WorldWideScience

Sample records for activities carbonic anhydrase

  1. Carbonic anhydrase activity in isolated chloroplasts of chlamydomonas reinhardtii

    In a new assay of carbonic anhydrase, NaH14CO3 solution at the bottom of a sealed vessel releases 14CO3 which diffuses to the top of the vessel to be assimilated by actively photosynthesizing Chlamydomonas cells. The assay is initiated by illuminating cells and stopped by turning the light off and killing the cells with acid. Enzyme activity was estimated from acid stable radioactivity above the uncatalyzed background level. With bovine carbonic anhydrase, 1.5 Wilbur Anderson Unit (WAU) can be consistantly measured at 5-6 fold above background. Sonicated whole cells of air adapted wild type (+)gave 741.1 ± 12.4 WAU/mg chl. Intact washed cells of mixotrophically grown wall-less mutant CWD(-) and a high CO2 requiring wall-less double mutant CIA-3/CW15 (-) gave 7.1 ± 1.9 and 2.8 ± 7.8 WAU/mg chl respectively. Chloroplasts isolated from CWD and CIA-3/CW15 and subsequently disrupted gave 64.0 ± 14.7 and 2.8 ± 3.2 WAU/mg chl respectively. Chloroplast sonicate from another wall-less mutant CW15(-) gave activity comparable to CWD. Thus on a chlorophyll basis, enzyme activity in chloroplasts from mixotrophically grown cells is about 1/10th of the level found in air adapted wild type cells. CIA-3 seems to lack this activity

  2. Carbonic anhydrase immobilized on hollow fiber membranes using glutaraldehyde activated chitosan for artificial lung applications

    Kimmel, J. D.; Arazawa, D. T.; Ye, S.-H.; Shankarraman, V; Wagner, W. R.; Federspiel, W. J.

    2013-01-01

    Extracorporeal CO2 removal from circulating blood is a promising therapeutic modality for the treatment of acute respiratory failure. The enzyme carbonic anhydrase accelerates CO2 removal within gas exchange devices by locally catalyzing HCO3− into gaseous CO2 within the blood. In this work, we covalently immobilized carbonic anhydrase on the surface of polypropylene hollow fiber membranes using glutaraldehyde activated chitosan tethering to amplify the density of reactive amine functional gr...

  3. Increased oxidation-related glutathionylation and carbonic anhydrase activity in endometriosis.

    Andrisani, Alessandra; Donà, Gabriella; Brunati, Anna Maria; Clari, Giulio; Armanini, Decio; Ragazzi, Eugenio; Ambrosini, Guido; Bordin, Luciana

    2014-06-01

    This study examined the possible involvement of carbonic anhydrase activation in response to an endometriosis-related increase in oxidative stress. Peripheral blood samples obtained from 27 healthy controls and 30 endometriosis patients, classified as having endometriosis by histological examination of surgical specimens, were analysed by multiple immunoassay and carbonic anhydrase activity assay. Red blood cells (RBC) were analysed for glutathionylated protein (GSSP) content in the membrane, total glutathione (GSH) in the cytosol and carbonic anhydrase concentration and activity. In association with a membrane increase of GSSP and a cytosolic decrease of GSH content in endometriosis patients, carbonic anhydrase significantly increased (P < 0.0001) both monomerization and activity compared with controls. This oxidation-induced activation of carbonic anhydrase was positively and significantly correlated with the GSH content of RBC (r = 0.9735, P < 0.001) and with the amount of the 30-kDa monomer of carbonic anhydrase (r = 0.9750, P < 0.001). Because carbonic anhydrase activation is implied in many physiological and biochemical processes linked to pathologies such as glaucoma, hypertension, obesity and infections, carbonic anhydrase activity should be closely monitored in endometriosis. These data open promising working perspectives for diagnosis and treatment of endometriosis and hopefully of other oxidative stress-related diseases. Endometriosis is a chronic disease associated with infertility and local inflammatory response, which is thought to spread rapidly throughout the body as a systemic subclinical inflammation. One of the causes in the pathogenesis/evolution of endometriosis is oxidative stress, which occurs when reactive oxygen species are produced faster than the endogenous antioxidant defence systems can neutralize them. Once produced, reactive oxygen species can alter the morphological and functional properties of endothelial cells, including

  4. Non-destructive measurement of carbonic anhydrase activity and the oxygen isotope composition of soil water

    Jones, Sam; Sauze, Joana; Ogée, Jérôme; Wohl, Steven; Bosc, Alexandre; Wingate, Lisa

    2016-04-01

    Carbonic anhydrases are a group of metalloenzymes that catalyse the hydration of aqueous carbon dioxide (CO2). The expression of carbonic anhydrase by bacteria, archaea and eukarya has been linked to a variety of important biological processes including pH regulation, substrate supply and biomineralisation. As oxygen isotopes are exchanged between CO2 and water during hydration, the presence of carbonic anhydrase in plants and soil organisms also influences the oxygen isotope budget of atmospheric CO2. Leaf and soil water pools have distinct oxygen isotope compositions, owing to differences in pool sizes and evaporation rates, which are imparted on CO2during hydration. These differences in the isotopic signature of CO2 interacting with leaves and soil can be used to partition the contribution of photosynthesis and soil respiration to net terrestrial CO2 exchange. However, this relies on our knowledge of soil carbonic anhydrase activity and currently, the prevalence and function of these enzymes in soils is poorly understood. Isotopic approaches used to estimate soil carbonic anhydrase activity typically involve the inversion of models describing the oxygen isotope composition of CO2 fluxes to solve for the apparent, potentially catalysed, rate of oxygen exchange during hydration. This requires information about the composition of CO2 in isotopic equilibrium with soil water obtained from destructive, depth-resolved soil water sampling. This can represent a significant challenge in data collection given the considerable potential for spatial and temporal variability in the isotopic composition of soil water and limited a priori information with respect to the appropriate sampling resolution and depth. We investigated whether we could circumvent this requirement by constraining carbonic anhydrase activity and the composition of soil water in isotopic equilibrium with CO2 by solving simultaneously the mass balance for two soil CO2 steady states differing only in the

  5. Catecholamine-induced vasoconstriction is sensitive to carbonic anhydrase I activation

    Puscas I.

    2001-01-01

    Full Text Available We studied the relationship between alpha- and beta-adrenergic agonists and the activity of carbonic anhydrase I and II in erythrocyte, clinical and vessel studies. Kinetic studies were performed. Adrenergic agonists increased erythrocyte carbonic anhydrase as follows: adrenaline by 75%, noradrenaline by 68%, isoprenaline by 55%, and orciprenaline by 62%. The kinetic data indicated a non-competitive mechanism of action. In clinical studies carbonic anhydrase I from erythrocytes increased by 87% after noradrenaline administration, by 71% after orciprenaline and by 82% after isoprenaline. The increase in carbonic anhydrase I paralleled the increase in blood pressure. Similar results were obtained in vessel studies on piglet vascular smooth muscle. We believe that adrenergic agonists may have a dual mechanism of action: the first one consists of a catecholamine action on its receptor with the formation of a stimulus-receptor complex. The second mechanism proposed completes the first one. By this second component of the mechanism, the same stimulus directly acts on the carbonic anhydrase I isozyme (that might be functionally coupled with adrenergic receptors, so that its activation ensures an adequate pH for stimulus-receptor coupling for signal transduction into the cell, resulting in vasoconstriction.

  6. Carbonic anhydrase inhibitors: Synthesis, characterization and inhibition activities of furan sulfonylhydrazones against carbonic anhydrase I (hCA I)

    Gündüzalp, Ayla Balaban; Parlakgümüş, Gökhan; Uzun, Demet; Özmen, Ümmuhan Özdemir; Özbek, Neslihan; Sarı, Musa; Tunç, Tuncay

    2016-02-01

    The methane sulfonic acide hydrazide (1) was used to obtain furan sulfonylhydrazones; 2-acetylfuranmethanesulfonylhydrazone (2), 2-furaldehydemethanesulfonylhydrazone (3), 5-nitro-2-furaldehydemethanesulfonylhydrazone (4). The structures of furan sulfonylhydrazones were determined by using elemental analysis, FT-IR, 1H NMR, 13C NMR and UV-vis methods. The structure of 5-nitro-2-furaldehydemethanesulfonylhydrazone (4) was also supported with X-ray difraction method and found that compound 4 was crystallized in triclinic, space group P 1 bar . In order to gain insight into the structure of the compounds, we performed computational studies by using 6-311G(d,p) basic set in which B3LYP correlation function was implemented. The geometry of the sulfonylhydrazones were optimized at DFT method with Gaussian 09 program package and the global reactivity descriptors were also calculated by this basic set. The enzyme inhibition activities of the sulfonylhydrazones were investigated on carbonic anhydrase I (hCA I) isoenzyme and their activity parameters (Km, IC50 and Ki) were calculated by spectrophotometric method. And also, their inhibitor effects were also investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods. Inhibition results show that compound 4 containing electron withdrawing group (NO2) has higher inhibition effect on hCA I isoenzyme than other's.

  7. Expression and Activity of Carbonic Anhydrase IX Is Associated With Metabolic Dysfunction in MDA-MB-231 Breast Cancer Cells

    Ying LI; Wang, Hai; Oosterwijk, Egbert; Tu, Chingkuang; Shiverick, Kathleen T.; Silverman, David N.; Frost, Susan C.

    2009-01-01

    The expression of carbonic anhydrase IX (CAIX), a marker for hypoxic tumors, is correlated with poor prognosis in breast cancer patients. We show herein that the MDA-MB-231 cells, a “triple-negative,” basal B line, express exclusively CAIX, while a luminal cell line (T47D) expresses carbonic anhydrase XII (CAXII). CAIX expression in the basal B cells is both density-and hypoxia-dependent and is correlated with carbonic anhydrase activity. Evidence is provided that CAIX contributes to extracel...

  8. Oxygen-18 incorporation into malic acid during nocturnal carbon dioxide fixation in crassulacean acid metabolism plants: a new approach to estimating in vivo carbonic anhydrase activity

    Holtum, J.A.M.; Summons, R.; Roeske, C.A.; Comins, H.N.; O' Leary, M.H.

    1984-01-01

    Crassulacean acid metabolism (CAM) plants fix carbon dioxide at night by the carboxylation of phosphoenolpyruvate. If CO2 fixation is conducted with TC YO2, then in the absence of carbonic anhydrase, the malate formed by dark CO2 fixation should also contain high levels of carbon-13 and oxygen-18. Conversely, if carbonic anhydrase is present and highly active, oxygen exchange between CO2 and cellular H2O will occur more rapidly than carboxylation, and the ( TC) malate formed will contain little or no oxygen-18 above the natural abundance level. The presence of oxygen-18 in these molecules can be detected either by nuclear magnetic resonance or by mass spectrometry. Studies of phosphoenolpyruvate carboxylase in the presence and absence of carbonic anhydrase in vitro confirm the validity of the method. When CAM plants are studied by this method, we find that most species show incorporation of a significant amount of oxygen-18. Comparison of these results with results of isotope fractionation and gas exchange studies permits calculation of the in vivo activity of carbonic anhydrase toward HCO3 compared with that of phosphoenolpyruvate carboxylase. The ratio (carbonic anhydrase activity/phosphoenolpyruvate carboxylase activity) is species dependent and varies from a low of about 7 for Ananas comosus to values near 20 for Hoya carnosa and Bryophyllum pinnatum, 40 for Kalanchoee daigremontiana, and 100 or greater for Bryophyllum tubiflorum, Kalanchoee serrata, and Kalanchoae tomentosa. Carbonic anhydrase activity increases relative to phosphoenolpyruvate carboxylase activity at higher temperature. 37 references, 2 figures, 8 tables.

  9. Carbonic anhydrase III regulates peroxisome proliferator-activated receptor-{gamma}2

    Mitterberger, Maria C. [Cell Metabolism and Differentiation Research Group, Institute for Biomedical Aging Research of the Austrian Academy of Sciences, 6020 Innsbruck (Austria); Kim, Geumsoo [Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-8012 (United States); Rostek, Ursula [Cell Metabolism and Differentiation Research Group, Institute for Biomedical Aging Research of the Austrian Academy of Sciences, 6020 Innsbruck (Austria); Levine, Rodney L. [Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-8012 (United States); Zwerschke, Werner, E-mail: werner.zwerschke@oeaw.ac.at [Cell Metabolism and Differentiation Research Group, Institute for Biomedical Aging Research of the Austrian Academy of Sciences, 6020 Innsbruck (Austria)

    2012-05-01

    Carbonic anhydrase III (CAIII) is an isoenzyme of the CA family. Because of its low specific anhydrase activity, physiological functions in addition to hydrating CO{sub 2} have been proposed. CAIII expression is highly induced in adipogenesis and CAIII is the most abundant protein in adipose tissues. The function of CAIII in both preadipocytes and adipocytes is however unknown. In the present study we demonstrate that adipogenesis is greatly increased in mouse embryonic fibroblasts (MEFs) from CAIII knockout (KO) mice, as demonstrated by a greater than 10-fold increase in the induction of fatty acid-binding protein-4 (FABP4) and increased triglyceride formation in CAIII{sup -/-} MEFs compared with CAIII{sup +/+} cells. To address the underlying mechanism, we investigated the expression of the two adipogenic key regulators, peroxisome proliferator-activated receptor-{gamma}2 (PPAR{gamma}2) and CCAAT/enhancer binding protein-{alpha}. We found a considerable (approximately 1000-fold) increase in the PPAR{gamma}2 expression in the CAIII{sup -/-} MEFs. Furthermore, RNAi-mediated knockdown of endogenous CAIII in NIH 3T3-L1 preadipocytes resulted in a significant increase in the induction of PPAR{gamma}2 and FABP4. When both CAIII and PPAR{gamma}2 were knocked down, FABP4 was not induced. We conclude that down-regulation of CAIII in preadipocytes enhances adipogenesis and that CAIII is a regulator of adipogenic differentiation which acts at the level of PPAR{gamma}2 gene expression. -- Highlights: Black-Right-Pointing-Pointer We discover a novel function of Carbonic anhydrase III (CAIII). Black-Right-Pointing-Pointer We show that CAIII is a regulator of adipogenesis. Black-Right-Pointing-Pointer We demonstrate that CAIII acts at the level of PPAR{gamma}2 gene expression. Black-Right-Pointing-Pointer Our data contribute to a better understanding of the role of CAIII in fat tissue.

  10. Carbonic anhydrase III regulates peroxisome proliferator-activated receptor-γ2

    Carbonic anhydrase III (CAIII) is an isoenzyme of the CA family. Because of its low specific anhydrase activity, physiological functions in addition to hydrating CO2 have been proposed. CAIII expression is highly induced in adipogenesis and CAIII is the most abundant protein in adipose tissues. The function of CAIII in both preadipocytes and adipocytes is however unknown. In the present study we demonstrate that adipogenesis is greatly increased in mouse embryonic fibroblasts (MEFs) from CAIII knockout (KO) mice, as demonstrated by a greater than 10-fold increase in the induction of fatty acid-binding protein-4 (FABP4) and increased triglyceride formation in CAIII−/− MEFs compared with CAIII+/+ cells. To address the underlying mechanism, we investigated the expression of the two adipogenic key regulators, peroxisome proliferator-activated receptor-γ2 (PPARγ2) and CCAAT/enhancer binding protein-α. We found a considerable (approximately 1000-fold) increase in the PPARγ2 expression in the CAIII−/− MEFs. Furthermore, RNAi-mediated knockdown of endogenous CAIII in NIH 3T3-L1 preadipocytes resulted in a significant increase in the induction of PPARγ2 and FABP4. When both CAIII and PPARγ2 were knocked down, FABP4 was not induced. We conclude that down-regulation of CAIII in preadipocytes enhances adipogenesis and that CAIII is a regulator of adipogenic differentiation which acts at the level of PPARγ2 gene expression. -- Highlights: ► We discover a novel function of Carbonic anhydrase III (CAIII). ► We show that CAIII is a regulator of adipogenesis. ► We demonstrate that CAIII acts at the level of PPARγ2 gene expression. ► Our data contribute to a better understanding of the role of CAIII in fat tissue.

  11. In folio study of carbonic anhydrase and Rubisco activities in higher C3 plants using 18O and mass spectrometry

    This document studies the effects of a mild water stress and carbonic anhydrase activity by ethoxyzolamide (EZA) on the diffusion of CO2 in leaves, by 18O labelling of O2 and of CO2 associated to mass spectrometry. (A.B.). 5 refs., 2 figs

  12. Evolution of the mammary capillary network and carbonic anhydrase activity throughout lactation and during somatotropin treatment in goats

    Nielsen, Mette Benedicte Olaf; Cvek, Katarina; Dahlborn, Kristina

    2010-01-01

    During the normal course of lactation, mammary metabolic activity and blood flow are closely correlated. Six lactating goats were used in this experiment to test the hypothesis that the capillary network and the capillary enzyme, carbonic anhydrase (CA; EC 4.2.1.1) are important regulatory factors...

  13. Membrane carbonic anhydrase (IV) and ciliary epithelium. Carbonic anhydrase activity is present in the basolateral membranes of the non-pigmented ciliary epithelium of rabbit eyes.

    Matsui, H; Murakami, M; Wynns, G C; Conroy, C W; Mead, A; Maren, T H; Sears, M L

    1996-04-01

    Carbonic anhydrase inhibitors (CAIs) lower intraocular pressure by reducing aqueous flow. It has been thought that this pharmacologic reduction of aqueous flow is mediated by the ciliary epithelium, but it is not known whether this cellular action is effected by inhibition of the membranal (CA IV) and/or cytosolic (CA II) carbonic anhydrases of the ciliary epithelium. The isolated ciliary epithelial bilayer maintains its anatomic and functional polarity and generates a transepithelial potential difference (TEP) in an Ussing type chamber. Depletion of HCO3-, accomplished either with an HCO3(-)-free solution bathing the epithelial bilayer, or, with addition of freely permeant CAIs to HCO3(-)-containing media, (from either the PE or NPE side of the bilayer) depolarizes the preparation. Addition of CAIs to an HCO3(-)-depleted preparation has no further effect, indicating the specific action of the CAIs. The CAI, 2-p-NH2 benzenesulfonamido-1,3,4,-thiadiazole-5-SO2NH2, linked to polybutadiene maleic acid yields an impermeant polymer of 20000 Da with no loss of activity. At 45 microM this impermeant polymer caused a 60% increase in the SCC, seen only when the compound was applied to the NPE side of the bilayer. This latter result indicates an effect from inhibition of CA IV in the basolateral membranes of the NPE. Thus there are probably two different cellular actions of CAIs upon the ciliary epithelium to reduce aqueous inflow, cytoplasmic and membranal. The action of NPE basolateral membranal CA IV is probably linked to the chloride/bicarbonate exchanger. PMID:8795459

  14. Atomic resolution studies of carbonic anhydrase II

    The structure of human carbonic anhydrase II has been solved with a sulfonamide inhibitor at 0.9 Å resolution. Structural variation and flexibility is seen on the surface of the protein and is consistent with the anisotropic ADPs obtained from refinement. Comparison with 13 other atomic resolution carbonic anhydrase structures shows that surface variation exists even in these highly ordered isomorphous crystals. Carbonic anhydrase has been well studied structurally and functionally owing to its importance in respiration. A large number of X-ray crystallographic structures of carbonic anhydrase and its inhibitor complexes have been determined, some at atomic resolution. Structure determination of a sulfonamide-containing inhibitor complex has been carried out and the structure was refined at 0.9 Å resolution with anisotropic atomic displacement parameters to an R value of 0.141. The structure is similar to those of other carbonic anhydrase complexes, with the inhibitor providing a fourth nonprotein ligand to the active-site zinc. Comparison of this structure with 13 other atomic resolution (higher than 1.25 Å) isomorphous carbonic anhydrase structures provides a view of the structural similarity and variability in a series of crystal structures. At the center of the protein the structures superpose very well. The metal complexes superpose (with only two exceptions) with standard deviations of 0.01 Å in some zinc–protein and zinc–ligand bond lengths. In contrast, regions of structural variability are found on the protein surface, possibly owing to flexibility and disorder in the individual structures, differences in the chemical and crystalline environments or the different approaches used by different investigators to model weak or complicated electron-density maps. These findings suggest that care must be taken in interpreting structural details on protein surfaces on the basis of individual X-ray structures, even if atomic resolution data are available

  15. Coral Carbonic Anhydrases: Regulation by Ocean Acidification

    Didier Zoccola

    2016-06-01

    Full Text Available Global change is a major threat to the oceans, as it implies temperature increase and acidification. Ocean acidification (OA involving decreasing pH and changes in seawater carbonate chemistry challenges the capacity of corals to form their skeletons. Despite the large number of studies that have investigated how rates of calcification respond to ocean acidification scenarios, comparatively few studies tackle how ocean acidification impacts the physiological mechanisms that drive calcification itself. The aim of our paper was to determine how the carbonic anhydrases, which play a major role in calcification, are potentially regulated by ocean acidification. For this we measured the effect of pH on enzyme activity of two carbonic anhydrase isoforms that have been previously characterized in the scleractinian coral Stylophora pistillata. In addition we looked at gene expression of these enzymes in vivo. For both isoforms, our results show (1 a change in gene expression under OA (2 an effect of OA and temperature on carbonic anhydrase activity. We suggest that temperature increase could counterbalance the effect of OA on enzyme activity. Finally we point out that caution must, thus, be taken when interpreting transcriptomic data on carbonic anhydrases in ocean acidification and temperature stress experiments, as the effect of these stressors on the physiological function of CA will depend both on gene expression and enzyme activity.

  16. Coral Carbonic Anhydrases: Regulation by Ocean Acidification.

    Zoccola, Didier; Innocenti, Alessio; Bertucci, Anthony; Tambutté, Eric; Supuran, Claudiu T; Tambutté, Sylvie

    2016-01-01

    Global change is a major threat to the oceans, as it implies temperature increase and acidification. Ocean acidification (OA) involving decreasing pH and changes in seawater carbonate chemistry challenges the capacity of corals to form their skeletons. Despite the large number of studies that have investigated how rates of calcification respond to ocean acidification scenarios, comparatively few studies tackle how ocean acidification impacts the physiological mechanisms that drive calcification itself. The aim of our paper was to determine how the carbonic anhydrases, which play a major role in calcification, are potentially regulated by ocean acidification. For this we measured the effect of pH on enzyme activity of two carbonic anhydrase isoforms that have been previously characterized in the scleractinian coral Stylophora pistillata. In addition we looked at gene expression of these enzymes in vivo. For both isoforms, our results show (1) a change in gene expression under OA (2) an effect of OA and temperature on carbonic anhydrase activity. We suggest that temperature increase could counterbalance the effect of OA on enzyme activity. Finally we point out that caution must, thus, be taken when interpreting transcriptomic data on carbonic anhydrases in ocean acidification and temperature stress experiments, as the effect of these stressors on the physiological function of CA will depend both on gene expression and enzyme activity. PMID:27271641

  17. Modulation of the initial mineralization process of SaOS-2 cells by carbonic anhydrase activators and polyphosphate.

    Wang, Xiaohong; Schröder, Heinz C; Schlossmacher, Ute; Neufurth, Meik; Feng, Qingling; Diehl-Seifert, Bärbel; Müller, Werner E G

    2014-05-01

    Ca-phosphate/hydroxyapatite (HA) crystals constitute the mineral matrix of vertebrate bones, while Ca-carbonate is the predominant mineral of many invertebrates, like mollusks. Recent results suggest that CaCO₃ is also synthesized during early bone formation. We demonstrate that carbonic anhydrase-driven CaCO₃ formation in vitro is activated by organic extracts from the demosponge Suberites domuncula as well as by quinolinic acid, one component isolated from these extracts. Further results revealed that the stimulatory effect of bicarbonate (HCO₃ (-)) ions on mineralization of osteoblast-like SaOS-2 cells is strongly enhanced if the cells are exposed to inorganic polyphosphate (polyP), a linear polymer of phosphate linked by energy-rich phosphodiester bonds. The effect of polyP, administered as polyP (Ca²⁺ salt), on HA formation was found to be amplified by addition of the carbonic anhydrase-activating sponge extract or quinolinic acid. Our results support the assumption that CaCO₃ deposits, acting as bio-seeds for Ca-carbonated phosphate formation, are formed as an intermediate during HA mineralization and that the carbonic anhydrase-mediated formation of those deposits is under a positive-negative feedback control by bone alkaline phosphatase-dependent polyP metabolism, offering new targets for therapy of bone diseases/defects. PMID:24374859

  18. Salivary carbonic anhydrase isoenzyme VI

    Kivelä, Jyrki; Parkkila, Seppo; Parkkila, Anna-Kaisa; Leinonen, Jukka; Rajaniemi, Hannu

    1999-01-01

    The carbonic anhydrases (CAs) participate in the maintenance of pH homeostasis in various tissues and biological fluids of the human body by catalysing the reversible reaction CO2+ H2O ⇌ HCO3−+ H+ (Davenport & Fisher, 1938; Davenport, 1939; Maren, 1967). Carbonic anhydrase isoenzyme VI (CA VI) is the only secretory isoenzyme of the mammalian CA gene family. It is exclusively expressed in the serous acinar cells of the parotid and submandibular glands, from where it is secreted into the saliva. In this review, we will discuss recent advances in research focused on the physiological role of salivary CA VI in the oral cavity and upper alimentary canal. PMID:10523402

  19. Enzyme renaturation to higher activity driven by the sol-gel transition: Carbonic anhydrase

    Vinogradov, Vladimir V.; Avnir, David

    2015-09-01

    We describe a so-far unknown route for renaturing denatured enzymes, namely subjecting the denatured enzyme to an oxide sol-gel transition. The phenomenon was revealed in a detailed study of denatured carbonic anhydrase which was subjected to an alumina sol-gel transition, up to the thermally stabilizing entrapment in the final xerogel. Remarkably, not only that the killed enzyme regained its activity during the sol-gel process, but its activity increased to 180% of the native enzyme. To the best of our knowledge, this is the first report of enhanced activity following by renaturing (a “Phoenix effect”). Kinetic study which revealed a five-orders of magnitude (!) increase in the Arrhenius prefactor upon entrapment compared to solution. Circular dichroism analysis, differential scanning calorimetry, zeta potential analyses as well as synchronous fluorescence measurements, all of which were used to characterize the phenomenon, are consistent with a proposed mechanism which is based on the specific orienting interactions of the active site of the enzyme with respect to the alumina interface and its pores network.

  20. Carbonic anhydrase inhibitors drug design.

    McKenna, Robert; Supuran, Claudiu T

    2014-01-01

    Inhibition of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) has pharmacologic applications in the field of antiglaucoma, anticonvulsant, antiobesity, and anticancer agents but is also emerging for designing anti-infectives (antifungal and antibacterial agents) with a novel mechanism of action. As a consequence, the drug design of CA inhibitors (CAIs) is a very dynamic field. Sulfonamides and their isosteres (sulfamates/sulfamides) constitute the main class of CAIs which bind to the metal ion in the enzyme active site. Recently the dithiocarbamates, possessing a similar mechanism of action, were reported as a new class of inhibitors. Other families of CAIs possess a distinct mechanism of action: phenols, polyamines, some carboxylates, and sulfocoumarins anchor to the zinc-coordinated water molecule. Coumarins and five/six-membered lactones are prodrug inhibitors, binding in hydrolyzed form at the entrance of the active site cavity. Novel drug design strategies have been reported principally based on the tail approach for obtaining all these types of CAIs, which exploit more external binding regions within the enzyme active site (in addition to coordination to the metal ion), leading thus to isoform-selective compounds. Sugar-based tails as well as click chemistry were the most fruitful developments of the tail approach. Promising compounds that inhibit CAs from bacterial and fungal pathogens, of the dithiocarbamate, phenol and carboxylate types have also been reported. PMID:24146385

  1. External carbonic anhydrase in three Caribbean corals: quantification of activity and role in CO2 uptake

    Tansik, Anna L.; Fitt, William K.; Hopkinson, Brian M.

    2015-09-01

    Scleractinian corals have complicated inorganic carbon ( C i) transport pathways to support both photosynthesis, by their symbiotic dinoflagellates, and calcification. The first step in C i acquisition, uptake into the coral, is critical as the diffusive boundary layer limits the supply of CO2 to the surface and HCO3 - uptake is energy intensive. An external carbonic anhydrase (eCA) on the oral surface of corals is thought to facilitate CO2 uptake by converting HCO3 - into CO2, helping to overcome the limitation imposed by the boundary layer. However, this enzyme has not yet been identified or detected in corals, nor has its activity been quantified. We have developed a method to quantify eCA activity using a reaction-diffusion model to analyze data on 18O removal from labeled C i. Applying this technique to three species of Caribbean corals ( Orbicella faveolata, Porites astreoides, and Siderastrea radians) showed that all species have eCA and that the potential rates of CO2 generation by eCA greatly exceed photosynthetic rates. This demonstrates that eCA activity is sufficient to support its hypothesized role in CO2 supply. Inhibition of eCA severely reduces net photosynthesis in all species (on average by 46 ± 27 %), implying that CO2 generated by eCA is a major carbon source for photosynthesis. Because of the high permeability of membranes to CO2, CO2 uptake is likely driven by a concentration gradient across the cytoplasmic membrane. The ubiquity of eCA in corals from diverse genera and environments suggests that it is fundamental for photosynthetic CO2 supply.

  2. Dithiocarbamates with potent inhibitory activity against the Saccharomyces cerevisiae β-carbonic anhydrase.

    Bozdag, Murat; Carta, Fabrizio; Vullo, Daniela; Isik, Semra; AlOthman, Zeid; Osman, Sameh M; Scozzafava, Andrea; Supuran, Claudiu T

    2016-01-01

    Dithiocarbamates (DTCs) prepared from primary or secondary amines, which incorporated amino/hydroxyl-alkyl, mono-/bicyclic aliphatic/heterocyclic rings based on the quinuclidine, piperidine, hydroxy-/carboxy-/amino-substituted piperidine, morpholine and piperazine scaffolds, were investigated for the inhibition of α- and β-carbonic anhydrases (CAs, EC 4.2.1.1) of pharmacologic relevance, such as the human (h) isoform hCA I and II, as well as the Saccharomyces cerevisiae β-CA, scCA. The yeast and its β-CA were shown earlier to be useful models of pathogenic fungal infections. The DTCs investigated here were medium potency hCA I inhibitors (K(I)s of 66.5-910 nM), were more effective as hCA II inhibitors (K(I)s of 8.9-107 nM) and some of them showed excellent, low nanomolar activity against the yeast enzyme, with inhibition constants ranging between 6.4 and 259 nM. The detailed structure activity relationship for inhibition of the yeast and human enzymes is discussed. Several of the investigated DTCs showed excellent selectivity ratios for inhibiting the yeast over the human cytosolic CA isoforms. PMID:25669351

  3. Benzenesulfonamides incorporating bulky aromatic/heterocyclic tails with potent carbonic anhydrase inhibitory activity.

    Bozdag, Murat; Alafeefy, Ahmed M; Vullo, Daniela; Carta, Fabrizio; Dedeoglu, Nurcan; Al-Tamimi, Abdul-Malek S; Al-Jaber, Nabila A; Scozzafava, Andrea; Supuran, Claudiu T

    2015-12-15

    Three series of sulfonamides incorporating long, bulky tails were obtained by applying synthetic strategies in which substituted anthranilic acids, quinazolines and aromatic sulfonamides have been used as starting materials. They incorporate long, bulky diamide-, 4-oxoquinazoline-3-yl- or quinazoline-4-yl moieties in their molecules, and were investigated for the inhibition of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic human (h) hCA I and II, as well as the transmembrane hCA IX and XII. Most of the new sulfonamides showed excellent inhibitory effects against the four isoforms, with KIs of 7.6-322nM against hCA I, of 0.06-85.4nM against hCA II; of 6.7-152nM against hCA IX and of 0.49-237nM against hCA XII; respectively. However no relevant isoform-selective behavior has been observed for any of them, although hCA II and XII, isoforms involved in glaucoma-genesis were the most inhibited ones. The structure-activity relationship for inhibiting the four CAs with these derivatives is discussed in detail. PMID:26639945

  4. Phosphorylation controls the localization and activation of the lumenal carbonic anhydrase in Chlamydomonas reinhardtii.

    Amaya Blanco-Rivero

    Full Text Available BACKGROUND: Cah3 is the only carbonic anhydrase (CA isoform located in the thylakoid lumen of Chlamydomonas reinhardtii. Previous studies demonstrated its association with the donor side of the photosystem II (PSII where it is required for the optimal function of the water oxidizing complex. However this enzyme has also been frequently proposed to perform a critical function in inorganic carbon acquisition and CO(2 fixation and all mutants lacking Cah3 exhibit very poor growth after transfer to low CO(2 conditions. RESULTS/CONCLUSIONS: In the present work we demonstrate that after transfer to low CO(2, Cah3 is phosphorylated and that phosphorylation is correlated to changes in its localization and its increase in activity. When C. reinhardtii wild-type cells were acclimated to limiting CO(2 conditions, the Cah3 activity increased about 5-6 fold. Under these conditions, there were no detectable changes in the level of the Cah3 polypeptide. The increase in activity was specifically inhibited in the presence of Staurosporine, a protein kinase inhibitor, suggesting that the Cah3 protein was post-translationally regulated via phosphorylation. Immunoprecipitation and in vitro dephosphorylation experiments confirm this hypothesis. In vivo phosphorylation analysis of thylakoid polypeptides indicates that there was a 3-fold increase in the phosphorylation signal of the Cah3 polypeptide within the first two hours after transfer to low CO(2 conditions. The increase in the phosphorylation signal was correlated with changes in the intracellular localization of the Cah3 protein. Under high CO(2 conditions, the Cah3 protein was only associated with the donor side of PSII in the stroma thylakoids. In contrast, in cells grown at limiting CO(2 the protein was partly concentrated in the thylakoids crossing the pyrenoid, which did not contain PSII and were surrounded by Rubisco molecules. SIGNIFICANCE: This is the first report of a CA being post

  5. Multiple sources of carbonic anhydrase activity in pea thylakoids: soluble and membrane-bound forms.

    Rudenko, Natalia N; Ignatova, Lyudmila K; Ivanov, Boris N

    2007-01-01

    Carbonic anhydrase (CA) activity of pea thylakoids, thylakoid membranes enriched with photosystem I (PSI-membranes), or photosystem II (PSII-membranes) as well as both supernatant and pellet after precipitation of thylakoids treated with detergent Triton X-100 were studied. CA activity of thylakoids in the presence of varying concentrations of Triton X-100 had two maxima, at Triton/chlorophyll (triton/Chl) ratios of 0.3 and 1.0. CA activities of PSI-membranes and PSII-membranes had only one maximum each, at Triton/Chl ratio 0.3 or 1.0, respectively. Two CAs with characteristics of the membrane-bound proteins and one CA with characteristics of the soluble proteins were found in the medium after thylakoids were incubated with Triton. One of the first two CAs had mobility in PAAG after native electrophoresis the same as that of CA residing in PSI-membranes, and the other CA had mobility the same as the mobility of CA residing in PSII-membranes, but the latter was different from CA situated in PSII core-complex (Ignatova et al. 2006 Biochemistry (Moscow) 71:525-532). The properties of the "soluble" CA removed from thylakoids were different from the properties of the known soluble CAs of plant cell: apparent molecular mass was about 262 kD and it was three orders more sensitive to the specific CA inhibitor, ethoxyzolamide, than soluble stromal CA. The data are discussed as indicating the presence of, at least, four CAs in pea thylakoids. PMID:17347907

  6. Structural insight into activity enhancement and inhibition of H64A carbonic anhydrase II by imidazoles

    Mayank Aggarwal

    2014-03-01

    Full Text Available Human carbonic anhydrases (CAs are zinc metalloenzymes that catalyze the hydration and dehydration of CO2 and HCO3−, respectively. The reaction follows a ping-pong mechanism, in which the rate-limiting step is the transfer of a proton from the zinc-bound solvent (OH−/H2O in/out of the active site via His64, which is widely believed to be the proton-shuttling residue. The decreased catalytic activity (∼20-fold lower with respect to the wild type of a variant of CA II in which His64 is replaced with Ala (H64A CA II can be enhanced by exogenous proton donors/acceptors, usually derivatives of imidazoles and pyridines, to almost the wild-type level. X-ray crystal structures of H64A CA II in complex with four imidazole derivatives (imidazole, 1-methylimidazole, 2-methylimidazole and 4-methylimidazole have been determined and reveal multiple binding sites. Two of these imidazole binding sites have been identified that mimic the positions of the `in' and `out' rotamers of His64 in wild-type CA II, while another directly inhibits catalysis by displacing the zinc-bound solvent. The data presented here not only corroborate the importance of the imidazole side chain of His64 in proton transfer during CA catalysis, but also provide a complete structural understanding of the mechanism by which imidazoles enhance (and inhibit when used at higher concentrations the activity of H64A CA II.

  7. Role of Carbonic Anhydrase as an Activator in Carbonate Rock Dissolution and Its Implication for Atmospheric CO2 Sink

    刘再华

    2001-01-01

    The conversion of CO2 into H+ and is a relatively slow reaction. Hence, its kinetics may be rate determining in carbonate rock dissolution. Carbonic anhydrase (CA), which is widespread in nature, was used to catalyze the CO2 conversion process in dissolution experiments of limestone and dolomite. It was found that the rate of dissolution increases by a factor of about 10 after the addition of CA at a high CO2 partial pressure (Pco2) for limestone and about 3 at low Pco2 for dolomite. This shows that reappraisal is necessary for the importance of chemical weathering (including carbonate rock dissolution and silicate weathering) in the atmospheric CO2 sink and the mysterious missing sink in carbon cycling. It is doubtless that previous studies of weathering underestimated weathering rates due to the ignorance of CA as an activator in weathering, thus the contribution of weathering to the atmospheric CO2 sink is also underestimated. This finding also shows the need to examine the situ distribution and activity of CA in different waters and to investigate the role of CA in weathering.``

  8. Monothiocarbamates Strongly Inhibit Carbonic Anhydrases in Vitro and Possess Intraocular Pressure Lowering Activity in an Animal Model of Glaucoma.

    Vullo, Daniela; Durante, Mariaconcetta; Di Leva, Francesco Saverio; Cosconati, Sandro; Masini, Emanuela; Scozzafava, Andrea; Novellino, Ettore; Supuran, Claudiu T; Carta, Fabrizio

    2016-06-23

    A series of monothiocarbamates (MTCs) were prepared from primary/secondary amines and COS as potential carbonic anhydrase (CA, EC 4.2.1.1) inhibitors, using the dithiocarbamates, the xanthates, and the trithiocarbonates as lead compounds. The MTCs effectively inhibited the pharmacologically relevant human (h) hCAs isoforms I, II, IX, and XII in vitro and showed KIs spanning between the low and medium nanomolar range. By means of a computational study, the MTC moiety binding mode on the CAs was explained. Furthermore, a selection of MTCs were evaluated in a normotensive glaucoma rabbit model for their intraocular pressure (IOP) lowering effects and showed interesting activity. PMID:27253845

  9. Carbonic anhydrase activators: gold nanoparticles coated with derivatized histamine, histidine, and carnosine show enhanced activatory effects on several mammalian isoforms.

    Saada, Mohamed-Chiheb; Montero, Jean-Louis; Vullo, Daniela; Scozzafava, Andrea; Winum, Jean-Yves; Supuran, Claudiu T

    2011-03-10

    Lipoic acid moieties were attached to amine or amino acids showing activating properties against the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1). The obtained lipoic acid conjugates of histamine, L-histidine methyl ester, and L-carnosine methyl ester were attached to gold nanoparticles (NPs) by reaction with Au(III) salts in reducing conditions. The CA activators (CAAs)-coated NPs showed low nanomolar activation (K(A)s of 1-9 nM) of relevant cytosolic, membrane-bound, mitochondrial, and transmembrane CA isoforms, such as CA I, II, IV, VA, VII, and XIV. These NPs also effectively activated CAs ex vivo, in whole blood experiments, with an increase of 200-280% of the CA activity. This is the first example of enzyme activation with nanoparticles and may lead to biomedical applications for conditions in which the CA activity is diminished, such as aging, Alzheimer's disease, or CA deficiency syndrome. PMID:21291238

  10. Accelerating Mineral Carbonation Using Carbonic Anhydrase.

    Power, Ian M; Harrison, Anna L; Dipple, Gregory M

    2016-03-01

    Carbonic anhydrase (CA) enzymes have gained considerable attention for their potential use in carbon dioxide (CO2) capture technologies because they are able to catalyze rapidly the interconversion of aqueous CO2 and bicarbonate. However, there are challenges for widespread implementation including the need to develop mineralization process routes for permanent carbon storage. Mineral carbonation of highly reactive feedstocks may be limited by the supply rate of CO2. This rate limitation can be directly addressed by incorporating enzyme-catalyzed CO2 hydration. This study examined the effects of bovine carbonic anhydrase (BCA) and CO2-rich gas streams on the carbonation rate of brucite [Mg(OH)2], a highly reactive mineral. Alkaline brucite slurries were amended with BCA and supplied with 10% CO2 gas while aqueous chemistry and solids were monitored throughout the experiments (hours to days). In comparison to controls, brucite carbonation using BCA was accelerated by up to 240%. Nesquehonite [MgCO3·3H2O] precipitation limited the accumulation of hydrated CO2 species, apparently preventing BCA from catalyzing the dehydration reaction. Geochemical models reproduce observed reaction progress in all experiments, revealing a linear correlation between CO2 uptake and carbonation rate. Data demonstrates that carbonation in BCA-amended reactors remained limited by CO2 supply, implying further acceleration is possible. PMID:26829491

  11. Influence of Carbonic Anhydrase Activity in Terrestrial Vegetation on the 18O Content of Atmospheric CO2

    Gillon, Jim; Yakir, Dan

    2001-03-01

    The oxygen-18 (18O) content of atmospheric carbon dioxide (CO2) is an important indicator of CO2 uptake on land. It has generally been assumed that during photosynthesis, oxygen in CO2 reaches isotopic equilibrium with oxygen in 18O-enriched water in leaves. We show, however, large differences in the activity of carbonic anhydrase (which catalyzes CO2 hydration and 18O exchange in leaves) among major plant groups that cause variations in the extent of 18O equilibrium (θeq). A clear distinction in θeq between C3 trees and shrubs, and C4 grasses makes atmospheric C18OO a potentially sensitive indicator to changes in C3 and C4 productivity. We estimate a global mean θeq value of ~0.8, which reasonably reconciles inconsistencies between 18O budgets of atmospheric O2 (Dole effect) and CO2.

  12. Expression and activity of carbonic anhydrase IX is associated with metabolic dysfunction in MDA-MB-231 breast cancer cells.

    Li, Ying; Wang, H.; Oosterwijk, E.; Tu, C.; Shiverick, K.T.; Silverman, D.N.; Frost, S.C.

    2009-01-01

    The expression of carbonic anhydrase IX (CAIX), a marker for hypoxic tumors, is correlated with poor prognosis in breast cancer patients. We show herein that the MDA-MB-231 cells, a "triple-negative," basal B line, express exclusively CAIX, while a luminal cell line (T47D) expresses carbonic anhydra

  13. Thermostable Carbonic Anhydrases in Biotechnological Applications

    Anna Di Fiore

    2015-07-01

    Full Text Available Carbonic anhydrases are ubiquitous metallo-enzymes which catalyze the reversible hydration of carbon dioxide in bicarbonate ions and protons. Recent years have seen an increasing interest in the utilization of these enzymes in CO2 capture and storage processes. However, since this use is greatly limited by the harsh conditions required in these processes, the employment of thermostable enzymes, both those isolated by thermophilic organisms and those obtained by protein engineering techniques, represents an interesting possibility. In this review we will provide an extensive description of the thermostable carbonic anhydrases so far reported and the main processes in which these enzymes have found an application.

  14. Heterocyclic compounds as carbonic anhydrase inhibitor.

    Husain, Asif; Madhesia, Diwakar

    2012-12-01

    The carbonic anhydrases (CAs, EC 4.2.1.1) constitute interesting targets for the design of pharmacological agents useful in the treatment or prevention of a variety of disorders such as, glaucoma, acid-base disequilibria, epilepsy, and other neuromuscular diseases, altitude sickness, edema, and obesity. A quite new and unexpected application of the CA inhibitors (CAIs) is with regard to their potential use in the management (imaging and treatment) of hypoxic tumors. A series of sulfonamides, including some clinically used derivatives like acetazolamide, methazolamide, ethoxzolamide, dichlorophenamide, dorzolamide, brinzolamide, benzolamide, and sulpiride, or indisulam, a compound in clinical development as antitumor drug, as well as the sulfamate antiepileptic drug topiramate have been reported to inhibit various human carbonic anhydrase isozyme. Various heterocyclic sulfonamides have been reported in this review with their potency to inhibit different carbonic anhydrases isozymes. PMID:21981003

  15. Carborane-based carbonic anhydrase inhibitors

    Brynda, Jiří; Mader, Pavel; Šícha, Václav; Fábry, Milan; Poncová, Kristýna; Bakardjiev, Mario; Grüner, Bohumír; Cígler, Petr; Řezáčová, Pavlína

    2013-01-01

    Roč. 52, č. 51 (2013), s. 13760-13763. ISSN 1433-7851 R&D Projects: GA TA ČR(CZ) TE01020028; GA AV ČR IAAX00320901 Institutional support: RVO:68378050 ; RVO:61388963 ; RVO:61388980 Keywords : carbonic anhydrases * carboranes * drug discovery * inhibitors * structure elucidation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 11.336, year: 2013

  16. Impacts of Elevated CO2 Concentration on Biochemical Composition,Carbonic Anhydrase, and Nitrate Reductase Activity of Freshwater Green Algae

    Jian-Rong XIA; Kun-Shan GAO

    2005-01-01

    To investigate the biochemical response of freshwater green algae to elevated CO2 concentrations,Chlorella pyrenoidosa Chick and Chlamydomonas reinhardtii Dang cells were cultured at different CO2concentrations within the range 3-186 μmol/L and the biochemical composition, carbonic anhydrase (CA),and nitrate reductase activities of the cells were investigated. Chlorophylls (Chl), carotenoids, carbonhydrate,and protein contents were enhanced to varying extents with increasing CO2 concentration from 3-186μmol/L. The CO2 enrichment significantly increased the Chl a/Chl b ratio in Chlorella pyrenoidosa, but not in Chlamydomonas reinhardtii. The CO2 concentration had significant effects on CA and nitrate reductase activity. Elevating CO2 concentration to 186 μmol/L caused a decline in intracellular and extracellullar CA activity. Nitrate reductase activity, under either light or dark conditions, in C. reinhardtii and C. pyrenoidosa was also significantly decreased with CO2 enrichment. From this study, it can be concluded that CO2enrichment can affect biochemical composition, CA, and nitrate reductase activity, and that the biochemical response was species dependent.

  17. Effects of novel auto-inducible medium on growth, activity and CO₂ capture capacity of Escherichia coli expressing carbonic anhydrase.

    Watson, Stuart K; Kan, Eunsung

    2015-10-01

    A glucose-based auto-inducible medium (glucose-AIM) has been developed to enhance both growth and expression of lac operon-linked carbonic anhydrase (CA) expression in a recombinant strain of Escherichia coli. When the E. coli expressing CA was grown on various media, the glucose-based auto-inducible medium (glucose AIM) resulted in a CA activity of 1022 mU OD(600 nm)(-1) mL(-1) at 24 h and a specific growth rate of 0.082 h(-1). The CA activity was four to fourteen times higher than those by LB-IPTG. The E. coli expressing CA grown on the glucose-AIM showed highest activity at pH8.5 while it kept high stability up to 40°C and an inlet CO2 concentration of 6%. These findings indicate that the glucose-AIM would be a cost-effective medium to support high cell growth, CA activity and stability for effective CO2 capture. PMID:26264623

  18. Significance of different carbon forms and carbonic anhydrase activity in monitoring and prediction of algal blooms in the urban section of Jialing River, Chongqing, China.

    Nie, Yudong; Zhang, Zhi; Shen, Qian; Gao, Wenjin; Li, Yingfan

    2016-05-18

    The Three Gorges Dam is one of the largest hydroelectric power plants worldwide; its reservoir was preliminarily impounded in 2003 and finally impounded to 175 m in 2012. The impoundment caused some environmental problems, such as algal blooms. Carbonic anhydrase (CA) is an important biocatalyst in the carbon utilization by algae and plays an important role in algal blooms. CA has received considerable attention for its role in red tides in oceans, but less investigation has been focused on its role in algal blooms in fresh water. In this study, the seasonal variation of water quality parameters, different carbon forms, carbonic anhydrase activity (CAA), and the algal cell density of four sampling sites in the urban section of the Jialing River were investigated from November 1, 2013 to October 31, 2014. Results indicated that CAA exhibited a positive correlation with dissoluble organic carbon (DOC), pH, and temperature, but a negative correlation with CO2 and dissoluble inorganic carbon (DIC). Algal cell density exhibited a positive correlation with flow velocity (V), pH, particulate organic carbon (POC), and CAA, a negative correlation with CO2, and a negative partial correlation with DIC. The relationship between CAA and algal cell density for the entire year can be described as cells = 23.278CAA - 42.666POC + 139.547pH - 1057.106. The algal bloom prediction model for the key control period can be described as cells = -45.895CAA + 776.103V- 29.523DOC + 14.219PIC + 35.060POC + 19.181 (2 weeks in advance) and cells = 69.200CAA + 203.213V + 4.184CO2 + 38.911DOC + 40.770POC - 189.567 (4 weeks in advance). The findings in this study demonstrate that the carbon utilization by algae is conducted by CA and provide a new method of monitoring algal cell density and predicting algal blooms. PMID:27142237

  19. Hyperkalaemia induced by carbonic anhydrase inhibitor.

    Wakabayashi, Y.

    1991-01-01

    An 81-year-old man developed hyperkalaemic and hyperchloraemic metabolic acidosis following treatment with a carbonic anhydrase inhibitor for his glaucoma. He had mild renal failure and selective aldosterone deficiency was confirmed. In this case the treatment did not lead to hypokalaemia because of the limited potassium secretory capacity in the renal tubules from selective aldosterone deficiency; rather, it may have led to hyperkalaemia because metabolic acidosis induced by the carbonic anh...

  20. Thermostable Carbonic Anhydrases in Biotechnological Applications

    Anna Di Fiore; Vincenzo Alterio; Simona M. Monti; Giuseppina De Simone; Katia D'Ambrosio

    2015-01-01

    Carbonic anhydrases are ubiquitous metallo-enzymes which catalyze the reversible hydration of carbon dioxide in bicarbonate ions and protons. Recent years have seen an increasing interest in the utilization of these enzymes in CO2 capture and storage processes. However, since this use is greatly limited by the harsh conditions required in these processes, the employment of thermostable enzymes, both those isolated by thermophilic organisms and those obtained by protein engineering techniques,...

  1. Activity and stability of immobilized carbonic anhydrase for promoting CO2 absorption into a carbonate solution for post-combustion CO2 capture

    Zhang, S.; Zhang, Z.; Lu, Y.; Rostam-Abadi, M.; Jones, A.

    2011-01-01

    An Integrated Vacuum Carbonate Absorption Process (IVCAP) currently under development could significantly reduce the energy consumed when capturing CO2 from the flue gases of coal-fired power plants. The biocatalyst carbonic anhydrase (CA) has been found to effectively promote the absorption of CO2 into the potassium carbonate solution that would be used in the IVCAP. Two CA enzymes were immobilized onto three selected support materials having different pore structures. The thermal stability of the immobilized CA enzymes was significantly greater than their free counterparts. For example, the immobilized enzymes retained at least 60% of their initial activities after 90days at 50??C compared to about 30% for their free counterparts under the same conditions. The immobilized CA also had significantly improved resistance to concentrations of sulfate (0.4M), nitrate (0.05M) and chloride (0.3M) typically found in flue gas scrubbing liquids than their free counterparts. ?? 2011 Elsevier Ltd.

  2. Epidermal carbonic anhydrase activity and exoskeletal metal content during the molting cycle of the blue crab, Callinectes sapidus.

    Calhoun, Stacy; Zou, Enmin

    2016-03-01

    During the crustacean molting cycle, the exoskeleton is first mineralized in postmolt and intermolt and then presumably demineralized in premolt in order for epidermal retraction to occur. The mineralization process calls for divalent metal ions, such as Ca(2+) and Mg(2+) , and bicarbonate ions whereas protons are necessary for dissolution of carbonate salts. Carbonic anhydrase (CA) has been suggested to be involved in exoskeletal mineralization by providing bicarbonate ions through catalyzing the reaction of carbon dioxide hydration. However, results of earlier studies on the role of epidermal CA in metal incorporation in crustacean exoskeleton are not consistent. This study was aimed to provide further evidence to support the notion that epidermal CA is involved in exoskeletal mineralization using the blue crab, Callinectes sapidus (Rathbun 1896), as the model crustacean. Significant increases first in calcium and magnesium then in manganese post-ecdysis indicate significant metal deposition during postmolt and intermolt. Significant positive correlation between calcium or magnesium content and epidermal CA activity in postmolt and intermolt constitutes evidence that CA is involved in the mineralization of the crustacean exoskeleton. Additionally, we proposed a hypothetical model to describe the role of epidermal CA in both mineralization and demineralization of the exoskeleton based on the results of epidermal CA activity and exoskeletal metal content during the molting cycle. Furthermore, we found that the pattern of epidermal CA activity during the molting cycle of C. sapidus is similar to that of ecdysteroids reported for the same species, suggesting that epidermal CA activity may be under control of the molting hormones. J. Exp. Zool. 9999A:XX-XX, 2016. © 2016 Wiley Periodicals, Inc. PMID:26935248

  3. The In vitro Inhibitory Effects of Some Disinfectants on Enzyme Activity of Carbonic Anhydrase from Rainbow Trout (Oncorhynchus Mykiss Gills

    ??kriye Aras Hisar

    2005-01-01

    Full Text Available Traditional treatments of parasitic and bacterial disease in aquaculture are based on chemotherapeutic compounds. Although, a lot of compounds are used on fish treatment, their undesirable effects are not known in detail. In this study, the effects of some disinfectants - malachite green, methylene blue, potassium permanganate, chloramine-T, copper sulphate and formalin - on Rainbow Trout (RT gill Carbonic Anhydrase (CA which plays a key role in gas exchange, acid-base balance, osmoregulation and ionoregulation were investigated in vitro. For this purpose, CA was purified from RT gills by using sepharose-4$-L tyrosine-sulfanylamide affinity gel chromatography method at initial. CA enzyme with 55.56 (EU/mg proteins specific activity was purified with a yield of 40 % and 104.8-fold finally. I (inhibition values of malachite green, 50 methylene blue, potassium permanganate, chloramine-T and copper sulphate were determined as 0.05 mM, 0.023 mM, 0.15 mM, 0.32 mM and 5.39nM by means of activity % [disinfectant] graphs, respectively. In conclusion our data showed that all the disinfectants except formalin had the in vitro inhibitory effects on the rainbow trout gill CA enzyme whose inhibition could be hazardous to physiological functions such as osmoregulation and acid-base balance in fish.

  4. Effects of intraleaf variations in carbonic anhydrase activity and gas exchange on leaf C18OO isoflux in Zea mays.

    Affek, Hagit P; Krisch, Maria J; Yakir, Dan

    2006-01-01

    Variation in the C18OO content of atmospheric CO2 (delta18Oa) can be used to distinguish photosynthesis from soil respiration, which is based on carbonic anhydrase (CA)-catalyzed 18O exchange between CO2 and 18O-enriched leaf water (delta18Ow). Here we tested the hypothesis that mean leaf delta18Ow and assimilation rates can be used to estimate whole-leaf C18OO flux (isoflux), ignoring intraleaf variations in CA activity and gas exchange parameters. We observed variations in CA activity along the leaf (> 30% decline from the leaf center toward the leaf ends), which were only partially correlated to those in delta18Ow (7 to 21 per thousand), delta18O and delta13C of leaf organic matter (25 to 30 per thousand and -12.8 to -13.2 per thousand, respectively), and substomatal CO2 concentrations (intercellular CO2 concentrations, c(i), at the leaf center were approximately 40% of those at the leaf tip). The combined effect of these variations produced a leaf-integrated isoflux that was different from that predicted based on bulk leaf values. However, because of canceling effects among the influencing parameters, isoflux overestimations were only approximately 10%. Conversely, use of measured parameters from a leaf segment could produce large errors in predicting leaf-integrated C18OO fluxes. PMID:16411935

  5. Structure and function of carbonic anhydrases.

    Supuran, Claudiu T

    2016-07-15

    Carbonic anhydrases (CAs, EC 4.2.1.1) catalyse the interconversion between CO2 and bicarbonate as well as other hydrolytic reactions. Among the six genetic families known to date, the α-, β-, γ-, δ-, ζ- and η-CAs, detailed kinetic and X-ray crystallographic studies have allowed a deep understanding of the structure-function relationship in this superfamily of proteins. A metal hydroxide nucleophilic species of the enzyme, and a unique active site architecture, with half of it hydrophilic and the opposing part hydrophobic, allow these enzymes to act as some of the most effective catalysts known in Nature. The CA activation and inhibition mechanisms are also known in detail, with a large number of new inhibitor classes being described in the last years. Apart from the zinc binders, some classes of inhibitors anchor to the metal ion coordinated nucleophile, others occlude the entrance of the active site cavity and more recently, compounds binding outside the active site were described. CA inhibition has therapeutic applications for drugs acting as diuretics, antiepileptics, antiglaucoma, antiobesity and antitumour agents. Targeting such enzymes from pathogens may lead to novel anti-infectives. Successful structure-based drug design campaigns allowed the discovery of highly isoform selective CA inhibitors (CAIs), which may lead to a new generation of drugs targeting these widespread enzymes. The use of CAs in CO2 capture processes for mitigating the global temperature rise has also been investigated more recently. PMID:27407171

  6. Carborane-based inhibitors of carbonic anhydrases

    Brynda, Jiří; Pachl, Petr; Šícha, Václav; Fábry, Milan; Grüner, Bohumír; Cígler, Petr; Řezáčová, Pavlína

    2015-01-01

    Roč. 22, č. 1 (2015), s. 3. ISSN 1211-5894. [Discussions in Structural Molecular Biology . Annual Meeting of the Czech Society for Structural Biology /13./. 19.03.2015-21.03.2015, Nové Hrady] R&D Projects: GA ČR GA15-05677S Institutional support: RVO:61388963 ; RVO:68378050 ; RVO:61388980 Keywords : carboranes * carbonic anhydrase Subject RIV: CE - Biochemistry

  7. Enzymes for carbon sequestration: neutron crystallographic studies of carbonic anhydrase

    The first neutron crystal structure of carbonic anhydrase is presented. The structure reveals interesting and unexpected features of the active site that affect catalysis. Carbonic anhydrase (CA) is a ubiquitous metalloenzyme that catalyzes the reversible hydration of CO2 to form HCO3− and H+ using a Zn–hydroxide mechanism. The first part of catalysis involves CO2 hydration, while the second part deals with removing the excess proton that is formed during the first step. Proton transfer (PT) is thought to occur through a well ordered hydrogen-bonded network of waters that stretches from the metal center of CA to an internal proton shuttle, His64. These waters are oriented and ordered through a series of hydrogen-bonding interactions to hydrophilic residues that line the active site of CA. Neutron studies were conducted on wild-type human CA isoform II (HCA II) in order to better understand the nature and the orientation of the Zn-bound solvent (ZS), the charged state and conformation of His64, the hydrogen-bonding patterns and orientations of the water molecules that mediate PT and the ionization of hydrophilic residues in the active site that interact with the water network. Several interesting and unexpected features in the active site were observed which have implications for how PT proceeds in CA

  8. Structural analysis of inhibitor binding to human carbonic anhydrase II.

    Boriack-Sjodin, P. A.; Zeitlin, S; Chen, H H; Crenshaw, L.; Gross, S.; Dantanarayana, A.; P. Delgado; May, J. A.; Dean, T.; Christianson, D. W.

    1998-01-01

    X-ray crystal structures of carbonic anhydrase II (CAII) complexed with sulfonamide inhibitors illuminate the structural determinants of high affinity binding in the nanomolar regime. The primary binding interaction is the coordination of a primary sulfonamide group to the active site zinc ion. Secondary interactions fine-tune tight binding in regions of the active site cavity >5 A away from zinc, and this work highlights three such features: (1) advantageous conformational restraints of a bi...

  9. The impact of heavy metals on the activity of carbonic anhydrase from rainbow trout (Oncorhynchus mykiss) kidney.

    Söyüt, Hakan; Beydemir, Sükrü

    2012-05-01

    Many environmental and health problems have become a consequence of contamination of soil and water by toxic heavy metals and organic pollutants in the present age of technology. Heavy metals play vital roles in enzyme activities and other metabolic events with their bioaccumulative and nonbiodegradable properties among aquatic pollutants. Metal toxicity causes irregular metallothioneins protein synthesis, renal damage, and disruption of bone structure in humans and wildlife. In this study, we investigated in vitro effects of some metals on chemical-targeted carbonic anhydrase (CA) enzyme from rainbow trout kidney. The enzyme was purified with a specific activity of 17,285 EU × mg(-1) and 31.7% yield and approximately 1800-fold using simple affinity purification method. Molecular weights of the subunit and native enzyme were estimated as 28.7 kDa and 26.9 kDa via sodium dodecyl sulfate polyacrylamide gel electrophoresis and Sephadex-G 200 column, respectively. Other kinetic properties of the enzyme were determined. Apparent K(m) , V (max) and k (cat) values were 0.40 mM, 0.097 µmol min(-1) and 15.2 s(-1) for p-nitrophenylacetate substrate, respectively. Inhibitory effects of cobalt, zinc, copper, cadmium and silver on CA activity were determined using the esterase method under in vitro conditions. IC(50) and K(i) values were calculated for metals. K(i) values for Co(2+), Zn(2+), Cu(2+), Cd(2+) and Ag(+) were 0.035, 1.2, 34.8, 103 and 257 from Lineweaver-Burk graphs, respectively. Consequently, in vitro inhibition rank order was determined as Co(2+) > Zn(2+) > Cu(2+) > Cd(2+) > Ag(+). The potential inhibitor for CA was found as Co(2+) from these results. PMID:21949088

  10. Effects of sodium bicarbonate concentration on growth, photosynthesis, and carbonic anhydrase activity of macroalgae Gracilariopsis lemaneiformis, Gracilaria vermiculophylla, and Gracilaria chouae (Gracilariales, Rhodophyta).

    Zhou, Wei; Sui, Zhenghong; Wang, Jinguo; Hu, Yiyi; Kang, Kyoung Ho; Hong, Hye Ran; Niaz, Zeeshan; Wei, Huihui; Du, Qingwei; Peng, Chong; Mi, Ping; Que, Zhou

    2016-06-01

    There is potential for bicarbonate to improve crop yields and economic efficiency of marine algae. However, few studies have focused on the effect of bicarbonate on the growth, photosynthesis, and enzyme activity associated with carbon utilization, especially in commercial macroalgae. Here, the addition of bicarbonate (up to 420 mg L(-1)) to macroalgal cultures has been evaluated for Gracilariopsis lemaneiformis, Gracilaria vermiculophylla, and Gracilaria chouae with respect to growth rate, photosynthetic activity, carbonic anhydrase activity, and biochemical composition. The results showed that the effects of NaHCO3 on growth, chlorophyll a, phycoerythrin, photosynthetic oxygen evolution, photochemical parameters of PSI and PSII, carbonic anhydrase activity, and nitrogen content were significant (P 336 mg L(-1) for Gp. lemaneiformis and >420 mg L(-1) for the other two species). Moreover, species-specific differences induced by supplementation with bicarbonate were discovered during culture. Optimal concentrations of NaHCO3 used in this study were 252 mg L(-1) for Gp. lemaneiformis and 336 mg L(-1) for G. vermiculophylla and G. chouae. These results suggest that an adequate supplementation of sodium bicarbonate is a viable strategy for promoting growth and photosynthetic activity in some macroalgae as well as for improving biochemical composition. The study will help to accelerate the growth rate of algae and improve the quality of thalli, and will also be useful for enhancing the understanding of carbon utilization in macroalgae. PMID:26960545

  11. How many carbonic anhydrase inhibition mechanisms exist?

    Supuran, Claudiu T

    2016-01-01

    Six genetic families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1) were described to date. Inhibition of CAs has pharmacologic applications in the field of antiglaucoma, anticonvulsant, anticancer, and anti-infective agents. New classes of CA inhibitors (CAIs) were described in the last decade with enzyme inhibition mechanisms differing considerably from the classical inhibitors of the sulfonamide or anion type. Five different CA inhibition mechanisms are known: (i) the zinc binders coordinate to the catalytically crucial Zn(II) ion from the enzyme active site, with the metal in tetrahedral or trigonal bipyramidal geometries. Sulfonamides and their isosters, most anions, dithiocarbamates and their isosters, carboxylates, and hydroxamates bind in this way; (ii) inhibitors that anchor to the zinc-coordinated water molecule/hydroxide ion (phenols, carboxylates, polyamines, 2-thioxocoumarins, sulfocoumarins); (iii) inhibitors which occlude the entrance to the active site cavity (coumarins and their isosters), this binding site coinciding with that where CA activators bind; (iv) compounds which bind out of the active site cavity (a carboxylic acid derivative was seen to inhibit CA in this manner), and (v) compounds for which the inhibition mechanism is not known, among which the secondary/tertiary sulfonamides as well as imatinib/nilotinib are the most investigated examples. As CAIs are used clinically in many pathologies, with a sulfonamide inhibitor (SLC-0111) in Phase I clinical trials for the management of metastatic solid tumors, this review updates the recent findings in the field which may be useful for a structure-based drug design approach of more selective/potent modulators of the activity of these enzymes. PMID:26619898

  12. Generation of nitric oxide from nitrite by carbonic anhydrase

    Aamand, Rasmus; Dalsgaard, Thomas; Jensen, Frank B;

    2009-01-01

    In catalyzing the reversible hydration of CO2 to bicarbonate and protons, the ubiquitous enzyme carbonic anhydrase (CA) plays a crucial role in CO2 transport, in acid-base balance, and in linking local acidosis to O2 unloading from hemoglobin. Considering the structural similarity between...... bicarbonate and nitrite, we hypothesized that CA uses nitrite as a substrate to produce the potent vasodilator nitric oxide (NO) to increase local blood flow to metabolically active tissues. Here we show that CA readily reacts with nitrite to generate NO, particularly at low pH, and that the NO produced in...... effectively in catalysis. Taken together, our results reveal a novel nitrous anhydrase enzymatic activity of CA that would function to link the in vivo main end products of energy metabolism (CO2/H+) to the generation of vasoactive NO. The CA-mediated NO production may be important to the correlation between...

  13. Generation of nitric oxide from nitrite by carbonic anhydrase:

    Aamand, Rasmus; Dalsgaard, Thomas; Jensen, Frank Bo;

    2009-01-01

    In catalyzing the reversible hydration of CO2 to bicarbonate and protons, the ubiquitous enzyme carbonic anhydrase (CA) plays a crucial role in CO2 transport, in acid-base balance, and in linking local acidosis to O2 unloading from hemoglobin. Considering the structural similarity between...... bicarbonate and nitrite, we hypothesized that CA uses nitrite as a substrate to produce the potent vasodilator nitric oxide (NO) to increase local blood flow to metabolically active tissues. Here we show that CA readily reacts with nitrite to generate NO, particularly at low pH, and that the NO produced in...... effectively in catalysis. Taken together, our results reveal a novel nitrous anhydrase enzymatic activity of CA that would function to link the in vivo main end products of energy metabolism (CO2/H+) to the generation of vasoactive NO. The CA-mediated NO production may be important to the correlation between...

  14. Future Perspective in Carbonic Anhydrase Inhibitors and its Drugs

    S.Petchimuthu

    2013-09-01

    Full Text Available Through this review it is contemplated that carbonic anhydrase inhibitors, were a traditional drugs of choice for the treatment of glaucoma with a myriad of side effects and inadequate topical effectiveness, may be formulated into a topically effective agent by utilizing various newer formulation approaches of ocular drug delivery. Even though the carbonic anhydrase inhibitor, acetazolamide (ACZ has a poor solubility and penetration power (BCS Class IV, various studies mentioned in the review indicate that it is possible to successfully formulate topically effective ACZ by using:(i High concentration of the drug, (ii Surfactant gel preparations of ACZ, (iii ACZ loaded into liposomes, (iv Cyclodextrins to increase the solubility and hence bioavailability of ACZ, and Viscolyzers and other polymers either alone or in combination with cyclodextrins. With the advent of newer topical carbonic anhydrase inhibitors (CAIs like dorzolamide and brinzolamide, a localized effect with fewer side effects is expected.But whenever absorbed systemically, a similar range of adverse effects (attributable to sulphonamides may occur upon use. Furthermore, oral ACZ is reported to be more physiologically effective than 2% dorzolamide hydrochloridead ministered topically, even though in isolated tissues dorzolamide appears to be the most active as it shows the lowest IC50 values for CA-II and CA-IV. Hence, there exists considerable scope for the development of more/equally effective and inexpensive topically effective formulations of ACZ. The use of various formulation technologies discussed in this review can provide a fresh impetus to research in this area.

  15. Identifying motor and sensory myelinated axons in rabbit peripheral nerves by histochemical staining for carbonic anhydrase and cholinesterase activities

    Riley, Danny A.; Sanger, James R.; Matloub, Hani S.; Yousif, N. John; Bain, James L. W.

    1988-01-01

    Carbonic anhydrase (CA) and cholinesterase (CE) histochemical staining of rabbit spinal nerve roots and dorsal root ganglia demonstrated that among the reactive myeliated axons, with minor exceptions, sensory axons were CA positive and CE negative whereas motor axons were CA negative and CE positive. The high specificity was achieved by adjusting reaction conditions to stain subpopulations of myelinated axons selectively while leaving 50 percent or so unstained. Fixation with glutaraldehyde appeared necessary for achieving selectivity. Following sciatic nerve transection, the reciprocal staining pattern persisted in damaged axons and their regenerating processes which formed neuromas within the proximal nerve stump. Within the neuromas, CA-stained sensory processes were elaborated earlier and in greater numbers than CE-stained regenerating motor processes. The present results indicate that histochemical axon typing can be exploited to reveal heterogeneous responses of motor and sensory axons to injury.

  16. Carbonic anhydrases as targets for medicinal chemistry.

    Supuran, Claudiu T; Scozzafava, Andrea

    2007-07-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) are zinc enzymes acting as efficient catalysts for the reversible hydration of carbon dioxide to bicarbonate. 16 different alpha-CA isoforms were isolated in mammals, where they play crucial physiological roles. Some of them are cytosolic (CA I, CA II, CA III, CA VII, CA XIII), others are membrane-bound (CA IV, CA IX, CA XII, CA XIV and CA XV), CA VA and CA VB are mitochondrial, and CA VI is secreted in saliva and milk. Three acatalytic forms are also known, the CA related proteins (CARP), CARP VIII, CARP X and CARP XI. Representatives of the beta-delta-CA family are highly abundant in plants, diatoms, eubacteria and archaea. The catalytic mechanism of the alpha-CAs is understood in detail: the active site consists of a Zn(II) ion co-ordinated by three histidine residues and a water molecule/hydroxide ion. The latter is the active species, acting as a potent nucleophile. For beta- and gamma-CAs, the zinc hydroxide mechanism is valid too, although at least some beta-class enzymes do not have water directly coordinated to the metal ion. CAs are inhibited primarily by two classes of compounds: the metal complexing anions and the sulfonamides/sulfamates/sulfamides possessing the general formula RXSO(2)NH(2) (R=aryl; hetaryl; perhaloalkyl; X=nothing, O or NH). Several important physiological and physio-pathological functions are played by CAs present in organisms all over the phylogenetic tree, related to respiration and transport of CO(2)/bicarbonate between metabolizing tissues and the lungs, pH and CO(2) homeostasis, electrolyte secretion in a variety of tissues/organs, biosynthetic reactions, such as the gluconeogenesis and ureagenesis among others (in animals), CO(2) fixation (in plants and algae), etc. The presence of these ubiquitous enzymes in so many tissues and in so different isoforms represents an attractive goal for the design of inhibitors with biomedical applications. Indeed, CA inhibitors are clinically used as

  17. Carbonic Anhydrases and Their Biotechnological Applications

    Robert McKenna

    2013-08-01

    Full Text Available The carbonic anhydrases (CAs are mostly zinc-containing metalloenzymes which catalyze the reversible hydration/dehydration of carbon dioxide/bicarbonate. The CAs have been extensively studied because of their broad physiological importance in all kingdoms of life and clinical relevance as drug targets. In particular, human CA isoform II (HCA II has a catalytic efficiency of 108 M−1 s−1, approaching the diffusion limit. The high catalytic rate, relatively simple procedure of expression and purification, relative stability and extensive biophysical studies of HCA II has made it an exciting candidate to be incorporated into various biomedical applications such as artificial lungs, biosensors and CO2 sequestration systems, among others. This review highlights the current state of these applications, lists their advantages and limitations, and discusses their future development.

  18. Electropolymerized carbonic anhydrase immobilization for carbon dioxide capture.

    Merle, Geraldine; Fradette, Sylvie; Madore, Eric; Barralet, Jake E

    2014-06-17

    Biomimetic carbonation carried out with carbonic anhydrase (CA) in CO2-absorbing solutions, such as methyldiethanolamine (MDEA), is one approach that has been developed to accelerate the capture of CO2. However, there are several practical issues, such as high cost and limited enzyme stability, that need to be overcome. In this study, the capacity of CA immobilization on a porous solid support was studied to improve the instability in the tertiary amine solvent. We have shown that a 63% porosity macroporous carbon foam support makes separation and reuse facile and allows for an efficient supply and presentation of CO2 to an aqueous solvent and the enzyme catalytic center. These enzymatic supports conserved 40% of their initial activity after 42 days at 70 °C in an amine solvent, whereas the free enzyme shows no activity after 1 h in the same conditions. In this work, we have overcome the technical barrier associated with the recovery of the biocatalyst after operation, and most of all, these electropolymerized enzymatic supports have shown a remarkable increase of thermal stability in an amine-based CO2 sequestration solvent. PMID:24856780

  19. Synthesis of a new series of dithiocarbamates with effective human carbonic anhydrase inhibitory activity and antiglaucoma action.

    Bozdag, Murat; Carta, Fabrizio; Vullo, Daniela; Akdemir, Atilla; Isik, Semra; Lanzi, Cecilia; Scozzafava, Andrea; Masini, Emanuela; Supuran, Claudiu T

    2015-05-15

    A new series of dithiocarbamates (DTCs) was prepared from primary/secondary amines incorporating amino/hydroxyl-alkyl, mono- and bicyclic aliphatic ring systems based on the quinuclidine, piperidine, hydroxy-/carboxy-/amino-substituted piperidine, morpholine and piperazine scaffolds, and carbon disulfide. The compounds were investigated for the inhibition of four mammalian α-carbonic anhydrases (CAs, EC 4.2.1.1) of pharmacologic relevance, that is, the human (h) hCA I, II, IX and XII, drug targets for antiglaucoma (hCA II and XII) or antitumor (hCA IX/XII) agents. The compounds were moderate or inefficient hCA I inhibitors (off-target isoform for both applications), efficiently inhibited hCA II, whereas some of them were low nanomolar/subnanomolar hCA IX/XII inhibitors. One DTC showed excellent intraocular pressure (IOP) lowering properties in an animal model of glaucoma, with a two times better efficiency compared to the clinically used sulfonamide dorzolamide. PMID:25846066

  20. Future Perspective in Carbonic Anhydrase Inhibitors and its Drugs

    S.Petchimuthu; Dr. N. Narayanan

    2013-01-01

    Through this review it is contemplated that carbonic anhydrase inhibitors, were a traditional drugs of choice for the treatment of glaucoma with a myriad of side effects and inadequate topical effectiveness, may be formulated into a topically effective agent by utilizing various newer formulation approaches of ocular drug delivery. Even though the carbonic anhydrase inhibitor, acetazolamide (ACZ) has a poor solubility and penetration power (BCS Class IV), various studies mentioned in the revi...

  1. Density functional theory study of proton transfer in carbonic anhydrase

    ZHANG Lidong; XIE Daiqian

    2005-01-01

    Proton transfer in carbonic anhydrase II has been studied at the B3LYP/6-31G(D) level. The active site model consists of the zinc ion, four histidine residues, two threonine residues, and three water molecules. Our calculations showed that the proton of the zinc-bound water molecule could be transferred to the nearest water molecule and an intermediate containing H3O+ is then formed. The intermediate is only 1.3 kJ·mol-1 above the reactant complex, whereas the barrier height for the proton transfer is about 8.1 kJ·mol-1.

  2. Carbonic anhydrase 5 regulates acid-base homeostasis in zebrafish.

    Ruben Postel

    Full Text Available The regulation of the acid-base balance in cells is essential for proper cellular homeostasis. Disturbed acid-base balance directly affects cellular physiology, which often results in various pathological conditions. In every living organism, the protein family of carbonic anhydrases regulate a broad variety of homeostatic processes. Here we describe the identification, mapping and cloning of a zebrafish carbonic anhydrase 5 (ca5 mutation, collapse of fins (cof, which causes initially a collapse of the medial fins followed by necrosis and rapid degeneration of the embryo. These phenotypical characteristics can be mimicked in wild-type embryos by acetazolamide treatment, suggesting that CA5 activity in zebrafish is essential for a proper development. In addition we show that CA5 regulates acid-base balance during embryonic development, since lowering the pH can compensate for the loss of CA5 activity. Identification of selective modulators of CA5 activity could have a major impact on the development of new therapeutics involved in the treatment of a variety of disorders.

  3. Synthesis of 4-(thiazol-2-ylamino)-benzenesulfonamides with carbonic anhydrase I, II and IX inhibitory activity and cytotoxic effects against breast cancer cell lines.

    Abdel Gawad, Nagwa M; Amin, Noha H; Elsaadi, Mohammed T; Mohamed, Fatma M M; Angeli, Andrea; De Luca, Viviana; Capasso, Clemente; Supuran, Claudiu T

    2016-07-01

    A series of 4-(thiazol-2-ylamino)-benzenesulfonamides was synthesized and screened for their carbonic anhydrase (CA, EC 4.2.1.1) inhibitory and cytotoxic activity on human breast cancer cell line MCF-7. Human (h) CA isoforms I, II and IX were included in the study. The new sulfonamides showed excellent inhibition of all three isoforms, with KIs in the range of 0.84-702nM against hCA I, of 0.41-288nM against hCA II and of 5.6-29.2 against the tumor-associated hCA IX, a validated anti-tumor target, with a sulfonamide (SLC-0111) in Phase I clinical trials for the treatment of hypoxic, metastatic solid tumors overexpressing CA IX. The new compounds showed micromolar inhibition of growth efficacy against breast cancer MCF-7 cell lines. PMID:27234893

  4. Ethylene bis-imidazoles are highly potent and selective activators for isozymes VA and VII of carbonic anhydrase, with a potential nootropic effect

    Draghici, Bogdan; Vullo, Daniela; Akocak, Suleyman; Walker, Ellen A; Supuran, Claudiu T.; Ilies, Marc A.

    2014-01-01

    A series of ethylene bis-imidazoles was synthesized via a novel microwave-mediated synthesis. Biological testing on eight isozymes of carbonic anhydrase (CA) present in the human brain revealed compounds with nanomolar potency against CA VA and CA VII, also displaying excellent selectivity against other CA isozymes present in this organ.

  5. Carbonic anhydrase levels and internal lacunar CO/sub 2/ concentrations in aquatic macrophytes

    Weaver, C.I.

    1979-01-01

    Carbonic anhydrase levels were examined in a variety of aquatic macrophytes from different habitats. In general, carbonic anhydrase levels increased across the habitat gradient such that activities were low in submersed aquatic macrophytes and high in emergent macrophytes with floating-leaved and free-floating plants exhibiting intermediate activities. Internal lacunar CO/sub 2/ concentrations were analyzed in relation to carbonic anhydrase activities. There was no correlation between these two parameters. Internal CO/sub 2/ concentrations ranged from low to high in submersed macrophytes, but were low in floating-leaved and emergent macrophytes. The observed internal CO/sub 2/ concentrations are discussed in relation to the individual morphologies of the plants and the environments in which they occurred.

  6. Carbonic anhydrase activators: X-ray crystal structure of the adduct of human isozyme II with L-histidine as a platform for the design of stronger activators.

    Temperini, Claudia; Scozzafava, Andrea; Puccetti, Luca; Supuran, Claudiu T

    2005-12-01

    Activation of the carbonic anhydrase (CA, EC 4.2.1.1) isoforms hCA I, II, and IV with l-histidine and some of its derivatives has been investigated by kinetic and X-ray crystallographic methods. l-His was a potent activator of isozymes I and IV (activation constants in the range of 4-33microM), and a moderate hCA II activator (activation constant of 113microM). Both carboxy- as well as amino-substituted l-His derivatives, such as the methyl ester or the dipeptide carnosine (beta-Ala-His), acted as more efficient activators as compared to l-His. The X-ray crystallographic structure of the hCA II-l-His adduct showed the activator to be anchored at the entrance of the active site cavity, participating in an extended network of hydrogen bonds with the amino acid residues His64, Asn67, and Gln92 and, with three water molecules connecting it to the zinc-bound water. Although the binding site of l-His is similar to that of histamine, the first CA activator for which the X-ray crystal structure has been reported in complex with hCA II (Briganti, F.; Mangani, S.; Orioli, P.; Scozzafava, A.; Vernaglione, G.; Supuran, C. T. Biochemistry1997, 36, 10384) there are important differences of binding between the two structurally related activators, since histamine interacts among others with Asn67 and Gln92 (similarly to l-His), but also with Asn62 and not His64, whereas the number of water molecules connecting them to the zinc-bound water is different (two for histamine, three for l-His). Furthermore, the imidazole moieties of the two activators adopt different conformations when bound to the enzyme active site. Since neither the amino- nor carboxy moieties of l-His participate in interactions with amino acid moieties of the active site, they can be derivatized for obtaining more potent activators, with pharmacological applications for the enhancement of synaptic efficacy. This may constitute a novel approach for the treatment of Alzheimer's disease, aging, and other conditions in

  7. Carbonic anhydrase activity and photosynthetic rate in the tree species Paulownia tomentosa Steud. Effect of dimethylsulfoxide treatment and zinc accumulation in leaves.

    Lazova, Galia N; Naidenova, Tsveta; Velinova, Katya

    2004-03-01

    The enzyme carbonic anhydrase (CA) (EC 4.2.1.1) catalyzes the reversible conversion of CO2 to HCO3- and has been shown to be involved in photosynthesis. The enzyme has been shown in animals, plants, eubacteria and viruses, but similar reports on the evidence for CA activity in tree plants does not be appear to be available. In the preliminary analyses of the work, the CA activity in leaf extracts from the tree species Paulownia tomentosa Steud. (introduced in Bulgaria) is described. A connection between CA activity and the rate of photosynthetic CO2 fixation is shown. In the second portion of the work, the effect of 10(-4) mol/L and 10(-2) mol/L dimethylsulfoxide (DMSO) on the zinc accumulation in leaves is demonstrated. It is suggested that CA activity is an indicator of the level of physiologically active zinc in leaves of P. tomentosa Steud. A connection between the process of zinc accumulation in leaves and the activity of the enzymes CA and glycolate oxidase (GO) (EC 1.1.3.1) is established. PMID:15077628

  8. Purification and characterization of the carbonic anhydrase enzyme from Black Sea trout (Salmo trutta Labrax Coruhensis) kidney and inhibition effects of some metal ions on enzyme activity.

    Kucuk, Murat; Gulcin, İlhami

    2016-06-01

    In this study, the carbonic anhydrase (CA) enzyme was purified from Black Sea trout (Salmo trutta Labrax Coruhensis) kidney with a specific activity of 603.77EU/mg and a yield of 35.5% using Sepharose-4B-l-tyrosine- sulphanilamide affinity column chromatography. For determining the enzyme purity and subunit molecular mass, sodiumdodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was performed and single band was observed. The molecular mass of subunit was found approximately 29.71kDa. The optimum temperature, activation energy (Ea), activation enthalpy (ΔH) and Q10 values were obtained from Arrhenius plot. Km and Vmax values for p-nitrophenyl acetate of the purified enzyme were calculated from Lineweaver-Burk graphs. In addition, the inhibitory effects of different heavy metal ions (Fe(2+), Pb(2+), Co(2+), Ag(+) and Cu(2+)) on Black Sea trout kidney tissue CA enzyme activities were investigated by using esterase method under in vitro conditions. The heavy metal concentrations inhibiting 50% of enzyme activity (IC50) were obtained. Finally Ki values and inhibition types were calculated from Lineweaver-Burk graphs. PMID:27175889

  9. Effect of CO2 concentrations on the activity of photosynthetic CO2 fixation and extracelluar carbonic anhydrase in the marine diatom Skeletonema costatum

    CHEN Xiongwen; GAO Kunshan

    2003-01-01

    The growth and activity of photosynthetic CO2 uptake and extracellular carbonic anhydrase (Caext) of the marine diatom Skeletonema costatum were investigated while cultured at different levels of CO2 in order to see its physiological response to different CO2 concentrations under either a low (30 μmol·m-2·s-1) or high (210 μmol·m-2·s-1) irradiance. The changes in CO2 concentrations (4-31 μmol/L) affected the growth and net photosynthesis to a greater extent under the low than under the high light regime. Caext was detected in the cells grown at 4 μmol/L CO2 but not at 31 and 12 μmol/L CO2, with its activity being about 2.5-fold higher at the high than at the low irradiance. Photo- synthetic CO2 affinity (1/ K1/2(CO2)) of the cells decreased with increased CO2 concentrations in culture. The cells cultured under the high-light show significantly higher photosynthetic CO2 affinity than those grown at the low-light level. It is concluded that the regulations of Caext activity and photosynthetic CO2 affinity are dependent not only on CO2 concentration but also on light availability, and that the development of higher Caext activity and CO2 affinity under higher light level could sufficiently support the photosynthetic demand for CO2 even at low level of CO2.

  10. Bortezomib inhibits bacterial and fungal β-carbonic anhydrases.

    Supuran, Claudiu T

    2016-09-15

    Inhibition of the β-carbonic anhydrases (CAs, EC 4.2.1.1) from pathogenic fungi (Cryptococcus neoformans, Candida albicans, Candida glabrata, Malassezia globosa) and bacteria (three isoforms from Mycobacterium tuberculosis, Rv3273, Rv1284 and Rv3588), as well from the insect Drosophila melanogaster (DmeCA) and the plant Flaveria bidentis (FbiCA1) with the boronic acid peptidomimetic proteosome inhibitor bortezomib was investigated. Bortezomib was a micromolar inhibitor of all these enzymes, with KIs ranging between 1.12 and 11.30μM. Based on recent crystallographic data it is hypothesized that the B(OH)2 moiety of the inhibitor is directly coordinated to the zinc ion from the enzyme active site. The class of boronic acids, an under-investigated type of CA inhibitors, may lead to the development of anti-infectives with a novel mechanism of action, based on the pathogenic organisms CA inhibition. PMID:27469982

  11. Androgen-linked control of rat liver carbonic anhydrase III.

    Shiels, A.; Jeffery, S; Phillips, I. R.; Shephard, E A; Wilson, C. A.; Carter, N D

    1983-01-01

    The concentration of carbonic anhydrase III (CAIII) in male rat liver was found to be 30 times greater than that in the female. Castration of male rats led to marked reduction in liver CAIII concentrations which could be partially restored to control levels by testosterone replacement. Marked developmental and senescence changes in liver CAIII were also observed in male rats.

  12. Novel carborane based inhibitors of carbonic anhydrase IX

    Štěpánková, J.; Řezáčová, Pavlína; Brynda, Jiří; Harvanová, M.; Mašek, V.; Nová, A.; Siller, M.; Das, V.; Doležal, D.; Grüner, Bohumír; Šícha, Václav; Konečný, P.; Znojek, P.; Džubák, P.; Hajdúch, M.

    2015-01-01

    Roč. 75, 15 Suppl (2015), s. 4492. ISSN 0008-5472. [Annual Meeting of the American Association for Cancer Research (AACR) /106./. 18.04.2015-22.04.2015, Philadelphia] Institutional support: RVO:61388963 ; RVO:61388980 Keywords : carbonic anhydrase * carborane based inhibitors Subject RIV: CE - Biochemistry

  13. Carbonic anhydrase inhibitors: Design, synthesis and structural characterization of new heteroaryl-N-carbonylbenzenesulfonamides targeting druggable human carbonic anhydrase isoforms

    Buemi, M. R.; De Luca, L.; Ferro, S.; Bruno, E.; Ceruso, M.; Supuran, C. T.; Pospíšilová, K.; Brynda, Jiří; Řezáčová, Pavlína; Gitto, R.

    2015-01-01

    Roč. 102, Sep 18 (2015), s. 223-232. ISSN 0223-5234 Institutional support: RVO:61388963 Keywords : human carbonic anhydrase * isoquinoline * quinoline * X-ray * molecular docking Subject RIV: CE - Biochemistry Impact factor: 3.447, year: 2014

  14. Revisiting Zinc Coordination in Human Carbonic Anhydrase II

    Song, He; Wilson, David L.; Farquhar, Erik R.; Lewis, Edwin A.; Emerson, Joseph P.

    2012-01-01

    Carbonic anhydrase (CA) is a well-studied, zinc-dependent metalloenzyme that catalyzes the hydrolysis of carbon dioxide to the bicarbonate ion. The apo-form of CA (apoCA) is relatively easy to generate, and the reconstitution of the human erythrocyte CA has been initially investigated. In the past, these studies have continually relied on equilibrium dialysis measurements to ascertain an extremely strong association constant (Ka ~ 1.2×1012) for Zn2+. However, new reactivity data and isotherma...

  15. The carbonic anhydrase inhibitor methazolamide prevents amyloid beta-induced mitochondrial dysfunction and caspase activation protecting neuronal and glial cells in vitro and in the mouse brain.

    Fossati, Silvia; Giannoni, Patrizia; Solesio, Maria E; Cocklin, Sarah L; Cabrera, Erwin; Ghiso, Jorge; Rostagno, Agueda

    2016-02-01

    Mitochondrial dysfunction has been recognized as an early event in Alzheimer's disease (AD) pathology, preceding and inducing neurodegeneration and memory loss. The presence of cytochrome c (CytC) released from the mitochondria into the cytoplasm is often detected after acute or chronic neurodegenerative insults, including AD. The carbonic anhydrase inhibitor (CAI) methazolamide (MTZ) was identified among a library of drugs as an inhibitor of CytC release and proved to be neuroprotective in Huntington's disease and stroke models. Here, using neuronal and glial cell cultures, in addition to an acute model of amyloid beta (Aβ) toxicity, which replicates by intra-hippocampal injection the consequences of interstitial and cellular accumulation of Aβ, we analyzed the effects of MTZ on neuronal and glial degeneration induced by the Alzheimer's amyloid. MTZ prevented DNA fragmentation, CytC release and activation of caspase 9 and caspase 3 induced by Aβ in neuronal and glial cells in culture through the inhibition of mitochondrial hydrogen peroxide production. Moreover, intraperitoneal administration of MTZ prevented neurodegeneration induced by intra-hippocampal Aβ injection in the mouse brain and was effective at reducing caspase 3 activation in neurons and microglia in the area surrounding the injection site. Our results, delineating the molecular mechanism of action of MTZ against Aβ-mediated mitochondrial dysfunction and caspase activation, and demonstrating its efficiency in a model of acute amyloid-mediated toxicity, provide the first combined in vitro and in vivo evidence supporting the potential of a new therapy employing FDA-approved CAIs in AD. PMID:26581638

  16. Photooxidation of dinitrophenylhistidine-200 human carbonic anhydrase B.

    Kandel, M; Gornall, A G; Lam, L K; Kandel, S I

    1975-05-01

    Partial inactivation of tau-dinitrophenylhistidine-200 human carbonic anhydrase B, induced by visible light, followed first order kinetics (k(app) = 6.05 times 10-2 min-1). After 50 min the tau-dinitrophenylhistidine (tau-DNP-histidine) content decreased to a negligible level, but the illuminated enzyme retained, at pH 7.6, approximately 9.2 percent of the esterase activity of the native enzyme. The following lines of evidence suggest that the loss of activity results from the destruction of tau-DNP-histidine-200. (1) No significant loss of amino acid other than tau-DNP-histidine was detected after illumination. (2) The rate of loss of activity correlated well with the loss of tau-DNP-histidine. (3) In the photooxidized enzyme the DNP moiety was retained but had lost the characteristic sensitivity of tau-DNP-histidine to nucleophilic attack. Titration of the illuminated enzyme with acetazolamide indicated that the residual activity is an intrinsic property of the modified enzyme. The chromatographically purified photooxidized enzyme migrated as a single band on isoelectrofocusing in polyacylamide gel, and at pH 7.6 possessed 7.5 percent esterase activity relative to the native enzyme. By establishing effective destruction of histidine-200, it can be concluded that neither the pi N nor, as previously shown, the tau N of histidine-200 is critical for the catalysis. PMID:237619

  17. Carbonic anhydrase inhibitors: Design, synthesis and structural characterization of new heteroaryl-N-carbonylbenzenesulfonamides targeting druggable human carbonic anhydrase isoforms

    Buemi, M. R.; De Luca, L.; Ferro, S.; Bruno, E.; Ceruso, M.; Supuran, C. T.; Pospíšilová, K.; Brynda, Jiří; Řezáčová, Pavlína; Gitto, R.

    2015-01-01

    Roč. 102, SEP 18 (2015), s. 223-232. ISSN 0223-5234 R&D Projects: GA ČR GA15-05677S Grant ostatní: Fondo di Ateneo per la Ricerca (PRA)(IT) ORME09SPNC Institutional support: RVO:68378050 Keywords : Human carbonic anhydrase * Isoquinoline * Quinoline * X-ray * Molecular docking Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.447, year: 2014

  18. Variable involvement of the perivascular retinal tissue in carbonic anhydrase inhibitor induced relaxation of porcine retinal arterioles in vitro

    Kehler, Anne Katrine; Holmgaard, Kim; Hessellund, Anders;

    2007-01-01

    in a myograph. After precontraction with the prostaglandin analogue U46619, the vasorelaxing effect of the carbonic anhydrase inhibitors methyl bromopyruvate, ethyl bromopyruvate, acetazolamide, and dorzolamide were studied. RESULTS: All the examined carbonic anhydrase inhibitors induced a...

  19. Quaternary ammonium sulfanilamide: a membrane-impermeant carbonic anhydrase inhibitor

    A novel carbonic anhydrase (CA) inhibitor, quaternary ammonium sulfanilamide (QAS), was tested for potency as a CA inhibitor and for its ability to be excluded from permeating biological membranes. Inhibitor titration plots of QAS vs. pure bovine CA II and CA from the gills of the blue crab, Callinectes sapidus, yielded K/sub i/ values of ∼ 15 μM; thus QAS is a relatively weak but effective CA inhibitor. Permeability of the QAS was directly tested by two independent methods. The inhibitor was excluded from human erythrocytes incubated in 5 mM QAS for 24 h as determined using an 18O-labeled mass spectrometer CA assay for intact cells. Also QAS injected into the hemolymph of C. sapidus (1 or 10 mM) did not cross the basal membrane of the gill. The compound was cleared from the hemolymph by 96 h after injection, and at no time during that period could the QAS be detected in homogenates of gill tissue. Total branchial CA activity was only slightly reduced following the QAS injection. These data indicate that QAS is a CA inhibitor to which biological membranes are impermeable and that can be used in vivo and in vitro in the study of membrane-associated CA

  20. Legionella pneumophila Carbonic Anhydrases: Underexplored Antibacterial Drug Targets

    Supuran, Claudiu T.

    2016-01-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes which catalyze the hydration of carbon dioxide to bicarbonate and protons. Many pathogenic bacteria encode such enzymes belonging to the α-, β-, and/or γ-CA families. In the last decade, enzymes from some of these pathogens, including Legionella pneumophila, have been cloned and characterized in detail. These enzymes were shown to be efficient catalysts for CO2 hydration, with kcat values in the range of (3.4–8.3) × 105 s−1 and kcat/KM ...

  1. Slow reactivation of lyophilized bovine carbonic anhydrase upon dissolution in aqueous solution studied by radiotracer techniques

    Carbonic anhydrase undergoes reversible denaturation upon lyophilization. Full reactivation requires 30-60 min equilibration time following dissolution in aqueous buffers. The recombination of the Zn2+ cofactor with the active site, investigated by 65Zn tracer studies, is clearly shown to account for only the initial stage of the reactivation process and amounts to only a few per cent of the total reactivation. (author)

  2. Dithiocarbamates: a new class of carbonic anhydrase inhibitors. Crystallographic and kinetic investigations.

    Carta, Fabrizio; Aggarwal, Mayank; Maresca, Alfonso; Scozzafava, Andrea; McKenna, Robert; Supuran, Claudiu T.

    2012-01-01

    The zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1) is inhibited by several classes of zinc-binders (sulfonamides, sulfamates, and sulfamides) as well as by compounds which do not interact with the metal ion (phenols, polyamines and coumarins). Here we report a new class of potent CA inhibitors which bind the zinc ion: the dithiocarbamates (DTCs). They coordinate to the zinc ion from the enzyme active site in monodentate manner and establish many favorable interactions with amino acid residue...

  3. Molecular and biochemical characterization of carbonic anhydrases of Paracoccidioides

    Tomazett, Mariana Vieira; Zanoelo, Fabiana Fonseca; Bailão, Elisa Flávia Cardoso; Bailão, Alexandre Melo; Borges, Clayton Luiz; Soares, Célia Maria de Almeida

    2016-01-01

    Abstract Carbonic anhydrases (CA) belong to the family of zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide to bicarbonate. In the present work, we characterized the cDNAs of four Paracoccidioides CAs (CA1, CA2, CA3, and CA4). In the presence of CO2, there was not a significant increase in fungal ca1, ca2 and ca4 gene expression. The ca1 transcript was induced during the mycelium-to-yeast transition, while ca2 and ca4 gene expression was much higher in yeast cells, when compared to mycelium and mycelium-to-yeast transition. The ca1 transcript was induced in yeast cells recovered directly from liver and spleen of infected mice, while transcripts for ca2 and ca4 were down-regulated. Recombinant CA1 (rCA1) and CA4 (rCA4), with 33 kDa and 32 kDa respectively, were obtained from bacteria. The enzymes rCA1 (β-class) and rCA4 (α-class) were characterized regarding pH, temperature, ions and amino acids addition influence. Both enzymes were stable at pHs 7.5-8.5 and temperatures of 30-35 °C. The enzymes were dramatically inhibited by Hg+2 and activated by Zn+2, while only rCA4 was stimulated by Fe2+. Among the amino acids tested (all in L configuration), arginine, lysine, tryptophan and histidine enhanced residual activity of rCA1 and rCA4. PMID:27560991

  4. PEGylated Bis-Sulfonamide Carbonic Anhydrase Inhibitors Can Efficiently Control the Growth of Several Carbonic Anhydrase IX-Expressing Carcinomas.

    Akocak, Suleyman; Alam, M Raqibul; Shabana, Ahmed M; Sanku, Rajesh Kishore Kumar; Vullo, Daniela; Thompson, Harry; Swenson, Erik R; Supuran, Claudiu T; Ilies, Marc A

    2016-05-26

    A series of aromatic/heterocyclic bis-sulfonamides were synthesized from three established aminosulfonamide carbonic anhydrase (CA, EC 4.2.1.1) inhibitor pharmacophores, coupled with either ethylene glycol oligomeric or polymeric diamines to yield bis-sulfonamides with short or long (polymeric) linkers. Testing of novel inhibitors and their precursors against a panel of membrane-bound CA isoforms, including tumor-overexpressed CA IX and XII and cytosolic isozymes, identified nanomolar-potent inhibitors against both classes and several compounds with medium isoform selectivity in a detailed structure-activity relationship study. The ability of CA inhibitors to kill tumor cells overexpressing CA IX and XII was tested under normoxic and hypoxic conditions, using 2D and 3D in vitro cellular models. The study identified a nanomolar potent PEGylated bis-sulfonamide CA inhibitor (25) able to significantly reduce the viability of colon HT-29, breast MDA-MB231, and ovarian SKOV-3 cancer cell lines, thus revealing the potential of polymer conjugates in CA inhibition and cancer treatment. PMID:27144971

  5. Thermodynamics of binding of Zn2+ to carbonic anhydrase inhibitors

    Remko, Milan; Garaj, Vladimír

    The Becke3LYP functional of DFT theory and the two-layered ONIOM (B3LYP/6-311+G(d,p): MNDO) method were used to characterize 46 gas-phase complexes of 34 neutral and anionic ligands (H2O, CH3OH, CH3COOH, CH3CONH2, HOSO2NH2, CO2, HSO2NH2, CH3SO2NH2, CH3C(=O)NHOH, imidazole, NH2SO2NH2, anions of 4-aminobenzenesulphonamide, saccharin, 1I9L, brinzolamide, dorzolamide, acetazolamide, further HO(-), CH3O(-), CH3COO(-), CH3CONH(-), N=N=N(-), S=C=N(-), CH3C(=O)NHO(-), HOCOO(-), imidazoleN(-), phenol-O(-), HOSO2NH(-), (-)OSO2NH(-), (-)OSO2NH2, H2NSO2NH(-), HSO2NH(-), CH3SO2NH(-), and CF3SO2NH(-), respectively) with Zn2+. Proton dissociation enthalpies and Gibbs energies of acidic inhibitors in the presence of zinc were computed. Their gas-phase acidity considerably increases upon chelation. Of the bases investigated, the weakest zinc affinity is exhibited by carbon dioxide (-313.5 kJ mol-1). Deprotonated inhibitors have higher affinities for zinc than the neutral ones. Compared to the other mono-deprotonated ligands the acetohydroxamic acid anion has the highest affinity for zinc (-1872.7 kJ mol-1). The zinc affinity of the acetazolamide anion computed using the hybrid ONIOM (B3LYP/6-311+G(d,p): MNDO) method is in very good agreement with the full DFT ones and this method can be adopted to model large complexes of inhibitors with the active site of carbonic anhydrase.

  6. Sarcoidosis patient: an unexpected reaction to carbonic anhydrase enzyme inhibitor

    Khedr, Yahya A H; Khedr, Abdulla H

    2013-01-01

    Ocular diseases are very common in many of the systemic diseases such as sarcoidosis, and may sometimes be the presenting symptom of the disease. In this case report, we present an unusual reaction of the sarcoid granuloma to carbonic anhydrase enzyme inhibitors (CAIs), which was encountered in a patient with ocular sarcoidosis. This observation was taken after a 2-week interval between a CT scan orbits and an MRI orbits which showed a decrease in size from 4×3×4 cm to 2.5×2.5×2 cm, respectiv...

  7. The effects of some bromophenols on human carbonic anhydrase isoenzymes.

    Taslimi, Parham; Gülçin, İlhami; Öztaşkın, Necla; Çetinkaya, Yasin; Göksu, Süleyman; Alwasel, Saleh H; Supuran, Claudiu T

    2016-08-01

    Carbonic anhydrases (CAs, EC 4.2.1.1), which are involved in a variety of physiological and pathological processes, are ubiquitous metalloenzymes mainly catalyzing the reversible hydration of carbon dioxide (CO2) to bicarbonate ([Formula: see text]) and proton (H(+)). In this study, a dozen of bromophenol derivatives (1-12) were evaluated as metalloenzyme CA (EC 4.2.1.1) inhibitors against the human carbonic anhydrase isoenzymes I and II (hCA I and II). Cytosolic hCA I and II isoenzymes were effectively inhibited by bromophenol derivatives (1-12) with Kis in the low nanomolar range of 1.85 ± 0.58 to 5.04 ± 1.46 nM against hCA I and in the range of 2.01 ± 0.52 to 2.94 ± 1.31 nM against hCA II, respectively. PMID:26133541

  8. Relationship among Photosys- tem Ⅱ carbonic anhydrase, extrinsic polypeptides and manganese cluster

    2001-01-01

    Effects of Photosystem Ⅱ (PS Ⅱ) extrinsic poly- peptides of oxygen-evolving complex and manganese clusters on PSⅡ carbonic anhydrase (CA) were studied with spinach PSⅡ membranes. The result supported that membrane-bound CA is located in the donor side of PSⅡ. The extrinsic polypeptides played an important role of maintaining CA activity. After removing manganese clusters, oxygen evolution activity was inhibited, but PSⅡ-CA activity was unchanged. It was concluded that CA activity is independent of the presence of manganese clusters, and was not directly correlated with oxygen evolution activity.

  9. Carbonic Anhydrase: An Efficient Enzyme with Possible Global Implications

    Christopher D. Boone

    2013-01-01

    Full Text Available As the global atmospheric emissions of carbon dioxide (CO2 and other greenhouse gases continue to grow to record-setting levels, so do the demands for an efficient and inexpensive carbon sequestration system. Concurrently, the first-world dependence on crude oil and natural gas provokes concerns for long-term availability and emphasizes the need for alternative fuel sources. At the forefront of both of these research areas are a family of enzymes known as the carbonic anhydrases (CAs, which reversibly catalyze the hydration of CO2 into bicarbonate. CAs are among the fastest enzymes known, which have a maximum catalytic efficiency approaching the diffusion limit of 108 M−1s−1. As such, CAs are being utilized in various industrial and research settings to help lower CO2 atmospheric emissions and promote biofuel production. This review will highlight some of the recent accomplishments in these areas along with a discussion on their current limitations.

  10. Carbonic anhydrase mediated carbon dioxide sequestration: promises, challenges and future prospects.

    Yadav, Raju R; Krishnamurthi, Kannan; Mudliar, Sandeep N; Devi, S Saravana; Naoghare, Pravin K; Bafana, Amit; Chakrabarti, Tapan

    2014-06-01

    Anthropogenic activities have substantially increased the level of greenhouse gases (GHGs) in the atmosphere and are contributing significantly to the global warming. Carbon dioxide (CO2 ) is one of the major GHGs which plays a key role in the climate change. Various approaches and methodologies are under investigation to address CO2 capture and sequestration worldwide. Carbonic anhydrase (CA) mediated CO2 sequestration is one of the promising options. Therefore, the present review elaborates recent developments in CA, its immobilization and bioreactor methodologies towards CO2 sequestration using the CA enzyme. The promises and challenges associated with the efficient utilization of CA for CO2 sequestration and scale up from flask to lab-scale bioreactor are critically discussed. Finally, the current review also recommends the possible future needs and directions to utilize CA for CO2 sequestration. PMID:24740638

  11. Optic nerve oxygen tension in pigs and the effect of carbonic anhydrase inhibitors

    Stefánsson, E; Jensen, P K; Eysteinsson, T;

    1999-01-01

    To evaluate how the oxygen tension of the optic nerve (ONP(O)2) is affected by the administration of the carbonic anhydrase inhibitors dorzolamide and acetazolamide and by alterations in oxygen and carbon dioxide in the breathing mixture.......To evaluate how the oxygen tension of the optic nerve (ONP(O)2) is affected by the administration of the carbonic anhydrase inhibitors dorzolamide and acetazolamide and by alterations in oxygen and carbon dioxide in the breathing mixture....

  12. Carbon-13 nuclear magnetic resonance as a probe of side chain orientation and mobility in carboxymethylated human carbonic anhydrase B

    Schoot Uiterkamp, Antonius J.M.; Armitage, Ian M.; Prestegard, James H.; Slomski, John; Coleman, Joseph E.

    1978-01-01

    13C NMR spectra of [1-13C]- and [2-13C]carboxymethyl His-200 human carbonic anhydrase B have been obtained as a function of pH and in the presence and absence of the active site Zn(II) or Cd(II) ion. Chemical shifts of the 1-13C show that the carboxyl is sensitive to two ionization processes, with a

  13. Metabolic Effect of Estrogen Receptor Agonists on Breast Cancer Cells in the Presence or Absence of Carbonic Anhydrase Inhibitors

    Anissa Belkaid

    2016-05-01

    Full Text Available Metabolic shift is one of the major hallmarks of cancer development. Estrogen receptor (ER activity has a profound effect on breast cancer cell growth through a number of metabolic changes driven by its effect on transcription of several enzymes, including carbonic anhydrases, Stearoyl-CoA desaturase-1, and oncogenes including HER2. Thus, estrogen receptor activators can be expected to lead to the modulation of cell metabolism in estrogen receptor positive cells. In this work we have investigated the effect of 17β-estradiol, an ER activator, and ferulic acid, a carbonic anhydrase inhibitor, as well as ER activator, in the absence and in the presence of the carbonic anhydrase inhibitor acetazolamide on the metabolism of MCF7 cells and MCF7 cells, stably transfected to express HER2 (MCF7HER2. Metabolic profiles were studied using 1D and 2D metabolomic Nuclear Magnetic Resonance (NMR experiments, combined with the identification and quantification of metabolites, and the annotation of the results in the context of biochemical pathways. Overall changes in hydrophilic metabolites were largest following treatment of MCF7 and MC7HER2 cells with 17β-estradiol. However, the carbonic anhydrase inhibitor acetazolamide had the largest effect on the profile of lipophilic metabolites.

  14. Quantification of carbonic anhydrase gene expression in ventricle of hypertrophic and failing human heart

    Alvarez Bernardo V

    2013-01-01

    Full Text Available Abstract Background Carbonic anhydrase enzymes (CA catalyze the reversible hydration of carbon dioxide to bicarbonate in mammalian cells. Trans-membrane transport of CA-produced bicarbonate contributes significantly to cellular pH regulation. A body of evidence implicates pH-regulatory processes in the hypertrophic growth pathway characteristic of hearts as they fail. In particular, Na+/H+ exchange (NHE activation is pro-hypertrophic and CA activity activates NHE. Recently Cardrase (6-ethoxyzolamide, a CA inhibitor, was found to prevent and revert agonist-stimulated cardiac hypertrophy (CH in cultured cardiomyocytes. Our goal thus was to determine whether hypertrophied human hearts have altered expression of CA isoforms. Methods We measured CA expression in hypertrophied human hearts to begin to examine the role of carbonic anhydrase in progression of human heart failure. Ventricular biopsies were obtained from patients undergoing cardiac surgery (CS, n = 14, or heart transplantation (HT, n = 13. CS patients presented mild/moderate concentric left ventricular hypertrophy and normal right ventricles, with preserved ventricular function; ejection fractions were ~60%. Conversely, HT patients with failing hearts presented CH or ventricular dilation accompanied by ventricular dysfunction and EF values of 20%. Non-hypertrophic, non-dilated ventricular samples served as controls. Results Expression of atrial and brain natriuretic peptide (ANP and BNP were markers of CH. Hypertrophic ventricles presented increased expression of CAII, CAIV, ANP, and BNP, mRNA levels, which increased in failing hearts, measured by quantitative real-time PCR. CAII, CAIV, and ANP protein expression also increased approximately two-fold in hypertrophic/dilated ventricles. Conclusions These results, combined with in vitro data that CA inhibition prevents and reverts CH, suggest that increased carbonic anhydrase expression is a prognostic molecular marker of cardiac

  15. Carbonic anhydrases in normal gastrointestinal tract and gastrointestinal tumours

    Antti J. Kivel(a); Jyrki Kivel(a); Juha Saarnio; Seppo Parkkila

    2005-01-01

    Carbonic anhydrases (CAs) catalyse the hydration of CO2to bicarbonate at physiological pH. This chemical interconversion is crucial since HCO3- is the substrate for several biosynthetic reactions. This review is focused on the distribution and role of CA isoenzymes in both normal and pathological gastrointestinal (GI) tract tissues. It has been known for many years that CAs are widely present in the GI tract and play important roles in several physiological functions such as production of saliva, gastric acid, bile, and pancreatic juice as well as in absorption of salt and water in intestine. New information suggests that these enzymes participate in several processes that were not envisioned earlier. Especially, the recent reports on plasma membranebound isoenzymes Ⅸ and Ⅻ have raised considerable interest since they were reported to participate in cancer invasion and spread. They are induced by tumour hypoxia and may also play a role in von Hippel-Lindau (VHL)-mediated carcinogenesis.

  16. Degradation products of the artificial azo dye, Allura red, inhibit esterase activity of carbonic anhydrase II: A basic in vitro study on the food safety of the colorant in terms of enzyme inhibition.

    Esmaeili, Sajjad; Ashrafi-Kooshk, Mohammad Reza; Khaledian, Koestan; Adibi, Hadi; Rouhani, Shohre; Khodarahmi, Reza

    2016-12-15

    Allura red is a widely used food colorant, but there is debate on its potential security risk. In the present study, we found that degradation products of the dye were more potent agents with higher carbonic anhydrase inhibitory action than the parent dye. The mechanism by which the compounds inhibit the enzyme activity has been determined as competitive mode. In addition, the enzyme binding properties of the compounds were investigated employing different spectroscopic techniques and molecular docking. The analyses of fluorescence quenching data revealed the existence of the same binding site for the compounds on the enzyme molecule. The thermodynamic parameters of ligand binding were not similar, which indicates that different interactions are responsible in binding of the parent dye and degradation products to the enzyme. It appears that enzyme inhibition should be considered, more seriously, as a new opened dimension in food safety. PMID:27451209

  17. Carbonic anhydrase inhibition increases retinal oxygen tension and dilates retinal vessels

    Pedersen, Daniella Bach; Koch Jensen, Peter; la Cour, Morten;

    2005-01-01

    Carbonic anhydrase inhibitors (CAIs) increase blood flow in the brain and probably also in the optic nerve and retina. Additionally they elevate the oxygen tension in the optic nerve in the pig. We propose that they also raise the oxygen tension in the retina. We studied the oxygen tension in the...... pig retina and optic nerve before and after dorzolamide injection. Also the retinal vessel diameters during carbonic anhydrase inhibition were studied....

  18. Production and X-ray crystallographic analysis of fully deuterated human carbonic anhydrase II

    This article reports the production, crystallization and X-ray structure determination of perdeuterated human carbonic anhydrase (HCA II). The refined structure is shown to be highly isomorphous with hydrogenated HCA II, especially with regard to the active site architecture and solvent network. Human carbonic anhydrase II (HCA II) is a zinc metalloenzyme that catalyzes the reversible hydration and dehydration of carbon dioxide and bicarbonate, respectively. The rate-limiting step in catalysis is the intramolecular transfer of a proton between the zinc-bound solvent (H2O/OH−) and the proton-shuttling residue His64. This distance (∼7.5 Å) is spanned by a well defined active-site solvent network stabilized by amino-acid side chains (Tyr7, Asn62, Asn67, Thr199 and Thr200). Despite the availability of high-resolution (∼1.0 Å) X-ray crystal structures of HCA II, there is currently no definitive information available on the positions and orientations of the H atoms of the solvent network or active-site amino acids and their ionization states. In preparation for neutron diffraction studies to elucidate this hydrogen-bonding network, perdeuterated HCA II has been expressed, purified, crystallized and its X-ray structure determined to 1.5 Å resolution. The refined structure is highly isomorphous with hydrogenated HCA II, especially with regard to the active-site architecture and solvent network. This work demonstrates the suitability of these crystals for neutron macromolecular crystallography

  19. Carbonic anhydrase in Tectona grandis: kinetics, stability, isozyme analysis and relationship with photosynthesis.

    Tiwari, Anita; Kumar, Pramod; Chawhaan, Pravin H; Singh, Sanjay; Ansari, S A

    2006-08-01

    Carbonic anhydrase (CA, EC: 4.2.1.1) activity in teak (Tectona grandis L.f.) was studied to determine its characteristics, kinetics and isozyme patterns. We also investigated effects of leaf age, plant age and genotype on CA activity and gas exchange parameters. Carbonic anhydrase extracted from leaves in 12 mM veronal buffer, pH 7.8, had a K(m) for CO(2) of 15.20 mM and a V(max) of 35,448 U mg(-1) chlorophyll min(-1), which values declined by 50 and 70%, respectively, after 1 week of storage at 4 degrees C. A 15% native polyacrylamide gel revealed the absence of CA isozymes in teak, with only a single CA band of 45 kD molecular mass observed across 10 segregating half-sib families and groups of trees ranging in age from 10 to 25 years. Activity remained stable during the first month in storage at 0 degrees C, but gradually declined to 25% of the initial value after 1 year in storage. During the period of active growth (February-May), maximal CA activity was observed in fully expanded and illuminated leaves. Significant variation was observed in CA activity across 10 1-year-old half-sib families and 21 5-year-old half-sib families. There was a positive correlation between CA activity and photosynthetic rate in a population of 10-year-old trees (P teak genotypes. PMID:16651256

  20. Chemical Rescue of Enzymes: Proton Transfer in Mutants of Human Carbonic Anhydrase II

    Maupin, C. Mark; Castillo, Norberto; Taraphder, Srabani; Tu, Chingkuang; McKenna, Robert; Silverman, David N.; Voth, Gregory A.

    2011-01-01

    In human carbonic anhydrase II (HCA II) the mutation of position 64 from histidine to alanine (H64A) disrupts the rate limiting proton transfer (PT) event, resulting in a reduction of the catalytic activity of the enzyme as compared to the wild-type. Potential of mean force (PMF) calculations utilizing the multistate empirical valence bond (MS-EVB) methodology for H64A HCA II give a PT free energy barrier significantly higher than that found in the wild-type enzyme. This high barrier, determi...

  1. The Complex Relationship between Metals and Carbonic Anhydrase: New Insights and Perspectives

    Maria Giulia Lionetto; Roberto Caricato; Maria Elena Giordano; Trifone Schettino

    2016-01-01

    Carbonic anhydrase is a ubiquitous metalloenzyme, which catalyzes the reversible hydration of CO2 to HCO3 − and H+. Metals play a key role in the bioactivity of this metalloenzyme, although their relationships with CA have not been completely clarified to date. The aim of this review is to explore the complexity and multi-aspect nature of these relationships, since metals can be cofactors of CA, but also inhibitors of CA activity and modulators of CA expression. Moreover, this work analyzes n...

  2. Engineering de novo disulfide bond in bacterial α-type carbonic anhydrase for thermostable carbon sequestration

    Jo, Byung Hoon; Park, Tae Yoon; Park, Hyun June; Yeon, Young Joo; Yoo, Young Je; Cha, Hyung Joon

    2016-01-01

    Exploiting carbonic anhydrase (CA), an enzyme that rapidly catalyzes carbon dioxide hydration, is an attractive biomimetic route for carbon sequestration due to its environmental compatibility and potential economic viability. However, the industrial applications of CA are strongly hampered by the unstable nature of enzymes. In this work, we introduced in silico designed, de novo disulfide bond in a bacterial α-type CA to enhance thermostability. Three variants were selected and expressed in Escherichia coli with an additional disulfide bridge. One of the variants showed great enhancement in terms of both kinetic and thermodynamic stabilities. This improvement could be attributed to the loss of conformational entropy of the unfolded state, showing increased rigidity. The variant showed an upward-shifted optimal temperature and appeared to be thermoactivated, which compensated for the lowered activity at 25 °C. Collectively, the variant constructed by the rapid and effective de novo disulfide engineering can be used as an efficient biocatalyst for carbon sequestration under high temperature conditions. PMID:27385052

  3. Tracking solvent and protein movement during CO2 release in carbonic anhydrase II crystals.

    Kim, Chae Un; Song, HyoJin; Avvaru, Balendu Sankara; Gruner, Sol M; Park, SangYoun; McKenna, Robert

    2016-05-10

    Carbonic anhydrases are mostly zinc metalloenzymes that catalyze the reversible hydration/dehydration of CO2/HCO3 (-) Previously, the X-ray crystal structures of CO2-bound holo (zinc-bound) and apo (zinc-free) human carbonic anhydrase IIs (hCA IIs) were captured at high resolution. Here, we present sequential timeframe structures of holo- [T = 0 s (CO2-bound), 50 s, 3 min, 10 min, 25 min, and 1 h] and apo-hCA IIs [T = 0 s, 50 s, 3 min, and 10 min] during the "slow" release of CO2 Two active site waters, WDW (deep water) and WDW' (this study), replace the vacated space created on CO2 release, and another water, WI (intermediate water), is seen to translocate to the proton wire position W1. In addition, on the rim of the active site pocket, a water W2' (this study), in close proximity to residue His64 and W2, gradually exits the active site, whereas His64 concurrently rotates from pointing away ("out") to pointing toward ("in") active site rotameric conformation. This study provides for the first time, to our knowledge, structural "snapshots" of hCA II intermediate states during the formation of the His64-mediated proton wire that is induced as CO2 is released. Comparison of the holo- and apo-hCA II structures shows that the solvent network rearrangements require the presence of the zinc ion. PMID:27114542

  4. Indomethacin lowers optic nerve oxygen tension and reduces the effect of carbonic anhydrase inhibition and carbon dioxide breathing

    Pedersen, D B; Eysteinsson, T; Stefánsson, E;

    2004-01-01

    Prostaglandins are important in blood flow regulation. Carbon dioxide (CO(2)) breathing and carbonic anhydrase inhibition increase the oxygen tension in the retina and optic nerve. To study the mechanism of this effect and the role of cyclo-oxygenase in the regulation of optic nerve oxygen tension...... (ONPO(2)), the authors investigated how indomethacin affects ONPO(2) and the ONPO(2) increases caused by CO(2) breathing and carbonic anhydrase inhibition in the pig....

  5. Carbonic anhydrase generates a pH gradient in Bombyx mori silk glands.

    Domigan, L J; Andersson, M; Alberti, K A; Chesler, M; Xu, Q; Johansson, J; Rising, A; Kaplan, D L

    2015-10-01

    Silk is a protein of interest to both biological and industrial sciences. The silkworm, Bombyx mori, forms this protein into strong threads starting from soluble silk proteins using a number of biochemical and physical cues to allow the transition from liquid to fibrous silk. A pH gradient has been measured along the gland, but the methodology employed was not able to precisely determine the pH at specific regions of interest in the silk gland. Furthermore, the physiological mechanisms responsible for the generation of this pH gradient are unknown. In this study, concentric ion selective microelectrodes were used to determine the luminal pH of B. mori silk glands. A gradient from pH 8.2 to 7.2 was measured in the posterior silk gland, with a pH 7 throughout the middle silk gland, and a gradient from pH 6.8 to 6.2 in the beginning of the anterior silk gland where silk processing into fibers occurs. The small diameter of the most anterior region of the anterior silk gland prevented microelectrode access in this region. Using a histochemical method, the presence of active carbonic anhydrase was identified in the funnel and anterior silk gland of fifth instar larvae. The observed pH gradient collapsed upon addition of the carbonic anhydrase inhibitor methazolamide, confirming an essential role for this enzyme in pH regulation in the B. mori silk gland. Plastic embedding of whole silk glands allowed clear visualization of the morphology, including the identification of four distinct epithelial cell types in the gland and allowed correlations between silk gland morphology and silk stages of assembly related to the pH gradient. B. mori silk glands have four different epithelial cell types, one of which produces carbonic anhydrase. Carbonic anhydrase is necessary for the mechanism that generates an intraluminal pH gradient, which likely regulates the assembly of silk proteins and then the formation of fibers from soluble silk proteins. These new insights into native silk

  6. The effects of some avermectins on bovine carbonic anhydrase enzyme.

    Kose, Leyla Polat; Gülçin, İlhami; Özdemir, Hasan; Atasever, Ali; Alwasel, Saleh H; Supuran, Claudiu T

    2016-10-01

    Avermectins are effective agricultural pesticides and antiparasitic agents that are widely employed in the agricultural, veterinary and medical fields. The aim of this study was to investigate the inhibitory effects of selected avermectins including abamectin, doramectin, emamectin, eprinomectin, ivermectin and moxidectin that are used as drugs against a wide variety of internal and external mammalian parasites, on the carbonic anhydrase enzyme (CA, EC 4.2.1.1.) purified from fresh bovine erythrocyte. CA catalyses the rapid interconversion of carbon dioxide (CO2) and water (H2O) to bicarbonate ([Formula: see text]) and protons (H(+)) and regulate the acidity of the local tissues. Bovine erythrocyte CA (bCA) enzyme was purified by Sepharose-4B affinity chromatography with a yield of 21.96% and 262.7-fold purification. The inhibition results obtained from this study showed Ki values of 9.73, 17.39, 20.43, 13.39, 16.44 and 17.73 nM for abamectin, doramectin, emamectin, eprinomectin, ivermectin and moxidectin, respectively. However, acetazolamide, well-known clinically established CA inhibitor, possessed a Ki value of 27.68 nM. PMID:26207514

  7. Capsaicin: A Potent Inhibitor of Carbonic Anhydrase Isoenzymes

    Betul Arabaci

    2014-07-01

    Full Text Available Carbonic anhydrase (CA, EC 4.2.1.1 is a zinc containing metalloenzyme that catalyzes the rapid and reversible conversion of carbon dioxide (CO2 and water (H2O into a proton (H+ and bicarbonate (HCO3– ion. On the other hand, capsaicin is the main component in hot chili peppers and is used extensively used in spices, food additives and drugs; it is responsible for their spicy flavor and pungent taste. There are sixteen known CA isoforms in humans. Human CA isoenzymes I, and II (hCA I and hCA II are ubiquitous cytosolic isoforms. In this study, the inhibition properties of capsaicin against the slow cytosolic isoform hCA I, and the ubiquitous and dominant rapid cytosolic isozymes hCA II were studied. Both CA isozymes were inhibited by capsaicin in the micromolar range. This naturally bioactive compound has a Ki of 696.15 µM against hCA I, and of 208.37 µM against hCA II.

  8. Bacterial carbonic anhydrases as drug targets: towards novel antibiotics ?

    ClaudiuT.Supuran

    2011-07-01

    Full Text Available Carbonic anhydrases (CAs, EC 4.2.1.1 are metalloenzymes which catalyze the hydration of carbon dioxide to bicarbonate and protons. Many pathogenic bacteria encode such enzymes belonging to the a-, b-, and/or g-CA families. In the last decade, the a-CAs from Neisseria spp. and Helicobacter pylori as well as the b-class enzymes from Escherichia coli, H. pylori, Mycobacterium tuberculosis, Brucella spp., Streptococcus pneumoniae, Salmonella enterica and Haemophilus influenzae have been cloned and characterized in detail. For some of these enzymes the X-ray crystal structures were determined, and in vitro and in vivo inhibition studies with various classes of inhibitors, such as anions, sulfonamides and sulfamates reported. Although efficient inhibitors have been reported for many such enzymes, only for Nessseria spp., H. pylori, B. suis and S. pneumoniae enzymes it has been possible to evidence inhibition of bacterial growth in vivo. Thus, bacterial CAs represent promising targets for obtaining antibacterials devoid of the resistance problems of the clinically used such agents but further studies are needed to validate these and other less investigated enzymes as novel drug targets

  9. Xanthates and trithiocarbonates strongly inhibit carbonic anhydrases and show antiglaucoma effects in vivo.

    Carta, Fabrizio; Akdemir, Atilla; Scozzafava, Andrea; Masini, Emanuela; Supuran, Claudiu T

    2013-06-13

    Dithiocarbamates (DTCs) were recently discovered as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. A series of xanthates and a trithiocarbonate, structurally related to the DTCs, were prepared by reaction of alcohols/thiols with carbon disulfide in the presence of bases. These compounds were tested for the inhibition of four human (h) isoforms, hCA I, II, IX, and XII, involved in pathologies such as glaucoma (CA II and XII) or cancer (CA IX). Several low nanomolar xanthate/trithiocarbonate inhibitors targeting these CAs were detected. A docking study of some xanthates within the CA II active site showed that these compounds bind in a similar manner with the dithiocarbamates, coordinating monodentately to the Zn(II) ion from the enzyme active site. Several xanthates showed potent intraocular pressure lowering activity in two animal models of glaucoma via the topical administration. Xanthates and thioxanthates represent two novel, promising classes of CA inhibitors. PMID:23647428

  10. Carbonic anhydrase IX in early-stage non-small cell lung cancer.

    Kim, S.; Rabbani, Z.N.; Vollmer, R.T.; Schreiber, E.G.; Oosterwijk, E.; Dewhirst, M.W.; Vujaskovic, Z.; Kelley, M.J.

    2004-01-01

    PURPOSE: Tumor hypoxia is associated with poor prognosis and increased tumor aggressiveness. Carbonic anhydrase (CA) IX, an endogenous marker for tumor hypoxia, catalyzes the hydration of carbon dioxide into carbonic acid and contributes to the pH regulation of tumor cells. Therefore, CA IX might al

  11. N-Nitrosulfonamides: A new chemotype for carbonic anhydrase inhibition.

    Nocentini, Alessio; Vullo, Daniela; Bartolucci, Gianluca; Supuran, Claudiu T

    2016-08-15

    A series of N(1)-substituted aromatic sulfonamides was obtained by applying a selective sulfonamide nitration synthetic strategy leading to Ar-SO2NHNO2 derivatives which were investigated as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. Two human (h) hCA isoforms, the cytosolic hCA II and the transmembrane hCA IX, in addition to the fungal enzyme from Malassezia globosa, MgCA, were included in the study. Most of the new compounds reported selectively inhibited hCA IX over hCA II and at the same time showed effective MgCA inhibitory properties, with KIs ranging between 0.22 and 8.09μM. The N-nitro sulfonamides are a new chemotype with CA inhibitory effects. As hCA IX was recently validated as antitumor/antimetastatic drug target, its selective inhibition could be exploited for interesting biomedical applications. Moreover, due to the effective MgCAs inhibitory properties of the N-nitro sulfonamides, of considerable interest in the cosmetics field as potential anti-dandruff agents, the N-nitro sulfonamides may be considered as interesting leads for the design of more efficient compounds targeting fungal enzymes. PMID:27290692

  12. A magnificent enzyme superfamily: carbonic anhydrases, their purification and characterization.

    Ozensoy Guler, Ozen; Capasso, Clemente; Supuran, Claudiu T

    2016-10-01

    In this paper, we reviewed the purification and characterization methods of the α-carbonic anhydrase (CA, EC 4.2.1.1) class. Six genetic families (α-, β-, γ-, δ-, ζ- and η-CAs) all know to date, all encoding such enzymes in organisms widely distributed over the phylogenetic tree. Starting from the manuscripts published in the 1930s on the isolation and purification of α-CAs from blood and other tissues, and ending with the recent discovery of the last genetic family in protozoa, the η-CAs, considered for long time an α-CA, we present historically the numerous and different procedures which were employed for obtaining these catalysts in pure form. α-CAs possess important application in medicine (as many human α-CA isoforms are drug targets) as well as biotechnological processes, in which the enzymes are ultimately used for CO2 capture in order to mitigate the global warming effects due to greenhouse gases. Recently, it was discovered an involvement of CAs in cancerogenesis as well as infection caused by pathogenic agents such as bacteria, fungi and protozoa. Inhibition studies of CAs identified in the genome of the aforementioned organisms might lead to the discovery of innovative drugs with a novel mechanism of action. PMID:26118417

  13. Glaucoma and the applications of carbonic anhydrase inhibitors.

    Scozzafava, Andrea; Supuran, Claudiu T

    2014-01-01

    Inhibition of carbonic anhydrase (CA, EC 4.2.1.1) has pharmacologic applications in the treatment of glaucoma, a disease affecting a large number of people and characterized by an elevated intraocular pressure (IOP). At least three isoforms, CA II, IV and XII are targeted by the sulfonamide inhibitors, some of which are clinically used drugs. Acetazolamide, methazolamide and dichlorophenamide are first generation CA inhibitors (CAIs) still used as systemic drugs for the management of this disease. Dorzolamide and brinzolamide represent the second generation inhibitors, being used topically, as eye drops, with less side effects compared to the first generation drugs. Third generation inhibitors have been developed by using the tail approach, but they did not reach the clinics yet. The most promising such derivatives are the sulfonamides incorporating either tails with nitric oxide releasing moieties or hybrid drugs possessing prostaglandin (PG) F agonist moieties in their molecules. Recently, the dithiocarbamates have also been described as CAIs possessing IOP lowering effects in animal models of glaucoma. CAIs are used alone or in combination with other drugs such as adrenergic agonist/antagonists, or PG analogs, being an important component of the antiglaucoma drugs armamentarium. PMID:24146387

  14. Carbonic anhydrase isozymes Ⅸ and Ⅻ in gastric tumors

    Mari Leppilampi; Juha Saarnio; Tuomo J. Karttunen; Jyrki Kivel(a); Silvia Pastorekov(a); Jaromir Pastorek; Abdul Waheed; William S. Sly; Seppo Parkkila

    2003-01-01

    AIM: To systematically study the expression of carbonic anhydrase (CA) isowmes Ⅸ and Ⅻ in gastric tumors.METHODS: We analyzed a representative series of specimens from non-neoplastic gastric mucosa and from various dysplastic and neoplastic gastric lesions for the expression of CA IX and XII. Immunohistochemical staining was performed using isozyme-specific antibodies and biotinstreptavidin complex method.RESULTS: CA IX was highly expressed in the normal gastric mucosa and remained positive in many gastric tumors. In adenomas, CA IX expression significantly decreased towards the high grade dysplasia. However, the expression resumed back to the normal level in well differentiated adenocarcinomas,while it again declined in carcinomas with less differentiation.In comparison, CA Ⅻ showed no or weak immunoreaction in the normal gastric mucosa and was slightly increased in tumors.CONCLUSION: These results demonstrate that CA Ⅸexpression is sustained in several types of gastric tumors.The variations observed in the CA Ⅸ levels support the concept that gastric adenomas and carcinomas are distinct entities and do not represent progressive steps of a single pathway.

  15. New selective carbonic anhydrase IX inhibitors: synthesis and pharmacological evaluation of diarylpyrazole-benzenesulfonamides.

    Rogez-Florent, Tiphaine; Meignan, Samuel; Foulon, Catherine; Six, Perrine; Gros, Abigaëlle; Bal-Mahieu, Christine; Supuran, Claudiu T; Scozzafava, Andrea; Frédérick, Raphaël; Masereel, Bernard; Depreux, Patrick; Lansiaux, Amélie; Goossens, Jean-François; Gluszok, Sébastien; Goossens, Laurence

    2013-03-15

    Carbonic anhydrase (CA) IX expression is increased upon hypoxia and has been proposed as a therapeutic target since it has been associated with poor prognosis, tumor progression and pH regulation. We report the synthesis and the pharmacological evaluation of a new class of human carbonic anhydrase (hCA) inhibitors, 4-(5-aryl-2-hydroxymethyl-pyrazol-1-yl)-benzenesulfonamides. A molecular modeling study was conducted in order to simulate the binding mode of this new family of enzyme inhibitors within the active site of hCA IX. Pharmacological studies revealed high hCA IX inhibitory potency in the parameters nanomolar range. This study showed that the position of sulfonamide group in meta of the 1-phenylpyrazole increase a selectivity hCA IX versus hCA II of our compounds. An in vitro antiproliferative screening has been performed on the breast cancer MDA-MB-231 cell using doxorubicin as cytotoxic agent and in presence of selected CA IX inhibitor. The results shown that the cytotoxic efficiency of doxorubicin in an hypoxic environment, expressed in IC50 value, is restored at 20% level with 1μM CA IX inhibitor. PMID:23168081

  16. Legionella pneumophila Carbonic Anhydrases: Underexplored Antibacterial Drug Targets.

    Supuran, Claudiu T

    2016-01-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes which catalyze the hydration of carbon dioxide to bicarbonate and protons. Many pathogenic bacteria encode such enzymes belonging to the α-, β-, and/or γ-CA families. In the last decade, enzymes from some of these pathogens, including Legionella pneumophila, have been cloned and characterized in detail. These enzymes were shown to be efficient catalysts for CO₂ hydration, with kcat values in the range of (3.4-8.3) × 10⁵ s(-1) and kcat/KM values of (4.7-8.5) × 10⁷ M(-1)·s(-1). In vitro inhibition studies with various classes of inhibitors, such as anions, sulfonamides and sulfamates, were also reported for the two β-CAs from this pathogen, LpCA1 and LpCA2. Inorganic anions were millimolar inhibitors, whereas diethyldithiocarbamate, sulfamate, sulfamide, phenylboronic acid, and phenylarsonic acid were micromolar ones. The best LpCA1 inhibitors were aminobenzolamide and structurally similar sulfonylated aromatic sulfonamides, as well as acetazolamide and ethoxzolamide (KIs in the range of 40.3-90.5 nM). The best LpCA2 inhibitors belonged to the same class of sulfonylated sulfonamides, together with acetazolamide, methazolamide, and dichlorophenamide (KIs in the range of 25.2-88.5 nM). Considering such preliminary results, the two bacterial CAs from this pathogen represent promising yet underexplored targets for obtaining antibacterials devoid of the resistance problems common to most of the clinically used antibiotics, but further studies are needed to validate them in vivo as drug targets. PMID:27322334

  17. Legionella pneumophila Carbonic Anhydrases: Underexplored Antibacterial Drug Targets

    Claudiu T. Supuran

    2016-06-01

    Full Text Available Carbonic anhydrases (CAs, EC 4.2.1.1 are metalloenzymes which catalyze the hydration of carbon dioxide to bicarbonate and protons. Many pathogenic bacteria encode such enzymes belonging to the α-, β-, and/or γ-CA families. In the last decade, enzymes from some of these pathogens, including Legionella pneumophila, have been cloned and characterized in detail. These enzymes were shown to be efficient catalysts for CO2 hydration, with kcat values in the range of (3.4–8.3 × 105 s−1 and kcat/KM values of (4.7–8.5 × 107 M−1·s−1. In vitro inhibition studies with various classes of inhibitors, such as anions, sulfonamides and sulfamates, were also reported for the two β-CAs from this pathogen, LpCA1 and LpCA2. Inorganic anions were millimolar inhibitors, whereas diethyldithiocarbamate, sulfamate, sulfamide, phenylboronic acid, and phenylarsonic acid were micromolar ones. The best LpCA1 inhibitors were aminobenzolamide and structurally similar sulfonylated aromatic sulfonamides, as well as acetazolamide and ethoxzolamide (KIs in the range of 40.3–90.5 nM. The best LpCA2 inhibitors belonged to the same class of sulfonylated sulfonamides, together with acetazolamide, methazolamide, and dichlorophenamide (KIs in the range of 25.2–88.5 nM. Considering such preliminary results, the two bacterial CAs from this pathogen represent promising yet underexplored targets for obtaining antibacterials devoid of the resistance problems common to most of the clinically used antibiotics, but further studies are needed to validate them in vivo as drug targets.

  18. Research progress of carbon dioxide capture by using carbonic anhydrase%碳酸酐酶用于二氧化碳捕集的研究进展

    王静

    2012-01-01

    碳酸酐酶(CA)可以加速捕集化石燃料燃烧产生的二氧化碳,从而降低CO2的排放量.主要介绍了CA的来源、活性、稳定性及作用.分析了使用新型生物方法对二氧化碳进行捕集和储存的优缺点,并对下一步的工作进行了展望.%It has been demonstrated that carbonic anhydrase has the potential of accelerating of carbon dioxide capture from fossil fuel and reduce the discharge of carbon dioxide. The source, activity, stability and functions of carbonic anhydrase are mainly presented. In addition, the advantages and disadvantages of using new biological for carbon dioxide capture and storage are discussed and analyzed, and the further study is prospected.

  19. Carbonic anhydrase inhibitors: Design, synthesis and structural characterization of new heteroaryl-N-carbonylbenzenesulfonamides targeting druggable human carbonic anhydrase isoforms.

    Buemi, Maria Rosa; De Luca, Laura; Ferro, Stefania; Bruno, Elvira; Ceruso, Mariangela; Supuran, Claudiu T; Pospíšilová, Klára; Brynda, Jiří; Řezáčová, Pavlína; Gitto, Rosaria

    2015-09-18

    A set of heteroaryl-N-carbonylbenzenesulfonamides has been designed, synthesized, and screened as inhibitors of human carbonic anhydrases (hCAs). The new sulfonamide derivatives were tested against hCA I, hCA II, hCA VII, hCA IX, and hCA XII isoforms using acetazolamide (AAZ, 1) and topiramate (TPM, 2) as reference compounds. Six compounds were low nanomolar inhibitors of tumor-associated hCA IX isoform (Ki values 1500 for compound 5c). Thus, these compounds can offer the opportunity to highlight the interactions preventing the inhibition of hCA VII mainly expressed in central nervous system. Thereby, we used structural and computational techniques to study in depth the interaction with hCAs. In an effort to confirm the inhibitory action we determined crystal structures of five selected heteroaryl-N-carbonylbenzenesulfonamides (4a, 4b, 4e, 5c, and 5e) in complex with hCA II. Moreover, to explore the lack of inhibitory effects of selected compounds (e.g.4b and 5c) we also performed docking studies into hCA VII catalytic site. PMID:26276436

  20. Kinetics of CO2 exchange with carbonic anhydrase immobilized on fiber membranes in artificial lungs.

    Arazawa, D T; Kimmel, J D; Federspiel, W J

    2015-06-01

    Artificial lung devices comprised of hollow fiber membranes (HFMs) coated with the enzyme carbonic anhydrase (CA), accelerate removal of carbon dioxide (CO2) from blood for the treatment of acute respiratory failure. While previous work demonstrated CA coatings increase HFM CO2 removal by 115 % in phosphate buffered saline (PBS), testing in blood revealed a 36 % increase compared to unmodified HFMs. In this work, we sought to characterize the CO2 mass transport processes within these biocatalytic devices which impede CA coating efficacy and develop approaches towards improving bioactive HFM efficiency. Aminated HFMs were sequentially reacted with glutaraldehyde (GA), chitosan, GA and afterwards incubated with a CA solution, covalently linking CA to the surface. Bioactive CA-HFMs were potted in model gas exchange devices (0.0119 m(2)) and tested for esterase activity and CO2 removal under various flow rates with PBS, whole blood, and solutions containing individual blood components (plasma albumin, red blood cells or free carbonic anhydrase). Results demonstrated that increasing the immobilized enzyme activity did not significantly impact CO2 removal rate, as the diffusional resistance from the liquid boundary layer is the primary impediment to CO2 transport by both unmodified and bioactive HFMs under clinically relevant conditions. Furthermore, endogenous CA within red blood cells competes with HFM immobilized CA to increase CO2 removal. Based on our findings, we propose a bicarbonate/CO2 disequilibrium hypothesis to describe performance of CA-modified devices in both buffer and blood. Improvement in CO2 removal rates using CA-modified devices in blood may be realized by maximizing bicarbonate/CO2 disequilibrium at the fiber surface via strategies such as blood acidification and active mixing within the device. PMID:26032115

  1. Structures of murine carbonic anhydrase IV and human carbonic anhydrase II complexed with brinzolamide: molecular basis of isozyme-drug discrimination.

    Stams, T.; Y. Chen; Boriack-Sjodin, P. A.; Hurt, J. D.; Liao, J; May, J. A.; Dean, T.; Laipis, P; Silverman, D. N.; Christianson, D. W.

    1998-01-01

    Carbonic anhydrase IV (CAIV) is a membrane-associated enzyme anchored to plasma membrane surfaces by a phosphatidylinositol glycan linkage. We have determined the 2.8-angstroms resolution crystal structure of a truncated, soluble form of recombinant murine CAIV. We have also determined the structure of its complex with a drug used for glaucoma therapy, the sulfonamide inhibitor brinzolamide (Azopt). The overall structure of murine CAIV is generally similar to that of human CAIV; however, some...

  2. Carboxysomal carbonic anhydrases: Structure and role in microbial CO2 fixation

    Cannon, Gordon C.; Heinhorst, Sabine; Kerfeld, Cheryl A.

    2010-06-23

    Cyanobacteria and some chemoautotrophic bacteria are able to grow in environments with limiting CO2 concentrations by employing a CO2-concentrating mechanism (CCM) that allows them to accumulate inorganic carbon in their cytoplasm to concentrations several orders of magnitude higher than that on the outside. The final step of this process takes place in polyhedral protein microcompartments known as carboxysomes, which contain the majority of the CO2-fixing enzyme, RubisCO. The efficiency of CO2 fixation by the sequestered RubisCO is enhanced by co-localization with a specialized carbonic anhydrase that catalyzes dehydration of the cytoplasmic bicarbonate and ensures saturation of RubisCO with its substrate, CO2. There are two genetically distinct carboxysome types that differ in their protein composition and in the carbonic anhydrase(s) they employ. Here we review the existing information concerning the genomics, structure and enzymology of these uniquely adapted carbonic anhydrases, which are of fundamental importance in the global carbon cycle.

  3. Heavy metal ion inhibition studies of human, sheep and fish α-carbonic anhydrases.

    Demirdağ, Ramazan; Yerlikaya, Emrah; Şentürk, Murat; Küfrevioğlu, Ö İrfan; Supuran, Claudiu T

    2013-04-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) were purified from sheep kidney (sCA IV), from the liver of the teleost fish Dicentrarchus labrax (dCA) and from human erythrocytes (hCA I and hCA II). The purification procedure consisted of a single step affinity chromatography on Sepharose 4B-tyrosine-sulfanilamide. The kinetic parameters of these enzymes were determined for their esterase activity with 4-nitrophenyl acetate as substrate. The following metal ions, Pb(2+), Co(2+), Hg(2+), Cd(2+), Zn(2+), Se(2+), Cu(2+), Al(3+) and Mn(3+) showed inhibitory effects on these enzymes. The tested metal ions inhibited these CAs competitively in the low milimolar/submillimolar range. The susceptibility to various cations inhibitors differs significantly between these vertebrate α-CAs and is probably due to their binding to His64 or the histidine cluster. PMID:22145795

  4. Human carbonic anhydrase II as a host for piano-stool complexes bearing a sulfonamide anchor.

    Monnard, Fabien W; Heinisch, Tillmann; Nogueira, Elisa S; Schirmer, Tilman; Ward, Thomas R

    2011-08-01

    d(6)-piano-stool complexes bearing an arylsulfonamide anchor display sub-micromolar affinity towards human Carbonic Anhydrase II (hCA II). The 1.3 Å resolution X-ray crystal structure of [(η(6)-C(6)Me(6))Ru(bispy 3)Cl](+)⊂ hCA II highlights the nature of the host-guest interactions. PMID:21706094

  5. Carbonic anhydrase IX (CA IX) mediates tumor cell interactions with microenvironment

    Závada, Jan; Závadová, Zuzana

    Praha : Mondial Congress, 2004 - (Witz, I.), s. 198 [International Conference on Tumor Microenvironment:Progrssion, Therapy and Prevention /3./. Praha (CZ), 12.10.2004-16.10.2004] Grant ostatní: Bayer Healthcare (US) nemá číslo Keywords : cancer biology * microenvironmnet * carbonic anhydrase IX Subject RIV: EB - Genetics ; Molecular Biology

  6. Gastric Hyperplasia in Mice With Targeted Disruption of the Carbonic Anhydrase Gene Car9

    Ortova Gut, M.; Parkkila, S.; Vernerová, Z.; Rohde, E.; Závada, Jan; Höcker, M.; Pastorek, J.; Karttunen, T.; Gibadulinová, G.; Závadová, Zuzana; Knobeloch, K. P.; Wiedenmann, B.; Svoboda, Jan; Horak, I.; Pastoreková, S.

    2002-01-01

    Roč. 123, č. 12 (2002), s. 1889-1903. ISSN 0016-5085 R&D Projects: GA ČR GV312/96/K205 Keywords : Carbonic Anhydrases * Knock-aou * Differantiation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 13.440, year: 2002

  7. Gastric hyperplasia in mice with targeted disruption of the carbonic anhydrase gene Car9

    Ortova-Gut, M.; Parkkila, S.; Vernerová, Z.; Rohde, E.; Závada, Jan; Hocker, M.; Pastorek, J.; Karttunen, T.; Gibadulinová, A.; Závadová, Zuzana; Knobeloch, K.-P.; Wiedernmann, B.; Svoboda, Jan; Horak, I.; Pastoreková, S.

    2002-01-01

    Roč. 123, č. 6 (2002), s. 1889-1903. ISSN 0016-5085 R&D Projects: GA ČR GV312/96/K205 Institutional research plan: CEZ:AV0Z5052915 Keywords : mouse carbonic anhydrase Car9 * gastric hyperplasia Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 13.440, year: 2002

  8. Suppression of carbonic anhydrase IX leads to aberrant focal adhesion and decreased invasion of tumor cells

    Radvak, P.; Repic, M.; Svastova, E.; Takacova, M.; Csaderova, L.; Strnad, Hynek; Pastorek, J.; Pastorekova, S.; Kopacek, J.

    2013-01-01

    Roč. 29, č. 3 (2013), s. 1147-1153. ISSN 1021-335X Institutional support: RVO:68378050 Keywords : carbonic anhydrase IX * hypoxia * shRNA silencing * microarray * focal adhesion Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.191, year: 2013

  9. Carbonic anhydrase IX (CA IX) mediates tumor cell interactions with microenvironment

    Závadová, Zuzana; Závada, Jan

    2005-01-01

    Roč. 13, č. 5 (2005), s. 977-982. ISSN 1021-335X R&D Projects: GA ČR(CZ) GA203/02/0405 Institutional research plan: CEZ:AV0Z50520514 Keywords : carbonic anhydrase IX * cell adhesion * microenvironment Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.572, year: 2005

  10. Membrane Specific Carbonic Anhydrase (CA-IV) Expression in Bovine Lung: The Effects of Alcoholic and Non-Alcoholic Drinks

    DEMİR, Nazan; NADAROĞLU, Hayrunnisa

    2002-01-01

    Carbonic anhydrase (CA) (carbonate hydrolyase: E. C. 4.2.1.1) from bovine lung was purified by a new method and characterized. The purification level was 4306-fold. The optimum temperature for maximum enzyme activity was 37.5°C. The optimum pH was 7.4, varying between 3.5 and 10.0. SDS-polyacryamide gel electrophoresis (3-10% discontinuous SDS-PAGE) showed two distinct bands for CA-IV. The molecular weights of the enzymes were found to be approximately 54.000 and 29.000, respectively. ...

  11. [Immobilization and characterization of carbonic anhydrase on the surface of hollow fiber membrane of polymethyl pentene].

    Wang, Qinmei; Zhang, Dihua; Zhang, Jingxia

    2009-07-01

    We immobilized carbonic anhydrase (CA) onto the surface of membrane oxygenator of polymethyl pentene (PMP) to enhance the removal of carbon dioxide in blood by two steps. We first introduced hydroxyl groups onto PMP surface by water plasma treatment, and then coupled CA onto PMP surface by using cyanate bromide (CNBr) as a crosslinker. After plasma treatment, the contact angle with water and chemical composition of PMP surface were characterized by analysis system of surface contact angle and XPS. Using p-nitrophenyl acetate (p-NPA) as a substrate, the activity, concentration, storage stability and re-usability of immobilized CA on PMP hollow fibers were studied by ultraviolet spectrophotometer. The preliminary data showed that hydroxyl groups could be introduced on the surface of PMP by water plasma treatment, and CA with catalysis activity could be successfully introduced onto PMP surface in high immobilization efficiency. The activity of covalently immobilized CA increased with the increase of concentration of CNBr, and the maximum was 73% of the theoretical activity of CA spread on PMP surface in monolayer in studied range. Covalently immobilized CA showed higher reusability compared to physically adsorbed CA, and higher storage stability compared to free CA in solution at 37 degrees C. The method would be used potentially in the membrane oxygenator to improve the capacity of removal of carbon dioxide in blood in the future. PMID:19835148

  12. Carbonic Anhydrase and Zinc in Plant Physiology Anhidrasa Carbónica y Zinc en Fisiología Vegetal

    Dalila Jacqueline Escudero-Almanza; Dámaris Leopoldina Ojeda-Barrios; Ofelia Adriana Hernández-Rodríguez; Esteban Sánchez Chávez; Teresita Ruíz-Anchondo; Juan Pedro Sida-Arreola

    2012-01-01

    Carbonic anhydrase (CA) (EC: 2.4.1.1) catalyzes the rapid conversion of carbon dioxide plus water into a proton and the bicarbonate ion (HCO3-) that can be found in prokaryotes and higher organisms; it is represented by four different families. Carbonic anhydrase is a metalloenzyme that requires Zn as a cofactor and is involved in diverse biological processes including pH regulation, CO2 transfer, ionic exchange, respiration, CO2 photosynthetic fixation, and stomatal closure. Therefore, the r...

  13. Hemocompatibility Assessment of Carbonic Anhydrase Modified Hollow Fiber Membranes for Artificial Lungs

    Oh, Heung-Il; Ye, Sang-Ho; Johnson, Carl A.; Woolley, Joshua R.; Federspiel, William J.; Wagner, William R.

    2010-01-01

    Hollow fiber membrane (HFM)-based artificial lungs can require a large blood-contacting membrane surface area to provide adequate gas exchange. However, such a large surface area presents significant challenges to hemocompatibility. One method to improve carbon dioxide (CO2) transfer efficiency might be to immobilize carbonic anhydrase (CA) onto the surface of conventional HFMs. By catalyzing the dehydration of bicarbonate in blood, CA has been shown to facilitate diffusion of CO2 toward the ...

  14. Structural Basis for the Inhibition of Helicobacter pylori α-Carbonic Anhydrase by Sulfonamides

    Modakh, Joyanta K.; Liu, Yu C.; Machuca, Mayra A.; Supuran, Claudiu T.; Roujeinikova, Anna

    2015-01-01

    Periplasmic α-carbonic anhydrase of Helicobacter pylori (HpαCA), an oncogenic bacterium in the human stomach, is essential for its acclimation to low pH. It catalyses the conversion of carbon dioxide to bicarbonate using Zn(II) as the cofactor. In H. pylori, Neisseria spp., Brucella suis and Streptococcus pneumoniae this enzyme is the target for sulfonamide antibacterial agents. We present structural analysis correlated with inhibition data, on the complexes of HpαCA with two pharmacological ...

  15. Targeting carbonic anhydrase to treat diabetic retinopathy: Emerging evidences and encouraging results

    Diabetic retinopathy (DR) is the leading cause of vision loss among working-age populations in developed countries. Current treatment options are limited to tight glycemic, blood pressure control and destructive laser surgery. Carbonic anhydrases (CAs) are a group of enzymes involving in the rapid conversion of carbon dioxide to bicarbonate and protons. Emerging evidences reveal CA inhibitors hold the promise for the treatment of DR. This article summarizes encouraging results from clinical and animal studies, and reviews the possible mechanisms.

  16. Targeting carbonic anhydrase to treat diabetic retinopathy: Emerging evidences and encouraging results

    Weiwei, Zhang [Department of Endocrinology and Metabolism, HuaShan Hospital, Institute of Endocrinology and Diabetology, Shanghai Medical College, Fudan University, No. 12 Wulumuqi Road, Shanghai 200040 (China); Hu, Renming, E-mail: taylorzww@gmail.com [Department of Endocrinology and Metabolism, HuaShan Hospital, Institute of Endocrinology and Diabetology, Shanghai Medical College, Fudan University, No. 12 Wulumuqi Road, Shanghai 200040 (China)

    2009-12-18

    Diabetic retinopathy (DR) is the leading cause of vision loss among working-age populations in developed countries. Current treatment options are limited to tight glycemic, blood pressure control and destructive laser surgery. Carbonic anhydrases (CAs) are a group of enzymes involving in the rapid conversion of carbon dioxide to bicarbonate and protons. Emerging evidences reveal CA inhibitors hold the promise for the treatment of DR. This article summarizes encouraging results from clinical and animal studies, and reviews the possible mechanisms.

  17. Sulfonamide inhibition studies of the γ-carbonic anhydrase from the Antarctic cyanobacterium Nostoc commune.

    Vullo, Daniela; De Luca, Viviana; Del Prete, Sonia; Carginale, Vincenzo; Scozzafava, Andrea; Capasso, Clemente; Supuran, Claudiu T

    2015-04-15

    A carbonic anhydrase (CA, EC 4.2.1.1) belonging to the γ-class has been cloned, purified and characterized from the Antarctic cyanobacterium Nostoc commune. The enzyme showed a good catalytic activity for the physiologic reaction (hydration of carbon dioxide to bicarbonate and a proton) with the following kinetic parameters, kcat of 9.5×10(5)s(-1) and kcat/KM of 8.3×10(7)M(-1)s(-1), being the γ-CA with the highest catalytic activity described so far. A range of aromatic/heterocyclic sulfonamides and one sulfamate were investigated as inhibitors of the new enzyme, denominated here NcoCA. The best NcoCA inhibitors were some sulfonylated sulfanilamide derivatives possessing elongated molecules, aminobenzolamide, acetazolamide, benzolamide, dorzolamide, brinzolamide and topiramate, which showed inhibition constants in the range of 40.3-92.3nM. As 1,5-bisphosphate carboxylase/oxygenase (RubisCO) and γ-CAs are closely associated in carboxysomes of cyanobacteria for enhancing the affinity of RubisCO for CO2 and the efficiency of photosynthesis, investigation of this new enzyme and its affinity for modulators of its activity may bring new insights in these crucial processes. PMID:25773015

  18. The role of carbonic anhydrase in C4 photosynthesis

    Studer, Anthony [Life Sciences Research Foundation, Baltimore, MD (United States)

    2015-10-01

    Current pressures on the global food supply have accelerated the urgency for a second green revolution using novel and sustainable approaches to increase crop yield and efficiency. This proposal outlines experiments to address fundamental questions regarding the biology of C4 photosynthesis, the method of carbon fixation utilized by the most productive food, feed and bioenergy crops. Carbonic anhydrase (CA) has been implicated in multiple cellular functions including nitrogen metabolism, water use efficiency, and photosynthesis. CA catalyzes the first dedicated step in C4 photosynthesis, the hydration of CO2 into bicarbonate, and is potentially rate limiting in C4 grasses. Using insertional mutagenesis, we have generated CA mutants in maize, and propose the characterization of these mutants using phenotypic, physiological, and transcriptomic profiling to assay the plant’s response to altered CA activity. In addition, florescent protein tagging experiments will be employed to study the subcellular localization of CA paralogs, providing critical data for modeling carbon fixation in C4 plants. Finally, I propose parallel experiments in Setaria viridis to explore its relevance as model C4 grass. Using a multifaceted approach, this proposal addresses important questions in basic biology, as well as the need for translation research in response to looming global food challenges.

  19. [Targeting of type IV carbonic anhydrases in Capan-1 human pancreatic duct cells is concomitant of the polarization].

    Mairal, A; Fanjul, M; Hollande, E

    1996-01-01

    Carbonic anhydrases II and IV play an essential role in the synthesis and secretion of HCO3- ions in pancreatic duct cells. Secretion of these ions is regulated by the CFTR (cystic fibrosis transmembrane conductance regulator) chloride channel. In the present study, the expression of carbonic anhydrases IV and their targeting to plasma membranes were examined during the growth of human pancreatic duct cells in vitro. Human cancerous pancreatic duct cells of Capan-1 cell line which polarize during their growth were used. We show that: a) these cells express carbonic anhydrases IV continuously during growth in culture, and the expression depends on the stage of growth and the conformation of the cells; b) carbonic anhydrases IV are seen in the cytoplasm in non-polarized cells, but become progressively anchored to plasma membranes as the cells polarize, being targeted to the apical membranes of polarized cells; c) the subcellular distribution of carbonic anhydrases IV indicates that these enzymes are synthetized in rough endoplasmic reticulum and then transported towards the plasma membrane using the classical secretory pathway through the Golgi apparatus. The results indicated that targeting of carbonic anhydrases IV in Capan-1 cells is linked to cellular polarization. PMID:8881572

  20. Inhibition of hypoxia-inducible carbonic anhydrase-IX enhances hexokinase II inhibitor-induced hepatocellular carcinoma cell apoptosis

    Yu, Su-jong; Yoon, Jung-Hwan; Lee, Jeong-Hoon; Myung, Sun-jung; Jang, Eun-sun; Kwak, Min-Sun; Cho, Eun-Ju; Jang, Ja-June; Kim, Yoon-jun; Lee, Hyo-Suk

    2011-01-01

    Aim: The hypoxic condition within large or infiltrative hypovascular tumors produces intracellular acidification, which could activate many signaling pathways and augment cancer cell growth and invasion. Carbonic anhydrase-IX (CA-IX) is an enzyme lowering pH. This study is to examine whether hypoxia induces CA-IX in hepatocellular carcinoma (HCC) cells, and to evaluate its clinical implication in HCC patients. Methods: Human HCC cell lines (Huh-7 and HepG2 cells) were used, and cell growth wa...

  1. Structural study of interaction between brinzolamide and dorzolamide inhibition of human carbonic anhydrases.

    Pinard, Melissa A; Boone, Christopher D; Rife, Brittany D; Supuran, Claudiu T; McKenna, Robert

    2013-11-15

    Carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes that catalyze the reversible hydration of carbon dioxide and bicarbonate. Their pivotal role in metabolism, ubiquitous nature, and multiple isoforms (CA I-XIV) has made CAs an attractive drug target in clinical applications. The usefulness of CA inhibitors (CAIs) in the treatment of glaucoma and epilepsy are well documented. In addition several isoforms of CAs (namely, CA IX) also serve as biological markers for certain tumors, and therefore they have the potential for useful applications in the treatment of cancer. This is a structural study on the binding interactions of the widely used CA inhibitory drugs brinzolamide (marketed as Azopt®) and dorzolamide (marketed as Trusopt®) with CA II and a CA IX-mimic, which was created via site-directed mutagenesis of CA II cDNA such that the active site resembles that of CA IX. Also the inhibition of CA II and CA IX and molecular docking reveal brinzolamide to be a more potent inhibitor among the other catalytically active CA isoforms compared to dorzolamide. The structures show that the tail end of the sulfonamide inhibitor is critical in forming stabilizing interactions that influence tight binding; therefore, for future drug design it is the tail moiety that will ultimately determine isoform specificity. PMID:24090602

  2. Effects of carbonyl sulfide (COS) and carbonic anhydrase on stomatal conductance

    Yakir, D.; Stimler, K.; Berry, J. A.

    2011-12-01

    The potential use of COS as tracer of the gross, one-way, CO2 flux into plants is based on its co-diffusion with CO2 into leaves without outflux stimulated research on COS-CO2 interactions during leaf gas exchange. We carried out gas exchange measurements of COS and CO2 in 22 plant species representing deciduous and evergreen trees, grasses, and shrubs, under a range of light intensities and ambient COS concentrations, using mid IR laser spectroscopy. A narrow range in the normalized ratio of the net uptake rates of COS (As) and CO2 (Ac; As/Ac*[CO2]/[COS]) was observed, with a mean value of 1.61±0.26. These results reflect the dominance of stomatal conductance over both COS and CO2 uptake, imposing a relatively constant ratio between the two fluxes (except under low light conditions when CO2, but not COS, metabolism is light limited). A relatively constant ratio under common ambient conditions will facilitate the application of COS as a tracer of gross photosynthesis from leaf to global scales. However, its effect on stomatal conductance may require a special attention. Increasing COS concentrations between 250 and 2800 pmol mol-1 (enveloping atmospheric levels) seems to stimulate stomatal conductance. We examined the stimulation of conductance by COS in a range of species and show that there is a large variation with some species showing almost no response while others are highly responsive (up to doubling stomatal conductance). Using C3 and C4 plants with antisense lines abolishing carbonic anhydrase activity, we show that the activity of this enzyme is essential for both the uptake of COS and the enhancement of stomatal conductance by COS. Since carbonic anhydrase catalyzes the conversion of COS to CO2 and H2S it seems likely that the stomata are responding to H2S produced in the mesophyll. In all natural species examined the uptake of COS and CO2 were highly correlated, and there was no relationship between the sensitivity of stomata and the rate of COS uptake

  3. Structural Basis for the Inhibition of Helicobacter pylori α-Carbonic Anhydrase by Sulfonamides.

    Joyanta K Modak

    Full Text Available Periplasmic α-carbonic anhydrase of Helicobacter pylori (HpαCA, an oncogenic bacterium in the human stomach, is essential for its acclimation to low pH. It catalyses the conversion of carbon dioxide to bicarbonate using Zn(II as the cofactor. In H. pylori, Neisseria spp., Brucella suis and Streptococcus pneumoniae this enzyme is the target for sulfonamide antibacterial agents. We present structural analysis correlated with inhibition data, on the complexes of HpαCA with two pharmacological inhibitors of human carbonic anhydrases, acetazolamide and methazolamide. This analysis reveals that two sulfonamide oxygen atoms of the inhibitors are positioned proximal to the putative location of the oxygens of the CO2 substrate in the Michaelis complex, whilst the zinc-coordinating sulfonamide nitrogen occupies the position of the catalytic water molecule. The structures are consistent with acetazolamide acting as site-directed, nanomolar inhibitors of the enzyme by mimicking its reaction transition state. Additionally, inhibitor binding provides insights into the channel for substrate entry and product exit. This analysis has implications for the structure-based design of inhibitors of bacterial carbonic anhydrases.

  4. Characterization of the first beta-class carbonic anhydrase from an arthropod (Drosophila melanogaster and phylogenetic analysis of beta-class carbonic anhydrases in invertebrates

    Niederhauser Barbara

    2010-07-01

    Full Text Available Abstract Background The β-carbonic anhydrase (CA, EC 4.2.1.1 enzymes have been reported in a variety of organisms, but their existence in animals has been unclear. The purpose of the present study was to perform extensive sequence analysis to show that the β-CAs are present in invertebrates and to clone and characterize a member of this enzyme family from a representative model organism of the animal kingdom, e.g., Drosophila melanogaster. Results The novel β-CA gene, here named DmBCA, was identified from FlyBase, and its orthologs were searched and reconstructed from sequence databases, confirming the presence of β-CA sequences in 55 metazoan species. The corresponding recombinant enzyme was produced in Sf9 insect cells, purified, kinetically characterized, and its inhibition was investigated with a series of simple, inorganic anions. Holoenzyme molecular mass was defined by dynamic light scattering analysis and gel filtration, and the results suggested that the holoenzyme is a dimer. Double immunostaining confirmed predictions based on sequence analysis and localized DmBCA protein to mitochondria. The enzyme showed high CO2 hydratase activity, with a kcat of 9.5 × 105 s-1 and a kcat/KM of 1.1 × 108 M-1s-1. DmBCA was appreciably inhibited by the clinically-used sulfonamide acetazolamide, with an inhibition constant of 49 nM. It was moderately inhibited by halides, pseudohalides, hydrogen sulfide, bisulfite and sulfate (KI values of 0.67 - 1.36 mM and more potently by sulfamide (KI of 0.15 mM. Bicarbonate, nitrate, nitrite and phenylarsonic/boronic acids were much weaker inhibitors (KIs of 26.9 - 43.7 mM. Conclusions The Drosophila β-CA represents a highly active mitochondrial enzyme that is a potential model enzyme for anti-parasitic drug development.

  5. [Mode of action, clinical profile and relevance of carbonic anhydrase inhibitors in glaucoma therapy].

    Eichhorn, M

    2013-02-01

    Since their introduction the local carbonic anhydrase inhibitors (CAH) dorzolamide and brinzolamide have become well established in the drug therapy of glaucoma. They lower intraocular pressure (IOP) by blocking specifically carbonic anhydrase in the ciliary epithelium and thereby the secretion of aqueous humor. The IOP lowering effect is comparable with that of beta-blockers, but less than that of prostaglandin agonists. Because of their specific mode of action they produce an additive pressure lowering effect with any other glaucoma drug. Therefore they are ideal for being combined with other drugs. In addition, CAH may improve perfusion of the posterior eye. Preliminary results in glaucoma patients under dorzolamide therapy suggesting a reduction in the risk of progression due to enhanced blood flow need further confirmation. PMID:23430679

  6. Sclerostin regulates release of bone mineral by osteocytes by induction of carbonic anhydrase 2.

    Kogawa, Masakazu; Wijenayaka, Asiri R; Ormsby, Renee T; Thomas, Gethin P; Anderson, Paul H; Bonewald, Lynda F; Findlay, David M; Atkins, Gerald J

    2013-12-01

    The osteocyte product sclerostin is emerging as an important paracrine regulator of bone mass. It has recently been shown that osteocyte production of receptor activator of NF-κB ligand (RANKL) is important in osteoclastic bone resorption, and we reported that exogenous treatment of osteocytes with sclerostin can increase RANKL-mediated osteoclast activity. There is good evidence that osteocytes can themselves liberate mineral from bone in a process known as osteocytic osteolysis. In the current study, we investigated sclerostin-stimulated mineral dissolution by human primary osteocyte-like cells (hOCy) and mouse MLO-Y4 cells. We found that sclerostin upregulated osteocyte expression of carbonic anhydrase 2 (CA2/Car2), cathepsin K (CTSK/Ctsk), and tartrate-resistant acid phosphatase (ACP5/Acp5). Because acidification of the extracellular matrix is a critical step in the release of mineral from bone, we further examined the regulation by sclerostin of CA2. Sclerostin stimulated CA2 mRNA and protein expression in hOCy and in MLO-Y4 cells. Sclerostin induced a decrease in intracellular pH (pHi) in both cell types as well as a decrease in extracellular pH (pHo) and the release of calcium ions from mineralized substrate. These effects were reversed in the co-presence of the carbonic anhydrase inhibitor, acetozolamide. Car2-siRNA knockdown in MLO-Y4 cells significantly inhibited the ability of sclerostin to both reduce the pHo and release calcium from a mineralized substrate. Knockdown in MLO-Y4 cells of each of the putative sclerostin receptors, Lrp4, Lrp5 and Lrp6, using siRNA, inhibited the sclerostin induction of Car2, Catk and Acp5 mRNA, as well as pHo and calcium release. Consistent with this activity of sclerostin resulting in osteocytic osteolysis, human trabecular bone samples treated ex vivo with recombinant human sclerostin for 7 days exhibited an increased osteocyte lacunar area, an effect that was reversed by the co-addition of acetozolamide. These findings

  7. Expression Patterns and Subcellular Localization of Carbonic Anhydrases Are Developmentally Regulated during Tooth Formation

    Reibring, Claes-Göran; El Shahawy, Maha; Hallberg, Kristina; Kannius-Janson, Marie; Nilsson, Jeanette; Parkkila, Seppo; Sly, William S; Waheed, Abdul; Linde, Anders; Gritli-Linde, Amel

    2014-01-01

    Carbonic anhydrases (CAs) play fundamental roles in several physiological events, and emerging evidence points at their involvement in an array of disorders, including cancer. The expression of CAs in the different cells of teeth is unknown, let alone their expression patterns during odontogenesis. As a first step towards understanding the role of CAs during odontogenesis, we used immunohistochemistry, histochemistry and in situ hybridization to reveal hitherto unknown dynamic distribution pa...

  8. Carbonic anhydrase IV expression in rat and human gastrointestinal tract regional, cellular, and subcellular localization.

    Fleming, R.E.; Parkkila, S; Parkkila, A K; Rajaniemi, H; Waheed, A; Sly, W S

    1995-01-01

    Carbonic anhydrase IV (CA IV) is a glycosylphosphatidylinositol-linked isozyme previously identified on the surface of renal tubular epithelium and certain populations of vascular endothelium. This report identifies the regional, cellular, and subcellular localization of CA IV in the rat gut. Northern blot and RT-PCR analyses demonstrated little CA IV expression in stomach or proximal small intestine, but abundant expression in distal small and large intestine. In contrast, CA II mRNA was abu...

  9. Toxic Epidermal Necrolysis Induced by the Topical Carbonic Anhydrase Inhibitors Brinzolamide and Dorzolamide

    Chun, Ji Sun; Yun, Sook Jung; Lee, Jee Bum; Kim, Seong Jin; Won, Young Ho; Lee, Seung Chul

    2008-01-01

    Brinzolamide and dorzolamide are highly specific topical carbonic anhydrase inhibitors (CAIs). They lower intraocular pressure (IOP) by reducing the rate of aqueous humour formation without serious side effects. Although systemic CAIs are the most potent medications for lowering intraocular pressure for conditions with ocular hypertension, many cases with adverse systemic reactions have been reported, including Stevens-Johnson syndrome (SJS) and Toxic epidermal necrolysis (TEN). Here, we repo...

  10. Characterization of carbonic anhydrase II from Chlorella vulgaris in bio-CO2 capture.

    Li, Li; Fu, Ming-Lai; Zhao, Yong-Hao; Zhu, Yun-Tian

    2012-11-01

    Carbonic anhydrase II (CA II) can catalyze the reversible hydration reaction of CO(2) at a maximum of 1.4 × 10(6) molecules of CO(2) per second. The crude intracellular enzyme extract containing CA II was derived from Chlorella vulgaris. A successful CO(2) capture experiment with the presence of calcium had been conducted on the premise that the temperature was conditioned at a scope of 30-40 °C, that the biocatalyst-nurtured algal growth period lasted 3 days, and that pH ranged from7.5 to 8.5. Ions of K(+), Na(+), Ca(2+), Co(2+), Cu(2+), Fe(3+), Mg(2+), Mn(2+), and Zn(2+) at 0.01, 0.1, and 0.5 M were found to exhibit no more than 30 % inhibition on the residual activity of the biocatalyst. It is reasonable to expect that calcification catalyzed by microalgae presents an alternative to geological carbon capture and sequestration through a chain of fundamental researches carried on under the guidance of sequestration technology. PMID:22821342

  11. Strong topical steroid, NSAID, and carbonic anhydrase inhibitor cocktail for treatment of cystoid macular edema

    Asahi MG

    2015-12-01

    Full Text Available Masumi G Asahi, Gabriela L Bobarnac Dogaru, Spencer M Onishi, Ron P GallemoreRetina Macula Institute, Torrance, CA, USA Purpose: To report the combination cocktail of strong steroid, non-steroidal anti-inflammatory drug (NSAID, and carbonic anhydrase inhibitor drops for treatment of cystoid macular edema. Methods: This is a retrospective case series of patients with cystoid macular edema managed with a topical combination of strong steroid (difluprednate, NSAID, and carbonic anhydrase inhibitor drops. The patients were followed with optical coherence tomography and fluorescein angiography. Results: In our six cases, resolution of the cystic edema with improvement in visual acuity was achieved with the use of a combination cocktail of drops. Leakage on fluorescein angiography and cystic edema on optical coherence tomography both responded to treatment with the topical cocktail of drops. Conclusion: A topical cocktail of strong steroid, NSAID, and carbonic anhydrase inhibitor drops are effective for managing cystoid macular edema. Further studies comparing this combination with more invasive treatments should be undertaken to determine the efficacy of this cocktail over other treatment options. Keywords: birdshot chorioretinopathy, diabetic macular edema, retinal vein occlusion

  12. Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells

    Hu, Honghong

    2009-12-13

    The continuing rise in atmospheric CO2 causes stomatal pores in leaves to close and thus globally affects CO2 influx into plants, water use efficiency and leaf heat stress. However, the CO2-binding proteins that control this response remain unknown. Moreover, which cell type responds to CO2, mesophyll or guard cells, and whether photosynthesis mediates this response are matters of debate. We demonstrate that Arabidopsis thaliana double-mutant plants in the beta-carbonic anhydrases betaCA1 and betaCA4 show impaired CO2-regulation of stomatal movements and increased stomatal density, but retain functional abscisic-acid and blue-light responses. betaCA-mediated CO2-triggered stomatal movements are not, in first-order, linked to whole leaf photosynthesis and can function in guard cells. Furthermore, guard cell betaca-overexpressing plants exhibit instantaneous enhanced water use efficiency. Guard cell expression of mammalian alphaCAII complements the reduced sensitivity of ca1 ca4 plants, showing that carbonic anhydrase-mediated catalysis is an important mechanism for betaCA-mediated CO2-induced stomatal closure and patch clamp analyses indicate that CO2/HCO3- transfers the signal to anion channel regulation. These findings, together with ht1-2 (ref. 9) epistasis analysis demonstrate that carbonic anhydrases function early in the CO2 signalling pathway, which controls gas-exchange between plants and the atmosphere.

  13. SYNTHESIS AND EVALUATION OF NEW PHTHALAZINE SUBSTITUTED β-LACTAM DERIVATIVES AS CARBONIC ANHYDRASE INHIBITORS.

    Berber, Nurcan; Arslan, Mustafa; Bilen, Çiğdem; Sackes, Zübeyde; Gençer, Nahit; Arslan, Oktay

    2015-01-01

    A new series of phthalazine substituted β-lactam derivatives were synthesized and their inhibitory effects on the activity of purified human carbonic anhydrase (hCA I and II) were evaluated. 2H-Indazolo[2,1-b]phthala- zine-trione derivative was prepared with 4-nitrobenzaldehyde, dimedone, and phthalhydrazide in the presence of TFA in DMF, and the nitro group was reduced to 13-(4-aminophenyl)-3,3-dimethyl-3,4-dihydro- 2H-indazolo[1,2-b]phthalazine-1,6,11(13H)-trione with SnCl2 · 2H2O. The reduced compound was re- acted with different aromatic aldehydes, and phthalazine substituted imines were synthesized. The imine compounds undergo (2+2) cycloaddition reactions with ketenes to produce 2H-indazolo[2,1-b]phthala-zine-trione substituted β-lactam derivatives. The β-lactam compounds were tested as inhibitors of the CA isoenzyme activity. The results showed that all the synthesized compounds inhibited the CA isoenzyme activity. 1-(4-(3,3-dimethyl- 1,6,1 1-trioxo-2,3,4,6,11,13-hexahydro-1H-indazolo[1,2-b]phthalazin-13- yl)phenyl)-2-oxo-4-p-tolylazetidin-3-yl acetate (IC50 = 6.97 µM for hCA I and 8.48 µM for hCA II) had the most inhibitory effect. PMID:26615643

  14. Sulfonamide inhibition studies of the δ-carbonic anhydrase from the diatom Thalassiosira weissflogii.

    Vullo, Daniela; Del Prete, Sonia; Osman, Sameh M; De Luca, Viviana; Scozzafava, Andrea; Alothman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2014-01-01

    The δ-carbonic anhydrase (CA, EC 4.2.1.1) TweCA from the marine diatom Thalassiosira weissflogii has recently been cloned, purified and its activity/inhibition with anions investigated. Here we report the first sulfonamide/sulfamate inhibition study of a δ-class CA. Among the 40 such compounds investigated so far, 3-bromosulfanilamide, acetazolamide, ethoxzolamide, dorzolamide and brinzolamide were the most effective TweCA inhibitors detected, with KIs of 49.6-118nM. Many simple aromatic sulfonamides as well as dichlorophenamide, benzolamide, topiramate, zonisamide, indisulam and valdecoxib were medium potency inhibitors, (KIs of 375-897nM). Saccharin and hydrochlorothiazide were ineffective inhibitors of the δ-class enzyme, with KIs of 4.27-9.20μM. The inhibition profile of the δ-CA is very different from that of α-, β- and γ-CAs from different organisms. Although no X-ray crystal structure of this enzyme is available, we hypothesize that as for other CA classes, the sulfonamides inhibit the enzymatic activity by binding to the Zn(II) ion from the δ-CA active site. PMID:24314394

  15. Gene cloning, expression and enzyme activity analysis of the carbonic anhydrase from Porphyra haitanensis (Rhodophyta)%坛紫菜碳酸酐酶基因的克隆、表达及酶活性分析

    郇丽; 贾兆君; 张宝玉; 牛建峰; 林阿朋; 何林文; 王广策

    2014-01-01

    以坛紫菜丝状体为材料,采用RACE方法获得坛紫菜碳酸酐酶(CA)基因的全长cDNA。该cDNA全长1081 bp,具有一个825 bp的开放阅读框,可编码274个氨基酸。序列同源性分析显示该cDNA序列推导的氨基酸序列与其他物种的碳酸酐酶具有较高的一致性,其中与条斑紫菜的一致性达到96%。氨基酸序列分析表明该蛋白为β-CA,含有两个CA活性位点,无跨膜结构,可能存在一个信号肽将其定位到叶绿体中,与藻类和细菌聚类。原核诱导表达得到一个72 kDa左右的融合蛋白,酶活测定结果显示此蛋白具有碳酸酐酶活性。该实验对进一步深入研究坛紫菜 CA 的功能及坛紫菜碳代谢、光合作用等生理过程具有重要的参考价值。%Carbonic anhydrase (CA), a zinc-containing enzyme is widespread in living organisms, catalyses the reversible hydration of CO2 and 3HCO-. In this study, a full-length cDNA of CA was isolated from Porphyra haitanensis with rapid amplification of cDNA ends (RACE). This sequence was 1 081 bp in length and encodes a polypeptide of 274 amino acid residues. The deduced polypeptide showed high identities with the CA genes ranging from unicellular algae and bacteria to green plant. Phylogenetic tree analysis showed that the CA gene from P. haitanensis was more closely assembled with algae and bacteria. A ~72 kDa fused protein was obtained by the recombinant prokaryotic expression and the enzyme activity analysis showed that it had the activity of CA.

  16. Indazole, Pyrazole, and Oxazole Derivatives Targeting Nitric Oxide Synthases and Carbonic Anhydrases.

    Maccallini, Cristina; Di Matteo, Mauro; Vullo, Daniela; Ammazzalorso, Alessandra; Carradori, Simone; De Filippis, Barbara; Fantacuzzi, Marialuigia; Giampietro, Letizia; Pandolfi, Assunta; Supuran, Claudiu T; Amoroso, Rosa

    2016-08-19

    Nitric oxide (NO) is an essential endogenous mediator with a physiological role in the central nervous system as neurotransmitter and neuromodulator. A growing number of studies have demonstrated that abnormal nitrergic signaling is a crucial event in the development of neurodegeneration. In particular, the uncontrolled production of NO by neuronal nitric oxide synthase (nNOS) is observed in several neurodegenerative diseases. Moreover, it is well recognized that specific isoforms of human carbonic anhydrase (hCA) physiologically modulate crucial pathways of signal processing and that low expression of CA affects cognition, leading to mental retardation, Alzheimer's disease, and aging-related cognitive impairments. In light of this, dual agents that are able to target both NOS (inhibition) and CA (activation) could be useful drug candidates for the treatment of Alzheimer's disease, aging, and other neurodegenerative diseases. In the present work, we show the design, synthesis, and in vitro biological evaluation of new nitrogen-based heterocyclic compounds. Among the tested molecules, 2-amino-3-(4-hydroxyphenyl)-N-(1H-indazol-5-yl)propanamide hydrochloride (10 b) was revealed to be a potent dual agent, able to act as a selective nNOS inhibitor and activator of the hCA I isoform. PMID:27377568

  17. Synthesis and Evaluation of New Phthalazine Urea and Thiourea Derivatives as Carbonic Anhydrase Inhibitors

    Nurcan Berber

    2013-01-01

    Full Text Available A new series of phthalazine substituted urea and thiourea derivatives were synthesized, and their inhibitory effects on the activity of purified human carbonic anhydrases (hCAs I and II were evaluated. 2H-Indazolo[2,1-b]phthalazine-trione derivative (1 was prepared with 4-nitrobenzaldehyde, dimedone, and phthalhydrazide in the presence of TFA in DMF, and nitro group was reduced to amine derivative (2 with SnCl2·2H2O. The compound was reacted with isocyanates and isothiocyanates to get the final products (3a–p. The results showed that all the synthesized compounds inhibited the CA isoenzymes activity. 3a (IC50 = 6.40 µM for hCA I and 6.13 µM for hCA II has the most inhibitory effect. The synthesized compounds are very bulky to be able to bind near the zinc ion, and they much more probably bind as the coumarin derivatives.

  18. Expression of carbonic anhydrases IX and XII during mouse embryonic development

    Mannisto Susanna

    2006-05-01

    Full Text Available Abstract Background Of the thirteen active carbonic anhydrase (CA isozymes, CA IX and XII have been linked to carcinogenesis. It has been suggested that these membrane-bound CAs participate in cancer cell invasion, which is facilitated by an acidic tumor cell environment. Since active cell migration is a characteristic feature of embryonic development, we set out to explore whether these isozymes are expressed in mouse embryos of different ages. The studies were focused on organogenesis stage. Results Immunohistochemistry demonstrated that both CA IX and XII are present in several tissues of the developing mouse embryo during organogenesis. Staining for CA IX revealed a relatively wide distribution pattern with moderate signals in the brain, lung, pancreas and liver and weak signals in the kidney and stomach. The expression pattern of CA XII in the embryonic tissues was also relatively broad, although the intensity of immunostaining was weak in most tissues. The CA XII-positive tissues included the brain, where the most prominent staining was seen in the choroid plexus, and the stomach, pancreas, liver and kidney. Conclusion Membrane-bound CA isozymes IX and XII are expressed in various tissues during mouse organogenesis. These enzymes may regulate ion and pH homeostasis within the developing embryo.

  19. Coupling Protein Dynamics with Proton Transport in Human Carbonic Anhydrase II.

    Taraphder, Srabani; Maupin, C Mark; Swanson, Jessica M J; Voth, Gregory A

    2016-08-25

    The role of protein dynamics in enzyme catalysis is one of the most highly debated topics in enzymology. The main controversy centers around what may be defined as functionally significant conformational fluctuations and how, if at all, these fluctuations couple to enzyme catalyzed events. To shed light on this debate, the conformational dynamics along the transition path surmounting the highest free energy barrier have been herein investigated for the rate limiting proton transport event in human carbonic anhydrase (HCA) II. Special attention has been placed on whether the motion of an excess proton is correlated with fluctuations in the surrounding protein and solvent matrix, which may be rare on the picosecond and subpicosecond time scales of molecular motions. It is found that several active site residues, which do not directly participate in the proton transport event, have a significant impact on the dynamics of the excess proton. These secondary participants are shown to strongly influence the active site environment, resulting in the creation of water clusters that are conducive to fast, moderately slow, or slow proton transport events. The identification and characterization of these secondary participants illuminates the role of protein dynamics in the catalytic efficiency of HCA II. PMID:27063577

  20. Mitochondrial gamma carbonic anhydrases are required for complex I assembly and plant reproductive development.

    Fromm, Steffanie; Braun, Hans-Peter; Peterhansel, Christoph

    2016-07-01

    Complex I of the mitochondrial electron transport chain (mETC) in plants contains an extra domain that is made up from proteins homologous to prokaryotic gamma-carbonic anhydrases (γCA). This domain has been suggested to participate in complex I assembly or to support transport of mitochondrial CO2 to the chloroplast. Here, we generated mutants lacking CA1 and CA2 - two out of three CA proteins in Arabidopsis thaliana. Double mutants were characterized at the developmental and physiological levels. Furthermore, the composition and activity of the mETC were determined, and mutated CA versions were used for complementation assays. Embryo development of double mutants was strongly delayed and seed development stopped before maturation. Mutant plants could only be rescued on sucrose media, showed severe stress symptoms and never produced viable seeds. By contrast, callus cultures were only slightly affected in growth. Complex I was undetectable in the double mutants, but complex II and complex IV were upregulated concomitant with increased oxygen consumption in mitochondrial respiration. Ectopic expression of inactive CA variants was sufficient to complement the mutant phenotype. Data indicate that CA proteins are structurally required for complex I assembly and that reproductive development is dependent on the presence of complex I. PMID:26889912

  1. Stereoselective hydrogenation of olefins using rhodium-substituted carbonic anhydrase--a new reductase.

    Jing, Qing; Okrasa, Krzysztof; Kazlauskas, Romas J

    2009-01-01

    One useful synthetic reaction missing from nature's toolbox is the direct hydrogenation of substrates using hydrogen. Instead nature uses cofactors like NADH to reduce organic substrates, which adds complexity and cost to these reductions. To create an enzyme that can directly reduce organic substrates with hydrogen, researchers have combined metal hydrogenation catalysts with proteins. One approach is an indirect link where a ligand is linked to a protein and the metal binds to the ligand. Another approach is direct linking of the metal to protein, but nonspecific binding of the metal limits this approach. Herein, we report a direct hydrogenation of olefins catalyzed by rhodium(I) bound to carbonic anhydrase (CA-[Rh]). We minimized nonspecific binding of rhodium by replacing histidine residues on the protein surface using site-directed mutagenesis or by chemically modifying the histidine residues. Hydrogenation catalyzed by CA-[Rh] is slightly slower than for uncomplexed rhodium(I), but the protein environment induces stereoselectivity favoring cis- over trans-stilbene by about 20:1. This enzyme is the first cofactor-independent reductase that reduces organic molecules using hydrogen. This catalyst is a good starting point to create variants with tailored reactivity and selectivity. This strategy to insert transition metals in the active site of metalloenzymes opens opportunities to a wider range of enzyme-catalyzed reactions. PMID:19115310

  2. Comparison of amino and epoxy functionalized SBA-15 used for carbonic anhydrase immobilization.

    Fei, Xiaoyao; Chen, Shaoyun; Liu, Dai; Huang, Chunjie; Zhang, Yongchun

    2016-09-01

    Two functionalized SBA-15 [amine-functionalized SBA-15 (AFS) and epoxy-functionalized SBA-15 (GFS)] with different types of functional groups were synthesized by a hydrothermal process and post functionalized with 3-aminopropyltriethoxysilane (APTES) and 3-glycidyloxypropyltrimethoxysilane (GPTMS), respectively. They were used for the immobilization of carbonic anhydrase (CA). The physicochemical properties of the functionalized SBA-15 were characterized by X-ray powder diffraction (XRD), N2 adsorption-desorption, (13)C, (29)Si solid-state nuclear magnetic resonance (NMR) spectroscopy, and scanning electron microscopy (SEM). Before and after CA was immobilized on AFS and GFS, the effects of temperature and pH value on the enzyme activity, storage stability, and reusability were investigated using para-nitrophenyl acetate (p-NPA) assay. CA/GFS showed a better performance with respect to storage stability and reusability than CA/AFS. Moreover, the amount of CaCO3 precipitated over CA/AFS was less than that precipitated over CA/GFS, which was almost equal to that precipitated over the free CA. The results indicate that the epoxy group is a more suitable functional group for covalent bonding with CA than the amino group, and GFS is a promising support for CA immobilization. PMID:27215831

  3. Sulfamate inhibitor S4 influences carbonic anhydrase IX ectodomain shedding in colorectal carcinoma cells.

    Hektoen, Helga Helseth; Ree, Anne Hansen; Redalen, Kathrine Røe; Flatmark, Kjersti

    2016-10-01

    Carbonic anhydrase IX (CAIX) is a pivotal pH regulator under hypoxia, which by its tumor-specific expression represents an attractive target for cancer therapy. Here, we report on effects of the sulfamate CAIX inhibitor S4 (4-(3'-(3″,5″-dimethylphenyl)ureido)phenyl sulfamate) in colorectal carcinoma cell lines. S4 was administered under experimental hypoxia or normoxia to HT29, KM20L2 and HCT116 cells. Effects on survival, proliferation, pH, lactate extrusion and CAIX protein expression were evaluated. S4 treatment resulted in attenuated hypoxia-induced extracellular acidification and reduced clonogenic survival under hypoxia in HT29 cells. The pH effects were present only in a [Formula: see text]-free buffer system and were accompanied by decreased lactate extrusion. The main finding of this work was that S4 treatment caused alterations in CAIX ectodomain shedding. This merits further investigation to understand how sulfamates influence CAIX activity and how such drugs may be of use in cancer treatment. PMID:26244271

  4. Structural elucidation of the hormonal inhibition mechanism of the bile acid cholate on human carbonic anhydrase II

    Boone, Christopher D. [University of Florida, PO Box 100267, Gainesville, FL 32610 (United States); Tu, Chingkuang [University of Florida, PO Box 100245, Gainesville, FL 32610 (United States); McKenna, Robert, E-mail: rmckenna@ufl.edu [University of Florida, PO Box 100267, Gainesville, FL 32610 (United States)

    2014-06-01

    The structure of human carbonic anhydrase II in complex with cholate has been determined to 1.54 Å resolution. Elucidation of the novel inhibition mechanism of cholate will aid in the development of a nonsulfur-containing, isoform-specific therapeutic agent. The carbonic anhydrases (CAs) are a family of mostly zinc metalloenzymes that catalyze the reversible hydration/dehydration of CO{sub 2} into bicarbonate and a proton. Human isoform CA II (HCA II) is abundant in the surface epithelial cells of the gastric mucosa, where it serves an important role in cytoprotection through bicarbonate secretion. Physiological inhibition of HCA II via the bile acids contributes to mucosal injury in ulcerogenic conditions. This study details the weak biophysical interactions associated with the binding of a primary bile acid, cholate, to HCA II. The X-ray crystallographic structure determined to 1.54 Å resolution revealed that cholate does not make any direct hydrogen-bond interactions with HCA II, but instead reconfigures the well ordered water network within the active site to promote indirect binding to the enzyme. Structural knowledge of the binding interactions of this nonsulfur-containing inhibitor with HCA II could provide the template design for high-affinity, isoform-specific therapeutic agents for a variety of diseases/pathological states, including cancer, glaucoma, epilepsy and osteoporosis.

  5. Dithiocarbamates Strongly Inhibit Carbonic Anhydrases and Show Antiglaucoma Action in Vivo

    Carta, Fabrizio; Aggarwal, Mayank; Maresca, Alfonso; Scozzafava, Andrea; McKenna, Robert; Masini, Emanuela; Supuran, Claudiu T.

    2012-01-01

    A series of dithiocarbamates was prepared by reaction of primary/secondary amines with carbon disulfide in the presence of bases. These compounds were tested for the inhibition of 4 human (h) isoforms of the zinc enzyme carbonic anhydrase, CA (EC 4.2.1.1), hCA I, II, IX and XII, involved in pathologies such as glaucoma (CA II and XII) or cancer (CA IX). Several low nanomolar inhibitors targeting these CAs were detected. X-ray crystal structure of hCA II adduct with morpholine dithiocarbamate ...

  6. Evidence that an internal carbonic anhydrase is present in 5% CO2-grown and air-grown Chlamydomonas

    Inorganic carbon (C/sub i/) uptake was measured in wild-type cells of Chlamydomonas reinhardtii, and in cia-3, a mutant strain of C. reinhardtii that cannot grow with air levels of CO2. Both air-grown cells, that have a CO2 concentrating system, and 5% CO2-grown cells that do not have this system, were used. When the external pH was 5.1 or 7.3, air-grown, wild-type cells accumulated inorganic carbon (C/sub i/) and this accumulation was enhanced when the permeant carbonic anhydrase inhibitor, ethoxyzolamide, was added. When the external pH was 5.1, 5% CO2-grown cells also accumulated some C/sub i/, although not as much as air-grown cells and this accumulation was stimulated by the addition of ethoxyzolamide. At the same time, ethoxyzolamide inhibited CO2 fixation by high CO2-grown, wild-type cells at both pH 5.1 and 7.3. These observations imply that 5% CO2-grown, wild-type cells, have a physiologically important internal carbonic anhydrase, although the major carbonic anhydrase located in the periplasmic space is only present in air-grown cells. Inorganic carbon uptake by cia-3 cells supported this conclusion. This mutant strain, which is thought to lack an internal carbonic anhydrase, was unaffected by ethoxyzolamide at pH 5.1. Other physiological characteristics of cia-3 resemble those of wild-type cells that have been treated with ethoxyzolamide. It is concluded that an internal carbonic anhydrase is under different regulatory control than the periplasmic carbonic anhydrase

  7. Transcriptional Regulation of the β-Type Carbonic Anhydrase Gene bca by RamA in Corynebacterium glutamicum.

    Shah, Adnan; Eikmanns, Bernhard J

    2016-01-01

    Carbonic anhydrase catalyzes the reversible hydration of carbon dioxide to bicarbonate and maintains the balance of CO2/HCO3- in the intracellular environment, specifically for carboxylation/decarboxylation reactions. In Corynebacterium glutamicum, two putative genes, namely the bca (cg2954) and gca (cg0155) genes, coding for β-type and γ-type carbonic anhydrase, respectively, have been identified. We here analyze the transcriptional organization of these genes. The transcriptional start site (TSS) of the bca gene was shown to be the first nucleotide "A" of its putative translational start codon (ATG) and thus, bca codes for a leaderless transcript. The TSS of the gca gene was identified as an "A" residue located at position -20 relative to the first nucleotide of the annotated translational start codon of the cg0154 gene, which is located immediately upstream of gca. Comparative expression analysis revealed carbon source-dependent regulation of the bca gene, with 1.5- to 2-fold lower promoter activity in cells grown on acetate as compared to glucose as sole carbon source. Based on higher expression of bca in a mutant deficient of the regulator of acetate metabolism RamA as compared to the wild-type of C. glutamicum and based on the binding of His-tagged RamA protein to the bca promoter region, we here present evidence that RamA negatively regulates expression of bca in C. glutamicum. Functional characterization of a gca deletion mutant of C. glutamicum revealed the same growth characteristics of C. glutamicum ∆gca as that of wild-type C. glutamicum and no effect on expression of the bca gene. PMID:27119954

  8. Transcriptional Regulation of the β-Type Carbonic Anhydrase Gene bca by RamA in Corynebacterium glutamicum.

    Adnan Shah

    Full Text Available Carbonic anhydrase catalyzes the reversible hydration of carbon dioxide to bicarbonate and maintains the balance of CO2/HCO3- in the intracellular environment, specifically for carboxylation/decarboxylation reactions. In Corynebacterium glutamicum, two putative genes, namely the bca (cg2954 and gca (cg0155 genes, coding for β-type and γ-type carbonic anhydrase, respectively, have been identified. We here analyze the transcriptional organization of these genes. The transcriptional start site (TSS of the bca gene was shown to be the first nucleotide "A" of its putative translational start codon (ATG and thus, bca codes for a leaderless transcript. The TSS of the gca gene was identified as an "A" residue located at position -20 relative to the first nucleotide of the annotated translational start codon of the cg0154 gene, which is located immediately upstream of gca. Comparative expression analysis revealed carbon source-dependent regulation of the bca gene, with 1.5- to 2-fold lower promoter activity in cells grown on acetate as compared to glucose as sole carbon source. Based on higher expression of bca in a mutant deficient of the regulator of acetate metabolism RamA as compared to the wild-type of C. glutamicum and based on the binding of His-tagged RamA protein to the bca promoter region, we here present evidence that RamA negatively regulates expression of bca in C. glutamicum. Functional characterization of a gca deletion mutant of C. glutamicum revealed the same growth characteristics of C. glutamicum ∆gca as that of wild-type C. glutamicum and no effect on expression of the bca gene.

  9. Cadmium-Containing Carbonic Anhydrase CDCA1 in Marine Diatom Thalassiosira weissflogii

    Vincenzo Alterio

    2015-03-01

    Full Text Available The Carbon Concentration Mechanism (CCM allows phytoplakton species to accumulate the dissolved inorganic carbon (DIC necessary for an efficient photosynthesis even under carbon dioxide limitation. In this mechanism of primary importance for diatoms, a key role is played by carbonic anhydrase (CA enzymes which catalyze the reversible hydration of CO2, thus taking part in the acquisition of inorganic carbon for photosynthesis. A novel CA, named CDCA1, has been recently discovered in the marine diatom Thalassiosira weissflogii. CDCA1 is a cambialistic enzyme since it naturally uses Cd2+ as catalytic metal ion, but if necessary can spontaneously exchange Cd2+ to Zn2+. Here, the biochemical and structural features of CDCA1 enzyme will be presented together with its putative biotechnological applications for the detection of metal ions in seawaters.

  10. Carbonic anhydrase-related protein XI: structure of the gene in the greater false vampire bat (Megaderma lyra) compared with human and domestic pig.

    Porter, Calvin A; Hewett-Emmett, David; Tashian, Richard E

    2013-06-01

    Carbonic anhydrase-related protein XI (CA-RP XI) is a member of the α-carbonic anhydrase family (encoded by the gene CA-11), which has lost features of the active site required for enzymatic activity. Using PCR, we amplified CA-11 from genomic DNA of the bat Megaderma lyra. To elucidate the gene structure, we sequenced PCR products and compared their sequences with genomic and mRNA sequences known from human and domestic pig. We identified and sequenced eight introns in the bat CA-11. Five introns (introns 3-7) are located in identical or similar positions in other members of the vertebrate α-carbonic anhydrase gene family. Two 5' introns and one 3' intron are located in the regions of little or no sequence similarity with other members of the gene family. The low sequence similarity and additional introns suggest a separate evolutionary origin for the 5' and 3' portions of the CA-RP XI gene. PMID:23417223

  11. A new peptide ligand for targeting human carbonic anhydrase IX, identified through the phage display technology.

    Vasileios Askoxylakis

    Full Text Available UNLABELLED: Carbonic anhydrase IX (CAIX is a transmembrane enzyme found to be overexpressed in various tumors and associated with tumor hypoxia. Ligands binding this target may be used to visualize hypoxia, tumor manifestation or treat tumors by endoradiotherapy. METHODS: Phage display was performed with a 12 amino acid phage display library by panning against a recombinant extracellular domain of human carbonic anhydrase IX. The identified peptide CaIX-P1 was chemically synthesized and tested in vitro on various cell lines and in vivo in Balb/c nu/nu mice carrying subcutaneously transplanted tumors. Binding, kinetic and competition studies were performed on the CAIX positive human renal cell carcinoma cell line SKRC 52, the CAIX negative human renal cell carcinoma cell line CaKi 2, the human colorectal carcinoma cell line HCT 116 and on human umbilical vein endothelial cells (HUVEC. Organ distribution studies were carried out in mice, carrying SKRC 52 tumors. RNA expression of CAIX in HCT 116 and HUVEC cells was investigated by quantitative real time PCR. RESULTS: In vitro binding experiments of (125I-labeled-CaIX-P1 revealed an increased uptake of the radioligand in the CAIX positive renal cell carcinoma cell line SKRC 52. Binding of the radioligand in the colorectal carcinoma cell line HCT 116 increased with increasing cell density and correlated with the mRNA expression of CAIX. Radioligand uptake was inhibited up to 90% by the unlabeled CaIX-P1 peptide, but not by the negative control peptide octreotide at the same concentration. No binding was demonstrated in CAIX negative CaKi 2 and HUVEC cells. Organ distribution studies revealed a higher accumulation in SKRC 52 tumors than in heart, spleen, liver, muscle, intestinum and brain, but a lower uptake compared to blood and kidney. CONCLUSIONS: These data indicate that CaIX-P1 is a promising candidate for the development of new ligands targeting human carbonic anhydrase IX.

  12. Discovery of arjunolic acid as a novel non-zinc binding carbonic anhydrase II inhibitor.

    Kalyanavenkataraman, Subhalakshmi; Nanjan, Pandurangan; Banerji, Asoke; Nair, Bipin G; Kumar, Geetha B

    2016-06-01

    Elevated levels of carbonic anhydrase II (CA II) have been shown to be associated with cardiac hypertrophy and heart failure. Although arjunolic acid (AA) has a diverse range of therapeutic applications including cardio-protection, there have been no reports on the effect of AA on CA II. The present study describes for the first time, the novel zinc independent inhibition of CA II by AA. The molecular docking studies of AA indicated that the hydroxyl group at C2 of the A-ring, which hydrogen bonds with the catalytic site residues (His64, Asn62 and Asn67), along with the gem-dimethyl group at C20 of the E-ring, greatly influences the inhibitory activity, independent of the catalytic zinc, unlike the inhibition observed with most CA II inhibitors. Among the triterpenoids tested viz. arjunolic acid, arjunic acid, asiatic acid, oleanolic acid and ursolic acid, AA was the most potent in inhibiting CA II in vitro with an IC50 of 9μM. It was interesting to note, that in spite of exhibiting very little differences in their structures, these triterpenoids exhibited vast differences in their inhibitory activities, with IC50 values ranging from 9μM to as high as 333μM. Furthermore, AA also inhibited the cytosolic activity of CA in H9c2 cardiomyocytes, as reflected by the decrease in acidification of the intracellular pH (pHi). The decreased acidification reduced the intracellular calcium levels, which further prevented the mitochondrial membrane depolarization. Thus, these studies provide a better understanding for establishing the novel molecular mechanism involved in CA II inhibition by the non-zinc binding inhibitor AA. PMID:27038848

  13. A Case With Corneal Edema After Application of Topical Carbonic Anhydrase Inhibitor

    Cumurcu, Tongabay

    2008-01-01

    To report an old patient diagnosed as primary open angel glaucoma (POAG), complicated with irreversible corneal edema after application of topical carbonic anhydrase inhibitor. A 81-year-old man with a previous diagnosis of right and left POAG, of 14-years and 5-years duration respectively, was admitted to our clinic. On ophthalmic examination right eye was absolut glaucoma, and intraocular pressure was measured as 34 mmHg, and visual acuity was 20/200 and intraocular pressure 24 mmHg for the...

  14. Carbonic Anhydrase as Pollution Biomarker: An Ancient Enzyme with a New Use

    Trifone Schettino

    2012-11-01

    Full Text Available The measurement of cellular and sub-cellular responses to chemical contaminants (referred to as biomarkers in living organisms represents a recent tool in environmental monitoring. The review focuses on carbonic anhydrase, a ubiquitous metalloenzyme which plays key roles in a wide variety of physiological processes involving CO2 and HCO3−. In the last decade a number of studies have demonstrated the sensitivity of this enzyme to pollutants such as heavy metals and organic chemicals in both humans and wildlife. The review analyses these studies and discusses the potentiality of this enzyme as novel biomarker in environmental monitoring and assessment.

  15. Effects of carbonic anhydrase inhibition on ventilation-perfusion matching in the dog lung.

    Swenson, E.R.; Robertson, H T; Hlastala, M P

    1993-01-01

    Lung carbonic anhydrase (CA) permits rapid pH responses when changes in regional ventilation or perfusion alter airway and alveolar PCO2. These pH changes affect airway and vascular resistances and lung compliance to optimize the balance of regional ventilation (VA) and perfusion (Q) in the lung. To test the hypothesis that these or other CA-dependent mechanisms contribute to VA/Q matching, we administered acetazolamide (25 mg/kg intravenously) to six anesthetized and paralyzed dogs and measu...

  16. Design, synthesis, and evaluation of NO-donor containing carbonic anhydrase inhibitors to lower intraocular pressure.

    Huang, Qinhua; Rui, Eugene Y; Cobbs, Morena; Dinh, Dac M; Gukasyan, Hovhannes J; Lafontaine, Jennifer A; Mehta, Saurabh; Patterson, Brian D; Rewolinski, David A; Richardson, Paul F; Edwards, Martin P

    2015-03-26

    The antiglaucoma drugs dorzolamide (1) and brinzolamide (2) lower intraocular pressure (IOP) by inhibiting the carbonic anhydrase (CA) enzyme to reduce aqueous humor production. The introduction of a nitric oxide (NO) donor into the alkyl side chain of dorzolamide (1) and brinzolamide (2) has led to the discovery of NO-dorzolamide 3a and NO-brinzolamide 4a, which could lower IOP through two mechanisms: CA inhibition to decrease aqueous humor secretion (reduce inflow) and NO release to increase aqueous humor drainage (increase outflow). Compounds 3a and 4a have shown improved efficacy of lowering IOP in both rabbits and monkeys compared to brinzolamide (2). PMID:25728019

  17. Surface Engineering of Polypropylene Membranes with Carbonic Anhydrase-Loaded Mesoporous Silica Nanoparticles for Improved Carbon Dioxide Hydration.

    Yong, Joel K J; Cui, Jiwei; Cho, Kwun Lun; Stevens, Geoff W; Caruso, Frank; Kentish, Sandra E

    2015-06-01

    Carbonic anhydrase (CA) is a native enzyme that facilitates the hydration of carbon dioxide into bicarbonate ions. This study reports the fabrication of thin films of active CA enzyme onto a porous membrane substrate using layer-by-layer (LbL) assembly. Deposition of multilayer films consisting of polyelectrolytes and CA was monitored by quartz crystal microgravimetry, while the enzymatic activity was assayed according to the rates of p-nitrophenylacetate (p-NPA) hydrolysis and CO2 hydration. The fabrication of the films onto a nonporous glass substrate showed CO2 hydration rates of 0.52 ± 0.09 μmol cm(-2) min(-1) per layer of bovine CA and 2.6 ± 0.7 μmol cm(-2) min(-1) per layer of a thermostable microbial CA. The fabrication of a multilayer film containing the microbial CA on a porous polypropylene membrane increased the hydration rate to 5.3 ± 0.8 μmol cm(-2) min(-1) per layer of microbial CA. The addition of mesoporous silica nanoparticles as a film layer prior to enzyme adsorption was found to increase the activity on the polypropylene membranes even further to a rate of 19 ± 4 μmol cm(-2) min(-1) per layer of microbial CA. The LbL treatment of these membranes increased the mass transfer resistance of the membrane but decreased the likelihood of membrane pore wetting. These results have potential application in the absorption of carbon dioxide from combustion flue gases into aqueous solvents using gas-liquid membrane contactors. PMID:25984966

  18. Anion inhibition profiles of the complete domain of the η-carbonic anhydrase from Plasmodium falciparum.

    Del Prete, Sonia; Vullo, Daniela; De Luca, Viviana; Carginale, Vincenzo; di Fonzo, Pietro; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2016-09-15

    We have cloned, purified and investigated the catalytic activity and anion inhibition profiles of a full catalytic domain (358 amino acid residues) carbonic anhydrase (CA, EC 4.2.1.1) from Plasmodium falciparum, PfCAdom, an enzyme belonging to the η-CA class and identified in the genome of the malaria-producing protozoa. A truncated such enzyme, PfCA1, containing 235 residues was investigated earlier for its catalytic and inhibition profiles. The two enzymes were efficient catalysts for CO2 hydration: PfCAdom showed a kcat of 3.8×10(5)s(-1) and kcat/Km of 7.2×10(7)M(-1)×s(-1), whereas PfCA showed a lower activity compared to PfCAdom, with a kcat of 1.4×10(5)s(-1) and kcat/Km of 5.4×10(6)M(-1)×s(-1). PfCAdom was generally less inhibited by most anions and small molecules compared to PfCA1. The best PfCAdom inhibitors were sulfamide, sulfamic acid, phenylboronic acid and phenylarsonic acid, which showed KIs in the range of 9-68μM, followed by bicarbonate, hydrogensulfide, stannate and N,N-diethyldithiocarbamate, which were submillimolar inhibitors, with KIs in the range of 0.53-0.97mM. Malaria parasites CA inhibition was proposed as a new strategy to develop antimalarial drugs, with a novel mechanism of action. PMID:27480028

  19. Quantitative Characterization of the Interaction Space of the Mammalian Carbonic Anhydrase Isoforms I, II, VII, IX, XII, and XIV and their Inhibitors, Using the Proteochemometric Approach.

    Rasti, Behnam; Karimi-Jafari, Mohammad H; Ghasemi, Jahan B

    2016-09-01

    The critical role of carbonic anhydrases in different physiological processes has put this protein family at the center of attention, challenging major diseases like glaucoma, neurological disorders such as epilepsy and Alzheimer's disease, obesity, and cancers. Many QSAR/QSPR (quantitative structure-activity/property relationship) researches have been carried out to design potent carbonic anhydrase inhibitors (CAIs); however, using inhibitors with no selectivity for different isoforms can lead to major side-effects. Given that QSAR/QSPR methods are not capable of covering multiple targets in a unified model, we have applied the proteochemometric approach to model the interaction space that governs selective inhibition of different CA isoforms by some mono-/dihydroxybenzoic acid esters. Internal and external validation methods showed that all models were reliable in terms of both validity and predictivity, whereas Y-scrambling assessed the robustness of the models. To prove the applicability of our models, we showed how structural changes of a ligand can affect the selectivity. Our models provided interesting information that can be useful for designing inhibitors with selective behavior toward isoforms of carbonic anhydrases, aiding in their selective inhibition. PMID:26990115

  20. Cell surface display of carbonic anhydrase on Escherichia coli using ice nucleation protein for CO₂ sequestration.

    Fan, Li-Hai; Liu, Ning; Yu, Ming-Rui; Yang, Shang-Tian; Chen, Huan-Lin

    2011-12-01

    Carbonic anhydrase (CA) has recently gained renewed interests for its potential as a mass-transfer facilitator for CO(2) sequestration. However, the low stability and high price severely limit its applications. In this work, the expression of α-CA from Helicobacter pylori on the outer membrane of Escherichia coli using a surface-anchoring system derived from ice nucleation protein (INP) from Pseudomonas syringae was developed. To find the best surface anchoring motif, full-length INP (114 kDa), truncated INP (INP-NC, 33 kDa), and INP's N-domain with first two subunits (INP-N, 22 kDa) were evaluated. Two vectors, pKK223-3 and pET22b(+), with different promoters (T7 and Tac) were used to construct the fusion genes, and for each vector, three recombinant strains, each expressing a different length of the fusion protein, were obtained. SDS-PAGE, Western blot, immunofluorescence microscopy, FACS, and whole-cell ELISA confirmed the expression of fusion proteins on the surface of E. coli. The smallest fusion protein with INP-N as the anchoring motif had the highest expression level and CA activity, suggesting that INP-N is the best carrying protein due to its smaller size. Also, the T7 promoter in pET22b(+) induced with 0.2 mM IPTG gave high protein expression levels, whereas the Tac promoter in pKK223-3 gave low expression levels. The surface displayed CA was at least twofold more stable than that of the free form, and did not show any adverse effect on cell growth and outer membrane integrity. Cells with surface displayed CA were successfully used to facilitate CO(2) sequestration in contained liquid membrane (CLM). PMID:21732326

  1. Identification and expression of a novel carbonic anhydrase isozyme in the pufferfish Takifugu vermicularis.

    Sumi, Kanij Rukshana; Nou, Ill-Sup; Kho, Kang Hee

    2016-08-22

    Carbonic anhydrase (CA) is a key element for maintaining acid base balance in fish. In our present experiment, novel CA isozymes were identified from the pear puffer (Takifugu vermicularis). Based on the high homology of two predicted CA sequences of the tiger puffer (Takifugu rubripes), a 1715bp novel cDNA was obtained from T. vermicularis. The open reading frame showed a complete coding sequence of 552bp with a deduced peptide sequence of 183 amino acids that exhibited highest (97%) identity with pufferfish putative CA III and CA IV-like sequences. In addition, this translated protein sequence showed 36-37% identity with zebrafish CA IV-like, CA XVa, CA XVb, and CA XVc proteins. Phylogenetic analysis revealed that the pufferfish novel protein (pCAn) was a membrane-bound CA protein. Alignment of multiple CA sequences illustrated that most of the putative active site residues of the pCAn isozyme were situated at highly conserved regions of the CA sequences. Examination of motif distribution suggested that the pCAn isozyme was very similar to the puffer predicted CA IV-like isozyme. Reverse transcription-polymerase chain reaction (PCR) analysis showed highly differential expression in the brain, gills, kidney, and muscle, whereas CA mRNA expression was almost absent in heart, liver, and intestine. Quantitative PCR expression of CA mRNA abundance suggested several-fold higher expression of pCAn isozymes in the gills compared to other tissues tested. Our results suggest that the pCAn isozyme might be related to CA IV-like isozymes. Further functional studies are needed to investigate the function of the pCAn isozyme in T. vermicularis. PMID:27188255

  2. A systematic quantitative approach to rational drug design and discovery of novel human carbonic anhydrase IX inhibitors.

    Sethi, Kalyan K; Verma, Saurabh M

    2014-08-01

    Drug design involves the design of small molecules that are complementary in shape and charge to the biomolecular target with which they interact and therefore will bind to it. Three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were performed for a series of carbonic anhydrase IX inhibitors using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques with the help of SYBYL 7.1 software. The large set of 36 different aromatic/heterocyclic sulfamates carbonic anhydrase (CA, EC 4.2.1.1) inhibitors, such as hCA IX, was chosen for this study. The conventional ligand-based 3D-QSAR studies were performed based on the low energy conformations employing database alignment rule. The ligand-based model gave q(2) values 0.802 and 0.829 and r(2) values 1.000 and 0.994 for CoMFA and CoMSIA, respectively, and the predictive ability of the model was validated. The predicted r(2) values are 0.999 and 0.502 for CoMFA and CoMSIA, respectively. SEA (steric, electrostatic, hydrogen bond acceptor) of CoMSIA has the significant contribution for the model development. The docking of inhibitors into hCA IX active site using Glide XP (Schrödinger) software revealed the vital interactions and binding conformation of the inhibitors. The CoMFA and CoMSIA field contour maps are well in agreement with the structural characteristics of the binding pocket of hCA IX active site, which suggests that the information rendered by 3D-QSAR models and the docking interactions can provide guidelines for the development of improved hCA IX inhibitors as leads for various types of metastatic cancers including those of cervical, renal, breast and head and neck origin. PMID:24090419

  3. Zinc Transfer Kinetics of Metallothioneins and Their Fragmentswith Apo-carbonic Anhydrase

    HUANG, Zhong-Xian; LIU, Fang; ZHENG, Qi; YU, Wen-Hao

    2001-01-01

    Tne zinc transfer reactions from Zn7-MT-I, Zn7-MT-Ⅱ, Zn4α fragment (MT-I) and Zn4-α fragment (MT-Ⅱ) to apo-carbonic anhydrase have been studied. In each reaction, no more than one zinc ion per molecule is involved in metal transfer.Zn7-MT-I and Zn7-MT-Ⅱ donate zinc to apo-carbonic anhydrase and de novo constitute it at a comparable efficiency,while Zn7-MT-Ⅱ exhibits a little faster rate. Surprisingiy,Zinc is released from Zn4-α fragment (MT-Ⅱ) with a much faster rate than from Zn4-α fragment (MT-I), whose rate is close to that of Zn7-MT-I. The reason for the difference is still unknown. Introducing complex compounds into this system may give rise to an effect on the reaction. The transfer from Zn7-MT-Ⅱ in the presence of reduced glutathione shows little difference compare to the control, suggesting that the reduced glutathione is not involved in zinc transfer process. However,glutathione disulfide does accelerate this zinc transfer reaction remarkably, indicating that the oxidative factors contribute to zinc rlease from metallothioneins.

  4. Comparison of inhibition effects of some benzoic acid derivatives on sheep heart carbonic anhydrase

    Kiliç, Deryanur; Yildiz, Melike; Şentürk, Murat; Erdoǧan, Orhan; Küfrevioǧlu, Ömer Irfan

    2016-04-01

    Carbonic anhydrase (CA) is a family of metalloenzymes that requires Zn as a cofactor and catalyze the quick conversion of CO2 to HCO3- and H+. Inhibitors of the carbonic anhydrases (CAs) have medical usage of significant diseases such as glaucoma, epilepsy, gastroduodenal ulcers, acid-base disequilibria and neurological disorders. In the present study, inhibition of CA with some benzoic derivatives (1-6) were investigated. Sheep heart CA (shCA) enzyme was isolated by means of designed affinity chromatography gel (cellulose-benzyl-sulfanylamide) 42.45-fold in a yield of 44 % with 564.65 EU/mg. Purified shCA enzyme was used in vitro studies. In the studies, IC50 values were calculated for 3-aminobenzoic acid (1), 4-aminobenzoic acid (2), 2-hydroxybenzoic acid (3), 2-benzoylbenzoic acid (4), 2,3-dimethoxybenzoic acid (5), and 3,4,5-trimethoxybenzoic acid (6), showing the inhibition effects on the purified enzyme. Such molecules can be used as pioneer for discovery of novel effective CA inhibitors for medicinal chemistry applications.

  5. Immunocytochemical localization of carbonic anhydrase in the pseudobranch tissue of the rainbow trout Oncorhynchus mykiss

    S. M. RAHIM; A. G. MAZLAN; K. D. SIMON; J. P. DELAUNOY; P. LAURENT

    2014-01-01

    本文题目:虹鳟假鳃组织中的碳酸酐酶免疫细胞化学定位Immunocytochemical localization of carbonic anhydrase in the pseudobranch tissue of the rainbow trout Oncorhynchus mykiss研究目的:假腮的功能早已引起科学家兴趣,但还有待阐明。本文通过研究硬骨鱼类品种虹鳟鱼(Oncorhynchus mykiss)的假腮碳酸酐酶的免疫定位,来探讨假腮碳酸酐酶的生理功能。研究方法:免疫组织化学染色技术。重要结论:免疫组化结果显示碳酸酐酶分布在假腮细胞中,更精确地说是在其细胞顶端分布。细胞基底端、管状系统、毛细血管和柱细胞均无免疫染色。免疫细胞化学定位进一步验证了这些结果,并显示一部分是细胞质碳酸酐酶,其余的与细胞膜结构连接。此外,腔隙层未显示出免疫过氧化物酶的活性。本研究揭示了假腮碳酸酐酶的功能与细胞外介质有关,碳酸酐酶能干预传入神经纤维刺激机制。%Pseudobranch function has long interested scientists, but its role has yet to be elucidated. Several studies have suggested that pseudobranchs serve respiratory, osmoregulatory, and sensory functions. This work investigated the immunolocalization of pseudobranch carbonic anhydrase (CA) in the teleost fish species rainbow trout (Oncor-hynchus mykiss) to clarify its physiological function. CA was purified from rainbow trout gil s O. mykiss and specific antibodies were raised. Immunoblotting between tissue homogenates of pseudobranch and gil CA antibodies showed specific immunostaining with only one band corresponding to CA in the pseudobranch homogenate. Results of im-munohistochemical technique revealed that CA was distributed within pseudobranch cells and more precisely in the apical parts (anti-vascular) of cells. The basal (vascular) parts of cells, tubular system, blood capillaries, and pillar cells were not immunostained. Immunocytochemistry confirmed these results and

  6. DNA cloning, characterization, and inhibition studies of an α-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae.

    Del Prete, Sonia; Isik, Semra; Vullo, Daniela; De Luca, Viviana; Carginale, Vincenzo; Scozzafava, Andrea; Supuran, Claudiu T; Capasso, Clemente

    2012-12-13

    We have cloned, purified, and characterized an α-carbonic anhydrase (CA, EC 4.2.1.1) from the human pathogenic bacterium Vibrio cholerae, VchCA. The new enzyme has significant catalytic activity, and an inhibition study with sulfonamides and sulfamates led to the detection of a large number of low nanomolar inhibitors, among which are methazolamide, acetazolamide, ethoxzolamide, dorzolamide, brinzolamide, benzolamide, and indisulam (KI values in the range 0.69-8.1 nM). As bicarbonate is a virulence factor of this bacterium and since ethoxzolamide was shown to inhibit the in vivo virulence, we propose that VchCA may be a target for antibiotic development, exploiting a mechanism of action rarely considered until now. PMID:23181552

  7. Carbonic anhydrase IX expression in clear cell renal cell carcinomas negatively correlates with the proportion of the granular cell component

    Skapa, P.; Hyršl, L.; Závada, Jan; Soukup, J.; Zámečník, J.

    2008-01-01

    Roč. 26, č. 22 (2008), s. 3811-3812. ISSN 0732-183X Institutional research plan: CEZ:AV0Z40550506 Keywords : carbonic anhydrase IX * CAIX * renal carcinoma Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 17.157, year: 2008

  8. Role of aryl hydrocarbon receptor in modulation of the expression of the hypoxia marker carbonic anhydrase IX

    Takáčová, M.; Holotňáková, T.; Vondráček, Jan; Machala, M.; Pěnčíková, K.; Gradin, K.; Poellinger, L.; Pastorek, J.; Pastoreková, S.; Kopáček, J.

    2009-01-01

    Roč. 419, - (2009), s. 419-425. ISSN 0264-6021 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : AhR * carbonic anhydrase IX * dioxin Subject RIV: BO - Biophysics Impact factor: 5.155, year: 2009

  9. Soluble form of carbonic anhydrase IX (CA IX) in the serum and urine of renal carcinoma patients

    Závada, Jan; Závadová, Zuzana; Zaťovičová, M.; Hyršl, L.; Kawaciuk, I.

    2003-01-01

    Roč. 89, - (2003), s. 1067-1071. ISSN 0007-0920 R&D Projects: GA ČR GA301/99/0356 Institutional research plan: CEZ:AV0Z5052915 Keywords : carbonic anhydrase IX * tumor antigens * cancer diagnostics Subject RIV: EC - Immunology Impact factor: 3.894, year: 2003

  10. Optimizing lutetium 177-anti-carbonic anhydrase IX radioimmunotherapy in an intraperitoneal clear cell renal cell carcinoma xenograft model

    Muselaers, C.H.J.; Oosterwijk, E.; Bos, D.L.; Oyen, W.J.G.; Mulders, P.F.A.; Boerman, O.C.

    2014-01-01

    A new approach in the treatment of clear cell renal carcinoma (ccRCC) is radioimmunotherapy (RIT) using anti-carbonic anhydrase IX (CAIX) antibody G250. To investigate the potential of RIT with lutetium 177 (177Lu)-labeled G250, we conducted a protein dose escalation study and subsequently an RIT st

  11. H,K-ATPase and carbonic anhydrase response to chronic systemic rat gastric hypoxia

    Ulfah Lutfiah

    2015-11-01

    Full Text Available Background: Hypoxia may induce gastric ulcer associated with excessive hidrogen chloride (HCl secretion. Synthesis of HCl involves 2 enzymes, H,K-ATPase and carbonic anhydrase (CA. This study aimed to clarify the underlying cause of gastric ulcer in chronic hypoxic condition, by investigating the H,K-ATPase and CA9 response in rats.Methods: This study was an in vivo experiment, to know the relationship between hypoxia to expression of H,K-ATPase and CA9 mRNA, and H,K-ATPase and total CA specific activity of chronic systemic rat gastric hypoxia. The result was compared to control. Data was analyzed by SPSS. If the data distribution was normal and homogeneous, ANOVA and LSD post-hoc test were used. However, if the distribution was not normal and not homogeneous, and still as such after transformation, data was treated in non-parametric using Kruskal-Wallis and Mann Whitney test. Twenty five male Sprague-Dawley rats were divided into 5 groups: rats undergoing hypoxia for 1, 3, 5, and 7 days placed in hypoxia chamber (10% O2, 90% N2, and one control group. Following this treatment, stomach of the rats was extracted and homogenized. Expression of H,K-ATPase and CA9 mRNA was measured using real time RT-PCR. Specific activity of H,K-ATPase was measured using phosphate standard solution, and specific activity of total CA was measured using p-nitrophenol solution.Results: The expression of H,K-ATPase mRNA was higher in the first day (2.159, and drastically lowered from the third to seventh day (0.289; 0.108; 0.062. Specific activities of H,K-ATPase was slightly higher in the first day (0.765, then was lowered in the third (0.685 and fifth day (0.655, and was higher in the seventh day (0.884. The expression of CA9 mRNA was lowered progressively from the first to seventh day (0.84; 0.766; 0.736; 0.343. Specific activities of total CA was low in the first day (0.083, and was higher from the third to seventh day (0.111; 0.136; 0.144.Conclusion: In hypoxia

  12. Otolith Growth and macular Carbonic Anhydrase Reactivity in larval Fish after Development at simulated Microgravity

    Baur, U.; Hilbig, R.; Anken, R.

    Otolith growth in terms of mineralisation mainly depends on the enzyme carbonic anhydrase (CA). CA is located in specialized, mitochondria-rich macular cells (ionocytes), which are involved in the endolymphatic ion exchange, and the enzyme is responsible for the provision of the pH-value necessary for otolithic calcium carbonate deposition. Since it has been shown earlier that hypergravity slows down inner ear otolith growth in developing fish via a down-regulation of CA reactivity, we were prompted to elucidate whether (simulated) microgravity would possibly yield opposite effects. Therefore, larval siblings of cichlid fish (Oreochromis mossambicus) were housed in a submersed, two-dimensional clinostat (tube) during their development. Subsequently, the "physical capacity" (i.e., size) of the otoliths was measured, CA was histochemically demonstrated in ionocytes, and enzyme reactivity was determined densitometrically. The respective data will be communicated at the meeting. Acknowledgement: This work was financially supported by the German Aerospace Center (DLR) (FKZ: 50 WB 9997).

  13. Evolution of mammalian carbonic anhydrase loci by tandem duplication: close linkage of Car-1 and Car-2 to the centromere region of chromosome 3 of the mouse

    Eicher, E.M. (Jackson Lab., Bar Harbor, ME); Stern, R.H.; Womack, J.E.; Davisson, M.T.; Roderick, T.H.; Reynolds, S.C.

    1976-01-01

    Electrophoretic variants of two carbonic anhydrase enzymes, CAR-1 (CA I) and CAR-2 (CA II), have been found in the laboratory mouse, Mus musculus. These two loci are closely linked to each other and are located on chromosome 3 near its centromere. The close linkage of Car-1 and Car-2 supports the hypothesis that the present-day carbonic anhydrase loci are the result of tandem duplication of an earlier carbonic anhydrase locus with subsequent divergence. The red blood cells of mice of the subspecies M. m. casteneus have significantly reduced levels of CAR-1 and CAR-2.

  14. Conformational effects on the circular dichroism of Human Carbonic Anhydrase II: a multilevel computational study.

    Tatyana G Karabencheva-Christova

    Full Text Available Circular Dichroism (CD spectroscopy is a powerful method for investigating conformational changes in proteins and therefore has numerous applications in structural and molecular biology. Here a computational investigation of the CD spectrum of the Human Carbonic Anhydrase II (HCAII, with main focus on the near-UV CD spectra of the wild-type enzyme and it seven tryptophan mutant forms, is presented and compared to experimental studies. Multilevel computational methods (Molecular Dynamics, Semiempirical Quantum Mechanics, Time-Dependent Density Functional Theory were applied in order to gain insight into the mechanisms of interaction between the aromatic chromophores within the protein environment and understand how the conformational flexibility of the protein influences these mechanisms. The analysis suggests that combining CD semi empirical calculations, crystal structures and molecular dynamics (MD could help in achieving a better agreement between the computed and experimental protein spectra and provide some unique insight into the dynamic nature of the mechanisms of chromophore interactions.

  15. Carbonic anhydrase enzyme as a potential therapeutic target for experimental trichinellosis.

    Saad, Abeer E; Ashour, Dalia S; Abou Rayia, Dina M; Bedeer, Asmaa E

    2016-06-01

    Trichinellosis is a globally distributed helminthic infection. There is a considerable interest in developing new anti-helminthic drugs affecting all the developmental stages of Trichinella. Acetazolamide (carbonic anhydrase (CA) inhibitor) involves a novel mechanism of action by inhibiting such an essential enzyme for parasite metabolism. This work aimed to study the effect of acetazolamide against different stages of T. spiralis in experimental animals. Mice were divided into three groups: group I: infected and treated with acetazolamide on day 2 post infection (P.I.), group II: infected and treated with acetazolamide on day 12 P.I., and group III: infected non-treated. From each group, small intestine and muscles were removed for histopathological and immunohistochemical studies. Also, total adult and muscle larval count were estimated. We found that acetazolamide was effective in reduction of both adult and muscle larval counts. When given early, the effect was more pronounced on the adults (62.7 %). However, the efficacy of the drug against muscle larvae was increased when given late (63 %). Improvement of the intestinal histopathological changes was observed in all the treated groups. Degeneration of encysted larvae with minimal pathologic changes of infected skeletal muscle was observed in the treated groups. Expression of matrix metalloproteinase-9 showed a statistically significant decrease in the intestinal and muscle tissues in all treated groups as compared to the control group. In conclusion, the present study revealed that acetazolamide, carbonic anhydrase inhibitor, could be a promising drug against both adults and larvae of T. spiralis. PMID:26979731

  16. Expression of transmembrane carbonic anhydrases, CAIX and CAXII, in human development

    Lerman Michael I

    2009-03-01

    Full Text Available Abstract Background Transmembrane CAIX and CAXII are members of the alpha carbonic anhydrase (CA family. They play a crucial role in differentiation, proliferation, and pH regulation. Expression of CAIX and CAXII proteins in tumor tissues is primarily induced by hypoxia and this is particularly true for CAIX, which is regulated by the transcription factor, hypoxia inducible factor-1 (HIF-1. Their distributions in normal adult human tissues are restricted to highly specialized cells that are not always hypoxic. The human fetus exists in a relatively hypoxic environment. We examined expression of CAIX, CAXII and HIF-1α in the developing human fetus and postnatal tissues to determine whether expression of CAIX and CAXII is exclusively regulated by HIF-1. Results The co-localization of CAIX and HIF-1α was limited to certain cell types in embryonic and early fetal tissues. Those cells comprised the primitive mesenchyma or involved chondrogenesis and skin development. Transient CAIX expression was limited to immature tissues of mesodermal origin and the skin and ependymal cells. The only tissues that persistently expressed CAIX protein were coelomic epithelium (mesothelium and its remnants, the epithelium of the stomach and biliary tree, glands and crypt cells of duodenum and small intestine, and the cells located at those sites previously identified as harboring adult stem cells in, for example, the skin and large intestine. In many instances co-localization of CAIX and HIF-1α was not evident. CAXII expression is restricted to cells involved in secretion and water absorption such as parietal cells of the stomach, acinar cells of the salivary glands and pancreas, epithelium of the large intestine, and renal tubules. Co-localization of CAXII with CAIX or HIF-1α was not observed. Conclusion The study has showed that: 1 HIF-1α and CAIX expression co- localized in many, but not all, of the embryonic and early fetal tissues; 2 There is no evidence of

  17. Oxygen-18 exchange as a measure of accessibility of CO2 and HCO3- to carbonic anhydrase in Chlorella vulgaris (UTEX 263)

    The exchange of 18O between CO2 and H2O in stirred suspensions of Chlorella vulgaris (UTEX 263) was measured using a membrane inlet to a mass spectrometer. The depletion of 18O from CO2 in the fluid outside the cells provides a method to study CO2 and HCO3- kinetics in suspensions of algae that contain carbonic anhydrase since 18O loss to H2O is catalyzed inside the cells but not in the external fluid. Low-CO2 cells of Chlorella vulgaris (grown with air) were added to a solution containing 18O enriched CO2 and HCO3- with 2 to 15 millimolar total inorganic carbon. The observed depletion of 18O from CO2 was biphasic and the resulting 18O content of CO2 was much less than the 18O content of HCO3- in the external solution. Analysis of the slopes showed that the Fick's law rate constant for entry of HCO3- into the cell was experimentally indistinguishable from zero (bicarbonate impermeable) with an upper limit of 3 x 10-4 s-1 due to experimental errors. The Fick's law rate constant for entry of CO2 to the sites of intracellular carbonic anhydrase was large, 0.013 per second, but not as great as calculated for no membrane barrier to CO2 flux (6 per second). The experimental value may be explained by a nonhomogeneous distribution of carbonic anhydrase in the cell (such as membrane-bound enzyme) or by a membrane barrier to CO2 entry into the cell or both. The CO2 hydration activity inside the cells was 160 times the uncatalyzed CO2 hydration rate

  18. Alkyl sulfonic acide hydrazides: Synthesis, characterization, computational studies and anticancer, antibacterial, anticarbonic anhydrase II (hCA II) activities

    O. Ozdemir, Ummuhan; İlbiz, Firdevs; Balaban Gunduzalp, Ayla; Ozbek, Neslihan; Karagoz Genç, Zuhal; Hamurcu, Fatma; Tekin, Suat

    2015-11-01

    Methane sulfonic acide hydrazide, CH3SO2NHNH2 (1), ethane sulfonic acide hydrazide, CH3CH2SO2NHNH2 (2), propane sulfonic acide hydrazide, CH3CH2CH2SO2NHNH2 (3) and butane sulfonic acide hydrazide, CH3CH2CH2CH2SO2NHNH2 (4) have been synthesized as homologous series and characterized by using elemental analysis, spectrophotometric methods (1H-13C NMR, FT-IR, LC-MS). In order to gain insight into the structure of the compounds, we have performed computational studies by using 6-311G(d, p) functional in which B3LYP functional were implemented. The geometry of the sulfonic acide hydrazides were optimized at the DFT method with Gaussian 09 program package. A conformational analysis of compounds were performed by using NMR theoretical calculations with DFT/B3LYP/6-311++G(2d, 2p) level of theory by applying the (GIAO) approach. The anticancer activities of these compounds on MCF-7 human breast cancer cell line investigated by comparing IC50 values. The antibacterial activities of synthesized compounds were studied against Gram positive bacteria; Staphylococcus aureus ATCC 6538, Bacillus subtilis ATCC 6633, Bacillus cereus NRRL-B-3711, Enterococcus faecalis ATCC 29212 and Gram negative bacteria; Escherichia coli ATCC 11230, Pseudomonas aeruginosa ATCC 15442, Klebsiella pneumonia ATCC 70063 by using the disc diffusion method. The inhibition activities of these compounds on carbonic anhydrase II enzyme (hCA II) have been investigated by comparing IC50 and Ki values. The biological activity screening shows that butane sulfonic acide hydrazide (4) has more activity than the others against tested breast cancer cell lines MCF-7, Gram negative/Gram positive bacteria and carbonic anhydrase II (hCA II) isoenzyme.

  19. Cloning, characterization and anion inhibition studies of a γ-carbonic anhydrase from the Antarctic bacterium Colwellia psychrerythraea.

    De Luca, Viviana; Vullo, Daniela; Del Prete, Sonia; Carginale, Vincenzo; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2016-02-15

    We have cloned, purified and characterized the γ-carbonic anhydrase (CA, EC 4.2.1.1) present in the genome of the Antarctic bacterium Colwellia psychrerythraea, which is an obligate psychrophile. The enzyme shows a significant catalytic activity for the physiologic reaction of CO2 hydration to bicarbonate and protons, with the following kinetic parameters: kcat of 6.0×10(5)s(-1) and a kcat/Km of 4.7×10(6)M(-1)×s(-1). This activity was inhibited by the sulfonamide CA inhibitor (CAI) acetazolamide, with a KI of 502nM. A range of anions was also investigated for their inhibitory action against the new enzyme CpsCA. Perchlorate, tetrafluoroborate, fluoride and bromide were not inhibitory, whereas cyanate, thiocyanate, cyanide, hydrogensulfide, carbonate and bicarbonate showed KIs in the range of 1.4-4.4mM. Diethyldithiocarbamate was a better inhibitor (KI of 0.58mM) whereas sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid were the most effective inhibitors detected, with KIs ranging between 8 and 38μM. The present study may shed some more light regarding the role that γ-CAs play in the life cycle of psychrophilic bacteria as the Antarctic one investigated here. PMID:26778292

  20. Evidence for the involvement of carbonic anhydrase and urease in calcium carbonate formation in the gravity-sensing organ of Aplysia californica

    Pedrozo, H. A.; Schwartz, Z.; Dean, D. D.; Harrison, J. L.; Campbell, J. W.; Wiederhold, M. L.; Boyan, B. D.

    1997-01-01

    To better understand the mechanisms that could modulate the formation of otoconia, calcium carbonate granules in the inner ear of vertebrate species, we examined statoconia formation in the gravity-sensing organ, the statocyst, of the gastropod mollusk Aplysia californica using an in vitro organ culture model. We determined the type of calcium carbonate present in the statoconia and investigated the role of carbonic anhydrase (CA) and urease in regulating statocyst pH as well as the role of protein synthesis and urease in statoconia production and homeostasis in vitro. The type of mineral present in statoconia was found to be aragonitic calcium carbonate. When the CA inhibitor, acetazolamide (AZ), was added to cultures of statocysts, the pH initially (30 min) increased and then decreased. The urease inhibitor, acetohydroxamic acid (AHA), decreased statocyst pH. Simultaneous addition of AZ and AHA caused a decrease in pH. Inhibition of urease activity also reduced total statoconia number, but had no effect on statoconia volume. Inhibition of protein synthesis reduced statoconia production and increased statoconia volume. In a previous study, inhibition of CA was shown to decrease statoconia production. Taken together, these data show that urease and CA play a role in regulating statocyst pH and the formation and maintenance of statoconia. CA produces carbonate ion for calcium carbonate formation and urease neutralizes the acid formed due to CA action, by production of ammonia.

  1. The integrative segment of the quail Coturnix coturnix japonica. Occurrence and distribution of carbonic anhydrase and complex carbohydrates.

    Gabriella, M G; Menghi, G

    1994-01-01

    As part of a more extensive study into the involvement of carbonic anhydrase in avian excretory function, the occurrence and distribution of this enzyme was investigated in the quail integrative segment. The integrative segment represents, in birds, that part of the intestinal tract where ureteral urine undergoes postrenal modification to form definitive urine. To define the structural peculiarities within the intestinal epithelium, the constituent parts, namely cloaca, rectum and caecum, as ...

  2. Carnosine inhibits carbonic anhydrase IX-mediated extracellular acidosis and suppresses growth of HeLa tumor xenografts

    Ditte, Zuzana; Ditte, Peter; Labudova, Martina; Simko, Veronika; Iuliano, Filippo; Zatovicova, Miriam; Csaderova, Lucia; Pastorekova, Silvia; Pastorek, Jaromir

    2014-01-01

    Background Carbonic anhydrase IX (CA IX) is a transmembrane enzyme that is present in many types of solid tumors. Expression of CA IX is driven predominantly by the hypoxia-inducible factor (HIF) pathway and helps to maintain intracellular pH homeostasis under hypoxic conditions, resulting in acidification of the tumor microenvironment. Carnosine (β-alanyl-L-histidine) is an anti-tumorigenic agent that inhibits the proliferation of cancer cells. In this study, we investigated the role of CA I...

  3. Cloning, expression, purification and sulfonamide inhibition profile of the complete domain of the η-carbonic anhydrase from Plasmodium falciparum.

    Del Prete, Sonia; Vullo, Daniela; De Luca, Viviana; Carginale, Vincenzo; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2016-09-01

    We report the cloning, purification and characterization of the full domain of carbonic anhydrase (CA, EC 4.2.1.1) from Plasmodium falciparum, which incorporates 358 amino acid residues (from 181 to 538, in the sequence of this 600 amino acid long protein), called PfCAdom. The enzyme, which belongs to the η-CA class showed the following kinetic parameters: kcat of 3.8×10(5)s(-1) and kcat/Km of 7.2×10(7)M(-1)×s(-1), being 13.3 times more effective as a catalyst compared to the truncated form PfCA. PfCAdom is more effective than the human (h) isoform hCA I, being around 50% less effective compared to hCA II, one of the most catalytically efficient enzymes known so far. Intriguingly, the sulfonamides CA inhibitors generally showed much weaker inhibitory activity against PfCAdom compared to PfCA, prompting us to hypothesize that the 69 amino acid residues insertion present in the active site of this η-CA is crucial for the active site architecture. The best sulfonamide inhibitors for PfCAdom were acetazolamide, methazolamide, metanilamide and sulfanilamide, with KIs in the range of 366-808nM. PMID:27485387

  4. Anion inhibition studies of the β-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae.

    Vullo, Daniela; Del Prete, Sonia; De Luca, Viviana; Carginale, Vincenzo; Ferraroni, Marta; Dedeoglu, Nurcan; Osman, Sameh M; AlOthman, Zeid; Capasso, Clemente; Supuran, Claudiu T

    2016-03-01

    The genome of the pathogenic bacterium Vibrio cholerae encodes for three carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the α-, β- and γ-classes. Here we report and anion inhibition study of the β-CA, VchCAβ with anions and other small molecules which inhibit metalloenzymes. The best VchCAβ anion inhibitors were sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid, which showed KIs in the range of 54-86μM. Diethyldithiocarbonate was also an effective VchCAβ inhibitor, with an inhibition constant of 0.73mM. The halides, cyanate, thiocyanate, cyanide, bicarbonate, carbonate, nitrate, nitrite, stannate, selenate, tellurate, divanadate, tetraborate, perrhenate, perruthenate, peroxydisulfate, selenocyanide, trithiocarbonate, and fluorosulfonate showed affinity in the low millimolar range, with KIs of 2.3-9.5mM. Identification of selective inhibitors of VchCAβ (over the human CA isoforms) may lead to pharmacological tools useful for understanding the physiological role(s) of this under-investigated enzyme. PMID:26853167

  5. Acetylcholinesterase and carbonic anhydrase isoenzymes I and II inhibition profiles of taxifolin.

    Gocer, Hulya; Topal, Fevzi; Topal, Meryem; Küçük, Murat; Teke, Dilek; Gülçin, İlhami; Alwasel, Saleh H; Supuran, Claudiu T

    2016-06-01

    Taxifolin, also known as dihydroquercetin, is a flavonoid commonly found in plants. Carbonic anhydrase (CA, EC 4.2.1.1) plays an important role in many critical physiological events including carbon dioxide (CO2)/bicarbonate ([Formula: see text]) respiration and pH regulation. There are 16 known CA isoforms in humans, of which human hCA isoenzymes I and II (hCA I and II) are ubiquitous cytosolic isoforms. In this study, the inhibition properties of taxifolin against the slow cytosolic isoenzyme hCA I, and the ubiquitous and dominant rapid cytosolic isoenzyme hCA II were studied. Taxifolin, as a naturally bioactive flavonoid, has a Ki of 29.2 nM against hCA I, and 24.2 nM against hCA II. For acetylcholinesterase enzyme (AChE) inhibition, Ki parameter of taxifolin was determined to be 16.7 nM. These results clearly show that taxifolin inhibited both CA isoenzymes and AChE at the nM levels. PMID:25893707

  6. On the role of carbonic anhydrase in the early phase of fish otolith mineralization

    Beier, M.; Anken, R.

    2006-01-01

    The first step in the formation of fish otoliths, calcified structures which are responsible for the internalization of gravitational information, is based on the action of so-called Tether- (T-) cells. These T-cells appear during the very early development of the inner ear and persist only a few hours. They are characterized by a kinocilium, which is in contrast to the kinocilium of the later developing sensory hair cells not mechanosensory, but binds seeding particles containing glycogen, thereby localizing otolith formation (otolith seeding). Beating cilia distributed throughout the ear agitate seeding particles, thereby inhibiting premature agglutination. In the later development, a protein matrix is formed and mineralization/crystallization takes place. Since the enzyme carbonic anhydrase (CAH) plays a prominent role in otolith mineralization (it provides carbonate for CaCO3 precipitation), we were prompted to investigate histochemically using larval cichlid fish (Oreochromis mossambicus), whether CAH might be present as early as T-cells. Indeed, CAH was present in T-cells with prominent amounts of reaction product being located along the kinocilia and around the seeding particles. These results strongly indicate that kinocilia of T-cells act as structural guides for CAH/bicarbonate transportation towards the early otoliths’ calcification sites. Besides its role in calcification, CAH in the very early stage of otolith seeding may moreover aid in the accretion process of the precursor particles.

  7. Anion and sulfonamide inhibition studies of an α-carbonic anhydrase from the Antarctic hemoglobinless fish Chionodraco hamatus.

    Cincinelli, Alessandra; Martellini, Tania; Vullo, Daniela; Supuran, Claudiu T

    2015-12-01

    An α-carbonic anhydrase (CA, EC 4.2.1.1) has been purified from the Antarctic hemoglobinless fish Chionodraco hamatus (icefish). The new enzyme, denominated ChaCA, has a good catalytic activity for the physiologic CO2 hydration to bicarbonate reaction, similar to that of the low activity human isoform hCA I, with a kcat of 5.3×10(5) s(-1), and a kcat/Km of 3.7×10(7) M(-1) s(-1). The enzyme was inhibited in the submillimolar range by most inorganic anions (cyanate, thiocyanate, cyanide, bicarbonate, halides), whereas sulfamide, sulfamate, phenylboronic/phenylarsonic acids were micromolar inhibitors, with KIs in the range of 9-77 μM. Many clinically used drugs, such as acetazolamide, methazolamide, dorzolamide, brinzolamide, topiramate and benzolamide were low nanomolar inhibitors, with KIs in the range of 39.1-77.6 nM. As the physiology of CO2/bicarbonate transport or the Root effect in this Antarctic fish are poorly understood at this moment, such inhibition data may give a more detailed insight in the role that CAs play in these phenomena, by the use of inhibitors described here as physiologic tools. PMID:26525863

  8. Sulfonamide inhibition studies of the β-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae.

    Del Prete, Sonia; Vullo, Daniela; De Luca, Viviana; Carginale, Vincenzo; Ferraroni, Marta; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2016-03-01

    The genome of the pathogenic bacterium Vibrio cholerae encodes for three carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the α-, β- and γ-classes. VchCA, the α-CA from this species was investigated earlier, whereas the β-class enzyme, VchCAβ was recently cloned, characterized kinetically and its X-ray crystal structure reported by this group. Here we report an inhibition study with sulfonamides and one sulfamate of this enzyme. The best VchCAβ inhibitors were deacetylated acetazolamide and methazolamide and hydrochlorothiazide, which showed inhibition constants of 68.2-87.0nM. Other compounds, with medium potency against VchCAβ, (KIs in the range of 275-463nM), were sulfanilamide, metanilamide, sulthiame and saccharin whereas the clinically used agents such as acetazolamide, methazolamide, ethoxzolamide, dorzolamide, zonisamide and celecoxib were micromolar inhibitors (KIs in the range of 4.51-8.57μM). Identification of potent and possibly selective inhibitors of VchCA and VchCAβ over the human CA isoforms, may lead to pharmacological tools useful for understanding the physiological role(s) of this under-investigated enzymes. PMID:26850377

  9. Innovative molecular diagnosis of Trichinella species based on β-carbonic anhydrase genomic sequence.

    Zolfaghari Emameh, Reza; Kuuslahti, Marianne; Näreaho, Anu; Sukura, Antti; Parkkila, Seppo

    2016-03-01

    Trichinellosis is a helminthic infection where different species of Trichinella nematodes are the causative agents. Several molecular assays have been designed to aid diagnostics of trichinellosis. These assays are mostly complex and expensive. The genomes of Trichinella species contain certain parasite-specific genes, which can be detected by polymerase chain reaction (PCR) methods. We selected β-carbonic anhydrase (β-CA) gene as a target, because it is present in many parasites genomes but absent in vertebrates. We developed a novel β-CA gene-based method for detection of Trichinella larvae in biological samples. We first identified a β-CA protein sequence from Trichinella spiralis by bioinformatic tools using β-CAs from Caenorhabditis elegans and Drosophila melanogaster. Thereafter, 16 sets of designed primers were tested to detect β-CA genomic sequences from three species of Trichinella, including T. spiralis, Trichinella pseudospiralis and Trichinella nativa. Among all 16 sets of designed primers, the primer set No. 2 efficiently amplified β-CA genomic sequences from T. spiralis, T. pseudospiralis and T. nativa without any false-positive amplicons from other parasite samples including Toxoplasma gondii, Toxocara cati and Parascaris equorum. This robust and straightforward method could be useful for meat inspection in slaughterhouses, quality control by food authorities and medical laboratories. PMID:26639312

  10. Carbonic anhydrase XII expression is associated with histologic grade of cervical cancer and superior radiotherapy outcome

    To investigate whether expression of carbonic anhydrase XII (CA12) is associated with histologic grade of the tumors and radiotherapy outcomes of the patients with invasive cervical cancer. CA12 expression was examined by immunohistochemical stains in cervical cancer tissues from 183 radiotherapy patients. Histological grading was classified as well (WD), moderately (MD) or poorly differentiated (PD). Oligonucleotide microarray experiment was performed using seven cervical cancer samples to examine differentially expressed genes between WD and PD cervical cancers. The association between CA12 and histological grade was analyzed by chi-square test. CA12 and histological grades were analyzed individually and as combined CA12 and histologic grade categories for effects on survival outcome. Immunohistochemical expression of CA12 was highly associated with the histologic grade of cervical cancer. Lack of CA12 expression was associated with PD histology, with an odds ratio of 3.9 (P = 0.01). Microarray analysis showed a fourfold reduction in CA12 gene expression in PD tumors. CA12 expression was marginally associated with superior disease-free survival. Application of the new combined categories resulted in further discrimination of the prognosis of patients with moderate and poorly differentiated tumor grade. Our study indicates that CA12 may be used as a novel prognostic marker in combination with histologic grade of the tumors

  11. Carbonic anhydrase XII expression is associated with histologic grade of cervical cancer and superior radiotherapy outcome

    Lee Su-Kyoung

    2010-11-01

    Full Text Available Abstract Background To investigate whether expression of carbonic anhydrase XII (CA12 is associated with histologic grade of the tumors and radiotherapy outcomes of the patients with invasive cervical cancer. Methods CA12 expression was examined by immunohistochemical stains in cervical cancer tissues from 183 radiotherapy patients. Histological grading was classified as well (WD, moderately (MD or poorly differentiated (PD. Oligonucleotide microarray experiment was performed using seven cervical cancer samples to examine differentially expressed genes between WD and PD cervical cancers. The association between CA12 and histological grade was analyzed by chi-square test. CA12 and histological grades were analyzed individually and as combined CA12 and histologic grade categories for effects on survival outcome. Results Immunohistochemical expression of CA12 was highly associated with the histologic grade of cervical cancer. Lack of CA12 expression was associated with PD histology, with an odds ratio of 3.9 (P = 0.01. Microarray analysis showed a fourfold reduction in CA12 gene expression in PD tumors. CA12 expression was marginally associated with superior disease-free survival. Application of the new combined categories resulted in further discrimination of the prognosis of patients with moderate and poorly differentiated tumor grade. Conclusions Our study indicates that CA12 may be used as a novel prognostic marker in combination with histologic grade of the tumors.

  12. Expression of a novel carbonic anhydrase, CA XIII, in normal and neoplastic colorectal mucosa

    Carbonic anhydrase (CA) isozymes may have an important role in cancer development. Some isozymes control pH homeostasis in tumors that appears to modulate the behaviour of cancer cells. CA XIII is the newest member of the CA gene family. It is a cytosolic isozyme which is expressed in a number of normal tissues. The present study was designed to investigate CA XIII expression in prospectively collected colorectal tumor samples. Both neoplastic and normal tissue specimens were obtained from the same patients. The analyses were performed using CA XIII-specific antibodies and an immunohistochemical staining method. For comparison, the tissue sections were immunostained for other cytosolic isozymes, CA I and II. The results indicated that the expression of CA XIII is down-regulated in tumor cells compared to the normal tissue. The lowest signal was detected in carcinoma samples. This pattern of expression was quite parallel for CA I and II. The down-regulation of cytosolic CA I, II and XIII in colorectal cancer may result from reduced levels of a common transcription factor or loss of closely linked CA1, CA2 and CA13 alleles on chromosome 8. Their possible role as tumor suppressors should be further evaluated

  13. Expression of a novel carbonic anhydrase, CA XIII, in normal and neoplastic colorectal mucosa

    Saarnio Juha

    2005-04-01

    Full Text Available Abstract Background Carbonic anhydrase (CA isozymes may have an important role in cancer development. Some isozymes control pH homeostasis in tumors that appears to modulate the behaviour of cancer cells. CA XIII is the newest member of the CA gene family. It is a cytosolic isozyme which is expressed in a number of normal tissues. The present study was designed to investigate CA XIII expression in prospectively collected colorectal tumor samples. Methods Both neoplastic and normal tissue specimens were obtained from the same patients. The analyses were performed using CA XIII-specific antibodies and an immunohistochemical staining method. For comparison, the tissue sections were immunostained for other cytosolic isozymes, CA I and II. Results The results indicated that the expression of CA XIII is down-regulated in tumor cells compared to the normal tissue. The lowest signal was detected in carcinoma samples. This pattern of expression was quite parallel for CA I and II. Conclusion The down-regulation of cytosolic CA I, II and XIII in colorectal cancer may result from reduced levels of a common transcription factor or loss of closely linked CA1, CA2 and CA13 alleles on chromosome 8. Their possible role as tumor suppressors should be further evaluated.

  14. Sulfonamide inhibition studies of the η-class carbonic anhydrase from the malaria pathogen Plasmodium falciparum.

    Vullo, Daniela; Del Prete, Sonia; Fisher, Gillian M; Andrews, Katherine T; Poulsen, Sally-Ann; Capasso, Clemente; Supuran, Claudiu T

    2015-02-01

    The η-carbonic anhydrases (CAs, EC 4.2.1.1) were recently discovered as the sixth genetic class of this metalloenzyme superfamily, and are so far known only in protozoa, including various Plasmodium species, the causative agents of malaria. We report here an inhibition study of the η-CA from Plasmodium falciparum (PfCA) against a panel of sulfonamides and one sulfamate compound, some of which are clinically used. The strongest inhibitors identified were ethoxzolamide and sulthiame, with KIs of 131-132 nM, followed by acetazolamide, methazolamide and hydrochlorothiazide (KIs of 153-198 nM). Brinzolamide, topiramate, zonisamide, indisulam, valdecoxib and celecoxib also showed significant inhibitory action against PfCA, with KIs ranging from 217 to 308 nM. An interesting observation was that the more efficient PfCA inhibitors are representative of several scaffolds and chemical classes, including benzene sulfonamides, monocyclic/bicyclic heterocyclic sulfonamides and compounds with a more complex scaffold (i.e., the sugar sulfamate derivative, topiramate, and the coxibs, celecoxib and valdecoxib). A comprehensive inhibition study of small molecules for η-CAs is needed as a first step towards assessing PfCA as a druggable target. The present work identifies the first known η-CA inhibitors and provides a platform for the development of next generation novel PfCA inhibitors. PMID:25533402

  15. A novel library of saccharin and acesulfame derivatives as potent and selective inhibitors of carbonic anhydrase IX and XII isoforms.

    Carradori, Simone; Secci, Daniela; De Monte, Celeste; Mollica, Adriano; Ceruso, Mariangela; Akdemir, Atilla; Sobolev, Anatoly P; Codispoti, Rossella; De Cosmi, Federica; Guglielmi, Paolo; Supuran, Claudiu T

    2016-03-01

    Small libraries of N-substituted saccharin and N-/O-substituted acesulfame derivatives were synthesized and tested as atypical and selective inhibitors of four different isoforms of human carbonic anhydrase (hCA I, II, IX and XII, EC 4.2.1.1). Most of them inhibited hCA XII in the low nanomolar range, hCA IX with KIs ranging between 19 and 2482nM, whereas they were poorly active against hCA II (KIs >10μM) and hCA I (KIs ranging between 318nM and 50μM). Since hCA I and II are ubiquitous off-target isoforms, whereas the cancer-related isoforms hCA IX and XII were recently validated as drug targets, these results represent an encouraging achievement in the development of new anticancer candidates. Moreover, the lack of a classical zinc binding group in the structure of these inhibitors opens innovative, yet unexplored scenarios for different mechanisms of inhibition that could explain the high inhibitory selectivity. A computational approach has been carried out to further rationalize the biological data and to characterize the binding mode of some of these inhibitors. PMID:26810710

  16. Sulfonamide inhibition studies of the α-carbonic anhydrase from the gammaproteobacterium Thiomicrospira crunogena XCL-2, TcruCA.

    Vullo, Daniela; Bhatt, Avni; Mahon, Brian P; McKenna, Robert; Supuran, Claudiu T

    2016-01-15

    We report a sulfonamide/sulfamate inhibition study of the α-carbonic anhydrase (CA, EC 4.2.1.1) present in the gammaproteobacterium Thiomicrospira crunogena XCL-2, a mesophilic hydrothermal vent-isolate organism, TcruCA. As Thiomicrospira crunogena is one of thousands of marine organisms that uses CA for metabolic regulation, the effect of sulfonamide inhibition has been considered. Sulfonamide-based drugs have been widely used in a variety of antibiotics, and bioelimination of these compounds results in exposure of these compounds to marine life. The enzyme was highly inhibited, with Ki values ranging from 2.5 to 40.7nM by a variety of sulfonamides including acetazolamide, methazolamide, ethoxzolamide, dichlorophenamide, dorzolamide, brinzolamide, benzolamide and benzenesulfonamides incorporating 4-hydroxyalkyl moieties. Less effective inhibitors were topiramate, zonisamide, celecoxib, saccharin and hydrochlorothiazide as well as simple benzenesulfonamides incorporating amino, halogeno, alkyl, aminoalkyl and other moieties in the ortho- or para-positions of the aromatic ring (Kis of 202-933nM). The active site interactions between TcruCA and three clinically-used CA inhibitors, acetazolamide (Diamox®), dorzolamide (Trusopt®), and brinzolamide (Azopt®) are studied using molecular docking to provide insight into the reported Ki values. Comparison between various enzymes belonging to this family may also bring interesting hints in these fascinating phenomena. PMID:26691758

  17. An Unusual Natural Product Primary Sulfonamide: Synthesis, Carbonic Anhydrase Inhibition, and Protein X-ray Structures of Psammaplin C.

    Mujumdar, Prashant; Teruya, Kanae; Tonissen, Kathryn F; Vullo, Daniela; Supuran, Claudiu T; Peat, Thomas S; Poulsen, Sally-Ann

    2016-06-01

    Psammaplin C is one of only two described natural product primary sulfonamides. Here we report the synthesis of psammaplin C and evaluate the inhibition profile against therapeutically relevant carbonic anhydrase (CA) zinc metalloenzymes. The compound exhibited unprecedented inhibition of an important cancer-associated isozyme, hCA XII, with a Ki of 0.79 nM. The compound also displayed good isoform selectivity for hCA XII over other CAs. We present the first reported protein X-ray crystal structures of psammaplin C in complex with human CAs. We engineered the easily crystallized hCA II enzyme to mimic both the hCA IX and hCA XII binding sites and then utilized protein X-ray crystallography to determine the binding pose of psammaplin C within the hCA II, hCA IX, and hCA XII mimic active sites, all to high resolution. This is the first time a natural product primary sulfonamide inhibitor has been assessed for inhibition and binding to CAs. PMID:27172398

  18. Acetylcholinesterase and carbonic anhydrase inhibitory properties of novel urea and sulfamide derivatives incorporating dopaminergic 2-aminotetralin scaffolds.

    Özgeriş, Bünyamin; Göksu, Süleyman; Polat Köse, Leyla; Gülçin, İlhami; Salmas, Ramin Ekhteiari; Durdagi, Serdar; Tümer, Ferhan; Supuran, Claudiu T

    2016-05-15

    In the present study a series of urea and sulfamide compounds incorporating the tetralin scaffolds were synthesized and evaluated for their acetylcholinesterase (AChE), human carbonic anhydrase (CA, EC 4.2.1.1) isoenzyme I, and II (hCA I and hCA II) inhibitory properties. The urea and their sulfamide analogs were synthesized from the reactions of 2-aminotetralins with N,N-dimethylcarbamoyl chloride and N,N-dimethylsulfamoyl chloride, followed by conversion to the corresponding phenols via O-demethylation with BBr3. The novel urea and sulfamide derivatives were tested for inhibition of hCA I, II and AChE enzymes. These derivatives exhibited excellent inhibitory effects, in the low nanomolar range, with Ki values of 2.61-3.69nM against hCA I, 1.64-2.80nM against hCA II, and in the range of 0.45-1.74nM against AChE. In silico techniques such as, atomistic molecular dynamics (MD) and molecular docking simulations, were used to understand the scenario of the inhibition mechanism upon approaching of the ligands into the active site of the target enzymes. In light of the experimental and computational results, crucial amino acids playing a role in the stabilization of the enzyme-inhibitor adducts were identified. PMID:27068142

  19. Mitochondrial Carbonic Anhydrase VA Deficiency Resulting from CA5A Alterations Presents with Hyperammonemia in Early Childhood

    van Karnebeek, Clara D.; Sly, William S.; Ross, Colin J.; Salvarinova, Ramona; Yaplito-Lee, Joy; Santra, Saikat; Shyr, Casper; Horvath, Gabriella A.; Eydoux, Patrice; Lehman, Anna M.; Bernard, Virginie; Newlove, Theresa; Ukpeh, Henry; Chakrapani, Anupam; Preece, Mary Anne; Ball, Sarah; Pitt, James; Vallance, Hilary D.; Coulter-Mackie, Marion; Nguyen, Hien; Zhang, Lin-Hua; Bhavsar, Amit P.; Sinclair, Graham; Waheed, Abdul; Wasserman, Wyeth W.; Stockler-Ipsiroglu, Sylvia

    2014-01-01

    Four children in three unrelated families (one consanguineous) presented with lethargy, hyperlactatemia, and hyperammonemia of unexplained origin during the neonatal period and early childhood. We identified and validated three different CA5A alterations, including a homozygous missense mutation (c.697T>C) in two siblings, a homozygous splice site mutation (c.555G>A) leading to skipping of exon 4, and a homozygous 4 kb deletion of exon 6. The deleterious nature of the homozygous mutation c.697T>C (p.Ser233Pro) was demonstrated by reduced enzymatic activity and increased temperature sensitivity. Carbonic anhydrase VA (CA-VA) was absent in liver in the child with the homozygous exon 6 deletion. The metabolite profiles in the affected individuals fit CA-VA deficiency, showing evidence of impaired provision of bicarbonate to the four enzymes that participate in key pathways in intermediary metabolism: carbamoylphosphate synthetase 1 (urea cycle), pyruvate carboxylase (anaplerosis, gluconeogenesis), propionyl-CoA carboxylase, and 3-methylcrotonyl-CoA carboxylase (branched chain amino acids catabolism). In the three children who were administered carglumic acid, hyperammonemia resolved. CA-VA deficiency should therefore be added to urea cycle defects, organic acidurias, and pyruvate carboxylase deficiency as a treatable condition in the differential diagnosis of hyperammonemia in the neonate and young child. PMID:24530203

  20. Production, purification, and characterization of a fusion protein of carbonic anhydrase from Neisseria gonorrhoeae and cellulose binding domain from Clostridium thermocellum.

    Liu, Zhu; Bartlow, Patrick; Dilmore, Robert M; Soong, Yee; Pan, Zhiwei; Koepsel, Richard; Ataai, Mohammad

    2009-01-01

    Carbon dioxide capture technologies have the potential to become an important climate change mitigation option through sequestration of gaseous CO2. A new concept for CO2 capture involves use of immobilized carbonic anhydrase (CA) that catalyzes the reversible hydration of CO2 to HCO3(-) and H+. Cost-efficient production of the enzyme and an inexpensive immobilization system are critical for development of economically feasible CA-based CO2 capture processes. An artificial, bifunctional enzyme containing CA from Neisseria gonorrhoeae and a cellulose binding domain (CBD) from Clostridium thermocellum was constructed with a His6 tag. The chimeric enzyme exhibited both CA activity and CBD binding affinity. This fusion enzyme is of particular interest due to its binding affinity for cellulose and retained CA activity, which could serve as the basis for improved technology to capture CO2 from flue gasses. PMID:19224556

  1. Structural studies of β-carbonic anhydrase from the green alga Coccomyxa: inhibitor complexes with anions and acetazolamide.

    Shenghua Huang

    Full Text Available The β-class carbonic anhydrases (β-CAs are widely distributed among lower eukaryotes, prokaryotes, archaea, and plants. Like all CAs, the β-enzymes catalyze an important physiological reaction, namely the interconversion between carbon dioxide and bicarbonate. In plants the enzyme plays an important role in carbon fixation and metabolism. To further explore the structure-function relationship of β-CA, we have determined the crystal structures of the photoautotroph unicellular green alga Coccomyxa β-CA in complex with five different inhibitors: acetazolamide, thiocyanate, azide, iodide, and phosphate ions. The tetrameric Coccomyxa β-CA structure is similar to other β-CAs but it has a 15 amino acid extension in the C-terminal end, which stabilizes the tetramer by strengthening the interface. Four of the five inhibitors bind in a manner similar to what is found in complexes with α-type CAs. Iodide ions, however, make contact to the zinc ion via a zinc-bound water molecule or hydroxide ion--a type of binding mode not previously observed in any CA. Binding of inhibitors to Coccomyxa β-CA is mediated by side-chain movements of the conserved residue Tyr-88, extending the width of the active site cavity with 1.5-1.8 Å. Structural analysis and comparisons with other α- and β-class members suggest a catalytic mechanism in which the movements of Tyr-88 are important for the CO(2-HCO(3(- interconversion, whereas a structurally conserved water molecule that bridges residues Tyr-88 and Gln-38, seems important for proton transfer, linking water molecules from the zinc-bound water to His-92 and buffer molecules.

  2. Structural studies of β-carbonic anhydrase from the green alga Coccomyxa: inhibitor complexes with anions and acetazolamide.

    Huang, Shenghua; Hainzl, Tobias; Grundström, Christin; Forsman, Cecilia; Samuelsson, Göran; Sauer-Eriksson, A Elisabeth

    2011-01-01

    The β-class carbonic anhydrases (β-CAs) are widely distributed among lower eukaryotes, prokaryotes, archaea, and plants. Like all CAs, the β-enzymes catalyze an important physiological reaction, namely the interconversion between carbon dioxide and bicarbonate. In plants the enzyme plays an important role in carbon fixation and metabolism. To further explore the structure-function relationship of β-CA, we have determined the crystal structures of the photoautotroph unicellular green alga Coccomyxa β-CA in complex with five different inhibitors: acetazolamide, thiocyanate, azide, iodide, and phosphate ions. The tetrameric Coccomyxa β-CA structure is similar to other β-CAs but it has a 15 amino acid extension in the C-terminal end, which stabilizes the tetramer by strengthening the interface. Four of the five inhibitors bind in a manner similar to what is found in complexes with α-type CAs. Iodide ions, however, make contact to the zinc ion via a zinc-bound water molecule or hydroxide ion--a type of binding mode not previously observed in any CA. Binding of inhibitors to Coccomyxa β-CA is mediated by side-chain movements of the conserved residue Tyr-88, extending the width of the active site cavity with 1.5-1.8 Å. Structural analysis and comparisons with other α- and β-class members suggest a catalytic mechanism in which the movements of Tyr-88 are important for the CO(2)-HCO(3)(-) interconversion, whereas a structurally conserved water molecule that bridges residues Tyr-88 and Gln-38, seems important for proton transfer, linking water molecules from the zinc-bound water to His-92 and buffer molecules. PMID:22162771

  3. Exclusive localization of carbonic anhydrase in bacteriocytes of the deep-sea clam Calyptogena okutanii with thioautotrophic symbiotic bacteria.

    Hongo, Yuki; Nakamura, Yoshimitsu; Shimamura, Shigeru; Takaki, Yoshihiro; Uematsu, Katsuyuki; Toyofuku, Takashi; Hirayama, Hisako; Takai, Ken; Nakazawa, Masatoshi; Maruyama, Tadashi; Yoshida, Takao

    2013-12-01

    Deep-sea Calyptogena clams harbor thioautotrophic intracellular symbiotic bacteria in their gill epithelial cells. The symbiont fixes CO2 to synthesize organic compounds. Carbonic anhydrase (CA) from the host catalyzes the reaction CO2 + H2O ↔ HCO3(-) + H(+), and is assumed to facilitate inorganic carbon (Ci) uptake and transport to the symbiont. However, the localization of CA in gill tissue remains unknown. We therefore analyzed mRNA sequences, proteins and CA activity in Calyptogena okutanii using expression sequence tag, SDS-PAGE and LC-MS/MS. We found that acetazolamide-sensitive soluble CA was abundantly expressed in the gill tissue of C. okutanii, and the enzyme was purified by affinity chromatography. Mouse monoclonal antibodies against the CA of C. okutanii were used in western blot analysis and immunofluorescence staining of the gill tissues of C. okutanii, which showed that CA was exclusively localized in the symbiont-harboring cells (bacteriocytes) in gill epithelial cells. Western blot analysis and measurement of activity showed that CA was abundantly (26-72% of total soluble protein) detected in the gill tissues of not only Calyptogena clams but also deep-sea Bathymodiolus mussels that harbor thioautotrophic or methanotrophic symbiotic bacteria, but was not detected in a non-symbiotic mussel, Mytilus sp. The present study showed that CA is abundant in the gill tissues of deep-sea symbiotic bivalves and specifically localizes in the cytoplasm of bacteriocytes of C. okutanii. This indicates that the Ci supply process to symbionts in the vacuole (symbiosome) in bacteriocytes is essential for symbiosis. PMID:24031050

  4. Carbonic anhydrase is not the only factor regulating otolith mineralization in fish in dependence of the gravitational environment

    Beier, M.; Anken, R.

    2006-01-01

    Earlier experiments have shown, that fish otolith growth and mineralization is slowed down by hypergravity (hg). The enzyme carbonic anhydrase (CAH) provides carbonate and, thus, plays a major role in otolith calcification. Indeed, CAH reactivity in inner ear maculae is downregulated by hg. The following experiment was designed in order to elucidate as of whether CAH is the only factor regulating otolith mineralization in dependence of the gravity vector: A first group of larval cichlid fish ( Oreochromis mossambicus) was reared in normal aquarium water at 1 g (1 g-Aq). A second group received hg (3 g, 7 days) as a physical factor to decrease CAH reactivity (3 g-Aq). A third group (1 g-AZ) was (at 1 g) treated with azetazolamide (AZ; 1 g/l), an inhibitor of CAH (the AZ-concentration used resulted in a complete inhibition of CAH as had been proven by a biochemical assessment of enzyme activity). The last group was maintained both in AZ and at hg (3 g-AZ). Both the saccular and utricular otoliths (sagittae and lapilli, respectively) of the 1 g-AZ group showed a decrease in otolith growth (surface area) as compared to the 1 g-Aq animals (1 g-AZ < 1 g-Aq). Similar results were obtained when comparing 3 g-Aq with 1 g-Aq samples (3 g-Aq < 1 g-Aq). Regarding sagittae, AZ treatment had no significant additional effect on otolith mineralization under hg (3 g-AZ = 1 g-AZ). In case of lapilli, however, growth received a further reduction when reared in 3 g-AZ (i.e., 3 g-AZ < 1 g-AZ). Thus, in lapilli, hg and AZ added their effects on otolith growth. This finding clearly indicates that hg does not only act on otolith growth via a regulation of CAH activity.

  5. Characterization of an Alpha Type Carbonic Anhydrase from Paracentrotus lividus Sea Urchin Embryos.

    Karakostis, Konstantinos; Costa, Caterina; Zito, Francesca; Brümmer, Franz; Matranga, Valeria

    2016-06-01

    Carbonic anhydrases (CA) are zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide to bicarbonate. In the sea urchin, CA has a role in the formation of the calcitic skeleton during embryo development. Here, we report a newly identified mRNA sequence from embryos of the sea urchin Paracentrotus lividus, referred to as Pl-can. The complete coding sequence was identified with the aid of both EST databases and experimental procedures. Pl-CAN is a 447 aa-long protein, with an estimated molecular mass of 48.5 kDa and an isoelectric point of 6.83. The in silico study of functional domains showed, in addition to the alpha type CA-specific domain, the presence of an unexpected glycine-rich region at the N-terminal of the molecule. This is not found in any other species described so far, but probably it is restricted to the sea urchins. The phylogenetic analysis indicated that Pl-CAN is evolutionarily closer to human among chordates than to other species. The putative role(s) of the identified domains is discussed. The Pl-can temporal and spatial expression profiles, analyzed throughout embryo development by comparative qPCR and whole-mount in situ hybridization (WMISH), showed that Pl-can mRNA is specifically expressed in the primary mesenchyme cells (PMC) of the embryo and levels increase along with the growth of the embryonic skeleton, reaching a peak at the pluteus stage. A recombinant fusion protein was produced in E. coli and used to raise specific antibodies in mice recognized the endogenous Pl-CAN by Western blot in embryo extracts from gastrula and pluteus. PMID:27230618

  6. Histochemical localisation of carbonic anhydrase in the inner ear of developing cichlid fish, Oreochromis mossambicus

    Beier, M.; Hilbig, R.; Anken, R.

    2008-12-01

    Inner ear otolith growth in terms of mineralisation mainly depends on the enzyme carbonic anhydrase (CAH). CAH is located in specialised, mitochondria-rich macular cells (ionocytes), which are involved in the endolymphatic ion exchange, and the enzyme is responsible for the provision of the pH-value necessary for otolithic calcium carbonate deposition. In the present study, for the first time the localisation of histochemically demonstrated CAH was analysed during the early larval development of a teleost, the cichlid fish Oreochromis mossambicus. CAH-reactivity was observed already in stage 7 animals (onset of otocyst development; staging follows Anken et al. [Anken, R., Kappel, T., Slenzka, K., Rahmann, H. The early morphogenetic development of the cichlid fish, Oreochromis mossambicus (Perciformes, Teleostei). Zool. Anz. 231, 1-10, 1993]). Neuroblasts (from which sensory and supporting cells are derived) proved to be CAH-positive. Already at stage 12 (hatch), CAH-positive regions could be attributed to ionocyte containing regions both in the so-called meshwork and patches area of the macula (i.e., clearly before ionocytes can be identified on ultrastructural level or by employing immunocytochemistry). In contrast to the circumstances observed in mammalian species, sensory hair cells stained negative for CAH in the cichlid. With the onset of stage 16 (finray primordia in dorsal fin, yolk-sac being increasingly absorbed), CAH-reactivity was observed in the vestibular nerve. This indicates the onset of myelinisation and thus commencement of operation. The localisation of CAH in the inner ear of fish (especially the differences in comparison to mammals) is discussed on the basis of its role in otolith calcification. Since the vestibular system is a detector of acceleration and thus gravity, also aspects regarding effects of altered gravity on CAH and hence on the mineralisation of otoliths in an adaptive process are addressed.

  7. Enzyme-accelerated and structure-guided crystallization of calcium carbonate: role of the carbonic anhydrase in the homologous system.

    Müller, Werner E G; Schlossmacher, Ute; Schröder, Heinz C; Lieberwirth, Ingo; Glasser, Gunnar; Korzhev, Michael; Neufurth, Meik; Wang, Xiaohong

    2014-01-01

    The calcareous spicules from sponges, e.g. from Sycon raphanus, are composed of almost pure calcium carbonate. In order to elucidate the formation of those structural skeletal elements, the function of the enzyme carbonic anhydrase (CA), isolated from this species, during the in vitro calcium carbonate-based spicule formation, was investigated. It is shown that the recombinant sponge CA substantially accelerates calcium carbonate formation in the in vitro diffusion assay. A stoichiometric calculation revealed that the turnover rate of the sponge CA during the calcification process amounts to 25 CO2s(-1) × molecule CA(-1). During this enzymatically driven process, initially pat-like particles are formed that are subsequently transformed to rhomboid/rhombohedroid crystals with a dimension of ~50 μm. The CA-catalyzed particles are smaller than those which are formed in the absence of the enzyme. The Martens hardness of the particles formed is ~4 GPa, a value which had been determined for other biogenic calcites. This conclusion is corroborated by energy-dispersive X-ray spectroscopy, which revealed that the particles synthesized are composed predominantly of the elements calcium, oxygen and carbon. Surprising was the finding, obtained by light and scanning electron microscopy, that the newly formed calcitic crystals associate with the calcareous spicules from S. raphanus in a highly ordered manner; the calcitic crystals almost perfectly arrange in an array orientation along the two opposing planes of the spicules, leaving the other two plane arrays uncovered. It is concluded that the CA is a key enzyme controlling the calcium carbonate biomineralization process, which directs the newly formed particles to existing calcareous spicular structures. It is expected that with the given tools new bioinspired materials can be fabricated. PMID:23978410

  8. Carbonic anhydrase II deficiency: Single-base deletion in exon 7 is the predominant mutation in Caribbean Hispanic patients

    Hu, P.Y.; Ernst, A.R.; Sly, W.S. (St. Louis Univ. School of Medicine, MO (United States)); Venta, P.J. (Michigan State Univ., East Lansing, MI (United States)); Skaggs, L.A.; Tashian, R.E. (Univ. of Michigan Medical School, Ann Arbor, MI (United States))

    1994-04-01

    To date, three different structural gene mutations have been identified in patients with carbonic anhydrase II deficiency (osteopetrosis with renal tubular acidosis and cerebral calcification). These include a missense mutation (H107Y) in two families, a splice junction mutation in intron 5 in one of these families, and a splice junction mutation in intron 2 for which many Arabic patients are homozygous. The authors report here a novel mutation for which carbonic anhydrase II-deficient patients from seven unrelated Hispanic families were found to be homozygous. The proband was a 2 1/2-year-old Hispanic girl of Puerto Rican ancestry who was unique clinically, in that she had no evidence of renal tubular acidosis, even though she did have osteopetrosis, developmental delay, and cerebral calcification. She proved to be homozygous for a single-base deletion in the coding region of exon 7 that produces a frameshift that changes the next 12 amino acids before leading to chain termination and that also introduces a new MaeIII restriction site. The 27-kD truncated enzyme produced when the mutant cDNA was expressed in COS cells was enzymatically inactive, present mainly in insoluble aggregates, and detectable immunologically at only 5% the level of the 29-kD normal carbonic anhydrase II expressed from the wild-type cDNA. Metabolic labeling revealed that this 27-kD mutant protein has an accelerated rate of degradation. Six subsequent Hispanic patients of Caribbean ancestry, all of whom had osteopetrosis and renal tubular acidosis but who varied widely in clinical severity, were found to be homozygous for the same mutation. These findings identify a novel mutation common to Hispanic patients from the Caribbean islands and provide a ready means for PCR-based diagnosis of the [open quotes]Hispanic mutation.[close quotes] The basis for their phenotypic variability is not yet clear. 15 refs., 5 figs., 1 tab.

  9. Gene encoding γ-carbonic anhydrase is cotranscribed with argC and induced in response to stationary phase and high CO2 in Azospirillum brasilense Sp7

    Mishra Mukti N

    2010-07-01

    Full Text Available Abstract Background Carbonic anhydrase (CA is a ubiquitous enzyme catalyzing the reversible hydration of CO2 to bicarbonate, a reaction underlying diverse biochemical and physiological processes. Gamma class carbonic anhydrases (γ-CAs are widespread in prokaryotes but their physiological roles remain elusive. At present, only γ-CA of Methanosarcina thermophila (Cam has been shown to have CA activity. Genome analysis of a rhizobacterium Azospirillum brasilense, revealed occurrence of ORFs encoding one β-CA and two γ-CAs. Results One of the putative γ-CA encoding genes of A. brasilense was cloned and overexpressed in E. coli. Electrometric assays for CA activity of the whole cell extracts overexpressing recombinant GCA1 did not show CO2 hydration activity. Reverse transcription-PCR analysis indicated that gca1 in A. brasilense is co-transcribed with its upstream gene annotated as argC, which encodes a putative N-acetyl-γ-glutamate-phosphate reductase. 5'-RACE also demonstrated that there was no transcription start site between argC and gca1, and the transcription start site located upstream of argC transcribed both the genes (argC-gca1. Using transcriptional fusions of argC-gca1 upstream region with promoterless lacZ, we further demonstrated that gca1 upstream region did not have any promoter and its transcription occurred from a promoter located in the argC upstream region. The transcription of argC-gca1 operon was upregulated in stationary phase and at elevated CO2 atmosphere. Conclusions This study shows lack of CO2 hydration activity in a recombinant protein expressed from a gene predicted to encode a γ-carbonic anhydrase in A. brasilense although it cross reacts with anti-Cam antibody raised against a well characterized γ-CA. The organization and regulation of this gene along with the putative argC gene suggests its involvement in arginine biosynthetic pathway instead of the predicted CO2 hydration.

  10. Expression patterns and subcellular localization of carbonic anhydrases are developmentally regulated during tooth formation.

    Claes-Göran Reibring

    Full Text Available Carbonic anhydrases (CAs play fundamental roles in several physiological events, and emerging evidence points at their involvement in an array of disorders, including cancer. The expression of CAs in the different cells of teeth is unknown, let alone their expression patterns during odontogenesis. As a first step towards understanding the role of CAs during odontogenesis, we used immunohistochemistry, histochemistry and in situ hybridization to reveal hitherto unknown dynamic distribution patterns of eight CAs in mice. The most salient findings include expression of CAII/Car2 not only in maturation-stage ameloblasts (MA but also in the papillary layer, dental papilla mesenchyme, odontoblasts and the epithelial rests of Malassez. We uncovered that the latter form lace-like networks around incisors; hitherto these have been known to occur only in molars. All CAs studied were produced by MA, however CAIV, CAIX and CARPXI proteins were distinctly enriched in the ruffled membrane of the ruffled MA but exhibited a homogeneous distribution in smooth-ended MA. While CAIV, CAVI/Car6, CAIX, CARPXI and CAXIV were produced by all odontoblasts, CAIII distribution displayed a striking asymmetry, in that it was virtually confined to odontoblasts in the root of molars and root analog of incisors. Remarkably, from initiation until near completion of odontogenesis and in several other tissues, CAXIII localized mainly in intracellular punctae/vesicles that we show to overlap with LAMP-1- and LAMP-2-positive vesicles, suggesting that CAXIII localizes within lysosomes. We showed that expression of CAs in developing teeth is not confined to cells involved in biomineralization, pointing at their participation in other biological events. Finally, we uncovered novel sites of CA expression, including the developing brain and eye, the olfactory epithelium, melanoblasts, tongue, notochord, nucleus pulposus and sebaceous glands. Our study provides important information for

  11. Self-healing of early age cracks in cement-based materials by mineralization of carbonic anhydrase microorganism

    Qian, Chunxiang; Chen, Huaicheng; Ren, Lifu; Luo, Mian

    2015-01-01

    This research investigated the self-healing potential of early age cracks in cement-based materials incorporating the bacteria which can produce carbonic anhydrase. Cement-based materials specimens were pre-cracked at the age of 7, 14, 28, 60 days to study the repair ability influenced by cracking time, the width of cracks were between 0.1 and 1.0 mm to study the healing rate influenced by width of cracks. The experimental results indicated that the bacteria showed excellent repairing ability...

  12. T Tubules and Surface Membranes Provide Equally Effective Pathways of Carbonic Anhydrase-Facilitated Lactic Acid Transport in Skeletal Muscle

    Hallerdei, Janine; Scheibe, Renate J.; Parkkila, Seppo; Waheed, Abdul; Sly, William S.; Gros, Gerolf; Wetzel, Petra; Endeward, Volker

    2010-01-01

    We have studied lactic acid transport in the fast mouse extensor digitorum longus muscles (EDL) by intracellular and cell surface pH microelectrodes. The role of membrane-bound carbonic anhydrases (CA) of EDL in lactic acid transport was investigated by measuring lactate flux in muscles from wildtype, CAIV-, CAIX- and CAXIV-single ko, CAIV-CAXIV double ko and CAIV–CAIX–CAXIV-triple ko mice. This was complemented by immunocytochemical studies of the subcellular localization of CAIV, CAIX and C...

  13. Novel alkalistable α-carbonic anhydrase from the polyextremophilic bacterium Bacillus halodurans: characteristics and applicability in flue gas CO2 sequestration.

    Faridi, Shazia; Satyanarayana, T

    2016-08-01

    The emissions of CO2 into the atmosphere have been constantly rising due to anthropogenic activities, which have led to global warming and climate change. Among various methods proposed for mitigating CO2 levels in the atmosphere, carbonic anhydrase (CA)-mediated carbon sequestration represents a greener and safer approach to capture and convert it into stable mineral carbonates. Despite the fact that CA is an extremely efficient metalloenzyme that catalyzes the hydration of CO2 (CO2 + H2O ↔ HCO3 (-) + H(+)) with a kcat of ∼10(6) s(-1), a thermostable, and alkalistable CA is desirable for the process to take place efficiently. The purified CA from alkaliphilic, moderately thermophilic, and halotolerant Bacillus halodurans TSLV1 (BhCA) is a homodimeric enzyme with a subunit molecular mass of ~37 kDa with stability in a broad pH range between 6.0 and 11.0. It has a moderate thermostability with a T1/2 of 24.0 ± 1.0 min at 60 °C. Based on the sensitivity of CA to specific inhibitors, BhCA is an α-CA; this has been confirmed by nucleotide/amino acid sequence analysis. This has a unique property of stimulation by SO4 (2-), and it remains unaffected by SO3 (2-), NOx, and most other components present in the flue gas. BhCA is highly efficient in accelerating the mineralization of CO2 as compared to commercial bovine carbonic anhydrase (BCA) and is also efficient in the sequestration of CO2 from the exhaust of petrol driven car, thus, a useful biocatalyst for sequestering CO2 from flue gas. PMID:27102616

  14. Carbonic Anhydrase and Zinc in Plant Physiology Anhidrasa Carbónica y Zinc en Fisiología Vegetal

    Dalila Jacqueline Escudero-Almanza

    2012-03-01

    Full Text Available Carbonic anhydrase (CA (EC: 2.4.1.1 catalyzes the rapid conversion of carbon dioxide plus water into a proton and the bicarbonate ion (HCO3- that can be found in prokaryotes and higher organisms; it is represented by four different families. Carbonic anhydrase is a metalloenzyme that requires Zn as a cofactor and is involved in diverse biological processes including pH regulation, CO2 transfer, ionic exchange, respiration, CO2 photosynthetic fixation, and stomatal closure. Therefore, the review includes relevant aspects about CA morphology, oligomerization, and structural differences in the active site. On the other hand, we consider the general characteristics of Zn, its geometry, reactions, and physiology. We then consider the CA catalysis mechanism that is carried out by the metal ion and where Zn acts as a cofactor. Zinc deficiency can inhibit growth and protein synthesis, and there is evidence that it reduces the CA content in some plants, which is a relationship addressed in this review. In leaves, CA represents 20.1% of total soluble protein, while it is the second most abundant in the chloroplast after ribulose 1,5-disphosphate carboxylase/oxygenase (RuBisCO. This facilitates the supply of CO2 to the phosphoenolpyruvate carboxylase in C4 and CAM plants and RuBisCO in C3 plants.La anhidrasa carbónica (CA (EC: 4.2.1.1 cataliza la conversión rápida de dióxido de carbono más agua en un protón y el ion bicarbonato (HCO3-; la cual puede encontrarse en procariotas y en organismos superiores y está representada por cuatro familias distintas. La CA es una metaloenzima que requiere Zn como cofactor y está implicada en diversos procesos biológicos, incluyendo la regulación del pH, la transferencia de CO2, intercambio iónico, la respiración, la fijación fotosintética de CO2, y el cierre estomático. Por lo cual, la revisión incluye aspectos relevantes sobre la morfología de laAC, su oligomerización y diferencias estructurales en el

  15. Linking Carbonic Anhydrase Abundance and Diversity in Soils to Ecological Function

    Pang, E.; Meredith, L. K.; Welander, P. V.

    2015-12-01

    Carbonic anhydrase (CA) is an ancient enzyme widespread among bacteria, archaea, and eukarya that catalyzes the following reaction: CO2 + H2O ⇌ HCO3- + H+. Its functions are critical for key cellular processes such as concentrating CO2 for autotrophic growth, pH regulation, and pathogen survival in hosts. Currently, there are six known CA classes (α, β, γ, δ, η, ζ) arising from several distinct evolutionary lineages. CA are widespread in sequenced genomes, with many organisms containing multiple classes of CA or multiple CA of the same class. Soils host rich microbial communities with diverse and important ecological functions, but the diversity and abundance of CA in soils has not been explored. CA appears to play an important, but poorly understood, role in some biogeochemical cycles such as those of CO2 and its oxygen isotope composition and also carbonyl sulfide (COS), which are potential tracers in predictive carbon cycle models. Recognizing the prevalence and functional significance of CA in soils, we used a combined bioinformatics and molecular biology approach to address fundamental questions regarding the abundance, diversity, and function of CA in soils. To characterize the abundance and diversity of the different CA classes in soils, we analyzed existing soil metagenomic and metatranscriptomic data from the DOE Joint Genome Institute databases. Out of the six classes of CA, we only found the α, β, and γ classes to be present in soils, with the β class being the most abundant. We also looked at genomes of sequenced soil microorganisms to learn what combination of CA classes they contain, from which we can begin to predict the physiological role of CA. To characterize the functional roles of the different CA classes in soils, we collected soil samples from a variety of biomes with diverse chemical and physical properties and quantified the rate of two CA-mediated processes: soil uptake of COS and acceleration of the oxygen isotope exchange

  16. Sites of calcium uptake of fish otoliths correspond with macular regions rich of carbonic anhydrase

    Beier, M.; Anken, R.; Hilbig, R.

    2006-01-01

    Based on pharmacological data, it has been suggested that the enzyme carbonic anhydrase (CAH) plays a prominent role in the mineralization of fish otoliths. To directly test this proposal, the topographical distribution of CAH was histochemically analyzed in the utricular and saccular maculae of larval cichlid fish Oreochromis mossambicus. Further investigations were focussed on the sites of otolithic calcium uptake using the fluorescent calcium tracer alizarin-complexone (AC). Both in the utricle and the saccule, CAH-reactivity was prominent in regions on both sides of the sensory macula (centrifugal (cf) and centripetal (cp) areas), which reportedly contain ionocytes, specialized cells regulating the ionic composition of the endolymph. (The terms centrifugal and centripetal were chosen instead of lateral and medial, because the saccule is positioned perpendicular to the utricle; “lateral” and “medial” thus do not allow an unambiguous allocation of the respective regions.) In the saccule, the size of cf and cp did not differ from each other, whereas, in the utricle, cp was considerably larger as compared to cf (CAH-reactivity per μm2 was nearly identical in both areas of both endorgans). AC-incubation resulted in a fluorescent band on the proximal surface of the otoliths (this surface lies next to the sensory epithelium). In saccular otoliths (sagittae), the area of the band did not differ between centrifugal and centripetal otolith regions, whereas in the utricular otoliths (lapilli), the area of the centripetal AC-band was larger in size as compared to the centrifugal one (AC-fluorescence per μm2 did not differ between the areas analyzed in both types of otoliths). These results strongly suggest that calcium/carbonate uptake of otoliths takes place especially in those regions of their proximal face which are located adjacent to CAH-rich areas of the macular epithelium. It is thus concluded that CAH is directly involved in otolith calcification. The

  17. Carbonic anhydrases are producers of S-nitrosothiols from inorganic nitrite and modulators of soluble guanylyl cyclase in human platelets.

    Hanff, Erik; Böhmer, Anke; Zinke, Maximilian; Gambaryan, Stepan; Schwarz, Alexandra; Supuran, Claudiu T; Tsikas, Dimitrios

    2016-07-01

    Nitric oxide (NO), S-nitrosoglutathione (GSNO) and S-nitrosocysteine are highly potent signaling molecules, acting both by cGMP-dependent and cGMP-independent mechanisms. The NO metabolite nitrite (NO2 (-)) is a major NO reservoir. Hemoglobin, xanthine oxidoreductase and carbonic anhydrase (CA) have been reported to reduce/convert nitrite to NO. We evaluated the role and the physiological importance of CA for an extra-platelet CA/nitrite/NO/cGMP pathway in human platelets. Authentic NO was analyzed by an NO-sensitive electrode. GSNO and GS(15)NO were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). cGMP was determined by LC-MS/MS or RIA. In reduced glutathione (GSH) containing aqueous buffer (pH 7.4), human and bovine erythrocytic CAII-mediated formation of GSNO from nitrite and GS(15)NO from (15)N-nitrite. In the presence of L-cysteine and GSH, this reaction was accompanied by NO release. Incubation of nitrite with bovine erythrocytic CAII and recombinant soluble guanylyl cyclase resulted in cGMP formation. Upon incubation of nitrite with bovine erythrocytic CAII and washed human platelets, cGMP and P-VASP(S239) were formed in the platelets. This study provides the first evidence that extra-platelet nitrite and erythrocytic CAII may modulate platelet function in a cGMP-dependent manner. The new nitrite-dependent CA activity may be a general principle and explain the cardioprotective effects of inorganic nitrite in the vasculature. We propose that nitrous acid (ONOH) is the primary CA-catalyzed reaction product of nitrite. PMID:27129464

  18. Effects of carbonic anhydrase-related protein VIII on human cells harbouring an A8344G mitochondrial DNA mutation.

    Wang, Tze-Kai; Cheng, Che-Kun; Chi, Tang-Hao; Ma, Yi-Shing; Wu, Shi-Bei; Wei, Yau-Huei; Hsieh, Mingli

    2014-04-01

    MERRF (myoclonus epilepsy associated with ragged-red fibres) is a maternally inherited mitochondrial encephalomyopathy with various syndromes involving both muscular and nervous systems. The most common mutation in MERRF syndrome, the A8344G mutation in mtDNA, has been associated with severe defects in the respiratory function of mitochondria. In the present study, we show that there is a significant decrease in CA8 (carbonic anhydrase-related protein VIII) in cybrids harbouring the MERRF A8344G mutation. CA8 deficiency and mutations were found to be associated with a distinctive lifelong gait disorder in wdl (Waddles) mice and novel syndromes characterized by cerebellar ataxia and mental retardation in humans. The results of the present study showed that overexpression of CA8 in MERRF cybrids significantly decreased cell death induced by STS (staurosporine) treatment, suggesting a protective function of CA8 in cells harbouring the A8344G mutation of mtDNA. Interestingly, an increase in the formation of LC3-II (microtubule-associated protein 1 light chain 3-II) was found in the cybrids with down-regulated CA8 expression, suggesting that reduced expression of CA8 leads to autophagy activation. Furthermore, cybrids exhibiting down-regulated CA8 showed increased cytosolic Ca2+ signals and reduced levels of phospho-Akt compared with those in the cybrids with overexpressed CA8, indicating that phospho-Akt is involved in the protection of cells by CA8. Our findings suggest that CA8 is involved in the autophagic pathway and may have a protective role in cultured cells from patients with MERRF. Targeting CA8 and the downstream autophagic pathway might help develop therapeutic agents for treatment of MERRF syndrome in the future. PMID:24476000

  19. Anion inhibition profiles of α-, β- and γ-carbonic anhydrases from the pathogenic bacterium Vibrio cholerae.

    Del Prete, Sonia; Vullo, Daniela; De Luca, Viviana; Carginale, Vincenzo; di Fonzo, Pietro; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2016-08-15

    Among the numerous metalloenzymes known to date, carbonic anhydrase (CA, EC 4.2.1.1) was the first zinc containing one, being discovered decades ago. CA is a hydro-lyase, which catalyzes the following hydration-dehydration reaction: CO2+H2O⇋HCO3(-)+H(+). Several CA classes are presently known, including the α-, β-, γ-, δ-, ζ- and η-CAs. In prokaryotes, the existence of genes encoding CAs from at least three classes (α-, β- and γ-class) suggests that these enzymes play a key role in the physiology of these organisms. In many bacteria CAs are essential for the life cycle of microbes and their inhibition leads to growth impairment or growth defects of the pathogen. CAs thus started to be investigated in detail in bacteria, fungi and protozoa with the aim to identify antiinfectives with a novel mechanism of action. Here, we investigated the catalytic activity, biochemical properties and anion inhibition profiles of the three CAs from the bacterial pathogen Vibrio cholera, VchCA, VchCAβ and VchCAγ. The three enzymes are efficient catalysts for CO2 hydration, with kcat values ranging between (3.4-8.23)×10(5)s(-1) and kcat/KM of (4.1-7.0)×10(7)M(-1)s(-1). A set of inorganic anions and small molecules was investigated for inhibition of these enzymes. The most potent VchCAγ inhibitors were N,N-diethyldithiocarbamate, sulfamate, sulfamide, phenylboronic acid and phenylarsonic acid, with KI values ranging between 44 and 91μM. PMID:27283786

  20. Carbonyl sulfide hydrolase from Thiobacillus thioparus strain THI115 is one of the β-carbonic anhydrase family enzymes.

    Ogawa, Takahiro; Noguchi, Keiichi; Saito, Masahiko; Nagahata, Yoshiko; Kato, Hiromi; Ohtaki, Akashi; Nakayama, Hiroshi; Dohmae, Naoshi; Matsushita, Yasuhiko; Odaka, Masafumi; Yohda, Masafumi; Nyunoya, Hiroshi; Katayama, Yoko

    2013-03-13

    Carbonyl sulfide (COS) is an atmospheric trace gas leading to sulfate aerosol formation, thereby participating in the global radiation balance and ozone chemistry, but its biological sinks are not well understood. Thiobacillus thioparus strain THI115 can grow on thiocyanate (SCN(-)) as its sole energy source. Previously, we showed that SCN(-) is first converted to COS by thiocyanate hydrolase in T. thioparus strain THI115. In the present work, we purified, characterized, and determined the crystal structure of carbonyl sulfide hydrolase (COSase), which is responsible for the degradation of COS to H2S and CO2, the second step of SCN(-) assimilation. COSase is a homotetramer composed of a 23.4 kDa subunit containing a zinc ion in its catalytic site. The amino acid sequence of COSase is homologous to the β-class carbonic anhydrases (β-CAs). Although the crystal structure including the catalytic site resembles those of the β-CAs, CO2 hydration activity of COSase is negligible compared to those of the β-CAs. The α5 helix and the extra loop (Gly150-Pro158) near the N-terminus of the α6 helix narrow the substrate pathway, which could be responsible for the substrate specificity. The k(cat)/K(m) value, 9.6 × 10(5) s(-1) M(-1), is comparable to those of the β-CAs. COSase hydrolyzes COS over a wide concentration range, including the ambient level, in vitro and in vivo. COSase and its structurally related enzymes are distributed in the clade D in the phylogenetic tree of β-CAs, suggesting that COSase and its related enzymes are one of the catalysts responsible for the global sink of COS. PMID:23406161

  1. Identification and characterization of a carboxysomal γ-carbonic anhydrase from the cyanobacterium Nostoc sp. PCC 7120.

    de Araujo, Charlotte; Arefeen, Dewan; Tadesse, Yohannes; Long, Benedict M; Price, G Dean; Rowlett, Roger S; Kimber, Matthew S; Espie, George S

    2014-09-01

    Carboxysomes are proteinaceous microcompartments that encapsulate carbonic anhydrase (CA) and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco); carboxysomes, therefore, catalyze reversible HCO3 (-) dehydration and the subsequent fixation of CO2. The N- and C-terminal domains of the β-carboxysome scaffold protein CcmM participate in a network of protein-protein interactions that are essential for carboxysome biogenesis, organization, and function. The N-terminal domain of CcmM in the thermophile Thermosynechococcus elongatus BP-1 is also a catalytically active, redox regulated γ-CA. To experimentally determine if CcmM from a mesophilic cyanobacterium is active, we cloned, expressed and purified recombinant, full-length CcmM from Nostoc sp. PCC 7120 as well as the N-terminal 209 amino acid γ-CA-like domain. Both recombinant proteins displayed ethoxyzolamide-sensitive CA activity in mass spectrometric assays, as did the carboxysome-enriched TP fraction. NstCcmM209 was characterized as a moderately active and efficient γ-CA with a k cat of 2.0 × 10(4) s(-1) and k cat/K m of 4.1 × 10(6) M(-1) s(-1) at 25 °C and pH 8, a pH optimum between 8 and 9.5 and a temperature optimum spanning 25-35 °C. NstCcmM209 also catalyzed the hydrolysis of the CO2 analog carbonyl sulfide. Circular dichroism and intrinsic tryptophan fluorescence analysis demonstrated that NstCcmM209 was progressively and irreversibly denatured above 50 °C. NstCcmM209 activity was inhibited by the reducing agent tris(hydroxymethyl)phosphine, an effect that was fully reversed by a molar excess of diamide, a thiol oxidizing agent, consistent with oxidative activation being a universal regulatory mechanism of CcmM orthologs. Immunogold electron microscopy and Western blot analysis of TP pellets indicated that Rubisco and CcmM co-localize and are concentrated in Nostoc sp. PCC 7120 carboxysomes. PMID:24907906

  2. Inhibition of hypoxia-inducible carbonic anhydrase-IX enhances hexokinase Ⅱ inhibitor-induced hepatocellular carcinoma cell apoptosis

    Su-jong YU; Hyo-suk LEE; Jung-hwan YOON; Jeong-hoon LEE; Sun-jung MYUNG; Eun-sun JANG; Min-sun KWAK; Eun-ju CHO; Ja-june JANG; Yoon-jun KIM

    2011-01-01

    Aim: The hypoxic condition within large or infiltrative hypovascular tumors produces intracellular acidification, which could activate many signaling pathways and augment cancer cell growth and invasion. Carbonic anhydrase-Ⅸ (CA-Ⅸ) is an enzyme lowering pH. This study is to examine whether hypoxia induces CA-Ⅸ in hepatocellular carcinoma (HCC) cells, and to evaluate its clinical implication in HCC patients.Methods: Human HCC cell lines (Huh-7 and HepG2 cells) were used, and cell growth was assessed using MTS assay. CA-IX expression and apoptotic/kinase signaling were evaluated using immunoblotting. The cells were transfected with CA-Ⅸ-specific siRNA, or treated with its inhibitor 4-(2-aminoethyl) benzenesulfonamide (CAI#1), and/or the hexokinase Ⅱ inhibitor, 3-bromopyruvate (3-BP). A clinic pathological analysis of 69 patients who underwent an HCC resection was performed using a tissue array.Results: Incubation of HCC cells under hypoxia (1% 02, 5% C02, 94% N2) for 36 h significantly increased CA-IX expression level. CAI#1(400 μmol/L) or CA-IX siRNA (100 μmol/L) did not influence HCC cell growth and induce apoptosis. However, CAI#1 or CA-IX siRNA at these concentrations enhanced the apoptosis induced by 3-BP (100 μmol/L). This enhancement was attributed to increased ER stress and JNK activation, as compared with 3-BP alone. Furthermore, a clinic pathological analysis of 69 HCC patients revealed that tumor CA-Ⅸ intensity was inversely related to E-cadherin intensity.Conclusion: Inhibition of hypoxia-induced CA-Ⅸ enhances hexokinase Ⅱ inhibitor-induced HCC apoptosis. Furthermore, CA-IX expres sion profiles may have prognostic implications in HCC patients. Thus, the inhibition of CA-Ⅸ, in combination with a hexokinase Ⅱ inhibitor, may be therapeutically useful in patients with HCCs that are aggressively growing in a hypoxic environment.

  3. Carnosine inhibits carbonic anhydrase IX-mediated extracellular acidosis and suppresses growth of HeLa tumor xenografts

    Carbonic anhydrase IX (CA IX) is a transmembrane enzyme that is present in many types of solid tumors. Expression of CA IX is driven predominantly by the hypoxia-inducible factor (HIF) pathway and helps to maintain intracellular pH homeostasis under hypoxic conditions, resulting in acidification of the tumor microenvironment. Carnosine (β-alanyl-L-histidine) is an anti-tumorigenic agent that inhibits the proliferation of cancer cells. In this study, we investigated the role of CA IX in carnosine-mediated antitumor activity and whether the underlying mechanism involves transcriptional and translational modulation of HIF-1α and CA IX and/or altered CA IX function. The effect of carnosine was studied using two-dimensional cell monolayers of several cell lines with endogenous CA IX expression as well as Madin Darby canine kidney transfectants, three-dimensional HeLa spheroids, and an in vivo model of HeLa xenografts in nude mice. mRNA and protein expression and protein localization were analyzed by real-time PCR, western blot analysis, and immunofluorescence staining, respectively. Cell viability was measured by a flow cytometric assay. Expression of HIF-1α and CA IX in tumors was assessed by immunohistochemical staining. Real-time measurement of pH was performed using a sensor dish reader. Binding of CA IX to specific antibodies and metabolon partners was investigated by competitive ELISA and proximity ligation assays, respectively. Carnosine increased the expression levels of HIF-1α and HIF targets and increased the extracellular pH, suggesting an inhibitory effect on CA IX-mediated acidosis. Moreover, carnosine significantly inhibited the growth of three-dimensional spheroids and tumor xenografts compared with untreated controls. Competitive ELISA showed that carnosine disrupted binding between CA IX and antibodies specific for its catalytic domain. This finding was supported by reduced formation of the functional metabolon of CA IX and anion exchanger 2 in the

  4. Biochemical and developmental characterization of carbonic anhydrase II from chicken erythrocytes

    Orito Kensuke

    2011-03-01

    Full Text Available Abstract Background Carbonic anhydrase (CA of the chicken has attracted attention for a long time because it has an important role in the eggshell formation. The developmental profile of CA-II isozyme levels in chicken erythrocytes has not been determined or reported. Furthermore, the relations with CA-II in erythrocyte and egg production are not discussed. In the present study, we isolated CA-II from erythrocytes of chickens and determined age-related changes of CA-II levels in erythrocytes. Methods Chicken CA-II was purified by a combination of column chromatography. The levels of CA-II in the hemolysate of the chicken were determined using the ELISA system in blood samples from 279 female chickens, ages 1 to 93 weeks, 69 male chickens, ages 3 to 59 weeks and 52 weeks female Araucana-chickens. Results The mean concentration of CA-II in hemolysate from 1-week-old female was 50.8 ± 11.9 mg/g of Hb. The mean levels of CA-II in 25-week-old (188.1 ± 82.6 mg/g of Hb, 31-week-old (193.6 ± 69.7 mg/g of Hb and 49-week-old (203.8 ± 123.5 mg/g of Hb female-chickens showed the highest level of CA-II. The levels of CA-II in female WL-chickens significantly decreased at 63 week (139.0 ± 19.3 mg/g of Hb. The levels of CA-II in female WL-chicken did not change from week 63 until week 93.The mean level of CA-II in hemolysate of 3-week-old male WL-chickens was 78.3 ± 20.7 mg/g of Hb. The levels of CA-II in male WL-chickens did not show changes in the week 3 to week 59 timeframe. The mean level of CA-II in 53-week-old female Araucana-chickens was 23.4 ± 1.78 mg/g of Hb. These levels of CA-II were about 11% of those of 49-week-old female WL-chickens. Simple linear regression analysis showed significant associations between the level of CA-II and egg laying rate from 16 week-old at 63 week-old WL-chicken (p Conclusions Developmental changes and sexual differences of CA-II concentration in WL-chicken erythrocytes were observed. The concentration of CA-II in

  5. Synthesis and inhibition potency of novel ureido benzenesulfonamides incorporating GABA as tumor-associated carbonic anhydrase IX and XII inhibitors.

    Ceruso, Mariangela; Antel, Sabrina; Scozzafava, Andrea; Supuran, Claudiu T

    2016-01-01

    New ureido benzenesulfonamides incorporating a GABA moiety as a linker between the ureido and the sulfonamide functionalities were synthesized and their inhibition potency determined against both the predominant cytosolic (hCA I and II) and the transmembrane tumor-associated (hCA IX and XII) isoforms of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). The majority of these compounds were medium potency inhibitors of the cytosolic isoform hCA I and effective hCA II inhibitors, whereas they showed strong inhibition of the two transmembrane tumor-associated isoforms hCA IX and XII, with KIs in nanomolar range. Only one derivative had a good selectivity for inhibition of the tumor-associated hCA IX target isoform over the cytosolic and physiologically dominant off-target hCA I and II, being thus a potential tool to develop new anticancer agents. PMID:25792500

  6. Transcriptome analysis and characterisation of gill-expressed carbonic anhydrase and other key osmoregulatory genes in freshwater crayfish Cherax quadricarinatus.

    Ali, Muhammad Yousuf; Pavasovic, Ana; Mather, Peter B; Prentis, Peter J

    2015-12-01

    The pH and salinity balance mechanisms of crayfish are controlled by a set of transport-related genes. We identified a set of the genes from the gill transcriptome from a freshwater crayfish Cherax quadricarinatus using the Illumina NGS-sequencing technology. We identified and characterized carbonic anhydrase (CA) genes and some other key genes involved in systematic acid-base balance and osmotic/ionic regulation. We also examined expression patterns of some of these genes across different sublethal pH levels [1]. A total of 72,382,710 paired-end Illumina reads were assembled into 36,128 contigs with an average length of 800 bp. About 37% of the contigs received significant BLAST hits and 22% were assigned gene ontology terms. These data will assist in further physiological-genomic studies in crayfish. PMID:26543880

  7. Pharmacological inhibition of carbonic anhydrase XII interferes with cell proliferation and induces cell apoptosis in T-cell lymphomas.

    Lounnas, Nadia; Rosilio, Célia; Nebout, Marielle; Mary, Didier; Griessinger, Emmanuel; Neffati, Zouhour; Chiche, Johanna; Spits, Hergen; Hagenbeek, Thijs J; Asnafi, Vahid; Poulsen, Sally-Ann; Supuran, Claudiu T; Peyron, Jean-François; Imbert, Véronique

    2013-06-01

    The membrane-bound carbonic anhydrase isoforms CAIX and CAXII, underpin a pH-regulating system that enables hypoxic tumor cell survival. Here, we observed for the first time an upregulation of CAXII in T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/LL) cells. First we showed that CAXII is overexpressed in thymocytes from tPTEN-/- mice suffering of T lymphoma and that its pharmacological inhibition decreased cell proliferation and induced apoptosis. The same results were observed with the SupT1 human T cell lymphoma line. In addition we observed an upregulation of CAXII in human T-ALL samples supporting the case that CAXII may represent a new therapeutic target for T-ALL/LL. PMID:23348702

  8. Transcriptome analysis and characterisation of gill-expressed carbonic anhydrase and other key osmoregulatory genes in freshwater crayfish Cherax quadricarinatus

    Muhammad Yousuf Ali

    2015-12-01

    Full Text Available The pH and salinity balance mechanisms of crayfish are controlled by a set of transport-related genes. We identified a set of the genes from the gill transcriptome from a freshwater crayfish Cherax quadricarinatus using the Illumina NGS-sequencing technology. We identified and characterized carbonic anhydrase (CA genes and some other key genes involved in systematic acid-base balance and osmotic/ionic regulation. We also examined expression patterns of some of these genes across different sublethal pH levels [1]. A total of 72,382,710 paired-end Illumina reads were assembled into 36,128 contigs with an average length of 800 bp. About 37% of the contigs received significant BLAST hits and 22% were assigned gene ontology terms. These data will assist in further physiological-genomic studies in crayfish.

  9. Novel sulfonamide bearing coumarin scaffolds as selective inhibitors of tumor associated carbonic anhydrase isoforms IX and XII.

    Chandak, Navneet; Ceruso, Mariangela; Supuran, Claudiu T; Sharma, Pawan K

    2016-07-01

    Four novel scaffolds consisting of total 24 compounds (1a-1o, 2a-2c, 3a-3c and 4a-4c) bearing aromatic sulfonamide and coumarin moieties connected through various linkers were synthesized in order to synergize the inhibition potential of both the moieties against four selected human carbonic anhydrase isoforms (hCA I, II, IX & XII). All compounds were found to be potent inhibitors of tumor associated hCA IX & XII while at the same time required large amounts to inhibit off-targeted housekeeping hCA I & II. Selectivity was more pronounced against hCA II over I, and hCA XII over IX. Results were compared with antitumor drug acetazolamide. One derivative 2b of series 2 was found to be a better selective inhibitor of hCA IX and XII. PMID:27137360

  10. The extremo-α-carbonic anhydrase from the thermophilic bacterium Sulfurihydrogenibium azorense is highly inhibited by sulfonamides.

    Vullo, Daniela; De Luca, Viviana; Scozzafava, Andrea; Carginale, Vincenzo; Rossi, Mosè; Supuran, Claudiu T; Capasso, Clemente

    2013-08-01

    The α-carbonic anhydrase (CA, EC 4.2.1.1) from the newly discovered extremophilic bacterium Sulfurihydrogenibium azorense (SazCA) is the most effective CA known to date. Here we investigated the inhibition profile of this enzyme with a series of aromatic and heterocyclic sulfonamides, and one sulfamate. Many clinically used sulfonamides, such as acetazolamide, methazolamide, ethoxzolamide, dichlorophenamide, dorzolamide, brinzolamide, topiramate, celecoxib and sulpiride were low nanomolar/subnanomolar SazCA inhibitors (KIs in the range of 0.9-10.8 nM) whereas simple aromatic derivatives were less effective as SazCA inhibitors. The inhibition profile of SazCA is slightly different from that of the related enzyme from S. yellostonense (SspCA), investigated earlier by our groups. PMID:23777827

  11. Knock-down of hypoxia-induced carbonic anhydrases IX and XII radiosensitizes tumor cells by increasing intracellular acidosis

    Jérôme eDoyen

    2013-01-01

    Full Text Available The relationship between acidosis within the tumor microenvironment and radioresistance of hypoxic tumor cells remains unclear. Previously we reported that hypoxia-induced carbonic anhydrases CAIX and CAXII constitute a robust pHi-regulating system that confers a survival advantage on hypoxic human colon carcinoma LS174Tr cells in acidic microenvironments. Here we investigate the role of acidosis, CAIX and CAXII knock-down in combination with ionizing radiation. Fibroblasts cells (-/+ CAIX and LS174Tr cells (inducible knock-down for ca9/ca12 were analyzed for cell cycle phase distribution and survival after irradiation in extracellular pHo manipulations and hypoxia (1% O2 exposure. Radiotherapy was used to target ca9/ca12-silenced LS174Tr tumors grown in nude mice. We found that diminishing the pHi-regulating capacity of fibroblasts through inhibition of NHE-1 sensitize cells to radiation-induced cell death. Secondly, the pHi-regulating function of CAIX plays a key protective role in irradiated fibroblasts in an acidic environment as accompanied by a reduced number of cells in the radiosensitive phases of the cell cycle. Thirdly, we demonstrate that irradiation of LS174Tr spheroids, silenced for either ca9 or both ca9/ca12, showed a respective 50% and 75% increase in cell death as a result of a decrease in cell number in the radioresistant S phase and a disruption of CA-mediated pHi regulation. Finally, LS174Tr tumor progression was strongly decreased when ca9/ca12 silencing was combined with irradiation in vivo. These findings highlight the combinatory use of radiotherapy with targeting of the pHi-regulating carbonic anhydrases as an anti-cancer strategy.

  12. Synthesis and In Vitro Inhibition Effect of New Pyrido[2,3-d]pyrimidine Derivatives on Erythrocyte Carbonic Anhydrase I and II

    Hilal Kuday

    2014-01-01

    Full Text Available In vitro inhibition effects of indolylchalcones and new pyrido[2,3-d]pyrimidine derivatives on purified human carbonic anhydrase I and II (hCA I and II were investigated by using CO2 as a substrate. The results showed that all compounds inhibited the hCA I and hCA II enzyme activities. Among all the synthesized compounds, 7e (IC50=6.79 µM was found to be the most active compound for hCA I inhibitory activity and 5g (IC50=7.22 µM showed the highest hCA II inhibitory activity. Structure-activity relationships study showed that indolylchalcone derivatives have higher inhibitory activities than pyrido[2,3-d]pyrimidine derivatives on hCA I and hCA II. Additionally, methyl group bonded to uracil ring increases inhibitory activities on both hCA I and hCA II.

  13. Effect of CO{sub 2} concentration on carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase expression in pea

    Majeau, N.; Coleman, J.R. [Univ. of Toronto, Ontario (Canada)

    1996-10-01

    The effect of external CO{sub 2} concentration on the expression of carbonic anhydrase (CA) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was examined in pea (Pisum sativum cv Little Marvel) leaves. Enzyme activities and their transcript levels were reduced in plants grown at 1000 {mu}L/L CO{sub 2} compared with plants grown in ambient air. Growth at 160 {mu}L/L CO{sub 2} also appeared to reduce steady-state transcript levels for the rbcS, the gene encoding the small subunit of Rubisco, and for ca, the gene encoding CA; however, rbcS transcripts were reduced to a greater extent at this concentration. Rubisco activity was slightly lower in plants grown at 160 {mu}L/L CO{sub 2}, and CA activity was significantly higher than that observed in air-grown plants. Transfer of plants from 1000 {mu}L/L to air levels of CO{sub 2} resulted in a rapid increase in both ca and rbcS transcript abundance in fully expanded leaves, followed by an increase in enzyme activity. Plants transferred from air to high-CO{sub 2} concentrations appeared to modulate transcript abundance and enzyme activity less quickly. Foliar carbohydrate levels were also examined in plants grown continuously at high and ambient CO{sub 2}, and following changes in growth conditions that rapidly altered ca and rbcS transcript abundance and enzyme activities. 39 refs., 2 figs., 3 tabs.

  14. Production, purification, and characterization of a fusion protein of carbonic anhydrase from Neisseria gonorrhoeae and cellulose binding domain from Clostridium thermocellum

    Liu, Zhu [Univ. of Pittsburgh, PA (United States); Bartlow, Patrick [Univ. of Pittsburgh, PA (United States); Dilmore, Robert M. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Soong, Yee [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Pan, Zhiwei [Univ. of Pittsburgh, PA (United States); Koepsel, Richard [Univ. of Pittsburgh, PA (United States); Ataai, Mohammad [Univ. of Pittsburgh, PA (United States)

    2009-01-01

    Carbon dioxide capture technologies have the potential to become an important climate change mitigation option through sequestration of gaseous CO2, A new concept for CO2 capture involves use of immobilized carbonic anhydrase (CA) that catalyzes the reversible hydration of CO2 to HCO3- and H+. Cost-efficient production of the enzyme and an inexpensive immobilization system are critical for development of economically feasible CA-based CO2 capture processes. An artificial, bifunctional enzyme containing CA from Neisseria gonorrhoeae and a cellulose binding domain (CBD) from Clostridium thermocellum was constructed with a His6 tag. The chimeric enzyme exhibited both CA activity and CBD binding affinity. This fusion enzyme is of particular interest due to its binding affinity for cellulose and retained CA activity, which could serve as the basis for improved technology to capture CO2 from flue gasses.

  15. Common genetic denominators for Ca++-based skeleton in Metazoa: role of osteoclast-stimulating factor and of carbonic anhydrase in a calcareous sponge.

    Werner E G Müller

    Full Text Available Calcium-based matrices serve predominantly as inorganic, hard skeletal systems in Metazoa from calcareous sponges [phylum Porifera; class Calcarea] to proto- and deuterostomian multicellular animals. The calcareous sponges form their skeletal elements, the spicules, from amorphous calcium carbonate (ACC. Treatment of spicules from Sycon raphanus with sodium hypochlorite (NaOCl results in the disintegration of the ACC in those skeletal elements. Until now a distinct protein/enzyme involved in ACC metabolism could not been identified in those animals. We applied the technique of phage display combinatorial libraries to identify oligopeptides that bind to NaOCl-treated spicules: those oligopeptides allowed us to detect proteins that bind to those spicules. Two molecules have been identified, the (putative enzyme carbonic anhydrase and the (putative osteoclast-stimulating factor (OSTF, that are involved in the catabolism of ACC. The complete cDNAs were isolated and the recombinant proteins were prepared to raise antibodies. In turn, immunofluorescence staining of tissue slices and qPCR analyses have been performed. The data show that sponges, cultivated under standard condition (10 mM CaCl(2 show low levels of transcripts/proteins for carbonic anhydrase or OSTF, compared to those animals that had been cultivated under Ca(2+-depletion condition (1 mM CaCl(2. Our data identify with the carbonic anhydrase and the OSTF the first two molecules which remain conserved in cells, potentially involved in Ca-based skeletal dissolution, from sponges (sclerocytes to human (osteoclast.

  16. Functional characterization of mutants affected in the carbonic anhydrase domain of the respiratory complex I in Arabidopsis thaliana.

    Soto, Débora; Córdoba, Juan Pablo; Villarreal, Fernando; Bartoli, Carlos; Schmitz, Jessica; Maurino, Veronica G; Braun, Hans Peter; Pagnussat, Gabriela C; Zabaleta, Eduardo

    2015-09-01

    The NADH-ubiquinone oxidoreductase complex (complex I) (EC 1.6.5.3) is the main entrance site of electrons into the respiratory chain. In a variety of eukaryotic organisms, except animals and fungi (Opisthokonta), it contains an extra domain comprising trimers of putative γ-carbonic anhydrases, named the CA domain, which has been proposed to be essential for assembly of complex I. However, its physiological role in plants is not fully understood. Here, we report that Arabidopsis mutants defective in two CA subunits show an altered photorespiratory phenotype. Mutants grown in ambient air show growth retardation compared to wild-type plants, a feature that is reversed by cultivating plants in a high-CO2 atmosphere. Moreover, under photorespiratory conditions, carbon assimilation is diminished and glycine accumulates, suggesting an imbalance with respect to photorespiration. Additionally, transcript levels of specific CA subunits are reduced in plants grown under non-photorespiratory conditions. Taken together, these results suggest that the CA domain of plant complex I contributes to sustaining efficient photosynthesis under ambient (photorespiratory) conditions. PMID:26148112

  17. Preliminary X-ray crystallographic analysis of β-carbonic anhydrase psCA3 from Pseudomonas aeruginosa

    Two crystal forms of β-carbonic anhydrase psCA3 from P. aeruginosa were grown. Crystal form A belonged to space group P212121, with unit-cell parameters a = 81.9, b = 84.9, c = 124.2 Å, and diffracted X-rays to 2.9 Å resolution; crystal form B belonged to space group P21212, with unit-cell parameters a = 69.9, b = 77.7, c = 88.5 Å, and diffracted X-rays to 3.0 Å resolution. Pseudomonas aeruginosa is a Gram-negative bacterium that causes life-threatening infections in susceptible individuals and is resistant to most clinically available antimicrobials. Genomic and proteomic studies have identified three genes, pa0102, pa2053 and pa4676, in P. aeruginosa PAO1 encoding three functional β-carbonic anhydrases (β-CAs): psCA1, psCA2 and psCA3, respectively. These β-CAs could serve as novel antimicrobial drug targets for this pathogen. X-ray crystallographic structural studies have been initiated to characterize the structure and function of these proteins. This communication describes the production of two crystal forms (A and B) of β-CA psCA3. Form A diffracted to a resolution of 2.9 Å; it belonged to space group P212121, with unit-cell parameters a = 81.9, b = 84.9, c = 124.2 Å, and had a calculated Matthews coefficient of 2.23 Å3 Da−1 assuming four molecules in the crystallographic asymmetric unit. Form B diffracted to a resolution of 3.0 Å; it belonged to space group P21212, with unit-cell parameters a = 69.9, b = 77.7, c = 88.5 Å, and had a calculated Matthews coefficient of 2.48 Å3 Da−1 assuming two molecules in the crystallographic asymmetric unit. Preliminary molecular-replacement solutions have been determined with the PHENIX AutoMR wizard and refinement of both crystal forms is currently in progress

  18. Development of 3-(4-aminosulphonyl)-phenyl-2-mercapto-3H-quinazolin-4-ones as inhibitors of carbonic anhydrase isoforms involved in tumorigenesis and glaucoma.

    Alafeefy, Ahmed M; Carta, Fabrizio; Ceruso, Mariangela; Al-Tamimi, Abdul-Malek S; Al-Kahtani, Abdulla A; Supuran, Claudiu T

    2016-03-15

    A series of heterocyclic benzenesulfonamides incorporating 2-mercapto-3H-quinazolin-4-one tails were prepared by condensation of substituted anthranilic acids with 4-isothiocyanato-benzenesulfonamide. These sulfonamides were investigated as inhibitors of the human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms hCA I and II (cytosolic isozymes), as well as hCA IX and XII (trans-membrane, tumor-associated enzymes). They acted as medium potency inhibitors of hCA I (KIs of 81.0-3084 nM), being highly effective as hCA II (KIs in the range of 0.25-10.8 nM), IX (KIs of 3.7-50.4 nM) and XII (KIs of 0.60-52.9 nM) inhibitors. These compounds should thus be of interest as preclinical candidates in pathologies in which the activity of these enzymes should be inhibited, such as glaucoma (CA II and XII as targets) or some tumors in which the activity of three isoforms (CA II, IX and XII) is dysregulated. PMID:26875933

  19. The impact of hydroquinone on acetylcholine esterase and certain human carbonic anhydrase isoenzymes (hCA I, II, IX, and XII).

    Scozzafava, Andrea; Kalın, Pınar; Supuran, Claudiu T; Gülçin, İlhami; Alwasel, Saleh H

    2015-12-01

    Carbonic anhydrases (CAs) are widespread and the most studied members of a great family of metalloenzymes in higher vertebrates including humans. CAs were investigated for their inhibition of all of the catalytically active mammalian isozymes of the Zn(2+)-containing CA, (CA, EC 4.2.1.1). On the other hand, acetylcholinesterase (AChE. EC 3.1.1.7), a serine protease, is responsible for ACh hydrolysis and plays a fundamental role in impulse transmission by terminating the action of the neurotransmitter ACh at the cholinergic synapses and neuromuscular junction. In the present study, the inhibition effect of the hydroquinone (benzene-1,4-diol) on AChE activity was evaluated and effectively inhibited AChE with Ki of 1.22 nM. Also, hydroquinone strongly inhibited some human cytosolic CA isoenzymes (hCA I and II) and tumour-associated transmembrane isoforms (hCA IX, and XII), with Kis in the range between micromolar (415.81 μM) and nanomolar (706.79 nM). The best inhibition was observed in cytosolic CA II. PMID:25586344

  20. Synthesis 4-[2-(2-mercapto-4-oxo-4H-quinazolin-3-yl)-ethyl]-benzenesulfonamides with subnanomolar carbonic anhydrase II and XII inhibitory properties.

    Bozdag, Murat; Alafeefy, Ahmed M; Carta, Fabrizio; Ceruso, Mariangela; Al-Tamimi, Abdul-Malek S; Al-Kahtani, Abdulla A; Alasmary, Fatmah A S; Supuran, Claudiu T

    2016-09-15

    Condensation of substituted anthranilic acids with 4-isothiocyanatoethyl-benzenesulfonamide led to series of heterocyclic benzenesulfonamides incorporating 2-mercapto-quinazolin-4-one tails. These sulfonamides were investigated as inhibitors of the human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms hCA I and II (cytosolic isozymes), as well as hCA XII (a transmembrane, tumor-associated enzyme also involved in glaucoma-genesis). The new sulfonamides acted as medium potency inhibitors of hCA I (KIs of 28.5-2954nM), being highly effective as hCA II (KIs in the range of 0.62-12.4nM) and XII (KIs of 0.54-7.11nM) inhibitors. All substitution patterns present in these compounds (e.g., halogens, methyl and methoxy moieties, in positions 6, 7 and/or 8 of the 2-mercapto-quinazolin-4-one ring) led to highly effective hCA II/XII inhibitors. These compounds should thus be of interest as preclinical candidates in pathologies in which the activity of these enzymes should be inhibited, such as glaucoma (CA II and XII as targets) or some tumors in which the activity of isoforms CA II and XII is dysregulated. PMID:27396930

  1. The alpha-carbonic anhydrase from the thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1 is highly susceptible to inhibition by sulfonamides.

    Vullo, Daniela; Luca, Viviana De; Scozzafava, Andrea; Carginale, Vincenzo; Rossi, Mosè; Supuran, Claudiu T; Capasso, Clemente

    2013-03-15

    The α-carbonic anhydrase (CA, EC 4.2.1.1) from the newly discovered thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1 (SspCA) was investigated for its inhibition with a large series of sulfonamides and a sulfamate, the classical inhibitors of these zinc enzymes. SspCA showed an inhibition profile with these compounds very similar to that of the predominant human cytosolic isoform hCA II, and not to that of the bacterial α-CA from Helicobacter pylori. Some clinically used drugs such as acetazolamide, methazolamide, ethoxzolamide, dichlorophenamide, dorzolamide, brinzolamide, topiramate, celecoxib and sulthiame were low nanomolar SspCA/hCA II inhibitors (KIs in the range of 4.5-12.3nM) whereas simple aromatic/heterocyclic sulfonamides were less effective, micromolar inhibitors. As this highly catalytically active and thermostable enzyme may show biotechnological applications, its inhibition studies may be relevant for designing on/off systems to control its activity. PMID:22883029

  2. Sulfonamide inhibition studies of the β-carbonic anhydrase from the newly discovered bacterium Enterobacter sp. B13.

    Eminoğlu, Ayşenur; Vullo, Daniela; Aşık, Aycan; Çolak, Dilşat Nigar; Çanakçı, Sabriye; Beldüz, Ali Osman; Supuran, Claudiu T

    2016-04-01

    The genome of the newly identified bacterium Enterobacter sp. B13 encodes for a β-class carbonic anhydrases (CAs, EC 4.2.1.1), EspCA. This enzyme was recently cloned, and characterized kinetically by this group (J. Enzyme Inhib. Med. Chem. 2016, 31). Here we report an inhibition study with sulfonamides and sulfamates of this enzyme. The best EspCA inhibitors were some sulfanylated sulfonamides with elongated molecules, metanilamide, 4-aminoalkyl-benzenesulfonamides, acetazolamide, and deacetylated methazolamide (KIs in the range of 58.7-96.5nM). Clinically used agents such as methazolamide, ethoxzolamide, dorzolamide, brinzolamide, benzolamide, zonisamide, sulthiame, sulpiride, topiramate and valdecoxib were slightly less effective inhibitors (KIs in the range of 103-138nM). Saccharin, celecoxib, dichlorophenamide and many simple benzenesulfonamides were even less effective as EspCA inhibitors, with KIs in the range of 384-938nM. Identification of effective inhibitors of this bacterial enzyme may lead to pharmacological tools useful for understanding the physiological role(s) of the β-class CAs in bacterial pathogenicity/virulence. PMID:26920803

  3. Fluorescent sulfonamide carbonic anhydrase inhibitors incorporating 1,2,3-triazole moieties: Kinetic and X-ray crystallographic studies.

    Carta, Fabrizio; Ferraroni, Marta; Scozzafava, Andrea; Supuran, Claudiu T

    2016-01-15

    Fluorescent sulfonamide carbonic anhydrase (CA, EC 4.2.1.1) inhibitors (CAIs) were essential for demonstrating the role played by the tumor-associated isoform CA IX in acidification of tumors, cancer progression towards metastasis and for the development of imaging and therapeutic strategies for the management of hypoxic tumors which overexpress CA IX. However, the presently available such compounds are poorly water soluble which limits their use. Here we report new fluorescent sulfonamides 7, 8 and 10 with increased water solubility. The new derivatives showed poor hCA I inhibitory properties, but were effective inhibitors against the hCA II (KIs of 366-127 nM), CA IX (KIs of 8.1-36.9 nM), CA XII (KIs of 4.1-20.5 nM) and CA XIV (KIs of 12.8-53.6 nM). A high resolution X-ray crystal structure of one of these compounds bound to hCA II revealed the factors associated with the good inhibitory properties. Furthermore, this compound showed a three-fold increase of water solubility compared to a similar derivative devoid of the triazole moiety, making it an interesting candidate for ex vivo/in vivo studies. PMID:26682703

  4. The human carbonic anhydrase isoenzymes I and II (hCA I and II) inhibition effects of trimethoxyindane derivatives.

    Taslimi, Parham; Gulcin, Ilhami; Ozgeris, Bunyamin; Goksu, Suleyman; Tumer, Ferhan; Alwasel, Saleh H; Supuran, Claudiu T

    2016-01-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) had six genetically distinct families described to date in various organisms. There are 16 known CA isoforms in humans. Human CA isoenzymes I and II (hCA I and hCA II) are ubiquitous cytosolic isoforms. Acetylcholine esterase (AChE. EC 3.1.1.7) is a hydrolase that hydrolyzes the neurotransmitter acetylcholine relaying the signal from the nerve. In this study, some trimethoxyindane derivatives were investigated as inhibitors against the cytosolic hCA I and II isoenzymes, and AChE enzyme. Both hCA isozymes were inhibited by trimethoxyindane derivatives in the low nanomolar range. These compounds were good hCA I inhibitors (Kis in the range of 1.66-4.14 nM) and hCA II inhibitors (Kis of 1.37-3.12 nM) and perfect AChE inhibitors (Kis in the range of 1.87-7.53 nM) compared to acetazolamide as CA inhibitor (Ki: 6.76 nM for hCA I and Ki: 5.85 nM for hCA II) and Tacrine as AChE inhibitor (Ki: 7.64 nM). PMID:25697270

  5. 植物碳酸酐酶的研究进展%Progress in Research on Plant Carbonic Anhydrase

    蒋春云; 马秀灵; 沈晓艳; 李燕; 赵彦修

    2013-01-01

    在植物组织中,碳酸酐酶(CA)催化CO2与HCO3-之间可逆的水合反应,重新固定呼吸释放的CO2并用于细胞光合作用.本文简要介绍了CA的生理机能、分类、亚细胞定位、基因功能等的研究进展,并展望了CA在提高C3植物光合效率以及CA在C3植物由C3光合类型转向C4光合类型方面的研究意义.%Carbonic anhydrase (CA) catalyses the reversible reaction between CO2 and HCO3-in plant living organisms.It can refix the respiration-released CO2 which participates in photosynthesis process.In this article we summarize the research progress in the physiological function,classification,subcellular localization and gene function of CA.And we prospect its crucial roles in increasing the photosynthetic rate in C3 plants and in the type of photosynthesis from C3 to C4.

  6. Carbonic Anhydrase VI Gene Polymorphism rs2274327 Relationship Between Salivary Parameters and Dental-Oral Health Status in Children.

    Sengul, Fatih; Kilic, Munevver; Gurbuz, Taskin; Tasdemir, Sener

    2016-08-01

    The aim of this study was to research carbonic anhydrase (CA) VI one single-nucleotide polymorphism (SNP) and its potential association with dental-oral health status (dental caries, Plaque Index (PI) and Gingival Index (GI)) and salivary parameters (salivary buffering capacity, salivary flow rate (SFR)) in children. A total of 178 children were divided into two groups: non-carious (n = 70, 34 boys and 36 girls) and carious (n = 108, 47 boys and 61 girls). The clinical evaluations were performed according to the decayed, missing, and filled teeth (dmft/DMFT) index by a specialist. Clinical parameters including PI, GI, and simplified oral hygiene index (OHI-S) were recorded. Salivary pH (SpH) was measured using pH paper. Blood samples and unstimulated whole saliva were collected, and SFR was calculated. The CA VI rs2274327 polymorphism was determined by a LightSNiP assay on the realtime PCR system. The frequencies of rs2274327 were not significant between groups (p > 0.05). There was a positive correlation between OHI-S and SpH in the carious and non-carious groups (p  0.05). CA VI SNP (rs2274327) had no statistically significant association with OHI-S, PI, GI, SFR, and SpH in the children. PMID:27100223

  7. A Divalent PAMAM-Based Matrix Metalloproteinase/Carbonic Anhydrase Inhibitor for the Treatment of Dry Eye Syndrome.

    Richichi, B; Baldoneschi, V; Burgalassi, S; Fragai, M; Vullo, D; Akdemir, A; Dragoni, E; Louka, A; Mamusa, M; Monti, D; Berti, D; Novellino, E; De Rosa, G; Supuran, C T; Nativi, C

    2016-01-26

    Synthetic sulfonamide derivatives are a class of potent matrix metalloproteinase inhibitors (MMPI) that have potential for the treatment of diseases related to uncontrolled expression of these enzymes. The lack of selectivity of the large majority of such inhibitors, leading to the inhibition of MMPs in tissues other than the targeted one, has dramatically reduced the therapeutic interest in MMPIs. The recent development of efficient drug delivery systems that allow the transportation of a selected drug to its site of action has opened the way to new perspectives in the use of MMPIs. Here, a PAMAM-based divalent dendron with two sulfonamidic residues was synthesized. This nanomolar inhibitor binds to the catalytic domain of two MMPs as well as to the transmembrane human carbonic anhydrases (hCAs) XII, which is present in the eye and considered an antiglaucoma target. In the animal model of an experimental dry eye, no occurrence of dotted staining in eyes treated with our inhibitor was observed, indicating no symptoms of corneal desiccation. PMID:26692423

  8. Evaluation of a Carbonic Anhydrase IX-Targeted Near-Infrared Dye for Fluorescence-Guided Surgery of Hypoxic Tumors.

    Lv, Peng-Cheng; Roy, Jyoti; Putt, Karson S; Low, Philip S

    2016-05-01

    Proof-of-principle studies in ovarian, lung, and brain cancer patients have shown that fluorescence-guided surgery can enable removal of otherwise undetectable malignant lesions, decrease the number of cancer-positive margins, and permit identification of disease-containing lymph nodes that would have normally evaded resection. Unfortunately, the current arsenal of tumor-targeted fluorescent dyes does not permit identification of all cancers, raising the need to design new tumor-specific fluorescent dyes to illuminate the currently undetectable cancers. In an effort to design a more universal fluorescent cancer imaging agent, we have undertaken to synthesize a fluorophore that could label all hypoxic regions of tumors. We report here the synthesis, in vitro binding, and in vivo imaging of a near-infrared (NIR) fluorescent dye that is targeted to carbonic anhydrase IX (CA IX), i.e., a widely accepted marker of hypoxic tissues. The low molecular weight NIR probe, named Hypoxyfluor, is shown to bind CA IX with high affinity and accumulate rapidly and selectively in CA IX positive tumors. Because nearly all human cancers contain hypoxic regions that express CA IX abundantly, this NIR probe should facilitate surgical resection of a wide variety of solid tumors. PMID:27043317

  9. Amido/ureidosubstituted benzenesulfonamides-isatin conjugates as low nanomolar/subnanomolar inhibitors of the tumor-associated carbonic anhydrase isoform XII.

    Eldehna, Wagdy M; Fares, Mohamed; Ceruso, Mariangela; Ghabbour, Hazem A; Abou-Seri, Sahar M; Abdel-Aziz, Hatem A; Abou El Ella, Dalal A; Supuran, Claudiu T

    2016-03-01

    By using a molecular hybridization approach, two series of amido/ureidosubstituted benzenesulfonamides incorporating substituted-isatin moieties were synthesized. The prepared derivatives were in vitro evaluated for their inhibitory activity against human carbonic anhydrase (hCA, EC 4.2.1.1) I, II (cytosolic) and IX, XII (transmembrane, tumor-associated) isoforms. All these isoforms were inhibited in variable degrees by the sulfonamides reported here. hCA I was inhibited with KIs in the range of 7.9-894 nM, hCA II in the range of 7.5-1645 nM (with one compound having a KI > 10 μM); hCA IX in the range of 5.0-240 nM, whereas hCA XII in the range of 0.47-2.83 nM. As all these isoforms are involved in various pathologies, in which their inhibition can be exploited therapeutically, the derivatives reported here may represent interesting extensions to the field of CA inhibitors of the sulfonamide type. PMID:26840366

  10. Microwave assisted synthesis of novel acridine-acetazolamide conjugates and investigation of their inhibition effects on human carbonic anhydrase isoforms hCA I, II, IV and VII.

    Ulus, Ramazan; Aday, Burak; Tanç, Muhammet; Supuran, Claudiu T; Kaya, Muharrem

    2016-08-15

    4-Amino-N-(5-sulfamoyl-1,3,4-thiadiazol-2-yl)benzamide was condensed with cyclic-1,3-diketones (dimedone and cyclohexane-1,3-dione) and aromatic aldehydes under microwave irradiation, leading to a series of acridine-acetazolamide conjugates. The new compounds were investigated as inhibitors of carbonic anhydrases (CA, EC 4.2.1.1), and more precisely cytosolic isoforms hCA I, II, VII and membrane-bound one hCA IV. All investigated isoforms were inhibited in low micromolar and nanomolar range by the new compounds. hCA IV and VII were inhibited with KIs in the range of 29.7-708.8nM (hCA IV), and of 1.3-90.7nM (hCA VII). For hCA I and II the KIs were in the range of 6.7-335.2nM (hCA I) and of 0.5-55.4nM (hCA II). The structure-activity relationships (SAR) for the inhibition of these isoforms with the acridine-acetazolamide conjugates reported here were delineated. PMID:27298005

  11. Bio-sequestration of CO2 Using Carbonic Anhydrase in situ Encapsulated Inside Electrospun Hollow Fibers%静电纺丝制备中空纤维原位固定化碳酸酐酶用于二氧化碳的吸收

    崔建东; 李莹; 姬晓元; 边红杰; 张羽飞; 苏志国; 马光辉; 张松平

    2014-01-01

    Carbonic anhydrase catalyzed bio-sequestration of CO2 to form HCO-3 , followed by trapping as solid CaCO3 is one of the most promising technologies for CO2 capturing. The effects of reaction condition on the CO2 hydration using free carbonic anhydrase were systematically investigated. In order to improve the stability of the enzyme and facility its recycling, the carbonic anhydrase was in situ encapsulated inside hollow fibers via a novel co-axial electrospinning technology. Compared with the free enzyme, the immobilized carbonic an-hydrase showed much improved thermal stability and suffered much reduced inhibitory effects from cation ions, such as Cu2+ and Fe3+. After 11 reuses, the immobilized enzyme retained about 81. 9% of its original activity by comparing the amount of formed CaCO3 precipitation. In the presence of immobilized carbonic anhydrase, both calcite and vaterite CaCO3 solid were formed;while in the absence of enzyme or with free carbonic anhy-drase, only calcite CaCO3 was observed.%考察了游离碳酸酐酶吸收CO2水合体系反应条件,并通过同轴共纺静电纺丝技术制备出中空结构纤维,实现了碳酸酐酶在中空纤维中的原位包埋,提高了酶的稳定性并便于回收和重复利用.实验结果表明,固定化碳酸酐酶的热稳定性显著增强,受Cu2+和Fe3+等金属离子的抑制作用大幅度降低.连续使用11次后所生成的CaCO3沉淀量仍能达到首次使用的81.9%.固定化酶体系生成的CaCO3沉淀包括方解石型和球文石型2种晶形,而无酶和加入游离碳酸酐酶的反应体系则主要生成方解石型CaCO3沉淀.

  12. Depletion of the "gamma-type carbonic anhydrase-like" subunits of complex I affects central mitochondrial metabolism in Arabidopsis thaliana.

    Fromm, Steffanie; Göing, Jennifer; Lorenz, Christin; Peterhänsel, Christoph; Braun, Hans-Peter

    2016-01-01

    "Gamma-type carbonic anhydrase-like" (CAL) proteins form part of complex I in plants. Together with "gamma carbonic anhydrase" (CA) proteins they form an extra domain which is attached to the membrane arm of complex I on its matrix exposed side. In Arabidopsis two CAL and three CA proteins are present, termed CAL1, CAL2, CA1, CA2 and CA3. It has been proposed that the carbonic anhydrase domain of complex I is involved in a process mediating efficient recycling of mitochondrial CO2 for photosynthetic carbon fixation which is especially important during growth conditions causing increased photorespiration. Depletion of CAL proteins has been shown to significantly affect plant development and photomorphogenesis. To better understand CAL function in plants we here investigated effects of CAL depletion on the mitochondrial compartment. In mutant lines and cell cultures complex I amount was reduced by 90-95% but levels of complexes III and V were unchanged. At the same time, some of the CA transcripts were less abundant. Proteome analysis of CAL depleted cells revealed significant reduction of complex I subunits as well as proteins associated with photorespiration, but increased amounts of proteins participating in amino acid catabolism and stress response reactions. Developmental delay of the mutants was slightly alleviated if plants were cultivated at high CO2. Profiling of selected metabolites revealed defined changes in intermediates of the citric acid cycle and amino acid catabolism. It is concluded that CAL proteins are essential for complex I assembly and that CAL depletion specifically affects central mitochondrial metabolism. PMID:26482706

  13. Kinetic and X-ray crystallographic investigations on carbonic anhydrase isoforms I, II, IX and XII of a thioureido analog of SLC-0111.

    Lomelino, Carrie L; Mahon, Brian P; McKenna, Robert; Carta, Fabrizio; Supuran, Claudiu T

    2016-03-01

    SLC-0111 (4-(4-fluorophenylureido)-benzenesulfonamide) is the first carbonic anhydrase (CA, EC 4.2.1.1) IX inhibitor to reach phase I clinical trials as an antitumor/antimetastatic agent. Here we report a kinetic and X-ray crystallographic study of a congener of SLC-0111 which incorporates a thioureido instead of ureido linker between the two aromatic rings as inhibitor of four physiologically relevant CA isoforms. Similar to SLC-0111, the thioureido derivative was a weak hCA I and II inhibitor and a potent one against hCA IX and XII. X-ray crystallography of its adduct with hCA II and comparison of the structure with that of other five hCA II-sulfonamide adducts belonging to the SLC-0111 series, afforded us to understand the particular inhibition profile of the new sulfonamide. Similar to SLC-0111, the thioureido sulfonamide primarily interacted with the hydrophobic side of the hCA II active site, with the tail participating in van der Waals interactions with Phe131 and Pro202, in addition to the coordination of the deprotonated sulfonamide to the active site metal ion. On the contrary, the tail of other sulfonamides belonging to the SLC-0111 series (2-isopropyl-phenyl; 3-nitrophenyl) were orientated towards the hydrophilic half of the active site, which was correlated with orders of magnitude better inhibitory activity against hCA II, and a loss of selectivity for the inhibition of the tumor-associated CAs. PMID:26810836

  14. Prediction of binding modes and affinities of 4-substituted-2,3,5,6-tetrafluorobenzenesulfonamide inhibitors to the carbonic anhydrase receptor by docking and ONIOM calculations.

    Samanta, Pabitra Narayan; Das, Kalyan Kumar

    2016-01-01

    Inhibition activities of a series of 4-substituted-2,3,5,6-tetrafluorobenzenesulfonamides against the human carbonic anhydrase II (HCAII) enzyme have been explored by employing molecular docking and hybrid QM/MM methods. The docking protocol has been employed to assess the best pose of each ligand in the active site cavity of the enzyme, and probe the interactions with the amino acid residues. The docking calculations reveal that the inhibitor binds to the catalytic Zn(2+) site through the deprotonated sulfonamide nitrogen atom by making several hydrophobic and hydrogen bond interactions with the side chain residues depending on the substituted moiety. A cross-docking approach has been adopted prior to the hybrid QM/MM calculation to validate the docked poses. A correlation between the experimental dissociation constants and the docked free energies for the enzyme-inhibitor complexes has been established. Two-layered ONIOM calculations based on QM/MM approach have been performed to evaluate the binding efficacy of the inhibitors. The inhibitor potency has been predicted from the computed binding energies after taking into account of the electronic phenomena associated with enzyme-inhibitor interactions. Both the hybrid (B3LYP) and meta-hybrid (M06-2X) functionals are used for the description of the QM region. To improve the correlation between the experimental biological activity and the theoretical results, a three-layered ONIOM calculation has been carried out and verified for some of the selected inhibitors. The charge transfer stabilization energies are calculated via natural bond orbital analysis to recognize the donor-acceptor interaction in the binding pocket of the enzyme. The nature of binding between the inhibitors and HCAII active site is further analyzed from the electron density distribution maps. PMID:26619075

  15. Comparison of the sulfonamide inhibition profiles of the α-, β- and γ-carbonic anhydrases from the pathogenic bacterium Vibrio cholerae.

    Del Prete, Sonia; Vullo, Daniela; De Luca, Viviana; Carginale, Vincenzo; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2016-04-15

    Carbonic anhydrases (CA, EC 4.2.1.1) are ubiquitous metalloenzymes, which catalyze the conversion of carbon dioxide (CO2) to bicarbonate (HCO3(-)) and protons (H(+)). In prokaryotes, the existence of genes encoding for α-, β- and γ-classes suggests that these enzymes play an important role in the prokaryotic physiology. It has been demonstrated, in fact, that their inhibition in vivo leads to growth impairment or growth defects of the microorganism. Ultimately, we started to investigate the biochemical properties and the inhibitory profiles of the α- and β-CAs identified in the genome of Vibrio cholerae, which is the causative agent of cholera. The genome of this pathogen encodes for CAs belonging to α, β and γ classes. Here, we report a sulfonamide inhibition study of the γ-CA (named VchCAγ) comparing it with data obtained for the α- and β-CA enzymes. VchCAγ activity (kcat=7.39 × 10(5)s(-1)) was significantly higher than the other γ-CAs. The inhibition study with a panel of sulfonamides and one sulfamate led to the detection of a large number of nanomolar VchCAγ inhibitors, including simple aromatic/heterocyclic sulfonamides (compounds 2-9, 11, 13-15, 24) as well as EZA, DZA, BRZ, BZA, TPM, ZNS, SLP, IND (KIs in the range of 66.2-95.3 nM). As it was proven that bicarbonate is a virulence factor of this bacterium and since ethoxzolamide was shown to inhibit this virulence in vivo, we propose that VchCA, VchCAβ and VchCAγ may be a target for antibiotic development, exploiting a mechanism of action rarely considered up until now, i.e., interference with bicarbonate supply as a virulence factor. PMID:26972117

  16. Amyloid fibrillation in native and chemically-modified forms of carbonic anhydrase II: role of surface hydrophobicity.

    Es-Haghi, Ali; Shariatizi, Sajad; Ebrahim-Habibi, Azadeh; Nemat-Gorgani, Mohsen

    2012-03-01

    Chemical modification or mutation of proteins may bring about significant changes in the net charge or surface hydrophobicity of a protein structure. Such events may be of major physiological significance and may provide important insights into the genetics of amyloid diseases. In the present study, fibrillation potential of native and chemically-modified forms of bovine carbonic anhydrase II (BCA II) were investigated. Initially, various denaturing conditions including low pH and high temperatures were tested to induce fibrillation. At a low pH of around 2.4, where the protein is totally dissociated, the apo form was found to take up a pre-molten globular (PMG) conformation with the capacity for fibril formation. Upon increasing the pH to around 3.6, a molten globular (MG) form became abundant, forming amorphous aggregates. Charge neutralization and enhancement of hydrophobicity by methylation, acetylation and propionylation of lysine residues appeared very effective in promoting fibrillation of both the apo and holo forms under native conditions, the rates and extents of which were directly proportional to surface hydrophobicity, and influenced by salt concentration and temperature. These modified structures underwent more pronounced fibrillation under native conditions, than the PMG intermediate form, observed under denaturing conditions. The nature of the fibrillation products obtained from intermediate and modified structures were characterized and compared and their possible cytotoxicity determined. Results are discussed in terms of the importance of surface net charge and hydrophobicity in controlling protein aggregation. A discussion on the physiological significance of the observations is also presented. PMID:22251892

  17. T tubules and surface membranes provide equally effective pathways of carbonic anhydrase-facilitated lactic acid transport in skeletal muscle.

    Janine Hallerdei

    Full Text Available We have studied lactic acid transport in the fast mouse extensor digitorum longus muscles (EDL by intracellular and cell surface pH microelectrodes. The role of membrane-bound carbonic anhydrases (CA of EDL in lactic acid transport was investigated by measuring lactate flux in muscles from wildtype, CAIV-, CAIX- and CAXIV-single ko, CAIV-CAXIV double ko and CAIV-CAIX-CAXIV-triple ko mice. This was complemented by immunocytochemical studies of the subcellular localization of CAIV, CAIX and CAXIV in mouse EDL. We find that CAXIV and CAIX single ko EDL exhibit markedly but not maximally reduced lactate fluxes, whereas triple ko and double ko EDL show maximal or near-maximal inhibition of CA-dependent lactate flux. Interpretation of the flux measurements in the light of the immunocytochemical results leads to the following conclusions. CAXIV, which is homogeneously distributed across the surface membrane of EDL fibers, facilitates lactic acid transport across this membrane. CAIX, which is associated only with T tubular membranes, facilitates lactic acid transport across the T tubule membrane. The removal of lactic acid from the lumen of T tubuli towards the interstitial space involves a CO2-HCO3- diffusional shuttle that is maintained cooperatively by CAIX within the T tubule and, besides CAXIV, by the CAIV, which is strategically located at the opening of the T tubules. The data suggest that about half the CA-dependent muscular lactate flux occurs across the surface membrane, while the other half occurs across the membranes of the T tubuli.

  18. In vivo imaging and quantification of carbonic anhydrase IX expression as an endogenous biomarker of tumor hypoxia.

    Bagna Bao

    Full Text Available Carbonic anhydrase IX (CA IX is a transmembrane protein that has been shown to be greatly upregulated under conditions of hypoxia in many tumor cell lines. Tumor hypoxia is associated with impaired efficacy of cancer therapies making CA IX a valuable target for preclinical and diagnostic imaging. We have developed a quantitative in vivo optical imaging method for detection of CA IX as a marker of tumor hypoxia based on a near-infrared (NIR fluorescent derivative of the CA IX inhibitor acetazolamide (AZ. The agent (HS680 showed single digit nanomolar inhibition of CA IX as well as selectivity over other CA isoforms and demonstrated up to 25-fold upregulation of fluorescent CA IX signal in hypoxic versus normoxic cells, which could be blocked by 60%-70% with unlabeled AZ. CA IX negative cell lines (HCT-116 and MDA-MB-231, as well as a non-binding control agent on CA IX positive cells, showed low fluorescent signal under both conditions. In vivo FMT imaging showed tumor accumulation and excellent tumor definition from 6-24 hours. In vivo selectivity was confirmed by pretreatment of the mice with unlabeled AZ resulting in >65% signal inhibition. HS680 tumor signal was further upregulated >2X in tumors by maintaining tumor-bearing mice in a low oxygen (8% atmosphere. Importantly, intravenously injected HS680 signal was co-localized specifically with both CA IX antibody and pimonidazole (Pimo, and was located away from non-hypoxic regions indicated by a Hoechst stain. Thus, we have established a spatial correlation of fluorescence signal obtained by non-invasive, tomographic imaging of HS680 with regions of hypoxia and CA IX expression. These results illustrate the potential of HS680 and combined with FMT imaging to non-invasively quantify CA IX expression as a hypoxia biomarker, crucial to the study of the underlying biology of hypoxic tumors and the development and monitoring of novel anti-cancer therapies.

  19. Roles of Carbonic Anhydrase in Photosynthesis of Skeletonema costatum%碳酸酐酶在中肋骨条藻光合作用中的作用

    陈雄文; 高坤山

    2004-01-01

    探讨了在正常空气条件下生长的中肋骨条藻(Skeletonema costatum)的碳酸酐酶(CA)在其光合固碳中的作用.在中肋骨条藻的胞内和胞外均有CA活性,但胞外CA活性很低.CA抑制剂AZ(乙酰唑磺胺)对中肋骨条藻的光合放氧速率没有明显影响,而CA抑制剂EZ(乙氧苯唑胺)对其光合放氧速率有强烈的抑制作用.EZ的抑制作用使细胞最大光合速率、饱和光强和无机碳亲和力下降,无机碳的补偿点和光呼吸提高,使强光下光抑制作用增强.这些结果表明:中肋骨条藻的胞外CA在其光合作用中所起的作用较小,而其胞内CA通过催化胞内碳库中的HCO-3快速转化成CO2,提高胞内CO2的有效供给,从而提高细胞光合固碳能力和对逆境(高O2、强光和低CO2)的适应能力.%The role of carbonic anhydrase (CA) in photosynthesis of the marine diatom Skeletonema costatum grown at ambient level of CO2 was investigated. Extracellular CA activity was very low. In comparison, intracellular CA activity was great part of total CA activity. The inhibition of external CA by acetazolamide (AZ) caused little change in net photosynthetic rate (Pn), but the inhibition of intracellular CA by ethoxyzolamide (EZ) resulted in the strong reduction of Pn. EZ reduced the light-saturated photosynthesis, the saturation radiance and the affin ity of inorganic carbon for photosynthesis, raised inorganic carbon compensation point and enhanced the inhibition of photosynthesis by high O2 and light. It is concluded that extracellular CA exerted a minor role in the photosynthesis, but intracellular CA enhanced the efficiency of photosynthetic carbon fixation and the capacity of acclimation to stress conditions (high light, O2 and low CO2) by catalytically converting HCO-3 to CO2 and facilitating CO2 supply to the cell.

  20. Identification of Carbonic Anhydrase I Immunodominant Epitopes Recognized by Specific Autoantibodies Which Indicate an Improved Prognosis in Patients with Malignancy after Autologous Stem Cell Transplantation

    Skultety, L.; Jankovičová, B.; Svobodová, Z.; Mader, Pavel; Řezáčová, Pavlína; Dubrovčáková, M.; Lakota, J.; Bílková, Z.

    2010-01-01

    Roč. 9, č. 10 (2010), s. 5171-5179. ISSN 1535-3893 R&D Projects: GA MŠk 1M0505; GA ČR GA203/09/0820 Grant ostatní: BITCET(CZ) SPVV 337/2003; EEA(NO) SK 0095; TRANSMED(XE) 2624012008 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z40550506 Keywords : epitope mapping * carbonic anhydrase I * spontaneous remission Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.460, year: 2010

  1. Modelling the impact of soil Carbonic Anhydrase on the net ecosystem exchange of OCS at Harvard forest using the MuSICA model

    Launois, Thomas; Ogée, Jérôme; Commane, Roisin; Wehr, Rchard; Meredith, Laura; Munger, Bill; Nelson, David; Saleska, Scott; Wofsy, Steve; Zahniser, Mark; Wingate, Lisa

    2016-04-01

    The exchange of CO2 between the terrestrial biosphere and the atmosphere is driven by photosynthetic uptake and respiratory loss, two fluxes currently estimated with considerable uncertainty at large scales. Model predictions indicate that these biosphere fluxes will be modified in the future as CO2 concentrations and temperatures increase; however, it still unclear to what extent. To address this challenge there is a need for better constraints on land surface model parameterisations. Additional atmospheric tracers of large-scale CO2 fluxes have been identified as potential candidates for this task. In particular carbonyl sulphide (OCS) has been proposed as a complementary tracer of gross photosynthesis over land, since OCS uptake by plants is dominated by carbonic anhydrase (CA) activity, an enzyme abundant in leaves that catalyses CO2 hydration during photosynthesis. However, although the mass budget at the ecosystem is dominated by the flux of OCS into leaves, some OCS is also exchanged between the atmosphere and the soil and this component of the budget requires constraining. In this study, we adapted the process-based isotope-enabled model MuSICA (Multi-layer Simulator of the Interactions between a vegetation Canopy and the Atmosphere) to include the transport, reaction, diffusion and production of OCS within a forested ecosystem. This model was combined with 3 years (2011-2013) of in situ measurements of OCS atmospheric concentration profiles and fluxes at the Harvard Forest (Massachussets, USA) to test hypotheses on the mechanisms responsible for CA-driven uptake by leaves and soils as well as possible OCS emissions during litter decomposition. Model simulations over the three years captured well the impact of diurnally and seasonally varying environmental conditions on the net ecosystem OCS flux. A sensitivity analysis on soil CA activity and soil OCS emission rates was also performed to quantify their impact on the vertical profiles of OCS inside the

  2. Identification of putative unfolding intermediates of the mutant His-107-tyr of human carbonic anhydrase II in a multidimensional property space.

    Halder, Puspita; Taraphder, Srabani

    2016-06-01

    In this article, we develop an extensive search procedure of the multi-dimensional folding energy landscape of a protein. Our aim is to identify different classes of structures that have different aggregation propensities and catalytic activity. Following earlier studies by Daggett et al. [Jong, D. D.; Riley, R.: Alonso, D.O.: Dagett, V. J. Mol. Biol. 2002, 319, 229], a series of high temperature all-atom classical molecular simulation studies has been carried out to derive a multi-dimensional property space. Dynamical changes in these properties are then monitored by projecting them along a one-dimensional reaction coordinate, dmean . We have focused on the application of this method to partition a wide array of conformations of wild type human carbonic anhydrase II (HCA II) and its unstable mutant His-107-Tyr along dmean by sampling a 35-dimensional property space. The resultant partitioning not only reveals the distribution of conformations corresponding to stable structures of HCA II and its mutant, but also allows the monitoring of several partially unfolded and less stable conformations of the mutant. We have investigated the population of these conformations at different stages of unfolding and collected separate sets of structures that are widely separated in the property space. The dynamical diversity of these sets are examined in terms of the loading of their respective first principal component. The partially unfolded structures thus collected are qualitatively mapped on to the experimentally postulated light molten globule (MGL) and molten globule (MG) intermediates with distinct aggregation propensities and catalytic activities. Proteins 2016; 84:726-743. © 2016 Wiley Periodicals, Inc. PMID:26756542

  3. Neutron structure of human carbonic anhydrase II in complex with methazolamide: mapping the solvent and hydrogen-bonding patterns of an effective clinical drug

    Mayank Aggarwal

    2016-09-01

    Full Text Available Carbonic anhydrases (CAs; EC 4.2.1.1 catalyze the interconversion of CO2 and HCO3−, and their inhibitors have long been used as diuretics and as a therapeutic treatment for many disorders such as glaucoma and epilepsy. Acetazolamide (AZM and methazolamide (MZM, a methyl derivative of AZM are two of the classical CA inhibitory drugs that have been used clinically for decades. The jointly refined X-ray/neutron structure of MZM in complex with human CA isoform II (hCA II has been determined to a resolution of 2.2 Å with an Rcryst of ∼16.0%. Presented in this article, along with only the second neutron structure of a clinical drug-bound hCA, is an in-depth structural comparison and analyses of differences in hydrogen-bonding network, water-molecule orientation and solvent displacement that take place upon the binding of AZM and MZM in the active site of hCA II. Even though MZM is slightly more hydrophobic and displaces more waters than AZM, the overall binding affinity (Ki for both of the drugs against hCA II is similar (∼10 nM. The plausible reasons behind this finding have also been discussed using molecular dynamics and X-ray crystal structures of hCA II–MZM determined at cryotemperature and room temperature. This study not only allows a direct comparison of the hydrogen bonding, protonation states and solvent orientation/displacement of AZM and MZM, but also shows the significant effect that the methyl derivative has on the solvent organization in the hCA II active site.

  4. Reconstitution of CO2 Regulation of SLAC1 Anion Channel and Function of CO2-Permeable PIP2;1 Aquaporin as CARBONIC ANHYDRASE4 Interactor.

    Wang, Cun; Hu, Honghong; Qin, Xue; Zeise, Brian; Xu, Danyun; Rappel, Wouter-Jan; Boron, Walter F; Schroeder, Julian I

    2016-02-01

    Dark respiration causes an increase in leaf CO2 concentration (Ci), and the continuing increases in atmospheric [CO2] further increases Ci. Elevated leaf CO2 concentration causes stomatal pores to close. Here, we demonstrate that high intracellular CO2/HCO3 (-) enhances currents mediated by the Arabidopsis thaliana guard cell S-type anion channel SLAC1 upon coexpression of any one of the Arabidopsis protein kinases OST1, CPK6, or CPK23 in Xenopus laevis oocytes. Split-ubiquitin screening identified the PIP2;1 aquaporin as an interactor of the βCA4 carbonic anhydrase, which was confirmed in split luciferase, bimolecular fluorescence complementation, and coimmunoprecipitation experiments. PIP2;1 exhibited CO2 permeability. Mutation of PIP2;1 in planta alone was insufficient to impair CO2- and abscisic acid-induced stomatal closing, likely due to redundancy. Interestingly, coexpression of βCA4 and PIP2;1 with OST1-SLAC1 or CPK6/23-SLAC1 in oocytes enabled extracellular CO2 enhancement of SLAC1 anion channel activity. An inactive PIP2;1 point mutation was identified that abrogated water and CO2 permeability and extracellular CO2 regulation of SLAC1 activity. These findings identify the CO2-permeable PIP2;1 as key interactor of βCA4 and demonstrate functional reconstitution of extracellular CO2 signaling to ion channel regulation upon coexpression of PIP2;1, βCA4, SLAC1, and protein kinases. These data further implicate SLAC1 as a bicarbonate-responsive protein contributing to CO2 regulation of S-type anion channels. PMID:26764375

  5. Molecular dynamics study of human carbonic anhydrase II in complex with Zn(2+) and acetazolamide on the basis of all-atom force field simulations.

    Wambo, Thierry O; Chen, Liao Y; McHardy, Stanton F; Tsin, Andrew T

    2016-01-01

    Human carbonic anhydrase II (hCAII) represents an ultimate example of the perfectly efficient metalloenzymes, which is capable of catalyzing the hydration of carbon dioxide with a rate approaching the diffusion controlled limit. Extensive experimental studies of this physiologically important metalloprotein have been done to elucidate the fundamentals of its enzymatic actions: what residues anchor the Zn(2+) (or another divalent cation) at the bottom of the binding pocket; how the relevant residues work concertedly with the divalent cation in the reversible conversions between CO2 and HCO3(-); what are the protonation states of the relevant residues and acetazolamide, an inhibitor complexed with hCAII, etc. In this article, we present a detailed computational study on the basis of the all-atom CHARMM force field where Zn(2+) is represented with a simple model of divalent cation using the transferrable parameters available from the current literature. We compute the hydration free energy of Zn(2+), the characteristics of hCAII-Zn(2+) complexation, and the absolute free energy of binding acetazolamide to the hCAII-Zn(2+) complex. In each of these three problems, our computed results agree with the experimental data within the known margin of error without making any case-by-case adjustments to the parameters. The quantitatively accurate insights we gain in this all-atom molecular dynamics study should be helpful in the search and design of more specific inhibitors of this and other carbonic anhydrases. PMID:27232456

  6. Carbonic Anhydrase Is Essential for Streptococcus pneumoniae Growth in Environmental Ambient Air

    Burghout, Peter; Cron, Lorelei E.; Gradstedt, Henrik; Quintero, Beatriz; Simonetti, Elles; Bijlsma, Jetta J. E.; Bootsma, Hester J.; Hermans, Peter W. M.

    2010-01-01

    The respiratory tract pathogen Streptococcus pneumoniae needs to adapt to the different levels of carbon dioxide (CO(2)) it encounters during transmission, colonization, and infection. Since CO(2) is important for various cellular processes, factors that allow optimal CO(2) sequestering are likely t

  7. Analysis, characterisation and expression of gill-expressed carbonic anhydrase genes in the freshwater crayfish Cherax quadricarinatus.

    Ali, Muhammad Yousuf; Pavasovic, Ana; Mather, Peter B; Prentis, Peter J

    2015-06-15

    Changes in water quality parameters such as pH and salinity can have a significant effect on productivity of aquaculture species. Similarly, relative osmotic pressure influences various physiological processes and regulates expression of a number of osmoregulatory genes. Among those, carbonic anhydrase (CA) plays a key role in systemic acid-base balance and ion regulation. Redclaw crayfish (Cherax quadricarinatus) are unique in their ability to thrive in environments with naturally varied pH levels, suggesting unique adaptation to pH stress. To date, however, no studies have focused on identification and characterisation of CA or other osmoregulatory genes in C. quadricarinatus. Here, we analysed the redclaw gill transcriptome and characterized CA genes along with a number of other key osmoregulatory genes that were identified in the transcriptome. We also examined patterns of gene expression of these CA genes when exposed to three pH treatments. In total, 72,382,710 paired end Illumina reads were assembled into 36,128 contigs with an average length of 800bp. Approximately 37% of contigs received significant BLAST hits and 22% were assigned gene ontology terms. Three full length CA isoforms; cytoplasmic CA (ChqCAc), glycosyl-phosphatidylinositol-linked CA (ChqCAg), and β-CA (ChqCA-beta) as well as two partial CA gene sequences were identified. Both partial CA genes showed high similarity to ChqCAg and appeared to be duplicated from the ChqCAg. Full length coding sequences of Na(+)/K(+)-ATPase, V-type H(+)-ATPase, sarcoplasmic Ca(+)-ATPase, arginine kinase, calreticulin and Cl(-) channel protein 2 were also identified. Only the ChqCAc gene showed significant differences in expression across the three pH treatments. These data provide valuable information on the gill expressed CA genes and their expression patterns in freshwater crayfish. Overall our data suggest an important role for the ChqCAc gene in response to changes in pH and in systemic acid-base balance in

  8. Characterization of carbonic anhydrase IX (CA IX) as an endogenous marker of chronic hypoxia in live human tumor cells

    Purpose: Published clinical studies provide conflicting data regarding the prognostic significance of carbonic anhydrase IX (CA IX) overexpression as an endogenous marker of tumor hypoxia and its comparability with other methods of hypoxia detection. We performed a systematic analysis of CA IX protein levels under various in vitro conditions of tumor hypoxia in HT 1080 human fibrosarcoma and FaDu human pharyngeal carcinoma cells. Because sorting of live CA IX positive cells from tumors provides a tool to study the radiosensitivity of chronically hypoxic cells, we modified and tested a CA IX flow cytometry protocol on mixed hypoxic/aerobic suspensions of HT 1080 and FaDu cells. Methods and materials: HT 1080 and FaDu cells were treated with up to 24 h of in vitro hypoxia and up to 96 h of reoxygenation. To test the effect of nonhypoxic stimuli, glucose and serum availability, pH and cell density were modified. CA IX protein was quantified in Western blots of whole-cell lysates. Mixed suspensions with known percentages of hypoxic cells were prepared for CA IX flow cytometry. The same mixtures were assayed for clonogenic survival after 10 Gy. Results: Hypoxia-induced CA IX protein expression was seen after >6 h at ≤5% O2, and protein was stable over 96 h of reoxygenation in both cell lines. Glucose deprivation abolished the hypoxic CA IX response, and high cell density caused CA IX induction under aerobic conditions. Measured percentages of CA IX-positive cells in mixtures closely reflected known percentages of hypoxic cells in HT 1080 and were associated with radioresistance of mixtures after 10 Gy. Conclusion: CA IX is a stable marker of current or previous chronic hypoxia but influenced by nonhypoxic stimuli. Except the time course of accumulation, all properties of this marker resembled our previous findings for hypoxia-inducible factor-1α. A modified flow cytometry protocol provided good separability of CA IX-negative and -positive cells in vitro and can be

  9. Isotope effect evidence for the zinc hydroxide mechanism of carbonic anhydrase catalyst

    The carbon kinetic isotope effect on the enzymatic dehydration of HCO3- ion is k12/k13 = 1.011 and is independent, within experimental error, of the addition of sucrose, substitution of D2O for H2O, and substitution of enzyme-bound Zn2+ by Co2+. These results are consistent with a ping-pong mechanism in which proton transfer between enzyme and solvent is separated from HCO3- dehydration. For the dehydration half-reaction, diffusional processes are severalfold faster than dehydration, and the rate-determining step is the dehydration itself. The intrinsic isotope effect is approximately 1.011, indicating that hydration of CO2 occurs by reaction of zinc-bound OH-, rather than zinc-bound H2O

  10. Overlap of epitopes recognized by anti-carbonic anhydrase I IgG in patients with malignancy-related aplastic anemia-like syndrome and in patients with aplastic anemia

    Jankovičová, B.; Skultety, Ludovit; Dubrovčáková, M.; Stern, M.; Bílková, Z.; Lakota, J.

    2013-01-01

    Roč. 153, 1-2 (2013), s. 47-49. ISSN 0165-2478 Institutional support: RVO:61388971 Keywords : Carbonic anhydrase I * Epitope extraction * Anti-CA I autoantibodies Subject RIV: EC - Immunology Impact factor: 2.367, year: 2013

  11. Carbonic anhydrase is the marker of human salivary gland myoepithelial cells

    Effect of transplantation of syngeneic bone marrow in the dose of 1x107 cell/ml on the state of pancreatic gland in lethally irradiated recipients has been studied at different stages of posttransplantation period for 3 months using linear male rats. Histological and biochemical investigation, conducted in dynamics, have shown that transplantation of native and cryopreserved bone marrow to lethally irradiated animals facilitates activation of compensatory-restoration processes manifesting themselves in mitotic division of glandular and epthelial cells, as well as optimizes exchange of carbohydrates in the irradiated organism

  12. Formation of local native-like tertiary structures in the slow refolding reaction of human carbonic anhydrase II as monitored by circular dichroism on tryptophan mutants.

    Andersson, D; Freskgård, P O; Jonsson, B H; Carlsson, U

    1997-04-15

    In the present study, near-UV CD kinetic measurements on mutants, in which one Trp residue had been replaced, were performed to probe the development of asymmetric environments around specific Trp residues during the refolding of human carbonic anhydrase II (HCAII). In addition, the formation of the active site was probed by the binding of a fluorescent sulfonamide inhibitor. The development of the individual Trp CD spectra during refolding was obtained by subtracting the CD spectrum of the mutant lacking one Trp from that of HCAII at different time points. The same method was used for the particular Trp residues to obtain the kinetic CD traces monitored at a specific wavelength (270 nm). Trp residues 16, 97, and 245 were analyzed. Trp16 probes the N-terminal domain (amino acid residues 1-25), and this part is forming its tertiary structure slower than the major domain (amino acid residues 26-260) of the protein molecule, which contains the active site and a dominating beta-sheet. An essentially native structure of the major domain seems to act as a template for the correct folding of the N terminus. Trp97 is located in a hydrophobic cluster comprising beta-strands 3-5 in the protein core. Previously, we have shown that this region is remarkably stable and compact, and stopped-flow fluorescence data indicate that Trp97 is buried in an apolar compact cluster within a few milliseconds [Svensson, M., Jonasson, P., Freskgård, P.-O., Jonsson, B.-H., Lindgren, M., Martensson, L.-G., Gentile, M., Bóren, K., & Carlsson, U. (1995) Biochemistry 34, 8606-8620; Jonasson, P., Aronsson, G., Carlsson, U., & Jonsson, B.-H. (1997) Biochemistry 36 (in press)]. Here it is shown that the development of the native tertiary structure at Trp97 occurs in the minute time domain. Trp245 is located in a long loop between the N-terminal domain and the core structure. Although this Trp has attained native-like fluorescence properties within the dead time of the CD experiment, it assumes a

  13. The plant carbonic anhydrase at karst area and its ecological effects%植物碳酸酐酶对岩溶作用的影响及其生态效应

    李强; 何媛媛; 曹建华; 梁建宏; 朱敏洁

    2011-01-01

    广泛存在各种类型生物细胞中的碳酸酐酶(CA),通过催化CO2和HCO3之间的相互转化,驱动岩溶过程.文章通过分析我国西南典型岩溶区植物叶片和根系CA活性,探讨其与岩溶作用的相互关系,结果表明:岩溶生态系统中植物的碳酸酐酶活性差异较大,并在植物的生长期发生变动,植株根系CA活性>成熟叶片CA活性,因而在土壤水分充足的条件下,根系分泌的CA催化CO2+H2O(←→)HCO3-+H+过程,促进石灰岩溶解,加快成土速率,并通过固定根呼吸和土壤微生物分解所释放的CO2产生岩溶碳汇效应;非岩溶生态系统由于土壤碳酸钙含量低,造成植物根系CA表达活性较低.%C02 as the important driving force in karstification process, Carbonic anhydrase (CA) can quickly catalyses the reversible interconversion of carbon dioxide and bicarbonate. Typical karst region in Southwest China was selected to investigate the relationship between Carbonic anhydrase of plant and karstification. The results shows that plant CA activity changes with living period and seasons and have the sequence just as root >mature leaves. The high CA activity in root at karst ecosystem indicates that CA in plant can quickly catalyses the reversible interconversion of carbon dioxide and bicarbonate when the soil has sufficient water. It will accelerate the dissolution of limestone and improve the rate of soil rock weathering. In turn, the nutrients released from limestone will improve plant growth and metabolism. It also can produce the CO2 sink from soil. Moreover, at non-karst area, the plants don't need to express high CA activity due to this kind of soil lake of limestone.

  14. N-ethyl-N-nitrosourea-induced null mutation at the mouse Car-2 locus: An animal model for human carbonic anhydrase II deficiency syndrome

    Electrophoretic screening of (C57BL/6J x DBA/2J)F1 progeny of male mice treated with N-ethyl-N-nitrosourea revealed a mouse that lacked the paternal carbonic anhydrase II (Ca II). Breeding tests showed that this trait was heritable and due to a null mutation at the Car-2 locus on chromosome 3. Like humans with the same inherited enzyme defect, animals homozygous for the new null allele are runted and have renal tubular acidosis. However, the prominent osteopetrosis found in humans with CA II deficiency could be detected even in very old homozygous null mice. A molecular analysis of the deficient mice shows that the mutant gene is not deleted and is transcribed. The CA II protein, which is normally expressed in most tissues, could not be detected by immunodiffusion analysis in any tissues of the CA II-deficient mice, suggesting a nonsense or a missense mutation at the Car-2 locus

  15. Carborane-Based Carbonic Anhydrase Inhibitors: Insight into CAII/CAIX Specificity from a High-Resolution Crystal Structure, Modeling, and Quantum Chemical Calculations

    Pavel Mader

    2014-01-01

    Full Text Available Carborane-based compounds are promising lead structures for development of inhibitors of carbonic anhydrases (CAs. Here, we report structural and computational analysis applicable to structure-based design of carborane compounds with selectivity toward the cancer-specific CAIX isoenzyme. We determined the crystal structure of CAII in complex with 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane at 1.0 Å resolution and used this structure to model the 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane interactions with CAIX. A virtual glycine scan revealed the contributions of individual residues to the energy of binding of 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane to CAII and CAIX, respectively.

  16. Carborane-Based Carbonic Anhydrase Inhibitors: Insight into CAII/CAIX Specificity from a High-Resolution Crystal Structure, Modeling, and Quantum Chemical Calculations

    Mader, Pavel; Pecina, Adam; Cígler, Petr; Lepšík, Martin; Šícha, Václav; Hobza, Pavel; Grüner, Bohumír; Fanfrlík, Jindřich; Brynda, Jiří; Řezáčová, Pavlína

    2014-01-01

    Carborane-based compounds are promising lead structures for development of inhibitors of carbonic anhydrases (CAs). Here, we report structural and computational analysis applicable to structure-based design of carborane compounds with selectivity toward the cancer-specific CAIX isoenzyme. We determined the crystal structure of CAII in complex with 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane at 1.0 Å resolution and used this structure to model the 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane interactions with CAIX. A virtual glycine scan revealed the contributions of individual residues to the energy of binding of 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane to CAII and CAIX, respectively. PMID:25309911

  17. Carbonic Anhydrase IX is Not a Predictor of Outcomes in Non-Metastatic Clear Cell Renal Cell Carcinoma - A Digital Analysis of Tissue Microarray

    Marcelo Zerati

    2013-07-01

    Full Text Available Introduction The knowledge about the molecular biology of clear cell renal cell carcinoma (ccRCC is evolving, and Carbonic Anhydrase type IX (CA-IX has emerged as a potential prognostic marker in this challenging disease. However, most of the literature about CA-IX on ccRCC comes from series on metastatic cancer, with a lack of series on non-metastatic cancer. The objective is to evaluate the expression of CA-IX in a cohort of non-metastatic ccRCC, correlating with 1 overall survival, and 2 with established prognostic parameters (T stage, tumor size, Fuhrman nuclear grade, microvascular invasion and peri-renal fat invasion. Materials and Methods This is a retrospective cohort study. We evaluated 95 patients with non-metastatic clear cell renal cell carcinoma, as to the expression of CA-IX. The analyzed parameters where: overall survival (OS, TNM stage, tumor size (TS, Fuhrman nuclear grade (FNG, microvascular invasion (MVI, peri-renal fat invasion (PFI. We utilized a custom built tissue microarray, and the immunoexpression was digitally quantified using the Photoshop® software. Results: Th e mean follow-up time was 7.9 years (range 1.9 to 19.5 years. The analysis of CA-IX expression against the selected prognostic parameters showed no correlation. The results are as follows: Overall survival (p = 0.790; T stage (p = 0.179; tumor size (p = 0.143; grouped Fuhrman nuclear grade (p = 0.598; microvascular invasion (p = 0.685, and peri-renal fat invasion (p = 0.104. Conclusion Carbonic anhydrase type IX expression does not correlate with overall survival and conventional prognostic parameters in non-metastatic clear cell renal cell carcinoma.

  18. Activated carbons and gold

    The literature on activated carbon is reviewed so as to provide a general background with respect to the effect of source material and activation procedure on carbon properties, the structure and chemical nature of the surface of the activated carbon, and the nature of absorption processes on carbon. The various theories on the absorption of gold and silver from cyanide solutions are then reviewed, followed by a discussion of processes for the recovery of gold and silver from cyanide solutions using activated carbon, including a comparison with zinc precipitation

  19. Mice deficient in carbonic anhydrase type 8 exhibit motor dysfunctions and abnormal calcium dynamics in the somatic region of cerebellar granule cells.

    Lamont, Matthew G; Weber, John T

    2015-06-01

    The waddles (wdl) mouse is characterized by a namesake "side-to-side" waddling gait due to a homozygous mutation of the Car8 gene. This mutation results in non-functional copies of the protein carbonic anhydrase type 8. Rota-rod testing was conducted to characterize the wdl mutations' effect on motor output. Results indicated that younger homozygotes outperformed their older cohorts, an effect not seen in previous studies. Heterozygotes, which were thought to be free of motor impairment, displayed motor learning deficiencies when compared with wild type performance. Acute cerebellar slices were then utilized for fluorescent calcium imaging experiments, which revealed significant alterations in cerebellar granule cell somatic calcium signaling when exposed to glutamate. The contribution of GABAergic signaling to these alterations was also verified using bath application of bicuculline. Changes in somatic calcium signals were found to be applicable to an in vivo scenario by comparing group responses to electrical stimulation of afferent mossy fiber projections. Finally, intracellular calcium store function was also found to be altered by the wdl mutation when slices were treated with thapsigargin. These findings, taken together with previous work on the wdl mouse, indicate a widespread disruption in cerebellar circuitry hampering proper neuronal communication. PMID:25721739

  20. The Role of Hypoxia-Inducible Factor-1α, Glucose Transporter-1, (GLUT-1 and Carbon Anhydrase IX in Endometrial Cancer Patients

    Pawel Sadlecki

    2014-01-01

    Full Text Available Hypoxia-inducible factor-1α (HIF-1α, glucose transporter-1 (GLUT-1, and carbon anhydrase IX (CAIX are important molecules that allow adaptation to hypoxic environments. The aim of our study was to investigate the correlation between HIF-1α, GLUT-1, and CAIX protein level with the clinicopathological features of endometrial cancer patients. Materials and Methods. 92 endometrial cancer patients, aged 37–84, were enrolled to our study. In all patients clinical stage, histologic grade, myometrial invasion, lymph node, and distant metastases were determined. Moreover, the survival time was assessed. Immunohistochemical analyses were performed on archive formalin fixed paraffin embedded tissue sections. Results. High significant differences (P=0.0115 were reported between HIF-1α expression and the histologic subtype of cancer. Higher HIF-1α expression was associated with the higher risk of recurrence (P=0.0434. The results of GLUT-1 and CAIX expression did not reveal any significant differences between the proteins expression in the primary tumor and the clinicopathological features. Conclusion. The important role of HIF-1α in the group of patients with the high risk of recurrence and the negative histologic subtype of the tumor suggest that the expression of this factor might be useful in the panel of accessory pathomorphological tests and could be helpful in establishing more accurate prognosis in endometrial cancer patients.

  1. Intrinsic Thermodynamics and Structure Correlation of Benzenesulfonamides with a Pyrimidine Moiety Binding to Carbonic Anhydrases I, II, VII, XII, and XIII.

    Miglė Kišonaitė

    Full Text Available The early stage of drug discovery is often based on selecting the highest affinity lead compound. To this end the structural and energetic characterization of the binding reaction is important. The binding energetics can be resolved into enthalpic and entropic contributions to the binding Gibbs free energy. Most compound binding reactions are coupled to the absorption or release of protons by the protein or the compound. A distinction between the observed and intrinsic parameters of the binding energetics requires the dissection of the protonation/deprotonation processes. Since only the intrinsic parameters can be correlated with molecular structural perturbations associated with complex formation, it is these parameters that are required for rational drug design. Carbonic anhydrase (CA isoforms are important therapeutic targets to treat a range of disorders including glaucoma, obesity, epilepsy, and cancer. For effective treatment isoform-specific inhibitors are needed. In this work we investigated the binding and protonation energetics of sixteen [(2-pyrimidinylthioacetyl]benzenesulfonamide CA inhibitors using isothermal titration calorimetry and fluorescent thermal shift assay. The compounds were built by combining four sulfonamide headgroups with four tailgroups yielding 16 compounds. Their intrinsic binding thermodynamics showed the limitations of the functional group energetic additivity approach used in fragment-based drug design, especially at the level of enthalpies and entropies of binding. Combined with high resolution crystal structural data correlations were drawn between the chemical functional groups on selected inhibitors and intrinsic thermodynamic parameters of CA-inhibitor complex formation.

  2. The most recently discovered carbonic anhydrase, CA XV, is expressed in the thick ascending limb of Henle and in the collecting ducts of mouse kidney.

    Sina Saari

    Full Text Available BACKGROUND: Carbonic anhydrases (CAs are key enzymes for physiological pH regulation, including the process of urine acidification. Previous studies have identified seven cytosolic or membrane-bound CA isozymes in the kidney. Recently, we showed by in situ hybridization that the mRNA for the most novel CA isozyme, CA XV, is present in the renal cortex. CA XV is a unique isozyme among mammalian CAs, because it has become a pseudogene in primates even though expressed in several other species. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we raised a polyclonal antibody against recombinant mouse CA XV that was produced in a baculovirus/insect cell expression system, and the antibody was used for immunohistochemical analysis in different mouse tissues. Positive immunoreactions were found only in the kidney, where the enzyme showed a very limited distribution pattern. Parallel immunostaining experiments with several other anti-CA sera indicated that CA XV is mainly expressed in the thick ascending limb of Henle and collecting ducts, and the reactions were most prominent in the cortex and outer medulla. CONCLUSION/SIGNIFICANCE: Although other studies have proposed a role for CA XV in cell proliferation, its tightly limited distribution may point to a specialized function in the regulation of acid-base homeostasis.

  3. Carbonic anhydrase IX induction defines a heterogeneous cancer cell response to hypoxia and mediates stem cell-like properties and sensitivity to HDAC inhibition.

    Ledaki, Ioanna; McIntyre, Alan; Wigfield, Simon; Buffa, Francesca; McGowan, Simon; Baban, Dilair; Li, Ji-Liang; Harris, Adrian L

    2015-08-14

    Carbonic anhydrase IX (CAIX) is strongly induced by hypoxia and its overexpression is associated with poor therapeutic outcome in cancer. Here, we report that hypoxia promotes tumour heterogeneity through the epigenetic regulation of CAIX. Based on hypoxic CAIX expression we identify and characterize two distinct populations of tumour cells, one that has inducible expression of CAIX and one that does not. The CAIX+ve population is enriched with cells expressing cancer stem cell markers and which have high self-renewal capacity. We show that differential CAIX expression is due to differences in chromatin structure. To further investigate the relationship between chromatin organization and hypoxic induction of CAIX expression we investigated the effect of JQ1 an inhibitor of BET bromodomain proteins and A366 a selective inhibitor of the H3K9 methyltransferase G9a/GLP. We identified that these drugs were able to modulate hypoxic CAIX expression induction. This further highlights the role of epigenetic modification in adaption to hypoxia and also in regulation of heterogeneity of cells within tumours. Interestingly, we identified that the two subpopulations show a differential sensitivity to HDAC inhibitors, NaBu or SAHA, with the CAIX positive showing greater sensitivity to treatment. We propose that drugs modulating chromatin regulation of expression may be used to reduce heterogeneity induced by hypoxia and could in combination have significant clinical consequences. PMID:26305601

  4. Targeting carbonic anhydrase IX by nitroimidazole based sulfamides enhances the therapeutic effect of tumor irradiation: A new concept of dual targeting drugs

    Background and purpose: Carbonic anhydrase IX (CAIX) plays an important role in pH regulation processes critical for tumor cell growth and metastasis. We hypothesize that a dual targeting bioreductive nitroimidazole based anti-CAIX sulfamide drug (DH348) will reduce tumor growth and sensitize tumors to irradiation in a CAIX dependent manner. Material and methods: The effect of the dual targeting anti-CAIX (DH348) and its single targeting control drugs on extracellular acidification and radiosensitivity was examined in HT-29 colorectal carcinoma cells. Tumor growth and time to reach 4× start volume (T4×SV) was monitored for animals receiving DH348 (10 mg/kg) combined with tumor single dose irradiation (10 Gy). Results: In vitro, DH348 reduced hypoxia-induced extracellular acidosis, but did not change hypoxic radiosensitivity. In vivo, DH348 monotherapy decreased tumor growth rate and sensitized tumors to radiation (enhancement ratio 1.50) without systemic toxicity only for CAIX expressing tumors. Conclusions: A newly designed nitroimidazole and sulfamide dual targeting drug reduces hypoxic extracellular acidification, slows down tumor growth at nontoxic doses and sensitizes tumors to irradiation all in a CAIX dependent manner, suggesting no “off-target” effects. Our data therefore indicate the potential utility of a dual drug approach as a new strategy for tumor-specific targeting

  5. Clues for divergent, polymorphic amyloidogenesis through dissection of amyloid forming steps of bovine carbonic anhydrase and its critical amyloid forming stretch.

    Garg, Dushyant Kumar; Kundu, Bishwajit

    2016-07-01

    Certain amino acid stretches are considered 'critical' to trigger amyloidogenesis in a protein. Synthetic peptides corresponding to these stretches are often used as experimental mimics for studying the amyloidogenesis of their parent protein. Here we provide evidence that such simple extrapolation is misleading. We scrutinized each step of amyloid progression of full length bovine carbonic anhydrase (BCA) and compared it with the amyloidogenic process of its critical peptide stretch 201-227 (PepB). We found that under similar solution conditions amyloidogenesis of BCA followed surface-catalyzed secondary nucleation, whereas, that of PepB followed classical nucleation-dependent pathway. AFM images showed that while BCA formed short, thick and branched fibrils, PepB formed thin, long and unbranched fibrils. Structural information obtained by ATR-FTIR spectroscopy suggested parallel arrangement of intermolecular β-sheet in BCA amyloids in contrast to PepB amyloids which arranged into antiparallel β sheets. Amyloids formed by BCA were unable to seed the fibrillation of PepB and vice versa. Even the intermediates formed during lag phase revealed contrasting FTIR and far UV CD signature, hydrophobicity, morphology and cell cytotoxicity. Thus, we propose that sequences other than critical amyloidogenic stretches may significantly influence the initiation, polymerization and final fibrillar morphology of amyloid forming protein. The results have been discussed in light of primary sequence mediated amyloid polymorphism and its importance in the rational design of amyloid nanomaterials possessing desired physico-chemical properties. PMID:27045222

  6. Intermediate conformation between native β-sheet and non-native α-helix is a precursor of trifluoroethanol-induced aggregation of Human Carbonic Anhydrase-II

    Highlights: • HCAII forms amyloid-like aggregates at moderate concentration of trifluoroethanol. • Protein adopts a state between β-sheet and α-helix at moderate % of TFE. • Hydrophobic surface(s) of partially structured conformation forms amyloid. • High % of TFE induces stable α-helical state preventing aggregation. - Abstract: In the present work, we examined the correlation between 2,2,2-trifluoroethanol (TFE)-induced conformational transitions of human carbonic anhydrase II (HCAII) and its aggregation propensity. Circular dichroism data indicates that protein undergoes a transition from β-sheet to α-helix on addition of TFE. The protein was found to aggregate maximally at moderate concentration of TFE at which it exists somewhere between β-sheet and α-helix, probably in extended non-native β-sheet conformation. Thioflavin-T (ThT) and Congo-Red (CR) assays along with fluorescence microscopy and transmission electron microscopy (TEM) data suggest that the protein aggregates induced by TFE possess amyloid-like features. Anilino-8-naphthalene sulfonate (ANS) binding studies reveal that the exposure of hydrophobic surface(s) was maximum in intermediate conformation. Our study suggests that the exposed hydrophobic surface and/or the disruption of the structural features protecting a β-sheet protein might be the major reason(s) for the high aggregation propensity of non-native intermediate conformation of HCAII

  7. Expression and characterization of a recombinant psychrophilic γ-carbonic anhydrase (NcoCA) identified in the genome of the Antarctic cyanobacteria belonging to the genus Nostoc.

    De Luca, Viviana; Del Prete, Sonia; Vullo, Daniela; Carginale, Vincenzo; Di Fonzo, Pietro; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2016-10-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the CO2 hydration/dehydration reversible reaction: CO2 + H2O ⇄ [Formula: see text] + H(+). Living organisms encode for at least six distinct genetic families of such catalyst, the α-, β-, γ-, δ-, ζ- and η-CAs. The main function of the CAs is to quickly process the CO2 derived by metabolic processes in order to regulate acid-base homeostasis, connected to the production of protons (H(+)) and bicarbonate. Few data are available in the literature on Antarctic CAs and most of the scientific information regards CAs isolated from mammals or prokaryotes (as well as other mesophilic sources). It is of great interest to study the biochemical behavior of such catalysts identified in organism living in the Antarctic sea where temperatures average -1.9 °C all year round. The enzymes isolated from Antarctic organisms represent a useful tool to study the relations among structure, stability and function of proteins in organisms adapted to living at constantly low temperatures. In the present paper, we report in detail the cloning, purification, and physico-chemical properties of NcoCA, a γ-CA isolated from the Antarctic cyanobacterium Nostoc commune. This enzyme showed a higher catalytic efficiency at lower temperatures compared to mesophilic counterparts belonging to α-, β-, γ-classes, as well as a limited stability at moderate temperatures. PMID:26226178

  8. Genomic organization of the human gene (CA5) and pseudogene for mitochondrial carbonic anhydrase V and their localization to chromosomes 16q and 16p

    Nagao, Yoshiro; Sly, W.S.; Batanian, J.R. [St. Louis Univ. School of Medicine, MO (United States)] [and others

    1995-08-10

    Carbonic anhydrase V (CA V) is expressed in mitochondrial matrix in liver and several other tissues. It is of interest for its putative roles in providing bicarbonate to carbamoyl phosphate synthetase for ureagenesis and to pyruvate carboxylase for gluconeogenesis and its possible importance in explaining certain inherited metabolic disorders with hyperammonemia and hypoglycemia. Following the recent characterization of the cDNA for human CA V, we report the isolation of the human gene from two {lambda} genomic libraries and its characterization. The CA V gene (CA5) is approximately 50 kb long and contains 7 exons and 6 introns. The exon-intron boundaries are found in positions identical to those determined for the previously described CA II, CA III, and CA VII genes. Like the CA VII gene, CA5 does not contain typical TATA and CAAT promoter elements in the 5{prime} flanking region but does contain a TTTAA sequence 147 nucleotides upstream of the initiation codon. CA5 also contains a 12-bp GT-rich segment beginning 13 bp downstream of the polyadenylation signal in the 3{prime} untranslated region of exon 7. FISH analysis allowed CA5 to be assigned to chromosome 16q24.3. An unprocessed pseudogene containing sequence homologous to exons 3-7 and introns 3-6 was also isolated and was assigned by FISH analysis to chromosome 16p11.2-p12. 22 refs., 4 figs., 1 tab.

  9. Recombinant thermoactive phosphoenolpyruvate carboxylase (PEPC) from Thermosynechococcus elongatus and its coupling with mesophilic/thermophilic bacterial carbonic anhydrases (CAs) for the conversion of CO2 to oxaloacetate.

    Del Prete, Sonia; De Luca, Viviana; Capasso, Clemente; Supuran, Claudiu T; Carginale, Vincenzo

    2016-01-15

    With the continuous increase of atmospheric CO2 in the last decades, efficient methods for carbon capture, sequestration, and utilization are urgently required. The possibility of converting CO2 into useful chemicals could be a good strategy to both decreasing the CO2 concentration and for achieving an efficient exploitation of this cheap carbon source. Recently, several single- and multi-enzyme systems for the catalytic conversion of CO2 mainly to bicarbonate have been implemented. In order to design and construct a catalytic system for the conversion of CO2 to organic molecules, we implemented an in vitro multienzyme system using mesophilic and thermophilic enzymes. The system, in fact, was constituted by a recombinant phosphoenolpyruvate carboxylase (PEPC) from the thermophilic cyanobacterium Thermosynechococcus elongatus, in combination with mesophilic/thermophilic bacterial carbonic anhydrases (CAs), for converting CO2 into oxaloacetate, a compound of potential utility in industrial processes. The catalytic procedure is in two steps: the conversion of CO2 into bicarbonate by CA, followed by the carboxylation of phosphoenolpyruvate with bicarbonate, catalyzed by PEPC, with formation of oxaloacetate (OAA). All tested CAs, belonging to α-, β-, and γ-CA classes, were able to increase OAA production compared to procedures when only PEPC was used. Interestingly, the efficiency of the CAs tested in OAA production was in good agreement with the kinetic parameters for the CO2 hydration reaction of these enzymes. This PEPC also revealed to be thermoactive and thermostable, and when coupled with the extremely thermostable CA from Sulphurhydrogenibium azorense (SazCA) the production of OAA was achieved even if the two enzymes were exposed to temperatures up to 60 °C, suggesting a possible role of the two coupled enzymes in biotechnological processes. PMID:26712095

  10. High kinetic stability of Zn(II) coordinated by the tris(histidine) unit of carbonic anhydrase towards solvolytic dissociation studied by affinity capillary electrophoresis.

    Sato, Yosuke; Hoshino, Hitoshi; Iki, Nobuhiko

    2016-08-01

    Solvolytic dissociation rate constants (kd) of bovine carbonic anhydrase II (CA) and its metallovariants (M-CAs, M=Co(II), Ni(II), Cu(II), Zn(II), and Cd(II)) were estimated by a ligand substitution reaction, which was monitored by affinity capillary electrophoresis to selectively detect the undissociated CAs in the reaction mixture. Using EDTA as the competing ligand for Zn-CA, the dissociation followed the unimolecular nucleophilic substitution (SN1) mechanism with kd=1.0×10(-7)s(-1) (pH7.4, 25°C). The corresponding solvolysis half-life (t1/2) was 80days, showing the exceptionally high kinetic stability of t Zn-CA, in contrast to the highly labile [Zn(II)(H2O)6](2+), where the water exchange rate (kex) is high. This behavior is attributed to the tetrahedral coordination geometry supported by the tris(histidine) unit (His3) of CA. In the case of Co-CA, it showed a somewhat larger kd value (5.7×10(-7)s(-1), pH7.4, 25°C) even though it shares the same tetrahedral coordination environment with Zn-CA, suggesting that the d(7) electronic configuration of Co(II) in the transition state of the dissociation is stabilized by the ligand field. Among M-CAs, only Ni-CA showed a bimolecular nucleophilic substitution (SN2) reaction path in its reaction with EDTA, implying that the large coordination number (6) of Ni(II) in Ni-CA allows EDTA to form an EDTA-Ni-CA intermediate. Overall, kd values roughly correlated with kex values among M-CAs, with the kd value of Zn-CA deviating strongly from the trend and highlighting the exceptionally high kinetic stabilization of Zn-CA by the His3 unit. PMID:27235274

  11. Label-free characterization of carbonic anhydrase-novel inhibitor interactions using surface plasmon resonance, isothermal titration calorimetry and fluorescence-based thermal shift assays.

    Rogez-Florent, Tiphaine; Duhamel, Laetitia; Goossens, Laurence; Six, Perrine; Drucbert, Anne-Sophie; Depreux, Patrick; Danzé, Pierre-Marie; Landy, David; Goossens, Jean-François; Foulon, Catherine

    2014-01-01

    This work describes the development of biophysical unbiased methods to study the interactions between new designed compounds and carbonic anhydrase II (CAII) enzyme. These methods have to permit both a screening of a series of sulfonamide derivatives and the identification of a lead compound after a thorough study of the most promising molecules. Interactions data were collected using surface plasmon resonance (SPR) and thermal shift assay (TSA). In the first step, experiments were performed with bovine CAII isoform and were extended to human CAII. Isothermal titration calorimetry (ITC) experiments were also conducted to obtain thermodynamics parameters necessary for the processing of the TSA data. Results obtained with this reference methodology demonstrate the effectiveness of SPR and TSA. KD values obtained from SPR data were in perfect accordance with ITC. For TSA, despite the fact that the absolute values of KD were quite different, the same affinity scale was obtained for all compounds. The binding affinities of the analytes studied vary by more than 50 orders of magnitude; for example, the KD value determined by SPR were 6 ± 4 and 299 ± 25 nM for compounds 1 and 3, respectively. This paper discusses some of the theoretical and experimental aspects of the affinity-based methods and evaluates the protein consumption to develop methods for the screening of further new compounds. The double interest of SPR, that is, for screening and for the quick thorough study of the interactions parameters (ka , kd , and KD ), leads us to choose this methodology for the study of new potential inhibitors. PMID:24375583

  12. The history and rationale of using carbonic anhydrase inhibitors in the treatment of peptic ulcers. In memoriam Ioan Puşcaş (1932-2015).

    Buzás, György M; Supuran, Claudiu T

    2016-08-01

    Carbonic anhydrase (CA, EC 4.2.1.1) inhibitors (CAIs) started to be used in the treatment of peptic ulcers in the 1970s, and for more than two decades, a group led by Ioan Puşcaş used them for this purpose, assuming that by inhibiting the gastric mucosa CA isoforms, hydrochloric acid secretion is decreased. Although acetazolamide and other sulfonamide CAIs are indeed effective in healing ulcers, the inhibition of CA isoforms in other organs than the stomach led to a number of serious side effects which made this treatment obsolete when the histamine H2 receptor antagonists and the proton pump inhibitors became available. Decades later, in 2002, it has been discovered that Helicobacter pylori, the bacterial pathogen responsible for gastric ulcers and cancers, encodes for two CAs, one belonging to the α-class and the other one to the β-class of these enzymes. These enzymes are crucial for the life cycle of the bacterium and its acclimation within the highly acidic environment of the stomach. Inhibition of the two bacterial CAs with sulfonamides such as acetazolamide, a low-nanomolar H. pylori CAI, is lethal for the pathogen, which explains why these compounds were clinically efficient as anti-ulcer drugs. Thus, the approach promoted by Ioan Puşcaş for treating this disease was a good one although the rationale behind it was wrong. In this review, we present a historical overview of the sulfonamide CAIs as anti-ulcer agents, in memoriam of the scientist who was in the first line of this research trend. PMID:26108882

  13. The effect of carbonic anhydrase on the kinetics and equilibrium of the oxygen isotope exchange in the CO2-H2O system: Implications for δ18O vital effects in biogenic carbonates

    Uchikawa, Joji; Zeebe, Richard E.

    2012-10-01

    Interpretations of the primary paleoceanographic information recorded in stable oxygen isotope values (δ18O) of biogenic CaCO3 can be obscured by disequilibrium effects. CaCO3 is often depleted in 18O relative to the δ18O values expected for precipitation in thermodynamic equilibrium with ambient seawater as a result of vital effects. Vital effects in δ18O have been explained in terms of the influence of fluid pH on the overall δ18O of the sum of dissolved inorganic carbon (DIC) species (often referred to as "pH model") and in terms of 18O depletion as a result of the kinetic effects associated with CO2 hydration (CO2 + H2O ↔ H2CO3 ↔ HCO3- + H+) and CO2 hydroxylation (CO2 + OH- ↔ HCO3-) in the calcification sites (so-called "kinetic model"). This study addresses the potential role of an enzyme, carbonic anhydrase (CA), that catalyzes inter-conversion of CO2 and HCO3- in relation to the underlying mechanism of vital effects. We performed quantitative inorganic carbonate precipitation experiments in order to examine the changes in 18O equilibration rate as a function of CA concentration. Experiments were performed at pH 8.3 and 8.9. These pH values are comparable to the average surface ocean pH and elevated pH levels observed in the calcification sites of some coral and foraminiferal species, respectively. The rate of uncatalyzed 18O exchange in the CO2-H2O system is governed by the pH-dependent DIC speciation and the kinetic rate constant for CO2 hydration and hydroxylation, which can be summarized by a simple mathematical expression. The results from control experiments (no CA addition) are in agreement with this expression. The results from control experiments also suggest that the most recently published kinetic rate constant for CO2 hydroxylation has been overestimated. When CA is present, the 18O equilibration process is greatly enhanced at both pH levels due to the catalysis of CO2 hydration by the enzyme. For example, the time required for 18O

  14. Close association of carbonic anhydrase (CA2a & CA15a, Na+/H+ exchanger (Nhe3b, and ammonia transporter Rhcg1 in zebrafish ionocytes responsible for Na+ uptake

    Yusuke eIto

    2013-04-01

    Full Text Available Freshwater fishes actively absorb salt from their environment to tolerate low salinities. We previously reported that vacuolar-type H+-ATPase/mitochondrion-rich cells (H-MRCs on the skin epithelium of zebrafish larvae (Danio rerio are primary sites for Na+ uptake. In this study, in an attempt to clarify the mechanism for the Na+ uptake, we performed a systematic analysis of gene expression patterns of zebrafish carbonic anhydrase (CA isoforms and found that, of 12 CA isoforms, CA2a and CA15a are highly expressed in H-MRCs at larval stages. The ca2a and ca15a mRNA expression were salinity-dependent; they were up-regulated in 0.03 mM Na+ water whereas ca15a but not ca2a was down-regulated in 70 mM Na+ water. Immunohistochemistry demonstrated cytoplasmic distribution of CA2a and apical membrane localization of CA15a. Furthermore, cell-surface immunofluorescence staining revealed external surface localization of CA15a. Depletion of either CA2a or CA15a expression by Morphorino antisense oligonucleotides resulted in a significant decrease in Na+ accumulation in H-MRCs. An in situ proximity ligation assay demonstrated a very close association of CA2a, CA15a, Na+/H+ exchanger 3b (Nhe3b, and Rhcg1 ammonia transporter in H-MRC. Our findings suggest that CA2a, CA15a, and Rhcg1 play a key role in Na+ uptake under freshwater conditions by forming a transport metabolon with Nhe3b.

  15. A pilot study on potential plasma hypoxia markers in the radiotherapy of non-small cell lung cancer. Osteopontin, carbonic anhydrase IX and vascular endothelial growth factor

    Ostheimer, C.; Bache, M.; Guettler, A.; Vordermark, D. [Martin-Luther-University Halle-Wittenberg, Department of Radiation Oncology, Halle (Saale) (Germany); Kotzsch, M. [Technical University Dresden, Department of Pathology, Dresden (Germany)

    2014-03-15

    Hypoxic radioresistance plays a critical role in the radiotherapy of cancer and adversely impacts prognosis and treatment response. This prospective study investigated the interrelationship and the prognostic significance of several hypoxia-related proteins in non-small cell lung cancer (NSCLC) patients treated by radiotherapy ± chemotherapy. Pretreatment osteopontin (OPN), vascular endothelial growth factor (VEGF) and carbonic anhydrase IX (CA IX) plasma levels were determined by ELISA in 55 NSCLC (M0) patients receiving 66 Gy curative-intent radiotherapy or chemoradiation. Marker correlation, association with clinicopathological parameters and the prognostic value of a biomarker combination was evaluated. All biomarkers were linearly correlated and linked to different clinical parameters including lung function, weight loss (OPN), gross tumor volume (VEGF) and T stage (CA IX). High OPN (p = 0.03), VEGF (p = 0.02) and CA IX (p = 0.04) values were significantly associated with poor survival. Double marker combination additively increased the risk of death by a factor of 2 and high plasma levels of the triple combination OPN/VEGF/CA IX yielded a 5.9-fold risk of death (p = 0.009). The combined assessment of OPN/VEGF/CA IX correlated independently with prognosis (p = 0.03) in a multivariate Cox regression model including N stage, T stage and GTV. This pilot study suggests that a co-detection augments the prognostic value of single markers and that the integration of OPN, VEGF and CA IX into a hypoxic biomarker profile for the identification of patients with largely hypoxic and radioresistant tumors should be further evaluated. (orig.) [German] Hypoxische Radioresistenz spielt eine kritische Rolle in der Radiotherapie maligner Tumoren und beeinflusst Prognose und Therapieansprechen negativ. Diese prospektive Studie untersuchte den Zusammenhang und die prognostische Bedeutung einiger hypoxieassoziierter Proteine bei Patienten mit nicht-kleinzelligem Bronchialkarzinom

  16. 9,10-Dibromo-N-aryl-9,10-dihydro-9,10-[3,4]epipyrroloanthracene-12,14-diones: Synthesis and Investigation of Their Effects on Carbonic Anhydrase Isozymes I, II, IX, and XII.

    Göksu, Haydar; Topal, Meryem; Keskin, Ali; Gültekin, Mehmet S; Çelik, Murat; Gülçin, İlhami; Tanc, Muhammet; Supuran, Claudiu T

    2016-06-01

    N-substituted maleimides were synthesized from maleic anhydride and primary amines. 1,4-Dibromo-dibenzo[e,h]bicyclo-[2,2,2]octane-2,3-dicarboximide derivatives (4a-f) were prepared by the [4+2] cycloaddition reaction of dibromoanthracenes with the N-substituted maleimide derivatives. The carbonic anhydrase (CA, EC 4.2.1.1) inhibitory effects of the new derivatives were assayed against the human (h) isozymes hCA I, II, IX, and XII. All tested bicyclo dicarboximide derivatives exhibited excellent inhibitory effects in the nanomolar range, with Ki values in the range of 117.73-232.87 nM against hCA I and of 69.74-111.51 nM against hCA II, whereas they were low micromolar inhibitors against hCA IX and XII. PMID:27174792

  17. Costs and persistence of alpha-2 adrenergic agonists versus carbonic anhydrase inhibitors, both associated with prostaglandin analogues, for glaucoma as recorded by The United Kingdom General Practitioner Research Database

    Philippe Denis

    2008-06-01

    Full Text Available Philippe Denis1, Antoine Lafuma2, Gilles Berdeaux31Hôpital Edouard Herriot, Lyon, France; 2Cemka, Bourg-la-Reine, France; 3Alcon France, Rueil-Malmaison, FranceAbstract: The persistence and costs of carbonic anhydrase inhibitors + prostaglandin analogues (CAIs + PGAs vs alpha-2 adrenergic agonists + prostaglandin analogues (alpha-2 agonists + PGAs were compared, based on The United Kingdom General Practitioner Research Database. Patients with a diagnosis of ocular hypertension, glaucoma, or treated for this, were selected. Selected patients were prescribed CAIs + PGAs or alpha-2 agonists + PGAs. Treatment failure was defined as a prescription change (adding, removing, or replacing glaucoma treatment, or initiating laser or surgery. Times to treatment failure were compared with a Cox model adjusted by a propensity score. Mean patient age was 69.0 years and 47.6% were males. Treatment failure at 1 year was experienced by 58.8% receiving CAIs + PGAs and 66.0% of patients receiving alpha-2 agonists + PGAs (p < 0.001. The hazard ratio for failure was 0.82 (p < 0.001 in favor of CAIs + PGAs after adjusting on age, gender, comorbidities, and duration of follow-up. Adjusted annual costs of glaucoma management did not differ significantly between treatments, £440.63 with alpha-2 agonists + PGAs and £413.37 with CAIs + PGAs. CAIs + PGAs therapies appear more persistent than alpha-2 agonist + PGA in everyday clinical practice, at a similar cost.Keywords: glaucoma, alpha-2 adrenergic agonists, carbonic anhydrase inhibitor, prostaglandin, effectiveness economics, costs

  18. Dewatering Peat With Activated Carbon

    Rohatgi, N. K.

    1984-01-01

    Proposed process produces enough gas and carbon to sustain itself. In proposed process peat slurry is dewatered to approximately 40 percent moisture content by mixing slurry with activated carbon and filtering with solid/liquid separation techniques.

  19. Activated carbon for incinerator uses

    This paper reports the development of the activated carbon from palm oil kernel shell for use as absorbent and converter for incinerator gas. The procedure is developed in order to prepare the material in bulk quantity and be used in the incinerator. The effect of the use of activating chemicals, physical activation and the preparation parameter to the quality of the carbon products will be discussed. (Author)

  20. PROGRESS ON ACTIVATED CARBON FIBERS

    2002-01-01

    Activated carbon fiber is one kind of important adsorption materials. These novel fibrousadsorbents have high specific surface areas or abundant functional groups, which make them havegreater adsorption/desorption rates and larger adsorption capacities than other adsorbents. They canbe prepared as bundle, paper, cloth and felt to meet various technical requirement. They also showreduction property. In this paper the latest progress on the studies of the preparation and adsorptionproperties of activated carbon fibers is reviewed. The application of these materials in drinking waterpurification, environmental control, resource recovery, chemical industry, and in medicine and healthcare is also presented.

  1. ACTIVATION ENERGY OF DESORPTION OF DIBENZOFURAN ON ACTIVATED CARBONS

    LI Xiang; LI Zhong; XI Hongxia; LUO Lingai

    2004-01-01

    Three kinds of commercial activated carbons, such as Norit RB1, Monolith and Chemviron activated carbons, were used as adsorbents for adsorption of dibenzofuran. The average pore size and specific surface area of these activated carbons were measured. Temperature Programmed Desorption (TPD) experiments were conducted to measure the TPD curves of dibenzofuran on the activated carbons, and then the activation energy for desorption of dibenzofuran on the activated carbons was estimated. The results showed that the Chemviron and the Norit RB1 activated carbon maintained higher specific surface area and larger micropore pore volume in comparison with the Monolith activated carbon, and the activation energy for the desorption of dibenzofuran on these two activated carbons was higher than that on the Monolith activated carbon. The smaller the pore of the activated carbon was, the higher the activated energy of dibenzofuran desorption was.

  2. Preparation of very pure active carbon

    The preparation of very pure active carbon is described. Starting from polyvinylidene chloride active carbon is prepared by carbonization in a nitrogen atmosphere, grinding, sieving and activation of the powder fraction with CO2 at 9500 to approximately 50% burn-off. The concentrations of trace and major elements are reduced to the ppb and ppm level, respectively. In the present set-up 100 g of carbon grains and approximately 50 g of active carbon powder can be produced weekly

  3. Photoconductivity of Activated Carbon Fibers

    Kuriyama, K.; Dresselhaus, M. S.

    1990-08-01

    The photoconductivity is measured on a high-surface-area disordered carbon material, namely activated carbon fibers, to investigate their electronic properties. Measurements of decay time, recombination kinetics and temperature dependence of the photoconductivity generally reflect the electronic properties of a material. The material studied in this paper is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000--2000m{sup 2}/g. Our preliminary thermopower measurements suggest that this carbon material is a p-type semiconductor with an amorphous-like microstructure. The intrinsic electrical conductivity, on the order of 20S/cm at room temperature, increases with increasing temperature in the range 30--290K. In contrast with the intrinsic conductivity, the photoconductivity in vacuum decreases with increasing temperature. The recombination kinetics changes from a monomolecular process at room temperature to a biomolecular process at low temperatures. The observed decay time of the photoconductivity is {approx equal}0.3sec. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The intrinsic carrier density and the activation energy for conduction are estimated to be {approx equal}10{sup 21}/cm{sup 3} and {approx equal}20meV, respectively. The majority of the induced photocarriers and of the intrinsic carriers are trapped, resulting in the long decay time of the photoconductivity and the positive temperature dependence of the conductivity.

  4. 苯磺酰胺从碳酸酐酶II中脱离过程的分子动力学模拟%Molecular Dynamics Simulations of the Unbinding of Phenylsulfonamide from Carbonic Anhydrase II

    孙维琦; 张继龙; 郑清川; 孙志伟; 张红星

    2013-01-01

      综合运用分子动力学模拟和自由能计算方法研究了苯磺酰胺分子从碳酸酐酶II (CA II)的活性位点脱离过程中底物与酶之间的动态相互作用。脱离过程的平均力势(PMF)显示,底物脱离时存在一个特殊的结合状态。其中,静电相互作用占据了主导地位。轨迹分析显示,除了金属离子的配位作用之外,底物脱离路径上的关键残基Leu198、Thr199和Thr200通过与底物磺胺基的氢键作用阻碍了底物从酶中的脱离。当前的研究对于深入认识磺胺类药物与CA II的详细结合过程和相关的药物改良与设计具有重要的指导意义。%Molecular dynamics (MD) simulations and free energy calculations were integrated to investigate substrate-enzyme dynamic interactions during the unbinding of phenylsulfonamide from carbonic anhydrase II (CA II). The potential of mean force (PMF) along the unbinding pathway shows that a special ligand-binding state exists, and the electrostatic interaction dominates the ligandʹs binding with CA II. The analysis of trajectories reveals that, apart from the zinc ion, the key residues in the unbinding pathway, Leu198, Thr199, and Thr200, prevent the substrateʹs unbinding from the enzyme by hydrogen bonding with the sulfanilamide group of the substrate. The present results are of direct significance for the in-depth understanding of the sulfonamide-CA II binding process and related drug design.

  5. Synthesis of New Thiazole Derivatives Bearing A Sulfonamide Moiety Of Expected Anticancer And Radiosensitizing Activities

    In a search for new cytotoxic agents with improved antitumor activity and selectivity, some new pyrano thiazole and thiazolopyranopyrimidine derivatives bearing sulfonamide moiety were synthesized. The newly synthesized compounds were evaluated for their antitumor activity alone and in combination with γ-irradiation. These new compounds were docked inside the active site of carbonic anhydrase II to predict their mechanism of action.

  6. Volumetric and superficial characterization of carbon activated

    The activated carbon is the resultant material of the calcination process of natural carbonated materials as coconut shells or olive little bones. It is an excellent adsorbent of diluted substances, so much in colloidal form, as in particles form. Those substances are attracted and retained by the carbon surface. In this work is make the volumetric and superficial characterization of activated carbon treated thermically (300 Centigrade) in function of the grain size average. (Author)

  7. Adsorption of Imidacloprid on Powdered Activated Carbon and Magnetic Activated Carbon

    Zahoor, M.; Mahramanlioglu, M.

    2011-01-01

    The adsorptive characteristics of imidacloprid on magnetic activated carbon (MAC12) in comparison to powdered activated carbon (PAC) were investigated. Adsorption of imidacloprid onto powdered activated carbon and magnetic activated carbon was studied as a function of time, initial imidacloprid concentration, temperature and pH. Pseudo-first-order, pseudo-second-order and intraparticle diffusion models for both carbons were used to describe the kinetic data. The adsorption equilibrium data we...

  8. Nanostructural activated carbons for hydrogen storage

    Li, Suoding

    A series of nanostructured activated carbons have been synthesized from poly(ether ether ketone) (PEEK), and its derivatives. These carbons, with surface area exceeding 3000 m2/g and with average pore diameters of ≤ 20 A, are proven to be superior hydrogen storage materials, with hydrogen storage capacities up to 5.5 wt% at 77 K and 45 atm. The porous texture of these carbons was controlled via optimizing three synthetic steps: thermo-oxidation of PEEK in air, pyrolysis or carbonization of the oxidized PEEK in an inert atmosphere, and activation of the pre-carbonized PEEK with metal hydroxide. Thermo-oxidation of PEEK and carbonization process were thoroughly studied. These processes have been investigated by MDSC, FTIR, TGA and Py-MS. The pyrolysis or carbonization of PEEK involves the degradation of PEEK chains in three stages. Carbon morphology, including crystallinity and porous texture, is readily controlled by adjusting carbonization temperature. Activation of PEEK carbons, using inorganic bases and other activation agents, produces microporous carbons having a very narrow pore size distribution and an average pore diameter of ≤ 20 A. The activation control parameters including activation agent, activation temperature, time and carbon morphology have been investigated extensively. High surface area activated carbon is obtained by activating a highly amorphous carbon with a high activation agent/carbon ratio at 800°C. Theoretical calculations show that the pores with smaller diameter, especially smaller than 7 A, favor hydrogen adsorption. The experimental results confirm this fact and show that: (1) the hydrogen adsorption capacity per unit surface area at 77 K and 1 bar is larger in the smaller pores, (2) gravimetric hydrogen storage capacity (W(H2)) is directly proportional to the ultramicropore (< 7 A) volume; and (3) the volumetric hydrogen storage capacity is directly proportional to the volume fraction of ultramicropores in carbon. Hydrogen

  9. Measurement of carbon thermodynamic activity in sodium

    The report presents the brief outline on system of carbon activity detecting system in sodium (SCD), operating on the carbon-permeable membrane, of the methods and the results of testing it under the experimental circulating loop conditions. The results of carbon activity sensor calibration with the use of equilibrium samples of XI8H9, Fe -8Ni, Fe -12Mn materials are listed. The behaviour of carbon activity sensor signals in sodium under various transitional conditions and hydrodynamic perturbation in the circulating loop, containing carbon bearing impurities in the sodium flow and their deposits on the surfaces flushed by sodium, are described. (author)

  10. Studies of activated carbon and carbon black for supercapacitor applications

    Richner, R.; Mueller, S.; Koetz, R.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Carbon Black and activated carbon materials providing high surface areas and a distinct pore distribution are prime materials for supercapacitor applications at frequencies < 0.5 Hz. A number of these materials were tested for their specific capacitance, surface and pore size distribution. High capacitance electrodes were manufactured on the laboratory scale with attention to ease of processability. (author) 1 fig., 1 ref.

  11. Methane storage in a commercial activated carbon.

    K. Wang

    2008-06-01

    Full Text Available A commercial activated carbon was examined for possible methane storage application. The structural and surface propertiesof the carbon were characterized by Nitrogen adsorption isotherm at 77 oK. It was found that the carbon is largelymicroporous with a surface area of approximately 860 m2/g. Adsorption test shows the carbon is able to achieve a methanestorage capacity of approximately 70/cc.

  12. Spherical carbons: Synthesis, characterization and activation processes

    Romero Anaya, Aroldo José; Ouzzine, Mohammed; Lillo Ródenas, María Ángeles; Linares Solano, Ángel

    2014-01-01

    Spherical carbons have been prepared through hydrothermal treatment of three carbohydrates (glucose, saccharose and cellulose). Preparation variables such as treatment time, treatment temperature and concentration of carbohydrate have been analyzed to obtain spherical carbons. These spherical carbons can be prepared with particle sizes larger than 10 μm, especially from saccharose, and have subsequently been activated using different activation processes (H3PO4, NaOH, KOH or physical activati...

  13. Preparation of activated carbon by chemical activation under vacuum.

    Juan, Yang; Ke-Qiang, Qiu

    2009-05-01

    Activated carbons especially used for gaseous adsorption were prepared from Chinesefir sawdust by zinc chloride activation under vacuum condition. The micropore structure, adsorption properties, and surface morphology of activated carbons obtained under atmosphere and vacuum were investigated. The prepared activated carbons were characterized by SEM, FTIR, and nitrogen adsorption. It was found that the structure of the starting material is kept after activation. The activated carbon prepared under vacuum exhibited higher values of the BET surface area (up to 1079 m2 g(-1)) and total pore volume (up to 0.5665 cm3 g(-1)) than those of the activated carbon obtained under atmosphere. This was attributed to the effect of vacuum condition that reduces oxygen in the system and limits the secondary reaction of the organic vapor. The prepared activated carbon has well-developed microstructure and high microporosity. According to the data obtained, Chinese fir sawdust is a suitable precursor for activated carbon preparation. The obtained activated carbon could be used as a low-cost adsorbent with favorable surface properties. Compared with the traditional chemical activation, vacuum condition demands less energy consumption, simultaneity, and biomass-oil is collected in the procedure more conveniently. FTIR analysis showed that heat treatment would result in the aromatization of the carbon structure. PMID:19534162

  14. Adsorption of organic substances to activated carbon

    Adsorption systems using activated carbon as an almost universal adsorbent for organic substances are widely applied for purifying exhaust air. The possibilities, limits and measures for an optimum design of activated carbon processes are given from the point of view of the plant designed and under the aspects of the present laws for environmental control. (orig.)

  15. Preparation and characterisation of activated carbon

    Activated carbon was prepared from Agricultural wastes, such as coconut shell, Palm oil Shell and mangrove trunk by destructive distillation under vakuum. Chemical and Physical properties of the activated carbon were studied and some potentially useful application in the fields of chemistry was also carried out

  16. Pairwise comparison of {sup 89}Zr- and {sup 124}I-labeled cG250 based on positron emission tomography imaging and nonlinear immunokinetic modeling: in vivo carbonic anhydrase IX receptor binding and internalization in mouse xenografts of clear-cell renal cell carcinoma

    Cheal, Sarah M.; Punzalan, Blesida; Doran, Michael G.; Osborne, Joseph R. [Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States); Evans, Michael J. [Memorial Sloan-Kettering Cancer Center, Human Oncology and Pathogenesis Program, New York, NY (United States); Lewis, Jason S. [Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Program in Molecular Pharmacology and Chemistry, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Radiochemistry and Imaging Sciences Service, New York, NY (United States); Zanzonico, Pat [Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Molecular Pharmacology and Therapy Service, New York, NY (United States); Memorial-Sloan Kettering Cancer Center, New York, NY (United States); Larson, Steven M. [Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Program in Molecular Pharmacology and Chemistry, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Molecular Pharmacology and Therapy Service, New York, NY (United States)

    2014-05-15

    The PET tracer, {sup 124}I-cG250, directed against carbonic anhydrase IX (CAIX) shows promise for presurgical diagnosis of clear-cell renal cell carcinoma (ccRCC) (Divgi et al. in Lancet Oncol 8:304-310, 2007; Divgi et al. in J Clin Oncol 31:187-194, 2013). The radiometal {sup 89}Zr, however, may offer advantages as a surrogate PET nuclide over {sup 124}I in terms of greater tumor uptake and retention (Rice et al. in Semin Nucl Med 41:265-282, 2011). We have developed a nonlinear immunokinetic model to facilitate a quantitative comparison of absolute uptake and antibody turnover between {sup 124}I-cG250 and {sup 89}Zr-cG250 using a human ccRCC xenograft tumor model in mice. We believe that this unique model better relates quantitative imaging data to the salient biological features of tumor antibody-antigen binding and turnover. We conducted experiments with {sup 89}Zr-cG250 and {sup 124}I-cG250 using a human ccRCC cell line (SK-RC-38) to characterize the binding affinity and internalization kinetics of the two tracers in vitro. Serial PET imaging was performed in mice bearing subcutaneous ccRCC tumors to simultaneously detect and quantify time-dependent tumor uptake in vivo. Using the known specific activities of the two tracers, the equilibrium rates of antibody internalization and turnover in the tumors were derived from the PET images using nonlinear compartmental modeling. The two tracers demonstrated virtually identical tumor cell binding and internalization but showed markedly different retentions in vitro. Superior PET images were obtained using {sup 89}Zr-cG250, owing to the more prolonged trapping of the radiolabel in the tumor and simultaneous washout from normal tissues. Estimates of cG250/CAIX complex turnover were 1.35 - 5.51 x 10{sup 12} molecules per hour per gram of tumor (20 % of receptors internalized per hour), and the ratio of {sup 124}I/{sup 89}Zr atoms released per unit time by tumor was 17.5. Pairwise evaluation of {sup 89}Zr-cG250 and {sup

  17. ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT

    Edwin S. Olson; Daniel J. Stepan

    2000-07-01

    High concentrations of humate in surface water result in the formation of excess amounts of chlorinated byproducts during disinfection treatment. These precursors can be removed in water treatment prior to disinfection using powdered activated carbon. In the interest of developing a more cost-effective method for removal of humates in surface water, a comparison of the activities of carbons prepared from North Dakota lignites with those of commercial carbons was conducted. Previous studies indicated that a commercial carbon prepared from Texas lignite (Darco HDB) was superior to those prepared from bituminous coals for water treatment. That the high alkali content of North Dakota lignites would result in favorable adsorptive properties for the very large humate molecules was hypothesized, owing to the formation of larger pores during activation. Since no standard humate test has been previously developed, initial adsorption testing was performed using smaller dye molecules with various types of ionic character. With the cationic dye, methylene blue, a carbon prepared from a high-sodium lignite (HSKRC) adsorbed more dye than the Darco HDB. The carbon from the low-sodium lignite was much inferior. With another cationic dye, malachite green, the Darco HDB was slightly better. With anionic dyes, methyl red and azocarmine-B, the results for the HSKRC and Darco HDB were comparable. A humate test was developed using Aldrich humic acid. The HSKRC and the Darco HDB gave equally high adsorption capacities for the humate (138 mg/g), consistent with the similarities observed in earlier tests. A carbon prepared from a high-sodium lignite from a different mine showed an outstanding improvement (201 mg/g). The carbons prepared from the low-sodium lignites from both mines showed poor adsorption capacities for humate. Adsorption isotherms were performed for the set of activated carbons in the humate system. These exhibited a complex behavior interpreted as resulting from two types

  18. Activation of Carbon Dioxide and Synthesis of Propylene Carbonate

    2002-01-01

    Cycloaddition of carbon dioxide and propylene oxide to propylene carbonate catalyzed by tetra-tert-butyl metal phthalocyanine in the presence of tributylamine (TBA) shows higher yield than catalyzed by unsubstituted metal phthalocyanine. Comparing different catalysts of diverse metals, (t-Bu)4PcMg is more active than (t-Bu)4PcFe. But (t-Bu)4PcCo and (t-Bu)4PcNi only have low catalytic activities towards the reaction. Moreover, the yield will increase as the temperature increases.

  19. ESTIMATION OF ACTIVATED ENERGY OF DESORPTION OF n-HEXANE ON ACTIVATED CARBONS BY TPD TECHNIQUE

    2001-01-01

    In this paper, six kinds of activated carbons such as Ag+-activated carbon, Cu2+-activated carbon, Fe3+- activated carbon, activated carbon, Ba2+- activated carbon and Ca2+-activated carbon were prepared. The model for estimating activated energy of desorption was established. Temperature-programmed desorption (TPD) experiments were conducted to measure the TPD curves of n-hexanol and then estimate the activation energy for desorption of n-hexanol on the activated carbons. Results showed that the activation energy for the desorption of n-hexanol on the Ag+- activated carbon, the Cu2+- activated carbon and the Fe3+- activated carbon were higher than those of n-hexanol on the activated carbon, the Ca2+- activated carbon and the Ba2+- activated carbon.

  20. ESTIMATION OF ACTIVATED ENERGY OF DESORPTION OF n—HEXANE ON ACTIVATED CARBONS BY PTD TECHNIQUE

    LIZhong; WANGHongjuan; 等

    2001-01-01

    In this paper,six kinds of activated carbons such as Ag+-activated carbon,Cu2+activated carbon,Fe3+-activated carbon,activated carbon,Ba2+-activated carbon and Ca2+activated carbon were prepared.The model for estimating activated energy of desorption was established.Temperature-programmed desorption(TPD)experiments were conducted to measure the TPD curves of n-hexanol and then estimate the activation energy for desorption of n-hexanol on the activated carbons.Results showed that the activation energy for the desorption of n-hexanol on the Ag+-activated carbon,the Cu2+-activated carbon and the Fe3+-activated carbon were higher than those of n-hexanol on the activated carbon,the Ca2+-activated carbon and the Ba2+-activated carbon.

  1. Activated Carbons From Grape Seeds By Chemical Activation With Potassium Carbonate And Potassium Hydroxide

    Okman, Irem; Karagöz, Selhan; Tay, Turgay; Erdem, Murat

    2014-02-01

    Activated carbons were produced from grape seed using either potassium carbonate (K2CO3) or potassium hydroxide (KOH). The carbonization experiments were accomplished at 600 and 800 °C. The effects of the experimental conditions (i.e., type of activation reagents, reagent concentrations, and carbonization temperatures) on the yields and the properties of these activated carbons were analyzed under identical conditions. An increase in the temperature at the same concentrations for both K2CO3 and KOH led to a decrease in the yields of the activated carbons. The lowest activated carbon yields were obtained at 800 °C at the highest reagent concentration (100 wt%) for both K2CO3 and KOH. The activated carbon with the highest surface area of 1238 m2g-1 was obtained at 800 °C in K2CO3 concentration of 50 wt% while KOH produced the activated carbon with the highest surface area of 1222 m2g-1 in a concentration of 25wt% at 800 °C. The obtained activated carbons were mainly microporous.

  2. Carbon Activation Diagnostic for Tertiary Neutron Measurements

    Glebov, V.Yu.; Stoeckl, C.; Sangster, T.C.; Meyerhofer, D.D.; Radha, P.B.; Padalino, S.; Baumgart, L.; Fuschino, J.

    2003-03-28

    OAK B202 The yield of tertiary neutrons with energies greater than 20 MeV has been proposed to determine the high rho R of inertial confinement fusion targets. The activation of carbon is a valuable measurement technique because of its high reaction threshold, the availability of high-purity samples, and relatively low cost. The 12C(n,2n)11C reaction has a Q value of 18.7 MeV, well above the 14.1 MeV primary DT neutron energy. The isotope 11C decays with a half-life of 20.3 min and emits a positron, resulting in the production of two back-to-back, 511 keV gamma rays upon annihilation. The positron decay of 11C is nearly identical to the copper decay used in the activation measurements of 14.1 MeV primary DT yields; therefore, the present copper activation gamma-detection system can be used to detect the tertiary-produced carbon activation. Because the tertiary neutron yield is more than six orders of magnitude lower than primary neutron yield, the carbon activation diagnostic requires ultrapure carbon samples, free from any positron-emitting contamination. In recent years we have developed carbon purification, packaging, and handling procedures that minimize the contamination signal to a level low enough to use carbon activation for tertiary neutron measurements in direct-drive implosion experiments with DT cryogenic targets on OMEGA. Experimental results of contamination measurements in carbon samples performed on high-neutron-yield shots on OMEGA in 2001-2002 will be presented. A concept for implementing a carbon activation system on the National Ignition Facility (NIF)will be discussed.

  3. PREPARATION OF MESOPOROUS CARBON BY CARBON DIOXIDE ACTIVATION WITH CATALYST

    W.Z.Shen; A.H.Lu; J.T.Zheng

    2002-01-01

    A mesoporous activated carbon (AC) can be successfully prepared by catalytic activa-tion with carbon dioxide. For iron oxide as catalyst, there were two regions of mesoporesize distribution, i.e. 2-5nm and 30-70nm. When copper oxide or magnesium oxidecoexisted with iron oxide as composite catalyst, the content of pores with sizes of 2-5nm was decreased, while the pores with 30 70nm were increased significantly. Forcomparison, AC reactivated by carbon dioxide directly was also investigated. It wasshown that the size of mesopores of the resulting AC concentrated in 2-5nm with lessvolume. The adsorption of Congo red was tested to evaluate the property of the result-ing AC. Furthermore, the factors affecting pore size distribution and the possibility ofmesopore formation were discussed.

  4. Self-Assembled Enzyme Nanoparticles for Carbon Dioxide Capture.

    Shanbhag, Bhuvana Kamath; Liu, Boyin; Fu, Jing; Haritos, Victoria S; He, Lizhong

    2016-05-11

    Enzyme-based processes have shown promise as a sustainable alternative to amine-based processes for carbon dioxide capture. In this work, we have engineered carbonic anhydrase nanoparticles that retain 98% of hydratase activity in comparison to their free counterparts. Carbonic anhydrase was fused with a self-assembling peptide that facilitates the noncovalent assembly of the particle and together were recombinantly expressed from a single gene construct in Escherichia coli. The purified enzymes, when subjected to a reduced pH, form 50-200 nm nanoparticles. The CO2 capture capability of enzyme nanoparticles was demonstrated at ambient (22 ± 2 °C) and higher (50 °C) temperatures, under which the nanoparticles maintain their assembled state. The carrier-free enzymatic nanoparticles demonstrated here offer a new approach to stabilize and reuse enzymes in a simple and cost-effective manner. PMID:27109255

  5. Organic solvent regeneration of granular activated carbon

    Cross, W. H.; Suidan, M. T.; Roller, M. A.; Kim, B. R.; Gould, J. P.

    1982-09-01

    The use of activated carbon for the treatment of industrial waste-streams was shown to be an effective treatment. The high costs associated with the replacement or thermal regeneration of the carbon have prohibited the economic feasibility of this process. The in situ solvent regeneration of activated carbon by means of organic solvent extraction was suggested as an economically alternative to thermal regeneration. The important aspects of the solvent regeneration process include: the physical and chemical characteristics of the adsorbent, the pore size distribution and energy of adsorption associated with the activated carbon; the degree of solubility of the adsorbate in the organic solvent; the miscibility of the organic solvent in water; and the temperature at which the generation is performed.

  6. Microwave-assisted regeneration of activated carbon.

    Foo, K Y; Hameed, B H

    2012-09-01

    Microwave heating was used in the regeneration of methylene blue-loaded activated carbons produced from fibers (PFAC), empty fruit bunches (EFBAC) and shell (PSAC) of oil palm. The dye-loaded carbons were treated in a modified conventional microwave oven operated at 2450 MHz and irradiation time of 2, 3 and 5 min. The virgin properties of the origin and regenerated activated carbons were characterized by pore structural analysis and nitrogen adsorption isotherm. The surface chemistry was examined by zeta potential measurement and determination of surface acidity/basicity, while the adsorptive property was quantified using methylene blue (MB). Microwave irradiation preserved the pore structure, original active sites and adsorption capacity of the regenerated activated carbons. The carbon yield and the monolayer adsorption capacities for MB were maintained at 68.35-82.84% and 154.65-195.22 mg/g, even after five adsorption-regeneration cycles. The findings revealed the potential of microwave heating for regeneration of spent activated carbons. PMID:22728787

  7. Antimicrobial Activity of Carbon-Based Nanoparticles

    Solmaz Maleki Dizaj

    2015-03-01

    Full Text Available Due to the vast and inappropriate use of the antibiotics, microorganisms have begun to develop resistance to the commonly used antimicrobial agents. So therefore, development of the new and effective antimicrobial agents seems to be necessary. According to some recent reports, carbon-based nanomaterials such as fullerenes, carbon nanotubes (CNTs (especially single-walled carbon nanotubes (SWCNTs and graphene oxide (GO nanoparticles show potent antimicrobial properties. In present review, we have briefly summarized the antimicrobial activity of carbon-based nanoparticles together with their mechanism of action. Reviewed literature show that the size of carbon nanoparticles plays an important role in the inactivation of the microorganisms. As major mechanism, direct contact of microorganisms with carbon nanostructures seriously affects their cellular membrane integrity, metabolic processes and morphology. The antimicrobial activity of carbon-based nanostructures may interestingly be investigated in the near future owing to their high surface/volume ratio, large inner volume and other unique chemical and physical properties. In addition, application of functionalized carbon nanomaterials as carriers for the ordinary antibiotics possibly will decrease the associated resistance, enhance their bioavailability and provide their targeted delivery.

  8. Activated coconut shell charcoal carbon using chemical-physical activation

    Budi, Esmar; Umiatin, Nasbey, Hadi; Bintoro, Ridho Akbar; Wulandari, Futri; Erlina

    2016-02-01

    The use of activated carbon from natural material such as coconut shell charcoal as metal absorbance of the wastewater is a new trend. The activation of coconut shell charcoal carbon by using chemical-physical activation has been investigated. Coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours in producing charcoal. The charcoal as the sample was shieved into milimeter sized granule particle and chemically activated by immersing in various concentration of HCl, H3PO4, KOH and NaOH solutions. The samples then was physically activated using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology and carbon content of activated carbon were characterized by using SEM/EDS. The result shows that the pores of activated carbon are openned wider as the chemical activator concentration is increased due to an excessive chemical attack. However, the pores tend to be closed as further increasing in chemical activator concentration due to carbon collapsing.

  9. Production of activated carbons from almond shell

    Nabais, Joao M. Valente; Laginhas, Carlos Eduardo C.; Carrott, P.J.M.; Ribeiro Carrott, M.M.L. [Evora Univ. (Portugal). Centro de Quimica de Evora

    2011-02-15

    The production of activated carbons from almond shell, using physical activation by CO{sub 2} is reported in this work. The used method has produced activated carbons with apparent BET surface areas and micropore volume as high as 1138 m{sup 2} g{sup -1} and 0.49 cm{sup 3} g{sup -1}, respectively. The activated carbons produced have essentially primary micropores and only a small volume of wider micropores. By FTIR analysis it was possible to identify, in the surface of the activated carbons, several functional groups, namely hydroxyls (free and phenol), ethers, esters, lactones, pyrones and Si-H bonds. By the analysis of the XRD patterns it was possible to calculate the microcrystallites dimensions with height between 1.178 and 1.881 nm and width between 3.106 and 5.917 nm. From the XRD it was also possible to identify the presence of traces of inorganic heteroatoms such as Si, Pb, K, Fe and P. All activated carbons showed basic characteristics with point of zero charge between 9.42 and 10.43. (author)

  10. Refining of hydrochars/ hydrothermally carbonized biomass into activated carbons and their applications

    Hao, Wenming

    2014-01-01

    Hydrothermally treated biomass could not only be used as a fuel or a fertilizer but it can also be refined into high-value products. Activated carbons are one of those. In the studies of this thesis, four different hydrothermally carbonized (HTC) biomasses, including horse manure, grass cuttings, beer waste and biosludge, have been successfully made into activated carbons. The activated carbon materials were in the forms of powdered activated carbons, powdered composites of activated carbon a...

  11. Ignition properties of nuclear grade activated carbons

    The ignition property of new activated carbons used in air cleaning systems of nuclear facilities has been evaluated in the past, however very little information has been generated on the behavior of aged, weathered carbons which have been exposed to normal nuclear facility environment. Additionally the standard procedure for evaluation of ignition temperature of carbon is performed under very different conditions than those used in the design of nuclear air cleaning systems. Data were generated evaluating the ageing of activated carbons and comparing their CH3131I removal histories to their ignition temperatures. A series of tests were performed on samples from one nuclear power reactor versus use time, a second series evaluated samples from several plants showing the variability of atmospheric effects. The ignition temperatures were evaluated simulating the conditions existing in nuclear air cleaning systems, such as velocity, bed depth, etc., to eliminate potential confusion resulting from artifically set current standard conditions

  12. PREPARATION OF ACTIVATED CARBON FROM PEAT

    Yasumitsu Uraki

    2009-02-01

    Full Text Available Peat with an approximate 60% carbon content collected in the suburbs of Palangka Raya, Indonesia, was carbonized, followed by activation with steam in an electric furnace. The resultant activated carbon (AC had ca. 900 m2/g of BET surface area and 1000 mg/g of iodine adsorption. This performance implies that this AC can be used as an adsorbent for environmental purification. We had a carbonizing furnace manufactured in Palangka Raya, which did not require electric power. Some AC having 350 mg/g of iodine adsorption was obtained by using this furnace. Although the adsorption ability was much lower than that of commercially available AC, the AC achieved significant decoloration and decrease in chemical oxygen demand of polluted river water. Thus, this article demonstrated the potential of tropical peat soil as a source of AC.

  13. Dynamic adsorption of radon on activated carbon

    The adsorption of 222Rn from air onto activated carbon was studied over the range 0 to 550C. A sharp pulse of radon was injected into an air stream that flowed through a bed of activated carbon. The radon concentration in the exit from the column was continuously monitored using a zinc sulfide α-scintillation flow cell. Elution curves were analyzed to determine the dynamic adsorption coefficient and the number of theoretical stages. Five types of activated carbon were tested and the dynamic adsorption coefficient was found to increase linearly with surface area in the range 1000 to 1300 m2g-1. The adsorptive capacity of activated carbon was reduced by up to 30% if the entering gas was saturated with water vapor and the bed was initially dry. If the bed was allowed to equilibrate with saturated air, the adsorptive capacity was too low to be of practical use. The minimum height equivalent to a theoretical stage (HETS) was about four times the particle diameter and occurred at superficial velocities within the range 0.002 to 0.02 m s-1. For superficial velocities above 0.05 m s-1, the HETS was determined by the rate of mass transfer. The application of these results to the design of activated carbon systems for radon retention is discussed

  14. Microcystin-LR Adsorption by Activated Carbon.

    Pendleton, Phillip; Schumann, Russell; Wong, Shiaw Hui

    2001-08-01

    We use a selection of wood-based and coconut-based activated carbons to investigate the factors controlling the removal of the hepatotoxin microcystin-LR (m-LR) from aqueous solutions. The wood carbons contain both micropores and mesopores. The coconut carbons contain micropores only. Confirming previously published observations, we also find that the wood-based carbons adsorb more microcystin than the coconut-based carbons. From a combination of a judicious modification of a wood-based carbon's surface chemistry and of the solution chemistry, we demonstrate that both surface and solution chemistry play minor roles in the adsorption process, with the adsorbent surface chemistry exhibiting less influence than the solution chemistry. Conformational changes at low solution pH probably contribute to the observed increase in adsorption by both classes of adsorbent. At the solution pH of 2.5, the coconut-based carbons exhibit a 400% increased affinity for m-LR compared with 100% increases for the wood-based carbons. In an analysis of the thermodynamics of adsorption, using multiple temperature adsorption chromatography methods, we indicate that m-LR adsorption is an entropy-driven process for each of the carbons, except the most hydrophilic and mesoporous carbon, B1. In this case, exothermic enthalpy contributions to adsorption also exist. From our overall observations, since m-LR contains molecular dimensions in the secondary micropore width range, we demonstrate that it is important to consider both the secondary micropore and the mesopore volumes for the adsorption of m-LR from aqueous solutions. Copyright 2001 Academic Press. PMID:11446779

  15. Activated carbon monoliths for methane storage

    Chada, Nagaraju; Romanos, Jimmy; Hilton, Ramsey; Suppes, Galen; Burress, Jacob; Pfeifer, Peter

    2012-02-01

    The use of adsorbent storage media for natural gas (methane) vehicles allows for the use of non-cylindrical tanks due to the decreased pressure at which the natural gas is stored. The use of carbon powder as a storage material allows for a high mass of methane stored for mass of sample, but at the cost of the tank volume. Densified carbon monoliths, however, allow for the mass of methane for volume of tank to be optimized. In this work, different activated carbon monoliths have been produced using a polymeric binder, with various synthesis parameters. The methane storage was studied using a home-built, dosing-type instrument. A monolith with optimal parameters has been fabricated. The gravimetric excess adsorption for the optimized monolith was found to be 161 g methane for kg carbon.

  16. USING POWDERED ACTIVATED CARBON: A CRITICAL REVIEW

    Because the performance of powdered activated carbon (PAC) for uses other than taste and odor control is poorly documented, the purpose of this article is to critically review uses that have been reported (i.e., pesticides and herbicides, synthetic organic chemicals, and trihalom...

  17. MODELING MERCURY CONTROL WITH POWDERED ACTIVATED CARBON

    The paper presents a mathematical model of total mercury removed from the flue gas at coal-fired plants equipped with powdered activated carbon (PAC) injection for Mercury control. The developed algorithms account for mercury removal by both existing equipment and an added PAC in...

  18. 76 FR 67142 - Certain Activated Carbon From the People's Republic of China: Final Results and Partial...

    2011-10-31

    ... Administrative Review, 75 FR 48644 (August 11, 2010) (``First Rescission''). \\5\\ See Certain Activated Carbon... activated carbon is a powdered, granular, or pelletized carbon product obtained by ``activating'' with heat... activated carbon, including powdered activated carbon (``PAC''), granular......

  19. Device for determining carbon activity through pressure

    A hollow iron capsule of annular shape having an interior layer of Fe0.947O and a near absolute internal vacuum is submersed within a molten metal with the inner chamber of the capsule connected to a pressure sensor. Carbon present in the molten metal diffuses through the capsule wall and reacts with the Fe0.947O layer to generate a CO2--CO gas mixture within the internal chamber. The total absolute pressure of the gas measured by the pressure sensor is directly proportional to the carbon activity of the molten metal

  20. Supercapacitor Electrodes from Activated Carbon Monoliths and Carbon Nanotubes

    Dolah, B. N. M.; Othman, M. A. R.; Deraman, M.; Basri, N. H.; Farma, R.; Talib, I. A.; Ishak, M. M.

    2013-04-01

    Binderless monoliths of supercapacitor electrodes were prepared by the carbonization (N2) and activation (CO2) of green monoliths (GMs). GMs were made from mixtures of self-adhesive carbon grains (SACG) of fibers from oil palm empty fruit bunches and a combination of 5 & 6% KOH and 0, 5 & 6% carbon nanotubes (CNTs) by weight. The electrodes from GMs containing CNTs were found to have lower specific BET surface area (SBET). The electrochemical behavior of the supercapacitor fabricated using the prepared electrodes were investigated by electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge (GCD). In general an addition of CNTs into the GMs reduces the equivalent series resistance (ESR) value of the cells. A cell fabricated using electrodes from GM with 5% CNT and 5% KOH was found to have the largest reduction of ESR value than that from the others GMs containing CNT. The cell has steeper Warburg's slope than that from its respective non-CNT GM, which reflect the smaller resistance for electrolyte ions to move into pores of electrodes despite these electrodes having largest reduction in specific BET surface area. The cell also has the smallest reduction of specific capacitance (Csp) and maintains the specific power range despite a reduction in the specific energy range due to the CNT addition.

  1. Voltammetric Response of Epinephrine at Carbon Nanotube Modified Glassy Carbon Electrode and Activated Glassy Carbon Electrode

    WANG Juan; TANG Ping; ZHAO Fa-qiong; ZENG Bai-zhao

    2005-01-01

    The electrochemical behavior of epinephrine at activated glassy carbon electrode and carbon nanotube-coated glassy carbon electrode was studied. Epinephrine could exhibit an anodic peak at about 0.2 V (vs. SCE) at bare glassy carbon electrode, but it was very small.However, when the electrode was activated at certain potential (i. e. 1.9V) or modified with carbon nanotube, the peak became more sensitive,resulting from the increase in electrode area in addition to the electrostatic attraction. Under the selected conditions, the anodic peak current was linear to epinephrine concentration in the range of 3.3 × 10-7-1.1 × 10-5mol/L at activated glassy carbon electrode and in the range of 1.0 × 10-6-5.0 × 10-5 mol/L at carbon nanotube-coated electrode. The correlation coefficients were 0. 998 and 0. 997, respectively. The determination limit was 1.0 × 10-7 mol/L. The two electrodes have been successfully applied for the determination of epinephrine in adrenaline hydrochloride injection with recovery of 95%-104%.

  2. Active carbons from low temperature conversion chars

    Hulls obtained from the fruits of five tropical biomass have been subjected to low temperature conversion process and their chars activated by partial physical gasification to produce active carbons. The biomass are T. catappa, B. nitida, L leucophylla, D. regia and O. martiana. The bulk densities of the samples ranged from 0.32 g.cm3 to 0.52 g.cm3. Out of the samples T. catappa recorded the highest cellulose content (41.9 g.100g-1), while O. martiana contained the highest lignin content (40.7 g.100g-1). The ash of the samples were low (0.5 - 4.4%). The percentage of char obtained after conversion were high (33.7% - 38.6%). Active carbons obtained from T. catappa, D. regia and O. martiana, recorded high methylene blue numbers and iodine values. They also displayed good micro- and mesostructural characteristics. Micropore volume (Vmicro) was between 0.33cm3.g-1 - 0.40cm3.g-1, while the mesopore volume(Vmeso) was between 0.05 cm3.g-1 - 0.07 cm3.g-1. The BET specific surface exceeds 1000 m2.g-1. All these values compared favourably with high grade commercial active carbons. (author)

  3. Enhanced capacitive properties of commercial activated carbon by re-activation in molten carbonates

    Lu, Beihu; Xiao, Zuoan; Zhu, Hua; Xiao, Wei; Wu, Wenlong; Wang, Dihua

    2015-12-01

    Simple, affordable and green methods to improve capacitive properties of commercial activated carbon (AC) are intriguing since ACs possess a predominant role in the commercial supercapacitor market. Herein, we report a green reactivation of commercial ACs by soaking ACs in molten Na2CO3-K2CO3 (equal in mass ratios) at 850 °C combining the merits of both physical and chemical activation strategies. The mechanism of molten carbonate treatment and structure-capacitive activity correlations of the ACs are rationalized. Characterizations show that the molten carbonate treatment increases the electrical conductivity of AC without compromising its porosity and wettability of electrolytes. Electrochemical tests show the treated AC exhibited higher specific capacitance, enhanced high-rate capability and excellent cycle performance, promising its practical application in supercapacitors. The present study confirms that the molten carbonate reactivation is a green and effective method to enhance capacitive properties of ACs.

  4. ACTIVATED CARBON IN WATER TREATMENT FOR DRINKS

    Олійник, С. І.; Прибильский, В. Л.; Куц, A. М.; Ковальчук, В. П.; Коваленко, O. О.

    2014-01-01

    The purpose of scientific research, the results of which are given in the article, is the improvement of the technology of water conditioning by sorption purification of water for the production of beverages, including alcoholic beverages. The subject of research was drinking water, prepared water, activated carbon such grades Silcarbon K1810, Silcarbon K835, Silcarbon K814 compared to Silcarbon K3060. During the research we are used the conventional methods of analysis in liqueur and vodka p...

  5. Production of activated carbon from microalgae

    Hernández Férez, María del Remedio; Valdés Barceló, Francisco Javier; García Cortés, Ángela Nuria; Marcilla Gomis, Antonio; Chápuli Fernández, Eloy

    2008-01-01

    Presentado como póster en el 11th Mediterranean Congress of Chemical Engineering, Barcelona 2008. Resumen publicado en el libro de actas del congreso. Activated carbon is an important filter material for the removal of different compounds such as hazardous components in exhaust gases, for purification of drinking water, waste water treatment, adsorption of pollution from liquid phases, in catalysis, electrochemistry or for gas storage and present an important demand. Theoretically, activat...

  6. Interactions of xanthines with activated carbon

    Navarrete Casas, R. [Inorganic Chemistry Department, Granada University (Ugr), E-18071 Granada (Spain)]. E-mail: rncasas@ugr.es; Garcia Rodriguez, A. [Inorganic Chemistry Department, Granada University (Ugr), E-18071 Granada (Spain); Rey Bueno, F. [Inorganic Chemistry Department, Granada University (Ugr), E-18071 Granada (Spain); Espinola Lara, A. [Inorganic Chemistry Department, Granada University (Ugr), E-18071 Granada (Spain); Valenzuela Calahorro, C. [Inorganic Chemistry Department, Granada University (Ugr), E-18071 Granada (Spain); Navarrete Guijosa, A. [Inorganic Chemistry Department, Granada University (Ugr), E-18071 Granada (Spain)

    2006-06-30

    Because of their pharmaceutical and industrial applications, we have studied the adsorption of xanthine derivates (caffeine and theophylline) by activated carbon. To this end, we examined kinetic, equilibrium and thermodynamic aspects of the process. This paper reports the kinetics results. The experimental results indicate that the process was first order in C and the overall process was assumed to involve a single, reversible adsorption-desorption process obeying a kinetic law postulated by us.

  7. Composite supercapacitor electrodes made of activated carbon/PEDOT:PSS and activated carbon/doped PEDOT

    T S Sonia; P A Mini; R Nandhini; Kalluri Sujith; Balakrishnan Avinash; S V Nair; K R V Subramanian

    2013-08-01

    In this paper, we report on the high electrical storage capacity of composite electrodes made from nanoscale activated carbon combined with either poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) or PEDOT doped with multiple dopants such as ammonium persulfate (APS) and dimethyl sulfoxide (DMSO). The composites were fabricated by electropolymerization of the conducting polymers (PEDOT:PSS, doped PEDOT) onto the nanoscale activated carbon backbone, wherein the nanoscale activated carbon was produced by ball-milling followed by chemical and thermal treatments. Activated carbon/PEDOT:PSS yielded capacitance values of 640 F g-1 and 26mF cm-2, while activated carbon/doped PEDOT yielded capacitances of 1183 F g-1 and 42 mF cm-2 at 10 mV s-1. This is more than five times the storage capacity previously reported for activated carbon–PEDOT composites. Further, use of multiple dopants in PEDOT improved the storage performance of the composite electrode well over that of PEDOT:PSS. The composite electrodes were characterized for their electrochemical behaviour, structural and morphological details and electronic conductivity and showed promise as high-performance energy storage systems.

  8. Less-costly activated carbon for sewage treatment

    Ingham, J. D.; Kalvinskas, J. J.; Mueller, W. A.

    1977-01-01

    Lignite-aided sewage treatment is based on absorption of dissolved pollutants by activated carbon. Settling sludge is removed and dried into cakes that are pyrolyzed with lignites to yield activated carbon. Lignite is less expensive than activated carbon previously used to supplement pyrolysis yield.

  9. Flexural Properties of Activated Carbon Filled Epoxy Nano composites

    Activated carbon (AC) filled epoxy nano composites obtained by mixing the desired amount of nano AC viz., bamboo stem, oil palm empty fruit bunch, and coconut shell from agricultural biomass with the epoxy resin. Flexural properties of activated carbons filled epoxy nano composites with 1 %, and 5 % filler loading were measured. In terms of flexural strength and modulus, a significant increment was observed with addition of 1 % vol and 5 % vol nano-activated carbon as compared to neat epoxy. The effect of activated carbon treated by two chemical agents (potassium hydroxide and phosphoric acid) on the flexural properties of epoxy nano composites were also investigated. Flexural strength of activated carbon-bamboo stem, activated carbon-oil palm, and activated carbon-coconut shell reinforced epoxy nano composites showed almost same value in case of 5 % potassium hydroxide activated carbon. Flexural strength of potassium hydroxide activated carbon-based epoxy nano composites was higher than phosphoric acid activated carbon. The flexural toughness of both the potassium hydroxide and phosphoric acid activated carbon reinforced composites range between 0.79 - 0.92 J. It attributed that developed activated carbon filled epoxy nano composites can be used in different applications. (author)

  10. Active carbon production from modified asphalt

    A granular activated carbons (GACs) have been prepared from some local raw materials such as Qiayarah asphalt (QA) after some modification treatments of this asphalt by various ratios of its original constituents (asphaltenes and maltens) at 180 degree C. Thermal carbonization method by sulfur and steam physical activation have been used for AC preparation. The carbons thus prepared were characterized in the term of iodine, methylene blue (MB), P-nitro phenol (PNP) and CCl4 adsorption. The BET surface area of the prepared ACs has been estimated via a calibration curve between iodine numbers and surface area determined from N2 adsorption isotherm from previous studies, also, the surface area of the prepared ACs were determined through another methods such as retention method by ethylene glycol mono ethyl ether (EGME), adsorption from vapor phase using acetone vapor and adsorption from solution method using PNP and MB as solutes. The results referred to the success of modification method for preparing ACs of good micro porosity as compared with the AC from the untreated asphalt as well as the commercial sample. (author)

  11. Vibration damping with active carbon fiber structures

    Neugebauer, Reimund; Kunze, Holger; Riedel, Mathias; Roscher, Hans-Jürgen

    2007-04-01

    This paper presents a mechatronic strategy for active reduction of vibrations on machine tool struts or car shafts. The active structure is built from a carbon fiber composite with embedded piezofiber actuators that are composed of piezopatches based on the Macro Fiber Composite (MFC) technology, licensed by NASA and produced by Smart Material GmbH in Dresden, Germany. The structure of these actuators allows separate or selectively combined bending and torsion, meaning that both bending and torsion vibrations can be actively absorbed. Initial simulation work was done with a finite element model (ANSYS). This paper describes how state space models are generated out of a structure based on the finite element model and how controller codes are integrated into finite element models for transient analysis and the model-based control design. Finally, it showcases initial experimental findings and provides an outlook for damping multi-mode resonances with a parallel combination of resonant controllers.

  12. Influence of topical carbonic anhydrase inhibitor on the expression of aquaporin-1 in rat cornea with neovascularization%碳酸酐酶抑制剂的局部应用对大鼠角膜新生血管形成过程中水通道蛋白1表达的影响

    张洁; 李立

    2011-01-01

    (t=2.48,P=0.02),2个组AQP1灰度值分别为88.01±11.03和58.10±12.14,差异有统计学意义(t=9.99,P=0.00).结论 布林佐胺滴眼液能抑制大鼠角膜碱烧伤后CNV形成过程中AQP1的高表达,从而间接影响VEGF的表达,抑制或延缓CNV的形成.%Background Researches showed that aquaporin-1 (AQP1) is closely associated with corneal neovescularization(CNV).Carbonic anhydrase inhibitor has the inhibitory effect on the AQP1 and further suppresses the CNV.However,the systemic adverse effect of Carbonic anhydrase inhibitor limit its clinical application.Therefore,the influence of topical carbonic anhydrase inhibitor on CNV is concerned.Objective Present study was to investigate the effects of topical carbonic anhydrase inhibitors on the expression of AQP1 in rat cornea after alkali burn and explore its role in corneal neovascularization (CNV).Methods The alkali-burn animal models were established in 60 eyes of 30 clean Sprague Dawley rats by putting the filter paper soaked 1 mol/L NaOH solution at the central cornea for 40 seconds.1% Brinzolamide was topically administered in the 30 eyes of 15 models (Brinzolamide group),and the normal saline solution was used at the same way in other 30 eyes of 15 rats (model group).The 10 eyes of 5 normal Sprague Dawley received the eye drops of normal saline solution as the normal control group.The corneal burning degree was graded on the Mahoney ' s criteria in the third day,and Ee ' s method was used to score the opacification of cornea and the CNV area was analyzed in 3,5,7,10 days under the slit lamp microscope.The cornea tissue was obtained in the tenth day after burning for the observation of the pathology under the light microscope and the ultrastructure under the transmission electron microscope.The expressions of AQP1 and vascular endothelial growth factor(VEGF) in cornea tissue were detected using immunohistochemistry.The use of animals complied with the Statement of ARVO.Results No significant

  13. Production of activated carbon from TCR char

    Stenzel, Fabian; Heberlein, Markus; Klinner, Tobias; Hornung, Andreas

    2016-04-01

    The utilization of char for adsorptive purposes is known since the 18th century. At that time the char was made of wood or bones and used for decoloration of fluids. In the 20th century the production of activated carbon in an industrial scale was started. The today's raw materials for activated carbon production are hard coal, peat, wood or coconut shells. All these materials entail costs especially the latter. Thus, the utilization of carbon rich residues (biomass) is an interesting economic opportunity because it is available for no costs or even can create income. The char is produced by thermo-catalytic reforming (TCR®). This process is a combination of an intermediate pyrolysis and subsequently a reforming step. During the pyrolysis step the material is decomposed in a vapor and a solid carbon enriched phase. In the second step the vapor and the solid phase get in an intensive contact and the quality of both materials is improved via the reforming process. Subsequently, the condensables are precipitated from the vapor phase and a permanent gas as well as oil is obtained. Both are suitable for heat and power production which is a clear advantage of the TCR® process. The obtained biochar from the TCR® process has special properties. This material has a very low hydrogen and oxygen content. Its stability is comparable to hard coal or anthracite. Therefore it consists almost only of carbon and ash. The latter depends from input material. Furthermore the surface structure and area can be influenced during the reforming step. Depending from temperature and residence time the number of micro pores and the surface area can be increased. Preliminary investigations with methylene blue solution have shown that a TCR® char made of digestate from anaerobic digestion has adsorptive properties. The decoloration of the solution was achieved. A further influencing factor of the adsorption performance is the particle size. Based on the results of the preliminary tests a

  14. 甘油果糖联合碳酸酐酶抑制剂对高眼压大鼠眼睫状体水通道蛋白1表达的影响%The influence of glyc-fructose combined with carbonic anhydrase inhibitor on the expression of AQP1 in rat eyes

    盛毅; 金丽; 王进; 孙哲

    2015-01-01

    Objective To observe the effect of glyc-fructose combined with carbonic anhydrase inhibitor (CAI) on the expression of AQP 1 in rat eyes.Methods The model of intraocular hypertension in rats were established,and intervention on intraocular hypertension model rats were performed using glycerol fructose and carbonic anhydrase inhibitors.The expression of AQP 1 in the chamber angle tissue was detected in the mRNA and protein level.Results The expression of AQP 1 in the intraocular hypertension group (1,6,24,48 and 72 h) was significantly higher than those in the control group (1.55 ± 0.02,2.22±0.03,2.46 ±0.02,1.88 ±0.04,1.44±0.03; 1.21 ±0.02,3.58 ±0.03,3.81 ± 0.02,4.28 ± 0.04,4.44 ± 0.03,all P < 0.05).Carbonic anhydrase inhibitors could inhibit the expression of AQP 1 in the chamber angle tissue of the intraocular hypertension model rats (intraocular hypertension group vs.CAI group:1.41 ±0.02 vs.1.24 ±0.04; 4.41 ±0.02 vs.2.31 ± 0.04,all P < 0.05).The combined use of glyc-fructose with CAI could inhibit the expression more obviously(intraocular hypertension group vs.Glyc-fructose combined with CAI group:1.41 ± 0.02 vs.1.08±0.03; 4.41 ±0.02 vs.1.47 ±0.03,all P <0.05).Conclusion The expression of AQP1 was elevated in the intraocular hypertension group,and co-administrated with glycerol fructose and brinzolamide could inhibit the expression.%目的 观察联合应用甘油果糖和碳酸酐酶抑制剂对急性高眼压大鼠眼组织水通道蛋白1(AQP1)表达的影响.方法 建立高眼压大鼠模型,并使用甘油果糖和碳酸酐酶抑制剂对高眼压大鼠模型鼠进行干预,检测房角组织AQP1的基因及蛋白表达水平.结果 高眼压大鼠房角组织AQP1的基因和蛋白表达水平(造模后1、6、24、48、72 h:1.55±0.02、2.22±0.03、2.46±0.02、1.88±0.04、1.44±0.03;1.21±0.02、3.58±0.03、3.81±0.02、4.28±0.04、4.44±0.03)均显著高于对照组(1.00±0.00、1.00±0.00,P均<0.05).碳酸酐酶抑制剂

  15. Characterization of Activated Carbons from Oil-Palm Shell by CO2 Activation with No Holding Carbonization Temperature

    S. G. Herawan; Hadi, M. S.; Md. R. Ayob; A. Putra

    2013-01-01

    Activated carbons can be produced from different precursors, including coals of different ranks, and lignocellulosic materials, by physical or chemical activation processes. The objective of this paper is to characterize oil-palm shells, as a biomass byproduct from palm-oil mills which were converted into activated carbons by nitrogen pyrolysis followed by CO2 activation. The effects of no holding peak pyrolysis temperature on the physical characteristics of the activated carbons are studied....

  16. Proteomic analysis of carbon concentrating chemolithotrophic bacteria Serratia sp. for sequestration of carbon dioxide.

    Randhir K Bharti

    Full Text Available A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO. The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC, however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials.

  17. Clinical and radiographic study of activated carbon workers.

    Uragoda, C. G.

    1989-01-01

    Activated carbon is made in Sri Lanka by passing steam through charcoal made from coconut shells. The carbon does not contain free silica. Sixty six men who had worked in a factory making activated carbon for an average of 7.2 years had no more respiratory symptoms than a control group, and none showed radiological evidence of pneumoconiosis. There was no evidence that people exposed to charcoal and pure carbon for up to 11 years are at risk of developing pneumoconiosis.

  18. Volumetric and superficial characterization of carbon activated; Caracterizacion volumetrica y superficial de carbon activado

    Carrera G, L.M.; Garcia S, I.; Jimenez B, J.; Solache R, M.; Lopez M, B.; Bulbulian G, S.; Olguin G, M.T. [Departamento de Quimica, Gerencia de Ciencias Basicas, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    The activated carbon is the resultant material of the calcination process of natural carbonated materials as coconut shells or olive little bones. It is an excellent adsorbent of diluted substances, so much in colloidal form, as in particles form. Those substances are attracted and retained by the carbon surface. In this work is make the volumetric and superficial characterization of activated carbon treated thermically (300 Centigrade) in function of the grain size average. (Author)

  19. Activated Carbon Composites for Air Separation

    Baker, Frederick S [ORNL; Contescu, Cristian I [ORNL; Tsouris, Costas [ORNL; Burchell, Timothy D [ORNL

    2011-09-01

    Coal-derived synthesis gas is a potential major source of hydrogen for fuel cells. Oxygen-blown coal gasification is an efficient approach to achieving the goal of producing hydrogen from coal, but a cost-effective means of enriching O2 concentration in air is required. A key objective of this project is to assess the utility of a system that exploits porous carbon materials and electrical swing adsorption to produce an O2-enriched air stream for coal gasification. As a complement to O2 and N2 adsorption measurements, CO2 was used as a more sensitive probe molecule for the characterization of molecular sieving effects. To further enhance the potential of activated carbon composite materials for air separation, work was implemented on incorporating a novel twist into the system; namely the addition of a magnetic field to influence O2 adsorption, which is accompanied by a transition between the paramagnetic and diamagnetic states. The preliminary findings in this respect are discussed.

  20. Highly porous activated carbons prepared from carbon rich Mongolian anthracite by direct NaOH activation

    Byamba-Ochir, Narandalai; Shim, Wang Geun; Balathanigaimani, M. S.; Moon, Hee

    2016-08-01

    Highly porous activated carbons (ACs) were prepared from Mongolian raw anthracite (MRA) using sodium hydroxide as an activation agent by varying the mass ratio (powdered MRA/NaOH) as well as the mixing method of chemical agent and powdered MRA. The specific BET surface area and total pore volume of the prepared MRA-based activated carbons (MACs) are in the range of 816-2063 m2/g and of 0.55-1.61 cm3/g, respectively. The pore size distribution of MACs show that most of the pores are in the range from large micropores to small mesopores and their distribution can be controlled by the mass ratio and mixing method of the activating agent. As expected from the intrinsic property of the MRA, the highly graphitic surface morphology of prepared carbons was confirmed from Raman spectra and transmission electron microscopy (TEM) studies. Furthermore the FTIR and XPS results reveal that the preparation of MACs with hydrophobic in nature is highly possible by controlling the mixing conditions of activating agent and powdered MRA. Based on all the results, it is suggested that the prepared MACs could be used for many specific applications, requiring high surface area, optimal pore size distribution, proper surface hydrophobicity as well as strong physical strength.

  1. Total esterase activity in human saliva: Validation of an automated assay, characterization and behaviour after physical stress.

    Tecles, Fernando; Tvarijonaviciute, Asta; De Torre, Carlos; Carrillo, José M; Rubio, Mónica; García, Montserrat; Cugat, Ramón; Cerón, José J

    2016-07-01

    Although saliva has esterase activity, this activity has not been characterized or studied in individuals subjected to physical stress. The aim of this report was to develop and validate an automated spectrophotometric assay for total esterase activity measurement in human saliva, as well as to study the contribution of different enzymes on this activity and its behaviour under physical stress in healthy subjects. The assay used 4-nitrophenyl acetate as substrate and was precise, accurate and provided low limits of detection and quantification. Inhibition with diisopropylfluorophosphate showed that cholinesterase, carboxylesterase and cholesterol esterase contributions not represented more than 20% of total esterase. Addition of standards of lipase and albumin to saliva samples showed that both proteins significantly contributed to esterase activity only when equal or higher than 11.6 IU/L and 250 μg/mL, respectively. Western blot analyses showed absence of paraoxonase-1 and high amount of carbonic anhydrase-VI. The high affinity of purified carbonic anhydrase-VI for the substrate supported a major contribution of this enzyme. Total esterase activity and alpha-amylase was measured in saliva samples from 12 healthy male students before and after participation in an indoor football match. The activity significantly increased after match and positively correlated with salivary alpha-amylase. This method could be used as a biomarker of physical stress in humans, with carbonic anhydrase-VI being the esterase that contributed more to the activity of the assay. PMID:27045801

  2. Measurement of carbon activity of sodium using nickel tabs and the Harwell Carbon Meter - Preliminary experience

    Carbon can have an important effect on the mechanical properties of certain constructional materials likely to be used in the LMFBRs. Transfer of carbon will occur between the metal and the sodium at any particular location to bring the chemical potential of carbon in both components to the sam: value. Thus, in a mixed system containing austenitic stainless steel and unstabilized ferritic steel, carbon could be transferred by the sodium from the high carbon activity ferritic to the lower activity austenitic steel. Loss of carbon from the unstabilized ferritic steel leads to a weaker, more ductile material, while carburization of the stainless steel could lead to its embrittlement. Similarly carbon entering the coolant in the form of oil from leaking mechanical pumps could have similar effects on the mechanical property of stainless steels. In the light of these possibilities it is essential to measure the carbon activity of the sodium so that its effect on materials properties can be predicted

  3. THE ROLE OF ACTIVATED CARBON IN SOLVING ECOLOGICAL PROBLEMS

    V. M. Mukhin

    2008-06-01

    Full Text Available The authors present a brief analysis of the current global situation concerning the utilization of activated carbon in various fields. The article presents data concerning the synthesis and adsorption and structure properties of new activated carbons, used for solving ecological problems. The authors investigated the newly obtained activated carbons in comparison with several AC marks known in the world. It has been shown that currently synthesized AC are competitive with foreign marks.

  4. HYDROGEN SULFIDE ADSORPTION BY ALKALINE IMPREGNATED COCONUT SHELL ACTIVATED CARBON

    HUI SUN CHOO

    2013-12-01

    Full Text Available Biogas is one type of renewable energy which can be burnt to produce heat and electricity. However, it cannot be burnt directly due to the presence of hydrogen sulfide (H2S which is highly corrosive to gas engine. In this study, coconut shell activated carbon (CSAC was applied as a porous adsorbent for H2S removal. The effect of amount of activated carbon and flow rate of gas stream toward adsorption capacity were investigated. Then, the activated carbons were impregnated by three types of alkaline (NaOH, KOH and K2CO3 with various ratios. The effects of various types of alkaline and their impregnation ratio towards adsorption capacity were analysed. In addition, H2S influent concentration and the reaction temperature on H2S adsorption were also investigated. The result indicated that adsorption capacity increases with the amount of activated carbon and decreases with flow rate of gas stream. Alkaline impregnated activated carbons had better performance than unimpregnated activated carbon. Among all impregnated activated carbons, activated carbon impregnated by K2CO3 with ratio 2.0 gave the highest adsorption capacity. Its adsorption capacity was 25 times higher than unimpregnated activated carbon. The result also indicated that the adsorption capacity of impregnated activated carbon decreased with the increment of H2S influent concentration. Optimum temperature for H2S adsorption was found to be 50˚C. In this study, the adsorption of H2S on K2CO3 impregnated activated carbon was fitted to the Langmuir isotherm. The fresh and spent K2CO3 impregnated activated carbon were characterized to study the adsorption process.

  5. Intravascular Neutrophil Activation Due to Carbon Monoxide Poisoning

    Thom, Stephen R.; Bhopale, Veena M.; Han, Shih-Tsung; Clark, James M.; HARDY, KEVIN R.

    2006-01-01

    Rationale: We hypothesized that platelet–neutrophil interactions occur as a result of acute carbon monoxide (CO) poisoning, and subsequent neutrophil activation triggers events that cause neurologic sequelae.

  6. The Adsorption Mechanism of Modified Activated Carbon on Phenol

    Lin J. Q.

    2016-01-01

    Full Text Available Modified activated carbon was prepared by thermal treatment at high temperature under nitrogen flow. The surface properties of the activated carbon were characterized by Boehm titration, BET and point of zero charge determination. The adsorption mechanism of phenol on modified activated carbon was explained and the adsorption capacity of modified activated carbon for phenol when compared to plain activated carbon was evaluated through the analysis of adsorption isotherms, thermodynamic and kinetic properties. Results shows that after modification the surface alkaline property and pHpzc value of the activated carbon increase and the surface oxygen-containing functional groups decrease. The adsorption processes of the plain and modified carbon fit with Langmuir isotherm equation well, and the maximum adsorption capacity increase from 123.46, 111.11, 103.09mg/g to 192.31, 178.57, 163,93mg/g under 15, 25 and 35°C after modification, respectively. Thermodynamic parameters show that the adsorption of phenol on activated carbon is a spontaneously exothermic process of entropy reduction, implying that the adsorption is a physical adsorption. The adsorption of phenol on activated carbon follows the pseudo-second-order kinetics (R2>0.99. The optimum pH of adsorption is 6~8.

  7. Efficient L-lactic acid fermentation by the mold Rhizopus oryzae using activated carbon

    Koide, M.; Hirata, M.; Gaw, M.; Takanashi, H.; Hano, T. [Oita Univ, Oita (Japan). Dept. of Applied Chemistry

    2004-11-01

    Batch fermentations of Rhizopus oryzae AHU 6537 in medium containing granular activated carbon from coal, powder activated carbon from coal or granular activated carbon from coconut were carried out in an airlift bioreactor. As a result, fermentation broths were decolorized by activated carbon, and clearer fermentation broths were obtained than in fermentation without activated carbon. With activated carbon from coal, the cells formed smaller pellets than in fermentation without activated carbon, and fermentation performance was improved. Productivity was further improved by increasing the amount of activated carbon from coal. Therefore, the productivity of lactic acid fermentation could be improved by selecting a suitable activated carbon and by controlling the amount of activated carbon.

  8. Interaction forces between waterborne bacteria and activated carbon particles.

    Busscher, Henk J; Dijkstra, Rene J B; Langworthy, Don E; Collias, Dimitris I; Bjorkquist, David W; Mitchell, Michael D; Van der Mei, Henny C

    2008-06-01

    Activated carbons remove waterborne bacteria from potable water systems through attractive Lifshitz-van der Waals forces despite electrostatic repulsion between negatively charged cells and carbon surfaces. In this paper we quantify the interaction forces between bacteria with negatively and positively charged, mesoporous wood-based carbons, as well as with a microporous coconut carbon. To this end, we glued carbon particles to the cantilever of an atomic force microscope and measured the interaction forces upon approach and retraction of thus made tips. Waterborne Raoultella terrigena and Escherichia coli adhered weakly (1-2 nN) to different activated carbon particles, and the main difference between the activated carbons was the percentage of curves with attractive sites revealed upon traversing of a carbon particle through the bacterial EPS layer. The percentage of curves showing adhesion forces upon retraction varied between 21% and 69%, and was highest for R. terrigena with positively charged carbon (66%) and a coconut carbon (69%). Macroscopic bacterial removal by the mesoporous carbon particles increased with increasing percentages of attractive sites revealed upon traversing a carbon particle through the outer bacterial surface layer. PMID:18405910

  9. 75 FR 981 - Certain Activated Carbon From the People's Republic of China: Notice of Rescission of Changed...

    2010-01-07

    ... powdered activated carbon (``PAC''), granular activated carbon (``GAC''), and pelletized activated carbon... International Trade Administration Certain Activated Carbon From the People's Republic of China: Notice of... circumstance review (``CCR'') of the antidumping duty order on certain activated carbon from the......

  10. Some aspects of activated carbon selection for radioactive iodine adsorption

    A method is suggested and technology developed for testing the activated carbon applicability for iodine filters. Testing results are presented for the air clean-up both under NPP normal operation conditions and during accidents. The activated carbon produced in Poland is compared with the imported one with respect to its integral and differential efficiency of CH3131I adsorption

  11. [Flue gas desulfurization by a novel biomass activated carbon].

    Liu, Jie-Ling; Tang, Zheng-Guang; Chen, Jie; Jiang, Wen-Ju; Jiang, Xia

    2013-04-01

    A novel biomass columnar activated carbon was prepared from walnut shell and pyrolusite was added as a catalyst. The activated carbon prepared was used for flue gas desulphurization in a fixed-bed reactor with 16 g of activated carbon. The impact of operating parameters such as SO2 inlet concentration, space velocity, bed temperature, moisture content and O2 concentration on the desulfurization efficiency of activated carbon was investigated. The results showed that both the breakthrough sulfur capacity and breakthrough time of activated carbon decreased with the increase of SO2 inlet concentration within the range of 0.1% -0.3%. The breakthrough sulfur capacity deceased with the increase of space velocity, with optimal space velocity of 600 h(-1). The optimal bed temperature was 80 degrees C, and the desulfurization efficiency can be reduced if the temperature continue to increase. The presence of moisture and oxygen greatly promoted the adsorption of SO2 onto the activated carbon. The best moisture content was 10%. When the oxygen concentrations were between 10% and 13%, the desulfurization performance of activated carbon was the highest. Under the optimal operating conditions, the sulfur capacity of activated carbon was 252 mg x g(-1), and the breakthrough time was up to 26 h when the SO2 inlet concentration was 0.2%. PMID:23798152

  12. Studies on adsorptive desulfurization by activated carbon

    Rakesh Kumar, D.; Srivastava, Vimal Chandra [Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand (India)

    2012-05-15

    Sulfur removal using adsorption requires a proper process parametric study to determine its optimal performance characteristics. In this study, response surface methodology was employed for sulfur removal from model oil (dibenzothiophene; DBT dissolved in iso-octane) using commercial activated carbon (CAC) as an adsorbent. Experiments were carried out as per central composite design with four input parameters such as initial concentration (C{sub 0}: 100-900 mg/L), adsorbent dosage (m: 2-22 g/L), time of adsorption (t: 15-735 min), and temperature (T: 10-50 C). Regression analysis showed good fit of the experimental data to the second-order polynomial model with coefficient of determination R{sup 2}-value of 0.9390 and Fisher F-value of 16.5. The highest removal of sulfur by CAC was obtained with m = 20 g/L, t = 6 h, and T = 30 C. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Enhanced Capacitive Characteristics of Activated Carbon by Secondary Activation

    YANG Hui; LU Tian-hong; Yoshio Masaki

    2004-01-01

    The effect of the improvement of commercial activated carbon(AC) on its specific capacitance and high rate capability of double layer(dl) charging/discharging process has been studied. The improvement of AC was carried out via a secondary activation under steam in the presence of catalyst NiCl2, and the suitable condition was found to be a heat treatment at about 875 ℃ for 1 h. Under those conditions, the discharge specific capacitance of the improved AC increases up to 53.67 F/g, showing an increase of about 25% as compared with that of as-received AC. The good rectangular-shaped voltammograms and A.C. impedance spectra prove that the high rate capability of the capacitor made of the improved AC is enhanced significantly. The capacitance resistance(RC) time constant of the capacitor containing the improved AC is 1.74 s, which is much lower than that of the one containing as-received AC(an RC value of 4. 73 s). It is noted that both kinds of AC samples show a similar specific surface area and pore size distribution, but some changes have taken place in the carbon surface groups, especially a decrease in the concentration of surface carbonyl groups after the improvement, which have been verified by means of X-photoelectron spectroscopy. Accordingly, it is suggested that the decrease in the concentration of surface carbonyl groups for the improved AC is beneficial to the organic electrolyte ion penetrating into the pores, thus leading to the increase in both the specific capacitance and high rate capability of the supercapacitor.

  14. Ozone Removal by Filters Containing Activated Carbon: A Pilot Study

    Fisk, William; Spears, Mike; Sullivan, Douglas; Mendell, Mark

    2009-09-01

    This study evaluated the ozone removal performance of moderate-cost particle filters containing activated carbon when installed in a commercial building heating, ventilating, and air conditioning (HVAC) system. Filters containing 300 g of activated carbon per 0.09 m2 of filter face area were installed in two 'experimental' filter banks within an office building located in Sacramento, CA. The ozone removal performance of the filters was assessed through periodic measurements of ozone concentrations in the air upstream and downstream of the filters. Ozone concentrations were also measured upstream and downstream of a 'reference' filter bank containing filters without any activated carbon. The filter banks with prefilters containing activated carbon were removing 60percent to 70percent of the ozone 67 and 81 days after filter installation. In contrast, there was negligible ozone removal by the reference filter bank without activated carbon.

  15. Adsorption of EDTA on activated carbon from aqueous solutions

    In this study, the adsorption of EDTA on activated carbon from aqueous solutions has been investigated in a batch stirred cell. Experiments have been carried out to investigate the effects of temperature, EDTA concentration, pH, activated carbon mass and particle size on EDTA adsorption. The experimental results manifest that the EDTA adsorption rate increases with its concentration in the aqueous solutions. EDTA adsorption also increases with temperature. The EDTA removal from the solution increases as activated carbon mass increases. The Langmuir and Freundlich equilibrium isotherm models are found to provide a good fitting of the adsorption data, with R2 = 0.9920 and 0.9982, respectively. The kinetic study shows that EDTA adsorption on the activated carbon is in good compliance with the pseudo-second-order kinetic model. The thermodynamic parameters (Ea, ΔG0, ΔH0, ΔS0) obtained indicate the endothermic nature of EDTA adsorption on activated carbon.

  16. Microbial Enzyme Activity and Carbon Cycling in Grassland Soil Fractions

    Allison, S. D.; Jastrow, J. D.

    2004-12-01

    Extracellular enzymes are necessary to degrade complex organic compounds present in soils. Using physical fractionation procedures, we tested whether old soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay fraction, which contains carbon with a mean residence time of ~200 years. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in organic matter fractions than in bulk soil, consistent with the rapid turnover of these fractions. Polyphenol oxidase activity was 3 times greater in the clay fraction than in the bulk soil, despite very slow carbon turnover in this fraction. Changes in enzyme activity across the restoration chronosequence were small once adjusted for increases in soil carbon concentration, although polyphenol oxidase activity per unit carbon declined by 50% in native prairie versus cultivated soil. These results are consistent with a `two-pool' model of enzyme and carbon turnover in grassland soils. In light organic matter fractions, enzyme production and carbon turnover both occur rapidly. However, in mineral-dominated fractions, both enzymes and their carbon substrates are immobilized on mineral surfaces, leading to slow turnover. Soil carbon accumulation in the clay fraction and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular scale, rather than the micron to millimeter scale.

  17. Synthesis of new pyrrole, pyrazole, pyrimidine and pyrrolopyrimidine derivatives carrying a sulfonamide moiety of expected antitumor activity with studying the synergistic effect of γ-irradiation

    In a search for new cytotoxic agents with improved antitumor activity, some new pyrrole, pyrazole pyrimidine and pyrrolo[2,3-d] pyrimidine derivatives bearing sulfonamide moiety were synthesized. All the newly synthesized compound were subjected to in-vitro cytotoxic screening, also the synergism of the synthesized compounds with radiation was studies. These new compounds were docked in the active site of the carbonic anhydrase enzyme.

  18. Science Letters: Nitrogen doping of activated carbon loading Fe2O3 and activity in carbon-nitric oxide reaction

    WAN Xian-kai; ZOU Xue-quan; SHI Hui-xiang; WANG Da-hui

    2007-01-01

    Nitrogen doping of activated carbon loading Fe2O3 was performed by annealing in ammonia, and the activity of the modified carbon for NO reduction was studied in the presence of oxygen. Results show that Fe2O3 enhances the amount of surface oxygen complexes and facilitates nitrogen incorporation in the carbon, especially in the form of pyridinic nitrogen. The modified carbon shows excellent activity for NO reduction in the low temperature regime (<500 ℃) because of the cooperative effect of Fe2O3 and the surface nitrogen species.

  19. Adsorption of radon from a humid atmosphere on activated carbon

    Temperature and relative humidity can influence the adsorption capacity of radon on activated carbon to a great extent, depending on the physical properties of the carbon. Experiments were carried out to measure the radon uptake by an activated carbon in the presence of water vapor in a specially designed adsorption apparatus. The radon concentrations in the gas and solid phases were measured simultaneously once the adsorption equilibrium and the radioactive equilibrium between the radon daughter products were reached. The experiments in the presence of water vapor were carried out using two approaches. In one case the activated carbon was preequilibrated with water vapor prior to exposing it to radon. In the other case the carbon was exposed to a mixture of water vapor and radon. The uptake capacity for radon decreased substantially when both components were introduced together compared to when carbon was preequilibrated with water

  20. Production of activated carbon from Atili seed shells

    Nehemiah Samuel MAINA

    2014-11-01

    Full Text Available Activated carbon was produced from atili (black date seed shells by chemical activation with phosphoric acid as an activating agent. Carbonization was done at temperatures of 350°C, 450°C, 550°C, 650°C and at corresponding resident times of 20, 30, 40, 50 and 60 minutes respectively in a muffle furnace. The study involved the determination of yield, carbon content, burn-off, moisture content, and ash content as well as the temperature and suitable resident time for carbonization. The result showed that, increasing the carbonization temperature from 350°C to 650°C as well as increasing the corresponding resident time from 20 to 60 minutes led to a decrease in carbonization yield as well as an increase in burn off. An increase in carbonization time led to a decrease in ash content while an increase in carbonization temperature led to a decrease in the moisture content. The yield, burn-off and ash content obtained at a carbonization temperature of 650°C and at a corresponding time of 60 minutes were found to be 68.29%, 31.71% and 0.75% respectively while the highest carbon content (99.16 and lowest moisture content (0.09 was obtained at this same temperature and corresponding time. The activated carbon produced gave a yield of 99.37%, ash content (2.01%, moisture content (4.20%, carbon content (93.79%, burn off (0.63% and pH of 6.752. These properties therefore indicate the suitability of the activated carbon produced.

  1. Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl 2 activation

    Uçar, Suat; Erdem, Murat; Tay, Turgay; Karagöz, Selhan

    2009-08-01

    In this study, pomegranate seeds, a by-product of fruit juice industry, were used as precursor for the preparation of activated carbon by chemical activation with ZnCl 2. The influence of process variables such as the carbonization temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons was studied. When using the 2.0 impregnation ratio at the carbonization temperature of 600 °C, the specific surface area of the resultant carbon is as high as 978.8 m 2 g -1. The results showed that the surface area and total pore volume of the activated carbons at the lowest impregnation ratio and the carbonization temperature were achieved as high as 709.4 m 2 g -1 and 0.329 cm 3 g -1. The surface area was strongly influenced by the impregnation ratio of activation reagent and the subsequent carbonization temperature.

  2. Studies relevant to the catalytic activation of carbon monoxide

    Ford, P.C.

    1992-06-04

    Research activity during the 1991--1992 funding period has been concerned with the following topics relevant to carbon monoxide activation. (1) Exploratory studies of water gas shift catalysts heterogenized on polystyrene based polymers. (2) Mechanistic investigation of the nucleophilic activation of CO in metal carbonyl clusters. (3) Application of fast reaction techniques to prepare and to investigate reactive organometallic intermediates relevant to the activation of hydrocarbons toward carbonylation and to the formation of carbon-carbon bonds via the migratory insertion of CO into metal alkyl bonds.

  3. Superior capacitive performance of active carbons derived from Enteromorpha prolifera

    Highlights: • An ocean biomass, Entromorphra prolifera, has been processed into supercapacitor electrodes. • KOH activation can prepare hierarchical porous carbon. • The as-prepared carbons have high capacitance with good rate capability. • This work provided an approach to value-added products from an ocean biomass. - Abstract: Enteromorpha prolifera (E.prolifera), an ocean biomass, was used as raw materials to prepare active carbons by a two-step strategy (pre-carbonization followed by chemical activation). The as-prepared active carbons have been characterized by a variety of means such as N2 adsorption, field emission scanning electron microscope, transmission electron microscope, Raman spectroscopy. The results showed that the carbons have large surface area and developed porosity with micro-meso hierarchical pore texture. As evidenced by electrochemical measurements, the specific capacitance of the carbons can reach up to 296 F g−1. More importantly, the carbons can maintain a high capacitance of up to 152 F g−1 at a very high current density of 30 A g−1, highlighting the promise of the carbons for high power applications

  4. Characterization of activated carbon produced from urban organic waste

    Abdul Gani Haji

    2013-10-01

    Full Text Available The difficulties to decompose organic waste can be handled naturally by pyrolisis so it can  decomposes quickly that produces charcoal as the product. This study aims to investigate the characteristics of activated carbon from urban organic waste. Charcoal results of pyrolysis of organic waste activated with KOH 1.0 M at a temperature of 700 and 800oC for 60 to 120 minutes. Characteristics of activated carbon were identified by Furrier Transform Infra Red (FTIR, Scanning Electron Microscopy (SEM, and X-Ray Diffraction (XRD. However, their quality is determined yield, moisture content, ash, fly substances, fixed carbon, and the power of adsorption of iodine and benzene. The identified functional groups on activated carbon, such as OH (3448,5-3436,9 cm-1, and C=O (1639,4 cm-1. In general, the degree and distance between the layers of active carbon crystallites produced activation in all treatments showed no significant difference. The pattern of activated carbon surface topography structure shows that the greater the pore formation in accordance with the temperature increase the more activation time needed. The yield of activated carbon obtained ranged from 72.04 to 82.75%. The results of characterization properties of activated carbon was obtained from 1.11 to 5.41% water, 13.68 to 17.27% substance fly, 20.36 to 26.59% ash, and 56.14 to 62.31% of fixed carbon . Absorption of activated carbon was good enough at 800oC and 120 minutes of activation time, that was equal to 409.52 mg/g of iodine and 14.03% of benzene. Activated carbon produced has less good quality, because only the water content and flying substances that meet the standards.Doi: 10.12777/ijse.5.2.89-94 [How to cite this article: Haji, A.G., Pari, G., Nazar, M., and Habibati.  (2013. Characterization of activated carbon produced from urban organic waste . International Journal of Science and Engineering, 5(2,89-94. Doi: 10.12777/ijse.5.2.89-94

  5. Role of nitrogen in pore development in activated carbon prepared by potassium carbonate activation of lignin

    Tsubouchi, Naoto; Nishio, Megumi; Mochizuki, Yuuki

    2016-05-01

    The present work focuses on the role of nitrogen in the development of pores in activated carbon produced from lignin by K2CO3 activation, employing a fixed bed reactor under a high-purity He stream at temperatures of 500-900 °C. The specific surface area and pore volume obtained by activation of lignin alone are 230 m2/g and 0.13 cm3/g at 800 °C, and 540 m2/g and 0.31 cm3/g at 900 °C, respectively. Activation of a mixture of lignin and urea provides a significant increase in the surface area and volume, respectively reaching 3300-3400 m2/g and 2.0-2.3 cm3/g after holding at 800-900 °C for 1 h. Heating a lignin/urea/K2CO3 mixture leads to a significant decrease in the yield of released N-containing gases compared to the results for urea alone and a lignin/urea mixture, and most of the nitrogen in the urea is retained in the solid phase. X-ray photoelectron spectroscopy and X-ray diffraction analyses clearly show that part of the remaining nitrogen is present in heterocyclic structures (for example, pyridinic and pyrrolic nitrogen), and the rest is contained as KOCN at ≤600 °C and as KCN at ≥700 °C, such that the latter two compounds can be almost completely removed by water washing. The fate of nitrogen during heating of lignin/urea/K2CO3 and role of nitrogen in pore development in activated carbon are discussed on the basis of the results mentioned above.

  6. Adsorption of Gaseous Methyl Iodide by Active Carbons

    The impregnation of active carbons is known to be a useful means of improving the ability of these carbons to retain methyl iodide which might be formed during the accidental release of fission products from a reactor. Some basic work was done on both impregnated and unimpregnated materials, which involved: (a) the texture: (b) the reaction of Mel with the impregnants; (c) the adsorption of Mel on the carbons under dry and wet conditions at different temperatures. It was found that the carbons are highly microporous. A large part of this porosity disappears on impregnation with organic amine; These impregnants react chemically with the methyl iodide, which is thereby fixed on the carbon. For carbon which is impregnated with KI, a rapid exchange reaction takes place between the methyl iodide and KI under both dry and wet conditions. Consequently most of the iodine activity can be removed from the gas. (author)

  7. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation.

    Wei, Mingyu; Gao, Long; Li, Jun; Fang, Jia; Cai, Wenxuan; Li, Xiaoxia; Xu, Aihua

    2016-10-01

    Graphitic carbon nitride supported on activated carbon (g-C3N4/AC) was prepared through an in situ thermal approach and used as a metal free catalyst for pollutants degradation in the presence of peroxymonosulfate (PMS) without light irradiation. It was found that g-C3N4 was highly dispersed on the surface of AC with the increase of surface area and the exposition of more edges and defects. The much easier oxidation of C species in g-C3N4 to CO was also observed from XPS spectra. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the g-C3N4/AC catalyst within 20min with PMS, while g-C3N4+PMS and AC+PMS showed no significant activity for the reaction. The performance of the catalyst was significantly influenced by the amount of g-C3N4 loaded on AC; but was nearly not affected by the initial solution pH and reaction temperature. In addition, the catalysts presented good stability. A nonradical mechanism accompanied by radical generation (HO and SO4(-)) in AO7 oxidation was proposed in the system. The CO groups play a key role in the process; while the exposure of more N-(C)3 group can further increase its electron density and basicity. This study can contribute to the development of green materials for sustainable remediation of aqueous organic pollutants. PMID:27214000

  8. High Surface Area of Nano Pores Activated Carbon Derived From Agriculture Waste

    In this study, the high surface area of nano pores activated carbon rice husk originated from local biomass was investigated. The comparison in terms of surface area, porosity and behavior in electrochemical analysis with commercial activated carbon was studied in details. The nano pores activated carbon rice husk was synthesis using consecutive of carbonization and activation under purified nitrogen and carbon dioxide purge. Interestingly, the surface area and capacity of the nano pores activated carbon rice indicated higher in comparison to commercial activated carbon. This indicated that the nano pores activated carbon has potential to be developed further as an alternative material in reducing suspension on commercial activated carbon. (author)

  9. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31

    The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest

  10. Adsorption of light alkanes on coconut nanoporous activated carbon

    K. S. Walton

    2006-12-01

    Full Text Available This paper presents experimental results for adsorption equilibrium of methane, ethane, and butane on nanoporous activated carbon obtained from coconut shells. The adsorption data were obtained gravimetrically at temperatures between 260 and 300K and pressures up to 1 bar. The Toth isotherm was used to correlate the data, showing good agreement with measured values. Low-coverage equilibrium constants were estimated using virial plots. Heats of adsorption at different loadings were also estimated from the equilibrium data. Adsorption properties for this material are compared to the same properties for BPL activated carbon and BAX activated carbon.

  11. Tribological Characteristics of Chromium-active Carbon Electroplated Composite Coatings

    GUKa-fi; HUAMeng; Yi-min

    2004-01-01

    A process of chromium electroplating using a standard bath with additives and active carbon particles was reported, and the tribological behaviors of the composite coatings using the pin-on-disk tester and the table wear tester were i nvestig(aed. Experimental results indicate that the electroplated chromium-active carbon composite coatings exhibited the low friction coefficient anti excellent anti-wear properties whets coffered with the normal chromium electroplated ones. The formation of active carbon particles within the chromium matrices can be explained by SEM analysis and the mechanis of wear resistance of the composite coatings were studied.

  12. HYDROGEN SULFIDE ADSORPTION BY ALKALINE IMPREGNATED COCONUT SHELL ACTIVATED CARBON

    HUI SUN CHOO; LEE CHUNG LAU; ABDUL RAHMAN MOHAMED; KEAT TEONG LEE

    2013-01-01

    Biogas is one type of renewable energy which can be burnt to produce heat and electricity. However, it cannot be burnt directly due to the presence of hydrogen sulfide (H2S) which is highly corrosive to gas engine. In this study, coconut shell activated carbon (CSAC) was applied as a porous adsorbent for H2S removal. The effect of amount of activated carbon and flow rate of gas stream toward adsorption capacity were investigated. Then, the activated carbons were impregnated by three types of ...

  13. Nickel adsorption by sodium polyacrylate-grafted activated carbon

    Ewecharoen, A. [Division of Biotechnology, School of Bioresources and Technology, King Mongkut' s University of Technology Thonburi, 83 Moo 8 Thakham, Bangkhuntien, Bangkok 10150 (Thailand); Thiravetyan, P., E-mail: paitip@hotmail.com [Division of Biotechnology, School of Bioresources and Technology, King Mongkut' s University of Technology Thonburi, 83 Moo 8 Thakham, Bangkhuntien, Bangkok 10150 (Thailand); Wendel, E.; Bertagnolli, H. [Institut fuer Physikalische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany)

    2009-11-15

    A novel sodium polyacrylate grafted activated carbon was produced by using gamma radiation to increase the number of functional groups on the surface. After irradiation the capacity for nickel adsorption was studied and found to have increased from 44.1 to 55.7 mg g{sup -1}. X-ray absorption spectroscopy showed that the adsorbed nickel on activated carbon and irradiation-grafted activated carbon was coordinated with 6 oxygen atoms at 2.04-2.06 A. It is proposed that this grafting technique could be applied to other adsorbents to increase the efficiency of metal adsorption.

  14. Nickel adsorption by sodium polyacrylate-grafted activated carbon.

    Ewecharoen, A; Thiravetyan, P; Wendel, E; Bertagnolli, H

    2009-11-15

    A novel sodium polyacrylate grafted activated carbon was produced by using gamma radiation to increase the number of functional groups on the surface. After irradiation the capacity for nickel adsorption was studied and found to have increased from 44.1 to 55.7 mg g(-1). X-ray absorption spectroscopy showed that the adsorbed nickel on activated carbon and irradiation-grafted activated carbon was coordinated with 6 oxygen atoms at 2.04-2.06 A. It is proposed that this grafting technique could be applied to other adsorbents to increase the efficiency of metal adsorption. PMID:19576692

  15. Grafting of activated carbon cloths for selective adsorption

    Gineys, M.; Benoit, R.; Cohaut, N.; Béguin, F.; Delpeux-Ouldriane, S.

    2016-05-01

    Chemical functionalization of an activated carbon cloth with 3-aminophthalic acid and 4-aminobenzoic acid groups by the in situ formation of the corresponding diazonium salt in aqueous acidic solution is reported. The nature and amount of selected functions on an activated carbon surface, in particular the grafted density, were determined by potentiometric titration, elemental analysis and X-ray photoelectron spectroscopy (XPS). The nanotextural properties of the modified carbon were explored by gas adsorption. Functionalized activated carbon cloth was obtained at a discrete grafting level while preserving interesting textural properties and a large porous volume. Finally, the grafting homogeneity of the carbon surface and the nature of the chemical bonding were investigated using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) technique.

  16. Small angle X-ray scattering studies to access the influence of bovine serum albumin (BSA) and carbonic anhydrase (Boca) on the size and interaction among Aerosol-O T reversed micelles as a function of the micellar hydration degree

    Full text: Reversed micelles (RMs) of AOT (sodium bis-2-ethylhexyl sulfosuccinate) has constitute an efficient system to investigate membrane interaction and physical chemical behavior of short biologically active peptides, proteins and enzymes in water controlled environment and apolar medium. Information may be obtained from protein-membrane interaction, including solubilization, binding location, conformational changes, activity size droplet-dependent, and changes in the properties of RM environment, useful in studies in biocatalysis and bioseparation systems [1]. In this work, changes in the structural features and interactive forces among AOT RMs in hexane were monitored in several stages of micellar hydration W (= [buffer]/[0.1M AOT]), and in the presence of BSA (66.5 kDa) and BCA (30 Kda), by SAXS. The interactive forces between the RMs with proteins were analyzed within the framework of repulsion and attractive interaction potentials through the pairing stick hardsphere (PSHS) model [2]. In this way, the spherical core radius to the system of pure AOT RMs at W = 4, 10, 20 and 30 were respectively 15, 22, 33 and 43 A (20% of polydispersity), evaluated from the particle form factor P(q) modeling [1]. The PSHS analysis from SAXS curves of AOT RMs with BSA and BCA at smaller droplets size of 4 and 10, showed, respectively, an interplay between attractive and repulsive interactions between the micelles (attractive component in S(q) was predominant) with the preservation of the discrete RM radius in the presence of protein. On the other hand, for protein confined in the bigger RM droplet size with W=30, the attractive inter micellar forces were of minor importance for BSA and the appearing of a predominant repulsive hard sphere component in SAXS curves accompanied by a decreasing of the micellar radius to 36 A were detected. For BCA, however, at higher W (30), a phase separation was observed probably associated to the formation of unstable large BCA aggregates

  17. TESTING GUIDELINES FOR TECHNETIUM-99 ABSORPTION ON ACTIVATED CARBON

    BYRNES ME

    2010-09-08

    CH2M HILL Plateau Remediation Company (CHPRC) is currently evaluating the potential use of activated carbon adsorption for removing technetium-99 from groundwater as a treatment method for the Hanford Site's 200 West Area groundwater pump-and-treat system. The current pump-and-treat system design will include an ion-exchange (IX) system for selective removal of technetium-99 from selected wells prior to subsequent treatment of the water in the central treatment system. The IX resin selected for technetium-99 removal is Purolite A530E. The resin service life is estimated to be approximately 66.85 days at the design technetium-99 loading rate, and the spent resin must be replaced because it cannot be regenerated. The resulting operating costs associated with resin replacement every 66.85 days are estimated at $0.98 million/year. Activated carbon pre-treatment is being evaluated as a potential cost-saving measure to offset the high operating costs associated with frequent IX resin replacement. This document is preceded by the Literature Survey of Technetium-99 Groundwater Pre-Treatment Option Using Granular Activated Carbon (SGW-43928), which identified and evaluated prior research related to technetium-99 adsorption on activated carbon. The survey also evaluated potential operating considerations for this treatment approach for the 200 West Area. The preliminary conclusions of the literature survey are as follows: (1) Activated carbon can be used to selectively remove technetium-99 from contaminated groundwater. (2) Technetium-99 adsorption onto activated carbon is expected to vary significantly based on carbon types and operating conditions. For the treatment approach to be viable at the Hanford Site, activated carbon must be capable of achieving a designated minimum technetium-99 uptake. (3) Certain radionuclides known to be present in 200 West Area groundwater are also likely to adsorb onto activated carbon. (4) Organic solvent contaminants of concern (COCs

  18. TESTING GUIDELINES FOR TECHNETIUM-99 ADSORPTION ON ACTIVATED CARBON

    CH2M HILL Plateau Remediation Company (CHPRC) is currently evaluating the potential use of activated carbon adsorption for removing technetium-99 from groundwater as a treatment method for the Hanford Site's 200 West Area groundwater pump-and-treat system. The current pump-and-treat system design will include an ion-exchange (IX) system for selective removal of technetium-99 from selected wells prior to subsequent treatment of the water in the central treatment system. The IX resin selected for technetium-99 removal is Purolite A530E. The resin service life is estimated to be approximately 66.85 days at the design technetium-99 loading rate, and the spent resin must be replaced because it cannot be regenerated. The resulting operating costs associated with resin replacement every 66.85 days are estimated at $0.98 million/year. Activated carbon pre-treatment is being evaluated as a potential cost-saving measure to offset the high operating costs associated with frequent IX resin replacement. This document is preceded by the Literature Survey of Technetium-99 Groundwater Pre-Treatment Option Using Granular Activated Carbon (SGW-43928), which identified and evaluated prior research related to technetium-99 adsorption on activated carbon. The survey also evaluated potential operating considerations for this treatment approach for the 200 West Area. The preliminary conclusions of the literature survey are as follows: (1) Activated carbon can be used to selectively remove technetium-99 from contaminated groundwater. (2) Technetium-99 adsorption onto activated carbon is expected to vary significantly based on carbon types and operating conditions. For the treatment approach to be viable at the Hanford Site, activated carbon must be capable of achieving a designated minimum technetium-99 uptake. (3) Certain radionuclides known to be present in 200 West Area groundwater are also likely to adsorb onto activated carbon. (4) Organic solvent contaminants of concern (COCs) will

  19. Intact tropical forests, new evidence they uptake carbon actively

    2009-03-01

    Full Text Available According to a paper recently published on Nature, tropical forests play as active carbon sink, absorbing 1.3·109 tons of carbon per year on a global scale. Functional interpretation is not clear yet, but a point is quite easy to realize: tropical forests accumulate and contain more carbon than any other vegetation cover and, if their disruption goes on at current rates, these ecosystems could revert to be a “carbon bomb”, releasing huge amount of CO2 to the atmosphere.

  20. Adsorption of uranium from crude phosphoric acid using activated carbon

    The adsorption of uranium from crude phosphoric acid has been investigated using conventional activated carbons. It was found that treatment with nitric acid oxidized the surface of activated carbon and significantly increased the adsorption capacity for uranium in acidic solutions. The parameters that affect the uranium(VI) adsorption, such as contact time, solution pH, initial uranium(VI) concentration, and temperature, have been investigated. Equilibrium data were fitted to a simplified Langmuir and Freundlich isotherms for the oxidized samples which indicate that the uranium adsorption onto the activated carbon fitted well with Langmuir isotherm than Freundlich isotherm. Equilibrium studies evaluate the theoretical capacity of activated carbon to be 45.24 g kg-1. (author)

  1. Adsorptive preconcentration of rareearth oxine complexes onto activated carbon

    This paper describes a method for the determination of traces of rare earth using energy dispersive x-ray fluorescence spectrometry (EDXRF) after preconcentration of their oxine complexes onto activated carbon. Various parameters that influence adsorptive preconcentration of rare earth onto activated carbon viz. pH, amounts of activated carbon and oxine, time of stirring and aqueous phase volume were systematically studied. A numerical method based on simple least square procedure using fifth order polynomial with 25 consecutive values was developed for smoothing and differentiation of EDXRF data which was previously digitized and averaged. First order derivative EDXRF in conjunction with adsorptive preconcentration on activated carbon enables one to determine as low as 10 ppb of each individual rare earth elements

  2. Functionalized Activated Carbon Derived from Biomass for Photocatalysis Applications Perspective

    Samira Bagheri

    2015-01-01

    Full Text Available This review highlighted the developments of safe, effective, economic, and environmental friendly catalytic technologies to transform lignocellulosic biomass into the activated carbon (AC. In the photocatalysis applications, this AC can further be used as a support material. The limits of AC productions raised by energy assumption and product selectivity have been uplifted to develop sustainable carbon of the synthesis process, where catalytic conversion is accounted. The catalytic treatment corresponding to mild condition provided a bulk, mesoporous, and nanostructure AC materials. These characteristics of AC materials are necessary for the low energy and efficient photocatalytic system. Due to the excellent oxidizing characteristics, cheapness, and long-term stability, semiconductor materials have been used immensely in photocatalytic reactors. However, in practical, such conductors lead to problems with the separation steps and loss of photocatalytic activity. Therefore, proper attention has been given to develop supported semiconductor catalysts and certain matrixes of carbon materials such as carbon nanotubes, carbon microspheres, carbon nanofibers, carbon black, and activated carbons have been recently considered and reported. AC has been reported as a potential support in photocatalytic systems because it improves the transfer rate of the interface charge and lowers the recombination rate of holes and electrons.

  3. The investment funds in carbon actives: state of the art

    Since the beginning in 1999 of the first funds by the World Bank, the purchase mechanisms of carbon actives, developed and reached today more than 1,5 milliards of euros. The landscape is relatively concentrated, in spite of the numerous initiatives. The author presents the situation since 1999, the importance of the european governmental investors, the purchase mechanisms management and an inventory of the carbon actives purchases. (A.L.B.)

  4. Microstructure and surface properties of lignocellulosic-based activated carbons

    Gonzalez-Garcia, P., E-mail: pegonzal@quim.ucm.es [Departamento de Quimica Inorganica, Facultad de Ciencias Quimicas, Universidad Complutense, E-28040, Madrid (Spain); Centeno, T.A. [Instituto Nacional del Carbon-CSIC, Apartado 73, E-33080 Oviedo (Spain); Urones-Garrote, E. [Centro Nacional de Microscopia Electronica, Universidad Complutense, E-28040, Madrid (Spain); Avila-Brande, D.; Otero-Diaz, L.C. [Departamento de Quimica Inorganica, Facultad de Ciencias Quimicas, Universidad Complutense, E-28040, Madrid (Spain)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Activated carbons were produced by KOH activation at 700 Degree-Sign C. Black-Right-Pointing-Pointer The observed nanostructure consists of highly disordered graphene-like layers with sp{sup 2} bond content Almost-Equal-To 95%. Black-Right-Pointing-Pointer Textural parameters show high surface area ( Almost-Equal-To 1000 m{sup 2}/g) and pore width of 1.3-1.8 nm. Black-Right-Pointing-Pointer Specific capacitance reaches values as high as 161 F/g. - Abstract: Low cost activated carbons have been produced via chemical activation, by using KOH at 700 Degree-Sign C, from the bamboo species Guadua Angustifolia and Bambusa Vulgaris Striata and the residues from shells of the fruits of Castanea Sativa and Juglans Regia as carbon precursors. The scanning electron microscopy micrographs show the conservation of the precursor shape in the case of the Guadua Angustifolia and Bambusa Vulgaris Striata activated carbons. Transmission electron microscopy analyses reveal that these materials consist of carbon platelet-like particles with variable length and thickness, formed by highly disordered graphene-like layers with sp{sup 2} content Almost-Equal-To 95% and average mass density of 1.65 g/cm{sup 3} (25% below standard graphite). Textural parameters indicate a high porosity development with surface areas ranging from 850 to 1100 m{sup 2}/g and average pore width centered in the supermicropores range (1.3-1.8 nm). The electrochemical performance of the activated carbons shows specific capacitance values at low current density (1 mA/cm{sup 2}) as high as 161 F/g in the Juglans Regia activated carbon, as a result of its textural parameters and the presence of pseudocapacitance derived from surface oxygenated acidic groups (mainly quinones and ethers) identified in this activated carbon.

  5. Microwave absorbing properties of activated carbon fibre polymer composites

    Tianchun Zou; Naiqin Zhao; Chunsheng Shi; Jiajun Li

    2011-02-01

    Microwave absorption of composites containing activated carbon fibres (ACFs) was investigated. The results show that the absorptivity greatly depends on increasing ACF content in the absorbing layer, first increasing and then decreasing. When the content is 0.76 wt.%, the bandwidth below −10dB is 12.2 GHz. Comparing the absorption characteristics of the ACF composite with one containing unactivated fibres, it is found that carbon fibre activation increases the absorption of the composite.

  6. Development and Environmental Applications of Activated Carbon Cloths

    Ana Lea Cukierman

    2013-01-01

    Activated carbon cloths have received growing attention because they offer comparative advantages over the traditional powdered or granular forms of this well-known adsorbent, providing further potential uses for technological innovations in several fields. The present article provides an overview of research studies and advances concerned with the development of activated carbon cloths and their use as adsorbent in environmental applications, mostly reported in the last years. The influence ...

  7. Preparation and characterization of activated carbon from sugarcane bagasse by physical activation with CO2 gas

    Bachrun, Sutrisno; AyuRizka, Noni; Annisa, SolichaHidayat; Arif, Hidayat

    2016-01-01

    A series of experiments have been conducted to study the effects of different carbonization temperatures (400, 600, and 800oC) on characteristics of porosity in activated carbon derived from carbonized sugarcane bagassechar at activation temperature of 800oC. The results showed that the activated carbon derived from high carbonized temperature of sugarcane bagassechars had higher BET surface area, total volume, micropore volume and yield as compared to the activated carbon derived from low carbonized temperature. The BET surface area, total volume and micropore volume of activated carbon prepared from sugarcane bagassechars obtained at 800oC of carbonized temperature and activation time of 120 min were 661.46m2/g, 0.2455cm3/g and 0.1989cm3/g, respectively. The high carbonization temperature (800oC) generated a highly microporous carbonwith a Type-I nitrogen adsorption isotherm, while the low carbonization temperature (400 and 600oC) generated a mesoporous one with an intermediate between types I and IInitrogen adsorption isotherm.

  8. Synthesis of carbon nanofibers on impregnated powdered activated carbon as cheap substrate

    Mamun, A. A.; Y.M. Ahmed; S.A. Muyibi; M.F.R. Al-Khatib; A.T. Jameel; M.A. AlSaadi

    2016-01-01

    The catalysis and characterization of carbon nanofibers (CNFs) composite are reported in this work. Carbon nanofibers were produced on oil palm shell powdered activated carbon (PAC), which was impregnated with nickel. Chemical Vapor Deposition (CVD) of C2H2 was used in the presence of hydrogen at ∼650 °C. The flow rates of carbon source and hydrogen were fixed. The CNFs formed directly on the surface of the impregnated PAC. Variable weight percentages (1%, 3%, 5%, 7% and 9%) of the catalyst s...

  9. Effects of CO 2 activation on porous structures of coconut shell-based activated carbons

    Guo, Shenghui; Peng, Jinhui; Li, Wei; Yang, Kunbin; Zhang, Libo; Zhang, Shimin; Xia, Hongying

    2009-07-01

    In this paper, textural characterization of an activated carbon derived from carbonized coconut shell char obtained at carbonization temperature of 600 °C for 2 h by CO 2 activation was investigated. The effects of activation temperature, activation time and flow rate of CO 2 on the BET surface area, total volume, micropore volume and yield of activated carbons prepared were evaluated systematically. The results showed that: (i) enhancing activation temperature was favorable to the formation of pores, widening of pores and an increase in mesopores; (ii) increasing activation time was favorable to the formation of micropores and mesopores, and longer activation time would result in collapsing of pores; (iii) increasing flow rate of CO 2 was favorable to the reactions of all active sites and formation of pores, further increasing flow rate of CO 2 would lead carbon to burn out and was unfavorable to the formation of pores. The degree of surface roughness of activated carbon prepared was measured by the fractal dimension which was calculated by FHH (Frenkel-Halsey-Hill) theory. The fractal dimensions of activated carbons prepared were greater than 2.6, indicating the activated carbon samples prepared had very irregular structures, and agreed well with those of average micropore size.

  10. Removal of dye by immobilised photo catalyst loaded activated carbon

    The ability of activated carbon to adsorb and titanium dioxide to photo degrade organic impurities from water bodies is well accepted. Combination of the two is expected to enhance the removal efficiency due to the synergistic effect. This has enabled activated carbon to adsorb more and at the same time the lifespan of activated carbon is prolonged as the workload of removing organic pollutants is shared between activated carbon and titanium dioxide. Immobilisation is selected to avoid unnecessary filtering of adsorbent and photo catalyst. In this study, mixture of activated carbon and titanium dioxide was immobilised on glass slides. Photodegradation and adsorption studies of Methylene Blue solution were conducted in the absence and presence of UV light. The removal efficiency of immobilised TiO2/ AC was found to be two times better than the removal by immobilised AC or immobilised TiO2 alone. In 4 hours and with the concentration of 10 ppm, TiO2 loaded activated carbon prepared from 1.5 g/ 15.0 mL suspension produced 99.50 % dye removal. (author)

  11. Nanoporous activated carbon cloth for capacitive deionization of aqueous solution

    Oh, Han-Jun [Department of Materials Science, Hanseo University, Seosan, 352-820 (Korea, Republic of); Lee, Jong-Ho [Department of Chemistry, Hanseo University, Seosan, 352-820 (Korea, Republic of); Ahn, Hong-Joo [Korea Atomic Energy Research Institute, Daejeon, 305-600 (Korea, Republic of); Jeong, Yongsoo [Korea Institute of Machinery and Materials, Changwon, 641-010 (Korea, Republic of); Kim, Young-Jig [Department of Metallurgical Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Chi, Choong-Soo [School of Advanced Materials Engineering, Kookmin University, Seoul, 136-702 (Korea, Republic of)]. E-mail: cschi@kookmin.ac.kr

    2006-09-25

    Activated nanostructured-carbon cloths with a high ratio of surface area to volume are used as electrode for capacitive deionization. The electrochemical properties on capacitive deionization for NaCl solution have been investigated to improve efficiency of capacitive deionization properties from aqueous solution, employing chemical surface-modification by etching in alkaline and acidic solution. The removal efficiency of inorganic salts of activated carbon cloths by chemical modification significantly increased. Specially the carbon cloth surface modified in HNO{sub 3} showed an effect of improvement in the CDI efficiency due to not only ion adsorption by an electric double layer, but also electron transfer by Faradaic reaction.

  12. Water vapor adsorption on activated carbon preadsorbed with naphtalene.

    Zimny, T; Finqueneisel, G; Cossarutto, L; Weber, J V

    2005-05-01

    The adsorption of water vapor on a microporous activated carbon derived from the carbonization of coconut shell has been studied. Preadsorption of naphthalene was used as a tool to determine the location and the influence of the primary adsorbing centers within the porous structure of active carbon. The adsorption was studied in the pressure range p/p0=0-0.95 in a static water vapor system, allowing the investigation of both kinetic and equilibrium experimental data. Modeling of the isotherms using the modified equation of Do and Do was applied to determine the effect of preadsorption on the mechanism of adsorption. PMID:15797395

  13. Crystal structure of Brinzolamide: a carbonic anhydrase inhibitor.

    Zheng, Huirong; Lou, Benyong

    2016-05-01

    In crystal structure of the title compound, C12H21N3O5S3 [systematic name: (R)-4-ethyl-amino-2-(3-meth-oxy-prop-yl)-3,4-di-hydro-2H-thieno[3,2-e][1,2]thia-zine-6-sulfonamide 1,1-dioxide], there exist three kinds of hydrogen-bonding inter-actions. The sulfonamide group is involved in hydrogen bonding with the secondary amine and the meth-oxy O atom, resulting in the formation of layers parallel to the bc plane. The layers are linked by an N-H⋯O hydrogen bond involving a sulfonamide O atom as acceptor and the secondary amine H atom as donor, which gives rise to the formation of a unique bilayer structure. The absolute structure of the mol-ecule in the crystal was determined by resonant scattering [Flack parameter = 0.01 (4)]. PMID:27308020

  14. Crystal structure of Brinzolamide: a carbonic anhydrase inhibitor

    Huirong Zheng

    2016-05-01

    Full Text Available In crystal structure of the title compound, C12H21N3O5S3 [systematic name: (R-4-ethylamino-2-(3-methoxypropyl-3,4-dihydro-2H-thieno[3,2-e][1,2]thiazine-6-sulfonamide 1,1-dioxide], there exist three kinds of hydrogen-bonding interactions. The sulfonamide group is involved in hydrogen bonding with the secondary amine and the methoxy O atom, resulting in the formation of layers parallel to the bc plane. The layers are linked by an N—H...O hydrogen bond involving a sulfonamide O atom as acceptor and the secondary amine H atom as donor, which gives rise to the formation of a unique bilayer structure. The absolute structure of the molecule in the crystal was determined by resonant scattering [Flack parameter = 0.01 (4].

  15. Crystal structure of Brinzolamide: a carbonic anhydrase inhibitor

    Zheng, Huirong; Lou, Benyong

    2016-01-01

    In crystal structure of the title compound, C12H21N3O5S3 [systematic name: (R)-4-ethyl­amino-2-(3-meth­oxy­prop­yl)-3,4-di­hydro-2H-thieno[3,2-e][1,2]thia­zine-6-sulfonamide 1,1-dioxide], there exist three kinds of hydrogen-bonding inter­actions. The sulfonamide group is involved in hydrogen bonding with the secondary amine and the meth­oxy O atom, resulting in the formation of layers parallel to the bc plane. The layers are linked by an N—H⋯O hydrogen bond involving a sulfonamide O atom as a...

  16. Calculation of Binary Adsorption Equilibria: Hydrocarbons and Carbon Dioxide on Activated Carbon

    Marcussen, Lis; Krøll, A.

    1999-01-01

    Binary adsorption equilibria are calculated by means of a mathematical model for multicomponent mixtures combined with the SPD (Spreading Pressure Dependent) model for calculation of activity coefficients in the adsorbed phase. The model has been applied successfully for the adsorption of binary ...... mixtures of hydrocarbons and carbon dioxide on activated carbons. The model parameters have been determined, and the model has proven to be suited for prediction of adsorption equilibria in the investigated systems....

  17. Adsorption of Acenaphthene unto Activated Carbon Produced from Agricultural Wastes

    F.E. Adelowo

    2012-01-01

    Full Text Available The suitability and the performance of activated carbon produced from flamboyant pod back, milk bush kernel shell and rice husk for the effective removal of acenaphthene from simulated wastewater under the influence of carbonization temperature and initial concentration were investigated. The adsorption capacities of all the activated carbons obtained from the selected raw materials are influenced by increasing carbonization temperature. Activated carbons obtained from rice husk at carbonisation temperature of 600°C had the maximum adsorption capacity (5.554 mg g-1 while carbons produced from milk bush at carbonisation temperature of 300°C had the minimum adsorption capacity (1.386 mg g-1, for the adsorption of acenaphthene from the simulated wastewater. The removal efficiencies of the investigated adsorbents generally rank high and the highest value (80.56% was obtained for the adsorption of acenaphthene by rice husk carbonized at 600°C. Furthermore, the removal efficiencies obtained in the study decreased as the initial concentrations of the adsorbate increased. The four selected isotherm models; Freundlich, Langmuir, Temkin and Dubinin-Radushkevich described well the equilibrium adsorption of acenaphthene unto activated carbon derived from Flamboyant pod bark, milk bush kernel shell and rice husk. Sequence of suitability of the selected isotherms in the study was Temkin ≈ Freundlich >Dubinin-Radushkevich>Langmuir for adsorption of acenaphthene. It therefore shows that Temkin isotherm is the most suitable model for fitting experimental data obtained from adsorption of acenaphthene from simulated wastewater unto activated carbon produced from Flamboyant pod bark, milk bush kernel shell and rice husk.

  18. Evaluation of Powdered Activated Carbon Efficiency in Removal of Dissolved Organic Carbon inWater Treatment

    G.R Bonyadi nejad; R Hadian; M Saadani; B Jaberian; M.M Amin; A Khodabakhshi

    2010-01-01

    "n "nBackgrounds and Objectives: Powdered Activated$ carbon is known as a suitable absorbent for organic materials. The aim of this research is evaluation of Powdered Activated-Carbon (PAC) efficiency in removal of Dissolved Organic Carbon (DOC) in water treatment in Isfahan."nMaterials and Methods : The increase of PAC for DOC reduction has done in three paths in the Isfahan water treatment plant (WTP). These paths including: 1) Intake up to entrance of WTP 2) Intake to exit ofWTP 3) Between...

  19. Evaluation of Powdered Activated Carbon Efficiency in Removal of Dissolved Organic Carbon inWater Treatment

    G.R Bonyadi nejad

    2010-07-01

    Full Text Available "n "nBackgrounds and Objectives: Powdered Activated$ carbon is known as a suitable absorbent for organic materials. The aim of this research is evaluation of Powdered Activated-Carbon (PAC efficiency in removal of Dissolved Organic Carbon (DOC in water treatment in Isfahan."nMaterials and Methods : The increase of PAC for DOC reduction has done in three paths in the Isfahan water treatment plant (WTP. These paths including: 1 Intake up to entrance of WTP 2 Intake to exit ofWTP 3 Between entrance and exit of waterworks. The paths were simulated by the Jar test system. Then DOC and UV254 absorption were analyzed and SUVA parameter for samples and activated-carbon adsorption isotherm was calculated."nResults: The injected PAC doses of 20,40,60,80 and 100 mg/l caused decreasing in DOC and UV254 absorption in every sample in all paths. The average of this decrease, from intake to WTP.s exit (second path was the greatest 69.8± 3.9%and the commonWTP process had capability of removing 35% of DOC. The first path also showed that PAC can reduce 33± 2% DOC of raw water by itself. Activated-carbon absorption results were adhered from Freundlich adsorption isotherm."nConclusion: In the third path therewas lessDOCremoval efficiency than exceptedwhen Activated- Carbon injected in rapid mixed basin with coagulant. Powdered activated carbon porosity reduction due to effect of coagulant can be the reason for this issue.Also according to different paths, the point of intake is more suitable for powdered activated carbon addition.

  20. Adsorption of dissolved natural organic matter by modified activated carbons.

    Cheng, Wei; Dastgheib, Seyed A; Karanfil, Tanju

    2005-06-01

    Adsorption of dissolved natural organic matter (DOM) by virgin and modified granular activated carbons (GACs) was studied. DOM samples were obtained from two water treatment plants before (i.e., raw water) and after coagulation/flocculation/sedimentation processes (i.e., treated water). A granular activated carbon (GAC) was modified by high temperature helium or ammonia treatment, or iron impregnation followed by high temperature ammonia treatment. Two activated carbon fibers (ACFs) were also used, with no modification, to examine the effect of carbon porosity on DOM adsorption. Size exclusion chromatography (SEC) and specific ultraviolet absorbance (SUVA(254)) were employed to characterize the DOMs before and after adsorption. Iron-impregnated (HDFe) and ammonia-treated (HDN) activated carbons showed significantly higher DOM uptakes than the virgin GAC. The enhanced DOM uptake by HDFe was due to the presence of iron species on the carbon surface. The higher uptake of HDN was attributed to the enlarged carbon pores and basic surface created during ammonia treatment. The SEC and SUVA(254) results showed no specific selectivity in the removal of different DOM components as a result of carbon modification. The removal of DOM from both raw and treated waters was negligible by ACF10, having 96% of its surface area in pores smaller than 1 nm. Small molecular weight (MW) DOM components were preferentially removed by ACF20H, having 33% of its surface area in 1--3 nm pores. DOM components with MWs larger than 1600, 2000, and 2700 Da of Charleston raw, Charleston-treated, and Spartanburg-treated waters, respectively, were excluded from the pores of ACF20H. In contrast to carbon fibers, DOM components from entire MW range were removed from waters by virgin and modified GACs. PMID:15927230

  1. Composite electrodes of activated carbon derived from cassava peel and carbon nanotubes for supercapacitor applications

    Taer, E.; Iwantono, Yulita, M.; Taslim, R.; Subagio, A.; Salomo, Deraman, M.

    2013-09-01

    In this paper, a composite electrode was prepared from a mixture of activated carbon derived from precarbonization of cassava peel (CP) and carbon nanotubes (CNTs). The activated carbon was produced by pyrolysis process using ZnCl2 as an activation agent. A N2 adsorption-desorption analysis for the sample indicated that the BET surface area of the activated carbon was 1336 m2 g-1. Difference percentage of CNTs of 0, 5, 10, 15 and 20% with 5% of PVDF binder were added into CP based activated carbon in order to fabricate the composite electrodes. The morphology and structure of the composite electrodes were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The SEM image observed that the distribution of CNTs was homogeneous between carbon particles and the XRD pattern shown the amorphous structure of the sample. The electrodes were fabricated for supercapacitor cells with 316L stainless steel as current collector and 1 M sulfuric acid as electrolyte. An electrochemical characterization was performed by using an electrochemical impedance spectroscopy (EIS) method using a Solatron 1286 instrument and the addition of CNTs revealed to improve the resistant and capacitive properties of supercapacitor cell.

  2. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7–8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π–π electron donor–acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion

  3. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    Brooks, A. J.; Lim, Hyung-nam; Kilduff, James E.

    2012-07-01

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  4. Separation of Th from aqueous solutions using activated carbon

    Since the last century, thorium has been extensively used in a variety of applications. These applications produce various gaseous, liquid and solid wastes containing isotopes of thorium. Liquid wastes are freed into the surface or the underground waters of mines. Solid and liquid wastes are also produced during nuclear fuel production. Direct toxicity of thorium is low due to its stability at ambient temperatures; however thorium fine powder is self-ignitable to thorium oxide. When thorium nitrate enters living organisms it is mainly localized in liver, spleen and marrow and it precipitates in a hydroxide form. Investigations concerning the removal or minimization of the thorium concentration in the waste waters are of considerable importance environmental point of view. Adsorption is an important technique in separation and purification processes. Among many types of adsorbent materials, activated carbons are the most widely used, because of their large adsorptive capacity and low cost. Activated carbons are unique adsorbents because of their extended surface area, microporous structure, high adsorption capacity and high degree of surface reactivity. Separation and purification processes based on adsorption technique are also important in nuclear industry where activated carbon is often used for the separation of metal ions from solutions, due to its selective adsorption, high radiation stability and high purity. The activated carbons used in this study were prepared by the chemical activation of acrylic fiber. The chemical composition of acrylic fiber is a copolymer of acrylonitrile-vinyl acetate is called also poliacrylonitryl fiber. The effects of carbonization conditions resulting activated carbon were examined. Precursor/activating agent (KOH and ZnCl2) ratio and carbonization temperature were investigated for the preparation of adsorbent. Adsorption experiments were carried out by a batch technique. The adsorption of thorium was studied as a function of

  5. Adsorption Properties of Lignin-derived Activated Carbon Fibers (LACF)

    Contescu, Cristian I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gallego, Nidia C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thibaud-Erkey, Catherine [United Technologies Research Center (UTRC), East Hartford, CT (United States); Karra, Reddy [United Technologies Research Center (UTRC), East Hartford, CT (United States)

    2016-04-01

    The object of this CRADA project between Oak Ridge National Laboratory (ORNL) and United Technologies Research Center (UTRC) is the characterization of lignin-derived activated carbon fibers (LACF) and determination of their adsorption properties for volatile organic compounds (VOC). Carbon fibers from lignin raw materials were manufactured at Oak Ridge National Laboratory (ORNL) using the technology previously developed at ORNL. These fibers were physically activated at ORNL using various activation conditions, and their surface area and pore-size distribution were characterized by gas adsorption. Based on these properties, ORNL did down-select five differently activated LACF materials that were delivered to UTRC for measurement of VOC adsorption properties. UTRC used standard techniques based on breakthrough curves to measure and determine the adsorption properties of indoor air pollutants (IAP) - namely formaldehyde and carbon dioxide - and to verify the extent of saturated fiber regenerability by thermal treatments. The results are summarized as follows: (1) ORNL demonstrated that physical activation of lignin-derived carbon fibers can be tailored to obtain LACF with surface areas and pore size distributions matching the properties of activated carbon fibers obtained from more expensive, fossil-fuel precursors; (2) UTRC investigated the LACF potential for use in air cleaning applications currently pursued by UTRC, such as building ventilation, and demonstrated their regenerability for CO2 and formaldehyde, (3) Both partners agree that LACF have potential for possible use in air cleaning applications.

  6. Porous texture evolution in Nomex-derived activated carbon fibers.

    Villar-Rodil, S; Denoyel, R; Rouquerol, J; Martínez-Alonso, A; Tascón, J M D

    2002-08-01

    In the present work, the textural evolution of a series of activated carbon fibers with increasing burn-off degree, prepared by the pyrolysis and steam activation of Nomex aramid fibers, is followed by measurements of physical adsorption of N(2) (77 K) and CO(2) (273 K) and immersion calorimetry into different liquids (dichloromethane, benzene, cyclohexane). The immersion calorimetry results are discussed in depth, paying special attention to the choice of the reference material. The activated carbon fibers studied possess an essentially homogeneous microporous texture, which suggests that these materials may be applied in gas separation, either directly or with additional CVD treatment. PMID:16290775

  7. Activated carbon and tungsten oxide supported on activated carbon catalysts for toluene catalytic combustion.

    Alvarez-Merino, M A; Ribeiro, M F; Silva, J M; Carrasco-Marín, F; Maldonado-Hódar, F J

    2004-09-01

    We have used activated carbon (AC) prepared from almond shells as a support for tungsten oxide to develop a series of WOx/AC catalysts for the catalytic combustion of toluene. We conducted the reaction between 300 and 350 degrees C, using a flow of 500 ppm of toluene in air and space velocity (GHSV) in the range 4000-7000 h(-1). Results show that AC used as a support is an appropriate material for removing toluene from dilute streams. By decreasing the GHSV and increasing the reaction temperature AC becomes a specific catalyst for the total toluene oxidation (SCO2 = 100%), but in less favorable conditions CO appears as reaction product and toluene-derivative compounds are retained inside the pores. WOx/AC catalysts are more selective to CO2 than AC due to the strong acidity of this oxide; this behavior improves with increased metal loading and reaction temperature and contact time. The catalytic performance depends on the nonstoichiometric tungsten oxide obtained during the pretreatment. In comparison with other supports the WOx/AC catalysts present, at low reaction temperatures, higher activity and selectivity than WO, supported on SiO2, TiO2, Al2O3, or Y zeolite. This is due to the hydrophobic character of the AC surface which prevents the adsorption of water produced from toluene combustion thus avoiding the deactivation of the active centers. However, the use of WOx/AC system is always restricted by its gasification temperature (around 400 degrees C), which limits the ability to increase the conversion values by increasing reaction temperatures. PMID:15461177

  8. Production of activated carbons from coffee endocarp by CO2 and steam activation

    In this work the use of coffee endocarp as precursor for the production of activated carbons by steam and CO2 was studied. Activation by both methods produces activated carbons with small external areas and microporous structures having very similar mean pore widths. The activation produces mainly primary micropores and only a small volume of larger micropores. The CO2 activation leads to samples with higher BET surface areas and pore volumes when compared with samples produced by steam activation and with similar burn-off value. All the activated carbons produced have basic characteristics with point of zero charge between 10 and 12. By FTIR it was possible to identify the formation on the activated carbon's surface of several functional groups, namely ether, quinones, lactones, ketones, hydroxyls (free and phenol); pyrones and Si-H bonds. (author)

  9. Production of activated carbons from coffee endocarp by CO{sub 2} and steam activation

    Nabais, Joao M. Valente; Nunes, Pedro; Carrott, Peter J.M.; Ribeiro Carrott, M. Manuela L. [Centro de Quimica de Evora and Departamento de Quimica, Universidade de Evora, Rua Romao Ramalho no. 59, 7000-671 Evora (Portugal); Garcia, A. Macias; Diaz-Diez, M.A. [Universidad de Extremadura, Avda. de Elvas, s/n 06071 Badajoz (Spain)

    2008-03-15

    In this work the use of coffee endocarp as precursor for the production of activated carbons by steam and CO{sub 2} was studied. Activation by both methods produces activated carbons with small external areas and microporous structures having very similar mean pore widths. The activation produces mainly primary micropores and only a small volume of larger micropores. The CO{sub 2} activation leads to samples with higher BET surface areas and pore volumes when compared with samples produced by steam activation and with similar burn-off value. All the activated carbons produced have basic characteristics with point of zero charge between 10 and 12. By FTIR it was possible to identify the formation on the activated carbon's surface of several functional groups, namely ether, quinones, lactones, ketones, hydroxyls (free and phenol); pyrones and Si-H bonds. (author)

  10. Biofuel intercropping effects on soil carbon and microbial activity.

    Strickland, Michael S; Leggett, Zakiya H; Sucre, Eric B; Bradford, Mark A

    2015-01-01

    Biofuels will help meet rising demands for energy and, ideally, limit climate change associated with carbon losses from the biosphere to atmosphere. Biofuel management must therefore maximize energy production and maintain ecosystem carbon stocks. Increasingly, there is interest in intercropping biofuels with other crops, partly because biofuel production on arable land might reduce availability and increase the price of food. One intercropping approach involves growing biofuel grasses in forest plantations. Grasses differ from trees in both their organic inputs to soils and microbial associations. These differences are associated with losses of soil carbon when grasses become abundant in forests. We investigated how intercropping switchgrass (Panicum virgalum), a major candidate for cellulosic biomass production, in loblolly pine (Pinus taeda) plantations affects soil carbon, nitrogen, and microbial dynamics. Our design involved four treatments: two pine management regimes where harvest residues (i.e., biomass) were left in place or removed, and two switchgrass regimes where the grass was grown with pine under the same two biomass scenarios (left or removed). Soil variables were measured in four 1-ha replicate plots in the first and second year following switchgrass planting. Under switchgrass intercropping, pools of mineralizable and particulate organic matter carbon were 42% and 33% lower, respectively. These declines translated into a 21% decrease in total soil carbon in the upper 15 cm of the soil profile, during early stand development. The switchgrass effect, however, was isolated to the interbed region where switchgrass is planted. In these regions, switchgrass-induced reductions in soil carbon pools with 29%, 43%, and 24% declines in mineralizable, particulate, and total soil carbon, respectively. Our results support the idea that grass inputs to forests can prime the activity of soil organic carbon degrading microbes, leading to net reductions in stocks

  11. ADSORPTION CHARACTERISTICS OF L-HISTIDINE ON ACTIVE CARBON

    2005-01-01

    Adsorption properties of L-histidine on active carbon were studied in the paper, which are affected by the main parameters, such as the quantity percent of active carbon, pH value of the solution, the time of adsorption equilibrium and adsorption temperature. The results indicate that adsorption equilibrium time of L-his on active carbon is about 80 minutes. With the increasing of the quantity percent of active carbon, the adsorbance of L-his decreases sharply, and increases lighter after that. When the quantity percent of active carbon is 10%, the adsorbance reaches the minimum.pH value of solution and extraction temperature have great affection on the adsorption. When the pH value is higher or lower than the pI of L-his, the adsorbance is small, even zero. It is proven that the experimental equilibrium data which are obtained under the conditions of 80 ℃and pH=1.0, are fitted with the Freundlich equation: q=2.5914c0.8097. The results can provide certain references in L-his adsorption process of industrial operation.

  12. Bisphenol A removal from water by activated carbon. Effects of carbon characteristics and solution chemistry.

    Bautista-Toledo, I; Ferro-García, M A; Rivera-Utrilla, J; Moreno-Castilla, C; Vegas Fernández, F J

    2005-08-15

    The present study aimed to analyze the behavior of different activated carbons in the adsorption and removal of bisphenol A (2-2-bis-4-hydroxypheniyl propane) from aqueous solutions in order to identify the parameters that determine this process. Two commercial activated carbons and one prepared in our laboratory from almond shells were used; they were texturally and chemically characterized, obtaining the surface area, pore size distribution, mineral matter content, elemental analysis, oxygen surface groups, and pH of the point of zero charge (pH(PZC)), among other parameters. Adsorption isotherms of bisphenol A and adsorption capacities were obtained. The capacity of the carbons to remove bisphenol A was related to their characteristics. Thus, the adsorption of bisphenol A on activated carbon fundamentally depends on the chemical nature of the carbon surface and the pH of the solution. The most favorable experimental conditions for this process are those in which the net charge density of the carbon is zero and the bisphenol A is in molecular form. Under these conditions, the adsorbent-adsorbate interactions that govern the adsorption mechanism are enhanced. Influences of the mineral matter present in the carbon samples and the solution chemistry (pH and ionic strength) were also analyzed. The presence of mineral matter in carbons reduces their adsorption capacity because of the hydrophilic nature of the matter. The presence of electrolytes in the solution favor the adsorption process because of the screening effect produced between the positively charged carbon surface and the bisphenol A molecules, with a resulting increase in adsorbent-adsorbate interactions. PMID:16173588

  13. Breakthrough CO₂ adsorption in bio-based activated carbons.

    Shahkarami, Sepideh; Azargohar, Ramin; Dalai, Ajay K; Soltan, Jafar

    2015-08-01

    In this work, the effects of different methods of activation on CO2 adsorption performance of activated carbon were studied. Activated carbons were prepared from biochar, obtained from fast pyrolysis of white wood, using three different activation methods of steam activation, CO2 activation and Potassium hydroxide (KOH) activation. CO2 adsorption behavior of the produced activated carbons was studied in a fixed-bed reactor set-up at atmospheric pressure, temperature range of 25-65°C and inlet CO2 concentration range of 10-30 mol% in He to determine the effects of the surface area, porosity and surface chemistry on adsorption capacity of the samples. Characterization of the micropore and mesopore texture was carried out using N2 and CO2 adsorption at 77 and 273 K, respectively. Central composite design was used to evaluate the combined effects of temperature and concentration of CO2 on the adsorption behavior of the adsorbents. The KOH activated carbon with a total micropore volume of 0.62 cm(3)/g and surface area of 1400 m(2)/g had the highest CO2 adsorption capacity of 1.8 mol/kg due to its microporous structure and high surface area under the optimized experimental conditions of 30 mol% CO2 and 25°C. The performance of the adsorbents in multi-cyclic adsorption process was also assessed and the adsorption capacity of KOH and CO2 activated carbons remained remarkably stable after 50 cycles with low temperature (160°C) regeneration. PMID:26257348

  14. Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth

    An efficient adsorption process is developed for the decontamination of trivalent chromium from tannery effluents. A low cost activated carbon (ATFAC) was prepared from coconut shell fibers (an agricultural waste), characterized and utilized for Cr(III) removal from water/wastewater. A commercially available activated carbon fabric cloth (ACF) was also studied for comparative evaluation. All the equilibrium and kinetic studies were conducted at different temperatures, particle size, pHs, and adsorbent doses in batch mode. The Langmuir and Freundlich isotherm models were applied. The Langmuir model best fit the equilibrium isotherm data. The maximum adsorption capacities of ATFAC and ACF at 25 deg. C are 12.2 and 39.56 mg/g, respectively. Cr(III) adsorption increased with an increase in temperature (10 deg. C: ATFAC-10.97 mg/g, ACF-36.05 mg/g; 40 deg. C: ATFAC-16.10 mg/g, ACF-40.29 mg/g). The kinetic studies were conducted to delineate the effect of temperature, initial adsorbate concentration, particle size of the adsorbent, and solid to liquid ratio. The adsorption of Cr(III) follows the pseudo-second-order rate kinetics. From kinetic studies various rate and thermodynamic parameters such as effective diffusion coefficient, activation energy and entropy of activation were evaluated. The sorption capacity of activated carbon (ATFAC) and activated carbon fabric cloth is comparable to many other adsorbents/carbons/biosorbents utilized for the removal of trivalent chromium from water/wastewater

  15. Photosynthetic carbon metabolism in photoautotrophic cell suspension cultures grown at low and high CO2

    Photosynthetic carbon metabolism was characterized in four photoautotrophic cell suspension cultures. There was no apparent difference between two soybeans (Glycine max) and one cotton (Gossypium hirsutum) cell line which required 5% CO2 for growth, and a unique cotton cell line that grows at ambient CO2 (660 microliters per liter). Photosynthetic characteristics in all four lines were more like C3 mesophyll leaf cells than the cell suspension cultures previously studied. The pattern of 14C-labeling reflected the high ratio of ribulosebisphosphate carboxylase to phosphoenolpyruvate carboxylase activity and showed that CO2 fixation occurred primarily by the C3 pathway. Photorespiration occurred at 330 microliters per liter CO2, 21% O2 as indicated by the synthesis of high levels of 14C-labeled glycine and serine in a pulse-chase experiment and by oxygen inhibition of CO2 fixation. Short-term CO2 fixation in the presence and absence of carbonic anhydrase showed CO2, not HCO3-, to be the main source of inorganic carbon taken up by the low CO2-requiring cotton cells. The cells did not have a CO2-concentrating mechanism as indicated by silicone oil centrifugation experiments. Carbonic anhydrase was absent in the low CO2-requiring cotton cells, present in the high CO2-requiring soybean cell lines, and absent in other high CO2 cell lines examined. Thus, the presence of carbonic anhydrase is not an essential requirement for photoautotrophy in cell suspension cultures which grow at either high or low CO2 concentrations

  16. A General Methodology for Evaluation of Carbon Sequestration Activities and Carbon Credits

    Klasson, KT

    2002-12-23

    A general methodology was developed for evaluation of carbon sequestration technologies. In this document, we provide a method that is quantitative, but is structured to give qualitative comparisons despite changes in detailed method parameters, i.e., it does not matter what ''grade'' a sequestration technology gets but a ''better'' technology should receive a better grade. To meet these objectives, we developed and elaborate on the following concepts: (1) All resources used in a sequestration activity should be reviewed by estimating the amount of greenhouse gas emissions for which they historically are responsible. We have done this by introducing a quantifier we term Full-Cycle Carbon Emissions, which is tied to the resource. (2) The future fate of sequestered carbon should be included in technology evaluations. We have addressed this by introducing a variable called Time-adjusted Value of Carbon Sequestration to weigh potential future releases of carbon, escaping the sequestered form. (3) The Figure of Merit of a sequestration technology should address the entire life-cycle of an activity. The figures of merit we have developed relate the investment made (carbon release during the construction phase) to the life-time sequestration capacity of the activity. To account for carbon flows that occur during different times of an activity we incorporate the Time Value of Carbon Flows. The methodology we have developed can be expanded to include financial, social, and long-term environmental aspects of a sequestration technology implementation. It does not rely on global atmospheric modeling efforts but is consistent with these efforts and could be combined with them.

  17. 75 FR 70208 - Certain Activated Carbon From the People's Republic of China: Final Results and Partial...

    2010-11-17

    ... Administrative Review, 74 FR 31690 (July 2, 2009). \\3\\ See Certain Activated Carbon From the People's Republic of... Antidumping Duty Order: Certain Activated Carbon From the People's Republic of China, 72 FR 20988 (April 27... certain activated carbon. Certain activated carbon is a powdered, granular, or pelletized......

  18. CHARACTERIZATION OF ACACIA MANGIUM WOOD BASED ACTIVATED CARBONS PREPARED IN THE PRESENCE OF BASIC ACTIVATING AGENTS

    Mohammed Danish

    2011-06-01

    Full Text Available The aim of this study was to observe the effects of alkaline activating agents on the characteristics, composition, and surface morphology of the designed activated carbons. Activated carbons were prepared by pyrolysis of Acacia mangium wood in the presence of two basic activating agents (calcium oxide and potassium hydroxide. The extent of impregnation ratio of precursor to activating agents was fixed at 2:1(w/w. Prior to pyrolysis, 24 hours soaking was conducted at 348 K. Activation was carried out in a stainless steel capped graphite crucible at 773 K for 2 hours in the absence of purge gas. The burn-off percentage was found to be 70.27±0.93% for CaO activated carbon (COAC and 73.30±0.20% for KOH activated carbon (PHAC. The activating agents had a strong influence on the surface functional groups as well as elemental composition of these activated carbons. Characterization of the activated carbon obtained was performed with field emission scanning electron microscopy (FESEM, energy dispersive X-ray spectroscopy (EDX, Fourier transform infrared spectroscopy (FTIR, thermogravimetric analysis (TGA, and nitrogen adsorption as Brunauer, Emmett and Teller (BET and Dubinin-Radushkevich (DR isotherms.

  19. Adsorption of naphthenic acids on high surface area activated carbons.

    Iranmanesh, Sobhan; Harding, Thomas; Abedi, Jalal; Seyedeyn-Azad, Fakhry; Layzell, David B

    2014-01-01

    In oil sands mining extraction, water is an essential component; however, the processed water becomes contaminated through contact with the bitumen at high temperature, and a portion of it cannot be recycled and ends up in tailing ponds. The removal of naphthenic acids (NAs) from tailing pond water is crucial, as they are corrosive and toxic and provide a substrate for microbial activity that can give rise to methane, which is a potent greenhouse gas. In this study, the conversion of sawdust into an activated carbon (AC) that could be used to remove NAs from tailings water was studied. After producing biochar from sawdust by a slow-pyrolysis process, the biochar was physically activated using carbon dioxide (CO2) over a range of temperatures or prior to producing biochar, and the sawdust was chemically activated using phosphoric acid (H3PO4). The physically activated carbon had a lower surface area per gram than the chemically activated carbon. The physically produced ACs had a lower surface area per gram than chemically produced AC. In the adsorption tests with NAs, up to 35 mg of NAs was removed from the water per gram of AC. The chemically treated ACs showed better uptake, which can be attributed to its higher surface area and increased mesopore size when compared with the physically treated AC. Both the chemically produced and physically produced AC provided better uptake than the commercially AC. PMID:24766592

  20. Adsorption of phenol by activated carbon: Influence of activation methods and solution pH

    Cherry stone based activated carbon derived from a canning industry was evaluated for its ability to remove phenol from an aqueous solution in a batch process. A comparative adsorption on the uptake of phenol by using commercial activated carbon (Chemviron CPG-LF), and two non-functional commercial polymeric adsorbents (MN-200 and XAD-2) containing a styrene-divinylbenzene macroporous hyperreticulated network have been also examined. Equilibrium studies were conducted in 25 mg L-1 initial phenol concentrations, 6.5-9 solution pH and at temperature of 30 deg. C. The experimental data were analyzed by the Langmuir and Freundlich isotherm models. Besides, the cherry stone based activated carbons were carried out by using zinc chloride and KOH activation agents at different chemical ratios (activating agent/precursor), to develop carbons with well-developed porosity. The cherry stone activated carbon prepared using KOH as a chemical agent showed a high surface area. According to the results, activated carbons had excellent adsorptive characteristics in comparison with polymeric sorbents and commercial activated carbon for the phenol removal from the aqueous solutions.

  1. Adsorption of phenol by activated carbon: Influence of activation methods and solution pH

    Beker, Ulker, E-mail: ubeker@gmail.co [Yildiz Technical University, Chemical Engineering Department, Davutpasa Campus, 34210 Esenler, Istanbul (Turkey); Ganbold, Batchimeg [National University of Mongolia, Faculty of Organic Chemistry, Ikh Surguuliin Gudamj 1, P.O. Box 46a/523, 210646 Ulaanbaatar (Mongolia); Dertli, Halil [Istanbul Technical University, Chemical Engineering Department, Maslak, Istanbul (Turkey); Guelbayir, Dilek Duranoglu [Yildiz Technical University, Chemical Engineering Department, Davutpasa Campus, 34210 Esenler, Istanbul (Turkey)

    2010-02-15

    Cherry stone based activated carbon derived from a canning industry was evaluated for its ability to remove phenol from an aqueous solution in a batch process. A comparative adsorption on the uptake of phenol by using commercial activated carbon (Chemviron CPG-LF), and two non-functional commercial polymeric adsorbents (MN-200 and XAD-2) containing a styrene-divinylbenzene macroporous hyperreticulated network have been also examined. Equilibrium studies were conducted in 25 mg L{sup -1} initial phenol concentrations, 6.5-9 solution pH and at temperature of 30 deg. C. The experimental data were analyzed by the Langmuir and Freundlich isotherm models. Besides, the cherry stone based activated carbons were carried out by using zinc chloride and KOH activation agents at different chemical ratios (activating agent/precursor), to develop carbons with well-developed porosity. The cherry stone activated carbon prepared using KOH as a chemical agent showed a high surface area. According to the results, activated carbons had excellent adsorptive characteristics in comparison with polymeric sorbents and commercial activated carbon for the phenol removal from the aqueous solutions.

  2. Adsorption of Remazol Black B dye on Activated Carbon Felt

    Donnaperna Lucio; Duclaux Laurent; Gadiou Roger

    2008-01-01

    The adsorption of Remazol Black B (anionic dye) on a microporous activated carbon felt is investigated from its aqueous solution. The surface chemistry of activated carbon is studied using X-ray microanalysis, "Boehm" titrations and pH of PZC measurements which indicates that the surface oxygenated groups are mainly acidic in nature. The kinetics of Remazol Black B adsorption is observed to be pH dependent and governed by the diffusion of the dye molecules. The experimental data can be explai...

  3. Scale-up activation of carbon fibres for hydrogen storage

    Kunowsky, Mirko; Marco Lozar, Juan Pablo; Cazorla Amorós, Diego; Linares Solano, Ángel

    2009-01-01

    In a previous study, we investigated, at a laboratory scale, the chemical activation of two different carbon fibres (CF), their porosity characterization, and their optimization for hydrogen storage [1]. In the present work, this study is extended to: (i) a larger range of KOH activated carbon fibres, (ii) a larger range of hydrogen adsorption measurements at different temperatures and pressures (i.e. at room temperature, up to 20 MPa, and at 77 K, up to 4 MPa), and (iii) a scaling-up activat...

  4. ACTIVATED CARBONS FROM VEGETAL RAW MATERIALS TO SOLVE ENVIRONMENTAL PROBLEMS

    Viktor Mukhin

    2014-06-01

    Full Text Available Technologies for active carbons obtaining from vegetable byproducts such as straw, nut shells, fruit stones, sawdust, hydrolysis products of corn cobs and sunflower husks have been developed. The physico-chemical characteristics, structural parameters and sorption characteristics of obtained active carbons were determined. The ability of carbonaceous adsorbents for detoxification of soil against pesticides, purification of surface waters and for removal of organic pollutants from wastewaters has been evaluated. The obtained results reveal the effectiveness of their use in a number of environmental technologies.

  5. Pore structure of the activated coconut shell charcoal carbon

    Budi, E.; Nasbey, H.; Yuniarti, B. D. P.; Nurmayatri, Y.; Fahdiana, J.; Budi, A. S.

    2014-09-01

    The development of activated carbon from coconut shell charcoal has been investigated by using physical method to determine the influence of activation parameters in term of temperature, argon gas pressure and time period on the pore structure of the activated carbon. The coconut shell charcoal was produced by pyrolisis process at temperature of about 75 - 150 °C for 6 hours. The charcoal was activated at various temperature (532, 700 and 868 °C), argon gas pressure (6.59, 15 and 23.4 kgf/cm2) and time period of (10, 60 and 120 minutes). The results showed that the pores size were reduced and distributed uniformly as the activation parameters are increased.

  6. Tc-99 Adsorption on Selected Activated Carbons - Batch Testing Results

    Mattigod, Shas V.; Wellman, Dawn M.; Golovich, Elizabeth C.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    CH2M HILL Plateau Remediation Company (CHPRC) is currently developing a 200-West Area groundwater pump-and-treat system as the remedial action selected under the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision for Operable Unit (OU) 200-ZP-1. This report documents the results of treatability tests Pacific Northwest National Laboratory researchers conducted to quantify the ability of selected activated carbon products (or carbons) to adsorb technetium-99 (Tc-99) from 200-West Area groundwater. The Tc-99 adsorption performance of seven activated carbons (J177601 Calgon Fitrasorb 400, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, J177612 Norit GAC830, J177613 Norit GAC830, and J177617 Nucon LW1230) were evaluated using water from well 299-W19-36. Four of the best performing carbons (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830) were selected for batch isotherm testing. The batch isotherm tests on four of the selected carbons indicated that under lower nitrate concentration conditions (382 mg/L), Kd values ranged from 6,000 to 20,000 mL/g. In comparison. Under higher nitrate (750 mg/L) conditions, there was a measureable decrease in Tc-99 adsorption with Kd values ranging from 3,000 to 7,000 mL/g. The adsorption data fit both the Langmuir and the Freundlich equations. Supplemental tests were conducted using the two carbons that demonstrated the highest adsorption capacity to resolve the issue of the best fit isotherm. These tests indicated that Langmuir isotherms provided the best fit for Tc-99 adsorption under low nitrate concentration conditions. At the design basis concentration of Tc 0.865 µg/L(14,700 pCi/L), the predicted Kd values from using Langmuir isotherm constants were 5,980 mL/g and 6,870 mL/g for for the two carbons. These Kd values did not meet the target Kd value of 9,000 mL/g. Tests

  7. Liquid-phase adsorption of phenol onto activated carbons prepared with different activation levels

    Hsieh, C.T.; Teng, H.S.

    2000-07-01

    The paper investigates the influence of the pore size distribution of activated carbon on the adsorption of phenol from aqueous solutions. Activated carbons with different porous structures were prepared by gasifying a bituminous coal char to different extents of burn-off. The results of adsorption experiments show that the phenol capacity of these carbons does not proportionally increase with their BET surface area. This reflects the heterogeneity of the carbon surface for adsorption. The pore size distributions of these carbons were found to vary with the burn-off level. The paper demonstrates that the heterogeneity of carbon surface for the phenol adsorption can be attributed to the different energies required for adsorption in different-size micropores.

  8. Production Scale-Up or Activated Carbons for Ultracapacitors

    Dr. Steven D. Dietz

    2007-01-10

    Transportation use accounts for 67% of the petroleum consumption in the US. Electric and hybrid vehicles are promising technologies for decreasing our dependence on petroleum, and this is the objective of the FreedomCAR & Vehicle Technologies Program. Inexpensive and efficient energy storage devices are needed for electric and hybrid vehicle to be economically viable, and ultracapacitors are a leading energy storage technology being investigated by the FreedomCAR program. The most important parameter in determining the power and energy density of a carbon-based ultracapacitor is the amount of surface area accessible to the electrolyte, which is primarily determined by the pore size distribution. The major problems with current carbons are that their pore size distribution is not optimized for liquid electrolytes and the best carbons are very expensive. TDA Research, Inc. (TDA) has developed methods to prepare porous carbons with tunable pore size distributions from inexpensive carbohydrate based precursors. The use of low-cost feedstocks and processing steps greatly lowers the production costs. During this project with the assistance of Maxwell Technologies, we found that an impurity was limiting the performance of our carbon and the major impurity found was sulfur. A new carbon with low sulfur content was made and found that the performance of the carbon was greatly improved. We also scaled-up the process to pre-production levels and we are currently able to produce 0.25 tons/year of activated carbon. We could easily double this amount by purchasing a second rotary kiln. More importantly, we are working with MeadWestvaco on a Joint Development Agreement to scale-up the process to produce hundreds of tons of high quality, inexpensive carbon per year based on our processes.

  9. Characteristics and properties of active carbon; El carbon activo sus caracteristicas y propiedades

    Groso Cruzado, G.; Brosa Echevarria, J.

    1998-12-01

    Active carbon (AC) is a solid possessing two properties which make it extremely useful in treating water. The first consists in trapping all kinds of organic contaminants in its walls so avidly that it can leave water practically free of such compounds. The second consists in destroying the free waste chlorine which has failed to react once it has completed its disinfecting action. As a result, virtually all industries requiring potable water employ active carbon as one of their basic treatment methods. (Author) 7 refs.

  10. Preparation and characterization of activated carbon from rubber-seed shell by physical activation with steam

    The use of rubber-seed shell as a raw material for the production of activated carbon with physical activation was investigated. The produced activated carbons were characterized by Nitrogen adsorption isotherms, Scanning electron microscope, Thermo-gravimetric and Differential scanning calorimetric in order to understand the rubber-seed shell activated carbon. The results showed that rubber-seed shell is a good precursor for activated carbon. The optimal activation condition is: temperature 880 oC, steam flow 6 kg h-1, residence time 60 min. Characteristics of activated carbon with a high yield (30.5%) are: specific surface area (SBET) 948 m2 g-1, total volume 0.988 m3 kg-1, iodine number of adsorbent (qiodine) 1.326 g g-1, amount of methylene blue adsorption of adsorbent (qmb) 265 mg g-1, hardness 94.7%. It is demonstrated that rubber-seed shell is an attractive source of raw material for producing high capacity activated carbon by physical activation with steam.

  11. Carbon Beam Radio-Therapy and Research Activities at HIMAC

    Radio-therapy with carbon ion beam has been carried out since 1994 at HIMAC (Heavy Ion Medical Accelerator in Chiba) in NIRS (National Institute of Radiological Sciences). Now, many types of tumors can be treated with carbon beam with excellent local controls of the tumors. Stimulated with good clinical results, requirement of the dedicated compact facility for carbon beam radio-therapy is increased. To realize this requirement, design study of the facility and the R and D's of the key components in this design are promoted by NIRS. According successful results of these activities, the dedicated compact facility will be realized in Gunma University. In this facility, the established irradiation method is expected to use, which is passive irradiation method with wobbler magnets and ridge filter. In this presentation, above R and D's will be presented together with clinical results and basic research activities at HIMAC

  12. Highly active catalyst for vinyl acetate synthesis by modified activated carbon

    Chun Yan Hou; Liang Rong Feng; Fa Li Qiu

    2009-01-01

    A new zinc acetate catalyst which was prepared from modified activated carbon exhibited extreme activity towards the synthesis of vinyl acetate. The activated carbon was modified by nitric acid, vitriol and peroxyacetic acid (PAA). The effect on specific area, structure, pH and surface acidity groups of carriers by modification was discussed. Amount of carbonyl and carboxyl groups in activated carbon was increased by peroxyacetic acid treatment. The productivity of the new catalyst was 14.58% higher than that of catalyst prepared using untreated activated carbon. The relationship between amount of carbonyl and carboxyl groups (m) and catalyst productivity (P) was P = 1.83 + 2.26 x 10-3e3.17m. Reaction mechanism was proposed.

  13. Integrating carbon nanotube into activated carbon matrix for improving the performance of supercapacitor

    Highlights: ► Hydrothermal carbonization method to prepare “tube-in-activated carbon” composite. ► Due to high specific surface area, suitable pore size and low electrical resistance. ► It exhibited high capacitance value and excellent cyclibility for supercapacitor. - Abstract: A method of in situ integrating carbon nanotubes (CNTs) into activated carbon (AC) matrix was developed to improve the performance of AC as a supercapacitor electrode. Glucose solution containing pre-dispersed CNTs was hydrothermally carbonized to be a char-like intermediate product, and finally converted into a “tube-in-AC” structure by the chemical activation using KOH. The “tube-in-AC” composite had oxygen content of 12.98 wt%, specific surface area of 1626 m2/g and 90% of 1–2 nm micropores. It exhibited capacitance of 378 F/g in the aqueous KOH electrolyte and excellent cyclibility under high current, that is, the capacitance only decreased 4.6% after 2000 cycles at scanning rate of 100 mV/s. These performances of “tube-in-AC” electrode are better than those of commercial AC electrodes, post-mixed with CNTs or carbon black.

  14. Asphalt-derived high surface area activated porous carbons for carbon dioxide capture.

    Jalilov, Almaz S; Ruan, Gedeng; Hwang, Chih-Chau; Schipper, Desmond E; Tour, Josiah J; Li, Yilun; Fei, Huilong; Samuel, Errol L G; Tour, James M

    2015-01-21

    Research activity toward the development of new sorbents for carbon dioxide (CO2) capture have been increasing quickly. Despite the variety of existing materials with high surface areas and high CO2 uptake performances, the cost of the materials remains a dominant factor in slowing their industrial applications. Here we report preparation and CO2 uptake performance of microporous carbon materials synthesized from asphalt, a very inexpensive carbon source. Carbonization of asphalt with potassium hydroxide (KOH) at high temperatures (>600 °C) yields porous carbon materials (A-PC) with high surface areas of up to 2780 m(2) g(-1) and high CO2 uptake performance of 21 mmol g(-1) or 93 wt % at 30 bar and 25 °C. Furthermore, nitrogen doping and reduction with hydrogen yields active N-doped materials (A-NPC and A-rNPC) containing up to 9.3% nitrogen, making them nucleophilic porous carbons with further increase in the Brunauer-Emmett-Teller (BET) surface areas up to 2860 m(2) g(-1) for A-NPC and CO2 uptake to 26 mmol g(-1) or 114 wt % at 30 bar and 25 °C for A-rNPC. This is the highest reported CO2 uptake among the family of the activated porous carbonaceous materials. Thus, the porous carbon materials from asphalt have excellent properties for reversibly capturing CO2 at the well-head during the extraction of natural gas, a naturally occurring high pressure source of CO2. Through a pressure swing sorption process, when the asphalt-derived material is returned to 1 bar, the CO2 is released, thereby rendering a reversible capture medium that is highly efficient yet very inexpensive. PMID:25531980

  15. The comparison of two activation techniques to prepare activated carbon from corn cob

    We report on the preparation of biomass-based activated carbons by the steam physical activation and KOH chemical activation methods. In addition, we also investigate their adsorption performance. By adjusting the reaction parameters, different carbon materials are prepared from corn residues and characterized using instrumental analyses such as scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and Brunauer–Emmett–Teller (BET). It is found that the synthesized activated carbons exhibit high surface area (1600 m2 g−1) and large pore volume (2.01 cm3 g−1). Furthermore, the high methylene blue and iodine adsorption value and a considerable CO2 uptake (exceeding 1.5 mmol g−1) are attained with the activated carbons, showing their potential usage for the CO2 adsorbent. -- Highlights: ► We research the reaction parameters effect of two different activation methods. ► The effect of reaction parameters and activation methods on carbon were observed. ► The adsorption capabilities are comparable with the commercial activated carbon

  16. Activation and micropore structure of carbon-fiber composites

    Jagtoyen, M.; Derbyshire, F.; Kimber, G. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1997-12-01

    Rigid, high surface area activated carbon fiber composites have been produced with high permeabilities for environmental applications in gas and water purification. The project involves a collaboration between the Oak Ridge National Laboratory (ORNL) and the Center for Applied Energy Research (CAER), University of Kentucky. The main focus of recent work has been to find a satisfactory means to uniformly activate large samples of carbon fiber composites to produce controlled pore structures. Processes have been developed using activation in steam and CO{sub 2}, and a less conventional method involving oxygen chemisorption and subsequent heat treatment. Another objective has been to explore applications for the activated composites in environmental applications related to fossil energy production.

  17. Morphosynthesis of cubic silver cages on monolithic activated carbon.

    Wang, Fei; Zhao, Hong; Lai, Yijian; Liu, Siyu; Zhao, Binyuan; Ning, Yuesheng; Hu, Xiaobin

    2013-11-14

    Cubic silver cages were prepared on monolithic activated carbon (MAC) pre-absorbed with Cl(-), SO4(2-), or PO4(3-) anions. Silver insoluble salts served as templates for the morphosynthesis of silver cages. The silver ions were reduced by reductive functional groups on MAC micropores through a galvanic cell reaction mechanism. PMID:24080952

  18. Ecotoxicological effects of activated carbon addition to sediments.

    Jonker, M.T.O.; Suijkerbuijk, M.P.; Schmitt, H.; Sinnige, T.L.

    2009-01-01

    Activated carbon (AC) addition is a recently developed technique for the remediation of sediments and soils contaminated with hydrophobic organic chemicals. Laboratory and field experiments have demonstrated that the addition of 3-4% of AC can reduce aqueous concentrations and the bioaccumulation po

  19. Magnetically Responsive Activated Carbons for Bio - and Environmental Applications

    Šafařík, Ivo; Horská, Kateřina; Popisková, K.; Šafaříková, Miroslava

    2012-01-01

    Roč. 4, č. 3 (2012), s. 346-352. ISSN 2035-1755 R&D Projects: GA ČR(CZ) GAP503/11/2263; GA MŠk LH12190 Institutional support: RVO:67179843 Keywords : Activated Carbon * Magnetic Modification * Magnetic Separation Subject RIV: EH - Ecology, Behaviour

  20. Preparation and characterization of activated carbon from demineralized tyre char

    Manocha, S.; Prasad, Guddu R.; Joshi, Parth.; Zala, Ranjitsingh S.; Gokhale, Siddharth S.; Manocha, L. M.

    2013-06-01

    Activated carbon is the most adsorbing material for industrial waste water treatment. For wider applications, the main consideration is to manufacture activated carbon from low cost precursors, which are easily available and cost effective. One such source is scrap tyres. Recently much effort has been devoted to the thermal degradation of tyres into gaseous and liquid hydrocarbons and solid char residue, all of which have the potential to be processed into valuable products. As for solid residue, char can be used either as low-grade reinforcing filler or as activated carbon. The product recovered by a typical pyrolysis of tyres are usually, 33-38 wt% pyrolytic char, 38-55 wt% oil and 10-30 wt% solid fractions. In the present work activated carbon was prepared from pyrolyzed tyre char (PC). Demineralization involves the dissolution of metal into acids i.e. HCl, HNO3 and H2SO4 and in base i.e. NaOH. Different concentration of acid and base were used. Sodium hydroxide showed maximum amount of metal oxide removal. Further the concentration of sodium hydroxide was varied from 1N to 6N. As the concentration of acid are increased demineralization increases. 6N Sodium hydroxide is found to be more effective demineralising agent of tyre char.

  1. The determination of chromium in water samples by neutron activation analysis after preconcentration on activated carbon

    A method is presented for the determination of chromium in sea- and fresh water. Chromium is concentrated on activated carbon from a neutral solution after a previous reduction of chromate with sodium sulfite at pH 1.5. The adsorption conditions, acidity, concentrations, amount of carbon, stirring-time, sample-volume, salinity, the influence of storage on the ratio of tervalent to hexavalent chromium, were investigated. The final determination of the total chromium content is performed by instrumental neutron-activation analysis. By preconcentration on activated carbon, a differentiation between tervalent and hexavalent chromium is possible. A separate determination of both species is not yet feasible due to the high carbon blank and to the necessity of measuring the adsorption percentage on carbon. The lower limit of determination, which depends on the value of the carbon blank, is 0.05 μg Cr/l with a precision of 20%. The determination is hampered by the considerable blank from the carbon. The use of activated carbon prepared from recrystallized sugar will probably improve the lower limit of determination and possibly allow the determination of chromate. (T.G.)

  2. Utilization of HTGR on active carbon recycling energy system

    A new energy transformation concept based on carbon recycling, called as active carbon recycling energy system, ACRES, was proposed for a zero carbon dioxide emission process. The ACRES is driven availably by carbon dioxide free primary energy. High temperature gas cooled reactor (HTGR) is a candidate of the energy sources for ACRES. A smart ironmaking system with ACRES (iACRES) is one of application examples. The contribution of HTGR on iACRES was discussed thermodynamically in this study. A carbon material is re-used cyclically as energy carrier media in ACRES. Carbon monoxide (CO) had higher energy densities than hydrogen and was compatible with conventional process. Thus, CO was suitable recycling media for ACRES. Efficient regeneration of CO was a key technology for ACRES. A combined system of hydrogen production by water electrolysis and CO2 hydrogen reduction was candidate. CO2 direct electrolysis was also one of the candidates. HTGR was appropriate heat source for both water and CO2 electrolysises, and CO2 hydrogen reduction. Thermodynamic energy balances were calculated for both systems with HTGR for an ironmaking system. The direct system showed relatively advantage to the combined system in the stand point of enthalpy efficiency and simplicity of the process. One or two plants of HTGR are corresponding with ACRES system for one unit of conventional blast furnace. The proposed ACRES system with HTGR was expected to form the basis of a new energy industrial process that had low CO2 emission

  3. Carbon monoxide affects electrical and contractile activity of rat myocardium

    Porokhnya Maria V; Haertdinov Nail N; Abramochkin Denis V; Zefirov Andrew L; Sitdikova Gusel F

    2011-01-01

    Abstract Background Carbon monoxide (CO) is a toxic gas, which also acts in the organism as a neurotransmitter. It is generated as a by-product of heme breakdown catalyzed by heme oxygenase. We have investigated changes in electrical and contractile activity of isolated rat atrial and ventricular myocardium preparations under the influence of CO. Methods Standard microelectrode technique was used for intracellular registration of electrical activity in isolated preparations of atrial and vent...

  4. PERFORMANCE OF ACTIVATED SLUDGE-POWDERED ACTIVATED CARBON-WET AIR REGENERATION SYSTEMS

    The investigation summarized in the report was undertaken to evaluate the performance of powdered activated carbon (PAC) technology used in conjunction with wet air regeneration (WAR) at municipal wastewater treatment plants. Excessive ash concentrations accumulated in the mixed ...

  5. Improved methane storage capacities by sorption on wet active carbons

    Perrin, A.; Celzard, A.; Marache, J.F.; Furdin, G. [Universite Henri Poincare, Nancy (France). Laboratoire de Chimie du Solide Mineral

    2004-07-01

    The possibility of storing large amounts of natural gas within wet active carbons is examined. The sorption isotherms of methane at 2{sup o}C and up to 8 MPa are built for four carbonaceous materials. Three of them originate from the same precursor (coconut shell), are physically activated at various burn-offs and are mainly microporous. The fourth material is a highly mesoporous chemically activated pinewood carbon. These adsorbents are wetted with a constant weight ratio water/carbon close to 1. The resulting isotherms all exhibit a marked step occurring near the expected formation pressure of methane hydrates, thus supporting their occurrence within the porous materials. The amount of gas stored at the highest pressures investigated then ranges from 6 to 17 mol/kg of wet adsorbent (i.e., corresponding to 10-36 mol/kg of dry carbon), depending on the material. The results are discussed on the basis of the known pore texture of each adsorbent, and stoichiometries of the formed hydrates are calculated. Considerations about adsorption/desorption kinetics and metastability are also developed. (author)

  6. Structural Characterization and Property Study on the Activated Alumina-activated Carbon Composite Material

    CHEN Yan-Qing; WU Ren-Ping; YE Xian-Feng

    2012-01-01

    AlCl3,NH3·H2O,HNO3 and activated carbon were used as raw materials to prepare one new type of activated alumina-activated carbon composite material.The influence of heat treatment conditions on the structure and property of this material was discussed;The microstructures of the composite material were characterized by XRD,SEM,BET techniques;and its formaldehyde adsorption characteristic was also tested.The results showed that the optimal heat treatment temperature of the activated alumina-activated carbon composite material was 450 ℃,iodine adsorption value was 441.40 mg/g,compressive strength was 44 N,specific surface area was 360.07 m2/g,average pore size was 2.91 nm,and pore volume was 0.26 m3/g.According to the BET pore size distribution diagram,the composite material has dual-pore size distribution structure,the micro-pore distributes in the range of 0.6-1.7 nm,and the meso-pore in the range of 3.0-8.0 nm.The formaldehyde adsorption effect of the activated alumina-activated carbon composite material was excellent,much better than that of the pure activated carbon or activated alumina,and its saturated adsorption capacity was 284.19 mg/g.

  7. Preparation and Characterization of Sisal Fiber-based Activated Carbon by Chemical Activation with Zinc Chloride

    Sisal fiber, an agricultural resource abundantly available in China, has been used as raw material to prepare activated carbon with high surface area and huge pore volume by chemical activation with zinc chloride. The orthogonal test was designed to investigate the influence of zinc chloride concentration, impregnation ratio, activation temperature and activation time on preparation of activated carbon. Scanning electron micrograph, Thermo-gravimetric, N2-adsorption isotherm, mathematical models such as t-plot, H-K equation, D-R equation and BJH methods were used to characterize the properties of the prepared carbons and the activation mechanism was discussed. The results showed that ZnCl2 changed the pyrolysis process of sisal fiber. Characteristics of activated carbon are: BET surface area was 1628 m2/g, total pore volume was 1.316 m3/g and ratio of mesopore volume to total pore volume up to 94.3%. These results suggest that sisal fiber is an attractive source to prepare mesoporous high-capacity activated carbon by chemical activation with zinc chloride

  8. Ligninolytic Activity of Ganoderma strains on Different Carbon Sources

    TYPUK ARTININGSIH

    2006-10-01

    Full Text Available Lignin is a phenylpropanoid polymers with only few carbon bonds might be hydrolized. Due to its complexity, lignin is particularly difficult to decompose. Ganoderma is one of white rot fungi capable of lignin degradation. The ligninolytic of several species Ganoderma growing under different carbon sources was studied under controlled conditions which P. chrysosporium was used as standard comparison.Three types of ligninolytic, namely LiP, MnP, and laccase were assessed quantitatively and qualitatively. Ratio between clear zone and diameter of fungal colony was used for measuring specific activity qualitatively.Four sspecies of Ganoderma showed positive ligninolytic qualitatively that G. lucidum KT2-32 gave the highest ligninolytic. Activity of LiP and MnP in different carbon sources was consistently resulted by G. lucidum KT2-32, while the highest activity of laccase was shown by G. ochrolaccatum SA2-14. Medium of Indulin AT affected production of protein extracellular and induced ligninolytic. Glucose, BMC, and pine sawdust did not affect the activity of ligninolytic. The specific activity of Ganoderma species was found to be higher than the one of P. chrysosporium.

  9. 77 FR 26496 - Certain Activated Carbon From the People's Republic of China: Preliminary Results of the Fourth...

    2012-05-04

    ... at Less Than Fair Value: Certain Activated Carbon From the People's Republic of China, 72 FR 15099... activated carbon is a powdered, granular, or pelletized carbon product obtained by ``activating'' with heat... activated carbon, including powdered activated carbon (``PAC''), granular activated......

  10. Preparation of activated carbons from olive-tree wood revisited. II. Physical activation with air

    Ould-Idriss, A.; Cuerda-Correa, E.M.; Fernandez-Gonzalez, C.; Alexandre-Franco, M.F.; Gomez-Serrano, V. [Extremadura Univ., Badajoz (Spain). Dept. of Organic and Inorganic Chemistry; Stitou, M. [Univ. Abdelmalek Esaadi, Tetouan (Morocco). Dept. de Chimie; Macias-Garcia, A. [Extremadura Univ., Badajoz (Spain). Dept. of Mechanical, Energetic and Materials Engineering

    2011-02-15

    Olive-tree has been grown in the Mediterranean countries for centuries. For an adequate development of the tree it must be subjected to different treatments such as trimming, large amounts of a woody residue being produced. Such a residue has been traditionally used as a domestic fuel or simply burnt in the landfield. In both cases greenhouse gases are generated to a large extent. Thus, the preparation of activated carbons from olive-tree wood appears as an attractive alternative to valorize this by-product. Commonly, two activation strategies are used with such an aim, namely chemical and physical activation. In this study, the optimization of the physical activation method with air for the production of activated carbon has been analyzed. The results obtained clearly show that if the preparation conditions are adequately controlled, it is possible to prepare activated carbons showing tailored properties in terms of micro- or mesoporous texture and surface area. (author)

  11. Waste management activities and carbon emissions in Africa

    This paper summarizes research into waste management activities and carbon emissions from territories in sub-Saharan Africa with the main objective of quantifying emission reductions (ERs) that can be gained through viable improvements to waste management in Africa. It demonstrates that data on waste and carbon emissions is poor and generally inadequate for prediction models. The paper shows that the amount of waste produced and its composition are linked to national Gross Domestic Product (GDP). Waste production per person is around half that in developed countries with a mean around 230 kg/hd/yr. Sub-Saharan territories produce waste with a biogenic carbon content of around 56% (+/-25%), which is approximately 40% greater than developed countries. This waste is disposed in uncontrolled dumps that produce large amounts of methane gas. Greenhouse gas (GHG) emissions from waste will rise with increasing urbanization and can only be controlled through funding mechanisms from developed countries.

  12. VPO catalysts synthesized on substrates with modified activated carbons

    VPO catalysts were prepared on oxidized and unoxidized activated carbons differing in initial porous structure. Carbons were oxidized under relatively soft (30% H2O2, 200 deg. C) and hard (50% H2O2, 350 deg. C) conditions. Carbon modification was carried out hydrothermally in a traditional autoclave (HTT) or a microwave reactor (MWT). The synthesis was also carried out under hydrothermal (HTS or MWS) conditions. V2O5 and NH4VO3 were used as precursors. The samples are characterized by diversified porous structure at SBET = 732-1617 m2/g and Vpor = 0.44-0.90 cm3/g, as well as various degree of VPO crystallinity. Possibility of preparation of the VPO catalysts under ecologically appropriate conditions, i.e. in aqueous solutions, was shown.

  13. Irreversible adsorption of phenolic compounds by activated carbons

    Studies were undertaken to determine the reasons why phenolic sorbates can be difficult to remove and recover from activated carbons. The chemical properties of the sorbate and the adsorbent surface, and the influences of changes in the adsorption and desorption conditions were investigated. Comparison of isotherms established after different contact times or at different temperatures indicated that phenolic compounds react on carbon surfaces. The reaction rate is a strong function of temperature. Regeneration of carbons by leaching with acetone recovered at least as much phenol as did regeneration with other solvents or with displacers. The physiochemical properties of adsorbents influences irreversible uptakes. Sorbates differed markedly in their tendencies to undergo irreversible adsorption. 64 refs., 47 figs., 32 tabs

  14. Nomex-derived activated carbon fibers as electrode materials in carbon based supercapacitors

    Leitner, K.; Lerf, A.; Winter, M.; Besenhard, J. O.; Villar-Rodil, S.; Suárez-García, F.; Martínez-Alonso, A.; Tascón, J. M. D.

    Electrochemical characterization has been carried out for electrodes prepared of several activated carbon fiber samples derived from poly (m-phenylene isophthalamide) (Nomex) in an aqueous solution. Depending on the burn-off due to activation the BET surface area of the carbons was in the order of 1300-2800 m 2 g -1, providing an extensive network of micropores. Their capability as active material for supercapacitors was evaluated by using cyclic voltammetry and impedance spectroscopy. Values for the capacitance of 175 F g -1 in sulfuric acid were obtained. Further on, it was observed that the specific capacitance and the performance of the electrode increase significantly with increasing burn-off degree. We believe that this fact can be attributed to the increase of surface area and porosity with increasing burn-off.

  15. Enhancing capacitive deionization performance of electrospun activated carbon nanofibers by coupling with carbon nanotubes.

    Dong, Qiang; Wang, Gang; Wu, Tingting; Peng, Senpei; Qiu, Jieshan

    2015-05-15

    Capacitive deionization (CDI) is an alternative, effective and environmentally friendly technology for desalination of brackish water. The performance of the CDI device is highly determined by the electrode materials. In this paper, a composite of carbon nanotubes (CNTs) embedded in activated carbon nanofiber (ACF) was prepared by a direct co-electrospinning way and subsequent CO2 activation. The introduction of CNTs can greatly improve the conductivity while the CO2-mediated activation can render the final product with high porosity. As such, the hybrid structure can provide an excellent storage space and pathways for ion adsorption and conduction. When evaluated as electrode materials for CDI, the as-prepared CNT/ACF composites with higher electrical conductivity and mesopore ratios exhibited higher electrosorption capacity and good regeneration performance in comparison with the pure ACF. PMID:25595622

  16. Ni supported on activated carbon as catalyst for flue gas desulfurization

    2010-01-01

    A series of Ni supported on activated carbon are prepared by excessive impregnation and the desulfurization activity is investigated. It has been shown that the activated carbon-supported Ni is an efficient solid catalyst for flue gas desulfurization. The activated carbon treated by HNO3 exhibits high desulfurization activity, and different amounts of loaded-Ni on activated carbon significantly influence the desulfurization activity. The catalysts are studied by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results of XRD and XPS indicate that the activated carbon treated by HNO3 can increase oxygen-containing functional groups. Ni on activated carbon after calcination at 800 °C shows major Ni phase and minor NiO phase, and with increasing Ni content on activated carbon, Ni phase increases and affects the desulfurization activity of the catalyst, which proves that Ni is the main active phase.

  17. Kinetic and Equilibrium Studies for the Removal of Bromate by the Modified Activated Carbon

    Muqing Qiu; Shuiying Xiong

    2015-01-01

    Bromate which was formed bromide dissolved in water during the ozonation process, is carcinogenic and mutagenic to humans. To avoid bromate damage, many countries strictly control its concentration in drinking water. Activated carbon is an effective adsorbent material widely used in water treatment. In order to enhance the adsorption of bromate ion on activated carbon, the modified activated carbon was obtained from granular activated carbon by chemical activation using cationic surfactant as...

  18. Antibacterial activity of carbon-coated zinc oxide particles.

    Sawai, Jun; Yamamoto, Osamu; Ozkal, Burak; Nakagawa, Zenbe-E

    2007-03-01

    Particles of ZnO coated with carbon (ZnOCC) were prepared and evaluated for their antibacterial activity. ZnO powder and poly(vinyl alcohol) (PVA) (polymerization degree: 2,000-95,000) were mixed at a mass ratio (ZnO/PVA) of 1, and then heated at 500-650 degree C for 3 h under argon gas with a flow rate of 50ml/min. Carbon deposited on the ZnOCC surface was amorphous as revealed by X-ray diffraction studies. The ZnOCC particles maintained their shape in water, even under agitation. The antibacterial activity of ZnOCC powder against Staphylococcus aureus was evaluated quantitatively by measuring the change in the electrical conductivity of the growth medium caused by bacterial metabolism (conductimetric assay). The conductivity curves obtained were analyzed using the growth inhibition kinetic model proposed by Takahashi for calorimetric evaluation, allowing the estimation of the antibacterial efficacy and kinetic parameters of ZnOCC. In a previous study, when ZnO was immobilized on materials, such as activated carbon, the amount of ZnO immobilized was approximately 10-50%, and the antibacterial activity markedly decreased compared to that of the original ZnO. On the other hand, the ZnOCC particles prepared in this study contained approximately 95% ZnO and possessed antibacterial activity similar to that of pure ZnO. The carbon-coating treatment could maintain the antibacterial efficacy of the ZnO and may be useful in the develop-ment of multifunctional antimicrobial materials. PMID:17408004

  19. Modeling equilibrium adsorption of organic micropollutants onto activated carbon

    De Ridder, David J.

    2010-05-01

    Solute hydrophobicity, polarizability, aromaticity and the presence of H-bond donor/acceptor groups have been identified as important solute properties that affect the adsorption on activated carbon. However, the adsorption mechanisms related to these properties occur in parallel, and their respective dominance depends on the solute properties as well as carbon characteristics. In this paper, a model based on multivariate linear regression is described that was developed to predict equilibrium carbon loading on a specific activated carbon (F400) for solutes reflecting a wide range of solute properties. In order to improve prediction accuracy, groups (bins) of solutes with similar solute properties were defined and solute removals were predicted for each bin separately. With these individual linear models, coefficients of determination (R2) values ranging from 0.61 to 0.84 were obtained. With the mechanistic approach used in developing this predictive model, a strong relation with adsorption mechanisms is established, improving the interpretation and, ultimately, acceptance of the model. © 2010 Elsevier Ltd.

  20. Activation and micropore structure determination of activated carbon-fiber composites

    Jagtoyen, M.; Derbyshire, F.; Kimber, G. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1997-09-05

    Rigid, high surface area activated carbon fiber composites have been produced with high permeabilities for environmental applications in gas and water purification. These novel monolithic adsorbents can be produced in single pieces to a given size and shape. The project involves a collaboration between the Oak Ridge National Laboratory (ORNL) and the Center for Applied Energy Research (CAER), University of Kentucky. The carbon fiber composites are produced at the ORNL and activated at the CAER using different methods, with the aims of producing a uniform degree of activation, and of closely controlling pore structure and adsorptive properties. The main focus of the present work has been to find a satisfactory means to uniformly activate large samples of carbon fiber composites and produce controlled pore structures. Several environmental applications have been explored for the activated carbon fiber composites. One of these was to evaluate the activated composites for the separation of CH{sub 4}-CO{sub 2} mixtures, and an apparatus was constructed specifically for this purpose. The composites were further evaluated in the cyclic recovery of volatile organics. The activated carbon fiber composites have also been tested for possible water treatment applications by studying the adsorption of sodium pentachlorophenolate, PCP.