nanoparticles on oxide surfaces. Thus, metal carbides are excellent supports for enhancing the chemical

  7. Robust non-carbon titanium nitride nanotubes supported Pt catalyst with enhanced catalytic activity and durability for methanol oxidation reaction

    By the combination of solvothermal alcoholysis and post-nitriding method, titanium nitride nanotubes (TiN NTs), with high surface area, hollow and interior porous structure are prepared successfully and used at a support for Pt nanoparticles. The TiN NTs supported Pt (Pt/TiN NTs) catalyst displays enhanced activity and durability towards methanol oxidation reaction (MOR) compared with the commercial Pt/C (E-TEK) catalyst. X ray diffraction (XRD), nitrogen adsorption/desorption, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) measurements are performed to investigate the physicochemical properties of the synthesized catalyst. SEM and TEM images reveal that the wall of the TiN NTs is porous and Pt nanoparticles supported on the dendritic TiN nanocrystals exhibit small size and good dispersion. Effects of inherent corrosion-resistant, tubular and porous nanostructures and electron transfer due to the strong metal–support interactions of TiN NTs contribute to the enhanced catalytic activity and stability of Pt/TiN NTs towards the MOR

  8. Steam reforming of methane over Ni catalysts prepared from hydrotalcite-type precursors:Catalytic activity and reaction kinetics

    Yang Qi; Zhenmin Cheng; Zhiming Zhou

    2015-01-01

    Ni/Mg–Al catalysts derived from hydrotalcite-type precursors were prepared by a co-precipitation technique and applied to steam reforming of methane. By comparison with Ni/γ-Al2O3 and Ni/α-Al2O3 catalysts prepared by in-cipient wetness impregnation, the Ni/Mg–Al catalyst presented much higher activity as a result of higher specific surface area and better Ni dispersion. The Ni/Mg–Al catalyst with a Ni/Mg/Al molar ratio of 0.5:2.5:1 exhibited the highest activity for steam methane reforming and was selected for kinetic investigation. With external and inter-nal diffusion limitations eliminated, kinetic experiments were carried out at atmospheric pressure and over a temperature range of 823–973 K. The results demonstrated that the overal conversion of CH4 and the conversion of CH4 to CO2 were strongly influenced by reaction temperature, residence time of reactants as wel as molar ratio of steam to methane. A classical Langmuir–Hinshelwood kinetic model proposed by Xu and Froment (1989) fitted the experimental data with excellent agreement. The estimated adsorption parameters were consistent thermodynamical y.

  9. Theoretical insights on the catalytic activity and mechanism for oxygen reduction reaction at Fe and P codoped graphene.

    He, Feng; Li, Kai; Xie, Guangyou; Wang, Ying; Jiao, Menggai; Tang, Hao; Wu, Zhijian

    2016-05-14

    The non-precious metal graphene catalyst doped with Fe-Px are recently proposed as a promising candidate in substituting Pt for catalyzing oxygen reduction reaction (ORR) in fuel cells. Systematic DFT calculations are performed to investigate the catalytic activity and the ORR mechanism on the Fe-Px (x = 1-4) system in acid medium in this work. Our results indicated that the configuration with one Fe and two P atoms codoped at zigzag edge site (Fe-P2-zig-G) is the most stable, in excellent agreement with the experimental observation that the ratio of Fe and P is nearly 1 : 2. The four-electron reduction mechanism for ORR on the Fe-P2-zig-G is via the competing OOH hydrogenation pathways (to form either OH + OH or O + H2O). The rate determining step is the O2 hydrogenation with an energy barrier of 0.43 eV, much smaller that of calculated 0.80 eV for pure Pt. In addition, the highest energy barrier of the studied ORR mechanism is the O2 dissociation with an energy barrier of 0.70 eV, a value also smaller than that of pure Pt. This demonstrated that the zigzag edge site of the Fe-P2 codoped graphene should be active for the ORR. PMID:27094325

  10. Atomic absorption spectroscopic, conductometric and colorimetric methods for determination of fluoroquinolone antibiotics using ammonium reineckate ion-pair complex formation

    Ragab, Gamal H.; Amin, Alaa S.

    2004-03-01

    Three accurate, rapid and simple atomic absorption spectrometric, conductometric and colorimetric methods were developed for the determination of norfloxacin (NRF), ciprofloxacin (CIP), ofloxacin (OFL) and enrofloxacin (ENF). The proposed methods depend upon the reaction of ammonium reineckate with the studied drugs to form stable precipitate of ion-pair complexes, which was dissolved in acetone. The pink coloured complexes were determined either by AAS or colorimetrically at λmax 525 nm directly using the dissolved complex. Using conductometric titration, the studied drugs could be evaluated in 50% (v/v) acetone in the range 5.0-65, 4.0-48, 5.0-56 and 6.0-72 μg ml -1 of NRF, CPF, OFL and ENF, respectively. The optimizations of various experimental conditions were described. The results obtained showed good recoveries of 99.15±1.15, 99.30±1.40, 99.60±1.50, and 99.00±1.25% with relative standard deviations of 0.81, 1.06, 0.97, and 0.69% for NRF, CPF, OFL, and ENF, respectively. Applications of the proposed methods to representative pharmaceutical formulations are successfully presented.

  11. Synthesis of a highly active carbon-supported Ir-V/C catalyst for the hydrogen oxidation reaction in PEMFC

    Li, B.; Qiao, J.; Yang, D.; Lv, H.; Zheng, J.; Ma, J. [Tongji Univ., Shanghai (China). School of Automotive Studies, Clean Energy Automotive Engineering Center; Zhang, J.; Wang, H. [National Research Council, Vancouver, BC (Canada). Inst. for Fuel Cell Innovation

    2009-07-01

    Non-platinum catalysts are interesting candidates for use in fuel cell systems, particularly for long-term consideration. Iridium-based catalysts such as IrSn, IrOx and IrCo have very good corrosion resistance, electrical conductivity, and resistance to carbon monoxide poisoning. They also have platinum-like behaviour for the chemisorptions of hydrogen and oxygen. The Ir-based catalysts are also less expensive than platinum. In this study, carbon-supported Ir and Ir-V nanoclusters were synthesized via an ethylene glycol (EG) method using IrCl3 and NH4 VO3 as the Ir and V precursors. The nanoparticle catalysts were characterized by X-ray diffraction (XRD) and high resolution transmission electron microscope (TEM). These carbon-supported catalysts had better characteristic for hydrogen oxidation reaction. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques were used to characterize the electrochemical properties of fuel cells by applying Ir/C and Ir-V/C as anode catalysts. According to the discharge characteristics of the fuel cell, the Ir/C and Ir-V/C catalysts affected the performance of electrocatalysts considerably. In this experiment, the catalyst Ir-V/C at 40 wt per cent exhibited the best catalytic activity to hydrogen oxidation reaction. A cell performance of 20 wt per cent higher than that for commercially available Pt/C catalysts was achieved. In addition, there was no significant deterioration in performance of the fuel cell following a 100 hour fuel cell life test at a constant current density of 1000 mA/cm{sup 2} in H{sub 2}/O{sub 2} conditions. 3 refs., 2 figs.

  12. Concerted action of two avirulent spore effectors activates Reaction to Puccinia graminis 1 (Rpg1)-mediated cereal stem rust resistance.

    Nirmala, Jayaveeramuthu; Drader, Tom; Lawrence, Paulraj K; Yin, Chuntao; Hulbert, Scot; Steber, Camille M; Steffenson, Brian J; Szabo, Les J; von Wettstein, Diter; Kleinhofs, Andris

    2011-08-30

    The barley stem rust resistance gene Reaction to Puccinia graminis 1 (Rpg1), encoding a receptor-like kinase, confers durable resistance to the stem rust pathogen Puccinia graminis f. sp. tritici. The fungal urediniospores form adhesion structures with the leaf epidermal cells within 1 h of inoculation, followed by hyphae and haustorium formation. The RPG1 protein is constitutively expressed and not phosphorylated. On inoculation with avirulent urediniospores, it is phosphorylated in vivo within 5 min and subsequently degraded. Application of arginine-glycine-aspartic acid peptide loops prevented the formation of adhesion structures for spore attachment, the phosphorylation of RPG1, and germination of the viable spores. Arginine-glycine-aspartic acid affinity chromatography of proteins from the ungerminated avirulent rust spores led to the purification and identification of a protein with fibronectin type III and breast cancer type 1 susceptibility protein domains and a vacuolar protein sorting-associated protein 9 with a coupling of ubiquitin to endoplasmic reticulum degradation domain. Both proteins are required to induce in vivo phosphorylation and degradation of RPG1. Combined application of both proteins caused hypersensitive reaction on the stem rust-resistant cultivar Morex but not on the susceptible cultivar Steptoe. Expression studies indicated that mRNA of both genes are present in ungerminated urediniospores and are constitutively transcribed in sporelings, infected leaves, and haustoria in the investigated avirulent races. Evidence is presented that RPG1, in yeast, interacts with the two protein effectors from the urediniospores that activate cooperatively the stem rust resistance protein RPG1 long before haustoria formation. PMID:21873196

  13. Multi-day activity scheduling reactions to planned activities and future events in a dynamic model of activity-travel behavior

    Nijland, Linda; Arentze, Theo; Timmermans, Harry

    2014-01-01

    Modeling multi-day planning has received scarce attention in activity-based transport demand modeling so far. However, new dynamic activity-based approaches are being developed at the current moment. The frequency and inflexibility of planned activities and events in activity schedules of individuals indicate the importance of incorporating those pre-planned activities in the new generation of dynamic travel demand models. Elaborating and combining previous work on event-driven activity generation, the aim of this paper is to develop and illustrate an extension of a need-based model of activity generation that takes into account possible influences of pre-planned activities and events. This paper describes the theory and shows the results of simulations of the extension. The simulation was conducted for six different activities, and the parameter values used were consistent with an earlier estimation study. The results show that the model works well and that the influences of the parameters are consistent, logical, and have clear interpretations. These findings offer further evidence of face and construct validity to the suggested modeling approach.

  14. Indirect determination of Li via {sup 74}Ge(n,{gamma}){sup 75m}Ge activation reaction induced by neutrons from {sup 7}Li(p,n){sup 7}Be reaction

    Kumar, Sanjiv, E-mail: sanjucccm@rediffmail.com [National Centre for Compositional Characterization of Materials, BARC, ECIL Post, Hyderabad 500062 (India); Reddy, G.L.N.; Rao, Pritty [National Centre for Compositional Characterization of Materials, BARC, ECIL Post, Hyderabad 500062 (India); Verma, Rakesh [Analytical Chemistry Division, BARC, Mumbai 400085 (India); Ramana, J.V.; Vikramkumar, S.; Raju, V.S. [National Centre for Compositional Characterization of Materials, BARC, ECIL Post, Hyderabad 500062 (India)

    2012-03-01

    An indirect method to determine Li by {sup 74}Ge(n,{gamma}){sup 75m}Ge activation reaction induced in a high purity Ge (detector) crystal by neutrons from the {sup 7}Li(p,n){sup 7}Be reaction in a typical particle-induced {gamma}-ray emission (PIGE) spectroscopy experimental set-up is described. Performed with proton beams of energies in excess of 1.88 MeV, the threshold energy (E{sub th}) of the {sup 7}Li(p,n){sup 7}Be reaction, the determination involves the activity measurement of {sup 75m}Ge isotope that has a half-life of 47.7 s and decays with the emission of 139 keV {gamma}-rays. Rapidity, selectivity and sensitivity down to ppm levels are the attractive features of the method. It is a suitable alternative to {sup 7}Li(p,p Prime {gamma}){sup 7}Li reaction based PIGE technique in the analyses of matrices that contain light elements such as Be, B, F, Na and Al in significant proportions. Interferences can arise from elements, for example V and Ti, that have E{sub th} Less-Than-Or-Slanted-Equal-To 1.88 MeV for (p,n) reaction. In the case of elements such as Cu, Mo which have with E{sub th} > 1.88 MeV, the incident proton beam energy can be judiciously selected to avoid or minimize an interference. The method, under optimized irradiation conditions, does not entail a risk of neutron stimulated degradation of the performance of the detector. Besides analytical purposes, the measurement of the {sup 75m}Ge activity can serve as a powerful tool to monitor even low ({approx}25 n/cm{sup 2} s) thermal neutron fluxes.

  15. Incidence of adverse drug reactions in human immune deficiency virus-positive patients using highly active antiretroviral therapy

    B Akshaya Srikanth

    2012-01-01

    Full Text Available To estimate the incidence of adverse drug reactions (ADRs in Human immune deficiency virus (HIV patients on highly active antiretroviral therapy (HAART. To identify the risk factors associated with ADRs in HIV patients. To analyze reported ADRs based on various parameters like causality, severity, predictability, and preventability. Retrospective case-control study. An 18-month retrospective case-control study of 208 patients newly registered in ART center, RIMS hospital, Kadapa, were intensively monitored for ADRs to HAART. Predictability was calculated based on the history of previous exposure to drug. Multivariate logistic regressions were used to identify the risk factors for ADRs. Data were analyzed using the chi-square test for estimating the correlation between ADRs and different variables. All statistical calculations were performed using EpiInfo version 3.5.3. Monitoring of 208 retrospective patients by active Pharmacovigilance identified 105 ADRs that were identified in 71 patients. Skin rash and anemia were the most commonly observed ADRs. The organ system commonly affected by ADR was skin and appendages (31.57%. The ADRs that were moderate were 90.14% of cases. The incidence of ADRs (53.52% was higher with Zidovudine + Lamivudine + Nevirapine combination. CD4 cell count less than <250 cells/μl were 80.28%, male gender were observed to be the risk factors for ADRs. Our study finding showed that there is a need of active pharmaceutical care with intensive monitoring for ADRs in Indian HIV-positive patients who are illiterate, of male and female gender, with CD4 count ≤250 cells/mm 3 with comorbid conditions.

  16. Incidence of adverse drug reactions in human immune deficiency virus-positive patients using highly active antiretroviral therapy.

    Srikanth, B Akshaya; Babu, S Chandra; Yadav, Harlokesh Narayan; Jain, Sunil Kumar

    2012-01-01

    To estimate the incidence of adverse drug reactions (ADRs) in Human immune deficiency virus (HIV) patients on highly active antiretroviral therapy (HAART). To identify the risk factors associated with ADRs in HIV patients. To analyze reported ADRs based on various parameters like causality, severity, predictability, and preventability. Retrospective case-control study. An 18-month retrospective case-control study of 208 patients newly registered in ART center, RIMS hospital, Kadapa, were intensively monitored for ADRs to HAART. Predictability was calculated based on the history of previous exposure to drug. Multivariate logistic regressions were used to identify the risk factors for ADRs. Data were analyzed using the chi-square test for estimating the correlation between ADRs and different variables. All statistical calculations were performed using EpiInfo version 3.5.3. Monitoring of 208 retrospective patients by active Pharmacovigilance identified 105 ADRs that were identified in 71 patients. Skin rash and anemia were the most commonly observed ADRs. The organ system commonly affected by ADR was skin and appendages (31.57%). The ADRs that were moderate were 90.14% of cases. The incidence of ADRs (53.52%) was higher with Zidovudine + Lamivudine + Nevirapine combination. CD4 cell count less than <250 cells/μl were 80.28%, male gender were observed to be the risk factors for ADRs. Our study finding showed that there is a need of active pharmaceutical care with intensive monitoring for ADRs in Indian HIV-positive patients who are illiterate, of male and female gender, with CD4 count ≤250 cells/mm(3) with comorbid conditions. PMID:22470896

  17. Nuclear magnetic resonance study of charge transfer complex formation between Silver Nitrate and Benzylcyanide in Solvent Ethylene Glycol

    Modarress, H

    2003-01-01

    The formation constant for charge transfer complexes between electron acceptor (AgNo sub 3) and electron donor benzylcyanide (C sub 6 H sub 5 -CH sub 2 -C ident to N) in solvent ethyleneglycol [(CH sub 2 OH) sub 2] has been evaluated by using the nuclear magnetic resonance chemical shifts of aromatic group of benzylcyanide measured against external references, tetramethylsilane, hexamethyldisilane and cyclohexane at 20 sup d ig sup C. The external referencing procedure eliminated the interference of internal reference in the course of complexation. The necessary bulk magnetic susceptibility corrections on the measured chemical shifts have been made. The solution nationalised and their effects on the formation constant have been considered and a new equation has been suggested to obtain the main ionic activity coefficient of AgNO sub 3 from nuclear magnetic resonance results. The mean ionic activity coefficient has been taken into account in the formation constant calculations. The results indicated that the a...

  18. Effective production of S-allyl-L-cysteine through a homogeneous reaction with activated endogenous γ-glutamyltranspeptidase in garlic (Allium Sativum)

    Xu, Xiaobian; Miao, Yelian; Chen, Jie Yu; Zhang, Qimei; Wang, Jining

    2013-01-01

    S-allyl-L-cysteine (SAC) is a bioactive compound in garlic (Allium sativum). A novel process including soaking and homogeneous reaction was applied for the effective production of SAC with endogenous γ-glutamyltranspeptidase (γ-GTP, EC 2.3.2.2) in garlic. The effects of temperature and CaCl2 concentration on γ-GTP activity in soaking, and the relationship of SAC production with γ-GTP activity in homogeneous reaction were investigated, using fresh garlic as raw material. The experimental resul...

  19. Selective and non-extractive spectrophotometric determination of cefdinir in formulations based on donor-acceptor complex formation

    Babita K. Singh

    2010-01-01

    Full Text Available Cefdinir has broad spectrum of activity and high prescription rates, hence its counterfeiting seems imminent. We have proposed a simple, fast, selective and non-extractive spectrophotometric method for the content assay of cefdinir in formulations. The method is based on complexation of cefdinir and Fe under reducing condition in a buffered medium (pH 11 to form a magenta colored donor-acceptor complex (λ max = 550 nm; apparent molar absorptivity = 3720 L mol-1 cm-1. No other cephalosporins, penicillins and common excipients interfere under the test conditions. The Beer's law is followed in the concentration range 8-160 µg mL-1.

  20. Platelet-activating factor in Iberian pig spermatozoa: receptor expression and role as enhancer of the calcium-induced acrosome reaction.

    Bragado, M J; Gil, M C; Garcia-Marin, L J

    2011-12-01

    Platelet-activating factor (PAF) is a phospholipid involved in reproductive physiology. PAF receptor is expressed in some mammalian spermatozoa species where it plays a role in these germ-cell-specific processes. The aim of this study is to identify PAF receptor in Iberian pig spermatozoa and to evaluate PAF's effects on motility, viability and acrosome reaction. Semen samples from Iberian boars were used. PAF receptor identification was performed by Western blotting. Spermatozoa motility was analysed by computer-assisted sperm analysis system, whereas spermatozoa viability and acrosome reaction were evaluated by flow cytometry. Different PAF concentrations added to non-capacitating medium during 60 min have no effect on any spermatozoa motility parameter measured. Acrosome reaction was rapid and potently induced by 1 μm calcium ionophore A23187 showing an effect at 60 min and maximum at 240 min. PAF added to a capacitating medium is not able to induce spermatozoa acrosome reaction at any time studied. However, PAF, in the presence of A23187, significantly accelerates and enhances the calcium-induced acrosome reaction in a concentration-dependent manner in Iberian boar spermatozoa. Exogenous PAF does not affect at all spermatozoa viability, whereas slightly exacerbated the A23187-induced loss in viability. This work demonstrates that PAF receptor is expressed in Iberian pig spermatozoa and that its stimulation by PAF regulates the calcium-induced acrosome reaction. This work contributes to further elucidate the physiological regulation of the most relevant spermatozoa functions for successful fertilization: acrosome reaction. PMID:22023717

  1. Mechanisms of Host-Pathogen Protein Complex Formation and Bacterial Immune Evasion of Streptococcus suis Protein Fhb.

    Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan

    2016-08-12

    Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. PMID:27342778

  2. Inducer effect on the complex formation between rat liver nuclear proteins and cytochrome P450 2B gene regulatory elements.

    Duzhak, T G; Schwartz, E I; Gulyaeva, L F; Lyakhovich, V V

    2002-09-01

    DNA gel retardation assay has been applied to the investigation of complexes between rat liver nuclear proteins and Barbie box positive regulatory element of cytochrome P450 2B (CYP2B) genes. The intensities of B1 and B2 bands detected in the absence of an inducer increased after 30 min protein incubation with phenobarbital (PB) or triphenyldioxane (TPD), but not with 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOPOB). In addition, a new complex (B3 band) was for the first time detected under induction by PB, TPD, and TCPOPOB. Increase in the incubation time up to 2 h facilitated the formation of other new complexes (B4 and B5 bands), which were detected only in the presence of TPD. The use of [3H]TPD in hybridization experiments revealed that this inducer, capable of binding to Barbie box DNA, is also present in B4 and B5 complexes. It is probable that the investigated compounds activate the same proteins at the initial induction steps, which correlates with the formation of B1, B2, and B3 complexes. The further induction step might be inducer-specific, as indicated by the formation of B4 and B5 complexes in the presence of TPD only. Thus, the present data suggest the possibility of specific gene activation signaling pathways that are dependent on a particular inducer. PMID:12387719

  3. Subnanometer Molybdenum Sulfide on Carbon Nanotubes as a Highly Active and Stable Electrocatalyst for Hydrogen Evolution Reaction.

    Li, Ping; Yang, Zhi; Shen, Juanxia; Nie, Huagui; Cai, Qiran; Li, Luhua; Ge, Mengzhan; Gu, Cancan; Chen, Xi'an; Yang, Keqin; Zhang, Lijie; Chen, Ying; Huang, Shaoming

    2016-02-10

    Electrochemically splitting water for hydrogen evolution reaction (HER) has been viewed as a promising approach to produce renewable and clean hydrogen energy. However, searching for cheap and efficient HER electrocatalysts to replace the currently used Pt-based catalysts remains an urgent task. Herein, we develop a one-step carbon nanotube (CNT) assisted synthesis strategy with CNTs' strong adsorbability to mediate the growth of subnanometer-sized MoS(x) on CNTs. The subnanometer MoS(x)-CNT hybrids achieve a low overpotential of 106 mV at 10 mA cm(-2), a small Tafel slope of 37 mV per decade, and an unprecedentedly high turnover frequency value of 18.84 s(-1) at η = 200 mV among all reported non-Pt catalysts in acidic conditions. The superior performance of the hybrid catalysts benefits from the presence of a higher number of active sites and the abundant exposure of unsaturated S atoms rooted in the subnanometer structure, demonstrating a new class of subnanometer-scale catalysts. PMID:26765150

  4. Study of non-1/ ν reaction nuclides using k0 - Neutron Activation Analysis at the Malaysian Nuclear Agency Research Reactor

    The modified spectral index r(α); the Westcott gLu(Tn) factor and absolute neutron temperature Tn were determined for the handling of non-1/ ν (n, γ) reaction based on the Westcott formalism using k0-neutron activation analysis (k0-NAA) method at the Malaysian Nuclear Agency (MNA) research reactor. The r(α) was determined by the bare bi-isotopic monitor method using measurement of radionuclides of 97Zr and 95Zr. The 176Lu as non-1/ ν and 197Au as 1/ ν monitors were utilized for determination of gLu(Tn). The r(α) and gLu(Tn) values ranged from 0.0715 to 0.1417 with a RSD of 15.24 % and from 1.7832 to 2.0149 with a RSD of 3.58 %, respectively. The accuracy of the method was evaluated based on the calculated absolute neutron temperature (Tn) value. The calculated average value of Tn was 40.56 ± 9.32 degree Celsius while the value reported by MNA was 40 degree Celsius, which represents an acceptable level of consistency. (author)

  5. Enhanced activity and stability of a Au decorated Pt/PdCo/C electrocatalyst toward oxygen reduction reaction

    Highlights: ► Pt/Au/PdCo/C was obtained by consecutive UPD-replacement on PdCo/C substrate. ► Pt mass activity toward the ORR for Pt/Au/PdCo/C was 4-fold of that for Pt/PdCo/C. ► The stability of Pt/Au/PdCo/C was enhanced significantly via Au decoration. ► The improvements were ascribed to the suppressed OH coverage on Au decorated Pt. - Abstract: Carbon-supported Pt/PdCo and Pt/Au/PdCo catalysts with a low Pt loading were prepared by a combined underpotential deposition and galvanic replacement route. The X-ray diffraction results show that after annealing in H2/Ar atmosphere, the alloy degree of PdCo is enhanced. The average metal particle size of PdCo/C, PdCo/C-H, Pt/PdCo/C and Pt/Au/PdCo/C, characterized by transmission electron microscopy, is about 2.6, 4.1, 5.3 and 5.5 nm, respectively. The electrochemical characterizations show that the Pt/PdCo/C electrocatalyst exhibits a high activity toward the oxygen reduction reaction (ORR) but is unstable in electrochemical environment. After the accelerated aging tests (AAT), the electrochemical surface area (ECSA) for the Pt/PdCo/C catalyst decreases by 48% and the half-wave potential of the ORR polarization curve (E1/2) shifts 35 mV negatively. After decorated by Au, both the catalytic activity and stability of the Pt/PdCo/C catalyst are improved significantly. Compared to Pt/PdCo/C, the E1/2 for Pt/Au/PdCo/C shifts 22 mV toward higher potentials. After the AAT, the ECSA decreases only 26%, and the E1/2 shifts 13 mV negatively for Pt/Au/PdCo/C. The enhanced catalytic activity and stability should be due to the high resistance to be oxidized for Pt and the suppressed OH adsorption on the Au-decorated Pt surface.

  6. Complex formation in molten salts: association constants of cadmium-iodo complexes in molten potassium nitrate-barium nitrate eutectic

    Gupta, R.K.; Gaur, H.C. (Delhi Univ. (India). Dept. of Chemistry)

    1981-06-01

    Association constants for the formation of CdI/sup +/ and CdI/sub 2/ in molten KNO/sub 3/-Ba(NO/sub 3/)/sub 2/(87.6:12.4 mol%) eutectic in the temperature range 568.2 - 608.2 K have been evaluated from activity coefficient by measurement of emf of the molten salt concentration cell, Ag, AgI(s)/KNO/sub 3/ -Ba(NO/sub 3/)/sub 2/, KI/KNO/sub 3/ - Ba(NO/sub 3/)/sub 2/, KI, Cd(NO/sub 3/)/sub 2/ or CdI/sub 2//AgI(s), Ag. Data do not suggest the formation of polynuclear species under the experimental conditions employed. The temperature coefficients of the association constants are predictable from equations based on quasi-lattice model.

  7. Thermodynamics of complexes formation by ITC in methanol/water = 9/1 (v/v) solution: A case study

    Fisicaro, Emilia, E-mail: emilia.fisicaro@unipr.it [University of Parma, Department of Pharmacy, Parco Area delle Scienze, 27/A, 43124 Parma (Italy); Compari, Carlotta; Bacciottini, Franco; Contardi, Laura [University of Parma, Department of Pharmacy, Parco Area delle Scienze, 27/A, 43124 Parma (Italy); Carcelli, Mauro; Rispoli, Gabriele; Rogolino, Dominga [University of Parma, Department of Chemistry, Parco Area delle Scienze, 17/A, 43124 Parma (Italy)

    2014-06-01

    Graphical abstract: Integrase strand transfert inhibitors chelate the metal ions in the active site of HIV integrase. - Highlights: • Development of inhibitors acting against those viral enzymes operating via a cooperative two-metal ion mechanism, such as HIV integrase (IN), requires optimizing the binding affinity to the target. • We have defined an experimental procedure for obtaining reliable thermodynamic data by ITC in methanol/water = 9/1 (v/v) as solvent. • Formation heats in mixed solvent of the complexes formed by a ligand, model of Raltegravir, with Mg(II), Mn(II), Co(II) and Zn(II) are here reported. - Abstract: Most enzymes that participate in the biochemistry of nucleic acids require divalent metal ion cofactors to promote activity. Development of potent inhibitors, acting against those viral enzymes operating via a cooperative two-metal ion mechanism, such as HIV integrase (IN) and RNase H, hepatitis C virus polymerase and influenza endonuclease, requires optimizing the binding affinity to the target, which is dictated by the binding free energy composed of both enthalpic and entropic contributions. They can be obtained by using isothermal titration microcalorimetry. We have defined an experimental procedure for obtaining reliable thermodynamic data in methanol/water = 9/1 0.1 M KCl as solvent, used to overcome solubility problems. In this way we have measured the heats of formation of the complexes formed by N-(4-fluorobenzyl)-5-hydroxy-2-isopropyl-1-methyl-6-oxo-1, 6-dihydroxypyrimidine-4-carboxylate (HL, a model of Raltegravir, the antiretroviral drug produced by Merck and Co.), and a series of divalent metal ions of biological interest (Mg(II), Mn(II), Co(II) and Zn(II)), whose speciation was previously determined by potentiometry.

  8. Complex Formation in a Liquid-Liquid Extraction System Containing Co(II), 4-(2-Thiazolylazo)resorcinol and Monotetrazolium Salt.

    Divarova, Vidka; Stojnova, Kirila; Racheva, Petya; Lekova, Vanya

    2016-01-01

    The ion-associated complex formed between anionic chelate of Co(II)-4-(2-Thiazolylazo)resorcinol (TAR) with the monotetrazolium cation of 2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-phenyl-2H-tetrazolium chloride (INT) in the liquid-liquid extraction system Co(II)-TAR-INT-H(2)O-CHCl(3) was studied by the spectrophotometric method. The optimum extraction conditions of Co(II) were found. The extraction equilibria were studied. The equilibrium constants, the recovery factor and some analytical characteristics were calculated. The validity of Beer's law was checked. The molar ratio of the components in the ternary ion-associated complex Co(II)-TAR-INT was determined. The general formula of the complex was suggested. The effect of various foreign ions and reagents on the process of complex formation in the liquid-liquid extraction system was studied. PMID:26970793

  9. Study into the applicability of laboratory data to natural conditions: Laser fluorescence spectroscopy for the analysis of Cm(III) complex formation with humate and fulvate

    The complex formation of Cm(III) with humic acid or fulvic acid isolated from a Gorleben groundwater is analysed in 0.1 M NaClO4 at pH = 6.0 by means of the time-resolved, laser-induced fluorescence spectroscopy. The humate and fulvate complexes are characterized by their excitation, emission, and life spectra. Complexation constants are derived by way of spectroscopic speciation in the trace concentration range (Cm(III) = 2.1-10.1x10-8 mol L-1). The results obtained for Cm-humate (lg β = 6.22±0.05) and Cm-fulvate (lg β = 6.05±0.11) are in very good agreement with those obtained for Am(III) in the saturation concentration range of the humic acid ([Am(I II) = 10-5 mol L1-1). (orig.)

  10. Cadmium-glutathione complex formation in human t-cell and b-cell lymphocytes after their incubation with organo-cadmium diacetate.

    Ullah, Hashmat; Khan, Muhammad Farid; Jan, Syed Umer; Hashmat, Farwa

    2015-11-01

    Cadmium intake is associated with oxidative stress that causes depletion of intracellular as well as extra cellular reduced glutathione. There is strong evidence indicating that reactive oxygen species and reactive nitrogen species generated in the presence of cadmium could be responsible for its toxic effects in many cells and tissues. Depletion of reduced glutathione in various cells, especially in T and B-lymphocytes, causes extreme damage to the antioxidant defense system of body. The aim of this research work was to investigate the metabolic changes that occur in T and B lymphocytes after their incubation with organ cadmium diacetate by using Ellman's spectrophotometric method of thiol quantification. The results of the present study indicate that cadmium depleted T and B lymphocytes GSH to a harmful extent. It is proposed that this depletion is due to the bivalent cadmium glutathione complex formation, oxidation of reduced glutathione (GSH) to its oxidized form, or both. PMID:26639500

  11. Potentiometric studies on stepwise biligand complex formation La(III), Pr(III) or Nd(III)-cyclo hexane-1, 2-diaminotetraacetic acid-hydroxy acid

    Potentiometric studies of the interaction between 1:1 Ln(III)-CDTA binary chelate (where Ln(III) = La(III), Pr(III) or Nd(III); CDTA = cyclohexane-1,2-diamino-N,N,N',N'-tetracetic acid) with certain hydroxy acids such as glycollic (GA), lactic (LA) and malic (MEA) are described. The nature of the titration curves indicates the stepwise addition of the secondary ligand to the initially formed 1:1, M(III)-CDTA binary complex. Formation constants (Ksub(MAL)) of the resulting biligand chelates have been determined at 30 +- 10 and 35 +- 10C and also thermodynamic functions (viz. ΔG,ΔH and ΔS). The order of stability in terms of metal ions has been found to be La(III) LA > GA. (author)

  12. Preparation and electrocatalytic activity of 3D hierarchical porous spinel CoFe2O4 hollow nanospheres as efficient catalyst for Oxygen Reduction Reaction and Oxygen Evolution Reaction

    Lithium-air battery has attracted extensively attention and now developing catalysts with high electrocatalytic activity is one of the challenges for lithium-air battery. In this paper, 3D hierarchical porous spinel CoFe2O4 hollow nanospheres were first prepared by a facile hydrothermal method. The hollow CoFe2O4 nanospheres have unique bimodal porous structure which consists of micropores and mesopores. The catalytic activity of the CoFe2O4 hollow nanospheres for oxygen reduction reaction (ORR) has been studied and compared with the acetylene black, the solid CoFe2O4 nanospheres and the commercial Pt/C by using rotating ring-disk electrode (RRDE) technique. The spinel CoFe2O4 hollow nanospheres exhibit superior catalytic activity for the ORR compared to the acetylene black and the solid CoFe2O4 nanospheres. Besides, the spinel CoFe2O4 hollow nanospheres also afford high catalytic activity for the oxygen evolution reaction (OER). Furthermore, the hollow CoFe2O4 nanospheres show the smallest overpotential between ORR and OER. The chronoamperometric studies show that the CoFe2O4 hollow nanospheres exhibit excellent stability for both the ORR and OER. The high ORR and OER activities and stabilities of CoFe2O4 hollow nanospheres could be attributed to their special 3D hierarchical porous structure. This material shows a significant potential application on lithium-air battery

  13. Nucleoprotein of influenza B virus binds to its type A counterpart and disrupts influenza A viral polymerase complex formation

    Jaru-ampornpan, Peera, E-mail: peera.jar@biotec.or.th; Narkpuk, Jaraspim; Wanitchang, Asawin; Jongkaewwattana, Anan, E-mail: anan.jon@biotec.or.th

    2014-01-03

    Highlights: •FluB nucleoprotein (BNP) can bind to FluA nucleoprotein (ANP). •BNP–ANP interaction inhibits FluA polymerase activity. •BNP binding prevents ANP from forming a functional FluA polymerase complex. •Nuclear localization of BNP is necessary for FluA polymerase inhibition. •Viral RNA is not required for the BNP–ANP interaction. -- Abstract: Upon co-infection with influenza B virus (FluB), influenza A virus (FluA) replication is substantially impaired. Previously, we have shown that the nucleoprotein of FluB (BNP) can inhibit FluA polymerase machinery, retarding the growth of FluA. However, the molecular mechanism underlying this inhibitory action awaited further investigation. Here, we provide evidence that BNP hinders the proper formation of FluA polymerase complex by competitively binding to the nucleoprotein of FluA. To exert this inhibitory effect, BNP must be localized in the nucleus. The interaction does not require the presence of the viral RNA but needs an intact BNP RNA-binding motif. The results highlight the novel role of BNP as an anti-influenza A viral agent and provide insights into the mechanism of intertypic interference.

  14. Nucleoprotein of influenza B virus binds to its type A counterpart and disrupts influenza A viral polymerase complex formation

    Highlights: •FluB nucleoprotein (BNP) can bind to FluA nucleoprotein (ANP). •BNP–ANP interaction inhibits FluA polymerase activity. •BNP binding prevents ANP from forming a functional FluA polymerase complex. •Nuclear localization of BNP is necessary for FluA polymerase inhibition. •Viral RNA is not required for the BNP–ANP interaction. -- Abstract: Upon co-infection with influenza B virus (FluB), influenza A virus (FluA) replication is substantially impaired. Previously, we have shown that the nucleoprotein of FluB (BNP) can inhibit FluA polymerase machinery, retarding the growth of FluA. However, the molecular mechanism underlying this inhibitory action awaited further investigation. Here, we provide evidence that BNP hinders the proper formation of FluA polymerase complex by competitively binding to the nucleoprotein of FluA. To exert this inhibitory effect, BNP must be localized in the nucleus. The interaction does not require the presence of the viral RNA but needs an intact BNP RNA-binding motif. The results highlight the novel role of BNP as an anti-influenza A viral agent and provide insights into the mechanism of intertypic interference

  15. Molecular Mechanisms of Transcription Initiation-Structure, Function, and Evolution of TFE/TFIIE-Like Factors and Open Complex Formation.

    Blombach, Fabian; Smollett, Katherine L; Grohmann, Dina; Werner, Finn

    2016-06-19

    Transcription initiation requires that the promoter DNA is melted and the template strand is loaded into the active site of the RNA polymerase (RNAP), forming the open complex (OC). The archaeal initiation factor TFE and its eukaryotic counterpart TFIIE facilitate this process. Recent structural and biophysical studies have revealed the position of TFE/TFIIE within the pre-initiation complex (PIC) and illuminated its role in OC formation. TFE operates via allosteric and direct mechanisms. Firstly, it interacts with the RNAP and induces the opening of the flexible RNAP clamp domain, concomitant with DNA melting and template loading. Secondly, TFE binds physically to single-stranded DNA in the transcription bubble of the OC and increases its stability. The identification of the β-subunit of archaeal TFE enabled us to reconstruct the evolutionary history of TFE/TFIIE-like factors, which is characterised by winged helix (WH) domain expansion in eukaryotes and loss of metal centres including iron-sulfur clusters and Zinc ribbons. OC formation is an important target for the regulation of transcription in all domains of life. We propose that TFE and the bacterial general transcription factor CarD, although structurally and evolutionary unrelated, show interesting parallels in their mechanism to enhance OC formation. We argue that OC formation is used as a way to regulate transcription in all domains of life, and these regulatory mechanisms coevolved with the basal transcription machinery. PMID:27107643

  16. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts

    Subbaraman, Ram; Tripkovic, Dusan; Chang, Kee-Chul; Strmcnik, Dusan; Paulikas, Arvydas P.; Hirunsit, Pussana; Chan, Maria; Greeley, Jeff; Stamenkovic, Vojislav; Markovic, Nenad M.

    2012-06-01

    Design and synthesis of materials for efficient electrochemical transformation of water to molecular hydrogen and of hydroxyl ions to oxygen in alkaline environments is of paramount importance in reducing energy losses in water-alkali electrolysers. Here, using 3d-M hydr(oxy)oxides, with distinct stoichiometries and morphologies in the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) regions, we establish the overall catalytic activities for these reaction as a function of a more fundamental property, a descriptor, OH-M2+δ bond strength (0 ≤ δ ≤ 1.5). This relationship exhibits trends in reactivity (Mn OER) or the water dissociation product (for the HER). The successful identification of these electrocatalytic trends provides the foundation for rational design of ‘active sites’ for practical alkaline HER and OER electrocatalysts.

  17. Ubiquitination of HTLV-I Tax in response to DNA damage regulates nuclear complex formation and nuclear export

    Marriott Susan J

    2007-12-01

    Full Text Available Abstract Background The HTLV-I oncoprotein, Tax, is a pleiotropic protein whose activity is partially regulated by its ability to interact with, and perturb the functions of, numerous cellular proteins. Tax is predominantly a nuclear protein that localizes to nuclear foci known as Tax Speckled Structures (TSS. We recently reported that the localization of Tax and its interactions with cellular proteins are altered in response to various forms of genotoxic and cellular stress. The level of cytoplasmic Tax increases in response to stress and this relocalization depends upon the interaction of Tax with CRM1. Cellular pathways and signals that regulate the subcellular localization of Tax remain to be determined. However, post-translational modifications including sumoylation and ubiquitination are known to influence the subcellular localization of Tax and its interactions with cellular proteins. The sumoylated form of Tax exists predominantly in the nucleus while ubiquitinated Tax exists predominantly in the cytoplasm. Therefore, we hypothesized that post-translational modifications of Tax that occur in response to DNA damage regulate the localization of Tax and its interactions with cellular proteins. Results We found a significant increase in mono-ubiquitination of Tax in response to UV irradiation. Mutation of specific lysine residues (K280 and K284 within Tax inhibited DNA damage-induced ubiquitination. In contrast to wild-type Tax, which undergoes transient nucleocytoplasmic shuttling in response to DNA damage, the K280 and K284 mutants were retained in nuclear foci following UV irradiation and remained co-localized with the cellular TSS protein, sc35. Conclusion This study demonstrates that the localization of Tax, and its interactions with cellular proteins, are dynamic following DNA damage and depend on the post-translational modification status of Tax. Specifically, DNA damage induces the ubiquitination of Tax at K280 and K284

  18. Neutron-activated determination of chlorine, using the 35Cl(n,p)35S reaction as the basis, in thin coatings of silicon dioxide

    The neutron-activation determination of chlorine in thin coatings of silicon dioxide on silicon has been shown to be possible through the use of the 55Cl(n, P)35S reaction. The detection limit of chlorine is 3 x 10-9 g (5 x 1013 atoms)

  19. Asymmetric Baylis-Hillman Reaction between Chiral Activated Alkenes and Aromatic Aldehydes in Me3N/H2O/Solvent Medium

    Ke HE; Zheng Hong ZHOU; Hong Ying TANG; Guo Feng ZHAO; Chu Chi TANG

    2005-01-01

    Chiral activated alkene, L-menthyl acrylate and (+)-N-α-phenylethyl acrylamide,induced asymmetric Baylis-Hillman reaction of aromatic aldehydes was realized at 25℃ for 7 days in Me3N/H2O/solvent homogeneous medium. The corresponding Baylis-Hillman adducts were obtained in good chemical yield with moderate to excellent diastereoselectivity (up to 99% de).

  20. Cinchona alkaloid squaramide catalyzed enantioselective hydrazination/cyclization cascade reaction of α-isocyanoacetates and azodicarboxylates: synthesis of optically active 1,2,4-triazolines.

    Zhao, Mei-Xin; Bi, Hong-Lei; Zhou, Hao; Yang, Hui; Shi, Min

    2013-09-20

    An efficient enantioselective hydrazination/cyclization cascade reaction of α-substituted isocyanoacetates to azodicarboxylates catalyzed by Cinchona alkaloid derived squaramide catalysts has been investigated, affording the optically active 1,2,4-triazolines in excellent yields (up to 99%) and good to excellent enantioselectivities (up to 97% ee) under mild conditions. PMID:23984761