WorldWideScience

Sample records for activins

  1. Activin inhibits telomerase activity in cancer

    Katik, Indzi; Mackenzie-Kludas, Charley; Nicholls, Craig [Department of Immunology, Monash University, Melbourne (Australia); Jiang, Fang-Xu [Centre for Diabetes Research, Western Australian Institute for Medical Research and The University of Western Australia, Perth (Australia); Zhou, Shufeng [School of Health Sciences, RMIT University, Melbourne (Australia); Li, He [Department of Immunology, Monash University, Melbourne (Australia); Liu, Jun-Ping, E-mail: jun-ping.liu@med.monash.edu.au [Department of Immunology, Monash University, Melbourne (Australia)

    2009-11-27

    Activin is a pleiotropic cytokine with broad tissue distributions. Recent studies demonstrate that activin-A inhibits cancer cell proliferation with unknown mechanisms. In this report, we demonstrate that recombinant activin-A induces telomerase inhibition in cancer cells. In breast and cervical cancer cells, activin-A resulted in telomerase activity in a concentration-dependent manner. Significant inhibition was observed at 10 ng/ml of activin-A, with a near complete inhibition at 80 ng/ml. Consistently, activin-A induced repression of the telomerase reverse transcriptase (hTERT) gene, with the hTERT gene to be suppressed by 60-80% within 24 h. In addition, activin-A induced a concomitant increase in Smad3 signaling and decrease of the hTERT gene promoter activity in a concentration-dependent fashion. These data suggest that activin-A triggered telomerase inhibition by down-regulating hTERT gene expression is involved in activin-A-induced inhibition of cancer cell proliferation.

  2. Activin receptor patterning of foregut organogenesis

    Kim, Seung K.; Hebrok, Matthias; Li, En; Oh, S. Paul; Schrewe, Heinrich; Harmon, Erin B; Lee, Joon S.; Melton, Douglas A.

    2000-01-01

    Foregut development produces a characteristic sequence of gastrointestinal and respiratory organs, but the signaling pathways that ensure this developmental order remain largely unknown. Here, mutations of activin receptors ActRIIA and ActRIIB are shown to disrupt the development of posterior foregut-derived organs, including the stomach, pancreas, and spleen. Foregut expression of genes including Shh and Isl1 is shifted in mutant mice. The endocrine pancreas is particularly sensitive to the ...

  3. Serum activin B concentration as predictive biomarker for ectopic pregnancy.

    Dhiman, Pooja; Senthilkumar, G P; Rajendiran, Soundravally; Sivaraman, K; Soundararaghavan, S; Kulandhasamy, Maheshwari

    2016-05-01

    We evaluated the diagnostic accuracy of activin B in discriminating tubal ectopic pregnancy (tEP) from intrauterine miscarriages (IUM), and normal viable intrauterine pregnancy (IUP). We included 28 women with tEP, 31 women with IUM, and 29 normal IUP, confirmed both by clinical examination and ultrasonography. Serum activin B concentration was measured at the time of admission using the ELISA kit. The median serum activin B concentration was found to be significantly decreased in both tEP (p=0.004) and IUM (p=0.022) compared to normal IUP. When compared between tEP and IUM, activin B concentrations did not differ significantly. ROC analysis of activin B and free β-hCG demonstrated AUC of 0.722 and 0.805, respectively to discriminate tEP from viable IUP. The model including both activin B and free β-hCG improved the discriminating potential with greater AUC (0.824), and specificity (93%) than individual one. To discriminate tEP from IUM, activin B, free β-hCG and combination of both performed poorly. We conclude that serum activin B concentration is lower in tubal ectopic pregnancy, and can discriminate it from normal pregnancy with moderate accuracy. It also shows improved diagnostic potential along with free β-hCG, but cannot distinguish tEP from IUM reliably. PMID:26968108

  4. Inhibition of somatotroph growth and growth hormone biosynthesis by activin in vitro

    Billestrup, Nils; González-Manchón, C; Potter, E; Vale, W

    1990-01-01

    effect of activin on FSH secretion, did not reverse the effect of activin on GH biosynthesis. Treatment of somatotrophs with activin for 3 days completely inhibited the growth-promoting effect of GRF on somatotrophs. However, no effect of activin on GRF-stimulated expression of the c-fos protooncogene...

  5. Uric acid: a modulator of prostate cells and activin sensitivity.

    Sangkop, Febbie; Singh, Geeta; Rodrigues, Ely; Gold, Elspeth; Bahn, Andrew

    2016-03-01

    Elevated serum uric acid (SUA) or urate is associated with inflammation and gout. Recent evidence has linked urate to cancers, but little is known about urate effects in prostate cancer. Activins are inflammatory cytokines and negative growth regulators in the prostate. A hallmark of prostate cancer progression is activin insensitivity; however, mechanisms underlying this are unclear. We propose that elevated SUA is associated with prostate cancer counteracting the growth inhibitory effects of activins. The expression of activins A and B, urate transporter GLUT9 and tissue urate levels were examined in human prostate disease. Intracellular and secreted urate and GLUT9 expression were assessed in human prostate cancer cell lines. Furthermore, the effects of urate and probenecid, a known urate transport inhibitor, were determined in combination with activin A. Activin A expression was increased in low-grade prostate cancer, whereas activin B expression was reduced in high-grade prostate cancer. Intracellular urate levels decreased in all prostate pathologies, while GLUT9 expression decreased in benign prostatic hyperplasia, prostatitis and high-grade prostate cancer. Activin responsive LNCaP cells had higher intracellular and lower secreted urate levels than activin-insensitive PC3 cells. GLUT9 expression in prostate cancer cells was progressively lower than in prostate epithelial cells. Elevated extracellular urate was growth promoting in vitro, which was abolished by the gout medication probenecid, and it antagonized the growth inhibitory effects of activins. This study shows for the first time that a change in plasma or intracellular urate levels, possibly involving GLUT9 and a urate efflux transporter, has an impact on prostate cancer cell growth, and that lowering SUA levels in prostate cancer is likely to be therapeutically beneficial. PMID:26910779

  6. Activin A inhibits BMP-signaling by binding ACVR2A and ACVR2B

    Olsen, Oddrun Elise; Wader, Karin Fahl; Hella, Hanne; Mylin, Anne Kærsgaard; Turesson, Ingemar; Nesthus, Ingerid; Waage, Anders; Sundan, Anders; Holien, Toril

    2015-01-01

    activin A through canonical ALK4-ACVR2 receptor complexes activates the transcription factors SMAD2 and SMAD3. Activin A has a strong affinity to type 2 receptors, a feature that they share with some of the bone morphogenetic proteins (BMPs). Activin A is also elevated in myeloma patients with advanced...

  7. Effect of B-activin on human T suppressor cells

    The authors studied the influence of B-activin on the effect of human concanavalin A (con A)-induced T suppressor cells and also on the process of induction of T suppressor cells by con A and stimulation of proliferative activity of lymphocytes by phytohemagglutinin (PHA). Con A-induced suppression and the effect of B-activin on it were studied in a system in which the test cell culture and the culture for induction of suppressors were prepared simultaneously. Peripheral blood was obtained from blood donors for the experiments and during the preparation of the experiments, 3H-thymidine was added. The results of investigation of the influence of B-activin on the effect of con A-induced suppressors and also on the process of their induction are given. It is concluded that B-activin blocks the effect of con A-induced human suppressor cells but does not affect their induction, and B-activin does not affect proliferative activity of lymphocytes induced by PHA

  8. Activins and inhibins: Novel regulators of thymocyte development

    Activins and inhibins are members of the transforming growth factor-β superfamily that act on different cell types and regulate a broad range of cellular processes including proliferation, differentiation, and apoptosis. Here, we provide the first evidence that activins and inhibins regulate specific checkpoints during thymocyte development. We demonstrate that both activin A and inhibin A promote the DN3-DN4 transition in vitro, although they differentially control the transition to the DP stage. Whereas activin A induces the accumulation of a CD8+CD24hiTCRβlo intermediate subpopulation, inhibin A promotes the differentiation of DN4 to DP. In addition, both activin A and inhibin A appear to promote CD8+SP differentiation. Moreover, inhibin α null mice have delayed in vitro T cell development, showing both a decrease in the DN-DP transition and reduced thymocyte numbers, further supporting a role for inhibins in the control of developmental signals taking place during T cell differentiation in vivo.

  9. Intertwining of Activin A and TGFβ Signaling: Dual Roles in Cancer Progression and Cancer Cell Invasion

    Loomans, Holli A. [Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Andl, Claudia D., E-mail: claudia.andl@vanderbilt.edu [Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Vanderbilt Digestive Disease Center, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Vanderbilt Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232 (United States)

    2014-12-30

    In recent years, a significant amount of research has examined the controversial role of activin A in cancer. Activin A, a member of the transforming growth factor β (TGFβ) superfamily, is best characterized for its function during embryogenesis in mesoderm cell fate differentiation and reproduction. During embryogenesis, TGFβ superfamily ligands, TGFβ, bone morphogenic proteins (BMPs) and activins, act as potent morphogens. Similar to TGFβs and BMPs, activin A is a protein that is highly systemically expressed during early embryogenesis; however, post-natal expression is overall reduced and remains under strict spatiotemporal regulation. Of importance, normal post-natal expression of activin A has been implicated in the migration and invasive properties of various immune cell types, as well as endometrial cells. Aberrant activin A signaling during development results in significant morphological defects and premature mortality. Interestingly, activin A has been found to have both oncogenic and tumor suppressor roles in cancer. Investigations into the role of activin A in prostate and breast cancer has demonstrated tumor suppressive effects, while in lung and head and neck squamous cell carcinoma, it has been consistently shown that activin A expression is correlated with increased proliferation, invasion and poor patient prognosis. Activin A signaling is highly context-dependent, which is demonstrated in studies of epithelial cell tumors and the microenvironment. This review discusses normal activin A signaling in comparison to TGFβ and highlights how its dysregulation contributes to cancer progression and cell invasion.

  10. Intertwining of Activin A and TGFβ Signaling: Dual Roles in Cancer Progression and Cancer Cell Invasion

    In recent years, a significant amount of research has examined the controversial role of activin A in cancer. Activin A, a member of the transforming growth factor β (TGFβ) superfamily, is best characterized for its function during embryogenesis in mesoderm cell fate differentiation and reproduction. During embryogenesis, TGFβ superfamily ligands, TGFβ, bone morphogenic proteins (BMPs) and activins, act as potent morphogens. Similar to TGFβs and BMPs, activin A is a protein that is highly systemically expressed during early embryogenesis; however, post-natal expression is overall reduced and remains under strict spatiotemporal regulation. Of importance, normal post-natal expression of activin A has been implicated in the migration and invasive properties of various immune cell types, as well as endometrial cells. Aberrant activin A signaling during development results in significant morphological defects and premature mortality. Interestingly, activin A has been found to have both oncogenic and tumor suppressor roles in cancer. Investigations into the role of activin A in prostate and breast cancer has demonstrated tumor suppressive effects, while in lung and head and neck squamous cell carcinoma, it has been consistently shown that activin A expression is correlated with increased proliferation, invasion and poor patient prognosis. Activin A signaling is highly context-dependent, which is demonstrated in studies of epithelial cell tumors and the microenvironment. This review discusses normal activin A signaling in comparison to TGFβ and highlights how its dysregulation contributes to cancer progression and cell invasion

  11. A drug delivery hydrogel system based on activin B for Parkinson's disease.

    Li, Juan; Darabi, Mohammadali; Gu, Jingjing; Shi, Junbin; Xue, Jinhua; Huang, Lu; Liu, Yutong; Zhang, Lei; Liu, N; Zhong, Wen; Zhang, Lin; Xing, Malcolm; Zhang, Lu

    2016-09-01

    Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Activins are members of the superfamily of transforming growth factors and have many potential neuroprotective effects. Herein, at the first place, we verified activin B's neuroprotective role in a PD model, and revealed that activin B's fast release has limited function in the PD therapy. To this end, we developed a multi-functional crosslinker based thermosensitive injectable hydrogels to deliver activin B, and stereotactically injected the activin B-loaded hydrogel into the striatum of a mouse model of PD. The histological evaluation showed that activin B can be detected even 5 weeks post-surgery in PD mice implanted with activin B-loaded hydrogels, and activin B-loaded hydrogels can significantly increase the density of tyrosine hydroxylase positive (TH(+)) nerve fibers and reduce inflammatory responses. The behavioral evaluation demonstrated that activin B-loaded hydrogels significantly improved the performance of the mice in the PD model. Meanwhile, we found that hydrogels can slightly induce the activation of microglia cells and astrocytes, while cannot induce apoptosis in the striatum. Overall, our data demonstrated that the developed activin B-loaded hydrogels provide sustained release of activin B for over 5 weeks and contribute to substantial cellular protection and behavioral improvement, suggesting their potential as a therapeutic strategy for PD. PMID:27322960

  12. Activin A maintains cerebral cortex neuronal survival and increases voltage-gated Na+ neuronal current

    Jingyan Ge; Yinan Wang; Haiyan Liu; Fangfang Chen; Xueling Cui; Zhonghui Liu

    2010-01-01

    Activin A,which was first described in 1986,has been shown to maintain hippocampal neuronal survival.Activin A increases intracellular free Ca2+via L-type Ca2+channels.Our previous study showed that activin A promotes neurite growth of dorsal root ganglia in embryonic chickens and inhibits nitric oxide secretion.The present study demonstrated for the first time that activin A could maintain cerebral cortex neuronal survival in vitro for a tong period,and that activin A was shown to increase voltage-gated Na+current(INa)in Neure-2a cells,which was recorded by patch clamp technique.The present study revealed a novel mechanism for activin A,as well as the influence of activin A on neurons by regulating expressions of vasoactive intestine peptide and inducible nitric oxide synthase.

  13. Activin A and Follistatin as Biomarkers for Ectopic Pregnancy and Missed Abortion

    Alexandros Daponte; Efthimios Deligeoroglou; Antonios Garas; Spyros Pournaras; Christos Hadjichristodoulou; Messinis, Ioannis E

    2013-01-01

    Activin A as a predictor of pregnancy failure has been the focus of heated debate, but the value of a combined activin A and follistatin (FS) measurement in serum to predict pregnancy failure has not been reported yet. We assessed whether a single serum measurement of the two physiological antagonists at 6–8 weeks gestation could differentiate ectopic pregnancies (EP) or missed abortions (MA) from healthy intrauterine pregnancies (IUP). activin A concentrations were significantly lower in wom...

  14. Effects of Activin A on the Activities of the Mouse Peritoneal Macrophages

    XuejunZhang; YangLi; GuixiangTai; GuiyueXu; PengyuZhang; YuYang; FengxueLao; ZhonghuiLiu

    2005-01-01

    Activin A is a kind of pre-inflammatory factor that belongs to the transforming growth factor-β(TGF-β) superfamily. To investigate the effect and mechanism of activin A on the activities of mouse macrophages, the secretion of NO in the supernatant of cultured mouse peritoneal macrophages was examined by NO assay kit, and the expression of iNOS, ActRIIA and ARIP2 mRNA in mouse peritoneal macrophages was analyzed by RT-PCR. The results showed that activin A stimulated the secretion of NO and the expression of iNOS mRNA in non-activated mouse macrophages in a time- and dose-dependent manner. In contrast, activin A in the same concentration inhibited the secretion of NO in LPS-activated mouse macrophages in a dose-dependent manner. ActRIIA was highly expressed on macrophages, and activin A upregulated the ActRIIA mRNA expression in macrophages. Anti-ActRIIA antibody can block the secretion of NO from the macrophages stimulated by activin A. Furthermore, RT-PCR analysis revealed that activin A enhanced the ARIP2 mRNA expression in macrophages. These results indicated that Activin A may be a weak activator compared with LPS to mouse macrophages, and activin A may modulate the secretion of NO through ActRIIA-ARIP2 signal pathway in mouse macrophages. Cellular & Molecular Immunology. 2005;2(1):63-67.

  15. Kdm6b and Pmepa1 as Targets of Bioelectrically and Behaviorally Induced Activin A Signaling.

    Link, Andrea S; Kurinna, Svitlana; Havlicek, Steven; Lehnert, Sandra; Reichel, Martin; Kornhuber, Johannes; Winner, Beate; Huth, Tobias; Zheng, Fang; Werner, Sabine; Alzheimer, Christian

    2016-08-01

    The transforming growth factor-β (TGF-β) family member activin A exerts multiple neurotrophic and protective effects in the brain. Activin also modulates cognitive functions and affective behavior and is a presumed target of antidepressant therapy. Despite its important role in the injured and intact brain, the mechanisms underlying activin effects in the CNS are still largely unknown. Our goal was to identify the first target genes of activin signaling in the hippocampus in vivo. Electroconvulsive seizures, a rodent model of electroconvulsive therapy in humans, were applied to C57BL/6J mice to elicit a strong increase in activin A signaling. Chromatin immunoprecipitation experiments with hippocampal lysates subsequently revealed that binding of SMAD2/3, the intracellular effectors of activin signaling, was significantly enriched at the Pmepa1 gene, which encodes a negative feedback regulator of TGF-β signaling in cancer cells, and at the Kdm6b gene, which encodes an epigenetic regulator promoting transcriptional plasticity. Underlining the significance of these findings, activin treatment also induced PMEPA1 and KDM6B expression in human forebrain neurons generated from embryonic stem cells suggesting interspecies conservation of activin effects in mammalian neurons. Importantly, physiological stimuli such as provided by environmental enrichment proved already sufficient to engender a rapid and significant induction of activin signaling concomitant with an upregulation of Pmepa1 and Kdm6b expression. Taken together, our study identified the first target genes of activin signaling in the brain. With the induction of Kdm6b expression, activin is likely to gain impact on a presumed epigenetic regulator of activity-dependent neuronal plasticity. PMID:26215835

  16. Effects of activin and TGFβ on p21 in colon cancer.

    Jessica Bauer

    Full Text Available Activin and TGFβ share SMAD signaling and colon cancers can inactivate either pathway alone or simultaneously. The differential effects of activin and TGFβ signaling in colon cancer have not been previously dissected. A key downstream target of TGFβ signaling is the cdk2 inhibitor p21 (p21(cip1/waf1. Here, we evaluate activin-specific effects on p21 regulation and resulting functions. We find that TGFβ is a more potent inducer of growth suppression, while activin is a more potent inducer of apoptosis. Further, growth suppression and apoptosis by both ligands are dependent on SMAD4. However, activin downregulates p21 protein in a SMAD4-independent fashion in conjunction with increased ubiquitination and proteasomal degradation to enhance migration, while TGFβ upregulates p21 in a SMAD4-dependent fashion to affect growth arrest. Activin-induced growth suppression and cell death are dependent on p21, while activin-induced migration is counteracted by p21. Further, primary colon cancers show differential p21 expression consistent with their ACVR2/TGFBR2 receptor status. In summary, we report p21 as a differentially affected activin/TGFβ target and mediator of ligand-specific functions in colon cancer, which may be exploited for future risk stratification and therapeutic intervention.

  17. Impaired growth of pancreatic exocrine cells in transgenic mice expressing human activin βE subunit

    Activins, TGF-β superfamily members, have multiple functions in a variety of cells and tissues. Recently, additional activin β subunit genes, βC and βE, have been identified. To explore the role of activin E, we created transgenic mice overexpressing human activin βE subunit. There were pronounced differences in the pancreata of the transgenic animals as compared with their wild-type counterparts. Pancreatic weight, expressed relative to total body weight, was significantly reduced. Histologically, adipose replacement of acini in the exocrine pancreas was observed. There was a significant decrease in the number of PCNA-positive cells in the acinar cells, indicating reduced proliferation in the exocrine pancreas of the transgenic mice. However, quantitative pancreatic morphometry showed that the total number and mass of the islets of the transgenic mice were comparable with those of the nontransgenic control mice. Our findings suggest a role for activin E in regulating the proliferation of pancreatic exocrine cells

  18. Activin B mediated induction of Pdx1 in human embryonic stem cell derived embryoid bodies

    Frandsen, Ulrik; Pørneki, Ann Dorte Storm; Floridon, Charlotte;

    2007-01-01

    Human embryonic stem cells (hESCs) have the potential to provide alternative sources for pancreatic islet grafts. In the present study we have investigated the influence of Activin A and Activin B on the expression of the pancreas marker gene Pdx1 in hESCs differentiated as embryoid bodies (EBs...... embryonic and fetal pancreas anlage in humans. Pdx1(+) cells are found in cell clusters also expressing Serpina1 and FABP1, suggesting activation of intestinal/liver developmental programs. Moreover, Activin B up-regulates Sonic Hedgehog (Shh) and its target Gli1, which during normal development is...

  19. An Activin Receptor IA/Activin-Like Kinase-2 (R206H Mutation in Fibrodysplasia Ossificans Progressiva

    Rafael Herrera-Esparza

    2013-01-01

    Full Text Available Fibrodysplasia ossificans progressiva (FOP is an exceptionally rare genetic disease that is characterised by congenital malformations of the great toes and progressive heterotopic ossification (HO in specific anatomical areas. This disease is caused by a mutation in activin receptor IA/activin-like kinase-2 (ACVR1/ALK2. A Mexican family with one member affected by FOP was studied. The patient is a 19-year-old female who first presented with symptoms of FOP at 8 years old; she developed spontaneous and painful swelling of the right scapular area accompanied by functional limitation of movement. Mutation analysis was performed in which genomic DNA as PCR amplified using primers flanking exons 4 and 6, and PCR products were digested with Cac8I and HphI restriction enzymes. The most informative results were obtained with the exon 4 flanking primers and the Cac8I restriction enzyme, which generated a 253 bp product that carries the ACVR1 617G>A mutation, which causes an amino acid substitution of histidine for arginine at position 206 of the glycine-serine (GS domain, and its mutation results in the dysregulation of bone morphogenetic protein (BMP signalling that causes FOP.

  20. Activin A Plays a Critical Role in Proliferation and Differentiation of Human Adipose Progenitors

    Zaragosi, L.-E.; Wdziekonski, B.; Villageois, P.; Keophiphath, M.; Maumus, M; Tchkonia, T.; Bourlier, V.; Mohsen-Kanson, T.; Ladoux, A.; Elabd, C.; Scheideler, M; Trajanoski, Z.; Takashima, Y.; Amri, E.-Z.; Lacasa, D.

    2010-01-01

    OBJECTIVE Growth of white adipose tissue takes place in normal development and in obesity. A pool of adipose progenitors is responsible for the formation of new adipocytes and for the potential of this tissue to expand in response to chronic energy overload. However, factors controlling self-renewal of human adipose progenitors are largely unknown. We investigated the expression profile and the role of activin A in this process. RESEARCH DESIGN AND METHODS Expression of INHBA/activin A was in...

  1. Activin-receptor signaling regulates cocaine-primed behavioral and morphological plasticity

    Gancarz, Amy M.; Wang, Zi-Jun; Schroeder, Gabrielle L.; Damez-Werno, Diane; Braunscheidel, Kevin; Mueller, Lauren E.; Monica S Humby; Caccamise, Aaron; Martin, Jennifer A.; Dietz, Karen C.; Neve, Rachael L; Dietz, David M.

    2015-01-01

    Cocaine addiction is a life-long relapsing disorder that results from long-term adaptations within the brain. We find that Activin-receptor signaling, including the transcription factor Smad3, is upregulated in the rat nucleus accumbens shell following withdrawal from cocaine. Direct genetic and pharmacological manipulations of this pathway bidirectionally alter cocaine seeking, while governing morphological plasticity in nucleus accumbens neurons. These findings reveal that Activin/Smad3 sig...

  2. Testicular Somatic Cells, not Gonocytes, Are the Major Source of Functional Activin A during Testis Morphogenesis

    Archambeault, Denise R.; Tomaszewski, Jessica; Childs, Andrew J.; Anderson, Richard A.; YAO, HUMPHREY HUNG-CHANG

    2011-01-01

    Proper development of the seminiferous tubules (or testis cords in embryos) is critical for male fertility. Sertoli cells, somatic components of the seminiferous tubules, serve as nurse cells to the male germline, and thus their numbers decide the quantity of sperm output in adulthood. We previously identified activin A, the protein product of the activin βA (Inhba) gene, as a key regulator of murine Sertoli cell proliferation and testis cord expansion during embryogenesis. Although our genet...

  3. Differential Effects of Aging on Activin A and its Binding Protein, Follistatin, across the Menopause Transition

    Reame, Nancy E.; Lukacs, Jane L; Olton, Pamela; Ansbacher, Rudi; Padmanabhan, Vasantha

    2007-01-01

    To assess the involvement of ovarian-derived regulatory proteins in FSH modulation, we compared FSH, inhibin A, inhibin B, activin A and follistatin in 79 women from the following five groups: young cycling (YC), older cycling (OC), perimenopause (PERI), spontaneous menopause (PM), and surgical menopause receiving estrogen (OVX+ET). Although inhibin B varied as expected by ovarian function, no group differences were observed in activin A, barring a tendency for an increase in PERI, while FS 2...

  4. Regulation of body mass growth through activin type IIB receptor in teleost fish.

    Carpio, Yamila; Acosta, Jannel; Morales, Reynold; Santisteban, Yaimín; Sanchéz, Aniel; Estrada, Mario Pablo

    2009-01-15

    Myostatin is a TGF-beta family member that plays a key role in regulating skeletal muscle growth. Previous studies in mammals have demonstrated that myostatin is capable of binding the two activin type II receptors. Additionally, activin type II receptors have been shown to be capable of binding a number of other TGF-beta family members besides myostatin. An injection of a soluble form of activin type IIB receptor obtained from CHO cells into wild-type mice generated up to a 60% increase in muscle mass in 2 weeks. The knowledge on the role of activin receptors in fish is limited. In the present study, we examined the growth effect of administering a recombinant, soluble form of goldfish activin type IIB receptor extracellular domain to juvenile and larval goldfish (Carassius auratus), African catfish (Clarias gariepinus) larvae and tilapia (Oreochromis aureus) larvae. We have expressed the goldfish activin type IIB receptor extracellular domain in the yeast Pichia pastoris and we have demonstrated for the first time that this recombinant molecule stimulates growth in teleost fish in a dose-dependent manner. We provide evidence that this body weight increase is achieved by an increase in muscle mass and protein content. Histological analysis of the goldfish muscle revealed that treated fish exhibited hyperplasia as compared to controls. These findings contribute to the understanding of the mechanisms that regulate growth in non-mammalian vertebrates and suggest a powerful biotechnology approach to improving fish growth in aquaculture. PMID:19056390

  5. Activin A induces Langerhans cell differentiation in vitro and in human skin explants.

    Tiziana Musso

    Full Text Available Langerhans cells (LC represent a well characterized subset of dendritic cells located in the epidermis of skin and mucosae. In vivo, they originate from resident and blood-borne precursors in the presence of keratinocyte-derived TGFbeta. In vitro, LC can be generated from monocytes in the presence of GM-CSF, IL-4 and TGFbeta. However, the signals that induce LC during an inflammatory reaction are not fully investigated. Here we report that Activin A, a TGFbeta family member induced by pro-inflammatory cytokines and involved in skin morphogenesis and wound healing, induces the differentiation of human monocytes into LC in the absence of TGFbeta. Activin A-induced LC are Langerin+, Birbeck granules+, E-cadherin+, CLA+ and CCR6+ and possess typical APC functions. In human skin explants, intradermal injection of Activin A increased the number of CD1a+ and Langerin+ cells in both the epidermis and dermis by promoting the differentiation of resident precursor cells. High levels of Activin A were present in the upper epidermal layers and in the dermis of Lichen Planus biopsies in association with a marked infiltration of CD1a+ and Langerin+ cells. This study reports that Activin A induces the differentiation of circulating CD14+ cells into LC. Since Activin A is abundantly produced during inflammatory conditions which are also characterized by increased numbers of LC, we propose that this cytokine represents a new pathway, alternative to TGFbeta, responsible for LC differentiation during inflammatory/autoimmune conditions.

  6. Activin A and follistatin as biomarkers for ectopic pregnancy and missed abortion.

    Daponte, Alexandros; Deligeoroglou, Efthimios; Garas, Antonios; Pournaras, Spyros; Hadjichristodoulou, Christos; Messinis, Ioannis E

    2013-01-01

    Activin A as a predictor of pregnancy failure has been the focus of heated debate, but the value of a combined activin A and follistatin (FS) measurement in serum to predict pregnancy failure has not been reported yet. We assessed whether a single serum measurement of the two physiological antagonists at 6-8 weeks gestation could differentiate ectopic pregnancies (EP) or missed abortions (MA) from healthy intrauterine pregnancies (IUP). activin A concentrations were significantly lower in women with EP (n = 30, median value of 264 pg/mL) and women with MA (n = 30, median value of 350 pg/mL) compared to IUP (n = 33, median value of 788 pg/mL); P < 0.001. At a threshold value of 505 pg/mL, activin A had 87.9% sensitivity and 100% specificity and negative predictive value of 0.974 for discriminating an ectopic pregnancy from viable pregnancies. FS was able to discriminate IUP from EP (ROC curve P < 0.001) as was their ratio (ROC curve P = 0.008), but was unable to discriminate a MA from an EP. In EP, activin A did not correlate with beta HCG levels. The present findings support the thesis that activin A or FS could be considered promising biomarkers for the discrimination between an IUP and a failed pregnancy (MA or EP). PMID:24222717

  7. Activin A and Follistatin as Biomarkers for Ectopic Pregnancy and Missed Abortion

    Alexandros Daponte

    2013-01-01

    Full Text Available Activin A as a predictor of pregnancy failure has been the focus of heated debate, but the value of a combined activin A and follistatin (FS measurement in serum to predict pregnancy failure has not been reported yet. We assessed whether a single serum measurement of the two physiological antagonists at 6–8 weeks gestation could differentiate ectopic pregnancies (EP or missed abortions (MA from healthy intrauterine pregnancies (IUP. activin A concentrations were significantly lower in women with EP ( = 30, median value of 264 pg/mL and women with MA ( = 30, median value of 350 pg/mL compared to IUP ( = 33, median value of 788 pg/mL; . At a threshold value of 505 pg/mL, activin A had 87.9% sensitivity and 100% specificity and negative predictive value of 0.974 for discriminating an ectopic pregnancy from viable pregnancies. FS was able to discriminate IUP from EP (ROC curve as was their ratio (ROC curve , but was unable to discriminate a MA from an EP. In EP, activin A did not correlate with beta HCG levels. The present findings support the thesis that activin A or FS could be considered promising biomarkers for the discrimination between an IUP and a failed pregnancy (MA or EP.

  8. Exploring biological and pathological functions of TGFβ family member activin C

    Activins and their antagonists inhibins are cytokines of the transforming growth factor β family (TGFβ), with important regulatory functions in a wide array of physiological processes. Activins are homo- or heterodimers consisting of two disulfide-linked β subunits, four mammalian activin β subunits - βA, βB, βC, βE - have been identified in mammalian cells. Inhibins in contrast are heterodimers composed of an β subunit and a β subunit. Whereas the expression of βA and βB subunits is high and widely distributed in many organs, the βC and βE subunits are predominantly expressed in the liver. Activin A is by far the best investigated activin. It has been implicated for instance in reproductive biology, embryonic development, homeostasis, inflammation and tissue repair. In the liver it contributes to regulation of cell growth, apoptosis and tissue architecture. Additionally, deregulation of activin A signaling accounts for pathologic conditions such as hepatic inflammation, fibrosis and carcinogenesis. The biological functions of the other family members and their involvement in liver biology and diseases are still poorly understood. The first part of this work deals with the mRNA expression pattern of the complete inhibin gene family to obtain novel insights into possible functions of activins and inhibins in human hepatocellular carcinogenesis. Using quantitative real-time PCR analysis we found strongly increased inhibin β subunit expression comparing samples of hepatocellular carcinoma and tumor surrounding tissue to samples from healthy donors. All four β subunits were expressed in normal and patient samples, whereas expression of βB subunit increased from normal to malignant samples. This study is the first to report a significant relation of the inhibin β and inhibin βB mRNA levels to human hepatocellular carcinoma. Furthermore, these data, different from those in rodent model systems, suggest a tumor promoting role of inhibin and activin

  9. Activin a is associated with impaired myocardial glucose metabolism and left ventricular remodeling in patients with uncomplicated type 2 diabetes

    Chen, Weena JY; Greulich, Sabrina; van der Meer, Rutger W; Rijzewijk, Luuk J.; Lamb, Hildo J.; de Roos, Albert; Smit, Johannes WA; Romijn, Johannes A.; Ruige, Johannes B.; Lammertsma, Adriaan A.; Lubberink, Mark; Diamant, Michaela; Ouwens, D Margriet

    2013-01-01

    Background Activin A released from epicardial adipose tissue has been linked to contractile dysfunction and insulin resistance in cardiomyocytes. This study investigated the role of activin A in clinical diabetic cardiomyopathy by assessing whether circulating activin A levels associate with cardiometabolic parameters in men with uncomplicated type 2 diabetes (T2D), and the effects of treatment with pioglitazone versus metformin on these associations. Methods Seventy-eight men with uncomplica...

  10. Role of satellite cells versus myofibers in muscle hypertrophy induced by inhibition of the myostatin/activin signaling pathway

    Lee, Se-Jin; Huynh, Thanh V.; Lee, Yun-Sil; Sebald, Suzanne M.; Wilcox-Adelman, Sarah A.; Iwamori, Naoki; Lepper, Christoph; Matzuk, Martin M.; Fan, Chen-Ming

    2012-01-01

    Myostatin and activin A are structurally related secreted proteins that act to limit skeletal muscle growth. The cellular targets for myostatin and activin A in muscle and the role of satellite cells in mediating muscle hypertrophy induced by inhibition of this signaling pathway have not been fully elucidated. Here we show that myostatin/activin A inhibition can cause muscle hypertrophy in mice lacking either syndecan4 or Pax7, both of which are important for satellite cell function and devel...

  11. Crystal structure of activin receptor type IIB kinase domain from human at 2.0 Å resolution

    Han, Seungil; Loulakis, Pat; Griffor, Matt; Xie, Zhi

    2007-01-01

    Activin receptor type IIB (ActRIIB), a type II TGF-β serine/threonine kinase receptor, is integral to the activin and myostatin signaling pathway. Ligands such as activin and myostatin bind to activin type II receptors (ActRIIA, ActRIIB), and the GS domains of type I receptors are phosphorylated by type II receptors. Myostatin, a negative regulator of skeletal muscle growth, is regarded as a potential therapeutic target and binds to ActRIIB effectively, and to a lesser extent, to ActRIIA. The...

  12. Activin signaling targeted by insulin/dFOXO regulates aging and muscle proteostasis in Drosophila.

    Hua Bai

    2013-11-01

    Full Text Available Reduced insulin/IGF signaling increases lifespan in many animals. To understand how insulin/IGF mediates lifespan in Drosophila, we performed chromatin immunoprecipitation-sequencing analysis with the insulin/IGF regulated transcription factor dFOXO in long-lived insulin/IGF signaling genotypes. Dawdle, an Activin ligand, is bound and repressed by dFOXO when reduced insulin/IGF extends lifespan. Reduced Activin signaling improves performance and protein homeostasis in muscles of aged flies. Activin signaling through the Smad binding element inhibits the transcription of Autophagy-specific gene 8a (Atg8a within muscle, a factor controlling the rate of autophagy. Expression of Atg8a within muscle is sufficient to increase lifespan. These data reveal how insulin signaling can regulate aging through control of Activin signaling that in turn controls autophagy, representing a potentially conserved molecular basis for longevity assurance. While reduced Activin within muscle autonomously retards functional aging of this tissue, these effects in muscle also reduce secretion of insulin-like peptides at a distance from the brain. Reduced insulin secretion from the brain may subsequently reinforce longevity assurance through decreased systemic insulin/IGF signaling.

  13. Reversible increase of serum activin A levels in women with Graves' disease.

    Centanni, M; Viceconti, N; Luisi, S; Reis, F M; Gargano, L; Maiani, F; Franchi, A; Canettieri, G; Petraglia, F

    2002-12-01

    The aim of this study was to analyze the serum levels of activin A in hyperthyroid patients with Graves' disease. Serum activin A and FSH levels were measured in a total of 93 females (64 regularly cycling and 29 post-menopausal). Of these, 20 were hyperthyroid patients with Graves disease, 33 were euthyroid goitrous patients (20 had autoimmune thyroiditis AT and 13 only had goiter) representing the internal control group and 40 were healthy subjects representing the external control group. Serum levels of activin A were higher in goitrous patients with AT than in control subjects (p=0.0388). Activin A levels were almost doubled in the cycling and in post-menopausal hyperthyroid women (0.91+/-0.21 vs 0.43+/-0.07 microg/l; phyperthyroid patients, studied even after methimazole treatment, that increase was substantially reversed, once euthyroidism was attained (p=0.002). These findings indicate that thyroid function and autoimmune processes significantly affect serum levels of activin A in patients with Graves' disease. PMID:12553556

  14. Differential regulation of follicle stimulating hormone by activin A and TGFB1 in murine gonadotropes

    Miller William L

    2005-12-01

    Full Text Available Abstract Background Activins stimulate the synthesis of follicle stimulating hormone (FSH in pituitary gonadotropes, at least in part, by inducing transcription of its beta subunit (Fshb. Evidence from several laboratories studying transformed murine LbetaT2 gonadotropes indicates that activins signal through Smad-dependent and/or Smad-independent pathways, similar to those used by transforming growth factor beta-1 (TGFB1 in other cell types. Therefore, given common intracellular signaling mechanisms of these two ligands, we examined whether TGFBs can also induce transcription of Fshb in LbetaT2 cells as well as in purified primary murine gonadotropes. Methods Murine Fshb promoter-reporter (-1990/+1 mFshb-luc activity was measured in LbetaT2 cells treated with activin A or TGFB1, and in cells transfected with either activin or TGFB receptors. The ability of the ligands to stimulate phosphorylation of Smads 2 and 3 in LbetaT2 cells was measured by western blot analysis, and expression of TGFB type I and II receptors was assessed by reverse transcriptase polymerase chain reaction in both LbetaT2 cells and primary gonadotropes purified from male mice of different ages. Finally, regulation of endogenous murine Fshb mRNA levels by activin A and TGFB1 in purified gonadotropes and whole pituitary cultures was measured using quantitative RT-PCR. Results Activin A dose-dependently stimulated -1990/+1 mFshb-luc activity in LbetaT2 cells, but TGFB1 had no effect at doses up to 5 nM. Similarly, activin A, but not TGFB1, stimulated Smad 2 and 3 phosphorylation in these cells. Constitutively active forms of the activin (Acvr1b-T206D and TGFB (TGFBR1-T204D type I receptors strongly stimulated -1990/+1 mFshb-luc activity, showing that mechanisms down stream of Tgfbr1 seem to be intact in LbetaT2 cells. RT-PCR analysis of LbetaT2 cells and whole adult murine pituitaries indicated that both expressed Tgfbr1 mRNA, but that Tgfbr2 was not detected in LbetaT2 cells

  15. Tissue absence initiates regeneration through follistatin-mediated inhibition of activin signaling.

    Gaviño, Michael A; Wenemoser, Danielle; Wang, Irving E; Reddien, Peter W

    2013-01-01

    Regeneration is widespread, but mechanisms that activate regeneration remain mysterious. Planarians are capable of whole-body regeneration and mount distinct molecular responses to wounds that result in tissue absence and those that do not. A major question is how these distinct responses are activated. We describe a follistatin homolog (Smed-follistatin) required for planarian regeneration. Smed-follistatin inhibition blocks responses to tissue absence but does not prevent normal tissue turnover. Two activin homologs (Smed-activin-1 and Smed-activin-2) are required for the Smed-follistatin phenotype. Finally, Smed-follistatin is wound-induced and expressed at higher levels following injuries that cause tissue absence. These data suggest that Smed-follistatin inhibits Smed-Activin proteins to trigger regeneration specifically following injuries involving tissue absence and identify a mechanism critical for regeneration initiation, a process important across the animal kingdom. DOI:http://dx.doi.org/10.7554/eLife.00247.001. PMID:24040508

  16. Upregulation of activin-B and follistatin in pulmonary fibrosis ¿ a translational study using human biopsies and a specific inhibitor in mouse fibrosis models

    MyllÀrniemi, Marjukka; Tikkanen, Jussi; Hulmi, Juha J.; Pasternack, Arja; Sutinen, Eva; Rönty, Mikko; LeppÀranta, Outi; Ma, Hongqiang; Ritvos, Olli; Koli, Katri

    2014-01-01

    Abstract Background Activins are members of the TGF-ß superfamily of growth factors. First, we identified by expression array screening that activin-B and follistatin are upregulated in human idiopathic pulmonary fibrosis (IPF). Next, we wanted to clarify their specific role in lung fibrosis formation. Methods We used specific antibodies for activin-A and -B subunits and follistatin to measure and localiz...

  17. Upregulation of activin-B and follistatin in pulmonary fibrosis – a translational study using human biopsies and a specific inhibitor in mouse fibrosis models

    Myllärniemi, Marjukka; Tikkanen, Jussi; Hulmi, Juha; Pasternack, Arja; Sutinen, Eva; Rönty, Mikko; Leppäranta, Outi; Ma, Hongqiang; Ritvos, Olli; Koli, Katri

    2014-01-01

    Background: Activins are members of the TGF-ß superfamily of growth factors. First, we identified by expression array screening that activin-B and follistatin are upregulated in human idiopathic pulmonary fibrosis (IPF). Next, we wanted to clarify their specific role in lung fibrosis formation. Methods: We used specific antibodies for activin-A and -B subunits and follistatin to measure and localize their levels in idiopathic pulmonary fibrosis and control lung biopsies. To inhibit activi...

  18. Effect of physical training on liver expression of activin A and follistatin in a nonalcoholic fatty liver disease model in rats

    de Silva, R N; Bueno, P.G.; L.R.S. Avó; Nonaka, K.O.; H.S. Selistre-Araújo; A.M.O. Leal

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by fat accumulation in the liver and is associated with obesity and insulin resistance. Activin A is a member of the transforming growth factor beta (TGF)-β superfamily and inhibits hepatocyte growth. Follistatin antagonizes the biological actions of activin. Exercise is an important therapeutic strategy to reduce the metabolic effects of obesity. We evaluated the pattern of activin A and follistatin liver expression in obese rats subj...

  19. Expression of immunoreactive activin A protein in remodeling lesions associated with interstitial pulmonary fibrosis.

    Matsuse, T.; Ikegami, A; Ohga, E.; Hosoi, T; Oka, T.; Kida, K; Fukayama, M; Inoue, S.; Nagase, T; Ouchi, Y.; Fukuchi, Y.

    1996-01-01

    The expression of activin A, one of the transforming growth factor-beta supergene family, was studied in various pulmonary conditions associated with interstitial pulmonary fibrosis (3 cases with diffuse alveolar damage, 6 cases with idiopathic pulmonary fibrosis, and 1 case with pulmonary fibrosis associated with rheumatoid arthritis) using immunohistochemical techniques on paraffin-embedded sections. Controls consisted of 10 cases with normal pulmonary parenchyma, and 2 cases with primary p...

  20. Overexpression of Leap2 impairs Xenopus embryonic development and modulates FGF and activin signals.

    Thiébaud, Pierre; Garbay, Bertrand; Auguste, Patrick; Sénéchal, Caroline Le; Maciejewska, Zuzanna; Fédou, Sandrine; Gauthereau, Xavier; Costaglioli, Patricia; Thézé, Nadine

    2016-09-01

    Besides its widely described function in the innate immune response, no other clear physiological function has been attributed so far to the Liver-Expressed-Antimicrobial-Peptide 2 (LEAP2). We used the Xenopus embryo model to investigate potentially new functions for this peptide. We identified the amphibian leap2 gene which is highly related to its mammalian orthologues at both structural and sequence levels. The gene is expressed in the embryo mostly in the endoderm-derived tissues. Accordingly it is induced in pluripotent animal cap cells by FGF, activin or a combination of vegT/β-catenin. Modulating leap2 expression level by gain-of-function strategy impaired normal embryonic development. When overexpressed in pluripotent embryonic cells derived from blastula animal cap explant, leap2 stimulated FGF while it reduced the activin response. Finally, we demonstrate that LEAP2 blocks FGF-induced migration of HUman Vascular Endothelial Cells (HUVEC). Altogether these findings suggest a model in which LEAP2 could act at the extracellular level as a modulator of FGF and activin signals, thus opening new avenues to explore it in relation with cellular processes such as cell differentiation and migration. PMID:27335344

  1. Overexpression of activin-A and -B in malignant mesothelioma – Attenuated Smad3 signaling responses and ERK activation promote cell migration and invasive growth

    Activin-A and activin-B, members of the TGF-β superfamily, are regulators of reproductive functions, inflammation and wound healing. These dimeric molecules regulate various cellular activities such as proliferation, migration and suvival. Malignant mesothelioma is an asbestos exposure related tumor affecting mainly pleura and it usually has a dismal prognosis. Here, we demonstrate that both activin-A and -B are abundantly expressed in mesothelioma tumor tissue as well as in cultured primary and established mesothelioma cells. Migratory and invasive mesothelioma cells were also found to have attenuated activation of the Smad2/3 pathway in response to activins. Migration and invasive growth of the cells in three-dimentional matrix was prevented by inhibition of activin activity using a soluble activin receptor 2B (sActR2B-Fc). This was associated with decreased ERK activity. Furthermore, migration and invasive growth was significantly inhibited by blocking ERK phosphorylation. Mesothelioma tumors are locally invasive and our results clearly suggest that acivins have a tumor-promoting function in mesothelioma through increasing expression and switching from canonical Smad3 pathway to non-canonical ERK pathway signaling. Blocking activin activity offers a new therapeutic approach for inhibition of mesothelioma invasive growth. - Highlights: • Activin-A and activin-B are highly expressed in mesothelioma. • Mesothelioma cell migration and invasive growth can be blocked with sActR2B. • Activin induced Smad3 activity is attenuated in invasive mesothelioma cells. • Activins induce ERK activity in mesothelioma cells

  2. Overexpression of activin-A and -B in malignant mesothelioma – Attenuated Smad3 signaling responses and ERK activation promote cell migration and invasive growth

    Tamminen, Jenni A.; Yin, Miao [Research Programs Unit, Translational Cancer Biology, University of Helsinki (Finland); Transplantation Laboratory, Haartman Institute, University of Helsinki (Finland); Rönty, Mikko [Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Pathology, University of Helsinki (Finland); Sutinen, Eva [Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Medicine, Division of Pulmonary Medicine, University of Helsinki (Finland); Pasternack, Arja; Ritvos, Olli [Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Bacteriology and Immunology, University of Helsinki (Finland); Myllärniemi, Marjukka [Transplantation Laboratory, Haartman Institute, University of Helsinki (Finland); Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Medicine, Division of Pulmonary Medicine, University of Helsinki (Finland); Koli, Katri, E-mail: katri.koli@helsinki.fi [Research Programs Unit, Translational Cancer Biology, University of Helsinki (Finland); Transplantation Laboratory, Haartman Institute, University of Helsinki (Finland)

    2015-03-01

    Activin-A and activin-B, members of the TGF-β superfamily, are regulators of reproductive functions, inflammation and wound healing. These dimeric molecules regulate various cellular activities such as proliferation, migration and suvival. Malignant mesothelioma is an asbestos exposure related tumor affecting mainly pleura and it usually has a dismal prognosis. Here, we demonstrate that both activin-A and -B are abundantly expressed in mesothelioma tumor tissue as well as in cultured primary and established mesothelioma cells. Migratory and invasive mesothelioma cells were also found to have attenuated activation of the Smad2/3 pathway in response to activins. Migration and invasive growth of the cells in three-dimentional matrix was prevented by inhibition of activin activity using a soluble activin receptor 2B (sActR2B-Fc). This was associated with decreased ERK activity. Furthermore, migration and invasive growth was significantly inhibited by blocking ERK phosphorylation. Mesothelioma tumors are locally invasive and our results clearly suggest that acivins have a tumor-promoting function in mesothelioma through increasing expression and switching from canonical Smad3 pathway to non-canonical ERK pathway signaling. Blocking activin activity offers a new therapeutic approach for inhibition of mesothelioma invasive growth. - Highlights: • Activin-A and activin-B are highly expressed in mesothelioma. • Mesothelioma cell migration and invasive growth can be blocked with sActR2B. • Activin induced Smad3 activity is attenuated in invasive mesothelioma cells. • Activins induce ERK activity in mesothelioma cells.

  3. Activin A secreted by human mesenchymal stem cells induces neuronal development and neurite outgrowth in an in vitro model of Alzheimer's disease: neurogenesis induced by MSCs via activin A.

    Park, Sang Eon; Lee, Jeongmin; Chang, Eun Hyuk; Kim, Jong Hwa; Sung, Ji-Hee; Na, Duk L; Chang, Jong Wook

    2016-08-01

    Alzheimer's disease (AD) is characterized by progressive loss of memory in addition to cortical atrophy. Cortical atrophy in AD brains begins in the parietal and temporal lobes, which are near the subventricular zone (SVZ). The aim of this study was to activate the neurogenesis in the SVZ of AD brains by human mesenchymal stem cells (hMSCs). Neural stem cells (NSCs) were isolated from SVZ of 4-month-old 5XFAD mice. Co-culture of hMSCs with SVZ-derived NSCs from 5XFAD mice induced neuronal development and neurite outgrowth. To examine the inducing factor of neurogenesis, human cytokine array was performed with co-cultured media, and revealed elevated release of activin A from hMSCs. Also, we confirmed that the mRNA levels of activin A and activin receptor in the SVZ of 5XFAD mice were significantly lower than normal mice. Treatment of human recombinant activin A in SVZ-derived NSCs from 5XFAD mice induced neuronal development and neurite outgrowth. These data suggest that use of hMSCs and activin A to recover neurogenesis in future studies of cortical regeneration to treat AD. PMID:27515053

  4. Changes in the reproductive function and developmental phenotypes in mice following intramuscular injection of an activin betaA-expressing plasmid

    Mayo Kelly E

    2008-12-01

    Full Text Available Abstract Background The TGF-beta family protein activin has numerous reported activities with some uncertainty in the reproductive axis and development. The precise roles of activin in in vivo system were investigated using a transient gain of function model. Methods To this end, an expression plasmid, pCMV-rAct, with the activin betaA cDNA fused to the cytomegalovirus promoter, was introduced into muscle of the female adult mice by direct injection. Results Activin betaA mRNA was detected in the muscle by RT-PCR and subsequent Southern blot analysis. Activin betaA was also detected, and western blot analysis revealed a relatively high level of serum activin with correspondingly increased FSH. In the pCMV-rAct-injected female mice, estrus stage within the estrous cycle was extended. Moreover, increased numbers of corpora lutea and a thickened granulosa cell layer with a small antrum in tertiary follicles within the ovary were observed. When injected female mice were mated with males of proven fertility, a subset of embryos died in utero, and most of those that survived exhibited increased body weight. Conclusion Taken together, our data reveal that activin betaA can directly influence the estrous cycle, an integral part of the reproduction in female mice and activin betaA can also influence the embryo development as an endocrine fashion.

  5. Concentration of activin A and follistatin in follicular fluid from human small antral follicles associated to gene expression of the corresponding granulosa cells

    Jeppesen, J V; Nielsen, M E; Kristensen, S G;

    2012-01-01

    activin A levels increased in follicles exceeding 10 mm in diameter. Levels of activin A and inhibin B showed a highly significant inverse association. Follistatin showed highly significant positive associations with AMH and inhibin B levels and with FSHR and AR gene expression in GC. This study revealed...... unexpected associations that probably reflect the complicated regulatory mechanisms governing human folliculogenesis....

  6. Serum levels of activin A and inhibin A are not related to the increased susceptibility to pre-eclampsia in type I diabetic pregnancies

    Ekbom, Pia; Damm, Peter; Andersson, Anna-Maria;

    2006-01-01

    Activin A and inhibin A have been found to be elevated in women without diabetes subsequently developing pre-eclampsia. The aim was to investigate whether activin A and inhibin A in serum were elevated in type I diabetic women after developing pre-eclampsia and, if so, were they clinically useful...

  7. A late requirement for Wnt and FGF signalling during activin-induced formation of foregut endoderm from mouse embryonic stem cells

    Hansson, Mattias; Petersen, Dorthe Rønn; Peterslund, Janny M.L.;

    2009-01-01

    found at the lowest activin concentration. The expression of Gsc and other anterior markers induced by activin is prevented by treatment with BMP4, which induces T expression and subsequent mesodermal development. We show that canonical Wnt signaling is required only during late stages of activin......-induced development of Sox17-expressing endodermal cells. Furthermore, Dkk1 treatment is less effective in reducing development of Sox17(+) endodermal cells in adherent culture than in aggregate culture and appears to inhibit nodal-mediated induction of Sox17(+) cells more effectively than activin-mediated induction...... requires FGF signaling in adherent but not aggregate culture. Lastly, we demonstrate that activin-induced definitive endoderm derived from mouse ES cells can incorporate into the developing foregut endoderm in vivo and adopt a mostly anterior foregut character after further culture in vitro....

  8. A crucial role of activin A-mediated growth hormone suppression in mouse and human heart failure.

    Noritoshi Fukushima

    Full Text Available Infusion of bone marrow-derived mononuclear cells (BMMNC has been reported to ameliorate cardiac dysfunction after acute myocardial infarction. In this study, we investigated whether infusion of BMMNC is also effective for non-ischemic heart failure model mice and the underlying mechanisms. Intravenous infusion of BMMNC showed transient cardioprotective effects on animal models with dilated cardiomyopathy (DCM without their engraftment in heart, suggesting that BMMNC infusion improves cardiac function via humoral factors rather than their differentiation into cardiomyocytes. Using conditioned media from sorted BMMNC, we found that the cardioprotective effects were mediated by growth hormone (GH secreted from myeloid (Gr-1(+ cells and the effects was partially mediated by signal transducer and activator of transcription 3 in cardiomyocytes. On the other hand, the GH expression in Gr-1(+ cells was significantly downregulated in DCM mice compared with that in healthy control, suggesting that the environmental cue in heart failure might suppress the Gr-1(+ cells function. Activin A was upregulated in the serum of DCM models and induced downregulation of GH levels in Gr-1(+ cells and serum. Furthermore, humoral factors upregulated in heart failure including angiotensin II upregulated activin A in peripheral blood mononuclear cells (PBMNC via activation of NFκB. Similarly, serum activin A levels were also significantly higher in DCM patients with heart failure than in healthy subjects and the GH levels in conditioned medium from PBMNC of DCM patients were lower than that in healthy subjects. Inhibition of activin A increased serum GH levels and improved cardiac function of DCM model mice. These results suggest that activin A causes heart failure by suppressing GH activity and that inhibition of activin A might become a novel strategy for the treatment of heart failure.

  9. Efficient retina formation requires suppression of both Activin and BMP signaling pathways in pluripotent cells

    Kimberly A. Wong

    2015-03-01

    Full Text Available Retina formation requires the correct spatiotemporal patterning of key regulatory factors. While it is known that repression of several signaling pathways lead to specification of retinal fates, addition of only Noggin, a known BMP antagonist, can convert pluripotent Xenopus laevis animal cap cells to functional retinal cells. The aim of this study is to determine the intracellular molecular events that occur during this conversion. Surprisingly, blocking BMP signaling alone failed to mimic Noggin treatment. Overexpressing Noggin in pluripotent cells resulted in a concentration-dependent suppression of both Smad1 and Smad2 phosphorylation, which act downstream of BMP and Activin signaling, respectively. This caused a decrease in downstream targets: endothelial marker, xk81, and mesodermal marker, xbra. We treated pluripotent cells with dominant-negative receptors or the chemical inhibitors, dorsomorphin and SB431542, which each target either the BMP or Activin signaling pathway. We determined the effect of these treatments on retina formation using the Animal Cap Transplant (ACT assay; in which treated pluripotent cells were transplanted into the eye field of host embryos. We found that inhibition of Activin signaling, in the presence of BMP signaling inhibition, promotes efficient retinal specification in Xenopus tissue, mimicking the affect of adding Noggin alone. In whole embryos, we found that the eye field marker, rax, expanded when adding both dominant-negative Smad1 and Smad2, as did treating the cells with both dorsomorphin and SB431542. Future studies could translate these findings to a mammalian culture assay, in order to more efficiently produce retinal cells in culture.

  10. A soluble activin receptor type IIB does not improve blood glucose in streptozotocin-treated mice.

    Wang, Qian; Guo, Tingqing; Portas, Jennifer; McPherron, Alexandra C

    2015-01-01

    Type 1 diabetes mellitus (T1DM), or insulin dependent DM, is accompanied by decreased muscle mass. The growth factor myostatin (MSTN) is a negative regulator of muscle growth, and a loss of MSTN signaling has been shown to increase muscle mass and prevent the development of obesity, insulin resistance and lipodystrophic diabetes in mice. The effects of MSTN inhibition in a T1DM model on muscle mass and blood glucose are unknown. We asked whether MSTN inhibition would increase muscle mass and decrease hyperglycemia in mice treated with streptozotocin (STZ) to destroy pancreatic beta cells. After diabetes developed, mice were treated with a soluble MSTN/activin receptor fused to Fc (ACVR2B:Fc). ACVR2B:Fc increased body weight and muscle mass compared to vehicle treated mice. Unexpectedly, ACVR2B:Fc reproducibly exacerbated hyperglycemia within approximately one week of administration. ACVR2B:Fc treatment also elevated serum levels of the glucocorticoid corticosterone. These results suggest that although MSTN/activin inhibitors increased muscle mass, they may be counterproductive in improving health in patients with T1DM. PMID:25561902

  11. Vascular Endothelial Growth Factor-A (VEGF-A) Mediates Activin A-Induced Human Trophoblast Endothelial-Like Tube Formation.

    Li, Yan; Zhu, Hua; Klausen, Christian; Peng, Bo; Leung, Peter C K

    2015-11-01

    Remodeling of maternal spiral arteries during pregnancy requires a subpopulation of extravillous cytotrophoblasts (EVTs) to differentiate into endovascular EVTs. Activin A, which is abundantly expressed at the maternal-fetal interface, has been shown to promote trophoblast invasion, but its role in endovascular differentiation remains unknown. Vascular endothelial growth factor-A (VEGF-A) is well recognized as a key regulator in trophoblast endovascular differentiation. Whether and how activin A might regulate VEGF-A production in human trophoblasts and its relationship to endovascular differentiation have yet to be determined. In the present study, we found that activin A increased VEGF-A production in primary and immortalized (HTR8/SVneo) human EVT cells. In addition, activin A enhanced HTR8/SVneo endothelial-like tube formation, and these effects were attenuated by pretreatment with small interfering RNA targeting VEGF-A or the VEGF receptor 1/2 inhibitor SU4312. Pretreatment with the activin/TGF-β type 1 receptor (ALK4/5/7) inhibitor SB431542 abolished the stimulatory effects of activin A on phosphorylated mothers against decapentaplegic (SMAD)-2/3 phosphorylation, VEGF-A production, and endothelial-like tube formation. Moreover, small interfering RNA-mediated down-regulation of SMAD2, SMAD3, or common SMAD4 abolished the effects of activin A on VEGF-A production and endothelial-like tube formation. In conclusion, activin A may promote human trophoblast cell endothelial-like tube formation by up-regulating VEGF-A production in an SMAD2/3-SMAD4-dependent manner. These findings provide insight into the cellular and molecular events regulated by activin A during human implantation. PMID:26327470

  12. Graded Nodal/Activin signaling titrates conversion of quantitative phospho-Smad2 levels into qualitative embryonic stem cell fate decisions.

    Kian Leong Lee

    2011-06-01

    Full Text Available Nodal and Activin are morphogens of the TGFbeta superfamily of signaling molecules that direct differential cell fate decisions in a dose- and distance-dependent manner. During early embryonic development the Nodal/Activin pathway is responsible for the specification of mesoderm, endoderm, node, and mesendoderm. In contradiction to this drive towards cellular differentiation, the pathway also plays important roles in the maintenance of self-renewal and pluripotency in embryonic and epiblast stem cells. The molecular basis behind stem cell interpretation of Nodal/Activin signaling gradients and the undertaking of disparate cell fate decisions remains poorly understood. Here, we show that any perturbation of endogenous signaling levels in mouse embryonic stem cells leads to their exit from self-renewal towards divergent differentiation programs. Increasing Nodal signals above basal levels by direct stimulation with Activin promotes differentiation towards the mesendodermal lineages while repression of signaling with the specific Nodal/Activin receptor inhibitor SB431542 induces trophectodermal differentiation. To address how quantitative Nodal/Activin signals are translated qualitatively into distinct cell fates decisions, we performed chromatin immunoprecipitation of phospho-Smad2, the primary downstream transcriptional factor of the Nodal/Activin pathway, followed by massively parallel sequencing, and show that phospho-Smad2 binds to and regulates distinct subsets of target genes in a dose-dependent manner. Crucially, Nodal/Activin signaling directly controls the Oct4 master regulator of pluripotency by graded phospho-Smad2 binding in the promoter region. Hence stem cells interpret and carry out differential Nodal/Activin signaling instructions via a corresponding gradient of Smad2 phosphorylation that selectively titrates self-renewal against alternative differentiation programs by direct regulation of distinct target gene subsets and Oct4

  13. Activin Plays a Key Role in the Maintenance of Long-Term Memory and Late-LTP

    Ageta, Hiroshi; Ikegami, Shiro; Miura, Masami; Masuda, Masao; Migishima, Rika; Hino, Toshiaki; Takashima, Noriko; Murayama, Akiko; Sugino, Hiromu; Setou, Mitsutoshi; Kida, Satoshi; Yokoyama, Minesuke; Hasegawa, Yoshihisa; Tsuchida, Kunihiro; Aosaki, Toshihiko; Inokuchi, Kaoru

    2010-01-01

    A recent study has revealed that fear memory may be vulnerable following retrieval, and is then reconsolidated in a protein synthesis-dependent manner. However, little is known about the molecular mechanisms of these processes. Activin [beta]A, a member of the TGF-[beta] superfamily, is increased in activated neuronal circuits and regulates…

  14. Induction of primitive streak and mesendoderm formation in monolayer hESC culture by activation of TGF-β signaling pathway by Activin B

    Mahmood, Amer; Aldahmash, Abdullah

    2015-01-01

    Human embryonic stem cells (hESCs) have the ability to differentiate into all human cells, however controlling the differentiation has always been a challenge. In the present study we have investigated the direct differentiation of hESCs on MEFs by using TGF-β signaling pathway activators Activin A and Activin B. Activation of the TGF-β pathway with Activin B in low serum highly induced primitive streak and mesendoderm formation after 24 h, which included up-regulation of SOX 17 and BRACHYURY...

  15. Inhibin and activin modulate the release of gonadotropin-releasing hormone, human chorionic gonadotropin, and progesterone from cultured human placental cells.

    Petraglia, F; Vaughan, J.; Vale, W

    1989-01-01

    Although it is clear that human chorionic gonadotropin (hCG) and progesterone play fundamental roles in pregnancy, the regulation of placental production of these hormones remains to be defined. Recent evidence suggests that the human placenta expresses proteins related to inhibin (alpha beta subunits) or activin (beta beta subunits). Inhibin and activin (follicle-stimulating hormone-releasing protein) possess opposing activities in several biological systems including pituitary follicle-stim...

  16. A late requirement for Wnt and FGF signaling during activin-induced formation of foregut endoderm from mouse embryonic stem cells

    Hansson, Mattias; Olesen, Dorthe R.; Peterslund, Janny M. L.; Engberg, Nina; Kahn, Morten; Winzi, Maria; Klein, Tino; Maddox-Hyttel, Poul; Serup, Palle

    2009-01-01

    Here we examine how BMP, Wnt, and FGF signaling modulate activin-induced mesendodermal differentiation of mouse ES cells grown under defined conditions in adherent monoculture. We monitor ES cells containing reporter genes for markers of primitive streak (PS) and its progeny and extend previous findings on the ability of increasing concentrations of activin to progressively induce more ES cell progeny to anterior PS and endodermal fates. We find that the number of Sox17- and Gsc-expressing ce...

  17. Follistatin、Activin A与BMP-4在大鼠脑发育过程中的表达及意义%Expression and significance of follistatin, activin A and BMP-4 during the development of rat brain

    卢彦春; 张蕾; 穆长征; 李伟伟; 金辉

    2012-01-01

    目的 观察卵泡抑素(FS)、激活素(Activin)A与骨形态发生蛋白(BMP)-4在大鼠脑发育过程中的表达变化规律.方法 将同期受孕30只SD大鼠按照胎鼠发育时间随机分为胚胎8.5 d(E8.5组)、13 d(E13组)、18d(E18组)及出生后3 d(P3组)、7d(P7组)、30 d(P30组)各5只,采用免疫组化ABC法检测各组脑皮质、纹状体、海马齿状回、嗅球组织中FS、Activin A、BMP-4表达情况.结果 FS与Activin A在大鼠脑内广泛分布,二者在E8.5组表达最高,并以E13组表达强度开始降低,在P30组降至最低,同一发育阶段各脑区表达无明显差异;在大鼠的相应脑区BMP-4亦广泛表达,但从E8.5组到P7组持续低表达,尤以海马表达极弱,P30组在不同脑区呈高表达,各发育阶段以大脑皮质和纹状体表达略强.结论 FS、Activin A与BMP-4在大鼠不同发育年龄各脑区呈波动性表达,表达水平与发育年龄密切相关.%Objective To observe the variation rule of follistatin ( FS) , Activin A and bone morphogenetic protein (BMP)-4 expression during the brain development of rat. Methods Thirty simultaneous pregnant SD rats were randomly divided into six groups, with five in each group; embryo 8. 5 d( E8. 5 group) , embryo 13 d( E13 group) , embryo 18 d (E18 group) and 3 ds after born(P3 group) , 7 ds after born(P7 group) , 30 ds after bom(P30 group). Expressions of FS, Activin A and BMP4- in the cortex, striatum, hippocampus and olfactory bulb were examined by means of ABC immu-nohistochemical method. Results FS and Activin A expression level in rat brain was strong in E8.5 group, the level began to descend at E13 group, and decreased to the minimum at P30 group. In the same phase, no distinct differences patterns were found in different tissues. BMP-4 was widely expressed in rat brain, but from E 8. 5 group to P7 group appeared with a lower level, especially weak in the hippocampus. The positive cells in P30 group were abundant at different brain regions

  18. Systemic Activin signaling independently regulates sugar homeostasis, cellular metabolism, and pH balance in Drosophila melanogaster

    Ghosh, Arpan C.; O’Connor, Michael B.

    2014-01-01

    Deciphering the systemic signaling mechanisms that modulate metabolic activity has important implications owing to the central role that metabolism plays in regulating organismal adaptability and survival. Here, we show that loss of Drosophila TGF-β/Activin-like ligand Dawdle (Daw) causes major alterations in larval metabolic activity, including accumulation of tricarboxylic acid cycle intermediates, acidification of hemolymph pH, and misregulation of insulin signaling and nuclear-encoded mit...

  19. Anterograde Activin signaling regulates postsynaptic membrane potential and GluRIIA/B abundance at the Drosophila neuromuscular junction.

    Myung-Jun Kim

    Full Text Available Members of the TGF-β superfamily play numerous roles in nervous system development and function. In Drosophila, retrograde BMP signaling at the neuromuscular junction (NMJ is required presynaptically for proper synapse growth and neurotransmitter release. In this study, we analyzed whether the Activin branch of the TGF-β superfamily also contributes to NMJ development and function. We find that elimination of the Activin/TGF-β type I receptor babo, or its downstream signal transducer smox, does not affect presynaptic NMJ growth or evoked excitatory junctional potentials (EJPs, but instead results in a number of postsynaptic defects including depolarized membrane potential, small size and frequency of miniature excitatory junction potentials (mEJPs, and decreased synaptic densities of the glutamate receptors GluRIIA and B. The majority of the defective smox synaptic phenotypes were rescued by muscle-specific expression of a smox transgene. Furthermore, a mutation in actβ, an Activin-like ligand that is strongly expressed in motor neurons, phenocopies babo and smox loss-of-function alleles. Our results demonstrate that anterograde Activin/TGF-β signaling at the Drosophila NMJ is crucial for achieving normal abundance and localization of several important postsynaptic signaling molecules and for regulating postsynaptic membrane physiology. Together with the well-established presynaptic role of the retrograde BMP signaling, our findings indicate that the two branches of the TGF-β superfamily are differentially deployed on each side of the Drosophila NMJ synapse to regulate distinct aspects of its development and function.

  20. The structure of the follistatin:activin complex reveals antagonism of both type I and type II receptor binding

    Thompson, T.B.; Lerch, T.F.; Cook, R.W.; Woodruff, T.K.; Jardetzky, T.S. (NWU)

    2010-03-08

    TGF-{beta} ligands stimulate diverse cellular differentiation and growth responses by signaling through type I and II receptors. Ligand antagonists, such as follistatin, block signaling and are essential regulators of physiological responses. Here we report the structure of activin A, a TGF-{beta} ligand, bound to the high-affinity antagonist follistatin. Two follistatin molecules encircle activin, neutralizing the ligand by burying one-third of its residues and its receptor binding sites. Previous studies have suggested that type I receptor binding would not be blocked by follistatin, but the crystal structure reveals that the follistatin N-terminal domain has an unexpected fold that mimics a universal type I receptor motif and occupies this receptor binding site. The formation of follistatin:BMP:type I receptor complexes can be explained by the stoichiometric and geometric arrangement of the activin:follistatin complex. The mode of ligand binding by follistatin has important implications for its ability to neutralize homo- and heterodimeric ligands of this growth factor family.

  1. Effect of physical training on liver expression of activin A and follistatin in a nonalcoholic fatty liver disease model in rats

    Nonalcoholic fatty liver disease (NAFLD) is characterized by fat accumulation in the liver and is associated with obesity and insulin resistance. Activin A is a member of the transforming growth factor beta (TGF)-β superfamily and inhibits hepatocyte growth. Follistatin antagonizes the biological actions of activin. Exercise is an important therapeutic strategy to reduce the metabolic effects of obesity. We evaluated the pattern of activin A and follistatin liver expression in obese rats subjected to swimming exercise. Control rats (C) and high-fat (HF) diet-fed rats were randomly assigned to a swimming training group (C-Swim and HF-Swim) or a sedentary group (C-Sed and HF-Sed). Activin βA subunit mRNA expression was significantly higher in HF-Swim than in HF-Sed rats. Follistatin mRNA expression was significantly lower in C-Swim and HF-Swim than in either C-Sed or HF-Sed animals. There was no evidence of steatosis or inflammation in C rats. In contrast, in HF animals the severity of steatosis ranged from grade 1 to grade 3. The extent of liver parenchyma damage was less in HF-Swim animals, with the severity of steatosis ranging from grade 0 to grade 1. These data showed that exercise may reduce the deleterious effects of a high-fat diet on the liver, suggesting that the local expression of activin-follistatin may be involved

  2. Induction of primitive streak and mesendoderm formation in monolayer hESC culture by activation of TGF-β signaling pathway by Activin B.

    Mahmood, Amer; Aldahmash, Abdullah

    2015-11-01

    Human embryonic stem cells (hESCs) have the ability to differentiate into all human cells, however controlling the differentiation has always been a challenge. In the present study we have investigated the direct differentiation of hESCs on MEFs by using TGF-β signaling pathway activators Activin A and Activin B. Activation of the TGF-β pathway with Activin B in low serum highly induced primitive streak and mesendoderm formation after 24 h, which included up-regulation of SOX 17 and BRACHYURY protein and gene expression. Continuous stimulation with Activin B in 2% serum further induced mesendoderm formation by increased gene expression of Brachyury, SOX17, MEOX and FOX at the same time we found down-regulation of neuroectodermal marker genes. Further, by stimulating the mesodermal cells by BMP-2 we succeeded to induce mesenchymal like cells with high expression of mesenchymal markers including; MEOX, FOX, RUNX2, COL1 and OSTEOPONTIN. In conclusion we have directed the differentiation of hESCs as monolayer to primitive streak like cells with Activin B and further into pure mesoderm and mesenchymal like cells by BMP-2. PMID:26586995

  3. Effect of physical training on liver expression of activin A and follistatin in a nonalcoholic fatty liver disease model in rats

    R.N. Silva

    2014-09-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is characterized by fat accumulation in the liver and is associated with obesity and insulin resistance. Activin A is a member of the transforming growth factor beta (TGF-β superfamily and inhibits hepatocyte growth. Follistatin antagonizes the biological actions of activin. Exercise is an important therapeutic strategy to reduce the metabolic effects of obesity. We evaluated the pattern of activin A and follistatin liver expression in obese rats subjected to swimming exercise. Control rats (C and high-fat (HF diet-fed rats were randomly assigned to a swimming training group (C-Swim and HF-Swim or a sedentary group (C-Sed and HF-Sed. Activin βA subunit mRNA expression was significantly higher in HF-Swim than in HF-Sed rats. Follistatin mRNA expression was significantly lower in C-Swim and HF-Swim than in either C-Sed or HF-Sed animals. There was no evidence of steatosis or inflammation in C rats. In contrast, in HF animals the severity of steatosis ranged from grade 1 to grade 3. The extent of liver parenchyma damage was less in HF-Swim animals, with the severity of steatosis ranging from grade 0 to grade 1. These data showed that exercise may reduce the deleterious effects of a high-fat diet on the liver, suggesting that the local expression of activin-follistatin may be involved.

  4. Effect of physical training on liver expression of activin A and follistatin in a nonalcoholic fatty liver disease model in rats.

    Silva, R N; Bueno, P G; Avó, L R S; Nonaka, K O; Selistre-Araújo, H S; Leal, A M O

    2014-09-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by fat accumulation in the liver and is associated with obesity and insulin resistance. Activin A is a member of the transforming growth factor beta (TGF)-β superfamily and inhibits hepatocyte growth. Follistatin antagonizes the biological actions of activin. Exercise is an important therapeutic strategy to reduce the metabolic effects of obesity. We evaluated the pattern of activin A and follistatin liver expression in obese rats subjected to swimming exercise. Control rats (C) and high-fat (HF) diet-fed rats were randomly assigned to a swimming training group (C-Swim and HF-Swim) or a sedentary group (C-Sed and HF-Sed). Activin βA subunit mRNA expression was significantly higher in HF-Swim than in HF-Sed rats. Follistatin mRNA expression was significantly lower in C-Swim and HF-Swim than in either C-Sed or HF-Sed animals. There was no evidence of steatosis or inflammation in C rats. In contrast, in HF animals the severity of steatosis ranged from grade 1 to grade 3. The extent of liver parenchyma damage was less in HF-Swim animals, with the severity of steatosis ranging from grade 0 to grade 1. These data showed that exercise may reduce the deleterious effects of a high-fat diet on the liver, suggesting that the local expression of activin-follistatin may be involved. PMID:25075578

  5. Effect of physical training on liver expression of activin A and follistatin in a nonalcoholic fatty liver disease model in rats

    Silva, R.N. [Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP (Brazil); Bueno, P.G. [Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, São Carlos, SP (Brazil); Avó, L.R.S. [Departamento de Medicina, Universidade Federal de São Carlos, São Carlos, SP (Brazil); Nonaka, K.O.; Selistre-Araújo, H.S. [Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, São Carlos, SP (Brazil); Leal, A.M.O. [Departamento de Medicina, Universidade Federal de São Carlos, São Carlos, SP (Brazil)

    2014-07-25

    Nonalcoholic fatty liver disease (NAFLD) is characterized by fat accumulation in the liver and is associated with obesity and insulin resistance. Activin A is a member of the transforming growth factor beta (TGF)-β superfamily and inhibits hepatocyte growth. Follistatin antagonizes the biological actions of activin. Exercise is an important therapeutic strategy to reduce the metabolic effects of obesity. We evaluated the pattern of activin A and follistatin liver expression in obese rats subjected to swimming exercise. Control rats (C) and high-fat (HF) diet-fed rats were randomly assigned to a swimming training group (C-Swim and HF-Swim) or a sedentary group (C-Sed and HF-Sed). Activin βA subunit mRNA expression was significantly higher in HF-Swim than in HF-Sed rats. Follistatin mRNA expression was significantly lower in C-Swim and HF-Swim than in either C-Sed or HF-Sed animals. There was no evidence of steatosis or inflammation in C rats. In contrast, in HF animals the severity of steatosis ranged from grade 1 to grade 3. The extent of liver parenchyma damage was less in HF-Swim animals, with the severity of steatosis ranging from grade 0 to grade 1. These data showed that exercise may reduce the deleterious effects of a high-fat diet on the liver, suggesting that the local expression of activin-follistatin may be involved.

  6. Targeting tumour vasculature by inhibiting activin receptor-like kinase (ALK)1 function.

    de Vinuesa, Amaya García; Bocci, Matteo; Pietras, Kristian; Ten Dijke, Peter

    2016-08-15

    Angiogenesis is a hallmark of cancer and is now a validated therapeutic target in the clinical setting. Despite the initial success, anti-angiogenic compounds impinging on the vascular endothelial growth factor (VEGF) pathway display limited survival benefits in patients and resistance often develops due to activation of alternative pathways. Thus, finding and validating new targets is highly warranted. Activin receptor-like kinase (ALK)1 is a transforming growth factor beta (TGF-β) type I receptor predominantly expressed in actively proliferating endothelial cells (ECs). ALK1 has been shown to play a pivotal role in regulating angiogenesis by binding to bone morphogenetic protein (BMP)9 and 10. Two main pharmacological inhibitors, an ALK1-Fc fusion protein (Dalantercept/ACE-041) and a fully human antibody against the extracellular domain of ALK1 (PF-03446962) are currently under clinical development. Herein, we briefly recapitulate the role of ALK1 in blood vessel formation and the current status of the preclinical and clinical studies on inhibition of ALK1 signalling as an anti-angiogenic strategy. Future directions in terms of new combination regimens will also be presented. PMID:27528762

  7. The Notch ligand Delta-like 1 integrates inputs from TGFbeta/Activin and Wnt pathways

    Unlike the well-characterized nuclear function of the Notch intracellular domain, it has been difficult to identify a nuclear role for the ligands of Notch. Here we provide evidence for the nuclear function of the Notch ligand Delta-like 1 in colon cancer (CC) cells exposed to butyrate. We demonstrate that the intracellular domain of Delta-like 1 (Dll1icd) augments the activity of Wnt signaling-dependent reporters and that of the promoter of the connective tissue growth factor (CTGF) gene. Data suggest that Dll1icd upregulates CTGF promoter activity through both direct and indirect mechanisms. The direct mechanism is supported by co-immunoprecipitation of endogenous Smad2/3 proteins and Dll1 and by chromatin immunoprecipitation analyses that revealed the occupancy of Dll1icd on CTGF promoter sequences containing a Smad binding element. The indirect upregulation of CTGF expression by Dll1 is likely due to the ability of Dll1icd to increase Wnt signaling, a pathway that targets CTGF. CTGF expression is induced in butyrate-treated CC cells and results from clonal growth assays support a role for CTGF in the cell growth-suppressive role of butyrate. In conclusion, integration of the Notch, Wnt, and TGFbeta/Activin signaling pathways is in part mediated by the interactions of Dll1 with Smad2/3 and Tcf4.

  8. Regulation of activin receptor-interacting protein 2 expression in mouse hepatoma Hepal-6 cells and its relationship with collagen type Ⅳ

    2007-01-01

    AIM: To investigate the regulation of activin receptor-interacting protein 2 (ARIP2) expression and its possible relationships with collagen type Ⅳ (collagen Ⅳ) in mouse hepatoma cell line Hepal-6 cells.METHODS: The ARIP2 mRNA expression kinetics in Hepal-6 cells was detected by RT-PCR, and its regulation factors were analyzed by treatment with signal transduction activators such as phorbol 12-myristate 13-acetate (PMA), forskolin and A23187. After pcDNA3-ARIP2 was transfected into Hepal-6 cells, the effects of ARIP2 overexpression on activin type Ⅱ receptor (ActRII)and collagen Ⅳ expression were evaluated.RESULTS: The expression levels of ARIP2 mRNA in Hapel-6 cells were elevated in time-dependent manner 12 h after treatment with activin A and endotoxin LPS, but not changed evidently in the early stage of stimulation (2 or 4 h). TheARIP2 mRNA expression was increased after stimulated with signal transduction activators such as PMA and forskolin in Hepal-6 cells, whereas decreased after treatment with A23187 (25.3% ± 5.7% vS 48.1% ± 3.6%, P < 0.01). ARIP2 overexpression could remarkably suppress the expression of ActRIIA mRNA in dose-dependent manner, but has no effect on ActRIIB in Hepal-6 cells induced by activin A. Furthermore, we have found that overexpression of ARIP2 could inhibit collagen Ⅳ mRNA and protein expressions induced by activin A in Hapel-6 cells.CONCLUSION: These findings suggest that ARIP2 expression can be influenced by various factors. ARIP2 may participate in the negative feedback regulation of signal transduction in the late stage by affecting the expression of ActRIIA and play an important role in regulation of development of liver fibrosis induced by activin.

  9. Activin receptor IIA ligand trap in chronic kidney disease: 1 drug to prevent 2 complications-or even more?

    Massy, Ziad A; Drueke, Tilman B

    2016-06-01

    Vascular calcification and kidney fibrosis are 2 important features of chronic kidney disease. Bone morphogenetic proteins/growth differentiation factors and their receptors are implicated in the pathogenesis of both processes. Modulation of the bone morphogenetic protein/growth differentiation factor pathways by a soluble chimeric protein that contains the activin receptor IIA (ActRIIA) domain and acts as an ActRIIA ligand trap for activin and other ligands could become a new therapeutic strategy for vascular calcification and kidney fibrosis in chronic kidney disease. PMID:27181771

  10. The glycoprotein-hormones activin A and inhibin A interfere with dendritic cell maturation

    Reichardt Holger M

    2008-05-01

    Full Text Available Abstract Background Pregnancy represents an exclusive situation in which the immune and the endocrine system cooperate to prevent rejection of the embryo by the maternal immune system. While immature dendritic cells (iDC in the early pregnancy decidua presumably contribute to the establishment of peripheral tolerance, glycoprotein-hormones of the transforming growth factor beta (TGF-beta family including activin A (ActA and inhibin A (InA are candidates that could direct the differentiation of DCs into a tolerance-inducing phenotype. Methods To test this hypothesis we generated iDCs from peripheral-blood-monocytes and exposed them to TGF-beta1, ActA, as well as InA and Dexamethasone (Dex as controls. Results Both glycoprotein-hormones prevented up-regulation of HLA-DR during cytokine-induced DC maturation similar to Dex but did not influence the expression of CD 40, CD 83 and CD 86. Visualization of the F-actin cytoskeleton confirmed that the DCs retained a partially immature phenotype under these conditions. The T-cell stimulatory capacity of DCs was reduced after ActA and InA exposure while the secretion of cytokines and chemokines was unaffected. Conclusion These findings suggest that ActA and InA interfere with selected aspects of DC maturation and may thereby help preventing activation of allogenic T-cells by the embryo. Thus, we have identified two novel members of the TGF-beta superfamily that could promote the generation of tolerance-inducing DCs.

  11. Bioinformatic analysis of pathogenic missense mutations of activin receptor like kinase 1 ectodomain.

    Claudia Scotti

    Full Text Available Activin A receptor, type II-like kinase 1 (also called ALK1, is a serine-threonine kinase predominantly expressed on endothelial cells surface. Mutations in its ACVRL1 encoding gene (12q11-14 cause type 2 Hereditary Haemorrhagic Telangiectasia (HHT2, an autosomal dominant multisystem vascular dysplasia. The study of the structural effects of mutations is crucial to understand their pathogenic mechanism. However, while an X-ray structure of ALK1 intracellular domain has recently become available (PDB ID: 3MY0, structure determination of ALK1 ectodomain (ALK1(EC has been elusive so far. We here describe the building of a homology model for ALK1(EC, followed by an extensive bioinformatic analysis, based on a set of 38 methods, of the effect of missense mutations at the sequence and structural level. ALK1(EC potential interaction mode with its ligand BMP9 was then predicted combining modelling and docking data. The calculated model of the ALK1(EC allowed mapping and a preliminary characterization of HHT2 associated mutations. Major structural changes and loss of stability of the protein were predicted for several mutations, while others were found to interfere mainly with binding to BMP9 or other interactors, like Endoglin (CD105, whose encoding ENG gene (9q34 mutations are known to cause type 1 HHT. This study gives a preliminary insight into the potential structure of ALK1(EC and into the structural effects of HHT2 associated mutations, which can be useful to predict the potential effect of each single mutation, to devise new biological experiments and to interpret the biological significance of new mutations, private mutations, or non-synonymous polymorphisms.

  12. Transforming Growth Factor β/Activin Signaling Functions as a Sugar-Sensing Feedback Loop to Regulate Digestive Enzyme Expression

    Wen-bin Alfred Chng

    2014-10-01

    Full Text Available Organisms need to assess their nutritional state and adapt their digestive capacity to the demands for various nutrients. Modulation of digestive enzyme production represents a rational step to regulate nutriment uptake. However, the role of digestion in nutrient homeostasis has been largely neglected. In this study, we analyzed the mechanism underlying glucose repression of digestive enzymes in the adult Drosophila midgut. We demonstrate that glucose represses the expression of many carbohydrases and lipases. Our data reveal that the consumption of nutritious sugars stimulates the secretion of the transforming growth factor β (TGF-β ligand, Dawdle, from the fat body. Dawdle then acts via circulation to activate TGF-β/Activin signaling in the midgut, culminating in the repression of digestive enzymes that are highly expressed during starvation. Thus, our study not only identifies a mechanism that couples sugar sensing with digestive enzyme expression but points to an important role of TGF-β/Activin signaling in sugar metabolism.

  13. FGF signaling via MAPK is required early and improves Activin A-induced definitive endoderm formation from human embryonic stem cells

    Highlights: ► Deep study the FGF signaling role during DE specification in the context of hESCs. ► DE differentiation from hESCs has an early dependence on FGF signaling. ► A serum-free DE protocol is developed based on the findings. ► The DE cells showed potential to differentiate into pancreatic progenitor cells. -- Abstract: Considering their unlimited proliferation and pluripotency properties, human embryonic stem cells (hESCs) constitute a promising resource applicable for cell replacement therapy. To facilitate this clinical translation, it is critical to study and understand the early stage of hESCs differentiation wherein germ layers are defined. In this study, we examined the role of FGF signaling in Activin A-induced definitive endoderm (DE) differentiation in the absence of supplemented animal serum. We found that activated FGF/MAPK signaling is required at the early time point of Activin A-induced DE formation. In addition, FGF activation increased the number of DE cells compared to Activin A alone. These DE cells could further differentiate into PDX1 and NKX6.1 positive pancreatic progenitors in vitro. We conclude that Activin A combined with FGF/MAPK signaling efficiently induce DE cells in the absence of serum. These findings improve our understanding of human endoderm formation, and constitute a step forward in the generation of clinical grade hESCs progenies for cell therapy.

  14. FGF signaling via MAPK is required early and improves Activin A-induced definitive endoderm formation from human embryonic stem cells

    Sui, Lina, E-mail: linasui@vub.ac.be [Cell Differentiation Unit, Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels (Belgium); Mfopou, Josue K. [Cell Differentiation Unit, Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels (Belgium); Geens, Mieke; Sermon, Karen [Department of Embryology and Genetics, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels (Belgium); Bouwens, Luc [Cell Differentiation Unit, Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels (Belgium)

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer Deep study the FGF signaling role during DE specification in the context of hESCs. Black-Right-Pointing-Pointer DE differentiation from hESCs has an early dependence on FGF signaling. Black-Right-Pointing-Pointer A serum-free DE protocol is developed based on the findings. Black-Right-Pointing-Pointer The DE cells showed potential to differentiate into pancreatic progenitor cells. -- Abstract: Considering their unlimited proliferation and pluripotency properties, human embryonic stem cells (hESCs) constitute a promising resource applicable for cell replacement therapy. To facilitate this clinical translation, it is critical to study and understand the early stage of hESCs differentiation wherein germ layers are defined. In this study, we examined the role of FGF signaling in Activin A-induced definitive endoderm (DE) differentiation in the absence of supplemented animal serum. We found that activated FGF/MAPK signaling is required at the early time point of Activin A-induced DE formation. In addition, FGF activation increased the number of DE cells compared to Activin A alone. These DE cells could further differentiate into PDX1 and NKX6.1 positive pancreatic progenitors in vitro. We conclude that Activin A combined with FGF/MAPK signaling efficiently induce DE cells in the absence of serum. These findings improve our understanding of human endoderm formation, and constitute a step forward in the generation of clinical grade hESCs progenies for cell therapy.

  15. Role of inhibin and activin in the modulation of gonadotropin- and steroid-induced oocyte maturation in the teleost Fundulus heteroclitus

    Toussaint Gesulla

    2007-06-01

    Full Text Available Abstract Background Activin and inhibin are glycoproteins structurally related to the transforming growth factor-beta superfamily. These peptides were first described as factors that regulate the follicle-stimulating hormone (FSH at the pituitary level. The possible role of inhibin and activin, at the ovarian level, in mediating the stimulatory actions of a Fundulus pituitary extract (FPE and 17alpha,20beta-dihydroprogesterone (DHP on oocyte maturation was investigated in this study. Methods In vitro culture of ovarian follicles and induction of oocyte maturation were carried out in 75% Leibovitz L-15 medium. Follicles or denuded oocytes were exposed to FPE, inhibin, activin, ethanol vehicle (control group, or DHP. The competence of the follicles or denuded oocytes to respond to the hormones was assessed by scoring germinal vesicle breakdown (GVBD used as an indication of the reinitiation of meiosis or oocyte maturation. DHP level was measured by radioimmunoassay. Results Addition of FPE promoted the synthesis of DHP by the granulose cells of fully grown ovarian follicles and thus stimulated GVBD in the oocyte. Presence of porcine inhibin did not hinder the synthesis of DHP stimulated by FPE, although it did inhibit the subsequent GVBD in a dose-dependent manner, suggesting that the action of inhibin was at the oocyte level. Similarly to the findings with FPE, inhibin also blocked the DHP-induced GVBD in intact follicles, as well as the spontaneous and steroid-induced GVBD of denuded oocyte. Inhibin straightforwardly blocked the response to a low dose of DHP throughout the culture period, while higher doses of the steroid appeared to overcome the inhibitory effect especially at later times. In contrast to inhibin, recombinant human activin A significantly enhanced DHP-induced GVBD in a dose-dependent manner after 48 hr, although activin alone was not able to induce GVBD without the presence of the steroid. Conclusion Taking together with our

  16. TAK-1/p38/nNFκB signaling inhibits myoblast differentiation by increasing levels of Activin A

    Trendelenburg Anne

    2012-02-01

    Full Text Available Abstract Background Skeletal-muscle differentiation is required for the regeneration of myofibers after injury. The differentiation capacity of satellite cells is impaired in settings of old age, which is at least one factor in the onset of sarcopenia, the age-related loss of skeletal-muscle mass and major cause of frailty. One important cause of impaired regeneration is increased levels of transforming growth factor (TGF-β accompanied by reduced Notch signaling. Pro-inflammatory cytokines are also upregulated in aging, which led us hypothesize that they might potentially contribute to impaired regeneration in sarcopenia. Thus, in this study, we further analyzed the muscle differentiation-inhibition pathway mediated by pro-inflammatory cytokines in human skeletal muscle cells (HuSKMCs. Methods We studied the modulation of HuSKMC differentiation by the pro-inflammatory cytokines interleukin (IL-1α and tumor necrosis factor (TNF-α The grade of differentiation was determined by either imaging (fusion index or creatine kinase (CK activity, a marker of muscle differentiation. Secretion of TGF-β proteins during differentiation was assessed by using a TGF-β-responsive reporter-gene assay and further identified by means of pharmacological and genetic inhibitors. In addition, signaling events were monitored by western blotting and reverse transcription PCR, both in HuSKMC cultures and in samples from a rat sarcopenia study. Results The pro-inflammatory cytokines IL-1α and TNF-α block differentiation of human myoblasts into myotubes. This anti-differentiation effect requires activation of TGF-β-activated kinase (TAK-1. Using pharmacological and genetic inhibitors, the TAK-1 pathway could be traced to p38 and NFκB. Surprisingly, the anti-differentiation effect of the cytokines required the transcriptional upregulation of Activin A, which in turn acted through its established signaling pathway: ActRII/ALK/SMAD. Inhibition of Activin A signaling was

  17. Roles of activin receptor-like kinase 7 signaling and its target, peroxisome proliferator-activated receptor γ, in lean and obese adipocytes

    Yogosawa, Satomi; Izumi, Tetsuro

    2013-01-01

    We recently discovered a novel signaling pathway involving activin receptor-like kinase 7 (ALK7), one of the type I transforming growth factor-β receptors. ALK7 and activated Smads 2, 3, and 4 inhibit the master regulators of adipogenesis, CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ) specifically in differentiated adipocytes, but surprisingly increase both the adipocyte size and lipid content by suppressing lipolysis. Here, we show that, a...

  18. Stimulation of Activin A/Nodal signaling is insufficient to induce definitive endoderm formation of cord blood-derived unrestricted somatic stem cells

    Filby, Caitlin E.; Williamson, Robert; van Kooy, Peter; Pébay, Alice; Dottori, Mirella; Elwood, Ngaire J.; Zaibak, Faten

    2011-01-01

    Introduction Unrestricted somatic stem cells (USSC) derived from umbilical cord blood are an attractive alternative to human embryonic stem cells (hESC) for cellular therapy. USSC are capable of forming cells representative of all three germ line layers. The aim of this study was to determine the potential of USSC to form definitive endoderm following induction with Activin A, a protein known to specify definitive endoderm formation of hESC. Methods USSC were cultured for (1) three days with ...

  19. Bioinformatic Characterization of Promoters of Two Activin-βSubunit Genes in Paralichthys olivaceus%牙鲆(Paralichthys olivaceus) Activin 基因两种β亚基的启动子克隆及生物信息学分析

    刘蒙蒙; 王晶; 高金宁; 马丽曼; 张全启

    2015-01-01

    以牙鲆为研究对象,利用染色体步移(Genome walking)获得了 Activin 两个β亚基基因的上游部分启动子序列,并对其进行了转录调控元件的生物信息学预测分析。获得了 Activin βA 和βB两个亚基的启动子部分序列,长度分别约为2.7 kb 和2.4 kb;在预测的 Activin βB 转录起始位点(+1位)的上游31 bp 处有1个典型的 TATA box,而在 Activin βA 中未发现 TATA box 的存在。两个基因的启动子上发现了多个转录因子 Sp1、Oct-1、C/EBP、CREB、GATA-1、HNF-3、HNF-1、USF 等结合位点,还发现了与内分泌相关的 Pit-1、ER、PR、GR、RAR、RXR 等结合位点,但肌性转录因子 MyoD、myogenin 和雄性的性别决定基因 SRY 结合位点仅在 Activin βA 启动子中发现。生物信息学分析显示,牙鲆 Activin βA 和βB 表达受到多种潜在因子的调控,二者在调控上有所差异。%Activin is a member of the transforming growth factor-β (TGF-β) family and regulates sex hormones. It was originally discovered in pig ovarian follicular fluid. Activin contains two β subunits and plays a vital role in the hypothalamus-pituitary-gonad axis (HPG). It regulates the secretion of pituitary gonadotropin, the production of steroid hormones and the maturation of oocyte in ovary. Paralichthys olivaceus is a type of important commercial fish species that has advantageous traits in aquaculture such as the fast growth rate. Better understanding of its reproduction mechanism is essential for the guidance of the breeding of P. olivaceus. In this study, we analyzed the expression and regulation of Activin gene related to the reproductive endocrinology of P. olivaceus. Our data should provide important information for future studies on biological functions of Activin and for the practice in the culture of P. olivaceus. We used the genome walking method to obtain the partial sequence of promoters located in the upstream of Activin βA and βB genes

  20. Development of a small-molecule screening method for inhibitors of cellular response to myostatin and activin A.

    Cash, Jennifer N; Angerman, Elizabeth B; Kirby, R Jason; Merck, Lisa; Seibel, William L; Wortman, Matthew D; Papoian, Ruben; Nelson, Sandra; Thompson, Thomas B

    2013-08-01

    Myostatin, a member of the transforming growth factor (TGF)-β family of secreted ligands, is a strong negative regulator of muscle growth. As such, therapeutic inhibitors of myostatin are actively being investigated for their potential in the treatment of muscle-wasting diseases such as muscular dystrophy and sarcopenia. Here, we sought to develop a high-throughput screening (HTS) method for small-molecule inhibitors that target myostatin. We created a HEK293 stable cell line that expresses the (CAGA)12-luciferase reporter construct and robustly responds to signaling of certain classes of TGF-β family ligands. After optimization and miniaturization of the assay to a 384-well format, we successfully screened a library of compounds for inhibition of myostatin and the closely related activin A. Selection of some of the tested compounds was directed by in silico screening against myostatin, which led to an enrichment of target hits as compared with random selection. Altogether, we present an HTS method that will be useful for screening potential inhibitors of not only myostatin but also many other ligands of the TGF-β family. PMID:23543431

  1. Differential effect of Activin A and WNT3a on definitive endoderm differentiation on electrospun nanofibrous PCL scaffold.

    Hoveizi, Elham; Massumi, Mohammad; Ebrahimi-barough, Somayeh; Tavakol, Shima; Ai, Jafar

    2015-05-01

    The first step in the formation of hepatocytes and beta cells is the generation of definitive endoderm (DE) which involves a central issue in developmental biology. Human induced pluripotent stem cells (hiPSCs) have the pluripotency to differentiate into all three germ layers in vitro and have been considered potent candidates for regenerative medicine as an unlimited source of cells for therapeutic applications. In this study, we investigated the differentiating potential of hiPSCs on poly (ε-caprolactone) (PCL) nanofibrous scaffold into DE cells. Here, we demonstrate directed differentiation of hiPSCs by factors such as Activin A and Wnt3a. The differentiation was determined by immunofluoresence staining with Sox17, FoxA2 and Goosecoid (Gsc) and also by qRT-PCR analysis. The results of this study showed that hiPSCs, as a new cell source, have the ability to differentiate into DE cells with a high capacity and also demonstrate that three dimension (3D) culture provides a suitable nanoenviroment for growth, proliferation and differentiation of hiPSCs. PCL nanofibrous scaffold with essential supplements, stimulating factors and EB-derived cells is able to provide a novel method for enhancing functional differentiation of hiPSCs into DE cells. PMID:25640312

  2. Administration of soluble activin receptor 2B increases bone and muscle mass in a mouse model of osteogenesis imperfecta

    Douglas J DiGirolamo; Vandana Singhal; Xiaoli Chang; Se-Jin Lee; Emily L Germain-Lee

    2015-01-01

    Osteogenesis imperfecta (OI) comprises a group of heritable connective tissue disorders generally defined by recurrent fractures, low bone mass, short stature and skeletal fragility. Beyond the skeletal complications of OI, many patients also report intolerance to physical activity, fatigue and muscle weakness. Indeed, recent studies have demonstrated that skeletal muscle is also negatively affected by OI, both directly and indirectly. Given the well-established interdependence of bone and skeletal muscle in both physiology and pathophysiology and the observations of skeletal muscle pathology in patients with OI, we investigated the therapeutic potential of simultaneous anabolic targeting of both bone and skeletal muscle using a soluble activin receptor 2B (ACVR2B) in a mouse model of type III OI (oim). Treatment of 12-week-old oim mice with ACVR2B for 4 weeks resulted in significant increases in both bone and muscle that were similar to those observed in healthy, wild-type littermates. This proof of concept study provides encouraging evidence for a holistic approach to treating the deleterious consequences of OI in the musculoskeletal system.

  3. Changes in intrafollicular concentrations of free IGF-1, activin A, inhibin A, VEGF, estradiol, and prolactin before ovulation in mares.

    Bashir, S T; Ishak, G M; Gastal, M O; Roser, J F; Gastal, E L

    2016-05-01

    Changes in intrafollicular growth factors and hormones were evaluated in vivo in postdeviation and impending ovulation follicles. Mares (n = 30) were randomly assigned to five experimental groups based on target diameters of 25, 30, 35, 40 mm, and impending signs of ovulation. Furthermore, data belonging to two or more proximal diameter groups that were not different were combined and regrouped for each factor separately. Follicular fluid-free insulin-like growth factor 1 was highest (P  0.05) among groups. Additionally, follicular fluid activin A tended (P < 0.06) to be higher in impending ovulation follicles when compared with the 25- to 40-mm follicle group. Concentrations of intrafollicular estradiol were higher (P < 0.0001) in 40-mm and impending ovulation follicles than in the other follicle groups. Follicular fluid concentrations of inhibin A and vascular endothelial growth factor were lower (P < 0.05) in the 40-mm and the impending ovulation follicle group when compared with the 25- to 35-mm follicle group. Systemic and intrafollicular prolactin levels were lower (P < 0.05) in the impending ovulation group when compared with the 25- to 40-mm follicle group. Prolactin concentrations were higher (P < 0.05) in the follicular fluid than in the plasma. The novel findings of this study, a decrease in intrafollicular-free insulin-like growth factor 1, inhibin A, vascular endothelial growth factor, and prolactin during the final stages of follicular growth, document for the first time the occurrence of dynamic changes among intrafollicular factors and hormones during the stages of follicle dominance and as ovulation approaches. PMID:26895618

  4. Heterozygous disruption of activin receptor-like kinase 1 is associated with increased arterial pressure in mice

    María González-Núñez

    2015-11-01

    Full Text Available The activin receptor-like kinase 1 (ALK-1 is a type I cell-surface receptor for the transforming growth factor-β (TGF-β family of proteins. Hypertension is related to TGF-β1, because increased TGF-β1 expression is correlated with an elevation in arterial pressure (AP and TGF-β expression is upregulated by the renin-angiotensin-aldosterone system. The purpose of this study was to assess the role of ALK-1 in regulation of AP using Alk1 haploinsufficient mice (Alk1+/−. We observed that systolic and diastolic AP were significantly higher in Alk1+/− than in Alk1+/+ mice, and all functional and structural cardiac parameters (echocardiography and electrocardiography were similar in both groups. Alk1+/− mice showed alterations in the circadian rhythm of AP, with higher AP than Alk1+/+ mice during most of the light period. Higher AP in Alk1+/− mice is not a result of a reduction in the NO-dependent vasodilator response or of overactivation of the peripheral renin-angiotensin system. However, intracerebroventricular administration of losartan had a hypotensive effect in Alk1+/− and not in Alk1+/+ mice. Alk1+/− mice showed a greater hypotensive response to the β-adrenergic antagonist atenolol and higher concentrations of epinephrine and norepinephrine in plasma than Alk1+/+ mice. The number of brain cholinergic neurons in the anterior basal forebrain was reduced in Alk1+/− mice. Thus, we concluded that the ALK-1 receptor is involved in the control of AP, and the high AP of Alk1+/− mice is explained mainly by the sympathetic overactivation shown by these animals, which is probably related to the decreased number of cholinergic neurons.

  5. Heterozygous disruption of activin receptor-like kinase 1 is associated with increased arterial pressure in mice

    González-Núñez, María; Riolobos, Adela S.; Castellano, Orlando; Fuentes-Calvo, Isabel; de los Ángeles Sevilla, María; Oujo, Bárbara; Pericacho, Miguel; Cruz-Gonzalez, Ignacio; Pérez-Barriocanal, Fernando; ten Dijke, Peter; López-Novoa, Jose M.

    2015-01-01

    ABSTRACT The activin receptor-like kinase 1 (ALK-1) is a type I cell-surface receptor for the transforming growth factor-β (TGF-β) family of proteins. Hypertension is related to TGF-β1, because increased TGF-β1 expression is correlated with an elevation in arterial pressure (AP) and TGF-β expression is upregulated by the renin-angiotensin-aldosterone system. The purpose of this study was to assess the role of ALK-1 in regulation of AP using Alk1 haploinsufficient mice (Alk1+/−). We observed that systolic and diastolic AP were significantly higher in Alk1+/− than in Alk1+/+ mice, and all functional and structural cardiac parameters (echocardiography and electrocardiography) were similar in both groups. Alk1+/− mice showed alterations in the circadian rhythm of AP, with higher AP than Alk1+/+ mice during most of the light period. Higher AP in Alk1+/− mice is not a result of a reduction in the NO-dependent vasodilator response or of overactivation of the peripheral renin-angiotensin system. However, intracerebroventricular administration of losartan had a hypotensive effect in Alk1+/− and not in Alk1+/+ mice. Alk1+/− mice showed a greater hypotensive response to the β-adrenergic antagonist atenolol and higher concentrations of epinephrine and norepinephrine in plasma than Alk1+/+ mice. The number of brain cholinergic neurons in the anterior basal forebrain was reduced in Alk1+/− mice. Thus, we concluded that the ALK-1 receptor is involved in the control of AP, and the high AP of Alk1+/− mice is explained mainly by the sympathetic overactivation shown by these animals, which is probably related to the decreased number of cholinergic neurons. PMID:26398936

  6. Angiomodulin is required for cardiogenesis of embryonic stem cells and is maintained by a feedback loop network of p63 and Activin-A

    Zohar Wolchinsky

    2014-01-01

    Full Text Available The transcription factor p63, member of the p53 gene family, encodes for two main isoforms, TAp63 and ΔNp63 with distinct functions on epithelial homeostasis and cancer. Recently, we discovered that TAp63 is essential for in vitro cardiogenesis and heart development in vivo. TAp63 is expressed by embryonic endoderm and acts on cardiac progenitors by a cell-non-autonomous manner. In the present study, we search for cardiogenic secreted factors that could be regulated by TAp63 and, by ChIP-seq analysis, identified Angiomodulin (AGM, also named IGFBP7 or IGFBP-rP1. We demonstrate that AGM is necessary for cardiac commitment of embryonic stem cells (ESCs and its regulation depends on TAp63 isoform. TAp63 directly activates both AGM and Activin-A during ESC cardiogenesis while these secreted factors modulate TAp63 gene expression by a feedback loop mechanism. The molecular circuitry controlled by TAp63 on AGM/Activin-A signaling pathway and thus on cardiogenesis emphasizes the importance of p63 during early cardiac development.

  7. Activin A’s promotion of definitive endoderm differentiation from human embryonic stem cells%Activin A特异性对人胚胎干细胞向限定性内胚层诱导分化的促进作用

    孙懿; 周静; 林戈; 卢光琇

    2012-01-01

    【目的】研究Activin A对人胚胎干细胞(hESCs)向限定性内胚层(DE)诱导分化的促进作用及其信号通路分子,为hESCs向DE诱导分化体系的优化提供参考。【方法】在人饲养层体系培养的hESCs中,收集100ng/mL Activin A分别诱导0,6,12,24,48,72,96,120h的细胞,用实时荧光定量RT-PCR检测原条标记Gsc和Mixl1、中内胚层共同前体标记Brachyury、内胚层标记Foxa2和Sox17、中胚层标记Flk1、外胚层基因Pax6、多能性相关基因Oct4与Nanog表达水平的变化,用细胞免疫荧光检测Brachyury和Sox17蛋白表达水平的变化。【结果】在人饲养层(HEF)培养体系上,高浓度Activin A能更快地促进中内胚层基因的表达并提高其表达水平;Brachyury和Sox17蛋白的细胞免疫荧光检测表明,Activin A诱导12和48h就可检测二者的表达明显增加,且二者的表达水平分别在诱导48和96h时达到高峰;hESCs高效分化为限定性内胚层细胞,DE细胞分化率为(81.7±5.4)%,并且体外的内胚层分化过程遵循从原条开始、经过中内胚层共同前体阶段、再到内胚层的发育过程,与体内发育规律相似。【结论】Activin A能特异性地诱导人胚胎干细胞向限定性内胚层分化,转录调控Brachyury和Sox17蛋白的表达。%【Objective】 The study was conducted to confirm the affection and the signaling pathway molecules of Activin in promotion of the definitive endoderm(DE) differentiation from human embryonic stem cells(hESCs),which will provide reference for induction optimization of DE differentiation from hESC.【Method】 Cells were cultured on human embryonic fibroblast cells(HEF).Real-time quantitative RT-PCR were preformed to detect the expression of prime streak related genes(Gsc,Mixl1),mesoendoderm precursor related gene Brachyury,endodermal genes(Foxa2,Sox17),mesodermal marker Flk1,ectoderm gene Pax6,pluripotent genes(Oct4,Nanog).Brachyury and Sox17

  8. Dual Inhibition of Activin/Nodal/TGF-β and BMP Signaling Pathways by SB431542 and Dorsomorphin Induces Neuronal Differentiation of Human Adipose Derived Stem Cells

    Vedavathi Madhu

    2016-01-01

    Full Text Available Damage to the nervous system can cause devastating diseases or musculoskeletal dysfunctions and transplantation of progenitor stem cells can be an excellent treatment option in this regard. Preclinical studies demonstrate that untreated stem cells, unlike stem cells activated to differentiate into neuronal lineage, do not survive in the neuronal tissues. Conventional methods of inducing neuronal differentiation of stem cells are complex and expensive. We therefore sought to determine if a simple, one-step, and cost effective method, previously reported to induce neuronal differentiation of embryonic stem cells and induced-pluripotent stem cells, can be applied to adult stem cells. Indeed, dual inhibition of activin/nodal/TGF-β and BMP pathways using SB431542 and dorsomorphin, respectively, induced neuronal differentiation of human adipose derived stem cells (hADSCs as evidenced by formation of neurite extensions, protein expression of neuron-specific gamma enolase, and mRNA expression of neuron-specific transcription factors Sox1 and Pax6 and matured neuronal marker NF200. This process correlated with enhanced phosphorylation of p38, Erk1/2, PI3K, and Akt1/3. Additionally, in vitro subcutaneous implants of SB431542 and dorsomorphin treated hADSCs displayed significantly higher expression of active-axonal-growth-specific marker GAP43. Our data offers novel insights into cell-based therapies for the nervous system repair.

  9. Activin Decoy Receptor ActRIIB:Fc Lowers FSH and Therapeutically Restores Oocyte Yield, Prevents Oocyte Chromosome Misalignments and Spindle Aberrations, and Increases Fertility in Midlife Female SAMP8 Mice.

    Bernstein, Lori R; Mackenzie, Amelia C L; Lee, Se-Jin; Chaffin, Charles L; Merchenthaler, István

    2016-03-01

    Women of advanced maternal age (AMA) (age ≥ 35) have increased rates of infertility, miscarriages, and trisomic pregnancies. Collectively these conditions are called "egg infertility." A root cause of egg infertility is increased rates of oocyte aneuploidy with age. AMA women often have elevated endogenous FSH. Female senescence-accelerated mouse-prone-8 (SAMP8) has increased rates of oocyte spindle aberrations, diminished fertility, and rising endogenous FSH with age. We hypothesize that elevated FSH during the oocyte's FSH-responsive growth period is a cause of abnormalities in the meiotic spindle. We report that eggs from SAMP8 mice treated with equine chorionic gonadotropin (eCG) for the period of oocyte growth have increased chromosome and spindle misalignments. Activin is a molecule that raises FSH, and ActRIIB:Fc is an activin decoy receptor that binds and sequesters activin. We report that ActRIIB:Fc treatment of midlife SAMP8 mice for the duration of oocyte growth lowers FSH, prevents egg chromosome and spindle misalignments, and increases litter sizes. AMA patients can also have poor responsiveness to FSH stimulation. We report that although eCG lowers yields of viable oocytes, ActRIIB:Fc increases yields of viable oocytes. ActRIIB:Fc and eCG cotreatment markedly reduces yields of viable oocytes. These data are consistent with the hypothesis that elevated FSH contributes to egg aneuploidy, declining fertility, and poor ovarian response and that ActRIIB:Fc can prevent egg aneuploidy, increase fertility, and improve ovarian response. Future studies will continue to examine whether ActRIIB:Fc works via FSH and/or other pathways and whether ActRIIB:Fc can prevent aneuploidy, increase fertility, and improve stimulation responsiveness in AMA women. PMID:26713784

  10. The effects of a single intravenous injection of novel activin A/BMP-2 (AB204) on toxicity and the respiratory and central nervous systems.

    Yoon, Byung-Hak; Lee, Jae Hyup; Na, Kyuheum; Ahn, Chihoon; Cho, Jongho; Ahn, Hyun Chan; Choi, Jungyoun; Oh, Hyosun; Kim, Byong Moon; Choe, Senyon

    2016-07-01

    The purpose of this study was to determine the effects of a single intravenous injection of a novel osteoinductive material, activin A/BMP-2 (AB204), to rodents on toxicity and their respiratory functions and central nervous system (CNS). A single intravenous injection of AB204 was given to Sprague-Dawley (SD) rats in doses of 0, 0.625, 2.5 and 10 mg/kg to observe the mortality rate, the general symptoms for 14 days. The experimental groups were also given 0.2, 0.4 and 0.8 mg/kg of AB204, respectively, and the respiration rate, the tidal volume and the minute volume were measured for 240 min. The experimental groups of imprinting control region (ICR) mice were given a single intravenous injection of 0.2, 0.4 and 0.8 mg/kg of AB204, respectively. Their body temperature was taken and general behaviors were observed to evaluate the effect of AB204 on the CNS for 240 min. The study on toxicity of a single intravenous injection found no death or abnormal symptoms, abnormal findings from autopsy, or abnormal body weight gain or loss in all the experimental groups. No abnormal variation associated with the test substance was observed in the respiration rate, the tidal volume, the minute volume, body temperature or the general behaviors. On the basis of these results, the approximate lethal dose of AB204 for a single intravenous injection exceeds 10 mg/kg for SD rats and a single intravenous injection of ≤0.8 mg/kg AB204 has no effect on their respiratory system for SD rat and no effect on their CNS for ICR mice. PMID:26446865

  11. Complete reversal of muscle wasting in experimental cancer cachexia: Additive effects of activin type II receptor inhibition and β-2 agonist.

    Toledo, Míriam; Busquets, Sílvia; Penna, Fabio; Zhou, Xiaolan; Marmonti, Enrica; Betancourt, Angelica; Massa, David; López-Soriano, Francisco J; Han, H Q; Argilés, Josep M

    2016-04-15

    Formoterol is a highly potent β2-adrenoceptor-selective agonist, which is a muscle growth promoter in many animal species. Myostatin/activin inhibition reverses skeletal muscle loss and prolongs survival of tumor-bearing animals. The aim of this investigation was to evaluate the effects of a combination of the soluble myostatin receptor ActRIIB (sActRIIB) and the β2-agonist formoterol in the cachectic Lewis lung carcinoma model. The combination of formoterol and sActRIIB was extremely effective in reversing muscle wasting associated with experimental cancer cachexia in mice. Muscle weights from tumor-bearing animals were completely recovered following treatment and this was also reflected in the measured grip strength. This combination increased food intake in both control and tumor-bearing animals. The double treatment also prolonged survival significantly without affecting the weight and growth of the primary tumor. In addition, it significantly reduced the number of metastasis. Concerning the mechanisms for the preservation of muscle mass during cachexia, the effects of formoterol and sActRIIB seemed to be additive, since formoterol reduced the rate of protein degradation (as measured in vitro as tyrosine release, using incubated isolated individual muscles) while sActRIIB only affected protein synthesis (as measured in vivo using tritiated phenylalanine). Formoterol also increased the rate of protein synthesis and this seemed to be favored by the presence of sActRIIB. Combining formoterol and sActRIIB seemed to be a very promising treatment for experimental cancer cachexia. Further studies in human patients are necessary and may lead to a highly effective treatment option for muscle wasting associated with cancer. PMID:26595367

  12. Multiple roles of Activin/Nodal, bone morphogenetic protein, fibroblast growth factor and Wnt/β-catenin signalling in the anterior neural patterning of adherent human embryonic stem cell cultures

    Lupo, Giuseppe; Novorol, Claire; Smith, Joseph R.; Vallier, Ludovic; Miranda, Elena; Alexander, Morgan; Biagioni, Stefano; Pedersen, Roger A.; Harris, William A.

    2013-01-01

    Several studies have successfully produced a variety of neural cell types from human embryonic stem cells (hESCs), but there has been limited systematic analysis of how different regional identities are established using well-defined differentiation conditions. We have used adherent, chemically defined cultures to analyse the roles of Activin/Nodal, bone morphogenetic protein (BMP), fibroblast growth factor (FGF) and Wnt/β-catenin signalling in neural induction, anteroposterior patterning and eye field specification in hESCs. We show that either BMP inhibition or activation of FGF signalling is required for effective neural induction, but these two pathways have distinct outcomes on rostrocaudal patterning. While BMP inhibition leads to specification of forebrain/midbrain positional identities, FGF-dependent neural induction is associated with strong posteriorization towards hindbrain/spinal cord fates. We also demonstrate that Wnt/β-catenin signalling is activated during neural induction and promotes acquisition of neural fates posterior to forebrain. Therefore, inhibition of this pathway is needed for efficient forebrain specification. Finally, we provide evidence that the levels of Activin/Nodal and BMP signalling have a marked influence on further forebrain patterning and that constitutive inhibition of these pathways represses expression of eye field genes. These results show that the key mechanisms controlling neural patterning in model vertebrate species are preserved in adherent, chemically defined hESC cultures and reveal new insights into the signals regulating eye field specification. PMID:23576785

  13. Matrigel and Activin A promote cell-cell contact and anti-apoptotic activity in cultured human retinal pigment epithelium cells.

    Guo, Xiaoling; Zhu, Deliang; Lian, Ruiling; Han, Yuting; Guo, Yonglong; Li, Zhijie; Tang, Shibo; Chen, Jiansu

    2016-06-01

    Age-related macular degeneration (AMD) is a leading cause of blindness among the aging population. Currently, replacement of diseased retinal pigment epithelium (RPE) cells with transplanted healthy RPE cells could be a feasible approach for AMD therapy. However, maintaining cell-cell contact and good viability of RPE cells cultured in vitro is difficult and fundamentally determines the success of RPE cell transplantation. This study was conducted to examine the role of Matrigel and Activin A (MA) in regulating cell-cell contact and anti-apoptotic activity in human RPE (hRPE) cells, as assessed by atomic force microscopy (AFM), scanning electron microscope (SEM), immunofluorescence staining, quantitative polymerase chain reaction (qPCR) analysis, Annexin V/propidium iodide (PI) analysis, mitochondrial membrane potential (△Ψ m) assays, intracellular reactive oxygen species (ROS) assays and Western blotting. hRPE cells cultured in vitro could maintain their epithelioid morphology after MA treatment over at least 4 passages. The contact of N-cadherin to the lateral cell border was promoted in hRPE cells at P2 by MA. MA treatment also enhanced the expression of tight junction-associated genes and proteins, such as Claudin-1, Claudin-3, Occludin and ZO-1, as well as polarized ZO-1 protein distribution and barrier function, in cultured hRPE cells. Moreover, MA treatment decreased apoptotic cells, ROS and Bax and increased △Ψ m and Bcl2 in hRPE cells under serum withdrawal-induced apoptosis. In addition, MA treatment elevated the protein expression levels of β-catenin and its target proteins, including Cyclin D1, c-Myc and Survivin, as well as the gene expression levels of ZO-1, β-catenin, Survivin and TCF-4, all of which could be down-regulated by the Wnt/β-catenin pathway inhibitor XAV-939. Taken together, MA treatment could effectively promote cell-cell contact and anti-apoptotic activity in hRPE cells, partly involving the Wnt/β-catenin pathway. This study

  14. Characterization of the human Activin-A receptor type II-like kinase 1 (ACVRL1 promoter and its regulation by Sp1

    Botella Luisa M

    2010-06-01

    Full Text Available Abstract Background Activin receptor-like kinase 1 (ALK1 is a Transforming Growth Factor-β (TGF-β receptor type I, mainly expressed in endothelial cells that plays a pivotal role in vascular remodelling and angiogenesis. Mutations in the ALK1 gene (ACVRL1 give rise to Hereditary Haemorrhagic Telangiectasia, a dominant autosomal vascular dysplasia caused by a haploinsufficiency mechanism. In spite of its patho-physiological relevance, little is known about the transcriptional regulation of ACVRL1. Here, we have studied the different origins of ACVRL1 transcription, we have analyzed in silico its 5'-proximal promoter sequence and we have characterized the role of Sp1 in the transcriptional regulation of ACVRL1. Results We have performed a 5'Rapid Amplification of cDNA Ends (5'RACE of ACVRL1 transcripts, finding two new transcriptional origins, upstream of the one previously described, that give rise to a new exon undiscovered to date. The 5'-proximal promoter region of ACVRL1 (-1,035/+210 was analyzed in silico, finding that it lacks TATA/CAAT boxes, but contains a remarkably high number of GC-rich Sp1 consensus sites. In cells lacking Sp1, ACVRL1 promoter reporters did not present any significant transcriptional activity, whereas increasing concentrations of Sp1 triggered a dose-dependent stimulation of its transcription. Moreover, silencing Sp1 in HEK293T cells resulted in a marked decrease of ACVRL1 transcriptional activity. Chromatin immunoprecipitation assays demonstrated multiple Sp1 binding sites along the proximal promoter region of ACVRL1 in endothelial cells. Furthermore, demethylation of CpG islands, led to an increase in ACVRL1 transcription, whereas in vitro hypermethylation resulted in the abolishment of Sp1-dependent transcriptional activation of ACVRL1. Conclusions Our results describe two new transcriptional start sites in ACVRL1 gene, and indicate that Sp1 is a key regulator of ACVRL1 transcription, providing new insights into

  15. Activin Receptor-Like Kinase Receptors ALK5 and ALK1 Are Both Required for TGFβ-Induced Chondrogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells.

    Laurie M G de Kroon

    Full Text Available Bone marrow-derived mesenchymal stem cells (BMSCs are promising for cartilage regeneration because BMSCs can differentiate into cartilage tissue-producing chondrocytes. Transforming Growth Factor β (TGFβ is crucial for inducing chondrogenic differentiation of BMSCs and is known to signal via Activin receptor-Like Kinase (ALK receptors ALK5 and ALK1. Since the specific role of these two TGFβ receptors in chondrogenesis is unknown, we investigated whether ALK5 and ALK1 are expressed in BMSCs and whether both receptors are required for chondrogenic differentiation of BMSCs.ALK5 and ALK1 gene expression in human BMSCs was determined with RT-qPCR. To induce chondrogenesis, human BMSCs were pellet-cultured in serum-free chondrogenic medium containing TGFβ1. Chondrogenesis was evaluated by aggrecan and collagen type IIα1 RT-qPCR analysis, and histological stainings of proteoglycans and collagen type II. To overexpress constitutively active (ca receptors, BMSCs were transduced either with caALK5 or caALK1. Expression of ALK5 and ALK1 was downregulated by transducing BMSCs with shRNA against ALK5 or ALK1.ALK5 and ALK1 were expressed in in vitro-expanded as well as in pellet-cultured BMSCs from five donors, but mRNA levels of both TGFβ receptors did not clearly associate with chondrogenic induction. TGFβ increased ALK5 and decreased ALK1 gene expression in chondrogenically differentiating BMSC pellets. Neither caALK5 nor caALK1 overexpression induced cartilage matrix formation as efficient as that induced by TGFβ. Moreover, short hairpin-mediated downregulation of either ALK5 or ALK1 resulted in a strong inhibition of TGFβ-induced chondrogenesis.ALK5 as well as ALK1 are required for TGFβ-induced chondrogenic differentiation of BMSCs, and TGFβ not only directly induces chondrogenesis, but also modulates ALK5 and ALK1 receptor signaling in BMSCs. These results imply that optimizing cartilage formation by mesenchymal stem cells will depend on

  16. Goat ovarian follicles express different levels of mRNA for inhibin-ßA subunit and activin-A stimulates secondary follicle growth in vitro Folículos ovarianos caprinos expressam diferentes níveis de RNAm para subunidade ßA da inibina e ativina-A promove o crescimento de folículos secundários in vitro

    Cintia Camurça Fernandes Leitão

    2013-01-01

    Full Text Available This study investigated the levels of messenger ribonucleic acids (mRNA for inhibin-ßA subunit in goat primordial, primary and secondary follicles, as well as in cumulus-oocyte complexes (COCs and mural granulosa / theca cells of antral follicles. The effects of activin-A (100ng mL-1 and/or follicle stimulating hormone (FSH, 50ng mL-1 on growth and expression of mRNA for activin-A and FSH receptor (FSH-R in secondary follicles cultured for six days were evaluated. The data showed that the expression of inhibin-ßA is lower in secondary follicles than in primary follicles and is higher in large antral follicles than in small antral follicles. After culture, activin-A and/or FSH promoted growth of secondary follicles, while FSH increased the levels of mRNA for inhibin-ßA, and activin-A increased the levels of FSH-R mRNA. In conclusion, mRNA for inhibin-ßA is expressed at different levels in pre-antral and antral follicles and activin-A acts as a stimulator of the FSH-R expression in goat follicles. On its turn, the expression of inhibin-ßA is stimulated by FSH, which together with activin-A promotes secondary follicle growth in-vitro.Este estudo investigou os níveis de ácidos ribonucleicos (RNAm para a subunidade ßA da inibina em folículos primordiais, primários e secundários caprinos, bem como em complexos cumulus-oócitos (CCOs e células da granulosa mural/teca de folículos antrais. Além disso, avaliaram-se os efeitos da ativina-A (100ng mL-1 e/ou hormônio folículo estimulante (FSH, 50ng mL-1 sobre o crescimento e a expressão do RNAm para inibina-ßA e receptores de FSH (FSH-R em folículos secundários cultivados por seis dias. Os dados mostraram que a expressão de inibina-ßA é menor em folículos secundários do que em folículos primários e é maior em grandes folículos antrais que nos pequenos folículos antrais. Após o cultivo, ativina-A e/ou FSH promoveram o crescimento de folículos secundários. Enquanto o FSH

  17. A myostatin and activin decoy receptor enhances bone formation in mice.

    Bialek, P; Parkington, J; Li, X; Gavin, D; Wallace, C; Zhang, J; Root, A; Yan, G; Warner, L; Seeherman, H J; Yaworsky, P J

    2014-03-01

    Myostatin is a member of the bone morphogenetic protein/transforming growth factor-β (BMP/TGFβ) super-family of secreted differentiation factors. Myostatin is a negative regulator of muscle mass as shown by increased muscle mass in myostatin deficient mice. Interestingly, these mice also exhibit increased bone mass suggesting that myostatin may also play a role in regulating bone mass. To investigate the role of myostatin in bone, young adult mice were administered with either a myostatin neutralizing antibody (Mstn-mAb), a soluble myostatin decoy receptor (ActRIIB-Fc) or vehicle. While both myostatin inhibitors increased muscle mass, only ActRIIB-Fc increased bone mass. Bone volume fraction (BV/TV), as determined by microCT, was increased by 132% and 27% in the distal femur and lumbar vertebrae, respectively. Histological evaluation demonstrated that increased BV/TV in both locations was attributed to increased trabecular thickness, trabecular number and bone formation rate. Increased BV/TV resulted in enhanced vertebral maximum compressive force compared to untreated animals. The fact that ActRIIB-Fc, but not Mstn-mAb, increased bone volume suggested that this soluble decoy receptor may be binding a ligand other than myostatin, that plays a role in regulating bone mass. This was confirmed by the significant increase in BV/TV in myostatin deficient mice treated with ActRIIB-Fc. Of the other known ActRIIB-Fc ligands, BMP3 has been identified as a negative regulator of bone mass. However, BMP3 deficient mice treated with ActRIIB-Fc showed similar increases in BV/TV as wild type (WT) littermates treated with ActRIIB-Fc. This result suggests that BMP3 neutralization is not the mechanism responsible for increased bone mass. The results of this study demonstrate that ActRIIB-Fc increases both muscle and bone mass in mice. Therefore, a therapeutic that has this dual activity represents a potential approach for the treatment of frailty. PMID:24333131

  18. A Soluble Activin Receptor Type IIB Does Not Improve Blood Glucose in Streptozotocin-Treated Mice

    Wang, Qian; Guo, Tingqing; Portas, Jennifer; McPherron, Alexandra C.

    2015-01-01

    Type 1 diabetes mellitus (T1DM), or insulin dependent DM, is accompanied by decreased muscle mass. The growth factor myostatin (MSTN) is a negative regulator of muscle growth, and a loss of MSTN signaling has been shown to increase muscle mass and prevent the development of obesity, insulin resistance and lipodystrophic diabetes in mice. The effects of MSTN inhibition in a T1DM model on muscle mass and blood glucose are unknown. We asked whether MSTN inhibition would increase muscle mass and ...

  19. Mutations in endoglin and in activin receptor-like kinase 1 among Danish patients with hereditary haemorrhagic telangiectasia

    Brusgaard, K; Kjeldsen, A D; Poulsen, L;

    2004-01-01

    Hereditary haemorrhagic telangiectasia (HHT) is a rare disorder with one per 6000-10,000 affected individuals in the general Caucasian population. HHT is genetically heterogeneous, involving at least two loci HHT1 mapping to chromosome 9q34.1 and HHT2 mapping to chromosome 12q31. The loci have be...... presumed spontaneous mutation was characterized. The method developed proved to be very sensitive for mutation detection in both ENG and ALK1. Genetic screening in HHT families facilitates an early treatment strategy for silent HHT manifestations in first degree relatives....

  20. Mutation Detection in Activin A Receptor, Type I (ACVR1) Gene in Fibrodysplasia Ossificans Progressiva in An Iranian Family

    Ziba Morovvati; Saeid Morovvati; Gholamhossein Alishiri; Seyed Hossein Moosavi; Reza Ranjbar; Yaser Bolouki Moghaddam

    2014-01-01

    Fibrodysplasia Ossificans Progressiva (FOP, MIM 135100) is a rare genetic disease that is often inherited sporadically in an autosomal dominant pattern. The disease manifests in early life with malformed great toes and, its episodic and progressive bone formation in skeletal muscle after trauma is led to extra-articular ankylosis. In this study, a 17 year-old affected girl born to a father with chemical injury due to exposure to Mustard gas during the Iran-Iraq war, and her first degree relat...

  1. Autocrine Bone Morphogenetic Protein-9 signals via Activin Receptor Like Kinase-2/Smad1/Smad4 to promote ovarian cancer cell proliferation

    Herrera, Blanca; van Dinther, Maarten; ten Dijke, Peter; Inman, Gareth J.

    2009-01-01

    Bone morphogenetic proteins (BMPs) act as central regulators of ovarian physiology and may be involved in ovarian cancer development. In an effort to understand these processes we characterized TGFβ/BMP receptor and Smad expression in immortalised ovarian surface epithelial cells (IOSE) and a panel of ovarian cancer cell lines. These studies prompted us to evaluate the potential role of BMP9 signalling in ovarian cancer. Using siRNA, ligand trap, inhibitor and ligand stimulation approaches we...

  2. Analysis of activin/TGFB-signaling modulators within the normal and dysfunctional adult human testis reveals evidence of altered signaling capacity in a subset of seminomas

    Dias, Vinali L; Rajpert-De Meyts, Ewa; McLachlan, Robert;

    2009-01-01

    adult human testes samples. Signaling transducers phosphorylated SMAD2/3, and signaling modulators SMAD6, MAN-1, inhibin alpha (INHA), and beta-glycan were detected in Bouins fixed, paraffin-embedded adult human testis sections using immunohistochemistry. Additional samples examined were from testicular...

  3. Enhanced differentiation of human embryonic stem cells to mesenchymal progenitors by inhibition of TGF-beta/Activin/Nodal signaling using SB-431542

    Mahmood, Amer; Harkness, Linda; Schrøder, Henrik Daa;

    2010-01-01

    Directing differentiation of human embryonic stem cells (hESC) into specific cell types using an easy and reproducible protocol is a prerequisite for the clinical use of hESC in regenerative medicine procedures. Here, we report a protocol for directing the differentiation of hESC into mesenchymal...... vivo. Interestingly, SB-OG cells cultured in 10% fetal bovine serum (FBS) developed into a homogeneous population of mesenchymal progenitors that expressed CD markers characteristic of mesenchymal stem cells (MSC): CD44(+) (100%), CD73(+) (98%), CD146(+) (96%) and CD166(+) (88%) with the ability to......-regulation of genes related to mesoderm-derived cell lineages. In conclusion, our data provides a simple and versatile protocol for directing the differentiation of hESC into a myogenic lineage and then further into mesenchymal progenitors by blocking the TGF-beta signaling pathway. (c) 2010 American Society...

  4. A phase I study of the human anti-activin receptor-like kinase 1 antibody PF-03446962 in Asian patients with advanced solid tumors.

    Doi, Toshihiko; Lee, Kyung-Hun; Kim, Tae-Min; Ohtsu, Atsushi; Kim, Tae Yong; Ikeda, Masafumi; Yoh, Kiyotaka; Gallo Stampino, Corrado; Hirohashi, Tomoko; Suzuki, Akiyuki; Fujii, Yosuke; Andrew Williams, James; Bang, Yung-Jue

    2016-07-01

    Preclinical studies suggest that ALK-1 signaling mediates a complementary angiogenesis pathway activated upon development of resistance to vascular endothelial growth factor (VEGF)-targeted therapies. Inhibition of ALK-1 signaling may lead to disruption of tumor angiogenesis and growth. We report findings from a multicenter, open-label, phase I study of the fully human anti-ALK-1 mAb PF-03446962 conducted in Japan and South Korea, in Asian patients with advanced solid tumors. The dose escalation Part 1 of the study was based on a standard 3 + 3 design (n = 16). In Part 2, patients were treated with PF-03446962 at 7 and 10 mg/kg (10/cohort), including patients with disease progression following prior VEGF receptor (R)-targeted therapy. Primary objectives were determination of the maximum tolerated dose (MTD) and recommended phase II dose (RP2D). Secondary objectives included safety, pharmacokinetics, pharmacodynamics, and antitumor activity of PF-03446962. No dose-limiting toxicity (DLT) was noted in the 12 DLT-evaluable patients. Treatment was well tolerated. The MTD for biweekly intravenous administration was estimated to be 10 mg/kg and the RP2D 7 mg/kg. Treatment-related grades 1-3 thrombocytopenia was experienced by 27.8% patients. The most frequent nonhematologic treatment-related AEs were grades 1-2 pyrexia and epistaxis. Four patients (3/4 with hepatocellular carcinoma) developed telangiectasia suggesting vascular targeting and in vivo ALK-1 inhibition by PF-03446962. Stable disease for 12 weeks or more was observed in 25.7% of patients and in 44.4% of those with hepatocellular carcinoma. ALK-1 inhibition by PF-03446962 may represent a novel antiangiogenic strategy for patients with advanced solid malignancies complementary to current treatment with VEGF(R)-targeted inhibitors or chemotherapy. PMID:27075560

  5. Activin receptor-like kinase receptors ALK5 and ALK1 are both required for TGFβ-induced chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells

    L.M.G. De Kroon (Laurie M.G.); R. Narcisi (Roberto); E.N. Blaney Davidson (Esmeralda); M.A. Cleary (Mairéad); H.M. van Beuningen (Henk); W.J.L.M. Koevoet (Wendy J.L.M.); G.J.V.M. van Osch (Gerjo); P.M. van der Kraan (Peter)

    2015-01-01

    textabstractIntroduction Bone marrow-derived mesenchymal stem cells (BMSCs) are promising for cartilage regeneration because BMSCs can differentiate into cartilage tissue-producing chondrocytes. Transforming Growth Factor beta; (TGFbeta;) is crucial for inducing chondrogenic differentiation of BMSCs

  6. Activin Receptor-Like Kinase Receptors ALK5 and ALK1 Are Both Required for TGFbeta-Induced Chondrogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells

    Kroon, L.M.G. de; Narcisi, R.; Davidson, E.N.; Cleary, M.A.; Beuningen, H.M. van; Koevoet, W.J.; Osch, G.J. van; Kraan, P.M. van der

    2015-01-01

    INTRODUCTION: Bone marrow-derived mesenchymal stem cells (BMSCs) are promising for cartilage regeneration because BMSCs can differentiate into cartilage tissue-producing chondrocytes. Transforming Growth Factor beta (TGFbeta) is crucial for inducing chondrogenic differentiation of BMSCs and is known

  7. Follistatin Alleviates Synovitis and Articular Cartilage Degeneration Induced by Carrageenan

    Yamada, Jun; Abula, Kahaer; Inoue, Makiko; Sekiya, Ichiro; Muneta, Takeshi

    2014-01-01

    Activins are proinflammatory cytokines which belong to the TGFβ superfamily. Follistatin is an extracellular decoy receptor for activins. Since both activins and follistatin are expressed in articular cartilage, we hypothesized that activin-follistatin signaling participates in the process of joint inflammation and cartilage degeneration. To test this hypothesis, we examined the effects of follistatin in a carrageenan-induced mouse arthritis model. Synovitis induced by intra-articular injection of carrageenan was significantly alleviated by preinjection with follistatin. Macrophage infiltration into the synovial membrane was significantly reduced in the presence of follistatin. In addition, follistatin inhibited proteoglycan erosion induced by carrageenan in articular cartilage. These data indicate that activin-follistatin signaling is involved in joint inflammation and cartilage homeostasis. Our data suggest that follistatin can be a new therapeutic target for inflammation-induced articular cartilage degeneration. PMID:25574420

  8. Advisability of immunocorrection application for prophylaxis of leukopenic reactions in patients with Hodgkin's disease

    The effect of immunocorrection by T-activine and thymaline on the development frequency of leukopenic reactions in 78 patients with lymphogranulomatosis, subjected to massive radiotherapy, is studied. Neither immunocorrectors, nor hemostimulating therapy with a prophylactic objective were prescribed for patients of the test group. No statistically authentic differences between the main and test groups were observed. The development frequency of leukopenic reactions using thymaline, T-activine and in the test group was practically the same. The conclusion is made that thymaline and T-activine prescribed before radiotherapy are not used in prophylaxis of leukopenic reactions developed during massive radiotherapy of patients with lymphogranulomatosis. 4 refs.; 2 tabs

  9. Grape

    ... nerve and eye problems, improving wound healing, preventing tooth decay, preventing cancer, an eye disease called age-related ... Activin, Black Grape Raisins, Calzin, Draksha, Enocianina, European Wine Grape, Extrait de Feuille de Raisin, Extrait de Feuille de ...

  10. New properties of immunotropic preparation from porcine skin.

    Belova, O V; Arion, V Y; Zimina, I V; Lukandina, T A; Krotova, S B; Sysoeva, O B; Tret'yakov, V A

    2007-09-01

    We studied new immunological and physicochemical properties of K-activin, immunotropic preparation from porcine skin isolated by the acetone method. The preparation restored the sensitivity of background rosette-forming cells in the spleen of thymectomized mice to the inhibitory effect of azathioprine in vivo and practically normalized serum thymic activity reduced in thymectomized mice. The molecular weight of proteins present in K-activin and previously detected by SDS-PAAG electrophoresis was determined by MALDI mass spectrometry PMID:18457058

  11. Ionizing radiation induces a motile phenotype in human carcinoma cells in vitro through hyperactivation of the TGF-beta signaling pathway.

    Carl, Cedric; Flindt, Anne; Hartmann, Julian; Dahlke, Markus; Rades, Dirk; Dunst, Jürgen; Lehnert, Hendrik; Gieseler, Frank; Ungefroren, Hendrik

    2016-01-01

    Radiotherapy, a major treatment modality against cancer, can lead to secondary malignancies but it is uncertain as to whether tumor cells that survive ionizing radiation (IR) treatment undergo epithelial-mesenchymal transition (EMT) and eventually become invasive or metastatic. Here, we have tested the hypothesis that the application of IR (10 MeV photon beams, 2-20 Gy) to lung and pancreatic carcinoma cells induces a migratory/invasive phenotype in these cells by hyperactivation of TGF-β and/or activin signaling. In accordance with this assumption, IR induced gene expression patterns and migratory responses consistent with an EMT phenotype. Moreover, in A549 cells, IR triggered the synthesis and secretion of both TGF-β1 and activin A as well as activation of intracellular TGF-β/activin signaling as evidenced by Smad phosphorylation and transcriptional activation of a TGF-β-responsive reporter gene. These responses were sensitive to SB431542, an inhibitor of type I receptors for TGF-β and activin. Likewise, specific antibody-mediated neutralization of soluble TGF-β, or dominant-negative inhibition of the TGF-β receptors, but not the activin type I receptor, alleviated IR-induced cell migration. Moreover, the TGF-β-specific approaches also blocked IR-dependent TGF-β1 secretion, Smad phosphorylation, and reporter gene activity, collectively indicating that autocrine production of TGF-β(s) and subsequent activation of TGF-β rather than activin signaling drives these changes. IR strongly sensitized cells to further increase their migration in response to recombinant TGF-β1 and this was accompanied by upregulation of TGF-β receptor expression. Our data raise the possibility that hyperactivation of TGF-β signaling during radiotherapy contributes to EMT-associated changes like metastasis, cancer stem cell formation and chemoresistance of tumor cells. PMID:26238393

  12. Differential expression of follistatin and FLRG in human breast proliferative disorders

    Activins are growth factors acting on cell growth and differentiation. Activins are expressed in high grade breast tumors and they display an antiproliferative effect inducing G0/G1 cell cycle arrest in breast cancer cell lines. Follistatin and follistatin- related gene (FLRG) bind and neutralize activins. In order to establish if these activin binding proteins are involved in breast tumor progression, the present study evaluated follistatin and FLRG pattern of mRNA and protein expression in normal human breast tissue and in different breast proliferative diseases. Paraffin embedded specimens of normal breast (NB - n = 8); florid hyperplasia without atypia (FH - n = 17); fibroadenoma (FIB - n = 17); ductal carcinoma in situ (DCIS - n = 10) and infiltrating ductal carcinoma (IDC - n = 15) were processed for follistatin and FLRG immunohistochemistry and in situ hybridization. The area and intensity of chromogen epithelial and stromal staining were analyzed semi-quantitatively. Follistatin and FLRG were expressed both in normal tissue and in all the breast diseases investigated. Follistatin staining was detected in the epithelial cytoplasm and nucleus in normal, benign and malignant breast tissue, with a stronger staining intensity in the peri-alveolar stromal cells of FIB at both mRNA and protein levels. Conversely, FLRG area and intensity of mRNA and protein staining were higher both in the cytoplasm and in the nucleus of IDC epithelial cells when compared to NB, while no significant changes in the stromal intensity were observed in all the proliferative diseases analyzed. The present findings suggest a role for follistatin in breast benign disease, particularly in FIB, where its expression was increased in stromal cells. The up regulation of FLRG in IDC suggests a role for this protein in the progression of breast malignancy. As activin displays an anti-proliferative effect in human mammary cells, the present findings indicate that an increased FST and FLRG

  13. Effects of Growth Hormone and Growth Factors on the Improvement of Culture Conditions of In vitro Produced Bovine Embryos

    N.R. Mtango; M. D. Varisanga; Tatsuyuki Suzuki

    2002-01-01

    The effect of growth hormone (GH), activin, insulin and epidermal growth factor (EGF) was examined on nucleus maturation, cleavage after fertilization and development of bovine oocytes to blastocysts in vitro. COCs were cultured in the presence of medium alone mSOFaa [Modified oviduct synthetic fluid with amino acids] (control), activin (10ng/ml), EGF (10ng/ml), GH (100ng/ml) and insulin 5µg/ml. There was an increase (P < 0.05 and P < 0.01) in the percentage of oocytes that reached meta...

  14. Sequence Classification: 768824 [

    Full Text Available Non-TMB TMH Non-TMB Non-TMB Non-TMB Non-TMB >gi|17552830|ref|NP_498211.1| abnormal DAuer... Formation DAF-4, activin/BMP cell-surface receptor, regulates dauer larva development (84.4 kD) (daf-4) || http://www.ncbi.nlm.nih.gov/protein/17552830 ...

  15. A Simplified Method for Three-Dimensional (3-D Ovarian Tissue Culture Yielding Oocytes Competent to Produce Full-Term Offspring in Mice.

    Carolyn M Higuchi

    Full Text Available In vitro growth of follicles is a promising technology to generate large quantities of competent oocytes from immature follicles and could expand the potential of assisted reproductive technologies (ART. Isolated follicle culture is currently the primary method used to develop and mature follicles in vitro. However, this procedure typically requires complicated, time-consuming procedures, as well as destruction of the normal ovarian microenvironment. Here we describe a simplified 3-D ovarian culture system that can be used to mature multilayered secondary follicles into antral follicles, generating developmentally competent oocytes in vitro. Ovaries recovered from mice at 14 days of age were cut into 8 pieces and placed onto a thick Matrigel drop (3-D culture for 10 days of culture. As a control, ovarian pieces were cultured on a membrane filter without any Matrigel drop (Membrane culture. We also evaluated the effect of activin A treatment on follicle growth within the ovarian pieces with or without Matrigel support. Thus we tested four different culture conditions: C (Membrane/activin-, A (Membrane/activin+, M (Matrigel/activin-, and M+A (Matrigel/activin+. We found that the cultured follicles and oocytes steadily increased in size regardless of the culture condition used. However, antral cavity formation occurred only in the follicles grown in the 3-D culture system (M, M+A. Following ovarian tissue culture, full-grown GV oocytes were isolated from the larger follicles to evaluate their developmental competence by subjecting them to in vitro maturation (IVM and in vitro fertilization (IVF. Maturation and fertilization rates were higher using oocytes grown in 3-D culture (M, M+A than with those grown in membrane culture (C, A. In particular, activin A treatment further improved 3-D culture (M+A success. Following IVF, two-cell embryos were transferred to recipients to generate full-term offspring. In summary, this simple and easy 3-D ovarian

  16. Differential expression of follistatin and FLRG in human breast proliferative disorders

    Amaral Vania F

    2009-09-01

    Full Text Available Abstract Background Activins are growth factors acting on cell growth and differentiation. Activins are expressed in high grade breast tumors and they display an antiproliferative effect inducing G0/G1 cell cycle arrest in breast cancer cell lines. Follistatin and follistatin- related gene (FLRG bind and neutralize activins. In order to establish if these activin binding proteins are involved in breast tumor progression, the present study evaluated follistatin and FLRG pattern of mRNA and protein expression in normal human breast tissue and in different breast proliferative diseases. Methods Paraffin embedded specimens of normal breast (NB - n = 8; florid hyperplasia without atypia (FH - n = 17; fibroadenoma (FIB - n = 17; ductal carcinoma in situ (DCIS - n = 10 and infiltrating ductal carcinoma (IDC - n = 15 were processed for follistatin and FLRG immunohistochemistry and in situ hybridization. The area and intensity of chromogen epithelial and stromal staining were analyzed semi-quantitatively. Results Follistatin and FLRG were expressed both in normal tissue and in all the breast diseases investigated. Follistatin staining was detected in the epithelial cytoplasm and nucleus in normal, benign and malignant breast tissue, with a stronger staining intensity in the peri-alveolar stromal cells of FIB at both mRNA and protein levels. Conversely, FLRG area and intensity of mRNA and protein staining were higher both in the cytoplasm and in the nucleus of IDC epithelial cells when compared to NB, while no significant changes in the stromal intensity were observed in all the proliferative diseases analyzed. Conclusion The present findings suggest a role for follistatin in breast benign disease, particularly in FIB, where its expression was increased in stromal cells. The up regulation of FLRG in IDC suggests a role for this protein in the progression of breast malignancy. As activin displays an anti-proliferative effect in human mammary cells, the

  17. Over-expression of Follistatin-like 3 attenuates fat accumulation and improves insulin sensitivity in mice

    Brandt, Claus; Hansen, Rasmus Hvass; Hansen, Jakob Bondo;

    2015-01-01

    through systemic fstl3 over-expression protects against diet-induced obesity and insulin resistance. METHODS: Fstl3 was over-expressed by DNA electrotransfer in tibialis anterior, quadriceps and gastrocnemius muscles in female C57BL/C mice, and the mice were subsequently randomized to chow or high...... adipose tissue. Fstl3 mice displayed improved insulin sensitivity and muscle insulin signalling. In contrast, glucose tolerance was impaired in high-fat fed fstl3 mice, which was explained by increased hepatic glucagon sensitivity and glucose output, as well as a decrease in the pancreatic insulin......OBJECTIVE: Follistatin-like 3 (fstl3), a natural inhibitor of members of the TGF-β family, increases during resistance training in human plasma. Fstl3 primarily binds myostatin and activin A, and thereby inhibits their functions. We hypothesize that blocking myostatin and activin A signalling...

  18. Ineffective erythropoiesis and regulation of iron status in iron loading anaemias.

    Camaschella, Clara; Nai, Antonella

    2016-02-01

    The definition 'iron loading anaemias' encompasses a group of inherited and acquired anaemias characterized by ineffective erythropoiesis, low hepcidin levels, excessive iron absorption and secondary iron overload. Non-transfusion-dependent β-thalassaemia is the paradigmatic example of these conditions that include dyserythropoietic and sideroblastic anaemias and some forms of myelodysplasia. Interrupting the vicious cycle between ineffective erythropoiesis and iron overload may be of therapeutic benefit in all these diseases. Induction of iron restriction by means of transferrin infusions, minihepcidins or manipulation of the hepcidin pathway prevents iron overload, redistributes iron from parenchymal cells to macrophage stores and partially controls anaemia in β-thalassaemic mice. Inhibition of ineffective erythropoiesis by activin ligand traps improves anaemia and iron overload in the same models. Targeting iron loading or ineffective erythropoiesis shows promise in preclinical studies; activin ligand traps are in clinical trials with promising results and may be useful in patients with ineffective erythropoiesis. PMID:26491866

  19. Follicular growth, differentiation and atresia

    JIN Xuan; LIU Yixun

    2003-01-01

    Only limited numbers of primordial follicles in mammalian ovary grow and differentiate to reach the stage of dominate follicles and ovulate. 99% of the follicles in the ovary undergo atresia at various stages of development. Regulation of follicular growth, development and atresia is a complex process and involves interactions between endocrine factors and intraovarian regulators. This review summarized:ⅰ) FSH may not be a survival factor in regulating slow-growing preantral follicles. Some locally produced growth factors, activin and orphan receptors might play a more important role at this stage. ⅱ) Estrogen, activin/inhibin and follistatin coordinate with FSH to regulate and control follicle differentiation. ⅲ) There are two types of follicular atresia induced by apoptosis which originates from GC or oocyte, respectively. Early translation of tPA mRNA into tPA protein in oocyte may be associated with oocyte apoptosis.

  20. Derivation of a novel undifferentiated human foetal phenotype in serum-free cultures with BMP-2

    Mirmalek-Sani, Sayed-Hadi; Stokes, Paula J; Tare, Rahul S; Ralph, Esther J; Inglis, Stefanie; Hanley, Neil A.; Franchesca D. Houghton; Oreffo, Richard OC

    2009-01-01

    Skeletal stem and progenitor populations provide a platform for cell-based tissue regeneration strategies. Optimized conditions for ex vivo expansion will be critical and use of serum-free culture may allow enhanced modelling of differentiation potential. Maintenance of human foetal femur-derived cells in a chemically defined medium (CDM) with activin A and fibroblast growth factor-2 generated a unique undifferentiated cell population in comparison to basal cultures, with significantly reduce...

  1. The effects of an ActRIIb receptor Fc fusion protein ligand trap in juvenile simian immunodeficiency virus-infected rhesus macaques

    O’Connell, Karyn E.; Guo, Wen; Serra, Carlo; Beck, Matthew; Wachtman, Lynn; Hoggatt, Amber; Xia, Dongling; Pearson, Chris; Knight, Heather; O’Connell, Micheal; Andrew D. Miller; Westmoreland, Susan V.; Bhasin, Shalender

    2014-01-01

    There are no approved therapies for muscle wasting in children infected with human immunodeficiency virus (HIV), which portends poor disease outcomes. To determine whether a soluble ActRIIb receptor Fc fusion protein (ActRIIB.Fc), a ligand trap for TGF-β/activin family members including myostatin, can prevent or restore loss of lean body mass and body weight in simian immunodeficiency virus (SIV)-infected juvenile rhesus macaques (Macaca mulatta). Fourteen pair-housed, juvenile male rhesus ma...

  2. Involvement of Histone Acetylation of Sox17 and Foxa2 Promoters during Mouse Definitive Endoderm Differentiation Revealed by MicroRNA Profiling

    Fu, Shijun; Fei, Qi; Jiang, Hua; Chuai, Shannon; Shi, Song; Xiong, Wen; Jiang, Lei; Lu, Chris; Atadja, Peter; Li, En; Shou, Jianyong

    2011-01-01

    Generation of hepatocyte from embryonic stem cells (ESCs) holds great promise for hepatocyte replacement therapy to treat liver diseases. Achieving high efficiency of directed differentiation of ESCs to hepatocyte is of critical importance. Previously, Wnt3a has been reported to promote Activin A-induced human definitive endoderm (DE) differentiation, the early stage of hepatocyte differentiation. However, the underlying molecular mechanisms are not clear. Growing evidence demonstrated that m...

  3. A cost-effective system for differentiation of intestinal epithelium from human induced pluripotent stem cells

    Soichiro Ogaki; Mayu Morooka; Kaito Otera; Shoen Kume

    2015-01-01

    The human intestinal epithelium is a useful model for pharmacological studies of absorption, metabolism, drug interactions, and toxicology, as well as for studies of developmental biology. We established a rapid and cost effective system for differentiation of human induced pluripotent stem (iPS) cells into definitive endoderm (DE) cells. In the presence of dimethyl sulfoxide (DMSO), a low concentration of Activin at 6.25 ng/ml is sufficient to give a similar differentiation efficiency with t...

  4. Induction and Selection of Sox17-Expressing Endoderm Cells Generated from Murine Embryonic Stem Cells

    Schroeder, I.; Sulzbacher, S.; T. Nolden; Fuchs, J.; Czarnota, J.; Meisterfeld, R.; Himmelbauer, H.; Wobus, A

    2014-01-01

    Embryonic stem (ES) cells offer a valuable source for generating insulin-producing cells. However, current differentiation protocols often result in heterogeneous cell populations of various developmental stages. Here we show the activin A-induced differentiation of mouse ES cells carrying a homologous dsRed-IRES-puromycin knock-in within the Sox17 locus into the endoderm lineage. Sox17-expressing cells were selected by fluorescence-assisted cell sorting (FACS) and characterized at the transc...

  5. Population based model of human embryonic stem cell (hESC differentiation during endoderm induction.

    Keith Task

    Full Text Available The mechanisms by which human embryonic stem cells (hESC differentiate to endodermal lineage have not been extensively studied. Mathematical models can aid in the identification of mechanistic information. In this work we use a population-based modeling approach to understand the mechanism of endoderm induction in hESC, performed experimentally with exposure to Activin A and Activin A supplemented with growth factors (basic fibroblast growth factor (FGF2 and bone morphogenetic protein 4 (BMP4. The differentiating cell population is analyzed daily for cellular growth, cell death, and expression of the endoderm proteins Sox17 and CXCR4. The stochastic model starts with a population of undifferentiated cells, wherefrom it evolves in time by assigning each cell a propensity to proliferate, die and differentiate using certain user defined rules. Twelve alternate mechanisms which might describe the observed dynamics were simulated, and an ensemble parameter estimation was performed on each mechanism. A comparison of the quality of agreement of experimental data with simulations for several competing mechanisms led to the identification of one which adequately describes the observed dynamics under both induction conditions. The results indicate that hESC commitment to endoderm occurs through an intermediate mesendoderm germ layer which further differentiates into mesoderm and endoderm, and that during induction proliferation of the endoderm germ layer is promoted. Furthermore, our model suggests that CXCR4 is expressed in mesendoderm and endoderm, but is not expressed in mesoderm. Comparison between the two induction conditions indicates that supplementing FGF2 and BMP4 to Activin A enhances the kinetics of differentiation than Activin A alone. This mechanistic information can aid in the derivation of functional, mature cells from their progenitors. While applied to initial endoderm commitment of hESC, the model is general enough to be applicable

  6. DMSO efficiently down regulates pluripotency genes in human embryonic stem cells during definitive endoderm derivation and increases the proficiency of hepatic differentiation.

    Katherine Czysz

    Full Text Available BACKGROUND: Definitive endoderm (DE is one of the three germ layers which during in vivo vertebrate development gives rise to a variety of organs including liver, lungs, thyroid and pancreas; consequently efficient in vitro initiation of stem cell differentiation to DE cells is a prerequisite for successful cellular specification to subsequent DE-derived cell types [1, 2]. In this study we present a novel approach to rapidly and efficiently down regulate pluripotency genes during initiation of differentiation to DE cells by addition of dimethyl sulfoxide (DMSO to Activin A-based culture medium and report its effects on the downstream differentiation to hepatocyte-like cells. MATERIALS AND METHODS: Human embryonic stem cells (hESC were differentiated to DE using standard methods in medium supplemented with 100ng/ml of Activin A and compared to cultures where DE specification was additionally enhanced with different concentrations of DMSO. DE cells were subsequently primed to generate hepatic-like cells to investigate whether the addition of DMSO during formation of DE improved subsequent expression of hepatic markers. A combination of flow cytometry, real-time quantitative reverse PCR and immunofluorescence was applied throughout the differentiation process to monitor expression of pluripotency (POUF5/OCT4 & NANOG, definitive endoderm (SOX17, CXCR4 & GATA4 and hepatic (AFP & ALB genes to generate differentiation stage-specific signatures. RESULTS: Addition of DMSO to the Activin A-based medium during DE specification resulted in rapid down regulation of the pluripotency genes OCT4 and NANOG, accompanied by an increase expression of the DE genes SOX17, CXCR4 and GATA4. Importantly, the expression level of ALB in DMSO-treated cells was also higher than in cells which were differentiated to the DE stage via standard Activin A treatment.

  7. 99mTc-MAA Pulmonary Scintigraphy in Hereditary Hemorrhagic Telangiectasia.

    Yang, Fang; Yuan, Leilei; Ma, Daqing; Yang, Jigang

    2016-08-01

    A 5-year-old boy was admitted due to shortness of breath. Blood gas analysis showed hypoxemia. However, thoracic and abdominal CT, brain MRI, and MR angiography were all normal. A Tc-MAA pulmonary scintigraphy revealed right-to-left shunting of the blood. Further genetic analysis showed the mutations in the activin receptor-like kinase 1 gene, and a diagnosis of hereditary hemorrhagic telangiectasia was made. PMID:27163461

  8. GDF9 Modulates the Reproductive and Tumor Phenotype of Female Inha-Null Mice1

    Myers, Michelle; Mansouri-Attia, Nadera; James, Rebecca; Peng, Jia; Pangas, Stephanie A.

    2013-01-01

    Intraovarian factors play important roles in coordinating germ cell and somatic cell growth in the ovary. Prior to the onset of gonadotropin stimulation and reproductive cyclicity, follicle development is dependent upon locally produced growth factors, such as the transforming growth factor beta family members inhibin, activin, and GDF9. In the absence of inhibin in prepubertal mice (Inha−/−), there are marked alterations in preantral follicle growth, but no evidence of ovarian tumors charact...

  9. A cost-effective system for differentiation of intestinal epithelium from human induced pluripotent stem cells.

    Ogaki, Soichiro; Morooka, Mayu; Otera, Kaito; Kume, Shoen

    2015-01-01

    The human intestinal epithelium is a useful model for pharmacological studies of absorption, metabolism, drug interactions, and toxicology, as well as for studies of developmental biology. We established a rapid and cost effective system for differentiation of human induced pluripotent stem (iPS) cells into definitive endoderm (DE) cells. In the presence of dimethyl sulfoxide (DMSO), a low concentration of Activin at 6.25 ng/ml is sufficient to give a similar differentiation efficiency with that using Activin at 100 ng/ml at the presence of Wnt activator. In the presence of DMSO, Activin at low concentration triggered hiPS cells to undergo differentiation through G1 arrest, reduce apoptosis, and potentiate activation of downstream targets, such as SMAD2 phosphorylation and SOX17 expression. This increased differentiation into CDX2 + SOX17 + DE cells. The present differentiation procedure therefore permits rapid and efficient derivation of DE cells, capable of differentiating into intestinal epithelium upon BIO and DAPT treatment and of giving rise to functional cells, such as enterocytes. PMID:26616277

  10. SOX9: a stem cell transcriptional regulator of secreted niche signaling factors.

    Kadaja, Meelis; Keyes, Brice E; Lin, Mingyan; Pasolli, H Amalia; Genander, Maria; Polak, Lisa; Stokes, Nicole; Zheng, Deyou; Fuchs, Elaine

    2014-02-15

    Hair follicles (HFs) undergo cyclical periods of growth, which are fueled by stem cells (SCs) at the base of the resting follicle. HF-SC formation occurs during HF development and requires transcription factor SOX9. Whether and how SOX9 functions in HF-SC maintenance remain unknown. By conditionally targeting Sox9 in adult HF-SCs, we show that SOX9 is essential for maintaining them. SOX9-deficient HF-SCs still transition from quiescence to proliferation and launch the subsequent hair cycle. However, once activated, bulge HF-SCs begin to differentiate into epidermal cells, which naturally lack SOX9. In addition, as HF-SC numbers dwindle, outer root sheath production is not sustained, and HF downgrowth arrests prematurely. Probing the mechanism, we used RNA sequencing (RNA-seq) to identify SOX9-dependent transcriptional changes and chromatin immunoprecipitation (ChIP) and deep sequencing (ChIP-seq) to identify SOX9-bound genes in HF-SCs. Intriguingly, a large cohort of SOX9-sensitive targets encode extracellular factors, most notably enhancers of Activin/pSMAD2 signaling. Moreover, compromising Activin signaling recapitulates SOX9-dependent defects, and Activin partially rescues them. Overall, our findings reveal roles for SOX9 in regulating adult HF-SC maintenance and suppressing epidermal differentiation in the niche. In addition, our studies expose a role for SCs in coordinating their own behavior in part through non-cell-autonomous signaling within the niche. PMID:24532713

  11. Designer TGFβ superfamily ligands with diversified functionality.

    George P Allendorph

    Full Text Available Transforming Growth Factor--beta (TGFβ superfamily ligands, including Activins, Growth and Differentiation Factors (GDFs, and Bone Morphogenetic Proteins (BMPs, are excellent targets for protein-based therapeutics because of their pervasiveness in numerous developmental and cellular processes. We developed a strategy termed RASCH (Random Assembly of Segmental Chimera and Heteromer, to engineer chemically-refoldable TGFβ superfamily ligands with unique signaling properties. One of these engineered ligands, AB208, created from Activin-βA and BMP-2 sequences, exhibits the refolding characteristics of BMP-2 while possessing Activin-like signaling attributes. Further, we find several additional ligands, AB204, AB211, and AB215, which initiate the intracellular Smad1-mediated signaling pathways more strongly than BMP-2 but show no sensitivity to the natural BMP antagonist Noggin unlike natural BMP-2. In another design, incorporation of a short N-terminal segment from BMP-2 was sufficient to enable chemical refolding of BMP-9, without which was never produced nor refolded. Our studies show that the RASCH strategy enables us to expand the functional repertoire of TGFβ superfamily ligands through development of novel chimeric TGFβ ligands with diverse biological and clinical values.

  12. Stauprimide Priming of Human Embryonic Stem Cells toward Definitive Endoderm

    Yaser Tahamtani

    2014-03-01

    Full Text Available Objective: In vitro production of a definitive endoderm (DE is an important issue in stem cell-related differentiation studies and it can assist with the production of more efficient endoderm derivatives for therapeutic applications. Despite tremendous progress in DE differentiation of human embryonic stem cells (hESCs, researchers have yet to discover universal, efficient and cost-effective protocols. Materials and Methods: In this experimental study, we have treated hESCs with 200 nM of Stauprimide (Spd for one day followed by activin A (50 ng/ml; A50 for the next three days (Spd-A50. In the positive control group, hESCs were treated with Wnt3a (25 ng/ml and activin A (100 ng/ml for the first day followed by activin A for the next three days (100 ng/ml; W/A100-A100. Results: Gene expression analysis showed up regulation of DE-specific marker genes (SOX17, FOXA2 and CXCR4 comparable to that observed in the positive control group. Expression of the other lineage specific markers did not significantly change (p<0.05. We also obtained the same gene expression results using another hESC line. The use of higher concentrations of Spd (400 and 800 nM in the Spd-A50 protocol caused an increase in the expression SOX17 as well as a dramatic increase in mortality rate of the hESCs. A lower concentration of activin A (25 ng/ml was not able to up regulate the DE-specific marker genes. Then, A50 was replaced by inducers of definitive endoderm; IDE1/2 (IDE1 and IDE2, two previously reported small molecule (SM inducers of DE, in our protocol (Spd-IDE1/2. This replacement resulted in the up regulation of visceral endoderm (VE marker (SOX7 but not DE-specific markers. Therefore, while the Spd-A50 protocol led to DE production, we have shown that IDE1/2 could not fully replace activin A in DE induction of hESCs. Conclusion: These findings can assist with the design of more efficient chemically-defined protocols for DE induction of hESCs and lead to a better

  13. An integrated gene regulatory network controls stem cell proliferation in teeth.

    Xiu-Ping Wang

    2007-06-01

    Full Text Available Epithelial stem cells reside in specific niches that regulate their self-renewal and differentiation, and are responsible for the continuous regeneration of tissues such as hair, skin, and gut. Although the regenerative potential of mammalian teeth is limited, mouse incisors grow continuously throughout life and contain stem cells at their proximal ends in the cervical loops. In the labial cervical loop, the epithelial stem cells proliferate and migrate along the labial surface, differentiating into enamel-forming ameloblasts. In contrast, the lingual cervical loop contains fewer proliferating stem cells, and the lingual incisor surface lacks ameloblasts and enamel. Here we have used a combination of mouse mutant analyses, organ culture experiments, and expression studies to identify the key signaling molecules that regulate stem cell proliferation in the rodent incisor stem cell niche, and to elucidate their role in the generation of the intrinsic asymmetry of the incisors. We show that epithelial stem cell proliferation in the cervical loops is controlled by an integrated gene regulatory network consisting of Activin, bone morphogenetic protein (BMP, fibroblast growth factor (FGF, and Follistatin within the incisor stem cell niche. Mesenchymal FGF3 stimulates epithelial stem cell proliferation, and BMP4 represses Fgf3 expression. In turn, Activin, which is strongly expressed in labial mesenchyme, inhibits the repressive effect of BMP4 and restricts Fgf3 expression to labial dental mesenchyme, resulting in increased stem cell proliferation and a large, labial stem cell niche. Follistatin limits the number of lingual stem cells, further contributing to the characteristic asymmetry of mouse incisors, and on the basis of our findings, we suggest a model in which Follistatin antagonizes the activity of Activin. These results show how the spatially restricted and balanced effects of specific components of a signaling network can regulate stem cell

  14. Differentiation of murine embryonic stem and induced pluripotent stem cells to renal lineage in vitro

    Embryonic stem (ES) cells which have the unlimited proliferative capacity and extensive differentiation potency can be an attractive source for kidney regeneration therapies. Recent breakthroughs in the generation of induced pluripotent stem (iPS) cells have provided with another potential source for the artificially-generated kidney. The purpose of this study is to know how to differentiate mouse ES and iPS cells into renal lineage. We used iPS cells from mouse fibroblasts by transfection of four transcription factors, namely Oct4, Sox2, c-Myc and Klf4. Real-time PCR showed that renal lineage markers were expressed in both ES and iPS cells after the induction of differentiation. It also showed that a tubular specific marker, KSP progressively increased to day 18, although the differentiation of iPS cells was slower than ES cells. The results indicated that renal lineage cells can be differentiated from both murine ES and iPS cells. Several inducing factors were tested whether they influenced on cell differentiation. In ES cells, both of GDNF and BMP7 enhanced the differentiation to metanephric mesenchyme, and Activin enhanced the differentiation of ES cells to tubular cells. Activin also enhanced the differentiation of iPS cells to tubular cells, although the enhancement was lower than in ES cells. ES and iPS cells have a potential to differentiate to renal lineage cells, and they will be an attractive resource of kidney regeneration therapy. This differentiation is enhanced by Activin in both ES and iPS cells.

  15. Topical 5-azacytidine accelerates skin wound healing in rats.

    Gomes, Fabiana S; de-Souza, Gabriela F; Nascimento, Lucas F; Arantes, Eva L; Pedro, Rafael M; Vitorino, Daniele C; Nunez, Carla E; Melo Lima, Maria H; Velloso, Lício A; Araújo, Eliana P

    2014-01-01

    The development of new methods to improve skin wound healing may affect the outcomes of a number of medical conditions. Here, we evaluate the molecular and clinical effects of topical 5-azacytidine on wound healing in rats. 5-Azacytidine decreases the expression of follistatin-1, which negatively regulates activins. Activins, in turn, promote cell growth in different tissues, including the skin. Eight-week-old male Wistar rats were submitted to 8.0-mm punch-wounding in the dorsal region. After 3 days, rats were randomly assigned to receive either a control treatment or the topical application of a solution containing 5-azacytidine (10 mM) once per day. Photo documentation and sample collection were performed on days 5, 9, and 15. Overall, 5-azacytidine promoted a significant acceleration of complete wound healing (99.7% ± 0.7.0 vs. 71.2% ± 2.8 on day 15; n = 10; p < 0.01), accompanied by up to threefold reduction in follistatin expression. Histological examination of the skin revealed efficient reepithelization and cell proliferation, as evaluated by the BrdU incorporation method. 5-Azacytidine treatment also resulted in increased gene expression of transforming growth factor-beta and the keratinocyte markers involucrin and cytokeratin, as well as decreased expression of cytokines such as tumor necrosis factor-alpha and interleukin-10. Lastly, when recombinant follistatin was applied to the skin in parallel with topical 5-azacytidine, most of the beneficial effects of the drug were lost. Thus, 5-azacytidine acts, at least in part through the follistatin/activin pathway, to improve skin wound healing in rodents. PMID:25039304

  16. The spatiotemporal hormonal orchestration of human folliculogenesis, early embryogenesis and blastocyst implantation.

    Atwood, Craig S; Vadakkadath Meethal, Sivan

    2016-07-15

    The early reproductive events starting with folliculogenesis and ending with blastocyst implantation into the uterine endometrium are regulated by a complex interplay among endocrine, paracrine and autocrine factors. This review examines the spatiotemporal integration of these maternal and embryonic signals that are required for successful reproduction. In coordination with hypothalamic-pituitary-gonadal (HPG) hormones, an intraovarian HPG-like axis regulates folliculogenesis, follicular quiescence, ovulation, follicular atresia, and corpus luteal functions. Upon conception and passage of the zygote through the fallopian tube, the contribution of maternal hormones in the form of paracrine secretions from the endosalpinx to embryonic development declines, with autocrine and paracrine signaling becoming increasingly important as instructional signals for the differentiation of the early zygote/morula into a blastocyst. These maternal and embryonic signals include activin and gonadotropin-releasing hormone 1 (GnRH1) that are crucial for the synthesis and secretion of the 'pregnancy' hormone human chorionic gonadotropin (hCG). hCG in turn signals pre-implantation embryonic cell division and sex steroid production required for stem cell differentiation, and subsequent blastulation, gastrulation, cavitation and blastocyst formation. Upon reaching the uterus, blastocyst hatching occurs under the influence of decreased activin signaling, while the attachment and invasion of the trophoblast into the endometrium appears to be driven by a decrease in activin signaling, and by increased GnRH1 and hCG signaling that allows for tissue remodeling and the controlled invasion of the blastocyst into the uterine endometrium. This review demonstrates the importance of integrative endocrine, paracrine, and autocrine signaling for successful human reproduction. PMID:27045358

  17. Differentiation of murine embryonic stem and induced pluripotent stem cells to renal lineage in vitro

    Morizane, Ryuji [Department of Internal Medicine, Keio University School of Medicine, Tokyo (Japan); Monkawa, Toshiaki, E-mail: monkawa@sc.itc.keio.ac.jp [Department of Internal Medicine, Keio University School of Medicine, Tokyo (Japan); Itoh, Hiroshi [Department of Internal Medicine, Keio University School of Medicine, Tokyo (Japan)

    2009-12-25

    Embryonic stem (ES) cells which have the unlimited proliferative capacity and extensive differentiation potency can be an attractive source for kidney regeneration therapies. Recent breakthroughs in the generation of induced pluripotent stem (iPS) cells have provided with another potential source for the artificially-generated kidney. The purpose of this study is to know how to differentiate mouse ES and iPS cells into renal lineage. We used iPS cells from mouse fibroblasts by transfection of four transcription factors, namely Oct4, Sox2, c-Myc and Klf4. Real-time PCR showed that renal lineage markers were expressed in both ES and iPS cells after the induction of differentiation. It also showed that a tubular specific marker, KSP progressively increased to day 18, although the differentiation of iPS cells was slower than ES cells. The results indicated that renal lineage cells can be differentiated from both murine ES and iPS cells. Several inducing factors were tested whether they influenced on cell differentiation. In ES cells, both of GDNF and BMP7 enhanced the differentiation to metanephric mesenchyme, and Activin enhanced the differentiation of ES cells to tubular cells. Activin also enhanced the differentiation of iPS cells to tubular cells, although the enhancement was lower than in ES cells. ES and iPS cells have a potential to differentiate to renal lineage cells, and they will be an attractive resource of kidney regeneration therapy. This differentiation is enhanced by Activin in both ES and iPS cells.

  18. Molecular mechanisms of tiling and self-avoidance in neural development

    Cameron Scott

    2010-10-01

    Full Text Available Abstract Recent studies have begun to unravel the molecular basis of tiling and self-avoidance, two important cellular mechanisms that shape neuronal circuitry during development in both invertebrates and vertebrates. Dscams and Turtle (Tutl, two Ig superfamily proteins, have been shown to mediate contact-dependent homotypic interactions in tiling and self-avoidance. By contrast, the Activin pathway regulates axonal tiling in a contact-independent manner. These cell surface signals may directly or indirectly regulate the activity of the Tricornered kinase pathway and/or other intracellular signaling pathways to prevent the overlap between same-type neuronal arbors in the sensory or synaptic input field.

  19. The structure of myostatin:follistatin 288: insights into receptor utilization and heparin binding

    Cash, Jennifer N.; Rejon, Carlis A; McPherron, Alexandra C.; Bernard, Daniel J; Thompson, Thomas B.

    2009-01-01

    Myostatin is a member of the transforming growth factor-β (TGF-β) family and a strong negative regulator of muscle growth. Here, we present the crystal structure of myostatin in complex with the antagonist follistatin 288 (Fst288). We find that the prehelix region of myostatin very closely resembles that of TGF-β class members and that this region alone can be swapped into activin A to confer signalling through the non-canonical type I receptor Alk5. Furthermore, the N-terminal domain of Fst2...

  20. Follicle-restricted compartmentalization of transforming growth factor beta superfamily ligands in the feline ovary.

    Bristol, Sarah K; Woodruff, Teresa K

    2004-03-01

    Ovarian follicular development, follicle selection, and the process of ovulation remain poorly understood in most species. Throughout reproductive life, follicle fate is balanced between growth and apoptosis. These opposing forces are controlled by numerous endocrine, paracrine, and autocrine factors, including the ligands represented by the transforming growth factor beta (TGFbeta) superfamily. TGFbeta, activin, inhibin, bone morphometric protein (BMP), and growth differentiation factor 9 (GDF-9) are present in the ovary of many animals; however, no comprehensive analysis of the localization of each ligand or its receptors and intracellular signaling molecules during folliculogenesis has been done. The domestic cat is an ideal model for studying ovarian follicle dynamics due to an abundance of all follicle populations, including primordial stage, and the amount of readily available tissue following routine animal spaying. Additionally, knowledge of the factors involved in feline follicular development could make an important impact on in vitro maturation/in vitro fertilization (IVM/IVF) success for endangered feline species. Thus, the presence and position of TGFbeta superfamily members within the feline ovary have been evaluated in all stages of follicular development by immunolocalization. The cat inhibin alpha subunit protein is present in all follicle stages but increases in intensity within the mural granulosa cells in large antral follicles. The inhibin betaA and betaB subunit proteins, in addition to the activin type I (ActRIB) and activin type II receptor (ActRIIB), are produced in primordial and primary follicle granulosa cells. Additionally, inhibin betaA subunit is detected in the theca cells from secondary through large antral follicle size classes. GDF-9 is restricted to the oocyte of preantral and antral follicles, whereas the type II BMP receptor (BMP-RII) protein is predominantly localized to primordial- and primary-stage follicles. TGFbeta1, 2

  1. Analysis of alternative signaling pathways of endoderm induction of human embryonic stem cells identifies context specific differences

    Mathew Shibin

    2012-12-01

    Full Text Available Abstract Background Lineage specific differentiation of human embryonic stem cells (hESCs is largely mediated by specific growth factors and extracellular matrix molecules. Growth factors initiate a cascade of signals which control gene transcription and cell fate specification. There is a lot of interest in inducing hESCs to an endoderm fate which serves as a pathway towards more functional cell types like the pancreatic cells. Research over the past decade has established several robust pathways for deriving endoderm from hESCs, with the capability of further maturation. However, in our experience, the functional maturity of these endoderm derivatives, specifically to pancreatic lineage, largely depends on specific pathway of endoderm induction. Hence it will be of interest to understand the underlying mechanism mediating such induction and how it is translated to further maturation. In this work we analyze the regulatory interactions mediating different pathways of endoderm induction by identifying co-regulated transcription factors. Results hESCs were induced towards endoderm using activin A and 4 different growth factors (FGF2 (F, BMP4 (B, PI3KI (P, and WNT3A (W and their combinations thereof, resulting in 15 total experimental conditions. At the end of differentiation each condition was analyzed by qRT-PCR for 12 relevant endoderm related transcription factors (TFs. As a first approach, we used hierarchical clustering to identify which growth factor combinations favor up-regulation of different genes. In the next step we identified sets of co-regulated transcription factors using a biclustering algorithm. The high variability of experimental data was addressed by integrating the biclustering formulation with bootstrap re-sampling to identify robust networks of co-regulated transcription factors. Our results show that the transition from early to late endoderm is favored by FGF2 as well as WNT3A treatments under high activin. However

  2. Hypoxia Enhances Differentiation of Mouse Embryonic Stem Cells into Definitive Endoderm and Distal Lung Cells

    Pimton, Pimchanok; Lecht, Shimon; Stabler, Collin T.; Johannes, Gregg; Schulman, Edward S.; Lelkes, Peter I.

    2014-01-01

    We investigated the effects of hypoxia on spontaneous (SP)- and activin A (AA)-induced definitive endoderm (DE) differentiation of mouse embryonic stem cells (mESCs) and their subsequent differentiation into distal pulmonary epithelial cells. SP differentiation for 6 days of mESCs toward endoderm at hypoxia of 1% O2, but not at 3% or 21% (normoxia), increased the expression of Sox17 and Foxa2 by 31- and 63-fold above maintenance culture, respectively. Treatment of mESCs with 20 ng/mL AA for 6...

  3. Partial promoter substitutions generating transcriptional sentinels of diverse signaling pathways in embryonic stem cells and mice

    Serup, Palle; Gustavsen, Carsten; Klein, Tino;

    2012-01-01

    Extracellular signals in development, physiology, homeostasis and disease often act by regulating transcription. Herein we describe a general method and specific resources for determining where and when such signaling occurs in live animals and for systematically comparing the timing and extent of...... extracellular signals. We thereby created an allelic series of embryonic stem cells and mice, each containing a signal-responsive sentinel with different fluorescent reporters that respond with sensitivity and specificity to retinoic acids, bone morphogenic proteins, activin A, Wnts or Notch, and that can be...

  4. Cloning and analysing of 5‘ flanking region of Xenopus organizer gene noggin

    TAOQINHUA; JINGYANG; 等

    1999-01-01

    Xenopus organizer specific gene noggin possesses nearly all the characterestic properties of the action of organizer to specify the embryonic body acis.To analyze how the maternal inherited factors control its expression pattern,we cloned the 5' regulatory region of noggin gene.The 1.5 kb upstream sequense could direct reporter gene to express in vivo and data from deletion analysis indicated that a 229 base pair fragmet is essential for activating noggin expression.We further demonstrated that the response elements within this regulatory region were indeed under the control of growth factor activin and Wnt signaling pathway components.

  5. Key Role of the Endothelial TGF-β/ALK1/Endoglin Signaling Pathway in Humans and Rodents Pulmonary Hypertension

    Gore, Benoît; Izikki, Mohamed; Mercier, Olaf; Dewachter, Laurence; Fadel, Elie; Humbert, Marc; Dartevelle, Philippe; Simonneau, Gerald; Naeije, Robert; Lebrin, Franck; Eddahibi, Saadia

    2014-01-01

    Mutations affecting transforming growth factor-beta (TGF-β) superfamily receptors, activin receptor-like kinase (ALK)-1, and endoglin (ENG) occur in patients with pulmonary arterial hypertension (PAH). To determine whether the TGF-β/ALK1/ENG pathway was involved in PAH, we investigated pulmonary TGF-β, ALK1, ALK5, and ENG expressions in human lung tissue and cultured pulmonary-artery smooth-muscle-cells (PA-SMCs) and pulmonary endothelial cells (PECs) from 14 patients with idiopathic PAH (iPA...

  6. Distinct gene expression signatures in human embryonic stem cells differentiated towards definitive endoderm at single-cell level

    Norrman, Karin; Strömbeck, Anna; Semb, Henrik; Ståhlberg, Anders

    2013-01-01

    of anterior definitive endoderm (DE). Here, we differentiated human embryonic stem cells towards DE using three different activin A based treatments. Differentiation efficiencies were evaluated by gene expression profiling over time at cell population level. A panel of key markers was used to study...... were useful to monitor the temporal expression of genes involved in primitive streak formation and endoderm formation, while single-cell analysis allowed us to study cell culture heterogeneity and fingerprint individual cells. In addition, single-cell analysis revealed distinct gene expression patterns...

  7. Cloning and characterization of the follistatin gene from Crassostrea angulata and its expression during the reproductive cycle.

    Ni, Jianbin; Zeng, Zhen; Han, Guodong; Huang, Heqing; Ke, Caihuan

    2012-10-01

    Follistatin is an activin-binding protein that prevents activin from binding to its receptor and neutralizes its activity. Follistatin plays a key role in regulating folliculogenesis and the development of ovary. However, limited information on follistatin genes from molluscs is available until now. By using Race, real-time PCR, in situ hybridization and in silico analysis, a full-length cDNA of follistatin of the Portuguese oyster Crassostrea angulata was acquired. The full-length (1297 bp) cDNA of Ca-follistatin encodes a peptide of 241 amino acids. The similarity of its deduced amino acid sequence to these of other invertebrate species was about 60%. Ca-follistatin mRNA transcript was most abundantly expressed in ovary (preproductive cycle of female oyster (initiation stage, maturation stage, ripeness stage and partially spent stage), the expression of Ca-follistatin in the ovary continuously increased from initiation to ripeness stages attaining its highest value (poyster in the testis maintained a relatively stable low level during the first three stages, and also noticeably decreased thereafter (poysters by autocrine signaling. PMID:22771889

  8. LIGHT is a crucial mediator of airway remodeling.

    Hung, Jen-Yu; Chiang, Shyh-Ren; Tsai, Ming-Ju; Tsai, Ying-Ming; Chong, Inn-Wen; Shieh, Jiunn-Min; Hsu, Ya-Ling

    2015-05-01

    Chronic inflammatory airway diseases like asthma and chronic obstructive pulmonary disease are major health problems globally. Airway epithelial cells play important role in airway remodeling, which is a critical process in the pathogenesis of diseases. This study aimed to demonstrate that LIGHT, an inflammatory factor secreted by T cells after allergen exposure, is responsible for promoting airway remodeling. LIGHT increased primary human bronchial epithelial cells (HBECs) undergoing epithelial-mesenchymal transition (EMT) and expressing MMP-9. The induction of EMT was associated with increased NF-κB activation and p300/NF-κB association. The interaction of NF-κB with p300 facilitated NF-κB acetylation, which in turn, was bound to the promoter of ZEB1, resulting in E-cadherin downregulation. LIGHT also stimulated HBECs to produce numerous cytokines/chemokines that could worsen airway inflammation. Furthermore, LIGHT enhanced HBECs to secrete activin A, which increased bronchial smooth muscle cell (BSMC) migration. In contrast, depletion of activin A decreased such migration. The findings suggest a new molecular determinant of LIGHT-mediated pathogenic changes in HBECs and that the LIGHT-related vicious cycle involving HBECs and BSMCs may be a potential target for the treatment of chronic inflammation airway diseases with airway remodeling. PMID:25251281

  9. FGF, Insulin, and SMAD Signaling Cooperate for Avian Primordial Germ Cell Self-Renewal

    Jemima Whyte

    2015-12-01

    Full Text Available Precise self-renewal of the germ cell lineage is fundamental to fertility and reproductive success. The early precursors for the germ lineage, primordial germ cells (PGCs, survive and proliferate in several embryonic locations during their migration to the embryonic gonad. By elucidating the active signaling pathways in migratory PGCs in vivo, we were able to create culture conditions that recapitulate this embryonic germ cell environment. In defined medium conditions without feeder cells, the growth factors FGF2, insulin, and Activin A, signaling through their cognate-signaling pathways, were sufficient for self-renewal of germline-competent PGCs. Forced expression of constitutively active MEK1, AKT, and SMAD3 proteins could replace their respective upstream growth factors. Unexpectedly, we found that BMP4 could replace Activin A in non-clonal growth conditions. These defined medium conditions identify the key molecular pathways required for PGC self-renewal and will facilitate efforts in biobanking of chicken genetic resources and genome editing.

  10. Chronic alcohol ingestion exacerbates skeletal muscle myopathy in HIV-1 transgenic rats

    Bratina Margaux A

    2011-08-01

    Full Text Available Abstract Background Separately, chronic alcohol ingestion and HIV-1 infection are associated with severe skeletal muscle derangements, including atrophy and wasting, weakness, and fatigue. One prospective cohort study reported that 41% of HIV-infected patients met the criteria for alcoholism, however; few reports exist on the co-morbid effects of these two disease processes on skeletal muscle homeostasis. Thus, we analyzed the atrophic effects of chronic alcohol ingestion in HIV-1 transgenic rats and identified alterations to several catabolic and anabolic factors. Findings Relative plantaris mass, total protein content, and fiber cross-sectional area were reduced in each experimental group compared to healthy, control-fed rats. Alcohol abuse further reduced plantaris fiber area in HIV-1 transgenic rats. Consistent with previous reports, gene levels of myostatin and its receptor activin IIB were not increased in HIV-1 transgenic rat muscle. However, myostatin and activin IIB were induced in healthy and HIV-1 transgenic rats fed alcohol for 12 weeks. Catabolic signaling factors such as TGFβ1, TNFα, and phospho-p38/total-p38 were increased in all groups compared to controls. There was no effect on IL-6, leukemia inhibitory factor (LIF, cardiotrophin-1 (CT-1, or ciliary neurotrophic factor (CNTF in control-fed, transgenic rats. However, the co-morbidity of chronic alcohol abuse and HIV-1-related protein expression decreased expression of the two anabolic factors, CT-1 and CNTF. Conclusions Consistent with previous reports, alcohol abuse accentuated skeletal muscle atrophy in an animal model of HIV/AIDS. While some catabolic pathways known to drive alcoholic or HIV-1-associated myopathies were also elevated in this co-morbid model (e.g., TGFβ1, consistent expression patterns were not apparent. Thus, specific alterations to signaling mechanisms such as the induction of the myostatin/activin IIB system or reductions in growth factor signaling via

  11. Relationships between TGFbeta proteins and oxygen concentrations inside the first trimester human gestational sac.

    Shanthi Muttukrishna

    Full Text Available In early pregnancy, the O(2 gradient between the maternal circulation and the gestational sac tissues modulates trophoblast biological functions. The aim was to evaluate if placental partial pressure of oxygen (PaO(2 modulates in vivo synthesis of specific placental proteins inside the first trimester gestational sac. Matched samples of peripheral venous blood, blood from the placental bed (PB, coelomic fluid (CF and placental tissue were obtained in 37 normal pregnancies at 6-12 weeks gestation. PaO(2 was measured in PB and CF using an IRMA blood gas monitor. Inhibin A, activin A, sEng, PlGF, sFlt-1 and free VEGF concentrations were measured in all samples. HSP 70 was measured in placental extracts. ANOVA showed approximately 60% increase in PB PaO(2 (P = 0.02 between after 10 weeks gestation. Unpaired Student's T-test between two groups (6-9 weeks vs 9-12 weeks shows a significant increase in MS Activin A (P = 0.001, CF activin A (P<0.001, MS P1GF (P = 0.001, CF PlGF (P<0.001, MS sFLT-1 (P = 0.03, CF sFLT-1 (P = 0.01, HSP 70 in placental extracts (P = 0.04 and a significant decrease in PB inhibin A levels (P<0.001 and PB sFLT-1 (P = 0.02 . Multiple correlation analysis showed a significant negative correlation between PB inhibin A levels and gestation (r = -0.45, P<0.05 and PB PaO(2 (r = -0.5, P = 0.008 and also between sFLT-1 and PB PaO(2 (P = 0.03. There was a positive correlation (P<0.01 between PlGF, sEng and VEGF levels in the placental extracts. Our results indicate a direct relationship in the early intrauterine PaO(2 in vivo and inhibin A and sFLT-1 concentrations confirming our hypothesis that specific placental proteins are regulated by intrauterine O(2 tension.

  12. MAGI2/S-SCAM outside brain.

    Nagashima, Shunta; Kodaka, Manami; Iwasa, Hiroaki; Hata, Yutaka

    2015-04-01

    Membrane-associated guanylate kinase with an inverted arrangement of protein-protein interaction domains (MAGI)2 (also called synaptic scaffolding molecule (S-SCAM), atrophin-1-interacting protein 1, activin receptor-interacting protein 1) is a scaffold protein that binds a wide variety of receptors, cell adhesion molecules and signalling molecules. It also interacts with other scaffold proteins and adaptors, and forms a protein network that supports cell junctions. As it is highly expressed in brain, the study on its roles in synaptic organization initially preceded. However, mounting evidence indicates that MAGI2/S-SCAM functions as a tumour suppressor and plays essential roles to maintain the integrity of cell structures in non-neuronal tissues. We review the articles regarding to MAGI2/S-SCAM outside brain and discuss future perspectives for the research of MAGI family proteins. PMID:25637633

  13. Secretion of inhibin beta A by endoderm cultured from early embryonic chicken.

    Kokan-Moore, N P; Bolender, D L; Lough, J

    1991-07-01

    Although several reports have indicated a role for endoderm in the regulation of heart development, the mechanism remains unknown. To begin characterization of endoderm-secreted proteins, explants from postgastrulation (Hamburger-Hamilton stage 5/6-8) chicken embryos were cultured in defined medium. Fluorography of SDS-PAGE gels revealed a pattern of synthesized, secreted proteins that was independent of time in culture or embryonic stage when explants were removed. Approximately 10 labeled bands were detected, the most prominent of which migrated at 17, 25, and 200 kDa. ELISA analysis revealed that while acidic and basic fibroblast growth factor-like antigens were barely detectable, fibronectin and inhibin beta A were very reactive. Western blot analysis verified the presence of fibronectin and, most remarkably, inhibin beta A, activin dimers of which have recently been implicated in Xenopus mesoderm induction (Smith, Price, Van Nimmen, and Huylebrock (1990). Nature 345, 729.) PMID:2060706

  14. Dicty_cDB: Contig-U05847-1 [Dicty_cDB

    Full Text Available e) Brachypodium distachyon clone BAC... 34 1.4 ( P41892 ) RecName: Full=Cell division control prote...F220602_3( AF220602 |pid:none) Lycopersicon pimpinellifolium Rio ... 36 0.37 AF544680_1( AF544680 |pid:none) Bothriechis schle...FJ198046_1( FJ198046 |pid:none) Ctenopharyngodon idella activin re... 35 0.82 DQ019176_1( DQ019176 |pid:none) Lycopersicon chmiele...tein update 2009. 6.20 Homology vs Protein Query= Contig-U05847-1 (Contig-U05847-1Q) /CSM_Contig/Contig-U05847-1Q.Seq.d (219 letters...s: (bits) Value (Q54L00) RecName: Full=Probable LIM domain-containing serine/thr... 150 2e-35

  15. AcEST: DK945568 [AcEST

    Full Text Available YMU02A01NGRL0009_L21 544 Adiantum capillus-veneris mRNA. clone: YMU02A01NGRL0009_L21. 5' end seq ... on sp|P0C6T5|R1A_BCHK5 Replicase polyprotein 1a OS=Bat ... coronavirus HKU5 Align length 102 Score (bit) 32.7 ... ue sp|P0C6T5|R1A_BCHK5 Replicase polyprotein 1a OS=Bat ... coronavirus ... 33 1.2 sp|P0C6W4|R1AB_BCHK5 Replic ... ase polyprotein 1ab OS=Bat ... coronaviru... 33 1.2 sp|Q61271|ACV1B_MOUSE Activin ... 9 >sp|P0C6T5|R1A_BCHK5 Replicase polyprotein 1a OS=Bat ... coronavirus HKU5 GN=1a PE=3 SV=1 Length = 4481 Sco ...

  16. Molecular biology and genetics of embryonic eyelid development.

    Rubinstein, Tal J; Weber, Adam C; Traboulsi, Elias I

    2016-09-01

    The embryology of the eyelid is a complex process that includes interactions between the surface ectoderm and mesenchymal tissues. In the mouse and human, the eyelids form and fuse before birth; they open prenatally in the human and postnatally in the mouse. In the mouse, cell migration is stimulated by different growth factors such as FGF10, TGF-α, Activin B, and HB-EGF. These growth factors modulate downstream BMP4 signaling, the ERK cascade, and JNK/c-JUN. Several mechanisms, such as the Wnt/β-catenin signaling pathway, may inhibit and regulate eyelid fusion. Eyelid opening, on the other hand, is driven by the BMP/Smad signaling system. Several human genetic disorders result from dysregulation of the above molecular pathways. PMID:26863902

  17. BMP3 expression in the adult rat CNS.

    Yamashita, Kanna; Mikawa, Sumiko; Sato, Kohji

    2016-07-15

    Bone morphogenetic protein-3 (BMP3) is a very unique member of the TGF-β superfamily, because it functions as an antagonist to both the canonical BMP and activin pathways and plays important roles in multiple biological events. Although BMP3 expression has been described in the early development of the kidney, intestine and bone, little information is available for BMP3 expression in the central nervous system (CNS). We, thus, investigated BMP3 expression in the adult rat CNS using immunohistochemistry. BMP3 was intensely expressed in most neurons and their axons. Furthermore, we found that astrocytes and ependymal cells also express BMP3 protein. These data indicate that BMP3 is widely expressed throughout the adult CNS, and its abundant expression in the adult brain strongly supports the idea that BMP3 plays important roles in the adult brain. PMID:27130896

  18. Use of xenofree matrices and molecularly-defined media to control human embryonic stem cell pluripotency: effect of low physiological TGF-beta concentrations.

    Peiffer, Isabelle; Barbet, Romain; Zhou, Yi-Ping; Li, Ma-Lin; Monier, Marie-Noëlle; Hatzfeld, Antoinette; Hatzfeld, Jacques A

    2008-06-01

    To monitor human embryonic stem cell (hESC) self-renewal without differentiation, we used quantitative RT-PCR to study a selection of hESC genes, including markers for self-renewal, commitment/differentiation, and members of the TGF-beta superfamily and DAN gene family. Indeed, low commitment/differentiation gene expression, together with a significant self-renewal gene expres sion, provides a better pluripotency index than self-renewal genes alone. We demonstrate that matrices derived from human mesenchymal stem cells (hMSCs) can advantageously replace murine embryonic fibroblasts (MEF) or hMSC feeders. Moreover, a xenofree molecularly-defined SBX medium, containing a synthetic lipid carrier instead of albumin, can replace SR medium. The number of selected differentiation genes expressed by hESCs in these culture conditions was significantly lower than those expressed on MEF feeders in SR medium. In SBX, the positive effect of a non-physiological concentration of activin A (10-30 ng/mL) to reduce differentiation during self-renewal could also be obtained by physiological concentrations of TGF-beta(100-300 pg/mL). In contrast, these TGF-beta concentrations added to activin favored differentiation as previously observed with TGF-beta concentrations of 1 ng/mL or more. Compared to SR-containing medium, SBX medium promoted down-regulation of CER1 and LEFTIES and up-regulation of GREM1. Thus these genes better control self-renewal and pluripotency and prevent differentiation. A strategy is proposed to analyze, in more physiological, xenofree, molecularly-defined media and matrices, the numerous genes with still unknown functions controlling hESCs or human-induced pluripotent stem cells (iPS). PMID:18513159

  19. In-vitro study of the effect of anti-hypertensive drugs on placental hormones and angiogenic proteins synthesis in pre-eclampsia.

    Subrata Gangooly

    Full Text Available INTRODUCTION: Antihypertensive drugs lower the maternal blood pressure in pre-eclampsia (PE by direct or central vasodilatory mechanisms but little is known about the direct effects of these drugs on placental functions. OBJECTIVE: The aim of our study is to evaluate the effect of labetolol, hydralazine, α-methyldopa and pravastatin on the synthesis of placental hormonal and angiogenic proteins know to be altered in PE. DESIGN: Placental villous explants from late onset PE (n = 3 and normotensive controls (n = 6 were cultured for 3 days at 10 and 20% oxygen (O2 with variable doses anti-hypertensive drugs. The levels of activin A, inhibin A, human Chorionic Gonadotrophin (hCG, soluble fms-like tyrosine kinase-1 (sFlt-1 and soluble endoglin (sEng were measured in explant culture media on day 1, 2 and 3 using standard immunoassays. Data at day 1 and day 3 were compared. RESULTS: Spontaneous secretion of sEndoglin and sFlt-1 were higher (p < 0.05 in villous explants from PE pregnancies compared to controls. There was a significant time dependent decrease in the secretion of sFlt-1 and sEndoglin in PE cases, which was seen only for sFlt-1 in controls. In both PE cases and controls the placental protein secretions were not affected by varying doses of anti-hypertensive drugs or the different O2 concentration cultures, except for Activin, A which was significantly (p < 0.05 higher in controls at 10% O2. INTERPRETATION: Our findings suggest that the changes previously observed in maternal serum hormones and angiogenic proteins level after anti-hypertensive treatment in PE could be due to a systemic effect of the drugs on maternal blood pressure and circulation rather than a direct effect of these drugs on placental biosynthesis and/or secretion.

  20. Pancreatic Islet-Like Three-Dimensional Aggregates Derived From Human Embryonic Stem Cells Ameliorate Hyperglycemia in Streptozotocin-Induced Diabetic Mice.

    Shim, Joong-Hyun; Kim, JongHyun; Han, Jiyou; An, Su Yeon; Jang, Yu Jin; Son, Jeongsang; Woo, Dong-Hun; Kim, Suel-Kee; Kim, Jong-Hoon

    2015-01-01

    We previously reported the in vitro differentiation of human embryonic stem cells (hESCs) into pancreatic endoderm. Here we demonstrate that islet-like three-dimensional (3D) aggregates can be derived from the pancreatic endoderm by optimizing our previous protocol. Sequential treatment with Wnt3a, activin A, and noggin induced a transient upregulation of T and MixL1, followed by increased expression of endodermal genes, including FOXA2, SOX17, and CXCR4. Subsequent treatment with retinoic acid highly upregulated PDX1 expression. We also show that inhibition of sonic hedgehog signaling by bFGF/activin βB and cotreatment with VEGF and FGF7 produced many 3D cellular clusters that express both SOX17 and PDX1. We found for the first time that proteoglycans and vimentin(+) mesenchymal cells were mainly localized in hESC-derived PDX1(+) clusters. Importantly, treatment with chlorate, an inhibitor of proteoglycan sulfation, together with inhibition of Notch signaling significantly increased the expression of Neurog3 and NeuroD1, promoting a transition from PDX1(+) progenitor cells toward mature pancreatic endocrine cells. Purified dithizone(+) 3D aggregates generated by our refined protocol produced pancreatic hormones and released insulin in response to both glucose and pharmacological drugs in vitro. Furthermore, the islet-like 3D aggregates decreased blood glucose levels and continued to exhibit pancreatic features after transplantation into diabetic mice. Generation of islet-like 3D cell aggregates from human pluripotent stem cells may overcome the shortage of cadaveric donor islets for future cases of clinical islet transplantation. PMID:25397866

  1. miR-200c and GATA binding protein 4 regulate human embryonic stem cell renewal and differentiation

    Hsiao-Ning Huang

    2014-03-01

    Full Text Available Human embryonic stem cells (hESCs are functionally unique for their self-renewal ability and pluripotency, but the molecular mechanisms giving rise to these properties are not fully understood. hESCs can differentiate into embryoid bodies (EBs containing ectoderm, mesoderm, and endoderm. In the miR-200 family, miR-200c was especially enriched in undifferentiated hESCs and significantly downregulated in EBs. The knockdown of the miR-200c in hESCs downregulated Nanog expression, upregulated GATA binding protein 4 (GATA4 expression, and induced hESC apoptosis. The knockdown of GATA4 rescued hESC apoptosis induced by downregulation of miR-200c. miR-200c directly targeted the 3′-untranslated region of GATA4. Interestingly, the downregulation of GATA4 significantly inhibited EB formation in hESCs. Overexpression of miR-200c inhibited EB formation and repressed the expression of ectoderm, endoderm, and mesoderm markers, which could partially be rescued by ectopic expression of GATA4. Fibroblast growth factor (FGF and activin A/nodal can sustain hESC renewal in the absence of feeder layer. Inhibition of transforming growth factor-β (TGF-β/activin A/nodal signaling by SB431542 treatment downregulated the expression of miR-200c. Overexpression of miR-200c partially rescued the expression of Nanog/phospho-Smad2 that was downregulated by SB431542 treatment. Our observations have uncovered novel functions of miR-200c and GATA4 in regulating hESC renewal and differentiation.

  2. FGFR2IIIb-MAPK Activity Is Required for Epithelial Cell Fate Decision in the Lower Müllerian Duct.

    Terakawa, Jumpei; Rocchi, Altea; Serna, Vanida A; Bottinger, Erwin P; Graff, Jonathan M; Kurita, Takeshi

    2016-07-01

    Cell fate of lower Müllerian duct epithelium (MDE), to become uterine or vaginal epithelium, is determined by the absence or presence of ΔNp63 expression, respectively. Previously, we showed that SMAD4 and runt-related transcription factor 1 (RUNX1) were independently required for MDE to express ΔNp63. Here, we report that vaginal mesenchyme directs vaginal epithelial cell fate in MDE through paracrine activation of fibroblast growth factor (FGF) receptor-MAPK pathway. In the developing reproductive tract, FGF7 and FGF10 were enriched in vaginal mesenchyme, whereas FGF receptor 2IIIb was expressed in epithelia of both the uterus and vagina. When Fgfr2 was inactivated, vaginal MDE underwent uterine cell fate, and this differentiation defect was corrected by activation of MEK-ERK pathway. In vitro, FGF10 in combination with bone morphogenetic protein 4 and activin A (ActA) was sufficient to induce ΔNp63 in MDE, and ActA was essential for induction of RUNX1 through SMAD-independent pathways. Accordingly, inhibition of type 1 receptors for activin in neonatal mice induced uterine differentiation in vaginal epithelium by down-regulating RUNX1, whereas conditional deletion of Smad2 and Smad3 had no effect on vaginal epithelial differentiation. In conclusion, vaginal epithelial cell fate in MDE is induced by FGF7/10-MAPK, bone morphogenetic protein 4-SMAD, and ActA-RUNX1 pathway activities, and the disruption in any one of these pathways results in conversion from vaginal to uterine epithelial cell fate. PMID:27164167

  3. Transforming growth factor β1 inhibits bone morphogenic protein (BMP-2 and BMP-7 signaling via upregulation of Ski-related novel protein N (SnoN: possible mechanism for the failure of BMP therapy?

    Ehnert Sabrina

    2012-09-01

    Full Text Available Abstract Background Bone morphogenic proteins (BMPs play a key role in bone formation. Consequently, it was expected that topical application of recombinant human (rhBMP-2 and rhBMP-7 would improve the healing of complex fractures. However, up to 36% of fracture patients do not respond to this therapy. There are hints that a systemic increase in transforming growth factor β1 (TGFβ1 interferes with beneficial BMP effects. Therefore, in the present work we investigated the influence of rhTGFβ1 on rhBMP signaling in primary human osteoblasts, with the aim of more specifically delineating the underlying regulatory mechanisms. Methods BMP signaling was detected by adenoviral Smad-binding-element-reporter assays. Gene expression was determined by reverse transcription polymerase chain reaction (RT-PCR and confirmed at the protein level by western blot. Histone deacetylase (HDAC activity was determined using a test kit. Data sets were compared by one-way analysis of variance. Results Our findings showed that Smad1/5/8-mediated rhBMP-2 and rhBMP-7 signaling is completely blocked by rhTGFβ1. We then investigated expression levels of genes involved in BMP signaling and regulation (for example, Smad1/5/8, TGFβ receptors type I and II, noggin, sclerostin, BMP and activin receptor membrane bound inhibitor (BAMBI, v-ski sarcoma viral oncogene homolog (Ski, Ski-related novel protein N (SnoN and Smad ubiquitination regulatory factors (Smurfs and confirmed the expression of regulated genes at the protein level. Smad7 and SnoN were significantly induced by rhTGFβ1 treatment while expression of Smad1, Smad6, TGFβRII and activin receptor-like kinase 1 (Alk1 was reduced. Elevated SnoN expression was accompanied by increased HDAC activity. Addition of an HDAC inhibitor, namely valproic acid, fully abolished the inhibitory effect of rhTGFβ1 on rhBMP-2 and rhBMP-7 signaling. Conclusions rhTGFβ1 effectively blocks rhBMP signaling in osteoblasts. As possible

  4. Fibrodysplasia Ossificans Progressiva: Clinical and Genetic Aspects

    Pignolo Robert J

    2011-12-01

    Full Text Available Abstract Fibrodysplasia ossificans progressiva (FOP is a severely disabling heritable disorder of connective tissue characterized by congenital malformations of the great toes and progressive heterotopic ossification that forms qualitatively normal bone in characteristic extraskeletal sites. The worldwide prevalence is approximately 1/2,000,000. There is no ethnic, racial, gender, or geographic predilection to FOP. Children who have FOP appear normal at birth except for congenital malformations of the great toes. During the first decade of life, sporadic episodes of painful soft tissue swellings (flare-ups occur which are often precipitated by soft tissue injury, intramuscular injections, viral infection, muscular stretching, falls or fatigue. These flare-ups transform skeletal muscles, tendons, ligaments, fascia, and aponeuroses into heterotopic bone, rendering movement impossible. Patients with atypical forms of FOP have been described. They either present with the classic features of FOP plus one or more atypical features [FOP plus], or present with major variations in one or both of the two classic defining features of FOP [FOP variants]. Classic FOP is caused by a recurrent activating mutation (617G>A; R206H in the gene ACVR1/ALK2 encoding Activin A receptor type I/Activin-like kinase 2, a bone morphogenetic protein (BMP type I receptor. Atypical FOP patients also have heterozygous ACVR1 missense mutations in conserved amino acids. The diagnosis of FOP is made by clinical evaluation. Confirmatory genetic testing is available. Differential diagnosis includes progressive osseous heteroplasia, osteosarcoma, lymphedema, soft tissue sarcoma, desmoid tumors, aggressive juvenile fibromatosis, and non-hereditary (acquired heterotopic ossification. Although most cases of FOP are sporadic (noninherited mutations, a small number of inherited FOP cases show germline transmission in an autosomal dominant pattern. At present, there is no definitive

  5. Roles of mechanistic target of rapamycin and transforming growth factor-β signaling in the molting gland (Y-organ) of the blackback land crab, Gecarcinus lateralis.

    Abuhagr, Ali M; MacLea, Kyle S; Mudron, Megan R; Chang, Sharon A; Chang, Ernest S; Mykles, Donald L

    2016-08-01

    Molting in decapod crustaceans is controlled by molt-inhibiting hormone (MIH), an eyestalk neuropeptide that suppresses production of ecdysteroids by a pair of molting glands (Y-organs or YOs). Eyestalk ablation (ESA) activates the YOs, which hypertrophy and increase ecdysteroid secretion. At mid premolt, which occurs 7-14days post-ESA, the YO transitions to the committed state; hemolymph ecdysteroid titers increase further and the animal reaches ecdysis ~3weeks post-ESA. Two conserved signaling pathways, mechanistic target of rapamycin (mTOR) and transforming growth factor-β (TGF-β), are expressed in the Gecarcinus lateralis YO. Rapamycin, an mTOR antagonist, inhibits YO ecdysteroidogenesis in vitro. In this study, rapamycin lowered hemolymph ecdysteroid titer in ESA G. lateralis in vivo; levels were significantly lower than in control animals at all intervals (1-14days post-ESA). Injection of SB431542, an activin TGF-β receptor antagonist, lowered hemolymph ecdysteroid titers 7 and 14days post-ESA, but had no effect on ecdysteroid titers at 1 and 3days post-ESA. mRNA levels of mTOR signaling genes Gl-mTOR, Gl-Akt, and Gl-S6k were increased by 3days post-ESA; the increases in Gl-mTOR and Gl-Akt mRNA levels were blocked by SB431542. Gl-elongation factor 2 and Gl-Rheb mRNA levels were not affected by ESA, but SB431542 lowered mRNA levels at Days 3 and 7 post-ESA. The mRNA level of an activin TGF-β peptide, Gl-myostatin-like factor (Mstn), increased 5.5-fold from 0 to 3days post-ESA, followed by a 50-fold decrease from 3 to 7days post-ESA. These data suggest that (1) YO activation involves an up regulation of the mTOR signaling pathway; (2) mTOR is required for YO commitment; and (3) a Mstn-like factor mediates the transition of the YO from the activated to the committed state. PMID:27040186

  6. Inactivation of Smad4 leads to impaired ocular development and cataract formation

    Research highlights: → Inactivation of Smad4 caused disruption in the development of the anterior segment. → Inactivation of Smad4 failed to disrupt early lens development. → Smad4 controlled lens cell cycle and cell death processes. → Smad4 may regulate actin stress fiber assembly and eyelid epithelial movement. -- Abstract: Purpose: Signaling by members of the TGFβ superfamily of molecules is essential for embryonic development and homeostasis. Smad4, a key intracellular mediator in TGFβ signaling, forms transcriptional activator complexes with Activin-, BMP-, and TGFβ-restricted Smad proteins. However, the functional role of Smad4 in controlling different visual system compartments has not been fully investigated. Methods: Using the Pax6 promoter-driven Cre transgenic, smad4 was conditionally inactivated in the lens, cornea and ectoderm of the eyelids. Standard histological and molecular analytical approaches were employed to reveal morphological and cellular changes. Results: Inactivation of Smad4 in the lens led to microphthalmia and cataract formation in addition to the persistent adhesion of the retina to the lens and the iris to the cornea. Inactivation of Smad4 from the ectoderm of the eyelid and cornea caused disruption to eyelid fusion and proper development of the corneal epithelium and corneal stroma. Conclusions: Smad4 is required for the development and maintenance of the lens in addition to the proper development of the cornea, eyelids, and retina.

  7. Generation of insulin-producing cells from gnotobiotic porcine skin-derived stem cells

    A major problem in the treatment of type 1 diabetes mellitus is the limited availability of alternative sources of insulin-producing cells for islet transplantation. In this study, we investigated the effect of bone morphogenetic protein 4 (BMP-4) treatments of gnotobiotic porcine skin-derived stem cells (gSDSCs) on their reprogramming and subsequent differentiation into insulin-producing cells (IPCs). We isolated SDSCs from the ear skin of a gnotobiotic pig. During the proliferation period, the cells expressed stem-cell markers Oct-4, Sox-2, and CD90; nestin expression also increased significantly. The cells could differentiate into IPCs after treatments with activin-A, glucagon-like peptide-1 (GLP-1), and nicotinamide. After 15 days in the differentiation medium, controlled gSDSCs began expressing endocrine progenitor genes and proteins (Ngn3, Neuro-D, PDX-1, NKX2.2, NKX6.1, and insulin). The IPCs showed increased insulin synthesis after glucose stimulation. The results indicate that stem cells derived from the skin of gnotobiotic pigs can differentiate into IPCs under the appropriate conditions in vitro. Our three-stage induction protocol could be applied without genetic modification to source IPCs from stem cells in the skin of patients with diabetes for autologous transplantation.

  8. Down-regulation of phosphoglucomutase 3 mediates sulforaphane-induced cell death in LNCaP prostate cancer cells

    Lee Hyo-Jeong

    2010-12-01

    Full Text Available Abstract Background Sulforaphane (SFN is an isothiocyanate found in cruciferous vegetables that exerts anti-oxidant, anti-inflammatory, anti-cancer and radio-sensitizing activities. Nonetheless, the mechanism responsible for SFN-induced cell death is not fully understood. In the present study, anti-cancer mechanism of SFN was elucidated in LNCaP prostate cancer cells. Results SFN exerted cytotoxicity and increased TUNEL positive cells in a concentration-dependent manner in LNCaP cells. Proteomics study revealed that levels of nine proteins including tubulin β-2, phosphoglucomutase-3 (PGM3, melanoma-derived leucine zipper containing extra-nuclear factor, activin A type I receptor precursor, smoothelin-A, KIA0073, hypothetical protein LOC57691 and two unnamed proteins were changed over 8 folds in SFN treated LNCaP cells compared to untreated control. We have further confirmed that SFN reduced PGM3 expression with western blotting and showed that PGM3 siRNA enhanced cytotoxicity demonstrated by cell morphology and TUNEL assays in LNCaP cells. Conclusion Taken together, these findings suggest that PGM3 plays a role in mediating SFN-induced cell death in LNCaP cells, and is a potential molecular therapeutic target for prostate cancer.

  9. Generation of ESC-derived Mouse Airway Epithelial Cells Using Decellularized Lung Scaffolds.

    Shojaie, Sharareh; Lee, Joyce; Wang, Jinxia; Ackerley, Cameron; Post, Martin

    2016-01-01

    Lung lineage differentiation requires integration of complex environmental cues that include growth factor signaling, cell-cell interactions and cell-matrix interactions. Due to this complexity, recapitulation of lung development in vitro to promote differentiation of stem cells to lung epithelial cells has been challenging. In this protocol, decellularized lung scaffolds are used to mimic the 3-dimensional environment of the lung and generate stem cell-derived airway epithelial cells. Mouse embryonic stem cell are first differentiated to the endoderm lineage using an embryoid body (EB) culture method with activin A. Endoderm cells are then seeded onto decellularized scaffolds and cultured at air-liquid interface for up to 21 days. This technique promotes differentiation of seeded cells to functional airway epithelial cells (ciliated cells, club cells, and basal cells) without additional growth factor supplementation. This culture setup is defined, serum-free, inexpensive, and reproducible. Although there is limited contamination from non-lung endoderm lineages in culture, this protocol only generates airway epithelial populations and does not give rise to alveolar epithelial cells. Airway epithelia generated with this protocol can be used to study cell-matrix interactions during lung organogenesis and for disease modeling or drug-discovery platforms of airway-related pathologies such as cystic fibrosis. PMID:27214388

  10. 抗苗勒管激素与多囊卵巢综合征的相关性的研究进展

    孟腾腾; 谢铁男; 李春洪

    2012-01-01

    @@ 抗苗勒管激素(Anti-Mullerian hormone,AMH)是一种二聚体糖蛋白.人类 AMH基因位于19号染色体短臂,含有5个外显子,编码560个氨基酸的蛋白前体,经水解释放的12 kb羧基末端二聚体才具有促进苗勒管退化生物活性并能抑制某些肿瘤的生长与分化.AMH与抑制素(Inhibins)、激活素(Activins)、生长分化因子(GDFS)等共同构成转化生长因子β(TGF-β)超家族.与TGF-β其他成员的广泛表达不同,AMH仅表达于性腺.最初发现AMH是由睾丸支持细胞产生的,其生理功能是抑制雄性苗勒管的发育,参与睾丸的分化和发育.

  11. Relationship between Testicular Sertoli Cell and Spermatogenic Dysfunction (Review)%睾丸支持细胞与生精功能障碍的关系

    赵龙坡; 孙辉臣

    2005-01-01

    支持细胞(Sertoli cell)位于睾丸生精小管内皮,每个生精小管横断面有8-10个支持细胞.支持细胞和精子发生关系密切,是性成熟前精子发生和维持成年后精子生成的基础,支持细胞在生精功能调节方面的作用主要是通过其分泌的各种细胞因子来完成,这些因子相互作用,与睾丸中其他细胞分泌的因子一起构成了一个非常复杂的调控网络.本文就支持细胞所分泌的抑制素B(Inhibin B,INHB)、抗苗氏管激素(Anti-mullerian hormone,AMH)、激活素(Activin,ACT)等因子与生精功能障碍的关系作一简要综述.

  12. A Modified Method of Insulin Producing Cells’ Generation from Bone Marrow-Derived Mesenchymal Stem Cells

    Paweł Czubak

    2014-01-01

    Full Text Available Type 1 diabetes mellitus is a result of autoimmune destruction of pancreatic insulin producing β-cells and so far it can be cured only by insulin injection, by pancreas transplantation, or by pancreatic islet cells’ transplantation. The methods are, however, imperfect and have a lot of disadvantages. Therefore new solutions are needed. The best one would be the use of differentiated mesenchymal stem cells (MSCs. In the present study, we investigated the potential of the bone marrow-derived MSCs line for in vitro differentiation into insulin producing cells (IPSs. We applied an 18-day protocol to differentiate MSCs. Differentiating cells formed cell clusters some of which resembled pancreatic islet-like cells. Using dithizone we confirmed the presence of insulin in the cells. What is more, the expression of proinsulin C-peptide in differentiated IPCs was analyzed by flow cytometry. For the first time, we investigated the influence of growth factors’ concentration on IPCs differentiation efficiency. We have found that an increase in the concentration of growth factors up to 60 ng/mL of β-FGF/EGF and 30 ng/mL of activin A/β-cellulin increases the percentage of IPCs. Further increase of growth factors does not show any increase of the percentage of differentiated cells. Our findings suggest that the presented protocol can be adapted for differentiation of insulin producing cells from stem cells.

  13. A modified method of insulin producing cells' generation from bone marrow-derived mesenchymal stem cells.

    Czubak, Paweł; Bojarska-Junak, Agnieszka; Tabarkiewicz, Jacek; Putowski, Lechosław

    2014-01-01

    Type 1 diabetes mellitus is a result of autoimmune destruction of pancreatic insulin producing β-cells and so far it can be cured only by insulin injection, by pancreas transplantation, or by pancreatic islet cells' transplantation. The methods are, however, imperfect and have a lot of disadvantages. Therefore new solutions are needed. The best one would be the use of differentiated mesenchymal stem cells (MSCs). In the present study, we investigated the potential of the bone marrow-derived MSCs line for in vitro differentiation into insulin producing cells (IPSs). We applied an 18-day protocol to differentiate MSCs. Differentiating cells formed cell clusters some of which resembled pancreatic islet-like cells. Using dithizone we confirmed the presence of insulin in the cells. What is more, the expression of proinsulin C-peptide in differentiated IPCs was analyzed by flow cytometry. For the first time, we investigated the influence of growth factors' concentration on IPCs differentiation efficiency. We have found that an increase in the concentration of growth factors up to 60 ng/mL of β-FGF/EGF and 30 ng/mL of activin A/β-cellulin increases the percentage of IPCs. Further increase of growth factors does not show any increase of the percentage of differentiated cells. Our findings suggest that the presented protocol can be adapted for differentiation of insulin producing cells from stem cells. PMID:25405207

  14. Ways of pharmacological prophylaxis of stochastic and deterministic effects of chronical radiation exposure

    The prophylactics of late effects of exposure is the actual medico-social problem, because now there are large groups of persons who were exposed during occupational contact and living on territories contaminated by radionuclides. Most probable consequences of external and internal chronic influence of radiation may be the increase of malignant tumour frequency, the development of secondary myelo- and immuno-depressions, the earlier forming of sclerous and destructive processes, and the acceleration of senescence. The role of damages in immune system was not yet understood in pathogenesis of the late effects of radiation, but there are evidences that the decreasing of the immunologic supervision in period of forming the consequences of radiation influence enables to realize the cancerogenic effect of radiation. The purposes of this investigation are to decrease the frequency or to prevent the development of radiation consequences dangerous for health and life by using the method of modification of radiogenic damages in hemopoietic and immune systems by applying the pharmacological preparations with immunomodulating effects. The investigation tasks include: the study of modifying influence of pharmacological substances with different mechanisms of effect: myelopid (immunomodulating, and regulatory), β-carotin, Calendula officinalis (immunomodulating, and antioxidant), lipamid (detoxicating); the separate or complex applications of these substances; and the development of the optimum medico-prophylactic schemes. The advantages of these indicated preparations in comparison with the known (T-activin, thymogen, cytokines, etc.) are the absence of contraindications and the possibility to use per os. (author)

  15. Bases ambientales y genéticas de las fisuras orofaciales: Revisión

    Cesar A Rivera

    2013-04-01

    Full Text Available RESUMEN El desarrollo embriológico de las estructuras orofaciales es un proceso complejo guiado por programas genéticos. Alteraciones en esos procesos dan lugar a anomalías estructurales. Un ejemplo de ellas son las fisuras de labio y paladar. Las principales vías involucradas en las fisuras tienen como participantes a las familias del factor de crecimiento fibroblástico (FGF, Hedgehog (HH, Wingless (WNT y la familia del factor de crecimiento transformante beta (TGFβ, que incluye las proteínas morfogenéticas del hueso (BMPs y activinas. En esta revisión narrativa se presentan algunos de los procesos celulares, moleculares y factores ambientales implicados en el desarrollo del complejo orofacial, finalizando con posibilidades terapéuticas para la evidencia acumulada. ABSTRACT Complex genetic process guides the embryonic head development. Alterations in these processes result in structural abnormalities. An example of these are the cleft lip and palate. The major pathways involved in the fissures are families: the Fibroblast Growth Factor (FGF family, the Hedgehog (HH family, the Wingless (WNT family and the Transforming Growth Factor beta (TGF-β family, which includes the Bone Morphogenetic Proteins (BMPs and Activins. In this review, we discuss some of the celular/molecular processes and environmental factors involved in the development of the orofacial complex, ending with therapeutic possibilities and potential clinical relevance to the accumulated evidence.

  16. Cancer Stem Cells, EMT, and Developmental Pathway Activation in Pancreatic Tumors

    Hindriksen, Sanne; Bijlsma, Maarten F., E-mail: m.f.bijlsma@amc.uva.nl [Laboratory for Experimental Oncology and Radiobiology, Academic Medical Centre, Meibergdreef 9, 1105AZ Amsterdam (Netherlands)

    2012-10-12

    Pancreatic cancer is a disease with remarkably poor patient survival rates. The frequent presence of metastases and profound chemoresistance pose a severe problem for the treatment of these tumors. Moreover, cross-talk between the tumor and the local micro-environment contributes to tumorigenicity, metastasis and chemoresistance. Compared to bulk tumor cells, cancer stem cells (CSC) have reduced sensitivity to chemotherapy. CSC are tumor cells with stem-like features that possess the ability to self-renew, but can also give rise to more differentiated progeny. CSC can be identified based on increased in vitro spheroid- or colony formation, enhanced in vivo tumor initiating potential, or expression of cell surface markers. Since CSC are thought to be required for the maintenance of a tumor cell population, these cells could possibly serve as a therapeutic target. There appears to be a causal relationship between CSC and epithelial-to-mesenchymal transition (EMT) in pancreatic tumors. The occurrence of EMT in pancreatic cancer cells is often accompanied by re-activation of developmental pathways, such as the Hedgehog, WNT, NOTCH, and Nodal/Activin pathways. Therapeutics based on CSC markers, EMT, developmental pathways, or tumor micro-environment could potentially be used to target pancreatic CSC. This may lead to a reduction of tumor growth, metastatic events, and chemoresistance in pancreatic cancer.

  17. Secreted Stress-Induced Phosphoprotein 1 Activates the ALK2-SMAD Signaling Pathways and Promotes Cell Proliferation of Ovarian Cancer Cells

    Chia-Lung Tsai

    2012-08-01

    Full Text Available Stress-induced phosphoprotein 1 (STIP1, a cochaperone that organizes other chaperones, heat shock proteins (HSPs, was recently shown to be secreted by human ovarian cancer cells. In neuronal tissues, binding to prion protein was required for STIP1 to activate the ERK (extracellular-regulated MAP kinase signaling pathways. However, we report that STIP1 binding to a bone morphogenetic protein (BMP receptor, ALK2 (activin A receptor, type II-like kinase 2, was necessary and sufficient to stimulate proliferation of ovarian cancer cells. The binding of STIP1 to ALK2 activated the SMAD signaling pathway, leading to transcriptional activation of ID3 (inhibitor of DNA binding 3, promoting cell proliferation. In conclusion, ovarian-cancer-tissue-secreted STIP1 stimulates cancer cell proliferation by binding to ALK2 and activating the SMAD-ID3 signaling pathways. Although animal studies are needed to confirm these mechanisms in vivo, our results may pave the way for developing novel therapeutic strategies for ovarian cancer.

  18. Erythropoietin.

    Jelkmann, Wolfgang

    2016-01-01

    Total hemoglobin (Hb) mass is an important determinant of aerobic power. The glycoprotein erythropoietin (Epo) promotes the production of red blood cells (RBCs). The present article reviews the regulation of erythropoiesis and ways of its manipulation. The various Epos, e.g. recombinant human (rh)Epo and (epoetin), and their long-acting analogues can be misused by cheating athletes, but the drugs are detectable by chemical tests, because their glycan isoform structures differ from those of endogenous Epo. Still, anti-doping control has become more difficult, since additional erythropoiesis-stimulating agents have become available (Epo mimetics, activin inhibitors, and small-molecule chemical drugs activating EPO expression). A major problem is created by hypoxia-inducible factor (HIF) stabilizers (e.g. α-ketoglutarate competitors and Co2+ salt) which activate HIFs and thus increase EPO expression. Direct EPO transfer is theoretically also possible but medically little advanced. To overcome weaknesses of direct testing of biological fluids, the World Anti-Doping Agency has implemented the Athlete Biological Passport for continuous monitoring of RBC parameters of athletes. Blood doping is assumed when distinct parameters (blood Hb concentration and reticulocytes) change in a nonphysiological way. PMID:27348128

  19. Endocrine and ovarian responses in water buffalo cows immunized against inhibin and subjected to the Ovsynch protocol

    Abdalla Bahareldin-Ali; QIN Guang-sheng; GUO Ri-hong; Anastasia Tsigkou; TAN Zheng-zhun; HUANG Jian; LI Hui; SHI Zhen-dan

    2015-01-01

    The aim of this study was to investigate the feasibility of stimulating ovarian fol icle development in order to improve fertility in water buffalo cows by immunization against inhibin. The experiment was carried out in early summer (May) and included 24 multi-parity crossbred Murrah-Swamp buffaloes that were divided into immunized (n=11) and control (n=13) groups. Each immunized cow was administered with a 2-mL immunogen of mineral oil adjuvant containing 2 mg of recombinant inhibinα-subunit fusion protein. The controls were treated with the adjuvant only. Al animals received Ovsynch protocol treatment, starting on the day of the antigen administration, and they were artiifcial y inseminated upon behavioral estrus. As a result, al of the immunized buffaloes generated antibodies against inhibin during the experimental period and had higher plasma concentrations of fol icle-stimulating hormone (FSH), activin, and estradiol (E2) related to estrous expression. A higher proportion of immunized animals expressed estrus behavior than did the controls (72%vs. 30%, P0.05). These results demonstrate that immunization against inhibin, coupled with the treatment with the Ovsynch protocol, can constitute a new technique to increase fertility in water buffalo cows.

  20. The structure of myostatin:follistatin 288: insights into receptor utilization and heparin binding

    Cash, Jennifer N.; Rejon, Carlis A.; McPherron, Alexandra C.; Bernard, Daniel J.; Thompson, Thomas B.; (UCIN); (McGill); (NIH)

    2009-09-29

    Myostatin is a member of the transforming growth factor-{beta} (TGF-{beta}) family and a strong negative regulator of muscle growth. Here, we present the crystal structure of myostatin in complex with the antagonist follistatin 288 (Fst288). We find that the prehelix region of myostatin very closely resembles that of TGF-{beta} class members and that this region alone can be swapped into activin A to confer signalling through the non-canonical type I receptor Alk5. Furthermore, the N-terminal domain of Fst288 undergoes conformational rearrangements to bind myostatin and likely acts as a site of specificity for the antagonist. In addition, a unique continuous electropositive surface is created when myostatin binds Fst288, which significantly increases the affinity for heparin. This translates into stronger interactions with the cell surface and enhanced myostatin degradation in the presence of either Fst288 or Fst315. Overall, we have identified several characteristics unique to myostatin that will be paramount to the rational design of myostatin inhibitors that could be used in the treatment of muscle-wasting disorders.

  1. Sarcopenia--The search for emerging biomarkers.

    Kalinkovich, Alexander; Livshits, Gregory

    2015-07-01

    Sarcopenia, an age-related decline in skeletal muscle mass and function, dramatically affects the life quality of elder people. In view of increasing life expectancy, sarcopenia renders a heavy burden on the health care system. However, although there is a consensus that sarcopenia is a multifactorial syndrome, its etiology, underlying mechanisms, and even definition remain poorly delineated, thus, preventing development of a precise treatment strategy. The main aim of our review is to critically analyze potential sarcopenia biomarkers in light of the molecular mechanisms of their involvement in sarcopenia pathogenesis. Normal muscle mass and function maintenance are proposed to be dependent on the dynamic balance between the positive regulators of muscle growth such as bone morphogenetic proteins (BMPs), brain-derived neurotrophic factor (BDNF), follistatin (FST) and irisin, and negative regulators including TGFβ, myostatin, activins A and B, and growth and differentiation factor-15 (GDF-15). We hypothesize that the shift in this balance to muscle growth inhibitors, along with increased expression of the C- terminal agrin fragment (CAF) associated with age-dependent neuromuscular junction (NMJ) dysfunction, as well as skeletal muscle-specific troponin T (sTnT), a key component of contractile machinery, is a main mechanism underlying sarcopenia pathogenesis. Thus, this review proposes and emphasizes that these molecules are the emerging sarcopenia biomarkers. PMID:25962896

  2. Expression of Smad2 and Smad4 in rhesus monkey endometrium during the menstrual cycle and early pregnancy

    LIN Haiyan; WANG Hongmei; LI Qinglei; WANG Juan; ZHANG Xuan; LIU Donglin; LIU Huitu; ZHU Cheng

    2003-01-01

    Expression of Smad2 and Smad4 mRNAs in the endometrium of rhesus monkey on Days 8, 20 and 28 of the normal menstrual cycle and on Days 12, 18 and 26 of early pregnancy was detected using in situ hybridization. The results showed that Smad2 and Smad4 mRNAs were mainly localized in luminal epithelium and glandular epithelium. The expression of Smad2 mRNA in glandular epithelium was sustained at moderate level on Days 8, 20 and 28 of the menstrual cycle, while the expression of Smad4 gradually increased with the menstrual cycle. Both Smad2 and Smad4 mRNAs in functionalis glandular epithelium were expressed at the highest levels on Day 12 of early pregnancy, while in basalis glandular epithelium the most abundant expression of both Smads occurred on Days 12 and 18 of pregnancy. On Day 26, both Smads mRNAs were expressed at the lowest levels either in functionalis or in basalis. The data suggest that the epithelium is the major compartment where TGF-βs/activins exert their biological effects via Smads, and that Smad4 may play a role in the maintenance of endometrial gland function during secreting period of the menstrual cycle. During lacunar stage of early pregnancy, Smad2 and Smad4 are implicated in the tissue remodeling of endometrial functionalis and basalis, and during early villous stage both Smads are functional primarily in basalis.

  3. Functional significance of the signal transduction pathways Akt and Erk in ovarian follicles: in vitro and in vivo studies in cattle and sheep

    Ryan Kate E

    2008-10-01

    Full Text Available Abstract Background The intracellular signalling mechanisms that regulate ovarian follicle development are unclear; however, we have recently shown differences in the Akt and Erk signalling pathways in dominant compared to subordinate follicles. The aim of this study was to investigate the effects of inhibiting Akt and Erk phosphorylation on IGF- and gonadotropin- stimulated granulosa and theca cell function in vitro, and on follicle development in vivo. Methods Bovine granulosa and theca cells were cultured for six days and stimulated with FSH and/or IGF, or LH in combination with PD98059 (Erk inhibitor and/or LY294002 (Akt inhibitor and their effect on cell number and hormone secretion (estradiol, activin-A, inhibin-A, follistatin, progesterone and androstenedione determined. In addition, ovarian follicles were treated in vivo with PD98059 and/or LY294002 in ewes on Day 3 of the cycle and follicles were recovered 48 hours later. Results We have shown that gonadotropin- and IGF-stimulated hormone production by granulosa and theca cells is reduced by treatment with PD98059 and LY294002 in vitro. Furthermore, treatment with PD98059 and LY294002 reduced follicle growth and oestradiol production in vivo. Conclusion These results demonstrate an important functional role for the Akt and Erk signalling pathways in follicle function, growth and development.

  4. Isoproterenol directs hair follicle-associated pluripotent (HAP) stem cells to differentiate in vitro to cardiac muscle cells which can be induced to form beating heart-muscle tissue sheets.

    Yamazaki, Aiko; Yashiro, Masateru; Mii, Sumiyuki; Aki, Ryoichi; Hamada, Yuko; Arakawa, Nobuko; Kawahara, Katsumasa; Hoffman, Robert M; Amoh, Yasuyuki

    2016-03-01

    Nestin-expressing hair-follicle-associated pluripotent (HAP) stem cells are located in the bulge area of the follicle. Previous studies have shown that HAP stem cells can differentiate to neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. HAP stem cells effected nerve and spinal cord regeneration in mouse models. Recently, we demonstrated that HAP stem cells differentiated to beating cardiac muscle cells. The differentiation potential to cardiac muscle cells was greatest in the upper part of the follicle. The beat rate of the cardiac muscle cells was stimulated by isoproterenol. In the present study, we observed that isoproterenol directs HAP stem cells to differentiate to cardiac muscle cells in large numbers in culture compared to HAP stem cells not supplemented with isoproterenol. The addition of activin A, bone morphogenetic protein 4, and basic fibroblast growth factor, along with isoproternal, induced the cardiac muscle cells to form tissue sheets of beating heart muscle cells. These results demonstrate that HAP stem cells have great potential to form beating cardiac muscle cells in tissue sheets. PMID:27104748

  5. Evaluation of Electrical Impedance as a Biomarker of Myostatin Inhibition in Wild Type and Muscular Dystrophy Mice.

    Benjamin Sanchez

    Full Text Available Non-invasive and effort independent biomarkers are needed to better assess the effects of drug therapy on healthy muscle and that affected by muscular dystrophy (mdx. Here we evaluated the use of multi-frequency electrical impedance for this purpose with comparison to force and histological parameters.Eight wild-type (wt and 10 mdx mice were treated weekly with RAP-031 activin type IIB receptor at a dose of 10 mg kg-1 twice weekly for 16 weeks; the investigators were blinded to treatment and disease status. At the completion of treatment, impedance measurements, in situ force measurements, and histology analyses were performed.As compared to untreated animals, RAP-031 wt and mdx treated mice had greater body mass (18% and 17%, p 70 Hz, but not in the mdx animals. In contrast, maximum force normalized by muscle mass was unchanged in the wt animals and lower in the mdx animals by 21% (p < 0.01. Similarly, myofiber size was only non-significantly higher in treated versus untreated animals (8% p = 0.44 and 12% p = 0.31 for wt and mdx animals, respectively.Our findings demonstrate electrical impedance of muscle reproduce the functional and histological changes associated with myostatin pathway inhibition and do not reflect differences in muscle size or volume. This technique deserves further study in both animal and human therapeutic trials.

  6. T Lymphocyte Potential Marks the Emergence of Definitive Hematopoietic Progenitors in Human Pluripotent Stem Cell Differentiation Cultures

    Marion Kennedy

    2012-12-01

    Full Text Available The efficient generation of hematopoietic stem cells from human pluripotent stem cells is dependent on the appropriate specification of the definitive hematopoietic program during differentiation. In this study, we used T lymphocyte potential to track the onset of definitive hematopoiesis from human embryonic and induced pluripotent stem cells differentiated with specific morphogens in serum- and stromal-free cultures. We show that this program develops from a progenitor population with characteristics of hemogenic endothelium, including the expression of CD34, VE-cadherin, GATA2, LMO2, and RUNX1. Along with T cells, these progenitors display the capacity to generate myeloid and erythroid cells. Manipulation of Activin/Nodal signaling during early stages of differentiation revealed that development of the definitive hematopoietic progenitor population is not dependent on this pathway, distinguishing it from primitive hematopoiesis. Collectively, these findings demonstrate that it is possible to generate T lymphoid progenitors from pluripotent stem cells and that this lineage develops from a population whose emergence marks the onset of human definitive hematopoiesis.

  7. Stem cell-dependent formation of a functional anterior regeneration pole in planarians requires Zic and Forkhead transcription factors.

    Vogg, Matthias C; Owlarn, Suthira; Pérez Rico, Yuvia A; Xie, Jianlei; Suzuki, Yoko; Gentile, Luca; Wu, Wei; Bartscherer, Kerstin

    2014-06-15

    Planarians can regenerate their head within days. This process depends on the direction of adult stem cells to wound sites and the orchestration of their progenitors to commit to appropriate lineages and to arrange into patterned tissues. We identified a zinc finger transcription factor, Smed-ZicA, as a downstream target of Smed-FoxD, a Forkhead transcription factor required for head regeneration. Smed-zicA and Smed-FoxD are co-expressed with the Wnt inhibitor notum and the Activin inhibitor follistatin in a cluster of cells at the anterior-most tip of the regenerating head - the anterior regeneration pole - and in surrounding stem cell progeny. Depletion of Smed-zicA and Smed-FoxD by RNAi abolishes notum and follistatin expression at the pole and inhibits head formation downstream of initial polarity decisions. We suggest a model in which ZicA and FoxD transcription factors synergize to control the formation of Notum- and Follistatin-producing anterior pole cells. Pole formation might constitute an early step in regeneration, resulting in a signaling center that orchestrates cellular events in the growing tissue. PMID:24704339

  8. ALK7 Gene Polymorphism is Associated with Metabolic Syndrome Risk and Cardiovascular Remodeling

    Zhang, Wenchao; Wang, Hui; Zhang, Wei [Key Laboratory of Cardiovascular Remodeling and Function Research Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan (China); Lv, Ruijuan [Department of Emergency, Qilu Hospital of Shandong University, Jinan (China); Wang, Zhihao [Key Laboratory of Cardiovascular Remodeling and Function Research Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan (China); Department of Geriatrics, Qilu Hospital of Shandong University, Jinan (China); Shang, Yuanyuan; Zhang, Yun; Zhong, Ming [Key Laboratory of Cardiovascular Remodeling and Function Research Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan (China); Chen, Yuguo; Tang, Mengxiong, E-mail: tangmengxiongsdu8@163.com [Key Laboratory of Cardiovascular Remodeling and Function Research Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan (China); Department of Emergency, Qilu Hospital of Shandong University, Jinan (China)

    2013-08-15

    Activin receptor-like kinase 7 (ALK7) is a type I receptor for the TGF-β superfamily and has recently been demonstrated to play an important role in the maintenance of metabolic homeostasis. To investigate the association of the ALK7 gene polymorphism with metabolic syndrome (MetS) and cardiovascular remodeling in MetS patients. The single nucleotide polymorphism rs13010956 in the ALK7 gene was genotyped in 351 Chinese subjects undergoing carotid and cardiac ultrasonography. The associations of the ALK7 gene polymorphism with the MetS phenotype, MetS parameters, and cardiovascular ultrasonic features were analyzed. The rs13010956 polymorphism in the ALK7 gene was found to be significantly associated with the MetS phenotype in females (p < 0.05) and was also significantly associated with blood pressure in the total (p < 0.05) and female populations (p < 0.01). Further analysis revealed that rs13010956 was associated with mean intima-media thickness of the carotid arteries in females (p < 0.05). After control for body mass index, blood pressure, fasting blood glucose, and triglycerides, rs13010956 was also found to be significantly associated with left ventricular mass index in the total (p < 0.05) and female populations (p < 0.05). Our findings suggested that the ALK7 gene polymorphism rs13010956 was significantly associated with MetS risk in females and may be involved in cardiovascular remodeling in MetS patients.

  9. A Small Molecule that Promotes Cardiac Differentiation of Human Pluripotent Stem Cells under Defined, Cytokine- and Xeno-free Conditions

    Itsunari Minami

    2012-11-01

    Full Text Available Human pluripotent stem cells (hPSCs, including embryonic stem cells and induced pluripotent stem cells, are potentially useful in regenerative therapies for heart disease. For medical applications, clinical-grade cardiac cells must be produced from hPSCs in a defined, cost-effective manner. Cell-based screening led to the discovery of KY02111, a small molecule that promotes differentiation of hPSCs to cardiomyocytes. Although the direct target of KY02111 remains unknown, results of the present study suggest that KY02111 promotes differentiation by inhibiting WNT signaling in hPSCs but in a manner that is distinct from that of previously studied WNT inhibitors. Combined use of KY02111 and WNT signaling modulators produced robust cardiac differentiation of hPSCs in a xeno-free, defined medium, devoid of serum and any kind of recombinant cytokines and hormones, such as BMP4, Activin A, or insulin. The methodology has potential as a means for the practical production of human cardiomyocytes for regeneration therapies.

  10. Derivation and transcriptional profiling analysis of pluripotent stem cell lines from rat blastocysts

    Chunliang Li; Ying Yang; Junjie Gu; Yu Ma; Ying Jin

    2009-01-01

    Embryonic stem (ES) cells are derived from blastocyst-stage embryos. Their unique properties of self-renewal and pluripotency make them an attractive tool for basic research and a potential cell resource for therapy. ES cells of mouse and human have been successfully generated and applied in a wide range of research. However, no genuine ES cell lines have been obtained from rat to date. In this study, we identified pluripotent cells in early rat embryos using specific antibodies against markers of pluripotent stem cells. Subsequently, by modifying the culture medium for rat blastocysts, we derived pluripotent rat ES-llke cell lines, which expressed pluripotency markers and formed embryoid bodies (EBs) in vitro. Importantly, these rat ES-like cells were able to produce teratomas. Both EBs and teratomas contained tissues from all three embryonic germ layers, in addition, from the rat ES-like cells, we derived a rat primitive endoderm (PrE) cell line. Furthermore, we conducted transcriptional profiling of the rat ES-like cells and identified the unique molecular signature of the rat pluripotent stem cells. Our analysis demonstrates that multiple signaling pathways, including the BMP, Activin and roTOR pathways, may be involved in keeping the rat ES-like cells in an undifferentiated state. The cell lines and information obtained in this study will accelerate our understanding of the molecular regulation underlying pluripotency and guide us in the appropriate manipulation of ES cells from a particular species.

  11. Cancer Stem Cells, EMT, and Developmental Pathway Activation in Pancreatic Tumors

    Pancreatic cancer is a disease with remarkably poor patient survival rates. The frequent presence of metastases and profound chemoresistance pose a severe problem for the treatment of these tumors. Moreover, cross-talk between the tumor and the local micro-environment contributes to tumorigenicity, metastasis and chemoresistance. Compared to bulk tumor cells, cancer stem cells (CSC) have reduced sensitivity to chemotherapy. CSC are tumor cells with stem-like features that possess the ability to self-renew, but can also give rise to more differentiated progeny. CSC can be identified based on increased in vitro spheroid- or colony formation, enhanced in vivo tumor initiating potential, or expression of cell surface markers. Since CSC are thought to be required for the maintenance of a tumor cell population, these cells could possibly serve as a therapeutic target. There appears to be a causal relationship between CSC and epithelial-to-mesenchymal transition (EMT) in pancreatic tumors. The occurrence of EMT in pancreatic cancer cells is often accompanied by re-activation of developmental pathways, such as the Hedgehog, WNT, NOTCH, and Nodal/Activin pathways. Therapeutics based on CSC markers, EMT, developmental pathways, or tumor micro-environment could potentially be used to target pancreatic CSC. This may lead to a reduction of tumor growth, metastatic events, and chemoresistance in pancreatic cancer

  12. Cinnabar-Induced Subchronic Renal Injury Is Associated with Increased Apoptosis in Rats

    Ying Wang

    2015-01-01

    Full Text Available The aim of this study was to explore the role of apoptosis in cinnabar-induced renal injury in rats. To test this role, rats were dosed orally with cinnabar (1 g/kg/day for 8 weeks or 12 weeks, and the control rats were treated with 5% carboxymethylcellulose solution. Levels of urinary mercury (UHg, renal mercury (RHg, serum creatinine (SCr, and urine kidney injury molecule 1 (KIM-1 were assessed, and renal pathology was analyzed. Apoptotic cells were identified and the apoptotic index was calculated. A rat antibody array was used to analyze expression of cytokines associated with apoptosis. Results from these analyses showed that UHg, RHg, and urine KIM-1, but not SCr, levels were significantly increased in cinnabar-treated rats. Renal pathological changes in cinnabar-treated rats included vacuolization of tubular cells, formation of protein casts, infiltration of inflammatory cells, and increase in the number of apoptotic tubular cells. In comparison to the control group, expression of FasL, Fas, TNF-α, TRAIL, activin A, and adiponectin was upregulated in the cinnabar-treated group. Collectively, our results suggest that prolonged use of cinnabar results in kidney damage due to accumulation of mercury and that the underlying mechanism involves apoptosis of tubular cells via a death receptor-mediated pathway.

  13. The effects of an ActRIIb receptor Fc fusion protein ligand trap in juvenile simian immunodeficiency virus-infected rhesus macaques.

    O'Connell, Karyn E; Guo, Wen; Serra, Carlo; Beck, Matthew; Wachtman, Lynn; Hoggatt, Amber; Xia, Dongling; Pearson, Chris; Knight, Heather; O'Connell, Micheal; Miller, Andrew D; Westmoreland, Susan V; Bhasin, Shalender

    2015-04-01

    There are no approved therapies for muscle wasting in children infected with human immunodeficiency virus (HIV), which portends poor disease outcomes. To determine whether a soluble ActRIIb receptor Fc fusion protein (ActRIIB.Fc), a ligand trap for TGF-β/activin family members including myostatin, can prevent or restore loss of lean body mass and body weight in simian immunodeficiency virus (SIV)-infected juvenile rhesus macaques (Macaca mulatta). Fourteen pair-housed, juvenile male rhesus macaques were inoculated with SIVmac239 and, 4 wk postinoculation (WPI) treated with intramuscular injections of 10 mg ⋅ kg(-1) ⋅ wk(-1) ActRIIB.Fc or saline placebo. Body weight, lean body mass, SIV titers, and somatometric measurements were assessed monthly for 16 wk. Age-matched SIV-infected rhesus macaques were injected with saline. Intervention groups did not differ at baseline. Gains in lean mass were significantly greater in the ActRIIB.Fc group than in the placebo group (P fat mass in juvenile SIV-infected rhesus macaques. PMID:25466897

  14. Female Aging Alters Expression of Human Cumulus Cells Genes that Are Essential for Oocyte Quality

    Tamadir Al-Edani

    2014-01-01

    Full Text Available Impact of female aging is an important issue in human reproduction. There was a need for an extensive analysis of age impact on transcriptome profile of cumulus cells (CCs to link oocyte quality and developmental potential with patient’s age. CCs from patients of three age groups were analyzed individually using microarrays. RT-qPCR validation was performed on independent CC cohorts. We focused here on pathways affected by aging in CCs that may explain the decline of oocyte quality with age. In CCs collected from patients >37 years, angiogenic genes including ANGPTL4, LEPR, TGFBR3, and FGF2 were significantly overexpressed compared to patients of the two younger groups. In contrast genes implicated in TGF-β signaling pathway such as AMH, TGFB1, inhibin, and activin receptor were underexpressed. CCs from patients whose ages are between 31 and 36 years showed an overexpression of genes related to insulin signaling pathway such as IGFBP3, PIK3R1, and IGFBP5. A bioinformatic analysis was performed to identify the microRNAs that are potential regulators of the differentially expressed genes of the study. It revealed that the pathways impacted by age were potential targets of specific miRNAs previously identified in our CCs small RNAs sequencing.

  15. Skeletal muscle-derived progenitors capable of differentiating into cardiomyocytes proliferate through myostatin-independent TGF-β family signaling

    The existence of skeletal muscle-derived stem cells (MDSCs) has been suggested in mammals; however, the signaling pathways controlling MDSC proliferation remain largely unknown. Here we report the isolation of myosphere-derived progenitor cells (MDPCs) that can give rise to beating cardiomyocytes from adult skeletal muscle. We identified that follistatin, an antagonist of TGF-β family members, was predominantly expressed in MDPCs, whereas myostatin was mainly expressed in myogenic cells and mature skeletal muscle. Although follistatin enhanced the replicative growth of MDPCs through Smad2/3 inactivation and cell cycle progression, disruption of myostatin did not increase the MDPC proliferation. By contrast, inhibition of activin A (ActA) or growth differentiation factor 11 (GDF11) signaling dramatically increased MDPC proliferation via down-regulation of p21 and increases in the levels of cdk2/4 and cyclin D1. Thus, follistatin may be an effective progenitor-enhancing agent neutralizing ActA and GDF11 signaling to regulate the growth of MDPCs in skeletal muscle

  16. Convergence of cMyc and β-catenin on Tcf7l1 enables endoderm specification.

    Morrison, Gillian; Scognamiglio, Roberta; Trumpp, Andreas; Smith, Austin

    2016-02-01

    The molecular machinery that directs formation of definitive endoderm from pluripotent stem cells is not well understood. Wnt/β-catenin and Nodal signalling have been implicated, but the requirements for lineage specification remain incompletely defined. Here, we demonstrate a potent effect of inhibiting glycogen synthase kinase 3 (GSK3) on definitive endoderm production. We find that downstream of GSK3 inhibition, elevated cMyc and β-catenin act in parallel to reduce transcription and DNA binding, respectively, of the transcriptional repressor Tcf7l1. Tcf7l1 represses FoxA2, a pioneer factor for endoderm specification. Deletion of Tcf7l1 is sufficient to allow upregulation of FoxA2 in the presence of Activin. In wild-type cells, cMyc contributes by reducing Tcf7l1 mRNA, while β-catenin acts on Tcf7l1 protein. GSK3 inhibition is further required for consolidation of endodermal fate via upregulation of Sox17, highlighting sequential roles for Wnt signalling. The identification of a cMyc/β-catenin-Tcf7l1-FoxA2 axis reveals a de-repression mechanism underlying endoderm induction that may be recapitulated in other developmental and patho-logical contexts. PMID:26675138

  17. TGF-β superfamily gene expression and induction of the Runx1 transcription factor in adult neurogenic regions after brain injury.

    Trevor T Logan

    Full Text Available Traumatic brain injury (TBI increases neurogenesis in the forebrain subventricular zone (SVZ and the hippocampal dentate gyrus (DG. Transforming growth factor-β (TGF-β superfamily cytokines are important regulators of adult neurogenesis, but their involvement in the regulation of this process after brain injury is unclear. We subjected adult mice to controlled cortical impact (CCI injury, and isolated RNA from the SVZ and DG at different post-injury time points. qPCR array analysis showed that cortical injury caused significant alterations in the mRNA expression of components and targets of the TGF-β, BMP, and activin signaling pathways in the SVZ and DG after injury, suggesting that these pathways could regulate post-injury neurogenesis. In both neurogenic regions, the injury also induced expression of Runt-related transcription factor-1 (Runx1, which can interact with intracellular TGF-β Smad signaling pathways. CCI injury strongly induced Runx1 expression in activated and proliferating microglial cells throughout the neurogenic regions. Runx1 protein was also expressed in a subset of Nestin- and GFAP-expressing putative neural stem or progenitor cells in the DG and SVZ after injury. In the DG only, these Runx1+ progenitors proliferated. Our data suggest potential roles for Runx1 in the processes of microglial cell activation and proliferation and in neural stem cell proliferation after TBI.

  18. Regulation of embryonic stem cell self-renewal and differentiation by TGF-β family signaling

    2010-01-01

    Embryonic stem (ES) cells are characterized by their ability to indefinitely self-renew and potential to differentiate into all the cell lineages of the body. ES cells are considered to have potential applications in regenerative medicine. In particular, the emergence of an ES cell analogue-induced pluripotent stem (iPS) cells via somatic cell reprogramming by co-expressing a limited number of critical stemness-related transcriptional factors has solved the problem of obtaining patient-specific pluripotent cells, encouraging researchers to develop more specific and functional cell lineages from ES or iPS cells for broad therapeutic applications. ES cell fate choice is delicately controlled by a core transcriptional network, epigenetic modification profiles and complex signaling cascades both intrinsically and extrinsically. Of these signals, transforming growth factor β (TGF-β) family members, including TGF-β, bone morphogenetic protein (BMP), Activin and Nodal, have been reported to influence cell self-renewal and a broad spectrum of lineage differentiation in ES cells, in accordance with the key roles of TGF-β family signaling in early embryo development. In this review, the roles of TGF-β family signals in coordinating ES cell fate determination are summarized.

  19. A Multi-Lineage Screen Reveals mTORC1 Inhibition Enhances Human Pluripotent Stem Cell Mesendoderm and Blood Progenitor Production

    Emanuel Joseph Paul Nazareth

    2016-05-01

    Full Text Available Human pluripotent stem cells (hPSCs exist in heterogeneous micro-environments with multiple subpopulations, convoluting fate-regulation analysis. We patterned hPSCs into engineered micro-environments and screened responses to 400 small-molecule kinase inhibitors, measuring yield and purity outputs of undifferentiated, neuroectoderm, mesendoderm, and extra-embryonic populations. Enrichment analysis revealed mammalian target of rapamycin (mTOR inhibition as a strong inducer of mesendoderm. Dose responses of mTOR inhibitors such as rapamycin synergized with Bone Morphogenetic protein 4 (BMP4 and activin A to enhance the yield and purity of BRACHYURY-expressing cells. Mechanistically, small interfering RNA knockdown of RAPTOR, a component of mTOR complex 1, phenocopied the mesendoderm-enhancing effects of rapamycin. Functional analysis during mesoderm and endoderm differentiation revealed that mTOR inhibition increased the output of hemogenic endothelial cells 3-fold, with a concomitant enhancement of blood colony-forming cells. These data demonstrate the power of our multi-lineage screening approach and identify mTOR signaling as a node in hPSC differentiation to mesendoderm and its derivatives.

  20. A Multi-Lineage Screen Reveals mTORC1 Inhibition Enhances Human Pluripotent Stem Cell Mesendoderm and Blood Progenitor Production.

    Nazareth, Emanuel Joseph Paul; Rahman, Nafees; Yin, Ting; Zandstra, Peter William

    2016-05-10

    Human pluripotent stem cells (hPSCs) exist in heterogeneous micro-environments with multiple subpopulations, convoluting fate-regulation analysis. We patterned hPSCs into engineered micro-environments and screened responses to 400 small-molecule kinase inhibitors, measuring yield and purity outputs of undifferentiated, neuroectoderm, mesendoderm, and extra-embryonic populations. Enrichment analysis revealed mammalian target of rapamycin (mTOR) inhibition as a strong inducer of mesendoderm. Dose responses of mTOR inhibitors such as rapamycin synergized with Bone Morphogenetic protein 4 (BMP4) and activin A to enhance the yield and purity of BRACHYURY-expressing cells. Mechanistically, small interfering RNA knockdown of RAPTOR, a component of mTOR complex 1, phenocopied the mesendoderm-enhancing effects of rapamycin. Functional analysis during mesoderm and endoderm differentiation revealed that mTOR inhibition increased the output of hemogenic endothelial cells 3-fold, with a concomitant enhancement of blood colony-forming cells. These data demonstrate the power of our multi-lineage screening approach and identify mTOR signaling as a node in hPSC differentiation to mesendoderm and its derivatives. PMID:27132889

  1. miR-125b Regulates the Early Steps of ESC Differentiation through Dies1 in a TGF-Independent Manner

    Silvia Parisi

    2013-06-01

    Full Text Available Over the past few years, it has become evident that the distinctive pattern of miRNA expression seen in embryonic stem cells (ESCs contributes to important signals in the choice of the cell fate. Thus, the identification of miRNAs and their targets, whose expression is linked to a specific step of differentiation, as well as the modulation of these miRNAs, may prove useful in the learning of how ESC potential is regulated. In this context, we have studied the expression profile of miRNAs during neural differentiation of ESCs. We have found that miR-125b is upregulated in the first steps of neural differentiation of ESCs. This miRNA targets the BMP4 co-receptor, Dies1, and, in turn, regulates the balance between BMP4 and Nodal/Activin signaling. The ectopic expression of miR-125b blocks ESC differentiation at the epiblast stage, and this arrest is rescued by restoring the expression of Dies1. Finally, opposite to miR-125a, whose expression is under the control of the BMP4, miR-125b is not directly regulated by Transforming Growth Factor beta (TGFβ signals. These results highlight a new important role of miR-125b in the regulation of the transition from ESCs to the epiblast stage and add a new level of control on TGFβ signaling in ESCs.

  2. LPS/TLR4 Signaling Enhances TGF-β Response Through Downregulating BAMBI During Prostatic Hyperplasia.

    He, Yao; Ou, Zhenyu; Chen, Xiang; Zu, Xiongbing; Liu, Longfei; Li, Yuan; Cao, Zhenzhen; Chen, Minfeng; Chen, Zhi; Chen, Hequn; Qi, Lin; Wang, Long

    2016-01-01

    Compelling evidence suggests that benign prostatic hyperplasia (BPH) development involves accumulation of mesenchymal-like cells derived from the prostatic epithelium by epithelial-mesenchymal transition (EMT). Transforming growth factor (TGF)-β induces EMT phenotypes with low E-cadherin and high vimentin expression in prostatic epithelial cells. Here we report that LPS/TLR4 signalling induces down-regulation of the bone morphogenic protein and activin membrane-bound inhibitor (BAMBI), which enhances TGF-β signalling in the EMT process during prostatic hyperplasia. Additionally, we found that the mean TLR4 staining score was significantly higher in BPH tissues with inflammation compared with BPH tissues without inflammation (5.13 ± 1.21 and 2.96 ± 0.73, respectively; P Pearson's correlation coefficient and multiple regression analyses demonstrated that TLR4 mRNA expression level was significantly positively associated with age, BMI, serum PSA levels, urgency and nocturia subscores of IPSS in the inflammatory group. These findings provide new insights into the TLR4-amplified EMT process and the association between TLR4 levels and storage LUTS, suggesting chronic inflammation as vital to the pathogenesis of BPH. PMID:27243216

  3. Supra-molecular assembly of a lumican-derived peptide amphiphile enhances its collagen-stimulating activity.

    Walter, Merlin N M; Dehsorkhi, Ashkan; Hamley, Ian W; Connon, Che J

    2016-02-01

    C16-YEALRVANEVTLN, a peptide amphiphile (PA) incorporating a biologically active amino acid sequence found in lumican, has been examined for its influence upon collagen synthesis by human corneal fibroblasts in vitro, and the roles of supra-molecular assembly and activin receptor-like kinase ALK receptor signaling in this effect were assessed. Cell viability was monitored using the Alamar blue assay, and collagen synthesis was assessed using Sirius red. The role of ALK signaling was studied by receptor inhibition. Cultured human corneal fibroblasts synthesized significantly greater amounts of collagen in the presence of the PA over both 7-day and 21-day periods. The aggregation of the PA to form nanotapes resulted in a notable enhancement in this activity, with an approximately two-fold increase in collagen production per cell. This increase was reduced by the addition of an ALK inhibitor. The data presented reveal a stimulatory effect upon collagen synthesis by the primary cells of the corneal stroma, and demonstrate a direct influence of supra-molecular assembly of the PA upon the cellular response observed. The effects of PA upon fibroblasts were dependent upon ALK receptor function. These findings elucidate the role of self-assembled nanostructures in the biological activity of peptide amphiphiles, and support the potential use of a self-assembling lumican derived PA as a novel biomaterial, intended to promote collagen deposition for wound repair and tissue engineering purposes. PMID:26626506

  4. Hemodynamic and genetic analysis in children with idiopathic, heritable, and congenital heart disease associated pulmonary arterial hypertension

    Pfarr Nicole

    2013-01-01

    Full Text Available Abstract Background Aim of this prospective study was to compare clinical and genetic findings in children with idiopathic or heritable pulmonary arterial hypertension (I/HPAH with children affected with congenital heart defects associated PAH (CHD-APAH. Methods Prospectively included were 40 consecutive children with invasively diagnosed I/HPAH or CHD-APAH and 117 relatives. Assessment of family members, pedigree analysis and systematic screening for mutations in TGFß genes were performed. Results Five mutations in the bone morphogenetic protein type II receptor (BMPR2 gene, 2 Activin A receptor type II-like kinase-1 (ACVRL1 mutations and one Endoglin (ENG mutation were found in the 29 I/HPAH children. Two mutations in BMPR2 and one mutation in ACVRL1 and ENG, respectively, are described for the first time. In the 11 children with CHD-APAH one BMPR2 gene mutation and one Endoglin gene mutation were found. Clinical assessment of relatives revealed familial aggregation of the disease in 6 children with PAH (HPAH and one CHD-APAH patient. Patients with mutations had a significantly lower PVR. Conclusion Mutations in different TGFß genes occurred in 8/29 (27.6% I/HPAH patients and in 2/11 (18.2% CHD-APAH patients and may influence the clinical status of the disease. Therefore, genetic analysis in children with PAH, especially in those with I/HPAH, may be of clinical relevance and shows the complexity of the genetic background.

  5. Osteolytic lesions, cytogenetic features and bone marrow levels of cytokines and chemokines in multiple myeloma patients: Role of chemokine (C-C motif) ligand 20.

    Palma, B Dalla; Guasco, D; Pedrazzoni, M; Bolzoni, M; Accardi, F; Costa, F; Sammarelli, G; Craviotto, L; De Filippo, M; Ruffini, L; Omedè, P; Ria, R; Aversa, F; Giuliani, N

    2016-02-01

    The relationship between bone marrow (BM) cytokine and chemokine levels, cytogenetic profiles and skeletal involvement in multiple myeloma (MM) patients is not yet defined. This study investigated a cohort of 455 patients including monoclonal gammopathy of uncertain significance (MGUS), smoldering MM and symptomatic MM patients. Skeletal surveys, positron emission tomography (PET)/computerized tomography (CT) and magnetic resonance imaging (MRI) were used to identify myeloma bone disease. Significantly higher median BM levels of both C-C motif Ligand (CCL)3 and CCL20 were found in MM patients with radiographic evidence of osteolytic lesions as compared with those without, and in all MM patients with positive PET/CT scans. BM levels of CCL3, CCL20, Activin-A and Dickkopf-1 (DKK-1) were significantly higher in patients with high bone disease as compared with patients with low bone disease. Moreover, CCL20 BM levels were significant predictors of osteolysis on X-rays by multivariate logistic analysis. On the other hand, DKK-1 levels were related to the presence of MRI lesions independently of the osteolysis at the X-rays. Our data define the relationship between bone disease and the BM cytokine and chemokine patterns highlighting the tight relationship between CCL20 BM levels and osteolysis in MM. PMID:26419509

  6. Generation of insulin-producing cells from gnotobiotic porcine skin-derived stem cells

    Yang, Ji Hoon; Lee, Sung Ho; Heo, Young Tae [Department of Bioscience and Biotechnology, Bio-Organ Research Center, Konkuk University, Seoul 143-701 (Korea, Republic of); Uhm, Sang Jun [Department of Animal Biotechnology, Bio-Organ Research Center, Konkuk University, Seoul 143-701 (Korea, Republic of); Lee, Hoon Taek, E-mail: htl3675@konkuk.ac.kr [Department of Animal Biotechnology, Bio-Organ Research Center, Konkuk University, Seoul 143-701 (Korea, Republic of)

    2010-07-09

    A major problem in the treatment of type 1 diabetes mellitus is the limited availability of alternative sources of insulin-producing cells for islet transplantation. In this study, we investigated the effect of bone morphogenetic protein 4 (BMP-4) treatments of gnotobiotic porcine skin-derived stem cells (gSDSCs) on their reprogramming and subsequent differentiation into insulin-producing cells (IPCs). We isolated SDSCs from the ear skin of a gnotobiotic pig. During the proliferation period, the cells expressed stem-cell markers Oct-4, Sox-2, and CD90; nestin expression also increased significantly. The cells could differentiate into IPCs after treatments with activin-A, glucagon-like peptide-1 (GLP-1), and nicotinamide. After 15 days in the differentiation medium, controlled gSDSCs began expressing endocrine progenitor genes and proteins (Ngn3, Neuro-D, PDX-1, NKX2.2, NKX6.1, and insulin). The IPCs showed increased insulin synthesis after glucose stimulation. The results indicate that stem cells derived from the skin of gnotobiotic pigs can differentiate into IPCs under the appropriate conditions in vitro. Our three-stage induction protocol could be applied without genetic modification to source IPCs from stem cells in the skin of patients with diabetes for autologous transplantation.

  7. Epicardial adipose tissue and atrial fibrillation.

    Hatem, Stéphane N; Sanders, Prashanthan

    2014-05-01

    Atrial fibrillation (AF) is the most frequent cardiac arrhythmia in clinical practice. AF is often associated with profound functional and structural alterations of the atrial myocardium that compose its substrate. Recently, a relationship between the thickness of epicardial adipose tissue (EAT) and the incidence and severity of AF has been reported. Adipose tissue is a biologically active organ regulating the metabolism of neighbouring organs. It is also a major source of cytokines. In the heart, EAT is contiguous with the myocardium without fascia boundaries resulting in paracrine effects through the release of adipokines. Indeed, Activin A, which is produced in abundance by EAT during heart failure or diabetes, shows a marked fibrotic effect on the atrial myocardium. The infiltration of adipocytes into the atrial myocardium could also disorganize the depolarization wave front favouring micro re-entry circuits and local conduction block. Finally, EAT contains progenitor cells in abundance and therefore could be a source of myofibroblasts producing extracellular matrix. The study on the role played by adipose tissue in the pathogenesis of AF is just starting and is highly likely to uncover new biomarkers and therapeutic targets for AF. PMID:24648445

  8. Cartilage Oligomeric Matrix Protein Increases in Photodamaged Skin.

    Kobayashi, Masaki; Kawabata, Keigo; Kusaka-Kikushima, Ayumi; Sugiyama, Yoshinori; Mabuchi, Tomotaka; Takekoshi, Susumu; Miyasaka, Muneo; Ozawa, Akira; Sakai, Shingo

    2016-06-01

    Cartilage oligomeric matrix protein (COMP) is a structural component of cartilage. Recent studies have described COMP as a pathogenic factor that promotes collagen deposition in fibrotic skin disorders such as scleroderma and keloid skin. Although collagen, a major dermis component, is thought to decrease in photoaged skin, recent reports have demonstrated the presence of tightly packed collagen fibrils with a structural resemblance to fibrosis in the papillary dermis of photoaged skin. Here we examined how photoaging damage relates to COMP expression and localization in photoaged skin. In situ hybridization revealed an increase in COMP-mRNA-positive cells with the progress of photoaging in preauricular skin (sun-exposed skin). The signal intensity of immunostaining for COMP increased with photoaging in not only the papillary dermis but also the reticular dermis affected by advancing solar elastosis. Immunoelectron microscopy detected the colocalization of COMP with both elastotic materials and collagen fibrils in photoaged skin. Ultraviolet light A irradiation of human dermal fibroblasts induced COMP expression at both the mRNA and protein levels. Ultraviolet light A-induced COMP expression was inhibited by an anti-transforming growth factor-β antibody or SB431542, an activin receptor-like kinase 5 inhibitor. These results suggest that the transforming growth factor-β-mediated upregulation of COMP expression may contribute to the modulation of dermal extracellular matrix in the photoaging process. PMID:26968261

  9. Cloning, characterization, and tissue expression pattern of mouse Nma/BAMBI during odontogenesis.

    Knight, C; Simmons, D; Gu, T T; Gluhak-Heinrich, J; Pavlin, D; Zeichner-David, M; MacDougall, M

    2001-10-01

    Degenerate oligonucleotides to consensus serine kinase functional domains previously identified a novel, partial rabbit tooth cDNA (Zeichner-David et al., 1992) that was used in this study to identify a full-length mouse clone. A 1390-base-pair cDNA clone was isolated encoding a putative 260-amino-acid open reading frame containing a hydrophobic 25-amino-acid potential transmembrane domain. This clone shares some homology with the TGF-beta type I receptor family, but lacks the intracellular kinase domain. DNA database analysis revealed that this clone has 86% identity to a newly isolated human gene termed non-metastatic gene A and 80% identity to a Xenopus cDNA clone termed BMP and activin membrane bound inhibitor. Here we report the mouse Nma/BAMBI cDNA sequence, the tissue expression pattern, and confirmed expression in dental cell lines. This study demonstrates that Nma/BAMBI is a highly conserved protein across species and is expressed at high levels during odontogenesis. PMID:11706948

  10. Toward a better understanding of the interaction between TGF-β family members and their ALK receptors

    Romano, Valentina

    2012-02-22

    Transforming growth factor-beta (TGF-β) proteins are a family of structurally related extracellular proteins that trigger their signaling functions through interaction with the extracellular domains of their cognate serine/threonine kinase receptors. The specificity of TGF-β/receptor binding is complex and gives rise to multiple functional roles. Additionally, it is not completely understood at the atomic level. Here, we use the most reliable computational methods currently available to study systems involving activin-like kinase (ALK) receptors ALK4 and ALK7 and their multiple TGF-β ligands. We built models for all these proteins and their complexes for which experimental structures are not available. By analyzing the surfaces of interaction in six different TGF-β/ALK complexes we could infer which are the structural distinctive features of the ligand-receptor binding mode. Furthermore, this study allowed us to rationalize why binding of the growth factors GDF3 and Nodal to the ALK4 receptor requires the Cripto co-factor, whilst binding to the ALK7 receptor does not. © Springer-Verlag 2012.

  11. The Evx1/Evx1as gene locus regulates anterior-posterior patterning during gastrulation.

    Bell, Charles C; Amaral, Paulo P; Kalsbeek, Anton; Magor, Graham W; Gillinder, Kevin R; Tangermann, Pierre; di Lisio, Lorena; Cheetham, Seth W; Gruhl, Franziska; Frith, Jessica; Tallack, Michael R; Ru, Ke-Lin; Crawford, Joanna; Mattick, John S; Dinger, Marcel E; Perkins, Andrew C

    2016-01-01

    Thousands of sense-antisense mRNA-lncRNA gene pairs occur in the mammalian genome. While there is usually little doubt about the function of the coding transcript, the function of the lncRNA partner is mostly untested. Here we examine the function of the homeotic Evx1-Evx1as gene locus. Expression is tightly co-regulated in posterior mesoderm of mouse embryos and in embryoid bodies. Expression of both genes is enhanced by BMP4 and WNT3A, and reduced by Activin. We generated a suite of deletions in the locus by CRISPR-Cas9 editing. We show EVX1 is a critical downstream effector of BMP4 and WNT3A with respect to patterning of posterior mesoderm. The lncRNA, Evx1as arises from alternative promoters and is difficult to fully abrogate by gene editing or siRNA approaches. Nevertheless, we were able to generate a large 2.6 kb deletion encompassing the shared promoter with Evx1 and multiple additional exons of Evx1as. This led to an identical dorsal-ventral patterning defect to that generated by micro-deletion in the DNA-binding domain of EVX1. Thus, Evx1as has no function independent of EVX1, and is therefore unlikely to act in trans. We predict many antisense lncRNAs have no specific trans function, possibly only regulating the linked coding genes in cis. PMID:27226347

  12. Novel therapies for osteoporosis.

    Makras, Polyzois; Delaroudis, Sideris; Anastasilakis, Athanasios D

    2015-10-01

    Since the identification of osteoporosis as a major health issue in aging populations and the subsequent development of the first treatment modalities for its management, considerable progress has been made in our understanding of the mechanisms controlling bone turnover and disease pathophysiology, thus enabling the pinpointing of new targets for intervention. This progress, along with advances in biotechnology, has rendered possible the development of ever more sophisticated treatments employing novel mechanisms of action. Denosumab, a monoclonal antibody against RANKL, approved for the treatment of postmenopausal and male osteoporosis, significantly and continuously increases bone mineral density (BMD) and maintains a low risk of vertebral, non-vertebral, and hip fractures for up to 8 years. Currently available combinations of estrogens with selective estrogen receptor modulators moderately increase BMD without causing the extra-skeletal adverse effects of each compound alone. The cathepsin K inhibitor odanacatib has recently been shown to decrease vertebral, non-vertebral, and hip fracture rates and is nearing approval. Romosozumab, an anti-sclerosin antibody, and abaloparatide, a PTH-related peptide analog, are at present in advanced stages of clinical evaluation, so far demonstrating efficaciousness together with a favorable safety profile. Several other agents are currently in earlier clinical and preclinical phases of development, including dickkopf-1 antagonists, activin A antagonists, β-arrestin analogs, calcilytics, and Src tyrosine kinase inhibitors. PMID:26277199

  13. Alk1 controls arterial endothelial cell migration in lumenized vessels.

    Rochon, Elizabeth R; Menon, Prahlad G; Roman, Beth L

    2016-07-15

    Heterozygous loss of the arterial-specific TGFβ type I receptor, activin receptor-like kinase 1 (ALK1; ACVRL1), causes hereditary hemorrhagic telangiectasia (HHT). HHT is characterized by development of fragile, direct connections between arteries and veins, or arteriovenous malformations (AVMs). However, how decreased ALK1 signaling leads to AVMs is unknown. To understand the cellular mis-steps that cause AVMs, we assessed endothelial cell behavior in alk1-deficient zebrafish embryos, which develop cranial AVMs. Our data demonstrate that alk1 loss has no effect on arterial endothelial cell proliferation but alters arterial endothelial cell migration within lumenized vessels. In wild-type embryos, alk1-positive cranial arterial endothelial cells generally migrate towards the heart, against the direction of blood flow, with some cells incorporating into endocardium. In alk1-deficient embryos, migration against flow is dampened and migration in the direction of flow is enhanced. Altered migration results in decreased endothelial cell number in arterial segments proximal to the heart and increased endothelial cell number in arterial segments distal to the heart. We speculate that the consequent increase in distal arterial caliber and hemodynamic load precipitates the flow-dependent development of downstream AVMs. PMID:27287800

  14. Gene expression analysis of a murine model with pulmonary vascular remodeling compared to end-stage IPAH lungs

    Shimodaira Kayoko

    2012-11-01

    Full Text Available Abstract Background Idiopathic pulmonary arterial hypertension (IPAH continues to be one of the most serious intractable diseases that might start with activation of several triggers representing the genetic susceptibility of a patient. To elucidate what essentially contributes to the onset and progression of IPAH, we investigated factors playing an important role in IPAH by searching discrepant or controversial expression patterns between our murine model and those previously published for human IPAH. We employed the mouse model, which induced muscularization of pulmonary artery leading to hypertension by repeated intratracheal injection of Stachybotrys chartarum, a member of nonpathogenic and ubiquitous fungus in our envelopment. Methods Microarray assays with ontology and pathway analyses were performed with the lungs of mice. A comparison was made of the expression patterns of biological pathways between our model and those published for IPAH. Results Some pathways in our model showed the same expression patterns in IPAH, which included bone morphogenetic protein (BMP signaling with down-regulation of BMP receptor type 2, activin-like kinase type 1, and endoglin. On the other hand, both Wnt/planar cell polarity (PCP signaling and its downstream Rho/ROCK signaling were found alone to be activated in IPAH and not in our model. Conclusions Activation of Wnt/PCP signaling, in upstream positions of the pathway, found alone in lungs from end stage IPAH may play essential roles in the pathogenesis of the disease.

  15. Antihepatic Fibrosis Effect of Active Components Isolated from Green Asparagus (Asparagus officinalis L.) Involves the Inactivation of Hepatic Stellate Cells.

    Zhong, Chunge; Jiang, Chunyu; Xia, Xichun; Mu, Teng; Wei, Lige; Lou, Yuntian; Zhang, Xiaoshu; Zhao, Yuqing; Bi, Xiuli

    2015-07-01

    Green asparagus (Asparagus officinalis L.) is a vegetable with numerous nutritional properties. In the current study, a total of 23 compounds were isolated from green asparagus, and 9 of these compounds were obtained from this genus for the first time. Preliminary data showed that the ethyl acetate (EtOAc)-extracted fraction of green asparagus exerted a stronger inhibitory effect on the growth of t-HSC/Cl-6 cells, giving an IC50 value of 45.52 μg/mL. The biological activities of the different compounds isolated from the EtOAc-extracted fraction with respect to antihepatic fibrosis were investigated further. Four compounds, C3, C4, C10, and C12, exhibited profound inhibitory effect on the activation of t-HSC/Cl-6 cells induced by TNF-α. The activation t-HSC/Cl-6 cells, which led to the production of fibrotic matrix (TGF-β1, activin C) and accumulation of TNF-α, was dramatically decreased by these compounds. The mechanisms by which these compounds inhibited the activation of hepatic stellate cells appeared to be associated with the inactivation of TGF-β1/Smad signaling and c-Jun N-terminal kinases, as well as the ERK phosphorylation cascade. PMID:26089141

  16. Comparison of syncytiotrophoblast generated from human embryonic stem cells and from term placentas.

    Yabe, Shinichiro; Alexenko, Andrei P; Amita, Mitsuyoshi; Yang, Ying; Schust, Danny J; Sadovsky, Yoel; Ezashi, Toshihiko; Roberts, R Michael

    2016-05-10

    Human embryonic stem cells (ESCs) readily commit to the trophoblast lineage after exposure to bone morphogenetic protein-4 (BMP-4) and two small compounds, an activin A signaling inhibitor and a FGF2 signaling inhibitor (BMP4/A83-01/PD173074; BAP treatment). During differentiation, areas emerge within the colonies with the biochemical and morphological features of syncytiotrophoblast (STB). Relatively pure fractions of mononucleated cytotrophoblast (CTB) and larger syncytial sheets displaying the expected markers of STB can be obtained by differential filtration of dispersed colonies through nylon strainers. RNA-seq analysis of these fractions has allowed them to be compared with cytotrophoblasts isolated from term placentas before and after such cells had formed syncytia. Although it is clear from extensive gene marker analysis that both ESC- and placenta-derived syncytial cells are trophoblast, each with the potential to transport a wide range of solutes and synthesize placental hormones, their transcriptome profiles are sufficiently dissimilar to suggest that the two cell types have distinct pedigrees and represent functionally different kinds of STB. We propose that the STB generated from human ESCs represents the primitive syncytium encountered in early pregnancy soon after the human trophoblast invades into the uterine wall. PMID:27051068

  17. Overcoming Insulin Insufficiency by Forced Follistatin Expression in β-cells of db/db Mice.

    Zhao, Chunxia; Qiao, Chunping; Tang, Ru-Hang; Jiang, Jiangang; Li, Jianbin; Martin, Carrie Bette; Bulaklak, Karen; Li, Juan; Wang, Dao Wen; Xiao, Xiao

    2015-05-01

    Diabetes poses a substantial burden to society as it can lead to serious complications and premature death. The number of cases continues to increase worldwide. Two major causes of diabetes are insulin resistance and insulin insufficiency. Currently, there are few antidiabetic drugs available that can preserve or protect β-cell function to overcome insulin insufficiency in diabetes. We describe a therapeutic strategy to preserve β-cell function by overexpression of follistatin (FST) using an AAV vector (AAV8-Ins-FST) in diabetic mouse model. Overexpression of FST in the pancreas of db/db mouse increased β-cell islet mass, decreased fasting glucose level, alleviated diabetic symptoms, and essentially doubled lifespan of the treated mice. The observed islet enlargement was attributed to β-cell proliferation as a result of bioneutralization of myostatin and activin by FST. Overall, our study indicates overexpression of FST in the diabetic pancreas preserves β-cell function by promoting β-cell proliferation, opening up a new therapeutic avenue for the treatment of diabetes. PMID:25676679

  18. ALK7 Gene Polymorphism is Associated with Metabolic Syndrome Risk and Cardiovascular Remodeling

    Activin receptor-like kinase 7 (ALK7) is a type I receptor for the TGF-β superfamily and has recently been demonstrated to play an important role in the maintenance of metabolic homeostasis. To investigate the association of the ALK7 gene polymorphism with metabolic syndrome (MetS) and cardiovascular remodeling in MetS patients. The single nucleotide polymorphism rs13010956 in the ALK7 gene was genotyped in 351 Chinese subjects undergoing carotid and cardiac ultrasonography. The associations of the ALK7 gene polymorphism with the MetS phenotype, MetS parameters, and cardiovascular ultrasonic features were analyzed. The rs13010956 polymorphism in the ALK7 gene was found to be significantly associated with the MetS phenotype in females (p < 0.05) and was also significantly associated with blood pressure in the total (p < 0.05) and female populations (p < 0.01). Further analysis revealed that rs13010956 was associated with mean intima-media thickness of the carotid arteries in females (p < 0.05). After control for body mass index, blood pressure, fasting blood glucose, and triglycerides, rs13010956 was also found to be significantly associated with left ventricular mass index in the total (p < 0.05) and female populations (p < 0.05). Our findings suggested that the ALK7 gene polymorphism rs13010956 was significantly associated with MetS risk in females and may be involved in cardiovascular remodeling in MetS patients

  19. Pharmacologic Options for the Treatment of Sarcopenia.

    Morley, John E

    2016-04-01

    Sarcopenia is now clinically defined as a loss of muscle mass coupled with functional deterioration (either walking speed or distance or grip strength). Based on the FRAX studies suggesting that the questions without bone mineral density can be used to screen for osteoporosis, there is now a valid simple questionnaire to screen for sarcopenia, i.e., the SARC-F. Numerous factors have been implicated in the pathophysiology of sarcopenia. These include genetic factors, mitochondrial defects, decreased anabolic hormones (e.g., testosterone, vitamin D, growth hormone and insulin growth hormone-1), inflammatory cytokine excess, insulin resistance, decreased protein intake and activity, poor blood flow to muscle and deficiency of growth derived factor-11. Over the last decade, there has been a remarkable increase in our understanding of the molecular biology of muscle, resulting in a marked increase in potential future targets for the treatment of sarcopenia. At present, resistance exercise, protein supplementation, and vitamin D have been established as the basic treatment of sarcopenia. High-dose testosterone increases muscle power and function, but has a number of potentially limiting side effects. Other drugs in clinical development include selective androgen receptor molecules, ghrelin agonists, myostatin antibodies, activin IIR antagonists, angiotensin converting enzyme inhibitors, beta antagonists, and fast skeletal muscle troponin activators. As sarcopenia is a major predictor of frailty, hip fracture, disability, and mortality in older persons, the development of drugs to treat it is eagerly awaited. PMID:26100650

  20. BAMBI Promotes C2C12 Myogenic Differentiation by Enhancing Wnt/β-Catenin Signaling

    Qiangling Zhang

    2015-08-01

    Full Text Available Bone morphogenic protein and activin membrane-bound inhibitor (BAMBI is regarded as an essential regulator of cell proliferation and differentiation that represses transforming growth factor-β and enhances Wnt/β-catenin signaling in various cell types. However, its role in skeletal muscle remains largely unknown. In the current study, we found that the expression level of BAMBI peaked in the early differentiation phase of the C2C12 rodent myoblast cell line. Knockdown of BAMBI via siRNA inhibited C2C12 differentiation, indicated by repressed MyoD, MyoG, and MyHC expression as well as reductions in the differentiation and fusion indices. BAMBI knockdown reduced the activity of Wnt/β-catenin signaling, as characterized by the decreased nuclear translocation of β-catenin and the lowered transcription of Axin2, which is a well-documented target gene of the Wnt/β-catenin signaling pathway. Furthermore, treatment with LiCl, an activator of Wnt/β-catenin signaling, rescued the reduction in C2C12 differentiation caused by BAMBI siRNA. Taken together, our data suggest that BAMBI is required for normal C2C12 differentiation, and that its role in myogenesis is mediated by the Wnt/β-catenin pathway.

  1. Research on Potential Biomarkers in Hereditary Haemorrhagic Telangiectasia

    Luisa Maria Botella

    2015-03-01

    Full Text Available Hereditary Hemorrhagic Telangiectasia (HHT is a genetically heterogeneous disorder, involving mutations in two predominant genes known as Endoglin (ENG; HHT1 and Activin receptor like kinase 1 (ACVRL1/ALK1; HHT2, as well as in some less frequent genes, such as MADH4/SMAD4 (JP-HHT or BMP9/GDF2 (HHT5. The diagnosis of HHT patients currently remains at the clinical level, according to the Curaçao criteria, whereas the molecular diagnosis is used to confirm or rule out suspected HHT cases, especially when a well characterized index case is present in the family or in an isolated population. Unfortunately, many suspected patients do not present a clear HHT diagnosis or do not show pathogenic mutations in HHT genes, prompting the need to investigate additional biomarkers of the disease. Here, several HHT biomarkers and novel methodological approaches developed during the last years will be reviewed. On one hand, products detected in plasma or serum samples: soluble proteins (VEGF, TGF-β1, soluble endoglin, angiopoietin-2 and microRNA variants (miR-27a, miR-205, miR-210. On the other hand, differential HHT gene expression fingerprinting, Next Generation Sequencing (NGS of a panel of genes involved in HHT, and infrared spectroscopy combined with Artificial Neural Network (ANN patterns will also be reviewed. All these biomarkers might help to improve and refine HHT diagnosis by distinguishing from the non-HHT population.

  2. Inactivation of Smad4 leads to impaired ocular development and cataract formation

    Liu, Ying, E-mail: yingliu@doheny.org [Department of Ophthalmology and Doheny Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 (United States); Sun Yet-sen University, Zhongshan Ophthalmic Center, State Key Ophthalmic Laboratory, Guangzhou 510060 (China); Kawai, Kirio; Khashabi, Shabnam [Department of Ophthalmology and Doheny Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 (United States); Deng, Chuxia [Laboratory of Biochemistry and Metabolism, NIDDK, National Institutes of Health, Bethesda, MD 20892 (United States); Liu, Yi-Hsin; Yiu, Samuel [Department of Ophthalmology and Doheny Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 (United States)

    2010-10-01

    Research highlights: {yields} Inactivation of Smad4 caused disruption in the development of the anterior segment. {yields} Inactivation of Smad4 failed to disrupt early lens development. {yields} Smad4 controlled lens cell cycle and cell death processes. {yields} Smad4 may regulate actin stress fiber assembly and eyelid epithelial movement. -- Abstract: Purpose: Signaling by members of the TGF{beta} superfamily of molecules is essential for embryonic development and homeostasis. Smad4, a key intracellular mediator in TGF{beta} signaling, forms transcriptional activator complexes with Activin-, BMP-, and TGF{beta}-restricted Smad proteins. However, the functional role of Smad4 in controlling different visual system compartments has not been fully investigated. Methods: Using the Pax6 promoter-driven Cre transgenic, smad4 was conditionally inactivated in the lens, cornea and ectoderm of the eyelids. Standard histological and molecular analytical approaches were employed to reveal morphological and cellular changes. Results: Inactivation of Smad4 in the lens led to microphthalmia and cataract formation in addition to the persistent adhesion of the retina to the lens and the iris to the cornea. Inactivation of Smad4 from the ectoderm of the eyelid and cornea caused disruption to eyelid fusion and proper development of the corneal epithelium and corneal stroma. Conclusions: Smad4 is required for the development and maintenance of the lens in addition to the proper development of the cornea, eyelids, and retina.

  3. Cost-effective differentiation of hepatocyte-like cells from human pluripotent stem cells using small molecules.

    Tasnim, Farah; Phan, Derek; Toh, Yi-Chin; Yu, Hanry

    2015-11-01

    Significant efforts have been invested into the differentiation of stem cells into functional hepatocyte-like cells that can be used for cell therapy, disease modeling and drug screening. Most of these efforts have been concentrated on the use of growth factors to recapitulate developmental signals under in vitro conditions. Using small molecules instead of growth factors would provide an attractive alternative since small molecules are cell-permeable and cheaper than growth factors. We have developed a protocol for the differentiation of human embryonic stem cells into hepatocyte-like cells using a predominantly small molecule-based approach (SM-Hep). This 3 step differentiation strategy involves the use of optimized concentrations of LY294002 and bromo-indirubin-3'-oxime (BIO) for the generation of definitive endoderm; sodium butyrate and dimethyl sulfoxide (DMSO) for the generation of hepatoblasts and SB431542 for differentiation into hepatocyte-like cells. Activin A is the only growth factor required in this protocol. Our results showed that SM-Hep were morphologically and functionally similar or better compared to the hepatocytes derived from the growth-factor induced differentiation (GF-Hep) in terms of expression of hepatic markers, urea and albumin production and cytochrome P450 (CYP1A2 and CYP3A4) activities. Cell viability assays following treatment with paradigm hepatotoxicants Acetaminophen, Chlorpromazine, Diclofenac, Digoxin, Quinidine and Troglitazone showed that their sensitivity to these drugs was similar to human primary hepatocytes (PHHs). Using SM-Hep would result in 67% and 81% cost reduction compared to GF-Hep and PHHs respectively. Therefore, SM-Hep can serve as a robust and cost effective replacement for PHHs for drug screening and development. PMID:26310107

  4. Downregulation of hepatocyte nuclear factor-4α and its role in regulation of gene expression by TGF-β in mammary epithelial cells

    We found that a specific isoform of hepatocyte nuclear factor 4α (HNF-4α), HNF-4α8, was expressed in mouse mammary epithelial NMuMG cells, and that its expression was repressed by TGF-β. The repression was interfered by dominant negative forms of activin receptor-like kinase 5 (ALK5) and Smad3, and sensitive to cycloheximide, suggesting the involvement of additional protein(s) as well as ALK5 and Smad3 in the repression. Further study showed that high mobility group A2 (HMGA2), which is reported to be directly upregulated by Smads, repressed HNF-4α8 expression. Therefore, it is likely that HMGA2 mediates the downregulation of HNF-4α8 downstream of ALK5 and Smads To determine the significance of the downregulation of HNF-4α8 in TGF-β signaling, we performed DNA microarray analysis and extracted a subgroup of TGF-β1-regulated genes, including tenascin C and tissue inhibitor of metalloproteinase 3 (TIMP-3), whose regulation by TGF-β1 was attenuated by forced expression of HNF-4α8. HMGA2 has recently emerged as a transcriptional organizer of TGF-β signaling, regulating several key factors involved in epithelial-mesenchymal transition (EMT). In this study, we identified an isoform of HNF-4α as a new target downstream of HMGA2 and assigned a new role to HNF-4α in the TGF-β signaling/transcriptional cascade driven by ALK5/Smad/HMGA2 and associated with the malignant transformation of cells

  5. Thalassemia 2016: Modern medicine battles an ancient disease.

    Rund, Deborah

    2016-01-01

    Thalassemia was first clinically described nearly a century ago and treatment of this widespread genetic disease has greatly advanced during this period. DNA-based diagnosis elucidated the molecular basis of the disease and clarified the variable clinical picture. It also paved the way for modern methods of carrier identification and prevention via DNA-based prenatal diagnosis. Every aspect of supportive care, including safer blood supply, more regular transfusions, specific monitoring of iron overload, parenteral and oral chelation, and other therapies, has prolonged life and improved the quality of life of these patients. Significant advances have also been made in allogenic bone marrow transplantation, the only curative therapy. Recently, there has been a rejuvenated interest in studying thalassemia at the basic science level, leading to the discovery of previously unknown mechanisms leading to anemia and enabling the development of novel therapies. These will potentially improve the treatment of, and possibly cure the disease. Pathways involving activin receptors, heat shock proteins, JAK2 inhibitors and macrophage targeted therapy, among others, are being studied or are currently in clinical trials for treating thalassemia. Novel types of genetic therapies are in use or under investigation. In addition to the challenges of treating each individual patient, the longer survival of thalassemia patients has raised considerations regarding worldwide control of thalassemia, since prevention is not universally implemented. This review will trace a number of the original medical milestones of thalassemia diagnosis and treatment, as well as some of the most recent developments which may lead to innovative therapeutic modalities. PMID:26537527

  6. Qualitative modeling identifies IL-11 as a novel regulator in maintaining self-renewal in human pluripotent stem cells

    Hedi ePeterson

    2013-10-01

    Full Text Available Pluripotency in human embryonic stem cells (hESCs and induced pluripotent stem cells (iPSCs is regulated by three transcription factors - OCT3/4, SOX2 and NANOG. To fully exploit the therapeutic potential of these cells it is essential to have a good mechanistic understanding of the maintenance of self-renewal and pluripotency. In this study, we demonstrate a powerful systems biology approach in which we first expand literature-based network encompassing the core regulators of pluripotency by assessing the behaviour of genes targeted by perturbation experiments. We focused our attention on highly regulated genes encoding cell surface and secreted proteins as these can be more easily manipulated by the use of inhibitors or recombinant proteins. Qualitative modeling based on combining boolean networks and in silico perturbation experiments were employed to identify novel pluripotency-regulating genes. We validated Interleukin-11 (IL-11 and demonstrate that this cytokine is a novel pluripotency-associated factor capable of supporting self-renewal in the absence of exogenously added bFGF in culture. To date, the various protocols for hESCs maintenance require supplementation with bFGF to activate the Activin/Nodal branch of the TGFβ signaling pathway. Additional evidence supporting our findings is that IL-11 belongs to the same protein family as LIF, which is known to be necessary for maintaining pluripotency in mouse but not in human ESCs. These cytokines operate through the same gp130 receptor which interacts with Janus kinases. Our finding might explain why mESCs are in a more naïve cell state compared to hESCs and how to convert primed hESCs back to the naïve state. Taken together, our integrative modeling approach has identified novel genes as putative candidates to be incorporated into the expansion of the current gene regulatory network responsible for inducing and maintaining pluripotency.

  7. The Lophotrochozoan TGF-β signalling cassette - diversification and conservation in a key signalling pathway.

    Kenny, Nathan J; Namigai, Erica K O; Dearden, Peter K; Hui, Jerome H L; Grande, Cristina; Shimeld, Sebastian M

    2014-01-01

    TGF-β signalling plays a key role in the patterning of metazoan body plans and growth. It is widely regarded as a 'module' capable of co-option into novel functions. The TGF-β pathway arose in the Metazoan lineage, and while it is generally regarded as well conserved across evolutionary time, its components have been largely studied in the Ecdysozoa and Deuterostomia. The recent discovery of the Nodal molecule in molluscs has underlined the necessity of untangling this signalling network in lophotrochozoans in order to truly comprehend the evolution, conservation and diversification of this key pathway. Three novel genome resources, the mollusc Patella vulgata, annelid Pomatoceros lamarcki and rotifer Brachionus plicatilis, along with other publicly available data, were searched for the presence of TGF-β pathway genes. Bayesian and Maximum Likelihood analyses, along with some consideration of conserved domain structure, was used to confirm gene identity. Analysis revealed conservation of key components within the canonical pathway, allied with extensive diversification of TGF-β ligands and partial loss of genes encoding pathway inhibitors in some lophotrochozoan lineages. We fully describe the TGF-β signalling cassette of a range of lophotrochozoans, allowing firm inference to be drawn as to the ancestral state of this pathway in this Superphylum. The TGF-β signalling cascade's reputation as being highly conserved across the Metazoa is reinforced. Diversification within the activin-like complement, as well as potential wide loss of regulatory steps in some Phyla, hint at specific evolutionary implications for aspects of this cascade's functionality in this Superphylum. PMID:25690968

  8. Regulation of fibrillins and modulators of TGFβ in fetal bovine and human ovaries.

    Bastian, Nicole A; Bayne, Rosemary A; Hummitzsch, Katja; Hatzirodos, Nicholas; Bonner, Wendy M; Hartanti, Monica D; Irving-Rodgers, Helen F; Anderson, Richard A; Rodgers, Raymond J

    2016-08-01

    Fibrillins 1-3 are stromal extracellular matrix proteins that play important roles in regulating TGFβ activity, which stimulates fibroblasts to proliferate and synthesize collagen. In the developing ovary, the action of stroma is initially necessary for the formation of ovigerous cords and subsequently for the formation of follicles and the surface epithelium of the ovary. FBN3 is highly expressed only in early ovarian development and then it declines. In contrast, FBN1 and 2 are upregulated in later ovarian development. We examined the expression of FBN1-3 in bovine and human fetal ovaries. We used cell dispersion and monolayer culture, cell passaging and tissue culture. Cells were treated with growth factors, hormones or inhibitors to assess the regulation of expression of FBN1-3 When bovine fetal ovarian tissue was cultured, FBN3 expression declined significantly. Treatment with TGFβ-1 increased FBN1 and FBN2 expression in bovine fibroblasts, but did not affect FBN3 expression. Additionally, in cultures of human fetal ovarian fibroblasts (9-17weeks gestational age), the expression of FBN1 and FBN2 increased with passage, whereas FBN3 dramatically decreased. Treatment with activin A and a TGFβ family signaling inhibitor, SB431542, differentially regulated the expression of a range of modulators of TGFβ signaling and of other growth factors in cultured human fetal ovarian fibroblasts suggesting that TGFβ signaling is differentially involved in the regulation of ovarian fibroblasts. Additionally, since the changes in FBN1-3 expression that occur in vitro are those that occur with increasing gestational age in vivo, we suggest that the fetal ovarian fibroblasts mature in vitro. PMID:27222596

  9. Muscle-bone interactions: From experimental models to the clinic? A critical update.

    Laurent, Michaël R; Dubois, Vanessa; Claessens, Frank; Verschueren, Sabine M P; Vanderschueren, Dirk; Gielen, Evelien; Jardí, Ferran

    2016-09-01

    Bone is a biomechanical tissue shaped by forces from muscles and gravitation. Simultaneous bone and muscle decay and dysfunction (osteosarcopenia or sarco-osteoporosis) is seen in ageing, numerous clinical situations including after stroke or paralysis, in neuromuscular dystrophies, glucocorticoid excess, or in association with vitamin D, growth hormone/insulin like growth factor or sex steroid deficiency, as well as in spaceflight. Physical exercise may be beneficial in these situations, but further work is still needed to translate acceptable and effective biomechanical interventions like vibration therapy from animal models to humans. Novel antiresorptive and anabolic therapies are emerging for osteoporosis as well as drugs for sarcopenia, cancer cachexia or muscle wasting disorders, including antibodies against myostatin or activin receptor type IIA and IIB (e.g. bimagrumab). Ideally, increasing muscle mass would increase muscle strength and restore bone loss from disuse. However, the classical view that muscle is unidirectionally dominant over bone via mechanical loading is overly simplistic. Indeed, recent studies indicate a role for neuronal regulation of not only muscle but also bone metabolism, bone signaling pathways like receptor activator of nuclear factor kappa-B ligand (RANKL) implicated in muscle biology, myokines affecting bone and possible bone-to-muscle communication. Moreover, pharmacological strategies inducing isolated myocyte hypertrophy may not translate into increased muscle power because tendons, connective tissue, neurons and energy metabolism need to adapt as well. We aim here to critically review key musculoskeletal molecular pathways involved in mechanoregulation and their effect on the bone-muscle unit as a whole, as well as preclinical and emerging clinical evidence regarding the effects of sarcopenia therapies on osteoporosis and vice versa. PMID:26506009

  10. Inhibition of the myostatin/Smad signaling pathway by short decorin-derived peptides.

    El Shafey, Nelly; Guesnon, Mickaël; Simon, Françoise; Deprez, Eric; Cosette, Jérémie; Stockholm, Daniel; Scherman, Daniel; Bigey, Pascal; Kichler, Antoine

    2016-02-15

    Myostatin, also known as growth differentiation factor 8, is a member of the transforming growth factor-beta superfamily that has been shown to play a key role in the regulation of the skeletal muscle mass. Indeed, while myostatin deletion or loss of function induces muscle hypertrophy, its overexpression or systemic administration causes muscle atrophy. Since myostatin blockade is effective in increasing skeletal muscle mass, myostatin inhibitors have been actively sought after. Decorin, a member of the small leucine-rich proteoglycan family is a metalloprotein that was previously shown to bind and inactivate myostatin in a zinc-dependent manner. Furthermore, the myostatin-binding site has been shown to be located in the decorin N-terminal domain. In the present study, we investigated the anti-myostatin activity of short and soluble fragments of decorin. Our results indicate that the murine decorin peptides DCN48-71 and 42-65 are sufficient for inactivating myostatin in vitro. Moreover, we show that the interaction of mDCN48-71 to myostatin is strictly zinc-dependent. Binding of myostatin to activin type II receptor results in the phosphorylation of Smad2/3. Addition of the decorin peptide 48-71 decreased in a dose-dependent manner the myostatin-induced phosphorylation of Smad2 demonstrating thereby that the peptide inhibits the activation of the Smad signaling pathway. Finally, we found that mDCN48-71 displays a specificity towards myostatin, since it does not inhibit other members of the transforming growth factor-beta family. PMID:26844629

  11. Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia

    Cachexia, progressive loss of fat and muscle mass despite adequate nutrition, is a devastating complication of cancer associated with poor quality of life and increased mortality. Myostatin is a potent tonic muscle growth inhibitor. We tested how myostatin inhibition might influence cancer cachexia using genetic and pharmacological approaches. First, hypermuscular myostatin null mice were injected with Lewis lung carcinoma or B16F10 melanoma cells. Myostatin null mice were more sensitive to tumor-induced cachexia, losing more absolute mass and proportionately more muscle mass than wild-type mice. Because myostatin null mice lack expression from development, however, we also sought to manipulate myostatin acutely. The histone deacetylase inhibitor Trichostatin A has been shown to increase muscle mass in normal and dystrophic mice by inducing the myostatin inhibitor, follistatin. Although Trichostatin A administration induced muscle growth in normal mice, it failed to preserve muscle in colon-26 cancer cachexia. Finally we sought to inhibit myostatin and related ligands by administration of the Activin receptor extracellular domain/Fc fusion protein, ACVR2B-Fc. Systemic administration of ACVR2B-Fc potently inhibited muscle wasting and protected adipose stores in both colon-26 and Lewis lung carcinoma cachexia, without affecting tumor growth. Enhanced cachexia in myostatin knockouts indicates that host-derived myostatin is not the sole mediator of muscle wasting in cancer. More importantly, skeletal muscle preservation with ACVR2B-Fc establishes that targeting myostatin-family ligands using ACVR2B-Fc or related molecules is an important and potent therapeutic avenue in cancer cachexia.

  12. Myostatin stimulates, not inihibits, C2C12 myoblast proliferation.

    Rodgers, Buel D; Wiedeback, Benjamin D; Hoversten, Knut E; Jackson, Melissa F; Walker, Ryan G; Thompson, Thomas B

    2014-03-01

    The immortal C2C12 cell line originates from dystrophic mouse thigh muscle and has been used to study the endocrine control of muscle cell growth, development, and function, including those actions regulated by myostatin. Previous studies suggest that high concentrations of recombinant myostatin generated in bacteria inhibit C2C12 proliferation and differentiation. Recombinant myostatin generated in eukaryotic systems similarly inhibits the proliferation of primary myosatellite cells, but consequently initiates, rather than inhibits, their differentiation and is bioactive at far lower concentrations. Our studies indicate that 2 different sources of recombinant myostatin made in eukaryotes stimulate, not inhibit, C2C12 proliferation. This effect occurred at different cell densities and serum concentrations and in the presence of IGF-I, a potent myoblast mitogen. This stimulatory effect was comparable to that obtained with TGFβ1, a related factor that also inhibits primary myosatellite cell proliferation. Attenuating the myostatin/activin (ie, Acvr2b) and TGFβ1 receptor signaling pathways with the Alk4/5 and Alk5 inhibitors, SB431542 and SB505142, respectively, similarly attenuated proliferation induced by serum, myostatin or TGFβ1 and in a dose-dependent manner. In serum-free medium, both myostatin and TGFβ1 stimulated Smad2 phosphorylation, but not that of Smad3, and a Smad3 inhibitor (SIS3) only inhibited proliferation in cells cultured in high serum. Thus, myostatin and TGFβ1 stimulate C2C12 proliferation primarily via Smad2. These results together question the physiological relevance of the C2C12 model and previous studies using recombinant myostatin generated in bacteria. They also support the alternative use of primary myosatellite cells and recombinant myostatin generated in eukaryotes. PMID:24424069

  13. Follicle and endocrine dynamics during experimental follicle deviation in mares.

    Ginther, O J; Meira, C; Beg, M A; Bergfelt, D R

    2002-09-01

    Deviation during a follicular wave in mares begins when the largest follicle (F1) reaches a mean diameter of 22.5 mm and is characterized by continued growth of F1 to become the dominant follicle and regression of F2 to become the largest subordinate follicle. In the present study, F1 was ablated at the expected beginning of deviation (Hour 0) to provide a reference point for characterizing the intrafollicular changes preceding experimental deviation between F2 and F3. Diameters and concentrations of follicular fluid factors in F2 and F3 were determined in F1-ablated mares at Hours 0, 12, 24, 48, or 72 (n = 8 mares/group). Circulating FSH concentrations were greater (P 0.1) to the diameter of F1 and FSH concentration at Hour 0, respectively. A differential change between F2 and F3 was not detected in follicular fluid concentrations of estradiol, inhibin-A, and activin-A by the beginning of experimental deviation. However, estradiol was higher in F2 at Hours 0 and 12 and inhibin-A was higher in F2 throughout the experiment, and both factors could have been involved in experimental deviation. Free insulin-like growth factor-1 (IGF-1) increased (P < 0.05) in F2 beginning at Hour 12 and was higher (P < 0.05) in F2 than in F3 by the beginning of experimental deviation. Temporally, this result indicated that intrafollicular IGF-1 was involved in conversion of F2 from a destined subordinate follicle to a dominant follicle. PMID:12193395

  14. Generation of airway epithelial cells with native characteristics from mouse induced pluripotent stem cells.

    Yoshie, Susumu; Imaizumi, Mitsuyoshi; Nakamura, Ryosuke; Otsuki, Koshi; Ikeda, Masakazu; Nomoto, Yukio; Wada, Ikuo; Omori, Koichi

    2016-05-01

    Airway epithelial cells derived from induced pluripotent stem (iPS) cells are expected to be a useful source for the regeneration of airway epithelium. Our preliminary study of embryoid body (EB) formation and the air-liquid interface (ALI) method suggested that mouse iPS cells can differentiate into airway epithelial cells. However, whether the cells generated from mouse iPS cells had the character and phenotype of native airway epithelial cells remained uninvestigated. In this study, we generated airway epithelial cells from EBs by culturing them under serum-free conditions supplemented with Activin and bFGF and by the ALI method and characterized the iPS cell-derived airway epithelial cells in terms of their gene expression, immunoreactivity, morphology, and function. Analysis by quantitative real-time reverse transcription-polymerase chain reaction(RT-PCR) revealed that the expression of the undifferentiated cell marker Nanog decreased time-dependently after the induction of differentiation, whereas definitive endoderm markers Foxa2 and Cxcr4 were transiently up-regulated. Thereafter, the expression of airway epithelium markers such as Tubb4a, Muc5ac, and Krt5 was detected by RT-PCR and immunostaining. The formation of tight junctions was also confirmed by immunostaining and permeability assay. Analysis by hematoxylin and eosin staining and scanning electron microscopy indicated that the cells generated from mouse iPS cells formed airway-epithelium-like tissue and had cilia, the movement of which was visualized and observed to be synchronized. These results demonstrate that the airway epithelial cells generated by our method have native characteristics and open new perspectives for the regeneration of injured airway epithelium. PMID:26590823

  15. Downregulated miR-195 detected in preeclamptic placenta affects trophoblast cell invasion via modulating ActRIIA expression.

    Yang Bai

    Full Text Available BACKGROUND: Preeclampsia (PE is a pregnancy-specific syndrome manifested by on-set of hypertension and proteinuria after 20 weeks of gestation. Abnormal placenta development has been generally accepted as initial cause of the disorder. Recently, miR-195 was found to be down-regulated in preeclamptic placentas compared with normal pregnant ones, indicating possible association of this small molecule with placental pathology of preeclampsia. By far the function of miR-195 in the development of placenta remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: Bioinformatic assay predicted ActRIIA as one of the targets for miR-195. By using Real-time PCR, Western blotting and Dual Luciferase Assay, we validated that ActRIIA was the direct target of miR-195 in human trophoblast cells. Transwell insert invasion assay showed that miR-195 could promote cell invasion in trophoblast cell line, HTR8/SVneo cells, and the effect could be abrogated by overexpressed ActRIIA. In preeclamptic placenta tissues, pri-miR-195 and mature miR-195 expressions were down-regulated, whereas ActRIIA level appeared to be increased when compared with that in gestational-week-matched normal placentas. CONCLUSIONS/SIGNIFICANCE: This is the first report on the function of miR-195 in human placental trophoblast cells which reveals an invasion-promoting effect of the small RNA via repressing ActRIIA. Aberrant expression of miR-195 may contribute to the occurrence of preeclampsia through interfering with Activin/Nodal signaling mediated by ActRIIA in human placenta.

  16. Generation of Hepatocyte-like Cells from Human Induced Pluripotent Stem (iPS) Cells By Co-culturing Embryoid Body Cells with Liver Non-parenchymal Cell Line TWNT-1

    Objective: To generate a homogeneous population of patient-specific hepatocyte-like cells (HLCs) from human iPS cells those show the morphologic and phenotypic properties of primary human hepatocytes. Study Design: An experimental study. Place and Duration of Study: Department of Surgery, Okayama University, Graduate School of Medicine, Japan, from April to December 2011. Methodology: Human iPS cells were generated and maintained on ES qualified matrigel coated plates supplemented with mTeSR medium or alternatively on mitotically inactivated MEF feeder layer in DMEM/F12 medium containing 20% KOSR, 4ng/ml bFGF-2, 1 x 10-4 M 2-mercaptoethanol, 1 mmol/L NEAA, 2mM L-glutamine and 1% penicillin-streptomycin. iPS cells were differentiated to HLCs by sequential culture using a four step differentiation protocol: (I) Generation of embryoid bodies (EBs) in suspension culture; (II) Induction of definitive endoderm (DE) from 2 days old EBs by growth in human activin-A (100 ng/ml) and basic fibroblasts growth factor (bFGF2) (100 ng/ml) on matrigel coated plates; (III) Induction of hepatic progenitors by co-culture with non-parenchymal human hepatic stellate cell line (TWNT-1); and (IV) Maturation by culture in dexamethasone. Characterization was performed by RT-PCR and functional assays. Results: The generated HLCs showed microscopically morphological phenotype of human hepatocytes, expressed liver specific genes (ASGPR, Albumin, AFP, Sox17, Fox A2), secreted human liver-specific proteins such as albumin, synthesized urea and metabolized ammonia. Conclusion: Functional HLCs were generated from human iPS cells, which could be used for autologus hepatocyte transplantation for liver failure and as in vitro model for determining the metabolic and toxicological properties of drug compounds. (author)

  17. Normal gonadotropin production and fertility in gonadotrope-specific Bmpr1a knockout mice.

    Zhou, Xiang; Wang, Ying; Ongaro, Luisina; Boehm, Ulrich; Kaartinen, Vesa; Mishina, Yuji; Bernard, Daniel J

    2016-06-01

    Pituitary follicle-stimulating hormone (FSH) synthesis is regulated by transforming growth factorβsuperfamily ligands, most notably the activins and inhibins. Bone morphogenetic proteins (BMPs) also regulate FSHβ subunit (Fshb) expression in immortalized murine gonadotrope-like LβT2 cells and in primary murine or ovine primary pituitary cultures. BMP2 signals preferentially via the BMP type I receptor, BMPR1A, to stimulate murine Fshb transcription in vitro Here, we used a Cre-lox approach to assess BMPR1A's role in FSH synthesis in mice in vivo Gonadotrope-specific Bmpr1a knockout animals developed normally and had reproductive organ weights comparable with those of controls. Knockouts were fertile, with normal serum gonadotropins and pituitary gonadotropin subunit mRNA expression. Cre-mediated recombination of the floxed Bmpr1a allele was efficient and specific, as indicated by PCR analysis of diverse tissues and isolated gonadotrope cells. Furthermore, BMP2 stimulation of inhibitor of DNA binding 3 expression was impaired in gonadotropes isolated from Bmpr1a knockout mice, confirming the loss of functional receptor protein in these cells. Treatment of purified gonadotropes with small-molecule inhibitors of BMPR1A (and the related receptors BMPR1B and ACVR1) suppressed Fshb mRNA expression, suggesting that an autocrine BMP-like molecule might regulate FSH synthesis. However, deletion of Bmpr1a and Acvr1 in cultured pituitary cells did not alter Fshb expression, indicating that the inhibitors had off-target effects. In sum, BMPs or related ligands acting via BMPR1A or ACVR1 are unlikely to play direct physiological roles in FSH synthesis by murine gonadotrope cells. PMID:27029473

  18. Multiple myeloma mesenchymal stromal cells: Contribution to myeloma bone disease and therapeutics

    Antonio; Garcia-Gomez; Fermin; Sanchez-Guijo; M; Consuelo; del; Caizo; Jesus; F; San; Miguel; Mercedes; Garayoa

    2014-01-01

    Multiple myeloma is a hematological malignancy inwhich clonal plasma cells proliferate and accumulate within the bone marrow. The presence of osteolytic le-sions due to increased osteoclast(OC) activity and sup-pressed osteoblast(OB) function is characteristic of the disease. The bone marrow mesenchymal stromal cells(MSCs) play a critical role in multiple myeloma patho-physiology, greatly promoting the growth, survival, drug resistance and migration of myeloma cells. Here, we specifically discuss on the relative contribution of MSCs to the pathophysiology of osteolytic lesions in light of the current knowledge of the biology of my-eloma bone disease(MBD), together with the reported genomic, functional and gene expression differences between MSCs derived from myeloma patients(pMSCs) and their healthy counterparts(dMSCs). Being MSCs the progenitors of OBs, pMSCs primarily contribute to the pathogenesis of MBD because of their reduced osteogenic potential consequence of multiple OB inhibi-tory factors and direct interactions with myeloma cells in the bone marrow. Importantly, pMSCs also readily contribute to MBD by promoting OC formation and ac-tivity at various levels(i.e., increasing RANKL to OPG expression, augmenting secretion of activin A, uncou-pling ephrinB2-EphB4 signaling, and through augment-ed production of Wnt5a), thus further contributing to OB/OC uncoupling in osteolytic lesions. In this review, we also look over main signaling pathways involved in the osteogenic differentiation of MSCs and/or OB activity, highlighting amenable therapeutic targets; in parallel, the reported activity of bone-anabolic agents(at preclinical or clinical stage) targeting those signaling pathways is commented.

  19. The impact of chronic blackberry intake on the neuroinflammatory status of rats fed a standard or high-fat diet.

    Meireles, Manuela; Marques, Cláudia; Norberto, Sónia; Fernandes, Iva; Mateus, Nuno; Rendeiro, Catarina; Spencer, Jeremy P E; Faria, Ana; Calhau, Conceição

    2015-11-01

    Neuroinflammation has been suggested as a central mediator of central nervous system dysfunction, including in dementia and neurodegenerative disease. Flavonoids have emerged as promising candidates for the prevention of neurodegenerative diseases and are thought to be capable of antiinflammatory effects in the brain. In the present study, the impact of a chronic intake of an anthocyanin extract from blackberry (BE) on brain inflammatory status in the presence or absence of a high-fat diet was investigated. Following intake of the dietary regimes for 17 weeks neuroinflammatory status in Wistar rat cortex, hippocampus and plasma were assessed using cytokine antibody arrays. In the cortex, intake of the high-fat diet resulted in an increase of at least 4-fold, in expression of the cytokine-induced neutrophil chemoattractant CINC-3, the ciliary neurotrophic factor CNTF, the platelet-derived growth factor PDGF-AA, IL-10, the tissue inhibitor of metalloproteinase TIMP-1 and the receptor for advanced glycation end products RAGE. BE intake partially decreased the expression of these mediators in the high-fat challenged brain. In standard-fed animals, BE intake significantly increased cortical levels of fractalkine, PDGF-AA, activin, the vascular endothelial growth factor VEGF and agrin expression, suggesting effects as neuronal growth and synaptic connection modulators. In hippocampus, BE modulates fractalkine and the thymus chemokine TCK-1 expression independently of diet intake and, only in standard diet, increased PDGF-AA. Exploring effects of anthocyanins on fractalkine transcription using the neuronal cell line SH-SY5Y suggested that other cell types may be involved in this effect. This is the first evidence, in in vivo model, that blackberry extract intake may be capable of preventing the detrimental effects of neuroinflammation in a high-fat challenged brain. Also, fractalkine and TCK-1 expression may be specific targets of anthocyanins and their metabolites on

  20. Directed Differentiation of Human Embryonic Stem Cells into Prostate Organoids In Vitro and its Perturbation by Low-Dose Bisphenol A Exposure.

    Esther L Calderon-Gierszal

    Full Text Available Studies using rodent and adult human prostate stem-progenitor cell models suggest that developmental exposure to the endocrine disruptor Bisphenol-A (BPA can predispose to prostate carcinogenesis with aging. Unknown at present is whether the embryonic human prostate is equally susceptible to BPA during its natural developmental window. To address this unmet need, we herein report the construction of a pioneer in vitro human prostate developmental model to study the effects of BPA. The directed differentiation of human embryonic stem cells (hESC into prostatic organoids in a spatial system was accomplished with precise temporal control of growth factors and steroids. Activin-induced definitive endoderm was driven to prostate specification by combined exposure to WNT10B and FGF10. Matrigel culture for 20-30 days in medium containing R-Spondin-1, Noggin, EGF, retinoic acid and testosterone was sufficient for mature prostate organoid development. Immunofluorescence and gene expression analysis confirmed that organoids exhibited cytodifferentiation and functional properties of the human prostate. Exposure to 1 nM or 10 nM BPA throughout differentiation culture disturbed early morphogenesis in a dose-dependent manner with 1 nM BPA increasing and 10 nM BPA reducing the number of branched structures formed. While differentiation of branched structures to mature organoids seemed largely unaffected by BPA exposure, the stem-like cell population increased, appearing as focal stem cell nests that have not properly entered lineage commitment rather than the rare isolated stem cells found in normally differentiated structures. These findings provide the first direct evidence that low-dose BPA exposure targets hESC and perturbs morphogenesis as the embryonic cells differentiate towards human prostate organoids, suggesting that the developing human prostate may be susceptible to disruption by in utero BPA exposures.

  1. Genome-wide transcriptome directed pathway analysis of maternal pre-eclampsia susceptibility genes.

    Hannah E J Yong

    Full Text Available Preeclampsia (PE is a serious hypertensive pregnancy disorder with a significant genetic component. Numerous genetic studies, including our own, have yielded many susceptibility genes from distinct functional groups. Additionally, transcriptome profiling of tissues at the maternal-fetal interface has likewise yielded many differentially expressed genes. Often there is little overlap between these two approaches, although genes identified in both approaches are significantly associated with PE. We have thus taken a novel integrative bioinformatics approach of analysing pathways common to the susceptibility genes and the PE transcriptome.Using Illumina Human Ht12v4 and Wg6v3 BeadChips, transcriptome profiling was conducted on n = 65 normotensive and n = 60 PE decidua basalis tissues collected at delivery. The R software package libraries lumi and limma were used to preprocess transcript data for pathway analysis. Pathways were analysed and constructed using Pathway Studio. We examined ten candidate genes, which are from these functional groups: activin/inhibin signalling-ACVR1, ACVR1C, ACVR2A, INHA, INHBB; structural components-COL4A1, COL4A2 and M1 family aminopeptidases-ERAP1, ERAP2 and LNPEP.Major common regulators/targets of these susceptibility genes identified were AGT, IFNG, IL6, INHBA, SERPINE1, TGFB1 and VEGFA. The top two categories of pathways associated with the susceptibility genes, which were significantly altered in the PE decidual transcriptome, were apoptosis and cell signaling (p < 0.001. Thus, susceptibility genes from distinct functional groups share similar downstream pathways through common regulators/targets, some of which are altered in PE. This study contributes to a better understanding of how susceptibility genes may interact in the development of PE. With this knowledge, more targeted functional analyses of PE susceptibility genes in these key pathways can be performed to examine their contributions to the pathogenesis

  2. Insulin-like growth factor-1 suppresses the Myostatin signaling pathway during myogenic differentiation

    Myogenic differentiation is a complex and well-coordinated process for generating mature skeletal muscle fibers. This event is autocrine/paracrine regulated by growth factors, principally Myostatin (MSTN) and Insulin-like Growth Factor-1 (IGF-1). Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of skeletal muscle growth in vertebrates that exerts its inhibitory function by activating Smad transcription factors. In contrast, IGF-1 promotes the differentiation of skeletal myoblasts by activating the PI3K/Akt signaling pathway. This study reports on a novel functional crosstalk between the IGF-1 and MSTN signaling pathways, as mediated through interaction between PI3K/Akt and Smad3. Stimulation of skeletal myoblasts with MSTN resulted in a transient increase in the pSmad3:Smad3 ratio and Smad-dependent transcription. Moreover, MSTN inhibited myod gene expression and myoblast fusion in an Activin receptor-like kinase/Smad3-dependent manner. Preincubation of skeletal myoblasts with IGF-1 blocked MSTN-induced Smad3 activation, promoting myod expression and myoblast differentiation. This inhibitory effect of IGF-1 on the MSTN signaling pathway was dependent on IGF-1 receptor, PI3K, and Akt activities. Finally, immunoprecipitation assay analysis determined that IGF-1 pretreatment increased Akt and Smad3 interaction. These results demonstrate that the IGF-1/PI3K/Akt pathway may inhibit MSTN signaling during myoblast differentiation, providing new insight to existing knowledge on the complex crosstalk between both growth factors. - Highlights: • IGF-1 inhibits Myostatin canonical signaling pathway through IGF-1R/PI3K/Akt pathway. • IGF-1 promotes myoblast differentiation through a direct blocking of Myostatin signaling pathway. • IGF-1 induces the interaction of Akt with Smad3 in skeletal myoblast

  3. Bone morphogenetic proteins: from structure to clinical use

    Granjeiro J.M.

    2005-01-01

    Full Text Available Bone morphogenetic proteins (BMPs are multi-functional growth factors belonging to the transforming growth factor ß superfamily. Family members are expressed during limb development, endochondral ossification, early fracture, and cartilage repair. The activity of BMPs was first identified in the 1960s but the proteins responsible for bone induction were unknown until the purification and cloning of human BMPs in the 1980s. To date, about 15 BMP family members have been identified and characterized. The signal triggered by BMPs is transduced through serine/threonine kinase receptors, type I and II subtypes. Three type I receptors have been shown to bind BMP ligands, namely: type IA and IB BMP receptors and type IA activin receptors. BMPs seem to be involved in the regulation of cell proliferation, survival, differentiation and apoptosis, but their hallmark is their ability to induce bone, cartilage, ligament, and tendon formation at both heterotopic and orthotopic sites. This suggests that, in the future, they may play a major role in the treatment of bone diseases. Several animal studies have illustrated the potential of BMPs to enhance spinal fusion, repair critical-size defects, accelerate union, and heal articular cartilage lesions. Difficulties in producing and purifying BMPs from bone tissue have prompted the attempts made by several laboratories, including ours, to express these proteins in the recombinant form in heterologous systems. This review focuses on BMP structure, molecular mechanisms of action and significance and potential applications in medical, dental and veterinary practice for the treatment of cartilage and bone-related diseases.

  4. The TNF Family Molecules LIGHT and Lymphotoxin αβ Induce a Distinct Steroid-Resistant Inflammatory Phenotype in Human Lung Epithelial Cells.

    da Silva Antunes, Ricardo; Madge, Lisa; Soroosh, Pejman; Tocker, Joel; Croft, Michael

    2015-09-01

    Lung epithelial cells are considered important sources of inflammatory molecules and extracellular matrix proteins that contribute to diseases such as asthma. Understanding the factors that stimulate epithelial cells may lead to new insights into controlling lung inflammation. This study sought to investigate the responsiveness of human lung epithelial cells to the TNF family molecules LIGHT and lymphotoxin αβ (LTαβ). Bronchial and alveolar epithelial cell lines, and primary human bronchial epithelial cells, were stimulated with LIGHT and LTαβ, and expression of inflammatory cytokines and chemokines and markers of epithelial-mesenchymal transition and fibrosis/remodeling was measured. LTβ receptor, the receptor shared by LIGHT and LTαβ, was constitutively expressed on all epithelial cells. Correspondingly, LIGHT and LTαβ strongly induced a limited but highly distinct set of inflammatory genes in all epithelial cells tested, namely the adhesion molecules ICAM-1 and VCAM-1; the chemokines CCL5, CCL20, CXCL1, CXCL3, CXCL5, and CXCL11; the cytokines IL-6, activin A and GM-CSF; and metalloproteinases matrix metalloproteinase-9 and a disintegrin and metalloproteinase domain-8. Importantly, induction of the majority of these inflammatory molecules was insensitive to the suppressive effects of the corticosteroid budesonide. LIGHT and LTαβ also moderately downregulated E-cadherin, a protein associated with maintaining epithelial integrity, but did not significantly drive production of extracellular matrix proteins or α-smooth muscle actin. Thus, LIGHT and LTαβ induce a distinct steroid-resistant inflammatory signature in airway epithelial cells via constitutively expressed LTβ receptor. These findings support our prior murine studies that suggested the receptors for LIGHT and LTαβ contribute to development of lung inflammation characteristic of asthma and idiopathic pulmonary fibrosis. PMID:26209626

  5. Differential deposition of fibronectin by asthmatic bronchial epithelial cells.

    Ge, Qi; Zeng, Qingxiang; Tjin, Gavin; Lau, Edmund; Black, Judith L; Oliver, Brian G G; Burgess, Janette K

    2015-11-15

    Altered ECM protein deposition is a feature in asthmatic airways. Fibronectin (Fn), an ECM protein produced by human bronchial epithelial cells (HBECs), is increased in asthmatic airways. This study investigated the regulation of Fn production in asthmatic or nonasthmatic HBECs and whether Fn modulated HBEC proliferation and inflammatory mediator secretion. The signaling pathways underlying transforming growth factor (TGF)-β1-regulated Fn production were examined using specific inhibitors for ERK, JNK, p38 MAPK, phosphatidylinositol 3 kinase, and activin-like kinase 5 (ALK5). Asthmatic HBECs deposited higher levels of Fn in the ECM than nonasthmatic cells under basal conditions, whereas cells from the two groups had similar levels of Fn mRNA and soluble Fn. TGF-β1 increased mRNA levels and ECM and soluble forms of Fn but decreased cell proliferation in both cells. The rate of increase in Fn mRNA was higher in nonasthmatic cells. However, the excessive amounts of ECM Fn deposited by asthmatic cells after TGF-β1 stimulation persisted compared with nonasthmatic cells. Inhibition of ALK5 completely prevented TGF-β1-induced Fn deposition. Importantly, ECM Fn increased HBEC proliferation and IL-6 release, decreased PGE2 secretion, but had no effect on VEGF release. Soluble Fn had no effect on cell proliferation and inflammatory mediator release. Asthmatic HBECs are intrinsically primed to produce more ECM Fn, which when deposited into the ECM, is capable of driving remodeling and inflammation. The increased airway Fn may be one of the key driving factors in the persistence of asthma and represents a novel, therapeutic target. PMID:26342086

  6. The RUNX1 +24 enhancer and P1 promoter identify a unique subpopulation of hematopoietic progenitor cells derived from human pluripotent stem cells.

    Ferrell, Patrick I; Xi, Jiafei; Ma, Chao; Adlakha, Mitali; Kaufman, Dan S

    2015-04-01

    Derivation of hematopoietic stem cells (HSCs) from human pluripotent stem cells remains a key goal for the fields of developmental biology and regenerative medicine. Here, we use a novel genetic reporter system to prospectively identify and isolate early hematopoietic cells derived from human embryonic stem cells (hESCs) and human induced pluripotent cells (iPSCs). Cloning the human RUNX1c P1 promoter and +24 enhancer to drive expression of tdTomato (tdTom) in hESCs and iPSCs, we demonstrate that tdTom expression faithfully enriches for RUNX1c-expressing hematopoietic progenitor cells. Time-lapse microscopy demonstrated the tdTom(+) hematopoietic cells to emerge from adherent cells. Furthermore, inhibition of primitive hematopoiesis by blocking Activin/Nodal signaling promoted the expansion and/or survival of the tdTom(+) population. Notably, RUNX1c/tdTom(+) cells represent only a limited subpopulation of the CD34(+) CD45(+) and CD34(+) CD43(+) cells with a unique genetic signature. Using gene array analysis, we find significantly lower expression of Let-7 and mir181a microRNAs in the RUNX1c/tdTom(+) cell population. These phenotypic and genetic analyses comparing the RUNX1c/tdTom(+) population to CD34(+) CD45(+) umbilical cord blood and fetal liver demonstrate several key differences that likely impact the development of HSCs capable of long-term multilineage engraftment from hESCs and iPSCs. PMID:25546363

  7. Bazedoxifene, a new orphan drug for the treatment of bleeding in hereditary haemorrhagic telangiectasia.

    Zarrabeitia, Roberto; Ojeda-Fernandez, Luisa; Recio, Lucia; Bernabéu, Carmelo; Parra, Jose A; Albiñana, Virginia; Botella, Luisa M

    2016-06-01

    Hereditary haemorrhagic telangiectasia (HHT), or Rendu-Osler-Weber syndrome, is a dominant genetic vascular disorder. In HHT, blood vessels are weak and prone to bleeding, leading to epistaxis and anaemia, severely affecting patients' quality of life. Development of vascular malformations in HHT patients is originated mainly by mutations in ACVRL1/ALK1 (activin receptor-like kinase type I) or Endoglin (ENG) genes. These genes encode proteins of the TGF-β signalling pathway in endothelial cells, controlling angiogenesis. Haploinsufficiency of these proteins is the basis of HHT pathogenicity. It was our objective to study the efficiency of Bazedoxifene, a selective estrogen receptor modulator (SERM) in HHT, looking for a decrease in epistaxis, and understanding the underlying molecular mechanism. Plasma samples of five HHT patients were collected before, and after 1 and 3 months of Bazedoxifene treatment. ENG and ALK1 expression in activated mononuclear cells derived from blood, as well as VEGF plasma levels, were measured. Quantification of Endoglin and ALK1 mRNA was done in endothelial cells derived from HHT and healthy donors, after in vitro treatment with Bazedoxifene. Angiogenesis was also measured by tubulogenesis and wound healing assays. Upon Bazedoxifene treatment, haemoglobin levels of HHT patients increased and the quantity and frequency of epistaxis decreased. Bazedoxifene increased Endoglin and ALK1 mRNA levels, in cells derived from blood samples and in cultured endothelial cells, promoting tube formation. In conclusion, Bazedoxifene seems to decrease bleeding in HHT by partial compensation of haploinsufficiency. The results shown here are the basis of a new orphan drug designation for HHT by the European Medicine Agency (EMA). PMID:26818701

  8. MicroRNA-dependent roles of Drosha and Pasha in the Drosophila larval ovary morphogenesis.

    Yang, Huiming; Li, Mengjie; Hu, Xiaolong; Xin, Tianchi; Zhang, Shu; Zhao, Gengchun; Xuan, Tao; Li, Mingfa

    2016-08-15

    The Drosophila larval ovary morphogenesis mainly involves coordinated development of somatic and germ cell lineages that is essential for forming a correct number of niche-germline stem cell (GSC) units (ovarioles) in the adult ovary. Ecdysone, Insulin, Activin, Dpp and EGFR signaling pathways form a regulatory network that orchestrates ovarian soma and germ line throughout larval development. Identification and characterization of additional genes or machineries involved in this process will provide more insights into the underlying mechanisms. Here, we show that the core microRNA (miRNA) pathway components Drosha and Pasha are required for coordinated development of somatic and germ cell precursors in the larval ovary. Drosha or pasha mutants display defective proliferation of primordial germ cells (PGCs), the precursors of GSCs prior to late third larval instar (LL3) and promoted PGC differentiation at LL3. In the mean time, loss of Drosha or Pasha function perturbs somatic precursor development, causing defects in formation of terminal filaments (TFs), a major composition of the GSC niche at LL3, as well as in TF precursor accumulation at early larval stages. Comparative analysis of the mutant phenotypes reveals that three other key miRNA pathway components, Dicer-1 (Dcr-1), Loquacious (Loqs) and Argonaute-1 (Ago-1) have similar effects as Drosha and Pasha indicated above, suggesting a role of the canonical miRNA pathway in the ovary development. Furthermore, genome-wide screening and genetic studies identify a set of Drosha-controlled miRNAs including miR-8, miR-14, miR-33, miR-184, miR-317 and let-7-C that function in this gonadogenesis. Taken together, this study provides the first ever demonstration that miRNA-mediated regulation is involved in the Drosophila larval ovary morphogenesis. PMID:27339292

  9. Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity.

    Tingqing Guo

    Full Text Available Myostatin (Mstn is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Mstn(-/- mice have a dramatic increase in muscle mass, reduction in fat mass, and resistance to diet-induced and genetic obesity. To determine how Mstn deletion causes reduced adiposity and resistance to obesity, we analyzed substrate utilization and insulin sensitivity in Mstn(-/- mice fed a standard chow. Despite reduced lipid oxidation in skeletal muscle, Mstn(-/- mice had no change in the rate of whole body lipid oxidation. In contrast, Mstn(-/- mice had increased glucose utilization and insulin sensitivity as measured by indirect calorimetry, glucose and insulin tolerance tests, and hyperinsulinemic-euglycemic clamp. To determine whether these metabolic effects were due primarily to the loss of myostatin signaling in muscle or adipose tissue, we compared two transgenic mouse lines carrying a dominant negative activin IIB receptor expressed specifically in adipocytes or skeletal muscle. We found that inhibition of myostatin signaling in adipose tissue had no effect on body composition, weight gain, or glucose and insulin tolerance in mice fed a standard diet or a high-fat diet. In contrast, inhibition of myostatin signaling in skeletal muscle, like Mstn deletion, resulted in increased lean mass, decreased fat mass, improved glucose metabolism on standard and high-fat diets, and resistance to diet-induced obesity. Our results demonstrate that Mstn(-/- mice have an increase in insulin sensitivity and glucose uptake, and that the reduction in adipose tissue mass in Mstn(-/- mice is an indirect result of metabolic changes in skeletal muscle. These data suggest that increasing muscle mass by administration of myostatin antagonists may be a promising therapeutic target for treating patients with obesity or diabetes.

  10. A Proteomic Study of the HUPO Plasma Proteome Project's Pilot Samples using an Accurate Mass and Time Tag Strategy

    Adkins, Joshua N.; Monroe, Matthew E.; Auberry, Kenneth J.; Shen, Yufeng; Jacobs, Jon M.; Camp, David G.; Vitzthum, Frank; Rodland, Karin D.; Zangar, Richard C.; Smith, Richard D.; Pounds, Joel G.

    2005-08-01

    Characterization of the human blood plasma proteome is critical to the discovery of routinely useful clinical biomarkers. We used an Accurate Mass and Time (AMT) tag strategy with high-resolution mass accuracy capillary liquid chromatography Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (cLC-FTICR MS) to perform a global proteomic analysis of pilot study samples as part of the HUPO Plasma Proteome Project. HUPO reference serum and citrated plasma samples from African Americans, Asian Americans, and Caucasian Americans were analyzed, in addition to a Pacific Northwest National Laboratory reference serum and plasma. The AMT tag strategy allowed us to leverage two previously published “shotgun” proteomics experiments to perform global analyses on these samples in triplicate in less than 4 days total analysis time. A total of 722 (22% with multiple peptide identifications) International Protein Index (IPI) redundant proteins, or 377 protein families by ProteinProphet, were identified over the 6 individual HUPO serum and plasma samples. The samples yielded a similar number of identified redundant proteins in the plasma samples (average 446 +/-23) as found in the serum samples (average 440+/-20). These proteins were identified by an average of 956+/-35 unique peptides in plasma and 930+/-11 unique peptides in serum. In addition to this high-throughput analysis, the AMT tag approach was used with a Z-score normalization to compare relative protein abundances. This analysis highlighted both known differences in serum and citrated plasma such as fibrinogens, and reproducible differences in peptide abundances from proteins such as soluble activin receptor-like kinase 7b and glycoprotein m6b. The AMT tag strategy not only improved our sample throughput, and provided a basis for estimated quantitation.

  11. Oxymatrine attenuates CCl4-induced hepatic fibrosis via modulation of TLR4-dependent inflammatory and TGF-β1 signaling pathways.

    Zhao, Hong-Wei; Zhang, Zhen-Fang; Chai, Xuan; Li, Guang-Quan; Cui, He-Rong; Wang, Hong-Bo; Meng, Ya-Kun; Liu, Hui-Min; Wang, Jia-Bo; Li, Rui-Sheng; Bai, Zhao-Fang; Xiao, Xiao-He

    2016-07-01

    Oxymatrine (OMT) is able to effectively protect against hepatic fibrosis because of its anti-inflammatory property, while the underlying mechanism remains incompletely understood. In this study, forty rats were randomly divided into five groups: control group, model group (carbon tetrachloride, CCl4) and three OMT treatment groups (30, 60, 120mg/kg). After CCl4 alone, the fibrosis score was 20.2±0.8, and the level of alanine aminotransferase (ALT), aspartate aminotransferase (AST), hydroxyproline content, and collagen I expression was elevated, but OMT blunted these parameters. Treatment with OMT prevented CCl4-induced increases in expression of pro-inflammatory and pro-fibrotic cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α, meanwhile OMT promoted the expression of anti-inflammatory and anti-fibrotic factors such as interleukin (IL)-10 and bone morphogenetic protein and activin membrane-bound inhibitor (Bambi). Moreover, lipopolysaccharides (LPS) and high mobility group box-1 (HMGB1), which activates Toll-like receptor 4 (TLR4) and modulate hepatic fibrogenesis through hepatic stellate cells (HSCs) or Kupffer cells, were significantly decreased by OMT treatment. These results were further supported by in vitro data. First, OMT suppressed the expression of TLR4 and its downstream pro-inflammatory cytokines, lowered the level of HMGB1, TGF-β1 in macrophages. Then, OMT promoted Bambi expression and thereby inhibited activation of HSCs mediated by transforming growth factor (TGF)-β1. In conclusion, this study showed that OMT could effectively attenuate the CCl4-induced hepatic fibrosis, and this effect may be due to modulation of TLR4-dependent inflammatory and TGF-β1 signaling pathways. PMID:27179304

  12. An inhibitor of transforming growth factor beta type I receptor ameliorates muscle atrophy in a mouse model of caveolin 3-deficient muscular dystrophy.

    Ohsawa, Yutaka; Okada, Tadashi; Nishimatsu, Shin-Ichiro; Ishizaki, Masatoshi; Suga, Tomohiro; Fujino, Masahiro; Murakami, Tatsufumi; Uchino, Makoto; Tsuchida, Kunihiro; Noji, Sumihare; Hinohara, Atsushi; Shimizu, Toshiyuki; Shimizu, Kiyoshi; Sunada, Yoshihide

    2012-08-01

    Skeletal muscle expressing Pro104Leu mutant caveolin 3 (CAV3(P104L)) in mouse becomes atrophied and serves as a model of autosomal dominant limb-girdle muscular dystrophy 1C. We previously found that caveolin 3-deficient muscles showed activated intramuscular transforming growth factor beta (TGF-β) signals. However, the cellular mechanism by which loss of caveolin 3 leads to muscle atrophy is unknown. Recently, several small-molecule inhibitors of TGF-β type I receptor (TβRI) kinase have been developed as molecular-targeting drugs for cancer therapy by suppressing intracellular TGF-β1, -β2, and -β3 signaling. Here, we show that a TβRI kinase inhibitor, Ki26894, restores impaired myoblast differentiation in vitro caused by activin, myostatin, and TGF-β1, as well as CAV3(P104L). Oral administration of Ki26894 increased muscle mass and strength in vivo in wild-type mice, and improved muscle atrophy and weakness in the CAV3(P104L) mice. The inhibitor restored the number of satellite cells, the resident stem cells of adult skeletal muscle, with suppression of the increased phosphorylation of Smad2, an effector, and the upregulation of p21 (also known as Cdkn1a), a target gene of the TGF-β family members in muscle. These data indicate that both TGF-β-dependent reduction in satellite cells and impairment of myoblast differentiation contribute to the cellular mechanism underlying caveolin 3-deficient muscle atrophy. TβRI kinase inhibitors could antagonize the activation of intramuscular anti-myogenic TGF-β signals, thereby providing a novel therapeutic rationale for the alternative use of this type of anticancer drug in reversing muscle atrophy in various clinical settings. PMID:22584670

  13. Role of oxygen tension and genetic background during the epigenetic conversion of mouse fibroblasts into insulin secreting cells

    Alessandro Zenobi

    2015-07-01

    Full Text Available Epigenetic cell conversion overcomes the stability of a mature cell phenotype transforming a somatic cell in an unlimited source of autologous cells of a different type. It is based on the exposure to a demethylating agent followed by an induction protocol. In our work we exposed mouse dermal fibroblasts to the demethylating agent 5-azacytidine. Cell differentiation was directed toward the endocrine pancreatic lineage with a sequential combination of Activin A, Retinoic Acid, B27 supplement, ITS and bFGF. The overall duration of the process was 10 days. Aim of this work was to evaluate the role of oxygen during differentiation of dermal fibroblasts derived from two different mouse strains, NOD and C57 BL/6J. During differentiation, both cell lines were cultured either in the standard in vitro culture 20% oxygen concentration or in the lower and more physiological 5% of oxygen. Our results show that C57 BL/6J cells are able to differentiate into insulin secreting cells in both oxygen tensions with a higher amount of insulin release in low oxygen conditions. On the other hand, cells of NOD mice, which are physiologically predisposed to the onset of diabetes, differentiate in 20% of oxygen but not in low oxygen and they died after three days of culture. However, if these cells are moved to 5% of oxygen after their differentiation in high oxygen they remain viable for up to four days. Furthermore, their capacity to release insulin remains unchanged for 24 hours. Results suggest that genetic background has a profound effect on the role of oxygen during the in vitro differentiation process, possibly reflecting the different susceptibility to the disease of the strains used in the experiment.Supported by EFSD and Carraresi Foundation

  14. Resveratrol ameliorates the maturation process of β-cell-like cells obtained from an optimized differentiation protocol of human embryonic stem cells.

    Pezzolla, Daniela; López-Beas, Javier; Lachaud, Christian C; Domínguez-Rodríguez, Alejandro; Smani, Tarik; Hmadcha, Abdelkrim; Soria, Bernat

    2015-01-01

    Human embryonic stem cells (hESCs) retain the extraordinary capacity to differentiate into different cell types of an adult organism, including pancreatic β-cells. For this particular lineage, although a lot of effort has been made in the last ten years to achieve an efficient and reproducible differentiation protocol, it was not until recently that this aim was roughly accomplished. Besides, several studies evidenced the impact of resveratrol (RSV) on insulin secretion, even though the mechanism by which this polyphenol potentiates glucose-stimulated insulin secretion (GSIS) is still not clear. The aim of this study was to optimize an efficient differentiation protocol that mimics in vivo pancreatic organogenesis and to investigate whether RSV may improve the final maturation step to obtain functional insulin-secreting cells. Our results indicate that treatment of hESCs (HS-181) with activin-A induced definitive endoderm differentiation as detected by the expression of SOX17 and FOXA2. Addition of retinoic acid (RA), Noggin and Cyclopamine promoted pancreatic differentiation as indicated by the expression of the early pancreatic progenitor markers ISL1, NGN3 and PDX1. Moreover, during maturation in suspension culture, differentiating cells assembled in islet-like clusters, which expressed specific endocrine markers such as PDX1, SST, GCG and INS. Similar results were confirmed with the human induced Pluripotent Stem Cell (hiPSC) line MSUH-001. Finally, differentiation protocols incorporating RSV treatment yielded numerous insulin-positive cells, induced significantly higher PDX1 expression and were able to transiently normalize glycaemia when transplanted in streptozotocin (STZ) induced diabetic mice thus promoting its survival. In conclusion, our strategy allows the efficient differentiation of hESCs into pancreatic endoderm capable of generating β-cell-like cells and demonstrates that RSV improves the maturation process. PMID:25774684

  15. A Combination of Culture Conditions and Gene Expression Analysis Can Be Used to Investigate and Predict hES Cell Differentiation Potential towards Male Gonadal Cells.

    Kjartansdóttir, Kristín Rós; Reda, Ahmed; Panula, Sarita; Day, Kelly; Hultenby, Kjell; Söder, Olle; Hovatta, Outi; Stukenborg, Jan-Bernd

    2015-01-01

    Human embryonic stem cell differentiation towards various cell types belonging to ecto-, endo- and mesodermal cell lineages has been demonstrated, with high efficiency rates using standardized differentiation protocols. However, germ cell differentiation from human embryonic stem cells has been very inefficient so far. Even though the influence of various growth factors has been evaluated, the gene expression of different cell lines in relation to their differentiation potential has not yet been extensively examined. In this study, the potential of three male human embryonic stem cell lines to differentiate towards male gonadal cells was explored by analysing their gene expression profiles. The human embryonic stem cell lines were cultured for 14 days as monolayers on supporting human foreskin fibroblasts or as spheres in suspension, and were differentiated using BMP7, or spontaneous differentiation by omitting exogenous FGF2. TLDA analysis revealed that in the undifferentiated state, these cell lines have diverse mRNA profiles and exhibit significantly different potentials for differentiation towards the cell types present in the male gonads. This potential was associated with important factors directing the fate of the male primordial germ cells in vivo to form gonocytes, such as SOX17 or genes involved in the NODAL/ACTIVIN pathway, for example. Stimulation with BMP7 in suspension culture resulted in up-regulation of cytoplasmic SOX9 protein expression in all three lines. The observation that human embryonic stem cells differentiate towards germ and somatic cells after spontaneous and BMP7-induced stimulation in suspension emphasizes the important role of somatic cells in germ cell differentiation in vitro. PMID:26630562

  16. Common and distinct signals specify the distribution of blood and vascular cell lineages in Xenopus laevis embryos.

    Iraha, Fumie; Saito, Yoshinari; Yoshida, Keiko; Kawakami, Masatoki; Izutsu, Yumi; Daar, Ira Owen; Maéno, Mitsugu

    2002-10-01

    In an effort to elucidate the regulatory mechanisms that determine the fate of blood cells and vascular cells in the ventral blood island mesoderm, the embryonic expression of Xtie-2, a Xenopus homolog of the tie-2 receptor tyrosine kinase, was examined. Whole-mount in situ hybridization analysis revealed that Xtie-2 mRNA is expressed at the late tailbud stage within the regions where endothelial precursor cells exist. On the ventral side of embryos, Xtie-2-positive cells are predominantly present just outside the boundary of alpha-globin-positive cells, thus the expression pattern of these two markers seems mutually exclusive. Further experiments revealed that there is a consistent and strong correlation between the induction of Xtie-2 and alpha-globin expression in embryos and explant tissues. First, these two markers displayed overlapping expression in embryos ventralized by the removal of a "dorsal determinant" from the vegetal cytoplasm at the 1-cell stage. Second, expression of both Xtie-2 and alpha-globin were markedly induced in ectodermal explants (animal caps) from embryos co-injected with activin and bone morphogenetic protein (BMP)-4 RNA. Furthermore, both Xtie-2 and alpha-globin messages were strongly positive in dorsal marginal zone explants that had been injected with BMP-4 RNA. In contrast, however, there was a clear distinction in the localization of these two transcripts in embryos dorsalized by LiCl treatment. Distinct localization was also found in the ventral marginal zone (VMZ) explants. Using the VMZ explant system, we demonstrate a role of fibroblast growth factor (FGF) signaling in enhancing the vascular cell marker and reducing the blood cell marker. The present study suggests that the early steps of blood and vascular cell differentiation are regulated by a common BMP-4-dependent signaling; however, distinct factor(s) such as FGF are involved in different distribution of these two cell lineages. PMID:12392573

  17. Krwawienia czynnościowe

    Tomasz Soszka

    2010-08-01

    Full Text Available Dysfunctional uterine bleedings (DUB are all these abnormal uterine bleedings (AUB after exclusion ofanatomical and organic lesions as well as systemic and iatrogenic changes and pregnancy. In the presented paperspecial attention was paid to the diagnostic and therapeutic treatment in an outpatient clinic, including thepatient interaction in the process. State-of the-art knowledge on the menstrual cycle pathophysiology and DUBhas been presented basing on the angiogenesis model. The participation of many biologically active substances(including among others: kinins, endothelins, coagulation and fibrinolytic factors, prostanoids and platelet factorsin breakdown and regenerative processes within functional layers of the endometrium has been described.The regulative role of steroid hormones (estrogens, progesterone, activin-follistatin was taken into consideration.The carefully taken medical history, the proper selection of diagnostic tools followed by the discussionwith the patient on the pharmacological or, if desired, surgical options constitutes the whole treatment processin the case of troublesome DUB. In the paper new diagnostic and therapeutic methods including a wide rangeof scanning techniques, endometrial sampling and endometrial resection as well as ablation techniques havebeen presented. Special attention was paid to outpatient clinic methods (e.g. Pipella, minihysteroscopy, thermalablation, photodynamic ablation and cryoablation. The pharmaceutical treatment depends on the intensity ofbleeding (acute or chronic and consists of estrogens, oral, transdermal and vaginal contraceptives, IUD system,progestin-oestrogen injections, Danazol and GnRH. Besides the hormones, non-steroid anti-inflammatory and antifibrinolytic drugs appeared to be effective inthe treatment of DUB. One has to pay attention to menarche which in some ways reflects the proper local andsystemic haemostatic mechanisms. Basing on these observations one may to decide to

  18. The GnRH receptor and the response of gonadotrope cells to GnRH pulse frequency code. A story of an atypical adaptation of cell function relying on a lack of receptor homologous desensitization.

    Christian Bleux

    2010-01-01

    Full Text Available Brain control of the reproductive system is mediated through hypothalamic gonadotropin-releasing hormone (GnRH which activates specific receptors (GnRHR present at the surface of the pituitary gonadotropes to trigger secretion of the two gonadotropins LH and FSH. A unique feature of this system is the high dependence on the secretion mode of GnRH, which is basically pulsatile but undergoes considerable fluctuations in pulse frequency pattern in response to endogenous or external factors. How the physiological fluctuations of GnRH secretion that orchestrate normal reproduction are decoded by the gonadotrope cell machinery to ultimately control gonadotropin release and/or subunit gene transcription has been the subject of intensive studies during the past decades. Surprisingly, the mammalian GnRHR is unique among G protein-coupled receptor family as it lacks the carboxy-terminal tail usually involved in classical endocytotic process. Accordingly, it does not desensitize properly and internalizes very poorly. Both this atypical intrinsic property and post-receptor events may thus contribute to decode the GnRH signal. This includes the participation of a network of signaling pathways that differently respond to GnRH together with a growing amount of genes differentially sensitive to pulse frequency. Among these are two pairs of genes, the transcription factors EGR-1 and NAB, and the regulatory factors activin and follistatin, that function as intracellular autoregulatory feedback loops controlling respectively LHbeta and FSHbeta gene expression and hence, LH and FSH synthesis. Pituitary gonadotropes thus represent a unique model of cells functionally adapted to respond to a considerably fluctuating neuroendocrine stimulation, from short individual pulses to sustained GnRH as observed at the proestrus of ovarian cycle. Altogether, the data emphasize the adaptative reciprocal complementarity of hypothalamic GnRH neurones and pituitary gonadotropes to

  19. Molecular insights into connective tissue growth factor action in rat pancreatic stellate cells.

    Karger, Anna; Fitzner, Brit; Brock, Peter; Sparmann, Gisela; Emmrich, Jörg; Liebe, Stefan; Jaster, Robert

    2008-10-01

    Pancreatic fibrosis, a key feature of chronic pancreatitis and pancreatic cancer, is mediated by activated pancreatic stellate cells (PSC). Connective tissue growth factor (CTGF) has been suggested to play a major role in fibrogenesis by enhancing PSC activation after binding to alpha5beta1 integrin. Here, we have focussed on molecular determinants of CTGF action. Inhibition of CTGF expression in PSC by siRNA was associated with decreased proliferation, while application of exogenous CTGF stimulated both cell growth and collagen synthesis. Real-time PCR studies revealed that CTGF target genes in PSC not only include mediators of matrix remodelling but also the proinflammatory cytokines interleukin (IL)-1beta and IL-6. CTGF stimulated binding of NF-kappaB to the IL-6 promoter, and siRNA targeting the NF-kappaB subunit RelA interfered with CTGF-induced IL-6 expression, implicating the NF-kappaB pathway in the mediation of the CTGF effect. In further studies, we have analyzed regulation of CTGF expression in PSC. Transforming growth factor-beta1, activin A and tumor necrosis factor-alpha enhanced expression of the CTGF gene, while interferon-gamma displayed the opposite effect. The region from -74 to -125 of the CTGF promoter was revealed to be critical for its activity in PSC as well as for the inhibitory effect of interferon-gamma. Taken together, our results indicate a tight control of CTGF expression in PSC at the transcriptional level. CTGF promotes fibrogenesis both directly by enhancing PSC proliferation and matrix protein synthesis, and indirectly through the release of proinflammatory cytokines that may accelerate the process of chronic inflammation. PMID:18639630

  20. Duration of luteal support (DOLS with progesterone pessaries to improve the success rates in assisted conception: study protocol for a randomized controlled trial

    Gazvani Rafet

    2012-07-01

    Full Text Available Abstract Background Luteal support with progesterone is necessary for successful implantation of the embryo following egg collection and embryo transfer in an in-vitro fertilization (IVF cycle. Progesterone has been used for as little as 2 weeks and for as long as 12 weeks of gestation. The optimal length of treatment is unresolved at present and it remains unclear how long to treat women receiving luteal supplementation. Design The trial is a prospective, randomized, double-blind, placebo-controlled trial to investigate the effect of the duration of luteal support with progesterone in IVF cycles. Following 2 weeks standard treatment and a positive biochemical pregnancy test, this randomized control trial will allocate women to a supplementary 8 weeks treatment with vaginal progesterone or 8 weeks placebo. Further studies would be required to investigate whether additional supplementation with progesterone is beneficial in early pregnancy. Discussion Currently at the Hewitt Centre, approximately 32.5% of women have a positive biochemical pregnancy test 2 weeks after embryo transfer. It is this population that is eligible for trial entry and randomization. Once the patient has confirmed a positive urinary pregnancy test they will be invited to join the trial. Once the consent form has been completed by the patient a trial prescription sheet will be sent to pharmacy with a stated collection time. The patient can then be randomized and the drugs dispensed according to pharmacy protocol. A blood sample will then be drawn for measurement of baseline hormone levels (progesterone, estradiol, free beta-human chorionic gonadotrophin, pregnancy-associated plasma protein-A, Activin A, Inhibin A and Inhibin B. The primary outcome measure is the proportion of all randomized women that continue successfully to a viable pregnancy (at least one fetus with fetal heart rate >100 beats/minute on transabdominal/transvaginal ultrasound at 10 weeks post embryo

  1. Resveratrol ameliorates the maturation process of β-cell-like cells obtained from an optimized differentiation protocol of human embryonic stem cells.

    Daniela Pezzolla

    Full Text Available Human embryonic stem cells (hESCs retain the extraordinary capacity to differentiate into different cell types of an adult organism, including pancreatic β-cells. For this particular lineage, although a lot of effort has been made in the last ten years to achieve an efficient and reproducible differentiation protocol, it was not until recently that this aim was roughly accomplished. Besides, several studies evidenced the impact of resveratrol (RSV on insulin secretion, even though the mechanism by which this polyphenol potentiates glucose-stimulated insulin secretion (GSIS is still not clear. The aim of this study was to optimize an efficient differentiation protocol that mimics in vivo pancreatic organogenesis and to investigate whether RSV may improve the final maturation step to obtain functional insulin-secreting cells. Our results indicate that treatment of hESCs (HS-181 with activin-A induced definitive endoderm differentiation as detected by the expression of SOX17 and FOXA2. Addition of retinoic acid (RA, Noggin and Cyclopamine promoted pancreatic differentiation as indicated by the expression of the early pancreatic progenitor markers ISL1, NGN3 and PDX1. Moreover, during maturation in suspension culture, differentiating cells assembled in islet-like clusters, which expressed specific endocrine markers such as PDX1, SST, GCG and INS. Similar results were confirmed with the human induced Pluripotent Stem Cell (hiPSC line MSUH-001. Finally, differentiation protocols incorporating RSV treatment yielded numerous insulin-positive cells, induced significantly higher PDX1 expression and were able to transiently normalize glycaemia when transplanted in streptozotocin (STZ induced diabetic mice thus promoting its survival. In conclusion, our strategy allows the efficient differentiation of hESCs into pancreatic endoderm capable of generating β-cell-like cells and demonstrates that RSV improves the maturation process.

  2. Emerging roles of BMP9 and BMP10 in hereditary hemorrhagic telangiectasia

    Emmanuelle eTillet

    2015-01-01

    Full Text Available Rendu-Osler-Weber syndrome, also known as hereditary hemorrhagic telangiectasia (HHT, is an autosomal dominant vascular disorder. Three genes are causally related to HHT: the ENG gene encoding endoglin, a co-receptor of the TGFß family (HHT1, the ACVRL1 gene encoding ALK1 (activin receptor-like kinase 1, a type I receptor of the TGFß family (HHT2, and the SMAD4 gene, encoding a transcription factor critical for this signaling pathway. Bone morphogenetic proteins (BMPs are growth factors of the TGFß family. Among them, BMP9 and BMP10 have been shown to bind directly with high affinity to ALK1 and endoglin, and BMP9 mutations have recently been linked to a vascular-anomaly syndrome that has phenotypic overlap with HHT. BMP9 and BMP10 are both circulating cytokines in blood, and the current working model is that BMP9 and BMP10 maintain a quiescent endothelial state that is dependent on the level of ALK1/endoglin activation on endothelial cells. In accordance with this model, to explain the etiology of HHT we hypothesize that a deficient BMP9/BMP10/ALK1/endoglin pathway may lead to re-activation of angiogenesis or a greater sensitivity to an angiogenic stimulus. Resulting endothelial hyperproliferation and hypermigration may lead to vasodilatation and formation of arteriovenous malformation (AVM. HHT would thus result from a defect in the angiogenic balance. This review will focus on the emerging role played by BMP9 and BMP10 in the development of this disease and the therapeutic approaches that this opens.

  3. Accelerated reendothelialization, increased neovascularization and erythrocyte extravasation after arterial injury in BAMBI-/- mice.

    Nicolas Guillot

    Full Text Available BACKGROUND: Intimal injury rapidly activates TGFβ and enhances vascular repair by the growth of endothelial (EC and vascular smooth muscle cells (VSMC. The response to the TGFβ family of growth factors can be modified by BAMBI (BMP, Activin, Membrane Bound Inhibitor acting as a non-signaling, competitive antagonist of TGFβ type I receptors such as ALK 1 and 5. In vivo the effect of BAMBI will depend on its cell-specific expression and of that of the ALK type receptors. We recently reported EC restricted BAMBI expression and genetic elimination of BAMBI resulting in an in vitro and in vivo phenotype characterized by endothelial activation and proliferation involving alternative pathway activation by TGFβ through ALK 1. METHODOLOGY/PRINCIPAL FINDINGS: To test the hypothesis that BAMBI modulates arterial response to injury via its effects on endothelial repair and arterial wall neovascularization we used a model of femoral arterial denudation injury in wild type (WT and BAMBI(-/- mice. Arterial response was evaluated at 2 and 4 weeks after luminal endothelial denudation of femoral arteries. The BAMBI(-/- genotype mice showed accelerated luminal endothelial repair at 2 weeks and a highly unusual increase in arterial wall neovascularization compared to WT mice. The exuberant intimal and medial neovessel formation with BAMBI(-/- genotype was also associated with significant red blood cell extravasation. The bleeding into the neointima at 2 weeks transiently increased it's area in the BAMBI(-/-genotype despite the faster luminal endothelial repair in this group. Vascular smooth muscle cells were decreased at 2 weeks in BAMBI(-/- mice, but comparable to wild type at 4 weeks. CONCLUSIONS/SIGNIFICANCE: The absence of BAMBI results in a highly unusual surge in arterial wall neovascularization that surprisingly mimiks features of intra-plaque hemorrhage of advanced atheroma in a mechanical injury model. This suggests important effects of BAMBI on

  4. TGF-β Signaling in Cancer.

    Syed, Viqar

    2016-06-01

    The transforming growth factor-β (TGF-β) is a family of structurally related proteins that comprises of TGF-β, activins/inhibins, and bone morphogenic proteins (BMPs). Members of the TGF-β family control numerous cellular functions including proliferation, apoptosis, differentiation, epithelial-mesenchymal transition (EMT), and migration. The first identified member, TGF-β is implicated in several human diseases, such as vascular diseases, autoimmune disorders, and carcinogenesis. Activation of the TGF-β receptor by its ligands induces the phosphorylation of serine/threonine residues and triggers phosphorylation of the intracellular effectors, SMADs. Upon activation, SMAD proteins translocate to the nucleus and induce transcription of their target genes, regulating several cellular functions. TGF-β dysregulation has been implicated in carcinogenesis. In early stages of cancer, TGF-β exhibits tumor suppressive effects by inhibiting cell cycle progression and promoting apoptosis. However, in late stages TGF-β exerts tumor promoting effects, increasing tumor invasiveness, and metastasis. Furthermore, the TGF-β signaling pathway communicates with other signaling pathways in a synergistic or antagonistic manner and regulates cellular functions. Elevated TGF-β activity has been associated with poor clinical outcome. Given the pivotal role of TGF-β in tumor progression, this pathway is an attractive target for cancer therapy. Several therapeutic tools such as TGF-β antibodies, antisense oligonucleotides, and small molecules inhibitors of TGF-β receptor-1 (TGF-βR1) have shown immense potential to inhibit TGF-β signaling. Finally, in the interest of developing future therapies, further studies are warranted to identify novel points of convergence of TGF-β with other signaling pathways and oncogenic factors in the tumor microenvironment. J. Cell. Biochem. 117: 1279-1287, 2016. © 2016 Wiley Periodicals, Inc. PMID:26774024

  5. The molecular mechanism of embryonic stem cell pluripotency maintenance

    WANG Qingzhong; LIU Yixun; HAN Chunsheng

    2005-01-01

    In vitro cultured embryonic stem (ES) cells are derived from the inner cell mass (ICM) of pre-implantation embryos, and are capable of giving rise to all cell and tissue types of the three germ layers upon being injected back into blastocysts. These cells are therefore said to possess pluripotency that can be maintained infinitely in culture under optimal conditions. Such pluripotency maintenance is believed to be due to the symmetrical cleavage of the cells in an undifferentiated state. The pluripotency of ES cells is the basis for their various practical and potential applications. ES cells can be used as donor cells to generate knockout or transgenic animals, as in vitro models of mammalian development, and as cell resources for cell therapy in regenerative medicine. The further success in these applications, particularly in the last two, is dependent on the establishment of a culture system with components in the medium clearly defined and the subsequent procedures for controlled differentiation of the cells into specific lineages. In turn, elucidating the molecular mechanism for pluripotency maintenance of ES cells is the prerequisite. This paper summarizes the recent progresses in this area, focusing mainly on the LIF/STAT3, BMPs/Smads, canonical Wnt, TGFβ/activin/nodal, PI3K and FGF signaling pathways and the genes such as oct4, nanog that are crucial in ES cell pluripotency maintenance. The regulatory systems of pluripotency maintenance in both mouse and human ES cells are also discussed. We believe that the cross-talkings between these signaling pathways, as well as the regulatory system underlying pluripotency maintenance will be the main focus in the area of ES cell researches in the future.

  6. Evidence for the "midline" hypothesis in associated defects of laterality formation and multiple midline anomalies.

    Gilbert-Barness, E; Debich-Spicer, D; Cohen, M M; Opitz, J M

    2001-07-15

    growth factor beta/activins/BMP4; WNT-1,8; and SHH. PMID:11471162

  7. Variation in Telangiectasia Predisposing Genes Is Associated With Overall Radiation Toxicity

    Tanteles, George A. [Department of Genetics, University of Leicester, Leicester (United Kingdom); Department of Cancer Studies and Molecular Medicine, University Hospitals of Leicester, Leicester Royal Infirmary, Leicester (United Kingdom); Murray, Robert J.S. [Department of Genetics, University of Leicester, Leicester (United Kingdom); Mills, Jamie [Department of Cancer Studies and Molecular Medicine, University Hospitals of Leicester, Leicester Royal Infirmary, Leicester (United Kingdom); Barwell, Julian [Department of Genetics, University of Leicester, Leicester (United Kingdom); Department of Cancer Studies and Molecular Medicine, University Hospitals of Leicester, Leicester Royal Infirmary, Leicester (United Kingdom); Chakraborti, Prabir [Department of Clinical Oncology, Derby Hospitals NHS Foundation Trust, Derby (United Kingdom); Chan, Steve [Department of Clinical Oncology, Nottingham University Hospitals NHS Trust, Nottingham (United Kingdom); Cheung, Kwok-Leung [Division of Breast Surgery, University of Nottingham, Nottingham (United Kingdom); Ennis, Dawn [Department of Clinical Oncology, Derby Hospitals NHS Foundation Trust, Derby (United Kingdom); Khurshid, Nazish [Department of Genetics, University of Leicester, Leicester (United Kingdom); Lambert, Kelly [Department of Breast Surgery, University Hospitals of Leicester, Glenfield Hospital, Leicester (United Kingdom); Machhar, Rohan; Meisuria, Mitul [Department of Genetics, University of Leicester, Leicester (United Kingdom); Osman, Ahmed; Peat, Irene [Department of Cancer Studies and Molecular Medicine, University Hospitals of Leicester, Leicester Royal Infirmary, Leicester (United Kingdom); Sahota, Harjinder [Department of Genetics, University of Leicester, Leicester (United Kingdom); Woodings, Pamela [Department of Clinical Oncology, Derby Hospitals NHS Foundation Trust, Derby (United Kingdom); Talbot, Christopher J., E-mail: cjt14@le.ac.uk [Department of Genetics, University of Leicester, Leicester (United Kingdom); and others

    2012-11-15

    Purpose: In patients receiving radiotherapy for breast cancer where the heart is within the radiation field, cutaneous telangiectasiae could be a marker of potential radiation-induced heart disease. We hypothesized that single nucleotide polymorphisms (SNPs) in genes known to cause heritable telangiectasia-associated disorders could predispose to such late, normal tissue vascular damage. Methods and Materials: The relationship between cutaneous telangiectasia as a late normal tissue radiation injury phenotype in 633 breast cancer patients treated with radiotherapy was examined. Patients were clinically assessed for the presence of cutaneous telangiectasia and genotyped at nine SNPs in three candidate genes. Candidate SNPs were within the endoglin (ENG) and activin A receptor, type II-like 1 (ACVRL1) genes, mutations in which cause hereditary hemorrhagic telangiectasia and the ataxia-telangiectasia mutated (ATM) gene associated with ataxia-telangiectasia. Results: A total of 121 (19.1%) patients exhibited a degree of cutaneous telangiectasiae on clinical examination. Regression was used to examine the associations between the presence of telangiectasiae in patients who underwent breast-conserving surgery, controlling for the effects of boost and known brassiere size (n=388), and individual geno- or haplotypes. Inheritance of ACVRL1 SNPs marginally contributed to the risk of cutaneous telangiectasiae. Haplotypic analysis revealed a stronger association between inheritance of a ATM haplotype and the presence of cutaneous telangiectasiae, fibrosis and overall toxicity. No significant association was observed between telangiectasiae and the coinheritance of the candidate ENG SNPs. Conclusions: Genetic variation in the ATM gene influences reaction to radiotherapy through both vascular damage and increased fibrosis. The predisposing variation in the ATM gene will need to be better defined to optimize it as a predictive marker for assessing radiotherapy late effects.

  8. Inhibin beta E is upregulated by drug-induced endoplasmic reticulum stress as a transcriptional target gene of ATF4

    Inhibins and activins are gonadal peptide hormones of the transforming growth factor-β super family with important functions in the reproductive system. By contrast, the recently identified inhibin βE subunit, primarily expressed in liver cells, appears to exert functions unrelated to the reproductive system. Previously shown downregulation of inhibin βE in hepatoma cells and anti-proliferative effects of ectopic inhibin βE overexpression indicated growth-regulatory effects of inhibin βE. We observed a selective re-expression of the inhibin βE subunit in HepG2 hepatoblastoma cells, MCF7 breast cancer cells, and HeLa cervical cancer cells under endoplasmic reticulum stress conditions induced by tunicamycin, thapsigargin, and nelfinavir. Analysis of XPB1 splicing and ATF4 activation revealed that inhibin βE re-expression was associated with induction of the endoplasmic reticulum stress reaction by these drugs. Transfection of an ATF4 expression plasmid specifically induced inhibin βE expression in HeLa cells and indicates inhibin βE as a hitherto unidentified target gene of ATF4, a key transcription factor of the endoplasmic reticulum stress response. Therefore, the inhibin βE subunit defines not only a new player but also a possible new marker for drug-induced endoplasmic reticulum stress. -- Highlights: ► Endoplasmic reticulum stress induces inhibin beta E expression. ► Inhibin beta E is regulated by the transcription factor ATF4. ► Inhibin beta E expression can be used as a marker for drug-induced ER stress.

  9. Functional and splicing defect analysis of 23 ACVRL1 mutations in a cohort of patients affected by Hereditary Hemorrhagic Telangiectasia.

    Ferdos Alaa El Din

    Full Text Available Hereditary Hemorrhagic Telangiectasia syndrome (HHT or Rendu-Osler-Weber (ROW syndrome is an autosomal dominant vascular disorder. Two most common forms of HHT, HHT1 and HHT2, have been linked to mutations in the endoglin (ENG and activin receptor-like kinase 1 (ACVRL1or ALK1 genes respectively. This work was designed to examine the pathogenicity of 23 nucleotide variations in ACVRL1 gene detected in more than 400 patients. Among them, 14 missense mutations and one intronic variant were novels, and 8 missense mutations were previously identified with questionable implication in HHT2. The functionality of missense mutations was analyzed in response to BMP9 (specific ligand of ALK1, the maturation of the protein products and their localization were analyzed by western blot and fluorescence microscopy. The splicing impairment of the intronic and of two missense mutations was examined by minigene assay. Functional analysis showed that 18 out of 22 missense mutations were defective. Splicing analysis revealed that one missense mutation (c.733A>G, p.Ile245Val affects the splicing of the harboring exon 6. Similarly, the intronic mutation outside the consensus splicing sites (c.1048+5G>A in intron 7 was seen pathogenic by splicing study. Both mutations induce a frame shift creating a premature stop codon likely resulting in mRNA degradation by NMD surveillance mechanism. Our results confirm the haploinsufficiency model proposed for HHT2. The affected allele of ACVRL1 induces mRNA degradation or the synthesis of a protein lacking the receptor activity. Furthermore, our data demonstrate that functional and splicing analyses together, represent two robust diagnostic tools to be used by geneticists confronted with novel or conflicted ACVRL1 mutations.

  10. Expression and functional characterization of intrafollicular GH-IGF system in the zebrafish ovary.

    Zhou, Rui; Yu, Susana Man Ying; Ge, Wei

    2016-06-01

    The somatotrophic axis plays important roles in influencing reproduction. All key members of this axis including growth hormone (GH, gh), GH receptors (ghra and ghrb), insulin-like growth factors (IGFs, igf1, igf2 and igf3) and IGF receptors (igf1ra and igf1rb) were detected in the zebrafish ovary. GH was exclusively expressed in the full-grown oocytes, while its receptors were detectable in both the follicle cells and oocytes. The IGFs and their receptors were all expressed in both compartments except igf3, which was expressed in the follicle cells only. During folliculogenesis, there was a sharp decrease of gh expression at follicle activation; however, the expression of its receptors increased significantly. The expression profiles of igf1, igf2a, and igf2b were similar to that of fshr, whereas igf3 expression was close to lhcgr, suggesting differential roles for different forms of IGFs in follicle development. To examine if the ovarian GH-IGF system is regulated by gonadotropins (e.g., hCG) and GH, we performed in vitro experiments using cultured zebrafish follicle cells. The expression of igf1 and igf1ra, but not others, was down-regulated by hCG (LH analog), whereas recombinant zebrafish GH stimulated igf1 expression. In addition, GH also increased the expression of activin βA subunit (inhbaa). In agreement with this, the stimulatory effect of GH but not IGF-I on oocyte maturation could be abolished by follistatin. In conclusion, the present study revealed an intrafollicular network involving GH-IGF mini-axis in the zebrafish ovary; however, it might not work in the same way as that of the systemic somatotrophic axis. PMID:26654745

  11. BMP and TGFbeta pathways in human central chondrosarcoma: enhanced endoglin and Smad 1 signaling in high grade tumors

    Boeuf Stephane

    2012-10-01

    Full Text Available Abstract Background As major regulators of normal chondrogenesis, the bone morphogenic protein (BMP and transforming growth factor β (TGFB signaling pathways may be involved in the development and progression of central chondrosarcoma. In order to uncover their possible implication, the aim of this study was to perform a systematic quantitative study of the expression of BMPs, TGFBs and their receptors and to assess activity of the corresponding pathways in central chondrosarcoma. Methods Gene expression analysis was performed by quantitative RT-PCR in 26 central chondrosarcoma and 6 healthy articular cartilage samples. Expression of endoglin and nuclear localization of phosphorylated Smad1/5/8 and Smad2 was assessed by immunohistochemical analysis. Results The expression of TGFB3 and of the activin receptor-like kinase ALK2 was found to be significantly higher in grade III compared to grade I chondrosarcoma. Nuclear phosphorylated Smad1/5/8 and Smad2 were found in all tumors analyzed and the activity of both signaling pathways was confirmed by functional reporter assays in 2 chondrosarcoma cell lines. Immunohistochemical analysis furthermore revealed that phosphorylated Smad1/5/8 and endoglin expression were significantly higher in high-grade compared to low-grade chondrosarcoma and correlated to each other. Conclusions The BMP and TGFβ signaling pathways were found to be active in central chondrosarcoma cells. The correlation of Smad1/5/8 activity to endoglin expression suggests that, as described in other cell types, endoglin could enhance Smad1/5/8 signaling in high-grade chondrosarcoma cells. Endoglin expression coupled to Smad1/5/8 activation could thus represent a functionally important signaling axis for the progression of chondrosarcoma and a regulator of the undifferentiated phenotype of high-grade tumor cells.

  12. Modeling Energy Dynamics in Mice with Skeletal Muscle Hypertrophy Fed High Calorie Diets

    Bond, Nichole D.; Guo, Juen; Hall, Kevin D.; McPherron, Alexandra C.

    2016-01-01

    Retrospective and prospective studies show that lean mass or strength is positively associated with metabolic health. Mice deficient in myostatin, a growth factor that negatively regulates skeletal muscle mass, have increased muscle and body weights and are resistant to diet-induced obesity. Their leanness is often attributed to higher energy expenditure in the face of normal food intake. However, even obese animals have an increase in energy expenditure compared to normal weight animals suggesting this is an incomplete explanation. We have previously developed a computational model to estimate energy output, fat oxidation and respiratory quotient from food intake and body composition measurements to more accurately account for changes in body composition in rodents over time. Here we use this approach to understand the dynamic changes in energy output, intake, fat oxidation and respiratory quotient in muscular mice carrying a dominant negative activin receptor IIB expressed specifically in muscle. We found that muscular mice had higher food intake and higher energy output when fed either chow or a high-fat diet for 15 weeks compared to WT mice. Transgenic mice also matched their rate of fat oxidation to the rate of fat consumed better than WT mice. Surprisingly, when given a choice between high-fat diet and Ensure® drink, transgenic mice consumed relatively more calories from Ensure® than from the high-fat diet despite similar caloric intake to WT mice. When switching back and forth between diets, transgenic mice adjusted their intake more rapidly than WT to restore normal caloric intake. Our results show that mice with myostatin inhibition in muscle are better at adjusting energy intake and output on diets of different macronutrient composition than WT mice to maintain energy balance and resist weight gain. PMID:27076790

  13. Mouse Models of Hereditary Haemorrhagic Telangiectasia: Recent Advances and Future Challenges

    Simon eTual-Chalot

    2015-02-01

    Full Text Available Hereditary Haemorrhagic Telangiectasia (HHT is a genetic disorder characterised by a multi-systemic vascular dysplasia and haemorrhage. The precise factors leading to these vascular malformations are not yet understood and robust animal models of HHT are essential to gain a detailed understanding of the molecular and cellular events that lead to clinical symptoms, as well as to test new therapeutic modalities. Most cases of HHT are caused by mutations in either endoglin (ENG or activin receptor like kinase 1 (ACVRL1, also known as ALK1. Both genes are associated with TGFβ/BMP signalling, and loss of function mutations in the co-receptor ENG are causal in HHT1, whilst HHT2 is associated with mutations in the signalling receptor ACVRL1. Significant advances in mouse genetics have provided powerful ways to study the function of Eng and Acvrl1 in vivo, and to generate mouse models of HHT disease. Mice that are null for either Acvrl1 or Eng genes show embryonic lethality due to major defects in angiogenesis. However mice that are heterozygous for mutations in either of these genes develop to adulthood with no effect on survival. Although these heterozygous mice exhibit selected vascular phenotypes relevant to the clinical pathology of HHT, the phenotypes are variable and generally quite mild. An alternative approach using conditional knockout mice allows us to study the effects of specific inactivation of either Eng or Acvrl1 at different times in development and in different cell types. These conditional knockout mice provide robust and reproducible models of arteriovenous malformations, and they are currently being used to unravel the causal factors in HHT pathologies. In this review, we will summarize the strengths and limitations of current mouse models of HHT, discuss how knowledge obtained from these studies has already informed clinical care and explore the potential of these models for developing improved treatments for HHT patients in the

  14. Identification of multiple ACVRL1 mutations in patients with pulmonary arterial hypertension by targeted exome capture.

    Piao, Chunmei; Zhu, Yan; Zhang, Chen; Xi, Xin; Liu, Xuxia; Zheng, Shuai; Li, Xiaoyan; Guo, Jun; Jia, Lixin; Nakanishi, Toshio; Cai, Tao; Gu, Hong; Du, Jie

    2016-09-01

    Pulmonary artery hypertension (PAH) is characterized as sustained elevation of pressure in the pulmonary vascular system that is attributable to a variety of causes. More than a dozen genes have previously been proposed as being associated with PAH. To examine potential mutations of these genes in patients with PAH, we developed a targeted exome kit containing 22 PAH-associated genes for genetic screens of 80 unrelated patients with PAH. As a result, we identified 16 different mutations in the BMPR2 gene and four different mutations in ACVRL1, the gene for activin receptor-like kinase-1 (ACVRL1). However, no deleterious mutations were found in the remaining 20 genes. In the present study, we provided detailed characterization of the ACVRL1 mutations in four pedigrees, including two novel missense mutations (c.676G>A, p.V226M; c.955G>C, p.G319R) and two recurrent mutations (c.1231C>T, p.R411W; c.1450C>T, p.R484W). Furthermore, we showed that markedly reduced Smad1/5 phosphorylation levels and reduced activities of luciferase reporters in each of the four ACVRL1 mutant-transfected NIH-3T3 cells. Therefore, our findings demonstrated that missense mutations of ACVRL1 identified in the present study significantly affected the bone morphogenetic protein 9 (BMP-9) pathway, implicating PAH pathogenesis. Detailed genotype-phenotype correlation analysis revealed initial symptoms of hereditary haemorrhagic telangiectasia (HHT) in some of the patients, suggesting the importance of sequencing molecular markers for early identification and intervention of individuals at risk for PAH and potential HHT. We developed a customized exome sequencing system to identify mutations in these PAH-associated genes, and found two novel missense mutations and two recurrent mutations in the ACVRL1 gene in four unrelated Chinese families; we also determined hypomorphic alleles using functional studies. PMID:27316748

  15. Circulating angiogenic cell dysfunction in patients with hereditary hemorrhagic telangiectasia.

    Liana Zucco

    Full Text Available Hereditary hemorrhagic telangiectasia (HHT is an autosomal dominant vascular disorder. Circulating angiogenic cells (CACs play an important role in vascular repair and regeneration. This study was designed to examine the function of CACs derived from patients with HHT. Peripheral blood mononuclear cells (PBMNCs isolated from patients with HHT and age- and gender-matched healthy volunteers were assessed for expression of CD34, CD133 and VEGF receptor 2 by flow cytometry. PBMNCs were cultured to procure early outgrowth CACs. Development of endothelial cell (EC phenotype in CACs was analyzed by fluorescence microscopy. CAC apoptosis was assayed with Annexin V staining, and CAC migration assessed by a modified Boyden chamber assay. mRNA expression of endoglin (ENG, activin receptor-like kinase-1 (ACVLR1 or ALK1 and endothelial nitric oxide synthase (eNOS in CACs was measured by real time RT-PCR. The percentage of CD34+ cells in PBMNCs from HHT patients was significantly higher than in PBMNCs of healthy controls. CACs derived from patients with HHT not only showed a significant reduction in EC-selective surface markers following 7-day culture, but also a significant increase in the rate of basal apoptosis and blunted migration in response to vascular endothelial growth factor and stromal cell-derived factor-1. CACs from HHT patients expressed significantly lower levels of ENG, ALK1 and eNOS mRNAs. In conclusion, CACs from patients with HHT exhibited various functional impairments, suggesting a reduced regenerative capacity of CACs to repair the vascular lesions seen in HHT patients.

  16. Gastric angiodysplasia in a hereditary hemorrhagic telangiectasia type 2 patient

    Minsu Ha; Yoon Jae Kim; Kwang An Kwon; Ki Baik Hahm; Mi-Jung Kim; Dong Kyu Kim; Young Jae Lee; S Paul Oh

    2012-01-01

    Hereditary hemorrhagic telangiectasia (HHT) is a rare autosomal-dominantly inherited disease that occurs in approximately one in 5000 to 8000 people.Clinical diagnosis of HHT is made when a person presents three of the following four criteria:family history,recurrent nosebleeds,mucocutaneous telangiectasis,and arteriovenous malformations (AVM) in the brain,lung,liver and gastrointestinal (GI) tract.Although epistaxis is the most common presenting symptom,AVMs affecting the lungs,brain and GI tract provoke a more serious outcome.Heterozygous mutations in endoglin,activin receptor-like kinase 1 (ACVRL1; ALK1),and SMAD4,the genes involved in the transforming growth factor-β family signaling cascade,cause HHT.We report here the case of a 63 year-old male patient who presented melena and GI bleeding episodes,proven to be caused by bleeding from multiple gastric angiodysplasia.Esophagogastroduodenoscopy revealed multiple angiodysplasia throughout the stomach.Endoscopic argon plasma coagulation was performed to control bleeding from a gastric angiodysplasia.The patient has been admitted several times with episodes of hemoptysis and hematochezia.One year ago,the patient was hospitalized due to right-sided weakness,which was caused by left basal ganglia hemorrhage as the part of HHT presentation.In family history,the patient's mother and elder sister had died,due to intracranial hemorrhage,and his eldest son has been suffered from recurrent epistaxis for 20 years.A genetic study revealed a mutation in exon 3 of ALK1 (c.199C > T; p.Arg67Trp) in the proband and his eldest son presenting epistaxis.

  17. Identification of bone morphogenetic protein 9 (BMP9) as a novel profibrotic factor in vitro.

    Muñoz-Félix, José M; Cuesta, Cristina; Perretta-Tejedor, Nuria; Subileau, Mariela; López-Hernández, Francisco J; López-Novoa, José M; Martínez-Salgado, Carlos

    2016-09-01

    Upregulated synthesis of extracellular matrix (ECM) proteins by myofibroblasts is a common phenomenon in the development of fibrosis. Although the role of TGF-β in fibrosis development has been extensively studied, the involvement of other members of this superfamily of cytokines, the bone morphogenetic proteins (BMPs) in organ fibrosis has given contradictory results. BMP9 is the main ligand for activin receptor-like kinase-1 (ALK1) TGF-β1 type I receptor and its effect on fibrosis development is unknown. Our purpose was to study the effect of BMP9 in ECM protein synthesis in fibroblasts, as well as the involved receptors and signaling pathways. In cultured mice fibroblasts, BMP9 induces an increase in collagen, fibronectin and connective tissue growth factor expression, associated with Smad1/5/8, Smad2/3 and Erk1/2 activation. ALK5 inhibition with SB431542 or ALK1/2/3/6 with dorsomorphin-1, inhibition of Smad3 activation with SIS3, and inhibition of the MAPK/Erk1/2 with U0126, demonstrates the involvement of these pathways in BMP9-induced ECM synthesis in MEFs. Whereas BMP9 induced Smad1/5/8 phosphorylation through ALK1, it also induces Smad2/3 phosphorylation through ALK5 but only in the presence of ALK1. Summarizing, this is the first study that accurately identifies BMP9 as a profibrotic factor in fibroblasts that promotes ECM protein expression through ALK1 and ALK5 receptors. PMID:27208502

  18. Post-Mortem Stability of RNA in Skeletal Muscle and Adipose Tissue and the Tissue-Specific Expression of Myostatin, Perilipin and Associated Factors in the Horse

    Morrison, Philippa K.; Bing, Chen; Harris, Patricia A.; Maltin, Charlotte A.; Grove-White, Dai; Argo, Caroline McG.

    2014-01-01

    Obesity, a major concern for equine welfare, is highly prevalent in the leisure horse population. Skeletal-muscle and adipose tissues are important determinants of maintenance energy requirements. The myostatin and perilipin pathways play key roles in the regulation of muscle mass and lipolysis respectively and have both been associated with obesity predisposition in other mammalian species. High quality samples, suitable for molecular biology, are an essential prerequisite for detailed investigations of gene and protein expression. Hence, this study has evaluated a) the post-mortem stability of RNA extracted from skeletal-muscle and adipose-tissues collected under commercial conditions and b) the tissue-specific presence of myostatin, the moystatin receptor (activin receptor IIB, ActRIIB), follistatin and perilipin, genes and proteins across a range of equine tissues. Objectives were addressed using tissues from 7 Thoroughbred horses presented for slaughter at a commercial abattoir; a) samples were collected at 7 time-points from Masseter muscle and perirenal adipose from 5 minutes to 6 hours post-mortem. Extracted RN was appraised by Optical Density analysis and agarose-gel electrophoresis. b) Quantitative real time PCR and Western Blotting were used to evaluate gene and protein expression in anatomically-defined samples collected from 17 tissues (6 organs, 4 skeletal muscles and 7 discrete adipose depots). The results indicate that, under the present collection conditions, intact, good quality RNA could be extracted from skeletal-muscle for up to 2 hours post-mortem. However, RNA from adipose tissue may be more susceptible to degradation/contamination and samples should be collected no later than 30 minutes post-mortem. The data also show that myostatin and ActRIIB genes and proteins were almost exclusively expressed in skeletal muscle. The follistatin gene showed a more diverse gene expression profile, with expression evident in several organs, adipose tissue

  19. Modeling Energy Dynamics in Mice with Skeletal Muscle Hypertrophy Fed High Calorie Diets.

    Bond, Nichole D; Guo, Juen; Hall, Kevin D; McPherron, Alexandra C

    2016-01-01

    Retrospective and prospective studies show that lean mass or strength is positively associated with metabolic health. Mice deficient in myostatin, a growth factor that negatively regulates skeletal muscle mass, have increased muscle and body weights and are resistant to diet-induced obesity. Their leanness is often attributed to higher energy expenditure in the face of normal food intake. However, even obese animals have an increase in energy expenditure compared to normal weight animals suggesting this is an incomplete explanation. We have previously developed a computational model to estimate energy output, fat oxidation and respiratory quotient from food intake and body composition measurements to more accurately account for changes in body composition in rodents over time. Here we use this approach to understand the dynamic changes in energy output, intake, fat oxidation and respiratory quotient in muscular mice carrying a dominant negative activin receptor IIB expressed specifically in muscle. We found that muscular mice had higher food intake and higher energy output when fed either chow or a high-fat diet for 15 weeks compared to WT mice. Transgenic mice also matched their rate of fat oxidation to the rate of fat consumed better than WT mice. Surprisingly, when given a choice between high-fat diet and Ensure® drink, transgenic mice consumed relatively more calories from Ensure® than from the high-fat diet despite similar caloric intake to WT mice. When switching back and forth between diets, transgenic mice adjusted their intake more rapidly than WT to restore normal caloric intake. Our results show that mice with myostatin inhibition in muscle are better at adjusting energy intake and output on diets of different macronutrient composition than WT mice to maintain energy balance and resist weight gain. PMID:27076790

  20. Mitochondrial impairment induced by postnatal ActRIIB blockade does not alter function and energy status in exercising mouse glycolytic muscle in vivo.

    Béchir, Nelly; Pecchi, Émilie; Relizani, Karima; Vilmen, Christophe; Le Fur, Yann; Bernard, Monique; Amthor, Helge; Bendahan, David; Giannesini, Benoît

    2016-04-01

    Because it leads to a rapid and massive muscle hypertrophy, postnatal blockade of the activin type IIB receptor (ActRIIB) is a promising therapeutic strategy for counteracting muscle wasting. However, the functional consequences remain very poorly documented in vivo. Here, we have investigated the impact of 8-wk ActRIIB blockade with soluble receptor (sActRIIB-Fc) on gastrocnemius muscle anatomy, energy metabolism, and force-generating capacity in wild-type mice, using totally noninvasive magnetic resonance imaging (MRI) and dynamic(31)P-MRS. Compared with vehicle (PBS) control, sActRIIB-Fc treatment resulted in a dramatic increase in body weight (+29%) and muscle volume (+58%) calculated from hindlimb MR imaging, but did not alter fiber type distribution determined via myosin heavy chain isoform analysis. In resting muscle, sActRIIB-Fc treatment induced acidosis and PCr depletion, thereby suggesting reduced tissue oxygenation. During an in vivo fatiguing exercise (6-min repeated maximal isometric contraction electrically induced at 1.7 Hz), maximal and total absolute forces were larger in sActRIIB-Fc treated animals (+26 and +12%, respectively), whereas specific force and fatigue resistance were lower (-30 and -37%, respectively). Treatment with sActRIIB-Fc further decreased the maximal rate of oxidative ATP synthesis (-42%) and the oxidative capacity (-34%), but did not alter the bioenergetics status in contracting muscle. Our findings demonstrate in vivo that sActRIIB-Fc treatment increases absolute force-generating capacity and reduces mitochondrial function in glycolytic gastrocnemius muscle, but this reduction does not compromise energy status during sustained activity. Overall, these data support the clinical interest of postnatal ActRIIB blockade. PMID:26837807

  1. BMP and TGFbeta pathways in human central chondrosarcoma: enhanced endoglin and Smad 1 signaling in high grade tumors

    As major regulators of normal chondrogenesis, the bone morphogenic protein (BMP) and transforming growth factor β (TGFB) signaling pathways may be involved in the development and progression of central chondrosarcoma. In order to uncover their possible implication, the aim of this study was to perform a systematic quantitative study of the expression of BMPs, TGFBs and their receptors and to assess activity of the corresponding pathways in central chondrosarcoma. Gene expression analysis was performed by quantitative RT-PCR in 26 central chondrosarcoma and 6 healthy articular cartilage samples. Expression of endoglin and nuclear localization of phosphorylated Smad1/5/8 and Smad2 was assessed by immunohistochemical analysis. The expression of TGFB3 and of the activin receptor-like kinase ALK2 was found to be significantly higher in grade III compared to grade I chondrosarcoma. Nuclear phosphorylated Smad1/5/8 and Smad2 were found in all tumors analyzed and the activity of both signaling pathways was confirmed by functional reporter assays in 2 chondrosarcoma cell lines. Immunohistochemical analysis furthermore revealed that phosphorylated Smad1/5/8 and endoglin expression were significantly higher in high-grade compared to low-grade chondrosarcoma and correlated to each other. The BMP and TGFβ signaling pathways were found to be active in central chondrosarcoma cells. The correlation of Smad1/5/8 activity to endoglin expression suggests that, as described in other cell types, endoglin could enhance Smad1/5/8 signaling in high-grade chondrosarcoma cells. Endoglin expression coupled to Smad1/5/8 activation could thus represent a functionally important signaling axis for the progression of chondrosarcoma and a regulator of the undifferentiated phenotype of high-grade tumor cells

  2. Incomplete activation of peripheral blood dendritic cells during healthy human pregnancy.

    Della Bella, S; Giannelli, S; Cozzi, V; Signorelli, V; Cappelletti, M; Cetin, I; Villa, M L

    2011-05-01

    Successful pregnancy relies on the adaptation of immune responses that allow the fetus to grow and develop in the uterus despite being recognized by maternal immune cells. Dendritic cells (DCs) are central to the control of immune tolerance, and their state of activation at the maternal-decidual interface is critical to the feto-maternal immunological equilibrium. So far, the involvement of circulating DCs has been investigated poorly. Therefore, in this study we investigated whether, during healthy human pregnancy, peripheral blood DCs (PBDCs) undergo changes that may be relevant to the adaptation of maternal immune responses that allow fetal tolerance. In a cross-sectional study, we analysed PBDCs by six-colour flow cytometry on whole blood samples from 47 women during healthy pregnancy progression and 24 non-pregnant controls. We demonstrated that both myeloid and plasmacytoid PBDCs undergo a state of incomplete activation, more evident in the third trimester, characterized by increased expression of co-stimulatory molecules and cytokine production but lacking human leucocyte antigen (HLA)-DR up-regulation. To investigate the contribution of soluble circulating factors to this phenomenon, we also performed culture experiments showing that sera from pregnant women added to control DCs conditioned a similar incomplete activation that was associated with reduced DC allostimulatory capacity, supporting the in vivo relevance of our findings. We also obtained evidence that the glycoprotein hormone activin-A may contribute to DC incomplete activation. We suggest that the changes of PBDCs occurring during late pregnancy may aid the comprehension of the immune mechanisms operated by the maternal immune system to maintain fetal tolerance. PMID:21352205

  3. γ-Tocopherol supplementation of allergic female mice augments development of CD11c+CD11b+ dendritic cells in utero and allergic inflammation in neonates.

    Abdala-Valencia, Hiam; Soveg, Frank; Cook-Mills, Joan M

    2016-04-15

    γ-Tocopherol increases responses to allergen challenge in allergic adult mice, but it is not known whether γ-tocopherol regulates the development of allergic disease. Development of allergic disease often occurs early in life. In clinical studies and animal models, offspring of allergic mothers have increased responsiveness to allergen challenge. Therefore, we determined whether γ-tocopherol augments development of allergic responses in offspring of allergic female mice. Allergic female mice were supplemented with γ-tocopherol starting at mating. The pups from allergic mothers developed allergic lung responses, whereas pups from saline-treated mothers did not respond to allergen challenge. The γ-tocopherol supplementation of allergic female mice increased the numbers of eosinophils twofold in the pup bronchoalveolar lavage and lungs after allergen challenge. There was also about a twofold increase in pup lung CD11b(+) subsets of CD11c(+) dendritic cells and in numbers of these dendritic cells expressing the transcription factor IRF4. There was no change in several CD11b(-) dendritic cell subsets. Furthermore, maternal supplementation with γ-tocopherol increased the number of fetal liver CD11b(+)CD11c(+) dendritic cells twofold in utero. In the pups, γ-tocopherol increased lung expression of the inflammatory mediators CCL11, amphiregulin, activin A, and IL-5. In conclusion, maternal supplementation with γ-tocopherol increased fetal development of subsets of dendritic cells that are critical for allergic responses and increased development of allergic responses in pups from allergic mothers. These results have implications for supplementation of allergic mothers with γ-tocopherol in prenatal vitamins. PMID:26801566

  4. Inhibin beta E is upregulated by drug-induced endoplasmic reticulum stress as a transcriptional target gene of ATF4

    Brüning, Ansgar, E-mail: ansgar.bruening@med.uni-muenchen.de; Matsingou, Christina; Brem, German Johannes; Rahmeh, Martina; Mylonas, Ioannis

    2012-10-15

    Inhibins and activins are gonadal peptide hormones of the transforming growth factor-β super family with important functions in the reproductive system. By contrast, the recently identified inhibin βE subunit, primarily expressed in liver cells, appears to exert functions unrelated to the reproductive system. Previously shown downregulation of inhibin βE in hepatoma cells and anti-proliferative effects of ectopic inhibin βE overexpression indicated growth-regulatory effects of inhibin βE. We observed a selective re-expression of the inhibin βE subunit in HepG2 hepatoblastoma cells, MCF7 breast cancer cells, and HeLa cervical cancer cells under endoplasmic reticulum stress conditions induced by tunicamycin, thapsigargin, and nelfinavir. Analysis of XPB1 splicing and ATF4 activation revealed that inhibin βE re-expression was associated with induction of the endoplasmic reticulum stress reaction by these drugs. Transfection of an ATF4 expression plasmid specifically induced inhibin βE expression in HeLa cells and indicates inhibin βE as a hitherto unidentified target gene of ATF4, a key transcription factor of the endoplasmic reticulum stress response. Therefore, the inhibin βE subunit defines not only a new player but also a possible new marker for drug-induced endoplasmic reticulum stress. -- Highlights: ► Endoplasmic reticulum stress induces inhibin beta E expression. ► Inhibin beta E is regulated by the transcription factor ATF4. ► Inhibin beta E expression can be used as a marker for drug-induced ER stress.

  5. Insulin-like growth factor-1 suppresses the Myostatin signaling pathway during myogenic differentiation

    Retamales, A.; Zuloaga, R.; Valenzuela, C.A. [Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago (Chile); Gallardo-Escarate, C. [Laboratory of Biotechnology and Aquatic Genomics, Universidad de Concepción, Concepción (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción (Chile); Molina, A. [Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción (Chile); Valdés, J.A., E-mail: jvaldes@unab.cl [Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción (Chile)

    2015-08-21

    Myogenic differentiation is a complex and well-coordinated process for generating mature skeletal muscle fibers. This event is autocrine/paracrine regulated by growth factors, principally Myostatin (MSTN) and Insulin-like Growth Factor-1 (IGF-1). Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of skeletal muscle growth in vertebrates that exerts its inhibitory function by activating Smad transcription factors. In contrast, IGF-1 promotes the differentiation of skeletal myoblasts by activating the PI3K/Akt signaling pathway. This study reports on a novel functional crosstalk between the IGF-1 and MSTN signaling pathways, as mediated through interaction between PI3K/Akt and Smad3. Stimulation of skeletal myoblasts with MSTN resulted in a transient increase in the pSmad3:Smad3 ratio and Smad-dependent transcription. Moreover, MSTN inhibited myod gene expression and myoblast fusion in an Activin receptor-like kinase/Smad3-dependent manner. Preincubation of skeletal myoblasts with IGF-1 blocked MSTN-induced Smad3 activation, promoting myod expression and myoblast differentiation. This inhibitory effect of IGF-1 on the MSTN signaling pathway was dependent on IGF-1 receptor, PI3K, and Akt activities. Finally, immunoprecipitation assay analysis determined that IGF-1 pretreatment increased Akt and Smad3 interaction. These results demonstrate that the IGF-1/PI3K/Akt pathway may inhibit MSTN signaling during myoblast differentiation, providing new insight to existing knowledge on the complex crosstalk between both growth factors. - Highlights: • IGF-1 inhibits Myostatin canonical signaling pathway through IGF-1R/PI3K/Akt pathway. • IGF-1 promotes myoblast differentiation through a direct blocking of Myostatin signaling pathway. • IGF-1 induces the interaction of Akt with Smad3 in skeletal myoblast.

  6. Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia

    Benny Klimek, Margaret E.; Aydogdu, Tufan [Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL (United States); Link, Majik J.; Pons, Marianne [Molecular Oncology Program, Division of Surgical Oncology, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL (United States); Koniaris, Leonidas G. [Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL (United States); Molecular Oncology Program, Division of Surgical Oncology, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL (United States); Molecular Oncology and Experimental Therapeutics Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL (United States); Zimmers, Teresa A., E-mail: tzimmers@med.miami.edu [Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL (United States); Molecular Oncology Program, Division of Surgical Oncology, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL (United States); Molecular Oncology and Experimental Therapeutics Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL (United States)

    2010-01-15

    Cachexia, progressive loss of fat and muscle mass despite adequate nutrition, is a devastating complication of cancer associated with poor quality of life and increased mortality. Myostatin is a potent tonic muscle growth inhibitor. We tested how myostatin inhibition might influence cancer cachexia using genetic and pharmacological approaches. First, hypermuscular myostatin null mice were injected with Lewis lung carcinoma or B16F10 melanoma cells. Myostatin null mice were more sensitive to tumor-induced cachexia, losing more absolute mass and proportionately more muscle mass than wild-type mice. Because myostatin null mice lack expression from development, however, we also sought to manipulate myostatin acutely. The histone deacetylase inhibitor Trichostatin A has been shown to increase muscle mass in normal and dystrophic mice by inducing the myostatin inhibitor, follistatin. Although Trichostatin A administration induced muscle growth in normal mice, it failed to preserve muscle in colon-26 cancer cachexia. Finally we sought to inhibit myostatin and related ligands by administration of the Activin receptor extracellular domain/Fc fusion protein, ACVR2B-Fc. Systemic administration of ACVR2B-Fc potently inhibited muscle wasting and protected adipose stores in both colon-26 and Lewis lung carcinoma cachexia, without affecting tumor growth. Enhanced cachexia in myostatin knockouts indicates that host-derived myostatin is not the sole mediator of muscle wasting in cancer. More importantly, skeletal muscle preservation with ACVR2B-Fc establishes that targeting myostatin-family ligands using ACVR2B-Fc or related molecules is an important and potent therapeutic avenue in cancer cachexia.

  7. [Relevant issues in the pathology and pathobiology of pulmonary hypertension].

    Tuder, Rubin M; Archer, Stephen L; Dorfmüller, Peter; Erzurum, Serpil C; Guignabert, Christophe; Michelakis, Evangelos; Rabinovitch, Marlene; Schermuly, Ralph; Stenmark, Kurt R; Morrell, Nicholas W

    2014-10-01

    Knowledge of the pathobiology of pulmonary hypertension (PH) continues to accelerate. However, fundamental gaps remain in our understanding of the underlying pathological changes in pulmonary arteries and veins in the different forms of this syndrome. Although PH primarily affects the arteries, venous disease is increasingly recognized as an important entity. Moreover, prognosis in PH is determined largely by the status of the right ventricle, rather than the levels of pulmonary artery pressures. It is increasingly clear that although vasospasm plays a role, PH is an obstructive lung panvasculopathy. Disordered metabolism and mitochondrial structure, inflammation, and dysregulation of growth factors lead to a proliferative, apoptosis-resistant state. These abnormalities may be acquired, genetically mediated as a result of mutations in bone morphogenetic protein receptor-2 or activin-like kinase-1, or epigenetically inherited (as a result of epigenetic silencing of genes such as superoxide dismutase-2). There is a pressing need to better understand how the pathobiology leads to severe disease in some patients versus mild PH in others. Recent recognition of a potential role of acquired abnormalities of mitochondrial metabolism in the right ventricular myocytes and pulmonary vascular cells suggests new therapeutic approaches, diagnostic modalities, and biomarkers. Finally, dissection of the role of pulmonary inflammation in the initiation and promotion of PH has revealed a complex yet fascinating interplay with pulmonary vascular remodeling, promising to lead to novel therapeutics and diagnostics. Emerging concepts are also relevant to the pathobiology of PH, including a role for bone marrow and circulating progenitor cells and microribonucleic acids. Continued interest in the interface of the genetic basis of PH and cellular and molecular pathogenetic links should further expand our understanding of the disease. (J Am Coll Cardiol 2013;62:D4-12) a 2013 by the

  8. Essential components for ex vivo proliferation of mesenchymal stromal cells.

    Fekete, Natalie; Rojewski, Markus Thomas; Lotfi, Ramin; Schrezenmeier, Hubert

    2014-02-01

    Mesenchymal stromal cells (MSCs) are highly interesting candidates for clinical applications in regenerative medicine. Due to their low occurrence in human tissues, extensive in vitro expansion is necessary to obtain sufficient cell numbers applicable as a clinical dose in the context of cellular therapy. Current cell culture media formulations for the isolation and expansion of MSCs include fetal calf serum (FCS), human AB serum (ABS), or human platelet lysate (PL) as a supplement. However, these established supplements are inherently ill-defined formulations that contain a variety of bioactive molecules in varying batch-to-batch compositions and the risk of transmitting pathogens that escape routine screening procedures. In this study, we have comparatively characterized the capacity of commonly used basal media, such as the Minimum Essential Medium alpha (αMEM), Dulbecco's modified Eagle's medium (DMEM), Iscove's Modified Dulbecco's Medium (IMDM), and RPMI 1640 as well as human- and animal-derived supplements, that is, PL, ABS, and FCS to stimulate cell proliferation. MSC proliferation was observed to be optimal in the PL-supplemented αMEM. Using a combinatorial approach, we then assessed a library of soluble factors, including mitogens (TGF-β1, Activin A, bFGF, EGF, IGF-I, PDGF-BB, and VEGF), chemokines (CCL21, CCL25, CXCL12, and RANTES), proteins (human serum albumin), lipids (e.g., oleic acid, linoleic acid, and arachidonic acid), and hormones (dexamethasone, insulin, and TSH), to create a defined medium as well as coating of cell culture surfaces to promote robust MSC proliferation in vitro. A combination of recombinant human factors partially met the nutritional requirements of bone marrow-derived MSCs, and was able to promote cell proliferation comparable to about 5% PL if supplemented with auxiliary 0.6%-1.2% PL. Maximal MSC proliferation was achieved by combining 5% PL with a cocktail of recombinant factors and did not depend on coating of cell

  9. Action mechanism of inhibin α-subunit on the development of Sertoli cells and first wave of spermatogenesis in mice.

    Kailai Cai

    Full Text Available Inhibin is an important marker of Sertoli cell (SC activity in animals with impaired spermatogenesis. However, the precise relationship between inhibin and SC activity is unknown. To investigate this relationship, we partially silenced both the transcription and translation of the gene for the α-subunit of inhibin, Inha, using recombinant pshRNA vectors developed with RNAi-Ready pSIREN-RetroQ-ZsGreen Vector (Clontech Laboratories, Mountain View, Calif. We found that Inha silencing suppresses the cell-cycle regulators Cyclin D1 and Cyclin E and up-regulates the cell-cycle inhibitor P21 (as detected by Western blot analysis, thereby increasing the number of SCs in the G1 phase of the cell cycle and decreasing the amount in the S-phase of the cell cycle (as detected by flow cytometry. Inha silencing also suppressed Pdgfa, Igf1, and Kitl mRNA levels and up-regulated Tgfbrs, Inhba, Inhbb, Cyp11a1, Dhh, and Tjp1 mRNA levels (as indicated by real-time polymerase chain reaction [PCR] analysis. These findings indicate that Inha has the potential to influence the availability of the ligand inhibin and its antagonist activin in the SC in an autocrine manner and inhibit the progression of SC from G1 to S. It may also participate in the development of the blood-testis barrier, Leydig cells, and spermatogenesis through its effect on Dhh, Tjp1, Kitl, and Pdgfa. Real-time PCR and Western blot analyses of Inha, Inhba, and Inhbb mRNA and Inha levels over time show that Inha plays an important role in the formation of round spermatid during the first wave of spermatogenesis in mice.

  10. Recent Developments in β-Cell Differentiation of Pluripotent Stem Cells Induced by Small and Large Molecules

    S. Suresh Kumar

    2014-12-01

    Full Text Available Human pluripotent stem cells, including human embryonic stem cells (hESCs and human induced pluripotent stem cells (hiPSCs, hold promise as novel therapeutic tools for diabetes treatment because of their self-renewal capacity and ability to differentiate into beta (β-cells. Small and large molecules play important roles in each stage of β-cell differentiation from both hESCs and hiPSCs. The small and large molecules that are described in this review have significantly advanced efforts to cure diabetic disease. Lately, effective protocols have been implemented to induce hESCs and human mesenchymal stem cells (hMSCs to differentiate into functional β-cells. Several small molecules, proteins, and growth factors promote pancreatic differentiation from hESCs and hMSCs. These small molecules (e.g., cyclopamine, wortmannin, retinoic acid, and sodium butyrate and large molecules (e.g. activin A, betacellulin, bone morphogentic protein (BMP4, epidermal growth factor (EGF, fibroblast growth factor (FGF, keratinocyte growth factor (KGF, hepatocyte growth factor (HGF, noggin, transforming growth factor (TGF-α, and WNT3A are thought to contribute from the initial stages of definitive endoderm formation to the final stages of maturation of functional endocrine cells. We discuss the importance of such small and large molecules in uniquely optimized protocols of β-cell differentiation from stem cells. A global understanding of various small and large molecules and their functions will help to establish an efficient protocol for β-cell differentiation.

  11. MicroRNAs Involved in Asthma After Mesenchymal Stem Cells Treatment

    Tang, Guan-Nan; Li, Cheng-Lin; Yao, Yin; Xu, Zhi-Bin; Deng, Meng-Xia; Wang, Shu-Yue; Sun, Yue-Qi; Shi, Jian-Bo

    2016-01-01

    Administration of human bone marrow-derived mesenchymal stem cells (BM-MSCs) significantly alleviates allergic airway inflammation. There are no studies that refer to the role of microRNAs (miRNAs) after the BM-MSCs treatment in airway allergic inflammation. We induced a mouse model of asthma and performed the transplantation of BM-MSCs. We analyzed aberrant miRNAs and key immune regulators using both miRNA and messenger RNA (mRNA) polymerase chain reaction (PCR) arrays. We identified that 296 miRNAs were differently expressed after the induction of asthma and/or the treatment of BM-MSCs, in which 14 miRNAs presented the reverse variation tendency between asthma induction and BM-MSCs transplantation. Mmu-miR-21a-3p, mmu-miR-449c-5p, and mmu-miR-496a-3p were further confirmed to be differently expressed with additional samples and quantitative real-time PCR. With an mRNA PCR array, we identified 19 genes to be involved in the allergy induction and the administration of BM-MSCs. Further target genes analysis revealed that mmu-miR-21a-3p was significantly correlated with the immune regulator activin A receptor, Type IIA (Acvr2a). Mmu-miR-21a-3p had opposite expression with Acvr2a after asthma and BM-MSCs treatment. Acvr2a had binding sites for miR-21a for both mice and human, suggesting that miR-21/Acvr2a axis is conserved between human and mice. Dual-luciferase reporter assay showed that mmu-miR-21a-3p negatively regulated the transcript of Acvr2a. In addition, has-miR-21a inhibitor significantly increased the expression of Acvr2a mRNA in BEAS-2B cells under lipopolysaccharide stimulation. Our results suggest that there were different miRNA and mRNA profiles after asthma induction and BM-MSCs treatment, and the miR-21/Acvr2a axis is an important mechanism for the induction of asthmatic inflammation. PMID:27106170

  12. Endocrine and ovarian responses in water buffalo cows immunized against inhibin and subjected to the Ovsynch protocol

    Abdalla Bahareldin-Ali[1; QIN Guang-sheng[2; GUO Ri-hong[1; Anastasia Tsigkou[3; TAN Zheng-zhun[2; HUANG Jian[2; LI Hui[2; LI Hui[4; SHI Zhen-dan[4

    2015-01-01

    The aim of this study was to investigate the feasibility of stimulating ovarian follicle development in order to improve fertility in water buffalo cows by immunization against inhibin. The experiment was carried out in early summer (May) and included 24 multi-parity crossbred Murrah-Swamp buffaloes that were divided into immunized (n=11) and control (n=13) groups. Each immunized cow was administered with a 2-mL immunogen of mineral oil adjuvant containing 2 mg of recombinant inhibin a-subunit fusion protein. The controls were treated with the adjuvant only. All animals received Ovsynch protocol treatment, starting on the day of the antigen administration, and they were artificially inseminated upon behavioral estrus. As a result, all of the immunized buffaloes generated antibodies against inhibin during the experimental period and had higher plasma concentrations of follicle-stimulating hormone (FSH), activin, and estradiol (E2) related to estrous expression. A higher proportion of immunized animals expressed estrus behavior than did the controls (72% vs. 30%, P〈0.05). On aver- age, inhibin-immunized buffaloes had significantly more large follicles (〉9 mm in diameter) than the controls (mean_+SEM; 1.2+0.1 vs. 0.84+0.1, respectively; P〈0.05)and a slightly higher mean total number of follicles (〉2 mm; 11.4+0.7 vs. 9.0+1.1, respectively; P=0.09) and small (2-4 ram) follicles (8.81+0.6 vs. 6.84+1.0, respectively; P=0.12). A higher percentage of cows ovulated in the immunized group than in the control group (91% (10/11) vs. 54% (7/13), respectively; P〈0.05). Moreover, inhibin-immunized cows had slightly larger corpus luteum (CL) than the controls 9 days after ovulation and significantly higher (P〈0.01) post-ovulation peak plasma progesterone (P4) concentrations. Immunization against inhibin also mar- ginally increased the conception rate 42 days after insemination (45.8% vs

  13. Different gene-expression profiles for the poorly differentiated carcinoma and the highly differentiated papillary adenocarcinoma in mammary glands support distinct metabolic pathways

    Deregulation of Stat5 in the mammary gland of transgenic mice causes tumorigenesis. Poorly differentiated carcinoma and highly differentiated papillary adenocarcinoma tumors evolve. To distinguish the genes and elucidate the cellular processes and metabolic pathways utilized to preserve these phenotypes, gene-expression profiles were analyzed. Mammary tumors were excised from transgenic mice carrying a constitutively active variant of Stat5, or a Stat5 variant lacking s transactivation domain. These tumors displayed either the carcinoma or the papillary adenocarcinoma phenotypes. cRNAs, prepared from each tumor were hybridized to an Affymetrix GeneChip® Mouse Genome 430A 2.0 array. Gene-ontology analysis, hierarchical clustering and biological-pathway analysis were performed to distinct the two types of tumors. Histopathology and immunofluorescence staining complemented the comparison between the tumor phenotypes. The nucleus-cytoskeleton-plasma membrane axis is a major target for differential gene expression between phenotypes. In the carcinoma, stronger expression of genes coding for specific integrins, cytoskeletal proteins and calcium-binding proteins highlight cell-adhesion and motility features of the tumor cells. This is supported by the higher expression of genes involved in O-glycan synthesis, TGF-β, activin, their receptors and Smad3, as well as the Notch ligands and members of the γ-secretase complex that enable Notch nuclear localization. The Wnt pathway was also a target for differential gene expression. Higher expression of genes encoding the degradation complex of the canonical pathway and limited TCF expression in the papillary adenocarcinoma result in membranal accumulation of β-catenin, in contrast to its nuclear translocation in the carcinoma. Genes involved in cell-cycle arrest at G1 and response to DNA damage were more highly expressed in the papillary adenocarcinomas, as opposed to favored G2/M regulation in the carcinoma tumors. At least

  14. Different gene-expression profiles for the poorly differentiated carcinoma and the highly differentiated papillary adenocarcinoma in mammary glands support distinct metabolic pathways

    Barash Itamar

    2008-09-01

    Full Text Available Abstract Background Deregulation of Stat5 in the mammary gland of transgenic mice causes tumorigenesis. Poorly differentiated carcinoma and highly differentiated papillary adenocarcinoma tumors evolve. To distinguish the genes and elucidate the cellular processes and metabolic pathways utilized to preserve these phenotypes, gene-expression profiles were analyzed. Methods Mammary tumors were excised from transgenic mice carrying a constitutively active variant of Stat5, or a Stat5 variant lacking s transactivation domain. These tumors displayed either the carcinoma or the papillary adenocarcinoma phenotypes. cRNAs, prepared from each tumor were hybridized to an Affymetrix GeneChip® Mouse Genome 430A 2.0 array. Gene-ontology analysis, hierarchical clustering and biological-pathway analysis were performed to distinct the two types of tumors. Histopathology and immunofluorescence staining complemented the comparison between the tumor phenotypes. Results The nucleus-cytoskeleton-plasma membrane axis is a major target for differential gene expression between phenotypes. In the carcinoma, stronger expression of genes coding for specific integrins, cytoskeletal proteins and calcium-binding proteins highlight cell-adhesion and motility features of the tumor cells. This is supported by the higher expression of genes involved in O-glycan synthesis, TGF-β, activin, their receptors and Smad3, as well as the Notch ligands and members of the γ-secretase complex that enable Notch nuclear localization. The Wnt pathway was also a target for differential gene expression. Higher expression of genes encoding the degradation complex of the canonical pathway and limited TCF expression in the papillary adenocarcinoma result in membranal accumulation of β-catenin, in contrast to its nuclear translocation in the carcinoma. Genes involved in cell-cycle arrest at G1 and response to DNA damage were more highly expressed in the papillary adenocarcinomas, as opposed to

  15. Chlorogenic acid reduces liver inflammation and fibrosis through inhibition of toll-like receptor 4 signaling pathway

    Highlights: ► Chlorogenic acid decreased serum transaminase level and increased albumin level. ► Chlorogenic acid attenuated CCl4-induced liver collagen deposition. ► Chlorogenic acid ameliorated CCl4-induced inflammatory response. ► Chlorogenic acid inhibited the activation of TLR4/NF-κB signaling in liver. -- Abstract: Chlorogenic acid (CGA) is a type of polyphenol with anti-inflammatory, antioxidant activities. Our previous studies showed CGA could efficiently inhibit carbon tetrachloride (CCl4)-induced liver fibrosis in rats. However, the specific underlying mechanism remains unclear. The aim of this study is to investigate the effects of CGA on liver inflammation and fibrosis induced by CCl4 and whether they are related to inhibition of toll-like receptor 4 (TLR4) signaling pathway. Male Sprague-Dawley (SD) rats were administrated CCl4 together with or without CGA for 8 weeks. Histopathological and biochemical analyses were carried out. The mRNA and protein expression levels of proinflammatory and profibrotic mediators were detected by RT-PCR and Western blot, respectively. The levels of serum proinflammatory cytokines were detected by ELISA. CGA significantly attenuated CCl4-induced liver damage and symptoms of liver fibrosis, accompanied by reduced serum transaminase levels, collagen I and α-smooth muscle actin (α-SMA) expression. As compared with the CCl4-treated group, the expression levels of TLR4, myeloid differentiation factor 88 (MyD88), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were reduced in the treatment group of CCl4 and CGA, whereas bone morphogenetic protein and activin membrane-bound inhibitor (Bambi) expression was increased. CGA also suppressed CCl4 induced nuclear factor-κB (NF-κB) activation. Moreover, the hepatic mRNA expression and serum levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) were significantly increased in CCl4-treated rats and attenuated by co

  16. Stepwise renal lineage differentiation of mouse embryonic stem cells tracing in vivo development

    Highlights: ► We induced renal lineages from mESCs by following the in vivo developmental cues. ► We induced nephrogenic intermediate mesoderm by stepwise addition of factors. ► We induced two types of renal progenitor cells by reciprocal conditioned media. ► We propose the potential role of CD24 for the enrichment of renal lineage cells. -- Abstract: The in vitro derivation of renal lineage progenitor cells is essential for renal cell therapy and regeneration. Despite extensive studies in the past, a protocol for renal lineage induction from embryonic stem cells remains unestablished. In this study, we aimed to induce renal lineages from mouse embryonic stem cells (mESC) by following in vivo developmental stages, i.e., the induction of mesoderm (Stage I), intermediate mesoderm (Stage II) and renal lineages (Stage III). For stage I induction, in accordance with known signaling pathways involved in mesoderm development in vivo, i.e., Nodal, bone morphogenic proteins (BMPs) and Wnt, we found that the sequential addition of three factors, i.e., Activin-A (A), a surrogate for Nodal signaling, during days 0–2, A plus BMP-4 (4) during days 2–4, and A4 plus lithium (L), a surrogate for Wnt signaling, during days 4–6, was most effective to induce the mesodermal marker, Brachyury. For stage II induction, the addition of retinoic acid (R) in the continuous presence of A4L during days 6–8 was most effective to induce nephrogenic intermediate mesodermal markers, such as Pax2 and Lim1. Under this condition, more than 30% of cells were stained positive for Pax2, and there was a concomitant decrease in the expression of non-mesodermal markers. For stage III induction, in resemblance to the reciprocal induction between ureteric bud (UB) and metanephric mesenchyme (MM) during kidney development, we found that the exposure to conditioned media derived from UB and MM cells was effective in inducing MM and UB markers, respectively. We also observed the emergence and

  17. Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells in Phenotypic Screening: A Transforming Growth Factor-β Type 1 Receptor Kinase Inhibitor Induces Efficient Cardiac Differentiation.

    Drowley, Lauren; Koonce, Chad; Peel, Samantha; Jonebring, Anna; Plowright, Alleyn T; Kattman, Steven J; Andersson, Henrik; Anson, Blake; Swanson, Bradley J; Wang, Qing-Dong; Brolen, Gabriella

    2016-02-01

    Several progenitor cell populations have been reported to exist in hearts that play a role in cardiac turnover and/or repair. Despite the presence of cardiac stem and progenitor cells within the myocardium, functional repair of the heart after injury is inadequate. Identification of the signaling pathways involved in the expansion and differentiation of cardiac progenitor cells (CPCs) will broaden insight into the fundamental mechanisms playing a role in cardiac homeostasis and disease and might provide strategies for in vivo regenerative therapies. To understand and exploit cardiac ontogeny for drug discovery efforts, we developed an in vitro human induced pluripotent stem cell-derived CPC model system using a highly enriched population of KDR(pos)/CKIT(neg)/NKX2.5(pos) CPCs. Using this model system, these CPCs were capable of generating highly enriched cultures of cardiomyocytes under directed differentiation conditions. In order to facilitate the identification of pathways and targets involved in proliferation and differentiation of resident CPCs, we developed phenotypic screening assays. Screening paradigms for therapeutic applications require a robust, scalable, and consistent methodology. In the present study, we have demonstrated the suitability of these cells for medium to high-throughput screens to assess both proliferation and multilineage differentiation. Using this CPC model system and a small directed compound set, we identified activin-like kinase 5 (transforming growth factor-β type 1 receptor kinase) inhibitors as novel and potent inducers of human CPC differentiation to cardiomyocytes. Significance: Cardiac disease is a leading cause of morbidity and mortality, with no treatment available that can result in functional repair. This study demonstrates how differentiation of induced pluripotent stem cells can be used to identify and isolate cell populations of interest that can translate to the adult human heart. Two separate examples of phenotypic

  18. The PluriNetWork: an electronic representation of the network underlying pluripotency in mouse, and its applications.

    Anup Som

    Full Text Available BACKGROUND: Analysis of the mechanisms underlying pluripotency and reprogramming would benefit substantially from easy access to an electronic network of genes, proteins and mechanisms. Moreover, interpreting gene expression data needs to move beyond just the identification of the up-/downregulation of key genes and of overrepresented processes and pathways, towards clarifying the essential effects of the experiment in molecular terms. METHODOLOGY/PRINCIPAL FINDINGS: We have assembled a network of 574 molecular interactions, stimulations and inhibitions, based on a collection of research data from 177 publications until June 2010, involving 274 mouse genes/proteins, all in a standard electronic format, enabling analyses by readily available software such as Cytoscape and its plugins. The network includes the core circuit of Oct4 (Pou5f1, Sox2 and Nanog, its periphery (such as Stat3, Klf4, Esrrb, and c-Myc, connections to upstream signaling pathways (such as Activin, WNT, FGF, BMP, Insulin, Notch and LIF, and epigenetic regulators as well as some other relevant genes/proteins, such as proteins involved in nuclear import/export. We describe the general properties of the network, as well as a Gene Ontology analysis of the genes included. We use several expression data sets to condense the network to a set of network links that are affected in the course of an experiment, yielding hypotheses about the underlying mechanisms. CONCLUSIONS/SIGNIFICANCE: We have initiated an electronic data repository that will be useful to understand pluripotency and to facilitate the interpretation of high-throughput data. To keep up with the growth of knowledge on the fundamental processes of pluripotency and reprogramming, we suggest to combine Wiki and social networking software towards a community curation system that is easy to use and flexible, and tailored to provide a benefit for the scientist, and to improve communication and exchange of research results. A

  19. Tsukushi modulates Xnr2, FGF and BMP signaling: regulation of Xenopus germ layer formation.

    Samantha A Morris

    Full Text Available BACKGROUND: Cell-cell communication is essential in tissue patterning. In early amphibian development, mesoderm is formed in the blastula-stage embryo through inductive interactions in which vegetal cells act on overlying equatorial cells. Members of the TGF-beta family such as activin B, Vg1, derrière and Xenopus nodal-related proteins (Xnrs are candidate mesoderm inducing factors, with further activity to induce endoderm of the vegetal region. TGF-beta-like ligands, including BMP, are also responsible for patterning of germ layers. In addition, FGF signaling is essential for mesoderm formation whereas FGF signal inhibition has been implicated in endoderm induction. Clearly, several signaling pathways are coordinated to produce an appropriate developmental output; although intracellular crosstalk is known to integrate multiple pathways, relatively little is known about extracellular coordination. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that Xenopus Tsukushi (X-TSK, a member of the secreted small leucine rich repeat proteoglycan (SLRP family, is expressed in ectoderm, endoderm, and the organizer during early development. We have previously reported that X-TSK binds to and inhibits BMP signaling in cooperation with chordin. We now demonstrate two novel interactions: X-TSK binds to and inhibits signaling by FGF8b, in addition to binding to and enhancement of Xnr2 signaling. This signal integration by X-TSK at the extracellular level has an important role in germ layer formation and patterning. Vegetally localized X-TSK potentiates endoderm formation through coordination of BMP, FGF and Xnr2 signaling. In contrast, X-TSK inhibition of FGF-MAPK signaling blocks ventrolateral mesoderm formation, while BMP inhibition enhances organizer formation. These actions of X-TSK are reliant upon its expression in endoderm and dorsal mesoderm, with relative exclusion from ventrolateral mesoderm, in a pattern shaped by FGF signals. CONCLUSIONS

  20. Hypoxia enhances differentiation of mouse embryonic stem cells into definitive endoderm and distal lung cells.

    Pimton, Pimchanok; Lecht, Shimon; Stabler, Collin T; Johannes, Gregg; Schulman, Edward S; Lelkes, Peter I

    2015-03-01

    We investigated the effects of hypoxia on spontaneous (SP)- and activin A (AA)-induced definitive endoderm (DE) differentiation of mouse embryonic stem cells (mESCs) and their subsequent differentiation into distal pulmonary epithelial cells. SP differentiation for 6 days of mESCs toward endoderm at hypoxia of 1% O2, but not at 3% or 21% (normoxia), increased the expression of Sox17 and Foxa2 by 31- and 63-fold above maintenance culture, respectively. Treatment of mESCs with 20 ng/mL AA for 6 days under hypoxia further increased the expression of DE marker genes Sox17, Foxa2, and Cxcr4 by 501-, 1,483-, and 126-fold above maintenance cultures, respectively. Transient exposure to hypoxia, as short as 24 h, was sufficient to enhance AA-induced endoderm formation. The involvement of hypoxia-inducible factor (HIF)-1α and reactive oxygen species (ROS) in the AA-induced endoderm enrichment was assessed using HIF-1α(-/-) mESCs and the ROS scavenger N-acetylcysteine (NAC). Under SP conditions, HIF-1α(-/-) mESCs failed to increase the expression of endodermal marker genes but rather shifted toward ectoderm. Hypoxia induced only a marginal potentiation of AA-induced endoderm differentiation in HIF-1α(-/-) mESCs. Treatment of mESCs with AA and NAC led to a dose-dependent decrease in Sox17 and Foxa2 expression. In addition, the duration of exposure to hypoxia in the course of a recently reported lung differentiation protocol resulted in differentially enhanced expression of distal lung epithelial cell marker genes aquaporin 5 (Aqp5), surfactant protein C (Sftpc), and secretoglobin 1a1 (Scgb1a1) for alveolar epithelium type I, type II, and club cells, respectively. Our study is the first to show the effects of in vitro hypoxia on efficient formation of DE and lung lineages. We suggest that the extent of hypoxia and careful timing may be important components of in vitro differentiation bioprocesses for the differential generation of distal lung epithelial cells from

  1. MicroRNAs Involved in Asthma After Mesenchymal Stem Cells Treatment.

    Tang, Guan-Nan; Li, Cheng-Lin; Yao, Yin; Xu, Zhi-Bin; Deng, Meng-Xia; Wang, Shu-Yue; Sun, Yue-Qi; Shi, Jian-Bo; Fu, Qing-Ling

    2016-06-15

    Administration of human bone marrow-derived mesenchymal stem cells (BM-MSCs) significantly alleviates allergic airway inflammation. There are no studies that refer to the role of microRNAs (miRNAs) after the BM-MSCs treatment in airway allergic inflammation. We induced a mouse model of asthma and performed the transplantation of BM-MSCs. We analyzed aberrant miRNAs and key immune regulators using both miRNA and messenger RNA (mRNA) polymerase chain reaction (PCR) arrays. We identified that 296 miRNAs were differently expressed after the induction of asthma and/or the treatment of BM-MSCs, in which 14 miRNAs presented the reverse variation tendency between asthma induction and BM-MSCs transplantation. Mmu-miR-21a-3p, mmu-miR-449c-5p, and mmu-miR-496a-3p were further confirmed to be differently expressed with additional samples and quantitative real-time PCR. With an mRNA PCR array, we identified 19 genes to be involved in the allergy induction and the administration of BM-MSCs. Further target genes analysis revealed that mmu-miR-21a-3p was significantly correlated with the immune regulator activin A receptor, Type IIA (Acvr2a). Mmu-miR-21a-3p had opposite expression with Acvr2a after asthma and BM-MSCs treatment. Acvr2a had binding sites for miR-21a for both mice and human, suggesting that miR-21/Acvr2a axis is conserved between human and mice. Dual-luciferase reporter assay showed that mmu-miR-21a-3p negatively regulated the transcript of Acvr2a. In addition, has-miR-21a inhibitor significantly increased the expression of Acvr2a mRNA in BEAS-2B cells under lipopolysaccharide stimulation. Our results suggest that there were different miRNA and mRNA profiles after asthma induction and BM-MSCs treatment, and the miR-21/Acvr2a axis is an important mechanism for the induction of asthmatic inflammation. PMID:27106170

  2. Effect of acetazolamide on cytokines in rats exposed to high altitude.

    Wang, Chang; Wang, Rong; Xie, Hua; Sun, Yuhuan; Tao, Rui; Liu, Wenqing; Li, Wenbin; Lu, Hui; Jia, Zhengping

    2016-07-01

    Acute mountain sickness (AMS) is a dangerous hypoxic illness that can affect humans who rapidly reach a high altitude above 2500m. In the study, we investigated the changes of cytokines induced by plateau, and the acetazolamide (ACZ) influenced the cytokines in rats exposed to high altitude. Wistar rats were divided into low altitude (Control), high altitude (HA), and high altitude+ACZ (22.33mg/kg, Bid) (HA+ACZ) group. The rats were acute exposed to high altitude at 4300m for 3days. The HA+ACZ group were given ACZ by intragastric administration. The placebo was equal volume saline. The results showed that hypoxia caused the heart, liver and lung damage, compared with the control group. Supplementation with ACZ significantly alleviated hypoxia-caused damage to the main organs. Compared with the HA group, the biochemical and blood gas indicators of the HA+ACZ group showed no difference, while some cytokines have significantly changed, such as activin A, intercellular adhesion molecule-1 (ICAM-1, CD54), interleukin-1α,2 (IL-1α,2), l-selectin, monocyte chemotactic factor (MCP-1), CC chemokines (MIP-3α) and tissue inhibitor of matrix metalloproteinase 1 (TIMP-1). Then, the significant difference pro-inflammatory cytokines in protein array were chosen for further research. The protein and mRNA content of pro-inflammatory cytokines MCP-1, interleukin-1β (IL-1β), tumor necrosis factor (TNF-α), interferon-γ (IFN-γ) in rat lung were detected. The results demonstrated that the high altitude affected the body's physiological and biochemical parameters, but, ACZ did not change those parameters of the hypoxia rats. This study found that ACZ could decrease the content of pro-inflammatory cytokines, such as MCP-1, IL-1β, TNF-α and IFN-γ in rat lungs, and, the lung injury in the HA+ACZ group reduced. The mechanism that ACZ protected hypoxia rats might be related to changes in cytokine content. The reducing of the pro-inflammatory cytokines in rat lung might be other

  3. O polimorfismo do gene AKL7 está associado ao risco de síndrome metabólica e à remodelação cardiovascular ALK7 gene polymorphism is associated with metabolic syndrome risk and cardiovascular remodeling

    Wenchao Zhang

    2013-01-01

    Full Text Available FUNDAMENTO: Quinase Tipo Receptor de Ativina 7 (ALK7 é um tipo de receptor I para a superfamília TGF-β e recentemente apresentou ter uma função importante na manutenção de homeostase metabólica. OBJETIVO: Investigar a associação do polimorfismo do gene ALK7 à síndrome metabólica (SMet e remodelação cardiovascular em pacientes com SMet. MÉTODOS: O polimorfismo de nucleotídeo único rs13010956 no gene ALK7 foi genotipado em 351 indivíduos chineses submetidos à ultrassonografia cardíaca e das carótidas. As associações do polimorfismo do gene ALK7 ao fenótipo e aos parâmetros da síndrome metabólica e características ultrassônicas cardiovasculares foram analisadas. RESULTADOS: O polimorfismo de rs13010956 no gene ALK7 foi considerado significativamente relacionado ao fenótipo de SMet em mulheres (p BACKGROUND: Activin receptor-like kinase 7 (ALK7 is a type I receptor for the TGF-β superfamily and has recently been demonstrated to play an important role in the maintenance of metabolic homeostasis. OBJECTIVE: To investigate the association of the ALK7 gene polymorphism with metabolic syndrome (MetS and cardiovascular remodeling in MetS patients. METHODS: The single nucleotide polymorphism rs13010956 in the ALK7 gene was genotyped in 351 Chinese subjects undergoing carotid and cardiac ultrasonography. The associations of the ALK7 gene polymorphism with the MetS phenotype, MetS parameters, and cardiovascular ultrasonic features were analyzed. RESULTS: The rs13010956 polymorphism in the ALK7 gene was found to be significantly associated with the MetS phenotype in females (p < 0.05 and was also significantly associated with blood pressure in the total (p < 0.05 and female populations (p < 0.01. Further analysis revealed that rs13010956 was associated with mean intima-media thickness of the carotid arteries in females (p < 0.05. After control for body mass index, blood pressure, fasting blood glucose, and triglycerides, rs

  4. Fibroblast growth factor-2 induced by enriched environment enhances angiogenesis and motor function in chronic hypoxic-ischemic brain injury.

    Jung Hwa Seo

    Full Text Available This study aimed to investigate the effects of enriched environment (EE on promoting angiogenesis and neurobehavioral function in an animal model of chronic hypoxic-ischemic (HI brain injury. HI brain damage was induced in seven day-old CD-1® mice by unilateral carotid artery ligation and exposure to hypoxia (8% O2 for 90 min. At six weeks of age, the mice were randomly assigned to either EE or standard cages (SC for two months. Rotarod, forelimb-use asymmetry, and grip strength tests were performed to evaluate neurobehavioral function. In order to identify angiogenic growth factors regulated by EE, an array-based multiplex ELISA assay was used to measure the expression in frontal cortex, striatum, and cerebellum. Among the growth factors, the expression of fibroblast growth factor-2 (FGF-2 was confirmed using western blotting. Platelet endothelial cell adhesion molecule-1 (PECAM-1 and α-smooth muscle actin (α-SMA were also evaluated using immunohistochemistry. As a result, mice exposed to EE showed significant improvements in rotarod and ladder walking performances compared to SC controls. The level of FGF-2 was significantly higher in the frontal cortex of EE mice at 8 weeks after treatment in multiplex ELISA and western blot. On the other hand, FGF-2 in the striatum significantly increased at 2 weeks after exposure to EE earlier than in the frontal cortex. Expression of activin A was similarly upregulated as FGF-2 expression pattern. Particularly, all animals treated with FGF-2 neutralizing antibody abolished the beneficial effect of EE on motor performance relative to mice not given anti-FGF-2. Immunohistochemistry showed that densities of α-SMA(+ and PECAM-1(+ cells in frontal cortex, striatum, and hippocampus were significantly increased following EE, suggesting the histological findings exhibit a similar pattern to the upregulation of FGF-2 in the brain. In conclusion, EE enhances endogenous angiogenesis and neurobehavioral functions

  5. El factor de crecimiento transformante beta como blanco terapéutico Transforming growth factor-beta as a therapeutic target

    Francisco Javier Gálvez-Gastélum

    2004-08-01

    Full Text Available El factor de crecimiento transformante beta (TGF-beta es una familia de proteínas que incluye al TGF-beta, activinas y a la proteína morfogénica de hueso (BMP, por sus siglas en inglés, citocinas que son secretadas y se relacionan estructuralmente en diferentes especies de metazoarios. Los miembros de la familia del TGF-beta regulan diferentes funciones celulares como proliferación, apoptosis, diferenciación, migración, y tienen un papel clave en el desarrollo del organismo. El TGF-beta está implicado en varias patologías humanas, incluyendo desórdenes autoinmunes y vasculares, así como enfermedades fibróticas y cáncer. La activación del receptor del TGF-beta propicia su fosforilación en residuos de serina/treonina y dispara la fosforilación de proteínas efectoras intracelulares (smad, que una vez activas se translocan al núcleo para inducir la transcripción de genes blanco, y así regular procesos y funciones celulares. Se están desarrollando novedosas estrategias terapéuticas encaminadas a corregir las alteraciones presentes en patologías que involucran al TGF-beta como actor principal.Transforming growth factor-beta (TGF-beta family members include TGF-beta, activins, and bone morphogenetic proteins (BMP. These proteins are structurally related cytokines secreted in diverse Metazoans. TGF-beta family members regulate cellular functions such as proliferation, apoptosis, differentiation, and migration, and play an important role in organism development. Deregulated TGF-beta family signaling participates in various human pathologies including auto-immune diseases, vascular disorders, fibrotic disease, and cancer. Ligand-induced activation of TGF-beta family receptors with intrinsic serine/threonine kinase activity, triggers phosphorylation of the intracellular effectors of TGF-beta signaling, the Smads proteins. Once these proteins are activated they translocate into the nucleus, where they induce transcription of target

  6. Key role of the endothelial TGF-β/ALK1/endoglin signaling pathway in humans and rodents pulmonary hypertension.

    Gore, Benoît; Izikki, Mohamed; Mercier, Olaf; Dewachter, Laurence; Fadel, Elie; Humbert, Marc; Dartevelle, Philippe; Simonneau, Gerald; Naeije, Robert; Lebrin, Franck; Eddahibi, Saadia

    2014-01-01

    Mutations affecting transforming growth factor-beta (TGF-β) superfamily receptors, activin receptor-like kinase (ALK)-1, and endoglin (ENG) occur in patients with pulmonary arterial hypertension (PAH). To determine whether the TGF-β/ALK1/ENG pathway was involved in PAH, we investigated pulmonary TGF-β, ALK1, ALK5, and ENG expressions in human lung tissue and cultured pulmonary-artery smooth-muscle-cells (PA-SMCs) and pulmonary endothelial cells (PECs) from 14 patients with idiopathic PAH (iPAH) and 15 controls. Seeing that ENG was highly expressed in PEC, we assessed the effects of TGF-β on Smad1/5/8 and Smad2/3 activation and on growth factor production by the cells. Finally, we studied the consequence of ENG deficiency on the chronic hypoxic-PH development by measuring right ventricular (RV) systolic pressure (RVSP), RV hypertrophy, and pulmonary arteriolar remodeling in ENG-deficient (Eng+/-) and wild-type (Eng+/+) mice. We also evaluated the pulmonary blood vessel density, macrophage infiltration, and cytokine expression in the lungs of the animals. Compared to controls, iPAH patients had higher serum and pulmonary TGF-β levels and increased ALK1 and ENG expressions in lung tissue, predominantly in PECs. Incubation of the cells with TGF-β led to Smad1/5/8 phosphorylation and to a production of FGF2, PDGFb and endothelin-inducing PA-SMC growth. Endoglin deficiency protected mice from hypoxic PH. As compared to wild-type, Eng+/- mice had a lower pulmonary vessel density, and no change in macrophage infiltration after exposure to chronic hypoxia despite the higher pulmonary expressions of interleukin-6 and monocyte chemoattractant protein-1. The TGF-β/ALK1/ENG signaling pathway plays a key role in iPAH and experimental hypoxic PH via a direct effect on PECs leading to production of growth factors and inflammatory cytokines involved in the pathogenesis of PAH. PMID:24956016

  7. Identification of plasma microRNA expression profile in radiographic axial spondyloarthritis-a pilot study.

    Magrey, Marina N; Haqqi, Tariq; Haseeb, Abdul

    2016-05-01

    At present, there are no studies that have established a microRNA (miRNA)-based signature profile in patients with radiographic axial spondyloarthritis (rad-axial SpA), and we hypothesized that these patients may have aberrantly expressed circulating miRNAs reflective of underlying disease and inflammation. This study aims to determine the expression profile of miRNAs in plasma of patients with rad-axial SpA and compare it with healthy, age, and sex-matched controls. Fifteen subjects with rad-axial SpA based on ASAS classification criteria and 5 controls were recruited from our local SpA registry. Demographic data were collected and disease activity was measured using Bath Ankylosing Spondylitis Disease Activity Index (BASDI). Peripheral blood samples (5 ml) were obtained from eligible consenting patients and controls. RNA from the plasma was prepared using miRNeasy kit (Qiagen) by a modified protocol. Expression of 175 miRNAs was screened in the plasma of all 15 patients and 5 controls using serum/plasma miRNA PCR arrays (Exiqon Inc. Woburn, MA) essentially following the manufacturer's instructions. Real-time PCR was carried out on StepOne Plus (Applied Biosystems) and the data was extracted and analyzed using ExiGen Enterprise software (MultiD, Göteborg, Sweden). Potential miRNA targets were identified using bioinformatics. ESR and CRP levels were measured by standard laboratory methods. We identified 7 differentially expressed miRNAs (2 upregulated and 5 downregulated). miR-34a, which was overexpressed in patients with rad-axial SpA, was predicted to target BMP-3 mRNA by TargetscanS and PicTar miRNA target algorithms. miR-150 was downregulated in all of the samples analyzed by us using the TaqMan Gene Expression assay. The most repressed miRNA was miR-16 and is predicted to regulate the expression of activin A receptor (ACVR2B), a receptor for growth, and differentiation factor-5 (GDF-5). Our data indicates that (1) patients with axial SpA, as compared to

  8. Activated type I TGFbeta receptor (Alk5) kinase confers enhancedsurvival to mammary epithelial cells and accelerates mammary tumorprogression

    Muraoka-Cook, Rebecca S.; Shin, Incheol; Yi, Jae Youn; Easterly,Evangeline; Barcellos-Hoff, Mary Helen; Yingling, Jonathan M.; Zent, Roy; Arteaga, Carlos L.

    2005-01-02

    The transforming growth factor-betas (TGF{beta}s) are members of a large superfamily of pleiotropic cytokines that also includes the activins and the bone morphogenetic proteins (BMPs). Members of the TGF{beta} family regulate complex physiological processes such cell proliferation, differentiation, adhesion, cell-cell and cell-matrix interactions, motility, and cell death, among others (Massague, 1998). Dysregulation of TGF{beta} signaling contributes to several pathological processes including cancer, fibrosis, and auto-immune disorders (Massague et al., 2000). The TGF{beta}s elicit their biological effects by binding to type II and type I transmembrane receptor serine-threonine kinases (T{beta}RII and T{beta}RI) which, in turn, phosphorylated Smad 2 and Smad 3. Phosphorylated Smad 2/3 associate with Smad 4 and, as a heteromeric complex, translocate to the nucleus where they regulate gene transcription. The inhibitory Smad7 down regulates TGF{beta} signaling by binding to activated T{beta}RI and interfering with its ability to phosphorylate Smad 2/3 (Derynck and Zhang, 2003; Shi and Massague, 2003). Signaling is also regulated by Smad proteolysis. TGF{beta} receptor-mediated activation results in multi-ubiquitination of Smad 2 in the nucleus and subsequent degradation of Smad 2 by the proteasome (Lo and Massague, 1999). Activation of TGF{beta} receptors also induces mobilization of a Smad 7-Smurf complex from the nucleus to the cytoplasm; this complex recognizes the activated receptors and mediates their ubiquitination and internalization via caveolin-rich vesicles, leading to termination of TGF{beta} signaling (Di Guglielmo et al., 2003). Other signal transducers/pathways have been implicated in TGF{beta} actions. These include the extracellular signal-regulated kinase (Erk), c-Jun N-terminal kinase (Jnk), p38 mitogen-activated protein kinase (MAPK), protein phosphatase PP2A, phosphatidylinositol-3 kinase (PI3K), and the family of Rho GTPases [reviewed in

  9. Síndrome de Rendu-Osler-Weber o Telangiectasia Hemorrágica Hereditaria (HHT: Descripción de dos casos y revisión de la literatura Rendu-Osler-Weber Syndrome or Hereditary Hemorrhagic Telangiectasia (HHT: Report of two cases and review of literature

    M Di Cosola

    2005-12-01

    Full Text Available El síndrome de Rendu-Osler-Weber, también conocido como Telangiectasia Hemorrágica Hereditaria, es un desorden vascular cuya prevalencia se estima que afecta a uno de cada 5-8.000 individuos. Se trata de una alteración vascular displásica multisistémica de carácter autosómico dominante, asociada a dos genes, HHT1 y HHT2, que determinan mutaciones en el gen endoglina (ENG, localizado en el cromosoma 9, y por mutaciones en el gen ALK1, localizado en el cromosoma 12. El 95% de los afectados presentan epitaxis recurrentes, con edad media de comienzo a los 12 años e incremento progresivo del sangrado nasal en frecuencia y severidad. Generalmente se presenta asociado a malformaciones arteriovenosas pulmonares y/o múltiples telangiectasias en sistema gastrointestinal, manos, cara, cavidad oral y afectación de otras vísceras. El diagnóstico inicial de HHT continúa basándose en la presencia de signos clínicos compatibles junto con la historia familiar. Para el diagnóstico molecular es necesario secuenciar las regiones codificantes completas de los genes ALK1 y ENG. El test genético no es positivo en el 100% de los pacientes con diagnóstico clínico de HHT, siendo posible no encontrar en un mismo grupo familiar la mutación común. Se revisa la literatura y se presentan dos casos con manifestaciones orales en lengua y labio inferior, sin otras lesiones sistémicas asociadas, tratada en nuestro departamento por problemas odontológicos.Rendu-Osler-Weber syndrome, also known as __Hereditary Hemorrhagic Telangiectasia (HHT, is a vascular disorder with a prevalence estimated in one in 5-8.000 individuals. It is a dominant autosomic transmission determining multisystemic vascular dysplasia, which has been mapped to two genes, HHT1 and HHT2, determined by mutations of the endoglin (ENG gene, localized to the chromosome 9, and by mutations of the activin receptorlike kinase 1 (ALK1 gene, localized on the chromosome 12. The 95% of affected

  10. Reproducción Estacional en el Macho Seasonal Reproduction in the Male

    Eduardo Bustos Obregón

    2012-12-01

    long or short days, according to proximal factors, mainly the light photoperiod which triggers photoneuroendocrine changes. These involve photoreceptors, a clock and the neuroendocrine apparatus. Gonadotropins (GT, gonadal development, negative feed back of GT done by sexual steroid, the intervention of the retino-hypothalamic fibers, and suprachiasmatics nucleus as well as melatonine secretion, intervene in this regulation. Of importance is the pulse generator of the hypothalamus (medial eminence and its control of adenohypofisis for the secretion of LH and FSH. In the testis interstitial endocrine cells (Leydig(secreting testosterone and also estrogens, establish a feed back loop with the adenohypofisis and hypothalamus in a circuit of long, short and ultra short circuit with neuroendocrine neurons playing a key role. Sustentocyte intratubular (Sertoliare also important for their trophic, mechanic and metabolic relationships with the germ cells, and the secretions of activine and inhibine, which triggers or inhibits FSH secretions respectively. Sustentocyte also secrete many specifics proteins among which ABP (Androgen Binding Protein is important because it concentrates 100 fold testosterone in the testicular parenchyme. Tonic secretion by pulses of GT, mainly LH, is due to hypothalamic activity with the control generation of these pulses by puberty. Reproduction in the stallion and the bull are presented as examples.

  11. Expression profiling of skeletal muscle following acute and chronic β2-adrenergic stimulation: implications for hypertrophy, metabolism and circadian rhythm

    Lynch Gordon S

    2009-09-01

    Full Text Available Abstract Background Systemic administration of β-adrenoceptor (β-AR agonists has been found to induce skeletal muscle hypertrophy and significant metabolic changes. In the context of energy homeostasis, the importance of β-AR signaling has been highlighted by the inability of β1-3-AR-deficient mice to regulate energy expenditure and susceptibility to diet induced obesity. However, the molecular pathways and gene expression changes that initiate and maintain these phenotypic modulations are poorly understood. Therefore, the aim of this study was to identify differential changes in gene expression in murine skeletal muscle associated with systemic (acute and chronic administration of the β2-AR agonist formoterol. Results Skeletal muscle gene expression (from murine tibialis anterior was profiled at both 1 and 4 hours following systemic administration of the β2-AR agonist formoterol, using Illumina 46K mouse BeadArrays. Illumina expression profiling revealed significant expression changes in genes associated with skeletal muscle hypertrophy, myoblast differentiation, metabolism, circadian rhythm, transcription, histones, and oxidative stress. Differentially expressed genes relevant to the regulation of muscle mass and metabolism (in the context of the hypertrophic phenotype were further validated by quantitative RT-PCR to examine gene expression in response to both acute (1-24 h and chronic administration (1-28 days of formoterol at multiple timepoints. In terms of skeletal muscle hypertrophy, attenuation of myostatin signaling (including differential expression of myostatin, activin receptor IIB, phospho-Smad3 etc was observed following acute and chronic administration of formoterol. Acute (but not chronic administration of formoterol also significantly induced the expression of genes involved in oxidative metabolism, including hexokinase 2, sorbin and SH3 domain containing 1, and uncoupling protein 3. Interestingly, formoterol

  12. Osmotic Induction of Angiogenic Growth Factor Expression in Human Retinal Pigment Epithelial Cells.

    Moritz Veltmann

    Full Text Available Although systemic hypertension is a risk factor of age-related macular degeneration, antihypertensive medications do not affect the risk of the disease. One condition that induces hypertension is high intake of dietary salt resulting in increased blood osmolarity. In order to prove the assumption that, in addition to hypertension, high osmolarity may aggravate neovascular retinal diseases, we determined the effect of extracellular hyperosmolarity on the expression of angiogenic cytokines in cultured human retinal pigment epithelial (RPE cells.Hyperosmolarity was induced by the addition of 100 mM NaCl or sucrose to the culture medium. Hypoxia and oxidative stress were induced by the addition of the hypoxia mimetic CoCl2 and H2O2, respectively. Alterations in gene expression were determined with real-time RT-PCR. Secretion of bFGF was evaluated by ELISA. Cell viability was determined by trypan blue exclusion. Nuclear factor of activated T cell 5 (NFAT5 expression was knocked down with siRNA. Hyperosmolarity induced transcriptional activation of bFGF, HB-EGF, and VEGF genes, while the expression of other cytokines such as EGF, PDGF-A, TGF-β1, HGF, and PEDF was not or moderately altered. Hypoxia induced increased expression of the HB-EGF, EGF, PDGF-A, TGF-β1, and VEGF genes, but not of the bFGF gene. Oxidative stress induced gene expression of HB-EGF, but not of bFGF. The hyperosmotic expression of the bFGF gene was dependent on the activation of p38α/β MAPK, JNK, PI3K, and the transcriptional activity of NFAT5. The hyperosmotic expression of the HB-EGF gene was dependent on the activation of p38α/β MAPK, ERK1/2, and JNK. The hyperosmotic expression of bFGF, HB-EGF, and VEGF genes was reduced by inhibitors of TGF-β1 superfamily activin receptor-like kinase receptors and the FGF receptor kinase, respectively. Hyperosmolarity induced secretion of bFGF that was reduced by inhibition of autocrine/paracrine TGF-β1 signaling and by NFAT5 si

  13. Stepwise renal lineage differentiation of mouse embryonic stem cells tracing in vivo development

    Nishikawa, Masaki, E-mail: masakiwestriver@gmail.com [Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA (United States); University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA 91343 (United States); Yanagawa, Naomi [Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA (United States); University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA 91343 (United States); Kojima, Nobuhiko [Institute of Industrial Science (IIS), University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Yuri, Shunsuke; Hauser, Peter V.; Jo, Oak D.; Yanagawa, Norimoto [Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA (United States); University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA 91343 (United States)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer We induced renal lineages from mESCs by following the in vivo developmental cues. Black-Right-Pointing-Pointer We induced nephrogenic intermediate mesoderm by stepwise addition of factors. Black-Right-Pointing-Pointer We induced two types of renal progenitor cells by reciprocal conditioned media. Black-Right-Pointing-Pointer We propose the potential role of CD24 for the enrichment of renal lineage cells. -- Abstract: The in vitro derivation of renal lineage progenitor cells is essential for renal cell therapy and regeneration. Despite extensive studies in the past, a protocol for renal lineage induction from embryonic stem cells remains unestablished. In this study, we aimed to induce renal lineages from mouse embryonic stem cells (mESC) by following in vivo developmental stages, i.e., the induction of mesoderm (Stage I), intermediate mesoderm (Stage II) and renal lineages (Stage III). For stage I induction, in accordance with known signaling pathways involved in mesoderm development in vivo, i.e., Nodal, bone morphogenic proteins (BMPs) and Wnt, we found that the sequential addition of three factors, i.e., Activin-A (A), a surrogate for Nodal signaling, during days 0-2, A plus BMP-4 (4) during days 2-4, and A4 plus lithium (L), a surrogate for Wnt signaling, during days 4-6, was most effective to induce the mesodermal marker, Brachyury. For stage II induction, the addition of retinoic acid (R) in the continuous presence of A4L during days 6-8 was most effective to induce nephrogenic intermediate mesodermal markers, such as Pax2 and Lim1. Under this condition, more than 30% of cells were stained positive for Pax2, and there was a concomitant decrease in the expression of non-mesodermal markers. For stage III induction, in resemblance to the reciprocal induction between ureteric bud (UB) and metanephric mesenchyme (MM) during kidney development, we found that the exposure to conditioned media derived from UB and MM cells was

  14. EXPERIENCIA CON SILDENAFIL ORAL EN PACIENTES HEMODIALIZADOS: ESTUDIO MULTICENTRO Experience with pos Sildenafil in hemodyalized patients: Multicentric study

    Jorge F. Pérez-Oliva Díaz

    2008-12-01

    Full Text Available La Disfunción Sexual Eréctil (DSE está presente en la Enfermedad Renal Crónica Terminal, siendo de naturaleza multifactorial el empleo del Sildenafil, documentado en diversos trabajos internacionales. Este estudio tuvo como objetivo evaluar la evolución de la DSE, según el Indice Internacional de Función Eréctil-5 (IIFE-5, después del tratamiento con Sildenafil, así como su eficacia y seguridad en pacientes en hemodiálisis por vez primera en nuestro país. Se trata de un estudio cuasi-experimental, no controlado en 22 pacientes, previo consentimiento informado, con edad entre 18-60 años, hemodiálisis por más de 6 meses y pareja sexual (femenina estable de más de 6 meses. Se excluyeron enfermos con antecedentes personales de infarto miocardio, angina, anemia severa y hepatopatía. Se administró 50 mgs de Sildenafil (Activin, 2 veces por semana, durante 4 semanas, al final de las cuales se volvió a aplicar el IIFE-5, reclasificándose la DSE; además se recogieron los eventos adversos señalados en la literatura en relación con el fármaco en estudio. Como resultados, obtuvimos: Edad 43,5 ± 6,2años, enfermedad causal: diabetes 36,4%, hipertensión 31,8%, tiempo en hemodiálisis de 5,8 ± 4,2 años. Sildenafil fue asociado a la mejoría de la puntuación en los cinco dominios explorados con el IIFE-5. Se observó la mejoría de la DSE en 81,8% del total de los enfermos. Los diabéticos, seguidos de los hipertensos, presentaron mayor severidad de la DSE que el resto de los pacientes, así como menor mejoría global del puntaje al final del tratamiento (pEnd-stage renal failure patients on hemodialysis are frequently affected by erectile dysfunction. The aim of this study was to evaluate the efficacy and safety of oral sildenafil to treat erectile dysfunction in this patients on hemodialysis. METHODS: non randomized, non-controlled study of oral sildenafil (50 mg administered two fold per week, one month as required in HD patients

  15. Pulmonary arterial hypertension.

    Montani, David; Günther, Sven; Dorfmüller, Peter; Perros, Frédéric; Girerd, Barbara; Garcia, Gilles; Jaïs, Xavier; Savale, Laurent; Artaud-Macari, Elise; Price, Laura C; Humbert, Marc; Simonneau, Gérald; Sitbon, Olivier

    2013-01-01

    Pulmonary arterial hypertension (PAH) is a chronic and progressive disease leading to right heart failure and ultimately death if untreated. The first classification of PH was proposed in 1973. In 2008, the fourth World Symposium on PH held in Dana Point (California, USA) revised previous classifications. Currently, PH is devided into five subgroups. Group 1 includes patients suffering from idiopathic or familial PAH with or without germline mutations. Patients with a diagnosis of PAH should systematically been screened regarding to underlying mutations of BMPR2 gene (bone morphogenetic protein receptor type 2) or more rarely of ACVRL1 (activine receptor-like kinase type 1), ENG (endogline) or Smad8 genes. Pulmonary veno occusive disease and pulmonary capillary hemagiomatosis are individualized and designated as clinical group 1'. Group 2 'Pulmonary hypertension due to left heart diseases' is divided into three sub-groups: systolic dysfonction, diastolic dysfonction and valvular dysfonction. Group 3 'Pulmonary hypertension due to respiratory diseases' includes a heterogenous subgroup of respiratory diseases like PH due to pulmonary fibrosis, COPD, lung emphysema or interstitial lung disease for exemple. Group 4 includes chronic thromboembolic pulmonary hypertension without any distinction of proximal or distal forms. Group 5 regroup PH patients with unclear multifactorial mechanisms. Invasive hemodynamic assessment with right heart catheterization is requested to confirm the definite diagnosis of PH showing a resting mean pulmonary artery pressure (mPAP) of ≥ 25 mmHg and a normal pulmonary capillary wedge pressure (PCWP) of ≤ 15 mmHg. The assessment of PCWP may allow the distinction between pre-capillary and post-capillary PH (PCWP > 15 mmHg). Echocardiography is an important tool in the management of patients with underlying suspicion of PH. The European Society of Cardiology and the European Respiratory Society (ESC-ERS) guidelines specify its role

  16. 大鼠脂肪干细胞体外诱导分化为胰岛样细胞%Rat adipose derived stem cells differentiate into islet-like cells in vitro

    房艳; 刘雷; 宋慧娟; 单伟; 曾瑞霞; 李德华

    2011-01-01

    Objective: To explore reliable methods to induce rat adipose derived stem cells (ADSCs) into islet-like cells. Methods: Rat ADSCs dissociated from inguinal adipose tissue were cultured, and identified by morphological features and specific surface antigens by using flow cytometry. Three different reagents, including nicotinamide (N), activin (A) and glucagon-like pep-tide 1 (G), were used to induce the ADSCs towards islet-like cells with four different combinations: NA. NG, AG, and NAG. Besides of morphological change, the secretion of insulin and C-peptide was detected by ELISA assay, and zinc-ion was observed by di-thizone staining. Additionally, the expressions of genes related (3 cell were analyzed using RT-PCR. Results: The rat ADSCs were long spindle in shape, just like fibroblast, and positive against CD44, weak positive to CD49d, and negative to CD31 and CD106. After being induced by AG and NAG for 14 days, the cells became to round and their refraction was enhanced. One week later, the cell incubated with NAG were found to be as islet-like cell clusters with positive to dithizone staining. And, the detectable insulin and C peptide of these cells were statistically higher than those in other treated cells. The expression of pancreatic and duodenal homeobox 1 (PDX1) gene was detected only in AG and NAG treated cells after induction being maintained for 14 days. The expressions of glucose transporter 2 (GLUT 2), insulin 2, insulin 1 and PDX1 were detectable in AG and NAG group on day 21. However, expression levels of these genes in AG treated cells were significantly lower than those in cells induced by NAG, which were similar to those in normal islet of rats. Conclusion: The rat ADSCs possesses stem cell properties, and can be differentiated into functional islet-like cells with the presence of NAG.%目的:探索大鼠脂肪干细胞(ADSCs)向胰岛样细胞诱导分化的诱导方案.方法:取SD大鼠腹股沟区脂肪组织,酶消化法分离培养ADSCs,