WorldWideScience

Sample records for active vibration control

  1. Adaptive Piezoelectric Absorber for Active Vibration Control

    Sven Herold

    2016-02-01

    Full Text Available Passive vibration control solutions are often limited to working reliably at one design point. Especially applied to lightweight structures, which tend to have unwanted vibration, active vibration control approaches can outperform passive solutions. To generate dynamic forces in a narrow frequency band, passive single-degree-of-freedom oscillators are frequently used as vibration absorbers and neutralizers. In order to respond to changes in system properties and/or the frequency of excitation forces, in this work, adaptive vibration compensation by a tunable piezoelectric vibration absorber is investigated. A special design containing piezoelectric stack actuators is used to cover a large tuning range for the natural frequency of the adaptive vibration absorber, while also the utilization as an active dynamic inertial mass actuator for active control concepts is possible, which can help to implement a broadband vibration control system. An analytical model is set up to derive general design rules for the system. An absorber prototype is set up and validated experimentally for both use cases of an adaptive vibration absorber and inertial mass actuator. Finally, the adaptive vibration control system is installed and tested with a basic truss structure in the laboratory, using both the possibility to adjust the properties of the absorber and active control.

  2. Actively controlled vibration welding system and method

    Cai, Wayne W.; Kang, Bongsu; Tan, Chin-An

    2013-04-02

    A vibration welding system includes a controller, welding horn, an active material element, and anvil assembly. The assembly may include an anvil body connected to a back plate and support member. The element, e.g., a piezoelectric stack or shape memory alloy, is positioned with respect to the assembly. The horn vibrates in a desirable first direction to form a weld on a work piece. The element controls any vibrations in a second direction by applying calibrated response to the anvil body in the second direction. A method for controlling undesirable vibrations in the system includes positioning the element with respect to the anvil assembly, connecting the anvil body to the support member through the back plate, vibrating the horn in a desirable first direction, and transmitting an input signal to the element to control vibration in an undesirable second direction.

  3. Active vibration control of lightweight floor systems

    Baader, J.; Fontana, M.

    2016-04-01

    Wide-span and lightweight floors are often prone to structural vibrations due to their low resonance frequency and poor material damping. Their dynamic behaviour can be improved using passive, semi-active or active vibration control devices. The following article proposes a novel method for the controller synthesis for active vibration control. An existing passive TMD (tuned mass damper) is modelled and equipped with an actuator in order to provide more efficient damping. Using an iterative optimization approach under constraints, an optimal controller is found which minimizes a quadratic cost function in frequency domain. A simulation of an existing test bench shows that the active vibration control device is able to provide increased damping compared to the passive TMD.

  4. Active and passive vibration control of structures

    Spelsberg-Korspeter, Gottfried

    2014-01-01

    Active and Passive Vibration Control of Structures form an issue of very actual interest in many different fields of engineering, for example in the automotive and aerospace industry, in precision engineering (e.g. in large telescopes), and also in civil engineering. The papers in this volume bring together engineers of different background, and it fill gaps between structural mechanics, vibrations and modern control theory.  Also links between the different applications in structural control are shown.

  5. A Dynamic Absorber With Active Vibration Control

    Huang, S.-J.; Lian, R.-J.

    1994-12-01

    The design and construction of a dynamic absorber incorporating active vibration control is described. The absorber is a two-degrees-of-freedom spring — lumped mass system sliding on a guide pillar, with two internal vibration disturbance sources. Both the main mass and the secondary absorber mass are acted on by DC servo motors, respectively, to suppress the vibration amplitude. The state variable technique is used to model this dynamic system and a decoupling PID control method is used. First, the discrete time state space model is identified by using the commercial software MATLAB. Then the decoupling controller of this multi-input/multi-output system is derived from the identified model. Finally the results of some experiments are presented. The experimental results show that the system is effective in suppressing vibration. Also, the performance of this control strategy for position tracking control is evaluated based on experimental data.

  6. Active control of vibrations in pedestrian bridges

    Álvaro Cunha; Carlos Moutinho

    1999-01-01

    This paper, apart from making a brief general reference to vibration problems in pedestrian bridges, as well as to the form of modelling of dynamic pedestrian loads, presents the use of a predictive control strategy for the numerical simulation of the dynamic response of actively controlled structures of this type. The consideration of this control strategy permitted the development of a computational model, which was applied to the study of a pedestrian cable-stayed bridge, in order to show ...

  7. Wind Turbine Rotors with Active Vibration Control

    Svendsen, Martin Nymann

    This thesis presents a framework for structural modeling, analysis and active vibration damping of rotating wind turbine blades and rotors. A structural rotor model is developed in terms of finite beam elements in a rotating frame of reference. The element comprises a representation of general...... that these are geometrically well separated. For active vibration control in three-bladed wind turbine rotors the present work presents a resonance-based method for groups of one collective and two whirling modes. The controller is based on the existing resonant format and introduces a dual system...... system. As in the method for non-rotating systems, an explicit procedure for optimal calibration of the controller gains is established. The control system is applied to an 86m wind turbine rotor by means of active strut actuator mechanisms. The prescribed additional damping ratios are reproduced almost...

  8. Active Vibration Control of Piezolaminated Smart Beams

    V. Balamurugan

    2001-04-01

    Full Text Available This paper deals with the active vibration control of beam like structures with distributed piezoelectric sensor and actuator layers bonded on top and bottom surfaces of the beam. A finite element model based on Euler-Bernoulli beam theory has been developed. The contribution of the piezoelectric sensor and actuator layers on the mass and stiffness of the beam is considered. Three types of classical control strategies, namely direct proportional feedback, constant-gain negative velocity feedback and Lyapunov feedback and an optimal control strategy, linear quadratic regulator (LQR scheme are applied to study their control effectiveness. Also, the control performance with different types of loading, such as impulse loading, step loading, harmonic and random loading is studied

  9. Self-Tuning Active Vibration Control of Flexible Beam Structures

    M.O. Tokhi; Hossain, M A

    1994-01-01

    This paper presents the design and performance evaluation of an adaptive active control mechanism for vibration suppression in flexible beam structures. A cantilever beam system in transverse vibration is considered. First order control finite difference methods are used to study the behaviour of the beam and develop a suitable test and verification platform. An active vibration control algorithm is developed within an adaptive control framework for broadband cancellation of vibration along t...

  10. Passive and Active Vibration Control of Renewable Energy Structures

    Zhang, Zili

    2015-01-01

    The present thesis deals with fundamental researches on passive and active vibration control of renewable energy structures, and provides useful models for practical applications. Effective and robust vibration control methods have been explored for mitigating the lightly damped edgewise blade vibration and lateral tower vibration, with the main focus on structural control devices. Rigorous theoretical modeling of different dynamic system has been established, based on which detailed design a...

  11. Automotive applications of rapid prototyping for active vibration control

    Bohn, C.; Svaricek, F. [Continental Gummi-Werke AG, Hannover (Germany); Karkosch, H.J.; Marienfeld, P.M. [ContiTech Vibration Control GmbH, Hannover (Germany)

    2001-07-01

    This paper presents some recent results of Continental's research and development activities in the area of active vibration control. First, a brief overview of different approaches to active noise and vibration control is given. This is followed by a discussion of the rapid controller prototyping process that is currently being introduced. Finally, some experimental results obtained in cooperation with an automobile manufacturer are presented. These results demonstrate that major noise and vibration attenuation can be achieved through active vibration control in automobiles. (orig.)

  12. Modeling of Axial Spring Stiffness in Active Vibration Controlled Drilling

    Pao William; Hashim Fakhruldin M; Parman Setyamartana

    2014-01-01

    During drilling process, substantial amount of vibration and shock are induced to the drill string. Active vibration controlled drilling is introduced to reduce the vibration and increase the efficiency of drilling process. In this system, two main components that determine the damping coefficient are magnetorheological (MR) damper and spring assembly. Performance of vibration damping system is depending on the viscosity of MR fluid in the damper and spring constant of spring assembly. One of...

  13. Innovation in Active Vibration Control Strategy of Intelligent Structures

    A. Moutsopoulou

    2014-01-01

    Full Text Available Large amplitudes and attenuating vibration periods result in fatigue, instability, and poor structural performance. In light of past approaches in this field, this paper intends to discuss some innovative approaches in vibration control of intelligent structures, particularly in the case of structures with embedded piezoelectric materials. Control strategies are presented, such as the linear quadratic control theory, as well as more advanced theories, such as robust control theory. The paper presents sufficiently a recognizable advance in knowledge of active vibration control in intelligent structures.

  14. Vibration control of active structures an introduction

    Preumont, Andre

    2002-01-01

    This text is an introduction to the dynamics of active structures and to the feedback control of lightly damped flexible structures. The emphasis is placed on basic issues and simple control strategies that work.

  15. Passive and Active Vibration Control of Renewable Energy Structures

    Zhang, Zili

    The present thesis deals with fundamental researches on passive and active vibration control of renewable energy structures, and provides useful models for practical applications. Effective and robust vibration control methods have been explored for mitigating the lightly damped edgewise blade...... vibration and lateral tower vibration, with the main focus on structural control devices. Rigorous theoretical modeling of different dynamic system has been established, based on which detailed design and analysis of the proposed control devices can be carried out. This thesis also explores technical...... solutions for wave energy point absorbers, in order to maximize the mean absorbed power and to deliver more smooth power to the grid. A novel suboptimal causal control law has been established for controlling the motion of the point absorber, and a new type of point absorber has also been proposed with...

  16. Active vibration control of doubly-curved panels

    Nourzad, Delphine

    2014-01-01

    This thesis considers active control of the vibration of doubly-curved panels. Such panels are widely used in vehicles such as cars and aircraft, whose vibration is becoming more problematic as the weight of these vehicles is reduced to control their CO2 emissions. The dynamic properties of doubly-curved panels are first considered and an analytic model which includes in-plane inertia is introduced. The results of this analytical model are compared with those from numerical modelling. Of part...

  17. Active control of noise radiation from vibrating structures

    Mørkholt, Jakob

    The thesis is concerned with the active control of randomly vibrating structures by means of feedback control, with particular emphasis on reducing the sound radiation from such structures. A time domain model of the structural and radiation dynamics of an actively controlled plate has been...... developed, based on the theory of radiation filters for estimating the sound radiation from multimodal vibrations. This model has then been used in simulations of optimal feedback control, with special emphasis of the stability margins of the optimal control scheme. Two different methods of designing...

  18. Active Blade Vibration Control Being Developed and Tested

    Johnson, Dexter

    2003-01-01

    Gas turbine engines are currently being designed to have increased performance, lower weight and manufacturing costs, and higher reliability. Consequently, turbomachinery components, such as turbine and compressor blades, have designs that are susceptible to new vibration problems and eventual in-service failure due to high-cycle fatigue. To address this problem, researchers at the NASA Glenn Research Center are developing and testing innovative active blade vibration control concepts. Preliminary results of using an active blade vibration control system, involving a rotor supported by an active magnetic bearing in Glenn's Dynamic Spin Rig, indicate promising results (see the photograph). Active blade vibration control was achieved using feedback of blade strain gauge signals within the magnetic bearing control loop. The vibration amplitude was reduced substantially (see the graphs). Also, vibration amplitude amplification was demonstrated; this could be used to enhance structural mode identification, if desired. These results were for a nonrotating two-bladed disk. Tests for rotating blades are planned. Current and future active blade vibration control research is planned to use a fully magnetically suspended rotor and smart materials. For the fully magnetically suspended rotor work, three magnetic bearings (two radial and one axial) will be used as actuators instead of one magnetic bearing. This will allow additional degrees of freedom to be used for control. For the smart materials work, control effectors located on and off the blade will be considered. Piezoelectric materials will be considered for on-the-blade actuation, and actuator placement on a stator vane, or other nearby structure, will be investigated for off-the-blade actuation. Initial work will focus on determining the feasibility of these methods by performing basic analysis and simple experiments involving feedback control.

  19. Active vibration control of basic structures using macro fiber composites

    Yi, Guo; Wang, Jinming; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2011-03-01

    In the modern naval battle, as the anti-detection technique developing fleetly, enhancing submarine's hidden ability is becoming more and more important. However, in view of the worse control effect at low-frequency and weak adjustability to external influence, conventional passive vibration control can't satisfy the modern naval rigorous demands. Fortunately, active vibration control technology not only monitors the structure's real-time vibration, but also has more remarkable control effects and superior suitability. At the present time, it has a primary application in the vibration damping of ship engineering. In addition, due to functional materials rapidly developing, with the coming of piezoelectric composite materials, the advanced active control techniques have more applicability, lager damp amplitude and wider applied field, which basing on the piezoelectric-effect and inverse- piezoelectric-effect of piezoelectric materials. Especially, in the end of nineties, NASA had successfully manufactured the excellent macro fiber composite (MFC), which assembles actuating and sensing abilities. Comparing with the conventional piezoelectric ceramic materials, it provides the required durability, excellent flexibility, higher electromechanical coupling factors and stronger longitudinal actuating force by using interdigital electrodes. On the basis of the application of cantilever beam' active vibration control by using MFC actuators, this paper started with the mechanical characteristics of its actuating and sensing equations, and then investigated its piezoelectric feedback scale factor when equipped on the honeycomb aluminous panel. Finally, in order to validate the theoretical analysis method, the vibration control experiment of cantilever beam and honeycomb aluminous panel are built and tested with different activating force. The experimental results verify that MFC used in submarine structures' active vibration control are feasible and effective.

  20. Active vibration control based on piezoelectric smart composite

    An aircraft’s vertical fin may experience dramatic buffet loads in high angle of attack flight conditions, and these buffet loads would cause huge vibration and dynamic stress on the vertical fin structure. To reduce the dynamic vibration of the vertical fin structure, macro fiber composite (MFC) actuators were used in this paper. The drive moment equations and sensing voltage equations of the MFC actuators were developed. Finite element analysis models based on three kinds of models of simplified vertical fin structures with surface-bonded MFC actuators were established in ABAQUS. The equivalent damping ratio of the structure was employed in finite element analysis, in order to measure the effectiveness of vibration control. Further, an open-loop test for the active vibration control system of the vertical fin with MFC actuators was designed and developed. The experimental results validated the effectiveness of the MFC actuators as well as the developed methodology. (paper)

  1. Cooperative Control Method of Active and Semiactive Control: New Framework for Vibration Control

    Kazuhiko Hiramoto

    2014-01-01

    A new control design framework for vibration control, the cooperative control of active and semiactive control, is proposed in the paper. In the cooperative control, a structural system having both of an actuator and a semiactive control device, for example, MR damper and so forth, is defined as the control object. In the proposed control approach, the higher control performance is aimed by the cooperative control between the active control with the actuator and the semiactive control with th...

  2. Active Vibration Control of Satellite Flexible Structures during Attitude Maneuvers

    Saeed Hemmati; Morteza Shahravi; Keramat Malekzadeh

    2013-01-01

    The purpose of this study is controlling active vibration of satellite flexible structures during attitude maneuvers. A smart structure is a structure which is able to sense and control active reaction to any external factors and stimulation. As it comes from the definition of smart structures, development of this knowledge depends on the materials science development, theories and strategies for control. In materials science, smart materials are developed in such a way that they are able to ...

  3. Wireless sensor networks for active vibration control in automobile structures

    Wireless sensor networks (WSNs) are nowadays widely used in monitoring and tracking applications. This paper presents the feasibility of using WSNs in active vibration control strategies. The method employed here involves active-structural acoustic control using piezoelectric sensors distributed on a car structure. This system aims at being merged with a WSN whose head node collects data and processes control laws so as to command piezoelectric actuators wisely placed on the structure. We will study the feasibility of implementing WSNs in active vibration control and introduce a complete design methodology to optimize hardware/software and control law synergy in mechatronic systems. A design space exploration will be conducted so as to identify the best WSN platform and the resulting impact on control. (paper)

  4. Wireless sensor networks for active vibration control in automobile structures

    Mieyeville, Fabien; Ichchou, Mohamed; Scorletti, Gérard; Navarro, David; Du, Wan

    2012-07-01

    Wireless sensor networks (WSNs) are nowadays widely used in monitoring and tracking applications. This paper presents the feasibility of using WSNs in active vibration control strategies. The method employed here involves active-structural acoustic control using piezoelectric sensors distributed on a car structure. This system aims at being merged with a WSN whose head node collects data and processes control laws so as to command piezoelectric actuators wisely placed on the structure. We will study the feasibility of implementing WSNs in active vibration control and introduce a complete design methodology to optimize hardware/software and control law synergy in mechatronic systems. A design space exploration will be conducted so as to identify the best WSN platform and the resulting impact on control.

  5. Active Vibration Control of Rotor-Bearing Systems

    Blanco-Ortega, Andres; Silva-Navaro, Gerardo; Beltran-Carbajal, Francisco; Vela-Valdes, Luis Gerardo

    2010-01-01

    The active vibration control of a Jeffcott-like rotor through dynamic stiffness control and acceleration scheduling is addressed. The control approach consists of a servomechanism able to move one of the supporting bearings in such a way that the effective rotor length is controlled. As a consequence, the rotor stiffness and natural frequency are modified according to an off-line and smooth trajectory planning of the rotor speed/acceleration in order to reduce the unbalance response when pass...

  6. Real Time Vibration Control of Active Suspension System with Active Force Control using Iterative Learning Algorithm

    Kalaivani

    2013-09-01

    Full Text Available This paper presents concurrent vibration control of a laboratory scaled vibration isolator platform with Active Force Control (AFC using Iterative Learning Algorithm (ILA. The work investigates the performance of the traditional Proportional Integral Derivative Controller (PIDC with and without AFC using ILA for vibration suppression. The physical single degree of freedom quarter car has been interfaced with a personal computer using a National Instruments data acquisition card NI USB 6008. The controllers are designed and simulated using LabVIEW simulation software. The results infer that the PIDC with AFC using ILA works superior than the PIDC.

  7. Modeling and vibration control of an active membrane mirror

    Ruggiero, Eric J.; Inman, Daniel J.

    2009-09-01

    The future of space satellite technology lies in ultra-large mirrors and radar apertures for significant improvements in imaging and communication bandwidths. The availability of optical-quality membranes drives a parallel effort for structural models that can capture the dominant dynamics of large, ultra-flexible satellite payloads. Unfortunately, the inherent flexibility of membrane mirrors wreaks havoc with the payload's on-orbit stability and maneuverability. One possible means of controlling these undesirable dynamics is by embedding active piezoelectric ceramics near the boundary of the membrane mirror. In doing so, active feedback control can be used to eliminate detrimental vibration, perform static shape control, and evaluate the health of the structure. The overall motivation of the present work is to design a control system using distributed bimorph actuators to eliminate any detrimental vibration of the membrane mirror. As a basis for this study, a piezoceramic wafer was attached in a bimorph configuration near the boundary of a tensioned rectangular membrane sample. A finite element model of the system was developed to capture the relevant system dynamics from 0 to 300 Hz. The finite element model was compared against experimental results, and fair agreement found. Using the validated finite element models, structural control using linear quadratic regulator control techniques was then used to numerically demonstrate effective vibration control. Typical results show that less than 12 V of actuation voltage is required to eliminate detrimental vibration of the membrane samples in less than 15 ms. The functional gains of the active system are also derived and presented. These spatially descriptive control terms dictate favorable regions within the membrane domain for placing sensors and can be used as a design guideline for structural control applications. The results of the present work demonstrate that thin plate theory is an appropriate modeling

  8. Modeling of Axial Spring Stiffness in Active Vibration Controlled Drilling

    Pao William

    2014-07-01

    Full Text Available During drilling process, substantial amount of vibration and shock are induced to the drill string. Active vibration controlled drilling is introduced to reduce the vibration and increase the efficiency of drilling process. In this system, two main components that determine the damping coefficient are magnetorheological (MR damper and spring assembly. Performance of vibration damping system is depending on the viscosity of MR fluid in the damper and spring constant of spring assembly. One of the key issues that are unclear from the design is the correlation between the axial spring stiffness configuration and the damping force which needs to be tuned actively. There has been lack of studies on how the viscosity of MR fluid on the active vibration damper affects the damping stiffness of the whole system. The objective of the project is to extract the correlations for the viscous damping coefficient, equivalent spring stiffness and power input to the system. Simplified vibration model is thus created using Simulink, together with experimental data fed from APS Technology’s in-house team. Inputs of the simulation such as force exerted, mass of mandrel, spring constant and step time are based on the experimental data and can be adjusted to suit different experiments. By having the model, behavior of the system can be studied and analyzed. From the simulation, it is also observed that the relationship between damping coefficient and power input of the system is linear.

  9. Prototype magnetorheological fluid damper for active vibration control system

    S. Duda

    2007-03-01

    Full Text Available Purpose: The paper presents a concept of a system for isolation from external vibration sources with use of a magnetorheological (MR dampers.Design/methodology/approach: Results of experimental studies of a prototype magnetorheological damper at various magnitudes of control current and the manner of modelling electromagnetic phenomena occurring in the damper are presented in this paper. The effect of magnetic field on magnetorheological fluid is modelled by the finite element method. The mathematical model of the system as well as the damper model are outlined along with the relevant control facilities. Numerical simulations were carried out for an exemplary excitation.Findings: The elaborated damper and applied control algorithms substantially influences the values for velocities and accelerations. Incorporation of a controllable damper into the stabilization system significantly decreases displacements of the mass to be stabilized being the results of shocks and bumps caused by excitations w(t as compared to similar displacement of the same mass when only a passive damper was used.Research limitations/implications: For the future research it is necessary to improve characteristics of elaborated damper in order to improve its efficiency.Practical implications: Many mechanical systems should separate from sources of vibrations. The active or semiactive vibration control systems offer a number of advantages as compared with passive systems so that better efficiency of vibration damping is assured.Originality/value: The paper presents new concept of vibration damper with magnetorheological fluids and way of its application in industrial practice.

  10. Active Vibration Control of a Monopile Offshore Structure

    Nielsen, Søren R. K.; Kirkegaard, Poul Henning; Thesbjerg, L.

    1996-01-01

    structure an active control technique has been proposed in corporation with the consulting company Rambøll, Esbjerg, Denmark. The proposed control technique is based on the relationship between the position of the separation points of the boundary layer flow and the drag term in the wave force on the......, it can be necessary to use an active or a passive vibration control system. However, for a monopile with severe space problems it can be difficult to locate a passive control system such as e.g. a tuned mass damper. Therefore, in order to active control wave introduced vibrations of a monopile...... cylinder. This concept has been experimentally investigated with a test model in stationary flow tests. The idea is to have a large drag coefficient when the cylinder moves opposite of the wave direction implying a relatively large damping excitation. When the structure moves in the wave direction a small...

  11. Adaptive control of an active seat for occupant vibration reduction

    Gan, Zengkang; Hillis, Andrew J.; Darling, Jocelyn

    2015-08-01

    The harmful effects on human performance and health caused by unwanted vibration from vehicle seats are of increasing concern. This paper presents an active seat system to reduce the vibration level transmitted to the seat pan and the occupants' body under low frequency periodic excitation. Firstly, the detail of the mechanical structure is given and the active seat dynamics without external load are characterized by vibration transmissibility and frequency responses under different excitation forces. Owing the nonlinear and time-varying behaviour of the proposed system, a Filtered-x least-mean-square (FXLMS) adaptive control algorithm with on-line Fast-block LMS (FBLMS) identification process is employed to manage the system operation for high vibration cancellation performance. The effectiveness of the active seat system is assessed through real-time experimental tests using different excitation profiles. The system identification results show that an accurate estimation of the secondary path is achieved by using the FBLMS on-line technique. Substantial reduction is found for cancelling periodic vibration containing single and multiple frequencies. Additionally, the robustness and stability of the control system are validated through transient switching frequency tests.

  12. Active vibration control techniques for flexible space structures

    Parlos, Alexander G.; Jayasuriya, Suhada

    1990-01-01

    Two proposed control system design techniques for active vibration control in flexible space structures are detailed. Control issues relevant only to flexible-body dynamics are addressed, whereas no attempt was made to integrate the flexible and rigid-body spacecraft dynamics. Both of the proposed approaches revealed encouraging results; however, further investigation of the interaction of the flexible and rigid-body dynamics is warranted.

  13. Magnetic Levitation Technique for Active Vibration Control

    Hoque, Emdadul; Mizuno, Takeshi

    2010-01-01

    A zero-power controlled magnetic levitation system has been presented in this chapter. The unique characteristic of the zero-power control system is that it can generate negative stiffness with zero control current in the steady-state which is realized in this chapter. The detail characteristics of the levitation system are investigated. Moreover, two major contributions, the stiffness adjustment and nonlinear compensation of the suspension system have been introduced elaborately. Often, ther...

  14. Tuning of active vibration controllers for ACTEX by genetic algorithm

    Kwak, Moon K.; Denoyer, Keith K.

    1999-06-01

    This paper is concerned with the optimal tuning of digitally programmable analog controllers on the ACTEX-1 smart structures flight experiment. The programmable controllers for each channel include a third order Strain Rate Feedback (SRF) controller, a fifth order SRF controller, a second order Positive Position Feedback (PPF) controller, and a fourth order PPF controller. Optimal manual tuning of several control parameters can be a difficult task even though the closed-loop control characteristics of each controller are well known. Hence, the automatic tuning of individual control parameters using Genetic Algorithms is proposed in this paper. The optimal control parameters of each control law are obtained by imposing a constraint on the closed-loop frequency response functions using the ACTEX mathematical model. The tuned control parameters are then uploaded to the ACTEX electronic control electronics and experiments on the active vibration control are carried out in space. The experimental results on ACTEX will be presented.

  15. Online identification of active absorbers in automotive vibration control

    Buttelmann, M.; Lohmann, B.; Vinogradski, M.; Nedeljkovic, N. [Bremen Univ. (Germany). Inst. fuer Automatisierungstechnik; Marienfeld, P. [ContiTech Vibration Control GmbH, Hannover (Germany); Svaricek, F. [Continental Gummi-Werke AG, Hannover (Germany)

    2001-07-01

    In the past, engine-related noise and vibration in the vehicle cabin was exclusively reduced by passive absorption. Today, modern actuators and control systems make an active noise reduction possible by introducing counteracting vibration at 180 degrees phase lag. Within a cooperation of the Institute of Automation Systems and Continental AG, an approach using active absorbers at the engine mounts is investigated. As the dynamic behaviour of the active absorbers and other elements in the secondary path are time-variant (depending on temperature, age and other factors), an online identification is carried out. By this, the implemented feedforward control strategy is supported on a precise and frequently updated model of the secondary path. The chosen approaches to online and offline identification are presented together with first results achieved in online identification and with the overall control system. (orig.)

  16. Actively Controlled Landing Gear for Aircraft Vibration Reduction

    Horta, Lucas G.; Daugherty, Robert H.; Martinson, Veloria J.

    1999-01-01

    Concepts for long-range air travel are characterized by airframe designs with long, slender, relatively flexible fuselages. One aspect often overlooked is ground induced vibration of these aircraft. This paper presents an analytical and experimental study of reducing ground-induced aircraft vibration loads using actively controlled landing gears. A facility has been developed to test various active landing gear control concepts and their performance. The facility uses a NAVY A6-intruder landing gear fitted with an auxiliary hydraulic supply electronically controlled by servo valves. An analytical model of the gear is presented including modifications to actuate the gear externally and test data is used to validate the model. The control design is described and closed-loop test and analysis comparisons are presented.

  17. Coupled Torsional and Bending Vibrations of Actively Controlled Drillstrings

    YIGIT, A. S.; CHRISTOFOROU, A. P.

    2000-06-01

    The dynamics of actively controlled drillstrings is studied. The equations of motion are derived using a lumped parameter model in which the coupling between torsional and bending vibrations is considered. The model also includes the dynamics of the rotary drive system which contains the rotary table, the gearbox and an armature controlled DC motor. The interactions between the drillstring and the borehole which are considered, include the impacts of collars with the borehole wall as well as bit rotation-dependent weight and torque on bit (WOB and TOB). Simulation results obtained by numerically solving the equations of motion are in close qualitative agreement with field and laboratory observations regarding stick-slip oscillations. A linear quadratic regulator (LQR) controller is designed based on a linearized model and is shown to be effective in eliminating this type of oscillations. It is also shown that for some operational parameters the control action may excite large bending vibrations due to coupling with the torsional motion.

  18. Vibration control of cylindrical shells using active constrained layer damping

    Ray, Manas C.; Chen, Tung-Huei; Baz, Amr M.

    1997-05-01

    The fundamentals of controlling the structural vibration of cylindrical shells treated with active constrained layer damping (ACLD) treatments are presented. The effectiveness of the ACLD treatments in enhancing the damping characteristics of thin cylindrical shells is demonstrated theoretically and experimentally. A finite element model (FEM) is developed to describe the dynamic interaction between the shells and the ACLD treatments. The FEM is used to predict the natural frequencies and the modal loss factors of shells which are partially treated with patches of the ACLD treatments. The predictions of the FEM are validated experimentally using stainless steel cylinders which are 20.32 cm in diameter, 30.4 cm in length and 0.05 cm in thickness. The cylinders are treated with ACLD patches of different configurations in order to target single or multi-modes of lobar vibrations. The ACLD patches used are made of DYAD 606 visco-elastic layer which is sandwiched between two layers of PVDF piezo-electric films. Vibration attenuations of 85% are obtained with maximum control voltage of 40 volts. Such attenuations are attributed to the effectiveness of the ACLD treatment in increasing the modal damping ratios by about a factor of four over those of conventional passive constrained layer damping (PCLD) treatments. The obtained results suggest the potential of the ACLD treatments in controlling the vibration of cylindrical shells which constitute the major building block of many critical structures such as cabins of aircrafts, hulls of submarines and bodies of rockets and missiles.

  19. Integrated Passive and Active Vibration Control of Ultra-precision Lathe

    2000-01-01

    In ultra-precision cutting process, vibration is one of the key factors affecting the machining quality. In this paper, the damping methods of HCM-I Ultra-precision Lathe are discussed in both complete machine and slide. It is pointed out that integrated passive and active vibration control (IPAVC) by combining passive vibration control (PVC) and active vibration control (AVC) can not only eliminate high frequency vibration but also improve the damping effect to low frequency vibration. Experiment results show the effectiveness of the integrated passive and active vibration control.

  20. Adaptive active vibration isolation – A control perspective

    Landau Ioan Doré

    2015-01-01

    The paper will review a number of recent developments for adaptive feedback compensation of multiple unknown and time-varying narrow band disturbances and for adaptive feedforward compensation of broad band disturbances in the presence of the inherent internal positive feedback caused by the coupling between the compensator system and the measurement of the image of the disturbance. Some experimental results obtained on a relevant active vibration control system will illustrate the performance of the various algorithms presented.

  1. Smart materials and active noise and vibration control in vehicles

    Doppenberg, E.J.J.; Berkhoff, A.P.; Overbeek, M. van [TNO Institute of Applied Physics, Delft (Netherlands)

    2001-07-01

    Results are presented for the reduction of sound radiated from a structure using different control methodologies. Two approaches for active structural acoustic control are mentioned to reduce sound radiated by the structure: the acoustic approach or the vibro-acoustic approach. In both cases integrated actuators in structure materials are necessary to realise feasible products. Furthermore the development of an efficient shaker for Active Isolation techniques is described. The prototype of TNO TPD can produce a force of 400 N up to 250 Hz at a good performance-volume ratio. To enhance the robustness of the active control applications, the use of the subspace identification based control methods are developed. The robustness property of subspace identification methods forms the basis of an accurate model updating mechanism, using small size data batches. The performed simulations reveal excellent robustness performance under very general noise conditions or during operation of the control system. Furthermore the development of the techniques can be exploited to realise sound comfort requirements to enhance audible communications of vehicle related applications. To anticipate to these developments in the automotive industry, TNO has set up a Sound and Vibrations Research Centre with Twente University and a research program on Smart Panels with the Delft University. To investigate the potential markets and applications for sound comfort in the means of transportation, TNO-TPD and the Institute of Sound and Vibration Research in England (ISVR) have agreed on a cooperative venture to develop and realise 'active control of electroacoustics' (ACE). (orig.)

  2. Innovation in Active Vibration Control Strategy of Intelligent Structures

    A. Moutsopoulou; G. E. Stavroulakis; Pouliezos, A.

    2013-01-01

    Large amplitudes and attenuating vibration periods result in fatigue, instability, and poor structural performance. In light of past approaches in this field, this paper intends to discuss some innovative approaches in vibration control of intelligent structures, particularly in the case of structures with embedded piezoelectric materials. Control strategies are presented, such as the linear quadratic control theory, as well as more advanced theories, such as robust control theory. The paper ...

  3. Research of Air-Magnet Active Vibration Isolation System Based on H∞ Control

    Wen Xianglong

    2015-01-01

    Full Text Available Considering the uncertainty of air-magnet active vibration isolation system (AMAVIS, passive vibration isolation was combined with active vibration isolation, which adopted H∞ control strategies. System identification method was used to get the channel model. By adopting mixed sensitivity design strategy, weighting functions were chosen and H∞ controller was designed. Both simulation results and experimental results show AMAVIS based on H∞ control had satisfying effect of vibration reduction in assigned frequency band.

  4. Active Vibration Isolation Control: Comparison of Feedback and Feedforward Control Strategies Applied to Coriolis Mass-Flow Meters (I)

    Ridder, de, J.; Hakvoort, W.B.J.; van Dijk

    2015-01-01

    In this paper we describe the design, implementation and results of multi degree of freedom (DOF) active vibration control for a Coriolis mass-flow meter (CMFM). Without vibration control, environmental vibrational disturbances results in nanometre movement of the fluid-conveying tube which causes erroneous mass-flow measurements. In order to reduce the transmissibility from external vibrations to the internal tube displacement active vibration control is applied. A comparison of a feedback c...

  5. Active vibration control of spatial flexible multibody systems

    In this work a flexible multibody dynamics formulation of complex models including elastic components made of composite materials is extended to include piezoelectric sensors and actuators. The only limitation for the deformation of a structural member is that they must remain elastic and linear when described in a coordinate frame fixed to a material point or region of its domain. The flexible finite-element model of each flexible body is obtained referring the flexible body nodal coordinates to the body fixed frame and using a diagonalized mass description of the inertia in the mass matrix and on the gyroscopic force vector. The modal superposition technique is used to reduce the number of generalized coordinates to a reasonable dimension for complex shaped structural models of flexible bodies. The active vibration control of the flexible multibody components is implemented using an asymmetric collocated piezoelectric sensor/actuator pair. An electromechanically coupled model is taken into account to properly consider the surface-bonded piezoelectric transducers and their effects on the time and spatial response of the flexible multibody components. The electromechanical effects are introduced in the flexible multibody equations of motion by the use of beam and plate/shell elements, developed to this purpose. A comparative study between the classical control strategies, constant gain and amplitude velocity feedback, and optimal control strategy, linear quadratic regulator (LQR), is performed in order to investigate their effectiveness to suppress vibrations in structures with piezoelectric sensing and actuating patches.

  6. Active vibration control of spatial flexible multibody systems

    Neto, Maria Augusta, E-mail: augusta.neto@dem.uc.pt [Universidade de Coimbra (Polo II), Departamento de Engenharia Mecanica, Faculdade de Ciencia e Tecnologia (Portugal); Ambrosio, Jorge A. C., E-mail: jorge@dem.ist.utl.pt [Instituto Superior Tecnico, Instituto de Engenharia Mecanica (Portugal); Roseiro, Luis M., E-mail: lroseiro@isec.pt [Instituto Superior de Engenharia de Coimbra, Departamento de Engenharia Mecanica (Portugal); Amaro, A., E-mail: ana.amaro@dem.uc.pt [Universidade de Coimbra (Polo II), Departamento de Engenharia Mecanica, Faculdade de Ciencia e Tecnologia (Portugal); Vasques, C. M. A., E-mail: cvasques@inegi.up.pt [Universidade do Porto, INEGI-Instituto de Engenharia Mecanica e Gestao Industrial (Portugal)

    2013-06-15

    In this work a flexible multibody dynamics formulation of complex models including elastic components made of composite materials is extended to include piezoelectric sensors and actuators. The only limitation for the deformation of a structural member is that they must remain elastic and linear when described in a coordinate frame fixed to a material point or region of its domain. The flexible finite-element model of each flexible body is obtained referring the flexible body nodal coordinates to the body fixed frame and using a diagonalized mass description of the inertia in the mass matrix and on the gyroscopic force vector. The modal superposition technique is used to reduce the number of generalized coordinates to a reasonable dimension for complex shaped structural models of flexible bodies. The active vibration control of the flexible multibody components is implemented using an asymmetric collocated piezoelectric sensor/actuator pair. An electromechanically coupled model is taken into account to properly consider the surface-bonded piezoelectric transducers and their effects on the time and spatial response of the flexible multibody components. The electromechanical effects are introduced in the flexible multibody equations of motion by the use of beam and plate/shell elements, developed to this purpose. A comparative study between the classical control strategies, constant gain and amplitude velocity feedback, and optimal control strategy, linear quadratic regulator (LQR), is performed in order to investigate their effectiveness to suppress vibrations in structures with piezoelectric sensing and actuating patches.

  7. Active control of structural vibration by piezoelectric stack actuators

    NIU Jun-chuan; ZHAO Guo-qun; HU Xia-xia

    2005-01-01

    This paper presents a general analytical model of flexible isolation system for application to the installation of high-speed machines and lightweight structures. Piezoelectric stack actuators are employed in the model to achieve vibration control of flexible structures, and dynamic characteristics are also investigated. Mobility technique is used to derive the governing equations of the system. The power flow transmitted into the foundation is solved and considered as a cost function to achieve optimal control of vibration isolation. Some numerical simulations revealed that the analytical model is effective as piezoelectric stack actuators can achieve substantial vibration attenuation by selecting proper value of the input voltage.

  8. Phase and gain control policies for robust active vibration control of flexible structures

    Zhang, Kai; Scorletti, Gérard; Ichchou, Mohamed; Mieyeville, F.

    2013-01-01

    The interest of this paper is to develop a general and systematic robust control methodology for active vibration control of flexible structures. For this purpose, first phase and gain control policies are proposed to impose qualitative frequency-dependent requirements on the controller to consider a complete set of control objectives. Then the proposed control methodology is developed by employing phase and gain control policies in the dynamic output feedback H∞ control: according to the set...

  9. Performance of active vibration control technology: the ACTEX flight experiments

    Nye, T. W.; Manning, R. A.; Qassim, K.

    1999-12-01

    This paper discusses the development and results of two intelligent structures space-flight experiments, each of which could affect architecture designs of future spacecraft. The first, the advanced controls technology experiment I (ACTEX I), is a variable stiffness tripod structure riding as a secondary payload on a classified spacecraft. It has been operating well past its expected life since becoming operational in 1996. Over 60 on-orbit experiments have been run on the ACTEX I flight experiment. These experiments form the basis for in-space controller design problems and for concluding lifetime/reliability data on the active control components. Transfer functions taken during the life of ACTEX I have shown consistent predictability and stability in structural behavior, including consistency with those measurements taken on the ground prior to a three year storage period and the launch event. ACTEX I can change its modal characteristics by employing its dynamic change mechanism that varies preloads in portions of its structure. Active control experiments have demonstrated maximum vibration reductions of 29 dB and 16 dB in the first two variable modes of the system, while operating over a remarkable on-orbit temperature range of -80 °C to 129 °C. The second experiment, ACTEX II, was successfully designed, ground-tested, and integrated on an experimental Department of Defense satellite prior to its loss during a launch vehicle failure in 1995. ACTEX II also had variable modal behavior by virtue of a two-axis gimbal and added challenges of structural flexibility by being a large deployable appendage. Although the loss of ACTEX II did not provide space environment experience, ground testing resulted in space qualifying the hardware and demonstrated 21 dB, 14 dB, and 8 dB reductions in amplitude of the first three primary structural modes. ACTEX II could use either active and/or passive techniques to affect vibration suppression. Both experiments trailblazed

  10. Active vibration control of a rotor-bearing system based on dynamic stiffness

    Andrés Blanco Ortega; Francisco Beltrán Carbajal; Gerardo Silva Navarro; Marco Antonio Oliver Salazar

    2010-01-01

    This paper presents an active vibration control scheme to reduce unbalance induced synchronous vibration in rotorbearing systems supported on two ball bearings, one of which can be automatically moved to control the effective rotor length and, as an immediate consequence, the rotor stiffness. This dynamic stiffness control scheme, based on frequency analysis, speed control and acceleration scheduling, is used to avoid resonant vibration of a rotor system when it passes (runup or coast down) t...

  11. Active vibration control for high speed train bogies

    Peiffer, Alexander; Storm, Stefan; Röder, Arno; Maier, Rudolf; Frank, Paul-Gerhard

    2005-02-01

    This report deals with the design of an active vibration control (AVC) system integrated into the primary suspension of the bogie of a German high-speed train (ICE). As a design case a prototype bogie (WU92) for the ICE2 was taken. This paper comprises all parts and stages of the development of an AVC system. First, a transfer path analysis was performed in order to identify the main paths of propagation and to determine the boundary conditions at the actuator contact points. A detailed FE-analysis performed on the basis of an already existing FE-model serves as a support to investigate the actuator performance and evaluate several actuator concepts. However, the evaluation of a multifold of varying configurations of actuator, error sensor and monitor sensor positions is obviously not possible in the experiment, but is in the simulation. Based on the simulations and the experiments the control system is implemented on a digital signal processor (DSP) system. The structure borne noise level was determined during running tests at the ICE3 and measurements at the WU92 installed in the test rig. The design of the actuator system includes the layout of the specific system as well as the selection of the piezoelectric elements. A specifically developed amplifier drives the actuators. Finally the system is integrated into one axle of the WU92 and tested during roller-rig measurements.

  12. Active vibration control of multibody system with quick startup and brake based on active damping

    TANG Hua-ping; TANG Yun-jun; TAO Gong-an

    2006-01-01

    A kind of active vibration control method was presented based on active damping and optimization design for driving load of multibody system with quick startup and brake. Dynamical equation of multibody system with quick startup and brake and piezoelectric actuators intelligent structure was built. The optimum driving load was calculated by applying the presented method. The self-sensing and self-tuning closed-loop active vibration control in quick startup and brake process was realized. The control algorithm, using local velocity negative feedback, i.e. the output of a sensor only affects the output of the actuator collocated, can induce damping effectively to actively suppress the system vibration. Based on the optimization design for driving load of multibody system with quick startup and bake, the active damping of piezoelectric actuators intelligent structure was used to farther suppress the vibration of system. Theoretical analysis and calculation of numerical show that the proposed method makes the vibration of system decrease more than the optimal design method for driving load of multibody system.

  13. Active vibration control using state space LQG and internal model control methods

    Mørkholt, Jakob; Elliott, S.J.

    Two ways of designing discrete time robust H2-controllers for feedback broadband active vibration control are compared through computer simulations. The methods are based on different models of disturbance and plant transfer functions, but yield controllers with identical properties. Two simple...... ways of introducing robustness into the H2-design are compared, and finally an efficient way of designing a practical IIR-controller is proposed....

  14. Active Vibration Control for a CNC Milling Machine

    Ford, Derek G.; Myers, Alan; Haase, Frerk; Lockwood, Stephen; Longstaff, Andrew P.

    2013-01-01

    There is a requirement for improved three-dimensional surface characterisation and reduced tool wear when modern computer numerical control (CNC) machine tools are operating at high cutting velocities, spindle speeds and feed rates. For large depths of cut and large material removal rates, there is a tendency for machines to chatter caused by selfexcited vibration in the machine tools leading to precision errors, poor surface finish quality, tool wear and possible machine damage. This s...

  15. Active control of structural vibration with on-line secondary path modeling

    YANG Tiejun; GU Zhongquan

    2004-01-01

    An active control strategy with on-line secondary path modeling is proposed and applied in active control of helicopter structural vibration. Computer simulations of the secondary path modeling performance demonstrate the superiorities of the active control strategy. A 2-input 4-output active control simulation for a helicopter model is performed and great reduction of structural vibration is achieved. 2-input 2-output and 2-input 4-output experimental studies of structural vibration control for a free-free beam are also carried out in laboratory to simulate a flying helicopter. The experimental results also show better reduction of the structural vibration, which verifies that the proposed method is effective and practical in structural vibration reduction.

  16. Active vibration control of smart grid structure by multiinput and multioutput positive position feedback controller

    Kwak, Moon K.; Heo, Seok

    2007-07-01

    This paper is concerned with the active vibration control of a grid structure equipped with piezoceramic sensors and actuators. The grid structure is a replica of the solar panel commonly mounted on satellites, which contains complex natural mode shapes. The multiinput and multioutput positive position feedback (PPF) controller is considered as an active vibration controller for the grid structure. A new concept, the block-inverse technique, is proposed to cope with more modes than the number of actuators and sensors. This study also deals with the stability and the spillover effect associated with the application of the multiinput multioutput PPF controller based on the block-inverse technique. It was found that the theories developed in this study are capable of predicting the control system characteristics and its performance. The new multiinput multioutput PPF controller was applied to the test structure using a digital signal processor and its efficacy was verified by experiments.

  17. Active vibration control of clamped beams using positive position feedback controllers with moment pair

    This paper investigates the active vibration control of clamp beams using positive position feedback (PPF) controllers with a sensor/ moment pair actuator. The sensor/moment pair actuator which is the non-collocated configuration leads to instability of the control system when using the direct velocity feedback (DVFB) control. To alleviate the instability problem, a PPF controller is considered in this paper. A parametric study of the control system with PPF controller is first conducted to characterize the effects of the design parameters (gain and damping ratio in this paper) on the stability and performance. The gain of the controller is found to affect only the relative stability. Increasing the damping ratio of the controller slightly improves the stability condition while the performance gets worse. In addition, the higher mode tuned PPF controller affects the system response at the lower modes significantly. Based on the characteristics of PPF controllers, a multi-mode controllable SISO PPF controller is then considered and tuned to different modes (in this case, three lowest modes) numerically and experimentally. The multi-mode PPF controller can be achieved to have a high gain margin. Moreover, it reduces the vibration of the beam significantly. The vibration levels at the tuned modes are reduced by about 11 dB

  18. Reduction of the Radiating Sound of a Submerged Finite Cylindrical Shell Structure by Active Vibration Control

    Seung-Bok Choi

    2013-02-01

    Full Text Available In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water.

  19. Active Vibration Control of the Smart Plate Using Artificial Neural Network Controller

    Mohit

    2015-01-01

    Full Text Available The active vibration control (AVC of a rectangular plate with single input and single output approach is investigated using artificial neural network. The cantilever plate of finite length, breadth, and thickness having piezoelectric patches as sensors/actuators fixed at the upper and lower surface of the metal plate is considered for examination. The finite element model of the cantilever plate is utilized to formulate the whole strategy. The compact RIO and MATLAB simulation software are exercised to get the appropriate results. The cantilever plate is subjected to impulse input and uniform white noise disturbance. The neural network is trained offline and tuned with LQR controller. The various training algorithms to tune the neural network are exercised. The best efficient algorithm is finally considered to tune the neural network controller designed for active vibration control of the smart plate.

  20. DESIGN AND ANALYSIS OF NOVEL ACTIVE ACTUATOR TO CONTROL LOW FREQUENCY VIBRATIONS OF SHAFT SYSTEM

    2008-01-01

    Aiming at providing with high-load capability in active vibration control of large-scale rotor system, a new type of active actuator to simultaneously reduce the dangers of low frequency flexural and torsional vibrations is designed. The actuator employs electro-hydraulic system and can provide a high and circumferential load. To initialize new research, the characteristics of various kinds of active actuators to control rotor shaft vibration are briefly introduced. The purpose of this paper is to introduce the preliminary results via presenting the structure, functions and operating principles, in particular, the working process of the electro-hydraulic system of the new actuator which includes a set of high speed electromagnetic valves and a series of sloping cone-shaped openings, and presenting the transmission relationships among the control parameters from control signals into the valves to active load onto shaft. The course of the work is dynamic, and a series of spatial forces and moments are put on the shaft to get an external resultant force to reduce excitations that induce vibration of shafts. By checking states of vibration, the actuator can control the impulse width and the interval of injection time for applying different control force to a vibration shaft in two circumference directions through the regulating action of a set of combination directional control valves. The results from simulating analysis and experiment show evidence of that this design can satisfy the case of active process of decreasing of flexural and torsional vibrations.

  1. Active Vibration Control of a Monopile Offshore Structure

    Nielsen, Søren R. K.; Kirkegaard, Poul Henning; Thesbjerg, L.

    1999-01-01

    cylinder of the platform, so the drag force in the generalized Morison equation is increased whenever it is acting in the opposite direction of the cylinder motion, whereas an unchanged drag force is applied, whenever it is acting co-directionally to the cylinder motion. The inertial force of the wave load...... is not subjected to control. The increased drag force is obtained by forcing the boundary layers to separate by blowing air into the boundary layer from the inside through small holes in the cylinder surface placed at a relatively large distance from the water surface. The control is specified by the...... wave conditions, where reductions in the vibration level of up to 50% have been registered....

  2. Active Lubrication for Reducing Wear and Vibration: A combination of Fluid Power Control and Tribology

    Nicoletti, Rodrigo; Santos, Ilmar

    2002-01-01

    The use of fluid power to reduce and control rotor vibration in rotating machines is investigated. An active hybrid bearing is studied, whose main objective is to reduce wear and vibration between rotating and stationary machinery parts. By injecting pressurised oil into the oil film, through...

  3. Active Vibration Suppression of a 3-DOF Flexible Parallel Manipulator Using Efficient Modal Control

    Quan Zhang

    2014-01-01

    Full Text Available This paper addresses the dynamic modeling and efficient modal control of a planar parallel manipulator (PPM with three flexible linkages actuated by linear ultrasonic motors (LUSM. To achieve active vibration control, multiple lead zirconate titanate (PZT transducers are mounted on the flexible links as vibration sensors and actuators. Based on Lagrange’s equations, the dynamic model of the flexible links is derived with the dynamics of PZT actuators incorporated. Using the assumed mode method (AMM, the elastic motion of the flexible links are discretized under the assumptions of pinned-free boundary conditions, and the assumed mode shapes are validated through experimental modal test. Efficient modal control (EMC, in which the feedback forces in different modes are determined according to the vibration amplitude or energy of their own, is employed to control the PZT actuators to realize active vibration suppression. Modal filters are developed to extract the modal displacements and velocities from the vibration sensors. Numerical simulation and vibration control experiments are conducted to verify the proposed dynamic model and controller. The results show that the EMC method has the capability of suppressing multimode vibration simultaneously, and both the structural and residual vibrations of the flexible links are effectively suppressed using EMC approach.

  4. Nonlinear parametrically excited vibration and active control of gear pair system with time-varying characteristic

    刘爽; 王进进; 刘金杰; 李雅倩

    2015-01-01

    In the present work, we investigate the nonlinear parametrically excited vibration and active control of a gear pair system involving backlash, time-varying meshing stiffness and static transmission error. Firstly, a gear pair model is established in a strongly nonlinear form, and its nonlinear vibration characteristics are systematically investigated through different approaches. Several complicated phenomena such as period doubling bifurcation, anti period doubling bifurcation and chaos can be observed under the internal parametric excitation. Then, an active compensation controller is designed to suppress the vibration, including the chaos. Finally, the effectiveness of the proposed controller is verified numerically.

  5. Reduction of the Radiating Sound of a Submerged Finite Cylindrical Shell Structure by Active Vibration Control

    Seung-Bok Choi; Juncheol Jeon; Jung Woo Sohn; Heung Soo Kim

    2013-01-01

    In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs) were used as actuators and sensors. One MFC was used as an excite...

  6. Experimental Active Vibration Control in Truss Structures Considering Uncertainties in System Parameters

    2008-01-01

    This paper deals with the study of algorithms for robust active vibration control in flexible structures considering uncertainties in system parameters. It became an area of enormous interest, mainly due to the countless demands of optimal performance in mechanical systems as aircraft, aerospace, and automotive structures. An important and difficult problem for designing active vibration control is to get a representative dynamic model. Generally, this model can be obtained using finite eleme...

  7. A reduced energy supply strategy in active vibration control

    In this paper, a control strategy is presented and numerically tested. This strategy aims to achieve the potential performance of fully active systems with a reduced energy supply. These energy needs are expected to be comparable to the power demands of semi-active systems, while system performance is intended to be comparable to that of a fully active configuration. The underlying strategy is called 'global semi-active control'. This control approach results from an energy investigation based on management of the optimal control process. Energy management encompasses storage and convenient restitution. The proposed strategy monitors a given active law without any external energy supply by considering purely dissipative and energy-demanding phases. Such a control law is offered here along with an analysis of its properties. A suboptimal form, well adapted for practical implementation steps, is also given. Moreover, a number of numerical experiments are proposed in order to validate test findings

  8. RESEARCH ON ACTIVE VIBRATION CONTROL BASED ON COMBINED MODEL FOR COUPLED SYSTEMS

    Niu Junchuan; Zhao Guoqun; Song Kongjie

    2004-01-01

    A novel combined model of the vibration control for the coupled flexible system and its general mathematic description are developed. In presented model, active and passive controls as well as force and moment controls are combined into a single unit to achieve the efficient vibration control of the flexible structures by multi-approaches. Considering the complexity of the energy transmission in the vibrating system, the transmission channels of the power flow transmitted into the foundation are discussed, and the general forces and the corresponding velocities are combined into a single function, respectively. Under the control strategy of the minimum power flow, the transmission characteristics of the power flow are investigated. From the presented numerical examples, it is obvious that the analytical model is effective, and both force and moment controls are able to depress vibration energy substantially.

  9. Experimental Comparison of two Active Vibration Control Approaches: Velocity Feedback and Negative Capacitance Shunt Damping

    Beck, Benjamin; Schiller, Noah

    2013-01-01

    This paper outlines a direct, experimental comparison between two established active vibration control techniques. Active vibration control methods, many of which rely upon piezoelectric patches as actuators and/or sensors, have been widely studied, showing many advantages over passive techniques. However, few direct comparisons between different active vibration control methods have been made to determine the performance benefit of one method over another. For the comparison here, the first control method, velocity feedback, is implemented using four accelerometers that act as sensors along with an analog control circuit which drives a piezoelectric actuator. The second method, negative capacitance shunt damping, consists of a basic analog circuit which utilizes a single piezoelectric patch as both a sensor and actuator. Both of these control methods are implemented individually using the same piezoelectric actuator attached to a clamped Plexiglas window. To assess the performance of each control method, the spatially averaged velocity of the window is compared to an uncontrolled response.

  10. Smart Materials and Active Noise and Vibration Control in Vehicles

    Doppenberg, E.J.J.; Berkhoff, A.P.; Overbeek, van M.

    2001-01-01

    The paper presents the results for the reduction of sound radiated from a structure using different control methodologies, and discusses two approaches for active structural acoustic control: the acoustic approach or the vibro-acoustic approach. Integrated actuators in structure material are necessa

  11. Active Control of Machine-Tool Vibration in a Lathe

    Claesson, Ingvar; Håkansson, Lars

    1997-01-01

    In the turning operation the relative dynamic motion between cutting tool and workpiece, or vibration is a frequent problem, which affects the result of the machining, in particular the surface finish. The tool life is also influenced by the vibrations. When the working environment is considered, noise is frequently introduced by dynamic motion between the cutting tool and the workpiece. By proper machine design, e.g. improved stiffness of the machine structure, the problem of relative dynami...

  12. Optimal semi-active vibration absorber for harmonic excitation based on controlled semi-active damper

    The semi-active vibration absorber (SVA) based on controlled semi-active damper is formulated to realize the behaviour of the passive undamped vibration absorber tuned to the actual harmonic disturbing frequency. It is shown that the controlled stiffness force, which is emulated by the semi-active damper to realize the precise real-time frequency tuning of the SVA, is unpreventably combined with the generation of undesirable damping in the semi-active damper whereby the SVA does not behave as targeted. The semi-active stiffness force is therefore optimized for minimum primary structure response. The results point out that the optimal semi-active stiffness force reduces the undesirable energy dissipation in the SVA at the expenses of slight imprecise frequency tuning. Based on these findings, a real-time applicable suboptimal SVA is formulated that also takes the relative motion constraint of real mass dampers into account. The results demonstrate that the performance of the suboptimal SVA is closer to that of the active solution than that of the passive mass damper. (paper)

  13. Phase and gain control policies for robust active vibration control of flexible structures

    The interest of this paper is to develop a general and systematic robust control methodology for active vibration control of flexible structures. For this purpose, first phase and gain control policies are proposed to impose qualitative frequency-dependent requirements on the controller to consider a complete set of control objectives. Then the proposed control methodology is developed by employing phase and gain control policies in the dynamic output feedback H∞ control: according to the set of control objectives, phase and gain control policies incorporate necessary weighting functions and determine them in a rational and systematic way; on the other hand, with the appropriate weighting functions efficient H∞ control algorithms can automatically realize phase and gain control policies and generate a satisfactory H∞ controller. The proposed control methodology can be used for both SISO and MIMO systems with collocated or non-collocated sensors and actuators. In this paper, it is validated on a non-collocated piezoelectric cantilever beam. Both numerical simulations and experimental results demonstrate the effectiveness of the proposed control methodology. (paper)

  14. IIR filtering based adaptive active vibration control methodology with online secondary path modeling using PZT actuators

    Boz, Utku; Basdogan, Ipek

    2015-12-01

    Structural vibrations is a major cause for noise problems, discomfort and mechanical failures in aerospace, automotive and marine systems, which are mainly composed of plate-like structures. In order to reduce structural vibrations on these structures, active vibration control (AVC) is an effective approach. Adaptive filtering methodologies are preferred in AVC due to their ability to adjust themselves for varying dynamics of the structure during the operation. The filtered-X LMS (FXLMS) algorithm is a simple adaptive filtering algorithm widely implemented in active control applications. Proper implementation of FXLMS requires availability of a reference signal to mimic the disturbance and model of the dynamics between the control actuator and the error sensor, namely the secondary path. However, the controller output could interfere with the reference signal and the secondary path dynamics may change during the operation. This interference problem can be resolved by using an infinite impulse response (IIR) filter which considers feedback of the one or more previous control signals to the controller output and the changing secondary path dynamics can be updated using an online modeling technique. In this paper, IIR filtering based filtered-U LMS (FULMS) controller is combined with online secondary path modeling algorithm to suppress the vibrations of a plate-like structure. The results are validated through numerical and experimental studies. The results show that the FULMS with online secondary path modeling approach has more vibration rejection capabilities with higher convergence rate than the FXLMS counterpart.

  15. A robust vibration control for a multi-active mount system subjected to broadband excitation

    In this study, a frequency-shaped sliding mode control design is presented for the robust vibration control of a multi-active mount system in the presence of parametric uncertainties whose upper bounds are assumed to be known. The proposed mount system consists of four active mounts supporting vibration-sensitive equipment. Each active mount—constituted of a rubber element, an inertial mass and two piezostack actuators connected in serial configuration—can be modeled as a two-stage vibration isolator. After formulating the governing equations of motions of the mount system, a desired dynamic is specified in the frequency domain, and control laws are then derived to drive the system dynamics to the desired one based on Lyapunov's theorem. Simulations are performed in the frequency range from 100 to 1000 Hz in order to evaluate the effectiveness of the active mount system associated with the frequency-shaped sliding mode controller. It is demonstrated that the dynamic of the active mount system can approach the desired dynamic as the controller is activated. It also shown that robust vibration control performance is achieved in the presence of the parametric uncertainties

  16. A new online secondary path modeling method for adaptive active structure vibration control

    This paper proposes a new variable step size FXLMS algorithm with an auxiliary noise power scheduling strategy for online secondary path modeling. The step size for the secondary path modeling filter and the gain of auxiliary noise are varied in accordance with the parameters available directly. The proposed method has a low computational complexity. Computer simulations show that an active vibration control system with the proposed method gives much better vibration attenuation and modeling accuracy at a faster convergence rate than existing methods. National Instruments’ CompactRIO is used as an embedded processor to control simply supported beam vibration. Experimental results indicate that the vibration of the beam has been effectively attenuated. (papers)

  17. Active twist control methodology for vibration reduction of a helicopter with dissimilar rotor system

    In this work, an active vibration reduction of hingeless composite rotor blades with dissimilarity is investigated using the active twist concept and the optimal control theory. The induced shear strain on the actuation mechanism by the piezoelectric constant d15 from the PZN–8% PT-based single-crystal material is used to achieve more active twisting to suppress the extra vibrations. The optimal control algorithm is based on the minimization of an objective function comprised of quadratic functions of vibratory hub loads and voltage control harmonics. The blade-to-blade dissimilarity is modeled using the stiffness degradation of composite blades. The optimal controller is applied to various possible dissimilarities arising from different damage patterns of composite blades. The governing equations of motion are derived using Hamilton's principle. The effects of composite materials and smart actuators are incorporated into the comprehensive aeroelastic analysis system. Numerical results showing the impact of addressing the blade dissimilarities on hub vibrations and voltage inputs required to suppress the vibrations are demonstrated. It is observed that all vibratory shear forces are reduced considerably and the major harmonics of moments are reduced significantly. However, the controller needs further improvement to suppress 1/rev moment loads. A mechanism to achieve vibration reduction for the dissimilar rotor system has also been identified

  18. Improved Active Vibration Isolation Systems

    2007-01-01

    The control force, feedback gain, and actuator stroke of several active vibration isolation systems were analyzed based on a single-layer active vibration isolation system. The analysis shows that the feedback gain and actuator stroke cannot be selected independently and the active isolation system design must make a compromise between the feedback gain and actuator stroke. The performance of active isolation systems can be improved by the joint vibration reduction using an active vibration isolation system with an adaptive dynamic vibration absorber. The results show that the joint vibration reduction method can successfully avoid the compromise between the feedback gain and actuator stroke. The control force and the object vibration amplitude are also greatly reduced.

  19. Adaptive Control of Machine-Tool Vibration Based on an Active Tool Holder Shank with an Embedded Piezo Ceramic Actuator

    Pettersson, Linus; Håkansson, Lars; Claesson, Ingvar; Olsson, Sven

    2001-01-01

    In the turning operation chatter or vibration is a common problem affecting the result of the machining, and, in particular, the surface finish. Tool life is also influenced by vibration. Severe acoustic noise in the working environment frequently occurs as a result of dynamic motion between the cutting tool and the workpiece. These problems can be reduced by active control of machine-tool vibration. However, machine-tool vibration control systems are usually not applicable to a general lathe...

  20. Nonlinear parametrically excited vibration and active control of gear pair system with time-varying characteristic

    Liu, Shuang; Wang, Jin-Jin; Liu, Jin-Jie; Li, Ya-Qian

    2015-10-01

    In the present work, we investigate the nonlinear parametrically excited vibration and active control of a gear pair system involving backlash, time-varying meshing stiffness and static transmission error. Firstly, a gear pair model is established in a strongly nonlinear form, and its nonlinear vibration characteristics are systematically investigated through different approaches. Several complicated phenomena such as period doubling bifurcation, anti period doubling bifurcation and chaos can be observed under the internal parametric excitation. Then, an active compensation controller is designed to suppress the vibration, including the chaos. Finally, the effectiveness of the proposed controller is verified numerically. Project supported by the National Natural Science Foundation of China (Grant No. 61104040), the Natural Science Foundation of Hebei Province, China (Grant No. E2012203090), and the University Innovation Team of Hebei Province Leading Talent Cultivation Project, China (Grant No. LJRC013).

  1. Reducing friction-induced vibration using intelligent active force control (AFC) with piezoelectric actuators

    S M Hashemi-Dehkordi; A R Abu-Bakar; M Mailah

    2012-12-01

    In this paper, a novel approach to reduce the effect of mode coupling that causes friction induced vibration (FIV) is proposed by applying an intelligent active force control (AFC)-based strategy employing piezoelectric actuators with hysteresis effect to a simplified two degree-of-freedom mathematical model of a friction-induced vibration system. At first, the model is simulated and analysed using a closed loop pure Proportional-Integral-Derivative (PID) controller. Later, it is integrated with the intelligent AFC with fuzzy logic (FL) estimator and simulated under similar operating condition. After running several tests with different sets of operating and loading conditions, the results both in time and frequency domains show that the PID controller with the intelligent AFC is much more effective in reducing the vibration, compared to the pure PID controller alone.

  2. Active Vibration Control for Helicopter Interior Noise Reduction Using Power Minimization

    Mendoza, J.; Chevva, K.; Sun, F.; Blanc, A.; Kim, S. B.

    2014-01-01

    This report describes work performed by United Technologies Research Center (UTRC) for NASA Langley Research Center (LaRC) under Contract NNL11AA06C. The objective of this program is to develop technology to reduce helicopter interior noise resulting from multiple gear meshing frequencies. A novel active vibration control approach called Minimum Actuation Power (MAP) is developed. MAP is an optimal control strategy that minimizes the total input power into a structure by monitoring and varying the input power of controlling sources. MAP control was implemented without explicit knowledge of the phasing and magnitude of the excitation sources by driving the real part of the input power from the controlling sources to zero. It is shown that this occurs when the total mechanical input power from the excitation and controlling sources is a minimum. MAP theory is developed for multiple excitation sources with arbitrary relative phasing for single or multiple discrete frequencies and controlled by a single or multiple controlling sources. Simulations and experimental results demonstrate the feasibility of MAP for structural vibration reduction of a realistic rotorcraft interior structure. MAP control resulted in significant average global vibration reduction of a single frequency and multiple frequency excitations with one controlling actuator. Simulations also demonstrate the potential effectiveness of the observed vibration reductions on interior radiated noise.

  3. Wind-Tunnel Tests of a Bridge Model with Active Vibration Control

    Hansen, H. I.; Thoft-Christensen, Palle; Mendes, P. A.;

    The application of active control systems to reduce wind vibrations in bridges is a new area of research. This paper presents the results that were obtained on a set of wind tunnel tests of a bridge model equipped with active movable flaps. Based on the monitored position and motion of the deck......, the flaps are regulated by a control algorithm so that the wind forces exerted on them counteract the deck oscillations....

  4. Semi-active variable stiffness vibration control of vehicle seat suspension using an MR elastomer isolator

    This paper presents a study on continuously variable stiffness control of vehicle seat suspension using a magnetorheological elastomer (MRE) isolator. A concept design for an MRE isolator is proposed in the paper and its behavior is experimentally evaluated. An integrated seat suspension model, which includes a quarter-car suspension and a seat suspension with a driver body model, is used to design a sub-optimal H∞ controller for an active isolator. The desired control force generated by this active isolator is then emulated by the MRE isolator through its continuously variable stiffness property when the actuating condition is met. The vibration control effect of the MRE isolator is evaluated in terms of driver body acceleration responses under both bump and random road conditions. The results show that the proposed control strategy achieves better vibration reduction performance than conventional on–off control

  5. Active Vibration Isolation Using a Voice Coil Actuator with Absolute Velocity Feedback Control

    Yun-Hui Liu

    2013-11-01

    Full Text Available This paper describes the active vibration isolation using a voice coil actuator with absolute velocity feedback control for highly sensitive instruments (e.g., atomic force microscopes which suffer from building vibration. Compared with traditional isolators, the main advantage of the proposed isolation system is that it produces no isolator resonance. The absolute vibration velocity signal is acquired from an accelerator and processed through an integrator, and is then input to the controller as a feedback signal. The controller output signal then drives the voice coil actuator to produce a sky-hook damper force. In practice, the phase response of the integrator at low frequencies (2~6 Hz deviates from 90 degree which is the exact phase difference between the vibration velocity and acceleration. Therefore, an adaptive filter is used to compensate for the phase error. Analysis of this active vibration isolation system and comparison of model predictions to experimental results indicate that the proposed method significantly reduces transmissibility at resonance without incurring increased transmissibility at higher frequencies.

  6. Finite element based design of software for integrated passive and active vibration control

    2001-01-01

    Presents the design scheme developed for design of software forIntegrated Passive and Active Vibration Control(IPAVC) and the coding of a prototyne system, and the selection of the famous finite element program MSC/NASTRAN as an important module of software to deal with large and complicated structures and systems with an example to demonstrate the prototype system.

  7. Regular physical activity reduces the effects of Achilles tendon vibration on postural control for older women.

    Maitre, J; Serres, I; Lhuisset, L; Bois, J; Gasnier, Y; Paillard, T

    2015-02-01

    The aim was to determine in what extent physical activity influences postural control when visual, vestibular, and/or proprioceptive systems are disrupted. Two groups of healthy older women: an active group (74.0 ± 3.8 years) who practiced physical activities and a sedentary group (74.7 ± 6.3 years) who did not, underwent 12 postural conditions consisted in altering information emanating from sensory systems by means of sensory manipulations (i.e., eyes closed, cervical collar, tendon vibration, electromyostimulation, galvanic vestibular stimulation, foam surface). The center of foot pressure velocity was recorded on a force platform. Results indicate that the sensory manipulations altered postural control. The sedentary group was more disturbed than the active group by the use of tendon vibration. There was no clear difference between the two groups in the other conditions. This study suggests that the practice of physical activities is beneficial as a means of limiting the effects of tendon vibration on postural control through a better use of the not manipulated sensory systems and/or a more efficient reweighting to proprioceptive information from regions unaffected by the tendon vibration. PMID:24853711

  8. Bilinear Robust Control for Vertical Vibration in Railway Vehicle with Semi-Active Suspensions

    Umehara, Ryuichi; Otsuki, Masatsugu; Yoshida, Kazuo

    It is well known that the vibration control problem for automobiles and railway vehicles with semi-active suspensions is classified as a control problem in a bilinear system. Bullet trains and railway vehicles have lighter body in order to improve acceleration; these vibrations in the body are easily induced by various disturbances due to rigid and elastic dynamics. Currently, passive dampers such as air suspensions and axle springs are installed on railway vehicle trucks as countermeasures for such vibrations. This study presents an effective controller, based on the H∞ theory, for vibration suppression in railway vehicles and describes a method of synthesizing this robust controller by considering unstructured and structured uncertainties that are applicable to a bilinear system. The performance of the proposed controller and its robustness toward uncertainties are examined by numerical calculations that simulate a railway vehicle subjected to disturbances due to vertical uneven railway tracks, the variations in its mass due to boarding passengers, and the modeling errors caused by non-controlled modes. This enables a comparison of the proposed control method with the conventional one in terms of the robustness toward parameter variation. Thus, this result shows the high robustness and usefulness of the proposed controller.

  9. Active vibration control of a three-stage tensegrity structure

    Chan, Wai Leung; Arbelaez, Diego; Bossens, Frederic; Skelton, Robert E.

    2004-07-01

    This experimental study demonstrates the efficiency of simple control strategies to damp a 3-stage tensegrity tower structure. The tower is mounted on a moving support which is excited with a limited bandwidth random signal (filtered white noise) by a shaker. Our goal is to minimize the tansmissibility between base acceleration and top plate acceleration using piezoelectric displacement actuators and force sensors collocated at the bottom stage of vertical strings. Two types of controllers have been designed, namely, it local integral force feedback control and acceleration feedback control. It can be shown that both controllers can effectively damp the first 2 bending modes by about 20 dB, and the acceleration feedback controller performs even better as it can also reduce the amplitude of the next 2 bending modes by about 5-10 dB.

  10. Active Vibration Control of Axial Piston Machine using Higher Harmonic Least Mean Square Control of Swash Plate

    Kim, Taeho; Ivantysynova, Monika

    2016-01-01

    Noise emission is a major drawback of the positive displacement machine. The noise source can be divided into structure borne noise source (SBNS) and fluid borne noise source (FBNS). Passive techniques such as valve plate optimization have been used for noise reduction of axial piston machines. However, passive techniques are only effective for limited operating conditions or at least need compromises in design. In this paper, active vibration control of swash plate is investigated for vibrat...

  11. Independent modal variable structure fuzzy active vibration control of thin plates laminated with photostrictive actuators

    He Rongbo; Zheng Shijie

    2013-01-01

    Photostrictive actuators can produce photodeformation strains under illumination of ultraviolet lights.They can realize non-contact micro-actuation and vibration control for elastic plate structures.Considering the switching actuation and nonlinear dynamic characteristics of photostrictive actuators,a variable structure fuzzy active control scheme is presented to control the light intensity applied to the actuators.Firstly,independent modal vibration control equations of photoelectric laminated plates are established based on modal analysis techniques.Then,the optimal light switching function is derived to increase the range of sliding modal area,and the light intensity self-adjusting fuzzy active controller is designed.Meanwhile,a continuous function is applied to replace a sign function to reduce the variable structure control (VSC) chattering.Finally,numerical simulation is carried out,and simulation results indicate that the proposed control strategy provides better performance and control effect to plate actuation and control than velocity feedback control,and suppresses vibration effectively.

  12. Automotive applications of active vibration control: a control engineering point of view; Aktive Schwingungskompensation im Kfz aus regelungstechnischer Sicht

    Svaricek, F.; Bohn, C.; Haertel, V. [Continental AG, Hannover (Germany). Strategische Technologie; Karkosch, H.J. [ContiTech Vibration Control GmbH, Hannover (Germany)

    2001-07-01

    Modern control applications will become increasingly important in the area of vehicle riding comfort. An attractive future application in this area is the use of active vibration control in engine mounting concepts, particularly since conventional engine mounts are approaching their inherent limitations. This paper gives an overview of the active control of engine-induced vibrations. After a brief introduction to the requirements that a modern engine mounting concept needs to fulfill, an overview of the history of active noise and vibration control is given. This is followed by a discussion of feedforward and feedback control concepts that have been successfully applied to active noise and vibration control. The paper concludes with a detailed description of an active vibration control system with active absorbers that is used to compensate periodic, engine-induced chassis vibrations. (orig.) [German] Moderne Steuer- und Regelungsverfahren werden im Kraftfahrzeug auch im Komfortbereich eine zunehmende Bedeutung erlangen. Der Bereich der Aggregatelagerung von Kraftfahrzeugen koennte in den naechsten Jahren als weitere Anwendungen hinzukommen, da hier die konventionelle Lagerungstechnik immer mehr an ihre Grenzen stoesst. Der vorliegende Beitrag gibt hierzu einen Ueberblick ueber die aktive Kompensation von Aggregateschwingungen. Nach einer kurzen Darstellung der Anforderungen und Aufgaben einer modernen Aggregatelagerung wird zunaechst ein Blick auf die Geschichte der aktiven Schall- und Schwingungskompensation geworfen. Anschliessend werden Steuer- und Regelungskonzepte vorgestellt und diskutiert, die in der Literatur erfolgreich bei Aufgaben der aktiven Schall- und Schwingungskompensation eingesetzt wurden. Der Beitrag schliesst mit der detaillierten Darstellung des Aufbaus und der Wirkungsweise eines aktiven Tilgersystems zur Kompensation von periodischen Aggregateschwingungen. (orig.)

  13. Active vibration control of Flexible Joint Manipulator using Input Shaping and Adaptive Parameter Auto Disturbance Rejection Controller

    Li, W. P.; Luo, B.; Huang, H.

    2016-02-01

    This paper presents a vibration control strategy for a two-link Flexible Joint Manipulator (FJM) with a Hexapod Active Manipulator (HAM). A dynamic model of the multi-body, rigid-flexible system composed of an FJM, a HAM and a spacecraft was built. A hybrid controller was proposed by combining the Input Shaping (IS) technique with an Adaptive-Parameter Auto Disturbance Rejection Controller (APADRC). The controller was used to suppress the vibration caused by external disturbances and input motions. Parameters of the APADRC were adaptively adjusted to ensure the characteristic of the closed loop system to be a given reference system, even if the configuration of the manipulator significantly changes during motion. Because precise parameters of the flexible manipulator are not required in the IS system, the operation of the controller was sufficiently robust to accommodate uncertainties in system parameters. Simulations results verified the effectiveness of the HAM scheme and controller in the vibration suppression of FJM during operation.

  14. Optimization of Active Vibration Control of a Laser Pattern Generator in Micro Lithography

    Carlqvist, Per; Brattström, Patrik; During, Carl

    2010-01-01

    The extreme precision requirements in semiconductor manufacturing drive the need for an active vibration isolation system in a laser pattern generator. Optimization has been performed and evaluated in a model using a high level programming tool [1]. The areas of optimization were 1) Decoupling strategies for decentralized control and 2) Improved feed forward control. Only a limited description of the model itself is given here. More about the model is presented in [2] and [3].

  15. Active vibration control of flexible cantilever plates using piezoelectric materials and artificial neural networks

    Abdeljaber, Osama; Avci, Onur; Inman, Daniel J.

    2016-02-01

    The study presented in this paper introduces a new intelligent methodology to mitigate the vibration response of flexible cantilever plates. The use of the piezoelectric sensor/actuator pairs for active control of plates is discussed. An intelligent neural network based controller is designed to control the optimal voltage applied on the piezoelectric patches. The control technique utilizes a neurocontroller along with a Kalman Filter to compute the appropriate actuator command. The neurocontroller is trained based on an algorithm that incorporates a set of emulator neural networks which are also trained to predict the future response of the cantilever plate. Then, the neurocontroller is evaluated by comparing the uncontrolled and controlled responses under several types of dynamic excitations. It is observed that the neurocontroller reduced the vibration response of the flexible cantilever plate significantly; the results demonstrated the success and robustness of the neurocontroller independent of the type and distribution of the excitation force.

  16. Active vibration control of a smart pultruded fiber-reinforced polymer I-beam

    Song, G.; Qiao, P.; Sethi, V.; Prasad, A.

    2004-08-01

    Advanced and innovative materials and structures are increasingly used in civil infrastructure applications. By combining the advantages of composites and smart sensors and actuators, active or smart composite structures can be created and be efficiently adopted in practical structural applications. This paper presents results on active vibration control of pultruded fiber-reinforced polymer (FRP) composite thin-walled I-beams using smart sensors and actuators. The FRP I-beams are made of E-glass fibers and polyester resins. The FRP I-beam is in a cantilevered configuration. The PZT (lead zirconate titanate) type of piezoelectric ceramic patches are used as smart sensors and actuators. These patches are surface bonded near the cantilevered end of the I-beam. Utilizing results from modal analyses and experimental modal testing, several active vibration control methods, such as position feedback control, strain rate feedback control and lead compensation, are investigated. Experimental results demonstrate that the proposed methods achieve effective vibration control of FRP I-beams. For instance, the modal damping ratio of the strong direction first bending mode increases by more than 1000% with positive position feedback control.

  17. Vibration reduction in helicopter rotors using an active control surface located on the blade

    Millott, T. A.; Friedmann, P. P.

    1992-01-01

    A feasibility study of vibration reduction in a four-bladed helicopter rotor using individual blade control (IBC), which is implemented by an individually controlled aerodynamic surface located on each blade, is presented. For this exploratory study, a simple offset-hinged spring restrained model of the blade is used with fully coupled flap-lag-torsional dynamics for each blade. Deterministic controllers based on local and global system models are implemented to reduce 4/rev hub loads using both an actively controlled aerodynamic surface on each blade as well as conventional IBC, where the complete blade undergoes cyclic pitch change. The effectiveness of the two approaches for simultaneous reduction of the 4/rev hub shears and hub moments is compared. Conventional IBC requires considerably more power to achieve approximately the same level of vibration reduction as that obtained by implementing IBC using an active control surface located on the outboard segment of the blade. The effect of blade torsional flexibility on the vibration reduction effectiveness of the actively controlled surface was also considered and it was found that this parameter has a very substantial influence.

  18. Improving the vibration suppression capabilities of a magneto-rheological damper using hybrid active and semi-active control

    Ullah Khan, Irfan; Wagg, David; Sims, Neil D.

    2016-08-01

    This paper presents a new hybrid active and semi-active control method for vibration suppression in flexible structures. The method uses a combination of a semi-active device and an active control actuator situated elsewhere in the structure to suppress vibrations. The key novelty is to use the hybrid controller to enable the magneto-rheological damper to achieve a performance as close to a fully active device as possible. This is achieved by ensuring that the active actuator can assist the magneto-rheological damper in the regions where energy is required. In addition, the hybrid active and semi-active controller is designed to minimize the switching of the semi-active controller. The control framework used is the immersion and invariance control technique in combination with sliding mode control. A two degree-of-freedom system with lightly damped resonances is used as an example system. Both numerical and experimental results are generated for this system, and then compared as part of a validation study. The experimental system uses hardware-in-the-loop to simulate the effect of both the degrees-of-freedom. The results show that the concept is viable both numerically and experimentally, and improved vibration suppression results can be obtained for the magneto-rheological damper that approach the performance of an active device.

  19. Active Pneumatic Vibration Control by Using Pressure and Velocity Measurements and Adaptive Fuzzy Sliding-Mode Controller

    Jia-Wei Wu

    2013-07-01

    Full Text Available This paper presents an intelligent control strategy to overcome nonlinear and time-varying characteristics of a diaphragm-type pneumatic vibration isolator (PVI system. By combining an adaptive rule with fuzzy and sliding-mode control, the method has online learning ability when it faces the system’s nonlinear and time-varying behaviors during an active vibration control process. Since the proposed scheme has a simple structure, it is easy to implement. To validate the proposed scheme, a composite control which adopts both chamber pressure and payload velocity as feedback signal is implemented. During experimental investigations, sinusoidal excitation at resonance and random-like signal are input on a floor base to simulate ground vibration. Performances obtained from the proposed scheme are compared with those obtained from passive system and PID scheme to illustrate the effectiveness of the proposed intelligent control.

  20. Active vibration control of a full scale aircraft wing using a reconfigurable controller

    Prakash, Shashikala; Renjith Kumar, T. G.; Raja, S.; Dwarakanathan, D.; Subramani, H.; Karthikeyan, C.

    2016-01-01

    This work highlights the design of a Reconfigurable Active Vibration Control (AVC) System for aircraft structures using adaptive techniques. The AVC system with a multichannel capability is realized using Filtered-X Least Mean Square algorithm (FxLMS) on Xilinx Virtex-4 Field Programmable Gate Array (FPGA) platform in Very High Speed Integrated Circuits Hardware Description Language, (VHDL). The HDL design is made based on Finite State Machine (FSM) model with Floating point Intellectual Property (IP) cores for arithmetic operations. The use of FPGA facilitates to modify the system parameters even during runtime depending on the changes in user's requirements. The locations of the control actuators are optimized based on dynamic modal strain approach using genetic algorithm (GA). The developed system has been successfully deployed for the AVC testing of the full-scale wing of an all composite two seater transport aircraft. Several closed loop configurations like single channel and multi-channel control have been tested. The experimental results from the studies presented here are very encouraging. They demonstrate the usefulness of the system's reconfigurability for real time applications.

  1. Active vibration control on a quarter-car for cancellation of road noise disturbance

    Belgacem, Walid; Berry, Alain; Masson, Patrice

    2012-07-01

    In this paper, a methodology is presented for the cancellation of road noise, from the analysis of vibration transmission paths for an automotive suspension to the design of an active control system using inertial actuators on a suspension to reduce the vibrations transmitted to the chassis. First, experiments were conducted on a Chevrolet Epica LS automobile on a concrete test track to measure accelerations induced on the suspension by the road. These measurements were combined with experimental Frequency Response Functions (FRFs) measured on a quarter-car test bench to reconstruct an equivalent three dimensional force applied on the wheel hub. Second, FRFs measured on the test bench between the three-dimensional driving force and forces at each suspension/chassis linkage were used to characterize the different transmission paths of vibration energy to the chassis. Third, an experimental model of the suspension was constructed to simulate the configuration of the active control system, using the primary (disturbance) FRFs and secondary (control) FRFs also measured on the test bench. This model was used to optimize the configuration of the control actuators and to evaluate the required forces. Finally, a prototype of an active suspension was implemented and measurements were performed in order to assess the performance of the control approach. A 4.6 dB attenuation on transmitted forces was obtained in the 50-250 Hz range.

  2. Model Indepedent Vibration Control

    Yuan, Jing

    2010-01-01

    A NMIFC system is proposed for broadband vibration control. It has two important features. Feature F1 is that the NMIFC is stable without introducing any invasive effects, such as probing signals or controller perturbations, into the vibration system; feature F2 is

  3. Active vibration control of piezoelectric bonded smart structures using PID algorithm

    Zhang Shunqi; Rüdiger Schmidt; Qin Xiansheng

    2015-01-01

    Thin-walled structures are sensitive to vibrate under even very small disturbances. In order to design a suitable controller for vibration suppression of thin-walled smart structures, an electro-mechanically coupled finite element (FE) model of smart structures is developed based on first-order shear deformation (FOSD) hypothesis. Considering the vibrations generated by various disturbances, which include free and forced vibrations, a PID control is implemented to damp both the free and force...

  4. Inverse eigenvalue problems in vibration absorption: Passive modification and active control

    Mottershead, John E.; Ram, Yitshak M.

    2006-01-01

    The abiding problem of vibration absorption has occupied engineering scientists for over a century and there remain abundant examples of the need for vibration suppression in many industries. For example, in the automotive industry the resolution of noise, vibration and harshness (NVH) problems is of extreme importance to customer satisfaction. In rotorcraft it is vital to avoid resonance close to the blade passing speed and its harmonics. An objective of the greatest importance, and extremely difficult to achieve, is the isolation of the pilot's seat in a helicopter. It is presently impossible to achieve the objectives of vibration absorption in these industries at the design stage because of limitations inherent in finite element models. Therefore, it is necessary to develop techniques whereby the dynamic of the system (possibly a car or a helicopter) can be adjusted after it has been built. There are two main approaches: structural modification by passive elements and active control. The state of art of the mathematical theory of vibration absorption is presented and illustrated for the benefit of the reader with numerous simple examples.

  5. Active vibration control using a novel three-DOF precision micro-stage

    In this paper, we present an active vibration control system which is constructed based on a novel three-degrees-of-freedom (DOF) precision micro-stage. Unlike the traditional tripod systems, the proposed micro-stage is established to guarantee the compactness (60 mm(h) × 160 mm(d)) and the simplicity of its structure as well as the appropriate vertical/horizontal stiffness and the repeatability, which are essential in achieving the accuracy of sub-micrometers. First, combined with a finite element method (FEM), a physical model for the proposed micro-stage is constructed and its physical parameters, such as stiffness and damping coefficients, are estimated to predict the experimental results with high fidelity. In order to overcome the dynamic variations naturally stemming from the payload as well as the parameter uncertainties, a robust control system is then proposed to efficiently mitigate the vibration with a scale of sub-micrometers. Compared to the conventional control strategy, the proposed robust control scheme successfully establishes the active vibration control system and its performance is examined and validated through extensive experiments

  6. Experimental Active Vibration Control in Truss Structures Considering Uncertainties in System Parameters

    Douglas Domingues Bueno

    2008-01-01

    Full Text Available This paper deals with the study of algorithms for robust active vibration control in flexible structures considering uncertainties in system parameters. It became an area of enormous interest, mainly due to the countless demands of optimal performance in mechanical systems as aircraft, aerospace, and automotive structures. An important and difficult problem for designing active vibration control is to get a representative dynamic model. Generally, this model can be obtained using finite element method (FEM or an identification method using experimental data. Actuators and sensors may affect the dynamics properties of the structure, for instance, electromechanical coupling of piezoelectric material must be considered in FEM formulation for flexible and lightly damping structure. The nonlinearities and uncertainties involved in these structures make it a difficult task, mainly for complex structures as spatial truss structures. On the other hand, by using an identification method, it is possible to obtain the dynamic model represented through a state space realization considering this coupling. This paper proposes an experimental methodology for vibration control in a 3D truss structure using PZT wafer stacks and a robust control algorithm solved by linear matrix inequalities.

  7. Improved training of neural networks for the nonlinear active control of sound and vibration.

    Bouchard, M; Paillard, B; Le Dinh, C T

    1999-01-01

    Active control of sound and vibration has been the subject of a lot of research in recent years, and examples of applications are now numerous. However, few practical implementations of nonlinear active controllers have been realized. Nonlinear active controllers may be required in cases where the actuators used in active control systems exhibit nonlinear characteristics, or in cases when the structure to be controlled exhibits a nonlinear behavior. A multilayer perceptron neural-network based control structure was previously introduced as a nonlinear active controller, with a training algorithm based on an extended backpropagation scheme. This paper introduces new heuristical training algorithms for the same neural-network control structure. The objective is to develop new algorithms with faster convergence speed (by using nonlinear recursive-least-squares algorithms) and/or lower computational loads (by using an alternative approach to compute the instantaneous gradient of the cost function). Experimental results of active sound control using a nonlinear actuator with linear and nonlinear controllers are presented. The results show that some of the new algorithms can greatly improve the learning rate of the neural-network control structure, and that for the considered experimental setup a neural-network controller can outperform linear controllers. PMID:18252535

  8. Active Control of Machine-Tool Vibration in a CNC Lathe Based on an Active Tool Holder Shank with Embedded Piezo Ceramic Actuators

    Pettersson, Linus; Håkansson, Lars; Claesson, Ingvar; Olsson, Sven

    2001-01-01

    In the turning operation chatter or vibration is a frequent problem affecting the result of the machining, and, in particular, the surface finish. Tool life is also influenced by vibration. Severe acoustic noise in the working environment frequently occurs as a result of dynamic motion between the cutting tool and the workpiece. These problems can be reduced by active control of machine-tool vibration. However, machine-tool vibration control systems are usually not applicable to a general lat...

  9. Application of a Broadband Active Vibration Control System to a Helicopter Trim Panel

    Cabell, R.H.; Schiller, N.H.; Simon, F.

    2013-01-01

    This paper discusses testing of a broadband active vibration control concept on an interior trim panel in a helicopter cabin mockup located at ONERA's Centre de Toulouse. The control system consisted of twelve diamond-shaped piezoelectric actuators distributed around a 1.2m x 1.2m trim panel. Accelerometers were mounted at the four vertices of each diamond. The aspect ratio of the diamond was based on the dielectric constants of the piezoelectric material in order to create an actuator-sensor...

  10. Test and theory for piezoelectric actuator-active vibration control of rotating machinery

    Palazzolo, A. B.; Lin, R. R.; Alexander, R. M.; Kascak, A. F.; Montague, J.

    1989-01-01

    The application of piezoelectric actuators for active vibration control (AVC) of rotating machinery is examined. Theory is derived and the resulting predictions are shown to agree closely with results of tests performed on an air turbine driven-overhung rotor. The test results show significant reduction in unbalance, transient and sub-synchronous responses. Results from a 30-hour endurance test support the AVD system reliability. Various aspects of the electro-mechanical stability of the control system are also discussed and illustrated. Finally, application of the AVC system to an actual jet engine is discussed.

  11. Active Vibration Control of a Nonlinear Beam with Self- and External Excitations

    J. Warminski

    2013-01-01

    Full Text Available An application of the nonlinear saturation control (NSC algorithm for a self-excited strongly nonlinear beam structure driven by an external force is presented in the paper. The mathematical model accounts for an Euler-Bernoulli beam with nonlinear curvature, reduced to first mode oscillations. It is assumed that the beam vibrates in the presence of a harmonic excitation close to the first natural frequency of the beam, and additionally the beam is self-excited by fluid flow, which is modelled by a nonlinear Rayleigh term for self-excitation. The self- and externally excited vibrations have been reduced by the application of an active, saturation-based controller. The approximate analytical solutions for a full structure have been found by the multiple time scales method, up to the first-order approximation. The analytical solutions have been compared with numerical results obtained from direct integration of the ordinary differential equations of motion. Finally, the influence of a negative damping term and the controller's parameters for effective vibrations suppression are presented.

  12. Optimal and robust modal control of a flexible structure using an active dynamic vibration absorber

    This paper is concerned with feedback vibration control of a lightly damped flexible structure that has a large number of well-separated modes. A single active electrical dynamic absorber is used to reduce a particular single vibration mode selectively or multiple modes simultaneously. The absorber is realized electrically by feeding back the structural acceleration at one position to a collocated piezoceramic patch actuator via a controller consisting of one or several second order lowpass filters. A simple analytical method is presented to design a modal control filter that is optimal in that it maximally flattens the mobility frequency response of the target mode, as well as robust in that it works within a prescribed maximum control spillover of 2 dB at all frequencies. Experiments are conducted with a free–free beam to demonstrate its ability to control any single mode optimally and robustly. It is also shown that an active absorber with multiple such filters can effectively control multiple modes simultaneously

  13. Buck-boost converter for simultaneous semi-active vibration control and energy harvesting for electromagnetic regenerative shock absorber

    Li, Peng; Zhang, Chongxiao; Kim, Junyoung; Yu, Liangyao; Zuo, Lei

    2014-04-01

    Regenerative semi-active suspensions can capture the previously dissipated vibration energy and convert it to usable electrical energy for powering on-board electronic devices, while achieve both the better ride comfort and improved road handling performance at the same time when certain control is applied. To achieve this objective, the power electronics interface circuit connecting the energy harvester and the electrical loads, which can perform simultaneous vibration control and energy harvesting function is in need. This paper utilized a buck-boost converter for simultaneous semi-active vibration control and energy harvesting with electromagnetic regenerative shock absorber, which utilizes a rotational generator to converter the vibration energy to electricity. It has been found that when the circuit works in discontinuous current mode (DCM), the ratio between the input voltage and current is only related to the duty cycle of the switch pulse width modulation signal. Using this property, the buck-boost converter can be used to perform semi-active vibration control by controlling the load connected between the terminals of the generator in the electromagnetic shock absorber. While performing the vibration control, the circuit always draw current from the shock absorber and the suspension remain dissipative, and the shock absorber takes no additional energy to perform the vibration control. The working principle and dynamics of the circuit has been analyzed and simulations were performed to validate the concept.

  14. Vibration control in accelerators

    Montag, C.

    2011-01-01

    In the vast majority of accelerator applications, ground vibration amplitudes are well below tolerable magnet jitter amplitudes. In these cases, it is necessary and sufficient to design a rigid magnet support structure that does not amplify ground vibration. Since accelerator beam lines are typically installed at an elevation of 1-2m above ground level, special care has to be taken in order to avoid designing a support structure that acts like an inverted pendulum with a low resonance frequency, resulting in untolerable lateral vibration amplitudes of the accelerator components when excited by either ambient ground motion or vibration sources within the accelerator itself, such as cooling water pumps or helium flow in superconducting magnets. In cases where ground motion amplitudes already exceed the required jiter tolerances, for instance in future linear colliders, passive vibration damping or active stabilization may be considered.

  15. Semi-active vibration control in cable-stayed bridges under the condition of random wind load

    This paper aims at an experimental study on the real-time vibration control of bridge structures using a semi-active vibration control method that has been in the spotlight recently. As structures are becoming larger and larger, structural harmful vibration caused by unspecified external forces such as earthquakes, gusts of wind, and collisions has been brought to attention as an important issue. These harmful vibrations can cause not only user anxiety but also severe structural damage or even complete failure of structures. Therefore, in view of structural safety and economical long-term maintenance, real-time control technology of the harmful structural vibration is urgently required. In this paper, a laboratory-scale model of a cable-stayed bridge was built, and a shear-type MR damper and a semi-active vibration control algorithm (Lyapunov and clipped optimal) were applied for the control of harmful vibration of the model bridge, in real time. On the basis of the test results, each semi-active control algorithm was verified quantitatively. (papers)

  16. Theoretical and Numerical Experiences on a Test Rig for Active Vibration Control of Mechanical Systems with Moving Constraints

    M. Rinchi; Gambini, E.

    2004-01-01

    Active control of vibrations in mechanical systems has recently benefited of the remarkable development of robust control techniques. These control techniques are able to guarantee performances in spite of unavoidable modeling errors. They have been successfully codified and implemented for vibrating structures whose uncertain parameters could be assumed to be time-invariant. Unfortunately a wide class of mechanical systems, such as machine tools with carriage motion realized by a ball-screw,...

  17. Resonant passive-active vibration absorber with integrated force feedback control

    Høgsberg, Jan; Brodersen, Mark L.; Krenk, Steen

    2016-04-01

    A general format of a two-terminal vibration absorber is constructed by placing a passive unit in series with a hybrid unit, composed of an active actuator in parallel with a second passive element. The displacement of the active actuator is controlled by an integrated feedback control with the difference in force between the two passive elements as input. This format allows passive and active contributions to be combined arbitrarily within the hybrid unit, which results in a versatile absorber format with guaranteed closed-loop stability. This is demonstrated for resonant absorbers with inertia realized passively by a mechanical inerter or actively by the integrated force feedback. Accurate calibration formulae are presented for two particular absorber configurations and the performance is subsequently demonstrated with respect to both equal modal damping and effective response reduction.

  18. Resonant passive–active vibration absorber with integrated force feedback control

    Høgsberg, Jan Becker; Brodersen, Mark Laier; Krenk, Steen

    2016-01-01

    A general format of a two-terminal vibration absorber is constructed by placing a passive unit in series with a hybrid unit, composed of an active actuator in parallel with a second passive element. The displacement of the active actuator is controlled by an integrated feedback control with the...... difference in force between the two passive elements as input. This format allows passive and active contributions to be combined arbitrarily within the hybrid unit, which results in a versatile absorber format with guaranteed closed-loop stability. This is demonstrated for resonant absorbers with inertia...... realized passively by a mechanical inerter or actively by the integrated force feedback. Accurate calibration formulae are presented for two particular absorber configurations and the performance is subsequently demonstrated with respect to both equal modal damping and effective response reduction....

  19. Vibrational optical activity

    Recent vibrational activity (VOA) research is discussed. The vibrational circular dichroism (VCD) experiments were carried out with a Fourier transform infrared spectrometer. One of the major anticipations from VOA spectroscopy is to be able to derive new pathways for determining the molecular structure. Shown is Fourier transform infrared absorption and VCD spectra of lyxopyranose in pyradine-d5 solvent. Raman optical activity measurements are discussed, and depolarized Raman and Raman optical activity spectra for (+)-alpha-pinene are presented. It was concluded that at present Raman optical activity can be measured in the entire vibrational spectral region, where as VCD has not been measured below 600 cm-1

  20. Active control of vibration using a fuzzy control method based on scaling universes of discourse

    Si, Hongwei; Li, Dongxu

    2007-06-01

    Large flexible space structures are complex in structural dynamic characteristics. The control method based on custom control theory and modern control theory is difficult to solve for the complex problem. The fuzzy controller is not dependent on the accurate model. But the precision of a conventional fuzzy controller is not good, and the adaptive ability of a conventional fuzzy controller is limited. The fuzzy controller can make the system surge. Scaling universes of discourse is an effective method to improve the performance of the fuzzy controller. This paper is aimed at the difficult problem of designing a stable adaptive controller based on scaling universes of discourse, and letting input membership function and output membership function be denoted as input universes of discourse and the center value of output membership function, respectively. A kind of Lyapunov function, designed as an adaptive law of input universes of discourse and the center value of output membership function, was then adopted. A kind of stable self-adaptive fuzzy controller based on scaling universes of discourse is designed in this paper for the vibration control of a large flexible space truss driven by piezoelectric sensors and actuators (PZTs).

  1. Neural networkbased semi-active control strategy for structural vibration mitigation with magnetorheological damper

    Bhowmik, Subrata

    2011-01-01

    This paper presents a neural network based semi-active control method for a rotary type magnetorheological (MR) damper. The characteristics of the MR damper are described by the classic Bouc-Wen model, and the performance of the proposed control method is evaluated in terms of a base exited shear......-displacement trajectories. The proposed neural network controller is therefore trained based on data derived from these desired forcedisplacement curves, where the optimal relation between friction force level and response amplitude is determined explicitly by simply maximizing the damping ratio of the targeted vibration...... mode of the structure. The neural network control is then developed to reproduce the desired force based on damper displacement and velocity as network input, and it is therefore referred to as an amplitude dependent model reference control method. An inverse model of the MR damper is needed to...

  2. Neural network based semi-active control strategy for structural vibration mitigation with magnetorheological damper

    Bhowmik, Subrata

    2011-01-01

    This paper presents a neural network based semi-active control method for a rotary type magnetorheological (MR) damper. The characteristics of the MR damper are described by the classic Bouc-Wen model, and the performance of the proposed control method is evaluated in terms of a base exited shear......-displacement trajectories. The proposed neural network controller is therefore trained based on data derived from these desired forcedisplacement curves, where the optimal relation between friction force level and response amplitude is determined explicitly by simply maximizing the damping ratio of the targeted vibration...... mode of the structure. The neural network control is then developed to reproduce the desired force based on damper displacement and velocity as network input, and it is therefore referred to as an amplitude dependent model reference control method. An inverse model of the MR damper is needed to...

  3. Implementation of local feedback controllers for vibration supression of a truss using active struts

    McClelland, Robert; Lim, Tae W.; Bosse, Albert; Fisher, Shalom

    1996-05-01

    This paper describes the design and implementation of local feedback controllers for active vibration suppression of a laboratory truss referred to as the Naval Research Laboratory (NRL) space truss. The NRL space truss is a 3.7 meter, 12-bay aluminum laboratory truss used as a testbed to explore smart structures technologies for future Navy spacecraft missions. To conduct real-time control and data acquisition for the implementation of controllers, a digital signal processor based system is used. Two piezoceramic active struts are employed in this experimental study. Each strut is instrumented with a force transducer and a displacement sensor. Modal strain energy computed using a refined finite element model was used to select the optimum locations of the two actuators to ensure controllability of the first two structural modes. Two local feedback controllers were designed and implemented, an integral force feedback and an integral plus double-integral force feedback. The controllers were designed independently for each active strut using classical control design techniques applied to an identified model of the system dynamics. System identification results and controller design procedure are described along with closed loop test results. The test results show up to a factor of 1/110 attenuation of the truss tip motion due to sinusoidal resonant input disturbances and up to 100 times increase in damping of the lower frequency modes of the truss.

  4. Semi-active friction tendons for vibration control of space structures

    Garrido, Hernán; Curadelli, Oscar; Ambrosini, Daniel

    2014-10-01

    Semi-active vibration control systems are becoming popular because they offer both the reliability of passive systems and the versatility of active control without high power demands. In this work, a new semi-active control system is proposed and studied numerically. The system consists of variable-friction dampers linked to the structure through cables. Auxiliary soft springs in parallel with these friction dampers allow them to return to their initial pre-tensioned state. Using cables makes the system suitable for deployable, flexible and lightweight structures, such as space structures (spacecraft). A control system with three control laws applied to a single-degree-of-freedom structure is studied. Two of these laws are derived by using Lyapunov theory, whereas the third one is developed heuristically. In order to assess the performance of the control system, a parametric study is carried out through numerical simulations. An application of the proposed method to multi-degree-of-freedom structures is also presented and demonstrated through a numerical example. The system in semi-active mode is more effective than in passive mode and its effectiveness is less sensitive to loss of pre-tension.

  5. Optimal placement of piezoelectric active bars in vibration control by topological optimization

    Guozhong Zhao; Jian Wang; Yuanxian Gu

    2008-01-01

    A continuous variable optimization method and a topological optimization method are proposed for the vibra-tion control of piezoelectric truss structures by means of the optimal placements of active bars. In this optimization model, a zero-one discrete variable is defined in order to solve the optimal placement of piezoelectric active bars. At the same time, the feedback gains are also optimized as conti-nuous design variables. A two-phase procedure is proposed to solve the optimization problem. The sequential linear pro-gramming algorithm is used to solve optimization problem and the sensitivity analysis is carried out for objective and constraint functions to make linear approximations. On the basis of the Newmark time integration of structural tran-sient dynamic responses, a new sensitivity analysis method is developed in this paper for the vibration control problem of piezoelectric truss structures with respect to various kinds of design variables. Numerical examples are given in the paper to demonstrate the effectiveness of the methods.

  6. Vibration Reduction Methods and Techniques for Rotorcraft Utilizing On-Blade Active Control Project

    National Aeronautics and Space Administration — Rotor blades adapted for vibration control have the added benefit of extended blade and rotor life, as well as improved passenger comfort. Approaches that have been...

  7. Dynamics and Control of Lateral Tower Vibrations in Offshore Wind Turbines by Means of Active Generator Torque

    Zili Zhang

    2014-11-01

    Full Text Available Lateral tower vibrations of offshore wind turbines are normally lightly damped, and large amplitude vibrations induced by wind and wave loads in this direction may significantly shorten the fatigue life of the tower. This paper proposes the modeling and control of lateral tower vibrations in offshore wind turbines using active generator torque. To implement the active control algorithm, both the mechanical and power electronic aspects have been taken into consideration. A 13-degrees-of-freedom aeroelastic wind turbine model with generator and pitch controllers is derived using the Euler–Lagrangian approach. The model displays important features of wind turbines, such as mixed moving frame and fixed frame-defined degrees-of-freedom, couplings of the tower-blade-drivetrain vibrations, as well as aerodynamic damping present in different modes of motions. The load transfer mechanisms from the drivetrain and the generator to the nacelle are derived, and the interaction between the generator torque and the lateral tower vibration are presented in a generalized manner. A three-dimensional rotational sampled turbulence field is generated and applied to the rotor, and the tower is excited by a first order wave load in the lateral direction. Next, a simple active control algorithm is proposed based on active generator torques with feedback from the measured lateral tower vibrations. A full-scale power converter configuration with a cascaded loop control structure is also introduced to produce the feedback control torque in real time. Numerical simulations have been carried out using data calibrated to the referential 5-MW NREL (National Renewable Energy Laboratory offshore wind turbine. Cases of drivetrains with a gearbox and direct drive to the generator are considered using the same time series for the wave and turbulence loadings. Results show that by using active generator torque control, lateral tower vibrations can be significantly mitigated for

  8. Active vibration control of a smart plate using a piezoelectric sensor–actuator pair at elevated temperatures

    A new scheme for active structural vibration control using piezoelectric patches at elevated temperatures is analytically derived and experimentally verified. A control law is derived using augmented piezoelectric constitutive equations which include the temperature dependence of piezoelectric stress coefficient (e31) and permittivity ( element of 33). Since the temperature dependence of 'e31' and ' element of 33' is not analytically known, their experimental values measured at elevated temperatures are used. Using augmented constitutive equations, a finite element model of a smart two-dimensional isotropic plate instrumented with a collocated piezoelectric sensor–actuator pair is derived. A control law for active vibration control of the first mode of the smart cantilevered plate is derived using negative velocity feedback. Active vibration control of the first mode of a smart cantilevered plate is experimentally achieved at elevated temperatures ranging from 25 to 75 °C under two cases: (i) using a control law which ignores the temperature dependence of 'e31' and ' element of 33' and (ii) using a control law which includes the temperature dependence of 'e31' and ' element of 33'. A comparison between these two control laws shows that: (i) active vibration control (AVC) performance is not maintained at elevated temperatures using a control law which ignores the temperature dependence of 'e31' and ' element of 33' and (ii) AVC performance is maintained at elevated temperatures when we use a control law which includes the temperature dependence of 'e31' and ' element of 33'

  9. Active alignment and vibration control system for a large airborne optical system

    Kienholz, David A.

    2000-04-01

    Airborne optical or electro-optical systems may be too large for all elements to be mounted on a single integrating structure, other than the aircraft fuselage itself. An active system must then be used to maintain the required alignment between elements. However the various smaller integrating structures (benches) must still be isolated from high- frequency airframe disturbances that could excite resonances outside the bandwidth of the alignment control system. The combined active alignment and vibration isolation functions must be performed by flight-weight components, which may have to operate in vacuum. A testbed system developed for the Air Force Airborne Laser program is described. The payload, a full-scale 1650-lb simulated bench, is mounted in six degrees- of-freedom to a vibrating platform by a set of isolator- actuators. The mounts utilize a combination of pneumatics and magnetics to perform the dual functions of low-frequency alignment and high-frequency isolation. Test results are given and future directions for development are described.

  10. A study on the effects of Kalman Filter on performance of IPMC-Based Active Vibration Control Scheme

    Bandopadhya, Dibakar; Njuguna, James A. K.

    2010-01-01

    This paper evaluates the effectiveness and performance of Ionic Polymer Metal Composite (IPMC) based active vibration control scheme equipped with the Kalman estimation algorithm. To assess the vibration attenuation efficiency, a rotating flexible manipulator has been modelled integrating two IPMC actuators following the modal approach. The elastic displacements as generalized coordinates for estimating optimal performance is carried out next by discretizing the elastic motion through the ass...

  11. Semi-Active Control of Three-Dimensional Vibrations of an Inclined Sag Cable with Magnetorheological Dampers

    Zhou, Q.; Nielsen, Søren R.K.; Qu, W. L.

    2006-01-01

    Three-dimensional semi-active vibration control of an inclined sag cable with discrete magnetorheological (MR) dampers is investigated in this paper using the finite difference method (FDM). A modified Dahl model is used to describe the dynamic property of MR damper. The nonlinear equations of...... fulfilled at which the optimal tuned viscous damper is designed, the MR damper and the viscous damper are performing equally well; however, if the response of the cable is dominated by several modes, the MR damper can achieve better vibration reduction effect compared with viscous damper. Especially, if the...... control effect and the robustness of the proposed semi-active control rule are also examined....

  12. Simultaneous BVI noise and vibration reduction in rotorcraft using actively-controlled flaps and including performance considerations

    Patt, Daniel A.

    This work presents the development and application of an active control approach for reduction of both vibration and noise induced by helicopter rotor blade vortex interaction (BVI). Control is implemented through single or dual actively controlled flaps (ACFs) on each blade. Low-speed helicopter flight is prone to severe BVI, resulting in elevated vibration and noise levels. Existing research has suggested that when some form of active control is used to reduce vibration, noise will increase and vice versa. The present research achieves simultaneous reduction of noise and vibration, and also investigates the physical sources of the observed reduction. The initial portion of this work focused on developing a tool for simulating helicopter noise and vibrations in the BVI flight regime. A method for predicting compressible unsteady blade surface pressure distribution on rotor blades was developed and combined with an enhanced free-wake model and an acoustic prediction tool with provisions for blade flexibility. These elements were incorporated within an aeroelastic analysis featuring fully coupled flap-lag-torsional blade dynamics. Subsequently, control algorithms were developed that were effective for reducing noise and vibration even in the nonlinear BVI flight regime; saturation limits were incorporated constraining flap deflections to specified limits. The resulting simulation was also validated with a wide range of experimental data, achieving excellent correlation. Finally, a number of active control studies were performed. Multi-component vibration reductions of 40--80% could be achieved, while incurring a small noise penalty. Noise was reduced using an onboard feedback microphone; reductions of 4--10 dB on the advancing side were observed on a plane beneath the rotor when using dual flaps. Finally, simultaneous noise and vibration reduction was studied. A reduction of about 5 dB in noise on the advancing side combined with a 60% reduction in vibration was

  13. Vibration reduction in helicopter rotors using an actively controlled partial span trailing edge flap located on the blade

    Millott, T. A.; Friedmann, P. P.

    1994-01-01

    This report describes an analytical study of vibration reduction in a four-bladed helicopter rotor using an actively controlled, partial span, trailing edge flap located on the blade. The vibration reduction produced by the actively controlled flap (ACF) is compared with that obtained using individual blade control (IBC), in which the entire blade is oscillated in pitch. For both cases a deterministic feedback controller is implemented to reduce the 4/rev hub loads. For all cases considered, the ACF produced vibration reduction comparable with that obtained using IBC, but consumed only 10-30% of the power required to implement IBC. A careful parametric study is conducted to determine the influence of blade torsional stiffness, spanwise location of the control flap, and hinge moment correction on the vibration reduction characteristics of the ACF. The results clearly demonstrate the feasibility of this new approach to vibration reduction. It should be emphasized than the ACF, used together with a conventional swashplate, is completely decoupled from the primary flight control system and thus it has no influence on the airworthiness of the helicopter. This attribute is potentially a significant advantage when compared to IBC.

  14. Finite element modeling of stiffened piezolaminated plates and shells with piezoelectric layers for active vibration control

    In this paper, a piezolaminated stiffened shell element is formulated. This piezoelectric shell element is a 9-noded, isoparametric, shear flexible and field-consistent element with five elastic degrees of freedom at each node and one electric degree of freedom per element per piezoelectric layer. The stiffener element is a three-noded isoparametric beam element with three degrees of freedom at each node. The effect of the stiffener is incorporated by internally constraining the stiffener displacement fields to the relevant shell displacement fields and hence this formulation allows the positioning of the stiffener element anywhere within the shell element along lines of natural coordinates, which gives a great flexibility in the choice of the mesh size. This stiffened shell element is validated for static deflection and dynamic response with the results available in literature. The active control performance of the stiffened composite plate and shell structures with distributed piezoelectric sensors and actuators are studied using a number of examples. The active vibration control is carried out using the LQR optimal control

  15. Application of Time Delay Consideration on Bridge Vibration Control Method with Active Tendons

    Lezin Seba MINSILI

    2010-12-01

    Full Text Available For many years bridge structures have been designed or constructed as passive structures that rely on their mass and solidity to resist external forces, while being incapable of adapting to the dynamics of an ever-changing environment. When the rigidity assumption is not met in particular for high-rise structures like bridge towers, a proper dynamic model should be established and conclusions made on the differential vibration of the tower when it is investigated out of the bridge system. The present work outlines a vibration control method by tendons on the tower of cable supported structures considering time delay effects, based on the discrete-time Linearization of the Feedback Gain Matrix. The efficiency of this vibration control method first proposed on the design process of a local bridge in Cameroon, is more compatible to the control of civil structures and is of great interest in accordance with simulation results.

  16. Optimal placement and active vibration control for piezoelectric smart flexible cantilever plate

    Qiu, Zhi-cheng; Zhang, Xian-min; Wu, Hong-xin; Zhang, Hong-hua

    2007-04-01

    Some flexible appendages of spacecraft are cantilever plate structures, such as sun plate and satellite antenna. Thus, vibration problem will be caused by parameter uncertainties and environmental disturbances. In this paper, piezoelectric ceramics patches are used as sensors and actuators to suppress the vibration of the smart flexible clamped plate. Firstly, modal equations and piezoelectric control equations of cantilever plate are derived. Secondly, an optimal placement method for the locations of piezoelectric actuators and sensors is developed based on the degree of observability and controllability indices for cantilever plate. The bending and torsional modes are decoupled by the proposed method using bandwidth Butterworth filter. Thirdly, an efficient control method by combining positive position feedback and proportional-derivative control is proposed for vibration reduction. The analytical results for modal frequencies, transient responses and control responses are carried out. Finally, an experimental setup of piezoelectric smart plate is designed and built up. The modal frequencies and damping ratios of the plate setup are obtained by identification method. Also, the experimental studies on vibration control of the cantilever plate including bending modes and torsional modes are conducted. The analytical and experimental results demonstrate that the presented control method is feasible, and the optimal placement method is effective.

  17. Active vibration suppression in a flexible cantilever beam using fuzzy logic controllers

    This paper presents a novel control system to find suitable solution for addressing the vibration problems in fixed-free cantilever beam system structures. The solution n is generated using fuzzy logic controller (FLC) utilizing single and multiple control actuators. The fuzzy controller employs the error (between a reference model output and the cantilever response) and error change to generate the control input increment in order to preserve the desired reference model performance. The controller is tested within a simulation environment. Results show that an excellent control performance is possible. (author). 14 refs. 3 tab., 15 figs

  18. Numerical Simulation of a Semi-Active Vibration Control Device Based on Superelastic Shape Memory Alloy Wires

    Cismasiu, Corneliu; Santos, Filipe P. Amarante Dos

    2010-01-01

    The proposed semi-active vibration control device originates from a passive control system, based on SE austenitic wires. In its semi-active version, the system monitors the feedback measurements and based on this information, continuously adjust the strain in the SE wires in order to improve its dynamical characteristics. The strain accumulation in the wires is a result of the motion of the structure itself, with no need of external energy input in the system. To avoid relaxation phenomena, ...

  19. Semi-active control of three-dimensional vibrations of an inclined sag cable with magnetorheological dampers

    Zhou, Q.; Nielsen, S. R. K.; Qu, W. L.

    2006-09-01

    Three-dimensional semi-active vibration control of an inclined sag cable with discrete magnetorheological (MR) dampers is investigated in this paper using the finite difference method (FDM). A modified Dahl model is used to describe the dynamic property of MR damper. The nonlinear equations of motion of cable-dampers system are first established, which accounts for coupling between in-plane and out-of-plane motions, and also for the displacement of the support points. A MR damper can be considered as a variable friction damper approximately, so a semi-active control strategy based on the modulated homogeneous friction algorithm is proposed. Taking a typical short cable as an example, the vibration reduction ability with optimally controlled MR dampers is verified numerically by comparison with the viscous damper tuned to a single mode response. The analysis show that, if the conditions are fulfilled at which the optimal tuned viscous damper is designed, the MR damper and the viscous damper are performing equally well; however, if the response of the cable is dominated by several modes, the MR damper can achieve better vibration reduction effect compared with viscous damper. Especially, if the amplitude of the support point motion less than a threshold value, MR damper can prevent subharmonic excitation caused by support point motion from taking place, consequently, MR damper achieves significant vibration reduction compared to viscous damper. In addition, the influence of measurement noise on control effect and the robustness of the proposed semi-active control rule are also examined.

  20. Novel active vibration absorber with magnetorheological fluid

    Gerlach, T.; Ehrlich, J.; Böse, H.

    2009-02-01

    Disturbing vibrations diminish the performance of technical high precision devices significantly. In search of a suitable solution for reducing these vibrations, a novel concept of active vibration reduction was developed which exploits the special properties of magnetorheological fluids. In order to evaluate the concept of such an active vibration absorber (AVA) a demonstrator was designed and manufactured. This demonstrator generates a force which counteracts the motion of the vibrating body. Since the counterforce is generated by a centrifugal exciter, the AVA provides the capability to compensate vibrations even in two dimensions. To control the strength of the force transmitted to the vibrating body, the exciter is based on a tunable MR coupling. The AVA was integrated in an appropriate testing device to investigate its performance. The recorded results show a significant reduction of the vibration amplitudes by an order of magnitude.

  1. Design of a one-chip board microcontrol unit for active vibration control of a naval ship mounting system

    This work presents an experimental implementation of a user-tunable one-chip board microcontrol unit which is specifically designed for vibration control of the active mounting system for naval ships. The proposed mounting system consists of four active mounts supporting vibration-sensitive equipment. Each active mount constitutes a rubber element, an inertial mass and the piezostack actuator. It is designed for particular applications that require effective isolation performance against wide frequency ranges, such as naval ship equipment. After describing the configuration of the active mount, dynamic characteristics of the rubber element and the piezostack actuator are experimentally identified. Accordingly, the proposed mounting system is constructed and the governing equations of motion are formulated. In order to attenuate the unwanted vibrations transferred from the upper mass, a feedforward controller with fast Fourier algorithm is designed and experimentally realized using the one-chip microcontrol board which is specially made for this practical application. In order to evaluate the performance of the one-chip microcontrol unit, vibration control results of the proposed active mounting system are presented in the frequency domain. (technical note)

  2. Active aeroelastic flutter analysis and vibration control of supersonic beams using the piezoelectric actuator/sensor pairs

    The active vibration control of all kinds of structures by using the piezoelectric material has been extensively investigated. In this paper, the active aeroelastic flutter characteristics and vibration control of supersonic beams applying the piezoelectric material are studied further. The piezoelectric materials are bonded on the top and bottom surfaces of the beams to act as the actuator and sensor so that the active aeroelastic flutter suppression for the supersonic beams can be conducted. The supersonic piston theory is adopted to evaluate the aerodynamic pressure. Hamilton's principle with the assumed mode method is used to develop the dynamical model of the structural systems. By using the standard eigenvalue methodology, the solutions for the complex eigenvalue problem are obtained. A negative velocity feedback control strategy is used to obtain active damping. The aeroelastic flutter bounds are calculated and the active aeroelastic flutter characteristics are analyzed. The impulse responses of the structural system are obtained by using the Houbolt numerical algorithm to study the active aeroelastic vibration control. The influences of the non-dimensional aerodynamic pressure on the active flutter control are analyzed. From the numerical results it is observed that the aeroelastic flutter characteristics of the supersonic beams can be significantly improved and that the aeroelastic vibration amplitudes can be remarkably reduced, especially at the flutter points, by using the piezoelectric actuator/sensor pairs which can provide an active damping. Within a certain value of the feedback control gain, with the increase of it, the flutter aerodynamic pressure (or flutter velocity) can be increased and the control results are also improved

  3. Active Tuned Mass Dampers for Control of In-Plane Vibrations of Wind Turbine Blades

    Fitzgerald, B.; Basu, Biswajit; Nielsen, Søren R.K.

    2013-01-01

    This paper investigates the use of active tuned mass dampers (ATMDs) for the mitigation of in-plane vibrations in rotating wind turbine blades. The rotating wind turbine blades with tower interaction represent time-varying dynamical systems with periodically varying mass, stiffness, and damping...... matrices. The aim of this paper is to determine whether ATMDs could be used to reduce in-plane blade vibrations in wind turbines with better performance than compared with their passive counterparts. A Euler–Lagrangian wind turbine mathematical model based on energy formulation was developed for this...... purpose, which considers the structural dynamics of the system and the interaction between in-plane and out-of-plane vibrations. Also, the interaction between the blades and the tower including the tuned mass dampers is considered. The wind turbine with tuned mass dampers was subjected to gravity...

  4. A Study of Active Rotor-Blade Vibration Control using Electro-Magnetic Actuation - Part II: Experiment

    Christensen, Rene Hardam; Santos, Ilmar

    2004-01-01

    mistuning, can easily be generated by substitution or rearranging the blades. Six sets of electro-magnetic actuators are applied to the system in order to control the blades as well as the rotor vibrations. Four sets of actuators are mounted in the rotating disc acting directly onto each one of the blades....... The remaining two sets of actuators are applied to act directly onto the hub, working as an active radial bearing controlling the rotor lateral movement. The rig is equipped with sensors measuring blade and rotor vibrations. Actuators and sensors are connected to a digital signal processor running the...... control algorithm. Measurement signals and actuator control signals from the sensors and actuators fixed in the rotating disc are transmitted to the control unit through a slip-ring device. Various measured responses of both the controlled and the non-controlled system with identical blades and with...

  5. Model Predictive Vibration Control Efficient Constrained MPC Vibration Control for Lightly Damped Mechanical Structures

    Takács, Gergely

    2012-01-01

    Real-time model predictive controller (MPC) implementation in active vibration control (AVC) is often rendered difficult by fast sampling speeds and extensive actuator-deformation asymmetry. If the control of lightly damped mechanical structures is assumed, the region of attraction containing the set of allowable initial conditions requires a large prediction horizon, making the already computationally demanding on-line process even more complex. Model Predictive Vibration Control provides insight into the predictive control of lightly damped vibrating structures by exploring computationally efficient algorithms which are capable of low frequency vibration control with guaranteed stability and constraint feasibility. In addition to a theoretical primer on active vibration damping and model predictive control, Model Predictive Vibration Control provides a guide through the necessary steps in understanding the founding ideas of predictive control applied in AVC such as: ·         the implementation of ...

  6. ACTIVE VIBRATION ISOLATION OF MECHANICAL VIBRATION IN RAILWAY PASSENGER CAR

    Aleksander SŁADKOWSKI

    2015-06-01

    Full Text Available This paper presents an attempt of numerical description of the active vibration isolation system of railway passenger car. Computer simulations were performed for different speeds of the passenger car riding along the same track. Formal basis to solve the formulated research problem was achieved by using the law and the principles of mechanics and control theory. Model results clearly indicate that the use of active vibration reduction systems in rail transport can significantly increase comfort

  7. Semi-active vibration control based on unsymmetrical synchronized switch damping: Analysis and experimental validation of control performance

    Ji, Hongli; Qiu, Jinhao; Cheng, Li; Nie, Hong

    2016-05-01

    In semi-active synchronized switch damping (SSD) approaches for structural vibration control, the damping effect is achieved by properly switching the voltage on the piezoelectric actuators. Unsymmetrical SSD switch circuit has been designed in the previous paper to increase the effective voltage range on the PZT actuator for improvement of the control performance. In this study, analysis and experimental validation of control performance of a synchronized switch damping system based on the unsymmetrical switch circuit are carried out. First the model of an unsymmetrical SSD system is presented and the working principle is introduced. The general expression of the switched voltage on the piezoelectric actuator is derived. Based on its periodicity in steady-state control, the harmonic components of the actuator voltage are derived using Fourier series expansion. Next, the displacement response of the system is derived under combined actions of the excitation and switched voltage. Finally, a setup of a flexible beam with unsymmetrical switch circuit is used to demonstrate the control performance under different voltage sources and to verify the theoretical results. The results show that the control performance mainly depends on the voltage range on the PZT. A higher effective voltage range can be generated in unsymmetrical SSDV than in symmetrical SSDV and better control performance can be achieved at the same negative actuator voltage. The unsymmetrical SSDV makes better utilization of the actuator capability.

  8. Active Vibration Control of Elastic Beam by Means of Shape Memory Alloy Layers

    Chen, Q.; Levy, C.

    1996-01-01

    The mathematical model of a flexible beam covered with shape memory alloy (SMA) layers is presented. The SMA layers are used as actuators, which are capable of changing their elastic modulus and recovery stress, thus changing the natural frequency of, and adjusting the excitation to, the vibrating beam. The frequency factor variation as a function of SMA Young's modulus, SMA layer thickness and beam thickness is discussed. Also control of the beam employing an optimal linear control law is evaluated. The control results indicate how the system reacts to various levels of excitation input through the non-homogeneous recovery shear term of the governing differential equation.

  9. The actuated performance of multi-layer piezoelectric actuator in active vibration control of honeycomb sandwich panel

    Luo, Yajun; Xie, Shilin; Zhang, Xinong

    2008-11-01

    This paper discusses the use of the multi-layer piezoelectric actuator (MPA) in the active vibration control of the honeycomb sandwich panel (HSP). A literature overview of the available works is first presented. And the main motivation using the MPA in the AVC of HSP is discussed. Then, the honeycomb core is in advance treated as an orthotropic plate. The governing equations of the system are derived by the Hamilton principle on the basis of both displacement and transverse tress assumptions. The formulations of the actuation force/moment are obtained and indicate that the actuation force/moment are two four-order polynomial function of the piezoelectric layers number. Finally, active control experiments of a cantilever honeycomb sandwich panel (CHSP) are performed using the MPA. The control law of proportional velocity feedback is adopted in the experiments. These experiments include the resonant vibration control and the sinusoidal swept of the control system at the case of different piezoelectric layers number. The results show that the MPA can effectively control the vibration of the high damping HSP, and the control performance per voltage by the proposed actuator can be improved significantly through increasing the piezoelectric patch number. Consequently, the MPA exhibits better actuation capability than that with only single layer.

  10. A Study of Active Rotor-Blade Vibration Control using Electro-Magnetic Actuation - Part I: Theory

    Christensen, Rene Hardam; Santos, Ilmar

    This is the first paper in a two-part study on active rotor-blade vibration control. Blade faults are a major problem in bladed machines, such as turbines and compressors. Moreover, increasing demands for higher efficiency, lower weight and higher speed imply that blades become even more...... onto the shaft if the system has identical tuned blades. Time-periodic modal state feedback controllers are designed based on the modal model and numerical simulations are provided to show the efficiency of the designed active controllers for a tuned as well as a mistuned rotor-blade system....... susceptible to vibrational problems. Passive damping methods, such as frictional damping, are typically used for this kind of machines, working very well at the specific design conditions. However, when the running conditions exceed the design specification, then passive damping devices become inefficient...

  11. Reduction of structural weight, costs and complexity of a control system in the active vibration reduction of flexible structures

    This paper concerns the active vibration reduction of a flexible structure with discrete piezoelectric sensors and actuators in collocated pairs bonded to its surface. In this study, a new fitness and objective function is proposed to determine the optimal number of actuators, based on variations in the average closed loop dB gain margin reduction for all of the optimal piezoelectric pairs and on the modes that are required to be attenuated using the optimal linear quadratic control scheme. The aim of this study is to find the minimum number of optimally located sensor/actuator pairs, which can achieve the same vibration reduction as a greater number, in order to reduce the cost, complexity and power requirement of the control system. This optimization was done using a genetic algorithm. The technique may be applied to any lightly damped structure, and is demonstrated here by attenuating the first six vibration modes of a flat cantilever plate. It is shown that two sensor/actuator pairs, located and controlled optimally, give almost the same vibration reduction as ten pairs. These results are validated by comparing the open and closed loop time responses and actuator feedback voltages for various numbers of piezoelectric pairs using the ANSYS finite element package and a proportional differential control scheme. (paper)

  12. The effect of time delay on control stability of an electromagnetic active tuned mass damper for vibration control

    Hassan, A.; Torres-Perez, A.; Kaczmarczyk, S.; Picton, P.

    2016-05-01

    The aim of this paper is to investigate the effect of time delays on the stability of a zero-placement position and velocity feedback law for a vibratory system comprising harmonic excitation equipped with an electromagnetic active tuned mass damper (ATMD). The purpose of the active control is broadening the vibration attenuation envelope of a primary mass to a higher frequency region identified as from 50±0.5Hz with a passive tuned mass damper (TMD) to a wider range of 50±5Hz with an ATMD. Stability conditions of the closed-loop system are determined by studying the position of the system closed-loop poles after the introduction of time delays for different excitation frequencies. A computer simulation of the model predicted that the proposed control system is subject to instability after a critical time delay margin dependent upon the frequency of excitation and the finding were experimentally validated. Three solutions are derived and experimentally tested for minimising the effect of time delays on the stability of the control system. The first solution is associated with the introduction of more damping in the absorber system. The second incorporates using a time-delayed ATMD by tuning its original natural resonant frequency to beyond the nominal operational frequency range of the composite system. The third involves an online gain tuning of filter coefficients in a dual arrangement of low-pass and high-pass filters to eliminate the effect time delays by manipulating the signal phase shifts.

  13. Experimental investigation of active vibration control using neural networks and piezoelectric actuators

    Jha, Ratneshwar; Rower, Jacob

    2002-02-01

    The use of neural networks for identification and control of smart structures is investigated experimentally. Piezoelectric actuators are employed to suppress the vibrations of a cantilevered plate subject to impulse, sine wave and band-limited white noise disturbances. The neural networks used are multilayer perceptrons trained with error backpropagation. Validation studies show that the identifier predicts the system dynamics accurately. The controller is trained adaptively with the help of the neural identifier. Experimental results demonstrate excellent closed-loop performance and robustness of the neurocontroller.

  14. Escape conditioning and low-frequency whole-body vibration - The effects of frequency, amplitude, and controls for noise and activation.

    Wike, E. L.; Wike, S. S.

    1972-01-01

    Seven experiments are reported on low-frequency whole-body vibration and rats' escape conditioning in a modified Skinner box. In the first three studies, conditioning was observed but was independent of frequency. In experiment four, the number of escape responses was directly related to vibration amplitude. Experiment five was a control for vibration noise and noise termination; experiments six and seven studied vibration-induced activation. Noise termination did not produce conditioning. In experiment six, subjects made more responses when responding led to termination than when it did not. In experiment seven, subjects preferred a bar which terminated vibration to one which did not.

  15. Study on active control methods. Part 3. ; Absolute vibration control system'' by modern control theory. Active seishin gijutsu ni kansuru kenkyu. 3. ; Gendai seigyo wo mochiita zettai seishin ni tsuite

    Kageyama, M.; Nohata, A.; Teramura, A.; Yasui, Y.; Okada, H. (Obayashi Corp., Tokyo (Japan))

    1991-08-10

    The absolute vibration control method by advanced optimal regulator theory was studied in order to reduce the acceleration response of a base-isolated building by active control at the base to hold the building in absolute space. The optimal regulator theory is originally a control method based on the feedback control theory. In the present study, however, application of the feedforward control theory, which is indispensable to the absolute vibration control, was also investigated. The performance by using this control method, in which large conventional actuators were applied to an actual base-isolated building, was analytically compared with that by the classic control method used from the past. As a result, it was found that this control method had a better effect compared with the classic control method. It is considered that absolute vibration control by a generally-used type of large-sized actuator is possible even at the time of a major earthquake. 5 refs., 19 figs.

  16. Modeling and control of vibration in mechanical structures

    Nauclér, Peter

    2005-01-01

    All mechanical systems exhibit vibrational response when exposed to external disturbances. In many engineering applications vibrations are undesirable and may even have harmful effects. Therefore, control of mechanical vibration is an important topic and extensive research has been going on in the field over the years. In active control of vibration, the ability to actuate the system in a controlled manner is incorporated into the structure. Sensors are used to measure the vibrations and seco...

  17. Multi Objective Robust Active Vibration Control for Flexure Jointed Struts of Stewart Platforms via H∞ and μ Synthesis

    Liu Lei; Wang Benli

    2008-01-01

    Active vibration control is needed for future space telescopes, space laser communication and other precision sensitive payloads which require ultra-quiet environments. A Stewart platform based hybrid isolator with 6 hybrid struts is the effective system for ac- tive/passive vibration isolation over 5-250 Hz band. Using an identification transfer matrix of the Stewart platform, the coupling analysis of six channels is provided. A dynamics model is derived, and the rigid mode is removed to keep the signal of pointing control. Multi objective robust H∞ and μ synthesis strategies, based on singular values and structured singular values respectively, are presented, which simultaneously satisfy the low frequency pointing and high frequency disturbance rejection requirements and take account of the model uncertainty, parametric uncertainty and sensor noise. Then, by performing robust stability test, it is shown that the two controllers are robust to the uncertainties, the robust stability margin of H∞ controller is less than that of μ controller, but the order of μ controller is higher than that of H∞ controller, so the balanced controller reduction is provided. Additionally, the μ controller is compared with a PI controller. The time domain simulation of the μ controller indicates that the two robust control strategies are effective for keeping the pointing command and isolating the harmonic and stochastic disturbances.

  18. A wave-based design of semi-active piezoelectric composites for broadband vibration control

    Fan, Y.; Collet, M.; Ichchou, M.; Li, L.; Bareille, O.; Dimitrijevic, Z.

    2016-05-01

    This paper deals with the design of periodic piezoelectric structures for broadband vibration control. By shunting identical negative capacitances to the periodically distributed piezoelectric patches, a wide and continuous band gap is created so as to cover the frequency range of interest. This way the modal density of the structure is reduced and the modal shapes are localized at the boundaries. A large proportion of the energy can then be removed or dissipated by a small number of dampers or energy harvesters integrated within the negative capacitance circuits. A design process is proposed to achieve the wide band gap. The overall amount of piezoelectric materials is constrained in order to keep mass of structures low. The wave electromechanical coupling factor is proposed and used as a criterion. This allows to reach the largest width of the band gap by using a stable value of negative capacitance. The control of multiple high-order modes of a cantilever beam is considered as an example. The vibration reduction performance of the designed piezoelectric structures is presented and the influences of band gap resonance, resistor and the boundary condition are discussed. The proposed approach is fully based on wave characteristics and it does not rely on any modal information. It is therefore promising for applications at mid- and high frequencies where the access to the exact modal information is difficult.

  19. Active Control of Parametric Vibrations in Coupled Rotor-Blade Systems

    Christensen, Rene Hardam; Santos, Ilmar

    2003-01-01

    In rotor-blade systems basis as well as parametric vibration modes will appear due to the vibration coupling among flexible rotating blades and hub rigid body motion. Parametric vibration will typically occur when the hub operates at a constant angular velocity. Operating at constant velocity the...

  20. Application of Energy Finite Element Method in Active Vibration Control of Piezoelectric Intelligent Beam

    Jinhua Xie

    2012-01-01

    Full Text Available Based on the transmission and equilibrium relationship of vibration energy in beam-like structures, the Galerkin weighted residual method was applied to equation discretization. An equivalent transformation of feedback element was suggested to develop the Energy Finite Element model of a composite piezoelectric cantilever beam driven by harmonic excitation on lateral direction, with both systems with and without time delay being studied and the power input estimation of harmonic excitation was discussed for the resolution of Energy Finite Element function. Then the energy density solutions of the piezoelectric coupling beam through Energy Finite Element Method (EFEM and classical wave theory were compared to verify the EFEM model, which presented a good accordance. Further investigation was undertaken about the influence of control parameters including the feedback gain and arrangement of piezoelectric patches on characteristics of system energy density distribution.

  1. Semimanufacture intended to be mounted on a vibrating wall or a vibrating panel for actively damping vibrations of the wall, wall or panel provided with such semimanufacture, system provided with a semimanufacture and a control unit, wall or panel provided with a control unit and method for damping audible vibrations of a wall or panel

    Goeje, de, Marius; Overbeek, van, Wendy M.; Waal, de, P.R.; Berkhoff, Arthur P.; Nederveen, Peter J.

    2006-01-01

    A semimanufacture intended to be mounted on a vibrating wall or a vibrating panel for actively damping the vibrations in the wall or the panel with frequencies which are at least partly audible, wherein the semimanufacture is provided with a plate wherein the plate is integrated with: at least one vibration source for generating vibrations which, in use, damp the vibrations of the wall or the panel, at least one vibration sensor for detecting the vibrations in the wall or in the panel and wir...

  2. Active Vibration Damping of Solar Arrays

    Reinicke, Gunar; Baier, Horst; Grillebeck, Anton; Scharfeld, Frank; Hunger, Joseph; Abou-El-Ela, A.; Lohberg, Andreas

    2012-07-01

    Current generations of large solar array panels are lightweight and flexible constructions to reduce net masses. They undergo strong vibrations during launch. The active vibration damping is one convenient option to reduce vibration responses and limit stresses in facesheets. In this study, two actuator concepts are used for vibration damping. A stack interface actuator replaces a panel hold down and is decoupled from bending moments and shear forces. Piezoelectric patch actuators are used as an alternative, where the number, position and size of actuators are mainly driven by controllability analyses. Linear Quadratic Gaussian control is used to attenuate vibrations of selected mode shapes with both actuators. Simulations as well as modal and acoustic tests show the feasibility of selected actuator concepts.

  3. Noise and Vibration Control of Combustion Engine Vehicles

    Winberg, Mathias

    2005-01-01

    Noise and vibrations have over the last two decades been regarded as significant environmental health problems. Regulations regarding acoustic as well as vibration levels have therefore become more stringent. This thesis embraces two different techniques to reduce unwanted noise and vibrations, spectral subtraction and active noise and vibration control. The applications treated for noise and vibration problems are mainly means of transportation driven by combustion engines as for example, he...

  4. Vibration control, machine diagnostics

    Changing vibrations announce damage in the form of wear or cracks on components of, e.g., engine rotors, pumps, power plant turbo sets, rounding-up tools, or marine diesel engines. Therefore, machine diagnostics use frequency analyses, system tests, trend analyses as well as expert systems to localize or estimate the causes of these damages and malfunctions. Data acquisistion, including not only sensors, but also reliable and redundant data processing systems and analyzing systems, play an important role. The lectures pertaining to the data base are covered in detail. (DG)

  5. A Novel Hybrid Error Criterion-Based Active Control Method for on-Line Milling Vibration Suppression with Piezoelectric Actuators and Sensors

    Xingwu Zhang; Chenxi Wang; Gao, Robert X.; Ruqiang Yan; Xuefeng Chen; Shibin Wang

    2016-01-01

    Milling vibration is one of the most serious factors affecting machining quality and precision. In this paper a novel hybrid error criterion-based frequency-domain LMS active control method is constructed and used for vibration suppression of milling processes by piezoelectric actuators and sensors, in which only one Fast Fourier Transform (FFT) is used and no Inverse Fast Fourier Transform (IFFT) is involved. The correction formulas are derived by a steepest descent procedure and the control...

  6. Analysis and testing of an integrated semi-active seat suspension for both longitudinal and vertical vibration control

    Bai, Xian-Xu; Jiang, Peng; Pan, Hui; Qian, Li-Jun

    2016-04-01

    An integrated semi-active seat suspension for both longitudinal and vertical vibration control is analyzed and tested in this paper. The seat suspension consists of a switching mechanism transforming both longitudinal and vertical motions into a rotary motion and a real-time damping-controllable system-a rotary magnetorheological (MR) damper working in pure shear mode and its corresponding control system. The switching mechanism employs the parallelogram frames as a motion guide which keeps the seat moving longitudinally and vertically. At the same time, both longitudinal and vertical motions are transformed into a reciprocating rotary motion that is transmitted to the rotary MR damper after an amplification by a gear mechanism. Both the longitudinal and vertical vibrations can be attenuated in real time through controlling the damping force (or torque) of the rotary MR damper. The mathematical model of the seat suspension system is established, simulated, and analyzed. The experimental test based on the test rig in Hefei University of Technology is implemented, and the results of simulation and experimental test are compared and analyzed.

  7. Adaptive Active Control of Machine-Tool Vibration In a Lathe

    Claesson, Ingvar; Håkansson, Lars

    1998-01-01

    In the turning operation the relative dynamic motion between cutting tool and workpiece, or vibration, is a frequent problem, which affects the result of the machining, and in particular, the surface finish. Tool life is also influenced by vibration. Noise in the working environment frequently occurs as a result of dynamic motion between the cutting tool and the workpiece. With proper machine design, i.e. improved stiffness of the machine structure, the problem of relative dynamic motion betw...

  8. A study of online plant modelling methods for active control of sound and vibration

    Laugesen, Søren

    Active control systems using the filtered-x algorithm require plant models to describe the relations between the secondary sources and the error sensors. For practical applications online plant modelling may be required if the environment changes significantly. In this study, two dominant methods...

  9. Control of transient vibrations due to stage movements in 6-dof active pneumatic table by inertial force compensation

    Sun, Jong-Oh; Kim, Kwang-joon

    2013-10-01

    Passive pneumatic tables are popularly used in precision measurements or processes for isolation of ground vibrations over frequency ranges higher than resonance frequencies of a few Hz typically. Recently, active pneumatic tables are also used often because the passive systems are liable to table excitations in the low resonance frequency ranges, causing long settling times. In studies on the active tables, disturbances onto the tables were often regarded to be unknown and, hence, feedback control algorithms were implemented. However, the disturbances are mostly due to inertial forces due to movement of equipment on the table, e.g., x-y stages. Such a movement is given relative to the table as command inputs. Since absolute motion of the table is normally measured in an active isolation table, absolute motion of the equipment can be easily estimated for calculation of the inertial force exerted onto the table by the moving equipment. Consequently, by compensating dynamic pressure inside the pneumatic chamber to counteract with the inertia force due to the equipment motion, resultant forces acting onto the table can be made zero. In this paper, how to apply the proposed feed-forward control algorithm to a 6-degree of freedom active pneumatic table with time-delay pneumatic control is presented. Performance of the inertial force compensation control evaluated through experiments is also discussed.

  10. Semimanufacture intended to be mounted on a vibrating wall or a vibrating panel for actively damping vibrations of the wall, wall or panel provided with such semimanufacture, system provided with a semimanufacture and a control unit, wall or panel provided with a control unit and method for damping audible vibrations of a wall or panel

    Goeje, de Marius; Overbeek, van Michiel Wilbert R.M.; Waal, van der Adri; Berkhoff, Arthur P.; Nederveen, Peter J.

    2006-01-01

    A semimanufacture intended to be mounted on a vibrating wall or a vibrating panel for actively damping the vibrations in the wall or the panel with frequencies which are at least partly audible, wherein the semimanufacture is provided with a plate wherein the plate is integrated with: at least one v

  11. Control issues of microgravity vibration isolation

    Knospe, C. R.; Hampton, R. D.; Allaire, P. E.

    1991-01-01

    Active vibration isolation systems contemplated for microgravity space experiments may be designed to reach given performance requirements in a variety of ways. An analogy to passive isolation systems proves to be illustrative but lacks the flexibility as a design tool of a control systems approach and may lead to poor designs. For example, it is shown that a focus on equivalent stiffness in isolation system design leads to a controller that sacrifices robustness for performance. Control theory as applied to vibration isolation is reviewed and passive analogies are discussed. The loop shaping trade-off is introduced and used to design a single-degree-of-freedom fedback controller. An algebraic control design methodology is contrasted to loop shaping and critiqued. Multi-axis vibration isolation and the problems of decoupled single loop control are introduced through a two-degree-of-freedom example problem. It is shown that center of mass uncertainty may result in instability when decoupled single loop control is used. This results from the ill-conditioned nature of the feedback control design. The use of the Linear Quadratic Regulator synthesis procedure for vibration isolation controller design is discussed.

  12. Development of an active vertical vibration control system for high speed railway vehicles; Jogekei active seishin seigyo sochi no kaihatsu (300X Shinkansen shiken sharyo deno soko shiken kekka)

    Shirai, S.; Otsuka, T. [Central Japan Railway Company, Nagoya (Japan); Nishi, Y.; Matsushima, H.; Danbata, K. [Kawasaki Heavy Industries, Ltd., Kobe (Japan)

    1999-09-15

    With an objective to improve riding comfort in the 300X system Shinkansen vehicle, development has been made on an active vibration control system which gives force to the vehicle body forcibly by a hydraulic actuator to suppress vertical vibration. The H {infinity} control was used in designing the controller. The controller to control vertical translation and pitch vibration in the vehicle body controls frequency in the vicinity of about 1 Hz being resonant frequency of a suspension system. However, it does not control frequency band of 8 to 9 Hz being resonant frequency of the vehicle bending vibration. In turn, the controller to control the vehicle bending vibration controls frequency band of 8 to 9 Hz only. This allows the interference to be ignored nearly completely. As a result of the stationary test, it was verified that the vibration can be reduced by the active vibration control system also on the vehicle bending vibration, which had conventionally been handled by improving rigidity of the vehicle or by turning the bogie spring and damper systems. Good result has also been obtained from a driving test using test vehicles. (NEDO)

  13. Active structures to reduce torsional vibrations

    Matthias, M.; Schlote, D.; Atzrodt, H.

    2013-03-01

    This paper describes the development of different active measures to reduce torsional vibrations in power trains. The measures are based on concepts developed for active mounts to reduce the transmission of structure-borne sound. To show the potential of these active measures and investigate their mode of operation to influence torsional vibrations, numerical simulations of powertrains with different active measures were done. First experimental results from tests on an experimental (reduced size) power train were used to align the numerical models. The work was done within the project 'LOEWE-Zentrum AdRIA: Adaptronik - Research, Innovation, Application' funded by the German federal state of Hessen, and the Project AKTos: 'Active control of torsional vibrations by coupling elements' placed in the research Framework program 'Navigation and Maritime Technology for the 21st Century' funded by the German Federal Ministry of Economics and Technology.

  14. A study of online plant modelling methods for active control of sound and vibration

    Laugesen, Søren

    1996-01-01

    Active control systems using the filtered-x algorithm require plant models to describe the relations between the secondary sources and the error sensors. For practical applications online plant modelling may be required if the environment changes significantly. In this study, two dominant methods...... for online plant modelling are compared by simulation. One approach yields convincing results in terms of converge, but sometimes the steady state performance can be suboptimal, because the plant models are erroneous. Another approach gives results close to the theoretically optimal for a broadband...

  15. Vibration control for piping system using dynamic vibration absorbers

    In order to bring about the degree of freedom in thermal expansion and contraction, piping systems are made so as to be flexible and easy to deflect, consequently, those are apt to be affected by vibration sources and cause troubles. The vibration is generally complex, and is to cause such problems as the fatigue damage due to resonance and vibration noise. In order to prevent them, the method of supporting piping systems has been taken, but it constrains largely the arrangement of piping systems. Recently, the move to control the vibration of piping systems as they are flexible by supporting them with high damping visco-elastic matters or positively giving damping to them by introducing dynamic vibration absorbers has begun. In this report, the basic knowledge on dynamic vibration absorbers is described, and the method of controlling vibration in a multiple degrees of freedom system is explained. Next, a simple three-dimensional piping system is taken up as an example, and its vibration modes from first order to third order are investigated. Thereafter, the optimum places for installing dynamic vibration absorbers in respective modes and the procedure of designing dynamic vibration absorbers are shown. (K.I.)

  16. DOUBLE LOOP ACTIVE VIBRATION CONTROL OF PNEUMATIC ISOLATOR WITH TWO SEPARATE CHAMBERS

    YANG Qingjun; LI Jun; WANG Zuwen

    2006-01-01

    A newly designed pneumatic spring with two separate chambers is promoted and double-loop active control is introduced to overcome the following drawbacks of passive pneumatic level with different force load. The design of two separate chambers is for the purpose of tuning support frequency and force independently and each chamber is controlled by a different valve. The inner one of double-loop structure is pressure control, and in order to obtain good performance,nonlinearities compensation and motion flow rate compensation (MFRC) are added besides the basic cascade compensation, and the influence of tube length is studied. The outer loop has two functions:one is to eliminate the resonance caused by isolation support and to broaden the isolation frequency band by payload velocity feedback and base velocity feed forward, and the other is to rune support force and support stiffness simultaneously and independently, which means the support force will have no effect on support stiffness. Theoretical analysis and experiment results show that the three drawbacks are overcome simultaneously.

  17. Design and development of a model free robust controller for active control of dominant flexural modes of vibrations in a smart system

    Parameswaran, Arun P.; Ananthakrishnan, B.; Gangadharan, K. V.

    2015-10-01

    Real physical vibrating smart systems exhibit a lot of nonlinearities in their dynamics. Undesirable vibrations, particularly in the regions of first as well as second resonance, play a very important role in deteriorating the stability of the system as well as its operational efficiency. The work presented in the paper focuses on an analytical technique of mathematical modeling of a vibrating piezoelectric laminate cantilever beam which is considered to be the smart system. The natural frequencies of the vibrating smart system are determined from the ANSYS simulation studies and experimentally, it is found that the vibrations induced voltage is maximum at the first followed by the second natural frequencies. Hence, the smart system is modeled analytically through finite element technique using the Euler-Bernoulli beam theory for the first two flexural modes of vibrations. To account for the possible nonlinearities, a suitable robust controller is designed based on sliding mode technique. Simulation studies on the developed analytical model indicated a high performance of the designed controller in controlling the vibrations at first and second resonance regions. Also, the designed controller was found to be effective in its operations when the excitation varied over a large range covering the first two natural frequencies. In the final stage, the designed robust controller was successfully prototyped on a Field Programmable Gate Array (FPGA) platform using LabVIEW coupled with Compact Reconfigurable Input Output (cRIO-9022) controller configured in its FPGA interface mode and the resulting robust FPGA controller successfully controlled the occurring system vibrations.

  18. Genetic algorithm based active vibration control for a moving flexible smart beam driven by a pneumatic rod cylinder

    Qiu, Zhi-cheng; Shi, Ming-li; Wang, Bin; Xie, Zhuo-wei

    2012-05-01

    A rod cylinder based pneumatic driving scheme is proposed to suppress the vibration of a flexible smart beam. Pulse code modulation (PCM) method is employed to control the motion of the cylinder's piston rod for simultaneous positioning and vibration suppression. Firstly, the system dynamics model is derived using Hamilton principle. Its standard state-space representation is obtained for characteristic analysis, controller design, and simulation. Secondly, a genetic algorithm (GA) is applied to optimize and tune the control gain parameters adaptively based on the specific performance index. Numerical simulations are performed on the pneumatic driving elastic beam system, using the established model and controller with tuned gains by GA optimization process. Finally, an experimental setup for the flexible beam driven by a pneumatic rod cylinder is constructed. Experiments for suppressing vibrations of the flexible beam are conducted. Theoretical analysis, numerical simulation and experimental results demonstrate that the proposed pneumatic drive scheme and the adopted control algorithms are feasible. The large amplitude vibration of the first bending mode can be suppressed effectively.

  19. Vibration damping with active carbon fiber structures

    Neugebauer, Reimund; Kunze, Holger; Riedel, Mathias; Roscher, Hans-Jürgen

    2007-04-01

    This paper presents a mechatronic strategy for active reduction of vibrations on machine tool struts or car shafts. The active structure is built from a carbon fiber composite with embedded piezofiber actuators that are composed of piezopatches based on the Macro Fiber Composite (MFC) technology, licensed by NASA and produced by Smart Material GmbH in Dresden, Germany. The structure of these actuators allows separate or selectively combined bending and torsion, meaning that both bending and torsion vibrations can be actively absorbed. Initial simulation work was done with a finite element model (ANSYS). This paper describes how state space models are generated out of a structure based on the finite element model and how controller codes are integrated into finite element models for transient analysis and the model-based control design. Finally, it showcases initial experimental findings and provides an outlook for damping multi-mode resonances with a parallel combination of resonant controllers.

  20. Rotor Vibration Reduction via Active Hybrid Bearings

    Nicoletti, Rodrigo; Santos, Ilmar

    2002-01-01

    The use of fluid power to reduce and control rotor vibration in rotating machines is investigated. An active hybrid bearing is studied, whose main objective is to reduce wear and vibration between rotating and stationary machinery parts. By injecting pressurised oil into the oil film, through...... orifices machined in the bearing pads, one can alter the machine dynamic characteristics, thus enhancing its operational range. A mathematical model of the rotor-bearing system, as well as of the hydraulic system, is presented. Numerical results of the system frequency response show good agreement with...

  1. Active control of the attitude motion and structural vibration of a flexible satellite by jet thrusters

    Lee, Mokin

    A Lagrangian formulation is used to obtain the equations of motion of a flexible satellite in a tree-type geometry. The flexible satellite model is the geosynchronous INSAT-II type satellite with a flexible balance beam and a flexible solar panel attached to the rigid main body. In deriving the equations of motion, the orbital motion, the librational motion, and the structural motion of flexible bodies are involved. The assumed-modes method is used to express the deflections of the flexible structures in the form of a finite series of space-dependent admissible functions multiplied by time-dependent amplitudes. The kinetic energy, potential energy, strain energy, and virtual work of the flexible satellite are evaluated as functions of time in terms of the generalized coordinates. Then, by substituting them into Lagrange's equations for discrete systems, the governing equations of motion of the flexible satellite are obtained as a set of second-order nonlinear ordinary differential equations. The attitude motion and the structural motion of the flexible satellite are coupled motions with one another. Uncontrolled dynamics show that the librational and structural motions are oscillatory and undamped motions. The stability and performance of the flexible satellite needs to be improved by designing control systems. A control objective is proposed to improve the stability and performance for pointing accuracy maneuver by controlling the librational motions and flexible modes simultaneously. For the control objective, a control system is synthesized, using feedback linearization control, thrust determination, thrust management, and pulse-width pulse-frequency modulation. Feedback linearization for second-order nonlinear systems is used to obtain a stable feedback control system for the pointing-accuracy control. A stable feedback control system is obtained by adjusting the diagonal matrices of the linear second-order system. Jet thrusters are used as the primary

  2. Vibration Control For Ultraprecision Motion Machineries

    Kanai, Akira; Miyashita, Masakazu; Yoshioka, Junichi; Hashimoto, Fukuo

    1987-08-01

    Development of ultraprecision machines requires motion mechanisms with dynamic characteristics being sufficiently resistive to environmental disturbances as well as vibration control devices isolating from them. In the paper active application of frictional forces to the machines are proposed in viewpoint of this point. Further, new strategies for various problems resulting from application of frictional forces are also proposed for linear feed mechanism and the test results are shown. They are load compensation unit, composite bearing guideway and force operation feed mechanism.

  3. Development and Control of Novel Vibration Isolation Platform

    Meng-Shiun Tsai

    2013-11-01

    Full Text Available A vibration isolation platform designed to attenuate high frequency vibration is proposed consisting of an active layer driven by a piezoelectric actuator and a passive layer. The proposed platform can achieve vibration isolation both in the vertical and horizontal directions. The dynamic behavior of the system is analyzed by deriving the equations of motions using the Lagrangian approach. System identifications are performed to validate the plant dynamics. The robust H¥ controller is adopted to design the controller with consideration of payload uncertainties. Experimental results show that the control can reduce vibrations by an average of 10dB within a frequency range of 15-40Hz.

  4. Active vibration control of a doubly-curved panel under pressurization

    Nourzad, Delphine; Elliott, Stephen; Ghandchi-Tehrani, Maryam; Rustighi, Emiliano

    2012-01-01

    This study focuses on the control of doubly-curved panels which occur in aircrafts due to the deflection of fuselage panels during lateral pressure loading. This paper describes experi-mental work conducted toward the implementation of a feedback velocity control system on a pressurised panel of varying curvature in both the x and y directions. A thin rectangular al-uminium panel was clamped to an airtight, rigid-walled enclosure and the curvature of the panel was varied through changing the ...

  5. Active vibration control of a cylindrical structure using flexible piezoactuators: experimental work in air and water environments

    In the present work, the modal characteristics and vibration control performance of a cylindrical structure in air and water are experimentally investigated, and the results are presented in time and frequency domains. In order to achieve this goal, an end-capped cylindrical shell structure is considered as a host structure, and MFC (macro fiber composite) actuators, which are flexible, are bonded on the surface of the structure. After manufacturing a cylindrical shell structure with aluminum, a modal test is carried out, and the natural frequencies of the proposed structure are obtained and analyzed. To verify the modal test results, a finite element analysis is also performed, and the results are compared with the modal test results. By using the experimentally obtained modal characteristics, a state space control model is established. An optimal controller is then designed in order to control the unwanted vibration and is experimentally realized. It has been shown that the structural vibration can be effectively decreased with the optimal control methodology in both air and water environmental conditions. (technical note)

  6. Testing of piezofilms for actuation and active control of blade flexural vibration

    Pešek, Luděk; Půst, Ladislav; Bula, Vítězslav; Cibulka, Jan

    Krakow: EAA, 2014. ISBN 978-83-61402-28-2. ISSN 2221-3767. [Forum Acusticum /7./. Krakow (PL), 07.09.2014-12.09.2014] Institutional support: RVO:61388998 Keywords : piezo * vibro-actuation * active damping Subject RIV: BI - Acoustics

  7. A novel triple-actuating mechanism of an active air mount for vibration control of precision manufacturing machines: experimental work

    With the goal of vibration control and isolation in a clean room, we propose a new type of air mount which consists of pneumatic, electromagnetic (EM), and magnetorheological (MR) actuators. The air mount is installed below a semiconductor manufacturing machine to reduce the adverse effects caused by unwanted vibration. The proposed mechanism integrates the forces in a parallel connection of the three actuators. The MR part is designed to operate in an air spring in which the EM part is installed. The control logic is developed with a classical method and a switching mode to avoid operational mismatch among the forces developed. Based on extended microprocessors, a portable, embedded controller is installed to execute both nonlinear logic and digital communication with the peripherals. The pneumatic forces constantly support the heavy weight of an upper structure and maintain the level of the air mount. The MR damper handles the transient response, while the EM controller reduces the resonance response, which is switched mutually with a threshold. Vibration is detected by laser displacement sensors which have submicron resolution. The impact test results of three tons load weight demonstrate practical feasibility by showing that the proposed triple-actuating mechanism can reduce the transient response as well as the resonance in the air mount, resulting in accurate motion of the semiconductor manufacturing machine. (technical note)

  8. The use of active vibration control for the reduction of ICE interior noise

    Schirmacher, R. [Mueller-BBM GmbH - Beratende Ingenieure fuer Akustik, Planegg (Germany)

    2001-07-01

    First generation ICE high speed trains show a disturbing low frequency noise of about 100 Hz audible inside the coaches. It is excited by unround wheels, propagates via the bogie to the body of the coach and is finally radiated as airborne sound. A mixed concept of active suspension at the bogie in connection with adaptive residual noise minimisation inside the passenger compartment is successfully applied to the problem. A prototype system utilizing piezo ceramic actuators was installed and tested on the rolling rig of Deutsche Bahn in Munich. The noise level reductions at single harmonics were more than 12 dB averaged over the whole compartment and more than 20 dB at single seats. Measurement results and practical experiences with the system are reported. (orig.)

  9. Robust Control of Machine-Tool Vibration in a Lathe

    Claesson, Ingvar; Håkansson, Lars; Lagö, Thomas L

    1999-01-01

    In the turning operation the relative dynamic motion between cutting tool and workpiece, or vibration, is a frequent problem, which affects the result of the machining, and, in particular, the surface finish. Tool life is also influenced by vibration. Severe acoustic noise in the working environment frequently occurs as a result of dynamic motion between the cutting tool and the workpiece. These problems can be reduced substantially by active control of the machine-tool vibration. Adaptive fe...

  10. A Study of Active Rotor-Blade Vibration Control using Electro-Magnetic Actuation - Part I: Theory

    Christensen, Rene Hardam; Santos, Ilmar

    2004-01-01

    actuators fixed directly in the blades. However, due to the impracticability and problems by fixing actuators in the rotating blades, it is for practical application of great interest to study whether the vibrations can be controlled using shaft-based actuators, i.e. electro-magnetic bearings. In this...... framework, the present paper gives a theoretical contribution into the controllability and observability analysis of rotor-blade systems with the aim of investigating this field. The analysis is based on time-variant modal analysis, due to the time-periodic dynamical characteristics of this kind of system...

  11. Vibration Control of MR Damper Landing Gear

    Disha Saxena; Harsh Rathore

    2013-01-01

    In the field of Automation, Fuzzy Control Fuzzy control has significant merits which are utilized in intelligent controllers, especially for vibration control systems. This paper is concerned with the application aspects of the developed MR damper for landing gear system, to attenuate the sustained vibrations during the landing phase. Also a comparative study is made on the responses obtained from the MR damper landing gear by utilizing PID and Fuzzy PID controllers.Theory is a well-known tec...

  12. A Novel Hybrid Error Criterion-Based Active Control Method for on-Line Milling Vibration Suppression with Piezoelectric Actuators and Sensors.

    Zhang, Xingwu; Wang, Chenxi; Gao, Robert X; Yan, Ruqiang; Chen, Xuefeng; Wang, Shibin

    2016-01-01

    Milling vibration is one of the most serious factors affecting machining quality and precision. In this paper a novel hybrid error criterion-based frequency-domain LMS active control method is constructed and used for vibration suppression of milling processes by piezoelectric actuators and sensors, in which only one Fast Fourier Transform (FFT) is used and no Inverse Fast Fourier Transform (IFFT) is involved. The correction formulas are derived by a steepest descent procedure and the control parameters are analyzed and optimized. Then, a novel hybrid error criterion is constructed to improve the adaptability, reliability and anti-interference ability of the constructed control algorithm. Finally, based on piezoelectric actuators and acceleration sensors, a simulation of a spindle and a milling process experiment are presented to verify the proposed method. Besides, a protection program is added in the control flow to enhance the reliability of the control method in applications. The simulation and experiment results indicate that the proposed method is an effective and reliable way for on-line vibration suppression, and the machining quality can be obviously improved. PMID:26751448

  13. A Novel Hybrid Error Criterion-Based Active Control Method for on-Line Milling Vibration Suppression with Piezoelectric Actuators and Sensors

    Xingwu Zhang

    2016-01-01

    Full Text Available Milling vibration is one of the most serious factors affecting machining quality and precision. In this paper a novel hybrid error criterion-based frequency-domain LMS active control method is constructed and used for vibration suppression of milling processes by piezoelectric actuators and sensors, in which only one Fast Fourier Transform (FFT is used and no Inverse Fast Fourier Transform (IFFT is involved. The correction formulas are derived by a steepest descent procedure and the control parameters are analyzed and optimized. Then, a novel hybrid error criterion is constructed to improve the adaptability, reliability and anti-interference ability of the constructed control algorithm. Finally, based on piezoelectric actuators and acceleration sensors, a simulation of a spindle and a milling process experiment are presented to verify the proposed method. Besides, a protection program is added in the control flow to enhance the reliability of the control method in applications. The simulation and experiment results indicate that the proposed method is an effective and reliable way for on-line vibration suppression, and the machining quality can be obviously improved.

  14. Nonlinear vibration with control for flexible and adaptive structures

    Wagg, David

    2015-01-01

    This book provides a comprehensive discussion of nonlinear multi-modal structural vibration problems, and shows how vibration suppression can be applied to such systems by considering a sample set of relevant control techniques. It covers the basic principles of nonlinear vibrations that occur in flexible and/or adaptive structures, with an emphasis on engineering analysis and relevant control techniques. Understanding nonlinear vibrations is becoming increasingly important in a range of engineering applications, particularly in the design of flexible structures such as aircraft, satellites, bridges, and sports stadia. There is an increasing trend towards lighter structures, with increased slenderness, often made of new composite materials and requiring some form of deployment and/or active vibration control. There are also applications in the areas of robotics, mechatronics, micro electrical mechanical systems, non-destructive testing and related disciplines such as structural health monitoring. Two broader ...

  15. Active control of vortex-induced vibrations of a circular cylinder using windward-suction- leeward-blowing actuation

    Wang, Chenglei; Tang, Hui; Yu, Simon C. M.; Duan, Fei

    2016-05-01

    This paper studies the control of two-dimensional vortex-induced vibrations (VIVs) of a single circular cylinder at a Reynolds number of 100 using a novel windward-suction-leeward-blowing (WSLB) concept. A lattice Boltzmann method based numerical framework is adopted for this study. Both open-loop and closed-loop controls are implemented. In the open-loop control, three types of actuation arrangements, including the pure suction on the windward side of the cylinder, the pure blowing on the leeward side, and the general WSLB on both sides, are implemented and compared. It is found that the general WSLB is the most effective, whereas the pure suction is the least effective. In the closed-loop control, the proportional (P), integral (I), and proportional-integral (PI) control schemes are applied to adjust the WSLB velocities according to the flow information obtained from a sensor. The effects of four key control parameters including the proportional gain constant, the integral gain constant, the length of data history used for the feedback, and the location of the sensor are investigated. It is found that the use of only P control fails to completely suppress the VIV, the use of only I control can achieve the complete suppression, and the PI control performs the best in terms of both the control effectiveness and efficiency. In the PI control, there exists an optimal length of data history for the feedback, at which the VIV control is the most efficient. There also exist the minimum required WSLB velocities for the VIV suppression, independent of the control schemes. Moreover, it is found that the VIV control is independent of the sensor location.

  16. A Comparison of State Space LQG, Wiener IMC and Polynomial LQG Discrete Time Feedback Control for Active Vibration Control Purposes

    Mørkholt, Jakob; Elliott, S.J.; Sors, T.C.

    1997-01-01

    A comparison of three ways of designing optimal discrete time feedback controllers has been carried out via computer simulations. The three design methods are similar in that they are all based on the minimisation of a quadratic cost function under certain assumptions about the disturbance noise...... piezoceramic patch control actuator and a point velocity sensor and excited by a point force driven by white noise acting as the primary source. The design objective has been to suppress the effect of the primary disturbance on the output by minimising the mean square value of the output. Apart from comparing...... the performance of the different controllers issues such as stability robustness, controller order reduction and the effect of time delays in the feedback loop have been adressed in the simulations....

  17. Fuzzy Control of Structural Vibration for Offshore Platforms

    ZHOUYa-jun; ZHAODe-you

    2004-01-01

    During the past three decades, fuzzy logic feedback control systems have been utilized for the suppression of structural vibration in numerous studies. With the main advantages of the fuzzy controller, the inherent robustness and ability to handle nonlinearity, uncertainty and imprecision of the structure, active structural control of offshore platforms is accomplished. The robustness of the controller has been demonstrated through the uncertainty in damping ratios of the platforms. The study suggests that the proposed fuzzy control algorithm of structural vibration for offshore platforms is effective and feasible,thus improving both serviceability and survival. This present method undoubtedly provides an efficient way of the active control for offshore platforms.

  18. Sweeping tuneable vibration absorbers for low-mid frequencies vibration control

    Gardonio, P.; Zilletti, M.

    2015-10-01

    This paper presents a simulation study concerning the low-mid frequencies control of flexural vibration in a lightly damped thin plate, which is equipped with three sweeping tuneable vibration absorbers and is excited by a rain on the roof broad frequency band stationary disturbance. The sweeping tuneable vibration absorbers are semi-active mass-spring-dashpot systems whose stiffness and damping properties can be varied uniformly within given ranges. They are operated in such a way as their characteristic natural frequencies are continuously varied to control the response of flexural modes that resonate within given frequency bands. More specifically, in this study the three sweeping tuneable vibration absorbers are operated asynchronously, each within one of three sequential frequency bands comprised between 20 and 120, 120 and 220, 220 and 320 Hz. The flexural vibration control effects produced by the three sweeping tuneable vibration absorbers are compared to those produced by three classical tuneable vibration absorbers, each set to control the response of a specific flexural mode of the plate resonating in one of these three frequency bands. The study shows that the proposed sweeping tuneable vibration absorbers outperform the classical tuneable vibration absorbers and produce about 6, 5, 4 dB reduction of the plate overall flexural response in the three frequency bands of operation. Also, the study indicates that the sweeping tuneable vibration absorbers are robust to variations in the plate flexural response. For instance they still produce about 5.1, 5.3, 4.6 dB reductions of the flexural response in the three frequency bands of operation when the plate is tensioned such that the flexural natural frequencies are shifted up from about 40 percent, for the first resonance, to 7 percent, for the tenth resonance.

  19. Development of active vibration isolation system for precision machines

    Li, H. Z.; Lin, W. J.; Yang, G. L.

    2010-03-01

    It is a common understanding by manufacturers of precision machines that vibrations are a potentially disastrous threat to precision and throughput. To satisfy the quest for more stable processes and tighter critical dimension control in the microelectronics manufacturing industry, active vibration control becomes increasingly important for high-precision equipment developers. This paper introduced the development of an active vibration isolation system for precision machines. Innovative mechatronic approaches are investigated that can effectively suppress both environmental and payload-generated vibration. In this system, accelerometers are used as the feedback sensor, voice coil motors are used to generate the counter force, and a TI DSP controller is used to couple sensor measurements to actuator forces via specially designed control algorithms in real-time to counteract the vibration disturbances. Experimental results by using the developed AVI prototype showed promising performance on vibration attenuation. It demonstrated a reduction of the settling time from 2s to 0.1s under impulsive disturbances; and a vibration attenuation level of more than 20dB for harmonic disturbances. The technology can be used to suppress vibration for a wide range of precision machines to achieve fast settling time and higher accuracy.

  20. Vibration control for precision manufacturing at Sandia National Laboratories

    Sandia National Laboratories performs R and D in structural dynamics and vibration suppression for precision applications in weapon systems, space, underwater, transportation and civil structures. Over the last decade these efforts have expanded into the areas of active vibration control and ''smart'' structures and material systems. In addition, Sandia has focused major resources towards technology to support weapon product development and agile manufacturing capability for defense and industrial applications. This paper will briefly describe the structural dynamics modeling and verification process currently in place at Sandia that supports vibration control and some specific applications of these techniques to manufacturing in the areas of lithography, machine tools and flexible robotics

  1. Statistical quality control through overall vibration analysis

    Carnero, M. a. Carmen; González-Palma, Rafael; Almorza, David; Mayorga, Pedro; López-Escobar, Carlos

    2010-05-01

    The present study introduces the concept of statistical quality control in automotive wheel bearings manufacturing processes. Defects on products under analysis can have a direct influence on passengers' safety and comfort. At present, the use of vibration analysis on machine tools for quality control purposes is not very extensive in manufacturing facilities. Noise and vibration are common quality problems in bearings. These failure modes likely occur under certain operating conditions and do not require high vibration amplitudes but relate to certain vibration frequencies. The vibration frequencies are affected by the type of surface problems (chattering) of ball races that are generated through grinding processes. The purpose of this paper is to identify grinding process variables that affect the quality of bearings by using statistical principles in the field of machine tools. In addition, an evaluation of the quality results of the finished parts under different combinations of process variables is assessed. This paper intends to establish the foundations to predict the quality of the products through the analysis of self-induced vibrations during the contact between the grinding wheel and the parts. To achieve this goal, the overall self-induced vibration readings under different combinations of process variables are analysed using statistical tools. The analysis of data and design of experiments follows a classical approach, considering all potential interactions between variables. The analysis of data is conducted through analysis of variance (ANOVA) for data sets that meet normality and homoscedasticity criteria. This paper utilizes different statistical tools to support the conclusions such as chi squared, Shapiro-Wilks, symmetry, Kurtosis, Cochran, Hartlett, and Hartley and Krushal-Wallis. The analysis presented is the starting point to extend the use of predictive techniques (vibration analysis) for quality control. This paper demonstrates the existence

  2. Shaping frequency response of a vibrating plate for passive and active control applications by simultaneous optimization of arrangement of additional masses and ribs. Part I: Modeling

    Wrona, Stanislaw; Pawelczyk, Marek

    2016-03-01

    An ability to shape frequency response of a vibrating plate according to precisely defined demands has a very high practical potential. It can be applied to improve acoustic radiation of the plate for required frequencies or enhance acoustic isolation of noise barriers and device casings by using both passive and active control. The proposed method is based on mounting severaladditional ribs and masses (passive and/or active) to the plate surface at locations followed from an optimization process. This paper, Part I, concerns derivation of a mathematical model of the plate with attached elements in the function of their shape and placement. The model is validated by means of simulations and laboratory experiments, and compared with models known from the literature. This paper is followed by a companion paper, Part II, where the optimization process is described. It includes arrangement of passive elements as well as actuators and sensors to improve controllability and observability measures, if active control is concerned.

  3. Adaptive nonlinear vibration control of a Cartesian flexible manipulator driven by a ballscrew mechanism

    Qiu, Zhi-cheng

    2012-07-01

    A flexible Cartesian manipulator is a coupling system with a moving rigid body and flexible structures. Thus, vibration suppression problem must be solved to guarantee the stability and control accuracy. A characteristic model based nonlinear golden section adaptive control (CMNGSAC) algorithm is implemented to suppress the vibration of a flexible Cartesian smart material manipulator driven by a ballscrew mechanism using an AC servomotor. The system modeling is derived to recognize the dynamical characteristics. The closed loop stability is analyzed based on the model. Also, an experimental setup is constructed to verify the adopted method. Experimental comparison studies are conducted for modal frequencies' identification and active vibration control of the flexible manipulator. The active vibration control experiments include set-point vibration control responses, vibration suppression under resonant excitation and simultaneous translating and vibration suppression using different control methods. The experimental results demonstrate that the controller can suppress both the larger and the lower amplitude vibration near the equilibrium point effectively.

  4. Vibration Control of MR Damper Landing Gear

    Disha Saxena

    2013-03-01

    Full Text Available In the field of Automation, Fuzzy Control Fuzzy control has significant merits which are utilized in intelligent controllers, especially for vibration control systems. This paper is concerned with the application aspects of the developed MR damper for landing gear system, to attenuate the sustained vibrations during the landing phase. Also a comparative study is made on the responses obtained from the MR damper landing gear by utilizing PID and Fuzzy PID controllers.Theory is a well-known technique to acquire the desired response of different non-linear systems.

  5. [Raman active vibrations of aluminosilicates].

    Pan, Feng; Yu, Xue-hui; Mo, Xuan-xue; You, Jing-lin; Wang, Chen; Chen, Hui; Jiang, Guo-chang

    2006-10-01

    Raman spectra of aluminosilicate minerals, namely kyanite, andalusite, and sillimanite and K2O-Al2O3-SiO2 glasses were recorded. Four alumino-silicon tetrahedral model clusters were calculated by self-consistent (SCF) molecular orbital ab-ini-tio calculation of the quantum chem (QC) method. The result shows a decrease tendency in Raman frequencies in the 800-1200 cm(-1) frequency region with increase in four-coordinated Al content, which is assigned to the Si--Onb symmetry stretching vibrations. The Raman spectra in the 700-800 cm(-1) frequency region is attributed to Al-Onb symmetry stretching vibrations. PMID:17205741

  6. Smart helicopter rotors optimization and piezoelectric vibration control

    Ganguli, Ranjan; Viswamurthy, Sathyamangalam Ramanarayanan

    2016-01-01

    Exploiting the properties of piezoelectric materials to minimize vibration in rotor-blade actuators, this book demonstrates the potential of smart helicopter rotors to achieve the smoothness of ride associated with jet-engined, fixed-wing aircraft. Vibration control is effected using the concepts of trailing-edge flaps and active-twist. The authors’ optimization-based approach shows the advantage of multiple trailing-edge flaps and algorithms for full-authority control of dual trailing-edge-flap actuators are presented. Hysteresis nonlinearity in piezoelectric stack actuators is highlighted and compensated by use of another algorithm. The idea of response surfaces provides for optimal placement of trailing-edge flaps. The concept of active twist involves the employment of piezoelectrically induced shear actuation in rotating beams. Shear is then demonstrated for a thin-walled aerofoil-section rotor blade under feedback-control vibration minimization. Active twist is shown to be significant in reducing vibra...

  7. Actuator Control of Edgewise Vibrations in Wind Turbine Blades

    Staino, A.; Basu, B.; Nielsen, Søren R.K.

    2012-01-01

    prescribed control law. A mathematical model of the wind turbine equipped with active controllers has been formulated using an Euler–Lagrangian approach. The model describes the dynamics of edgewise vibrations considering the aerodynamic properties of the blade, variable mass and stiffness per unit length...

  8. Vibration active control of tilting pad journal bearing rotor system based on the active lubrication%基于主动润滑可倾瓦轴承转子系统的振动主动控制

    刘宏; 宫晓春; 王晋麟

    2011-01-01

    研究一类可倾瓦支承的单盘非对称转子系统的振动主动控制问题.首先建立了系统的非线性动力学方程,针对主动润滑控制系统设计了BP神经网络PID控制器对转子系统进行振动主动控制.通过计算分析可知,采用基于BP-PID的主动润滑系统能够很好的抑制系统的振幅,使系统在很高的转速时才发生油膜失稳,拓宽转子系统稳定运转的转速范围,在转子系统发生油膜失稳时系统的振幅也能够得到极大程度的控制.%The vibration active control of an unsymmetrical rotor supported by two tilting pad journal bearings is investigated in this paper. Firstly, the nonlinear governing equation of the rotor system is formulated. Then the BP neural network PID controller is designed with regard to the active lubricated control system is applied to suppress the vibration of the concerning rotor system. After calculation and analysis the persuasive results are obtained. The vibration amplitude of the rotor system is greatly reduced by means of the active lubricated control system through the BP neural network PID controller. The whip instability of the controlled system occurs at a very high rotational speed and the stable operation range is greatly broadened. The vibration amplitude can be significantly suppressed by the active lubricated control system when the rotor runs up against the whip instability.

  9. Resonant vibration control of wind turbine blades

    Svendsen, Martin Nymann; Krenk, Steen; Høgsberg, Jan Becker

    2010-01-01

    The paper deals with introduction of damping to specific vibration modes of wind turbine blades, using a resonant controller with acceleration feedback. The wind turbine blade is represented by three-dimensional, two-node finite elements in a local, rotating frame of reference. The element....... The efficiency of the resonant controller is demonstrated for a representative turbine blade exposed to turbulent wind loading. It is found that the present explicit tuning procedure yields close to optimal tuning, with very limited modal spill-over and effective reduction of the vibration amplitudes....

  10. Variable structure attitude maneuver and vibration control of flexible spacecraft

    HU Qing-lei; MA Cuang-fu

    2008-01-01

    A dual-stage control system design method is presented for the three-axis-rotational maneuver and vibration stabilization of a spacecraft with flexible appendages embedded with piezoceramics as sensor and actuator.In this design approach,the attitude control and the vibration suppression sub-systems ale designed separately using the lower order model.The design of attitude controller is based on the variable structure control (VSC)theory leading to a discontinuous control law.This controller accomplishes asymptotic attitude maneuvering in the closed-loop system and is insensitive to the interaction of elastic modes and uncertainty in the system.To actively suppress the flexible vibrations,the modal velocity feedback control method is presented by using piezoelectric materials as additional sensor and actuator bonded on the surface of the flexible appendages.In addition,a special configuration of actuators for three-axis attitude control is also investigated:the pitch attitude controlled by a momentum wheel,and the roll/yaw control achieved by on-off thrustem.which is modulated by pulse width pulse frequency modulation technique to construct the proper control torque history.Numerical simulations performed show that the rotational maneuver and vibration suppression ale accomplished in spite of the presence of disturbance torque and parameter uncertainty.

  11. Active and passive vibration suppression for space structures

    Hyland, David C.

    1991-01-01

    The relative benefits of passive and active vibration suppression for large space structures (LSS) are discussed. The intent is to sketch the true ranges of applicability of these approaches using previously published technical results. It was found that the distinction between active and passive vibration suppression approaches is not as sharp as might be thought at first. The relative simplicity, reliability, and cost effectiveness touted for passive measures are vitiated by 'hidden costs' bound up with detailed engineering implementation issues and inherent performance limitations. At the same time, reliability and robustness issues are often cited against active control. It is argued that a continuum of vibration suppression measures offering mutually supporting capabilities is needed. The challenge is to properly orchestrate a spectrum of methods to reap the synergistic benefits of combined advanced materials, passive damping, and active control.

  12. Internal Temperature Control For Vibration Testers

    Dean, Richard J.

    1996-01-01

    Vibration test fixtures with internal thermal-transfer capabilities developed. Made of aluminum for rapid thermal transfer. Small size gives rapid response to changing temperatures, with better thermal control. Setup quicker and internal ducting facilitates access to parts being tested. In addition, internal flows smaller, so less energy consumed in maintaining desired temperature settings.

  13. Performance evaluation on vibration control of MR landing gear

    This paper is concerned with the applicability of the developed MR damper to the landing gear system for the attenuating undesired shock and vibration in the landing and taxing phases. First of all, the experimental model of the MR damper is derived based on the results of performance evaluations. Next, a simplified skyhook controller, which is one of the most straightforward, but effective approaches for improving ride comport in vehicles with active suspensions, is formulated. Then, the vibration control performances of the landing gear system using the MR damper are theoretically evaluated in the landing phase of the aircraft. A series of simulation analyses show that the proposed MR damper with the skyhook controller is effective for suppressing undesired vibration of the aircraft body. Finally, the effectiveness of the simulation results are additionally verified via HILS (Hardware-in-the-loop-simulation) method.

  14. Actuator control of edgewise vibrations in wind turbine blades

    Staino, A.; Basu, B.; Nielsen, S. R. K.

    2012-03-01

    Edgewise vibrations with low aerodynamic damping are of particular concern in modern multi-megawatt wind turbines, as large amplitude cyclic oscillations may significantly shorten the life-time of wind turbine components, and even lead to structural damages or failures. In this paper, a new blade design with active controllers is proposed for controlling edgewise vibrations. The control is based on a pair of actuators/active tendons mounted inside each blade, allowing a variable control force to be applied in the edgewise direction. The control forces are appropriately manipulated according to a prescribed control law. A mathematical model of the wind turbine equipped with active controllers has been formulated using an Euler-Lagrangian approach. The model describes the dynamics of edgewise vibrations considering the aerodynamic properties of the blade, variable mass and stiffness per unit length and taking into account the effect of centrifugal stiffening, gravity and the interaction between the blades and the tower. Aerodynamic loads corresponding to a combination of steady wind including the wind shear and the effect of turbulence are computed by applying the modified Blade Element Momentum (BEM) theory. Multi-Blade Coordinate (MBC) transformation is applied to an edgewise reduced order model, leading to a linear time-invariant (LTI) representation of the dynamic model. The LTI description obtained is used for the design of the active control algorithm. Linear Quadratic (LQ) regulator designed for the MBC transformed system is compared with the control synthesis performed directly on an assumed nominal representation of the time-varying system. The LQ regulator is also compared against vibration control performance using Direct Velocity Feedback (DVF). Numerical simulations have been carried out using data from a 5-MW three-bladed Horizontal-Axis Wind Turbine (HAWT) model in order to study the effectiveness of the proposed active controlled blade design in

  15. Structural Vibration Control Using Solid Particle Damper

    Haseena. A

    2015-11-01

    Full Text Available In this paper the effectiveness of a solid particle damper to control structural vibration is experimentally investigated. The vibration control performance and its influencing parameters are examined by a Multi Degree of Freedom (MDOF structure attached with a particle damper (PD under horizontal excitation. In a particle damping system damping is achieved using solid particles or granules and is a passive damping method. Here the enclosure filled with particles is attached to the primary structure undergoing vibration. As the primary structure vibrates, particles undergo inelastic collision within the enclosure resulting high amount of energy dissipation. Based on the analytical study of undamped frame in ANSYS WORKBENCH, dimensions of the frame were fixed and shake table study of a two storied steel frame with and without damper system are carried out. Results shows that effectiveness of damping depends on various parameters like mass, particle size, shape etc. The effectiveness is compared with a friction damper (FD and is observed that PD is more efficient than FD since 31.80% energy is dissipated more in PD compared to FD

  16. Emerging trends in vibration control of wind turbines: a focus on a dual control strategy.

    Staino, Andrea; Basu, Biswajit

    2015-02-28

    The paper discusses some of the recent developments in vibration control strategies for wind turbines, and in this context proposes a new dual control strategy based on the combination and modification of two recently proposed control schemes. Emerging trends in the vibration control of both onshore and offshore wind turbines are presented. Passive, active and semi-active structural vibration control algorithms have been reviewed. Of the existing controllers, two control schemes, active pitch control and active tendon control, have been discussed in detail. The proposed new control scheme is a merger of active tendon control with passive pitch control, and is designed using a Pareto-optimal problem formulation. This combination of controllers is the cornerstone of a dual strategy with the feature of decoupling vibration control from optimal power control as one of its main advantages, in addition to reducing the burden on the pitch demand. This dual control strategy will bring in major benefits to the design of modern wind turbines and is expected to play a significant role in the advancement of offshore wind turbine technologies. PMID:25583867

  17. Magnetic Actuators and Suspension for Space Vibration Control

    Knospe, Carl R.; Allaire, Paul E.; Lewis, David W.

    1993-01-01

    The research on microgravity vibration isolation performed at the University of Virginia is summarized. This research on microgravity vibration isolation was focused in three areas: (1) the development of new actuators for use in microgravity isolation; (2) the design of controllers for multiple-degree-of-freedom active isolation; and (3) the construction of a single-degree-of-freedom test rig with umbilicals. Described are the design and testing of a large stroke linear actuator; the conceptual design and analysis of a redundant coarse-fine six-degree-of-freedom actuator; an investigation of the control issues of active microgravity isolation; a methodology for the design of multiple-degree-of-freedom isolation control systems using modern control theory; and the design and testing of a single-degree-of-freedom test rig with umbilicals.

  18. Vibration suppression of speed-controlled robots with nonlinear control

    Boscariol, Paolo; Gasparetto, Alessandro

    2016-04-01

    In this paper, a simple nonlinear control strategy for the simultaneous position tracking and vibration damping of robots is presented. The control is developed for devices actuated by speed-controlled servo drives. The conditions for the asymptotic stability of the closed-loop system are derived by ensuring its passivity. The capability of achieving improved trajectory tracking and vibration suppression is shown through experimental tests conducted on a three-axis Cartesian robot. The control is aimed to be compatible with most industrial applications given the simplicity of implementation, the reduced computational requirements, and the use of joint position as the only measured signal.

  19. Vibration suppression of speed-controlled robots with nonlinear control

    Boscariol, Paolo; Gasparetto, Alessandro

    2016-06-01

    In this paper, a simple nonlinear control strategy for the simultaneous position tracking and vibration damping of robots is presented. The control is developed for devices actuated by speed-controlled servo drives. The conditions for the asymptotic stability of the closed-loop system are derived by ensuring its passivity. The capability of achieving improved trajectory tracking and vibration suppression is shown through experimental tests conducted on a three-axis Cartesian robot. The control is aimed to be compatible with most industrial applications given the simplicity of implementation, the reduced computational requirements, and the use of joint position as the only measured signal.

  20. Long-term effects of 6-week whole-body vibration on balance recovery and activities of daily living in the postacute phase of stroke: a randomized, controlled trial.

    Nes, I.J.W. van; Latour, H.; Schils, F.; Meijer, R.; Kuijk, A. van; Geurts, A.C.H.

    2006-01-01

    BACKGROUND AND PURPOSE: The long-term effects of 6-weeks whole-body vibration, as a novel method of somatosensory stimulation, on postural control and activities of daily living were compared with those of 6 weeks of exercise therapy on music of the same intensity in the postacute phase of stroke. M

  1. Integrated active sensor system for real time vibration monitoring

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-11-01

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems.

  2. Quantitative robust linear parameter varying H∞ vibration control of flexible structures for saving the control energy

    Zhang, Kai; Scorletti, Gérard; Ichchou, Mohamed; Mieyeville, F.

    2014-01-01

    In this article, a general and systematical quantitative robust linear parameter varying control method is proposed for active vibration control of linear parameter varying flexible structures such that a complete set of control objectives can be considered, especially the reduction of necessarily required control energy and the control input. To achieve this goal, the phase and gain control policies are employed in linear parameter varying H∞ control designs for suitable selection of weighti...

  3. Active Vibration Suppression R and D for the NLC

    The nanometer scale beam sizes at the interaction point in linear colliders limit the allowable motion of the final focus magnets. We have constructed a prototype system to investigate the use of active vibration damping to control magnet motion. Inertial sensors are used to measure the position of a test mass, and a DSP based system provides feedback using electrostatic pushers. Simulation and experimental results for the control of a mechanically simple system are presented

  4. Approximate pole-placement controller using inverse plant dynamics for floor vibration control

    Nyawako, Donald S.; Reynolds, Paul; Hudson, Malcolm J.

    2013-04-01

    Past research and field trials have demonstrated the viability of active vibration control (AVC) technologies for the mitigation of human induced vibrations in problematic floors. They make use of smaller units than their passive counterparts, provide quicker and more efficient control, can tackle multiple modes of vibration simultaneously and adaptability can be introduced to enhance their robustness. Predominantly single-input-single-output (SISO) and multi- SISO collocated sensor and actuator pairs have been utilized in direct output feedback schemes, for example, with direct velocity feedback (DVF). On-going studies have extended such past works to include model-based control approaches, for example, pole-placement (PP), which demonstrate increased flexibility of achieving desired vibration mitigation performances but for which stability issues must be adequately addressed. The work presented here is an extension to the pole-placement controller design using an algebraic approach that has been investigated in past studies. An approximate pole-placement controller formulated via the inversion of the floor dynamics, considered as minimum phase, is designed to achieve target closed-loop performances. Analytical studies and experimental tests are based on a laboratory structure and comparisons in vibration mitigation performances are made with a typical DVF control scheme with inner loop actuator compensation. It is shown that with minimal compensation, primarily in the form of notch filters and gain adjustment, the approximate pole-placement controller scheme is easily formulated and implemented and offers good vibration mitigation performance as well as the potential for isolation and control of specific target modes of vibration. Predicted attenuations of 22dB and 12dB in both the first and second vibration modes of the laboratory structure were also realized in the experimental studies for DVF and the approximate PP controller.

  5. Experimental investigation of jet pulse control on flexible vibrating structures

    Karaiskos, Grigorios; Papanicolaou, Panos; Zacharopoulos, Dimitrios

    2016-08-01

    The feasibility of applying on-line fluid jet pulses to actively control the vibrations of flexible structures subjected to harmonic and earthquake-like base excitations provided by a shake table is explored. The operating principles and capabilities of the control system applied have been investigated in a simplified small-scale laboratory model that is a mass attached at the top free end of a vertical flexible slender beam with rectangular cross-section, the other end of which is mounted on an electrodynamic shaker. A pair of opposite jets placed on the mass at the top of the cantilever beam applied the appropriate forces by ejecting pressurized air pulses controlled by on/off solenoid electro-valves via in house developed control software, in order to control the vibration caused by harmonic, periodic and random excitations at pre-selected frequency content provided by the shaker. The dynamics of the structure was monitored by accelerometers and the jet impulses by pressure sensors. The experimental results have demonstrated the effectiveness and reliability of Jet Pulse Control Systems (JPCS). It was verified that the measured root mean square (RMS) vibration levels of the controlled structure from harmonic and earthquake base excitations, could be reduced by approximately 50% and 33% respectively.

  6. Active Vibration Isolation System for Sub-microultra-precision Turning Machine

    2000-01-01

    Now vibration isolation of ultra-precision machine tool is usually achieved through air-springs systems. As far as HCM-I sub-micro turning machine developed by HIT, an active vibration isolation system that consists of air-springs and electro-magnetic actuators was presented. The primary function of air-springs is to support the turning machine and to isolate the high-frequency vibration. The electro-magnetic actuators controlled by fuzzy-neural networks isolate the low-frequency vibration. The experiment indicates that active vibration isolation system isolates base-vibration effectively in all the frequency range. So the vibration of the machine bed is controlled under 10-6g and the surface roughness is improved.

  7. Control of Rotor-Blade Coupled Vibrations Using Shaft-Based Actuation

    Christensen, Rene H.; Santos, Ilmar

    When implementing active control into bladed rotating machines aiming at reducing blade vibrations, it can be shown that blade as well as rotor vibrations can in fact be controlled by the use of only shaft-based actuation. Thus the blades have to be deliberately mistuned. This paper investigates......-based actuation in practice....

  8. Resonant vibration control of three-bladed wind turbine rotors

    Krenk, Steen; Svendsen, Martin Nymann; Høgsberg, Jan Becker

    2012-01-01

    Rotors with blades, as in wind turbines, are prone to vibrations due to the flexibility of the blades and the support. In the present paper a theory is developed for active control of a combined set of vibration modes in three-bladed rotors. The control system consists of identical collocated...... actuator-sensor pairs on each of the blades, and targets aset of three modes constituting a collective mode with identical motion of all the blades, and two independent whirling modes, in which a relative motion pattern moves forward or backward over the rotor. The natural frequency of the collective mode...... is typically lower than the frequency of the whirling modes due to support flexibility. The control signals from the blades are combined into a mean signal, addressing the collective mode, and three components from which the mean signal has be subtracted, addressing the pair of whirling modes. The...

  9. Shaping frequency response of a vibrating plate for passive and active control applications by simultaneous optimization of arrangement of additional masses and ribs. Part II: Optimization

    Wrona, Stanislaw; Pawelczyk, Marek

    2016-03-01

    It was shown in Part I that an ability to shape frequency response of a vibrating plate according to precisely defined demands has a very high practical potential. It can be used to improve acoustic radiation of the plate for required frequencies or enhance acoustic isolation of noise barriers and device casings. It can be used for both passive and active control. The proposed method is based on mounting several additional ribs and masses (passive and/or active) to the plate surface at locations followed from an optimisation process. In Part I a relevant model of such structure, as a function of arrangement of the additional elements was derived and validated. The model allows calculating natural frequencies and mode-shapes of the whole structure. The aim of this companion paper, Part II, is to present the second stage of the method. This is an optimization process that results in arrangement of the elements guaranteeing desired plate frequency response, and enhancement of controllability and observability measures. For that purpose appropriate cost functions, and constraints followed from technological feasibility are defined. Then, a memetic algorithm is employed to obtain a numerical solution with parameters of the arrangement. The optimization results are initially presented for simple cases to validate the method. Then, more complex scenarios are analysed with very special demands concerning the frequency response to present the full potential of the method. Subsequently, a laboratory experiment is presented and discussed. Finally, other areas of applications of the proposed method are shown and conclusions for future research are drawn.

  10. Vibration Control Induced by Ice of a Jacket Platform

    郑宏宇; 姜大宁; 唐友刚; 周满红

    2003-01-01

    Based on the self-excited vibration theory of ice, the vibration control technology of jacket platform is studied in this paper. The magnetorheological suspensions (MR) unit is chosen as the damper, the control objective function for vibration excited by ice is determined by instantaneous optimal control (IOC) method, and genetic algorithm (GA) is used to select the optimal control force. For the jacket platform of 40 m in height and a 3-floor deck, the vibration responses induced by ice have been calculated before and after control considering the different thickness and speed of ice. It is shown that the control method presented in this paper can reduce the vibration response by 30%, and it is feasible to adopt MR absorber and GA in the control of vibration induced by ice.

  11. Control of noise and structural vibration a MATLAB-based approach

    Mao, Qibo

    2013-01-01

    Control of Noise and Structural Vibration presents a MATLAB®-based approach to solving the problems of undesirable noise generation and transmission by structures and of undesirable vibration within structures in response to environmental or operational forces. The fundamentals of acoustics, vibration and coupling between vibrating structures and the sound fields they generate are introduced including a discussion of the finite element method for vibration analysis. Following this, the treatment of sound and vibration control begins, illustrated by example systems such as beams, plates and double plate structures. Sensor and actuator placement is explained as is the idea of modal sensor–actuators. The design of appropriate feedback systems includes consideration of basic stability criteria and robust active structural acoustic control. Single and multi-mode positive position feedback (PPF) control systems are also described in the context of loudspeaker–duct model with non-collocated loudspeaker–microp...

  12. Microgravity Active Vibration Isolation System on Parabolic Flights

    Dong, Wenbo; Pletser, Vladimir; Yang, Yang

    2016-07-01

    The Microgravity Active Vibration Isolation System (MAIS) aims at reducing on-orbit vibrations, providing a better controlled lower gravity environment for microgravity physical science experiments. The MAIS will be launched on Tianzhou-1, the first cargo ship of the China Manned Space Program. The principle of the MAIS is to suspend with electro-magnetic actuators a scientific payload, isolating it from the vibrating stator. The MAIS's vibration isolation capability is frequency-dependent and a decrease of vibration of about 40dB can be attained. The MAIS can accommodate 20kg of scientific payload or sample unit, and provide 30W of power and 1Mbps of data transmission. The MAIS is developed to support microgravity scientific experiments on manned platforms in low earth orbit, in order to meet the scientific requirements for fluid physics, materials science, and fundamental physics investigations, which usually need a very quiet environment, increasing their chances of success and their scientific outcomes. The results of scientific experiments and technology tests obtained with the MAIS will be used to improve future space based research. As the suspension force acting on the payload is very small, the MAIS can only be operative and tested in a weightless environment. The 'Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, German Aerospace Centre) granted a flight opportunity to the MAIS experiment to be tested during its 27th parabolic flight campaign of September 2015 performed on the A310 ZERO-G aircraft managed by the French company Novespace, a subsidiary of the 'Centre National d'Etudes Spatiales' (CNES, French Space Agency). The experiment results confirmed that the 6 degrees of freedom motion control technique was effective, and that the vibration isolation performance fulfilled perfectly the expectations based on theoretical analyses and simulations. This paper will present the design of the MAIS and the experiment results obtained during the

  13. Vibrational optical activity principles and applications

    Nafie, Laurence A

    2011-01-01

    This unique book stands as the only comprehensive introduction to vibrational optical activity (VOA) and is the first single book that serves as a complete reference for this relatively new, but increasingly important area of molecular spectroscopy. Key features:A single-source reference on this topic that introduces, describes the background and foundation of this area of spectroscopy.Serves as a guide on how to use it to carry out applications with relevant problem solving.Depth and breadth of the subject is presented in a logical, complete and progressive fashion. A

  14. Acoustic and Vibration Control for an Underwater Structure under Mechanical Excitation

    Shi-Jian Zhu

    2014-01-01

    Full Text Available Acoustic and vibration control for an underwater structure under mechanical excitation has been investigated by using negative feedback control algorithm. The underwater structure is modeled with cylindrical shells, conical shells, and circular bulkheads, of which the motion equations are built with the variational approach, respectively. Acoustic property is analyzed by the Helmholtz integration formulation with boundary element method. Based on negative feedback control algorithm, a control loop with a coupling use of piezoelectric sensor and actuator is built, and accordingly some numerical examples are carried out on active control of structural vibration and acoustic response. Effects of geometrical and material parameters on acoustic and vibration properties are investigated and discussed.

  15. OPTIMUM CONTROL TO A PARTIALLY CONTROLLED TURBOGENERATOR SHAFT TORSIONAL VIBRATION SYSTEM

    2002-01-01

    The optimal control to a partially controlled turbogenerator shaft torsional vibration system is investigated. The principle of input feedforward control is presented to achieve the minimum of the average vibration energy in a system,and the optimal control matrix of the system is derived. A turbogenerator shaft system is taken as an example to simulate the optimal control process of the torsional vibration. Results from this simulation indicate that the vibration can be effectively controlled by a partial control strategy.

  16. Structural vibration control for a class of connected multistructure mechanical systems

    Francisco Palacios-Quiñonero; Josep M. Rossell; Josep Rubió-Massegú; Hamid R. Karimi

    2012-01-01

    A mathematical model to compute the overall vibrational response of connected multistructure mechanical systems is presented. Using the proposed model, structural vibration control strategies for seismic protection of multibuilding systems can be efficiently designed. Particular attention is paid to the design of control configurations that combine passive interbuilding dampers with local feedback control systems implemented in the buildings. These hybrid active-passive control strategies pos...

  17. Mechanical systems a unified approach to vibrations and controls

    Gans, Roger F

    2015-01-01

    This essential textbook covers analysis and control of engineering mechanisms, which include almost any apparatus with moving parts used in daily life, from musical instruments to robots. The text  presents both vibrations and controls with considerable breadth and depth using a unified notation. It strikes a nice balance between the analytical and the practical.  This text contains enough material for a two semester sequence, but it can also be used in a single semester course combining the two topics. Mechanical Systems: A Unified Approach to Vibrations and Controls presents a common notation and approach to these closely related areas. Examples from the both vibrations and controls components are integrated throughout this text. This book also: ·         Presents a unified approach to vibrations and controls, including an excellent diagram that simultaneously discusses embedding classical vibrations (mechanical systems) in a discussion of models, inverse models, and open and closed loop control ...

  18. Active Vibration Control of Tethered Solar Power Satellite during Attitude Maneuvering%绳系太阳能发电卫星姿态机动的主动振动控制

    周荻; 范继祥

    2012-01-01

    针对绳系太阳能发电卫星大角度回转机动时太阳能板的振动抑制问题,提出了主姿态控制和基于绳中张力的主动振动控制技术相结合的复合控制方法.建立了绳系太阳能发电卫星系统的动力学方程,并基于任务函数控制算法设计了主控制器保证卫星姿态的渐近稳定和挠性结构振动的衰减性;考虑到绳的非线性特性,基于任务函数控制算法设计了绳系卫星系统的主动振动抑制辅助控制器来抑制挠性结构的振动.设计的同时证明了系统的稳定性.将该方法应用于绳系卫星的大角度单轴回转机动的仿真研究,结果表明:该方法不仅能够使绳系卫星完成姿态机动,而且能够有效地抑制太阳能板的振动.%For vibration suppression of tethered Solar Power Satellite (SPS) during large-angle slewing maneuver, a composite control method is proposed by combining main attitude control with active vibration control based on tether tension. Dynamics equations for the slewing motion of tethered SPS are presented. A mission Function (MF) Control Algorithm is applied to design these two controllers. The main controller is able not only to implement attitude maneuvering of tethered satellite but also suppress the relatively large amplitude vibration of the flexible solar panel. The compensate control system acting on the comers of flexible solar panels is required for the further vibration suppression, and the nonlinearity of the flexible tether is taken into account in the controller design. In the design process, the stability of the vibration control system is proved. Simulation results demonstrate that the proposed approach can significantly suppress the vibration of the flexible solar panel during and after the maneuver operation.

  19. Active low-frequency vertical vibration isolation system for precision measurements

    Wu, Kang; Li, Gang; Hu, Hua; Wang, Lijun

    2016-06-01

    Low-frequency vertical vibration isolation systems play important roles in precision measurements to reduce seismic and environmental vibration noise. Several types of active vibration isolation systems have been developed. However, few researches focus on how to optimize the test mass install position in order to improve the vibration transmissibility. An active low-frequency vertical vibration isolation system based on an earlier instrument, the Super Spring, is designed and implemented. The system, which is simple and compact, consists of two stages: a parallelogram-shaped linkage to ensure vertical motion, and a simple spring-mass system. The theoretical analysis of the vibration isolation system is presented, including terms erroneously ignored before. By carefully choosing the mechanical parameters according to the above analysis and using feedback control, the resonance frequency of the system is reduced from 2.3 to 0.03 Hz, a reduction by a factor of more than 75. The vibration isolation system is installed as an inertial reference in an absolute gravimeter, where it improved the scatter of the absolute gravity values by a factor of 5. The experimental results verifies the improved performance of the isolation system, making it particularly suitable for precision experiments. The improved vertical vibration isolation system can be used as a prototype for designing high-performance active vertical isolation systems. An improved theoretical model of this active vibration isolation system with beam-pivot configuration is proposed, providing fundamental guidelines for vibration isolator design and assembling.

  20. Robust saturated control of human-induced floor vibrations via a proof-mass actuator

    Diaz, I.M.; Reynolds, P.

    2009-01-01

    This paper is concerned with the design of a robust active vibration control system that makes use of a proof-mass actuator for the mitigation of human-induced vibrations in floor structures. Ideally, velocity feedback control (VFC) is unconditionally stable and robust to spillover effects, interlacing of poles and zeros of collocated control is then accomplished. However, the use of a proof-mass actuator influences the system dynamics and the alternating pole-zero pattern of the system forme...

  1. Semiactive Vibration Control for Horizontal Axis Washing Machine

    Barış Can Yalçın; Haluk Erol

    2015-01-01

    A semiactive vibration control method is developed to cope with the dynamic stability problem of a horizontal axis washing machine. This method is based on adjusting the maximum force values produced by the semiactive suspension elements considering a washing machine’s vibration data (three axis angular position and three axis angular acceleration values in time). Before actuation signals are received by the step motors of the friction dampers, vibration data are evaluated, and then, the step...

  2. Applications of super elasticity in vibrational control

    In this work, the possibilities of using shape memory alloys (SMA) as passive dampers devices in mechanicals vibrations problems are studied.The property that is exploited is the super elastic effect, by wich strains of the order of 10% can be obtained.The relationship between stress and strain means that this is an inelastic process.Nevertheless when load is removed the material recoveries its original dimension, presenting zero or almost zero permanent strain relative to others common materials, describing in its stress-strain diagram an important hysteretic loop.This features occurs basically because in well suited conditions the SMA can undergo martensitic transformations induced by stress.A series of uniaxial tension tests in commercial NiTi wires are performed, in order to characterize the super elastic behavior of the material.The influence of variables as ambient temperature, strain rate, strain levels and number of tension cycles accumulated are studied paying attention to the dissipative capacity of the material defined by means of the shape of the hysteretic loop.The influence on the damping capacity of the thermal effects associated with the martensitic transformation are evaluated by performing experiments at different transformation rates.Results are rationalized in terms of a model considering the interaction between a source term (heat of transformation), heat convection to the ambient and conduction along the wire.Some numerical results are obtained and discussed. For a performance evaluation in devices applications a simplified model of super elasticity is proposed.Then, the response of an elastic frame structure endowed with SMA tensors is evaluated following the model behavior when seismic movement is imposed at the base.The obtained results verify the possibility of using SMA as kernel elements in vibration control.This conclusion is experimentally verified in a prototype of the structure specially designed and constructed for this work

  3. Active balance system and vibration balanced machine

    Qiu, Songgang (Inventor); Augenblick, John E. (Inventor); Peterson, Allen A. (Inventor); White, Maurice A. (Inventor)

    2005-01-01

    An active balance system is provided for counterbalancing vibrations of an axially reciprocating machine. The balance system includes a support member, a flexure assembly, a counterbalance mass, and a linear motor or an actuator. The support member is configured for attachment to the machine. The flexure assembly includes at least one flat spring having connections along a central portion and an outer peripheral portion. One of the central portion and the outer peripheral portion is fixedly mounted to the support member. The counterbalance mass is fixedly carried by the flexure assembly along another of the central portion and the outer peripheral portion. The linear motor has one of a stator and a mover fixedly mounted to the support member and another of the stator and the mover fixedly mounted to the counterbalance mass. The linear motor is operative to axially reciprocate the counterbalance mass.

  4. Time-delayed absorber for controlling friction-driven vibration

    Chatterjee, S.; Mahata, P.

    2009-04-01

    The efficacy of an active absorber based on the time-delayed displacement difference feedback in controlling friction-driven vibrations is discussed. Mainly two types of absorbers are considered: the tuned absorber having the natural frequency same as that of the primary system and the high-frequency absorber with the natural frequency higher than that of the primary system. The local stability analysis clearly demonstrates that the static equilibrium can be locally stabilized by appropriately selecting the control gain and the time-delay. The regions of stability are delineated in the plane of the control parameters. The robustness analysis is performed to help select the control parameters for the best performance. A method of optimizing the robustness of the system is presented. The influences of the absorber parameters on the degree of stability and the robustness are discussed. Numerical simulations of the system demonstrate that proper choices of the control parameters can also attain the global stability of the system. Numerical simulations reveal that apart from the globally stable static equilibrium or the coexisting locally stable static equilibrium with the stationary limit cycle vibrations, unbounded motions are also possible for some parameter values. Thus, care should be exercised in selecting the absorber parameters.

  5. Vibration reduction on a nonlinear flexible structure through resonant control and disturbance estimator

    Cazzulani, Gabriele; Resta, Ferruccio; Ripamonti, Francesco

    2012-04-01

    Large mechanical structures are often affected by high level vibrations due to their flexibility. These vibrations can reduce the system performances and lifetime and the use of active vibration control strategies becomes very attractive. In this paper a combination of resonant control and a disturbance estimator is proposed. This solution is able to improve the system performances during the transient motion and also to reject the disturbance forces acting on the system. Both control logics are based on a modal approach, since it allows to describe the structure dynamics considering only few degrees of freedom.

  6. Control strategies and experimental verifications of the electromagnetic mass damper system for structural vibration control

    Zhang Chunwei; Ou Jinping

    2008-01-01

    The electromagnetic mass damper (EMD) control system, as an innovative active control system to reducestructural vibration, offers many advantages over traditional active mass driver/damper (AMD) control systems. In this paper,studies of several EMD control strategies and bench-scale shaking table tests of a two-story model structure are described.First, two structural models corresponding to uncontrolled and Zeroed cases are developed, and parameters of these modelsare validated through sinusoidal sweep tests to provide a basis for establishing an accurate mathematical model for furtherstudies. Then, a simplified control strategy for the EMD system based on the pole assignment control algorithm is proposed.Moreover, ideal pole locations are derived and validated through a series of shaking table tests. Finally, three benchmarkearthquake ground motions and sinusoidal sweep waves are imposed onto the structure to investigate the effectiveness andfeasibility of using this type of innovative active control system for structural vibration control. In addition, the robustnessof the EMD system is examined. The test results show that the EMD system is an effective and robust system for the controlof structural vibrations.

  7. Incorporating a disturbance observer with direct velocity feedback for control of human-induced vibrations

    Nyawako, Donald; Reynolds, Paul; Hudson, Emma

    2016-04-01

    Feedback control strategies are desirable for disturbance rejection of human-induced vibrations in civil engineering structures as human walking forces cannot easily be measured. In relation to human-induced vibration control studies, most past researches have focused on floors and footbridges and the widely used linear controller implemented in the trials has been the direct velocity feedback (DVF) scheme. With appropriate compensation to enhance its robustness, it has been shown to be effective at damping out the problematic modes of vibration of the structures in which the active vibration control systems have been implemented. The work presented here introduces a disturbance observer (DOB) that is used with an outer-loop DVF controller. Results of analytical studies presented in this work based on the dynamic properties of a walkway bridge structure demonstrate the potential of this approach for enhancing the vibration mitigation performance offered by a purely DVF controller. For example, estimates of controlled frequency response functions indicate improved attenuation of vibration around the dominant frequency of the walkway bridge structure as well as at higher resonant frequencies. Controlled responses from three synthesized walking excitation forces on a walkway bridge structure model show that the inclusion of the disturbance observer with an outer loop DVF has potential to improve on the vibration mitigation performance by about 3.5% at resonance and 6-10% off-resonance. These are realised with hard constraints being imposed on the low frequency actuator displacements.

  8. Vibration control of an elastic strip by a singular force

    Erol Uzal; Banu Korbahti

    2010-04-01

    Vibration characteristics of an elastic plate in the shape of an infinite strip are changed by applying a lateral concentrated force to the plate. The homogeneous, isotropic, elastic plate is infinite in the -direction and the sides are simply supported. The size of the force is changed in proportion to the displacement measured at a certain point of the plate. The proportionality constant serves as the control parameter. The mathematical formulation of this distributed control problem and its analytical solution in terms of the vibration frequencies of the plate are given. The vibration frequencies are plotted as a function of the control parameter.

  9. Vibration and Dynamic Response Control of Nonuniform Composite Rotating Blades

    Gwon-Chan Yoon

    2006-05-01

    Full Text Available This paper addresses the free vibration, dynamic response, and the active control of composite rotating pretwisted blades modeled as nonuniform thin-walled beams, fixed at the hub at a setting angle, and incorporating piezoelectrically induced damping capabilities. In this sense, a distributed piezoelectric actuator system activated through the application of an out-of-phase electrical current is used to suppress the dynamic response of the rotating beam subjected to a Heaviside pulse. The blade model incorporates nonclassical effects such as transverse shear, secondary warping, and rotary inertias, and includes the centrifugal and Coriolis force fields. A velocity feedback control law relating the piezoelectrically induced bending moment at the beam tip with appropriately selected kinematical response quantities is used, and the beneficial effects of its implementation upon the closed loop eigenvibration and dynamic characteristics of the blade are highlighted.

  10. Control of ground-borne noise and vibration

    Wilson, G. P.; Saurenman, H. J.; Nelson, J. T.

    1983-03-01

    Ground-borne noise and vibration created by train operations is one of the major environmental problems faced by rail transit systems. In the past 10-20 years there have been a number of developments in the control and prediction of ground-borne noise and vibration although it is evident that further research is needed. In this paper the focus is on two methods of controlling the vibration radiated by the transit structure. First is the use of floating slab trackbeds, a method that has proven to be very effective at reducing vibration at frequencies above the resonance frequency of the floating slab system. Second is to modify the design of transit car bogies such that the wheel/rail forces are reduced. Although this method is still in the exploratory phase it has been shown that proper design of the bogie suspension can significantly reduce the levels of ground-borne noise and vibration.