WorldWideScience

Sample records for active trp radical

  1. Pulse radiolysis studies of intramolecular electron transfer in model peptides and proteins. 7. Trp -> TyrO radical transformation in hen egg-white lysozyme. Effects of pH, temperature, Trp62 oxidation and inhibitor binding

    Bobrowski, K.; Holcman, J.; Poznanski, J.; Wierzchowski, K.L.

    Intramolecular long-range electron transfer (LRET) in hen egg-white lysozyme (HEWL) accompanying Trp --> TyrO radical transformation was investigated in aqueous solution by pulse radiolysis as a function of pH (5.2-7.4) and temperature (283-328K). The reaction was induced by highly selective...... exchange in native HEWL below its denaturation temperature. Selective oxidation by ozone of the Trp62 indole side-chain in HEWL to N'-formylkynurenine (NFKyn62-HEWL) caused a large drop in the initial yield of Trp(.) radicals, G(Trp(.))(i). This was accompanied by a relatively small decrease in k(5) but...... selective oxidation by ozone had a pronounced effect on its temperature-dependence. Taken together these observations indicate that of the six tryptophans present in HEWL Trp62 contributes about 50% to the yield of the observed LRET. In the enzyme-inhibitor complex, HEWL(GlcNAc)(3), where Trp62 and Trp63...

  2. Physiological effects of anti-TRAP protein activity and tRNA(Trp) charging on trp operon expression in Bacillus subtilis.

    Cruz-Vera, Luis R; Gong, Ming; Yanofsky, Charles

    2008-03-01

    The Bacillus subtilis anti-TRAP protein regulates the ability of the tryptophan-activated TRAP protein to bind to trp operon leader RNA and promote transcription termination. AT synthesis is regulated both transcriptionally and translationally by uncharged tRNA(Trp). In this study, we examined the roles of AT synthesis and tRNA(Trp) charging in mediating physiological responses to tryptophan starvation. Adding excess phenylalanine to wild-type cultures reduced the charged tRNA(Trp) level from 80% to 40%; the charged level decreased further, to 25%, in an AT-deficient mutant. Adding tryptophan with phenylalanine increased the charged tRNA(Trp) level, implying that phenylalanine, when added alone, reduces the availability of tryptophan for tRNA(Trp) charging. Changes in the charged tRNA(Trp) level observed during growth with added phenylalanine were associated with increased transcription of the genes of tryptophan metabolism. Nutritional shift experiments, from a medium containing tryptophan to a medium with phenylalanine and tyrosine, showed that wild-type cultures gradually reduced their charged tRNA(Trp) level. When this shift was performed with an AT-deficient mutant, the charged tRNA(Trp) level decreased even further. Growth rates for wild-type and mutant strains deficient in AT or TRAP or that overproduce AT were compared in various media. A lack of TRAP or overproduction of AT resulted in phenylalanine being required for growth. These findings reveal the importance of AT in maintaining a balance between the synthesis of tryptophan versus the synthesis of phenylalanine, with the level of charged tRNA(Trp) acting as the crucial signal regulating AT production. PMID:18178730

  3. A structural view of ligand-dependent activation in thermoTRP channels

    SebastianBrauchi

    2014-05-01

    Full Text Available Transient Receptor Potential (TRP proteins are a large family of ion channels, grouped intoseven sub-families. Although great advances have been made regarding the activation andmodulation of TRP channel activity, detailed molecular mechanisms governing TRPchannel gating are still needed. Sensitive to electric, chemical, mechanical, and thermalcues, TRP channels are tightly associated with the detection and integration of sensoryinput, emerging as a model to study the polymodal activation of ion channel proteins.Among TRP channels, the temperature-activated kind constitute a subgroup by itself,formed by Vanilloid receptors 1-4, Melastatin receptors 2, 4, 5 and 8, TRPC5, and TRPA1.Some of the so-called “thermoTRP” channels participate in the detection of noxious stimulimaking them an interesting pharmacological target for the treatment of pain. However, thepoor specificity of the compounds available in the market represents an important obstacleto overcome. Understanding the molecular mechanics underlying ligand-dependentmodulation of TRP channels may help with the rational design of novel syntheticanalgesics. The present review focuses on the structural basis of ligand-dependentactivation of TRPV1 and TRPM8 channels. Special attention is drawn to the dissection ofligand-binding sites within TRPV1, PIP 2 -dependent modulation of TRP channels, and thestructure of natural and synthetic ligands.

  4. Trp53 activity is repressed in radio-adapted cultured murine limb bud cells

    Understanding the effects of ionizing radiation (IR) at low dose in fetal models is of great importance, because the fetus is considered to be at the most radiosensitive stage of the development and prenatal radiation might influence subsequent development. We previously demonstrated the existence of an adaptive response (AR) in murine fetuses after pre-exposure to low doses of X-rays. Trp53-dependent apoptosis was suggested to be responsible for the teratogenic effects of IR; decreased apoptosis was observed in adapted animals. In this study, in order to investigate the role of Trp53 in AR, we developed a new model of irradiated micromass culture of fetal limb bud cells, which replicated proliferation, differentiation and response to IR in murine embryos. Murine fetuses were exposed to whole-body priming irradiation of 0.3 Gy or 0.5 Gy at embryonic day 11 (E11). Limb bud cells (collected from digital ray areas exhibiting radiation-induced apoptosis) were cultured and exposed to a challenging dose of 4 Gy at E12 equivalent. The levels of Trp53 protein and its phosphorylated form at Ser18 were investigated. Our results suggested that the induction of AR in mouse embryos was correlated with a repression of Trp53 activity. (author)

  5. TRP channel mediated neuronal activation and ablation in freely behaving zebrafish

    Chen, Shijia; Chiu, Cindy N.; McArthur, Kimberly L.; Fetcho, Joseph R.; Prober, David A.

    2015-01-01

    The zebrafish (Danio rerio) is a useful vertebrate model system in which to study neural circuits and behavior, but tools to modulate neurons in freely behaving animals are limited. As poikilotherms that live in water, zebrafish are amenable to thermal and pharmacological perturbations. We exploit these properties by using transient receptor potential (TRP) channels to activate or ablate specific neuronal populations using the chemical and thermal agonists of heterologously expressed TRPV1, T...

  6. TRP channel mediated neuronal activation and ablation in freely behaving zebrafish.

    Chen, Shijia; Chiu, Cindy N; McArthur, Kimberly L; Fetcho, Joseph R; Prober, David A

    2016-02-01

    The zebrafish (Danio rerio) is a useful vertebrate model system in which to study neural circuits and behavior, but tools to modulate neurons in freely behaving animals are limited. As poikilotherms that live in water, zebrafish are amenable to thermal and pharmacological perturbations. We exploit these properties by using transient receptor potential (TRP) channels to activate or ablate specific neuronal populations using the chemical and thermal agonists of heterologously expressed TRPV1, TRPM8 and TRPA1. PMID:26657556

  7. Position-Dependent Influence of the Three Trp Residues on the Membrane Activity of the Antimicrobial Peptide, Tritrpticin

    Mauricio Arias

    2014-11-01

    Full Text Available Antimicrobial peptides (AMPs constitute promising candidates for the development of new antibiotics. Among the ever-expanding family of AMPs, tritrpticin has strong antimicrobial activity against a broad range of pathogens. This 13-residue peptide has an unusual amino acid sequence that is almost symmetrical and features three central Trp residues with two Arg residues near each end of the peptide. In this work, the role of the three sequential Trp residues in tritrpticin was studied in a systematic fashion by making a series of synthetic peptides with single-, double- and triple-Trp substitutions to Tyr or Ala. 1H NMR and fluorescence spectroscopy demonstrated the ability of all of the tritrpticin-analog peptides to interact with negatively-charged membranes. Consequently, most tritrpticin analogs exhibited the ability to permeabilize synthetic ePC:ePG (egg-yolk phosphatidylcholine (ePC, egg-yolk phosphatidylglycerol (ePG vesicles and live Escherichia coli bacteria. The membrane perturbation characteristics were highly dependent on the location of the Trp residue substitution, with Trp6 being the most important residue and Trp8 the least. The membrane permeabilization activity of the peptides in synthetic and biological membranes was directly correlated with the antimicrobial potency of the peptides against E. coli. These results contribute to the understanding of the role of each of the three Trp residues to the antimicrobial activity of tritrpticin.

  8. Thermodynamics of tryptophan-mediated activation of the trp RNA-binding attenuation protein.

    McElroy, Craig A; Manfredo, Amanda; Gollnick, Paul; Foster, Mark P

    2006-06-27

    The trp RNA-binding attenuation protein (TRAP) functions in many bacilli to control the expression of the tryptophan biosynthesis genes. Transcription of the trp operon is controlled by TRAP through an attenuation mechanism, in which competition between two alternative secondary-structural elements in the 5' leader sequence of the nascent mRNA is influenced by tryptophan-dependent binding of TRAP to the RNA. Previously, NMR studies of the undecamer (11-mer) suggested that tryptophan-dependent control of RNA binding by TRAP is accomplished through ligand-induced changes in protein dynamics. We now present further insights into this ligand-coupled event from hydrogen/deuterium (H/D) exchange analysis, differential scanning calorimetry (DSC), and isothermal titration calorimetry (ITC). Scanning calorimetry showed tryptophan dissociation to be independent of global protein unfolding, while analysis of the temperature dependence of the binding enthalpy by ITC revealed a negative heat capacity change larger than expected from surface burial, a hallmark of binding-coupled processes. Analysis of this excess heat capacity change using parameters derived from protein folding studies corresponds to the ordering of 17-24 residues per monomer of TRAP upon tryptophan binding. This result is in agreement with qualitative analysis of residue-specific broadening observed in TROSY NMR spectra of the 91 kDa oligomer. Implications for the mechanism of ligand-mediated TRAP activation through a shift in a preexisting conformational equilibrium and an induced-fit conformational change are discussed. PMID:16784236

  9. Sensory Nerve Terminal Mitochondrial Dysfunction Activates Airway Sensory Nerves via Transient Receptor Potential (TRP) Channels

    Nesuashvili, Lika; Hadley, Stephen H; Parmvir K Bahia; Taylor-Clark, Thomas E.

    2013-01-01

    Mitochondrial dysfunction and subsequent oxidative stress has been reported for a variety of cell types in inflammatory diseases. Given the abundance of mitochondria at the peripheral terminals of sensory nerves and the sensitivity of transient receptor potential (TRP) ankyrin 1 (A1) and TRP vanilloid 1 (V1) to reactive oxygen species (ROS) and their downstream products of lipid peroxidation, we investigated the effect of nerve terminal mitochondrial dysfunction on airway sensory nerve excita...

  10. Free radical scavenging activity of papaya juice

    Papaya juice is an efficient scavenger of highly reactive hydroxyl radicals (OH radical) formed during 60Co irradiation of water. The OH anion radicals were detected by the electron spin resonance (ESR) technique of spin trapping using DMPO (5,5-dimethyl-1-pyrroline-N-oxide) or by a colorimetric assay in which salicylate is converted into polyhydroxybenzoic acids. Papaya juice is also able to quench the ESR signal of a stable free radical (TEMPOL) and the ESR signal of the DMPO-OH adduct. The active substance(s) in papaya juice are heat-stable, dialyzable, and soluble in water but not in lipid solvents. The active agents do not appear to be ascorbate, tocopherol, or carotenoids. (author)

  11. Psychiatric Disorders and TRP Channels: Focus on Psychotropic Drugs.

    Nazıroğlu, Mustafa; Demirdaş, Arif

    2015-01-01

    Psychiatric and neurological disorders are mostly associated with the changes in neural calcium ion signaling pathways required for activity-triggered cellular events. One calcium channel family is the TRP cation channel family, which contains seven subfamilies. Results of recent papers have discovered that calcium ion influx through TRP channels is important. We discuss the latest advances in calcium ion influx through TRP channels in the etiology of psychiatric disorders. Activation of TRPC4, TRPC5, and TRPV1 cation channels in the etiology of psychiatric disorders such as anxiety, fear-associated responses, and depression modulate calcium ion influx. Evidence substantiates that anandamide and its analog (methanandamide) induce an anxiolytic-like effect via CB1 receptors and TRPV1 channels. Intracellular calcium influx induced by oxidative stress has an significant role in the etiology of bipolar disorders (BDs), and studies recently reported the important role of TRP channels such as TRPC3, TRPM2, and TRPV1 in converting oxidant or nitrogen radical signaling to cytosolic calcium ion homeostasis in BDs. The TRPV1 channel also plays a function in morphine tolerance and hyperalgesia. Among psychotropic drugs, amitriptyline and capsazepine seem to have protective effects on psychiatric disorders via the TRP channels. Some drugs such as cocaine and methamphetamine also seem to have an important role in alcohol addiction and substance abuse via activation of the TRPV1 channel. Thus, we explore the relationships between the etiology of psychiatric disorders and TRP channel-regulated mechanisms. Investigation of the TRP channels in psychiatric disorders holds the promise of the development of new drug treatments. PMID:26411768

  12. Free Radical Scavenging Activity of Leaves of Alocasia indica (Linn)

    Mulla, W. A.; Salunkhe, V. R.; Kuchekar, S. B.; Qureshi, M. N.

    2009-01-01

    The free radical scavenging potential of the plant Alocasia indica(Linn.) was studied by using different antioxidant models of screening like scavenging of 1,1-diphenyl-2-picryl hydrazyl radical, nitric oxide radical, superoxide anion radical, hydroxyl radical, iron chelating activity, total antioxidant capacity, non-enzymatic glycosylation of haemoglobin, rapid screening for antioxidant compounds by thin layer chromatography. The hydroalcoholic extract at 1000 μg/ml showed maximum scavenging...

  13. Phytochemicals from Ruta graveolens Activate TAS2R Bitter Taste Receptors and TRP Channels Involved in Gustation and Nociception.

    Mancuso, Giuseppe; Borgonovo, Gigliola; Scaglioni, Leonardo; Bassoli, Angela

    2015-01-01

    Ruta graveolens (rue) is a spontaneous plant in the Mediterranean area with a strong aroma and a very intense bitter taste, used in gastronomy and in folk medicine. From the leaves, stems and fruits of rue, we isolated rutin, rutamarin, three furanocoumarins, two quinolinic alkaloids, a dicoumarin and two long chain ketones. Bitter taste and chemesthetic properties have been evaluated by in vitro assays with twenty receptors of the TAS2R family and four TRP ion channels involved in gustation and nociception. Among the alkaloids, skimmianine was active as a specific agonist of T2R14, whereas kokusaginin did not activate any of the tested receptors. The furanocoumarins activates TAS2R10, 14, and 49 with different degrees of selectivity, as well as the TRPA1 somatosensory ion channel. Rutamarin is an agonist of TRPM5 and TRPV1 and a strong antagonist of TRPM8 ion channels. PMID:26501253

  14. Phytochemicals from Ruta graveolens Activate TAS2R Bitter Taste Receptors and TRP Channels Involved in Gustation and Nociception

    Giuseppe Mancuso

    2015-10-01

    Full Text Available Ruta graveolens (rue is a spontaneous plant in the Mediterranean area with a strong aroma and a very intense bitter taste, used in gastronomy and in folk medicine. From the leaves, stems and fruits of rue, we isolated rutin, rutamarin, three furanocoumarins, two quinolinic alkaloids, a dicoumarin and two long chain ketones. Bitter taste and chemesthetic properties have been evaluated by in vitro assays with twenty receptors of the TAS2R family and four TRP ion channels involved in gustation and nociception. Among the alkaloids, skimmianine was active as a specific agonist of T2R14, whereas kokusaginin did not activate any of the tested receptors. The furanocoumarins activates TAS2R10, 14, and 49 with different degrees of selectivity, as well as the TRPA1 somatosensory ion channel. Rutamarin is an agonist of TRPM5 and TRPV1 and a strong antagonist of TRPM8 ion channels.

  15. Inactivation efficiencies of radical reactions with biologically active DNA

    Dilute aqueous solutions of biologically active ΦX174 DNA may serve as a simplified model system of the cell. Damage to the DNA after irradiation with γ-rays, may be ascribed to reactions with radical OH, radical H and esub(aq)- or secondary radicals, arising from reactions of water radicals with added scavengers. Conversion of primary (water) radicals into secondary (scavenger) radicals leads to a considerable protection of the DNA, which however, would have been larger if these secondary radicals did not contribute to DNA inactivation. The inactivation yield due to isopropanol or formate (secondary) radicals depends on dose rate as well as DNA concentration. Furthermore the inactivation efficiencies of the reactions of both the primary and the secondary radicals with single-stranded DNA could be established. (author)

  16. Free radical-mediated activation of hydrazine derivatives.

    Kalyanaraman, B.; Sinha, B. K.

    1985-01-01

    Hydrazines are known to undergo oxidative activation in several enzymatic systems in vitro. Free radicals or carbonium ions have been proposed as active intermediates during such activation. The toxic effects elicited by hydrazines have also been linked to free radical-mediated activation. In this report, we have reviewed the identification of organic free radicals from hydrazines by direct ESR and ESR-spin trapping.

  17. Histidine 352 (His352 and tryptophan 355 (Trp355 are essential for flax UGT74S1 glucosylation activity toward secoisolariciresinol.

    Kaushik Ghose

    Full Text Available Flax secoisolariciresinol diglucoside (SDG lignan is a natural phytoestrogen for which a positive role in metabolic diseases is emerging. Until recently however, much less was known about SDG and its monoglucoside (SMG biosynthesis. Lately, flax UGT74S1 was identified and characterized as an enzyme sequentially glucosylating secoisolariciresinol (SECO into SMG and SDG when expressed in yeast. However, the amino acids critical for UGT74S1 glucosyltransferase activity were unknown. A 3D structural modeling and docking, site-directed mutagenesis of five amino acids in the plant secondary product glycosyltransferase (PSPG motif, and enzyme assays were conducted. UGT74S1 appeared to be structurally similar to the Arabidopsis thaliana UGT72B1 model. The ligand docking predicted Ser357 and Trp355 as binding to the phosphate and hydroxyl groups of UDP-glucose, whereas Cys335, Gln337 and Trp355 were predicted to bind the 7-OH, 2-OCH3 and 17-OCH3 of SECO. Site-directed mutagenesis of Cys335, Gln337, His352, Trp355 and Ser357, and enzyme assays revealed an alteration of these binding sites and a significant reduction of UGT74S1 glucosyltransferase catalytic activity towards SECO and UDP-glucose in all mutants. A complete abolition of UGT74S1 activity was observed when Trp355 was substituted to Ala355 and Gly355 or when changing His352 to Asp352, and an altered metabolite profile was observed in Cys335Ala, Gln337Ala, and Ser357Ala mutants. This study provided for the first time evidence that Trp355 and His352 are critical for UGT74S1's glucosylation activity toward SECO and suggested the possibility for SMG production in vitro.

  18. Inactivation efficiencies of radical reactions with biologically active DNA

    Lafleur, M. V. M.; Retèl, J.; Loman, H.

    Dilute aqueous solutions of biologically active θX174 DNA may serve as a simplified model system of the cell. Damage to the DNA after irradiation with γ-rays, may be ascribed to reactions with .OH, .H and e -aq or secondary radicals, arising from reactions of water radicals with added scavengers. Conversion of primary (water) radicals into secondary (scavenger) radicals leads to a considerable protection of the DNA, which, however, would have been larger if these secondary radicals did not contribute to DNA inactivation. The inactivation yield due to isopropanol or formate (secondary) radicals depends on dose rate as well as DNA concentration. Furthermore the inactivation efficiencies of the reactions of both the primary and the secondary radicals with single-stranded DNA could be established.

  19. A temperature-sensitive trpS mutation interferes with trp RNA-binding attenuation protein (TRAP) regulation of trp gene expression in Bacillus subtilis.

    Lee, A I; Sarsero, J P; Yanofsky, C

    1996-01-01

    In Bacillus subtilis, the tryptophan-activated trp RNA-binding attenuation protein (TRAP) regulates expression of the seven tryptophan biosynthetic genes by binding to specific repeat sequences in the transcripts of the trp operon and of the folate operon, the operon containing trpG. Steinberg observed that strains containing a temperature-sensitive mutant form of tryptophanyl-tRNA synthetase, encoded by the trpS1 allele, produced elevated levels of the tryptophan pathway enzymes, when grown ...

  20. Processing Chinese hand-radicals activates the medial frontal gyrus

    Qing-Lin Wu; Yu-Chen Chan; Joseph P. Lavallee; Hsueh-Chin Chen; Kuo-En Chang; Yao-Ting Sung

    2013-01-01

    Embodied semantics theory asserts that the meaning of action-related words is neural y represented through networks that overlap with or are identical to networks involved in sory-motor processing. While some studies supporting this theory have focused on Chinese cha-racters, less attention has been paid to their semantic radicals. Indeed, there is stil disagreement about whether these radicals are processed independently. The present study investigated whether radicals are processed separately and, if so, whether this processing occurs in sensory-motor gions. Materials consisted of 72 high-frequency Chinese characters, with 18 in each of four ries:hand-action verbs with and without hand-radicals, and verbs not related to hand actions, with and without hand-radicals. Twenty-eight participants underwent functional MRI scans while reading the characters. Compared to characters without hand-radicals, reading characters with hand-radicals activated the right medial frontal gyrus. Verbs involving hand-action activated the left inferior parietal lobule, possibly reflecting integration of information in the radical with the semantic meaning of the verb. The findings may be consistent with embodied semantics theory and suggest that neural representation of radicals is indispensable in processing Chinese characters.

  1. Akt activation synergizes with Trp53 loss in oral epithelium to produce a novel mouse model for head and neck squamous cell carcinoma

    Moral, Marta; Segrelles, Carmen; Lara, M. Fernanda; Martinez-Cruz, Ana Belen; Lorz, Corina; Santos, Mirentxu; Garcia-Escudero, Ramon; Lu, Jerry; Kiguchi, Kaoru; Buitrago, Agueda; Costa, Clotilde; Saiz, Cristina; Rodriguez-Peralto, Jose L; Martinez-Tello, Francisco J; Rodriguez-Pinilla, Maria

    2009-01-01

    Head and neck squamous cell carcinoma is a common human neoplasia with poor prognosis and survival that frequently display Akt overactivation. Here we show that mice displaying constitutive Akt activity (myrAkt) in combination with Trp53 loss in stratified epithelia develop oral cavity tumors that phenocopy human HNSCC. The myrAkt mice develop oral lesions making it a possible model of human oral dysplasia. The malignant conversion of these lesions, which is hampered due to the induction of p...

  2. Evolution of Thermal Response Properties in a Cold-Activated TRP Channel

    Myers, Benjamin R.; Sigal, Yaron M.; David Julius

    2009-01-01

    Animals sense changes in ambient temperature irrespective of whether core body temperature is internally maintained (homeotherms) or subject to environmental variation (poikilotherms). Here we show that a cold-sensitive ion channel, TRPM8, displays dramatically different thermal activation ranges in frogs versus mammals or birds, consistent with variations in these species' cutaneous and core body temperatures. Thus, somatosensory receptors are not static through evolution, but show functiona...

  3. Evolution of thermal response properties in a cold-activated TRP channel.

    Myers, Benjamin R; Sigal, Yaron M; Julius, David

    2009-01-01

    Animals sense changes in ambient temperature irrespective of whether core body temperature is internally maintained (homeotherms) or subject to environmental variation (poikilotherms). Here we show that a cold-sensitive ion channel, TRPM8, displays dramatically different thermal activation ranges in frogs versus mammals or birds, consistent with variations in these species' cutaneous and core body temperatures. Thus, somatosensory receptors are not static through evolution, but show functional diversity reflecting the characteristics of an organism's ecological niche. PMID:19492038

  4. Evolution of thermal response properties in a cold-activated TRP channel.

    Benjamin R Myers

    Full Text Available Animals sense changes in ambient temperature irrespective of whether core body temperature is internally maintained (homeotherms or subject to environmental variation (poikilotherms. Here we show that a cold-sensitive ion channel, TRPM8, displays dramatically different thermal activation ranges in frogs versus mammals or birds, consistent with variations in these species' cutaneous and core body temperatures. Thus, somatosensory receptors are not static through evolution, but show functional diversity reflecting the characteristics of an organism's ecological niche.

  5. Modelling of the TrpZip2C Peptide Unfolding and its Optical Activity

    Horníček, Jan; Bouř, Petr

    Oxford: Diamond, 2011. s. 88-88. [CD 2011. The International Conference on Chiroptical Spectroscopy /13./. 24.07.2011-28.07.2011, Oxford] R&D Projects: GA MŠk(CZ) LH11033; GA ČR GAP208/11/0105 Grant ostatní: AV ČR(CZ) M200550902; European Reintegration Grant(XE) 230955 Institutional research plan: CEZ:AV0Z40550506 Keywords : raman * vibrational optical activity * calculations Subject RIV: CF - Physical ; Theoretical Chemistry

  6. Determination Of Free Radical Scavenging Activity In Herbal Supplement: Chyawanprash

    Middha Anil; Purohit Suresh

    2011-01-01

    Earlier investigations have shown that there are a number of plants which shows an antioxidant activity due to the presence of flavonoids and other polyphenolic compounds. Since Chyawanprash is made with such type of plants or their parts so manufacturer has claimed their antiaging effects by , inhibiting the formation of free radicals in body. In the present work the free radical scavenging activity of ethyl acetate, methanolic and aqueous extracts of different brand of Chyawanprash were eva...

  7. Radicals

    Jahn, Ullrich; Cornils, B.

    Weinheim: Wiley-VCH, 2013 - (Cornils, B.; Herrmann, W.; Wong, C.; Zanthoff, H.), s. 1897-1898 ISBN 978-3-527-33307-3 Institutional support: RVO:61388963 Keywords : radicals * enzymatic catalysis * coenzyme B12 * ribonucleotide reductase * mutases Subject RIV: CC - Organic Chemistry

  8. FREE RADICAL SCAVENGING ACTIVITY OF DIFFERENT PARTS OF WITHANIA SOMNIFERA

    S. Sumathi; Padma, P R; Gathampari, S.; Vidhya, S.

    2007-01-01

    Antioxidants are the essential defense mechanism to protect the body against free radical damage. The objective of the study was to investigate the in vitro antioxidant activity of different parts of Withania somnifera (leaves, fresh tubers and dry tubers) towards free radical DPPH and the extent of inhibition of lipid peroxidation using hydrogen peroxide as prooxidant. The plant extracts exhibited significant antioxidant effect in the order as follows: leaves>fresh tubers>dry tubers. The res...

  9. Determination Of Free Radical Scavenging Activity In Herbal Supplement: Chyawanprash

    Middha Anil

    2011-03-01

    Full Text Available Earlier investigations have shown that there are a number of plants which shows an antioxidant activity due to the presence of flavonoids and other polyphenolic compounds. Since Chyawanprash is made with such type of plants or their parts so manufacturer has claimed their antiaging effects by , inhibiting the formation of free radicals in body. In the present work the free radical scavenging activity of ethyl acetate, methanolic and aqueous extracts of different brand of Chyawanprash were evaluated spectrophotometrically by in vitro DPPH (1, 1- diphenyl, 2-picryl hydrazyl assay at 516nm.The absorbance decreases when the radical is reduced by antioxidants. As results indicates that ethyl acetate extract of all samples exhibited higher level of scavenging activity i.e. close to ascorbic acid (IC50 20.693 µg/ml as compared to its methanolic and aqueous extracts. Free radical scavenging activity of aqueous extracts of all brands is comparable and close to each other that is indicative that these brands are likely to exhibit similar free radical activity.

  10. Free radical scavenging activity of Eagle tea and their flavonoids

    Qiong Meng

    2012-06-01

    Full Text Available In this study, an online HPLC-DAD-MS coupled with 2,2′-azinobis (3-ethylbenzthiazoline-6-sulfonic acid diammonium salt (ABTS assay was employed for evaluating free radical scavenging activity of Eagle tea and their active components. Twenty-three chromatographic peaks were detected, and nineteen components had free radical scavenging activity. Among them, eight compounds were identified as flavonoids (hyperin, isoquercitrin, quercitrin, quercetin, kaempferol, catechins, chlorogenic acid and epicatechin based on MS data and standard chromatographic characters.

  11. Radical scavenging, antioxidant and cytotoxic activity of Brazilian Caatinga plants.

    David, Juceni P; Meira, Marilena; David, Jorge M; Brandão, Hugo N; Branco, Alexsandro; de Fátima Agra, M; Barbosa, M Regina V; de Queiroz, Luciano P; Giulietti, Ana M

    2007-04-01

    Extracts of 32 plants from the Brazilian northeastern semi-arid region called Caatinga were evaluated through DPPH radical scavenging assay, beta-carotene bleaching, and brine shrimp lethality tests (BST). Among the extracts studied Byrsonima cf. gardneriana, Mascagnia coriacea, Cordia globosa, Diodia apiculata and Hypenia salzmannii showed the highest activities in DPPH radical scavenging test. In the beta-carotene bleaching test the highest activities were observed for Passiflora cincinnata, Chamaecrista repens, B. cf. gardneriana, Rollinia leptopetala, Serjania glabrata, Diospyros gaultheriifolia, C. globosa, Mimosa ophtalmocentra, M. coriacea and Lippia cf. microphylla. In contrast, R. leptopetala, Zornia cf. brasiliensis and Leonotis nepetifolia were the most active species in the BST. PMID:17331673

  12. Insights on TRP Channels from In Vivo Studies in Drosophila

    Minke, Baruch; Parnas, Moshe

    2007-01-01

    Transient receptor potential (TRP) channels mediate responses in a large variety of signaling mechanisms. Most studies on mammalian TRP channels rely on heterologous expression, but their relevance to in vivo tissues is not entirely clear. In contrast, Drosophila TRP and TRP-like (TRPL) channels allow direct analyses of in vivo function. In Drosophila photoreceptors, activation of TRP and TRPL is mediated via the phosphoinositide cascade, with both Ca2+ and diacylglycerol (DAG) essential for generating the light response. In tissue culture cells, TRPL channels are constitutively active, and lipid second messengers greatly facilitate this activity. Inhibition of phospholipase C (PLC) completely blocks lipid activation of TRPL, suggesting that lipid activation is mediated via PLC. In vivo studies in mutant Drosophila also reveal an acute requirement for lipid-producing enzyme, which may regulate PLC activity. Thus, PLC and its downstream second messengers, Ca2+ and DAG, constitute critical mediators of TRP/TRPL gating in vivo. PMID:16460287

  13. Bureaucratic Activism and Radical School Change in Tamil Nadu, India

    Niesz, Tricia; Krishnamurthy, Ramchandar

    2013-01-01

    In 2007, Activity Based Learning (ABL), a child-centered, activity-based method of pedagogical practice, transformed classrooms in all of the over 37,000 primary-level government schools in Tamil Nadu, India. The large scale, rapid pace, and radical nature of educational change sets the ABL initiative apart from most school reform efforts.…

  14. In vitro free radical scavenging activity of platinum nanoparticles

    Watanabe, Aki; Kajita, Masashi; Kim, Juewon; Kanayama, Atsuhiro; Miyamoto, Yusei [Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bioscience Building 402, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562 (Japan); Takahashi, Kyoko; Mashino, Tadahiko, E-mail: yusei74@k.u-tokyo.ac.j [Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512 (Japan)

    2009-11-11

    A polyacrylic acid (PAA)-protected platinum nanoparticle species (PAA-Pt) was prepared by alcohol reduction of hexachloroplatinate. The PAA-Pt nanoparticles were well dispersed and homogeneous in size with an average diameter of 2.0 {+-} 0.4 nm (n = 200). We used electron spin resonance to quantify the residual peroxyl radical AOO. generated from 2,2-azobis (2-aminopropane) dihydrochloride (AAPH) by thermal decomposition in the presence of O{sub 2} and a spectrophotometric method to quantify the residual 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. PAA-Pt scavenged these two radicals in a dose-dependent manner. Platinum was the functional component. PAA-Pt reduced the rate of oxygen consumption required for linoleic acid peroxidation initiated by AOO. generated from AAPH, indicating inhibition of the propagation of linolate peroxidation. A thiobarbituric acid test also revealed dose-dependent inhibition of the linolate peroxidation by PAA-Pt. Fifty micromolar platinum, as PAA-Pt, completely quenched 250 {mu}M DPPH radical for 5 min. Even when twice diluted in half, the PAA-Pt still quenched 100% of the 250 {mu}M DPPH radical. The scavenging activity of PAA-Pt is durable. These observations suggest that PAA-Pt is an efficient scavenger of free radicals.

  15. In vitro free radical scavenging activity of platinum nanoparticles

    A polyacrylic acid (PAA)-protected platinum nanoparticle species (PAA-Pt) was prepared by alcohol reduction of hexachloroplatinate. The PAA-Pt nanoparticles were well dispersed and homogeneous in size with an average diameter of 2.0 ± 0.4 nm (n = 200). We used electron spin resonance to quantify the residual peroxyl radical AOO. generated from 2,2-azobis (2-aminopropane) dihydrochloride (AAPH) by thermal decomposition in the presence of O2 and a spectrophotometric method to quantify the residual 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. PAA-Pt scavenged these two radicals in a dose-dependent manner. Platinum was the functional component. PAA-Pt reduced the rate of oxygen consumption required for linoleic acid peroxidation initiated by AOO. generated from AAPH, indicating inhibition of the propagation of linolate peroxidation. A thiobarbituric acid test also revealed dose-dependent inhibition of the linolate peroxidation by PAA-Pt. Fifty micromolar platinum, as PAA-Pt, completely quenched 250 μM DPPH radical for 5 min. Even when twice diluted in half, the PAA-Pt still quenched 100% of the 250 μM DPPH radical. The scavenging activity of PAA-Pt is durable. These observations suggest that PAA-Pt is an efficient scavenger of free radicals.

  16. In vitro free radical scavenging activity of platinum nanoparticles

    Watanabe, Aki; Kajita, Masashi; Kim, Juewon; Kanayama, Atsuhiro; Takahashi, Kyoko; Mashino, Tadahiko; Miyamoto, Yusei

    2009-11-01

    A polyacrylic acid (PAA)-protected platinum nanoparticle species (PAA-Pt) was prepared by alcohol reduction of hexachloroplatinate. The PAA-Pt nanoparticles were well dispersed and homogeneous in size with an average diameter of 2.0 ± 0.4 nm (n = 200). We used electron spin resonance to quantify the residual peroxyl radical (\\mathrm {AOO}^{\\bullet } ) generated from 2,2-azobis (2-aminopropane) dihydrochloride (AAPH) by thermal decomposition in the presence of O2 and a spectrophotometric method to quantify the residual 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. PAA-Pt scavenged these two radicals in a dose-dependent manner. Platinum was the functional component. PAA-Pt reduced the rate of oxygen consumption required for linoleic acid peroxidation initiated by \\mathrm {AOO}^{\\bullet } generated from AAPH, indicating inhibition of the propagation of linolate peroxidation. A thiobarbituric acid test also revealed dose-dependent inhibition of the linolate peroxidation by PAA-Pt. Fifty micromolar platinum, as PAA-Pt, completely quenched 250 µM DPPH radical for 5 min. Even when twice diluted in half, the PAA-Pt still quenched 100% of the 250 µM DPPH radical. The scavenging activity of PAA-Pt is durable. These observations suggest that PAA-Pt is an efficient scavenger of free radicals.

  17. Characterization of two trpE genes encoding anthranilate synthase α-subunit in Azospirillum brasilense

    The previous report from our laboratory has recently identified a new trpE gene (termed trpE 2) which exists independently in Azospirillum brasilense Yu62. In this study, amplification of trpE(G) (termed trpE 1(G) here) confirmed that there are two copies of trpE gene, one trpE being fused into trpG while the other trpE existed independently. This is First report to suggest that two copies of the trpE gene exist in this bacterium. Comparison of the nucleotide sequence demonstrated that putative leader peptide, terminator, and anti-terminator were found upstream of trpE 1(G) while these sequence features did not exist in front of trpE 2. The β-galactosidase activity of an A. brasilense strain carrying a trpE 2-lacZ fusion remained constant at different tryptophan concentrations, but the β-galactosidase activity of the same strain carrying a trpE 1(G)-lacZ fusion decreased as the tryptophan concentration increased. These data suggest that the expression of trpE 1(G) is regulated at the transcriptional level by attenuation while trpE 2 is constantly expressed. The anthranilate synthase assays with trpE 1(G)- and trpE 2- mutants demonstrated that TrpE1(G) fusion protein is feedback inhibited by tryptophan while TrpE2 protein is not. We also found that both trpE 1(G) and trpE 2 gene products were involved in IAA synthesis

  18. TRP channels in disease.

    Jordt, S E; Ehrlich, B E

    2007-01-01

    The transient receptor potential (TRP) channels are a large family of proteins with six main subfamilies termed the TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), and TRPA (ankyrin) groups. The sheer number of different TRPs with distinct functions supports the statement that these channels are involved in a wide range of processes ranging from sensing of thermal and chemical signals to reloading intracellular stores after responding to an extracellular stimulus. Mutations in TRPs are linked to pathophysiology and specific diseases. An understanding of the role of TRPs in normal physiology is just beginning; the progression from mutations in TRPs to pathophysiology and disease will follow. In this review, we focus on two distinct aspects of TRP channel physiology, the role of TRP channels in intracellular Ca2+ homeostasis, and their role in the transduction of painful stimuli in sensory neurons. PMID:18193640

  19. TRP channels: an overview

    Pedersen, Stine Falsig; Owsianik, Grzegorz; Nilius, Bernd

    2005-01-01

    plethora of data on the roles of TRPs in a variety of tissues and species, including mammals, insects, and yeast. The present review summarizes the most pertinent recent evidence regarding the structural and functional properties of TRP channels, focusing on the regulation and physiology of mammalian TRPs.......The TRP ("transient receptor potential") family of ion channels now comprises more than 30 cation channels, most of which are permeable for Ca2+, and some also for Mg2+. On the basis of sequence homology, the TRP family can be divided in seven main subfamilies: the TRPC ('Canonical') family, the...... TRPV ('Vanilloid') family, the TRPM ('Melastatin') family, the TRPP ('Polycystin') family, the TRPML ('Mucolipin') family, the TRPA ('Ankyrin') family, and the TRPN ('NOMPC') family. The cloning and characterization of members of this cation channel family has exploded during recent years, leading to a...

  20. Trp channels and itch.

    Sun, Shuohao; Dong, Xinzhong

    2016-05-01

    Itch is a unique sensation associated with the scratch reflex. Although the scratch reflex plays a protective role in daily life by removing irritants, chronic itch remains a clinical challenge. Despite urgent clinical need, itch has received relatively little research attention and its mechanisms have remained poorly understood until recently. The goal of the present review is to summarize our current understanding of the mechanisms of acute as well as chronic itch and classifications of the primary itch populations in relationship to transient receptor potential (Trp) channels, which play pivotal roles in multiple somatosensations. The convergent involvement of Trp channels in diverse itch signaling pathways suggests that Trp channels may serve as promising targets for chronic itch treatments. PMID:26385480

  1. Radical scavenging and antibacterial activity of Arnebia benthamii methanol extract

    Showkat A Ganie; Asima Jan; Sabeera Muzaffar; Bilal A Zargar; Rabia Hamid; M Afzal Zargar

    2012-01-01

    Objective:To evaluate in vitro antioxidant and antibacterial activity of methanolic extract of Arnebia benthamii (A. benthamii) whole plant. Methods: Plasmid damage was analyzed by agarose gell electrophoresis. Calf thymus DNA was monitored by TBARS formation. DPPH, reducing power and lipid peroxidation was evaluated by using standard procedures. Antibacterial assay was monitored by disc diffusion method. Results: DPPH radical scavenging and hydroxyl radical scavenging potential of the plant revealed that the extract to be active radical scavenger. Reducing (Fe3+-Fe2+) power and lipid peroxidation inhibition efficiency (TBARS assay) of the extract was also evaluated and the extract showed promising activity in preventing lipid peroxidation and might prevent oxidative damages to biomolecules. The extract offered a significant protection against plasmid and calf thymus DNA damage induced by hydroxyl radicals. The extract was also evaluated on different bacterial strains and the maximum antibacterial activity was exhibited against Escherichia coli (E. coli) when compared with standard drug. Conclusions:These findings demonstrate that the methanol extract of A. benthamii has excellent anti-oxidant activities and could be considered as a potential source of lead molecules for pharmaceutical industries.

  2. Psychiatric Disorders and TRP Channels: Focus on Psychotropic Drugs

    Nazıroğlu, Mustafa; Demirdaş, Arif

    2015-01-01

    Psychiatric and neurological disorders are mostly associated with the changes in neural calcium ion signaling pathways required for activity-triggered cellular events. One calcium channel family is the TRP cation channel family, which contains seven subfamilies. Results of recent papers have discovered that calcium ion influx through TRP channels is important. We discuss the latest advances in calcium ion influx through TRP channels in the etiology of psychiatric disorders. Activation of TRPC...

  3. Anti-tumor Immunity Elicited by Adenovirus Encoding AdhTrp2 or AdmTrp2 without Vitiligo

    Hongju LIU; Xianzhi XIONG; Zuoya LI; Jianbao XIN; Xiaonan TAO; Yu HU

    2008-01-01

    To compare the difference in tumor immunity and autoimmunity elicited by adenovirus (Ad) encoding human or murine tyrosinase-related protein 2 (AdhTRP2 or AdmTRP2), and to find the most effective way to induce immunity by AdhTRP2 or AdmTRP2, C57BL/6 mice were im-munized with AdhTRP2 or AdmTRP2 intramuscularly at different doses of 105, 106, 107 and 108 separately (10 mice for each dose). Two weeks after the immunization, in vivo CTL assay and in- tracellular staining (ICS) of IFN-γ were carried out to analyze the dose-effect relationship. Tumor growth and vitiligo (as an sign of autoimmunity) were observed until 3 months after challenge with 105 B I6F10 tumor cells. The results showed that Ad encoding AdmTrp2 induced weak tumor im- mune response. Similar immunization with AdhTrp-2 elicited stronger protective immunity. CTL activity and IFN-γ-produced CD8+T cells were directly proportional to dose of AdhTrp2 or AdmTrp2. Moreover, AdhTrp2 group showed tumor rejection in 100% of challenged mice till the end of 3rd month while 60% of mice immunized with AdmTrp2 were protected against tumor. In the whole process of this experiment, no vitiligo was observed in mice immunized either with AdhTrp2 or AdmTrp2. It is concluded that anti-melanoma responses induced by genetic vaccina- tion expressing xenoantigens breaks immune tolerance effectively and is able to elicit strong anti-gen-specific cytotoxic T cell response without vitiligo.

  4. Temperature Activated Diffusion of Radicals through Ion Implanted Polymers

    Wakelin, Edgar A.; Davies, Michael J.; Bilek, Marcela M. M.;

    2015-01-01

    controlling the diffusion of radicals through this layer will enable efficient optimization of this technique. We develop a model based on site to site diffusion according to Fick's second law with temperature activation according to the Arrhenius relation. Using our model, the Arrhenius exponential prefactor...

  5. In Vitro, Free radical scavenging activity of Cordia rothi bark

    Pankaj B. Nariya, V.J.Shukla, R.N.Acharya & R.G. Warma

    2013-05-01

    Full Text Available This investigation was under taken to evaluate methanolic and butanol extracts of Cordia rothi bark for possible of natural antioxidant potential. This was done by different spectroscopic method. The extracts were evaluated for their phenolic content, ferrous reducing power & scavenging activity. Phenolic content was measured using Folin-Ciocalteau reagent & was calculated as gallic acid equivalents. Antiradical activity of both extract was measured by 1, 1, diphenyl-2, picrylhydrazyl (DPPH assay & was compared to ascorbic acid and ferric reducing power of the extract was evaluated by Oyaizu et al. In the present study three in vitro models were used for evaluate of antioxidant activity. The second methods was for direct measurement of radical scavenging activity & remaining one method evaluated the reducing power. The present study revealed the C. rothi bark has significant radical scavenging activity.

  6. Transnational Islamic activism and radicalization : patterns, trends, and prognosticators.

    Colbaugh, Richard; Engi, Dennis; LaViolette, Randall A.; Spomer, Judith E.

    2010-06-01

    The research described in this report developed the theoretical and conceptual framework for understanding, recognizing, and anticipating the origins, dynamic mechanisms, perceptions, and social structures of Islamic social reform movements in the Muslim homeland and in diaspora communities. This research has revealed valuable insights into the dynamic mechanisms associated with reform movements and, as such, offers the potential to provide indications and warnings of impending violence. This study produced the following significant findings: (1) A framework for understanding Islamic radicalization in the context of Social Movement Theory was developed and implemented. This framework provides a causal structure for the interrelationships among the myriad features of a social movement. (2) The degree to which movement-related activity shows early diffusion across multiple social contexts is a powerful distinguisher of successful and unsuccessful social movements. Indeed, this measurable appears to have significantly more predictive power than volume of such activity and also more power than various system intrinsics. (3) Significant social movements can occur only if both the intra-context 'infectivity' of the movement exceeds a certain threshold and the inter-context interactions associated with the movement occur with a frequency that is larger than another threshold. Note that this is reminiscent of, and significantly extends, well-known results for epidemic thresholds in disease propagation models. (4) More in-depth content analysis of blogs through the lens of Argumentation Theory has the potential to reveal new insights into radicalization in the context of Social Movement Theory. This connection has the potential to be of value from two important perspectives - first, this connection has the potential to provide more in depth insights into the forces underlying the emergence of radical behavior and second, this connection may provide insights into

  7. Cytotoxic and free radical scavenging activities of Zingiberaceous rhizomes

    Niwat Keawpradub

    2005-07-01

    Full Text Available Methanol extracts, water extracts and volatile oils of the fresh rhizomes of Alpinia galanga, Boesenbergia pandurata, Curcuma longa, Kaempferia galanga and Zingiber officinale have been assessed for free radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH radical and cytotoxic activity against MCF7 (breast adenocarcinoma and LS174T (colon adenocarcinoma cell lines. Methanol extract of C. longa exhibited the most pronounced radical scavenging activity with an EC50 value of 9.7 μg/ml, whereas the water extracts and volatile oils showed weak activity. All volatile oils and the methanol extract of C. longa showed strong activity against MCF7 and LS174T with IC50 less than 50 μg/ml. The oils of A. galanga (AGV, B. pandurata (BPV, C. longa (CLV, K. galanga (KGV and Z. officinale (ZOV were analyzed by GC/MS. Trans-3-acetoxy-1,8-cineole, camphor, ar-turmerone, ethyl cinnamate and geranial (E-citral were detected as main compounds in AGV, BPV, CLV, KGV and ZOV, respectively. The novel compound, pcoumaryl- 9-methyl ether, was isolated from methanol extract of A. galanga. ar-Turmerone, curcumin, demethoxycurcumin and bisdemethoxycurcumin were isolated from the methanol extract of C. longa while 6-shogaol, 6-dehydrogingerdione (or 1-dehydrogingerdione and 6-gingerol were isolated from the methanol extract of Z. officinale. Curcumin was the most potent compound for free radical scavenging activity with an EC50 value of 2.0 μg/ml. Demethoxycurcumin was found to be the most active compound against LS174T with an IC50 value of 0.8 μg/ml and 6-shogaol was the most potent compound against MCF7 with an IC50 value of 1.7 μg/ml.

  8. Post-Translational Modifications of TRP Channels

    Olaf Voolstra

    2014-04-01

    Full Text Available Transient receptor potential (TRP channels constitute an ancient family of cation channels that have been found in many eukaryotic organisms from yeast to human. TRP channels exert a multitude of physiological functions ranging from Ca2+ homeostasis in the kidney to pain reception and vision. These channels are activated by a wide range of stimuli and undergo covalent post-translational modifications that affect and modulate their subcellular targeting, their biophysical properties, or channel gating. These modifications include N-linked glycosylation, protein phosphorylation, and covalent attachment of chemicals that reversibly bind to specific cysteine residues. The latter modification represents an unusual activation mechanism of ligand-gated ion channels that is in contrast to the lock-and-key paradigm of receptor activation by its agonists. In this review, we summarize the post-translational modifications identified on TRP channels and, when available, explain their physiological role.

  9. Mutinous eruptions: autonomous spaces of radical queer activism

    Gavin Brown

    2007-01-01

    This paper offers a reflexive ethnography of a set of queer autonomous spaces created in London over the last five years. It traces the political genealogies of a recent strand of radical queer activism that is broadly aligned with the anarchist and anticapitalist wings of the global justice movement. In line with the usage of the term ‘queer’ by these activists themselves, to refer to a variety of states of being that challenge both homonormativity and heteronormativity, this paper utilises ...

  10. Trp aporepressor production is controlled by autogenous regulation and inefficient translation.

    Kelley, R.L.; Yanofsky, C

    1982-01-01

    We constructed a trpR-lacZ gene fusion that specifies a hybrid protein that has full beta-galactosidase activity. The gene fusion was associated with the unaltered trpR transcription and translation control region; thus, hybrid beta-galactosidase production was an indicator of expression of the trp aporepressor (trpR) operon. To facilitate in vivo expression studies, a DNA segment containing the trpR-lacZ gene fusion and the trpR controlling region was transferred to bacteriophage lambda and ...

  11. Free radical scavenging activity of leaves of Alocasia indica (Linn)

    Mulla W; Salunkhe V; Kuchekar S; Qureshi M

    2009-01-01

    The free radical scavenging potential of the plant Alocasia indica (Linn.) was studied by using different antioxidant models of screening like scavenging of 1,1-diphenyl-2-picryl hydrazyl radical, nitric oxide radical, superoxide anion radical, hydroxyl radical, iron chelating activity, total antioxidant capacity, non-enzymatic glycosylation of haemoglobin, rapid screening for antioxidant compounds by thin layer chromatography. The hydroalcoholic extract at 1000 ΅g/ml showed maximum scav...

  12. TRP channels in skin: from physiological implications to clinical significances.

    Ho, Ji-Chen; Lee, Chih-Hung

    2015-01-01

    TRP channels are expressed in various cells in skin. As an organ system to border the host and environment, many nonneuronal cells, including epidermal keratinocytes and melanocytes, express several TRP channels functionally distinct from sensory processing. TRPV1 and TRPV3 in keratinocytes of the epidermis and hair apparatus inhibit proliferation, induce terminal differentiation, induce apoptosis, and promote inflammation. Activation of TRPV4, 6, and TRPA1 promotes regeneration of the severed skin barriers. TRPA1 also enhances responses in contact hypersensitivity. TRPCs in keratinocytes regulate epidermal differentiation. In human diseases with pertubered epidermal differentiation, the expression of TRPCs are altered. TRPMs, which contribute to melanin production in melanocytes, serve as significant prognosis markers in patients with metastatic melanoma. In summary, not only act in sensory processing, TRP channels also contribute to epidermal differentiation, proliferation, barrier integration, skin regeneration, and immune responses. In diseases with aberrant TRP channels, TRP channels might be good therapeutic targets. PMID:27493510

  13. Comparative Evaluation of the Radical-Scavenging Activities of Fucoxanthin and Its Stereoisomers

    Yiping Zhang

    2014-02-01

    Full Text Available Fucoxanthin (Fuco is a characteristic carotenoid of brown seaweeds. In the present study, Fuco and its stereoisomers 9'Z-Fuco, 13Z- and 13'Z-Fuco were extracted from Laminaria japonica Aresch. They were isolated and purified by silica gel column chromatography, Sephadex LH-20, and reversed-phase HPLC. The radical-scavenging activities of the three stereoisomers were evaluated toward 1,1-diphenyl-2-picrylhydrazyl (DPPH radical, 2-2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS radical, hydroxyl radical, and superoxide radical. The order of 1,1-diphenyl-2-picrylhydrazyl (DPPH radical-scavenging activity was 13Z- and 13'Z-Fuco > (all-E-Fuco > 9'Z-Fuco. The order of 2-2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS and hydroxyl radical-scavenging activities were 9'Z-Fuco > (all-E-Fuco > 13Z-and 13'Z-Fuco. The order of superoxide radical-scavenging activity was 13Z- and 13'Z-Fuco > (all-E-Fuco > 9'Z-Fuco. The scavenging activities of Fuco and its stereoisomers toward the four radical types were all dose-dependent. The ABTS, DPPH, and superoxide radical-scavenging activities were all weaker than that of tocopherol (VE, while their hydroxyl radical-scavenging activities were stronger than that of VE. The results confirmed that Fuco and its stereoisomers have potent antioxidant activities.

  14. The trp RNA-binding attenuation protein of Bacillus subtilis regulates translation of the tryptophan transport gene trpP (yhaG) by blocking ribosome binding.

    Yakhnin, Helen; Zhang, Hong; Yakhnin, Alexander V; Babitzke, Paul

    2004-01-01

    Expression of the Bacillus subtilis tryptophan biosynthetic genes (trpEDCFBA and pabA [trpG]) is regulated in response to tryptophan by TRAP, the trp RNA-binding attenuation protein. TRAP-mediated regulation of the tryptophan biosynthetic genes includes a transcription attenuation and two distinct translation control mechanisms. TRAP also regulates translation of trpP (yhaG), a single-gene operon that encodes a putative tryptophan transporter. Its translation initiation region contains triplet repeats typical of TRAP-regulated mRNAs. We found that regulation of trpP and pabA is unaltered in a rho mutant strain. Results from filter binding and gel mobility shift assays demonstrated that TRAP binds specifically to a segment of the trpP transcript that includes the untranslated leader and translation initiation region. While the affinities of TRAP for the trpP and pabA transcripts are similar, TRAP-mediated translation control of trpP is much more extensive than for pabA. RNA footprinting revealed that the trpP TRAP binding site consists of nine triplet repeats (five GAG, three UAG, and one AAG) that surround and overlap the trpP Shine-Dalgarno (S-D) sequence and translation start codon. Results from toeprint and RNA-directed cell-free translation experiments indicated that tryptophan-activated TRAP inhibits TrpP synthesis by preventing binding of a 30S ribosomal subunit. Taken together, our results establish that TRAP regulates translation of trpP by blocking ribosome binding. Thus, TRAP coordinately regulates tryptophan synthesis and transport by three distinct mechanisms: attenuation transcription of the trpEDCFBA operon, promoting formation of the trpE S-D blocking hairpin, and blocking ribosome binding to the pabA and trpP transcripts. PMID:14702295

  15. Phytoconstituents with Radical Scavenging and Cytotoxic Activities from Diospyros shimbaensis

    Per Aronsson

    2016-01-01

    Full Text Available As part of our search for natural products having antioxidant and anticancer properties, the phytochemical investigation of Diospyros shimbaensis (Ebenaceae, a plant belonging to a genus widely used in East African traditional medicine, was carried out. From its stem and root barks the new naphthoquinone 8,8′-oxo-biplumbagin (1 was isolated along with the known tetralones trans-isoshinanolone (2 and cis-isoshinanolone (3, and the naphthoquinones plumbagin (4 and 3,3′-biplumbagin (5. Compounds 2, 4, and 5 showed cytotoxicity (IC50 520–82.1 μM against MDA-MB-231 breast cancer cells. Moderate to low cytotoxicity was observed for the hexane, dichloromethane, and methanol extracts of the root bark (IC50 16.1, 29.7 and > 100 μg/mL, respectively, and for the methanol extract of the stem bark (IC50 59.6 μg/mL. The radical scavenging activity of the isolated constituents (1–5 was evaluated on the 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging assay. The applicability of the crude extracts and of the isolated constituents for controlling degenerative diseases is discussed.

  16. Flavonoids: Hemisynthesis, Reactivity, Characterization and Free Radical Scavenging Activity

    Paul Henri Ducrot

    2007-09-01

    Full Text Available Phenolic compounds form one of the main classes of secondary metabolites. They display a large range of structures and they are responsible for the major organoleptic characteristics of plant-derived-foods and beverages, particularly color and taste properties and they also contribute to the nutritional qualities of fruits and vegetables. Phenolic compounds are also highly unstable compounds which undergo numerous enzymatic and chemical reactions during postharvest food storage and processing thus adding to the complexity of plant polyphenol composition. Among these compounds flavonoids constitute one of the most ubiquitous groups of all plant phenolics. Owing to their importance in food organoleptic properties and in human health, a better understanding of their structures, their reactivity and chemical properties in addition to the mechanisms generating them appears essential to predict and control food quality. The purpose of this work is an overview of our findings concerning the hemisynthesis, the reactivity and the enzymatic oxidation of some flavonoids and shed light on the mechanisms involved in some of these processes and the structures of the resulting products. The free radical scavenging activity of some of the synthesized compounds is also presented and a structure-activity relationship is discussed. The first part of this review concerns the synthesis and structural characterization of modified monomeric flavanols. The use of these compounds as precursor for the preparation of natural and modified dimeric procyanidin derivatives was then explored through different coupling reactions. The full characterization of the synthesized compounds was achieved by concerted use of NMR and ESI-MS techniques. The free radical scavenging activity of some of the synthesized compounds was investigated. The second part of this review concerns the enzymatic oxidation of several flavonols by Trametes versicolor laccase. Most of the major oxidation

  17. Antioxidant activity and free radical scavenging activities of Streptomyces sp.strain MJM 10778

    Dong-Ryung; Lee; Sung-Kwon; Lee; Bong-Keun; Choi; Jinhua; Cheng; Young-Sil; Lee; Seung; Hwan; Yang; Joo-Won; Suh

    2014-01-01

    Objective:To investigate the antioxidant activity of soil-borne aetinobacteria.Methods:The total phenolic contents,the level of antioxidant potential by DPPH radical scavenging activity,MO scavenging activity,and ABTS radical scavenging activity in ethyl acelale extract were determined.Results:The 16 S rDNA sequencing analysis revealed that Streptomyces sp.strain MJM 10778.which was isolated from Hambak Mountain.Korea,has 99.9% similarity to Streptomyces misionensis(S.misionenis) NBRC 13063.The physiological and the morphological test revealed that the strain MJM 10778 has different characteristics from the strain NBRC.13063.The entire antioxidant assay with the ethyl acelale extract displayed good radical scavenging activity.The IC50 values of the strain MJM 10778 extract on DPPH,.NO.and ABTS radicals were identified to he 92.8 μg/mL,0.02 μg/ml,and 134.9 μg/mL,respectively.The ethyl acetate extract of the strain MJM 10778 showed an 81.500% of cell viability at 100 μg/mL in Raw264.7cell viability assay.Conclusions:The results obtained suggesl that the ethyl acetate extract of Streptomyces sp.strain MJM 10778 could be considered as a potential source of drug for the diseases that is caused by free radicals with its anti-oxidant activities and low cytotoxicity.

  18. Superoxide radical and iron modulate aconitase activity in mammalian cells.

    Gardner, P R; Raineri, I; Epstein, L B; White, C W

    1995-06-01

    Aconitase is a member of a family of iron-sulfur-containing (de)hydratases whose activities are modulated in bacteria by superoxide radical (O2-.)-mediated inactivation and iron-dependent reactivation. The inactivation-reactivation of aconitase(s) in cultured mammalian cells was explored since these reactions may impact important and diverse aconitase functions in the cytoplasm and mitochondria. Conditions which increase O2-. production including exposure to the redox-cycling agent phenazine methosulfate (PMS), inhibitors of mitochondrial ubiquinol-cytochrome c oxidoreductase, or hyperoxia inactivated aconitase in mammalian cells. Overproduction of mitochondrial Mn-superoxide dismutase protected aconitase from inactivation by PMS or inhibitors of ubiquinol-cytochrome c oxidoreductase, but not from normobaric hyperoxia. Aconitase activity was reactivated (t1/2 of 12 +/- 3 min) upon removal of PMS. The iron chelator deferoxamine impaired reactivation and increased net inactivation of aconitase by O2-.. The ability of ubiquinol-cytochrome c oxidoreductase-generated O2-. to inactivate aconitase in several cell types correlated with the fraction of the aconitase activity localized in mitochondria. Extracellular O2-. generated with xanthine oxidase did not affect aconitase activity nor did exogenous superoxide dismutase decrease aconitase inactivation by PMS. The results demonstrate a dynamic and cyclical O2-.-mediated inactivation and iron-dependent reactivation of the mammalian [4Fe-4S] aconitases under normal and stress conditions and provide further evidence for the membrane compartmentalization of O2-.. PMID:7768942

  19. Inactivation of biologically active DNA by isopropanol and formate radicals

    If OH and H radicals, produced by absorption of ionizing radiation in aqueous solutions, are scavenged with isopropanol or sodium formate, secondary radicals are formed which can inactivate phiX174 DNA. From experiments at various DNA concentrations and dose rates we were able to determine the rate constant and the inactivation efficiency of the reaction of these organic radicals with single stranded DNA. (author)

  20. Study on the free radical scavenging activity of sea cucumber (Paracaudina chinens var.) gelatin hydrolysate

    Zeng, Mingyong; Xiao, Feng; Zhao, Yuanhui; Liu, Zunying; Li, Bafang; Dong, Shiyuan

    2007-07-01

    Gelatin from the sea cucumber (Paracaudina chinens var.) was hydrolyzed by bromelain and the hydrolysate was found to have a high free radical scavenging activity. The hydrolysate was fractionated through an ultrafiltration membrane with 5 kDa molecular weight cutoff (MWCO). The portion (less than 5 kDa) was further separated by Sephadex G-25. The active peak was collected and assayed for free radical scavenging activity. The scavenging rates for superoxide anion radicals (O2·-) and hydroxyl radicals (·OH) of the fraction with the highest activity were 29.02% and 75.41%, respectively. A rabbit liver mitochondrial free radical damage model was adopted to study the free radical scavenging activity of the fraction. The results showed that the sea cucumber gelatin hydrolysate can prevent the damage of rabbit liver and mitochondria.

  1. Study on the Free Radical Scavenging Activity of Sea Cucumber (Paracaudina chinens var.) Gelatin Hydrolysate

    2007-01-01

    Gelatin from the sea cucumber (Paracaudina chinens var.) was hydrolyzed by bromelain and the hydrolysate was found to have a high free radical scavenging activity. The hydrolysate was fractionated through an ultrafiltration membrane with 5 kDa molecular weight cutoff (MWCO). The portion (less than 5 kDa) was further separated by Sephadex G-25. The active peak was collected and assayed for free radical scavenging activity. The scavenging rates for superoxide anion radicals (O2·-) and hydroxyl radicals (·OH) of the fraction with the highest activity were 29.02% and 75.41%, respectively. A rabbit liver mitochondrial free radical damage model was adopted to study the free radical scavenging activity of the fraction. The results showed that the sea cucumber gelatin hydrolysate can prevent the damage of rabbit liver and mitochondria.

  2. TRP channel-associated factors are a novel protein family that regulates TRPM8 trafficking and activity.

    Gkika, D.; Lemonnier, L.; Shapovalov, G.; Gordienko, D.; Poux, C.; Bernardini, M.; Bokhobza, A.; Bidaux, G.; Degerny, C.; Verreman, K.; Guarmit, B.; Benahmed, M.; Launoit, Y. de; Bindels, R.J.M.; Fiorio Pla, A.; Prevarskaya, N.

    2015-01-01

    TRPM8 is a cold sensor that is highly expressed in the prostate as well as in other non-temperature-sensing organs, and is regulated by downstream receptor-activated signaling pathways. However, little is known about the intracellular proteins necessary for channel function. Here, we identify two pr

  3. Photodynamically generated bovine serum albumin radicals

    Silvester, J A; Timmins, G S; Davies, Michael Jonathan

    1998-01-01

    Porphyrin-sensitized photoxidation of bovine serum albumin (BSA) results in oxidation of the protein at (at least) two different, specific sites: the Cys-34 residue giving rise to a thiyl radical (RS.); and one or both of the tryptophan residues (Trp-134 and Trp-214) resulting in the formation of...... by a range of proteases. The generation of protein-derived radicals also results in an enhancement of photobleaching of the porphyrin, suggesting that protein radical generation is linked to porphyrin photooxidation....

  4. Novel Role of ROS-Activated trp Melastatin Channel-2 (TRPM2) in Mediating Angiogenesis and Post-Ischemic Neovascularisation

    Mittal, Manish; Urao, Norifumi; Hecquet, Claudie M.; Zhang, Min; Sudhahar, Varadarajan; Gao, Xiao-pei; Komarova, Yulia; Ushio-Fukai, Masuko; Malik, Asrar B.

    2015-01-01

    Objective Transient Receptor Potential Melastatin-2 (TRPM2) channel is a non-selective cation channel that mediates influx of Ca2+ and Na+ with relative permeability of PCa:PNa ∼0.6 in response to cellular oxidative stress. As angiogenesis and ischemic neovascularization are both significantly dependent on oxidant signaling, here we investigated the possibile role of VEGF-induced ROS production in activating TRPM2-dependent Ca2+ signaling, and in the mechanism of angiogensis and ischemic neovascularization. Approach and Results We observed that VEGF stimulation rapidly induced the association of TRPM2 and c-Src kinase with VE-cadherin forming a signalplex at VE-cadherin junctions in endothelial cells (ECs). Using ECs isolated from TRPM2−/− mice or after siRNA depletion of TRPM2, we demonstrated that TRPM2-activated Ca2+ signaling was required for c-Src kinase-induced phosphorylation of VE-cadherin at Y658 and Y731, the crucial sites involved in VE-cadherin internalization in response to VEGF. VEGF-induced ROS generation activated TRPM2-induced Ca2+ entry whereas the ROS-insensitive TRPM2 mutant (C1008→A) showed impaired Ca2+ entry. ECs depleted of TRPM2 also displayed significantly perturbed migratory phenotype and impaired activation of c-Src in response to VEGF. TRPM2-/- mice reconstituted with wild type myeloid cells demonstrated aberrant angiogenesis and neovascularisation in the hindlimb ischemia model as compared to wild type mice. Conclusion VEGF-induced angiogeneis and post-ischemic neovascularisation in mice required ROS generation in ECs and resultant TRPM2 activation. Thus, our findings provide novel insight into the role of TRPM2 in mechanism of angiogenesis and ischemic neovascularisation. PMID:25675998

  5. Screening of Various Botanical Extracts for Antioxidant Activity Using DPPH Free Radical Method

    Waqas, Muhammad Khurram; Saqib, Najam-Us; Rashid, Saeed-ur; Shah, Pervaiz Akhtar; Akhtar, Naveed; Murtaza, Ghulam

    2013-01-01

    Aiming at the exploration of herbal use by society, crude extracts of the seeds of some commonly used medicinal plants (Vitis vinifera, Tamarindus indica and Glycin max) were screened for their free radical scavenging properties using ascorbic acid as standard antioxidant. Free radical scavenging activity was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical. The overall antioxidant activity of grape seeds (Vitis vinifera) was the strongest, followed in descending order by soy...

  6. Radical Scavenging Activity, Total Phenol Content and Antifungal Activity of Cinnamomum Iners Wood

    Zurida Anis; Othman Sulaiman,; Rokiah Hashim; Sayed Hasan Mehdi; Raza Murad Ghalib

    2012-01-01

    The study was done to investigate the antioxidant, total phenol content and antifungal characteristics of phenolics compounds of extracts from Cinnamomum iners (Reinw. ex Blume-Lauraceae) wood. Radical scavenging activity method of DPPH was used to determine antioxidant activity of the extracts. Four fungus, namely white fungi (Pycnoporus sanguineus, Trametes versicolor, Fomitopsis palustris) and brown fungi (Gleophyllum trabeum) were used to determine the antifungal activity of the Cinnamomu...

  7. N-Terminal Ile-Orn- and Trp-Orn-Motif Repeats Enhance Membrane Interaction and Increase the Antimicrobial Activity of Apidaecins against Pseudomonas aeruginosa

    Bluhm, Martina E. C.; Schneider, Viktoria A. F.; Schäfer, Ingo; Piantavigna, Stefania; Goldbach, Tina; Knappe, Daniel; Seibel, Peter; Martin, Lisandra L.; Veldhuizen, Edwin J. A.; Hoffmann, Ralf

    2016-01-01

    The Gram-negative bacterium Pseudomonas aeruginosa is a life-threatening nosocomial pathogen due to its generally low susceptibility toward antibiotics. Furthermore, many strains have acquired resistance mechanisms requiring new antimicrobials with novel mechanisms to enhance treatment options. Proline-rich antimicrobial peptides, such as the apidaecin analog Api137, are highly efficient against various Enterobacteriaceae infections in mice, but less active against P. aeruginosa in vitro. Here, we extended our recent work by optimizing lead peptides Api755 (gu-OIORPVYOPRPRPPHPRL-OH; gu = N,N,N′,N′-tetramethylguanidino, O = L-ornithine) and Api760 (gu-OWORPVYOPRPRPPHPRL-OH) by incorporation of Ile-Orn- and Trp-Orn-motifs, respectively. Api795 (gu-O(IO)2RPVYOPRPRPPHPRL-OH) and Api794 (gu-O(WO)3RPVYOPRPRPPHPRL-OH) were highly active against P. aeruginosa with minimal inhibitory concentrations of 8–16 and 8–32 μg/mL against Escherichia coli and Klebsiella pneumoniae. Assessed using a quartz crystal microbalance, these peptides inserted into a membrane layer and the surface activity increased gradually from Api137, over Api795, to Api794. This mode of action was confirmed by transmission electron microscopy indicating some membrane damage only at the high peptide concentrations. Api794 and Api795 were highly stable against serum proteases (half-life times >5 h) and non-hemolytic to human erythrocytes at peptide concentrations of 0.6 g/L. At this concentration, Api795 reduced the cell viability of HeLa cells only slightly, whereas the IC50 of Api794 was 0.23 ± 0.09 g/L. Confocal fluorescence microscopy revealed no colocalization of 5(6)-carboxyfluorescein-labeled Api794 or Api795 with the mitochondria, excluding interactions with the mitochondrial membrane. Interestingly, Api795 was localized in endosomes, whereas Api794 was present in endosomes and the cytosol. This was verified using flow cytometry showing a 50% higher uptake of Api794 in HeLa cells compared

  8. Management Approaches to Radical Social Media Activism: the responses of BP, HSBC and Nestlé to Greenpeace

    Grant, Bettina

    2010-01-01

    Corporate directed radical activism has been reframed by the internet and social media, which provide radical activists with new tools to mount innovative attack forms against corporations. These attack forms (herein termed by author as radical social media activism) happen in the digital sphere and augment radical attack forms in the physical world. Corporations are challenged with a new age of radical activism and, thus far, have displayed low competence at using social media to manage this...

  9. TRP channels: sensors and transducers of gasotransmitter signals

    YasuoMori

    2012-08-01

    Full Text Available The transient receptor potential (trp gene superfamily encodes cation channels that act as multimodal sensors for a wide variety of stimuli from outside and inside the cell. Upon sensing, they transduce electrical and Ca2+ signals via their cation channel activities. These functional features of TRP channels allow the body to react and adapt to different forms of environmental changes. Indeed, members of one class of TRP channels have emerged as sensors of gaseous messenger molecules that control various cellular processes. Nitric oxide (NO, a vasoactive gaseous molecule, regulates TRP channels directly via cysteine S-nitrosylation or indirectly via cGMP/PKG-dependent phosphorylation. Recent studies have revealed that changes in the availability of molecular oxygen (O2 also control the activation of TRP channels. Anoxia induced by O2-glucose deprivation and severe hypoxia (1% O2 activates TRPM7 and TRPC6, respectively, whereas TRPA1 has recently been identified as a novel sensor of hyperoxia and mild hypoxia (15% O2 in vagal and sensory neurons. TRPA1 also detects other gaseous molecules such as hydrogen sulfide (H2S and carbon dioxide (CO2. In this review, we focus on how signaling by gaseous molecules is sensed and integrated by TRP channels.

  10. Electron spin resonance measurement of radical scavenging activity of Aronia melanocarpa fruit juice

    Valcheva-Kuzmanova, Stefka; Blagović, Branka; Valić, Srećko

    2012-01-01

    Background: The fruits of Aronia melanocarpa (Michx.) Elliot contain large amounts of phenolic substances, mainly procyanidins, anthocyanins and other flavonoids, and phenolic acids. The ability of phenolic substances to act as antioxidants has been well established. Objective: In this study, we investigated the radical scavenging activity of A. melanocarpa fruit juice (AMFJ). Materials and Methods: The method used was electron spin resonance (ESR) spectroscopy. The galvinoxyl free radical was used as a scavenging object. AMFJ was added to the galvinoxyl free radical solution. The measure of the radical scavenging activity was the decrease of signal intensity. Results: AMFJ showed a potent antiradical activity causing a strong and rapid decrease of signal intensity as a function of time and juice concentration. This effect of AMFJ was probably due to the activity of its phenolic constituents. Conclusion: The ESR measurements in this study showed a pronounced radical scavenging effect of AMFJ, an important mechanism of its antioxidant activity. PMID:22701293

  11. Electron spin resonance measurement of radical scavenging activity of Aronia melanocarpa fruit juice

    Stefka Valcheva-Kuzmanova

    2012-01-01

    Full Text Available Background: The fruits of Aronia melanocarpa (Michx. Elliot contain large amounts of phenolic substances, mainly procyanidins, anthocyanins and other flavonoids, and phenolic acids. The ability of phenolic substances to act as antioxidants has been well established. Objective: In this study, we investigated the radical scavenging activity of A. melanocarpa fruit juice (AMFJ. Materials and Methods: The method used was electron spin resonance (ESR spectroscopy. The galvinoxyl free radical was used as a scavenging object. AMFJ was added to the galvinoxyl free radical solution. The measure of the radical scavenging activity was the decrease of signal intensity. Results: AMFJ showed a potent antiradical activity causing a strong and rapid decrease of signal intensity as a function of time and juice concentration. This effect of AMFJ was probably due to the activity of its phenolic constituents. Conclusion: The ESR measurements in this study showed a pronounced radical scavenging effect of AMFJ, an important mechanism of its antioxidant activity.

  12. Free radical activity and left ventricular function after thrombolysis for acute infarction.

    Davies, S. W.; Ranjadayalan, K; Wickens, D G; Dormandy, T. L.; Umachandran, V.; Timmis, A D

    1993-01-01

    BACKGROUND--Experimental data suggest that reperfusion injury involving free radicals contributes to the impairment of left ventricular function after successful thrombolysis. METHODS--In 72 patients presenting with acute myocardial infarction, markers of free radical activity were measured before streptokinase and two hours later. Thiobarbituric acid reactive material (TBA-RM) reflects lipid peroxidation by free radicals, and the concentration of plasma total thiols (34 patients) reflects ox...

  13. In Vitro Antioxidant and free Radical Scavenging activity of the Ethanolic extract of Aesculus hippocastanum

    GEETHA R.V; Anitha Roy; Sitalakshmi T

    2013-01-01

    The aim of the present study was to evaluate the antioxidant and free radical scavenging activity of the ethanolic extract of Aesculus hippocastanum (Horse chest nut). Highly reactive free radicals and oxygen species are present in biological systems from a wide variety of sources. These free radicals may oxidize nucleic acids, proteins, lipids or DNA and can initiate degenerative disease. Antioxidants play an important role in protecting cellular damage caused by reactive oxygen species. Pla...

  14. Radical Online Video: YouTube, video activism and social movement media practices

    Askanius, Tina

    2012-01-01

    This thesis explores contemporary modes of video activism for a radical politics of the Left. It offers an analytical contribution to media and communication that promotes an understanding of radical online video as modes of political engagement in contemporary online environments. By focusing on YouTube as one of the most prevalent spaces in which radical video is screened and experienced today, the platform is considered emblematic of an ongoing reorganisation of political space and ...

  15. Investigation of the free radical scavenging activity of Ginkgo biloba L. leaves.

    Ellnain-Wojtaszek, M; Kruczyński, Z; Kasprzak, J

    2003-02-01

    The free radical scavenging activity of methanolic, ethanolic and aqueous extracts from Ginkgo biloba leaves, has been determined by EPR (electron paramagnetic resonance) using the DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging method. The investigation has also included selected constituents of G. biloba leaves, protocatechuic and p-coumaric acids, quercetin, rutin, isoginkgetin and (+)-catechin. PMID:12628386

  16. Thermal Decomposition of Benzyl Radical via Multiple Active Pathways

    Buckingham, Grant; Robichaud, David; Ormond, Thomas; Nimlos, Mark R.; Daily, John W.; Ellison, Barney

    2014-06-01

    The thermal decomposition of benzyl radical (C6H5CH2) has been investigated using a combination infrared absorption spectroscopy in a neon matrix and 118.2 (10.487 eV) photoionization mass spectrometry. Both techniques are coupled with a heated tubular reactor to allow temperature control over the decomposition to indicate relative barrier heights of fragmentation pathways. Three possible chemical mechanisms have been considered. 1) Ring expansion to cycloheptatrienyl radical (C7H7) with subsequent breakdown to HCCH and C5H5, 2) isomerization to the substituted five-membered ring fulvenallene (C5H4=C=CH2), which is of interest to kinetic theorists and finally 3) hydrogen shift to form methyl-substituted phenyl radical, which can then form ortho-benzyne, diacetylene and other fragments. Benzyl radical is generated from two precursors, C6H5CH2CH3 and C6H5CH2Br, and both lead to the appearance of HCCH and C5H5. At slightly hotter temperatures peaks are observed at m/z 90, presumed to be C5H4=C=CH2, and 89, potentially the substituted propargyl C5H4=C=CH. Additionally, decomposition of isotopically substituted parent molecules C6H5CD2CD3 and C6D5CH2CH3 indicates C7H7 as an intermediate due to H/D ratios in fragment molecules.

  17. Inhibitory activities of soluble and bound millet seed phenolics on free radicals and reactive oxygen species.

    Chandrasekara, Anoma; Shahidi, Fereidoon

    2011-01-12

    Oxidative stress, caused by reactive oxygen species (ROS), is responsible for modulating several pathological conditions and aging. Soluble and bound phenolic extracts of commonly consumed millets, namely, kodo, finger (Ravi), finger (local), foxtail, proso, little, and pearl, were investigated for their phenolic content and inhibition of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and ROS, namely, hydroxyl radical, peroxyl radical, hydrogen peroxide (H(2)O(2)), hypochlorous acid (HOCl), and singlet oxygen ((1)O(2)). Inhibition of DPPH and hydroxyl radicals was detrmined using electron paramagnetic resonance (EPR) spectroscopy. The peroxyl radical inhibitory activity was measured using the oxygen radical absorbance capacity (ORAC) assay. The scavenging of H(2)O(2), HOCl, and (1)O(2) was evaluated using colorimetric methods. The results were expressed as micromoles of ferulic acid equivalents (FAE) per gram of grain on a dry weight basis. In addition, major hydroxycinnamic acids were identified and quantified using high-performance liquid chromatography (HPLC) and HPLC-mass spectrometry (MS). All millet varieties displayed effective radical and ROS inhibition activities, which generally positively correlated with phenolic contents, except for hydroxyl radical. HPLC analysis revealed the presence of ferulic and p-coumaric acids as major hydroxycinnamic acids in phenolic extract and responsible for the observed effects. Bound extracts of millet contributed 38-99% to ROS scavenging, depending on the variety and the test system employed. Hence, bound phenolics must be included in the evaluation of the antioxidant activity of millets and other cereals. PMID:21133411

  18. Free Radical Scavenging and Lipid Peroxidation Activity of the Shahani Black Grape

    Yassa, N.; H. Razavi Beni; A. Hadjiakhoondi

    2008-01-01

    The present study was designed to evaluate antioxidant activity of different parts of Shahani black grape berries. The antioxidant activity of grape berry juice, seed and skin extracts were measured by the inhibition of lipid peroxidation (Ferric Ammonium Thiocyanate) and free radical scavenging activity (2, 2-diphenyl-1-picrylhydrazyl) methods. Vitamin E and Butylated Hydroxy Toluene (BHT) were used as reference values. The free radical scavenging capacity of grape extracts followed th...

  19. Fast repair activities of quercetin and rutin toward dGMP hydroxyl radical adducts

    The repair activities and mechanisms of both quercetin and rutin towards the oxidizing deoxyguanosine monophosphate (d GMP) hydroxyl radical adduct were investigated with pulse radiolytic technique. On pulse irradiation of nitrous oxide saturated 2 mm d GMP aqueous solution containing 0.1 mm quercetin, the transient absorption spectrum of the d GMP hydroxyl radical adduct decays with the formation of phenoxyl radical of quercetin within tens of microseconds. It indicates that there is a repair reaction between d GMP hydroxyl radical adduct and quercetin. The repair activity of rutin towards hydroxyl radical adducts of d GMP was also observed. The rate constants of the repair reactions were calculated to be 3.05x108 and 1.31x108 M-1 s-1for quercetin and rutin, respectively. This result together with our previous studies demonstrated that non-enzymatic, fast repair is a universal repair mechanism of phenolic antioxidants.

  20. The different roles of tryptophan transfer RNA in regulating trp operon expression in E. coli versus B. subtilis.

    Yanofsky, Charles

    2004-08-01

    Escherichia coli and Bacillus subtilis use different mechanisms of sensing and responding to tryptophan and uncharged tRNA(Trp) as regulatory signals. In E. coli, tryptophan activates a repressor that binds to the trp promoter- operator, inhibiting transcription initiation. In B. subtilis, tryptophan activates an RNA-binding protein, TRAP, which binds to the trp operon leader RNA, causing transcription termination. In E. coli uncharged tRNA(Trp) accumulation stalls the ribosome attempting translation of tandem Trp codons in the leader-peptide coding region of the operon. This stalling permits the formation of an RNA antiterminator structure, preventing transcription termination. In B. subtilis uncharged tRNA(Trp) accumulation activates transcription and translation of the at operon. AT protein inhibits tryptophan-activated TRAP, thereby preventing TRAP-mediated transcription termination. These differences might reflect the unique organizational features of the respective trp operons and their ancestry. PMID:15262409

  1. Screening of radical scavenging activity of some medicinal and aromatic plant extracts

    Miliauskas, G.; Venskutonis, R.P.; Beek, van T.A.

    2004-01-01

    Extracts of 12 medicinal and aromatic plants were investigated for their radical scavenging activity using DPPH and ABTS assays: Salvia sclarea, Salvia glutinosa, Salvia pratensis, Lavandula angustifolia, Calendula officinalis, Matricaria recutita, Echinacea purpurea, Rhaponticum carthamoides, Jugla

  2. Are Sensory TRP Channels Biological Alarms for Lipid Peroxidation?

    Seung-In Choi

    2014-09-01

    Full Text Available Oxidative stress induces numerous biological problems. Lipid oxidation and peroxidation appear to be important steps by which exposure to oxidative stress leads the body to a disease state. For its protection, the body has evolved to respond to and eliminate peroxidation products through the acquisition of binding proteins, reducing and conjugating enzymes, and excretion systems. During the past decade, researchers have identified a group of ion channel molecules that are activated by oxidized lipids: transient receptor potential (TRP channels expressed in sensory neurons. These ion channels are fundamentally detectors and signal converters for body-damaging environments such as heat and cold temperatures, mechanical attacks, and potentially toxic substances. When messages initiated by TRP activation arrive at the brain, we perceive pain, which results in our preparing defensive responses. Excessive activation of the sensory neuronal TRP channels upon prolonged stimulations sometimes deteriorates the inflammatory state of damaged tissues by promoting neuropeptide release from expresser neurons. These same paradigms may also work for pathologic changes in the internal lipid environment upon exposure to oxidative stress. Here, we provide an overview of the role of TRP channels and oxidized lipid connections during abnormally increased oxidative signaling, and consider the sensory mechanism of TRP detection as an alert system.

  3. Polyphenolic Compounds and Free Radical Scavenging Activity in Eight Lamiaceae Herbs of Manipur

    Sandhyarani Devi KHOMDRAM; Potsangbam Kumar SINGH

    2011-01-01

    Eight plants of Lamiaceae under subfamily Nepetoideae found in Manipur, India were selected for estimation of their polyphenolic compounds and free radical scavenging activity which is expressed on dry weight basis. In this present study, the total phenol and flavonoid contents as well as the free radical scavenging activity were studied using spectrophotometric method. The total phenol content was determined based on Folin-Ciocalteau reagent, flavonoid was determined by aluminium chloride s...

  4. Determination of Radical Scavenging Activity and Total Phenols of Wine and Spices: A Randomized Study

    Fulgentius Nelson Lugemwa; Snyder, Amanda L; Koonj Shaikh

    2013-01-01

    Thirty eight bottles of red wine (Carbanet Sauvignon) were randomly selected based on vintage, region, price, and age (number of months in a barrel). The total phenolic content of each wine was determined using Folin-Ciocalteau assay. The radical scavenging activity was evaluated using 2,2-diphenyl-1-picryhydrazyl (DPPH) assay. Apart from a few bottles that exhibited above average radical scavenging activity and phenolic content, there was no good correlation of those two quantities with regi...

  5. In Vitro Antioxidant and free Radical Scavenging activity of the Ethanolic extract of Aesculus hippocastanum

    R. V. Geetha

    2013-09-01

    Full Text Available The aim of the present study was to evaluate the antioxidant and free radical scavenging activity of the ethanolic extract of Aesculus hippocastanum (Horse chest nut. Highly reactive free radicals and oxygen species are present in biological systems from a wide variety of sources. These free radicals may oxidize nucleic acids, proteins, lipids or DNA and can initiate degenerative disease. Antioxidants play an important role in protecting cellular damage caused by reactive oxygen species. Plants containing phenolic compounds have been reported to possess strong antioxidant properties. Antioxidant potential of the ethanolic extract of Aesculus hippocastanum was studied using different in vitro free radical scavenging models like DPPH and Hydrogen Peroxide. The DPPH results have been compared with the standard Ascorbic acid .The extract showed good dose dependent free radical scavenging property in both the models used in this study.

  6. A novel strategy to analyze L-tryptophan through allosteric Trp repressor based on rolling circle amplification.

    Zhao, Guojie; Hu, Tianyu; Li, Jun; Wei, Hua; Shang, Hong; Guan, Yifu

    2015-09-15

    Rolling circle amplification (RCA) has been considered as a powerful tool for nucleic acids detection. Here, a novel repressor-RCA-based method for L-tryptophan (L-Trp) detection was developed. This method utilizes the specific interaction between the RCA circular template and the Trp repressor protein (TrpR) involved in trp operon of Escherichia coli (E. coli). In the absence of L-Trp, the TrpR protein could not bind to the RCA template, and the RCA process can be continued. When L-Trp is present, the activated TrpR will bind to the operon sequence on the RCA template and inhibit the RCA reaction. Thus, the concentration of L-Trp is correlated directly with the fluorescent RCA signals. We succeeded in detecting L-Trp in a single step in simple homogeneous reaction system. The detection limit was estimated to be 0.77 μM (S/N=3) with good linearity. The method can unambiguously distinguish L-Trp from other 19 standard amino acids and L-Trp analogs. This strategy is also promising for detecting many small molecules such as other amino acids and carbohydrates. PMID:25889351

  7. COMPARISON OF FREE RADICAL SCAVENGING ACTIVITY OF TWO MAIN VARIETIES OF CICER ARIETINUM SPROUTS

    Beenu Tom

    2013-06-01

    Full Text Available The purpose of the study was to evaluate the extent of free radical scavenging properties and antioxidant effects of crude extracts of sprouted Cicer arietinum (Chick pea/Chana/Bengal gram seeds. Two main varieties of Cicer arietinum seeds viz. Kabuli-chana (cream seed-coat and Bengal gram (brown seed-coat were examined and compared for their free radical scavenging properties and antioxidant effects. A crude methanol extract of the sprouted seeds were prepared. Free radical scavenging properties were evaluated against stable 2, 2-diphenyl-1-picrylhydrazyl radical (DPPH and hydrogen peroxide radical and the extent of antioxidant effect was assessed by lipid peroxidation induced by ferrous sulphate on the lipid present in the liver homogenate. The results showed that the two Cicer arietinum extracts differed in their capacities to quench or inhibit DPPH, hydrogen peroxide and lipid peroxide. Brown colored Cicer arietinum sprouts showed the greatest activity against DPPH radicals, hydrogen peroxide radicals and lipid peroxide compared to the cream variety. This study is clearly indicating that brown colored Cicer arietinum is effective in scavenging free radicals and has the potential to be a powerful antioxidant.

  8. Polyphenolic Compounds and Free Radical Scavenging Activity in Eight Lamiaceae Herbs of Manipur

    Sandhyarani Devi KHOMDRAM

    2011-05-01

    Full Text Available Eight plants of Lamiaceae under subfamily Nepetoideae found in Manipur, India were selected for estimation of their polyphenolic compounds and free radical scavenging activity which is expressed on dry weight basis. In this present study, the total phenol and flavonoid contents as well as the free radical scavenging activity were studied using spectrophotometric method. The total phenol content was determined based on Folin-Ciocalteau reagent, flavonoid was determined by aluminium chloride spectrophotometric method and tannin by Folin Dennis Method. The free radical scavenging activity was determined by using DPPH radical which is expressed as IC50 (μg/ml. The total phenolic content varied from 21.39±0.927 to 46.28±0.543 mg/g, flavonoids content in the selected samples varied from 13.30±0.684 to 26.03±0.217 mg/g and tannin content varied from 8.72±0.160 to 17.04±0.206 mg/g. The free radical scavenging activity among the selected samples varied from 11.67±0.221 to 38.29±0.532 μg/ml. The correlation between the free radical scavenging activity with total phenol content (R2=0.511, with flavonoids (R2=0.241 and with tannin (R2=0.690 was calculated and maximum correlation value was found between tannin content and the free radical scavenging activity of the plant samples. The result supports that tannins were more responsible for free radical scavenging activity in the presently selected plants.

  9. Component Analysis and Free Radicals Scavenging Activity of Cicer arietinum L. Husk Pectin

    Alfonso A. Gardea

    2010-10-01

    Full Text Available A pectin (CAP was extracted from the husk of Cicer arietinum L.. Monosaccharide analysis of CAP revealed the dominance of galacturonic acid and smaller amounts of galactose, arabinose, rhamnose, glucose, xylose and mannose. Viscosimetric analysis showed that the intrinsic viscosity ([η] and the molecular weight (MW of CAP were 296 mL/g and 105 kDa, respectively. The degree of esterification (DE = 10% was determined by FTIR spectroscopy. CAP exhibited a dose-dependent free radical scavenging activity, as shown by its DPPH radical inhibition. At 1.0 mg/mL CAP exhibited a scavenging rate of 29% on DPPH radicals. The evaluation of antioxidant activity suggested that CAP had good potential for DPPH radical scavenging activity and should be explored as a novel potential antioxidant.

  10. Free radical-scavenging activity and flavonoid contents of Polygonum orientale leaf, stem, and seed extracts

    Jiang Xinyu

    2009-01-01

    Full Text Available The present study was designed to explore the total flavonoid and taxifolin contents and the radical-scavenging activity of 50% ethanol extracts of Polygonum orientale leaves, stems, and seeds by 2,2-diphenyl-1-picrylhydrazyl (DPPH assay. The extract with higher total flavonoid content has higher radical scavenging activity. Taxifolin (IC50 = 2.83 μmol/L has antioxidant activity stronger than that of rutin (IC50 = 3.08 μmol/L. The free radical-scavenging potentials of chloroform, ethyl acetate, water, ethanol, and methanol extracts of Polygonum orientale seeds were also investigated. The free radical-scavenging abilities of various extracts were determined as: methanol > ethanol > water > ethyl acetate > chloroform.

  11. Activity Of The Moderate And Radical Islamic Organizations In The European States

    Nina V. Volodina

    2014-01-01

    In the present article author examines various aspects of Islamic organizations functioning in modern European countries. In the world the dangerous situation due to the spread of radical Islamic views, this is directly related to safety arose. Author researches some aspects of Islamic organizations in Europe functioning and their division into "moderate" and "radical". Author notes that the concept of "moderate Islam" is actively used in the western countries. In the article it is emphasized...

  12. Free radical scavenging and anti-edematogenic activities of Paullinia elegans Cambess., Sapindaceae, leaves extracts

    Rodrigo N. Guimarães; Maria Conceição T. Truitti; Bersani-Amado, Ciomar A.; Anelise S.N. Formagio; Flávia P. Cardoso; Willian F. da Costa; Maria Conceição de Souza; Maria Helena Sarragiotto

    2010-01-01

    Ethanol extract of the leaves of Paullinia elegans Cambess., Sapindaceae, and its hexane, chloroform, ethyl acetate, and hydroethanol fractions were evaluated for their antiedematogenic and free radical scavenging activities. The ethanol extract and the hexane fraction produced statistically significant inhibition (74.4 and 76.0%, respectively) of the ear edema induced by croton oil in mice, observed at doses of 5 mg/ear. The ethyl acetate and hydroethanol fractions showed significant radical...

  13. Electron spin resonance measurement of radical scavenging activity of Aronia melanocarpa fruit juice

    Stefka Valcheva-Kuzmanova; Branka Blagovic; Srecko Valic

    2012-01-01

    Background: The fruits of Aronia melanocarpa (Michx.) Elliot contain large amounts of phenolic substances, mainly procyanidins, anthocyanins and other flavonoids, and phenolic acids. The ability of phenolic substances to act as antioxidants has been well established. Objective: In this study, we investigated the radical scavenging activity of A. melanocarpa fruit juice (AMFJ). Materials and Methods: The method used was electron spin resonance (ESR) spectroscopy. The galvinoxyl free radical wa...

  14. The Content of Phenolic Compounds and Radical Scavenging Activity Varies with Carrot Origin and Root Color

    Leja, Maria; Kamińska, Iwona; Kramer, Maike; Maksylewicz-Kaul, Anna; Kammerer, Dietmar; Carle, Reinhold; Baranski, Rafal

    2013-01-01

    The contents of phenolic compounds and radical scavenging activities were assessed in a carrot collection comprising 35 cultivars, landraces and breeding populations. The accessions originated from various world regions and they represented Eastern and Western carrot gene pools. In two-year field trial carrot roots of orange, red, yellow, white and purple color were cultivated, freeze-dried and analyzed for phenolic content by Folin-Ciocalteu assay and UV/Vis assay. Radical scavenging activit...

  15. Indicators of free radical activity in patients developing radiation pneumonitis

    Purpose: Radiation pneumonitis is thought to occur as the result of excess free radical generation following radiotherapy. Various in vitro studies have shown that large doses of irradiation can cause membrane lipid peroxidation and the oxidation of protein sulphuryl groups. We, therefore, studied two circulating markers of lipid peroxidation and an indicator of 'catalytic iron' (potentially available iron to catalyze the generation of free radicals) in patients undergoing radiotherapy. Methods and Materials: The 9,11 diene conjugate of 9,12 linoleic acid, expressed as their molar ratio (percentage molar ratio (MR)) and thiobarbituric acid reactive acid-substances (TBARS), as well as levels of circulating desferrioxamine-chelatable iron assay, were assayed. Serial blood samples were taken over a 3-month period in 25 patients with inoperable nonsmall cell lung cancer. Results: Ten patients developed radiation pneumonitis. The patients who developed pneumonitis showed a tendency for the serum percentage molar ratio to increase after a week. The change in the percentage molar ratio between Time 0 and 1 week of radiotherapy was significantly higher in the group that subsequently developed pneumonitis compared to the group that did not (p = 0.002). The initial serum TBARS levels in patients were not significantly elevated compared to controls and there was no difference in the serum TBARS levels in the pneumonitis and nonpneumonitis groups throughout the study period. After 1 week of radiotherapy the group that subsequently developed pneumonitis had a significantly higher level of desferrioxamine-chelatable iron (DFx-iron) compared with the nonpneumonitis group (p = 0.05). Conclusion: These data suggest that both the percentage MR and DFx-iron appear to reflect an increased susceptibility to develop radiation pneumonitis and after 1 week of radiotherapy they indicate patients who are likely to subsequently develop pneumonitis. Hence, these indicators could indicate the

  16. Free radical scavenging activity of novel thiazolidine-2,4-dione derivatives.

    Berczyński, Paweł; Kruk, Irena; Piechowska, Teresa; Ceylan-Unlusoy, Meltem; Bozdağ-Dündar, Oya; Aboul-Enein, Hassan Y

    2013-01-01

    Free radical activity towards superoxide anion radical (O2•¯), hydroxyl radical (HO(•)) and 2,2-diphenyl-1-picrylhydrazyl (DPPH(•)) of a series of novel thiazolidine-2,4-dione derivatives (TSs) was examined using chemiluminescence, electron paramagnetic resonance (EPR) and EPR spin trapping techniques. 5,5-Dimethyl-1-pyrroline-N-oxide (DMPO) was applied as the spin trap. Superoxide radical was produced in the potassium superoxide/18-crown-6 ether dissolved in dimethyl sulfoxide. Hydroxyl radical was generated in the Fenton reaction (Fe(II) + H2O2. It was found that TSs showed a slight scavenging effect (15-38% reduction at 2.5 mmol/L concentration) of the DPPH radical and a high scavenging effect of O2•¯ (41-88%). The tested compounds showed inhibition of HO(•)-dependent DMPO-OH spin adduct formation (the amplitude of EPR signal decrease ranged from 20 to 76% at 2.5 mmol/L concentration. Our findings present new group compounds of relatively high reactivity towards free radicals. PMID:23225772

  17. Activism and radical politics in the digital age: Towards a typology

    Neumayer, Christina; Jakob, Svensson

    2014-01-01

    This article aims to develop a typology for evaluating different types of activism in the digital age, based on the ideal of radical democracy. Departing from this ideal, activism is approached in terms of processes of identification by establishing conflictual frontiers to outside others as eith...... taken into account when studying how online activism can contribute to social change....

  18. [In vitro anti-inflammatory and free radical scavenging activities of flavans from Ilex centrochinensis].

    Li, Lu-jun; Yu, Li-juan; Li, Yan-ci; Liu, Meng-yuan; Wu, Zheng-zhi

    2015-04-01

    This study was carried out to evaluate the anti-inflammatory and free radical scavenging activities of flavans from flex centrochinensis S. Y. Hu in vitro and their structure-activity relationship. LPS-stimulated RAW 264.7 macrophage was used as inflammatory model. MTT assay for cell availability, Griess reaction for nitric oxide (NO) production, the content of TNF-alpha, IL-1beta, IL-6 and PGE, were detected with ELISA kits; DPPH, superoxide anion and hydroxyl free radicals scavenging activities were also investigated. According to the result, all flavans tested exhibited anti-inflammatory effect in different levels. Among them, compounds 1, 3, 4 and 6 showed potent anti-inflammatory effect through the inhibition of NO, TNF-alpha, IL-lp and IL-6, of which 1 was the most effective inhibitor, however, 2 and 5 were relatively weak or inactive. The order of free radical scavenging activities was similar to that of anti-inflammatory activities. Therefore, these results suggest that 3, 4 and 6, especially of 1, were,in part responsible for the anti-inflammatory and free radical scavenging activity of Ilex centrochinensis. Hydroxyl group at 4'-position of B-ring plays an important role in the anti-inflammatory and free radical scavenging capacities. PMID:26281592

  19. Functional interaction between TRP4 and CFTR in mouse aorta endothelial cells

    Droogmans Guy

    2001-05-01

    Full Text Available Abstract Background This study describes the functional interaction between the putative Ca2+ channel TRP4 and the cystic fibrosis transmembrane conductance regulator, CFTR, in mouse aorta endothelium (MAEC. Results MAEC cells express CFTR transcripts as shown by RT-PCR analysis. Application of a phosphorylating cocktail activated a Cl- current with characteristics similar to those of CFTR mediated currents in other cells types (slow activation by cAMP, absence of rectification, block by glibenclamide. The current is present in trp4 +/+ MAEC, but not in trp4 -/- cells, although the expression of CFTR seems unchanged in the trp4 deficient cells as judged from RT-PCR analysis. Conclusions It is concluded that TRP4 is necessary for CFTR activation in endothelium, possibly by providing a scaffold for the formation of functional CFTR channels.

  20. Free radical scavenging activity and lipoxygenase inhibition of Mahonia aquifolium extract and isoquinoline alkaloids

    Kettmann Viktor

    2007-07-01

    Full Text Available Abstract Roots and stem-bark of Mahonia aquifolium (Oregon grape (Berberidaceae are effectively used in the treatment of skin inflammatory conditions. In the present study, the effect of Mahonia aquifolium crude extract and its two representative alkaloid fractions containing protoberberine and bisbenzylisoquinoline (BBIQ alkaloids on activity of 12-lipoxygenase (12-LOX, was studied. The reactivity with 1,1-diphenyl-2-picryl-hydrazyl (DPPH, a free stable radical, was evaluated to elucidate the rate of possible lipid-derived radical scavenging in the mechanism of the enzyme inhibition. The results indicate that although the direct radical scavenging mechanism cannot be ruled out in the lipoxygenase inhibition by Mahonia aquifolium and its constituents, other mechanisms based on specific interaction between enzyme and alkaloids could play the critical role in the lipoxygenase inhibition rather than non-specific reactivity with free radicals.

  1. Adaptive Neuro-Fuzzy Inference System Applied QSAR with Quantum Chemical Descriptors for Predicting Radical Scavenging Activities of Carotenoids

    Changho Jhin; Keum Taek Hwang

    2015-01-01

    One of the physiological characteristics of carotenoids is their radical scavenging activity. In this study, the relationship between radical scavenging activities and quantum chemical descriptors of carotenoids was determined. Adaptive neuro-fuzzy inference system (ANFIS) applied quantitative structure-activity relationship models (QSAR) were also developed for predicting and comparing radical scavenging activities of carotenoids. Semi-empirical PM6 and PM7 quantum chemical calculations were...

  2. Evaluation of free radical scavenging activity of tea infusion of commercial tea products available in uae

    In the present study, twenty four commercial tea samples were assayed to determine their free radical scavenging activity and polyphenolic contents based on the brewing/infusing period. Tea samples were infused/brewed in 200 mL boiled water at 120 degree C for 1, 2 and 5 min, respectively. The radical scavenging activities of tea infusion/brewing were measured using 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) assay method. The results were ranged from 67.81-90.51% for black tea bags, 90.37-94.51% for green tea bags, 24.66-92.25% for black tea powder, 16.08-93.06% for green tea powder and 32.90- 45.54% for Camomile herbal infusion. The results showed that 1 or 2 min black tea bags infusion exhibited highest radical scavenging activity than 5 min infusion. Antioxidant activities of tea powders were variable with the amount of tea powder. It was observed that antioxidant activity increased with increasing boiling time for smaller amount of sample. In contrary, shorter boiling time was better for larger amount of sample. The polyphenol contents of tea infusion were determined and the results were expressed as milligram quercetin equivalent/200 mL of tea infusion. The polyphenol content was increased with increased brewing period. In contrary, brewing for longer time rendered extract less antiradical activity. This study suggests that infusing tea bag for 1 or 2 min is sufficient for getting infusion with maximum radical scavenging activity and in case of tea powder, shorter boiling time is better for larger amount of powder or small amount of powder should be boiled for minimum 5 min for rendering extract with maximum radical scavenging activity. (author)

  3. Antibacterial and radical scavenging activity of leaf and bark of Persea macrantha (Nees Kosterm. (Lauraceae

    Prashith Kekuda T. R

    2014-06-01

    Full Text Available Persea macrantha (Nees Kosterm. belonging to the family Lauraceae is found in various states of Karnataka. The plant has got various traditional uses and is reported to exhibit several bioactivities. In the present study, we report antibacterial and radical scavenging potential of leaf and bark of P. macrantha. The powdered leaf and bark were extracted using methanol and the extracts were subjected to phytochemical analysis. Antibacterial activity was determined by Agar well diffusion assay. Antioxidant activity was evaluated by DPPH free radical scavenging assay. Total phenolic content of extracts was estimated by FCR method.Preliminary phytochemical analysis showed the presence of alkaloids, flavonoids, tannins, saponins and glycosides in both the extracts. Among bacteria tested, S. aureus and S. typhi were inhibited to higher extent by extracts. The extracts scavenged DPPH free radical dose dependently. Bark extract (IC50 2.44μg/ml displayed high radical scavenging potential than leaf extract (IC50 8.31μg/ml. Total phenolic content was higher in bark extract than leaf extract. A direct correlation was observed between total phenolic content of extracts and radical scavenging activity. In conclusion, the observed bioactivities of extracts could be ascribed to the presence of phytochemicals in particular phenolics. The plant is shown to be promising for the development of therapeutic agents active against oxidative stress and pathogenic bacteria.

  4. In Vitro Antimicrobial Bioassays, DPPH Radical Scavenging Activity, and FTIR Spectroscopy Analysis of Heliotropium bacciferum

    Ahmad, Sohail; AbdEl-Salam, Naser M.; Ullah, Riaz

    2016-01-01

    The present study deals with the antimicrobial, antioxidant, and functional group analysis of Heliotropium bacciferum extracts. Disc diffusion susceptibility method was followed for antimicrobial assessment. Noteworthy antimicrobial activities were recorded by various plant extracts against antibiotic resistant microorganisms. Plant flower extracts antioxidant activity was investigated against 2, 2-diphenyl-1-picryl hydrazyl radical by ultraviolet spectrophotometer (517 nm). Plant extracts di...

  5. Transient receptor potential (TRP gene superfamily encoding cation channels

    Pan Zan

    2011-01-01

    Full Text Available Abstract Transient receptor potential (TRP non-selective cation channels constitute a superfamily, which contains 28 different genes. In mammals, this superfamily is divided into six subfamilies based on differences in amino acid sequence homology between the different gene products. Proteins within a subfamily aggregate to form heteromeric or homomeric tetrameric configurations. These different groupings have very variable permeability ratios for calcium versus sodium ions. TRP expression is widely distributed in neuronal tissues, as well as a host of other tissues, including epithelial and endothelial cells. They are activated by environmental stresses that include tissue injury, changes in temperature, pH and osmolarity, as well as volatile chemicals, cytokines and plant compounds. Their activation induces, via intracellular calcium signalling, a host of responses, including stimulation of cell proliferation, migration, regulatory volume behaviour and the release of a host of cytokines. Their activation is greatly potentiated by phospholipase C (PLC activation mediated by coupled GTP-binding proteins and tyrosine receptors. In addition to their importance in maintaining tissue homeostasis, some of these responses may involve various underlying diseases. Given the wealth of literature describing the multiple roles of TRP in physiology in a very wide range of different mammalian tissues, this review limits itself to the literature describing the multiple roles of TRP channels in different ocular tissues. Accordingly, their importance to the corneal, trabecular meshwork, lens, ciliary muscle, retinal, microglial and retinal pigment epithelial physiology and pathology is reviewed.

  6. Screening of Malian medicinal plants for antifungal, larvicidal, molluscicidal, antioxidant and radical scavenging activities.

    Diallo, D; Marston, A; Terreaux, C; Touré, Y; Paulsen, B S; Hostettmann, K

    2001-08-01

    A total of 78 different extracts from 20 medicinal plants belonging to 14 plant families from Mali were tested for their antifungal, larvicidal, molluscicidal, antioxidant and radical scavenging activities. Dichloromethane, methanol, water and ethanol extracts were used. TLC autobiography for antifungal activity was run with Cladosporium cucumerinum and Candida albicans. Extracts were also tested on the larvae of the mosquitoes Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus. Molluscicidal activities were established with the snails Biomphalaria glabrata, Biomphalaria pfeifferi and Bulinus truncatus. beta-Carotene and DPPH solutions sprayed on TLC plates were used for antioxidant and radical scavenging assays. Of the extracts investigated, 20% were antioxidant and radical scavengers, 19% fungicidal, 30% were larvicidal and 11% were molluscicidal. Three of the plant extracts, from Cussonia barteri (Araliaceae), Glinus oppositifolius (Aïzoaceae) and Lannea velutina (Anacardiaceae) gave positive responses in all four tests. PMID:11507731

  7. Free radical scavenging activity of methanolic extract of Luffa cylindrica leaves

    Neeraj Kant Sharma

    2012-01-01

    Full Text Available Context: Free radicals contribute to more than one hundred disorders in humans including atherosclerosis, hypertension, arthritis, ischemia, gastritis, central nervous system injury, reperfusion injury of many tissues, cancer, Alzheimer′s disease, Parkinsonism, diabetes mellitus and AIDS. There is considerable evidence that antioxidants could help to prevent these diseases because they have the capacity to quench free radicals. Aim: Free radical scavenging activity of methanolic extract of the leaves of Luffa cylindrica (MELC was evaluated in various in vitro systems. Materials and Methods: The methods were extensively reviewed and free radical scavenging activity was performed by employing various in-vitro assay methods like DPPH, hydroxyl radical, superoxide and nitric oxide scavenging activities. Statistical Analysis: Results were analyzed statistically using one way analysis of variance (ANOVA followed by Dunnett′s multiple comparison test and were expressed as mean ± SE of three observations. Values of P < 0.05 were considered significant. Results: In all the studies, a significant correlation existed between concentrations of the extract and percentage inhibition of free radicals. The preliminary phytochemical screening of MELC indicated the presence of terpenoids, steroids, flavonoids and glycosides. The extract was found to contain 53.78 ± 1.01 =g/mg total polyphenolics expressed as GAE (micrograms per milligram of GAE. Conclusion: The results of the study suggested that the methanolic extract of the leaves of Luffa cylindrica possessed a significant scavenging effect with increasing concentrations probably due to its antioxidant potential and could serve as a potential source of natural antioxidants effective in treatments against free radical mediated diseases.

  8. Redox Regulation of Protein Tyrosine Phosphatase Activity by Hydroxyl Radical

    Meng, Fan-Guo; Zhang, Zhong-Yin

    2012-01-01

    Substantial evidence suggests that transient production of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) is an important signaling event triggered by the activation of various cell surface receptors. Major targets of H2O2 include protein tyrosine phosphatases (PTPs). Oxidation of the active site Cys by H2O2 abrogates PTP catalytic activity, thereby potentially furnishing a mechanism to ensure optimal tyrosine phosphorylation in response to a variety of physiological stimuli. ...

  9. Polyphenolics profile, antioxidant and radical scavenging activity of leaves and stem of Raphanus sativus L.

    Beevi, Syed Sultan; Narasu, Mangamoori Lakshmi; Gowda, Bandi Boje

    2010-03-01

    Aerial parts (leaves and stem) of Raphanus sativus, which are usually discarded were found to possess potent antioxidant and radical scavenging activity, as measured by standard antioxidant assays. Methanolic and acetone extracts of R. sativus leaves had total polyphenolic content of 86.16 and 78.77 mg/g dry extract, which were comparable to the traditional rich sources such as green tea and black tea. HPLC identification of polyphenolics indicated the presence of catechin, protocatechuic acid, syringic acid, vanillic acid, ferulic acid, sinapic acid, o-coumaric acid, myricetin, and quercetin in leaves and stem. Among the different extraction solvents, methanolic extract of leaves and stem showed potent reductive capacity, significantly inhibited linoleic acid peroxidation and displayed metal chelating activity. Further, they scavenged free radicals effectively with IC50 (half maximal inhibitory concentration) of 31 and 42 microg/ml for DPPH radical, 23 and 52 microg/ml for superoxide radical, 67 and 197 microg/ml for hydrogen peroxide,and 56 and 62 microg/ml for nitric oxide, respectively. Leaves showed most potent antioxidant and radical scavenging activity as compared to stem, which may be accounted for the high polyphenolic content. Leaves and stem of R. sativus,often under-utilized part of this vegetable, thus possessed considerable amount of polyphenolics. Hence, it should be egarded as a potential source of natural antioxidants and could be effectively employed as an ingredient in health or in functional food. PMID:20072818

  10. Synthesis of Gentiooligosaccharides of Genistein and Glycitein and Their Radical Scavenging and Anti-Allergic Activity

    Hiroki Hamada

    2011-06-01

    Full Text Available The synthesis of gentiooligosaccharides of genistein and glycitein using cultured cells of Eucalyptus perriniana as biocatalysts was investigated. The cells of E. perriniana glycosylated genistein and glycitein to give the corresponding 4'-O-b-glucosides, 7-O-b-glucosides, and 7-O-b-gentiobiosides, which were two new compounds. The b-glucosides of genistein and glycitein showed 2,2-diphenyl-1-picrylhydrazyl (DPPH free-radical scavenging activity and superoxide-radical scavenging activity. On the other hand, 7-O-b-glucosides of genistein and glycitein and the 7-O-b-gentiobioside of glycitein exerted inhibitory effects on IgE antibody production.

  11. Synthesis of Benzophenone Hydrazone Analogs and their DPPH Radical Scavenging and Urease Inhibitory Activates

    Benzophenone hydrazone analogs 1-25 were synthesized and evaluated for antioxidant (DPPH radical scavenging), and urease inhibitory activities. Out of twenty-five analogs, compounds 8, 23, and 1 showed potent free radical scavenging activities with IC50 values 19.45 ± 1.25, 21.72 ± 1.49, and 26.0 ± 0.52 μM, respectively, while compound 8 (IC50 = 36.36 ± 0.94 μ M), and 15 (IC50 = 55.5 ± 0.69 μ M), showed good to moderate urease inhibitory potential. (author)

  12. Radical-scavenging Activity of Natural Methoxyphenols vs. Synthetic Ones using the Induction Period Method

    Seiichiro Fujisawa; Ichiro Yokoe; Mariko Ishihara; Norihisa Okada; Toshiko Atsumi; Yoshinori Kadoma

    2007-01-01

    The radical-scavenging activities of the synthetic antioxidants 2-allyl-4-X-phenol (X=NO2, Cl, Br, OCH3, COCH3, CH3, t-(CH3)3, C6H5) and 2,4-dimethoxyphenol, and the natural antioxidants eugenol and isoeugenol, were investigated using differential scanning calorimetry (DSC) by measuring their anti-1,1-diphenyl-2-picrylhydrazyl (DPPH) radical activity and the induction period for polymerization of methyl methacrylate (MMA) initiated by thermal decomposition of 2,2'-azobisisobutyronitrile (AIBN...

  13. A joint application of spectroscopic, electrochemical and theoretical approaches in evaluation of the radical scavenging activity of 3-OH flavones and their iron complexes towards different radical species.

    Dimitrić Marković, Jasmina M; Marković, Zoran S; Pašti, Igor A; Brdarić, Tanja P; Popović-Bijelić, Ana; Mojović, Miloš

    2012-06-28

    Combined spectroscopic (UV/visible, MS and EPR), electrochemical (CV) and theoretical approaches were used to evaluate the relevant interactions of morin and quercetin, as well as their respective iron(III) complexes with DPPH, tempone, hydroxyl and superoxide radicals. The results on iron complexation specify the stoichiometry and the relevant structural forms entering the chelation of the molecules. The spectroscopic DPPH assay shows better antioxidant activity of quercetin and its iron complex both in terms of EC(50) values and stoichiometry. The results of 2-deoxyribose degradation suggest that antioxidant activities of morin and quercetin may originate from their combined effect of iron chelation and radical scavenging. The distinctive difference in the EPR spectra of morin and quercetin radicals suggests different positions of the radical centers which may account for different sequences of their activities towards investigated radicals. Activity ranking of quercetin and morin, established by cyclic voltammetry, confirms their activity sequence obtained by EPR results and is also in agreement with the results of conformational analysis. The equilibrium geometries, optimized with the M052X functionals and 6-311G(d,p) basis set, predict structural modifications between the ligand molecules in the free state and in the complex structures. The arguments gained through experimental results can also be rationalized in terms of overall molecular geometry and structural features governing antioxidant behavior i.e. substitution pattern of the ring B. PMID:22576733

  14. Successive solvent extraction and free radical scavenging activity of Azadirachta indica A. juss

    Mohammed Ibrahim

    2012-01-01

    Full Text Available Background: Plant-based or plant-derived drugs occupied 30% of the modern system of medicine. Several trees possess a variety of biologically active compounds. Among them, Azadirachta indica, belonging to the family Meliaceae, plays a vital role as it acts as nature′s pharmacy from several centuries of time. In the path of searching for potential antioxidants from plant origin, different parts of Azadirachta indica have been selected. Aim: Successive solvent extracts of leaves, seeds and root barks of Azadirachta indica A. Juss (neem were studied for their free radical scavenging activity. Materials and Methods: Extraction capacity of different solvents based on their polarity order was compared and the extracts were subjected to 1-diphenyl-2-picryl hydrazyl (DPPH free radical scavenging assay. Statistical Analysis: All values were expressed in mean±SEM and correlation coefficient (R 2 values obtained from dose response curves were expressed for antioxidant results. Results: The results showed that the highest yields was found with the hydroalcoholic extract of leaves, followed by the hydroalcoholic extract of seeds and methanolic extracts of leaves and seeds, respectively. Free radical scavenging activity of various extracts was determined by measuring 1, DPPH free radical scavenging activity. The results were expressed in terms of IC 50 values. The root bark methanol extract was found to exhibit the highest IC 50 of 14.82-μg/mL at the concentration of 25-μg/mL. Conclusion: It is concluded that hydroalcohol and methanol are the best solvents to extract the antioxidant compounds from Azadirachta indica. The root bark methanolic extract was found to have the highest free radical scavenging potential against DPPH radical.

  15. Radical-Scavenging Activity of Dietary Phytophenols in Combination with co-Antioxidants Using the Induction Period Method

    Seiichiro Fujisawa; Yoshinori Kadoma

    2011-01-01

    The radical-scavenging activity of dietary phytophenols has been investigated by many researches due to their antioxidant, anti-inflammatory and anticancer property but the radical-scavenging effect of 2-phytophenol and the phytophenol:co-antioxidants, vitamin C and thiol combination under nearly anaerobic conditions still remains unknown. The radical-scavenging activity for seventeen phytophenols and for six synthetic phenols (positive controls) was investigated using the induction period me...

  16. Radical Scavenging and DNA Cleavage Inhibitory Activities of 2,3-Dihydroxybenzoyl Glycine Obtained from Bacillus subtilis

    Jayesh J. Ahire

    2013-03-01

    Full Text Available A catecholate type of iron chelator (siderophore; 2,3-dihydroxybenzoyl glycine (DHBG was produced by Bacillus sp. under i ron stress conditions. Pure DHBG was subjected for DPPH ( α,α−Diphenyl−β− Picrylhydrazyl radical scavenging activity and radical induced DNA cleavage inhibition assay. In results, DHBG showed the highest radical scavenging effect and DNA cleavage inhibition activity when it was free from iron. This study revealed antioxidative potential of iron chelator DHBG; and its probable mechanism.

  17. Radical Scavenging and DNA Cleavage Inhibitory Activities of 2,3-Dihydroxybenzoyl Glycine Obtained from Bacillus subtilis

    Ahire, Jayesh J.; Mahulikar, Pramod P.; Chaudhari, Bhushan L.

    2013-01-01

    A catecholate type of iron chelator (siderophore); 2,3-dihydroxybenzoyl glycine (DHBG) was produced by Bacillus sp. under i ron stress conditions. Pure DHBG was subjected for DPPH ( α,α−Diphenyl−β− Picrylhydrazyl ) radical scavenging activity and radical induced DNA cleavage inhibition assay. In results, DHBG showed the highest radical scavenging effect and DNA cleavage inhibition activity when it was free from iron. This study revealed antioxidative potential of iron chelator DHBG; and its p...

  18. Antimicrobial and Free Radical Scavenging Activities of Five Palestinian Medicinal Plants

    Qabaha, Khaled Ibraheem

    2013-01-01

    Extracts from five indigenous Palestinian medicinal plants including Rosmarinus officinalis, Pisidium guajava, Punica granatum peel, grape seeds and Teucrium polium were investigated for antimicrobial and free radical scavenging activities against eight microorganisms, using well diffusion method. The microorganisms included six bacterial isolates (i.e. Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginos, Klebsiella pneumonia, Bacillus subtilis and Micrococcus luteus) and two funga...

  19. In vitro Antioxidant and free radical scavenging activity of Macrotyloma uniflorum (Gahat dal from Kumaun region

    Renu Singh

    2012-03-01

    Full Text Available Background & Aim: The present study was carried out to evaluate the in vitro antioxidant activities of Methanol extract of Dolichos biflorus dal ((DME commonly edible food from central Himalayans. Methods: This was achieved by screening of the plant extracts at varying concentrations (20-200μg/ml, using 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging activity, reducing power assay and hydrogen peroxide radical scavenging activity. Results: Total phenol and flavonoid contents (92.10 ± 8.11 mg/ml GAE per 100 mg plant extract and 139.5 ± 55.09 mg/ml QE equivalent per 100 mg plant extract were found respectively. Scavenging effect of DME was 4 times greater than that of the synthetic antioxidant ascorbic acid. Conclusion: Result also suggests a close relations in between total phenolic content and antioxidant activity, reducing power and radical scavenging effect on DPPH radicals, which proves Dolichos biflorus has a potential source of useful natural antioxidants.

  20. Li+ catalysis and other new methodologies for the radical polymerization of less activated olefins

    Merna, J.; Vlček, Petr; Volkis, V.; Michl, Josef

    2016-01-01

    Roč. 116, č. 3 (2016), s. 771-785. ISSN 0009-2665 Institutional support: RVO:61389013 ; RVO:61388963 Keywords : Li+ catalysis * radical polymerization * less activated olefins Subject RIV: CD - Macromolecular Chemistry; CC - Organic Chemistry (UOCHB-X) Impact factor: 46.568, year: 2014

  1. Chemical Constituents with Free-Radical-Scavenging Activities from the Stem of Microcos paniculata

    Yu Chen

    2010-08-01

    Full Text Available The free-radical-scavenging activities of various solvent extracts of Microcos paniculata were evaluated through in vitro model systems, such as 1,1-diphenyl-2-picrylhydrazyl (DPPH, 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonate (ABTS and Co (II EDTA-induced luminol chemiluminescence by flow injection. In all three of these systems the ethyl acetate (EtOAc extract showed the highest free-radical-scavenging activity compared with the other three (n-BuOH, water and petroleum ether extracts. Free-radical-scavenging assay-guided chromatographic separation of the EtOAc extract, using a normal-phase and reverse-phase silica gel column chromatography yielded five compounds: a new triterpene named methyl 3b-O-p-hydroxy-E-cinnamoyloxy-2a,23-dihydroxyolean-12-en-28-oate (1, whose spectral data are presented for the first time, together with four known compounds, epicatechin (2, 3-trans-feruloyl maslinic acid (3, maslinic acid (4 and sucrose (5. All of the compounds were isolated from Microcos paniculata for the first time. The compounds were identified by spectroscopic methods. Among them, compound 2 displayed significant free-radical-scavenging activity which is similar to that of standard antioxidant ascorbic acid (VC and therefore may be a promising natural antioxidant.

  2. Free radical activity during development of insulin-dependent diabetes mellitus in the rat

    Pitkaenen, O.M.; Akerblom, H.K.; Sariola, H.; Andersson, S.M. (Univ. of Helsinki (Finland)); Martin, J.M. (Hospital for Sick Children, Toronto, Ontario (Canada)); Hallman, M. (Univ. of California, Irvine (United States))

    1991-01-01

    Free radical-induced lipid peroxidation was quantified by measuring expired pentane from diabetic prone BB Wistar rats of 45-90 d of age. Insulin-dependent diabetes mellitus was manifest at the age of 71 {plus minus} 8 d. Expired pentane increased from 2.1 {plus minus} 0.7 to 5.0 {plus minus}3.0 pmol/100g/min (p <0.01) at manifestation of the disease and remained high throughout the test period. In healthy age-matched control rats it persisted low. In rats made diabetic with streptozotocin, expired pentane remained low. The changes in expired pentane suggest that the development of endogenous insulin-dependent diabetes mellitus in BB rats is associated with increased free radical activity. This is not due to hyperglycemia or ketosis per se, and reflects a fundamental difference in the free radical activity between the spontaneously diabetic BB rats and the disease produced by streptozotocin. Development of spontaneous insulin-dependent diabetes in BB rats is associated with increased free radical activity that persists after the manifestation of the disease.

  3. Antioxidative capacity and enzyme activity in Haematococcus pluvialis cells exposed to superoxide free radicals

    刘建国; 张晓丽; 孙延红; 林伟

    2010-01-01

    The antioxidative capacity of astaxanthin and enzyme activity of reactive oxygen eliminating enzymes such as superoxide dismutase (SOD),peroxidase (POD),catalase (CAT) and ascorbate peroxidase (APX) were studied in three cell types of Haematococcus pluvialis exposed to high concentrations of a superoxide anion radical (O2ˉ).The results show that defensive enzymes and astaxanthin-related mechanisms were both active in H.pluvialis during exposure to reactive oxygen species (ROS) such as Oˉ2.Astaxanthin reacte...

  4. FREE RADICAL SCAVENGING ACTIVITY AND HPLC ANALYSIS OF ARAUCARIA CUNNINGHAMII AITON EX D. DON LEAF EXTRACT

    Vandana Gautam; Saroj Arora; Dhriti Kapoor; Renu Bhardwaj

    2014-01-01

    Background: Several diseases are caused in the body due to oxidative stress of free radicals. The objectives of the present study were to investigate the antioxidant activity of Araucaria cunninghamii Aiton ex D. Don (Araucariaceae) leaf extract. The dried leaves of Araucaria cunninghamii Aiton ex D. Don (Araucariaceae) were extracted with 80% methanol. The antioxidant activity of the extract was predicted through in vitro model systems such as 1,1-diphenyl-2-picryl hydrazyl (DPPH), reducing ...

  5. Screening of radical scavenging activity and polyphenol content of Bulgarian plant species

    Milena Nikolova

    2011-01-01

    Background: Discovery of new plant species with antioxidant properties is a priority of many research teams. Most of the species included in this study are unstudied for antioxidant properties, but they are taxonomically related to reference plants with well-documented antioxidant activity. Materials and Methods: Free radical scavenging activity of plant extracts was evaluated using a 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. An aluminum chloride colorimetric method was used for flavonoid d...

  6. Xanthine oxidase activity and free radical generation in patients with sepsis syndrome

    Galley, H F; Davies, Michael Jonathan; Webster, N R

    1996-01-01

    OBJECTIVE: To determine xanthine oxidase activity, free radical concentrations, and lipid peroxidation in patients with sepsis syndrome compared with noninfected critically ill patients. DESIGN: A prospective observational study. SETTING: A nine-bed intensive care unit in a university teaching...... hospital trust. PATIENTS: Fourteen consecutive patients who met the established criteria for sepsis syndrome with multiple organ dysfunction syndrome, and ten noninfected critically ill patients were studied. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Xanthine oxidase activity was increased in...

  7. Fluorescence kinetics of Trp-Trp dipeptide and its derivatives in water via ultrafast fluorescence spectroscopy.

    Jia, Menghui; Yi, Hua; Chang, Mengfang; Cao, Xiaodan; Li, Lei; Zhou, Zhongneng; Pan, Haifeng; Chen, Yan; Zhang, Sanjun; Xu, Jianhua

    2015-08-01

    Ultrafast fluorescence dynamics of Tryptophan-Tryptophan (Trp-Trp/Trp2) dipeptide and its derivatives in water have been investigated using a picosecond resolved time correlated single photon counting (TCSPC) apparatus together with a femtosecond resolved upconversion spectrophotofluorometer. The fluorescence decay profiles at multiple wavelengths were fitted by a global analysis technique. Nanosecond fluorescence kinetics of Trp2, N-tert-butyl carbonyl oxygen-N'-aldehyde group-l-tryptophan-l-tryptophan (NBTrp2), l-tryptophan-l-tryptophan methyl ester (Trp2Me), and N-acetyl-l-tryptophan-l-tryptophan methyl ester (NATrp2Me) exhibit multi-exponential decays with the average lifetimes of 1.99, 3.04, 0.72 and 1.22ns, respectively. Due to the intramolecular interaction between two Trp residues, the "water relaxation" lifetime was observed around 4ps, and it is noticed that Trp2 and its derivatives also exhibit a new decay with a lifetime of ∼100ps, while single-Trp fluorescence decay in dipeptides/proteins shows 20-30ps. The intramolecular interaction lifetime constants of Trp2, NBTrp2, Trp2Me and NATrp2Me were then calculated to be 3.64, 0.93, 11.52 and 2.40ns, respectively. Candidate mechanisms (including heterogeneity, solvent relaxation, quasi static self-quenching or ET/PT quenching) have been discussed. PMID:26111991

  8. Phytochemical Screening and In vitro Evaluation of Free Radical Scavenging Activity of Dionysia revoluta L.

    Mohammad Ali Farboodniay Jahromi

    2015-03-01

    Full Text Available Dionysia revoluta L., a plant of Primulaceae family is used for treating ulcers and relieving pain in Iranian traditional system of medicine. The present study was aimed at preliminary phytochemical investigation and evaluation of antioxidant characteristics of D. revolute L. ethanol extract and its various fractions. Total phenolic content was determined by Folin–Ciocalteu method. Evaluation of total flavonoid was carried out by the use of an aluminium chloride/sodium carbonate colorimetric procedure. Lipid peroxidation inhibitory effect of ethanol extract was studied and compared with that of butylated hydroxytoluene (BHT. Radical scavenging properties of ethanolic extract and various fractions were determined by 2,2-diphenyl-l-picrylhydrazyl (DPPH and nitric oxide methods. High phenolic and flavonoid contents and significant radical scavenging properties were detected for the ethyl, acetate and n-butanol fractions. Comparisons were made with known reference antioxidant compounds ascorbic acid, quercetin, and gallic acid. The radical scavenging effect of n-butanol fraction was the highest among all fractions. Acid hydrolysis of n-butanol fraction led to a significant enhancement in its phenolic and flavonoid contents and DPPH scavenging efficacy. The total phenolic content showed a good correlation with radical scavenging activity. The antioxidant activity found in the ethyl acetate and n-butanol fractions of D. revoluta L. may be attributed to the presence of flavonoids and other phenolic compounds. Among various chemical constituents of this plant, the concentration of flavonoids seems to prevail remarkably as indicated by thin layer chromatography of various fractions and diagnostic colour reactions. The results suggest that D. revoluta bears a remarkable radical scavenging and antioxidant activity and is worthy of further detailed phytochemical and antioxidant studies.

  9. DPPH Radical Scavenging Activity and Total Phenolics of Phellinus Mushroom Extracts Collected from Northeast of Thailand

    Prapairat Seephonkai; Sorasak Samchai; Apidech Thongsom; Suriya Sunaart; Boonkirt Kiemsanmuang; Kamonchanok Chakuton

    2011-01-01

    AIM:To investigate the antioxidant activity and total phenolic content from the crude extracts and crude fractions of ten species of Phellinus mushrooms collected from northeast Thailand.METHODS:The samples were tested for their radical scavenging activity toward 2,2-diphenyl-1-pricylhydrazyl (DPPH) radical (DPPH method) and total phenolic content (Folin-Ciocalteu method).RESULTS:Some of the investigated extracts exhibited potent radical scavenging activity with the IC5o ranging from (7.30 ±0.34) to (19.80 ± 0.13) μg.mL-1.IC50 were in the range of the standard antioxidant used; quercetin,ascorbic acid and butylated hydroxytoluene (BHT).The strongest scavenging activity as comparable to quercetin was found in the crude 80% EtOH extract of P.torulosus.The crude EtOAc fraction of P.pini showed the highest total phenolic content with a value of 87.76 ± 1.00 equivalent gallic acid (EGA) while the samples with potent antioxidant activity were also determined to have high amount of total phenolics (78.34 ±0.27 to 51.01 ± 0.38) EGA.CONCLUSION:These results indicated that crude extracts from Phellinus mushrooms have a potential to be natural antioxidant source.

  10. Contents of total phenolics and flavonoids, radical scavenging and anticaries activity of leaf and seed extract of Anisomeles indica Linn

    Syed Junaid

    2013-12-01

    Full Text Available The present study was carried out to determine the radical scavenging and anticaries activity of methanol extract of leaf and seed of Anisomeles indica Linn. (Lamiaceae. Total phenolic and flavonoid content of leaf and seed extract were determined by Folin-Ciocalteau Reagent method and Aluminium chloride colorimetric estimation method respectively. Radical scavenging activity of different concentrations of leaf and seed extracts was evaluated by DPPH free radical scavenging assay. Anticaries activity of leaf and seed extracts was performed against six clinical isolates of Streptococcus mutans by Agar well diffusion assay. The content of total phenolics and flavonoids were higher in leaf extract when compared to seed extract. Both the extracts scavenged DPPH radical in a dose dependent manner. Leaf extract was more efficient in scavenging radicals (IC50 2.70μg/ml than seed extract (IC50 8.18μg/ml. Similarly, leaf extract inhibited S. mutans isolates to higher extent than seed extract. A marked radical scavenging and anticaries activity of leaf and seed extract of A. indica was observed in this study. Leaf extract was more efficient in scavenging DPPH radicals and inhibiting the S. mutans isolates. The high phenolic and flavonoid content of leaf extract might be attributed to higher radical scavenging and antibacterial activity.

  11. Radical Scavenging Activity of the Essential Oil of Silver Fir (Abies alba).

    Yang, Seun-Ah; Jeon, Sang-Kyung; Lee, Eun-Jung; Im, Nam-Kyung; Jhee, Kwang-Hwan; Lee, Sam-Pin; Lee, In-Seon

    2009-05-01

    The essential oil of silver fir (Abies alba) is known to help respiratory system and have easing and soothing effect for muscle. In the present study, we investigated the chemical composition, cytotoxicity and its biological activities of silver fir (Abies alba) essential oil. The composition of the oil was analyzed by GC-MS and bornyl acetate (30.31%), camphene (19.81%), 3-carene (13.85%), tricyclene (12.90%), dl-limonene (7.50%), alpha-pinene (2.87%), caryophyllene (2.18%), beta-phellandrene (2.13%), borneol (1.74%), bicyclo[2.2.1]hept-2-ene,2,3-dimethyl (1.64%) and alpha-terpinene (1.24%) were the major components in the oil. The results tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay indicated that the oil showed no cytotoxic effect, at concentrations of 1 and 5%, for as long as 24 and 3 h, respectively. The antiradical capacity was evaluated by measuring the scavenging activity of the essential oil on the 2,20-diphenylpicrylhydrazyl (DPPH) and 2,2'-azino-bis 3-ethyl benzothiazoline-6-sulfonic acid (ABTS) radicals. The oil was able to reduce the both radicals dose-dependently, and the concentration required for 50% reduction (RC(50)) against DPPH radicals (2.7 +/- 0.63%) was lower than ABTS radicals (8.5 +/- 0.27%). The antibacterial activity of the oil was also evaluated using disc diffusion method against Staphylococcus aureus, Streptococcus mutans, Listeria monocytogenes, Acinetobacter baumannii, Escherichia coli, and Vibrio parahaemolyticcus. The oil exhibited no antibacterial activity against all the bacterial strains tested except S. aureus of mild activity. PMID:19430614

  12. THE FREE RADICAL SCAVENGING AND ANTI-HYPERGLYCEMIC ACTIVITIES OF VARIOUS GAMBIERS AVAILABLE IN INDONESIAN MARKET

    Muhammad Hanafi

    2011-11-01

    Full Text Available Gambier (Uncaria gambier is known to have antioxidant properties, and some studies have attributed it to the presenceof polyphenols such as catechin. The objective of this study is to investigate the potential of various gambiers availablein Indonesian market as a scavenger of reactive free radicals and evaluate its anti-hyperglycemic activity as α-glucosidase inhibitor. Isolation of catechin was done by extraction method with technical grade of ethyl acetate assolvent. Analysis of catechin in the dried gambier extract was carried out with TLC method. The molecular weight andcontent of catechin of dried gambier extract was determined by analyzing its mass spectra and spectrophotometer,respectively. The free radical scavenging activity of catechin of the resultant extracts was measured by using 1,1-diphenyl-2-picrylhydrazyl (DPPH as stable free radical compound. The anti-hyperglycemic activity of catechin ofethyl acetate extracts was analyzed as α-glucosidase inhibitor. The result showed that various gambiers available in themarket are very active as antioxidant, indicated by IC50 of catechin of ethyl acetate extracts which were 4.6 to 18.2μg/mL for DPPH inhibition. The IC50 for α-glucosidase inhibition is ranged from 40.45 to 52.43 μg/mL, so they can beclassified as anti-diabetic.

  13. p53 regulation by TRP2 is not pervasive in melanoma.

    Roland Houben

    Full Text Available p53 is a central tumor suppressor protein and its inhibition is believed to be a prerequisite for cancer development. In approximately 50% of all malignancies this is achieved by inactivating mutations in the p53 gene. However, in several cancer entities, including melanoma, p53 mutations are rare. It has been recently proposed that tyrosinase related protein 2 (TRP2, a protein involved in melanin synthesis, may act as suppressor of the p53 pathway in melanoma. To scrutinize this notion we analyzed p53 and TRP2 expression by immunohistochemistry in 172 melanoma tissues and did not find any correlation. Furthermore, we applied three different TRP2 shRNAs to five melanoma cell lines and could not observe a target specific effect of the TRP2 knockdown on either p53 expression nor p53 reporter gene activity. Likewise, ectopic expression of TRP2 in a TRP2 negative melanoma cell line had no impact on p53 expression. In conclusion our data suggest that p53 repression critically controlled by TRP2 is not a general event in melanoma.

  14. Heightened free radical activity in blacks with chronic pancreatitis at Johannesburg, South Africa.

    Gut, A; Shiel, N; Kay, P M; Segal, I; Braganza, J M

    1994-10-31

    Four indices of free radical activity were measured in fasting serum/plasma samples from 14 consecutive blacks with clinically quiescent chronic pancreatitis and 15 outwardly healthy hospital personnel at Soweto, the township near Johannesburg in South Africa. The patients had higher serum levels than did controls of lipid isomerisation (P radical activity is thus a common denominator in chronic pancreatitis irrespective of geography, or putative aetiological factors whether alcoholism or idiopathic, since that ratio was approximately 95:5 at Johannesburg and 50:50 at Manchester. The further finding of subclinical oxidative stress in Sowetan controls and the endemic nature of chronic pancreatitis in that area supports the hypothesis that oxidative stress may be involved in its pathogenesis. PMID:7834869

  15. Myeloperoxidase inhibitory and radical scavenging activities of flavones from Pterogyne nitens.

    Fernandes, Daniara Cristina; Regasini, Luis Octávio; Vellosa, José Carlos Rebuglio; Pauletti, Patrícia Mendonça; Castro-Gamboa, Ian; Bolzani, Vanderlan Silva; Oliveira, Olga Maria Mascarenhas; Silva, Dulce Helena Siqueira

    2008-05-01

    Two new flavone glucosides, nitensosides A and B (1, 2), together with four known compounds, sorbifolin (3), sorbifolin 6-O-beta-glucopyranoside (4), pedalitin (5), and pedalitin 6-O-beta-glucopyranoside (6) were isolated from Pterogyne nitens. Their structures were elucidated from 1D and 2D NMR analysis, as well as by high resolution mass spectrometry. All the isolated flavones were evaluated for their myeloperoxidase (MPO) inhibitory activity. The most active compound, pedalitin, exhibited IC50 value of 3.75 nM on MPO. Additionally, the radical-scavenging capacity of flavones 1-6 was evaluated towards ABTS and DPPH radicals and compared to standard compounds quercetin and Trolox. PMID:18451567

  16. Detection of hydroxyl radicals during regeneration of granular activated carbon in dielectric barrier discharge plasma system

    To understand the reactions taking place in the dielectric barrier discharge (DBD) plasma system of activated carbon regeneration, the determination of active species is necessary. A method based on High Performance Liquid Chromatography with radical trapping by salicylic acid, has been developed to measure hydroxyl radical (.OH) in the DBD plasma reactor. The effects of applied voltage, treatment time, and gas flow rate and atmosphere were investigated. Experimental results indicated that increasing voltage, treatment time and air flow rate could enhance the formation of .OH. Oxygen atmosphere and a suitable GAC water content were contributed to .OH generation. The results give an insight into plasma chemical processes, and can be helpful to optimize the design and application for the plasma system.

  17. Drosophila TRP channels and animal behavior

    Fowler, Melissa A.; Montell, Craig

    2012-01-01

    Multiple classes of cell surface receptors and ion channels participate in the detection of changes in environmental stimuli, and thereby influence animal behavior. Among the many classes of ion channels, Transient Receptor Potential (TRP) cation channels are notable in contributing to virtually every sensory modality, and in controlling a daunting array of behaviors. TRP channels appear to be conserved in all metazoan organisms including worms, insects and humans. Flies encode 13 TRPs, most ...

  18. Antibacterial and radical scavenging activity of leaf and bark of Persea macrantha (Nees) Kosterm. (Lauraceae)

    Prashith Kekuda T.R; Vivek M. N; Yashoda Kambar; Manasa M; Raghavendra H. L

    2014-01-01

    Persea macrantha (Nees) Kosterm. belonging to the family Lauraceae is found in various states of Karnataka. The plant has got various traditional uses and is reported to exhibit several bioactivities. In the present study, we report antibacterial and radical scavenging potential of leaf and bark of P. macrantha. The powdered leaf and bark were extracted using methanol and the extracts were subjected to phytochemical analysis. Antibacterial activity was determined by Agar well diffusion assay....

  19. Free radical-scavenging capacity, antioxidant activity and phenolic content of Pouzolzia zeylanica

    PEIYUAN LI; LINI HUO; WEI SU; RUMEI LU; CHAOCHENG DENG; LIANGQUAN LIU; YONGKUN DENG; NANA GUO; CHENGSHENG LU; CHUNLING HE

    2011-01-01

    Pouzolzia zeylanica was extracted with different solvents (acetone, ethyl acetate and petroleum ether), using different protocols (cold-extraction and Soxhlet extraction). To evaluate the antiradical and antioxidant abilities of the extracts, four in vitro test systems were employed, i.e., DPPH, ABTS and hydroxyl radical scavenging assays and a reducing power assay. All extracts exhibited outstanding antioxidant activities that were superior to that of butylated hydroxytoluene. The ethyl acet...

  20. Antioxidant activity and free radical-scavenging capacity of Gynura divaricata leaf extracts at different temperatures

    Chunpeng Wan

    2011-01-01

    Full Text Available Background: Extraction temperature influences the total phenolic content (TPC, total flavonoid content (TFC of medicinal plant extracts to a great extend. TPC and TFC are the principle activity constituents present in the plant. The effects of extraction temperature on TPC, TFC and free radical-scavenging capacity of Gynura divaricata leaf extracts are worth to study. Materials and Methods: Folin-Ciocalteu and aluminum chloride colorimetric assay were used to determine the TPC and TFC of Gynura divaricata leaf extracts at different temperatures. The antioxidant and free radical-scavenging activity were measured by 1,1-diphenyl-2-picrylhydrazyl (DPPH, 2,2-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid (ABTS and phosphomolybdenum methods. Results: TPC and TFC were significantly elevated with increasing extraction temperature (from 40°C to 100°C. However, TPC and TFC were not significantly different (P > 0.05 at the extraction temperatures 90°C and 100°C. Also, the extracts obtained at a higher temperature exhibited a significant free radical-scavenging activity compared with extraction at lower temperatures (P < 0.05. The TPCs (13.95-36.68 mg gallic acid equivalent/g dry material were highly correlated with DPPH (R2 = 0.9229, ABTS (R2 = 0.9951 free radical-scavenging capacity, and total antioxidant activity (R2 = 0.9872 evaluated by phosphomolybdenum method. Conclusion: The TPC and TFC of G. divaricata leaf was significantly influenced by the extraction temperatures, which were the main antioxidant constituents present in the G. divaricata plant.

  1. Antioxidant activity and free radical-scavenging capacity of Gynura divaricata leaf extracts at different temperatures

    Wan, Chunpeng; Yu, Yanying; Zhou, Shouran; Liu, Wei; Tian, Shuge; Cao, Shuwen

    2011-01-01

    Background: Extraction temperature influences the total phenolic content (TPC), total flavonoid content (TFC) of medicinal plant extracts to a great extend. TPC and TFC are the principle activity constituents present in the plant. The effects of extraction temperature on TPC, TFC and free radical-scavenging capacity of Gynura divaricata leaf extracts are worth to study. Materials and Methods: Folin–Ciocalteu and aluminum chloride colorimetric assay were used to determine the TPC and TFC of Gy...

  2. Preparation of Egg White Liquid Hydrolysate (ELH) and Its Radical-Scavenging Activity.

    Noh, Dong Ouk; Suh, Hyung Joo

    2015-09-01

    In the present study, an optimum protease was selected to hydrolyze the egg white liquid protein for the antioxidant peptides. Alcalase treatment yielded the highest amount of α-amino groups (15.27 mg/mL), while the control (no enzymatic hydrolysis) showed the lowest amount of α-amino groups (1.53 mg/mL). Alcalase also gave the highest degree of hydrolysis (DH) value (43.2%) and was more efficient for egg white liquid hydrolysis than the other enzymes. The Alcalase hydrolysate had the highest radical-scavenging activity (82.5%) at a concentration of 5.0 mg/mL. The conditions for enzymatic hydrolysis of egg white liquid with Alcalase were selected as substrate : water ratio of 2:1. Five percent Alacalse treatment did not show significant (P>0.05) increases of DH and α-amino nitrogen content after 24 h-hydrolysis. Thirty two hour-hydrolysis with 5% Alcalase is sufficient to make antioxidative egg white liquid hydrolysate from egg white liquid. DPPH and ABTS radical-scavenging activities were significantly (P<0.05) higher after enzymatic digestion. These results suggest that active peptides released from egg-white protein are effective radical-scavengers. Thus, this approach may be useful for the preparation of potent antioxidant products. PMID:26451355

  3. Human cryptochrome-1 confers light independent biological activity in transgenic Drosophila correlated with flavin radical stability.

    Jacqueline Vieira

    Full Text Available Cryptochromes are conserved flavoprotein receptors found throughout the biological kingdom with diversified roles in plant development and entrainment of the circadian clock in animals. Light perception is proposed to occur through flavin radical formation that correlates with biological activity in vivo in both plants and Drosophila. By contrast, mammalian (Type II cryptochromes regulate the circadian clock independently of light, raising the fundamental question of whether mammalian cryptochromes have evolved entirely distinct signaling mechanisms. Here we show by developmental and transcriptome analysis that Homo sapiens cryptochrome--1 (HsCRY1 confers biological activity in transgenic expressing Drosophila in darkness, that can in some cases be further stimulated by light. In contrast to all other cryptochromes, purified recombinant HsCRY1 protein was stably isolated in the anionic radical flavin state, containing only a small proportion of oxidized flavin which could be reduced by illumination. We conclude that animal Type I and Type II cryptochromes may both have signaling mechanisms involving formation of a flavin radical signaling state, and that light independent activity of Type II cryptochromes is a consequence of dark accumulation of this redox form in vivo rather than of a fundamental difference in signaling mechanism.

  4. Radical scavenging and anti-lipoperoxidative activities of Smallanthus sonchifolius leaf extracts.

    Valentová, Katerina; Sersen, Frantisek; Ulrichová, Jitka

    2005-07-13

    Radical scavenging and anti-lipoperoxidative effects of two organic fractions and two aqueous extracts from the leaves of a neglected Andean crop-yacon (Smallanthus sonchifolius Poepp. & Endl., Asteraceae) were determined using various in vitro models. The extracts' total phenolic content was 10.7-24.6%. They exhibited DPPH (IC50 16.14-33.39 microg/mL) and HO* scavenging activities (4.49-6.51 mg/mL). The extracts did not scavenge phenylglyoxylic ketyl radicals, but they retarded their formation. In the xanthine/xanthine oxidase superoxide radical generating system, the extracts' activities were 26.10-37.67 superoxide dismutase equivalents/mg. As one of the extracts displayed xanthine oxidase inhibitory activity, the effect of the extracts on a nonenzymatically generated superoxide was determined (IC50 7.36-21.01 microg/mL). The extracts inhibited t-butyl hydroperoxide-induced lipoperoxidation of microsomal and mitochondrial membranes (IC50 22.15-465.3 microg/mL). These results make yacon leaves a good candidate for use as a food supplement in the prevention of chronic diseases involving oxidative stress. PMID:15998117

  5. Monoamine oxidase B and free radical scavenging activities of natural flavonoids in Melastoma candidum D. Don.

    Lee, M H; Lin, R D; Shen, L Y; Yang, L L; Yen, K Y; Hou, W C

    2001-11-01

    Monoamine oxidase type B (MAO-B) activity and free radicals are elevated in certain neurological diseases. Four natural flavonoids, quercitrin, isoquercitrin, rutin, and quercetin, were isolated for the first time from the leaves of Melastoma candidum D. Don. They exhibited an inhibitory effect on MAO-B. These potent flavonoids were purified using bioassay-guided fractionation and were separated by Diaion, Sephadex LH-20, and MCI CHP20P columns. The IC(50) values of the four potent flavonoids, quercitrin, isoquercitrin, rutin, and quercetin on monoamine oxidase were 19.06, 11.64, 3.89, and 10.89 microM and enzyme kinetics analysis revealed apparent inhibition constants (K(i)) of 21.01, 2.72, 1.83, and 7.95 microM, respectively, on the substrate, benzylamine. The four potent compounds also exhibited hydroxyl radical scavenging activity as determined using a spin trapping electron spin resonance method. This suggests that the four flavonoids from M. candidum possess both MAO-B inhibitory and free radical scavenging activities. These important properties may be used for preventing some neurodegenerative diseases in the future. PMID:11714358

  6. Sonme Factors that Affect the Free Radical-scavenging Activity of Tea Extracts

    1999-01-01

    Some factors that affect the free radical-scavenging activety of two tea extracts were studied in vitro. It was found that concentration of tea extract or heating tea extract or treating with activated carbon and diatomite all had obvious effect on the scavenging activety of green tea extract ,but heating or treating with diaomite had less effect on the scavenging activity of black tea extract. Ascorbic acid, for having synergic effect with tea extracts, could enhance the scavenging activity of tea extracts markedly, and the contrary was cupric ion. Reducing sugars such as fructose and glucose also had some syncrgic effect to tea extracts.

  7. Different expression patterns of TRP genes in murine B and T lymphocytes

    A prolonged increase in the intracellular calcium concentration ([Ca2+]i) is essential for lymphocyte activation that includes cell proliferation and differentiation. This increase in [Ca2+]i results from Ca2+ release from the intracellular store and the subsequent Ca2+ influx from the extracellular environment via calcium channels located on the plasma membrane. Although transient receptor potential (TRP) channels have been reported to play important roles in the [Ca2+]i increase in lymphocytes, the function of these channels in lymphocyte activation remains unknown. Here, we report the comprehensive expression profile of TRP channel gene families including TRPC, TRPV, and TRPM in the murine immune system. RT-PCR analysis revealed different expression patterns of the TRP channel genes in B and T lymphocytes isolated from the spleen. Therefore, our results provide an appropriate reference of TRP gene expression in murine lymphocytes

  8. Positions of Trp codons in the leader peptide-coding region of the at operon influence anti-trap synthesis and trp operon expression in Bacillus licheniformis.

    Levitin, Anastasia; Yanofsky, Charles

    2010-03-01

    Tryptophan, phenylalanine, tyrosine, and several other metabolites are all synthesized from a common precursor, chorismic acid. Since tryptophan is a product of an energetically expensive biosynthetic pathway, bacteria have developed sensing mechanisms to downregulate synthesis of the enzymes of tryptophan formation when synthesis of the amino acid is not needed. In Bacillus subtilis and some other Gram-positive bacteria, trp operon expression is regulated by two proteins, TRAP (the tryptophan-activated RNA binding protein) and AT (the anti-TRAP protein). TRAP is activated by bound tryptophan, and AT synthesis is increased upon accumulation of uncharged tRNA(Trp). Tryptophan-activated TRAP binds to trp operon leader RNA, generating a terminator structure that promotes transcription termination. AT binds to tryptophan-activated TRAP, inhibiting its RNA binding ability. In B. subtilis, AT synthesis is upregulated both transcriptionally and translationally in response to the accumulation of uncharged tRNA(Trp). In this paper, we focus on explaining the differences in organization and regulatory functions of the at operon's leader peptide-coding region, rtpLP, of B. subtilis and Bacillus licheniformis. Our objective was to correlate the greater growth sensitivity of B. licheniformis to tryptophan starvation with the spacing of the three Trp codons in its at operon leader peptide-coding region. Our findings suggest that the Trp codon location in rtpLP of B. licheniformis is designed to allow a mild charged-tRNA(Trp) deficiency to expose the Shine-Dalgarno sequence and start codon for the AT protein, leading to increased AT synthesis. PMID:20061467

  9. Antioxidant Activity of Caffeic Acid against Iron-Induced Free Radical Generation--A Chemical Approach.

    Thiago C Genaro-Mattos

    Full Text Available Caffeic acid (CA is a phenolic compound widely found in coffee beans with known beneficial effects in vivo. Many studies showed that CA has anti-inflammatory, anti-mutagenic, antibacterial and anti-carcinogenic properties, which could be linked to its antioxidant activity. Taking in consideration the reported in vitro antioxidant mechanism of other polyphenols, our working hypothesis was that the CA antioxidant activity could be related to its metal-chelating property. With that in mind, we sought to investigate the chemical antioxidant mechanism of CA against in vitro iron-induced oxidative damage under different assay conditions. CA was able to prevent hydroxyl radical formation promoted by the classical Fenton reaction, as determined by 2-deoxyribose (2-DR oxidative degradation and DMPO hydroxylation. In addition to its ability to prevent hydroxyl radical formation, CA had a great inhibition of membrane lipid peroxidation. In the lipid peroxidation assays CA acted as both metal-chelator and as hydrogen donor, preventing the deleterious action promoted by lipid-derived peroxyl and alkoxyl radicals. Our results indicate that the observed antioxidant effects were mostly due to the formation of iron-CA complexes, which are able to prevent 2-DR oxidation and DMPO hydroxylation. Noteworthy, the formation of iron-CA complexes and prevention of oxidative damage was directly related to the pH of the medium, showing better antioxidant activity at higher pH values. Moreover, in the presence of lipid membranes the antioxidant potency of CA was much higher, indicating its enhanced effectiveness in a hydrophobic environment. Overall, our results show that CA acts as an antioxidant through an iron chelating mechanism, preventing the formation of free hydroxyl radicals and, therefore, inhibiting Fenton-induced oxidative damage. The chemical properties of CA described here--in association with its reported signaling effects--could be an explanation to its

  10. Thioamides as radical scavenging compounds: Methods for screening antioxidant activity and detection.

    Chernov'yants, Margarita S; Kolesnikova, Tatiana S; Karginova, Anastasia O

    2016-03-01

    Heteroaromatic thiols and thiones attracted the attention of chemists, pharmacologists and biochemists because of participation in the interception of free radicals. For the first time offered independent and reliable methods for evaluating of the antioxidant activity of thioamides-derivatives of pyridine, quinoline, imidazole, triazole, tetrazole, pyrimidine, pyrrolidine and 7-mercapto-4-methylcoumarin -based on kinetic parameters of the thioamide reaction with chromogenic radical (rate constant, M(-1)min(-1) and time to decrease concentration of test free radical by 50%, TEC50, min) or thermodynamics of the thioamides reaction with molecular iodine (extent of thioamide conversion, %). To compare the antioxidant activity of thioamides and widely used standard-antioxidant Trolox (6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid) we have proposed to use a value of relative antioxidant activity constant. As it was established, the kinetics of interaction between the chromogenic radical and thioamides in the presence of an excess of 2,2'-diphenyl-1-picrylhydrazyl (DPPH) is described by the kinetics of the pseudo first order with respect to the reacting components. A kinetic-spectrophotometric method for the quantification of heteroaromatic thioamides is elaborated and was tested in the analysis of urine. Thioamides were detected at concentrations of 1.53μgml(-1), RSD=4.6% (2-mercaptoimidazole, V), 2.08μgml(-1), RSD=1.8% (1-methylimidazoline-2-thione, VI), 1.45μgml(-1), RSD=4.3% (2-mercaptopyridine, IX).The proposed procedures show good precision and accuracy of the results obtained. PMID:26717847

  11. Determination of Radical Scavenging Activity and Total Phenols of Wine and Spices: A Randomized Study

    Fulgentius Nelson Lugemwa

    2013-07-01

    Full Text Available Thirty eight bottles of red wine (Carbanet Sauvignon were randomly selected based on vintage, region, price, and age (number of months in a barrel. The total phenolic content of each wine was determined using Folin-Ciocalteau assay. The radical scavenging activity was evaluated using 2,2-diphenyl-1-picryhydrazyl (DPPH assay. Apart from a few bottles that exhibited above average radical scavenging activity and phenolic content, there was no good correlation of those two quantities with region, price or vintage. The average phenolic amount was 2874 mg/L. The lowest phenolic content was found to be 1648 mg/L for an eight dollar wine. Wine with the highest amount of phenol of 4495 mg/L was a 2007, nine dollar bottle from South America. High amount of phenols did not translate into high radical scavenging activity. Barrel-aging did not increase the amount of phenols or the radical scavenging activity of wine. In order to discover new and potent sources of antioxidants from plants, the following spices were studied: ginger, cilantro, cumin, anise, linden, eucalyptus, marjoram, oregano, sage, thyme and rosemary. Whole spices were crushed and extracted for 96 h at room temperature using a combination of ethyl acetate, ethyl alcohol and water in the ratio of 4.5:4.5:1 (v/v/v. The radical scavenging activity of extracts was evaluated using 2,2-diphenyl-1-picryhydrazyl (DPPH assay. The total phenolic content of each spice was also determined using the Folin-Ciocalteau assay. Eucalyptus was found to be the most potent antioxidant with an LC50 of 324.1 mg of phenol/L, followed by marjoram with an LC50 of 407.5 mg of phenol/L, and rosemary with an LC50 of 414.0 mg/L. The least potent antioxidants were ginger and cilantro with LC50 of 7604 mg/L of phenol and 7876 mg of phenol/L, respectively.

  12. Determination of Radical Scavenging Activity and Total Phenols of Wine and Spices: A Randomized Study.

    Lugemwa, Fulgentius Nelson; Snyder, Amanda L; Shaikh, Koonj

    2013-01-01

    Thirty eight bottles of red wine (Carbanet Sauvignon) were randomly selected based on vintage, region, price, and age (number of months in a barrel). The total phenolic content of each wine was determined using Folin-Ciocalteau assay. The radical scavenging activity was evaluated using 2,2-diphenyl-1-picryhydrazyl (DPPH) assay. Apart from a few bottles that exhibited above average radical scavenging activity and phenolic content, there was no good correlation of those two quantities with region, price or vintage. The average phenolic amount was 2874 mg/L. The lowest phenolic content was found to be 1648 mg/L for an eight dollar wine. Wine with the highest amount of phenol of 4495 mg/L was a 2007, nine dollar bottle from South America. High amount of phenols did not translate into high radical scavenging activity. Barrel-aging did not increase the amount of phenols or the radical scavenging activity of wine. In order to discover new and potent sources of antioxidants from plants, the following spices were studied: ginger, cilantro, cumin, anise, linden, eucalyptus, marjoram, oregano, sage, thyme and rosemary. Whole spices were crushed and extracted for 96 h at room temperature using a combination of ethyl acetate, ethyl alcohol and water in the ratio of 4.5:4.5:1 (v/v/v). The radical scavenging activity of extracts was evaluated using 2,2-diphenyl-1-picryhydrazyl (DPPH) assay. The total phenolic content of each spice was also determined using the Folin-Ciocalteau assay. Eucalyptus was found to be the most potent antioxidant with an LC50 of 324.1 mg of phenol/L, followed by marjoram with an LC50 of 407.5 mg of phenol/L, and rosemary with an LC50 of 414.0 mg/L. The least potent antioxidants were ginger and cilantro with LC50 of 7604 mg/L of phenol and 7876 mg of phenol/L, respectively. PMID:26784340

  13. DPPH free radical scavenging activity and phenotypic difference in hepatoprotective plant (Silybum marianum L.).

    Ahmad, Nisar; Fazal, Hina; Abbasi, Bilal Haider; Anwar, Shazma; Basir, Abdul

    2013-06-01

    Silybum marianum L. is medicinally important for its active principle component silymarin. Silymarin regenerates damaged hepatic tissues. On the basis of such regenerative properties, the radical scavenging activity (1,1-diphenyl-2-picrylhydrazyl (DPPH)) of different tissues and the phenotypic difference of the hepatoprotective species, S. marianum L. were evaluated. There was less phenotypic difference in purple and white varieties of S. marianum. Assay of the antioxidant potential of different parts of the plant revealed that significantly higher activity (78.2%) was observed in seeds of the purple flowering plant than seeds of white flowering plant (49%) after different time intervals. Young leaves collected from white flowering plant exhibit 64.8% activity, which is higher than the purple flowering plant (55.1%). Significantly, same activity was observed in mature leaves of white (52%) and purple flowering plants (50%). The main stem collected from both the varieties exhibits similar activity from 50 to 52%. A 67.2% activity was recorded for mature roots of white flowering plant followed by roots of the purple variety (65%). The present study revealed that seeds and roots of both the varieties scavenge and detoxify more DPPH free radicals than other plant parts and can be used as a source of natural antioxidants and food additives. PMID:22362017

  14. Activity Of The Moderate And Radical Islamic Organizations In The European States

    Nina V. Volodina

    2014-12-01

    Full Text Available In the present article author examines various aspects of Islamic organizations functioning in modern European countries. In the world the dangerous situation due to the spread of radical Islamic views, this is directly related to safety arose. Author researches some aspects of Islamic organizations in Europe functioning and their division into "moderate" and "radical". Author notes that the concept of "moderate Islam" is actively used in the western countries. In the article it is emphasized that supporters of such division believe that it is the "moderate Islamists" may help deal with the terrorist threat. Author gives definition of "religious extremism" and analyzes activities of Islamic organizations in Germany and France, as well as other European countries at the present stage of their development. In the process of study author pays enough attention to the notion of "spreading radicalism within the law", analyze existing legal acts. In the article problems of financing extremist organizations is pointed out and the need to create a set of joint measures to counter extremism and terrorism by Russian Federation and European countries, further improvement of law-enforcement is identified.

  15. Lipophilic Enhance of Vitamin C Protective Activity Against Free-radical-induced Damage in vivo

    LUO Xu-yang; LIU Zai-qun; SUN Yun-xiu; SUI Da-yuan; YU Xiao-feng; QU Shao-chun

    2003-01-01

    A group of experimental rats under free radical damage are given various amounts of a lipophilic vitamin C(ascorbyl-6-laurate, VC-12), and its parent compound, vitamin C, respectively. It has been found that the effects of 1.12 mmol/kg VC-12 on decreasing triglyceride(TG), total cholesterol(TC), low density lipoprotein cholesterol(LDL-c) and lipid peroxide(LPO), and increasing high density lipoprotein cholesterol(HDL-c) and superoxide dismutase(SOD) are similar to those of 2.27 mmol/kg vitamin C. In addition, VC-12(1.12 mmol/kg) can increase the prostacycline(PGI2) and decrease the thromboxane(TXA2) even better than vitamin C(2.27 mmol/kg). The above facts demonstrate that the antioxidative activity of VC-12 is higher than twice that of vitamin C. So, ascorbyl-6-laurate may be a novel antioxidant drug against free radical damage.

  16. Role of renal TRP channels in physiology and pathology.

    Tomilin, Viktor; Mamenko, Mykola; Zaika, Oleg; Pochynyuk, Oleh

    2016-05-01

    Kidneys critically contribute to the maintenance of whole-body homeostasis by governing water and electrolyte balance, controlling extracellular fluid volume, plasma osmolality, and blood pressure. Renal function is regulated by numerous systemic endocrine and local mechanical stimuli. Kidneys possess a complex network of membrane receptors, transporters, and ion channels which allows responding to this wide array of signaling inputs in an integrative manner. Transient receptor potential (TRP) channel family members with diverse modes of activation, varied permeation properties, and capability to integrate multiple downstream signals are pivotal molecular determinants of renal function all along the nephron. This review summarizes experimental data on the role of TRP channels in a healthy mammalian kidney and discusses their involvement in renal pathologies. PMID:26385481

  17. The Synthesis and Evaluation of Novel Hydroxyl Substituted Chalcone Analogs with in Vitro Anti-Free Radicals Pharmacological Activity and in Vivo Anti-Oxidation Activity in a Free Radical-Injury Alzheimer’s Model

    Ying Pan; Yicun Chen; Qingnan Li; Xiaoyu Yu; Jinzhi Wang; Jinhong Zheng

    2013-01-01

    Alzheimer’s disease (AD) pathogenesis involves an imbalance between free radical formation and destruction. In order to obtain a novel preclinical anti-AD drug candidate, we synthesized a series of novel hydroxyl chalcone analogs which possessed anti-free radical activity, and screened their effects on scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) and OH free radicals in vitro. Compound C7, 4,2'-dihydroxy-3,5-dimethoxychalcone was found to have potent activity in these anti-free radica...

  18. LC/PDA/ESI-MS Profiling and Radical Scavenging Activity of Anthocyanins in Various Berries

    Jun-ichiro Nakajima

    2004-01-01

    Full Text Available Anthocyanin extracts of two blueberries, Vaccinium myrtillus (bilberry and Vaccinium ashei (rabbiteye blueberry, and of three other berries, Ribes nigrum (black currant, Aronia melanocarpa (chokeberry, and Sambucus nigra (elderberry, were analyzed by high-performance liquid chromatography coupled with photodiode array detection and electrospray ionization - mass spectrometry (LC/PDA/ESI-MS. Both bilberry and rabbiteye blueberry contained 15 identical anthocyanins with different distribution patterns. Black currant, chokeberry, and elderberry contained 6, 4, and 4 kinds of anthocyanins, respectively. The radical scavenging activities of these berry extracts were analyzed by using 2,2-diphenyl-1-picrylhydrazyl (DPPH. All these extracts showed potent antiradical activities.

  19. A cation binding motif stabilizes the compound I radical of cytochrome c peroxidase.

    Miller, M.A.; Han, G W; Kraut, J

    1994-01-01

    Cytochrome c peroxidase reacts with peroxide to form compound I, which contains an oxyferryl heme and an indolyl radical at Trp-191. The indolyl free radical has a half-life of several hours at room temperature, and this remarkable stability is essential for the catalytic function of cytochrome c peroxidase. To probe the protein environment that stabilizes the compound I radical, we used site-directed mutagenesis to replace Trp-191 with Gly or Gln. Crystal structures of these mutants revealed...

  20. Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation

    Zhang, Tao

    2014-05-20

    Peroxydisulfate (PDS) is an appealing oxidant for contaminated groundwater and toxic industrial wastewaters. Activation of PDS is necessary for application because of its low reactivity. Present activation processes always generate sulfate radicals as actual oxidants which unselectively oxidize organics and halide anions reducing oxidation capacity of PDS and producing toxic halogenated products. Here we report that copper oxide (CuO) can efficiently activate PDS under mild conditions without producing sulfate radicals. The PDS/CuO coupled process is most efficient at neutral pH for decomposing a model compound, 2,4-dichlorophenol (2,4-DCP). In a continuous-flow reaction with an empty-bed contact time of 0.55 min, over 90% of 2,4-DCP (initially 20 μM) and 90% of adsorbable organic chlorine (AOCl) can be removed at the PDS/2,4-DCP molar ratio of 1 and 4, respectively. Based on kinetic study and surface characterization, PDS is proposed to be first activated by CuO through outer-sphere interaction, the rate-limiting step, followed by a rapid reaction with 2,4-DCP present in the solution. In the presence of ubiquitous chloride ions in groundwater/industrial wastewater, the PDS/CuO oxidation shows significant advantages over sulfate radical oxidation by achieving much higher 2,4-DCP degradation capacity and avoiding the formation of highly chlorinated degradation products. This work provides a new way of PDS activation for contaminant removal. © 2014 American Chemical Society.

  1. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells

    Garcia-Roman, Jonathan; Ibarra-Sanchez, Alfredo; Lamas, Monica [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados del IPN (Cinvestav, IPN) (Mexico); Gonzalez Espinosa, Claudia, E-mail: cgonzal@cinvestav.mx [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados del IPN (Cinvestav, IPN) (Mexico)

    2010-10-15

    Research highlights: {yields} Bone marrow-derived mast cells (BMMCs) secrete functional VEGF but do not degranulate after Cobalt chloride-induced hypoxia. {yields} CoCl{sub 2}-induced VEGF secretion in mast cells occurs by a Ca{sup 2+}-insensitive but brefeldin A and Tetanus toxin-sensitive mechanism. {yields} Trolox and N-acetylcysteine inhibit hypoxia-induced VEGF secretion but only Trolox inhibits Fc{epsilon}RI-dependent anaphylactic degranulation in mast cells. {yields} Src family kinase Fyn activation after free radical production is necessary for hypoxia-induced VEGF secretion in mast cells. -- Abstract: Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conduce to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl{sub 2}) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl{sub 2} promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl{sub 2}-induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl{sub 2}-induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl{sub 2} in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free radicals

  2. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells

    Research highlights: → Bone marrow-derived mast cells (BMMCs) secrete functional VEGF but do not degranulate after Cobalt chloride-induced hypoxia. → CoCl2-induced VEGF secretion in mast cells occurs by a Ca2+-insensitive but brefeldin A and Tetanus toxin-sensitive mechanism. → Trolox and N-acetylcysteine inhibit hypoxia-induced VEGF secretion but only Trolox inhibits FcεRI-dependent anaphylactic degranulation in mast cells. → Src family kinase Fyn activation after free radical production is necessary for hypoxia-induced VEGF secretion in mast cells. -- Abstract: Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conduce to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl2) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl2 promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl2-induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl2-induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl2 in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free radicals-dependent Fyn kinase activation.

  3. Extraction method for high free radical scavenging activity of Siamese neem tree flowers

    Worarat Chaisawangwong

    2009-10-01

    Full Text Available Siamese neem tree (Azadirachta indica A. Juss. var. siamensis Valeton is a medicinal plant found in Thailand. Youngleaves and young flowers of this plant are commonly consumed as a bitter tonic vegetable. The flowers are also used fortreatment of fever. The flower extract has been reported to exhibit in vitro free radical scavenging activity and can inhibitlipid peroxidation of bronchogenic cancer cell line. Active compounds in the flowers are flavonoids such as rutin andquercetin. The content of these compounds in the crude extract depends on the method of extraction. Therefore, the appropriateextraction method promoting high yield of total flavonoids and high free radical scavenging activity was investigated inthis study. Six different extraction methods, i.e. maceration, percolation, decoction, soxhlet extraction, ultrasonic extraction(UE, and microwave assisted extraction (MA were carried out for extracting dried powder of Siamese neem tree young flowers. The solvent used for maceration, percolation, and soxhlet extraction was 50% ethanol, while distilled water was used for decoction and MA, and both solvents were used for UE. The content of crude extract, free radical scavenging activity, and total flavonoids content of each extract were investigated and compared. Comparing the various extraction methods, decoction provided an extract containing a high amount of total flavonoids (17.54 mgRE/g extract and promoting the highest scavenging activity at EC50 11.36 g/ml. Decoction is also simple, cheap, and convenient and could be used in developing countries. Thus, it should be the recommended extraction method for the flowers of Siamese neem tree for furtherdevelopment of antioxidant pharmaceutical preparations.

  4. The Synthesis and Evaluation of Novel Hydroxyl Substituted Chalcone Analogs with in Vitro Anti-Free Radicals Pharmacological Activity and in Vivo Anti-Oxidation Activity in a Free Radical-Injury Alzheimer’s Model

    Ying Pan

    2013-01-01

    Full Text Available Alzheimer’s disease (AD pathogenesis involves an imbalance between free radical formation and destruction. In order to obtain a novel preclinical anti-AD drug candidate, we synthesized a series of novel hydroxyl chalcone analogs which possessed anti-free radical activity, and screened their effects on scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH and OH free radicals in vitro. Compound C7, 4,2'-dihydroxy-3,5-dimethoxychalcone was found to have potent activity in these anti-free radical activity tests. Further research revealed that C7 could elevate glutathione peroxidase (GSH-PX and super oxide dismutase (SOD levels and lower malonaldehyde (MDA level in vivo in the Alzheimer’s model. The indication of C7’s effect on AD needs further study.

  5. Radical-Scavenging Activity of Thiols, Thiobarbituric Acid Derivatives and Phenolic Antioxidants Determined Using the Induction Period Method for Radical Polymerization of Methyl Methacrylate

    Seiichiro Fujisawa; Yoshinori Kadoma

    2012-01-01

    The radical-scavenging activities of two thiols, eight (thio)barbituric acid derivatives and six chain-breaking phenolic antioxidants were investigated using the induction period method for polymerization of methyl methacrylate (MMA) initiated by thermal decomposition of 2,2’-azobisisobutyronitrile (AIBN) and monitored by differential scanning calorimetry (DSC). The induction period (IP) for the thiols 2-mercaptoethanol (ME) and 2-mercapto-1-methylimidazole (MMI) was about half that for pheno...

  6. Invitro Antioxidant and Free Radical Scavenging Activity of Aqueous and Ethanolic Flower Extract of Nymphaea Alba

    MADHUSUDHANAN N

    2011-06-01

    Full Text Available Nymphaea alba also known as the European White Waterlily, White Lotus or Nenuphar, is an aquatic flowering plant of the family Nymphaeaceae. The flowers are white and they have many small stamens inside. It contains the active alkaloids nupharine and nymphaeine, and is a sedative and an aphrodisiac/an aphrodisiac.In this study, the antioxidant activity of aqueous and ethanolic extracts from flower of Nymphaea alba was evaluated by various antioxidant assays including total antioxidant, hydrogen peroxide scavenging and nitric oxide scavenging activities. Both extracts have exhibited significant antioxidant activity in DPPH, Nitric oxide and Hydroxyl radical induced invitro assay methods. The results indicate that both the extracts firmly possess strong antioxidant effects .Comparatively the ethanolic flower extract showed more antioxidant activity than the aqueous extracts. The results obtained from the present study indicate that the Nymphaea alba flower extract can be a potential source of natural antioxidant

  7. Peroxy radical observations over West Africa during the AMMA 2006 campaign: Photochemical activity in episodes of formation of convective systems on the basis of radical measurements

    M. D. Andrés-Hernández

    2009-01-01

    Full Text Available Peroxy radical measurements made on board the DLR-Falcon research aircraft over West Africa within the African Monsoon Multidisciplinary Analysis (AMMA campaign during the 2006 wet monsoon are presented in this study. The analysis of data focuses on the photochemical activity of air masses sampled during episodes of intense convection and biomass burning. Generally, the total sum of peroxy radical mixing ratios, measured in the outflow of convective clouds, are quite variable but occasionally are coupled with the NO variations indicating the coexistence, or simultaneously emission of NOx, with a potential radical precursor (i.e., formaldehyde, acetone or peroxides which has likely been transported to higher atmospheric layers. Based on the measurements, significant O3 production rates up to 2 ppb/h in the MCS outflow are estimated by using a box model with simplified chemistry. Peroxy radicals having mixing ratios around 20–25 pptv and with peak values of up to 60–70 pptv are measured within biomass burning plumes, detected at the coast in Ghana. Calculations of back-trajectory densities confirm the origin of these air masses being a biomass burning region at southern latitudes and close to the Gulf of Guinea, according to satellite pictures.

    Measured peroxy radical concentrations agree reasonably with modelled estimations taking into account simple local chemistry. Moreover the vertical profiles taken at the aircraft base in Ouagadougou, Burkina Faso, indicate the common feature of having maximum concentrations between 2 and 4 km, in agreement with other literature values obtained under similar conditions.

  8. Antioxidant, Radical Scavenging and Antimicrobial Activities of Red Onion (Allium cepa L) Skin and Edible Part Extracts

    Škerget, M.; Majhenič, L.; Bezjak, M.; Knez, Ž.

    2009-01-01

    The antioxidant, radical scavenging and antimicrobial activities of extracts from skin and edible part of red onion have been investigated. Crude extracts of red onion were obtained separately with acetone, ethanol and mixtures of solvents with water. The amounts of isolated phenolic compounds and quercetin from onion skin were approximately 3 to 5 times higher as from the onion edible part. Antioxidant and radical scavenging activities of onion skin extracts were generally high, results were...

  9. Expression of the benign HEXA mutations, Arg247Trp and Arg249Trp, associated with beta-hexosaminidase A pseudodeficiency

    Cao, Z.; Petroulakis, E.; Salo, T. [Univ. of Manitoba (Canada)] [and others

    1994-09-01

    {beta}-Hexosaminidase (Hex A) is a heterodimer of {alpha} and {beta} subunits encoded by the HEXA and HEXB genes, respectively. Mutations in the HEXA gene typically cause Tay-Sachs disease or less severe forms of G{sub M2} gangliosidosis. However, two benign mutations (Arg247Trp and Arg249Trp) in the {alpha}-subunit of Hex A account for Hex A deficiency in {approximately}36% of non-Jewish enzyme-defined Tay-Sachs disease carriers. These mutations do not result in any apparent clinical phenotype in individuals who are genetic compounds with a second disease-causing mutation. We expressed the {alpha}-subunit harboring each of the benign mutations separately to study activity toward the synthetic substrate, 4-MUGS, for comparison to activity from enzymes containing mutations associated with other forms of G{sub M2} gangliosidosis. The C739T (Arg247Trp;benign), C745T (Arg 249Trp; benign), G805A (Gly269Ser; adult-onset), G749A (Gly250Asp; juvenile), and C508T (Arg170Trp; infantile) mutations were introduced into the {alpha}-subunit cDNA. These were transfected alone, or with the {beta}-subunit cDNA, to generate Hex S ({alpha}{alpha}) or Hex A ({alpha}{beta}), respectively. The activities were monitored using 4-MUGS, and the levels of {alpha}-subunit protein were assessed by Western blotting. Repeated experiments show that the benign mutations produce approximately 35% of normal Hex S and 40% of normal Hex A activity. This level is much higher than that of Hex A harbouring the Gly169Ser adult-onset mutation (12%). A sequential decrease in expressed Hex A activity is observed as mutations associated with more severe phenotypes are expressed. The benign mutations also result in lower levels of mature {alpha}-subunit protein compared to normal, and slightly reduced levels of {alpha}-subunit precursor protein. The Hex A deficiency resulting from benign mutations is not as great as that associated with disease-causing mutations.

  10. Effect of Superheated Steam Roasting on Radical Scavenging Activity and Phenolic Content of Robusta Coffee Beans

    Ooi Ee Shan

    2015-04-01

    Full Text Available Robusta coffee is one of the coffee species grown in Malaysia. However, there is little research conducted on Robusta coffee beans as Arabica coffee is more popular among the consumers. Coffee is a rich source of antioxidants, therefore research on antioxidant properties of Robusta coffee beans is important to explore its market value. Nowadays, most of coffee analysis is on conventional roasted coffee which reduces their antioxidant properties. In this study, Robusta coffee beans (Coffea canephora were subjected to superheated steam roasting at 200, 220 and 240 ˚C for 20-40 min to obtain light, medium and dark roast. The effect of different roasting temperature and time on the total phenolic content (TPC and radical scavenging activity (RSA of Robusta coffee bean was investigated. Total phenolic content of coffee brews decreased with the increase of roasting degree due to the degradation of phenolic compounds. The highest phenolic content was found at 220 ˚C for 20 min. Meanwhile, brews extracted from light roasted coffee and medium roasted at 220 ˚C for 20 min showed a maximum scavenging activity than those from green coffee. Brews from dark roasted coffee showed lowest radical scavenging activity and total phenol content. Hence, based on the results from this study, the best superheated steam roasting condition is at 220 ˚C for 20 min (medium roast to achieve a maximum antioxidant activity and highest phenolic content.

  11. In Vitro Antimicrobial Bioassays, DPPH Radical Scavenging Activity, and FTIR Spectroscopy Analysis of Heliotropium bacciferum

    Sohail Ahmad

    2016-01-01

    Full Text Available The present study deals with the antimicrobial, antioxidant, and functional group analysis of Heliotropium bacciferum extracts. Disc diffusion susceptibility method was followed for antimicrobial assessment. Noteworthy antimicrobial activities were recorded by various plant extracts against antibiotic resistant microorganisms. Plant flower extracts antioxidant activity was investigated against 2, 2-diphenyl-1-picryl hydrazyl radical by ultraviolet spectrophotometer (517 nm. Plant extracts displayed noteworthy radical scavenging activities at all concentrations (25–225 μg/mL. Notable activities were recorded by crude, chloroform and ethyl acetate extracts up to 88.27% at 225 μg/mL concentration. Compounds functional groups were examined by Fourier transform infrared spectroscopic studies. Alkanes, alkenes, alkyl halides, amines, carboxylic acids, amides, esters, alcohols, phenols, nitrocompounds, and aromatic compounds were identified by FTIR analysis. Thin layer chromatography bioautography was carried out for all plant extracts. Different bands were separated by various solvent systems. The results of the current study justify the use of Heliotropium bacciferum in traditional remedial herbal medicines.

  12. Smelling lavender and rosemary increases free radical scavenging activity and decreases cortisol level in saliva.

    Atsumi, Toshiko; Tonosaki, Keiichi

    2007-02-28

    Free radicals/reactive oxygen species are related to many biological phenomena such as inflammation, aging, and carcinogenesis. The body possesses various antioxidative systems (free radical scavenging activity, FRSA) for preventing oxidative stress, and saliva contains such activity. In the present study, we measured the total salivary FRSA induced after the smelling of lavender and rosemary essential oils that are widely used in aromatherapy. Various physiologically active substances in saliva such as cortisol, secretory IgA, and alpha-amylase activity were found to be correlated with aroma-induced FRSA. The subjects (22 healthy volunteers) sniffed aroma for 5 min, and each subject's saliva was collected immediately. FRSA was measured using 1,1-diphenyl-2-picrylhydrazyl. The FRSA values were increased by stimulation with low concentrations (1000 times dilution) of lavender or by high-concentrations (10 times dilution) of rosemary. In contrast, both lavender and rosemary stimulations decreased cortisol levels. A significant inverse correlation was observed between the FRSA values and the cortisol levels with each concentration of rosemary stimulation. No significant changes were noted in sIgA or alpha-amylase. These findings clarify that lavender and rosemary enhance FRSA and decrease the stress hormone, cortisol, which protects the body from oxidative stress. PMID:17291597

  13. Phytochemical screening, free radical scavenging, antioxidant activity and phenolic content of Dodonaea viscosa

    Riaz Tauheeda

    2012-01-01

    Full Text Available The purpose of this study was to evaluate the antioxidant potential of Dodonaea viscosa Jacq. Methanolic extract of the plant was dissolved in distilled water and partitioned with n-hexane, chloroform, ethyl acetate and nbutanol sequentially. Phytochemical screening showed presence of phenolics, flavonoides and cardiac glycosides in large amount in chloroform, ethyl acetate and n-butanol fraction. The antioxidant potential of all these fractions and remaining aqueous fraction was evaluated by four methods: 1,1-Diphenyl-2-picrylhydrazyl (DPPH free radical scavenging activity, total antioxidant activity, Ferric Reducing Antioxidant Power (FRAP assay and ferric thiocyanate assay along with determination of their total phenolics. The results revealed that ethyl acetate soluble fraction exhibited highest percent inhibition of DPPH radical as compared to other fractions. It showed 81.14 ± 1.38% inhibition of DPPH radical at a concentration of 60 μg/ml. The IC50 of this fraction was found to be 33.95 ± 0.58 μg/ml, relative to butylated hydroxytoluene (BHT, having IC50 of 12.54 ± 0.89 μg/mL. It also showed highest FRAP value (380.53 ± 0.74 μM of trolox equivalents as well as highest total phenolic contents (208.58 ± 1.83 GAE μg/g and highest value of inhibition of lipid peroxidation (58.11 ± 1.49% at concentration of 500 μg/ml as compared to the other studied fractions. The chloroform fraction showed highest total antioxidant activity i.e.1.078 ± 0.59 (eq. to BHT.

  14. Free radical-scavenging capacity, antioxidant activity and phenolic content of Pouzolzia zeylanica

    PEIYUAN LI

    2011-05-01

    Full Text Available Pouzolzia zeylanica was extracted with different solvents (acetone, ethyl acetate and petroleum ether, using different protocols (cold-extraction and Soxhlet extraction. To evaluate the antiradical and antioxidant abilities of the extracts, four in vitro test systems were employed, i.e., DPPH, ABTS and hydroxyl radical scavenging assays and a reducing power assay. All extracts exhibited outstanding antioxidant activities that were superior to that of butylated hydroxytoluene. The ethyl acetate extracts exhibited the most significant antioxidant activities, and cold-extraction under stirring seemed to be the more efficacious method for acquiring the predominant antioxidants. Furthermore, the antioxidant activities and total phenolic (TP content of different extracts followed the same order, i.e., there is a good correlation between antioxidant activities and TP content. The results showed that these extracts, especially the ethyl acetate extracts, could be considered as natural antioxidants and may be useful for curing diseases arising from oxidative deterioration.

  15. Analysis list: Trp53 [Chip-atlas[Archive

    Full Text Available Trp53 Embryo,Embryonic fibroblast + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Trp53....1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Trp53.5.tsv http://dbarchive.bi...osciencedbc.jp/kyushu-u/mm9/target/Trp53.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Trp53.Em...bryo.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Trp53.Embryonic_fibr

  16. Dihydronaflavonols from the leaves of Derris urucu (Leguminosae): structural elucidation and DPPH radical-scavenging activity

    Derris urucu is an Amazonian plant with insecticide and ichthyotoxic properties. Studies with this species show the presence of flavonoids, mainly rotenoids, as well as stilbenes. The ethanol extract of the leaves of Derris urucu (Leguminosae) afforded three new dihydroflavonols named urucuol A (1), B (2) and C (3), and the dihydroflavonol isotirumalin (4). Their structures were elucidated by extensive analysis of 1D and 2D NMR, UV and IR spectra and MS data and comparison with literature data. The isolated compounds (1-4) were evaluated for DPPH radical scavenging activity and showed a relatively lower antioxidant ability compared to the commercial antioxidant trans-resveratrol. (author)

  17. Theoretical insights on the antioxidant activity of edaravone free radical scavengers derivatives

    Cerón-Carrasco, José P.; Roy, Hélène M.; Cerezo, Javier; Jacquemin, Denis; Laurent, Adèle D.

    2014-04-01

    The prediction of antioxidant properties is not straightforward due to the complexity of the in vivo systems. Here, we use theoretical descriptors, including the potential of ionization, the electrodonating power and the spin density distribution, to characterize the antioxidant capacity of edaravone (EDV) derivatives. Our computations reveal the relationship between these parameters and their potential bioactivity as free radical scavengers. We conclude that more efficient antioxidants could be synthesized by tuning the R1 and R2 positions of the EDV structure, rather than modifying the R3 group. Such modifications might improve the antioxidant activity in neutral and deprotonated forms.

  18. Intracellular ROS protection efficiency and free radical-scavenging activity of curcumin.

    Abolfazl Barzegar

    Full Text Available Curcumin has many pharmaceutical applications, many of which arise from its potent antioxidant properties. The present research examined the antioxidant activities of curcumin in polar solvents by a comparative study using ESR, reduction of ferric iron in aqueous medium and intracellular ROS/toxicity assays. ESR data indicated that the steric hindrance among adjacent big size groups within a galvinoxyl molecule limited the curcumin to scavenge galvinoxyl radicals effectively, while curcumin showed a powerful capacity for scavenging intracellular smaller oxidative molecules such as H₂O₂, HO•, ROO•. Cell viability and ROS assays demonstrated that curcumin was able to penetrate into the polar medium inside the cells and to protect them against the highly toxic and lethal effects of cumene hydroperoxide. Curcumin also showed good electron-transfer capability, with greater activity than trolox in aqueous solution. Curcumin can readily transfer electron or easily donate H-atom from two phenolic sites to scavenge free radicals. The excellent electron transfer capability of curcumin is because of its unique structure and different functional groups, including a β-diketone and several π electrons that have the capacity to conjugate between two phenyl rings. Therfore, since curcumin is inherently a lipophilic compound, because of its superb intracellular ROS scavenging activity, it can be used as an effective antioxidant for ROS protection within the polar cytoplasm.

  19. PHYSICOCHEMICAL CHARACTERIZATION AND DETERMINATION OF FREE RADICAL SCAVENGING ACTIVITY OF RUTIN-PHOSPHOLIPID COMPLEX

    Sanjay Jain et al.

    2012-03-01

    Full Text Available Rutin belongs to a class of plant secondary metabolites called flavonoids. Rutin is believed to be a vital nourishing supplement as it is able to make the capillaries stronger. But when administered orally it shows poor absorption because of less lipophilicity. To overcome this limitation, the present study was aimed to develop Rutin- phospholipid complex in different ratio to improve the lipophilic properties of rutin. The prepared complex was evaluated for physicochemical properties and in-vitro DPPH radical’s scavenging activity. The physicochemical properties of the complex were analyzed by ultraviolet-visible spectroscopy (UV, infrared spectroscopy (IR and X-ray diffractometry (XRD. The results showed that rutin-phospholipid in the complex were joined and did not form a new compound. Results of DPPH radical are scavenging activity revealed that among all ratios of complex, 1:3 next to this 1:2 followed by 1:1. The study was concluded that the free radical scavenging activity was observed in concentration dependent manner.

  20. Radical Scavenging Activities of Tannin Extracted from Amaranth (Amaranthus caudatus L.).

    Jo, Hyeon-Ju; Chung, Kang-Hyun; Yoon, Jin A; Lee, Kwon-Jai; Song, Byeong Chun; An, Jeung Hee

    2015-06-01

    This study investigates the bioactivity of tannin from amaranth (Amaranthus caudatus L.) extracts. The antioxidant activities of the extracts from amaranth leaves, flowers, and seeds were evaluated. Tannin from leaves of amaranth has been evaluated for superoxide scavenging activity by using DPPH and ABTS(+) analysis, reducing power, protective effect against H2O2-induced oxidative damage in L-132 and BNL-CL2 cells, and inhibition of superoxide radical effects on HL-60 cells. At a concentration of 100 μg/ml, tannin showed protective effects and restored cell survival to 69.2% and 41.8% for L-132 and BNL-CL2 cells, respectively. Furthermore, at the same concentration, tannin inhibited 41% of the activity of the superoxide radical on HL-60 cells and 43.4% of the increase in nitric oxide levels in RAW 264.7 cells. The expression levels of the antioxidant-associated protein SOD-1 were significantly increased in a concentration-dependent manner in RAW 264.7 cells treated with tannin from amaranth leaves. These results suggest that tannin from the leaves of Amaranthus caudatus L. is a promising source of antioxidant component that can be used as a food preservative or nutraceutical. PMID:25639718

  1. Synthesis, Characterization, Antimicrobial Screening and Free-Radical Scavenging Activity of Some Novel Substituted Pyrazoles

    Nagwa Mohamed Mahrous Hamada

    2015-06-01

    Full Text Available The present work deals with the synthesis of acetoxysulfonamide pyrazole derivatives, substituted 4,5-dihydropyrazole-1-carbothioamide and 4,5-dihydropyrazole-1-isonicotinoyl derivatives starting from substituted vanillin chalcones. Acetoxysulfonamide pyrazole derivatives were prepared from the reaction of chalcones with p-sulfamylphenylhydrazine followed by treatment with acetic anhydride. At the same time 4,5-dihydropyrazole-1-carbothioamide and 4,5-dihydropyrazole-1-isonicotinoyl derivatives were prepared from the reaction of chalcones with either thiosemicarbazide or isonicotinic acid hydrazide, respectively. The synthesized compounds were structurally characterized on the basis of IR, 1H-NMR, 13C-NMR spectral data and microanalyses. All of the newly isolated compounds were tested for their antimicrobial activities. The antimicrobial screening using the agar well-diffusion method revealed that the chloro derivatives are the most active ones. Moreover, the antioxidant and anti-inflammatory activity of these chloro derivatives are also studied using the DPPH radical scavenging and NO radical scavenging methods, respectively.

  2. Synthesis and in Vitro Antioxidant Activity Evaluation of 3-Carboxycoumarin Derivatives and QSAR Study of Their DPPH• Radical Scavenging Activity

    Maria Teresa Sumaya-Martínez; Zeferino Gómez-Sandoval; Daniel Jaramillo Cano; Manuel Villanueva-García; Francisco J. Martínez-Martínez; Rodrigo Said Razo-Hernández; Ana Lilia Peraza-Campos

    2012-01-01

    The in vitro antioxidant activities of eight 3-carboxycoumarin derivatives were assayed by the quantitative 1,1-diphenyl-2-picrylhydrazil (DPPH•) radical scavenging activity method. 3-Acetyl-6-hydroxy-2H-1-benzopyran-2-one (C1) and ethyl 6-hydroxy-2-oxo-2H-1-benzopyran-3-carboxylate (C2) presented the best radical-scavenging activity. A quantitative structure-activity relationship (QSAR) study was performed and correlated with the experimental DPPH• scavenging data. We use...

  3. Rapid glucocorticoid-induced activation of TRP and CB1 receptors causes biphasic modulation of glutamate release in gastric-related hypothalamic preautonomic neurons

    BretN.Smith

    2013-01-01

    Full Text Available Glucocorticoids rapidly regulate synaptic input to neuroendocrine cells in the hypothalamic paraventricular nucleus (PVN by inducing the retrograde release of endogenous messengers. Here we investigated the rapid effects of dexamethasone (DEX on excitatory synaptic input to feeding-related, preautonomic PVN neurons using whole-cell patch-clamp recordings. In ~50% of identified gastric-related preautonomic PVN neurons, DEX elicited a biphasic synaptic response characterized by an initial rapid and transient increase in the frequency of miniature excitatory postsynaptic currents (mEPSCs, followed by a decrease in mEPSC frequency within 9 min; remaining cells displayed only a decrease in mEPSC frequency. The late-phase decrease in mEPSC frequency was mimicked by the cannabinoid receptor agonists anandamide and WIN 55,212-2, and it was blocked by the CB1 receptor antagonist AM251. The biphasic DEX effect was mimicked by anandamide (AEA. The early increase in mEPSCs was mimicked by activation of transient receptor potential vanilloid type 1 (TRPV1 receptors with capsaicin and by activation of TRPV4 receptors with 4-α-PDD. The increase was reduced, but not blocked, by selective TRPV1 antagonists and in TRPV1-knockout mice; it was blocked completely by the broad-spectrum TRPV antagonist ruthenium red and by combined application of selective TRPV1 and TRPV4 antagonists. The DEX effects were prevented entirely by intracellular infusion of the G-protein inhibitor, GDPβS. Thus, DEX biphasically modulates synaptic glutamate onto a subset of gastric-related PVN neurons, which is likely mediated by induction of a retrograde messenger. The effect includes a TRPV1/4 receptor-mediated transient increase and subsequent CB1 receptor-mediated suppression of glutamate release. Multiphasic modulation of glutamate input to PVN neurons represents a previously unappreciated complexity of control of autonomic output by glucocorticoids and eCBs.

  4. Free radical scavenging activity of ethanolic extracts from herbs and spices commercialized in Brazil

    Lilian Regina Barros Mariutti

    2008-12-01

    Full Text Available Ethanolic extracts from 23 different dried herbs and spices commercialized in Brazil were investigated for their free radical scavenging properties using the stable free radicals 2,2'-diphenyl-β-picrylhydrazyl (DPPH• and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS•+, and Trolox as reference (TEAC for both radicals. The kinetic curves for both radicals showed to follow the first order kinetics model and the decay rate constant (k obs was calculated. For all the samples, the two methods showed a good linear TEAC correlation, indicating that the average reactivity of the compounds present in the ethanolic extracts was similar. Sage and rosemary extracts showed the highest free radical scavenging capacities, while onion showed negligible activity and colorifico, one of the most consumed spices in Brazil, showed low ABTS•+ scavenging activity. Three distinct situations were found for the extracts concerning the DPPH• scavenging capacities: (1 extracts, like rosemary and laurel, that presented the same efficient concentrations (EC50 but differed in the TEAC values and velocities of action (k obs, (2 extracts, such as garlic and basil, that showed similar EC50 and TEAC values, but different k obs values and (3 extracts that reacted at the same velocities but completely differed in the free radical scavenging capacities, like black pepper, savory, nutmeg, rosemary and sage. Similar considerations could be done for the ABTS•+ results. For the first time the ABTS•+ scavenging activity for allspice, basil, cardamom, chives, colorifico, cumin, dill, laurel, marjoram, parsley and tarragon was reported.Extratos etanólicos de 23 ervas e condimentos desidratados comercializados no Brasil foram analisados quanto as suas propriedades antioxidantes utilizando os radicais 2,2'-difenil-β-picrilhidrazil (DPPH• e ácido 2,2'-azino-bis(3-etilbenzotiazolina-6-sulfônico (ABTS•+, Trolox foi usado como referência para ambos radicais

  5. Restoration of a translational stop-start overlap reinstates translational coupling in a mutant trpB'-trpA gene pair of the Escherichia coli tryptophan operon.

    Das, A.; Yanofsky, C

    1989-01-01

    The trpB and trpA coding regions of the polycistronic trp mRNA of Escherichia coli are separated by overlapping translation stop and start codons. Efficient translation of the trpA coding region is subject to translational coupling, i.e., maximal trpA expression is dependent on prior translation of the trpB coding region. Previous studies demonstrated that the trpA Shine-Dalgarno sequence (within trpB) and/or the location of the trpB stop codon influenced trpA expression. To examine the effec...

  6. The Trp53 delta proline (Trp53ΔP) mouse exhibits increased genome instability and susceptibility to radiation-induced, but not spontaneous, tumor development.

    Adams, Cassandra J; Yu, Jennifer S; Mao, Jian-Hua; Jen, Kuang-Yu; Costes, Sylvain V; Wade, Mark; Shoemake, Jocelyn; Aina, Olulanu H; Del Rosario, Reyno; Menchavez, Phuong Thuy; Cardiff, Robert D; Wahl, Geoffrey M; Balmain, Allan

    2016-09-01

    The tumor suppressor TP53 can initiate a plethora of anti-proliferative effects to maintain genomic integrity under conditions of genotoxic stress. The N-terminal proline-rich domain (PRD) of TP53 is important in the regulation of TP53 activity and stability. A common polymorphism at codon 72 in this region has been associated with altered cancer risk in humans. The Trp53ΔP mouse, which carries a germline homozygous deletion of a region of the PRD, does not develop spontaneous tumors in a mixed 129/Sv and C57BL/6 genetic background, but is highly susceptible to a broad range of tumor types following total body exposure to 4 Gy gamma (γ) radiation. This contrasts with the tumor spectrum in Trp53 null (-/-) mice, which mainly develop thymic lymphomas and osteosarcomas. Analysis of genomic instability in tissues and cells from Trp53ΔP mice demonstrated elevated basal levels of aneuploidy, but this is not sufficient to drive spontaneous tumorigenesis, which requires an additional DNA damage stimulus. Levels of genomic instability did not increase significantly in Trp53ΔP mice following irradiation exposure, suggesting that other radiation effects including tissue inflammation, altered metabolism or autophagy, may play an important role. The Trp53ΔP mouse is a novel model to dissect the mechanisms of tumor development induced by radiation exposure. © 2015 Wiley Periodicals, Inc. PMID:26310697

  7. Study on the role of active radicals on plasma sterilization inside small diameter flexible polymeric tubes

    Mstsuura, Hiroto; Fujiyama, Takatomo; Okuno, Yasuki; Furuta, Masakazu; Okuda, Shuichi; Takemura, Yuichiro

    2015-09-01

    Recently, atmospheric pressure discharge plasma has gathered attention in various fields. Among them, plasma sterilization with many types of plasma source has studied for decades and its mechanism is still an open question. If active radicals produced in plasma has main contribution of killing bacterias, direct contact of the so-called plasma flame might not be necessary. To confirm this, sterilization inside small diameter flexible polymeric tubes is studied in present work. DBD type plasma jet is produce by flowing helium gas in a glass tube. A long polymeric tube is connected and plasma jet is introduced into it. Plasma flame length depends on helium gas flow rate, but limited to about 10 cm in our experimental condition. E.colis set at the exit plasma source is easily killed during 10 min irradiation. At the tube end (about 20 cm away from plasma source exit), sterilization is possible with 30 min operation. This result shows that active radical is produced with helium plasma and mist contained in sample, and it can be transferred more than 20 cm during it life time. More plasma diagnostic data will also be shown at the conference. This work was partially supported by the ''ZE Research Program, IAE(ZE27B-4).

  8. Anti-genotoxic and free-radical scavenging activities of extracts from (Tunisian) Myrtus communis.

    Hayder, N; Abdelwahed, A; Kilani, S; Ammar, R Ben; Mahmoud, A; Ghedira, K; Chekir-Ghedira, L

    2004-11-14

    The effect of extracts from leaves of Myrtus communis on the SOS reponse induced by Aflatoxin B1 (AFB1) and Nifuroxazide was investigated in a bacterial assay system, i.e. the SOS chromotest with Escherichia coli PQ37. Aqueous extract, the total flavonoids oligomer fraction (TOF), hexane, chloroform, ethyl acetate and methanol extracts and essential oil obtained from M. communis significantly decreased the SOS response induced by AFB1 (10 microg/assay) and Nifuroxazide (20 microg/assay). Ethyl acetate and methanol extracts showed the strongest inhibition of the induction of the SOS response by the indirectly genotoxic AFB1. The methanol and aqueous extracts exhibited the highest level of protection towards the SOS-induced response by the directly genotoxic Nifuroxazide. In addition to anti-genotoxic activity, the aqueous extract, the TOF, and the ethyl acetate and methanol extracts showed an important free-radical scavenging activity towards the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. These results suggest the future utilization of these extracts as additives in chemoprevention studies. PMID:15474415

  9. Determination of Radical Scavenging Activity of Hydroalcoholic and Aqueous Extracts from Bauhinia divaricata and Bougainvillea spectabilis Using the DPPH Assay

    L Chaires-Martinez; E Monroy-Reyes; A Bautista-Bringas; H A Jimenez-Avalos; G Sepulveda-Jimenez

    2009-01-01

    Bauhinia divaricata and Bougainvillea spectabilis are medicinal plants widely distributed in Mexico and they are used because of its potential hypoglycemic action; however, no free radical scavenging activity (RSA) studies over these plants are known. Thus, aqueous and hydroalcoholic extracts from leaf and stem samples were evaluated for their RSA using 1,1-diphenylpicrylhydrazyl free radical (DPPH·). Total phenolics and flavonoids extracts were determined too. Statistical analyses were perfo...

  10. Characterization of fatty acids, bioactive lipids, and radical scavenging activity of Canterbury bells seed oil

    Hassanien, M. F.R.

    2014-06-01

    Full Text Available The aim of this study was to characterize the chemical composition and radical scavenging activity of Canterbury bells (Campanula medium seed oil. C. medium seeds contained 9.2% extractable oil. The lipid classes, fatty acids, phytosterol and tocopherol composition of C. medium seed oil were determined. The amount of neutral lipids in the oil was the highest, followed by glycolipids and phospholipids. Linoleic and oleic were the main fatty acids. C. medium oil is characterized by high levels of phytosterols and β-sitosterol was the main compound. β-Tocopherol constituted 42.5% of the total tocopherol content followed by γ-tocopherol. The radical scavenging activity (RSA toward 1,1-diphenyl-2-picrylhydrazyl (DPPH radicals and galvinoxyl radicals of C. medium oil were higher than those of extra virgin olive oil. The diverse potential uses of C. medium oil may make this plant industrially important.El objetivo de este estudio fue caracterizar la composición química y la actividad de captación de radicales de aceites de semillas de campanillas de Canterbury (Campanula medium. Las semillas de C. medium contenían 9,2 % de aceite extraíble. Se determinó la composición de las diferentes clases de lípidos, ácidos grasos, fitoesteroles y tocoferoles. La cantidad de lípidos neutros en el aceite fue mayoritario, seguido de glicolípidos y fosfolípidos. Linoleico y oleico fueron los ácidos grasos principales. El aceite de C. medium se caracteriza por altos niveles de fitoesteroles y β-sitosterol fue el compuesto principal. β-tocoferol constituía 42,5 % del contenido total de tocoferol seguido de γ-tocoferol. La actividad de captación de radicales (RSA a 1,1-difenil-2- picrilhidrazil (DPPH y radicales galvinoxil de C. medium fueron superiores a las de aceite de oliva virgen extra. Los diversos usos potenciales de los aceites de C. medium pueden hacer que esta planta pueda ser importante industrialmente.

  11. Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysate of bullfrog skin, Rana catesbeiana Shaw.

    Qian, Zhong-Ji; Jung, Won-Kyo; Kim, Se-Kwon

    2008-04-01

    In the present study, a peptide having antioxidant properties was isolated from bullfrog skin protein, Rana catesbeiana Shaw. Bullfrog skin protein was hydrolyzed using alcalase, neutrase, pepsin, papain, alpha-chymotrypsin and trypsin. Antioxidant activities of respective hydrolysates were evaluated using lipid peroxidation inhibition assay and direct free radical scavenging activity by using electron spin resonance (ESR) spectrometer. Among hydrolysates, alcalase derived hydrolysate exhibited the highest antioxidant activities than those of other enzyme hydrolysates. In order to purity a peptide having potent antioxidant properties, alcalase hydrolysate was separated using consecutive chromatographic methods on a Hiprep 16/10 DEAE FF anion exchange column, Superdex Peptide 10/300 GL gel filtration column and highan octadecylsilane (ODS) C18 reversed phase column. Finally, a potent antioxidative peptide was isolated and its sequence was identified to be LEELEEELEGCE (1487 Da) by Q-TOF ESI mass spectroscopy. This antioxidant peptide from bullfrog skin protein (APBSP) inhibited lipid peroxidation higher than that of alpha-tocopherol as positive control and efficiently quenched different sources of free radicals: DPPH radical (IC(50)=16.1 microM), hydroxyl radical (IC(50)=12.8 microM), superoxide radical (IC(50)=34.0 microM) and peroxyl radical (IC(50)=32.6 microM). Moreover, MTT assay showed that this peptide does not exert any cytotoxicity on human embryonic lung fibroblasts cell line (MRC-5). PMID:17512726

  12. Free Radical Scavenging, Antimicrobial and Immunomodulatory Activities of Orthosiphon stamineus

    Nabil S. Harmal

    2012-05-01

    Full Text Available Orthosiphon stamineus is considered an important traditional folk medicine. In this study ethanol and aqueous extracts of O. stamineus were evaluated in vitro for their antioxidant, antimicrobial as well as for their immunomodulatory properties on human peripheral blood mononuclear cells (PBMCs. The DPPH radical scavenging method was used for the determination of antioxidant activity, while the antibacterial efficacy was investigated by both disc diffusion method and Minimum Inhibitory Concentration (MIC against four bacterial strains (Gram-positive and Gram-negative. Furthermore, the immunomodulatory potential of the extracts was investigated through the MTT assay. Aqueous extract of O. stamineus exhibited significant free radical scavenging activity with IC50 9.6 µg/mL, whereas the IC50 for the ethanol extract was 21.4 µg/mL. The best antimicrobial activity was shown by the aqueous extract of O. stamineus against Staphylococcus aureus, with inhibition zone of 10.5 mm and MIC value 1.56 mg/mL. Moreover, the results observed from the MTT assay showed that both plant extracts stimulated the PBMCs proliferation in vitro in a concentration-dependent manner, but the aqueous extract has remarkable activity against PBMCs. These findings indicate that O. stamineus showed high antioxidant activity and may be considered as an immunomodulatory agent.

  13. Monitoring brain activation changes in the early postoperative period after radical prostatectomy using fMRI.

    Seseke, S; Baudewig, J; Ringert, R-H; Rebmann, U; Dechent, P

    2013-09-01

    Urinary incontinence is a major concern following radical prostatectomy. The etiology is multifactorial involving intrinsic sphincter deficiency and/or detrusor hyperactivity and/or decreased bladder compliance. Recent studies employing functional imaging methodology nicely demonstrated the reference regions of the micturition circuit. Based on these landmarks this work complements this field of research by studying patients with bladder dysfunction. Our aim was to evaluate, whether iatrogenic impairment of the pelvic floor muscles after retropubic radical prostatectomy (RRP) causes detectable changes in fMRI in the early postoperative period. fMRI was performed at 3T in 22 patients before and after RRP with urge to void due to a filled bladder. In a non-voiding model they were instructed to contract or to relax the pelvic floor muscles repetitively. As previously reported in healthy men, contraction and relaxation of pelvic floor muscles induced strong activations in the brainstem and more rostral areas in our group of patients before and after RRP. In general, all of them had stronger activations during contraction than during relaxation in all regions before and after the operation. Even though there was no difference in the activation level when relaxing the pelvic floor before and after the operation, we found stronger activation during contraction when comparing the preoperative with the postoperative level in some of the regions. The results suggest that the same cortical and subcortical networks can be demonstrated for micturition control in patients with prostate cancer as in healthy subjects. However, impaired pelvic floor muscle function after RRP seems to induce different activation intensities. PMID:23583743

  14. ThermoTRP channels as modular proteins with allosteric gating.

    Latorre, Ramon; Brauchi, Sebastian; Orta, Gerardo; Zaelzer, Cristián; Vargas, Guillermo

    2007-01-01

    Ion channels activate by sensing stimuli such as membrane voltage, ligand binding or temperature and transduce this information into conformational changes that open the channel pore. Thus, a key question in understanding ion channel function is how do the protein domains involved in sensing stimuli (sensors) and opening the pore (gates) communicate. In this regard, transient receptor potential (TRP) channels that confer thermosensation [A. Dhaka, V. Viswanath, A. Patapoutian, TRP ion channels and temperature sensation, Annu. Rev. Neurosci. 29 (2006) 135-161; I.S. Ramsey, M. Delling, D.E. Clapham, An introduction to TRP channels, Annu. Rev. Physiol. 68 (2006) 619-647] (thermoTRP; Q(10)>10) are unique to the extent that they integrate a variety of physical and chemical stimuli. In some cases such as, for example, the vanilloid receptor TRPV1 [M.J. Caterina, M.A. Schumacher, M. Tominaga, T.A. Rosen, J.D. Levine, D. Julius, The capsaicin receptor: a heat-activated ion channel in the pain pathway, Nature 389 (1997) 816-824] and TRPA1 [G.M. Story, A.M. Peier, A.J. Reeve, S.R. Eid, J. Mosbacher, T.R. Hricik, T.J. Earley, A.C. Hergarden, D.A. Andersson, S.W. Hwang, P. McIntyre, T. Jegla, S. Bevan, A. Patapoutian, ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures, Cell 112 (2003) 819-829; S. Jordt, D. Julius, Molecular basis for species-specific sensitivity to "hot" chilli peppers, Cell 108 (2002) 421-430] the integration of these stimuli elicit pain [M. Tominaga, M.J. Caterina, A.B. Malmberg, T.A. Rosen, H. Gilbert, K. Skinner, B.E. Raumann, A.I. Basbaum, D. Julius, The cloned capsaicin receptor integrates multiple pain-producing stimuli, Neuron 21 (1998) 531-543; M. Bandell, A. Dubin, M. Petrus, A. Orth, J. Mathur, S. Hwang, A. Patapoutian, High-throughput random mutagenesis screen reveals TRPM8 residues specifically required for activation by menthol, Nat. Neurosci. 9 (2006) 466-468; S. Zurborg, B. Yurgionas, JA. Jira, O

  15. Radical activity evaluation in African Palm (Elaeis guineensis Jacq) using phosphorous - 32

    Low lands, wet and tropical, its are producing potential of oil palm, since this plant is notoriously bearable to poor soils in nutrients. Oil palm cultivation is relatively new at Colombia, commercial sowings date hardly of 1950s and in spite of this, tenacity and futuristic vision of some entrepreneurs have permitted that this activity, in few existence years, may have had a growing dynamics and strengthening of agricultural sector. The objective of this Thesis, it's to evaluate field conditions of radical activity, making an analysis in utilization efficiency of monoammonium phosphate labeled with 32P that was produced at INEA (today Ingeominas) with an activity of 1mCi/gram. Furthermore, its are intended to define differences of absorption in 1,9 and 17 leaves continuing the palm leaves phyto taxis, with the objective to determine the number of leaf for foliate analysis. The work was carried out in a 6-year-old age cultivation belonging to Uni palma company, located at Cumaral Municipality (Meta Department), situated to 500 meters on sea level, being a representative batch of African palm cultivation at Colombia's Eastern Plains. Soil is classified as Oxi sol, with ph of 4.5 and with high iron and aluminum indices. It was used the Isotopic Tracers methodology, the one which was highly effective, inasmuch as was determined that greater radical activity is found 2.5 meters of plant foot, with a percentage absorption average of 60.8 with respect to other treatments. Due to fact that were not found differences in phosphorus absorption between leaves 1,9 and 17, is recommended for foliate analysis to make use of any number of leaf. Efficiency of use of monoammonium phosphate was decreased (2.0710), something which makes necessary to promote tending studies to improve its behavior, more yet taking into account high cost of fertilizers and environmental pollution risks

  16. Synthesis, photocatalytic activity, and photogenerated hydroxyl radicals of monodisperse colloidal ZnO nanospheres

    Yang, Chong; Li, Qingsong; Tang, Limei; Xin, Kun; Bai, Ailing; Yu, Yingmin

    2015-12-01

    In the present study, monodisperse colloidal zinc oxide (ZnO) nanospheres were successfully synthesized via a newly developed two-stage solution method followed by facile calcination at various temperatures. The effects of calcination temperature on the structure, morphology, and optical properties as well as the photocatalytic activity of the as-made ZnO samples were investigated systematically by Fourier transform infrared spectrometry, X-ray diffraction, field emission scanning electron microscopy, nitrogen adsorption/desorption isotherms, diffuse reflectance UV-visible spectroscopy (DRS), photoluminescence, and related photocatalytic activity tests. The thermal decomposition was analyzed by thermogravimetric analysis. The crystallinity was found to gradually increase with increasing calcination temperature, whereas the decrease in the Brunauer-Emmett-Teller specific surface area of the samples with calcination may be ascribed to the increased particle size. The DRS results provided clear evidence for the decrease in band gap energy of ZnO samples with an increase in calcination temperature. The photoluminescence spectra demonstrated the calcination-dependent emission features, especially the UV emission intensity. In particular, the ZnO product calcined at 400 °C exhibited the highest photocatalytic activity, degrading methylene blue by almost 99.1% in 70 min, which is ascribed to the large specific surface area and pore volume, high electron-hole pair separation efficient, and great redox potential of the obtained ZnO nanoparticles. In addition, the production of photogenerated hydroxyl radicals (•OH) was consistent with the methylene blue degradation efficiency over the as-made ZnO nanoparticles. Using isopropanol as a hydroxyl radical scavenger, •OH was determined to be the main active oxygen species in the photocatalytic process. A possible mechanism of photodegradation under UV light irradiation also is proposed.

  17. Modulating TRAP-mediated transcription termination by AT during transcription of the leader region of the Bacillus subtilis trp operon

    Sharma, Shraddha; Gollnick, Paul

    2014-01-01

    An 11-subunit protein called trp RNA binding Attenuation Protein (TRAP) controls attenuation of the tryptophan biosynthetic (trpEDCFBA) operon in Bacillus subtilis. Tryptophan-activated TRAP binds to 11 (G/U)AG repeats in the 5′ leader region of trp mRNAs, and downregulates expression of the operon by promoting transcription termination prior to the structural genes. Anti-TRAP (AT) is an antagonist that binds to tryptophan-activated TRAP and prevents TRAP from binding to RNA, thereby upregula...

  18. Antimicrobial and free radical scavenging activities of five Palestinian medicinal plants.

    Qabaha, Khaled Ibraheem

    2013-01-01

    Extracts from five indigenous Palestinian medicinal plants including Rosmarinus officinalis, Pisidium guajava, Punica granatum peel, grape seeds and Teucrium polium were investigated for antimicrobial and free radical scavenging activities against eight microorganisms, using well diffusion method. The microorganisms included six bacterial isolates (i.e. Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginos, Klebsiella pneumonia, Bacillus subtilis and Micrococcus luteus) and two fungal isolates (i.e. Candida albicans and Aspergillus niger). A standard antioxidant assay was performed on the plant extracts to assess their capability in scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH). Of the five tested plant extract, only Rosmarinus offcinalis extract contained significant antimicrobial activity against all eight microbial isolates including Pseudomonas aeruginosa. Extracts from other four plants exhibited a variable antimicrobial activity against all microorganisms, except Pseudomonas aeruginosa. Significant antioxidant activity was detected in all plant extracts. However, extracts from Pisidium guajava leaves contained significantly higher antioxidant activity compared to the other extracts tested. The antimicrobial and scavenging activities detected in this in vitro study in extracts from the five Palestinian medicinal plants suggest that further study is needed to identify active compounds to target diseases caused by a wide-spectrum pathogens. PMID:24146509

  19. Studies of phenolic chelating agents on free radical scavenging activities and inhibitory action in radiation-induced lipid peroxidation

    Effects of single molecular and double molecular substituted phenolic chelating agents on scavenging of superoxide anions and hydroxyl radicals and inhibition of rat liver mitochondria lipid peroxidation induced by irradiation were studied. The phenolic chelating agents were shown to different extent to scavenge oxygen free radical and the protect against radiation-induced lipid peroxidation, and their half inhibition concentrations (IC50) on hydroxyl radicals generation and lipid peroxidation were 1 x 10-6 mol/L, which of scavenging of superoxide anions were 1 x 10-3 mol/L. 7601(CBMIDA), 9501 and 9502 were the best among them. The free radical scavenging and antioxidant activities were close related to chemical structure and de-corporate bioactivity

  20. Free radical scavenging and anti-edematogenic activities of Paullinia elegans Cambess., Sapindaceae, leaves extracts

    Rodrigo N. Guimarães

    2010-03-01

    Full Text Available Ethanol extract of the leaves of Paullinia elegans Cambess., Sapindaceae, and its hexane, chloroform, ethyl acetate, and hydroethanol fractions were evaluated for their antiedematogenic and free radical scavenging activities. The ethanol extract and the hexane fraction produced statistically significant inhibition (74.4 and 76.0%, respectively of the ear edema induced by croton oil in mice, observed at doses of 5 mg/ear. The ethyl acetate and hydroethanol fractions showed significant radical scavenging effect in the DPPH assay, with IC50 of 36.7 and 30.1 µg/mL, respectively. Fractionation of the extracts through chromatographic methods afforded epifriedelanol, oleanolic acid 3-O-acetyl, a mixture of stigmasterol 3-β-O-glucopyranoside and sitosterol 3-β-O-glucopyranoside, kaempferol 3,7-O-α-dirhamnopyranoside, kaempeferol-3-O-α-rhamnopyranoside and 2-O-methyl-chiro-inositol. The compounds were identified on the basis of their NMR spectral data and comparison with those of literature.

  1. Determination of DPPH free radical scavenging activity: application of artificial neural networks.

    Musa, Khalid Hamid; Abdullah, Aminah; Al-Haiqi, Ahmed

    2016-03-01

    A new computational approach for the determination of 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity (DPPH-RSA) in food is reported, based on the concept of machine learning. Trolox standard was mix with DPPH at different concentrations to produce different colors from purple to yellow. Artificial neural network (ANN) was trained on a typical set of images of the DPPH radical reacting with different levels of Trolox. This allowed the neural network to classify future images of any sample into the correct class of RSA level. The ANN was then able to determine the DPPH-RSA of cinnamon, clove, mung bean, red bean, red rice, brown rice, black rice and tea extract and the results were compared with data obtained using a spectrophotometer. The application of ANN correlated well to the spectrophotometric classical procedure and thus do not require the use of spectrophotometer, and it could be used to obtain semi-quantitative results of DPPH-RSA. PMID:26471610

  2. The antimicrobial activity of gramicidin A is associated with hydroxyl radical formation.

    Liou, Je-Wen; Hung, Yu-Jiun; Yang, Chin-Hao; Chen, Yi-Cheng

    2015-01-01

    Gramicidin A is an antimicrobial peptide that destroys gram-positive bacteria. The bactericidal mechanism of antimicrobial peptides has been linked to membrane permeation and metabolism disruption as well as interruption of DNA and protein functions. However, the exact bacterial killing mechanism of gramicidin A is not clearly understood. In the present study, we examined the antimicrobial activity of gramicidin A on Staphylococcus aureus using biochemical and biophysical methods, including hydroxyl radical and NAD+/NADH cycling assays, atomic force microscopy, and Fourier transform infrared spectroscopy. Gramicidin A induced membrane permeabilization and changed the composition of the membrane. The morphology of Staphylococcus aureus during gramicidin A destruction was divided into four stages: pore formation, water permeability, bacterial flattening, and lysis. Changes in membrane composition included the destruction of membrane lipids, proteins, and carbohydrates. Most interestingly, we demonstrated that gramicidin A not only caused membrane permeabilization but also induced the formation of hydroxyl radicals, which are a possible end product of the transient depletion of NADH from the tricarboxylic acid cycle. The latter may be the main cause of complete Staphylococcus aureus killing. This new finding may provide insight into the underlying bactericidal mechanism of gA. PMID:25622083

  3. The antimicrobial activity of gramicidin A is associated with hydroxyl radical formation.

    Je-Wen Liou

    Full Text Available Gramicidin A is an antimicrobial peptide that destroys gram-positive bacteria. The bactericidal mechanism of antimicrobial peptides has been linked to membrane permeation and metabolism disruption as well as interruption of DNA and protein functions. However, the exact bacterial killing mechanism of gramicidin A is not clearly understood. In the present study, we examined the antimicrobial activity of gramicidin A on Staphylococcus aureus using biochemical and biophysical methods, including hydroxyl radical and NAD+/NADH cycling assays, atomic force microscopy, and Fourier transform infrared spectroscopy. Gramicidin A induced membrane permeabilization and changed the composition of the membrane. The morphology of Staphylococcus aureus during gramicidin A destruction was divided into four stages: pore formation, water permeability, bacterial flattening, and lysis. Changes in membrane composition included the destruction of membrane lipids, proteins, and carbohydrates. Most interestingly, we demonstrated that gramicidin A not only caused membrane permeabilization but also induced the formation of hydroxyl radicals, which are a possible end product of the transient depletion of NADH from the tricarboxylic acid cycle. The latter may be the main cause of complete Staphylococcus aureus killing. This new finding may provide insight into the underlying bactericidal mechanism of gA.

  4. Prenylated Xanthones from the Bark of Garcinia xanthochymus and Their 1,1-Diphenyl-2-picrylhydrazyl (DPPH Radical Scavenging Activities

    Hong-wu He

    2010-10-01

    Full Text Available Garcinia xanthochymus has been widely used in traditional Chinese medicine for expelling worms and removing food toxins. Bioassay-guided fractionation of an EtOAc-soluble extract of G. xanthochymus stem bark led to the isolation of six new xanthones. Their structures were elucidated by spectroscopic methods, especially 2D-NMR techniques. Free-radical-scavenging activities of the isolated compounds were elucidated through DPPH method. Most of the isolated compounds showed considerable free radical scavenging activity on DPPH assay. Compound 1 exhibited effective antioxidant scavenging activity against DPPH radical with an IC50 value of 19.64 μM, and compound 6 showed the lowest activity among all the tested molecules, with an IC50 value of 66.88 μM. These findings support the notion that the plant genus Garcinia is a good source of bioactive compounds.

  5. Change in chemical constituents and free radical-scavenging activity during Pear (Pyrus pyrifolia) cultivar fruit development.

    Cho, Jeong-Yong; Lee, Sang-Hyun; Kim, Eun Hee; Yun, Hae Rim; Jeong, Hang Yeon; Lee, Yu Geon; Kim, Wol-Soo; Moon, Jae-Hak

    2015-01-01

    Changes in chemical constituent contents and DPPH radical-scavenging activity in fruits of pear (Pyrus pyrifolia) cultivars during the development were investigated. The fruits of seven cultivars (cv. Niitaka, Chuhwangbae, Wonhwang, Hwangkeumbae, Hwasan, Manpungbae, and Imamuraaki) were collected at 15-day intervals after day 20 of florescence. Vitamins (ascorbic acid and α-tocopherol), arbutin, chlorogenic acid, malaxinic acid, total caffeic acid, total flavonoids, and total phenolics were the highest in immature pear fruit on day 20 after florescence among samples at different growth stages. All of these compounds decreased gradually in the fruit during the development. Immature pear fruit on day 35 or 50 after florescence exhibited higher free radical-scavenging activity than that at other times, although activities were slightly different among cultivars. The chemical constituent contents and free radical-scavenging activity were largely different among immature fruits of the pear cultivars, but small differences were observed when they matured. PMID:25348501

  6. Antimicrobial and radical scavenging activity of le af and rhizome extract of Alpinia galanga (L. Willd (Zingiberaceae

    Yashoda Kambar

    2014-03-01

    Full Text Available Alpinia galanga (L. Willd belonging to the family Zingiberaceae is widely distributed in tropical areas. The plant is used in food preparation and as medicine. The present study was carried out to determine antimicrobial and radical scavenging effect of leaf and rhizome extract of A. galanga. The powdered leaf and rhizome were extracted by soxhlet extraction using methanol. Antimicrobial activity of extracts was determined by Agar well diffusion assay against 15 clinical isolates of bacteria (from burn, dental caries and urinary tract infection and two fungi (Candida albicansand Cryptococcus neoformans. Radical scavenging activity of extracts was determined by DPPH free radical scavenging assay. Total phenolic and flavonoid contents were estimated by Folin-Ciocalteau reagent and Aluminium chloride colorimetric estimation method respectively. Rhizome extract was found to possess high inhibitory activity against fungi and clinical isolates of bacteria. Inhibitoryactivity was marked against burn and dental caries isolates when compared to urinarytract isolates. Overall, Gram positive bacteria showed higher susceptibility to extracts. Among fungi, C. neoformanswas inhibited to higher extent. The extracts have shown dose dependent scavenging of free radicals. The rhizome extract (IC5032.34μg/ml was more efficient in scavenging free radicals than leaf extract as revealed by low IC50value. The content of total phenolics and flavonoids were high in rhizome extract when compared to leaf extract. Marked antimicrobial and radical scavenging potential of rhizome extract can be ascribed to high phenolic and flavonoid content. The plant can be used for the development of agents active against pathogenic microbes and radical induced damage.

  7. Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as heterogeneous activator of peroxymonosulfate

    Graphical abstract: - Highlights: • The APAP degradation exhibited a pseudo-first-order kinetics pattern well. • The Fe3O4 was stable without significant leaching of iron to water during reaction. • XPS and EPR results show that Fe2+-Fe3+ cycle was answerable for radical generation. • The removal of APAP is a result of oxidation due to both OH• and SO4−• . - Abstract: Magnetic nano-scaled particles Fe3O4 were studied for the activation of peroxymonosulfate (PMS) to generate active radicals for degradation of acetaminophen (APAP) in water. The Fe3O4 MNPs were found to effectively catalyze PMS for removal of APAP, and the reactions well followed a pseudo-first-order kinetics pattern (R2 > 0.95). Within 120 min, approximately 75% of 10 ppm APAP was accomplished by 0.2 mM PMS in the presence of 0.8 g/L Fe3O4 MNPs with little Fe3+ leaching (<4 μg/L). Higher Fe3O4 MNP dose, lower initial APAP concentration, neutral pH, and higher reaction temperature favored the APAP degradation. The production of sulfate radicals and hydroxyl radicals was validated through two ways: (1) indirectly from the scavenging tests with scavenging agents, tert-butyl alcohol (TBA) and ethanol (EtOH); (2) directly from the electron paramagnetic resonance (ESR) tests with 0.1 M 5,5-dimethyl-1-pyrrolidine N-oxide (DMPO). Plausible mechanisms on the radical generation from Fe3O4 MNP activation of PMS are proposed based on the results of radical identification tests and XPS analysis. It appeared that Fe2+-Fe3+ on the catalyst surface was responsible for the radical generation. The results demonstrated that Fe3O4 MNPs activated PMS is a promising technology for water pollution caused by contaminants such as pharmaceuticals

  8. Modulation of TRP channels by resveratrol and other stilbenoids

    Yu Lina

    2013-02-01

    Full Text Available Abstract Background Resveratrol (3,5,4’ - trihydroxy-trans-stilbene, a widely distributed natural stilbenoid, was proposed to account for the unique effects of red wine on life span and health. It has been reported to possess various biological and pharmacological activities, such as anti-oxidant, anti-inflammatory, and anti-carcinogenic effects. Here, using whole-cell patch-clamp techniques and behavioral analyses, we investigated whether resveratrol and other stilbenoids can modulate TRP channels in sensory neurons in vitro, and have analgesic effects in vivo. Results We found that resveratrol dose-dependently suppressed the allyl isothiocyanate (AITC-induced currents (IAITC in HEK293 cells that express TRPA1, as well as in rat dorsal root ganglion (DRG neurons. Instead, pinosylvin methyl ether (PME, another derivate of stilbene which has a similar structure to resveratrol, dose-dependently blocked the capsaicin-induced currents (ICAP in HEK293 cells that express TRPV1 as well as in DRG neurons. Interestingly, resveratrol had no inhibitory effect on the ICAP, and PME had no effect on the IAITC. Otherwise, trans-stilbene showed no any effect on IAITC or ICAP. The concentration response curve of AITC showed that resveratrol inhibited the action of TRPA1 not by changing the EC50, but by suppressing the AITC-induced maximum response. By contrast, the inhibition of TRPV1 by PME did not change the capsaicin-induced maximum response but did cause a right shift of the EC50. Moreover, pre-administration of resveratrol suppressed intraplantar injections of AITC-evoked nocifensive behaviors, as well as that PME suppressed capsaicin-evoked one. Conclusions These data suggest that resveratrol and other stilbenoids may have an inhibitory effect on TRP channels. In addition, these stilbenoids modulate TRP channel activity in different ways.

  9. Free Radical Scavenging Activity and HPLC Analysis of Araucaria cunninghamii Aiton ex D. Don Leaf Extract

    Vandana Gautam

    2014-08-01

    Full Text Available Background: Several diseases are caused in the body due to oxidative stress of free radicals. The objectives of the present study were to investigate the antioxidant activity of Araucaria cunninghamii Aiton ex D. Don (Araucariaceae leaf extract. The dried leaves of Araucaria cunninghamii Aiton ex D. Don (Araucariaceae were extracted with 80% methanol. The antioxidant activity of the extract was predicted through in vitro model systems such as 1,1-diphenyl-2-picryl hydrazyl (DPPH, reducing power and nitric oxide scavenging assays. The total phenolic, flavonoid and tannin content of the extract were also estimated in order to draw the correlation with their bioactivities. The extract was also investigated for several polyphenolic compounds using High-performance liquid chromatography (HPLC. Results: The antioxidant activity of extract was found to be excellent in all the three assays. A positive correlation between the antioxidant activity and phenolic content was observed. HPLC analysis identified the presence of Gallic acid, Catechin, Chlorogenic acid, Epicatechin, Caffeic acid, Umbelliferone, Ellagic acid, Quercetin and Kaempferol in the methanol leaf extract of Araucaria cunninghamii Aiton ex D. Don. Conclusions: The results of the present study point towards the fact that Araucaria cunninghamii Aiton ex D. Don leaves possess good antioxidant potential. The strong antioxidant activity can be correlated with the polyphenolic compounds present in the leaves.

  10. A cation binding motif stabilizes the compound I radical of cytochrome c peroxidase.

    Miller, M A; Han, G W; Kraut, J

    1994-11-01

    Cytochrome c peroxidase reacts with peroxide to form compound I, which contains an oxyferryl heme and an indolyl radical at Trp-191. The indolyl free radical has a half-life of several hours at room temperature, and this remarkable stability is essential for the catalytic function of cytochrome c peroxidase. To probe the protein environment that stabilizes the compound I radical, we used site-directed mutagenesis to replace Trp-191 with Gly or Gln. Crystal structures of these mutants revealed a monovalent cation binding site in the cavity formerly occupied by the side chain of Trp-191. Comparison of this site with those found in other known cation binding enzymes shows that the Trp-191 side chain resides in a consensus K+ binding site. Electrostatic potential calculations indicate that the cation binding site is created by partial negative charges at the backbone carbonyl oxygen atoms of residues 175 and 177, the carboxyl end of a long alpha-helix (residues 165-175), the heme propionates, and the carboxylate side chain of Asp-235. These features create a negative potential that envelops the side chain of Trp-191; the calculated free energy change for cation binding in this site is -27 kcal/mol (1 cal = 4.184J). This is more than sufficient to account for the stability of the Trp-191 radical, which our estimates suggest is stabilized by 7.8 kcal/mol relative to a Trp radical in solution. PMID:7972020

  11. Anti-inflammatory, gastroprotective, free-radical-scavenging, and antimicrobial activities of hawthorn berries ethanol extract.

    Tadić, Vanja M; Dobrić, Silva; Marković, Goran M; Dordević, Sofija M; Arsić, Ivana A; Menković, Nebojsa R; Stević, Tanja

    2008-09-10

    Hawthorn [Crataegus monogyna Jacq. and Crataegus oxyacantha L.; sin. Crataegus laevigata (Poiret) DC., Rosaceae] leaves, flowers, and berries are used in traditional medicine in the treatment of chronic heart failure, high blood pressure, arrhythmia, and various digestive ailments, as well as geriatric and antiarteriosclerosis remedies. According to European Pharmacopoeia 6.0, hawthorn berries consist of the dried false fruits of these two species or their mixture. The present study was carried out to test free-radical-scavenging, anti-inflammatory, gastroprotective, and antimicrobial activities of hawthorn berries ethanol extract. Phenolic compounds represented 3.54%, expressed as gallic acid equivalents. Determination of total flavonoid aglycones content yielded 0.18%. The percentage of hyperoside, as the main flavonol component, was 0.14%. With respect to procyanidins content, the obtained value was 0.44%. DPPH radical-scavenging capacity of the extract was concentration-dependent, with EC50 value of 52.04 microg/mL (calculation based on the total phenolic compounds content in the extract). Oral administration of investigated extract caused dose-dependent anti-inflammatory effect in a model of carrageenan-induced rat paw edema. The obtained anti-inflammatory effect was 20.8, 23.0, and 36.3% for the extract doses of 50, 100, and 200 mg/kg, respectively. In comparison to indomethacin, given in a dose producing 50% reduction of rat paw edema, the extract given in the highest tested dose (200 mg/kg) showed 72.4% of its activity. Gastroprotective activity of the extract was investigated using an ethanol-induced acute stress ulcer in rats with ranitidine as a reference drug. Hawthorn extract produced dose-dependent gastroprotective activity (3.8 +/- 2.1, 1.9 +/- 1.7, and 0.7 +/- 0.5 for doses of 50, 100, and 200 mg/kg, respectively), with the efficacy comparable to that of the reference drug. Antimicrobial testing of the extract revealed its moderate bactericidal

  12. Multifunctional radical-doped polyoxometalate-based host-guest material: photochromism and photocatalytic activity.

    Liao, Jian-Zhen; Zhang, Hai-Long; Wang, Sa-Sa; Yong, Jian-Ping; Wu, Xiao-Yuan; Yu, Rongmin; Lu, Can-Zhong

    2015-05-01

    An effective strategy to synthesize multifunctional materials is the incorporation of functional organic moieties and metal oxide clusters via self-assembly. A rare multifunctional radical-doped zinc-based host-guest crystalline material was synthesized with a fast-responsive reversible ultraviolet visible light photochromism, photocontrolled tunable luminescence, and highly selective photocatalytic oxidation of benzylic alcohols as a result of blending of distinctively different functional components, naphthalenediimide tectons, and polyoxometalates (POMs). It is highly unique to link π-electron-deficient organic tectons and POMs by unusual POMs anion-π interactions, which are not only conducive to keeping the independence of each component but also effectively promoting the charge transfer or exchange among the components to realize the fast-responsive photochromism, photocontrolled tunable luminescence, and photocatalytic activity. PMID:25859742

  13. BAX and tumor suppressor TRP53 are important in regulating mutagenesis in spermatogenic cells in mice.

    Xu, Guogang; Vogel, Kristine S; McMahan, C Alex; Herbert, Damon C; Walter, Christi A

    2010-12-01

    During the first wave of spermatogenesis, and in response to ionizing radiation, elevated mutant frequencies are reduced to a low level by unidentified mechanisms. Apoptosis is occurring in the same time frame that the mutant frequency declines. We examined the role of apoptosis in regulating mutant frequency during spermatogenesis. Apoptosis and mutant frequencies were determined in spermatogenic cells obtained from Bax-null or Trp53-null mice. The results showed that spermatogenic lineage apoptosis was markedly decreased in Bax-null mice and was accompanied by a significantly increased spontaneous mutant frequency in seminiferous tubule cells compared to that of wild-type mice. Apoptosis profiles in the seminiferous tubules for Trp53-null were similar to control mice. Spontaneous mutant frequencies in pachytene spermatocytes and in round spermatids from Trp53-null mice were not significantly different from those of wild-type mice. However, epididymal spermatozoa from Trp53-null mice displayed a greater spontaneous mutant frequency compared to that from wild-type mice. A greater proportion of spontaneous transversions and a greater proportion of insertions/deletions 15 days after ionizing radiation were observed in Trp53-null mice compared to wild-type mice. Base excision repair activity in mixed germ cell nuclear extracts prepared from Trp53-null mice was significantly lower than that for wild-type controls. These data indicate that BAX-mediated apoptosis plays a significant role in regulating spontaneous mutagenesis in seminiferous tubule cells obtained from neonatal mice, whereas tumor suppressor TRP53 plays a significant role in regulating spontaneous mutagenesis between postmeiotic round spermatid and epididymal spermatozoon stages of spermiogenesis. PMID:20739667

  14. Free radical scavenging activity, total phenolic and flavonoid contents of mulberry (Morus spp. L., Moraceae extracts

    Radojković Marija M.

    2012-01-01

    Full Text Available Mulberry (Morus spp. L., Moraceae fruits, leaves, bark and branch have been used in traditional medicine as diuretic, hypoglycemic and hypotensive. The mechanism of their effects is correlated with the content of active components. Objective of this work was to evaluate and compare antioxidant properties of different extracts of two Morus species growing in Serbia: Morus alba L. (white mulberry and Morus nigra L. (black mulberry. Potential antioxidant activity, content of antioxidant compounds (phenolics and flavonoids and radical scavenging capacity, tested by DPPH method, were evaluated. The phenolic and flavonoid composition of different Morus extracts was determined by the HPLC method. The extracts prepared from fruits, leaves and roots of M. alba and M. nigra exhibited different characteristics. The highest extraction yield was achieved by M. alba leaves extraction (23.40%. M. nigra roots extract shown the highest total phenolics (186.30 mg CAE/g, while highest total flavonoids content (67.37 mg RE/g was determined for M. nigra leaves extracts. In addition, black mulberry leaves extracts with the highest antioxidant activity had the highest phenolic acids contents. The dominant phenolic components in the samples were rutin and chlorogenic acid. All investigated mulberry dry extracts shown high content of phenolic compounds and significant antioxidant activity. This work contributes to knowledge of the antioxidant properties of Morus species. The obtained results may be useful in the evaluation of new dietary supplements and food products.

  15. Formulation of microspheres containing Crataegus monogyna Jacq. extract with free radical scavenging activity.

    Lucconi, Giulia; Chlapanidas, Theodora; Martino, Emanuela; Gaggeri, Raffaella; Perteghella, Sara; Rossi, Daniela; Faragò, Silvio; Vigo, Daniele; Faustini, Massimo; Collina, Simona; Torre, Maria Luisa

    2014-02-01

    Extracts of Crataegus monogyna Jacq. (hawthorn) show an interesting free radical scavenging (FRS) effect, related to their flavonoids content. Unfortunately, their oral administration is affected by their low bioavailability. The aim of this work is to obtain a multiparticulate drug delivery system for hawthorn extracts for oral administration. The extracts from flowering tops (FL) or fruits (FR) of hawthorn were obtained with maceration, using ethanol as an extraction solvent, and their antioxidant activity was evaluated. FL extract showed the highest FRS activity (EC50 3.72 ± 1.21 µg/ml), so it was selected to prepare microparticulate systems by a spray-drying technique, which were characterized by granulometric analysis, scanning electron microscopy-energy dispersive X-ray spectroscopy, confocal fluorescence microscopy and hyperoside content. Antioxidant activity was evaluated before and after gastrointestinal transit in vitro simulation. Results indicate that the microparticulate systems maintained the antioxidant activity of hawthorn also after gastrointestinal transit in vitro simulation, exhibiting properties suitable for oral administration. PMID:23301945

  16. Comparing ion conductance recordings of synthetic lipid bilayers with cell membranes containing TRP channels

    Laub, Katrine R; Blicher, Andreas; Madsen, Soren B; Luckhoff, Andreas; Heimburg, Thomas

    2011-01-01

    In this article we compare electrical conductance events from single channel recordings of three TRP channel proteins (TRPA1, TRPM2 and TRPM8) expressed in human embryonic kidney cells with channel events recorded on synthetic lipid membranes close to melting transitions. Ion channels from the TRP family are involved in a variety of sensory processes including thermo- and mechano-reception. Synthetic lipid membranes close to phase transitions display channel-like events that respond to stimuli related to changes in intensive thermodynamic variables such as pressure and temperature. TRP channel activity is characterized by typical patterns of current events dependent on the type of protein expressed. Synthetic lipid bilayers show a wide spectrum of electrical phenomena that are considered typical for the activity of protein ion channels. We find unitary currents, burst behavior, flickering, multistep-conductances, and spikes behavior in both preparations. Moreover, we report conductances and lifetimes for lipi...

  17. Free radical scavenging property and antiproliferative activity of Rhodiola imbricata Edgew extracts in HT-29 human colon cancer cells

    Ravichandran Senthilkumar; Thangaraj Parimelazhagan; Om Prakash Chaurasia; RB Srivastava

    2013-01-01

    Objective: To investigate the in vitro antioxidant and antiproliferative activity of rhizome extracts of Rhodiola imbricata (R. imbricata) in HT-29 human colon cancer cell line. Methods: The successively extracted rhizome of R. imbricata using various solvents was analyzed for their total phenolics, tannins and flavonoid contents. In vitro antioxidant activity was evaluated by employing different assays, including DPPH, ABTS radical scavenging assays, FRAP, phosphomolybdenum reduction assay, superoxide anion, hydroxyl radical scavenging activities and metal chelating ability. Results: Acetone and methanol extracts recorded higher phenolic content and showed comparable antioxidant activity with standard reference. Additionally, they also inhibited the proliferation of HT-29 cells upon treatment at higher concentration (200 μg/mL) (acetone and methanol, 84% and 84%, respectively). On examination acetone extract exhibited antiproliferative activity in a concentration dependent manner whereas, methanol extract showed both dose dependent and time dependent inhibitory activity. Conclusions: The results obtained justify the traditional usage of R. imbricata from their promising antioxidant activity.

  18. EVALUATION OF FREE RADICAL SCAVENGING ACTIVITY AND BIOLOGICAL PROPERTIES OF SPINACIA OLERACEA L

    DEVARAJAN NATARAJAN

    2010-01-01

    Full Text Available In today’s world the percentage of people using chemical drugs increases with their side effects. “THE BOON GIVEN TO OUR EARTH IS THE HERBS”. Spinach is gaining importance world wide over as a potential source of new drugs to combat a variety of ailments as this species contains molecules credited with anti-inflammatory, antioxidant, antimicrobial, antihepatic as well as anticancerous. One such plant is Spinacia oleracea L. medicinal plant belonging to the family Amaranthaceae. The aim of present study was to screen the antioxidant, antimicrobial and phytochemical activities of leaves and stem of Spinacia oleracea L. The results highlighted that aqueous and methanol extracts of the leaves showed better antioxidant activity followed by the ethanol and ethyl acetate extracts. The antimicrobial activity of various extracts of S. oleracea expressed moderate to better inhibitory effect against Bacillus substilis, Escherichia coli, Aspergillus niger, Candida albicans and Pseudomonas aeruginosa. The leaf extracts showed maximum effect than stem extracts. The preliminary phytochemical analysis of this plant, showed the presence of major phytochemicals. This study supports the leaf extracts may be used as an effective antioxidant and antimicrobial agents to combat various ailments caused by the free radicals and the microbial species.

  19. Environmentally persistent free radicals inhibit cytochrome P450 activity in rat liver microsomes

    Combustion processes generate particulate matter that affects human health. When incineration fuels include components that are highly enriched in aromatic hydrocarbons (especially halogenated varieties) and redox-active metals, ultrafine particulate matter containing air-stable, environmentally persistent free radicals (EPFRs) is generated. The exposure to fine EPFRs (less than 2.5 μm in diameter) has been shown to negatively influence pulmonary and cardiovascular functions in living organisms. The goal of this study was to determine if these EPFRs have a direct effect on cytochrome P450 function. This was accomplished by direct addition of the EPFRs to rat liver microsomal preparations and measurement of several P450 activities using form-selective substrates. The EPFRs used in this study were formed by heating vapors from an organic compound (either monochlorophenol (MCP230) or 1,2-dichlorobenzene (DCB230)) and 5% copper oxide supported on silica (approximately 0.2 μm in diameter) to 230 °C under vacuum. Both types of EPFRs (but not silica, physisorbed silica, or silica impregnated with copper oxide) dramatically inhibited the activities of CYP1A, CYP2B, CYP2E1, CYP2D2 and CYP3A when incubated at concentrations less than 0.1 mg/ml with microsomes and NADPH. Interestingly, at the same concentrations, the EPFRs did not inhibit HO-1 activity or the reduction of cytochrome c by NADPH-cytochrome P450 reductase. CYP2D2-selective metabolism by rat liver microsomes was examined in more detail. The inhibition of CYP2D2-selective metabolism by both DCB230- and MCP230-EPFRs appeared to be largely noncompetitive and was attenuated in the presence of catalase suggesting that reactive oxygen species may be involved in the mechanism of inhibition. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • EPFRs inhibit metabolism by all cytochromes P450 tested in rat liver microsomes. • EPFR-mediated inhibition is related to

  20. Evaluation Of The Radical Activity In African Palm (Elaeis Guineensis JACQ) Using Match-32

    The low, humid and tropical lands, are potential producers of palm of oil, since this plant is notoriously tolerant to the poor floors in nutritious. The palm of oil cultivation is relatively new, commercial seeding hardly dates of 1950 and in spite of this, the futurist vision of some managers they have allowed that this activity, in few years of existence, have had a growing dynamics of the agricultural sector. The objective of this study, was to evaluate under field conditions the radical activity, making an analysis in the efficiency of use of the mono-ammonic phosphate with 32P that it took place in the INEA with a lmCi/gram activity. it is Also to determine the differences of absorption in the leaves 1,9 and 17 following the phylotaxia of the palm leaves, in order to determine the leaf number for the analysis to foliate. The work was carried out in a 6 year-old cultivation belonging to the company Unipalma, located in the municipality of Cumaral, department of the goal, located to 500 msnm, being a representative lot where African palm is cultivated in the oriental plains. I am accustomed to classified as an Oxi sol, with pH of 4.5 and with high iron contents and aluminum. In this work the methodology isotopic was used of tracer. The study checked that the methodology was highly effective, since it was determined that the biggest radical activity is 2.5 m of the foot of the plant, with a percentage average of absorption of 60.8 with regard to the other treatments. Because they were not differences in match absorption among the leaves 1, 9 and 17, it is recommended for the analysis to foliate to make use of the any leaf number. As for the efficiency of use of the mono-ammonic phosphate it was low (2.0710), it becomes necessary to promote studies tendentious to improve their behavior, stiller keeping in mind the high cost of the fertilizers and the risks of ecological contamination

  1. Environmentally persistent free radicals inhibit cytochrome P450 activity in rat liver microsomes

    Reed, James R., E-mail: rreed@lsuhsc.edu [Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); Cawley, George F.; Ardoin, Taylor G. [Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); Dellinger, Barry; Lomnicki, Slawomir M.; Hasan, Farhana; Kiruri, Lucy W. [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); Backes, Wayne L. [Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States)

    2014-06-01

    Combustion processes generate particulate matter that affects human health. When incineration fuels include components that are highly enriched in aromatic hydrocarbons (especially halogenated varieties) and redox-active metals, ultrafine particulate matter containing air-stable, environmentally persistent free radicals (EPFRs) is generated. The exposure to fine EPFRs (less than 2.5 μm in diameter) has been shown to negatively influence pulmonary and cardiovascular functions in living organisms. The goal of this study was to determine if these EPFRs have a direct effect on cytochrome P450 function. This was accomplished by direct addition of the EPFRs to rat liver microsomal preparations and measurement of several P450 activities using form-selective substrates. The EPFRs used in this study were formed by heating vapors from an organic compound (either monochlorophenol (MCP230) or 1,2-dichlorobenzene (DCB230)) and 5% copper oxide supported on silica (approximately 0.2 μm in diameter) to 230 °C under vacuum. Both types of EPFRs (but not silica, physisorbed silica, or silica impregnated with copper oxide) dramatically inhibited the activities of CYP1A, CYP2B, CYP2E1, CYP2D2 and CYP3A when incubated at concentrations less than 0.1 mg/ml with microsomes and NADPH. Interestingly, at the same concentrations, the EPFRs did not inhibit HO-1 activity or the reduction of cytochrome c by NADPH-cytochrome P450 reductase. CYP2D2-selective metabolism by rat liver microsomes was examined in more detail. The inhibition of CYP2D2-selective metabolism by both DCB230- and MCP230-EPFRs appeared to be largely noncompetitive and was attenuated in the presence of catalase suggesting that reactive oxygen species may be involved in the mechanism of inhibition. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • EPFRs inhibit metabolism by all cytochromes P450 tested in rat liver microsomes. • EPFR-mediated inhibition is related to

  2. Sensory TRP Channel Interactions with Endogenous Lipids and Their Biological Outcomes

    Sungjae Yoo

    2014-04-01

    Full Text Available Lipids have long been studied as constituents of the cellular architecture and energy stores in the body. Evidence is now rapidly growing that particular lipid species are also important for molecular and cellular signaling. Here we review the current information on interactions between lipids and transient receptor potential (TRP ion channels in nociceptive sensory afferents that mediate pain signaling. Sensory neuronal TRP channels play a crucial role in the detection of a variety of external and internal changes, particularly with damaging or pain-eliciting potentials that include noxiously high or low temperatures, stretching, and harmful substances. In addition, recent findings suggest that TRPs also contribute to altering synaptic plasticity that deteriorates chronic pain states. In both of these processes, specific lipids are often generated and have been found to strongly modulate TRP activities, resulting primarily in pain exacerbation. This review summarizes three standpoints viewing those lipid functions for TRP modulations as second messengers, intercellular transmitters, or bilayer building blocks. Based on these hypotheses, we discuss perspectives that account for how the TRP-lipid interaction contributes to the peripheral pain mechanism. Still a number of blurred aspects remain to be examined, which will be answered by future efforts and may help to better control pain states.

  3. THE USE OF NITRIC OXIDE FREE RADICAL SENSITIVE FLUOROPHORES TO DETECT MACROPHAGE PHAGOLYSOSOME ACTIVITY

    Raveen Rathnasinghe

    2014-08-01

    Full Text Available Macrophages are phagocytes which facilitate innate immunity via phagocytosis, averting antagonistic effects resulting from bacterial infections. This is a strictly choreographed event initiated by bacterial-macrophage interactions between pathogen associated molecular patterns and toll-like receptors in macrophages. Consequently, the pathogen is ingested by the macrophage through a vacuole which matures to obtain an arsenal of antimicrobial properties including nitric oxide free-radicals (NO∙. Inducible nitric oxide synthase is an enzyme accountable for NO∙ production upon stimulation. This study utilized opportunistic pathogens Staphylococcus epidermidis, Serratia marcescens, an assemblage composed of the two species and a Lipopolysaccharide positive control to challenge the murine-macrophage J774 Cell-line. Phagolysosome activity was assessed using NO∙ sensitive fluorophore, DAF-FMDA. Fluorescence activity was measured for 300 seconds using a Nikon Eclipse TE200 fluorescence microscope and DXM1200F camera. In all treatments, maximal fluorophore activity was attained within 20 seconds; level of fluorophore activity was dependent on the treatment. S. epidermidis and the bacterial assemblage initiated relatively high activities (RFU = 73.48 ± 3.52 SD; RFU = 56.66 ± 4.74 respectively, comparable to the positive control (RFU = 71.66 ± 0.90. S. marcescens induction of fluorophore activity occurred, but to a lesser extent (RFU = 48.72 ± 3.36, over 20 seconds. The current study suggests the Gram positive S. epidermidis incites relatively high levels of NO∙ synthesis similar to the positive control which was primed with commercial Lipopolysaccharide in challenged macrophages while the NO∙ levels induced by Gram negative S. marcescens were inferior. The response to the bacterial assemblage largely mimicked the response to S. epidermidis alone suggesting macrophages preferentially phagocytosed this species. This study suggests that immune

  4. Adaptive Neuro-Fuzzy Inference System Applied QSAR with Quantum Chemical Descriptors for Predicting Radical Scavenging Activities of Carotenoids.

    Changho Jhin

    Full Text Available One of the physiological characteristics of carotenoids is their radical scavenging activity. In this study, the relationship between radical scavenging activities and quantum chemical descriptors of carotenoids was determined. Adaptive neuro-fuzzy inference system (ANFIS applied quantitative structure-activity relationship models (QSAR were also developed for predicting and comparing radical scavenging activities of carotenoids. Semi-empirical PM6 and PM7 quantum chemical calculations were done by MOPAC. Ionisation energies of neutral and monovalent cationic carotenoids and the product of chemical potentials of neutral and monovalent cationic carotenoids were significantly correlated with the radical scavenging activities, and consequently these descriptors were used as independent variables for the QSAR study. The ANFIS applied QSAR models were developed with two triangular-shaped input membership functions made for each of the independent variables and optimised by a backpropagation method. High prediction efficiencies were achieved by the ANFIS applied QSAR. The R-square values of the developed QSAR models with the variables calculated by PM6 and PM7 methods were 0.921 and 0.902, respectively. The results of this study demonstrated reliabilities of the selected quantum chemical descriptors and the significance of QSAR models.

  5. Adaptive Neuro-Fuzzy Inference System Applied QSAR with Quantum Chemical Descriptors for Predicting Radical Scavenging Activities of Carotenoids.

    Jhin, Changho; Hwang, Keum Taek

    2015-01-01

    One of the physiological characteristics of carotenoids is their radical scavenging activity. In this study, the relationship between radical scavenging activities and quantum chemical descriptors of carotenoids was determined. Adaptive neuro-fuzzy inference system (ANFIS) applied quantitative structure-activity relationship models (QSAR) were also developed for predicting and comparing radical scavenging activities of carotenoids. Semi-empirical PM6 and PM7 quantum chemical calculations were done by MOPAC. Ionisation energies of neutral and monovalent cationic carotenoids and the product of chemical potentials of neutral and monovalent cationic carotenoids were significantly correlated with the radical scavenging activities, and consequently these descriptors were used as independent variables for the QSAR study. The ANFIS applied QSAR models were developed with two triangular-shaped input membership functions made for each of the independent variables and optimised by a backpropagation method. High prediction efficiencies were achieved by the ANFIS applied QSAR. The R-square values of the developed QSAR models with the variables calculated by PM6 and PM7 methods were 0.921 and 0.902, respectively. The results of this study demonstrated reliabilities of the selected quantum chemical descriptors and the significance of QSAR models. PMID:26474167

  6. Free Radical Scavenging and Alpha/Beta-glucosidases Inhibitory Activities of Rambutan (Nephelium lappaceum L. Peel Extract

    Wahyu Widowati

    2015-12-01

    Full Text Available BACKGROUND: Diabetes mellitus (DM is associated with oxidative reaction and hyperglycemic condition. Human body has an antioxidant defense system toward free radical, but overproduction of free radical causing imbalance condition between the free radical and the antioxidant defense in the body that lead to several diseases, including DM. Glucosidase is an enzyme that hydrolize carbohydrates causing increase of blood glucose level, so by inhibiting this enzyme blood glucose level in plasma could be effectively decreased. Rambutan (Nephelium lappaceum L. peel has been reported to have many potential roles, such as antioxidant and anti-glycemia. Therefore our current study was conducted to evaluate possible effectivity of Rambutan peel to scavenge free radical and to inhibit α- and β-glucosidases. METHODS: Rambutan peel extraction (RPE was performed based on maceration method. Geraniin was used as control. For antioxidant study, 2,2-diphenyl-1- picrylhydrazyl (DPPH free radical scavenging test was performed. For glucosidase inhibitory activity study,  α- and β-glucosidases inhibitory activity tests were performed. Results were analyzed for median of Inhibitory Concentration (IC50. RESULTS: The scavenging activity of RPE was comparable with Geraniin. Meanwhile, the α-glucosidase inhibitory activity of RPE was higher than the one of Geraniin. The α-glucosidase-inhibitory-activity IC50 of RPE and Geraniin were 0.106±0.080 μg/ml and 16.12±0.29 μg/ml, respectively. The β-glucosidase inhibitory activity of RPE was also higher than the one of Geraniin. The β-glucosidase-inhibitory-activity IC50 of RPE and Geraniin were 7.02±0.99 μg/ml and 19.81±0.66 μg/ml, respectively. CONCLUSIONS: Since RPE showed comparable free radical scavenging activity with Geraniin and higher α- and β-glucosidases inhibitory activities than Geraniin, RPE could be suggested as a promising antioxidant and antiglycemic agent.  KEYWORDS

  7. Pigment and amylase production in Penicillium sp NIOM-02 and its radical scavenging activity

    Dhale, M.A.; VijayRaj, A.S.

    scavenged 72-88% of DPPH radical. During solid-state fermentation on wheat (S1), the fungus produced more pigment (9.232 OD Units). Penicillium sp NIOM-02 grown on sugarcane bagasse scavenged 91% of DPPH radicals. It secreted more amylase (246 U mg sup(-1...

  8. Formation of ethylene from methionine. Reactivity of radiolytically produced oxygen radicals and effect of substrate activation

    Ethylene was determined by gas chromatography after reaction of radiolytically produced OH and 02- radicals with methionine, methionine + pyridoxal phosphate and S-adenosyl-methionine (SAM). Both oxygen radicals, alone or in combination, liberate ethylene from methionine and methionine/pyridoxal phosphate. From SAM ethyline was primarily produced by the combined attack of OH and H202 or 02-. (author)

  9. [Anti-radical activity of products of processing of holothurian Cucumaria japonica and their practical application for lipid stabilization].

    Tabakaeva, O V; Kalenik, T K; Tabakaev, A V

    2015-01-01

    Products of technological and biotechnological modification (acid and enzymatic hydrolyzates and hydrothermal extracts) of the holothurian Cucumariajaponica from the Far East region are the complex multicomponent systems containing biologically active agents of a sea origin that has to provide them biological activity. The research objective consisted in quantitative studying of anti-radical properties of acid, enzymatic hydrolyzates and hydrothermal extracts from soft fabrics of a holothurian from the Far East region (Cucumaria japonica) and their influence on oxidation of lipids in fat emulsion products. The reaction with stable free 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical was used as a model system. Radical relating activity of hydrolyzates and extracts from Cucumaria japonica varied over a wide range from 48 to 78%. The maximum radical binding activity was noted for acid hydrolyzates. The activity of the hydrolyzate from a nimbus and feelers of Cucumaria japonica was comparable with activity of ionol. It has been defined that levels of manifestation of anti-radical activity depended on a way of technological and biotechnological processing of raw materials. Studying of fractional composition of melanoidins of hydrolyzates and extracts from Cucumaria japonica established that they can be divided into fractions--with molecular masses about 10,000 and 1000 Da. The maximum content of melanoidins has been defined in fraction weighing about 1000 Da. Introduction of acid, enzymatic hydrolyzates and hydrothermal extracts from Cucumaria japonica in the composition of oil-fat emulsion systems allowed to slow down processes of lipid oxidation and triglyceride hydrolysis in mayonnaise. Introduction of hydrolyzates and hydrothermal extracts from Cucumaria japonica in an oil-fat emulsion product allowed to reduce peroxide value by 22-45%, acid value by 12-35% on the 90th days of storage. Acid hydrolysates of Cucumaria Japonica most significantly reduce the rate of

  10. Screening of free radical scavenging capacity and antioxidant activities of Rosmarinus officinalis extracts with focus on location and harvesting times

    Yesil Celiktas, O.; Girgin, G.; Orhan, H.; Wichers, H.J.; Bedir, E.; Vardar Sukan, F.

    2007-01-01

    Methanolic extracts from the leaves of Rosmarinus officinalis (rosemary) harvested from different locations of Turkey at four different times of the year were analyzed by HPLC, and their radical scavenging capacities and antioxidant activities were studied by various assays. The amounts of carnosol,

  11. Optimization of hydroxyl radical scavenging activity of exopolysaccharides from Inonotus obliquus in submerged fermentation using response surface methodology

    Chen, H.; Xu, X.; Zhu, Y.

    2010-01-01

    The objectives of this study were to investigate the effect of fermentation medium on the hydroxyl radical scavenging activity of exopolysaccharides from Inonotus obliquus by response surface methodology (RSM). A two-level fractional factorial design was used to evaluate the effect of different comp

  12. Evaluation of the free radical scavenging activity and radioprotective efficacy of Grewia asiatica fruit

    Sharma, Krishna V; Sisodia, Rashmi [Radiation Biology Laboratory, Department of Zoology, University of Rajasthan, Jaipur, Rajasthan-302055 (India)], E-mail: rashsisodia@yahoo.co.in

    2009-09-01

    The radioprotective effect of Grewia asiatica fruit (GAE) which contains anthocyanin-type cyanidin 3-glucoside, vitamins C and A, minerals, carotenes and dietary fibre was studied. For the study Swiss albino mice were divided into five groups: (1) control (vehicle treated); (2) GAE treated (700 mg kg{sup -1} day{sup -1} for 15 days); (3) irradiated (5 Gy); (4) GAE+irradiated and (5) irradiated+GAE treated. The irradiation of animals resulted in a significant elevation of lipid peroxidation in terms of thiobarbituric acid reactive substances (TBARS) content and depletion in glutathione (GSH) and protein levels at all intervals studied, namely 1-30 days, in comparison to the control group. Treatment of mice with GAE before and after irradiation caused a significant depletion in TBARS content followed by a significant elevation in GSH and protein concentration in the intestine and testis of mice at all post-irradiation autopsy intervals in comparison to irradiated mice. Significant protection of DNA and RNA in testis was also noticed. GAE was found to have strong radical scavenging activity in 2,2-diphenyl-1-picrylhydrazyl (DPPH{sup *}) and O{sub 2}{sup -} assays and also showed in vitro radioprotective activity in protein carbonyl assay in a dose-dependent manner. The above results prove the radioprotective efficacy of GAE.

  13. Radical-Scavenging Activity and Cytotoxicity of p-Methoxyphenol and p-Cresol Dimers

    Ichiro Yokoe

    2010-02-01

    Full Text Available Compoundswith two phenolic OH groups like curcumin possess efficient antioxidant and anti-inflammatory activity. We synthesized p-cresol dimer (2,2'-dihydroxy-5,5'-dimethylbiphenol, 2a and p-methoxyphenol dimer (2,2'-dihydroxy-5,5'-dimethoxybiphenol, 2b by ortho-ortho coupling reactions of the parent monomers, p-cresol (1a and p-methoxyphenol (1b, respectively. Their antioxidant activity was determined using the induction period method, and their cytotoxicity towards RAW 264.7 cells was also investigated using a cell counting kit. The stoichiometric factors n (number of free radicals trapped by one mole of antioxidant moiety for 2a and 2b were 3 and 2.8, respectively, being greater than those for 1a and 1b. The ratio of the rate constant of inhibition to that of propagation (kinh/kp for 2a and 2b was similar to that for 2-t-butyl-4-methoxyphenol (BHA, a conventional food antioxidant. The 50% inhibitory dose (ID50 declined in the order 1b > 1a >> 2b > 2a > BHA. The cytotoxicity for 2a and 2b was significantly greater than that for the parent monomers (p < 0.001, but smaller than that for BHA (p < 0.01. Compounds 2a and 2b may be useful as food antioxidants.

  14. Screening of radical scavenging activity and polyphenol content of Bulgarian plant species

    Milena Nikolova

    2011-01-01

    Full Text Available Background: Discovery of new plant species with antioxidant properties is a priority of many research teams. Most of the species included in this study are unstudied for antioxidant properties, but they are taxonomically related to reference plants with well-documented antioxidant activity. Materials and Methods: Free radical scavenging activity of plant extracts was evaluated using a 1,1-diphenyl-2-picrylhydrazyl (DPPH assay. An aluminum chloride colorimetric method was used for flavonoid determination. The amount of phenolic compounds in the extracts was estimated by using the Folin-Ciocalteu reagent. Results: As a result of screening, it was found that the significant antioxidant properties possess several unstudied until now plant species (Veronica bellidioides L., V. kellereri Deg. et Urm, V. vindobonensis (M. Fisher M. Fisher, V. beccabunga L., V. rhodopaea L., V. austriaca (Velen. Degen., Clinopodium vulgare L., Stachys recta L., Clematis vitalba L., and Xeranthemum annum L.. The antioxidant potential of the new species is comparable to that of reference medicinal plants. Conclusions: The existing data presented here provide new information for antioxidant potential of plant species that have not been traditionally used as medicinal plants.

  15. Physicochemical characterisation and radical-scavenging activity of Cucurbitaceae seed oils.

    Jorge, Neuza; da Silva, Ana Carolina; Malacrida, Cassia Roberta

    2015-01-01

    Oils extracted from Cucurbitaceae seeds were characterised for their fatty acid and tocopherol compositions. In addition, some physicochemical characteristics, total phenolic contents and the radical-scavenging activities were determined. Oil content amounted to 23.9% and 27.1% in melon and watermelon seeds, respectively. Physicochemical characteristics were similar to those of other edible oils and the oils showed significant antioxidant activities. Fatty acid composition showed total unsaturated fatty acid content of 85.2-83.5%, with linoleic acid being the dominant fatty acid (62.4-72.5%), followed by oleic acid (10.8-22.7%) and palmitic acid (9.2-9.8%). The oils, especially watermelon seed oil, showed high total tocopherol and phenolic contents. The γ-tocopherol was the predominant tocopherol in both oils representing 90.9 and 95.6% of the total tocopherols in melon and watermelon seed oils, respectively. The potential utilisation of melon and watermelon seed oils as a raw material for food, chemical and pharmaceutical industries appears to be favourable. PMID:25697079

  16. Room Temperature Activation of Aryloxysulfonyl Azides by [Co(II)(TPP)] for Selective Radical Aziridination of Alkenes via Metalloradical Catalysis

    Subbarayan, Velusamy; Jin, Li-Mei; Xin, Cui; Zhang, X. Peter

    2015-01-01

    Aryloxysulfonyl azides can be effectively activated by commercially available cobalt(II) complex of meso-tetraphenylporphyrin ([Co(TPP)]) at room temperature under neutral and nonoxidative conditions for selective radical aziridination of alkenes via metalloradical catalysis. The [Co(TPP)]-catalyzed radical aziridination system is suitable for different combinations of olefin substrates and aryloxysulfonyl azides, producing various N-aryloxysulfonyl aziridine derivatives in good to excellent yields. In addition to generating the environmentally benign N2 as the only byproduct, this Co(II)-based metalloradical aziridination process features mild reaction conditions and operational simplicity. PMID:26139944

  17. Radical Environmental Change And Its Impact On A Company's Network Activities:An Empirical Study In East And West Germany

    Ritter, T.; Gemünden, H G

    1997-01-01

    The network theory highlights the notion that the environment of a company is not a faceless one. But what happens if the environment is changing radically so that the new environment appears to be faceless? In this paper the radical change in business reality in the East German region is described. Afterwards the implications of this change on the technology-oriented network activities of a company are discussed. Drawing upon a database of 373 cases the authors analyse the impact of the radi...

  18. Dynamics of activity free radical oxidation reactions in students with cerebral palsy results over the course of the educational process

    Makarova E.V.

    2012-12-01

    Full Text Available The dynamics of changes activity of reactions is studied freely radical oxidize for students with the consequences of child's cerebral paralysis. 20 students took part in an experiment. Found that the course of study they have more active free radical oxidation reactions and decreases the activity of antiradical protection. Given the use of additional physical activity in aerobic training indicators intracellular antioxidant defense system increased, decreased content of reaction products of lipid peroxidation. However, increased rates of maximum oxygen consumption and increased tolerance of students with cerebral palsy to the consequences of physical activity. It is set that the pathological changes of metabolism for students ground the necessity of application of the differentiated physical loadings. The optimum forms of physical rehabilitation of the aerobic training is the dosed walking, medical swimming, dosed after distance, sometimes and by the corner of getting up pedestrian ascents. Loading is increased due to a volume, but not intensity of exercises.

  19. Flavour characterisation and free radical scavenging activity of coriander (Coriandrum sativum L.) foliage.

    Priyadarshi, Siddharth; Khanum, Hafeeza; Ravi, Ramasamy; Borse, Babasaheb Baskarrao; Naidu, Madeneni Madhava

    2016-03-01

    The primary objective was to characterize Indian Coriandrum sativum L. foliage (Vulgare alef and Microcarpum DC varieties) and its radical scavenging activity. Foliage of Vulgare alef and Microcarpum DC contained ascorbic acid (1.16 ± 0.35 and 1.22 ± 0.54 mg/g), total carotenoids (1.49 ± 0.38 and 3.08 ± 1.2 mg/g), chlorophyll 'a' (8.23 ± 2.4 and 12.18 ± 2.9 mg/g), chlorophyll 'b' (2.74 ± 0.8 and 4.39 ± 1.3 mg/g) and total chlorophyll (10.97 ± 2.6 and 16.57 ± 3.2 mg/g). The polyphenol content was 26.75 ± 1.85 and 30.00 ± 2.64 mg/g in Vulgare alef and Microcarpum DC, respectively. Ethanol extracts (200 ppm) of alef and Microcarpum DC showed higher radical scavenging activity of 42.05 ± 2.42 % and 62.79 ± 1.36 % when compared with 95 % butylated hydroxyanisole. The principal component analysis results indicated that e-nose can distinguish the volatiles effectively. Quantitative descriptive sensory analysis showed that Microcarpum DC variety is superior to Vulgare alef variety. Nearly 90 % of the flavour compounds present were identified by GC-MS in both varieties. The principal component identified in both the varieties were decanal (7.645 and 7.74 %), decanol  (25.12 and 39.35 %), undecanal (1.20 and 1.75 %), dodecanal (7.07 and 2.61 %), tridecen-1-al  (6.67 and 1.21 %), dodecen-1-ol  (16.68 and 8.05 %), 13-tetradecenal (9.53 and 8.60 %), tetradecanal (5.61 and 4.35 %) and 1-octadecanol (1.25 and 3.67 %). PMID:27570292

  20. Soybean Ferritin: Isolation, Characterization, and Free Radical Generation

    Andrea Galatro; Elizabeth Robello; Susana Puntarulo

    2012-01-01

    The main aim of this work was to assess the multi-task role of ferritin (Ft) in the oxidative metabolism of soybean (Glycine max).Soybean seeds incubated for 24 h yielded 41 ± 5 μg Ft/g fresh weight.The rate of in vitro incorporation of iron (Fe) into Ft was tested by supplementing the reaction medium with physiological Fe chelators.The control rate,observed in the presence of 100 μM Fe,was not significantly different from the values observed in the presence of 100 μM Fe-his.However,it was significantly higher in the presence of 100 μM Fe-citrate (approximately 4.5-fold) or of 100 μM Fe-ATP (approximately 14-fold).Moreover,a substantial decrease in the Trp-dependent fluorescence of the Ft protein was determined during Fe uptake from Fe-citrate,as compared with the control.On the other hand,Ft addition to homogenates from soybean embryonic axes reduced endogenously generated ascorbyl radical,according to its capacity for Fe uptake.The data presented here suggest that Ft could be involved in the generation of free radicals,such as hydroxyl radical,by Fe-catalyzed reactions.Moreover,the scavenging of these radicals by Ft itself could then lead to protein damage.However,Ft could also prevent cellular damage by the uptake of catalytically active Fe.

  1. Antioxidative capacity and enzyme activity in Haematococcus pluvialis cells exposed to superoxide free radicals

    Liu, Jianguo; Zhang, Xiaoli; Sun, Yanhong; Lin, Wei

    2010-01-01

    The antioxidative capacity of astaxanthin and enzyme activity of reactive oxygen eliminating enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were studied in three cell types of Haematococcus pluvialis exposed to high concentrations of a superoxide anion radical (O{2/-}). The results show that defensive enzymes and astaxanthin-related mechanisms were both active in H. pluvialis during exposure to reactive oxygen species (ROS) such as O{2/-}. Astaxanthin reacted with ROS much faster than did the protective enzymes, and had the strongest antioxidative capacity to protect against lipid peroxidation. The defensive mechanisms varied significantly between the three cell types and were related to the level of astaxanthin that had accumulated in those cells. Astaxanthin-enriched red cells had the strongest antioxidative capacity, followed by brown cells, and astaxanthin-deficient green cells. Although there was no significant increase in expression of protective enzymes, the malondialdehyde (MDA) content in red cells was sustained at a low level because of the antioxidative effect of astaxanthin, which quenched O{2/-} before the protective enzymes could act. In green cells, astaxanthin is very low or absent; therefore, scavenging of ROS is inevitably reliant on antioxidative enzymes. Accordingly, in green cells, these enzymes play the leading role in scavenging ROS, and the expression of these enzymes is rapidly increased to reduce excessive ROS. However, because ROS were constantly increased in this study, the enhance enzyme activity in the green cells was not able to repair the ROS damage, leading to elevated MDA content. Of the four defensive enzymes measured in astaxanthin-deficient green cells, SOD eliminates O{2/-}, POD eliminates H2O2, which is a by-product of SOD activity, and APX and CAT are then initiated to scavenge excessive ROS.

  2. TRP, TRPL and cacophony channels mediate Ca2+ influx and exocytosis in photoreceptors axons in Drosophila.

    Guadalupe Astorga

    Full Text Available In Drosophila photoreceptors Ca(2+-permeable channels TRP and TRPL are the targets of phototransduction, occurring in photosensitive microvilli and mediated by a phospholipase C (PLC pathway. Using a novel Drosophila brain slice preparation, we studied the distribution and physiological properties of TRP and TRPL in the lamina of the visual system. Immunohistochemical images revealed considerable expression in photoreceptors axons at the lamina. Other phototransduction proteins are also present, mainly PLC and protein kinase C, while rhodopsin is absent. The voltage-dependent Ca(2+ channel cacophony is also present there. Measurements in the lamina with the Ca(2+ fluorescent protein G-CaMP ectopically expressed in photoreceptors, revealed depolarization-induced Ca(2+ increments mediated by cacophony. Additional Ca(2+ influx depends on TRP and TRPL, apparently functioning as store-operated channels. Single synaptic boutons resolved in the lamina by FM4-64 fluorescence revealed that vesicle exocytosis depends on cacophony, TRP and TRPL. In the PLC mutant norpA bouton labeling was also impaired, implicating an additional modulation by this enzyme. Internal Ca(2+ also contributes to exocytosis, since this process was reduced after Ca(2+-store depletion. Therefore, several Ca(2+ pathways participate in photoreceptor neurotransmitter release: one is activated by depolarization and involves cacophony; this is complemented by internal Ca(2+ release and the activation of TRP and TRPL coupled to Ca(2+ depletion of internal reservoirs. PLC may regulate the last two processes. TRP and TRPL would participate in two different functions in distant cellular regions, where they are opened by different mechanisms. This work sheds new light on the mechanism of neurotransmitter release in tonic synapses of non-spiking neurons.

  3. [Arg6,D-Trp7,9,NmePhe8]-substance P (6–11) activates JNK and induces apoptosis in small cell lung cancer cells via an oxidant-dependent mechanism

    MacKinnon, A. C.; Armstrong, R. A.; Waters, C. M.; Cummings, J.; Smyth, J. F.; Haslett, C.; Sethi, T.

    1999-01-01

    [Arg6,D-Trp7,9,NmePhe8]-substance P (6–11) (antagonist G) is a novel class of anti-cancer agent that inhibits small-cell lung cancer (SCLC) cell growth in vitro and in vivo and is entering phase II clinical investigation for the treatment of SCLC. Although antagonist G blocks SCLC cell growth (IC50 = 24.5 ± 1.5 and 38.5 ± 1.5 μM for the H69 and H510 cell lines respectively), its exact mechanism of action is unclear. This study shows that antagonist G stimulates apoptosis as assessed by morpho...

  4. New insights into the aquatic photochemistry of fluoroquinolone antibiotics: Direct photodegradation, hydroxyl-radical oxidation, and antibacterial activity changes

    The ubiquity and photoreactivity of fluoroquinolone antibiotics (FQs) in surface waters urge new insights into their aqueous photochemical behavior. This study concerns the photochemistry of 6 FQs: ciprofloxacin, danofloxacin, levofloxacin, sarafloxacin, difloxacin and enrofloxacin. Methods were developed to calculate their solar direct photodegradation half-lives (td,E) and hydroxyl-radical oxidation half-lives (t·OH,E) in sunlit surface waters. The td,E values range from 0.56 min to 28.8 min at 45° N latitude, whereas t·OH,E ranges from 3.24 h to 33.6 h, suggesting that most FQs tend to undergo fast direct photolysis rather than hydroxyl-radical oxidation in surface waters. However, a case study for levofloxacin and sarafloxacin indicated that the hydroxyl-radical oxidation induced risky photochlorination and resulted in multi-degradation pathways, such as piperazinyl hydroxylation and clearage. Changes in the antibacterial activity of FQs caused by photodegradation in various waters were further examined using Escherichia coli, and it was found that the activity evolution depended on primary photodegradation pathways and products. Primary intermediates with intact FQ nuclei retained significant antibacterial activity. These results are important for assessing the fate and risk of FQs in surface waters. - Highlights: • It is first reported on hydroxyl-radical oxidation of 6 fluoroquinolone antibiotics. • Methods were developed to assess photolysis and oxidation fate in surface waters. • The neutral form reacted faster with hydroxyl radical than protonated forms. • The main oxidation intermediates and transformation pathways were clarified. • The antibacterial activity changes depend on dominant photolysis pathways

  5. New insights into the aquatic photochemistry of fluoroquinolone antibiotics: Direct photodegradation, hydroxyl-radical oxidation, and antibacterial activity changes

    Ge, Linke; Na, Guangshui [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Zhang, Siyu [Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Kai [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Zhang, Peng, E-mail: pzhang@nmemc.org.cn [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Ren, Honglei; Yao, Ziwei [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China)

    2015-09-15

    The ubiquity and photoreactivity of fluoroquinolone antibiotics (FQs) in surface waters urge new insights into their aqueous photochemical behavior. This study concerns the photochemistry of 6 FQs: ciprofloxacin, danofloxacin, levofloxacin, sarafloxacin, difloxacin and enrofloxacin. Methods were developed to calculate their solar direct photodegradation half-lives (t{sub d,E}) and hydroxyl-radical oxidation half-lives (t{sub ·OH,E}) in sunlit surface waters. The t{sub d,E} values range from 0.56 min to 28.8 min at 45° N latitude, whereas t{sub ·OH,E} ranges from 3.24 h to 33.6 h, suggesting that most FQs tend to undergo fast direct photolysis rather than hydroxyl-radical oxidation in surface waters. However, a case study for levofloxacin and sarafloxacin indicated that the hydroxyl-radical oxidation induced risky photochlorination and resulted in multi-degradation pathways, such as piperazinyl hydroxylation and clearage. Changes in the antibacterial activity of FQs caused by photodegradation in various waters were further examined using Escherichia coli, and it was found that the activity evolution depended on primary photodegradation pathways and products. Primary intermediates with intact FQ nuclei retained significant antibacterial activity. These results are important for assessing the fate and risk of FQs in surface waters. - Highlights: • It is first reported on hydroxyl-radical oxidation of 6 fluoroquinolone antibiotics. • Methods were developed to assess photolysis and oxidation fate in surface waters. • The neutral form reacted faster with hydroxyl radical than protonated forms. • The main oxidation intermediates and transformation pathways were clarified. • The antibacterial activity changes depend on dominant photolysis pathways.

  6. Metabolic profiles and free radical scavenging activity of Cordyceps bassiana fruiting bodies according to developmental stage.

    Sun-Hee Hyun

    Full Text Available The metabolic profiles of Cordyceps bassiana according to fruiting body developmental stage were investigated using gas chromatography-mass spectrometry. We were able to detect 62 metabolites, including 48 metabolites from 70% methanol extracts and 14 metabolites from 100% n-hexane extracts. These metabolites were classified as alcohols, amino acids, organic acids, phosphoric acids, purine nucleosides and bases, sugars, saturated fatty acids, unsaturated fatty acids, or fatty amides. Significant changes in metabolite levels were found according to developmental stage. Relative levels of amino acids, purine nucleosides, and sugars were higher in development stage 3 than in the other stages. Among the amino acids, valine, isoleucine, lysine, histidine, glutamine, and aspartic acid, which are associated with ABC transporters and aminoacyl-tRNA biosynthesis, also showed higher levels in stage 3 samples. The free radical scavenging activities, which were significantly higher in stage 3 than in the other stages, showed a positive correlation with purine nucleoside metabolites such as adenosine, guanosine, and inosine. These results not only show metabolic profiles, but also suggest the metabolic pathways associated with fruiting body development stages in cultivated C. bassiana.

  7. Free radical scavenging, antidiarrheal and anthelmintic activity of Pistia stratiotes L. extracts and its phytochemical analysis.

    Bin Karim, Mohammed Faisal; Imam, Hasan; Sarker, Md Moklesur-Rahman; Uddin, Nizam; Hasan, Nahid; Paul, Nirmala; Haque, Tahmina

    2015-05-01

    In this phyto-pharmacological screening of Pistia stratiotes L leaf and root extracts each separately in two different solvents demonstrated its potential medicinal value. Apparent antioxidant value is demonstrated by DPPH, Nitric oxide scavenging and Ferric ion reducing method. Additionally, total flavonoid and phenolic compounds were measured. The leaf methanolic extract scavenged both nitric oxide (NO) and DPPH radical with a dose dependent manner. But the pet ether fraction of root was found to have highest efficacy in Fe(3±) reducing power assay. Flavonoid was found to contain highest in the pet ether fraction of root (411.35mg/g) in terms of quercetin equivalent, similarly highest amount (34.96mg/g) of total phenolic compounds (assayed as gallic acid equivalents) were found to contain in the same fraction. The methanolic fractions appeared less cytotoxic compared to pet ether extracts. The plant extracts caused a dose dependent decrease in faecal droppings in both castor oil and magnesium sulphate induced diarrhea, where as leaf extracts in each solvent appeared most effective. Also, the plant extracts showed anthelmintic activity in earthworm by inducing paralysis and death in a dose dependent manner. At highest doses (50 mg/ml) all fractions were almost effective as the positive control piperazine citrate (10 mg/ml). Thus, besides this cytotoxic effect it's traditional claim for therapeutic use can never be overlooked. PMID:26004725

  8. Free Radical Scavenging Activity and Total Phenolic Content of Methanolic Extracts from Male Inflorescence of Salix aegyptiaca Grown in Iran

    Sonboli, Ali; Mojarrad, Mehran; Nejad Ebrahimi, Samad; Enayat, Shabnam

    2010-01-01

    This study was designed to examine the in vitro antioxidant activities and total phenolic contents of the methanolic extracts from male inflorescence of Salix aegyptiaca L. grown in Iran. The methanolic extract (ME) and its three fractions including water (WF), butanol (BF) and chloroform (CF) were prepared and then their antioxidant activities, as well as total phenolic contents, were evaluated by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and the Folin–Ciocalteu met...

  9. In vitro antioxidant, reducing power, free radical scavenging and membrane stabilizing activities of seeds of Syzygium cumini L.

    Rahman, Mohammad S; Rashid, Mohammad A.; Sikder, Al Amin; Rahman, Arifur; Kaisar, Mohammad A.; Hasan, Choudhury M.

    2011-01-01

    Different extractives of Syzygium cumini seeds were evaluated by free radical (DPPH) scavenging assay, phosphomolybdenum total antioxidant assay and reducing power determination in order to identify promising sources of antioxidants along with its membrane stabilizing activity. The total phenolic content was also determined and expressed in gallic acid equivalent. Here, butylated hydroxytoluene (BHT) and ascorbic acid (ASA) were used as standard antioxidants. The membrane stabilizing activity...

  10. Reactivity of electrogenerated free hydroxyl radicals and activation of dioxygen on boron-doped diamond electrodes

    Kapalka, Agnieszka

    2008-01-01

    Synthetic boron-doped diamond (BDD) thin film is an electrode material with high chemical and dimensional stability, low background current and a very wide potential window of water stability. Upon anodic polarization, BDD generates hydroxyl radicals that mediate the oxidation processes in the vicinity of the electrode surface. These hydroxyl radials are assumed to be free, i.e., not adsorbed on the electrode surface. Hydroxyl radicals are formed on BDD during water discharge, which is the ra...