WorldWideScience

Sample records for active zone assembly

  1. Study of the Physics of Neutron Active Zones by Active and Passive Surfaces Methods. Experimental Verification by Means of a Subcritical Assembly

    For the purpose of studying a heterogeneous multiplying medium, the author proposes dividing it into a number of homogeneous regions having the diffusion and absorption properties of the pure moderator. The fuel elements, represented by portions of active surfaces of zero thickness, constitute the separation surfaces of these sub-regions. Externally, the system is bounded by passive surfaces devoid of fissionable nuclei. The theory of diffusion involving several groups of neutrons is applied to each sub-region, while the productive and absorbing effects of fissionable materials are represented by the conditions on the active surfaces. To apply the method, it is necessary to know certain parameters of the behaviour of an active surface in a known flux. The moderator group constants are presumed to be known. The author shows that, theoretically, a single exponential experiment, carried out with a very small number of rods, should suffice to determine these parameters experimentally. The facility used for these experiments is a subcritical assembly; the fuel is uranium oxide containing 1.8% uranium235; a water moderator is used. Measurements made for a series of different configurations confirm that the parameters sought depend solely on the nature of the fuel. The results are used to forecast the behaviour of a subcritical and a critical lattice. In the first case the calculations are verified directly by experiment; in the second, they are checked by comparison with the published results. (author)

  2. Investigation of the maximal values of the fuel surface temperatures in the active zone of the Dalat research reactor for operating core configuration of 89 fuel assembles and fundamental core configuration of 94 fuel assembles at limited power level of 550 kW

    Calculation for defining the maximal values of fuel surface temperature in active zone of the Dalat nuclear research reactor (DNRR) is one of the important items in Safety Analyses for the reactor. The operating core configuration of 89 VVR-M2 fuel assemblies and fundamental core configuration of 94 fuel assemblies are used. The reactor is on limited power level of 550 kW. The calculated results for different operating core configuration and fundamental core configuration of 94 fuel assemblies and the comparison with the experimental data received on the DNRR and other data are reasonable. (author)

  3. Serpentine in active subduction zones

    Reynard, Bruno

    2013-09-01

    Serpentinization is a key phenomenon for understanding the geodynamics of subduction zones in the 10-200 km depth range. Serpentines are a major water carrier, and their rheological properties have a strong influence on deformation partitioning and seismicity at depths. I review experimental investigations that have been conducted on serpentines, with emphasis on the large body of data acquired over the past decade. Determinations of physical properties at the pressure and temperature conditions of subductions allow interpreting geophysical data in active subduction in terms of mineralogy and petrology, and to link the presence of serpentinites with deformation and fluid circulation. The fluid budget can be partially constrained from geophysical data. Elasticity data provide a quantitative basis for mapping serpentinization in the mantle wedge and slab from seismic tomography. Anisotropy suggests the existence of thin serpentinite channels above the plate interface, that account for mechanical decoupling inferred from down-dip limit of the seismogenic zone and heat flow. Strain-rate dependent rheology of antigorite serpentine is consistent with stable deformation of this thin layer or channel over timescales ranging from those of the seismic cycle to those of thermal equilibration and exhumation of high-pressure rocks, and with the geological record of subduction-related deformation. Circulation of serpentinizing fluids depends on the permeability structure, and is imaged by electrical conductivity tomography. It could be controlled by fracturing in the undeformed cold nose of the mantle wedge, and by plastic deformation along the plate interface. Fluid migration mechanisms are similar to those inferred from petrological and geochemical data on exhumed serpentinites. Estimation of the fluid budget associated with serpentine formation will rely on numerical simulations for which coupling of kinetics of hydration and dehydration at scales ranging from grain size up

  4. Laser Zone Annealing - Accelerated Route to Self-Assembled Nanostructures

    Majewski, Pawel; Yager, Kevin; Rahman, Atikur; Black, Charles

    We present Laser Zone Annealing - a novel technique of accelerated self-assembly of block copolymer thin films utilizing laser light. In our approach, the laser beam, focused to a narrow line, is rastered across the polymer film coated on the light-absorbing substrate, inducing rapid and highly localized temperature transients in the film. By coupling our method with soft-shear, we demonstrate monolithic alignment of various cylinder-forming block copolymers over extremely short timescales. We utilize the aligned block copolymer films as templates for inorganic nanomaterials pattering. After delivery of inorganic precursors via aqueous or gaseous route, the polymer matrix is ashed leading to extremely well-ordered arrays of inorganic, metallic or semiconducting nanowires. Subsequently, we demonstrate how more complex nanostructures can be created with LZA including multilayered nanomeshes with symmetries beyond the conventional motifs accessible by native block copolymers. We investigate a perspective use of the inorganic arrays as transparent conductors or chemical sensors and characterize their anisotropic electro-optical properties. Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

  5. Bayes diagnostic system to locate the defected fuel assembly zone on BN-600 reactor

    This paper presents the method, the algorithm and the software designed to locate the zone of BN-600 reactor core containing defected fuel assembly. The BN-600 reactor is a sodium cooled fast reactor operated at Beloyarskaya NPP (Russia). The location method is based on comparison between pre-calculated and measured activity of reference radioactive nuclides in the blanket and in the primary sodium coolant. The computing algorithm is built upon the Bayesian statistical decision-making strategy under uncertainty conditions. The software environment is Dyalog APL. (authors)

  6. Super-resolution microscopy of the synaptic active zone

    Markus Sauer; Kittel, Robert J.

    2015-01-01

    Brain function relies on accurate information transfer at chemical synapses. At the presynaptic active zone (AZ) a variety of specialised proteins are assembled to complex architectures, which set the basis for speed, precision and plasticity of synaptic transmission. Calcium (Ca2+) channels are pivotal for the initiation of excitation-secretion coupling and, correspondingly, capture a central position at the AZ. Combining quantitative functional studies with modelling approaches has prov...

  7. Bond Assembly FOD Zones - A Procedure for Assuring Acceptable Adhesion

    Evans, Kurt; Wurth, Laura; Mitchell, Mark

    2009-01-01

    Rocket motor components are primarily assembled by adhesion. a) For example, the RSRM (Reusable Solid Rocket Motor - part of the Space Shuttle Boosters) system contains 10,000 sq ft of bondline area. b) Rocket motors contain a variety of adhesive/substrate bond systems c) Bond system performance requirements also vary. To assemble reliable components, ATK Space Systems and customers invest substantial resources to the study of bond assembly processes. a) Surface and adhesion science; b) Adhesive chemistry; c) Process parameters; d) Contamination effects.

  8. Photovoltaic concentrator assembly with optically active cover

    Plesniak, Adam P

    2014-01-21

    A photovoltaic concentrator assembly that includes a housing that defines an internal volume and includes a rim, wherein the rim defines an opening into the internal volume, a photovoltaic cell positioned in the internal volume, and an optical element that includes an optically active body and a flange extending outward from the body, wherein the flange is sealingly engaged with the rim of the housing to enclose the internal volume.

  9. Synaptic Vesicle Proteins and Active Zone Plasticity

    Kittel, Robert J.; Heckmann, Manfred

    2016-01-01

    Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone (AZ). The complex molecular architecture of AZs mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of AZs vary significantly, even for a given connection. Thus, there appear to be distinct AZ states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the AZ. The protein-rich cytomatrix at the active zone (CAZ) provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1) and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and AZ states, which has heretofore received little attention.

  10. 78 FR 7395 - Foreign-Trade Zone 129-Bellingham, WA; Notification of Proposed Production Activity; T.C. Trading...

    2013-02-01

    ... Foreign-Trade Zones Board Foreign-Trade Zone 129--Bellingham, WA; Notification of Proposed Production Activity; T.C. Trading Company, Inc. (Eyeglass Assembly and Kitting); Blaine, WA The Port of Bellingham, grantee of FTZ 129, submitted a notification of proposed production activity on behalf of T.C....

  11. Assembly for activity distribution measurement of wires

    Activation method is used as a basic method for the neutron fluence measurement in the LVR-15 research reactor. Activation foils have usually been used as the monitors. At present an assembly for the measurement of linear specific activity distribution of wires has been developed. The assembly allows the activation wires to be used for neutron fluence measurement mainly in the reactor core. More detailed results of linear distribution and simpler handling with radioactive material are the advantages of activation wires compared with foils. More difficult calibration and processing of measured data are disadvantages on the other hand. The assembly consists of a spectrometer with HPGe detector for gamma activity measurement, a Pb shielding collimator around the detector, an outer Pb shielding, a transporting equipment and a controlling PC. The diameter of the collimator is 20 mm. The wire from Cu, Fe, Ni or Co material with diameter of 0.3 mm to 1.0 mm is placed on a support Al stick with diameter of 6 mm. After irradiation the stick with the wire is placed in the transporting equipment above the Pb shielding collimator and measured. Response function for the point radiation source on the line, where the wire is placed during the measurement, is the main characteristic of the assembly. The response function also depends on the energy of gamma radiation. The design of the Pb shielding collimator is described and the measured response functions for a few point radiation sources are given in the paper. During the measurement the stick with the wire moves above the collimator aperture and the peak count rates depending on position of wire with step of 10 mm to 50 mm are measured. As the response function for point source has not the ideal rectangular distribution (i.e. constant positive value above the collimator aperture and zero value for points out of the aperture) the evaluation of activities is not so simple as for measurement of individual samples. In the paper the

  12. Shape Restoration by Active Self-Assembly

    D. Arbuckle

    2005-01-01

    Full Text Available Shape restoration is defined as the problem of constructing a desired, or goal, solid shape Sg by growing an initial solid Si, which is a subset of the goal but is otherwise unknown. This definition attempts to capture abstractly a situation that often arises in the physical world when a solid object loses its desired shape due to wear and tear, corrosion or other phenomena. For example, if the top of the femur becomes distorted, the hip joint no longer functions properly and may have to be replaced surgically. Growing it in place back to its original shape would be an attractive alternative to replacement. This paper presents a solution to the shape restoration problem by using autonomous assembly agents (robots that self-assemble to fill the volume between Sg and Si. If the robots have very small dimension (micro or nano, the desired shape is approximated with high accuracy. The assembly agents initially execute a random walk. When two robots meet, they may exchange a small number of messages. The robot behavior is controlled by a finite state machine with a small number of states. Communication contact models chemical communication, which is likely to be the medium of choice for robots at the nanoscale, while small state and small messages are limitations that also are expected of nanorobots. Simulations presented here show that swarms of such robots organize themselves to achieve shape restoration by using distributed algorithms. This is one more example of an interesting geometric problem that can be solved by the Active Self-Assembly paradigm introduced in previous papers by the authors.

  13. Super-resolution microscopy of the synaptic active zone

    Markus Sauer

    2015-01-01

    Full Text Available Brain function relies on accurate information transfer at chemical synapses. At the presynaptic active zone (AZ a variety of specialised proteins are assembled to complex architectures, which set the basis for speed, precision and plasticity of synaptic transmission. Calcium (Ca2+ channels are pivotal for the initiation of excitation-secretion coupling and, correspondingly, capture a central position at the AZ. Combining quantitative functional studies with modelling approaches has provided predictions of channel properties, numbers and even positions on the nanometre scale. However, elucidating the nanoscopic organisation of the surrounding protein network requires direct ultrastructural access. Without this information, knowledge of molecular synaptic structure-function relationships remains incomplete. Recently, super-resolution microscopy techniques have begun to enter the neurosciences. These approaches combine high spatial resolution with the molecular specificity of fluorescence microscopy. Here, we discuss how super-resolution microscopy can be used to obtain information on the organisation of AZ proteins.

  14. Understanding the ordering mechanisms of self-assembled nanostructures of block copolymers during zone annealing.

    Cong, Zhinan; Zhang, Liangshun; Wang, Liquan; Lin, Jiaping

    2016-03-21

    A theoretical method based on dynamic version of self-consistent field theory is extended to investigate directed self-assembly behaviors of block copolymers subjected to zone annealing. The ordering mechanisms and orientation modulation of microphase-separated nanostructures of block copolymers are discussed in terms of sweep velocity, wall preference, and Flory-Huggins interaction parameter. The simulated results demonstrate that the long-range ordered nanopatterns are achieved by lowering the sweep velocity of zone annealing due to the incorporation of templated ordering of block copolymers. The surface enrichment by one of the two polymer species induces the orientation modulation of defect-free nanostructures through finely tuning the composition of block copolymers and the preference of walls. Additionally, the Flory-Huggins interaction parameters of block copolymers in the distinct regions are main factors to design the zone annealing process for creating the highly ordered nanostructures with single orientation. PMID:27004895

  15. Understanding the ordering mechanisms of self-assembled nanostructures of block copolymers during zone annealing

    Cong, Zhinan; Zhang, Liangshun; Wang, Liquan; Lin, Jiaping

    2016-03-01

    A theoretical method based on dynamic version of self-consistent field theory is extended to investigate directed self-assembly behaviors of block copolymers subjected to zone annealing. The ordering mechanisms and orientation modulation of microphase-separated nanostructures of block copolymers are discussed in terms of sweep velocity, wall preference, and Flory-Huggins interaction parameter. The simulated results demonstrate that the long-range ordered nanopatterns are achieved by lowering the sweep velocity of zone annealing due to the incorporation of templated ordering of block copolymers. The surface enrichment by one of the two polymer species induces the orientation modulation of defect-free nanostructures through finely tuning the composition of block copolymers and the preference of walls. Additionally, the Flory-Huggins interaction parameters of block copolymers in the distinct regions are main factors to design the zone annealing process for creating the highly ordered nanostructures with single orientation.

  16. 78 FR 56655 - Foreign-Trade Zone (FTZ) 203-Moses Lake, Washington; Notification of Proposed Production Activity...

    2013-09-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE Foreign-Trade Zones Board Foreign-Trade Zone (FTZ) 203--Moses Lake, Washington; Notification of Proposed Production Activity; AREVA Inc. (Fuel Rod Assemblies); Richland, Washington The Moses Lake Public...

  17. Presynaptic active zone density during development and synaptic plasticity.

    Gwenaëlle L Clarke

    2012-02-01

    Full Text Available Neural circuits transmit information through synapses, and the efficiency of synaptic transmission is closely related to the density of presynaptic active zones, where synaptic vesicles are released. The goal of this review is to highlight recent insights into the molecular mechanisms that control the number of active zones per presynaptic terminal (active zone density during developmental and stimulus-dependent changes in synaptic efficacy. At the neuromuscular junctions (NMJs, the active zone density is preserved across species, remains constant during development, and is the same between synapses with different activities. However, the NMJ active zones are not always stable, as exemplified by the change in active zone density during acute experimental manipulation or as a result of aging. Therefore, a mechanism must exist to maintain its density. In the central nervous system (CNS, active zones have restricted maximal size, exist in multiple numbers in larger presynaptic terminals, and maintain a constant density during development. These findings suggest that active zone density in the CNS is also controlled. However, in contrast to the NMJ, active zone density in the CNS can also be increased, as observed in hippocampal synapses in response to synaptic plasticity. Although the numbers of known active zone proteins and protein interactions have increased, less is known about the mechanism that controls the number or spacing of active zones. The following molecules are known to control active zone density and will be discussed herein: extracellular matrix laminins and voltage-dependent calcium channels, amyloid precursor proteins, the small GTPase Rab3, an endocytosis mechanism including synaptojanin, cytoskeleton protein spectrins and β-adducin, and a presynaptic web including spectrins. The molecular mechanisms that organize the active zone density are just beginning to be elucidated.

  18. Parallel Computation Using Active Self-assembly

    Chen, Moya; Xin, Doris; Woods, Damien

    2013-01-01

    We study the computational complexity of the recently proposed nubot model of molecular-scale self-assembly. The model generalises asynchronous cellular automata to have non-local movement where large assemblies of molecules can be pushed and pulled around, analogous to millions of molecular motors in animal muscle effecting the rapid movement of macroscale arms and legs. We show that the nubot model is capable of simulating Boolean circuits of polylogarithmic depth and polynomial size, in on...

  19. Active zone stability:insights from fly neuromuscular junction

    Xiaolin Tian; Chunlai Wu

    2015-01-01

    The presynaptic active zone is a dynamic structure that orchestrates regulated release of neurotrans-mitters. Developmental and aging processes, and changes in neuronal network activity can all modulate the number, size and composition of active zone and thereby synaptic efifcacy. However, very little is known about the mechanism that controls the structural stability of active zone. By study-ing a model synapse, theDrosophila neuromuscular junction, our recent work shed light on how two scaffolding proteins at the active zone regulate active zone stability by promoting a localized dephos-phorylation event at the nerve terminal. Here we discuss the major insights from our ifndings and their implications for future research.

  20. Transient assembly of active materials fueled by a chemical reaction

    Boekhoven, Job; Hendriksen, Wouter E.; Koper, Ger J. M.; Eelkema, Rienk; van Esch, Jan H.

    2015-09-01

    Fuel-driven self-assembly of actin filaments and microtubules is a key component of cellular organization. Continuous energy supply maintains these transient biomolecular assemblies far from thermodynamic equilibrium, unlike typical synthetic systems that spontaneously assemble at thermodynamic equilibrium. Here, we report the transient self-assembly of synthetic molecules into active materials, driven by the consumption of a chemical fuel. In these materials, reaction rates and fuel levels, instead of equilibrium composition, determine properties such as lifetime, stiffness, and self-regeneration capability. Fibers exhibit strongly nonlinear behavior including stochastic collapse and simultaneous growth and shrinkage, reminiscent of microtubule dynamics.

  1. 77 FR 73038 - Agency Information Collection Activities: Foreign Assembler's Declaration

    2012-12-07

    ... previously published in the Federal Register (77 FR 59206) on September 26, 2012, allowing for a 60-day... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Foreign Assembler's... accordance with the Paperwork Reduction Act: Foreign Assembler's Declaration (with Endorsement by...

  2. Mixer assembly for a gas turbine engine having a pilot mixer with a corner flame stabilizing recirculation zone

    Dai, Zhongtao (Inventor); Cohen, Jeffrey M. (Inventor); Fotache, Catalin G. (Inventor)

    2012-01-01

    A mixer assembly for a gas turbine engine is provided, including a main mixer, and a pilot mixer having an annular housing in which a corner is formed between an aft portion of the housing and a bulkhead wall in which a corner recirculation zone is located to stabilize and anchor the flame of the pilot mixer. The pilot mixer can further include features to cool the annular housing, including in the area of the corner recirculation zone.

  3. The Architecture of the Adhesive Apparatus of Cultured Osteoclasts: From Podosome Formation to Sealing Zone Assembly

    Luxenburg, Chen; Geblinger, Dafna; Klein, Eugenia; Anderson, Karen; Hanein, Dorit; Geiger, Benny; Addadi, Lia

    2007-01-01

    Background Osteoclasts are bone-degrading cells, which play a central role in physiological bone remodeling. Unbalanced osteoclast activity is largely responsible for pathological conditions such as osteoporosis. Osteoclasts develop specialized adhesion structures, the so-called podosomes, which subsequently undergo dramatic reorganization into sealing zones. These ring-like adhesion structures, which delimit the resorption site, effectively seal the cell to the substrate forming a diffusion ...

  4. Assembly and actuation of nanomaterials using active biomolecules.

    Spoerke, Erik David; Thayer, Gayle Echo; de Boer, Maarten Pieter; Bunker, Bruce Conrad; Liu, Jun; Corwin, Alex David; Gaudioso, Jennifer Marie; Sasaki, Darryl Yoshio; Boal, Andrew Kiskadden; Bachand, George David; Trent, Amanda M.; Bachand, Marlene; Rivera, Susan B.; Koch, Steven John

    2005-11-01

    The formation and functions of living materials and organisms are fundamentally different from those of synthetic materials and devices. Synthetic materials tend to have static structures, and are not capable of adapting to the functional needs of changing environments. In contrast, living systems utilize energy to create, heal, reconfigure, and dismantle materials in a dynamic, non-equilibrium fashion. The overall goal of the project was to organize and reconfigure functional assemblies of nanoparticles using strategies that mimic those found in living systems. Active assembly of nanostructures was studied using active biomolecules to drive the organization and assembly of nanocomposite materials. In this system, kinesin motor proteins and microtubules were used to direct the transport and interactions of nanoparticles at synthetic interfaces. In addition, the kinesin/microtubule transport system was used to actively assemble nanocomposite materials capable of storing significant elastic energy. Novel biophysical measurement tools were also developed for measuring the collective force generated by kinesin motor proteins, which will provide insight on the mechanical constraints of active assembly processes. Responsive reconfiguration of nanostructures was studied in terms of using active biomolecules to mediate the optical properties of quantum dot (QD) arrays through modulation of inter-particle spacing and associated energy transfer interaction. Design rules for kinesin-based transport of a wide range of nanoscale cargo (e.g., nanocrystal quantum dots, micron-sized polymer spheres) were developed. Three-dimensional microtubule organizing centers were assembled in which the polar orientation of the microtubules was controlled by a multi-staged assembly process. Overall, a number of enabling technologies were developed over the course of this project, and will drive the exploitation of energy-driven processes to regulate the assembly, disassembly, and dynamic

  5. The architecture of the adhesive apparatus of cultured osteoclasts: from podosome formation to sealing zone assembly.

    Chen Luxenburg

    Full Text Available BACKGROUND: Osteoclasts are bone-degrading cells, which play a central role in physiological bone remodeling. Unbalanced osteoclast activity is largely responsible for pathological conditions such as osteoporosis. Osteoclasts develop specialized adhesion structures, the so-called podosomes, which subsequently undergo dramatic reorganization into sealing zones. These ring-like adhesion structures, which delimit the resorption site, effectively seal the cell to the substrate forming a diffusion barrier. The structural integrity of the sealing zone is essential for the cell ability to degrade bone, yet its structural organization is poorly understood. PRINCIPAL FINDINGS: Combining high-resolution scanning electron microscopy with fluorescence microscopy performed on the same sample, we mapped the molecular architecture of the osteoclast resorptive apparatus from individual podosomes to the sealing zone, at an unprecedented resolution. Podosomes are composed of an actin-bundle core, flanked by a ring containing adhesion proteins connected to the core via dome-like radial actin fibers. The sealing zone, hallmark of bone-resorbing osteoclasts, consists of a dense array of podosomes communicating through a network of actin filaments, parallel to the substrate and anchored to the adhesive plaque domain via radial actin fibers. SIGNIFICANCE: The sealing zone of osteoclasts cultured on bone is made of structural units clearly related to individual podosomes. It differs from individual or clustered podosomes in the higher density and degree of inter-connectivity of its building blocks, thus forming a unique continuous functional structure connecting the cell to its extracellular milieu. Through this continuous structure, signals reporting on the substrate condition may be transmitted to the whole cell, modulating the cell response under physiological and pathological conditions.

  6. Triggered tremors beneath the seismogenic zone of an active fault zone, Kyushu, Japan

    Miyazaki, Masahiro; Matsumoto, Satoshi; Shimizu, Hiroshi

    2015-11-01

    Non-volcanic tremors were induced by the surface waves of the 2012 Sumatra earthquake around the Hinagu fault zone in Kyushu, Japan. We inferred from dense seismic observation data that the hypocenters of these tremors were located beneath the seismogenic zone of the Hinagu fault. Focal mechanisms of the tremors were estimated using S-wave polarization angles. The estimated focal mechanisms show similarities to those of shallow earthquakes in this region. In addition, one of the nodal planes of the focal mechanisms is almost parallel to the strike direction of the Hinagu fault. These observations suggest that the tremors were triggered at the deeper extension of the active fault zone under stress conditions similar to those in the shallower seismogenic region. A low-velocity anomaly beneath the hypocentral area of the tremors might be related to the tremor activity.

  7. Quantitative analysis on tectonic deformation of active rupture zones

    JIANG Zai-sen; NIU An-fu; WANG Min; LI Kai-wu; FANG Ying; ZHANG Xi; ZHANG Xiao-liang

    2005-01-01

    Based on the regional GPS data of high spatial resolution, we present a method of quantitative analysis on the tectonic deformation of active rupture zones in order to predict the location of forthcoming major earthquakes. Firstly we divide the main fault area into certain deformation units, then derive the geometric deformation and relative dislocation parameters of each unit and finally estimate quantitatively the slip and strain rates in each segment of the rupture zone. Furthermore, by comparing the consistency of deformation in all segments of the whole rupture zone, we can determine the possible anomalous segments as well as their properties and amplitudes. In analyzing the eastern boundaries of Sichuan-Yunnan block with the GPS velocity data for the period of 1991~2001, we have discovered that the Mianning-Ningnan-Dongchuan segment on the Zemuhe-Xiaojiang fault zone is relatively locked and the left-lateral shear strain rate here is higher.

  8. Experimental research of local hydrodynamic characteristics of fast reactor fuel assembly peripheral zone. 4

    Measurements were made of shear stress distribution and the velocity field of an aerodynamic model of the fast breeder reactor fuel assembly periphery. The effect was studied of a 50% disturbance of the geometry of a corner rod in a fuel assembly as against normal geometry. The coefficient of friction in the channel was assessed in dependence on the Reynolds number. The distribution of shear stresses in the walls of the fuel assembly and on spacers is graphically represented. (M.D.)

  9. Where Does Metonymy Stop? Senses, Facets, and Active Zones

    Paradis, Carita

    2004-01-01

    The purpose of this article is to propose a constrained lexical semantic definition of referential metonymy within a model of meaning as ontology and construal. Due to their various types of lexical-referential pairings, 3 types of construals that are frequently referred to as metonymy in the cognitive literature are distinguished as metonymization, facetization, and zone activation. Metonymization involves the use of a lexical item to evoke the sense of something that is not conventionally l...

  10. In-core detector activation rate for a PWR assembly

    The in-core detector system is the principal source of information for determining relative assembly powers, and maximum fuel rod powers in a reactor core. The detector signals are used in conjunction with pre-calculated factors, and appropriate normalizations, to obtain measured power values. Considerable reliance is placed on the accuracy of in-core detector inferred power distributions in reactor operations, and in the verification of calculational methods. The objective of this study was to compare results from standard design codes for the in-core detector activation rate (and the fission rate distribution in an assembly), to results obtained from a detailed calculation performed with a continuous energy Monte Carlo program with ENDF/B-V nuclear data

  11. Active assembly for large-scale manufacturing of integrated nanostructures.

    Spoerke, Erik David; Bunker, Bruce Conrad; Orendorff, Christopher J.; Bachand, George David; Hendricks, Judy K.; Matzke, Carolyn M.

    2007-01-01

    Microtubules and motor proteins are protein-based biological agents that work cooperatively to facilitate the organization and transport of nanomaterials within living organisms. This report describes the application of these biological agents as tools in a novel, interdisciplinary scheme for assembling integrated nanostructures. Specifically, selective chemistries were used to direct the favorable adsorption of active motor proteins onto lithographically-defined gold electrodes. Taking advantage of the specific affinity these motor proteins have for microtubules, the motor proteins were used to capture polymerized microtubules out of suspension to form dense patterns of microtubules and microtubule bridges between gold electrodes. These microtubules were then used as biofunctionalized templates to direct the organization of functionalized nanocargo including single-walled carbon nanotubes and gold nanoparticles. This biologically-mediated scheme for nanomaterials assembly has shown excellent promise as a foundation for developing new biohybrid approaches to nanoscale manufacturing.

  12. Pair interaction of catalytically active colloids: from assembly to escape

    Sharifi-Mood, Nima; Mozaffari, Ali; Córdova-Figueroa, Ubaldo M.

    2016-07-01

    The dynamics and pair trajectory of two self-propelled colloids are reported. The autonomous motions of the colloids are due to a catalytic chemical reaction taking place asymmetrically on their surfaces that generates a concentration gradient of interactive solutes around the particles and actuate particle propulsion. We consider two spherical particles with symmetric catalytic caps extending over the local polar angles $\\theta^1_{cap}$ and $\\theta^2_{cap}$ from the centers of active sectors in an otherwise quiescent fluid. A combined analytical-numerical technique was developed to solve the coupled mass transfer equation and the hydrodynamics in the Stokes flow regime. The ensuing pair trajectory of the colloids is controlled by the reacting coverages $\\theta^j_{cap}$ and their initial relative orientation with respect to each other. Our analysis indicates two possible scenarios for pair trajectories of catalytic self-propelled particles: either the particles approach, come into contact and assemble or they interact and move away from each other (escape). For arbitrary motions of the colloids, it is found that the direction of particle rotations is the key factor in determining the escape or assembly scenario. Based on the analysis, a phase diagram is sketched for the pair trajectory of the catalytically active particles as a function of active coverages and their initial relative orientations. We believe this study has important implications in elucidation of collective behaviors of auotophoretically self-propelled colloids.

  13. Geophysical equipment meant for complex studies in geodynamic active zones

    The main purpose of the geophysical equipment is to investigate the electromagnetic (EM) and electric phenomena induced by the crustal and subcrustal processes, especially by the natural and anthropic hazard (seismic active and landslides zones, land collapses in the mining areas with salt dissolution etc.). The equipment's applicability includes electromagnetic (10 kHz to 4096 sec (0.2x10-3 Hz)) and DC observations having the following major objectives: (1) to investigate the shallow and deep structures in order to develop the adequate geodynamic models, (2) to draw up the EM tomographs at different levels to point out the active fault, the geometry of the relic slab in seismo-active zones, caverns with salt dissolution in mining areas, landslide's surfaces, etc., (3) to establish optimum placement and geoelectric pattern (type of geological structure and its strike direction, the standard deviation of the detectable parameters in non-seismic conditions), so that a regular monitoring of some EM parameters be accomplished, simultaneously with seismic events, with the aim to reveal the earthquakes' precursory parameters. (authors)

  14. 50 CFR Table 8 to Part 679 - Harvest Zone Codes for Use With Vessel Activity Reports

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Harvest Zone Codes for Use With Vessel... ECONOMIC ZONE OFF ALASKA Pt. 679, Table 8 Table 8 to Part 679—Harvest Zone Codes for Use With Vessel Activity Reports Harvest Zone Description A1 BSAI EEZ off Alaska A2 GOA EEZ off Alaska B State waters...

  15. Biomimetic assembly and activation of [FeFe]-hydrogenases.

    Berggren, G; Adamska, A; Lambertz, C; Simmons, T R; Esselborn, J; Atta, M; Gambarelli, S; Mouesca, J-M; Reijerse, E; Lubitz, W; Happe, T; Artero, V; Fontecave, M

    2013-07-01

    Hydrogenases are the most active molecular catalysts for hydrogen production and uptake, and could therefore facilitate the development of new types of fuel cell. In [FeFe]-hydrogenases, catalysis takes place at a unique di-iron centre (the [2Fe] subsite), which contains a bridging dithiolate ligand, three CO ligands and two CN(-) ligands. Through a complex multienzymatic biosynthetic process, this [2Fe] subsite is first assembled on a maturation enzyme, HydF, and then delivered to the apo-hydrogenase for activation. Synthetic chemistry has been used to prepare remarkably similar mimics of that subsite, but it has failed to reproduce the natural enzymatic activities thus far. Here we show that three synthetic mimics (containing different bridging dithiolate ligands) can be loaded onto bacterial Thermotoga maritima HydF and then transferred to apo-HydA1, one of the hydrogenases of Chlamydomonas reinhardtii algae. Full activation of HydA1 was achieved only when using the HydF hybrid protein containing the mimic with an azadithiolate bridge, confirming the presence of this ligand in the active site of native [FeFe]-hydrogenases. This is an example of controlled metalloenzyme activation using the combination of a specific protein scaffold and active-site synthetic analogues. This simple methodology provides both new mechanistic and structural insight into hydrogenase maturation and a unique tool for producing recombinant wild-type and variant [FeFe]-hydrogenases, with no requirement for the complete maturation machinery. PMID:23803769

  16. Experimental testing of diagnostic assemblies in non-active conditions

    Pre-reactor nonactive tests are necessary for obtaining information on diagnostic assemblies behaviour, required for licencing the assembly complex charge into the reactor. The individual tests consist of measuring sensor checks, the testing proper using a water loop, pressure testing, measuring sensor check after the water loop tests, and of determining the frequency spectrum of the natural oscillations of a fuel bundle, the assembly jacket and the assembly as a whole within a 200 Hz range. A nonactive stand for testing diagnostic assemblies, its specifications and functions are described. The programme and the results are shown of testing a diagnostic assembly using the nonactive big water loop stand. (M.S.)

  17. How to Make an Active Zone: Unexpected Universal Functional Redundancy between RIMs and RIM-BPs.

    Acuna, Claudio; Liu, Xinran; Südhof, Thomas C

    2016-08-17

    RIMs and RIM-binding proteins (RBPs) are evolutionary conserved multidomain proteins of presynaptic active zones that are known to recruit Ca(2+) channels; in addition, RIMs perform well-recognized functions in tethering and priming synaptic vesicles for exocytosis. However, deletions of RIMs or RBPs in mice cause only partial impairments in various active zone functions and have no effect on active zone structure, as visualized by electron micrographs, suggesting that their contribution to active zone functions is limited. Here, we show in synapses of the calyx of Held in vivo and hippocampal neurons in culture that combined, but not individual, deletions of RIMs and RBPs eliminate tethering and priming of synaptic vesicles, deplete presynaptic Ca(2+) channels, and ablate active zone complexes, as analyzed by electron microscopy of chemically fixed synapses. Thus, RBPs perform unexpectedly broad roles at the active zone that together with those of RIMs are essential for all active zone functions. PMID:27537484

  18. Nanoscale assembly processes revealed in the nacroprismatic transition zone of Pinna nobilis mollusc shells

    Hovden, Robert; Wolf, Stephan E.; Holtz, Megan E.; Marin, Frédéric; Muller, David A.; Estroff, Lara A.

    2015-12-01

    Intricate biomineralization processes in molluscs engineer hierarchical structures with meso-, nano- and atomic architectures that give the final composite material exceptional mechanical strength and optical iridescence on the macroscale. This multiscale biological assembly inspires new synthetic routes to complex materials. Our investigation of the prism-nacre interface reveals nanoscale details governing the onset of nacre formation using high-resolution scanning transmission electron microscopy. A wedge-polishing technique provides unprecedented, large-area specimens required to span the entire interface. Within this region, we find a transition from nanofibrillar aggregation to irregular early-nacre layers, to well-ordered mature nacre suggesting the assembly process is driven by aggregation of nanoparticles (~50-80 nm) within an organic matrix that arrange in fibre-like polycrystalline configurations. The particle number increases successively and, when critical packing is reached, they merge into early-nacre platelets. These results give new insights into nacre formation and particle-accretion mechanisms that may be common to many calcareous biominerals.

  19. 77 FR 26737 - Foreign-Trade Zone 235-Lakewood, NJ: Notification of Proposed Production Activity; Cosmetic...

    2012-05-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE Foreign-Trade Zones Board Foreign-Trade Zone 235--Lakewood, NJ: Notification of Proposed Production Activity; Cosmetic Essence Innovations, LLC (Fragrance Bottling); Holmdel, NJ Cosmetic Essence...

  20. Antibacterial activities of fluorescent nano assembled triphenylamine phosphonium ionic liquids.

    Brunel, Frédéric; Lautard, Christelle; Garzino, Frédéric; Giorgio, Suzanne; Raimundo, Jean M; Bolla, Jean M; Camplo, Michel

    2016-08-01

    Staphylococcus aureus, a Gram positive coccal bacterium is a major cause of nosocomial infection. We report the synthesis of new triphenylamine phosphonium ionic liquids which are able to self-assemble into multiwall nanoassemblies and to reveal a strong bactericidal activity (MIC=0.5mg/L) for Gram positive bacteria (including resistant strains) comparable to that of standard antibiotics. Time kill, metabolism and fluorescence confocal microscopy studies show a quasi-instantaneously penetration of the nanoassemblies inside the bacteria resulting of a rapid blocking (30min) of their proliferation. As confirmed by rezasurin reduction monitoring, these compounds strongly affect the bacterial metabolism and a Gram positive versus Gram negative selectivity is clearly observed. These fluorescent phosphonium ionic liquid might constitute a useful tool for both translocation studies and to tackle infectious diseases related to the field of implantology. PMID:27287371

  1. The relations between seismically active and electrically conductive zones

    A. I. Ruzajkin

    1997-06-01

    Full Text Available The higher electrical conductivity of rocks in the middle and lower parts of the Earth's crust is generally related to the presence of fluids in rocks. The metamorphic processes of dehydration contribute to release of fluids, above all, water; these processes are also responsible for an increase in rock porosity and fracturing. These processes influence the stressed-strained state of the medium under specific conditions. A probable mechanism of earthquake source formation on the contact of blocks with different rates of dehydration and, consequently, different electrical conductivity is discussed. The spatial positions of electrically conductive and seismically active zones are correlated and definite relations between them are found with special reference to the vast area of the Northern Tien Shan within Kirgizstan and some other regions. The greatest concentration of earthquake sources is observed mainly near the contacts between blocks with contrastingly different electrical conductivity values and on sites with a sharp drop in conductive-layer depths.

  2. Seismically active fracture zones in the continental wedge above the Andean subduction zone in the Arica Elbow region

    Vaněk, Jiří; Hanuš, Václav; Slancová, Alice; Špičák, Aleš

    2007-01-01

    Roč. 9, č. 1-4 (2007), s. 39-57. ISSN 0163-3171 R&D Projects: GA ČR GA205/95/0264; GA AV ČR IAA3012805 Grant ostatní: UNESCO(FR) IGCP project No. 345 Institutional research plan: CEZ:AV0Z30120515 Source of funding: V - iné verejné zdroje Keywords : continental lithosphere * Wadati-Benioff zone * seismically active zones Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  3. Contemporary approaches to studying and mapping of active water exchange zone of ground water

    Moraru, C. Ye

    2016-03-01

    The article deals with a zone of ground water active exchange. New principles of the zone study and mapping under the platform hydrogeological condition are discussed. The assessment and distribution techniques are suggested for the active water exchange zone under the condition of hydrogeological parameterization uncertainty. The efficiency and significance of the suggested techniques are proved using the example of ground water in the southwest of Black Sea artesian basin.

  4. A Proposition for Geodetic Recording of Active Fault Zones

    Ladislav Placer

    2007-12-01

    Full Text Available Establishing recent displacements along faults is an important and delicate task. Larger faults are accompanied by broader fault zones that require a specificapproachtogeodeticmeasurements of fault block displacements. The vector of fault block displacements, or resultant, is a vector sum of differential displacements within the fault zone. For the purposes of recording the displacements we propose the stabilization of a geodetic network of points positioned in fault blocks outside the fault zone, whereby the displacements would be manifested in the deformation of the network. The resultant displacement vector can then be derived from the latter deformation, and from that, the dip and strike of the fault zone as well as the extent of the displacement.

  5. A Proposition for Geodetic Recording of Active Fault Zones

    Ladislav Placer; Božo Koler

    2007-01-01

    Establishing recent displacements along faults is an important and delicate task. Larger faults are accompanied by broader fault zones that require a specific approach to geodetic measurements of fault block displacements. The vector of fault block displacements, or resultant, is a vector sum of differential displacements within the fault zone. For the purposes of recording the displacements we propose the stabilization of a geodetic network of points positioned in fault blocks...

  6. Design report for core assemblies of KNK II/2: Mark II assemblies of the test zone (Central position)2.4 and 2.5

    The report describes the Mark II assemblies for the central position of the second core of KNK II and their behavior during the operation period of 455 equivalent full-power days. The tasks and the design of the assemblies and their individual components are described, and the criteria, methods and results of their design are presented. With the help of generally valid standards for strength criteria the capacitance of the assemblies and their components is evidenced, and the fulfilment of the design criteria is shown

  7. Synaptophysin 1 Clears Synaptobrevin 2 from the Presynaptic Active Zone to Prevent Short-Term Depression

    Rajit Rajappa

    2016-02-01

    Full Text Available Release site clearance is an important process during synaptic vesicle (SV recycling. However, little is known about its molecular mechanism. Here we identify self-assembly of exocytosed Synaptobrevin 2 (Syb2 and Synaptophysin 1 (Syp1 by homo- and hetero-oligomerization into clusters as key mechanisms mediating release site clearance for preventing cis-SNARE complex formation at the active zone (AZ. In hippocampal neurons from Syp1 knockout mice, neurons expressing a monomeric Syb2 mutant, or after acute block of the ATPase N-ethylmaleimide-sensitive factor (NSF, responsible for cis-SNARE complex disassembly, we found strong frequency-dependent short-term depression (STD, whereas retrieval of Syb2 by compensatory endocytosis was only affected weakly. Defects in Syb2 endocytosis were stimulus- and frequency-dependent, indicating that Syp1 is not essential for Syb2 retrieval, but for its efficient clearance upstream of endocytosis. Our findings identify an SV protein as a release site clearance factor.

  8. De novo transcriptome assembly and analysis of differentially expressed genes of two barley genotypes reveal root-zone-specific responses to salt exposure.

    Hill, Camilla Beate; Cassin, Andrew; Keeble-Gagnère, Gabriel; Doblin, Monika S; Bacic, Antony; Roessner, Ute

    2016-01-01

    Plant roots are the first organs sensing and responding to salinity stress, manifested differentially between different root types, and also at the individual tissue and cellular level. High genetic diversity and the current lack of an assembled map-based sequence of the barley genome severely limit barley research potential. We used over 580 and 600 million paired-end reads, respectively, to create two de novo assemblies of a barley landrace (Sahara) and a malting cultivar (Clipper) with known contrasting responses to salinity. Generalized linear models were used to statistically access spatial, treatment-related, and genotype-specific responses. This revealed a spatial gene expression gradient along the barley root, with more differentially expressed transcripts detected between different root zones than between treatments. The root transcriptome also showed a gradual transition from transcripts related to sugar-mediated signaling at the root meristematic zone to those involved in cell wall metabolism in the elongation zone, and defense response-related pathways toward the maturation zone, with significant differences between the two genotypes. The availability of these additional transcriptome reference sets will serve as a valuable resource to the cereal research community, and may identify valuable traits to assist in breeding programmes. PMID:27527578

  9. Root Zone Microbial Populations, Urease Activities, and Purification Efficiency for a Constructed Wetland

    LIANG Wei; WU Zhen-Bin; ZHAN Fa-Cui; DENG Jia-Qi

    2004-01-01

    In order to investigate the effects of microorganisms and their urease activities in macrophytic root zones on pollutant removal, four small-scale plots (SSPs) of vertical/reverse-vertical flow wetlands were set up to determine: a) the relationship between the abundance of microorganisms in the root zones and water purification efficiency; and b) the relationship between urease activities in the root zones and pollutant removal in a constructed wetland system. Total numbers of the microbial population (bacteria, fungi, and actinomyces) along with urease activities in the macrophytic root zones were determined. In addition, the relationships between microbial populations and urease activities as well as the wastewater purification efficiencies of total phosphorus (TP), total Kjeldahl nitrogen (TKN), biochemical oxygen demand in 5 days (BOD5), and chemical oxygen demand (COD) were also analyzed. The results showed that there was a highly significant positive correlation (r = 0.9772, P < 0.01) between the number of bacteria in the root zones and BOD5 removal efficiency and a significant negative correlation (r = -0.9092, P < 0.05) between the number of fungi and the removal efficiency of TKN. Meanwhile, there was a significant positive correlation (r -- 0.8830, P < 0.05) between urease activities in the root zones and the removal efficiency of TKN. Thus, during wastewater treatment in a constructed wetland system,microorganism and urease activities in the root zones were very important factors.

  10. Development of self-assembling nanowires containing electronically active oligothiophenes

    Tsai, Wei-Wen

    This dissertation discusses the development of conductive one-dimensional nanowires from self-assembling oligothiophene molecules. Self-assembly has been demonstrated to be a promising alternative approach towards high performance, solution processable, and low-cost organic electronics. One of the many challenges in this field is the control of supramolecular morphologies of ordered structures containing pi-conjugated moieties. This research demonstrated several successful strategies to achieve self assembly of conductive nanowires using synergistic interactions combining pi stacking and hydrogen bonding. The first approach used was to develop a hairpin-shaped sexithiophene molecule, which features two arms of the conjugated structure. The diamidocyclohexyl headgroup of this molecule successfully directs the self-assembly from hydrogen bonding among the amides, forming high-aspect-ratio one-dimensional nanowires with well-defined diameters of 3.0 +/- 0.3 nm. The molecular orientation in the nanostructures promotes formation of sexithiophene H and J aggregates that facilitate efficient charge transport. Organic field-effect transistors were fabricated to reveal improved intrinsic hole mobility from films of the nanostructures, 3.46 x 10-6 cm2V-1s-1, which is one order of magnitude higher than films cast from unassembled molecules. Bulk heterojunction solar cells were developed from this molecule and fullerenes utilizing solution-phase fabrication methods. Intimate mix of the molecule and phenyl-C61-butyric acid methyl ester creates structured interfaces for efficient exciton splitting. The charge carrier mobilities of each material are improved by self-assembly in solution and thermal-energy assisted phase separation.The photovoltaic devices achieved the highest open-circuit voltage of 0.62 V, short-circuit current of 1.79 mA/cm2, fill factor of 35%, and power conversion efficiency of 0.48%. Another strategy to one-dimensional nanowires studied here involved the

  11. A highly active SERS sensing substrate: core–satellite assembly of gold nanorods/nanoplates

    Regiospecific core–satellite assembly of gold nanoplates (AuNPs)/gold nanorods (AuNRs) can be fabricated via ss-DNA hybridization. SERS behavior of the DNA driven assembly has been explored from inducing transition between para-ATP and DMAB through plasmon-assisted catalysis, suggesting that the core–satellite assembly can be utilized as highly active optical substrate. Moreover, a Raman label tagged thymine-rich DNA functionalized AuNRs/AuNPs assembly can be employed as in situ SERS sensing of mercury ions at the ultrasensitive ppt level, which indicates that the core–satellite assembly is appropriate as a versatile SERS substrate for the application of optical chemical or biosensing. (paper)

  12. Directed self-assembly of microcomponents enabled by laser-activated bubble latching.

    Jiang, Li; Erickson, David

    2011-09-01

    This article introduces a method for microscale assembly using laser-activated bubble latching. The technique combines the advantages of directed fluidic assembly and surface tension-driven latching to create arbitrarily complex and irregular structures with unique properties. The bubble latches, generated through the laser degradation of the tile material, are created on the fly, reversibly linking components at user-determined locations. Different phases of latching bubble growth are analyzed, and shear force calculations show that each bubble is able to support a tensile force of approximately 0.33 μN. We demonstrate that by exploiting the compressibility of bubbles, assembled objects can be made to switch between rigid and flexible states, facilitating component assembly and transport. Furthermore, we show reconfiguration capabilities through the use of bubble hinging. This novel hybrid approach to the assembly of microscale components offers significant user control while retaining a simplistic design environment. PMID:21793555

  13. Auroral Electrojet Index Designed to Provide a Global Measure, Hourly Intervals, of Auroral Zone Magnetic Activity

    National Oceanic and Atmospheric Administration, Department of Commerce — The Auroral Electrojet (AE) index is designed to provide a global quantitative measure of auroral zone magnetic activity produced by enhanced ionospheric currents...

  14. Group Problem Solving as a Zone of Proximal Development activity

    Brewe, Eric

    2006-12-01

    Vygotsky described learning as a process, intertwined with development, which is strongly influenced by social interactions with others that are at differing developmental stages.i These interactions create a Zone of Proximal Development for each member of the interaction. Vygotsky’s notion of social constructivism is not only a theory of learning, but also of development. While teaching introductory physics in an interactive format, I have found manifestations of Vygotsky’s theory in my classroom. The source of evidence is a paired problem solution. A standard mechanics problem was solved by students in two classes as a homework assignment. Students handed in the homework and then solved the same problem in small groups. The solutions to both the group and individual problem were assessed by multiple reviewers. In many cases the group score was the same as the highest individual score in the group, but in some cases, the group score was higher than any individual score. For this poster, I will analyze the individual and group scores and focus on three groups solutions and video that provide evidence of learning through membership in a Zone of Proximal Development. Endnotes i L. Vygotsky -Mind and society: The development of higher mental processes. Cambridge, MA: Harvard University Press. (1978).

  15. ZPR-6 assembly 7 high {sup 240} PU core : a cylindrical assemby with mixed (PU, U)-oxide fuel and a central high {sup 240} PU zone.

    Lell, R. M.; Schaefer, R. W.; McKnight, R. D.; Tsiboulia, A.; Rozhikhin, Y.; Nuclear Engineering Division; Inst. of Physics and Power Engineering

    2007-10-01

    demonstration-size LMFBRs. As a benchmark, ZPR-6/7 was devoid of many 'real' reactor features, such as simulated control rods and multiple enrichment zones, in its reference form. Those kinds of features were investigated experimentally in variants of the reference ZPR-6/7 or in other critical assemblies in the Demonstration Reactor Benchmark Program.

  16. The toponymy of communal activity: Anglo-Saxon assembly sites and their functions

    Baker, John

    2014-01-01

    The paper builds on earlier discussion of the multiple functions of medieval judicial assembly sites, providing a comprehensive evaluation of relevant English hundred-names, and making reference to associated microtoponymy. While religious, military, commercial, and recreational activities may all have occurred at assembly-sites, it can be hard to delineate the evidence so clearly along these lines, and attempts to do so may be anachronistic in some instances; nevertheless, the analysis of di...

  17. Geomorphic Indices in the Assessment of Tectonic Activity in Forearc of the Active Mexican Subduction Zone

    Gaidzik, K.; Ramirez-Herrera, M. T.

    2015-12-01

    Rapid development of GIS techniques and constant advancement of digital elevation models significantly improved the accuracy of extraction of information on active tectonics from landscape features. Numerous attempts were made to quantitatively evaluate recent tectonic activity using GIS and DEMs, and a set of geomorphic indices (GI), however these studies focused mainly on sub-basins or small-scale areal units. In forearc regions where crustal deformation is usually large-scale and do not concentrate only along one specific fault, an assessment of the complete basin is more accurate. We present here the first attempt to implement thirteen GI in the assessment of active tectonics of a forearc region of an active convergent margin using the entire river basins. The GIs were divided into groups: BTAI - basin geomorphic indices (reflecting areal erosion vs. tectonics) and STAI - stream geomorphic indices (reflecting vertical erosion vs. tectonics). We calculated selected indices for 9 large (> 450 km2) drainage basins. Then we categorized the obtained results of each index into three classes of relative tectonic activity: 1 - high, 2 - moderate, and 3 - low. Finally we averaged these classes for each basin to determine the tectonic activity level (TAI). The analysis for the case study area, the Guerrero sector at the Mexican subduction zone, revealed high tectonic activity in this area, particularly in its central and, to a lesser degree, eastern part. This pattern agrees with and is supported by interpretation of satellite images and DEM, and field observations. The results proved that the proposed approach indeed allows identification and recognition of areas witnessing recent tectonic deformation. Moreover, our results indicated that, even though no large earthquake has been recorded in this sector for more than 100 years, the area is highly active and may represent a seismic hazard for the region.

  18. Viral capsid assembly as a model for protein aggregation diseases: Active processes catalyzed by cellular assembly machines comprising novel drug targets.

    Marreiros, Rita; Müller-Schiffmann, Andreas; Bader, Verian; Selvarajah, Suganya; Dey, Debendranath; Lingappa, Vishwanath R; Korth, Carsten

    2015-09-01

    therapeutics. A key basis for the commonality between viral and neurodegenerative disease aggregation is a broader definition of assembly as more than just simple aggregation, particularly suited for the crowded cytoplasm. The assembly machines are collections of proteins that catalytically accelerate an assembly reaction that would occur spontaneously but too slowly to be relevant in vivo. Being an enzyme complex with a functional allosteric site, appropriated for a non-physiological purpose (e.g. viral infection or conformational disease), these assembly machines present a superior pharmacological target because inhibition of their active site will amplify an effect on their substrate reaction. Here, we present this hypothesis based on recent proof-of-principle studies against Aβ assembly relevant in Alzheimer's disease. PMID:25451064

  19. Coordinated trafficking of synaptic vesicle and active zone proteins prior to synapse formation

    Sabo Shasta L

    2011-05-01

    Full Text Available Abstract Background The proteins required for synaptic transmission are rapidly assembled at nascent synapses, but the mechanisms through which these proteins are delivered to developing presynaptic terminals are not understood. Prior to synapse formation, active zone proteins and synaptic vesicle proteins are transported along axons in distinct organelles referred to as piccolo-bassoon transport vesicles (PTVs and synaptic vesicle protein transport vesicles (STVs, respectively. Although both PTVs and STVs are recruited to the same site in the axon, often within minutes of axo-dendritic contact, it is not known whether or how PTV and STV trafficking is coordinated before synapse formation. Results Here, using time-lapse confocal imaging of the dynamics of PTVs and STVs in the same axon, we show that vesicle trafficking is coordinated through at least two mechanisms. First, a significant proportion of STVs and PTVs are transported together before forming a stable terminal. Second, individual PTVs and STVs share pause sites within the axon. Importantly, for both STVs and PTVs, encountering the other type of vesicle increases their propensity to pause. To determine if PTV-STV interactions are important for pausing, PTV density was reduced in axons by expression of a dominant negative construct corresponding to the syntaxin binding domain of syntabulin, which links PTVs with their KIF5B motor. This reduction in PTVs had a minimal effect on STV pausing and movement, suggesting that an interaction between STVs and PTVs is not responsible for enhancing STV pausing. Conclusions Our results indicate that trafficking of STVs and PTVs is coordinated even prior to synapse development. This novel coordination of transport and pausing might provide mechanisms through which all of the components of a presynaptic terminal can be rapidly accumulated at sites of synapse formation.

  20. Brazing zone structure at active brazing of alumina ceramics

    2005-01-01

    @@ Nowadays one of the most effective methods of joining of oxide ceramics with other elements of construction is active brazing based on using of active metals (Ti, Zr), which increase reactivity of brazing alloy relative to ceramic element of a joining.

  1. Expression and assembly of a fully active antibody in algae

    Mayfield, Stephen P.; Franklin, Scott E.; Lerner, Richard A.

    2003-01-01

    Although combinatorial antibody libraries have solved the problem of access to large immunological repertoires, efficient production of these complex molecules remains a problem. Here we demonstrate the efficient expression of a unique large single-chain (lsc) antibody in the chloroplast of the unicellular, green alga, Chlamydomonas reinhardtii. We achieved high levels of protein accumulation by synthesizing the lsc gene in chloroplast codon bias and by driving expression of the chimeric gene using either of two C. reinhardtii chloroplast promoters and 5' and 3' RNA elements. This lsc antibody, directed against glycoprotein D of the herpes simplex virus, is produced in a soluble form by the alga and assembles into higher order complexes in vivo. Aside from dimerization by disulfide bond formation, the antibody undergoes no detectable posttranslational modification. We further demonstrate that accumulation of the antibody can be modulated by the specific growth regime used to culture the alga, and by the choice of 5' and 3' elements used to drive expression of the antibody gene. These results demonstrate the utility of alga as an expression platform for recombinant proteins, and describe a new type of single chain antibody containing the entire heavy chain protein, including the Fc domain.

  2. Cellular Antisense Activity of PNA-Oligo(bicycloguanidinium) Conjugates forming Self-Assembled Nano-aggregates

    Valero, Julian; Shiraishi, Takehiko; de Mendoza, Javier; Nielsen, Peter Eigil

    2015-01-01

    scattering and electron microscopy analyses we propose that the activity and thus cellular delivery of these lipo-PNA-BG4 conjugates is dependent on self-assembled nano-aggregates. Finally, cellular activity is enhanced by the presence of serum. Therefore we conclude that the lipo-BG-PNA conjugates exhibit...

  3. Persistence of activity in noisy motor-filament assemblies

    Chelakkot, Raghunath; Mahadevan, L

    2015-01-01

    Long, elastic filaments cross-linked and deformed by active molecular motors occur in various natural settings. The overall macroscopic mechanical response of such a composite network depends on the coupling between the active and the passive properties of the underlying constituents and nonlocal interactions between different parts of the composite. In a simple one dimensional system, using a mean field model, it has been shown that the combination of motor activity and finite filament extensibility yields a persistence length scale over which strain decays. Here we study a similar system, in the complementary limit of strong noise and moderate extensibility, using Brownian multi-particle collision dynamics-based numerical simulations that includes the coupling between motor kinetics and local filament extensibility. While the numerical model shows deviations from the mean field predictions due to the presence of strong active noise caused by the variations in individual motor activity, several qualitative f...

  4. Improving Photocatalytic Activity through Electrostatic Self-Assembly: Polyelectrolytes as Tool for Solar Energy Conversion?

    Groehn, Franziska

    2015-03-01

    With regard to the world's decreasing energy resources, developing strategies to exploit solar energy become more and more important. One approach is to take advantage of photocatalysis. Inspired by natural systems such as assemblies performing photosynthesis, it is highly promising to self-assemble synthetic functional species to form more effective or tailored supramolecular units. In this contribution, a new type of photocatalytically active self-assembled nanostructures in aqueous solution will be presented: supramolecular nano-objects obtained through self-assembly of macroions and multivalent organic or inorganic counterions. Polyelectrolyte-porphyrin nanoscale assemblies exhibit up to 10-fold higher photocatalytic activity than the corresponding porphyrins without polymeric template. Other self-assembled catalysts based on polyelectrolytes can exhibit expressed selectivity in a photocatalytic model reaction or even allow catalytic reactions in solution that are not possible with the building blocks only. Further, current results on combining different functional units at the polyelectrolyte template represent a next step towards more complex supramolecular structures for solar energy conversion.

  5. Triplet supercurrent due to spin-active zones in a Josephson junction

    Linder, Jacob; Sudbø, Asle

    2010-07-01

    Motivated by a recent experiment evidencing triplet superconductivity in a ferromagnetic Josephson junction with a Cu2MnAl -Heusler barrier, we construct a theoretical model accounting for this observation. The key ingredients in our model which generate the triplet supercurrent are spin-active zones, characterized by an effective canted interface magnetic moment. Using a numerical solution of the quasiclassical equations of superconductivity with spin-active boundary conditions, we find qualitatively very good agreement with the experimentally observed supercurrent. Further experimental implications of the spin-active zones are discussed.

  6. Facilitating the medical response into an active shooter hot zone

    Tierney, Martin T.

    2016-01-01

    Approved for public release; distribution is unlimited The response to active shooter attacks is not as effective as it could be. People die before receiving care because most jurisdictions have a policy in place that stipulates emergency medical services (EMS) wait to enter a scene until law enforcement (LE) announces that the scene is clear or secure. Since this can take some time, life-saving care is not immediately available to the people who most need it, and consequently, there can b...

  7. Heavy metals contamination characteristics in soil of different mining activity zones

    LIAO Guo-li; LIAO Da-xue; LI Quan-ming

    2008-01-01

    Depending upon the polluted features of various mining activities in a typical nonferrous metal mine, the contaminated soil area was divided into four zones which were polluted by tailings, mine drainage, dust deposition in wind and spreading minerals during vehicle transportation, respectively. In each zone, soil samples were collected. Total 28 soil samples were dug and analyzed by ICP-AES and other relevant methods. The results indicate that the average contents of Zn, Pb, Cd, Cu and As in soils are 508.6, 384.8, 7.53, 356 and 44.6 mg/kg, respectively. But the contents of heavy metals in different zone have distinct differences. The proportion of oxidizing association with organic substance is small. Difference of the association of heavy metals is small in different polluted zones.

  8. Impaired activity-dependent neural circuit assembly and refinement in autism spectrum disorder genetic models

    Caleb Andrew Doll; Kendal eBroadie

    2014-01-01

    Early-use activity during circuit-specific critical periods refines brain circuitry by the coupled processes of eliminating inappropriate synapses and strengthening maintained synapses. We theorize these activity-dependent developmental processes are specifically impaired in autism spectrum disorders (ASDs). ASD genetic models in both mouse and Drosophila have pioneered our insights into normal activity-dependent neural circuit assembly and consolidation, and how these developmental mechanism...

  9. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity

    Jiang, Linhai; Xu, Dawei; Sellati, Timothy J.; Dong, He

    2015-11-01

    Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications.Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would

  10. Peroxidase-like oxidative activity of a manganese-coordinated histidyl bolaamphiphile self-assembly

    Kim, Min-Chul; Lee, Sang-Yup

    2015-10-01

    A peroxidase-like catalyst was constructed through the self-assembly of histidyl bolaamphiphiles coordinated to Mn2+ ions. The prepared catalyst exhibited oxidation activity for the organic substrate o-phenylenediamine (OPD) in the presence of hydrogen peroxide (H2O2). The histidyl bolaamphiphiles of bis(N-alpha-amido-histidine)-1,7-heptane dicarboxylates self-assembled to make spherical structures in an aqueous solution. Subsequent association of Mn2+ ions with the histidyl imidazoles in the self-assembly produced catalytic active sites. The optimal Mn2+ ion concentration was determined and coordination of the Mn2+ ion with multiple histidine imidazoles was investigated using spectroscopy analysis. The activation energy of the produced catalysts was 55.0 kJ mol-1, which was comparable to other peroxidase-mimetic catalysts. A detailed kinetics study revealed that the prepared catalyst followed a ping-pong mechanism and that the turnover reaction was promoted by increasing the substrate concentration. Finally, application of the prepared catalyst for glucose detection was demonstrated through cascade enzyme catalysis. This study demonstrated a facile way to prepare an enzyme-mimetic catalyst through the self-assembly of an amphiphilic molecule containing amino acid segments.A peroxidase-like catalyst was constructed through the self-assembly of histidyl bolaamphiphiles coordinated to Mn2+ ions. The prepared catalyst exhibited oxidation activity for the organic substrate o-phenylenediamine (OPD) in the presence of hydrogen peroxide (H2O2). The histidyl bolaamphiphiles of bis(N-alpha-amido-histidine)-1,7-heptane dicarboxylates self-assembled to make spherical structures in an aqueous solution. Subsequent association of Mn2+ ions with the histidyl imidazoles in the self-assembly produced catalytic active sites. The optimal Mn2+ ion concentration was determined and coordination of the Mn2+ ion with multiple histidine imidazoles was investigated using spectroscopy

  11. 78 FR 66330 - Foreign-Trade Zone 196-Fort Worth, Texas, Authorization of Production Activity, Flextronics...

    2013-11-05

    ... in the Federal Register inviting public comment (78 FR 37785, 6-24-2013). The FTZ Board has..., Flextronics International USA, Inc. (Mobile Phone Assembly and Kitting), Fort Worth, Texas On June 14, 2013, Flextronics International USA, Inc. submitted a notification of proposed production activity to the...

  12. Controllable optical activity of gold nanorod and chiral quantum dot assemblies.

    Zhu, Zhening; Guo, Jun; Liu, Wenjing; Li, Zhengtao; Han, Bing; Zhang, Wei; Tang, Zhiyong

    2013-12-16

    The optical coupling between Au nanorods (Au NRs) and chiral quantum dots (QDs) in assemblies is investigated by both experiment and theoretical calculations. The coupled optical activity in the visible-light region can be manipulated by changing either the aspect ratio of Au NRs or the size of QDs (left). PMID:24346941

  13. Tsunamigenic potential of Mediterranean fault systems and active subduction zones

    Petricca, Patrizio; Babeyko, Andrey

    2016-04-01

    Since the North East Atlantic and Mediterranean Tsunami Warning System (NEAMTWS) is under development by the European scientific community, it becomes necessary to define guidelines for the characterization of the numerous parameters must be taken into account in a fair assessment of the risk. Definition of possible tectonic sources and evaluation of their potential is one of the principal issues. In this study we systematically evaluate tsunamigenic potential of up-to-now known real fault systems and active subduction interfaces in the NEAMTWS region. The task is accomplished by means of numerical modeling of tsunami generation and propagation. We have simulated all possible uniform-slip ruptures populating fault and subduction interfaces with magnitudes ranging from 6.5 up to expected Mmax. A total of 15810 individual ruptures were processed. For each rupture, a tsunami propagation scenario was computed in linear shallow-water approximation on 1-arc minute bathymetric grid (Gebco_08) implying normal reflection boundary conditions. Maximum wave heights at coastal positions (totally - 23236 points of interest) were recorded for four hours of simulation and then classified according to currently adopted warning level thresholds. The resulting dataset allowed us to classify the sources in terms of their tsunamigenic potential as well as to estimate their minimum tsunamigenic magnitude. Our analysis shows that almost every source in the Mediterranean Sea is capable to produce local tsunami at the advisory level (i.e., wave height > 20 cm) starting from magnitude values of Mw=6.6. In respect to the watch level (wave height > 50 cm), the picture is less homogeneous: crustal sources in south-west Mediterranean as well as East-Hellenic arc need larger magnitudes (around Mw=7.0) to trigger watch levels even at the nearby coasts. In the context of the regional warning (i.e., source-to-coast distance > 100 km) faults also behave more heterogeneously in respect to the minimum

  14. Optical activity and circular dichroism of plasmonic nanorod assemblies

    Khosravi Khorashad, Larousse; Liu, Na; Govorov, Alexander O.

    Plasmonic circular dichroism (CD) has offered an efficient spectroscopy method for the electronic, chemical, and structural properties of different types of light active molecules in the subwavelength regime. Among the different chiral geometries of metal nanoparticles utilized by the plasmonic CD spectroscopy, gold nanorods (AuNRs) have shown strong CD signals in the visible frequency range. In this work, we theoretically study the CD signals of AuNR arrangements in order to mimic structures and chemical bonds of chiral biomolecules. In particular, our twisted three-AuNR geometries resemble a molecular structure of tartaric acid. This molecule played an important role in the discovery of chemical chirality. In our study, we show that the strength of CD signals changes dramatically by tuning the interparticle distances and angles. Since the CD signals are typically weak, we develop reliable computational approaches to calculate the plasmonic CD. Manipulating interparticle distances, size, and molecular bond angles result in full control over peak positions, handedness, and positive and negative bands which are observed in the CD spectra. This work has been supported under the grant from Volkswagen Foundation. We also acknowledge the financial support of Condensed Matter and Surface Science program of Ohio University.

  15. Convergence on a Distinctive Assembly Mechanism by Unrelated Families of Activating Immune Receptors

    Feng, Jianwen; Garrity, David; Call, Matthew E.; Moffett, Howell; Wucherpfennig, Kai W.

    2005-01-01

    Activating receptors in cells of hematopoetic origin include members of two unrelated protein families, the immunoglobulin (Ig) and C type lectins, which differ even in the orientation of the transmembrane (TM) domains. We examined assembly of four receptors with diverse function: the NK receptors KIR2DS and NKG2C/CD94, the Fc receptor for IgA, and the GPVI collagen receptor. For each of the four different receptors studied here, assembly results in the formation of a three-helix interface in...

  16. Microbial respiration and extracellular enzyme activity in sediments from the Gulf of Mexico hypoxic zone

    This study explores the relationship between sediment chemistry (TC, TN, TP) and microbial respiration (DHA) and extracellular enzyme activity (EEA) across the Gulf of Mexico (GOM) hypoxic zone. TC, TN, and TP were all positively correlated with each other (r=0.19-0.68). DHA was ...

  17. Reduced endogenous Ca2+ buffering speeds active zone Ca2+ signaling.

    Delvendahl, Igor; Jablonski, Lukasz; Baade, Carolin; Matveev, Victor; Neher, Erwin; Hallermann, Stefan

    2015-06-01

    Fast synchronous neurotransmitter release at the presynaptic active zone is triggered by local Ca(2+) signals, which are confined in their spatiotemporal extent by endogenous Ca(2+) buffers. However, it remains elusive how rapid and reliable Ca(2+) signaling can be sustained during repetitive release. Here, we established quantitative two-photon Ca(2+) imaging in cerebellar mossy fiber boutons, which fire at exceptionally high rates. We show that endogenous fixed buffers have a surprisingly low Ca(2+)-binding ratio (∼ 15) and low affinity, whereas mobile buffers have high affinity. Experimentally constrained modeling revealed that the low endogenous buffering promotes fast clearance of Ca(2+) from the active zone during repetitive firing. Measuring Ca(2+) signals at different distances from active zones with ultra-high-resolution confirmed our model predictions. Our results lead to the concept that reduced Ca(2+) buffering enables fast active zone Ca(2+) signaling, suggesting that the strength of endogenous Ca(2+) buffering limits the rate of synchronous synaptic transmission. PMID:26015575

  18. Dynamical Organization of Syntaxin-1A at the Presynaptic Active Zone.

    Ullrich, Alexander; Böhme, Mathias A; Schöneberg, Johannes; Depner, Harald; Sigrist, Stephan J; Noé, Frank

    2015-09-01

    Synaptic vesicle fusion is mediated by SNARE proteins forming in between synaptic vesicle (v-SNARE) and plasma membrane (t-SNARE), one of which is Syntaxin-1A. Although exocytosis mainly occurs at active zones, Syntaxin-1A appears to cover the entire neuronal membrane. By using STED super-resolution light microscopy and image analysis of Drosophila neuro-muscular junctions, we show that Syntaxin-1A clusters are more abundant and have an increased size at active zones. A computational particle-based model of syntaxin cluster formation and dynamics is developed. The model is parametrized to reproduce Syntaxin cluster-size distributions found by STED analysis, and successfully reproduces existing FRAP results. The model shows that the neuronal membrane is adjusted in a way to strike a balance between having most syntaxins stored in large clusters, while still keeping a mobile fraction of syntaxins free or in small clusters that can efficiently search the membrane or be traded between clusters. This balance is subtle and can be shifted toward almost no clustering and almost complete clustering by modifying the syntaxin interaction energy on the order of only 1 kBT. This capability appears to be exploited at active zones. The larger active-zone syntaxin clusters are more stable and provide regions of high docking and fusion capability, whereas the smaller clusters outside may serve as flexible reserve pool or sites of spontaneous ectopic release. PMID:26367029

  19. Self-assembled quantum dot-bioconjugates: characterization and use for sensing proteolytic activity

    Medintz, Igor L.; Pons, Thomas; Sapsford, Kim E.; Dawson, Philip E.; Mattoussi, Hedi

    2008-04-01

    We present a characterization of the metal-affinity driven self-assembly between luminescent CdSe-ZnS core-shell semiconductor quantum dots (QDs) and either peptides or proteins appended with various length terminal polyhistidine tags. We first monitor the kinetics of self-assembly between surface-immobilized QDs and proteins/peptides under flow conditions (immobilized). To accomplish this, the QDs were immobilized onto functionalized substrates and then exposed to dye-labeled peptides/proteins. By using evanescent wave excitation of the substrate, self-assembly was assessed by monitoring the time-dependent changes in the dye fluorescence. This configuration was complemented with experiments using freely diffusing QDs and proteins/peptides (solution-phase) via energy transfer between QDs and dye-labeled proteins/peptides. Cumulatively, these measurements allowed determination of kinetic parameters, including association and dissociation rates (k on and k off) and the binding constant (K d). We find that self-assembly is rapid with an equilibrium constant K d -1 in the low nM. We next demonstrate the importance of understanding this self-assembly by creating QD-peptide bioconjugates which we employ as substrates to monitor the cleavage activity of proteolytic enzymes. This confirms that metal-affinity interactions can provide QD-bioconjugates that are functional and stable.

  20. Earthquake doublet in an active shear zone, southwest Japan: Constraints from geophysical and geochemical findings

    Umeda, Koji; Asamori, Koichi; Makuuchi, Ayumu; Kobori, Kazuo

    2014-11-01

    In 1997, the Kagoshima earthquake doublet, consisting of two closely associated Mw ~ 6 strike-slip events, five km and 48 days apart, has occurred in southwest Japan. The location is where an E-W trending discontinuity along 32°N latitude on southern Kyushu Island is clearly defined in GPS velocities, indicating the presence of a highly active left-lateral shear zone. However, there have not been any obvious indications of active faulting at the surface prior to the earthquake doublet, which could be associated with this shear zone. Three-dimensional inversion of magnetotelluric sounding data obtained in the source region of the earthquake doublet reveals a near-vertical conductive zone with a width of 20 km, extending down to the base of the crust and perhaps into the upper mantle toward the Okinawa trough. The prominent conductor corresponds to the western part of the active shear zone. Elevated 3He/4He ratios in groundwaters sampled from hot spring and drinking water wells suggest the emission of mantle-derived helium from the seismic source region. The geophysical and geochemical observations are significant indications that the invasion of mantle fluids into the crust, driven by upwelling asthenosphere from the Okinawa trough, triggers the notable left-lateral shearing in the zone in the present-day subduction system. In addition, the existence of aqueous fluids in and below the seismogenic layer could change the strength of the zones, and alter the local stress regime, resulting in the occurrence of the 1997 earthquake doublet.

  1. Geophysical and Geochemical Signatures Associated with Mantle Fluids Beneath an Active Shear Zone, Southwest Japan

    Umeda, K.; Asamori, K.; Sueoka, S.; Tamura, H.; Shimizu, M.

    2014-12-01

    In 1997, the Kagoshima earthquake doublet, consisting of two closely associated Mw ~ 6 strike-slip events, five km and 48 days apart, has occurred in southwest Japan. The location is where an E-W trending discontinuity along 32°N latitude on southern Kyushu Island is clearly defined in GPS velocities, indicating the presence of a highly active left-lateral shear zone. However, there have not been any obvious indications of active faulting at the surface prior to the earthquake doublet, which could be associated with this shear zone. Three-dimensional inversion of magnetotelluric sounding data obtained in the source region of the earthquake doublet reveals a near-vertical conductive zone with a width of 20 km, extending down to the base of the crust and perhaps into the upper mantle toward the Okinawa trough. The prominent conductor corresponds to the western part of the active shear zone. Elevated 3He/4He ratios in groundwaters sampled from hot spring and drinking water wells suggest the emission of mantle-derived helium from the seismic source region. The geophysical and geochemical observations are significant indications that the invasion of mantle fluids into the crust, driven by upwelling asthenosphere from the Okinawa trough, triggers the notable left-lateral shearing in the zone in the present-day subduction system. In addition, the existence of aqueous fluids in and below the seismogenic layer could change the strength of the zones, and alter the local stress regime, resulting in the occurrence of the 1997 earthquake doublet.

  2. Sulfur activation at the Little Boy-Comet Critical Assembly: A replica of the Hiroshima bomb

    Kerr, G. D.; Emergy, J. F.; Pace, J. V., III

    1985-04-01

    Studies have been completed on the activation of sulfur by fast neutrons from the Little Boy-Comet Critical Assembly which replicates the general features of the Hiroshima bomb. The complex effects of the bomb's design and construction of leakage of sulfur-activation neutrons were investigated both experimentally and theoretically. Our sulfur activation studies were performed as part of a larger program to provide benchmark data for testing of methods used in recent source-term calculations for the Hiroshima bomb. Source neutrons capable of activating sulfur play an important role in determining neutron doses in Hiroshima at a kilometer or more from the point of explosion.

  3. Active colloids at liquid-liquid interfaces: dynamic self-assembly and functionality

    Snezhko, Alexey; Aranson, Igor

    2012-02-01

    Self-assembled materials must actively consume energy and remain out of equilibrium in order to support structural complexity and functional diversity. Colloids of interacting particles suspended at liquid-liquid interfaces and maintained out of equilibrium by external alternating electromagnetic fields develop nontrivial collective dynamics and self-assembly. We use ferromagnetic colloidal micro-particles (so the magnetic moment is fixed in each particle and interactions between colloids is highly anisotropic and directional) suspended over an interface of two immiscible liquids and energized by vertical alternating magnetic fields to demonstrate novel dynamic and active self-assembled structures (``asters'') which are not accessible through thermodynamic assembly. Structures are attributed to the interplay between surface waves, generated at the liquid/liquid interface by the collective response of magnetic microparticles to the alternating magnetic field, and hydrodynamic fields induced in the boundary layers of both liquids forming the interface. Two types of magnetic order are reported. We demonstrate that asters develop self-propulsion in the presence of a small in-plane dc magnetic field. We show that asters can capture, transport, and position target microparticles.

  4. Stellar Activity Masquerading as Planets in the Habitable Zone of the M dwarf Gliese 581

    Robertson, Paul; Endl, Michael; Roy, Arpita

    2014-01-01

    The M dwarf Gliese 581 is believed to host four planets, including one (GJ 581d) near the habitable zone that could possibly support liquid water on its surface if it is a rocky planet. The detection of another habitable-zone planet--GJ 581g--is disputed, as its significance depends on the eccentricity assumed for d. Analyzing stellar activity using the H-alpha line, we measure a stellar rotation period of 130+/-2 days and a correlation for H-alpha modulation with radial velocity. Correcting for activity greatly diminishes the signal of GJ 581d (to 1.5 sigma), while significantly boosting the signals of the other known super-Earth planets. GJ 581d does not exist, but is an artifact of stellar activity which, when incompletely corrected, causes the false detection of planet g.

  5. Synthetic Molecular Machines for Active Self-Assembly: Prototype Algorithms, Designs, and Experimental Study

    Dabby, Nadine L.

    Computer science and electrical engineering have been the great success story of the twentieth century. The neat modularity and mapping of a language onto circuits has led to robots on Mars, desktop computers and smartphones. But these devices are not yet able to do some of the things that life takes for granted: repair a scratch, reproduce, regenerate, or grow exponentially fast--all while remaining functional. This thesis explores and develops algorithms, molecular implementations, and theoretical proofs in the context of "active self-assembly" of molecular systems. The long-term vision of active self-assembly is the theoretical and physical implementation of materials that are composed of reconfigurable units with the programmability and adaptability of biology's numerous molecular machines. En route to this goal, we must first find a way to overcome the memory limitations of molecular systems, and to discover the limits of complexity that can be achieved with individual molecules. One of the main thrusts in molecular programming is to use computer science as a tool for figuring out what can be achieved. While molecular systems that are Turing-complete have been demonstrated [Winfree, 1996], these systems still cannot achieve some of the feats biology has achieved. One might think that because a system is Turing-complete, capable of computing "anything," that it can do any arbitrary task. But while it can simulate any digital computational problem, there are many behaviors that are not "computations" in a classical sense, and cannot be directly implemented. Examples include exponential growth and molecular motion relative to a surface. Passive self-assembly systems cannot implement these behaviors because (a) molecular motion relative to a surface requires a source of fuel that is external to the system, and (b) passive systems are too slow to assemble exponentially-fast-growing structures. We call these behaviors "energetically incomplete" programmable

  6. 34 CFR 299.3 - What priority may the Secretary establish for activities in an Empowerment Zone or Enterprise...

    2010-07-01

    ... activities in an Empowerment Zone or Enterprise Community? For any ESEA discretionary grant program, the Secretary may establish a priority, as authorized by 34 CFR 75.105(b), for projects that will— (a) Use a... activities in an Empowerment Zone or Enterprise Community? 299.3 Section 299.3 Education Regulations of...

  7. APLF promotes the assembly and activity of non-homologous end joining protein complexes.

    Grundy, Gabrielle J; Rulten, Stuart L; Zeng, Zhihong; Arribas-Bosacoma, Raquel; Iles, Natasha; Manley, Katie; Oliver, Antony; Caldecott, Keith W

    2013-01-01

    Non-homologous end joining (NHEJ) is critical for the maintenance of genetic integrity and DNA double-strand break (DSB) repair. NHEJ is regulated by a series of interactions between core components of the pathway, including Ku heterodimer, XLF/Cernunnos, and XRCC4/DNA Ligase 4 (Lig4). However, the mechanisms by which these proteins assemble into functional protein-DNA complexes are not fully understood. Here, we show that the von Willebrand (vWA) domain of Ku80 fulfills a critical role in this process by recruiting Aprataxin-and-PNK-Like Factor (APLF) into Ku-DNA complexes. APLF, in turn, functions as a scaffold protein and promotes the recruitment and/or retention of XRCC4-Lig4 and XLF, thereby assembling multi-protein Ku complexes capable of efficient DNA ligation in vitro and in cells. Disruption of the interactions between APLF and either Ku80 or XRCC4-Lig4 disrupts the assembly and activity of Ku complexes, and confers cellular hypersensitivity and reduced rates of chromosomal DSB repair in avian and human cells, respectively. Collectively, these data identify a role for the vWA domain of Ku80 and a molecular mechanism by which DNA ligase proficient complexes are assembled during NHEJ in mammalian cells, and reveal APLF to be a structural component of this critical DSB repair pathway. PMID:23178593

  8. Outcome of early active mobilization after flexor tendons repair in zones II–V in hand

    Saini Narender; Kundnani Vishal; Patni Purnima; Gupta S

    2010-01-01

    Background: The functional outcome of a flexor tendon injury after repair depends on multiple factors. The postoperative management of tendon injuries has paved a sea through many mobilization protocols. The improved understanding of splinting techniques has promoted the understanding and implication of these mobilization protocols. We conducted a study to observe and record the results of early active mobilization of repaired flexor tendons in zones II-V. Materials and Methods: 25 cases w...

  9. Active protein aggregates induced by terminally attached self-assembling peptide ELK16 in Escherichia coli

    Zhou Bihong

    2011-02-01

    Full Text Available Abstract Background In recent years, it has been gradually realized that bacterial inclusion bodies (IBs could be biologically active. In particular, several proteins including green fluorescent protein, β-galactosidase, β-lactamase, alkaline phosphatase, D-amino acid oxidase, polyphosphate kinase 3, maltodextrin phosphorylase, and sialic acid aldolase have been successfully produced as active IBs when fused to an appropriate partner such as the foot-and-mouth disease virus capsid protein VP1, or the human β-amyloid peptide Aβ42(F19D. As active IBs may have many attractive advantages in enzyme production and industrial applications, it is of considerable interest to explore them further. Results In this paper, we report that an ionic self-assembling peptide ELK16 (LELELKLK2 was able to effectively induce the formation of cytoplasmic inclusion bodies in Escherichia coli (E. coli when attached to the carboxyl termini of four model proteins including lipase A, amadoriase II, β-xylosidase, and green fluorescent protein. These aggregates had a general appearance similar to the usually reported cytoplasmic inclusion bodies (IBs under transmission electron microscopy or fluorescence confocal microscopy. Except for lipase A-ELK16 fusion, the three other fusion protein aggregates retained comparable specific activities with the native counterparts. Conformational analyses by Fourier transform infrared spectroscopy revealed the existence of newly formed antiparallel beta-sheet structures in these ELK16 peptide-induced inclusion bodies, which is consistent with the reported assembly of the ELK16 peptide. Conclusions This has been the first report where a terminally attached self-assembling β peptide ELK16 can promote the formation of active inclusion bodies or active protein aggregates in E. coli. It has the potential to render E. coli and other recombinant hosts more efficient as microbial cell factories for protein production. Our observation might

  10. Neutron-activation analysis for investigation of biochemical manganese in soils cotton soweol zone of Uzbekistan

    Full text: For many years we neutron activation analysis of soils sampled from different areas of landscape-geochemical regions of Uzbekistan including zone of extreme ecological catastrophe of Aral. Content of manganese and some other elements in the 'soil-cotton' system was investigated. Neutron-activation method of manganese determining with productivity up to 400 samples on shift with detection limit of 1,1 10-5 % and discrepancies not more than 10%. Was developed extremely uniform distribution of manganese in cotton sowed soils of the Republic (340-1800mg/kg) is determined. Practically all soils of cotton-sowed zone of Republic are with lack of manganese. Distribution of manganese on soil profile of separate organs of cotton (leaves seeds etc.) was studied. Correlation between gross concentration of manganese and its active part extracted by distilled water on the basis of quantity analysis was found. Successive comparison of gross content of manganese in the soil with crop capacity of cotton in different zones of Republic made it possible to find interconnection between these quantities, which proves necessity of using micro-additions of manganese in the soils where its low concentration is detected

  11. A model of ischemia-induced neuroblast activation in the adult subventricular zone.

    Davide Vergni

    Full Text Available We have developed a rat brain organotypic culture model, in which tissue slices contain cortex-subventricular zone-striatum regions, to model neuroblast activity in response to in vitro ischemia. Neuroblast activation has been described in terms of two main parameters, proliferation and migration from the subventricular zone into the injured cortex. We observed distinct phases of neuroblast activation as is known to occur after in vivo ischemia. Thus, immediately after oxygen/glucose deprivation (6-24 hours, neuroblasts reduce their proliferative and migratory activity, whereas, at longer time points after the insult (2 to 5 days, they start to proliferate and migrate into the damaged cortex. Antagonism of ionotropic receptors for extracellular ATP during and after the insult unmasks an early activation of neuroblasts in the subventricular zone, which responded with a rapid and intense migration of neuroblasts into the damaged cortex (within 24 hours. The process is further enhanced by elevating the production of the chemoattractant SDf-1alpha and may also be boosted by blocking the activation of microglia. This organotypic model which we have developed is an excellent in vitro system to study neurogenesis after ischemia and other neurodegenerative diseases. Its application has revealed a SOS response to oxygen/glucose deprivation, which is inhibited by unfavorable conditions due to the ischemic environment. Finally, experimental quantifications have allowed us to elaborate a mathematical model to describe neuroblast activation and to develop a computer simulation which should have promising applications for the screening of drug candidates for novel therapies of ischemia-related pathologies.

  12. TMAO promotes fibrillization and microtubule assembly activity in the C-terminal repeat region of tau.

    Scaramozzino, Francesca; Peterson, Dylan W; Farmer, Patrick; Gerig, J T; Graves, Donald J; Lew, John

    2006-03-21

    Alzheimer's disease most closely correlates with the appearance of the neurofibrillary tangles (NFTs), intracellular fibrous aggregates of the microtubule-associated protein, tau. Under native conditions, tau is an unstructured protein, and its physical characterization has revealed no clues about the three-dimensional structural determinants essential for aggregation or microtubule binding. We have found that the natural osmolyte trimethylamine N-oxide (TMAO) induces secondary structure in a C-terminal fragment of tau (tau(187)) and greatly promotes both self-aggregation and microtubule (MT) assembly activity. These processes could be distinguished, however, by a single-amino acid substitution (Tyr(310) --> Ala), which severely inhibited aggregation but had no effect on MT assembly activity. The inability of this mutant to aggregate could be completely reversed by TMAO. We propose a model in which TMAO induces partial order in tau(187), resulting in conformers that may correspond to on-pathway intermediates of either aggregation or tau-dependent MT assembly or both. These studies set the stage for future high-resolution structural characterization of these intermediates and the basis by which Tyr(310) may direct pathologic versus normal tau function. PMID:16533051

  13. ACTIVITY AND Vp/Vs RATIO OF VOLCANO-TECTONIC SEISMIC SWARM ZONES AT NEVADO DEL RUIZ VOLCANO, COLOMBIA

    Londoño B. John Makario

    2010-06-01

    Full Text Available An analysis of the seismic activity for volcano-tectonic earthquake (VT swarms zones at Nevado del Ruiz Volcano (NRV was carried out for the interval 1985- 2002, which is the most seismic active period at NRV until now (2010. The swarm-like seismicity of NRV was frequently concentrated in very well defined clusters around the volcano. The seismic swarm zone located at the active crater was the most active during the entire time. The seismic swarm zone located to the west of the volcano suggested some relationship with the volcanic crises. It was active before and after the two eruptions occurred in November 1985 and September 1989. It is believed that this seismic activity may be used as a monitoring tool of volcanic activity. For each seismic swarm zone the Vp/Vs ratio was also calculated by grouping of earthquakes and stations. It was found that each seismic swarm zone had a distinct Vp/Vs ratio with respect to the others, except for the crater and west swarm zones, which had the same value. The average Vp/Vs ratios for the seismic swarm zones located at the active crater and to the west of the volcano are about 6-7% lower than that for the north swarm zone, and about 3% lower than that for the south swarm zone. We suggest that the reduction of the Vp/Vs ratio is due to degassing phenomena inside the central and western earthquake swarm zones, or due to the presence of microcracks inside the volcano. This supposition is in agreement with other studies of geophysics, geochemistry and drilling surveys carried out at NRV.

  14. Transcriptome Analysis of Tomato Flower Pedicel Tissues Reveals Abscission Zone-Specific Modulation of Key Meristem Activity Genes

    Wang, Xiang; Liu, Danmei; Li, Aili; Sun, Xiuli; Zhang, Rongzhi; Wu, Liang; Liang, Yanchun; Mao, Long

    2013-01-01

    Tomato flower abscises at the anatomically distinct abscission zone that separates the pedicel into basal and apical portions. During abscission, cell separation occurs only at the abscission zone indicating distinctive molecular regulation in its cells. We conducted a transcriptome analysis of tomato pedicel tissues during ethylene promoted abscission. We found that the abscission zone was the most active site with the largest set of differentially expressed genes when compared with basal an...

  15. A versatile passive and active non-destructive device for spent fuel assemblies monitoring

    The monitoring of spent fuel assemblies in reactor pools or in reprocessing plants with NDA methods is interesting (non-destructivity, non-intrusivity) for process control, safety-criticality and/or nuclear material management. In this context, the authors present the results of the development and design of a prototype device (physical methods used, qualification...) called PYTHON. The aim of PYTHON is to check the declared characteristic values of an irradiated assembly before taking it into a transport cask for safety criticality control. The PYTHON device consists of a detector head in two sections and a 252Cf source if active neutron counting is to be used. Each section of the detection head consists of two detectors: one fission chamber and one ionization chamber

  16. Fully automated hybrid diode laser assembly using high precision active alignment

    Böttger, Gunnar; Weber, Daniel; Scholz, Friedemann; Schröder, Henning; Schneider-Ramelow, Martin; Lang, Klaus-Dieter

    2016-03-01

    Fraunhofer IZM, Technische Universität Berlin and eagleyard Photonics present various implementations of current micro-optical assemblies for high quality free space laser beam forming and efficient fiber coupling. The laser modules shown are optimized for fast and automated assembly in small form factor packages via state-of-the-art active alignment machinery, using alignment and joining processes that have been developed and established in various industrial research projects. Operational wavelengths and optical powers ranging from 600 to 1600 nm and from 1 mW to several W respectively are addressed, for application in high-resolution laser spectroscopy, telecom and optical sensors, up to the optical powers needed in industrial and medical laser treatment.

  17. Micro 3D ERT tomography for data assimilation modelling of active root zone

    Vanella, Daniela; Busato, Laura; Boaga, Jacopo; Cassiani, Giorgio; Binley, Andrew; Putti, Mario; Consoli, Simona

    2016-04-01

    Within the soil-plant-atmosphere system, root activity plays a fundamental role, as it connects different domains and allows a large part of the water and nutrient exchanges necessary for plant sustenance. The understanding of these processes is not only useful from an environmental point of view, making a fundamental contribution to the understanding of the critical zone dynamics, but also plays a pivotal role in precision agriculture, where the optimisation of water resources exploitation is mandatory and often carried out through deficit irrigation techniques. In this work, we present the results of non-invasive monitoring of the active root zone of two orange trees (Citrus sinensis, cv Tarocco Ippolito) located in an orange orchard in eastern Sicily (Italy) and drip irrigated with two different techniques: partial root drying and 100% crop evapotranspiration. The main goal of the monitoring activity is to assess possible differences between the developed root systems and the root water uptake between the two irrigation strategies. The monitoring is conducted using 3D micro-electrical resistivity tomography (ERT) based on an apparatus composed of a number of micro-boreholes (about 1.2 m deep) housing 12 electrodes each, plus a number of surface electrodes. Time-lapse measurements conducted both with long-term periodicity and short-term repetition before and after irrigation clearly highlight the presence and distribution of root water uptake zone both at shallow and larger depth, likely to correspond to zones utilized during the irrigation period (shallow) and during the time when the crop is not irrigated (deep). Subsidiary information is available in terms of precipitation, sap flow measurements and micrometeorological evapotranspiration estimates. This data ensemble lends itself to the assimilation into a variably saturated flow model, where both soil hydraulic parameters and root distribution shall be identified. Preliminary results in this directions show

  18. 78 FR 72861 - Foreign-Trade Zone (FTZ) 20-Suffolk, Virginia, Notification of Proposed Production Activity...

    2013-12-04

    ... assemblies; guide pulleys; winches; axles; tire-rim assemblies; clips; pins; brackets; bolts; junction plates; tower masts; shaped springs; shaped pipes; brackets; mufflers; stabilizer legs; locks; top covers;...

  19. Stellar activity mimics a habitable-zone planet around Kapteyn's star

    Robertson, Paul; Mahadevan, Suvrath

    2015-01-01

    Kapteyn's star is an old M subdwarf believed to be a member of the Galactic halo population of stars. A recent study has claimed the existence of two super-Earth planets around the star based on radial velocity (RV) observations. The innermost of these candidate planets--Kapteyn b (P = 48 days)--resides within the circumstellar habitable zone. Given recent progress in understanding the impact of stellar activity in detecting planetary signals, we have analyzed the observed HARPS data for signatures of stellar activity. We find that while Kapteyn's star is photometrically very stable, a suite of spectral activity indices reveals a large-amplitude rotation signal, and we determine the stellar rotation period to be 143 days. The spectral activity tracers are strongly correlated with the purported RV signal of "planet b," and the 48-day period is an integer fraction (1/3) of the stellar rotation period. We conclude that Kapteyn b is not a planet in the Habitable Zone, but an artifact of stellar activity.

  20. 78 FR 66330 - Foreign-Trade Zone (FTZ) 235-Lakewood, New Jersey, Notification of Proposed Production Activity...

    2013-11-05

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE Foreign-Trade Zones Board Foreign-Trade Zone (FTZ) 235--Lakewood, New Jersey, Notification of Proposed Production Activity, Cosmetic Essence Innovations, LLC, (Fragrance Bottling), Holmdel, New Jersey...

  1. 78 FR 65963 - Foreign-Trade Zone 44-Mt. Olive, New Jersey; Authorization of Production Activity; Givaudan...

    2013-11-04

    ... notice in the Federal Register inviting public comment (78 FR 39707, 07-02-2013). The FTZ Board has... Foreign-Trade Zones Board Foreign-Trade Zone 44--Mt. Olive, New Jersey; Authorization of Production Activity; Givaudan Fragrances Corporation (Fragrance and Flavor Products); Mt. Olive, New Jersey On June...

  2. 77 FR 28568 - Foreign-Trade Zone 216-Olympia, WA; Notification of Proposed Production Activity; Callisons, Inc...

    2012-05-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE Foreign-Trade Zones Board Foreign-Trade Zone 216--Olympia, WA; Notification of Proposed Production Activity; Callisons, Inc., (Mint Products), Lacey and Chehalis, WA The Port of Olympia, grantee of FTZ...

  3. 77 FR 28851 - Foreign-Trade Zone 126-Reno, NV; Notification of Proposed Production Activity; Brightpoint North...

    2012-05-16

    ... Foreign-Trade Zones Board Foreign-Trade Zone 126--Reno, NV; Notification of Proposed Production Activity; Brightpoint North America L.P. (Cell Phone Kitting and Distribution); Reno, NV The Economic Development... behalf of Brightpoint North America L.P (Brightpoint), located in Reno, Nevada. The Brightpoint...

  4. FAK, talin and PIPKIγ regulate endocytosed integrin activation to polarize focal adhesion assembly.

    Nader, Guilherme P F; Ezratty, Ellen J; Gundersen, Gregg G

    2016-05-01

    Integrin endocytic recycling is critical for cell migration, yet how recycled integrins assemble into new adhesions is unclear. By synchronizing endocytic disassembly of focal adhesions (FAs), we find that recycled integrins reassemble FAs coincident with their return to the cell surface and dependent on Rab5 and Rab11. Unexpectedly, endocytosed integrins remained in an active but unliganded state in endosomes. FAK and Src kinases co-localized with endocytosed integrin and were critical for FA reassembly by regulating integrin activation and recycling, respectively. FAK sustained the active integrin conformation by maintaining talin association with Rab11 endosomes in a type I phosphatidylinositol phosphate kinase (PIPKIγ)-dependent manner. In migrating cells, endocytosed integrins reassembled FAs polarized towards the leading edge, and this polarization required FAK. These studies identify unanticipated roles for FA proteins in maintaining endocytosed integrin in an active conformation. We propose that the conformational memory of endocytosed integrin enhances polarized reassembly of FAs to enable directional cell migration. PMID:27043085

  5. Sulfur activation at the Little Boy-Comet Critical Assembly: a replica of the Hiroshima bomb

    Studies have been completed on the activation of sulfur by fast neutrons from the Little Boy-Comet Critical Assembly which replicates the general features of the Hiroshima bomb. The complex effects of the bomb's design and construction on leakage of sulfur-activation neutrons were investigated both experimentally and theoretically. Our sulfur activation studies were performed as part of a larger program to provide benchmark data for testing of methods used in recent source-term calculations for the Hiroshima bomb. Source neutrons capable of activating sulfur play an important role in determining neutron doses in Hiroshima at a kilometer or more from the point of explosion. 37 refs., 5 figs., 6 tabs

  6. Development of a Liquid Scintillator-Based Active Interrogation System for LEU Fuel Assemblies

    The IAEA, in collaboration with the Joint Research Center (Ispra, IT) and Hybrid Instruments (Lancaster, UK), has developed a full scale, liquid scintillator-based active interrogation system to determine uranium (U) mass in fresh fuel assemblies. The system implements an array of moderate volume (∼1000 ml) liquid scintillator detectors, a multichannel pulse shape discrimination (PSD) system, and a high-speed data acquisition and signal processing system to assess the U content of fresh fuel assemblies. Extensive MCNPX-PoliMi modelling has been carried out to refine the system design and optimize the detector performance. These measurements, traditionally performed with 3He-based assay systems (e.g., Uranium Neutron Coincidence Collar [UNCL], Active Well Coincidence Collar [AWCC]), can now be performed with higher precision in a fraction of the acquisition time. The system uses a high-flash point, non-hazardous scintillating fluid (EJ309) enabling their use in commercial nuclear facilities and achieves significantly enhanced performance and capabilities through the combination of extremely short gate times, adjustable energy detection threshold, real-time PSD electronics, and high-speed, FPGA-based data acquisition. Given the possible applications, this technology is also an excellent candidate for the replacement of select 3He-based systems. Comparisons to existing 3He-based active interrogation systems are presented where possible to provide a baseline performance reference. This paper will describe the laboratory experiments and associated modelling activities undertaken to develop and initially test the prototype detection system. (authors)

  7. Study on the sensitivity of neutron activation analysis of some elements, using a subcritical nuclear assembly

    This work describes the sensitivity levels obtained for standards prepared with some elements which, besides having a large cross section, are considered strategic materials, using a 5 Ci Pu-Be neutron source and a subcritical assembly (metallic natural uranium in light water).The irradiation conditions and the activity measurement techniques used are also reported. Finally, the possibilities of using this technique to determine the presence of the chosen elements in the concentrates and wastes from the minerals traditionally mined in the region will be discussed. (Author)

  8. Transparent, conductive, and SERS-active Au nanofiber films assembled on an amphiphilic peptide template

    Vinod, T. P.; Zarzhitsky, Shlomo; Morag, Ahiud; Zeiri, Leila; Levi-Kalisman, Yael; Rapaport, Hanna; Jelinek, Raz

    2013-10-01

    The use of biological materials as templates for functional molecular assemblies is an active research field at the interface between chemistry, biology, and materials science. We demonstrate the formation of gold nanofiber films on β-sheet peptide domains assembled at the air/water interface. The gold deposition scheme employed a recently discovered chemical process involving spontaneous crystallization and reduction of water-soluble Au(SCN)41- upon anchoring to surface-displayed amine moieties. Here we show that an interlinked network of crystalline Au nanofibers is readily formed upon incubation of the Au(iii) thiocyanate complex with the peptide monolayers. Intriguingly, the resultant films were optically transparent, enabled electrical conductivity, and displayed pronounced surface enhanced Raman spectroscopy (SERS) activity, making the approach a promising avenue for construction of nano-structured films exhibiting practical applications.The use of biological materials as templates for functional molecular assemblies is an active research field at the interface between chemistry, biology, and materials science. We demonstrate the formation of gold nanofiber films on β-sheet peptide domains assembled at the air/water interface. The gold deposition scheme employed a recently discovered chemical process involving spontaneous crystallization and reduction of water-soluble Au(SCN)41- upon anchoring to surface-displayed amine moieties. Here we show that an interlinked network of crystalline Au nanofibers is readily formed upon incubation of the Au(iii) thiocyanate complex with the peptide monolayers. Intriguingly, the resultant films were optically transparent, enabled electrical conductivity, and displayed pronounced surface enhanced Raman spectroscopy (SERS) activity, making the approach a promising avenue for construction of nano-structured films exhibiting practical applications. Electronic supplementary information (ESI) available: AFM analysis of the

  9. Active Crustal Faults in the Forearc Region, Guerrero Sector of the Mexican Subduction Zone

    Gaidzik, Krzysztof; Ramírez-Herrera, Maria Teresa; Kostoglodov, Vladimir

    2016-01-01

    This work explores the characteristics and the seismogenic potential of crustal faults on the overriding plate in an area of high seismic hazard associated with the occurrence of subduction earthquakes and shallow earthquakes of the overriding plate. We present the results of geomorphic, structural, and fault kinematic analyses conducted on the convergent margin between the Cocos plate and the forearc region of the overriding North American plate, within the Guerrero sector of the Mexican subduction zone. We aim to determine the active tectonic processes in the forearc region of the subduction zone, using the river network pattern, topography, and structural data. We suggest that in the studied forearc region, both strike-slip and normal crustal faults sub-parallel to the subduction zone show evidence of activity. The left-lateral offsets of the main stream courses of the largest river basins, GPS measurements, and obliquity of plate convergence along the Cocos subduction zone in the Guerrero sector suggest the activity of sub-latitudinal left-lateral strike-slip faults. Notably, the regional left-lateral strike-slip fault that offsets the Papagayo River near the town of La Venta named "La Venta Fault" shows evidence of recent activity, corroborated also by GPS measurements (4-5 mm/year of sinistral motion). Assuming that during a probable earthquake the whole mapped length of this fault would rupture, it would produce an event of maximum moment magnitude Mw = 7.7. Even though only a few focal mechanism solutions indicate a stress regime relevant for reactivation of these strike-slip structures, we hypothesize that these faults are active and suggest two probable explanations: (1) these faults are characterized by long recurrence period, i.e., beyond the instrumental record, or (2) they experience slow slip events and/or associated fault creep. The analysis of focal mechanism solutions of small magnitude earthquakes in the upper plate, for the period between 1995

  10. DEFORMATION WAVES AS A TRIGGER MECHANISM OF SEISMIC ACTIVITY IN SEISMIC ZONES OF THE CONTINENTAL LITHOSPHERE

    S. I. Sherman

    2015-09-01

    Full Text Available Deformation waves as a trigger mechanism of seismic activity and migration of earthquake foci have been under discussion by researchers in seismology and geodynamics for over 50 years. Four sections of this article present available principal data on impacts of wave processes on seismicity and new data. The first section reviews analytical and experimental studies aimed at identification of relationships between wave processes in the lithosphere and seismic activity manifested as space-and-time migration of individual earthquake foci or clusters of earthquakes. It is concluded that with a systematic approach, instead of using a variety of terms to denote waves that trigger seismic process in the lithosphere, it is reasonable to apply the concise definition of ‘deformation waves’, which is most often used in fact.The second section contains a description of deformation waves considered as the trigger mechanism of seismic activity. It is concluded that a variety of methods are applied to identify deformation waves, and such methods are based on various research methods and concepts that naturally differ in sensitivity concerning detection of waves and/or impact of the waves on seismic process. Epicenters of strong earthquakes are grouped into specific linear or arc-shaped systems, which common criterion is the same time interval of the occurrence of events under analysis. On site the systems compose zones with similar time sequences, which correspond to the physical notion of moving waves (Fig. 9. Periods of manifestation of such waves are estimated as millions of years, and a direct consideration of the presence of waves and wave parameters is highly challenging. In the current state-of-the-art, geodynamics and seismology cannot provide any other solution yet.The third section presents a solution considering record of deformation waves in the lithosphere. With account of the fact that all the earthquakes with М≥3.0 are associated with

  11. Along strike variation of tremor activities and thermal structures in various subduction zones

    Yabe, S.; Ide, S.; Yoshioka, S.

    2012-12-01

    A family of slow earthquakes, e.g., deep low frequency tremors, low frequency earthquakes (LFEs), very low frequency earthquakes (VLFs) and slow slip events (SSEs), are observed in various subduction zones. These phenomena represent shear slip on the plate interface, and they are thought to be related to brittle-ductile transition behavior on the plate interface because they are often located near the transition zones of interplate coupling estimated from GPS data. Such slip behavior along the plate interface would be controlled by temperature. Furthermore, tremors are considered to be related to fluid dehydrated from the subducting slab, through temperature dependent chemical reactions. Therefore, tremors occurrences are expected to be influenced by temperature, though some studies have questioned about the relationship between tremor activity and temperature. Here we investigate the source locations of deep tremor using an envelope correlation method and compare them with the temperature and shear strength profiles along the plate interface calculated using a numerical model (Yoshioka and Sanshadokoro, 2002). The study areas include New Zealand, southern Chile, and Mexico, where tremor behavior changes significantly along the strike of the plate interface. Investigating such along-strike variation in individual subduction zone may clarify the temperature dependence of tremor because environmental conditions affecting tremor occurrence are similar, unlike the comparison between different subduction zones. In the Hikurangi subduction zone beneath the North Island, New Zealand, the depth of SSE are quite different along the strike, e.g., deeper in the central region and shallower in the northern region (e.g. Wallace and Beavan, 2010). We reanalyze tremors detected by previous studies (Kim et al., 2011; Ide, 2012) to estimate their absolute depth and confirm that tremors in North Island are on the plate interface in both the central and the northern regions. Thermal

  12. Crust-mantle structure feature and the seismic activity of the main tectonic units in the North Tanlu fault zone

    2000-01-01

    Using recent data of geoscience transaction in Northeast China, the author analyses and studies the crust-upper mantle structure feature of the North Tanlu fault zone. The result shows the crust-mantle structure are obvious difference at both sides of the North Tanlu fault zone. The fault activity and segmentation are closely related with abruptly change zone of the crust-upper mantle structure. There is a clear mirror image relationship between the big geomorphic shape and asthenosphere undulate, the former restricts tectonic stability and tectonic style of different crustal units. The significantly strengthening seismicity of north set and south set in the North Tanlu fault zone just correspond to the low-velocity and high conductivity layer of crust-upper mantle. In the North Tanlu fault zone, the main controlling structure of the mid-strong seismic generally consists of the active fault sectors, whose crust-mantle structure is more complicated in rigidity massif.

  13. Auroral Electrojet Indices Designed to Provide a Global Measure, 2.5-Minute Intervals, of Auroral Zone Magnetic Activity

    National Oceanic and Atmospheric Administration, Department of Commerce — The Auroral Electrojet index (AE) is designed to provide a global quantitative measure of auroral zone magnetic activity produced by enhanced ionospheric currents...

  14. Auroral Electrojet Index Designed to Provide a Global Measure, l-minute Intervals, of Auroral Zone Magnetic Activity

    National Oceanic and Atmospheric Administration, Department of Commerce — The Auroral Electrojet index (AE) is designed to provide a global quantitative measure of auroral zone magnetic activity produced by enhanced ionospheric currents...

  15. Studies of Active Ingredients in Cough Syrup by Capillary Zone Electrophoresis with Amperometric Detection

    ZHOU Tian-shu; WANG Ai-fang; WU Fang; SHI Guo-yue; FANG Yu-zhi

    2003-01-01

    The present paper covers a simple, reliable and reproducible method, based on capillary zone electrophoresis(CZE) with amperometric detection(AD), for the separation and the determination of ephedrine hydrochloride, promethazine hydrochloride and codeine phosphate. Under the optimal conditions, the three analytes were base-line separated completely within 16 min. Good linear relationships between the peak heights and the concentrations of the three analytes were obtained with the correlation coefficients better than 0.9993. The method was directly applied to the determination of the active ingredients in pharmaceutical preparations and the assay results were satisfactory.

  16. Oscillatory dynamics of the biologically active zone in in situ bioremediation

    Murray, Regan E.; Luce, Benjamin P.

    2002-10-01

    In situ bioremediation is a promising biotechnology for removing aqueous phase contaminants from groundwater. The system of three partial differential equations used to model bioremediation has a traveling wave solution which loses stability in a Hopf bifurcation, giving rise to oscillating fronts. To understand the origin of these oscillations, we construct a simplified model of the biologically active zone, a time delay differential equation with state-dependent delay. Despite its simplicity the new model mimics the dynamical characteristics of the bioremediation equations remarkably well and yields an approximate parametric expression for the oscillation onset point.

  17. Neotectonic Model of Formation of Oil and Gas Fields and Mineragenic Role of Geodynamic Active Zones

    I. S. Kopylov

    2014-03-01

    Full Text Available The article considers the importance of role of geodynamic active zones in formation of mineral deposits, their distribution, and mineragenic characteristics. Geodynamic model of formation of the oil and gas fields is developed. It reflects the evolution of formation of oil and gas fields and, after the stage of learning, allows predicting the petroleum potential of local areas. The model building procedure uses the integrated analysis of all the available information and determining the most informative indicators for forecasting the oil and gas reserves. The article presents an example of model worked out for oil and gas fields of the Perm Kray.

  18. Analysis of protein phosphorylation in nerve terminal reveals extensive changes in active zone proteins upon exocytosis.

    Kohansal-Nodehi, Mahdokht; Chua, John Je; Urlaub, Henning; Jahn, Reinhard; Czernik, Dominika

    2016-01-01

    Neurotransmitter release is mediated by the fast, calcium-triggered fusion of synaptic vesicles with the presynaptic plasma membrane, followed by endocytosis and recycling of the membrane of synaptic vesicles. While many of the proteins governing these processes are known, their regulation is only beginning to be understood. Here we have applied quantitative phosphoproteomics to identify changes in phosphorylation status of presynaptic proteins in resting and stimulated nerve terminals isolated from the brains of Wistar rats. Using rigorous quantification, we identified 252 phosphosites that are either up- or downregulated upon triggering calcium-dependent exocytosis. Particularly pronounced were regulated changes of phosphosites within protein constituents of the presynaptic active zone, including bassoon, piccolo, and RIM1. Additionally, we have mapped kinases and phosphatases that are activated upon stimulation. Overall, our study provides a snapshot of phosphorylation changes associated with presynaptic activity and provides a foundation for further functional analysis of key phosphosites involved in presynaptic plasticity. PMID:27115346

  19. Pneumocytes Assemble Lung Surfactant as Highly Packed/Dehydrated States with Optimal Surface Activity.

    Cerrada, Alejandro; Haller, Thomas; Cruz, Antonio; Pérez-Gil, Jesús

    2015-12-01

    Pulmonary surfactant (PS) is an essential complex of lipids and specific proteins synthesized in alveolar type II pneumocytes, where it is assembled and stored intracellularly as multilayered organelles known as lamellar bodies (LBs). Once secreted upon physiological stimulation, LBs maintain a densely packed structure in the form of lamellar body-like particles (LBPs), which are efficiently transferred into the alveolar air-water interface, lowering surface tension to avoid lung collapse at end-expiration. In this work, the structural organization of membranes in LBs and LBPs freshly secreted by primary cultures of rat ATII cells has been compared with that of native lung surfactant membranes isolated from porcine bronchoalveolar lavage. PS assembles in LBs as crystalline-like highly ordered structures, with a highly packed and dehydrated state, which is maintained at supraphysiological temperatures. This relatively ordered/packed state is retained in secreted LBPs. The micro- and nanostructural examination of LBPs suggests the existence of high levels of structural complexity in comparison with the material purified from lavages, which may contain partially inactivated or spent structures. Additionally, freshly secreted surfactant LBPs exhibit superior activity when generating interfacial films and a higher intrinsic resistance to inactivating agents, such as serum proteins or meconium. We propose that LBs are assembled as an energy-activated structure competent to form very efficient interfacial films, and that the organization of lipids and proteins and the properties displayed by the films formed by LBPs are likely similar to those established at the alveolar interface and represent the actual functional structure of surfactant as it sustains respiration. PMID:26636941

  20. Synthetic Molecular Machines for Active Self-Assembly: Prototype Algorithms, Designs, and Experimental Study

    Dabby, Nadine L.

    Computer science and electrical engineering have been the great success story of the twentieth century. The neat modularity and mapping of a language onto circuits has led to robots on Mars, desktop computers and smartphones. But these devices are not yet able to do some of the things that life takes for granted: repair a scratch, reproduce, regenerate, or grow exponentially fast--all while remaining functional. This thesis explores and develops algorithms, molecular implementations, and theoretical proofs in the context of "active self-assembly" of molecular systems. The long-term vision of active self-assembly is the theoretical and physical implementation of materials that are composed of reconfigurable units with the programmability and adaptability of biology's numerous molecular machines. En route to this goal, we must first find a way to overcome the memory limitations of molecular systems, and to discover the limits of complexity that can be achieved with individual molecules. One of the main thrusts in molecular programming is to use computer science as a tool for figuring out what can be achieved. While molecular systems that are Turing-complete have been demonstrated [Winfree, 1996], these systems still cannot achieve some of the feats biology has achieved. One might think that because a system is Turing-complete, capable of computing "anything," that it can do any arbitrary task. But while it can simulate any digital computational problem, there are many behaviors that are not "computations" in a classical sense, and cannot be directly implemented. Examples include exponential growth and molecular motion relative to a surface. Passive self-assembly systems cannot implement these behaviors because (a) molecular motion relative to a surface requires a source of fuel that is external to the system, and (b) passive systems are too slow to assemble exponentially-fast-growing structures. We call these behaviors "energetically incomplete" programmable

  1. Layer-by-Layer Assembly and Photocatalytic Activity of Titania Nanosheets on Coal Fly Ash Microspheres

    Xing Cui

    2014-01-01

    Full Text Available In order to address the problem with titania distribution and recovery, series of Ti0.91O2/CFA photocatalysts (Ti0.91O2/CFA-n, n=2,4,6, and 8 were fabricated by assembling Ti0.91O2 nanosheets on coal fly ash (CFA microspheres via the layer-by-layer assembly (LBLA process and characterized by scanning electron microscopy (SEM, X-ray diffraction analysis (XRD, N2-sorption, and ultraviolet-visible absorption (UV-vis techniques. The SEM images and UV-vis spectra illustrated that Ti0.91O2 nanosheets were immobilized successfully on the CFA by the LBLA approach and changed the characteristics of CFA noticeably. The photocatalytic activity of Ti0.91O2/CFA was evaluated by the photodegradation of methylene blue (MB under UV irradiation. The results demonstrated that Ti0.91O2/CFA-6 showed the best photocatalytic activity among the series of Ti0.91O2/CFA irradiated for 60 min, with a decoloration rate above 43%. After photocatalysis, the Ti0.91O2/CFA could be easily separated and recycled from aqueous solution and Ti0.91O2 nanosheets were still anchored on the CFA.

  2. Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo.

    Ye, Deju; Shuhendler, Adam J; Cui, Lina; Tong, Ling; Tee, Sui Seng; Tikhomirov, Grigory; Felsher, Dean W; Rao, Jianghong

    2014-06-01

    Directed self-assembly of small molecules in living systems could enable a myriad of applications in biology and medicine, and already this has been used widely to synthesize supramolecules and nano/microstructures in solution and in living cells. However, controlling the self-assembly of synthetic small molecules in living animals is challenging because of the complex and dynamic in vivo physiological environment. Here we employ an optimized first-order bioorthogonal cyclization reaction to control the self-assembly of a fluorescent small molecule, and demonstrate its in vivo applicability by imaging caspase-3/7 activity in human tumour xenograft mouse models of chemotherapy. The fluorescent nanoparticles assembled in situ were imaged successfully in both apoptotic cells and tumour tissues using three-dimensional structured illumination microscopy. This strategy combines the advantages offered by small molecules with those of nanomaterials and should find widespread use for non-invasive imaging of enzyme activity in vivo. PMID:24848238

  3. Supramolecular Cationic Assemblies against Multidrug-Resistant Microorganisms: Activity and Mechanism of Action

    Letícia Dias de Melo Carrasco

    2015-03-01

    Full Text Available The growing challenge of antimicrobial resistance to antibiotics requires novel synthetic drugs or new formulations for old drugs. Here, cationic nanostructured particles (NPs self-assembled from cationic bilayer fragments and polyelectrolytes are tested against four multidrug-resistant (MDR strains of clinical importance. The non-hemolytic poly(diallyldimethylammonium chloride (PDDA polymer as the outer NP layer shows a remarkable activity against these organisms. The mechanism of cell death involves bacterial membrane lysis as determined from the leakage of inner phosphorylated compounds and possibly disassembly of the NP with the appearance of multilayered fibers made of the NP components and the biopolymers withdrawn from the cell wall. The NPs display broad-spectrum activity against MDR microorganisms, including Gram-negative and Gram-positive bacteria and yeast.

  4. Impacts of stellar evolution and dynamics on the habitable zone: The role of rotation and magnetic activity

    Florian, Gallet; Louis, Amard; Sacha, Brun; Ana, Palacios; Stephane, Mathis

    2016-01-01

    In this article, we aim to provide the community with the dependence of the habitable zone upon the stellar mass, metallicity, rotation, and for various prescriptions of the limits of the habitable zone. We use the STAREVOL code to study the evolution of the habitable zone and of the continuously habitable zone limits. Mass and metallicity are the stellar parameters that have the most dramatic effects on the habitable zone limits. Conversely, for a given stellar mass and metallicity, stellar rotation has only a marginal effect on these limits and does not modify the width of the habitable zone. The evolution of the habitable zone limits is also correlated to the evolution of the stellar activity (through the Rossby number) that depends on the stellar mass considered. While the magnetic activity has negligible consequence in the case of more massive stars, these effects may have a strong impact on the habitability of a planet around M dwarf stars. Thus, stellar activity cannot be neglected and may have strong ...

  5. Characteristics of Relocated Quiet Zones Using Virtual Microphone Algorithm in an Active Headrest System

    Seokhoon Ryu

    2016-01-01

    Full Text Available This study displays theoretical and experimental investigation on the characteristics of the relocated zone of quiet by a virtual microphone (VM based filtered-x LMS (FxLMS algorithm which can be embedded in a real-time digital controller for an active headrest system. The attenuation changes at the relocated zones of quiet by the variation of the distance between the ear and the error microphone are mainly examined. An active headrest system was implemented for the control experiment at a chair and consists of two (left and right secondary loudspeakers, two error microphones, two observer microphones at ear positions in a HATS, and other electronics including a dSPACE 1401 controller. The VM based FxLMS algorithm achieved an attenuation of about 22 dB in the control experiment against a narrowband primary noise by the variation of the distance between the ear and the error microphone. The important factors for the algorithm are discussed as well.

  6. Study on Integrated Recurrence Behaviors of Strong Earthquakes Along Entire Active Fault Zones in the Sichuan-Yunnan Region, China

    Yi Guixi; Wen Xueze; Xu Xiwei

    2003-01-01

    Based on historical earthquake data, we use statistical methods to study integrated recurrencebehaviors of strong earthquakes along 7 selected active fault zones in the Sichuan-Yunnanregion. The results show that recurrences of strong earthquakes in the 7 fault zones displaynear-random, random and clustering behaviors. The recurrence processes are never quasi-periodic, and are neither strength-time nor time-strength dependent. The more independentsegments for strong earthquake rupturing a fault zone has, the more complicated thecorresponding recurrence process is. And relatively active periods and quiescent periods forearthquake activity occur alternatively. Within the active periods, the distribution ofrecurrence time intervals between earthquakes has relatively large discretion, and can bemodelled well by a Weibull distribution. The time distribution of the quiescent periods hasrelatively small discretion, and can be approximately described by some distributions as thenormal. Both the durations of the active periods and the numbers of strong earthquakes withinthe active periods vary obviously cycle by cycle, leading to the relatively active periods havingnever repeated quasi-periodically. Therefore, the prohabilistic assessment for middle- and long-term seismic hazard for entireties of active fault zones based on data of historical strongearthquakes on the fault zones still faces difficulty.

  7. 78 FR 27951 - Foreign-Trade Zone (FTZ) 75-Phoenix, Arizona; Notification of Proposed Production Activity...

    2013-05-13

    ... blocks; protective shipping devices; high voltage covers; gear plates; plates; XFR tubes; tubes; flow... nut fixtures; clamp and baffle flappers; riveting anvils; alignment kits; crimp fixtures; assembly... assemblies; switches; light-board switches; electrical- connector receptacles; housings; control...

  8. Discovery of a Series of Acridinones as Mechanism-Based Tubulin Assembly Inhibitors with Anticancer Activity.

    Magalhaes, Luma G; Marques, Fernando B; da Fonseca, Marina B; Rogério, Kamilla R; Graebin, Cedric S; Andricopulo, Adriano D

    2016-01-01

    Microtubules play critical roles in vital cell processes, including cell growth, division, and migration. Microtubule-targeting small molecules are chemotherapeutic agents that are widely used in the treatment of cancer. Many of these compounds are structurally complex natural products (e.g., paclitaxel, vinblastine, and vincristine) with multiple stereogenic centers. Because of the scarcity of their natural sources and the difficulty of their partial or total synthesis, as well as problems related to their bioavailability, toxicity, and resistance, there is an urgent need for novel microtubule binding agents that are effective for treating cancer but do not have these disadvantages. In the present work, our lead discovery effort toward less structurally complex synthetic compounds led to the discovery of a series of acridinones inspired by the structure of podophyllotoxin, a natural product with important microtubule assembly inhibitory activity, as novel mechanism-based tubulin assembly inhibitors with potent anticancer properties and low toxicity. The compounds were evaluated in vitro by wound healing assays employing the metastatic and triple negative breast cancer cell line MDA-MB-231. Four compounds with IC50 values between 0.294 and 1.7 μM were identified. These compounds showed selective cytotoxicity against MDA-MB-231 and DU-145 cancer cell lines and promoted cell cycle arrest in G2/M phase and apoptosis. Consistent with molecular modeling results, the acridinones inhibited tubulin assembly in in vitro polymerization assays with IC50 values between 0.9 and 13 μM. Their binding to the colchicine-binding site of tubulin was confirmed through competitive assays. PMID:27508497

  9. Discovery of a Series of Acridinones as Mechanism-Based Tubulin Assembly Inhibitors with Anticancer Activity

    Magalhaes, Luma G.; Marques, Fernando B.; da Fonseca, Marina B.; Rogério, Kamilla R.; Graebin, Cedric S.; Andricopulo, Adriano D.

    2016-01-01

    Microtubules play critical roles in vital cell processes, including cell growth, division, and migration. Microtubule-targeting small molecules are chemotherapeutic agents that are widely used in the treatment of cancer. Many of these compounds are structurally complex natural products (e.g., paclitaxel, vinblastine, and vincristine) with multiple stereogenic centers. Because of the scarcity of their natural sources and the difficulty of their partial or total synthesis, as well as problems related to their bioavailability, toxicity, and resistance, there is an urgent need for novel microtubule binding agents that are effective for treating cancer but do not have these disadvantages. In the present work, our lead discovery effort toward less structurally complex synthetic compounds led to the discovery of a series of acridinones inspired by the structure of podophyllotoxin, a natural product with important microtubule assembly inhibitory activity, as novel mechanism-based tubulin assembly inhibitors with potent anticancer properties and low toxicity. The compounds were evaluated in vitro by wound healing assays employing the metastatic and triple negative breast cancer cell line MDA-MB-231. Four compounds with IC50 values between 0.294 and 1.7 μM were identified. These compounds showed selective cytotoxicity against MDA-MB-231 and DU-145 cancer cell lines and promoted cell cycle arrest in G2/M phase and apoptosis. Consistent with molecular modeling results, the acridinones inhibited tubulin assembly in in vitro polymerization assays with IC50 values between 0.9 and 13 μM. Their binding to the colchicine-binding site of tubulin was confirmed through competitive assays. PMID:27508497

  10. Fault mirrors in seismically active fault zones: A fossil of small earthquakes at shallow depths

    Kuo, Li-Wei; Song, Sheng-Rong; Suppe, John; Yeh, En-Chao

    2016-03-01

    Fault mirrors (FMs) are naturally polished and glossy fault slip surfaces that can record seismic deformation at shallow depths. They are important for investigating the processes controlling dynamic fault slip. We characterize FMs in borehole samples from the hanging wall damage zone of the active Hsiaotungshi reverse fault, Taiwan. Here we report the first documented occurrence of the combination of silica gel and melt patches coating FMs, with the silica gel resembling those observed on experimentally formed FMs that were cataclastically generated. In addition, the melt patches, which are unambiguous indicators of coseismic slip, suggest that the natural FMs were produced at seismic rates, presumably resulting from flash heating at asperities on the slip surfaces. Since flash heating is efficient at small slip, we propose that these natural FMs represent fossils of small earthquakes, formed in either coseismic faulting and folding or aftershock deformation in the active Taiwan fold-and-thrust belt.

  11. 78 FR 79391 - Foreign-Trade Zone (FTZ) 22-Chicago, Illinois, Notification of Proposed Production Activity...

    2013-12-30

    ...; wheel/bushing packages; rear wheels; blade assemblies; blender collars; blender jars; blender pour lids... clamps; gaskets; locks; belts; blender sealing gaskets; ] bushings; O-rings; boot seals; caps; rubber... assemblies; water tank assemblies; wheels; blender replacements; ceramic tanks; coffee carafes;...

  12. Active faults in the deformation zone off Noto Peninsula, Japan, revealed by high- resolution seismic profiles

    Inoue, T.; Okamura, Y.; Murakami, F.; Kimura, H.; Ikehara, K.

    2008-12-01

    Recently, a lot of earthquakes occur in Japan. The deformation zone which many faults and folds have concentrated exists on the Japan Sea side of Japan. The 2007 Noto Hanto Earthquake (MJMA 6.9) and 2007 Chuetsu-oki Earthquake (MJMA 6.8) were caused by activity of parts of faults in this deformation zone. The Noto Hanto Earthquake occurred on 25 March, 2007 under the northwestern coast of Noto Peninsula, Ishikawa Prefecture, Japan. This earthquake is located in Quaternary deformation zone that is continued from northern margin of Noto Peninsula to southeast direction (Okamura, 2007a). National Institute of Advanced Industrial Science and Technology (AIST) carried out high-resolution seismic survey using Boomer and 12 channels short streamer cable in the northern part off Noto Peninsula, in order to clarify distribution and activities of active faults in the deformation zone. A twelve channels short streamer cable with 2.5 meter channel spacing developed by AIST and private corporation is designed to get high resolution seismic profiles in shallow sea area. The multi-channel system is possible to equip on a small fishing boat, because the data acquisition system is based on PC and the length of the cable is short and easy to handle. Moreover, because the channel spacing is short, this cable is very effective for a high- resolution seismic profiling survey in the shallow sea, and seismic data obtained by multi-channel cable can be improved by velocity analysis and CDP stack. In the northern part off Noto Peninsula, seismic profiles depicting geologic structure up to 100 meters deep under sea floor were obtained. The most remarkable reflection surface recognized in the seismic profiles is erosion surface at the Last Glacial Maximum (LGM). In the western part, sediments about 30 meters (40 msec) thick cover the erosional surface that is distributed under the shelf shallower than 100m in depth and the sediments thin toward offshore and east. Flexures like deformation in

  13. Impaired activity-dependent neural circuit assembly and refinement in autism spectrum disorder genetic models

    Caleb Andrew Doll

    2014-02-01

    Full Text Available Early-use activity during circuit-specific critical periods refines brain circuitry by the coupled processes of eliminating inappropriate synapses and strengthening maintained synapses. We theorize these activity-dependent developmental processes are specifically impaired in autism spectrum disorders (ASDs. ASD genetic models in both mouse and Drosophila have pioneered our insights into normal activity-dependent neural circuit assembly and consolidation, and how these developmental mechanisms go awry in specific genetic conditions. The monogenic Fragile X syndrome (FXS, a common cause of heritable ASD and intellectual disability, has been particularly well linked to defects in activity-dependent critical period processes. The Fragile X Mental Retardation Protein (FMRP is positively activity-regulated in expression and function, in turn regulates excitability and activity in a negative feedback loop, and appears to be required for the activity-dependent remodeling of synaptic connectivity during early-use critical periods. The Drosophila FXS model has been shown to functionally conserve the roles of human FMRP in synaptogenesis, and has been centrally important in generating our current mechanistic understanding of the FXS disease state. Recent advances in Drosophila optogenetics, transgenic calcium reporters, highly-targeted transgenic drivers for individually-identified neurons, and a vastly improved connectome of the brain are now being combined to provide unparalleled opportunities to both manipulate and monitor activity-dependent processes during critical period brain development in defined neural circuits. The field is now poised to exploit this new Drosophila transgenic toolbox for the systematic dissection of activity-dependent mechanisms in normal versus ASD brain development, particularly utilizing the well-established Drosophila FXS disease model.

  14. NMDA modulates oligodendrocyte differentiation of subventricular zone cells through PKC activation

    Fabio eCavaliere

    2013-12-01

    Full Text Available Multipotent cells from the juvenile subventricular zone (SVZ possess the ability to differentiate into new neural cells. Depending on local signals, SVZ can generate new neurons, astrocytes or oligodendrocytes. We previously demonstrated that activation of NMDA receptors in SVZ progenitors increases the rate of oligodendrocyte differentiation. Here we investigated the mechanisms involved in NMDA receptor-dependent differentiation. Using functional studies performed with the reporter gene luciferase we found that activation of NMDA receptor stimulates PKC. In turn, stimulation of PKC precedes the activation of NADPH oxidase (NOX as demonstrated by translocation of the p67phox subunit to the cellular membrane. We propose that NOX2 is involved in the transduction of the signal from NMDA receptors through PKC activation as the inhibitor gp91 reduced their pro-differentiation effect. In addition, our data and that from other groups suggest that signaling through the NMDA receptor/PKC/NOX2 cascade generates ROS that activate the PI3/mTOR pathway and finally leads to the generation of new oligodendrocytes.

  15. Outcome of early active mobilization after flexor tendons repair in zones II-V in hand

    Saini Narender

    2010-01-01

    Full Text Available Background: The functional outcome of a flexor tendon injury after repair depends on multiple factors. The postoperative management of tendon injuries has paved a sea through many mobilization protocols. The improved understanding of splinting techniques has promoted the understanding and implication of these mobilization protocols. We conducted a study to observe and record the results of early active mobilization of repaired flexor tendons in zones II-V. Materials and Methods: 25 cases with 75 digits involving 129 flexor tendons including 8 flexor pollicis longus (FPL tendons in zones II-V of thumb were subjected to the early active mobilization protocol. Eighteen (72% patients were below 30 years of age. Twenty-four cases (96% sustained injury by sharp instrument either accidentally or by assault. Ring and little finger were involved in 50% instances. In all digits, either a primary repair (n=26 or a delayed primary repair (n=49 was done. The repair was done with the modified Kessler core suture technique with locking epitendinous sutures with a knot inside the repair site, using polypropylene 3-0/4-0 sutures. An end-to-end repair of the cut nerves was done under loupe magnification using a 6-0/8-0 polyamide suture. The rehabilitation program adopted was a modification of Kleinert′s regimen, and Silfverskiold regimen. The final assessment was done at 14 weeks post repair using the Louisville system of Lister et al. Results: Eighteen of excellent results were attributed to ring and little fingers where there was a flexion lag of < 1 cm and an extension lag of < 15o. FPL showed 75% (n=6 excellent flexion. 63% (n=47 digits showed excellent results whereas good results were seen in 19% (n=14 digits. Nine percent (n=7 digits showed fair and the same number showed poor results. The cases where the median (n=4 or ulnar nerve (n=6 or both (n=3 were involved led to some deformity (clawing/ape thumb at 6 months postoperatively. The cases with digital

  16. Transcriptome analysis of tomato flower pedicel tissues reveals abscission zone-specific modulation of key meristem activity genes.

    Xiang Wang

    Full Text Available Tomato flower abscises at the anatomically distinct abscission zone that separates the pedicel into basal and apical portions. During abscission, cell separation occurs only at the abscission zone indicating distinctive molecular regulation in its cells. We conducted a transcriptome analysis of tomato pedicel tissues during ethylene promoted abscission. We found that the abscission zone was the most active site with the largest set of differentially expressed genes when compared with basal and apical portions. Gene Ontology analyses revealed enriched transcription regulation and hydrolase activities in the abscission zone. We also demonstrate coordinated responses of hormone and cell wall related genes. Besides, a number of ESTs representing homologs of key Arabidopsis shoot apical meristem activity genes were found to be preferentially expressed in the abscission zone, including WUSCHEL (WUS, KNAT6, LATERAL ORGAN BOUNDARIES DOMAIN PROTEIN 1(LBD1, and BELL-like homeodomain protein 1 (BLH1, as well as tomato axillary meristem genes BLIND (Bl and LATERAL SUPPRESSOR (Ls. More interestingly, the homologs of WUS and the potential functional partner OVATE FAMILIY PROTEIN (OFP were subsequently down regulated during abscission while Bl and AGL12 were continuously and specifically induced in the abscission zone. The expression patterns of meristem activity genes corroborate the idea that cells of the abscission zone confer meristem-like nature and coincide with the course of abscission and post-abscission cell differentiation. Our data therefore propose a possible regulatory scheme in tomato involving meristem genes that may be required not only for the abscission zone development, but also for abscission.

  17. Self-Assembled Complexes of Horseradish Peroxidase with Magnetic Nanoparticles Showing Enhanced Peroxidase Activity

    Corgié, Stéphane C.

    2012-02-15

    Bio-nanocatalysts (BNCs) consisting of horseradish peroxidase (HRP) self-assembled with magnetic nanoparticles (MNPs) enhance enzymatic activity due to the faster turnover and lower inhibition of the enzyme. The size and magnetization of the MNPs affect the formation of the BNCs, and ultimately control the activity of the bound enzymes. Smaller MNPs form small clusters with a low affinity for the HRP. While the turnover for the bound fraction is drastically increased, there is no difference in the H 2O 2 inhibitory concentration. Larger MNPs with a higher magnetization aggregate in larger clusters and have a higher affinity for the enzyme and a lower substrate inhibition. All of the BNCs are more active than the free enzyme or the MNPs (BNCs > HRP ≤laquo; MNPs). Since the BNCs show surprising resilience in various reaction conditions, they may pave the way towards new hybrid biocatalysts with increased activities and unique catalytic properties for magnetosensitive enzymatic reactions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. SH3 Domains Differentially Stimulate Distinct Dynamin I Assembly Modes and G Domain Activity.

    Sai Krishnan

    Full Text Available Dynamin I is a highly regulated GTPase enzyme enriched in nerve terminals which mediates vesicle fission during synaptic vesicle endocytosis. One regulatory mechanism involves its interactions with proteins containing Src homology 3 (SH3 domains. At least 30 SH3 domain-containing proteins bind dynamin at its proline-rich domain (PRD. Those that stimulate dynamin activity act by promoting its oligomerisation. We undertook a systematic parallel screening of 13 glutathione-S-transferase (GST-tagged endocytosis-related SH3 domains on dynamin binding, GTPase activity and oligomerisation. No correlation was found between dynamin binding and their potency to stimulate GTPase activity. There was limited correlation between the extent of their ability to stimulate dynamin activity and the level of oligomerisation, indicating an as yet uncharacterised allosteric coupling of the PRD and G domain. We examined the two variants, dynamin Iab and Ibb, which differ in the alternately splice middle domain α2 helix. They responded differently to the panel of SH3s, with the extent of stimulation between the splice variants varying greatly between the SH3s. This study reveals that SH3 binding can act as a heterotropic allosteric regulator of the G domain via the middle domain α2 helix, suggesting an involvement of this helix in communicating the PRD-mediated allostery. This indicates that SH3 binding both stabilises multiple conformations of the tetrameric building block of dynamin, and promotes assembly of dynamin-SH3 complexes with distinct rates of GTP hydrolysis.

  19. A topological study of repetitive co-activation networks in in vitro cortical assemblies

    To address the issue of extracting useful information from large data-set of large scale networks of neurons, we propose an algorithm that involves both algebraic-statistical and topological tools. We investigate the electrical behavior of in vitro cortical assemblies both during spontaneous and stimulus-evoked activity coupled to Micro-Electrode Arrays (MEAs). Our goal is to identify core sub-networks of repetitive and synchronous patterns of activity and to characterize them. The analysis is performed at different resolution levels using a clustering algorithm that reduces the network dimensionality. To better visualize the results, we provide a graphical representation of the detected sub-networks and characterize them with a topological invariant, i.e. the sequence of Betti numbers computed on the associated simplicial complexes. The results show that the extracted sub-populations of neurons have a more heterogeneous firing rate with respect to the entire network. Furthermore, the comparison of spontaneous and stimulus-evoked behavior reveals similarities in the identified clusters of neurons, indicating that in both conditions similar activation patterns drive the global network activity. (paper)

  20. Activated platelets form protected zones of adhesion on fibrinogen and fibronectin-coated surfaces

    1993-01-01

    Leukocytes form zones of close apposition when they adhere to ligand- coated surfaces. Because plasma proteins are excluded from these contact zones, we have termed them protected zones of adhesion. To determine whether platelets form similar protected zones of adhesion, gel-filtered platelets stimulated with thrombin or ADP were allowed to adhere to fibrinogen- or fibronectin-coated surfaces. The protein- coated surfaces with platelets attached were stained with either fluorochrome-conjugate...

  1. Radon variations in an active landslide zone from Himalaya: A preliminary study

    The radon concentration was measured in soil and water samples from an active landslide zone in the Garhwal Himalaya. The landslide is compound in nature i.e. slump in the crown portion and debris slide in the lower part. The measured radon concentration varies from 3.1 to 18.3 Bq/l in water whereas in soil/debris samples it varies from 2.3 to 12.2 kBq/m3. The crown portion (upper portion) show higher radon values in comparison to distal portion. The higher radon concentration in crown portion may be because of the failure plane of landslide associated with high fracturing and crushing whereas, increased porosity of debris of slide does not allow radon to accumulate in soil and water in the lower portion. (author)

  2. Determination of dissociation constants of pharmacologically active xanthones by capillary zone electrophoresis with diode array detection.

    Wu, Xiaomu; Gong, Suxuan; Bo, Tao; Liao, Yiping; Liu, Huwei

    2004-12-24

    In this article, the dissociation constants (pKa) of 10 pharmacologically active xanthones isolated from herbal medicine Securidaca inappendiculata were determined by capillary zone electrophoresis with diode array detection. The pKa values determined by the method based on the electrophoretic mobilities (calculated from migration times) have been proved by the method based on UV absorbance calculated from the online spectra corresponding peaks. No conspicuous difference was observed between the two methods with acceptable reproducibility. Two pKa values (pKa1 and pKa2) were found for four xanthones while generally the 10 compounds possess the pKa values ranging from 6.4 to 9.2. PMID:15641365

  3. Growth of the active zone in nitride based long wavelength laser structures

    Rossow, U.; Jönen, H.; Brendel, M.; Dräger, A.; Langer, T.; Hoffmann, L.; Bremers, H.; Hangleiter, A.

    2011-01-01

    In xGa 1- xN/GaN quantum well (QW) structures grown on c-plane surfaces for long wavelength light emitters have been investigated intended. We reached indium concentrations of xIn≥0.35 with good optical and structural quality. For QW thicknesses dQW≤2 nm a fully strained layer structure is observed. QWs of such high indium concentrations, however, are very sensitive to the growth conditions of the subsequent layers and thermal stability/degradation becomes an important issue. We modified the growth of the QWs to avoid or minimize V-pit formation without temperature ramping in the barriers and showed that their properties were unchanged when used in the active zone of a laser structure.

  4. APP Is a Context-Sensitive Regulator of the Hippocampal Presynaptic Active Zone.

    Laßek, Melanie; Weingarten, Jens; Wegner, Martin; Mueller, Benjamin F; Rohmer, Marion; Baeumlisberger, Dominic; Arrey, Tabiwang N; Hick, Meike; Ackermann, Jörg; Acker-Palmer, Amparo; Koch, Ina; Müller, Ulrike; Karas, Michael; Volknandt, Walter

    2016-04-01

    The hallmarks of Alzheimer's disease (AD) are characterized by cognitive decline and behavioral changes. The most prominent brain region affected by the progression of AD is the hippocampal formation. The pathogenesis involves a successive loss of hippocampal neurons accompanied by a decline in learning and memory consolidation mainly attributed to an accumulation of senile plaques. The amyloid precursor protein (APP) has been identified as precursor of Aβ-peptides, the main constituents of senile plaques. Until now, little is known about the physiological function of APP within the central nervous system. The allocation of APP to the proteome of the highly dynamic presynaptic active zone (PAZ) highlights APP as a yet unknown player in neuronal communication and signaling. In this study, we analyze the impact of APP deletion on the hippocampal PAZ proteome. The native hippocampal PAZ derived from APP mouse mutants (APP-KOs and NexCreAPP/APLP2-cDKOs) was isolated by subcellular fractionation and immunopurification. Subsequently, an isobaric labeling was performed using TMT6 for protein identification and quantification by high-resolution mass spectrometry. We combine bioinformatics tools and biochemical approaches to address the proteomics dataset and to understand the role of individual proteins. The impact of APP deletion on the hippocampal PAZ proteome was visualized by creating protein-protein interaction (PPI) networks that incorporated APP into the synaptic vesicle cycle, cytoskeletal organization, and calcium-homeostasis. The combination of subcellular fractionation, immunopurification, proteomic analysis, and bioinformatics allowed us to identify APP as structural and functional regulator in a context-sensitive manner within the hippocampal active zone network. PMID:27092780

  5. APP Is a Context-Sensitive Regulator of the Hippocampal Presynaptic Active Zone

    Mueller, Benjamin F.; Rohmer, Marion; Baeumlisberger, Dominic; Arrey, Tabiwang N.; Hick, Meike; Ackermann, Jörg; Acker-Palmer, Amparo; Koch, Ina; Müller, Ulrike; Karas, Michael; Volknandt, Walter

    2016-01-01

    The hallmarks of Alzheimer’s disease (AD) are characterized by cognitive decline and behavioral changes. The most prominent brain region affected by the progression of AD is the hippocampal formation. The pathogenesis involves a successive loss of hippocampal neurons accompanied by a decline in learning and memory consolidation mainly attributed to an accumulation of senile plaques. The amyloid precursor protein (APP) has been identified as precursor of Aβ-peptides, the main constituents of senile plaques. Until now, little is known about the physiological function of APP within the central nervous system. The allocation of APP to the proteome of the highly dynamic presynaptic active zone (PAZ) highlights APP as a yet unknown player in neuronal communication and signaling. In this study, we analyze the impact of APP deletion on the hippocampal PAZ proteome. The native hippocampal PAZ derived from APP mouse mutants (APP-KOs and NexCreAPP/APLP2-cDKOs) was isolated by subcellular fractionation and immunopurification. Subsequently, an isobaric labeling was performed using TMT6 for protein identification and quantification by high-resolution mass spectrometry. We combine bioinformatics tools and biochemical approaches to address the proteomics dataset and to understand the role of individual proteins. The impact of APP deletion on the hippocampal PAZ proteome was visualized by creating protein-protein interaction (PPI) networks that incorporated APP into the synaptic vesicle cycle, cytoskeletal organization, and calcium-homeostasis. The combination of subcellular fractionation, immunopurification, proteomic analysis, and bioinformatics allowed us to identify APP as structural and functional regulator in a context-sensitive manner within the hippocampal active zone network. PMID:27092780

  6. APP Is a Context-Sensitive Regulator of the Hippocampal Presynaptic Active Zone.

    Melanie Laßek

    2016-04-01

    Full Text Available The hallmarks of Alzheimer's disease (AD are characterized by cognitive decline and behavioral changes. The most prominent brain region affected by the progression of AD is the hippocampal formation. The pathogenesis involves a successive loss of hippocampal neurons accompanied by a decline in learning and memory consolidation mainly attributed to an accumulation of senile plaques. The amyloid precursor protein (APP has been identified as precursor of Aβ-peptides, the main constituents of senile plaques. Until now, little is known about the physiological function of APP within the central nervous system. The allocation of APP to the proteome of the highly dynamic presynaptic active zone (PAZ highlights APP as a yet unknown player in neuronal communication and signaling. In this study, we analyze the impact of APP deletion on the hippocampal PAZ proteome. The native hippocampal PAZ derived from APP mouse mutants (APP-KOs and NexCreAPP/APLP2-cDKOs was isolated by subcellular fractionation and immunopurification. Subsequently, an isobaric labeling was performed using TMT6 for protein identification and quantification by high-resolution mass spectrometry. We combine bioinformatics tools and biochemical approaches to address the proteomics dataset and to understand the role of individual proteins. The impact of APP deletion on the hippocampal PAZ proteome was visualized by creating protein-protein interaction (PPI networks that incorporated APP into the synaptic vesicle cycle, cytoskeletal organization, and calcium-homeostasis. The combination of subcellular fractionation, immunopurification, proteomic analysis, and bioinformatics allowed us to identify APP as structural and functional regulator in a context-sensitive manner within the hippocampal active zone network.

  7. Improved insulin sensitivity associated with reduced mitochondrial complex IV assembly and activity.

    Deepa, Sathyaseelan S; Pulliam, Daniel; Hill, Shauna; Shi, Yun; Walsh, Michael E; Salmon, Adam; Sloane, Lauren; Zhang, Ning; Zeviani, Massimo; Viscomi, Carlo; Musi, Nicolas; Van Remmen, Holly

    2013-04-01

    Mice lacking Surf1, a complex IV assembly protein, have ∼50-70% reduction in cytochrome c oxidase activity in all tissues yet a paradoxical increase in lifespan. Here we report that Surf1(-/-) mice have lower body (15%) and fat (20%) mass, in association with reduced lipid storage, smaller adipocytes, and elevated indicators of fatty acid oxidation in white adipose tissue (WAT) compared with control mice. The respiratory quotient in the Surf1(-/-) mice was significantly lower than in the control animals (0.83-0.93 vs. 0.90-0.98), consistent with enhanced fat utilization in Surf1(-/-) mice. Elevated fat utilization was associated with increased insulin sensitivity measured as insulin-stimulated glucose uptake, as well as an increase in insulin receptor levels (∼2-fold) and glucose transporter type 4 (GLUT4; ∼1.3-fold) levels in WAT in the Surf1(-/-) mice. The expression of peroxisome proliferator-activated receptor γ-coactivator 1-α (PGC-1α) mRNA and protein was up-regulated by 2.5- and 1.9-fold, respectively, in WAT from Surf1(-/-) mice, and the expression of PGC-1α target genes and markers of mitochondrial biogenesis was elevated. Together, these findings point to a novel and unexpected link between reduced mitochondrial complex IV activity, enhanced insulin sensitivity, and increased mitochondrial biogenesis that may contribute to the increased longevity in the Surf1(-/-) mice. PMID:23241310

  8. Instrumental neutron activation analysis of well sediments from the costal zone of Kurzeme

    Full text: The coastal zone of Kurzeme 2-4 km wide is located in different economical regions. Geologically this zone is under the influence of the sea. Through the sandy soil the chemical compounds infiltrate very well in the underground waters and so it is possible from the condition of underground waters to judge about the state of the zone. The purpose of this work is to get the information about the influence of the human activities on the coastal zone and also to estimate the influence of the penetration of seawater on the chemical composition of underground waters in wells. As the sediments integrate the chemical composition of water over a longer period of time, then in the first stage for the characterisation of water the sediments were chosen. To solve the mentioned problems it is necessary to obtain information about large amounts of chemical elements (V, Mn, Co, Ni, Cu, Zn, As, Sb, Th, U, lanthanide, a.o., about 30-40 at all) in macro, micro and trace concentrations. It is possible only by use one of the methods of multielement analysis. We chose the instrumental neutron activation analysis (INAA), because it is one of the most sensitive allows to determine elements in wide range of concentrations (from % to ppb) and do not need complicated sample preparation. The INAA was carried out in the Laboratory of Neutron Activation Analysis in the Nuclear Research Center of the Latvian Academy of Sciences, by the use of nuclear reactor as neutron source. For the determination of elements two modes of irradiation and three of measurements were used. 1. The irradiation of samples in reactors horizontal experimental channel neutron flux 1.6 · 1013 n/cm2 s by use of pneumotransporter. The irradiation time was 30 s, cooling time 8 min, measuring time of the gamma-spectrums - 200/s. Under such conditions radionuclides with half periods less than 30 n were determined: Mg, Cl, V, Mn, a.o. 2. The irradiation of samples in reactors vertical experimental channel (neutron

  9. Calculations of Induced Activity in the ATLAS Experiment for Nuclear Waste Zoning.

    Morev, M N

    2007-01-01

    Extensive calculations were performed with the general activation formula using the fluxes of high-energy hadrons and low-energy neutrons previously obtained from simulations with the GCALOR code of the ATLAS detector. Three sets of proton cross-sections were used for hadrons energy above 20 MeV: (a) one set calculated with the YIELDX code (i.e., the Silberberg-Tsao formula of partial proton spallation cross-sections), (b) one set calculated with the Rudstam formula, and (c) the ‘best-estimate' dataset which was a compilation of the available experimental and calculated data. In the energy region below 20 MeV, neutron activation cross-sections were taken from evaluated nuclear data files. The activity of each nuclide for a predefined operation scenario (i.e., number and duration of irradiation and shutdown cycles) was normalized to reference values taken from the European or Swiss legislations, to obtain an aggregate estimate of the radiological hazard comparable with a nuclear waste zoning definition cr...

  10. Underground Corrosion of Activated Metals in an Arid Vadose Zone Environment

    The subsurface radioactive disposal site located at the Idaho National Engineering and Environmental Laboratory contains neutron-activated metals from nonfuel nuclear-reactor- core components. A long-term corrosion test is being conducted to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements in an arid vadose zone environment. The tests use nonradioactive metal coupons representing the prominent neutron-activated material buried at the disposal location, namely, Type 304L stainless steel, Type 315L stainless steel, nickel-chromium alloy (UNS NO7718), beryllium, aluminum 6061-T6, and a zirconium alloy, (UNS R60804). In addition, carbon steel (the material presently used in the cask disposal liners and other disposal containers) and a duplex stainless steel (UNS S32550) (the proposed material for the high- integrity disposal containers) are also included in the test program. This paper briefly describes the test program and presents the early corrosion rate results after 1 year and 3 years of underground exposure

  11. NORM activity concentration in sediment cores from the Peninsular Malaysia East Coast Exclusive Economic Zone

    Study for distribution of Naturally Occurring Radioactive Materials (NORM) i.e. 226Ra, 228Ra and 40K in the east coast of Peninsular Malaysia Exclusive Economic Zone (EEZ) was carried out as part of the national marine environment project. Sixteen marine sediment cores from selected locations within the EEZ were collected for determination of NORM activity concentrations using high-purity germanium (HPGe) gamma spectrometer. From the measurement, the activity concentration of 226Ra, 228Ra and 40K is ranged from 16 ± 4 Bq/kg to 46 ± 6 Bq/kg (total mean 30), 28 ± 7 Bq/kg to 87 ± 11 Bq/kg (total mean 56) and 171 ± 33 Bq/kg to 690 ± 89 Bq/kg (total mean 420), dry wt., respectively. The activity concentrations of radionuclides in most of the core were quite uniform suggesting that there were thorough vertical mixed of sediment throughout the core. The results obtained were also in good agreement with those previous reported from other countries in the region and therefore can be used to enhance present radioactivity database. The calculated external hazard values were ranged from 0.25 to 0.51 with the mean of 0.38 (less than unity) showed little risk of external hazard to the workers handling the sediments and it was likely low level of the mainland natural gamma-radiation in the east coast of Peninsular Malaysia. (author)

  12. 78 FR 42929 - Foreign-Trade Zone (FTZ) 41-Milwaukee, Wisconsin, Notification of Proposed Production Activity...

    2013-07-18

    ... status production equipment. ] The components and materials sourced from abroad include: polymer paint..., washers, rivet housing assembly, damper or filter springs for grille, stainless steel kitchen...

  13. Variation of radon flux along active fault zones in association with earthquake occurrence

    Radon flux measurements were carried out at three radon stations along an active fault zone in the Langadas basin, Northern Greece by various techniques for earthquake prediction studies. Specially made devices with alpha track-etch detectors (ATDs) were installed by using LR-115, type II, non-strippable cellulose nitrate films (integrating method of measurements). Continuous monitoring of radon gas exhaling from the ground was also performed by using silicon diode detectors, Barasol and Clipperton type, in association with various probes and sensors including simultaneously registration of the meteorological parameters, such as precipitation height (rainfall events), temperature and barometric pressure. The obtained radon data were studied in parallel with the data of seismic events, such as the magnitude, ML of earthquakes, the epicentral distance, the hypocentral distance and the energy released during the earthquake event occurred at the fault zone during the period of measurements to find out any association between the rad on flux and the meteorological and seismological parameters. Seismic events with magnitude ML ≥ 4.0 appeared to be preceded by large precursory signals produced a well-defined 'anomaly' (peak) of radon flux prior to the event. In the results, the radon peaks in the obtained spectra appeared to be sharp and narrow. The rise time of a radon peak, that is the time period from the onset of a radon peak until the time of radon flux maximum is about a week, while the after time, that is the time interval between the time of radon flux maximum and the time of a seismic event ranges from about 3 weeks or more.

  14. Impaired hippocampal activity at the goal zone on the place preference task in a DISC1 mouse model.

    Hayashi, Yuichiro; Sawa, Akira; Hikida, Takatoshi

    2016-05-01

    Learning deficit is a clinical feature of many mental disorders and is hypothesized to result from an inability to integrate information in neural systems. We showed that transgenic mice expressing a dominant-negative form of DISC1, a risk gene for neuropsychiatric disorders, exhibited impaired performance in a reward-place association task when combined with a mild isolation stress. CA1 cells in the mutant mice showed normal place cell properties, but their activity at the goal zone was diminished. This abnormality in hippocampal activity at the goal zone during the task may underlie the learning deficit observed in the DISC1 mutant mice. PMID:26497623

  15. 78 FR 37785 - Foreign-Trade Zone (FTZ) 196-Fort Worth, Texas; Notification of Proposed Production Activity...

    2013-06-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE... Production Activity; Flextronics International USA, Inc. (Mobile Phone Assembly and Kitting); Fort Worth..., testing, packaging, warehousing and distribution of mobile phones. Pursuant to 15 CFR 400.14(b),...

  16. Self-assembly of a thin highly reduced graphene oxide film and its high electrocatalytic activity

    A thin highly reduced graphene oxide (rGO) film was self-assembled at the dimethyl formamide (DMF)–air interface through evaporation-induced water-assisted thin film formation at the pentane–DMF interface, followed by complete evaporation of pentane. The thin film was transferred onto various solid substrates for film characterization and electrochemical sensing. UV-visible spectrometry, scanning electron microscopy (SEM), atomic force microscopy (AFM) and electrochemistry techniques were used to characterize the film. An rGO film showing 82.8% of the transmittance at 550 nm corresponds to a few layers of rGO nanosheets. The rGO nanosheets cross-stack with each other, lying approximately in the plane of the film. An rGO film collected on a glassy carbon (GC) electrode exhibited improved electrical conductivity compared to GC, with the electrode charge-transfer resistance (Rct) reduced from 31 Ω to 22 Ω. The as-formed rGO/GC electrode was mechanically very stable, exhibiting significantly enhanced electrocatalytic activity to H2O2 and dopamine. Multiple layers of the rGO films on the GC electrode showed even stronger electrocatalytic activity to dopamine than that of the single rGO film layer. The controllable formation of a stable rGO film on various solid substrates has potential applications for nanoelectronics and sensors/biosensors. (paper)

  17. Improving anticancer activity and reducing systemic toxicity of doxorubicin by self-assembled polymeric micelles

    In an attempt to improve anticancer activity and reduce systemic toxicity of doxorubicin (Dox), we encapsulated Dox in monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelles by a novel self-assembly procedure without using surfactants, organic solvents or vigorous stirring. These Dox encapsulated MPEG-PCL (Dox/MPEG-PCL) micelles with drug loading of 4.2% were monodisperse and ∼ 20 nm in diameter. The Dox can be released from the Dox/MPEG-PCL micelles; the Dox-release at pH 5.5 was faster than that at pH 7.0. Encapsulation of Dox in MPEG-PCL micelles enhanced the cellular uptake and cytotoxicity of Dox on the C-26 colon carcinoma cell in vitro, and slowed the extravasation of Dox in the transgenic zebrafish model. Compared to free Dox, Dox/MPEG-PCL micelles were more effective in inhibiting tumor growth in the subcutaneous C-26 colon carcinoma and Lewis lung carcinoma models, and prolonging survival of mice bearing these tumors. Dox/MPEG-PCL micelles also induced lower systemic toxicity than free Dox. In conclusion, incorporation of Dox in MPEG-PCL micelles enhanced the anticancer activity and decreased the systemic toxicity of Dox; these Dox/MPEG-PCL micelles are an interesting formulation of Dox and may have potential clinical applications in cancer therapy.

  18. Activator-inhibitor coupling between Rho signalling and actin assembly makes the cell cortex an excitable medium.

    Bement, William M; Leda, Marcin; Moe, Alison M; Kita, Angela M; Larson, Matthew E; Golding, Adriana E; Pfeuti, Courtney; Su, Kuan-Chung; Miller, Ann L; Goryachev, Andrew B; von Dassow, George

    2015-11-01

    Animal cell cytokinesis results from patterned activation of the small GTPase Rho, which directs assembly of actomyosin in the equatorial cortex. Cytokinesis is restricted to a portion of the cell cycle following anaphase onset in which the cortex is responsive to signals from the spindle. We show that shortly after anaphase onset oocytes and embryonic cells of frogs and echinoderms exhibit cortical waves of Rho activity and F-actin polymerization. The waves are modulated by cyclin-dependent kinase 1 (Cdk1) activity and require the Rho GEF (guanine nucleotide exchange factor), Ect2. Surprisingly, during wave propagation, although Rho activity elicits F-actin assembly, F-actin subsequently inactivates Rho. Experimental and modelling results show that waves represent excitable dynamics of a reaction-diffusion system with Rho as the activator and F-actin the inhibitor. We propose that cortical excitability explains fundamental features of cytokinesis including its cell cycle regulation. PMID:26479320

  19. Active faults and related Late Quaternary deformation along the Northwestern Himalayan Frontal Zone, India

    T. Nakata

    2003-06-01

    Full Text Available Numerous newly-identified traces of active faults in the Himalayan foothill zone along the HFF around Chandigarh, in Pinjore Dun, along the piedmont zone of the Lower Siwalik hill front and within the Lower Tertiary hill range reveal the pattern of thrust and strike-slip faulting, striking parallel to the principal structural trend (NNW-SSE of the orogenic belt. The active Chandigarh Fault, Pinjore Garden Fault and Barsar thrust have vertically dislocated, warped and backtilted fluvial and alluvial-fan surfaces made up of Late Pleistocene-Holocene sediments. West- and southwest-facing fault scarplets with heights ranging from 12 to 50 m along these faults suggest continued tectonic movement through Late Pleistocene to recent times. Gentle warping and backtilting of the terraces on the hanging wall sides of the faults indicate fault-bend folding. These active faults are the manifestation of north-dipping imbricated thrust faults branching out from the major fault systems like the Main Boundary Fault (MBF and Himalayan Frontal Fault (HFF, probably merging down northward into a décollement. The Taksal Fault, striking NNW-SSE, shows prominent right-lateral movement marked by lateral offset of streams and younger Quaternary terraces and occupies a narrow deep linear valley along the fault trace. Right stepping along this fault has resulted in formation of a small pull-apart basin. Fault scarplets facing ENE and WSW are the manifestation of dip-slip movement. This fault is an example of slip-partitioning between the strike-slip and thrust faults, suggesting ongoing oblique convergence of the Indian plate and northward migration of a tectonic sliver. Slip rate along the Taksal Fault has been calculated as 2.8 mm/yr. Preliminary trench investigation at the base of the Chandigarh Fault Scarp has revealed total displacement of 3.5 m along a low angle thrust fault with variable dip of 20° to 46° due northeast, possibly the result of one

  20. New insights on the seismogenic potential of the Eastern Betic Shear Zone (SE Iberia): Quaternary activity and paleoseismicity of the SW segment of the Carrascoy Fault Zone

    Martín-Banda, Raquel; García-Mayordomo, Julián.; Insua-Arévalo, Juan M.; Salazar, Ángel E.; Rodríguez-Escudero, Emilio; Álvarez-Gómez, Jose A.; Medialdea, Alicia; Herrero, María. J.

    2016-01-01

    The Carrascoy Fault (CAF) is one of the main active faults that form part of the Eastern Betic Shear Zone, a 450 km fault system that accommodates most of the convergence between the Eurasian (Iberia) and Nubian plates in the Betic Cordillera, south Spain. Although the CAF represents a major earthquake threat to the nearby City of Murcia, studies on its Quaternary tectonics and seismogenic potential are scarce to date. We present evidence that supports the division of the CAF into two overlapping segments with contrasting tectonic structure, Quaternary activity, and landform control: a SW segment, characterized by a broad fold-and-thrust zone similar to the forebergs defined in the Gobi-Altai region, and a NE segment, characterized by a sharp mountain front controlled by strike-slip tectonics. We attribute the differentiation into these two segments to the stresses associated with topography, which in turn is a consequence of the shortening component, at the middle Pleistocene, after circa 217.4 ka. For the SW segment we infer the occurrence of 9 to 11, Mw 6.7 paleoearthquakes in the last 30.2 kyr, and a slip rate of 0.37 ± 0.08 m/kyr. We date the occurrence of the last surface rupture event after 2750 B.P., and we estimate an average recurrence period of major events of 3.3 ± 0.7 kyr.

  1. A Context-Aware Ubiquitous Learning Approach for Providing Instant Learning Support in Personal Computer Assembly Activities

    Hsu, Ching-Kun; Hwang, Gwo-Jen

    2014-01-01

    Personal computer assembly courses have been recognized as being essential in helping students understand computer structure as well as the functionality of each computer component. In this study, a context-aware ubiquitous learning approach is proposed for providing instant assistance to individual students in the learning activity of a…

  2. Self-assembled microtubes and rhodamine 6G functionalized Raman-active gold microrods from 1-hydroxybenzotriazole

    Ravula Thirupathi; Erode N Prabhakaran

    2011-05-01

    1-Hydroxybenzotriazole spontaneously self-assembles to form hollow, linear microtubes initiated by controlled evaporation from water. The tube cavities act as thermo-labile micromoulds for the synthesis of linear gold microrods. Rhodamine 6G-labelled gold microrods, exhibiting surface enhanced resonance Raman activity, have been synthesized using the HOBT microtubes.

  3. An Assessment of Variation in Active Ingredients of Ampucare from Different Zones of India

    Naveen Pathak

    2010-04-01

    Full Text Available The present study was designed to assess the variation in curcumin content of Curcuma longa rhizome and total polyphenols in Azadirachta indica bark samples procured from different zones of India. Physico-chemical tests such as total ash, acid insoluble ash, alcohol soluble extractive, water soluble extractive, volatile oil content etc. were also determined. A slight variation was seen in the bark samples of Azadirachta indica. Total ash ranged from 4.25±0.15 (East zone to 5.57±0.20 (Central zone whereas acid insoluble ash ranged from 0.80±0.07 (East zone to 1.52±0.06 (Central zone. Alcohol soluble extractive value of East zone sample was found to be more than 4 times higher 16.95±0.80 than that of central zone 3.85±0.12, where lowest value was recorded. Water soluble extractive value was also found to be highest in East zone sample 17.80±1.10 which was 2 times more than that of Central zone sample 8.45±0.15. This variation may be due to variation in climatic conditions, soil type, pollution stress etc. All the results were within the limits as given in The Ayurvedic Pharmacopoeia of India. Total Polyphenols ranged from 190.0 mgGAE/g of dry weight (Central zone to 510.0 mgGAE/g of dry weight (East zone. All the samples were found to be rich in total polyphenols. In Curcuma longa samples, Total ash ranged from 3.10±0.20 (South zone to 4.80±0.25 (North zone whereas acid insoluble ash ranged from 0.55±0.04 (South zone to 1.24±0.06 (North zone. Alcohol soluble extractive value was found to be highest in South zone sample 14.80±0.30 which was found to be more than 3 times higher than that of central zone 4.28±0.19 where lowest value was recorded. Water soluble extractive value was also found to be highest in West zone sample 12.55±0.69 and lowest in Central zone sample 8.90±0.37. Volatile oil ranged from 3.50±0.21 North zone sample to 5.50±0.20 South zone sample, where highest volatile oil was recovered. All the results were within

  4. Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies.

    Koch, Claudia; Eber, Fabian J; Azucena, Carlos; Förste, Alexander; Walheim, Stefan; Schimmel, Thomas; Bittner, Alexander M; Jeske, Holger; Gliemann, Hartmut; Eiben, Sabine; Geiger, Fania C; Wege, Christina

    2016-01-01

    The rod-shaped nanoparticles of the widespread plant pathogen tobacco mosaic virus (TMV) have been a matter of intense debates and cutting-edge research for more than a hundred years. During the late 19th century, their behavior in filtration tests applied to the agent causing the 'plant mosaic disease' eventually led to the discrimination of viruses from bacteria. Thereafter, they promoted the development of biophysical cornerstone techniques such as electron microscopy and ultracentrifugation. Since the 1950s, the robust, helically arranged nucleoprotein complexes consisting of a single RNA and more than 2100 identical coat protein subunits have enabled molecular studies which have pioneered the understanding of viral replication and self-assembly, and elucidated major aspects of virus-host interplay, which can lead to agronomically relevant diseases. However, during the last decades, TMV has acquired a new reputation as a well-defined high-yield nanotemplate with multivalent protein surfaces, allowing for an ordered high-density presentation of multiple active molecules or synthetic compounds. Amino acid side chains exposed on the viral coat may be tailored genetically or biochemically to meet the demands for selective conjugation reactions, or to directly engineer novel functionality on TMV-derived nanosticks. The natural TMV size (length: 300 nm) in combination with functional ligands such as peptides, enzymes, dyes, drugs or inorganic materials is advantageous for applications ranging from biomedical imaging and therapy approaches over surface enlargement of battery electrodes to the immobilization of enzymes. TMV building blocks are also amenable to external control of in vitro assembly and re-organization into technically expedient new shapes or arrays, which bears a unique potential for the development of 'smart' functional 3D structures. Among those, materials designed for enzyme-based biodetection layouts, which are routinely applied, e.g., for

  5. Proposal for extension of the zone of working positions of the 6th cluster of emergency control assemblies above 200 cm (modification of limits and conditions for the Dukovany NPP)

    The results are summarized of an analysis of 2 variants of releasing the limiting condition of the WWER-440 reactor at the Dukovany NPP, imposing limits on the upper boundary of the zone of working positions of the 6th cluster of emergency control assemblies. In Variant I, the operating zone is changed to approximately 235 ± 15 cm, a deeper insertion being possible as far as the level corresponding to the current limits and conditions, i.e. 150 or 125 cm. In Variant II, the basic operating zone remains unchanged, i.e. 175 ± 25 cm or, more realistically, 185 ± 15 cm, and only the upper limiting position during transients is released to 250 cm. The impacts of the two variants are analyzed with regard to the operating properties of the reactor units and to the compliance with all nuclear safety-related criteria. Variant I is acceptable if evidence is obtained that the change in efficiency of the HO-3 accident protection does not exceed the limit of necessary safety margins and that the resulting positive effect, namely, the dramatic risk reduction during a single emergency control assembly ejection accident or an uncontrolled emergency control rod assembly cluster withdrawal accident, is highly significant. There may exist a single reason that would substantiate rejection of Variant II, ie., if the behavior of the HO-3 accident protection proved to be adversely affected. This, however, will only concern short-term transients and will be comparable with the reduction in efficiency of this protective intervention occurring towards the end of the cycles. (J.B.). 13 tabs., 4 refs

  6. Graphene decorated with Pd nanoparticles via electrostatic self-assembly: A highly active alcohol oxidation electrocatalyst

    Graphical abstract: Novel perylene-connected ionic liquids (PTCDI-ILs) have been successfully synthesized in a convenient approach and used as linkers for three-component Pd/PTCDI-ILs/GS heterostructure when non-covalently attached on graphene. The obtained nano-hybrids represented high electrochemical surface area and enhanced electrocatalytic activity for DAFCs in alkaline media. -- Highlights: • A novel preparation of three-component Pd/ionic liquids/graphene heterostructure has been constructed. • The Pd-based nano-catalysts have relatively low price and higher resistance to CO poisoning when compared with Pt-based catalysts. • The nano-catalysts represent high electrochemical surface area and enhanced electrocatalytic activity for DAFCs in alkaline media. -- Abstract: Graphene nanosheets (GS) are non-covalently functionalized with novel N,N-bis-(n-butylimidazolium bromide salt)-3,4,9,10-perylene tetracarboxylic acid diimide (PTCDI-ILs) via the π–π stacking, and then employed as the support of Pd nanoparticles. The negatively charged Pd precursors are adsorbed on positively charged imidazolium ring moiety of PTCDI-ILs wrapping GS surface via electrostatic self-assembly and then in situ reduced by NaBH4. X-ray diffraction and transmission electron microscope images reveal that Pd nanoparticles with an average size of 2.7 nm are uniformly dispersed on GS surface. The Pd/PTCDI-ILs/GS exhibits unexpectedly high activity toward alcohol oxidation reaction, which can be attributed to the large electrochemical surface area of Pd nanoparticles. It also shows enhanced electrochemical stability due to the structural integrity of PTCDI-ILs/GS. This provides a facile approach to synthesize GS-based nanoelectrocatalysts

  7. Active tectonics west of New Zealand's Alpine Fault: South Westland Fault Zone activity shows Australian Plate instability

    De Pascale, Gregory P.; Chandler-Yates, Nicholas; Dela Pena, Federico; Wilson, Pam; May, Elijah; Twiss, Amber; Cheng, Che

    2016-04-01

    The 300 km long South Westland Fault Zone (SWFZ) is within the footwall of the Central Alpine Fault (<20 km away) and has 3500 m of dip-slip displacement, but it has been unknown if the fault is active. Here the first evidence for SWFZ thrust faulting in the "stable" Australian Plate is shown with cumulative dip-slip displacements up to 5.9 m (with 3 m throw) on Pleistocene and Holocene sediments and gentle hanging wall anticlinal folding. Cone penetration test (CPT) stratigraphy shows repeated sequences within the fault scarp (consistent with thrusting). Optically stimulated luminescence (OSL) dating constrains the most recent rupture post-12.1 ± 1.7 ka with evidence for three to four events during earthquakes of at least Mw 6.8. This study shows significant deformation is accommodated on poorly characterized Australian Plate structures northwest of the Alpine Fault and demonstrates that major active and seismogenic structures remain uncharacterized in densely forested regions on Earth.

  8. The Non-receptor Tyrosine Kinase Tec Controls Assembly and Activity of the Noncanonical Caspase-8 Inflammasome

    Zwolanek, Florian; Riedelberger, Michael; Stolz, Valentina; Jenull, Sabrina; Istel, Fabian; Köprülü, Afitap Derya; Ellmeier, Wilfried; Kuchler, Karl

    2014-01-01

    Author Summary Inflammasomes represent multi-protein complexes and their activation during microbial infections is key in driving hyperinflammation through the maturation and release of IL-1β, as well as by directly inducing several pro-inflammatory cytokines during the host pathogen interaction. Thus, inflammasomes are involved in the induction of pathogen-induced sepsis in mice and men. However, the precise regulation and molecules involved in triggering the assembly and activation of infla...

  9. Supra-molecular assembly of a lumican-derived peptide amphiphile enhances its collagen-stimulating activity.

    Walter, Merlin N M; Dehsorkhi, Ashkan; Hamley, Ian W; Connon, Che J

    2016-02-01

    C16-YEALRVANEVTLN, a peptide amphiphile (PA) incorporating a biologically active amino acid sequence found in lumican, has been examined for its influence upon collagen synthesis by human corneal fibroblasts in vitro, and the roles of supra-molecular assembly and activin receptor-like kinase ALK receptor signaling in this effect were assessed. Cell viability was monitored using the Alamar blue assay, and collagen synthesis was assessed using Sirius red. The role of ALK signaling was studied by receptor inhibition. Cultured human corneal fibroblasts synthesized significantly greater amounts of collagen in the presence of the PA over both 7-day and 21-day periods. The aggregation of the PA to form nanotapes resulted in a notable enhancement in this activity, with an approximately two-fold increase in collagen production per cell. This increase was reduced by the addition of an ALK inhibitor. The data presented reveal a stimulatory effect upon collagen synthesis by the primary cells of the corneal stroma, and demonstrate a direct influence of supra-molecular assembly of the PA upon the cellular response observed. The effects of PA upon fibroblasts were dependent upon ALK receptor function. These findings elucidate the role of self-assembled nanostructures in the biological activity of peptide amphiphiles, and support the potential use of a self-assembling lumican derived PA as a novel biomaterial, intended to promote collagen deposition for wound repair and tissue engineering purposes. PMID:26626506

  10. Molecular protein adaptor with genetically encoded interaction sites guiding the hierarchical assembly of plasmonically active nanoparticle architectures

    Schreiber, Andreas; Huber, Matthias C.; Cölfen, Helmut; Schiller, Stefan M.

    2015-03-01

    The control over the defined assembly of nano-objects with nm-precision is important to create systems and materials with enhanced properties, for example, metamaterials. In nature, the precise assembly of inorganic nano-objects with unique features, for example, magnetosomes, is accomplished by efficient and reliable recognition schemes involving protein effectors. Here we present a molecular approach using protein-based ‘adaptors/connectors’ with genetically encoded interaction sites to guide the assembly and functionality of different plasmonically active gold nanoparticle architectures (AuNP). The interaction of the defined geometricaly shaped protein adaptors with the AuNP induces the self-assembly of nanoarchitectures ranging from AuNP encapsulation to one-dimensional chain-like structures, complex networks and stars. Synthetic biology and bionanotechnology are applied to co-translationally encode unnatural amino acids as additional site-specific modification sites to generate functionalized biohybrid nanoarchitectures. This protein adaptor-based nano-object assembly approach might be expanded to other inorganic nano-objects creating biohybrid materials with unique electronic, photonic, plasmonic and magnetic properties.

  11. Distribution of 210Pb activity concentrations in marine surface sediments within East Coast Peninsula Malaysia Exclusive Economic Zone (EEZ)

    A sampling expedition into the East Coast Peninsula Malaysia Exclusive Economic Zone (EEZ) was carried in June 2008. Marine surface sediment samples were taken and the activity concentrations of 210Pb have been determined. Its distribution was plotted and the findings show that the activity concentrations decline from north to south. On the other hand, the activity concentrations are increasing from west to east right to the edge of the EEZ. The highest activity concentrations were found to be near offshore oil platforms. The 210Pb activity concentrations were found to be in the range of 18.3 - 123.1 Bq/ kg. (author)

  12. Determination of Four Active Ingredients in Vc Yinqiao Tablets by Capillary Zone Electrophoresis with Amperometric Detection

    L(U),Jin; WANG,Qing-Jiang; CHENG,Xi; LIU,Hai-Yan; HE,Pin-Gang; FANG,Yu-Zhi

    2006-01-01

    A simple, reliable and reproducible method, based on capillary zone electrophoresis with amperometric detection (CZE-AD), has been developed for simultaneous determination of four active ingredients in Vc Yinqiao tablets including paracetamol, vitamin C, caffeic acid and chlorogenic acid. A carbon-disk electrode was used as working electrode and 0.95 V (versus SCE) was selected as detection potential. The optimal conditions of CZE experiment were 30 mmol·L-1 borate solution (pH 9.5) as running buffer, 14 kV as separation voltage and 8 s (14 kV) as electro-kinetic sampling time. Under the selected optimum conditions, paracetamol, vitamin C, caffeic acid and chlorogenic acid could be perfectly separated within 22 min, and their detection limits (S/N=3) ranged from 5 × 10-7 to 1×10-6 mol·L-1. This proposed method demonstrated good reproducibility with relative standard deviations of less than 3% for both migration time and peak current (n=7). The utility of this method was demonstrated by monitoring a kind of compound medicine named Vc Yinqiao tablets and the assay results were satisfactory.

  13. Liparid and macrourid fishes of the hadal zone: in situ observations of activity and feeding behaviour.

    Jamieson, A J; Fujii, T; Solan, M; Matsumoto, A K; Bagley, P M; Priede, I G

    2009-03-22

    Using baited camera landers, the first images of living fishes were recorded in the hadal zone (6000-11000 m) in the Pacific Ocean. The widespread abyssal macrourid Coryphaenoides yaquinae was observed at a new depth record of approximately 7000 m in the Japan Trench. Two endemic species of liparid were observed at similar depths: Pseudoliparis amblystomopsis in the Japan Trench and Notoliparis kermadecensis in the Kermadec Trench. From these observations, we have documented swimming and feeding behaviour of these species and derived the first estimates of hadal fish abundance. The liparids intercepted bait within 100-200 min but were observed to preferentially feed on scavenging amphipods. Notoliparis kermadecensis act as top predators in the hadal food web, exhibiting up to nine suction-feeding events per minute. Both species showed distinctive swimming gaits: P. amblystomopsis (mean length 22.5 cm) displayed a mean tail-beat frequency of 0.47 Hz and mean caudal:pectoral frequency ratio of 0.76, whereas N. kermadecensis (mean length 31.5 cm) displayed respective values of 1.04 and 2.08 Hz. Despite living at extreme depths, these endemic liparids exhibit similar activity levels compared with shallow-water liparids. PMID:19129104

  14. 78 FR 60248 - Foreign-Trade Zone (FTZ) 183-Austin, Texas; Notification of Proposed Production Activity...

    2013-10-01

    ... sinks; upper ring housing gaskets; WiFi flex holder finishes; connector brackets; frames; holders...; connectors; printed circuit board assemblies; WiFi interposers; and, cables (duty rate ranges from duty-...

  15. Kinetically controlled self-assembly of redox-active ferrocene–diphenylalanine: from nanospheres to nanofibers

    Putting metals into organic compounds such as peptides can lead to many new desirable properties. Here we designed a novel bioorganometallic molecule, ferrocene–diphenylalanine (Fc–FF), and investigated its self-assembly behavior. We directly observed a morphological transition from metastable nanospheres to nanofibers, which led to the formation of a self-supporting hydrogel. The strong hydrophobic interaction of the Fc moiety was suggested to have a key role in this kinetically controlled self-assembly process. Moreover, the redox center of the ferrocene group further allowed us to reversibly control the self-assembly behavior of Fc–FF by altering its redox state. (paper)

  16. Kinetically controlled self-assembly of redox-active ferrocene-diphenylalanine: from nanospheres to nanofibers

    Wang, Yuefei; Huang, Renliang; Qi, Wei; Wu, Zhongjie; Su, Rongxin; He, Zhimin

    2013-11-01

    Putting metals into organic compounds such as peptides can lead to many new desirable properties. Here we designed a novel bioorganometallic molecule, ferrocene-diphenylalanine (Fc-FF), and investigated its self-assembly behavior. We directly observed a morphological transition from metastable nanospheres to nanofibers, which led to the formation of a self-supporting hydrogel. The strong hydrophobic interaction of the Fc moiety was suggested to have a key role in this kinetically controlled self-assembly process. Moreover, the redox center of the ferrocene group further allowed us to reversibly control the self-assembly behavior of Fc-FF by altering its redox state.

  17. Shoreline changes and its impact on activities in the coastal zone in Greenland

    Kroon, A.; Bendixen, M.; Elberling, B.

    2015-12-01

    Almost all coastal environments in Greenland are developed in high-relief areas, along fjords, or hard-rock cliffs. The sedimentary shores often fringe these areas and a large number of small deltas (areal delta surface temperatures, ice and snow. There is a seasonal variation with open waters and active rivers in summer and ice-covered coastal waters and frozen rivers in winter. The coastal processes by waves and tides are thus often limited to summer and early fall. Nowadays, global climate changes induce many changes along the arctic coasts. Global sea-levels are rising due to thermal expansion and an increased fresh water flux from the glaciers and land ice masses, while ice coverage of the coastal waters decreases and the open water periods in summer extend. However, it is still unknown if the extra input of fluvial sediments can cope with increased erosion rates at the shores. Besides, the rate of actual sea-level rise in West Greenland is probably less than the local rate of isostatic uplift, leading to local relative sea level fall.The focus in this presentation is on shoreline changes and its impact on two coastal environments in Greenland: the Young Sound area (fjord environment in North-East Greenland), and the southern shore of Disko Island (open sea embayment in West Greenland). These coastal environments exhibit a wide variety of coastal landforms like deltas, spits, barriers, etc. The coastal landforms were mapped and aerial images, orthogonal photos, and satellite images were used to digitize successive shorelines. The shoreline changes were estimated using the digital shoreline analysis system (DSAS) of the USGS. The spatial variability of accumulation and erosion patterns was detected and shows a surprising thread for ancient settlements and present-day activities in the coastal zone. The same patterns are finally discussed in terms of coastal risk assessment.

  18. Living microbial ecosystems within the active zone of catagenesis: Implications for feeding the deep biosphere

    Horsfield, B.; Schenk, H. J.; Zink, K.; Ondrak, R.; Dieckmann, V.; Kallmeyer, J.; Mangelsdorf, K.; di Primio, R.; Wilkes, H.; Parkes, R. J.; Fry, J.; Cragg, B.

    2006-06-01

    Earth's largest reactive carbon pool, marine sedimentary organic matter, becomes increasingly recalcitrant during burial, making it almost inaccessible as a substrate for microorganisms, and thereby limiting metabolic activity in the deep biosphere. Because elevated temperature acting over geological time leads to the massive thermal breakdown of the organic matter into volatiles, including petroleum, the question arises whether microorganisms can directly utilize these maturation products as a substrate. While migrated thermogenic fluids are known to sustain microbial consortia in shallow sediments, an in situ coupling of abiotic generation and microbial utilization has not been demonstrated. Here we show, using a combination of basin modelling, kinetic modelling, geomicrobiology and biogeochemistry, that microorganisms inhabit the active generation zone in the Nankai Trough, offshore Japan. Three sites from ODP Leg 190 have been evaluated, namely 1173, 1174 and 1177, drilled in nearly undeformed Quaternary and Tertiary sedimentary sequences seaward of the Nankai Trough itself. Paleotemperatures were reconstructed based on subsidence profiles, compaction modelling, present-day heat flow, downhole temperature measurements and organic maturity parameters. Today's heat flow distribution can be considered mainly conductive, and is extremely high in places, reaching 180 mW/m 2. The kinetic parameters describing total hydrocarbon generation, determined by laboratory pyrolysis experiments, were utilized by the model in order to predict the timing of generation in time and space. The model predicts that the onset of present day generation lies between 300 and 500 m below sea floor (5100-5300 m below mean sea level), depending on well location. In the case of Site 1174, 5-10% conversion has taken place by a present day temperature of ca. 85 °C. Predictions were largely validated by on-site hydrocarbon gas measurements. Viable organisms in the same depth range have been

  19. Design, synthesis, and self-assembly of optically active perylenetetracarboxylic diimide bearing two peripheral chiral binaphthyl moieties

    An optically active perylenetetracarboxylic diimide (PTCDI) bearing two optically active binaphthyl moieties has been designed and synthesized. The self-assembly properties of these novel PTCDI derivatives in DMF/H2O were systematically investigated by electronic absorption, circular dichroism (CD) spectra, IR spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD) technique. Observation of CD signal in the whole absorption region of PTCDI chromophore, indicates effective chiral information transfer from the chiral binaphthyl units to the central PTCDI chromophore at molecular level. The intermolecular π–π interaction between PTCDI rings together with the additionally formed hydrogen bonds between the crown ether moieties of (S)-1 and additional water molecules and the chiral discrimination of periphery chiral side chains induces further intensified asymmetrical perturbation of the chiral binaphthyl units to the central PTCDI chromophore during the self-assembly process, resulting in the formation of right-handed helical arrangement of corresponding molecules in a stack of PTCDI chromophores in aggregates. In addition, the formed nanostructures were revealed to show good semiconducting properties. - Graphical abstract: An optically active perylenetetracarboxylic diimide bearing two optically active binaphthyl moieties has been prepared. Self-assembly properties of this novel PTCDI derivative in DMF/H2O were systematically investigated. Experimental results indicate the effective chiral information transfer and expression at molecular and intermolecular level. Highlights: ► An optically active perylenetetracarboxylic diimide bearing two optically active binaphthyl moieties has been prepared. ► Self-assembly properties of this novel PTCDI derivative in DMF/H2O were systematically investigated. ► Experimental results indicate the effective chiral information transfer and expression at molecular

  20. Evolution of surface motor activation zones in hemiplegic patients during 20 sessions of FES therapy with multi-pad electrodes

    Jovana Malešević

    2016-06-01

    Full Text Available The purpose of this study was to examine surface motor activation zones for wrist, fingers and thumb extension movements and their temporal change during 20 therapy sessions using advanced multi-pad functional electrical stimulation system. Results from four hemiplegic patients indicate that certain zones have higher probability of eliciting each of the target movements. However, mutual overlap and variations of the zones are present not just between the subjects, but also on the intrasubject level, reflected through these session to session transformations of the selected virtual electrodes. The obtained results could be used as a priori knowledge for semi-automated optimization algorithm and could shorten the time required for calibration of the multi-pad electrode.

  1. Auroral Electrojet (AE, AL, AO, AU) - A Global Measure of Auroral Zone Magnetic Activity

    National Oceanic and Atmospheric Administration, Department of Commerce — The AE index is derived from geomagnetic variations in the horizontal component observed at selected (10-13) observatories along the auroral zone in the northern...

  2. Stable Self-Assembly of Bovine α-Lactalbumin Exhibits Target-Specific Antiproliferative Activity in Multiple Cancer Cells.

    Mahanta, Sailendra; Paul, Subhankar

    2015-12-30

    Self-assembly of a protein is a natural phenomenon; however, the process can be performed under a suitable condition in vitro. Since proteins are nontoxic, biodegradable, and biocompatible in nature, they are used in various industrial applications such as biocatalyst, therapeutic agent, and drug carriers. Moreover, their flexible structural state and specific activity are being used as sensors and immensely attract many new applications. However, the inherent potential of protein self-assembly for various applications is yet to be explored in detail. In this study, spherical self-assembly of bovine α-lactalbumin (nsBLA) was synthesized using an optimized ethanol-mediated desolvation process with an average diameter of approximately 300 nm. The self-assembly was found to be highly stable against thermal, pH, and proteases stress. When nsBLA was administered in various cancer cells, it demonstrated high cytotoxicity in three different cancer cells via reactive oxygen species (ROS) generation, whereas it exhibited negligible toxicity in normal human and murine cells. When nsBLA was conjugated with folic acid, it improved the cytotoxicity and perhaps mediated through enhanced cellular uptake in cancer cells through binding with folate receptors. Further, experimental results confirmed that the cancer cell death induced by nsBLA was not caused by apoptosis but a necrotic-like death mechanism. When compared with a well-known protein-based anticancer agent BAMLET (bovine α-lactalbumin made lethal against tumor cell), the self-assembled BLA clearly exhibited higher cytotoxicity to cancer cells than BAMLET. While BAMLET exhibits poor biocompatibility, our nsBLA demonstrated excellent biocompatibility to normal cells. Therefore, in this study, we prepared self-assembled α-lactalbumin that exhibits strong inherent antiproliferative potential in multiple cancer cells which can be used for efficient therapeutic approach in cancer. PMID:26440360

  3. Depth-dependent activity of non-volcanic tremor and other slow earthquake in the Nankai subduction zone

    Obara, K.

    2010-12-01

    In the Nankai subduction zone, some types of slow earthquakes have been detected by dense seismic/geodetic observation network. At the deeper part in the transition zone between the locked and stable sliding zones, the tremor is distributed within a narrow belt with a 600 km along the strike of the subducting Philippine Sea plate (Obara, 2002). The major tremor burst is often accompanied by the short-term slow slip event (Obara et al., 2004) and deep very low frequency earthquake (Ito et al., 2007). Between the belt-like tremor zone and locked zone, the long-term slow slip event occurs at eastern and western edges of the tremor belt-like zone. These slow earthquakes represent a clear depth-dependent property. The slip behavior in time is drastically different between the shallower long-term slow slip event and deeper coupling events. Within the tremor source area, the temporal behavior of tremor activity is different in depth. In western Shikoku and northeastern Kii where major tremor bursts associated with short-term slow slip events frequently occur, the tremor distribution is separated into double peaks at shallower and deeper edge in the dip direction (Obara et al., 2010). The updip tremor activity is modulated by the major tremor burst occurring at regular recurrence interval. On the other hand, the downdip tremor activity is composed of more frequent occurrence of minor burst. The nucleation of the tremor activity often occurs from the deeper part and migrates updip direction, then propagates along strike laterally. In Bungo channel between Shikoku and Kyushu islands at the western edge of the tremor source belt, the long-term slow slip event with duration from a half to one year occurs every 6 years in 1997, 2003 and 2010. The transient slip event strongly affect to the tremor activity. Especially, the updip part of the tremor activity in Bungo channel is clearly correlated to the GPS displacement caused by the long-term slow slip event; however, the downdip

  4. Catalytic activity and thermal stability of horseradish peroxidase encapsulated in self-assembled organic nanotubes.

    Lu, Qin; Kim, Youngchan; Bassim, Nabil; Raman, Nisha; Collins, Greg E

    2016-03-21

    Horseradish peroxidase (HRP) was encapsulated in self-assembled lithocholic acid (LCA) based organic nanotubes and its catalytic activity before and after thermal treatment was measured for comparison with free HRP. The apparent kcat (kcat/Km) for nanotube encapsulated HRP remained almost the same before and after thermal treatment, reporting an average value of 3.7 ± 0.4 μM(-1) s(-1). The apparent kcat value for free HRP decreased from 14.8 ± 1.3 μM(-1) s(-1) for samples stored at 4 °C to 2.4 ± 0.1 μM(-1) s(-1) after thermal treatment for 8 h at 55 °C. The Michaelis-Menten constants, Km, determined for encapsulated HRP and free HRP were relatively unperturbed by storage conditions at 4 °C or thermally treated at 55 °C for varying time periods from 2-8 h, with encapsulated HRP having a slightly higher Km than free HRP (13.4 ± 0.9 μM versus 11.7 ± 0.4 μM). The amount of HRP encapsulated in LCA nanotubes increased dramatically when the mixture of HRP and LCA nanotubes was brought to an elevated temperature. Within 4 h of thermal treatment at 55 °C, the amount of HRP encapsulated by the LCA nanotubes was more than 4 times the amount of HRP encapsulated when equilibrated at 4 °C for 7 days. Molecular dynamics (MD) simulations show that the higher degree of exposure of hydrophobic residues in HRP at elevated temperatures enhances the hydrophobic interaction between HRP and the nanotube wall, resulting in the increased amount of HRP surface adsorption and, hence, the overall amount of encapsulation inside the nanotubes. PMID:26953357

  5. The Active and Periactive Zone Organization and the Functional Properties of Small and Large Synapses.

    Cano, Raquel; Tabares, Lucia

    2016-01-01

    The arrival of an action potential (AP) at a synaptic terminal elicits highly synchronized quanta release. Repetitive APs produce successive synaptic vesicle (SV) fusions that require management of spent SV components in the presynaptic membrane with minimum disturbance of the secretory apparatus. To this end, the synaptic machinery is structured accordingly to the strength and the range of frequencies at which each particular synapse operates. This results in variations in the number and dimension of Active Zones (AZs), amount and distribution of SVs, and probably, in the primary endocytic mechanisms they use. Understanding better how these structural differences determine the functional response in each case has been a matter of long-term interest. Here we review the structural and functional properties of three distinct types of synapses: the neuromuscular junction (NMJ; a giant, highly reliable synapse that must exocytose a large number of quanta with each stimulus to guarantee excitation of the postsynaptic cell), the hippocampal excitatory small synapse (which most often has a single release site and a relatively small pool of vesicles), and the cerebellar mossy fiber-granule cell synapse (which possesses hundreds of release sites and is able to translocate, dock and prime vesicles at high speed). We will focus on how the release apparatus is organized in each case, the relative amount of vesicular membrane that needs to be accommodated within the periAZ upon stimulation, the different mechanisms for retrieving the excess of membrane and finally, how these factors may influence the functioning of the release sites. PMID:27252645

  6. Simultaneous Segmentation of Prostatic Zones Using Active Appearance Models With Multiple Coupled Levelsets.

    Toth, Robert; Ribault, Justin; Gentile, John; Sperling, Dan; Madabhushi, Anant

    2013-09-01

    In this work we present an improvement to the popular Active Appearance Model (AAM) algorithm, that we call the Multiple-Levelset AAM (MLA). The MLA can simultaneously segment multiple objects, and makes use of multiple levelsets, rather than anatomical landmarks, to define the shapes. AAMs traditionally define the shape of each object using a set of anatomical landmarks. However, landmarks can be difficult to identify, and AAMs traditionally only allow for segmentation of a single object of interest. The MLA, which is a landmark independent AAM, allows for levelsets of multiple objects to be determined and allows for them to be coupled with image intensities. This gives the MLA the flexibility to simulataneously segmentation multiple objects of interest in a new image. In this work we apply the MLA to segment the prostate capsule, the prostate peripheral zone (PZ), and the prostate central gland (CG), from a set of 40 endorectal, T2-weighted MRI images. The MLA system we employ in this work leverages a hierarchical segmentation framework, so constructed as to exploit domain specific attributes, by utilizing a given prostate segmentation to help drive the segmentations of the CG and PZ, which are embedded within the prostate. Our coupled MLA scheme yielded mean Dice accuracy values of .81, .79 and .68 for the prostate, CG, and PZ, respectively using a leave-one-out cross validation scheme over 40 patient studies. When only considering the midgland of the prostate, the mean DSC values were .89, .84, and .76 for the prostate, CG, and PZ respectively. PMID:23997571

  7. Communities on the move: Pedestrian-oriented zoning as a facilitator of adult active travel to work in the United States

    Jamie Friedman Chriqui

    2016-04-01

    Full Text Available Background: Communities across the United States have been reforming their zoning codes to create pedestrian-friendly neighborhoods with increased street connectivity, mixed-use and higher density, open space, transportation infrastructure, and a traditional neighborhood structure. Zoning code reforms include new urbanist zoning such as the SmartCode, form-based codes, transects, transportation and pedestrian-oriented developments, and traditional neighborhood developments.Purpose: To examine the relationship of zoning code reforms and more active living-oriented zoning provisions with adult active travel to work via walking, biking, or by using public transit.Methods: Zoning codes effective as of 2010 were compiled for 3,914 municipal-level jurisdictions located in 471 counties and 2 consolidated cities in 48 states and the District of Columbia, and that collectively covered 72.9% of the U.S. population. Zoning codes were evaluated for the presence of code reform zoning and nine pedestrian-oriented zoning provisions (1=yes: sidewalks, crosswalks, bike-pedestrian connectivity, street connectivity, bike lanes, bike parking, bike-pedestrian trails/paths, mixed use development, and other walkability/pedestrian-orientation. A zoning scale reflected the number of provisions addressed (out of 10. Five continuous outcome measures were constructed using 2010-2014 American Community Survey municipal-level 5-year estimates to assess the percentage of workers: walking, biking, walking or biking, or taking public transit to work OR engaged in any active travel to work. Regression models controlled for municipal-level socioeconomic characteristics and a GIS-constructed walkability scale and were clustered on county with robust standard errors. Results: Adjusted models indicated that several pedestrian-oriented zoning provisions were statistically associated (p<.05 or lower with increased rates of walking, biking, or engaging in any active travel (walking

  8. Nonlinear Optically Active Ionically Self-Assembled Monolayer Thin Films of Organic Polymers Intercalated with an Inorganic Hectorite, Laponite RD

    Shah, Smital S

    2002-01-01

    Detailed studies are presented of thin films containing a polycation, a nonlinear optically (NLO) active chromophore, and a synthetic hectorite that self-assemble into the noncentrosymmetric structure required for second order nonlinear optical responses. UV/Vis spectroscopy and ellipsometry were used as probes to monitor film growth for upto 25 deposition cycles. Exceptionally homogeneous films were obtained with regular film growth for up to the 25 cycles deposited. ISAM films self-ass...

  9. Modular jet impingement assemblies with passive and active flow control for electronics cooling

    Zhou, Feng; Dede, Ercan Mehmet; Joshi, Shailesh

    2016-09-13

    Power electronics modules having modular jet impingement assembly utilized to cool heat generating devices are disclosed. The modular jet impingement assemblies include a modular manifold having a distribution recess, one or more angled inlet connection tubes positioned at an inlet end of the modular manifold that fluidly couple the inlet tube to the distribution recess and one or more outlet connection tubes positioned at an outlet end of the modular manifold that fluidly coupling the outlet tube to the distribution recess. The modular jet impingement assemblies include a manifold insert removably positioned within the distribution recess and include one or more inlet branch channels each including an impinging slot and one or more outlet branch channels each including a collecting slot. Further a heat transfer plate coupled to the modular manifold, the heat transfer plate comprising an impingement surface including an array of fins that extend toward the manifold insert.

  10. Constitutive Cdk2 activity promotes aneuploidy while altering the spindle assembly and tetraploidy checkpoints

    Jahn, Stephan C; Corsino, Patrick E; Davis, Bradley J;

    2013-01-01

    The cell has many mechanisms for protecting the integrity of its genome. These mechanisms are often weakened or absent in many cancers, leading to high rates of chromosomal instability in tumors. Control of the cell cycle is crucial for the function of these checkpoints, and is frequently lost in...... instability. Expression of these complexes in the MCF10A cell line leads to retinoblastoma protein (Rb) hyperphosphorylation, a subsequent increase in proliferation rate, and increased expression of the spindle assembly checkpoint protein Mad2. This results in a strengthening of the spindle assembly...

  11. The range of excursion of flexor tendons in Zone V: a comparison of active vs passive flexion mobilisation regimes.

    Panchal, J

    1997-10-01

    A number of early postoperative mobilisation regimes have been developed in an attempt to increase tendon excursion and gliding and thereby reduce formation of adhesions following repair of flexor tendons. Early active flexion mobilisation regimes are becoming more popular, and have replaced early passive flexion regimes in many centres. The aim of the present study was: (a) to determine the range of excursion of flexor tendons in Zone V, and (b) to compare the excursion ranges between active (Belfast) and passive (modified Duran) flexion mobilisation regimes postoperatively. This was done (a) in two cadavers, and (b) in two patients intraoperatively, and postoperatively at 10 days, 3 weeks and 6 weeks. With passive flexion, the mean tendon excursion in Zone V in cadavers was 1 mm for flexor digitorum superficialis (FDS), flexor digitorum profundus (FDP) and flexor pollicis longus (FPL) tendons respectively. With simulated active flexion, the mean tendon excursion was 14 mm, 10 mm and 11 mm respectively. The mean tendon excursion in clinical cases intraoperatively following passive flexion was 2 mm for FDS, FDP and FPL respectively; following simulated active flexion it was 10 mm, 11 mm and 11 mm for FDS, FDP and FPL respectively. On the tenth day following repair, the mean excursions of FDS, FDP and FPL were 1 mm, 4 mm and 4 mm on passive flexion as compared to 3 mm, 10 mm and 12 mm on active flexion respectively. Three weeks postoperatively, the mean excursions of FDS, FDP and FPL tendons were 1 mm, 2 mm and 1 mm on passive flexion as compared to 5 mm, 15 mm on active flexion respectively. Six weeks postoperatively, the mean excursions of FDS, FDP and FPL tendons were 9 mm, 7 mm and 4 mm on passive flexion as compared to 12 mm, 33 mm and 20 mm on active flexion respectively. These results demonstrate an increased excursion of repaired flexor tendons in Zone V following an active flexion mobilisation regime as compared to a passive flexion mobilisation regime.

  12. The Influence of the Nearest Environment of the Active Zone on the Power Pulse Dynamics in the IBR-2 Reactor

    Pepelyshev, Yu N

    2005-01-01

    An analysis of the IBR-2 reactor power pulse shape measured over the entire dynamic range of neutron flux variation (10$^{4})$, i.e., from the maximum pulse power to the background power between pulses, has been carried out. Three variants of the model describing the reactor dynamics during the power pulse have been investigated. The best approximation to the experimental data has been obtained by adding to the six equations describing the effect of delay neutrons on the power pulse of two analogous ones describing the effect of the neutrons reflected from the structural elements of the reactor. It is shown that the most probable source of additional groups of neutrons may be the neutron moderators enveloping the active zone as well as the elements of the biological concrete shielding that are closest to the active zone. These additional groups of neutrons influence essentially the formation of the power pulse.

  13. 78 FR 46315 - Foreign-Trade Zone (FTZ) 247-Erie, Pennsylvania, Notification of Proposed Production Activity, GE...

    2013-07-31

    ...; connection straps; valve assemblies; cable assemblies; clear scraper I-beams; barrel bolt assemblies; hinge...; light assemblies; connection assemblies; receptacles; boxes; connector rings; stator kits; PC cards; box...; threaded pins; locking plates; cotter pins; locking rings; rings; keys; leaf springs; helical spring...

  14. In vitro antimicrobial activity of plants used in traditional medicine in Gurage and Silti Zones, south central Ethiopia

    Teka Sahile, Alemtshay; Rondevaldova, Johana; Asfaw, Zemede; Demissew, Sebsebe; Van Damme, Patrick; Kokoska, Ladislav; Vanhove, Wouter

    2015-01-01

    Background: To overcome the escalating problems associated with infectious diseases and drug resistance, discovery of new antimicrobials is crucial. The present study aimed to carry out in vitro antimicrobial analysis of 15 medicinal plant species selected according to their traditional medicinal uses in Gurage and Silti Zones, south central Ethiopia. Methods: Ethanol extracts of various plant parts were investigated for their antimicrobial activity against 20 bacterial and one yeast stra...

  15. Moleculo long-read sequencing facilitates assembly and resolves functionally active genomic bins from complex soil metagenomes

    White, Richard A.; Bottos, Eric M.; Roy Chowdhury, Taniya; Zucker, Jeremy D.; Brislawn, Colin J.; Nicora, Carrie D.; Fansler, Sarah J.; Glaesemann, Kurt R.; Glass, Kevin A.; Jansson, Janet K.

    2016-07-28

    Soil metagenomics has been touted as the "grand challenge" for metagenomes, as the high microbial diversity, sample complexity, and spatial heterogeneity of soils makes them unamenable to current sequencing and assembly platforms. Here we aimed to improve soil metagenomic sequence assembly by applying a synthetic long read sequencing technology (i.e. Moleculo) from three locations within Konza native prairie station in Kansas. In total, we obtained 520 GB of raw sequence data; 239 GB of short read data from the Joint Genome Institute (JGI), an additional 97 GB from Moleculo sequencing, plus 184 GB of rapid mode sequence data. The Moleculo data alone yielded over 5,600 reads greater than 10 kbp in length, mapping over 95% of the total sequence data. Hybrid assembly of all data resulted in more than 10,000 contigs over 10 kbp in length. The Moleculo sub-assemblies captured much of the functional potential of the soil community, in that 92% of the functional enzyme commission numbers (EC) predicted from the metagenome were also detected in metatranscriptome data. The Moleculo sub-assembly enabled binning of more than 100 novel soil microbial genomic bins. Candidatus Pseudomonas janssonensis strain KNPRW21, was the first genome obtained from a native soil metagenome by direct binning. By mapping RNA-Seq (i.e. metatranscriptomic) sequence reads back to the bins, we found that several low abundance Acidobacteria bins were highly transcriptionally active, whereas the highly abundant Verruomicrobia bins were not. Using Moleculo long reads alone or combined with conventional short read metagenomic data is therefore a useful tool for resolving complex soil microbial communities.

  16. 78 FR 35604 - Foreign-Trade Zone (FTZ) 155-Calhoun/Victoria Counties, Texas; Notification of Proposed...

    2013-06-13

    ...; electric water heaters; electric heating resistors; apparatus for transmission or receiving data; images... Foreign-Trade Zones Board Foreign-Trade Zone (FTZ) 155--Calhoun/Victoria Counties, Texas; Notification of Proposed Production Activity; Caterpillar, Inc.; (Excavator and Frame Assembly Production), Victoria,...

  17. Embryos grown in the dead zone: Assembling the first protoplanetary cores in low mass self-gravitating circumstellar disks of gas and solids

    Lyra, W.; Johansen, A; Klahr, H.; Piskunov, N.

    2008-01-01

    In the borders of the dead zones of protoplanetary disks, the inflow of gas produces a local density maximum that triggers the Rossby wave instability. The vortices that form are efficient in trapping solids. We aim to assess the possibility of gravitational collapse of the solids within the Rossby vortices. We perform global simulations of the dynamics of gas and solids in a low mass non-magnetized self-gravitating thin protoplanetary disk with the Pencil code. We use multiple particle speci...

  18. Structural assembly demonstration experiment

    Stokes, J. W.

    1982-01-01

    The experiment is of an operational variety, designed to assess crew capability in Large Space System (LSS) assembly. The six Structural Assembly Demonstration Experiment objectives include: (1) the establishment of a quantitative correlation between LSS neutral buoyancy simulation and on-orbit assembly operations in order to enhance the validity of those assembly simulations; (2) the quantitative study of the capabilities and mechanics of human assembly in an Extravehicular Activity environment; (3) the further corroboration of the LSS Assembly Analysis cost algorithm through the obtainment of hard data base information; (4) the verification of LSS assembly techniques and timeless, as well as the identification of crew imposed loads and assembly aid requirements and concepts; (5) verification of a Launch/Assembly Platform structure concept for other LSS missions; and (6) lastly, to advance thermal control concepts through a flexible heat pipe.

  19. NEW DEVELOPMENTS IN LOW TEMPERATURE PHYSICS : Part of the Activity Report to the IUPAP General Assembly

    Hallock, Bob; Paalanen, Mikko

    2009-03-01

    Below you find part of the Activity Report to the IUPAP General Assembly, October 2008, by the present and previous Chairmen of C5. It provides an overview of the most important and recent developments in low temperature physics, much in line with the program of LT25. For the field of experimental low temperature physics, the ability to conduct research has been damaged by the dramatic increase in the price of liquid helium. In the United States for example, the price of liquid helium has approximately doubled over the past two years. This has led to a reduction in activity in many laboratories as the funding agencies have not quickly increased support in proportion. The increase in price of liquid helium has accelerated interest in the development and use of alternative cooling systems. In particular, pulse tube coolers are now available that will allow cryostats with modest cooling needs to operate dilution refrigerators without the need for repeated refills of liquid helium from external supply sources. Solid helium research has seen a dramatic resurgence. Torsional oscillator experiments have been interpreted to show that solid helium may undergo a transition to a state in which some of the atoms in the container do not follow the motion of the container, e.g. may be 'supersolid'. The observation is robust, but the interpretation is controversial. The shear modulus of solid helium undergoes a similar signature with respect to temperature. Experiments that should be expected to cause helium to flow give conflicting results. Theory predicts that a perfect solid cannot show supersolid behavior, but novel superfluid-like behavior should be seen in various defects that can exist in the solid, and vorticity may play a significant role. And, recently there have been reports of unusual mass decoupling in films of pure 4He on graphite surfaces as well as 3He-4He mixture films on solid hydrogen surfaces. These may be other examples of unusual superfluid-like behavior

  20. Formation of redox-active self-assembled polyelectrolyte-surfactant complexes integrating glucose oxidase on electrodes: Influence of the self-assembly solvent on the signal generation.

    Cortez, M Lorena; Ceolín, Marcelo; Azzaroni, Omar; Battaglini, Fernando

    2015-10-01

    In this work the effects of the self-assembly solvent on the structure and electrochemical behavior of redox-active polyelectrolyte–surfactant complexes cast on electrode supports from aqueous and DMF solutions are presented. The complex studied is formed by complexation of osmium complex-modified polyallylamine (OsPA) with dodecyl sulfate (DS) surfactants. The structure of the films was characterized by GISAXS, showing that films present a lamellar mesostructure. However, when they are exposed to humid environments, films cast from aqueous solutions (OsPA–DSaq) undergo a structural transition that ultimately leads to the disappearance of the mesostructural order. On the other hand, OsPA–DS films cast from DMF solutions (OsPA–DSorg) revealed no significant changes upon exposure to humid environments. Both types of films were exposed to glucose oxidase (GOx), showing similar adsorption characteristics. Notwithstanding these similarities in GOx and content, OsPA–DSaq films revealed a more sensitive bioelectrocatalytical response to glucose as compared to OsPA–DSorg films. PMID:26094060

  1. AMP Kinase Activation Alters Oxidant-Induced Stress Granule Assembly by Modulating Cell Signaling and Microtubule Organization.

    Mahboubi, Hicham; Koromilas, Antonis E; Stochaj, Ursula

    2016-10-01

    Eukaryotic cells assemble stress granules (SGs) when translation initiation is inhibited. Different cell signaling pathways regulate SG production. Particularly relevant to this process is 5'-AMP-activated protein kinase (AMPK), which functions as a stress sensor and is transiently activated by adverse physiologic conditions. Here, we dissected the role of AMPK for oxidant-induced SG formation. Our studies identified multiple steps of de novo SG assembly that are controlled by the kinase. Single-cell analyses demonstrated that pharmacological AMPK activation prior to stress exposure changed SG properties, because the granules became more abundant and smaller in size. These altered SG characteristics correlated with specific changes in cell survival, cell signaling, cytoskeletal organization, and the abundance of translation initiation factors. Specifically, AMPK activation increased stress-induced eukaryotic initiation factor (eIF) 2α phosphorylation and reduced the concentration of eIF4F complex subunits eIF4G and eIF4E. At the same time, the abundance of histone deacetylase 6 (HDAC6) was diminished. This loss of HDAC6 was accompanied by increased acetylation of α-tubulin on Lys40. Pharmacological studies further confirmed this novel AMPK-HDAC6 interplay and its importance for SG biology. Taken together, we provide mechanistic insights into the regulation of SG formation. We propose that AMPK activation stimulates oxidant-induced SG formation but limits their fusion into larger granules. PMID:27430620

  2. Preliminary assessment of the nuclide migration from the activation zone around the proposed Spallation Neutron Source facility

    The purpose of this study is to investigate the potential impacts of migrating radionuclides from the activation zone around the proposed Spallation Neutron Source (SNS). Using conservatively high estimates of the potential inventory of radioactive activation products that could form in the proposed compacted-soil shield berm around an SNS facility on the Oak Ridge Reservation (ORR), a conservative, simplified transport model was used to estimate the potential worst-case concentrations of the 12 long-lived isotopes in the groundwater under a site with the hydrologic characteristics of the ORR

  3. Long-Term Uplift in the Altiplano-Puna Neovolcanic Zone: Evidence of an Active Magmatic Diapir?

    Fialko, Y.; Pearse, J.

    2012-12-01

    We present InSAR observations of a long-term uplift in the Altiplano-Puna neovolcanic zone (central Andes, South America). Previous observations revealed a a massive Ultra Low Velocity Zone (ULVZ) at depth of 17-19 km (Zandt et al., 2003), and surface deformation that was attributed to Uturuncu, a dormant volcano in the middle of the Altiplano-Puna neovolcanic zone (Pritchard and Simons, 2002). Our time series analysis of combined data from different sensors (ERS-1/2 and ENVISAT), satellite tracks, and observation modes (fine beam and ScanSAR) reveals that the central uplift has persisted at a nearly constant rate of ~1 cm/yr over the last two decades, and is surrounded by a broad zone of subsidence. We use the satellite line-of-sight velocities from different look directions to constrain the depth and geometry of the inferred sources of magmatic unrest. Inversions based on elastic half-space models indicate that the inflation source is located well below the brittle-ductile transition, and likely resides at the depth of the seismically imaged ULVZ. We investigated the effects of inelastic deformation in the ambient crust using finite element models. The models incorporated laboratory-derived rheologies of the ambient crust, and geotherms appropriate for an active neo-volcanic zone such as the one in the Altiplano-Puna province. Based on a large number of numerical simulations constrained by the observed surface velocities, we conclude that the ongoing uplift and peripheral subsidence result from a large mid-crustal diapir fed by a partially molten source region in the middle crust. The observed pattern of surface deformation due to the Altiplano-Puna ULVZ is remarkably similar to that due to the Socorro Magma Body (SMB) in central New Mexico, USA (Pearse and Fialko, 2010), suggesting a common process. mosaic of the mean LOS velocity showing uplift and peripheral subsidence due to the inferred mid-crustal diapir.

  4. Evaluation of approximate measurements of activation-free-energy spectra of shear transformation zones in metallic glasses

    Ju, JongDoo [Department of Nuclear Engineering and Radiological Sciences, The University of Michigan, Ann Arbor, MI (United States); Atzmon, Michael, E-mail: atzmon@umich.edu [Department of Nuclear Engineering and Radiological Sciences, The University of Michigan, Ann Arbor, MI (United States); Department of Materials Science and Engineering, The University of Michigan, Ann Arbor, MI (United States)

    2015-09-15

    Highlights: • We simulate measured activation energy spectra for anelastic relaxation in metallic glasses. • Simulated spectra exhibit the same shape as earlier data obtained by temperature stepping. • The drop previously observed at high activation free energy is an artifact of the measurements. - Abstract: For many years, the only experimental activation free energy spectrum for shear transformations in metallic glasses had been obtained by quenching from high temperature during creep, followed by temperature stepping (Argon and Kuo, 1980). We show that the approximation associated with attributing a single activation energy to each temperature leads to an artificial drop in the spectrum at high activation energies. The detailed spectra of potential shear transformation zones we have recently obtained, which exhibit an atomically quantized hierarchy and are monotonic, lead to the same spectrum shape as obtained by Argon and Kuo when the approximation inherent to the temperature stepping method is applied.

  5. Silica nanoparticles for the layer-by-layer assembly of fully electro-active cytochrome c multilayers

    Feifel Sven C

    2011-12-01

    Full Text Available Abstract Background For bioanalytical systems sensitivity and biomolecule activity are critical issues. The immobilization of proteins into multilayer systems by the layer-by-layer deposition has become one of the favorite methods with this respect. Moreover, the combination of nanoparticles with biomolecules on electrodes is a matter of particular interest since several examples with high activities and direct electron transfer have been found. Our study describes the investigation on silica nanoparticles and the redox protein cytochrome c for the construction of electro-active multilayer architectures, and the electron transfer within such systems. The novelty of this work is the construction of such artificial architectures with a non-conducting building block. Furthermore a detailed study of the size influence of silica nanoparticles is performed with regard to formation and electrochemical behavior of these systems. Results We report on interprotein electron transfer (IET reaction cascades of cytochrome c (cyt c immobilized by the use of modified silica nanoparticles (SiNPs to act as an artificial matrix. The layer-by-layer deposition technique has been used for the formation of silica particles/cytochrome c multilayer assemblies on electrodes. The silica particles are characterized by dynamic light scattering (DLS, Fourier transformed infrared spectroscopy (FT-IR, Zeta-potential and transmission electron microscopy (TEM. The modified particles have been studied with respect to act as an artificial network for cytochrome c and to allow efficient interprotein electron transfer reactions. We demonstrate that it is possible to form electro-active assemblies with these non-conducting particles. The electrochemical response is increasing linearly with the number of layers deposited, reaching a cyt c surface concentration of about 80 pmol/cm2 with a 5 layer architecture. The interprotein electron transfer through the layer system and the

  6. Holocene activities of the Taigu fault zone,Shanxi Province, and their relations with the 1303 Hongdong M=8 earthquake

    谢新生; 江娃利; 王焕贞; 冯西英

    2004-01-01

    The Taigu fault zone is one of the major 12 active boundary faults of the Shanxi fault-depression system, locatedon the eastern boundary of the Jinzhong basin. As the latest investigation indicated, the fault zone had dislocatedgully terrace of the f1rst order, forming fault-scarp in front of the loess mesa. It has been discovered in many placesin ground surface and trenches that Holocene deposits were dislocated. The latest activity was the 1303 Hongdongearthquake M=8, the fault appeared as right-lateral strike-slip with normal faulting. During that earthquake, theTaigu fault together with the Mianshan western-side fault on the Lingshi upheaval and the Huoshan pediment faulton the eastern boundary of the Linfen basin was being active, forming a surface rupture belt of 160 km in length.Moreover, the Taigu fault were active in the mid-stage of Holocene and near 7 700 aB.P. From these we learnt that,in Shanxi fault-depression system, the run-through activity of two boundary faults of depression-basins mightgenerate great earthquake with M=8.

  7. Characterization of long-lived activation products in spent fuel assembly hardware and reactor pressure vessel steel

    Extensive measurements have provided the basis for evaluating the radionuclide concentrations, distributions, inventories, waste classification, and disposal options for activated metal wastes generated during reactor decommissioning. A variety of neutron-activated metal specimens associated with spent fuel assembly hardware from commercial nuclear power stations and pressure vessel steel from the decommissioned Gundremmingen KRB-A reactor were subjected to detailed radionuclide and stable element analyses. Emphasis was placed on the long-lived radionuclides specified in 10CFR61, including Mn-54, Fe-55, Co-60, Ni-59, Ni-63 and Nb-94. In addition, it was discovered that much higher concentrations of Nb-93m were present in activated Inconel and stainless steel than earlier calculations had predicted. The concentrations of Ni-63, Ni-59, and Nb-94 in Inconel components, and Ni-63 and Ni-59 in stainless steel components were often much greater than the Class C limit, indicating that these materials would have to be disposed of as high level waste. The accuracy of calculational methods for predicting radionuclide concentrations in activated metal wastes was evaluated by conducting blind comparisons of empirical versus predicted values. This comparison showed that good agreements were achieved for the fueled regions of the fuel assemblies, but at the tops and bottoms of the assemblies the calculated values were, in some cases, significantly in error. The agreement between measured versus predicted radionuclide concentrations for the Gundremmingen pressure vessel steel was good. These evaluations have provided confidence in the calculational methods and have identified problem areas where improvements are warranted. (orig.)

  8. Dynamic fracturing by successive coseismic loadings leads to pulverization in active fault zones

    Aben, F. M.; Doan, M.-L.; Mitchell, T. M.; Toussaint, R.; Reuschlé, T.; Fondriest, M.; Gratier, J.-P.; Renard, F.

    2016-04-01

    Previous studies show that pulverized rocks observed along large faults can be created by single high-strain rate loadings in the laboratory, provided that the strain rate is higher than a certain pulverization threshold. Such loadings are analogous to large seismic events. In reality, pulverized rocks have been subject to numerous seismic events rather than one single event. Therefore, the effect of successive "milder" high-strain rate loadings on the pulverization threshold is investigated by applying loading conditions below the initial pulverization threshold. Single and successive loading experiments were performed on quartz-monzonite using a Split Hopkinson Pressure Bar apparatus. Damage-dependent petrophysical properties and elastic moduli were monitored by applying incremental strains. Furthermore, it is shown that the pulverization threshold can be reduced by successive "milder" dynamic loadings from strain rates of ~180 s-1 to ~90 s-1. To do so, it is imperative that the rock experiences dynamic fracturing during the successive loadings prior to pulverization. Combined with loading conditions during an earthquake rupture event, the following generalized fault damage zone structure perpendicular to the fault will develop: furthest from the fault plane, there is a stationary outer boundary that bounds a zone of dynamically fractured rocks. Closer to the fault, a pulverization boundary delimits a band of pulverized rock. Consecutive seismic events will cause progressive broadening of the band of pulverized rocks, eventually creating a wider damage zone observed in mature faults.

  9. Continuous monitoring of an active fault in a plate suture zone: a creepmeter study of the Chihshang Fault, eastern Taiwan

    Lee, J.-C.; Angelier, J.; Chu, H.-T.; Hu, J.-C.; Jeng, F.-S.

    2001-04-01

    Data from continuously monitored creepmeters across the active Chihshang Fault in eastern Taiwan are presented. The Chihshang Fault is an active segment of the Longitudinal Valley Fault, the main suture between the converging Philippine and Eurasian plates in Taiwan. Since the 1951 earthquake (Mw=7.0), no earthquake larger than magnitude 6.0 occurred in the Chihshang area. At least during the last 20 years, the Chihshang Fault underwent a steady creep movement, resulting in numerous fractures at the surface. Five creepmeters were installed in 1998 at two sites, Tapo and Chinyuan, within the Chihshang active fault zone. One-year results (from August 1998 to July 1999) show a horizontal shortening of 19.4±0.3 mm and 17.3±0.7 mm, at Tapo and Chinyuan, respectively. These annual shortening rates are in a good agreement with other estimates of strain rate independently obtained from geodetic measurements and geological site investigation. The creepmeter measurements were made on a daily basis, providing accurate information on the previously unknown evolution of creep during the year. The records of fault creep at the Tapo site thus revealed close seasonal correlation with average rainfall: the period of high creep rate coincides with the wet season, whereas that of low creep rate coincides with the dry season. Also, in comparison with the Tapo site, the creep behaviour as a function of time is complex at the Chinyuan site. Possible factors of irregularity are under investigation (thermal effect acting on the concrete basement of the creepmeters, earth tide effect, water table variations in a nearby rice field, and rainfall). The comparison between GPS measurements across the Longitudinal Valley (31 mm/year of horizontal displacement) and the creepmeter measurement across the Chihshang Fault zone (17-19 mm/year of horizontal displacement) suggests that there exists other shortening deformation across the active fault zone in addition to those we have measured from the

  10. Diversity and dynamics of active microbial eukaryotes in the anoxic zone of a freshwater meromictic lake (Pavin, France

    CECILE eLEPERE

    2016-02-01

    Full Text Available Microbial eukaryotes play a crucial role in ecosystem functioning and oxygen is considered to be one of the strongest barriers against their local dispersal. However, diversity of microbial eukaryotes in freshwater habitats with oxygen gradients has previously received very little attention. We applied high-throughput sequencing (V4 region of the 18S rRNA gene in conjunction with quantitative PCR (DNA and RNA and fluorescent in situ hybridization analyses, to provide an unique spatio-temporal analysis of microbial eukaryotes diversity and potential activity in a meromictic freshwater lake (lake Pavin. This study revealed a high genetic diversity of unicellular eukaryotes in the permanent anoxic zone of lake Pavin and allowed the discrimination of active vs. inactive components. 42 % of the OTUs (Operational taxonomic Units are exclusively present in the monimolimnion, where Alveolata (Ciliophora and Dinophyceae and Fungi (Dikarya and Chytrids are the most active phyla and are probably represented by species capable of anaerobic metabolism. Pigmented eukaryotes (Haptophyceae and Chlorophyceae are also present and active in this zone, which opens up questions regarding their metabolism.

  11. Diversity and Dynamics of Active Small Microbial Eukaryotes in the Anoxic Zone of a Freshwater Meromictic Lake (Pavin, France)

    Lepère, Cécile; Domaizon, Isabelle; Hugoni, Mylène; Vellet, Agnès; Debroas, Didier

    2016-01-01

    Microbial eukaryotes play a crucial role in ecosystem functioning and oxygen is considered to be one of the strongest barriers against their local dispersal. However, diversity of microbial eukaryotes in freshwater habitats with oxygen gradients has previously received very little attention. We applied high-throughput sequencing (V4 region of the 18S rRNA gene) in conjunction with quantitative PCR (DNA and RNA) and fluorescent in situ hybridization (FISH) analyses, to provide an unique spatio-temporal analysis of microbial eukaryotes diversity and potential activity in a meromictic freshwater lake (lake Pavin). This study revealed a high genetic diversity of unicellular eukaryotes in the permanent anoxic zone of lake Pavin and allowed the discrimination of active vs. inactive components. Forty-two percent of the OTUs (Operational Taxonomic Units) are exclusively present in the monimolimnion, where Alveolata (Ciliophora and Dinophyceae) and Fungi (Dikarya and Chytrids) are the most active phyla and are probably represented by species capable of anaerobic metabolism. Pigmented eukaryotes (Haptophyceae and Chlorophyceae) are also present and active in this zone, which opens up questions regarding their metabolism. PMID:26904006

  12. Propeller-Like Nanorod-Upconversion Nanoparticle Assemblies with Intense Chiroptical Activity and Luminescence Enhancement in Aqueous Phase.

    Wu, Xiaoling; Xu, Liguang; Ma, Wei; Liu, Liqiang; Kuang, Hua; Kotov, Nicholas A; Xu, Chuanlai

    2016-07-01

    Propeller-like nanoscale assemblies with exceptionally intense chiroptical activity and strong luminescence are prepared using gold nanorods and upconversion nanoparticles. The circular dichroism intensity of the tetramer reached 80.9 mdeg, with g-factor value of 2.1 × 10(-2) . The enhancement factor of upconversion luminescence is as high as 21.3 in aqueous phase. Attomolar bioanalysis of a cancer biomarker with two model is also achieved, showing potential for early disease diagnosis and environmental monitoring. PMID:27158947

  13. Syntheses, characterizations, and catalytic activities of mesostructured aluminophosphates with tailorable acidity assembled with various preformed zeolite nanoclusters

    Suo, Hongri

    2015-02-25

    © 2015, Springer Science+Business Media New York. A series of ordered hexagonal mesoporous zeolites have been successfully synthesized by the assembly of various preformed aluminosilicates zeolite (MFI, FAU, BEA etc.) with surfactants (cetyltrimethylammonium chloride) under hydrothermal conditions. These unique samples were further characterized by X-ray diffraction, transmission electron microscopy, N2 adsorption, infrared spectroscopy. Characterization results showed that these samples contain primary and secondary structural building units of various zeolites, which may be responsible for their distinguished acidic strength, suggesting that the acidic strength of these mesoporous silicoaluminophosphates could be tailored and controlled. Furthermore, the prepared samples were catalytically active in the cracking of cumene.

  14. ZPR-6 assembly 7 high {sup 240}Pu core experiments : a fast reactor core with mixed (Pu,U)-oxide fuel and a centeral high{sup 240}Pu zone.

    Lell, R. M.; Morman, J. A.; Schaefer, R.W.; McKnight, R.D.; Nuclear Engineering Division

    2009-02-23

    ZPR-6 Assembly 7 (ZPR-6/7) encompasses a series of experiments performed at the ZPR-6 facility at Argonne National Laboratory in 1970 and 1971 as part of the Demonstration Reactor Benchmark Program (Reference 1). Assembly 7 simulated a large sodium-cooled LMFBR with mixed oxide fuel, depleted uranium radial and axial blankets, and a core H/D near unity. ZPR-6/7 was designed to test fast reactor physics data and methods, so configurations in the Assembly 7 program were as simple as possible in terms of geometry and composition. ZPR-6/7 had a very uniform core assembled from small plates of depleted uranium, sodium, iron oxide, U{sub 3}O{sub 8} and Pu-U-Mo alloy loaded into stainless steel drawers. The steel drawers were placed in square stainless steel tubes in the two halves of a split table machine. ZPR-6/7 had a simple, symmetric core unit cell whose neutronic characteristics were dominated by plutonium and {sup 238}U. The core was surrounded by thick radial and axial regions of depleted uranium to simulate radial and axial blankets and to isolate the core from the surrounding room. The ZPR-6/7 program encompassed 139 separate core loadings which include the initial approach to critical and all subsequent core loading changes required to perform specific experiments and measurements. In this context a loading refers to a particular configuration of fueled drawers, radial blanket drawers and experimental equipment (if present) in the matrix of steel tubes. Two principal core configurations were established. The uniform core (Loadings 1-84) had a relatively uniform core composition. The high {sup 240}Pu core (Loadings 85-139) was a variant on the uniform core. The plutonium in the Pu-U-Mo fuel plates in the uniform core contains 11% {sup 240}Pu. In the high {sup 240}Pu core, all Pu-U-Mo plates in the inner core region (central 61 matrix locations per half of the split table machine) were replaced by Pu-U-Mo plates containing 27% {sup 240}Pu in the plutonium

  15. Late Quaternary Activity and Seismogenic Potential of the Gonave Microplate: Plantain Garden Strike-Slip Fault Zone of Eastern Jamaica

    Mann, P.; Prentice, C.; King, W.; Demets, C.; Wiggins-Grandison, M.; Benford, B.

    2008-12-01

    At the longitude of Jamaica, Caribbean (Carib)-North America (Noam) plate motion of 19 ± 2 mm/a is carried by two parallel, left-lateral strike-slip faults, the Oriente fault zone, immediately south of Cuba, and the Enriquillo-Plantain Garden fault zone (EPGFZ), which lies 100-150 km further south. It has been postulated that the lithosphere between these faults constitutes an independent Gonave microplate that has formed in response to the ongoing collision between the leading edge of Carib in Hispaniola and the Bahama carbonate platform. GPS measurements in Jamaica and Hispanola is supportive of the microplate hypothesis and indicates that roughly half of Carib-Noam plate motion (8-14 mm/a) is carried by the EPGFZ of southern Hispaniola and eastern Jamaica. This study applies geomorphic and paleoseismic methods as a direct test of the activity and amount of microplate motion carried on the Plantain Garden fault segment of eastern Hispaniola and how this motion is distributed across a large restraining bend that has formed the island of Jamaica since the late Miocene. The EPFZ curves gently to the northeast and forming a steep mountain front to the Blue Mountains restraining bend with elevations up to 2200 m. Geomorphic fault-related features along the mountain front fault zone include left-laterally deflected rivers and streams, but no small scale features indicative of Holocene activity. River and stream deflections range from 0.1 to 0.5 km. We identified and trenched the most active trace of the mountain front fault at the Morant River where the fault is characterized by a 1.5-m-wide sub-vertical fault zone juxtaposing sheared alluvium and fault Cretaceous basement rocks This section is overlain by a 6-m-thick fluvial terrace. Trenching in the unfaulted terrace immediately overlying the fault trace revealed radiocarbon and OSL ages ranging from 20 to 21 ka that are consistent with a prominent unfaulted alluvial fan along the projection of this fault 1.5 km to

  16. Simulation of Thermopower Influence on Fuel Core of Power Rod in Nuclear Power Plant (NPP Active Zone

    I. S. Kulikov

    2014-07-01

    Full Text Available The paper considers problems of modern methods for  calculation of designs and materials of nuclear power. A model of numerical analysis for stress-strain state of fuel pins in the NPP active zone is proposed in the paper. The paper contains simulation concerning a fuel core section of a nuclear reactor heat-generating element with subsequent solution of a temperature and thermoelastic problem in computer program complex FEA ANSYS Workbench 11.0. All the obtained results have passed through checking procedure.

  17. High-resolution water column survey to identify active sublacustrine hydrothermal discharge zones within Lake Rotomahana, North Island, New Zealand

    Walker, Sharon L.; de Ronde, Cornel E. J.; Fornari, Daniel; Tivey, Maurice A.; Stucker, Valerie K.

    2016-03-01

    Autonomous underwater vehicles were used to conduct a high-resolution water column survey of Lake Rotomahana using temperature, pH, turbidity, and oxidation-reduction potential (ORP) to identify active hydrothermal discharge zones within the lake. Five areas with active sublacustrine venting were identified: (1) the area of the historic Pink Terraces; (2) adjacent to the western shoreline subaerial "Steaming Cliffs," boiling springs and geyser; (3) along the northern shoreline to the east of the Pink Terrace site; (4) the newly discovered Patiti hydrothermal system along the south margin of the 1886 Tarawera eruption rift zone; and (5) a location in the east basin (northeast of Patiti Island). The Pink Terrace hydrothermal system was active prior to the 1886 eruption of Mount Tarawera, but venting along the western shoreline, in the east basin, and the Patiti hydrothermal system appear to have been initiated in the aftermath of the eruption, similar to Waimangu Valley to the southwest. Different combinations of turbidity, pH anomalies (both positive and negative), and ORP responses suggest vent fluid compositions vary over short distances within the lake. The seasonal period of stratification limits vertical transport of heat to the surface layer and the hypolimnion temperature of Lake Rotomahana consequently increases with an average warming rate of ~ 0.010 °C/day due to both convective hydrothermal discharge and conductive geothermal heating. A sudden temperature increase occurred during our 2011 survey and was likely the response to an earthquake swarm just 11 days prior.

  18. Incipient Crustal Stretching across AN Active Collision Belt: the Case of the Siculo-Calabrian Rift Zone (central Mediterranean)

    Catalano, S.; Tortorici, G.; Romagnoli, G.; Pavano, F.

    2012-12-01

    In the Central Mediterranean, the differential roll-back of the subducting Nubia Plate caused the Neogene-Quaternary extrusion of the Calabrian arc onto the oceanic Ionian slab, and the opening of the oceanic Tyrrhenian Basin, in the overriding Eurasia Plate. The differential motion at the edges of the arc was largely accommodated along transform faults that propagated across the orogenic belt. Since the Late Quaternary, the southern edge of the arc has been replaced by the roughly N-S oriented Siculo-Calabrian Rift Zone (SCRZ) that formed as the NNW-directed normal faults of NE Sicily, crossing the orogenic belt, have linked the NNE-oriented Tyrrhenian margin of southern Calabria with the NNW-trending Africa-Ionian boundary of southeastern Sicily. Our study focused on the Sicily shoulder of the SCRZ, where the transition zone between the extensional belt and the still active Nubia-Eurasia convergent margin is characterized by two distinct mobile crustal wedges, both lying on an upwarped Mantle, where a re-orientations of the σ1 is combined with volcanism (e.g. Etna, Aeolian islands) and a huge tectonic uplift. In southeastern Sicily, the Hyblean-Etnean region evolved, since about 0.85 Ma, as an indipendent crustal wedge, moving towards the NNW and pointing to the active Mt. Etna volcano. A local ENE crustal stretching accompanied the traslation of the block and pre-dated the ESE-oriented extension governing the propagation of the southernmost branch of the SCR, which started at about 330 ka B.P.. Similarly, the Peloritani-Aeolian region, flanked by the 125 ka-old NE-Sicily branch of the rift zone, represents a mostly submerged crustal wedge that migrates towards the NE, diverging from the rest of the Sicily collision zone and pointing to the Stromboli volcano. The Peloritani-Aeolian block is characterized by the occurrence of a wide central NE-oriented collapsed basin contoured by an actively uplifting region, whose tectonic boundaries are evidenced by a sharp

  19. Detrmination of the Si-Pin Detector Active Zone Thickness Using Analytic Line Intensity Wavelength Dependence of the Single-Component Standards

    А.А. Mamaluy

    2010-01-01

    Full Text Available The simple procedure of the detector active zone thickness determination is proposed, in which the fluxes of fluorescent radiation analytical lines from single-component samples excited by monochromatic radiation of a secondary radiator are used as the known fluxes. The superposition of experimental and calculated curves of the analytical line intensity versus the wavelength allows determination of the active zone thickness d = 170 μm with an accuracy of ± 10 μm.

  20. General Assembly

    Staff Association

    2016-01-01

    5th April, 2016 – Ordinary General Assembly of the Staff Association! In the first semester of each year, the Staff Association (SA) invites its members to attend and participate in the Ordinary General Assembly (OGA). This year the OGA will be held on Tuesday, April 5th 2016 from 11:00 to 12:00 in BE Auditorium, Meyrin (6-2-024). During the Ordinary General Assembly, the activity and financial reports of the SA are presented and submitted for approval to the members. This is the occasion to get a global view on the activities of the SA, its financial management, and an opportunity to express one’s opinion, including taking part in the votes. Other points are listed on the agenda, as proposed by the Staff Council. Who can vote? Only “ordinary” members (MPE) of the SA can vote. Associated members (MPA) of the SA and/or affiliated pensioners have a right to vote on those topics that are of direct interest to them. Who can give his/her opinion? The Ordinary General Asse...

  1. Photogrammetry surveys and mosaic: a useful tool to monitor active zones. Applications to the Indonesian Lusi eruption site.

    Romeo, Giovanni; Di Stefano, Giuseppe; Mazzini, Adriano; Iarocci, Alessandro; Caramelli, Antonio

    2016-04-01

    Unmanned and remotely operated aircraft showed to be an efficient and cost effective way to explore remote or extreme environments. Comparative photogrammetry studies are an efficient way to study and monitor he evolution of geologically active areas and ongoing events and are able to highlight details that are typically lost during traditional field campaigns. The Lusi mud eruption in eastern Java (Indonesia) represents one of the most spectacular geological phenomena that is ongoing since May 2006. In the framework of the Lusi Lab project (ERC grant n° 308126) we designed and constructed a multipurpose drone to survey the eruption site. Among the numerous other payloads, the Lusi drone is equipped with Olympus EPM-2 and Go-Pro Hero3 cameras that allow the operator to collect video stills, high quality pictures and to complete photogrammetry surveys. Targeted areas have been selected for detailed studies in the 7 km2 region inside the embankment that was prevent the mud burial of the settlements in the Sidoarjo Regency. The region is characterized by the presence of the Watukosek fault zone. This strike slip system originates from the Arjuno-Welirang volcanic complex and extends to the north east of the Java Island intersecting the Lusi crater. Therefore of particular interest are the faulted surveyed areas present around the Lusi crater inside the embankment. Results reveal a surprising accuracy for the collected mosaic. Multiple surveys are able to reveal the changes and the evolution of the fault through time and to indicate more active zones. In particular this type of survey can highlight the weakness zones and is thus useful to prevent potential geohazards in the area. The poster shows the aerial survey results, including a 3d-printed slice of LuSi, obtained combining 2500 16 Mp photographs. A 3d zoomed detail is also shown, evidencing the resolution that this technique can offer.

  2. Ground motion parameters of Shillong plateau: One of the most seismically active zones of northeastern India

    Saurabh Baruah; Santanu Baruah; Naba Kumar Gogoi; Olga Erteleva; Felix Aptikaev; J.R.Kayal

    2009-01-01

    Strong ground motion parameters for Shillong plateau of northeastern India are examined. Empirical relations are obtained for main parameters of ground motions as a function of earthquake magnitude, fault type, source depth, velocity characterization of medium and distance. Correlation between ground motion parameters and characteristics of seismogenic zones are established. A new attenuation relation for peak ground acceleration is developed, which predicts higher expected PGA in the region. Parameters of strong motions, particularly the predominant periods and duration of vibrations, depend on the morphology of the studied area. The study measures low estimates of logarithmic width in Shillong plateau. The attenuation relation estimated for pulse width critically indicates increased pulse width dependence on the logarithmic distance which accounts for geometrical spreading and anelastic attenuation.

  3. Traumatic Brain Injury Activation of the Adult Subventricular Zone Neurogenic Niche

    Chang, Eun Hyuk; Adorjan, Istvan; Mundim, Mayara V.; Sun, Bin; Dizon, Maria L. V.; Szele, Francis G.

    2016-01-01

    Traumatic brain injury (TBI) is common in both civilian and military life, placing a large burden on survivors and society. However, with the recognition of neural stem cells in adult mammals, including humans, came the possibility to harness these cells for repair of damaged brain, whereas previously this was thought to be impossible. In this review, we focus on the rodent adult subventricular zone (SVZ), an important neurogenic niche within the mature brain in which neural stem cells continue to reside. We review how the SVZ is perturbed following various animal TBI models with regards to cell proliferation, emigration, survival, and differentiation, and we review specific molecules involved in these processes. Together, this information suggests next steps in attempting to translate knowledge from TBI animal models into human therapies for TBI. PMID:27531972

  4. Geophysical signature of hydration-dehydration processes in active subduction zones

    Reynard, Bruno

    2013-04-01

    Seismological and magneto-telluric tomographies are potential tools for imaging fluid circulation when combined with petrophysical models. Recent measurements of the physical properties of serpentine allow refining hydration of the mantle and fluid circulation in the mantle wedge from geophysical data. In the slab lithospheric mantle, serpentinization caused by bending at the trench is limited to a few kilometers below the oceanic crust ( 700°C), water released by dehydration of the slab induces melting of the mantle under volcanic arcs, explaining the observed high conductivities. In the cold melt-free wedge (Kyushu, Cascadia) reflect high fluid concentration, while low to moderate (Earthquakes and plastic deformation of anhydrous slab mantle in double Wadati-Benioff zones. Geophysical Research Letters, 37, L24309.

  5. Assembly of Modified Ferritin Proteins on Carbon Nanotubes and its Electrocatalytic Activity for Oxygen Reduction

    Kim, Jae-Woo; Lillehei, Peter T.; Park, Cheol

    2012-01-01

    Highly effective dispersions of carbon nanotubes (CNTs) can be made using a commercially available buffer solution. Buffer solutions of 3-(N-morpholino)-propanesulfonic acid (MOPS), which consists of a cyclic ring with nitrogen and oxygen heteroatoms, a charged group, and an alkyl chain greatly enhance the dispersibility and stability of CNTs in aqueous solutions. Additionally, the ability of biomolecules, especially cationized Pt-cored ferritins, to adhere onto the well-dispersed CNTs in the aqueous buffer solution is also improved. This was accomplished without the use of surfactant molecules, which are detrimental to the electrical, mechanical, and other physical properties of the resulting products. The assembled Pt-cored ferritin proteins on the CNTs were used as an electrocatalyst for oxygen reduction

  6. The Activity of Major Faults and the Hydrothermal Alteration Zone at Tianchi Volcano of Changbaishan

    Liu Mingjun; Gu Menglin; Sun Zhenguo; Wei Haiquan; Jin Bolu

    2004-01-01

    It is found by field investigation that the near horizontal top surface of the brown or brick-red hydrothermal alteration zone varies obviously in elevation at different sections of the same layer on the caldera's inner wall of Tianchi, with that at the north section near the Tianwen Peak about 110 m higher than that at the south near the Jiangjun Peak in Korea. The top surface of the hydrothermal alteration zone can be taken as key horizon to tectonic movement. The difference indicates that the total uplift height of the NW wall of the Liudaogou-TianchiJingfengshan fault, the principal fault trending NE at Tianchi, is bigger than that of the SE wall ever since the occurrence of hydrothermal alteration. This also explains why the topography in the northwest side of Tianchi is steeper and with more developed river system than in the southeast. The uplifting of the northeastern wall is bigger than that of the southwest along the principal NW-trend fault, namely, the Baishanzhen-Tianchi-Jince fault. It is observed from characters of hydrothermal alteration and the palaeoresiduum, that the recent vertical movement rate along the principal NE-trend fault is larger than that of the principal NW-trend fault. The two faults intersect at Tianchi, dividing the volcano into 4 blocks, with the uplift magnitudes decreasing successively in the order of the north, the west, the east and the south block. The biggest uplift of the north block corresponds well to the shallow magma batch in the north of Tianchi observed by DSS and telluric electromagnetic sounding, and etc.and they may be related with the causes.

  7. Fracturing and earthquake activity within the Prestahnúkur fissure swarm in the Western Volcanic Rift Zone of Iceland

    Hjartardóttir, Ásta Rut; Hjaltadóttir, Sigurlaug; Einarsson, Páll; Vogfjörd, Kristín.; Muñoz-Cobo Belart, Joaquín.

    2015-12-01

    The Prestahnúkur fissure swarm is located within the ultraslowly spreading Western Volcanic Zone in Iceland. The fissure swarm is characterized by normal faults, open fractures, and evidence of subglacial fissure eruptions (tindars). In this study, fractures and faults within the Prestahnúkur fissure swarm were mapped in detail from aerial photographs to determine the extent and activity of the fissure swarm. Earthquakes during the last ~23 years were relocated to map the subsurface fault planes that they delineate. The Prestahnúkur fissure swarm is 40-80 km long and up to ~20 km wide. Most of the areas of the fissure swarm have been glacially eroded, although a part of it is covered by postglacial lava flows. The fissure swarm includes numerous faults with tens of meters vertical offset within the older glacially eroded part, whereas open fractures are found within postglacial lava flows. Comparison of relocated earthquakes and surface fractures indicates that some of the surface fractures have been activated at depth during the last ~23 years, although no dike intrusions have been ongoing. The existence of tindars nevertheless indicates that dike intrusions and rifting events do occur within the Prestahnúkur fissure swarm. The low-fracture density within postglacial lava flows and low density of postglacial eruptive fissures indicate that rifting episodes occur less often than in the faster spreading Northern Volcanic Zone.

  8. Offshore active faults of the Mikata fault zone in Fukui, Japan, revealed by high-resolution seismic profiles

    Inoue, T.; Sugiyama, Y.; Sakamoto, I.; Takino, Y.; Murakami, F.; Hosoya, T.; Usami, T.

    2014-12-01

    The Mikata fault zone are located in coastal and shallow sea area off Fukui Prefecture, West Japan. National Institute of Advanced Industrial Science and Technology (AIST) and Tokai University conducted, as part of MEXT 2013 nearshore active fault survey project, a high-resolution multi-channel seismic survey using Boomer and a 12-channel streamer cable, acoustic profiling survey using parametric sub-bottom profiler and shallow-sea offshore drilling, in order to clarify distribution and activity of the Mikata fault zone. The seismic reflection surveys identified four reflection surfaces as vertical displacement markers in the post-glacial deposits at a depth ranging from ca. 4.5m to ca. 17m below the sea bottom on the downthrown side. We estimated the age of each marker reflection surface by using the C14 age and others from 4m-long core obtained on the downthrown side of fault and the sea level change in the latest Pleistocene and early Holocene around Japan. The results of these surveys have revealed that the fault system was reactivated three times since the latest Pleistocene. The vertical slip rate and average recurrence interval of the fault system are estimated at ca. 0.8-1.0 m/ky and 2,000-3,800 years, respectively.

  9. Isotopic evidence (B, C, O) of deep fluid processes in fault rocks from the active Woodlark Basin detachment zone

    Kopf, Achim; Behrmann, Jan H.; Deyhle, Annette; Roller, Sybille; Erlenkeuser, Helmut

    2003-03-01

    We report results from boron, carbon and oxygen stable isotope analyses of faulted and veined rocks recovered by scientific ocean drilling during ODP Leg 180 in the western Woodlark Basin, off Papua New Guinea. In this area of active continental extension, crustal break-up and incipient seafloor spreading, a shallow-dipping, seismically active detachment fault accommodates strain, defining a zone of mylonites and cataclasites, vein formation and fluid infiltration. Syntectonic microstructures and vein-fill mineralogy suggest frictional heating during slip during extension and exhumation of Moresby Seamount. Low carbon and oxygen isotope ratios of calcite veins indicate precipitation from hydrothermal fluids (δ 13C PDB down to -17‰; δ 18O PDB down to -22‰) formed by both dehydration and decarbonation. Boron contents are low (parent solutions to calcite vein fills) are low when compared to deep-seated waters in other tectonic environments, likely reflecting preferential loss of 11B during low-grade metamorphism at depth. Pervasive devolatilization and flux of CO 2-rich fluids are evident from similar vein cement geochemistry in the detachment fault zone and splays further updip. Multiple rupture-and-healing history of the veins suggests that precipitation may be an important player in fluid pressure evolution and, hence, seismogenic fault movement.

  10. Evidence of multistage late Quaternary strong earthquakes on typical segments of Longmenshan Active Fault Zone in Sichuan, China

    2009-01-01

    Investigation of offset landforms and trench excavation are important means to acquire the evidence of multistage activities of active faults. Here we present the result of fault trough investigation in Beichuan County and the Pingtong Town of Pingwu County along the Longmenshan Central Fault Belt, as well as the result from trench excavation at the platform foreslope in Hanwang Town of Mianzhu County on the Longmenshan Front Range Fault Belt. These results show that at least three fault activity events, including the Wenchuan earthquake, occurred in the Beichuan fault trough, at least two, including the Wenchuan earthquake, at Pingtong fault trough, and 2-3 paleoearthquakes in the Hanwang trench. Among these three localities, the times of the last strong earthquake prior to Wenchuan earthquake at Beichuan fault trough and Hanwang trench are close, approximately 6000 years ago, i.e., greater than 5.8 ka and smaller than 6.63 ka ago. This provides the evidence of synchronous activity of the Central Fault Belt and the Front Range Fault Belt of the Longmenshan Active Fault Zone during the previous strong earthquake activities prior to Wenchuan earthquake.

  11. Evidence of multistage late Quaternary strong earthquakes on typical segments of Longrnenshan Active Fault Zone in Sichuan,China

    JIANG WaLi; XIE XinSheng; ZHANG JinFa; SUN ChangBin; HUANG Wei; SHENG Qiang; FENG XiYing

    2009-01-01

    Investigation of offset landforms and trench excavation are important means to acquire the evidence of multistage activities of active faults.Here we present the result of fault trough investigation in Beichuan County and the Pingtong Town of Pingwu County along the Longmenshan Central Fault Belt,as well as the result from trench excavation at the platform foreslope in Hanwang Town of Mianzhu County on the Longmenshan Front Range Fault Belt.These results show that at least three fault activity events,including the Wenchuan earthquake,occurred in the Beichuan fault trough,at least two,including the Wenchuan earthquake,at Pingtong fault trough,and 2-3 paleoearthquakes in the Hanwang trench.Among these three localities,the times of the last strong earthquake prior to Wenchuan earthquake at Beichuan fault trough and Hanwang trench are close,approximately 6000 years ago,i.e.,greater than 5.8 ka and smaller than 6.63 ka ago.This provides the evidence of synchronous activity of the Central Fault Belt and the Front Range Fault Belt of the Longmenshan Active Fault Zone during the previous strong earthquake activities prior to Wenchuan earthquake.

  12. The twilight zone: ambient light levels trigger activity in primitive ants

    Narendra, Ajay; Reid, Samuel F.; Hemmi, Jan M.

    2010-01-01

    Many animals become active during twilight, a narrow time window where the properties of the visual environment are dramatically different from both day and night. Despite the fact that many animals including mammals, reptiles, birds and insects become active in this specific temporal niche, we do not know what cues trigger this activity. To identify the onset of specific temporal niches, animals could anticipate the timing of regular events or directly measure environmental variables. We sho...

  13. Trace Hydrophobic Organic Chemicals Present in Pennsylvania Groundwater are Correlated with Geogenic Brines rather than Hydraulic Fracturing Active Zones

    Drollette, B.; Shregglman, K.; D'Ambro, E.; Elsner, M.; Warner, N. R.; O'Connor, M.; Karatum, O.; Vengosh, A.; Jackson, R. B.; Darrah, T.; Plata, D.

    2014-12-01

    Recent studies demonstrated that deep Marcellus shale brines migrate into shallow groundwater aquifers, presumably via fractures in the subsurface that exist independent of any gas extraction activities. However, whereas many inorganic species are conservative tracers, hydrophobic organic compounds are both sorptive and reactive, and geogenic organic chemicals may not survive transport from deep shales to the subsurface. Here, 40 shallow groundwater samples from private wells in Northeastern Pennsylvania were analyzed for volatile organic compounds (VOCs) and gasoline range organic compounds (GRO), and 17 were analyzed for VOCs, GRO, and diesel range organic compounds (DRO). BTEX compounds (i.e., benzene, toluene, ethylbenzene, and xylenes) were detected in 6 of 40 samples at concentrations orders of magnitude below EPA maximum contaminant levels (e.g., detected in 10 of 40 samples at concentrations as high as 8.8 ± 0.4 ppb and did not correlate with distance to the nearest hydraulic fracturing well (p = 0.24) nor in active fracturing zones, which we defined as sample locations less than 1 km from a well (p = 0.60). However, GRO was strongly correlated (p = 0.004) with shallow groundwater with Marcellus Shale inorganic chemical character, as delineated by inorganic chemical analysis. DRO was detected in all 17 samples up to 158 ± 4 ppb and did not spatially correlate with distance to the nearest hydraulic fracturing well (p = 0.74), nor active zones (p = 0.61). Similar to GRO, DRO did correlate with shallow groundwater containing Marcellus Shale character with moderate significance (p = 0.08). These results indicate that: (a) hydrophobic organic chemicals can survive transport from the deep subsurface to shallow groundwaters, and (b) transport of these compounds is not detectably enhanced by hydraulic fracturing activities in Northeastern PA as of the 2012-2014 summers.

  14. 78 FR 22843 - Foreign-Trade Zone 33-Pittsburgh, Pennsylvania, Authorization of Export Production Activity...

    2013-04-17

    ... Production Activity, Tsudis Chocolate Company (Chocolate Confectionery Bars), Pittsburgh, Pennsylvania On December 4, 2012, Tsudis Chocolate Company, submitted a notification of proposed export production activity... 400), including notice in the Federal Register inviting public comment (77 FR 77016, 12-31-2012)....

  15. Layer-by-layer self-assembled active electrodes for hybrid photovoltaic cells

    Kniprath, Rolf

    2008-11-18

    Solar cells based on thin organic/inorganic heterofilms are currently in the focus of research, since they represent promising candidates for cost-efficient photovoltaic energy conversion. In this type of cells, charges are separated at a heterointerface between dissimilar electrode materials. These materials either absorb light themselves, or they are sensitized by an additional absorber layer at the interface. The present work investigates photovoltaic cells which are composed of nanoporous TiO{sub 2} combined with conjugated polymers and semiconductor quantum dots (QDs). The method of layer-by-layer self-assembly of oppositely charged nanoparticles and polymers is used for the fabrication of such devices. This method allows to fabricate nanoporous films with controlled thicknesses in the range of a few hundred nanometers to several micrometers. Investigations with scanning electron (SEM) and atomic force microscopy (AFM) reveal that the surface morphology of the films depends only on the chemical structure of the polyions used in the production process, and not on their molecular weight or conformation. From dye adsorption at the internal surface of the electrodes one can estimate that the internal surface area of a 1 {mu}m thick film is up to 120 times larger than the projection plane. X-ray photoelectron spectroscopy (XPS) is used to demonstrate that during the layer-by-layer self-assembly at least 40% of the TiO{sub 2} surface is covered with polymers. This feature allows to incorporate polythiophene derivatives into the films and to use them as sensitizers for TiO{sub 2}. Further, electrodes containing CdSe or CdTe quantum dots (QDs) as sensitizers are fabricated. For the fabrication of photovoltaic cells the layer-by-layer grown films are coated with an additional polymer layer, and Au back electrodes are evaporated on top. The cells are illuminated through transparent doped SnO{sub 2} front electrodes. The I/V curves of all fabricated cells show diode

  16. Toxoplasma gondii inhibits cytochrome c-induced caspase activation in its host cell by interference with holo-apoptosome assembly

    Kristin Graumann

    2015-05-01

    Full Text Available Inhibition of programmed cell death pathways of mammalian cells often facilitates the sustained survival of intracellular microorganisms. The apicomplexan parasite Toxoplasma gondii is a master regulator of host cell apoptotic pathways. Here, we have characterized a novel anti-apoptotic activity of T. gondii. Using a cell-free cytosolic extract model, we show that T. gondii interferes with the activities of caspase 9 and caspase 3/7 which have been induced by exogenous cytochrome c and dATP. Proteolytic cleavage of caspases 9 and 3 is also diminished suggesting inhibition of holo-apoptosome function. Parasite infection of Jurkat T cells and subsequent triggering of apoptosome formation by exogenous cytochrome c in vitro and in vivo indicated that T. gondii also interferes with caspase activation in infected cells. Importantly, parasite inhibition of cytochrome c-induced caspase activation considerably contributes to the overall anti-apoptotic activity of T. gondii as observed in staurosporine-treated cells. Co-immunoprecipitation showed that T. gondii abolishes binding of caspase 9 to Apaf-1 whereas the interaction of cytochrome c with Apaf-1 remains unchanged. Finally, T. gondii lysate mimics the effect of viable parasites and prevents holo-apoptosome functionality in a reconstituted in vitro system comprising recombinant Apaf-1 and caspase 9. Beside inhibition of cytochrome c release from host cell mitochondria, T. gondii thus also targets the holo-apoptosome assembly as a second mean to efficiently inhibit the caspase-dependent intrinsic cell death pathway.

  17. Self-assembly and chemical modifications of bisphenol a on Cu(111): interplay between ordering and thermally activated stepwise deprotonation.

    Fischer, Sybille; Papageorgiou, Anthoula C; Lloyd, Julian A; Oh, Seung Cheol; Diller, Katharina; Allegretti, Francesco; Klappenberger, Florian; Seitsonen, Ari Paavo; Reichert, Joachim; Barth, Johannes V

    2014-01-28

    Bisphenol A (BPA) is a chemical widely used in the synthesis pathway of polycarbonates for the production of many daily used products. Besides other adverse health effects, medical studies have shown that BPA can cause DNA hypomethylation and therefore alters the epigenetic code. In the present work, the reactivity and self-assembly of the molecule was investigated under ultra-high-vacuum conditions on a Cu(111) surface. We show that the surface-confined molecule goes through a series of thermally activated chemical transitions. Scanning tunneling microscopy investigations showed multiple distinct molecular arrangements dependent on the temperature treatment and the formation of polymer-like molecular strings for temperatures above 470 K. X-ray photoelectron spectroscopy measurements revealed the stepwise deprotonation of the hydroxy groups, which allows the molecules to interact strongly with the underlying substrate as well as their neighboring molecules and therefore drive the organization into distinct structural arrangements. On the basis of the combined experimental evidence in conjunction with density functional theory calculations, structural models for the self-assemblies after the thermal treatment were elaborated. PMID:24341488

  18. Vascular endothelial growth factor attachment to hydroxyapatite via self-assembled monolayers promotes angiogenic activity of endothelial cells

    Solomon, Kimberly D., E-mail: solomonk@livemail.uthscsa.edu [Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX (United States); UTSA-UTHSCSA Joint Graduate Program in Biomedical Engineering, San Antonio, TX (United States); Ong, Joo L., E-mail: anson.ong@utsa.edu [Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX (United States); UTSA-UTHSCSA Joint Graduate Program in Biomedical Engineering, San Antonio, TX (United States)

    2013-06-30

    Currently, tissue engineered constructs for critical sized bone defects are non-vascularized. There are many strategies used in order to promote vascularization, including delivery of growth factors such as vascular endothelial growth factor (VEGF). In this study, hydroxyapatite (HA) was coated with self-assembled monolayers (SAMs). The SAMs were in turn used to covalently bind VEGF to the surface of HA. The different SAM chain length ratios (phosphonoundecanoic acid (11-PUDA):16-phosphonohexadecanoic acid (16-PHDA) utilized in this study were 0:100, 25:75, 50:50, 75:25, and 100:0. Surfaces were characterized by contact angle (CA) and atomic force microscopy, and an in vitro VEGF release study was performed. It was observed that CA and root-mean-squared roughness were not significantly affected by the addition of SAMs, but that CA was significantly lowered with the addition of VEGF. VEGF release profiles of bound VEGF groups all demonstrated less initial burst release than adsorbed control, indicating that VEGF was retained on the HA surface when bound by SAMs. An in vitro study using human aortic endothelial cells (HAECs) demonstrated that bound VEGF increased metabolic activity and caused sustained production of angiopoietin-2, an angiogenic marker, over 28 days. In conclusion, SAMs provide a feasible option for growth factor delivery from HA surfaces, enhancing angiogenic activity of HAECs in vitro. - Highlights: • Vascular endothelial growth factor (VEGF) is attached to hydroxyapatite (HA). • Self-assembled monolayers (SAMs) delay the release of VEGF from hydroxyapatite. • SAM chain length ratio affects the total mass of VEGF released. • VEGF on HA up-regulates proliferation and angiogenic activity of endothelial cells.

  19. Vascular endothelial growth factor attachment to hydroxyapatite via self-assembled monolayers promotes angiogenic activity of endothelial cells

    Currently, tissue engineered constructs for critical sized bone defects are non-vascularized. There are many strategies used in order to promote vascularization, including delivery of growth factors such as vascular endothelial growth factor (VEGF). In this study, hydroxyapatite (HA) was coated with self-assembled monolayers (SAMs). The SAMs were in turn used to covalently bind VEGF to the surface of HA. The different SAM chain length ratios (phosphonoundecanoic acid (11-PUDA):16-phosphonohexadecanoic acid (16-PHDA) utilized in this study were 0:100, 25:75, 50:50, 75:25, and 100:0. Surfaces were characterized by contact angle (CA) and atomic force microscopy, and an in vitro VEGF release study was performed. It was observed that CA and root-mean-squared roughness were not significantly affected by the addition of SAMs, but that CA was significantly lowered with the addition of VEGF. VEGF release profiles of bound VEGF groups all demonstrated less initial burst release than adsorbed control, indicating that VEGF was retained on the HA surface when bound by SAMs. An in vitro study using human aortic endothelial cells (HAECs) demonstrated that bound VEGF increased metabolic activity and caused sustained production of angiopoietin-2, an angiogenic marker, over 28 days. In conclusion, SAMs provide a feasible option for growth factor delivery from HA surfaces, enhancing angiogenic activity of HAECs in vitro. - Highlights: • Vascular endothelial growth factor (VEGF) is attached to hydroxyapatite (HA). • Self-assembled monolayers (SAMs) delay the release of VEGF from hydroxyapatite. • SAM chain length ratio affects the total mass of VEGF released. • VEGF on HA up-regulates proliferation and angiogenic activity of endothelial cells

  20. Indomethacin treatment reduces microglia activation and increases numbers of neuroblasts in the subventricular zone and ischaemic striatum after focal ischaemia

    ROSANA S LOPES; MARCELO M CARDOSO; ARTHUR O SAMPAIO; MARIO SANTOS BARBOSA Jr; CELICE C SOUZA; MICHELLE C DA SILVA; ELANE MAGNO N FERREIRA; MARCO AURELIOM FREIRE; RAFAEL RODRIGUES LIMA; WALACE GOMES-LEAL

    2016-09-01

    Neuroblasts from the subventricular zone (SVZ) migrate to striatum following stroke, but most of them die inthe ischaemic milieu and this can be related to exacerbated microglial activation. Here, we explored theeffects of the non-steroidal anti-inflammatory indomethacin on microglial activation, neuronal preservation andneuroblast migration following experimental striatal stroke in adult rats. Animals were submitted toendothelin-1 (ET-1)-induced focal striatal ischaemia and were treated with indomethacin or sterile saline(i.p.) for 7 days, being perfused after 8 or 14 days. Immunohistochemistry was performed to assess neuronalloss (anti-NeuN), microglial activation (anti-Iba1, ED1) and migrating neuroblasts (anti-DCX) by countingNeuN, ED1 and DCX-positive cells in the ischaemic striatum or SVZ. Indomethacin treatment reducedmicroglia activation and the number of ED1^{+} cells in both 8 and 14 days post injury as compared withcontrols. There was an increase in the number of DCX^{+} cells in both SVZ and striatum at the same survivaltimes. Moreover, there was a decrease in the number of NeuN^{+} cells in indomethacin-treated animals ascompared with the control group at 8 days but not after 14 days post injury. Our results suggest thatindomethacin treatment modulates microglia activation, contributing to increased neuroblast proliferation inthe SVZ and migration to the ischaemic striatum following stroke.

  1. Taxifolin enhances andrographolide-induced mitotic arrest and apoptosis in human prostate cancer cells via spindle assembly checkpoint activation.

    Zhong Rong Zhang

    Full Text Available Andrographolide (Andro suppresses proliferation and triggers apoptosis in many types of cancer cells. Taxifolin (Taxi has been proposed to prevent cancer development similar to other dietary flavonoids. In the present study, the cytotoxic and apoptotic effects of the addition of Andro alone and Andro and Taxi together on human prostate carcinoma DU145 cells were assessed. Andro inhibited prostate cancer cell proliferation by mitotic arrest and activation of the intrinsic apoptotic pathway. Although the effect of Taxi alone on DU145 cell proliferation was not significant, the combined use of Taxi with Andro significantly potentiated the anti-proliferative effect of increased mitotic arrest and apoptosis by enhancing the cleavage of poly(ADP-ribose polymerase, and caspases-7 and -9. Andro together with Taxi enhanced microtubule polymerization in vitro, and they induced the formation of twisted and elongated spindles in the cancer cells, thus leading to mitotic arrest. In addition, we showed that depletion of MAD2, a component in the spindle assembly checkpoint (SAC, alleviated the mitotic block induced by the two compounds, suggesting that they trigger mitotic arrest by SAC activation. This study suggests that the anti-cancer activity of Andro can be significantly enhanced in combination with Taxi by disrupting microtubule dynamics and activating the SAC.

  2. Cationic drug-based self-assembled polyelectrolyte complex micelles: Physicochemical, pharmacokinetic, and anticancer activity analysis.

    Ramasamy, Thiruganesh; Poudel, Bijay Kumar; Ruttala, Himabindu; Choi, Ju Yeon; Hieu, Truong Duy; Umadevi, Kandasamy; Youn, Yu Seok; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2016-10-01

    Nanofabrication of polymeric micelles through self-assembly of an ionic block copolymer and oppositely charged small molecules has recently emerged as a promising method of formulating delivery systems. The present study therefore aimed to investigate the interaction of cationic drugs doxorubicin (DOX) and mitoxantrone (MTX) with the anionic block polymer poly(ethylene oxide)-block-poly(acrylic acid) (PEO-b-PAA) and to study the influence of these interactions on the pharmacokinetic stability and antitumor potential of the formulated micelles in clinically relevant animal models. To this end, individual DOX and MTX-loaded polyelectrolyte complex micelles (PCM) were prepared, and their physicochemical properties and pH-responsive release profiles were studied. MTX-PCM and DOX-PCM exhibited a different release profile under all pH conditions tested. MTX-PCM exhibited a monophasic release profile with no initial burst, while DOX-PCM exhibited a biphasic release. DOX-PCM showed a higher cellular uptake than that shown by MTX-PCM in A-549 cancer cells. Furthermore, DOX-PCM induced higher apoptosis of cancer cells than that induced by MTX-PCM. Importantly, both MTX-PCM and DOX-PCM showed prolonged blood circulation. MTX-PCM improved the AUCall of MTX 4-fold compared to a 3-fold increase by DOX-PCM for DOX. While a definite difference in blood circulation was observed between MTX-PCM and DOX-PCM in the pharmacokinetic study, both MTX-PCM and DOX-PCM suppressed tumor growth to the same level as the respective free drugs, indicating the potential of PEGylated polymeric micelles as effective delivery systems. Taken together, our results show that the nature of interactions of cationic drugs with the polyionic copolymer can have a tremendous influence on the biological performance of a delivery system. PMID:27318960

  3. Secretion and Reversible Assembly of Extracellular-like Matrix by Enzyme-Active Colloidosome-Based Protocells.

    Akkarachaneeyakorn, Khrongkhwan; Li, Mei; Davis, Sean A; Mann, Stephen

    2016-03-29

    The secretion and reversible assembly of an extracellular-like matrix by enzyme-active inorganic protocells (colloidosomes) is described. Addition of N-fluorenyl-methoxycarbonyl-tyrosine-(O)-phosphate to an aqueous suspension of alkaline phosphatase-containing colloidosomes results in molecular uptake and dephosphorylation to produce a time-dependent sequence of supramolecular hydrogel motifs (outer membrane wall, cytoskeletal-like interior and extra-protocellular matrix) that are integrated and remodelled within the microcapsule architecture and surrounding environment. Heat-induced disassembly of the extra-protocellular matrix followed by cooling produces colloidosomes with a densely packed hydrogel interior. These procedures are exploited for the fabrication of nested colloidosomes with spatially delineated regions of hydrogelation. PMID:26981922

  4. Cycle-by-cycle assembly of respiratory network activity is dynamic and stochastic

    Carroll, Michael S.; Ramirez, Jan-Marino

    2012-01-01

    Rhythmically active networks are typically composed of neurons that can be classified as silent, tonic spiking, or rhythmic bursting based on their intrinsic activity patterns. Within these networks, neurons are thought to discharge in distinct phase relationships with their overall network output, and it has been hypothesized that bursting pacemaker neurons may lead and potentially trigger cycle onsets. We used multielectrode recording from 72 experiments to test these ideas in rhythmically ...

  5. Strontium-90 activity concentration in soil samples from the exclusion zone of the Fukushima daiichi nuclear power plant.

    Sahoo, Sarata Kumar; Kavasi, Norbert; Sorimachi, Atsuyuki; Arae, Hideki; Tokonami, Shinji; Mietelski, Jerzy Wojciech; Łokas, Edyta; Yoshida, Satoshi

    2016-01-01

    The radioactive fission product (90)Sr has a long biological half-life (˜18 y) in the human body. Due to its chemical similarity to calcium it accumulates in bones and irradiates the bone marrow, causing its high radio-toxicity. Assessing (90)Sr is therefore extremely important in case of a nuclear disaster. In this work 16 soil samples were collected from the exclusion zone (Fukushima Daiichi nuclear power plant, to measure (90)Sr activity concentration using liquid scintillation counting. (137)Cs activity concentration was also measured with gamma-spectroscopy in order to investigate correlation with (90)Sr. The (90)Sr activity concentrations ranged from 3.0 ± 0.3 to 23.3 ± 1.5 Bq kg(-1) while the (137)Cs from 0.7 ± 0.1 to 110.8 ± 0.3 kBq kg(-1). The fact that radioactive contamination originated from the Fukushima nuclear accident was obvious due to the presence of (134)Cs. However, (90)Sr contamination was not confirmed in all samples although detectable amounts of (90)Sr can be expected in Japanese soils, as a background, stemming from global fallout due to the atmospheric nuclear weapon tests. Correlation analysis between (90)Sr and (137)Cs activity concentrations provides a potentially powerful tool to discriminate background (90)Sr level from its Fukushima contribution. PMID:27048779

  6. Hair cells use active zones with different voltage dependence of Ca2+ influx to decompose sounds into complementary neural codes.

    Ohn, Tzu-Lun; Rutherford, Mark A; Jing, Zhizi; Jung, Sangyong; Duque-Afonso, Carlos J; Hoch, Gerhard; Picher, Maria Magdalena; Scharinger, Anja; Strenzke, Nicola; Moser, Tobias

    2016-08-01

    For sounds of a given frequency, spiral ganglion neurons (SGNs) with different thresholds and dynamic ranges collectively encode the wide range of audible sound pressures. Heterogeneity of synapses between inner hair cells (IHCs) and SGNs is an attractive candidate mechanism for generating complementary neural codes covering the entire dynamic range. Here, we quantified active zone (AZ) properties as a function of AZ position within mouse IHCs by combining patch clamp and imaging of presynaptic Ca(2+) influx and by immunohistochemistry. We report substantial AZ heterogeneity whereby the voltage of half-maximal activation of Ca(2+) influx ranged over ∼20 mV. Ca(2+) influx at AZs facing away from the ganglion activated at weaker depolarizations. Estimates of AZ size and Ca(2+) channel number were correlated and larger when AZs faced the ganglion. Disruption of the deafness gene GIPC3 in mice shifted the activation of presynaptic Ca(2+) influx to more hyperpolarized potentials and increased the spontaneous SGN discharge. Moreover, Gipc3 disruption enhanced Ca(2+) influx and exocytosis in IHCs, reversed the spatial gradient of maximal Ca(2+) influx in IHCs, and increased the maximal firing rate of SGNs at sound onset. We propose that IHCs diversify Ca(2+) channel properties among AZs and thereby contribute to decomposing auditory information into complementary representations in SGNs. PMID:27462107

  7. Strontium-90 activity concentration in soil samples from the exclusion zone of the Fukushima daiichi nuclear power plant

    Sahoo, Sarata Kumar; Kavasi, Norbert; Sorimachi, Atsuyuki; Arae, Hideki; Tokonami, Shinji; Mietelski, Jerzy Wojciech; Łokas, Edyta; Yoshida, Satoshi

    2016-01-01

    The radioactive fission product 90Sr has a long biological half-life (˜18 y) in the human body. Due to its chemical similarity to calcium it accumulates in bones and irradiates the bone marrow, causing its high radio-toxicity. Assessing 90Sr is therefore extremely important in case of a nuclear disaster. In this work 16 soil samples were collected from the exclusion zone (<30 km) of the earthquake-damaged Fukushima Daiichi nuclear power plant, to measure 90Sr activity concentration using liquid scintillation counting. 137Cs activity concentration was also measured with gamma-spectroscopy in order to investigate correlation with 90Sr. The 90Sr activity concentrations ranged from 3.0 ± 0.3 to 23.3 ± 1.5 Bq kg−1 while the 137Cs from 0.7 ± 0.1 to 110.8 ± 0.3 kBq kg−1. The fact that radioactive contamination originated from the Fukushima nuclear accident was obvious due to the presence of 134Cs. However, 90Sr contamination was not confirmed in all samples although detectable amounts of 90Sr can be expected in Japanese soils, as a background, stemming from global fallout due to the atmospheric nuclear weapon tests. Correlation analysis between 90Sr and 137Cs activity concentrations provides a potentially powerful tool to discriminate background 90Sr level from its Fukushima contribution. PMID:27048779

  8. Effect of activated sludge in the bottom zone on biogenic sulfate reduction

    Yagafarov, G.G.; Bikchentayeva, A.G.; Yagafarov, R.G.

    1981-01-01

    It is shown that sulfate destruction in the Arlansk group of fields is caused by infection of the formation by sulfate reducing bacteria in the drilling process and flooding by surface water. For the first time, the necessity is shown of considering the activated sludge formed from particles suspended in water and biocenosis of microorganisms during microbiological investigation of wells. It is suggested that biodecomposition of surfactants is possible only in the area of formation of activated sludge around the bottom of the injection well.

  9. The twilight zone: ambient light levels trigger activity in primitive ants.

    Narendra, Ajay; Reid, Samuel F; Hemmi, Jan M

    2010-05-22

    Many animals become active during twilight, a narrow time window where the properties of the visual environment are dramatically different from both day and night. Despite the fact that many animals including mammals, reptiles, birds and insects become active in this specific temporal niche, we do not know what cues trigger this activity. To identify the onset of specific temporal niches, animals could anticipate the timing of regular events or directly measure environmental variables. We show that the Australian bull ant, Myrmecia pyriformis, starts foraging only during evening twilight throughout the year. The onset occurs neither at a specific temperature nor at a specific time relative to sunset, but at a specific ambient light intensity. Foraging onset occurs later when light intensities at sunset are brighter than normal or earlier when light intensities at sunset are darker than normal. By modifying ambient light intensity experimentally, we provide clear evidence that ants indeed measure light levels and do not rely on an internal rhythm to begin foraging. We suggest that the reason for restricting the foraging onset to twilight and measuring light intensity to trigger activity is to optimize the trade-off between predation risk and ease of navigation. PMID:20129978

  10. Problems of evaluation of nuclear reactor active zone tubes during pre-irradiation tests

    An analysis of standard methods of graine size estimation of basic indexes of austenitic steel and alloys of active area of atomic reactors. It is shown insolvency of standard methods of grain size estimation in the real wares. The suggested method of computer simulation of structures of pipes-shells raped for working aut of modes of heat treatment