WorldWideScience

Sample records for active suichoku fin

  1. Introduction of anti-rolling active vertical fin and its application to maneuverability for displacement-type super high speed ship. 2nd Report.; Haisuiryogata chokosokusen no yokoyure seishiyo active suichoku fin no donyu to sojuseieno oyo

    Hirayama, T.; Saito, Y. [Yokohama National University, Yokohama (Japan). Faculty of Engineering; Niihara, Y. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1996-12-31

    Discussed herein are the effects of vertical fin projecting downwards from the bottom of a displacement-type superhigh-speed ship, installed to improve its transverse stability and turning ability. The system for simultaneously controlling rudder and vertical fin by the optimum regulator was studied for maneuverability in directional following waves and smooth water, and maneuverability was simulated numerically. A ship is greatly rolled and sloped when running in waves. It is found that the vertical fin shows a high anti-rolling effect when the ship runs straight. The optimum regulator greatly improves maneuverability in waves, reducing rolling by 92%. Increased rolling with the vertical fin, observed in the previous study in directional following waves, is found to be due to the rudder. The optimum position of the fin is determined to control transverse sloping of a turning ship in a superhigh-speed region. 21 refs., 12 figs., 4 tabs.

  2. Muscle activity and hydrodynamic function of pelvic fins in trout (Oncorhynchus mykiss).

    Standen, E M

    2010-03-01

    Contrary to the previous premise that pelvic fins lacked obvious function, recent work on three-dimensional fin motions suggests that pelvic fins actively control stability and speed in slowly swimming trout. This study used electromyography to measure pelvic fin muscle activity and particle imaging velocimetry to quantify flow along the ventral body region to test this hypothesis. Fish swam at slow speeds (0.13-1.36 BL s(-1)) while being filmed with three high speed cameras. Three-dimensional kinematics were captured for all trials. During EMG trials pelvic fin muscle activity was synchronized to kinematic motion, during particle imaging velocimetry trials, a laser light-sheet was used to visualize the flow surrounding the ventral aspect of the fish. Four main conclusions are reached: first, pelvic fins are actively oscillated during slow-speed swimming; antagonistic abductor and adductor muscles contracted simultaneously, their collective action producing a unique contralateral oscillating behaviour in the fins. Second, pelvic fins slow the flow along the ventral side affecting pitch and yaw instabilities; flow upstream of the pelvic fins is slowed by 0.02 m s(-1) and flow downstream of the pelvic fins is slowed by 0.034 m s(-1) compared with free stream flow. Third, pelvic fin wake influences anal fin angle of attack; flow angle in the wake of the pelvic fin was 33.84+/-2.4 deg. (max) and -11.83+/-11.2 deg. (min) compared with the free stream flow angle of 1.27+/-0.1 deg. Fourth, pelvic fins appear to actively damp body oscillation during slow-speed swimming, providing drag to help control speed and stabilize the body position during slow-speed swimming. PMID:20154199

  3. Assessment of in vitro antifungal activity of preparation ''fin Candimis'' against Candida strains

    Anna Głowacka

    2013-12-01

    Full Text Available The aim of the study was to assess the antifungal activity of preparation „fin Candimis” (oregano essential oil against yeast-like strains belonging to the genus Candida. During the investigation, there were used up nine Candida albicans strains and ten C. glabrata strains isolated from different clinical material, along with one C. albicans demonstration strain ATCC 90028. The oregano essential oil, utilized in the study, was obtained from fresh leaves of Origanum vulgare L. and bore a trade name „fin Candimis”. According to data yielded by its manufacturer, concentration of pure oregano essential oil in preparation „fin Candimis” totals up to 210 mg/ml. The susceptibility of the Candida strains to preparation „fin Candimis” was assessed by means of the disc-diffusion method, upon the Sabouraud solid medium (after a 24-hour incubation of the cultures at temperature of 37 degrees centigrade; the oregano essential oil had been diluted in 1 ml of DMSO, according to the geometrical progression. A measure of the antifungal activity of preparation „fin Candimis” was the minimal inhibitory concentration (MIC, in terms of the fungus growth. Preparation „fin Candimis” is capable of being applied in the prevention and treatment of candidiasis – alone, or as a natural adjunctive agent. The C. albicans strains are more susceptible to preparation „fin Candimis” in comparison to the C. glabrata ones.

  4. Mechanosensation in an adipose fin.

    Aiello, Brett R; Stewart, Thomas A; Hale, Melina E

    2016-03-16

    Adipose fins are found on approximately 20% of ray-finned fish species. The apparently rudimentary anatomy of adipose fins inspired a longstanding hypothesis that these fins are vestigial and lack function. However, adipose fins have evolved repeatedly within Teleostei, suggesting adaptive function. Recently, adipose fins were proposed to function as mechanosensors, detecting fluid flow anterior to the caudal fin. Here we test the hypothesis that adipose fins are mechanosensitive in the catfish Corydoras aeneus. Neural activity, recorded from nerves that innervate the fin, was shown to encode information on both movement and position of the fin membrane, including the magnitude of fin membrane displacement. Thus, the adipose fin of C. aeneus is mechanosensitive and has the capacity to function as a 'precaudal flow sensor'. These data force re-evaluation of adipose fin clipping, a common strategy for tagging fishes, and inform hypotheses of how function evolves in novel vertebrate appendages. PMID:26984621

  5. Design and analysis of a plate-fin sandwich actively cooled structural panel

    Smith, L. M.

    1978-01-01

    The skin structure of hydrogen fueled hypersonic transport vehicles traveling at Mach 6 and above must be designed to withstand, for relatively long periods of time, the aerodynamic heating effects which are far more severe than those encountered by the supersonic aircraft of today. The use of conventional aircraft materials such as aluminum in combination with forced convection active cooling to accommodate aerodynamic heating is addressed. The basic active cooling concept consists of a stringer stiffened plate-fin sandwich. The sandwich surface is subjected to the aerodynamic heat flux which is transferred, via convection, to a coolant that is forced through the sandwich under pressure. The coolant, in turn, circulates in a closed loop through a hydrogen heat exchanger and back through the skin panel.

  6. Study of plate-fin heat exchanger and cold plate for the active thermal control system of Space Station

    Chyu, MING-C.

    1992-01-01

    Plate-fin heat exchangers will be employed in the Active Thermal Control System of Space Station Freedom. During ground testing of prototypic heat exchangers, certain anomalous behaviors have been observed. Diagnosis has been conducted to determine the cause of the observed behaviors, including a scrutiny of temperature, pressure, and flow rate test data, and verification calculations based on such data and more data collected during the ambient and thermal/vacuum tests participated by the author. The test data of a plate-fin cold plate have been also analyzed. Recommendation was made with regard to further tests providing more useful information of the cold plate performance.

  7. Antioxidant and Antiproliferative Activities of Heated Sterilized Pepsin Hydrolysate Derived from Half-Fin Anchovy (Setipinna taty

    Dongfeng Wang

    2011-06-01

    Full Text Available In this paper we studied the antioxidant and antiproliferative activities of the heated pepsin hydrolysate from a marine fish half-fin anchovy (HAHp-H. Furthermore, we compared the chemical profiles including the amino acid composition, the browning intensity, the IR and UV-visible spectra, and the molecular weight distribution between the half-fin anchovy pepsin hydrolysate (HAHp and HAHp-H. Results showed that heat sterilization on HAHp improved the 1,1-diphenyl-2-picryl-hydrazil (DPPH radical-scavenging activity and reducing power. In addition, the antiproliferative activities were all increased for HAHp-H on DU-145 human prostate cancer cell line, 1299 human lung cancer cell line and 109 human esophagus cancer cell line. The contents of free amino acid and reducing sugar of HAHp-H were decreased (P < 0.05. However, hydrophobic amino acid residues and the browning intensity of HAHp-H were increased. FT-IR spectroscopy indicated that amide I and amide III bands of HAHp-H were slightly modified, whereas band intensity of amide II was reduced dramatically. Thermal sterilization resulted in the increased fractions of HAHp-H with molecular weight of 3000–5000 Da and below 500 Da. The enhanced antioxidant and antiproliferative activities of HAHp-H might be attributed to the Maillard reaction.

  8. Fins coloration of perch in relation to external activity concentration of radionuclides

    The Techa River is significantly polluted by radionuclides. This time the content of 90Sr varies from 5 Bq/l in water of lower Techa to 40 Bq/l in higher Techa, and the concentration of 137Cs fluctuates from background content to 0,5 Bq/l, and tritium from 100 Bq/l to 450 Bq/l. Miass River are not polluted in the same extent. The perch in these rivers are suitable for examine the potential effect of environmental perturbation on carotenoid based coloration. As vertebrates could not produce carotenoids themselves, and would use more carotenoids due to oxidative stress when exposed radiation, we hypothesized that fish caught in upper part of Techa River will be more pale than fish from lower part and the control river Miass. We used a cost effective method to estimate coloration by photographing the fins in standardized setting. The measuring of fish fins as performed under standardized condition by Adobe Photoshop software in color spaces CIE 1976 L*a*b* and sRGB IEC61966-2.1 was used. In sRGB color space the values of Red, Green, Blue channels were measured and an average wave length was calculated as a function of three elementary light streams of different intensity, appeared as reflection from a fin. In L*a*b color space the values of *a and *b channels shows the position of a color in a color space. To evaluate the red color of a perch fin the most usable channel is the *a channel which shows the position of the color on the red-green axis. Due to low sample size we pooled males and females in our analysis. We used three different station in the Techa: RT-1 in the higher Techa, RT-2 in the middle Techa, and RT-3 in lower Techa. As a control group was taken the fish from Miass river (RM station). Our results shows that perch from RT-3 (570.7 nm) significantly differ in coloration from the perch from RT-2 and RT-1 (p=0.00001 and p=0.0014 respectively, hereinafter used Kruskal-Wallis rank sum test with Nemenyi-Damico-Wolfe-Dunn test as post-hoc criterion, number

  9. Fins coloration of perch in relation to external activity concentration of radionuclides

    Yegoreichenkov, E.; Pryakhin, E. [Urals Research Center for Radiation Medicine (Russian Federation); Rudolfsen, G. [Norwegian Radiation Protection Authority and University of Tromsoe (Norway)

    2014-07-01

    The Techa River is significantly polluted by radionuclides. This time the content of {sup 90}Sr varies from 5 Bq/l in water of lower Techa to 40 Bq/l in higher Techa, and the concentration of {sup 137}Cs fluctuates from background content to 0,5 Bq/l, and tritium from 100 Bq/l to 450 Bq/l. Miass River are not polluted in the same extent. The perch in these rivers are suitable for examine the potential effect of environmental perturbation on carotenoid based coloration. As vertebrates could not produce carotenoids themselves, and would use more carotenoids due to oxidative stress when exposed radiation, we hypothesized that fish caught in upper part of Techa River will be more pale than fish from lower part and the control river Miass. We used a cost effective method to estimate coloration by photographing the fins in standardized setting. The measuring of fish fins as performed under standardized condition by Adobe Photoshop software in color spaces CIE 1976 L*a*b* and sRGB IEC61966-2.1 was used. In sRGB color space the values of Red, Green, Blue channels were measured and an average wave length was calculated as a function of three elementary light streams of different intensity, appeared as reflection from a fin. In L*a*b color space the values of *a and *b channels shows the position of a color in a color space. To evaluate the red color of a perch fin the most usable channel is the *a channel which shows the position of the color on the red-green axis. Due to low sample size we pooled males and females in our analysis. We used three different station in the Techa: RT-1 in the higher Techa, RT-2 in the middle Techa, and RT-3 in lower Techa. As a control group was taken the fish from Miass river (RM station). Our results shows that perch from RT-3 (570.7 nm) significantly differ in coloration from the perch from RT-2 and RT-1 (p=0.00001 and p=0.0014 respectively, hereinafter used Kruskal-Wallis rank sum test with Nemenyi-Damico-Wolfe-Dunn test as post

  10. Dorsal fin anatomy (Cetacean dorsal fin Anatomy)

    National Oceanic and Atmospheric Administration, Department of Commerce — Cetacean dorsal fin Anatomy for ONR. Comparison within populations to ascertain phenotypic differences. Findings corroborate field observation. dorsal fin description

  11. Optimal design study of cylindrical finned reactor for solar adsorption cooling machine working with activated carbon-ammonia pair

    This paper presents a model describing the heat and mass transfer in cylindrical finned reactor of solar adsorption refrigerator. Giving the meteorological data as boundary conditions on the reactor; the model computes the solar coefficient of performance (COPs). The validity of the model has been tested by using experimental results. An analysis of the sensitivity of the COPs versus the geometrical parameters of the reactor (radius of the reactor, fins thickness and fins number) is mad. Then the model is applied to optimize the solar reactor. The COPs is used as an optimization criterion. The geometrical parameters where the COPs of the machine reach a maximum have been calculated

  12. Do culinary preparations influence 210Po activity concentration in fin fishes?

    Polonium-210, a member of the 238U series, is a major source of internal radiation dose to marine organisms and human beings. This naturally occurring radionuclide is responsible for a considerable proportion of radiation exposure of humans, in particular, through consumption of seafood. Considering all these facts, many countries and various international agencies have carried out studies for assessing the levels of 210Po globally. The volatile nature of 210Po at high temperatures would significantly reduce its activity concentration in various culinary preparations of seafood. Some studies of fishes have shown no measurable reduction in 210Po activity in culinary preparations and some authors have reported measurable increase. Based on this scenario, the present study was aimed at estimating 210Po activity concentrations in different culinary preparations of fishes traditionally prevalent in the coastal region of southern Tamil Nadu. The commonly available fish species (Sardinella sp., Leiognathus sp., Katsuwonus sp., Stolephorus sp. and Chirocentrus sp.) consumed more by the people of this region were collected from nearby fish-landing centre (Kanyakumari and Manakudi). The samples were washed thoroughly with tap water and eviscerated. The fillets were divided into four groups. Fresh fillets analysed as such; A portion of the sample was subjected to oil-frying (with commonly used spices and salt); One portion of the sample was salt-dried; Another portion of the sample was boiled (curry) along with common spices and salt. Ten to twenty grams of each sample was subjected to wet-digestion using 70% conc. HNO3 followed by the addition of 40% H2O2

  13. Evaluation of beta spectrometry for environmental monitoring of undeclared nuclear activities. Report on task FIN A846 on the Finnish support programme to IAEA safeguards

    The IAEA (the Agency) is considering environmental monitoring as a possible method to detect the presence of undeclared nuclear activities in a country covered by a comprehensive safeguards agreement. The Finnish support program (FINSP), implemented by the Finnish Centre for Radiation and Nuclear Safety (STUK), is supporting the Agency in this new programme. This Agency Task FIN A 846, addresses the possibility of using beta-emitting nuclides as indicators for covert nuclear fuel reprocessing activities. (90 refs., 1 fig., 12 tabs.)

  14. FIN 200 UOP Course Tutorial / fin200dotcom

    anil14

    2015-01-01

    FIN 200 Entire Course For more course tutorials visit   www.fin200.com   FIN 200 Week 1 CheckPoint Financial Management Goals FIN 200 Week 1 Assignment Cash Flow Preparation FIN 200 Week 2 Checkpoint Financial Ratios FIN 200 Week 2 DQ 1 & DQ 2 FIN 200 Week 3 CheckPoint Financial Forecasting FIN 200 Week 3 Assignment Pro Forma Statements FIN 200 Week 4 Checkpoint Break Even Analysis FIN 200 Week 4 DQ 1 & DQ 2 FIN 200 Week 5 CheckPo...

  15. FIN 200 Uop Material-fin200dotcom

    Sandywilliam6

    2015-01-01

    FIN 200 Entire Course For more course tutorials visit   www.fin200.com   FIN 200 Week 1 CheckPoint Financial Management Goals FIN 200 Week 1 Assignment Cash Flow Preparation FIN 200 Week 2 Checkpoint Financial Ratios FIN 200 Week 2 DQ 1 & DQ 2 FIN 200 Week 3 CheckPoint Financial Forecasting FIN 200 Week 3 Assignment Pro Forma Statements FIN 200 Week 4 Checkpoint Break Even Analysis FIN 200 Week 4 DQ 1 & DQ 2 FIN 200 Week 5 CheckPo...

  16. FIN 415 Uop Material-fin415dotcom

    Sandywilliam1

    2015-01-01

    FIN 415 Entire Course For more course tutorials visit www.fin415.com   FIN 415 Week 1 Individual Assignment Risk Management Overview Paper FIN 415 Week 2 Team Assignment Risk Management Identification and Assessment Paper FIN 415 Week 3 Individual Assignment Risk Management Techniques Paper FIN 415 Week 3 Individual Assignment Risk Management Problem, Set I FIN 415 Week 3 Team Assignment Risk Measurement Summary FIN 415 Week 4 Individual Assignment Ris...

  17. Shark's Fin Soup

    2000-01-01

    Ingredients: 250g semi-finished shark's fin (removed of bone, skin and dipped in water), 100g ham, 100g chicken, 50g pork shoulder, 50g dried scallops, 100g bean sprouts, salt and MSG (optional). Method: 1. Scald the shark's fin in boiling water. 2. Fill a pot with water and add the chicken, pork and most of the

  18. Fish locomotion: kinematics and hydrodynamics of flexible foil-like fins

    Lauder, George V.; Madden, Peter G. A.

    2007-11-01

    The fins of fishes are remarkable propulsive devices that appear at the origin of fishes about 500 million years ago and have been a key feature of fish evolutionary diversification. Most fish species possess both median (midline) dorsal, anal, and caudal fins as well as paired pectoral and pelvic fins. Fish fins are supported by jointed skeletal elements, fin rays, that in turn support a thin collagenous membrane. Muscles at the base of the fin attach to and actuate each fin ray, and fish fins thus generate their own hydrodynamic wake during locomotion, in addition to fluid motion induced by undulation of the body. In bony fishes, the jointed fin rays can be actively deformed and the fin surface can thus actively resist hydrodynamic loading. Fish fins are highly flexible, exhibit considerable deformation during locomotion, and can interact hydrodynamically during both propulsion and maneuvering. For example, the dorsal and anal fins shed a vortex wake that greatly modifies the flow environment experienced by the tail fin. New experimental kinematic and hydrodynamic data are presented for pectoral fin function in bluegill sunfish. The highly flexible sunfish pectoral fin moves in a complex manner with two leading edges, a spanwise wave of bending, and substantial changes in area through the fin beat cycle. Data from scanning particle image velocimetry (PIV) and time-resolved stereo PIV show that the pectoral fin generates thrust throughout the fin beat cycle, and that there is no time of net drag. Continuous thrust production is due to fin flexibility which enables some part of the fin to generate thrust at all times and to smooth out oscillations that might arise at the transition from outstroke to instroke during the movement cycle. Computational fluid dynamic analyses of sunfish pectoral fin function corroborate this conclusion. Future research on fish fin function will benefit considerably from close integration with studies of robotic model fins.

  19. Function of dorsal fins in bamboo shark during steady swimming.

    Maia, Anabela; Wilga, Cheryl A

    2013-08-01

    To gain insight into the function of the dorsal fins in white-spotted bamboo sharks (Orectolobiformes: Hemiscyillidae) during steady swimming, data on three-dimensional kinematics and electromyographic recordings were collected. Bamboo sharks were induced to swim at 0.5 and 0.75 body lengths per second in a laminar flow tank. Displacement, lag and angles were analyzed from high-speed video images. Onset, offset, duration, duty cycle and asynchrony index were calculated from three muscle implants on each side of each dorsal fin. The dorsal fins were displaced more laterally than the undulating body. In addition, the dorsal tips had larger lateral displacement than the trailing edges. Increased speed was accompanied by an increase in tail beat frequency with constant tail beat amplitude. However, lateral displacement of the fins and duration of muscle bursts remained relatively constant with increased speed. The range of lateral motion was greater for the second dorsal fin (mean 33.3°) than for the first dorsal fin (mean 28.4°). Bending within the fin was greater for the second dorsal fin (mean 43.8°) than for the first dorsal fin (mean 30.8°). Muscle onset and offset among implants on the same side of each dorsal fin was similar. Three-dimensional conformation of the dorsal fins was caused by interactions between muscle activity, material properties, and incident flow. Alternating bilateral activity occurred in both dorsal fins, further supporting the active role of these hydrofoils in thrust production during steady swimming. The dorsal fins in bamboo sharks are capable of thrust production during steady swimming and do not appear to function as stabilizing structures. PMID:23830781

  20. Touch sensation by pectoral fins of the catfish Pimelodus pictus.

    Hardy, Adam R; Steinworth, Bailey M; Hale, Melina E

    2016-02-10

    Mechanosensation is fundamental to many tetrapod limb functions, yet it remains largely uninvestigated in the paired fins of fishes, limb homologues. Here we examine whether membranous fins may function as passive structures for touch sensation. We investigate the pectoral fins of the pictus catfish (Pimelodus pictus), a species that lives in close association with the benthic substrate and whose fins are positioned near its ventral margin. Kinematic analysis shows that the pectoral fins are held partially protracted during routine forward swimming and do not appear to generate propulsive force. Immunohistochemistry reveals that the fins are highly innervated, and we observe putative mechanoreceptors at nerve fibre endings. To test for the ability to sense mechanical perturbations, activity of fin ray nerve fibres was recorded in response to touch and bend stimulation. Both pressure and light surface brushing generated afferent nerve activity. Fin ray nerves also respond to bending of the rays. These data demonstrate for the first time that membranous fins can function as passive mechanosensors. We suggest that touch-sensitive fins may be widespread in fishes that maintain a close association with the bottom substrate. PMID:26865307

  1. Hydrodynamic function of dorsal and anal fins in brook trout (Salvelinus fontinalis).

    Standen, E M; Lauder, G V

    2007-01-01

    Recent kinematic and hydrodynamic studies on fish median fins have shown that dorsal fins actively produce jets with large lateral forces. Because of the location of dorsal fins above the fish's rolling axis, these lateral forces, if unchecked, would cause fish to roll. In this paper we examine the hydrodynamics of trout anal fin function and hypothesize that anal fins, located below the fish's rolling axis, produce similar jets to the dorsal fin and help balance rolling torques during swimming. We simultaneously quantify the wake generated by dorsal and anal fins in brook trout by swimming fish in two horizontal light sheets filmed by two synchronized high speed cameras during steady swimming and manoeuvring. Six major conclusions emerge from these experiments. First, anal fins produce lateral jets to the same side as dorsal fins, confirming the hypothesis that anal fins produce fluid jets that balance those produced by dorsal fins. Second, in contrast to previous work on sunfish, neither dorsal nor anal fins produce significant thrust during steady swimming; flow leaves the dorsal and anal fins in the form of a shear layer that rolls up into vortices similar to those seen in steady swimming of eels. Third, dorsal and anal fin lateral jets are more coincident in time than would be predicted from simple kinematic expectations; shape, heave and pitch differences between fins, and incident flow conditions may account for the differences in timing of jet shedding. Fourth, relative force and torque magnitudes of the anal fin are larger than those of the dorsal fin; force differences may be due primarily to a larger span and a more squarely shaped trailing edge of the anal fin compared to the dorsal fin; torque differences are also strongly influenced by the location of each fin relative to the fish's centre of mass. Fifth, flow is actively modified by dorsal and anal fins resulting in complex flow patterns surrounding the caudal fin. The caudal fin does not encounter

  2. FIN 200 (UOP) course tutorial/tutorialoutlet

    naresh 1

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com     FIN 200 Week 1 CheckPoint Financial Management Goals (UOP) FIN 200 Week 1 Assignment Cash Flow Preparation (UOP) FIN 200 Week 2 Checkpoint Financial Ratios (UOP) FIN 200 Week 2 DQ 1 & DQ 2 (UOP) FIN 200 Week 3 CheckPoint Financial Forecasting (UOP) FIN 200 Week 3 Assignment Pro Forma Statements (UOP) FIN 200 Week 4 Checkpoint Break Even Analysis (UOP) FIN 200 Week 4 DQ 1 & ...

  3. Silicon LEDs in FinFET technology

    Piccolo, G.; Kuindersma, P.I.; Ragnarsson, L-A.; Hueting, R.J.E.; Collaert, N.; Schmitz, J.

    2014-01-01

    We present what to our best knowledge is the first forward operating silicon light-emitting diode (LED) in fin-FET technology. The results show near-infrared (NIR) emission around 1100 nm caused by band-to-band light emission in the silicon which is uniformly distributed across the lowly doped activ

  4. FIN 200 UOP COURSE Tutorial/UOPHELP

    sdfghj

    2015-01-01

    For more course tutorials visit www.uophelp.com   FIN 200 Week 1 CheckPoint Financial Management Goals FIN 200 Week 1 Assignment Cash Flow Preparation FIN 200 Week 2 Checkpoint Financial Ratios FIN 200 Week 2 DQ 1 & DQ 2 FIN 200 Week 3 CheckPoint Financial Forecasting FIN 200 Week 3 Assignment Pro Forma Statements FIN 200 Week 4 Checkpoint Break Even Analysis FIN 200 Week 4 DQ 1 & DQ 2 FIN 200 Week 5 CheckPoint Long-Term and Short-Term Financin...

  5. Unpredictable chronic stress decreases inhibitory avoidance learning in Tuebingen long-fin zebrafish: stronger effects in the resting phase than in the active phase.

    Manuel, Remy; Gorissen, Marnix; Zethof, Jan; Ebbesson, Lars O E; van de Vis, Hans; Flik, Gert; van den Bos, Ruud

    2014-11-01

    Zebrafish (Danio rerio Hamilton) are increasingly used as a model to study the effects of chronic stress on brain and behaviour. In rodents, unpredictable chronic stress (UCS) has a stronger effect on physiology and behaviour during the active phase than during the resting phase. Here, we applied UCS during the daytime (active phase) for 7 and 14 days or during the night-time (resting phase) for 7 nights in an in-house-reared Tuebingen long-fin (TLF) zebrafish strain. Following UCS, inhibitory avoidance learning was assessed using a 3 day protocol where fish learn to avoid swimming from a white to a black compartment where they will receive a 3 V shock. Latencies of entering the black compartment were recorded before training (day 1; first shock) and after training on day 2 (second shock) and day 3 (no shock, tissue sampling). Fish whole-body cortisol content and expression levels of genes related to stress, fear and anxiety in the telencephalon were quantified. Following 14 days of UCS during the day, inhibitory avoidance learning decreased (lower latencies on days 2 and 3); minor effects were found following 7 days of UCS. Following 7 nights of UCS, inhibitory avoidance learning decreased (lower latency on day 3). Whole-body cortisol levels showed a steady increase compared with controls (100%) from 7 days of UCS (139%), to 14 days of UCS (174%) to 7 nights of UCS (231%), suggestive of an increasing stress load. Only in the 7 nights of UCS group did expression levels of corticoid receptor genes (mr, grα, grβ) and of bdnf increase. These changes are discussed as adaptive mechanisms to maintain neuronal integrity and prevent overload, and as being indicative of a state of high stress load. Overall, our data suggest that stressors during the resting phase have a stronger impact than during the active phase. Our data warrant further studies on the effect of UCS on stress axis-related genes, especially grβ; in mammals this receptor has been implicated in

  6. Toward quantum FinFET

    Wang, Zhiming

    2013-01-01

    This book reviews a range of quantum phenomena in novel nanoscale transistors called FinFETs, including quantized conductance of 1D transport, single electron effect, tunneling transport, etc. The goal is to create a fundamental bridge between quantum FinFET and nanotechnology to stimulate readers' interest in developing new types of semiconductor technology. Although the rapid development of micro-nano fabrication is driving the MOSFET downscaling trend that is evolving from planar channel to nonplanar FinFET, silicon-based CMOS technology is expected to face fundamental limits in the near future. Therefore, new types of nanoscale devices are being investigated aggressively to take advantage of the quantum effect in carrier transport. The quantum confinement effect of FinFET at room temperatures was reported following the breakthrough to sub-10nm scale technology in silicon nanowires. With chapters written by leading scientists throughout the world, Toward Quantum FinFET provides a comprehensive introductio...

  7. Robotic Pectoral Fin Thrust Vectoring Using Weighted Gait Combinations

    John S. Palmisano

    2012-01-01

    Full Text Available A method was devised to vector propulsion of a robotic pectoral fin by means of actively controlling fin surface curvature. Separate flapping fin gaits were designed to maximize thrust for each of three different thrust vectors: forward, reverse, and lift. By using weighted combinations of these three pre-determined main gaits, new intermediate hybrid gaits for any desired propulsion vector can be created with smooth transitioning between these gaits. This weighted gait combination (WGC method is applicable to other difficult-to-model actuators. Both 3D unsteady computational fluid dynamics (CFD and experimental results are presented.

  8. Synchronized swimming: coordination of pelvic and pectoral fins during augmented punting by the freshwater stingray Potamotrygon orbignyi.

    Macesic, Laura J; Mulvaney, Dana; Blevins, Erin L

    2013-06-01

    Benthic animals live at the juncture of fluid and solid environments, an interface that shapes many aspects of their behavior, including their means of locomotion. Aquatic walking and similar substrate-dependent forms of underwater propulsion have evolved multiple times in benthic invertebrate and vertebrate taxa, including batoid elasmobranchs. Skates (Rajidae) use the pelvic fins to punt across the substrate, keeping the pectoral fin disc still. Other batoids combine pelvic fin motions with pectoral fin undulation in augmented punting, but the coordination of these two modes has not been described. In this study of an augmented punter, the freshwater stingray Potamotrygon orbignyi, we demonstrate the synchrony of pelvic and pectoral fin cycles. The punt begins as the pelvic fins, held in an anterior position, are planted into the substrate and used to push the body forward. Meanwhile, a wave of pectoral fin undulation begins, increasing to maximum height just before the cycle's halfway point, when the pelvic fins reach their furthest posterior extension. The pectoral fin wave subsides as the pelvic fins return to their starting position for subsequent punts. Despite definitive links between pectoral and pelvic fin activity, we find no significant relationship between pectoral fin kinematics (frequency, wave height, and wave speed) and punt performance. However, slip calculations indicate that pectoral undulation can produce thrust and augment punting. Pelvic fin kinematics (frequency and duty factor) have significant effects, suggesting that while both sets of fins contribute to thrust generation, the pelvic fins likely determine punt performance. PMID:23477972

  9. Bulk FinFETs with body spacers for improving fin height variation

    Wei, Xing; Zhu, Huilong; Zhang, Yanbo; Zhao, Chao

    2016-08-01

    A novel FinFET structure with body spacers in sub fin (BSSF) is proposed to improve the fin height variation produced in the manufacturing processes. Device simulation results are presented to show the electrical variations improvement. The effective fin height (Heff) of FinFETs with BSSF is well controlled because it only depends on the silicon epi layer thickness (TSi). Taking advantage of the precisely controlled epitaxy process, Heff uniformity of FinFETs with BSSF is much better than conventional bulk FinFETs. Benefit from the smaller Heff variation, FinFETs with BSSF show much smaller electrical characteristics variation. For n-FinFETs, the Ion variation improves from 33.46% for conventional bulk FinFETs to 8.05% for FinFETs with BSSF. Additionally, manufacturing of FinFETs with BSSF is compatible with that of the state-of-the-art bulk FinFETs, promising for its applications in massive production.

  10. 50 CFR 600.1204 - Shark finning; possession at sea and landing of shark fins.

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Shark finning; possession at sea and landing of shark fins. 600.1204 Section 600.1204 Wildlife and Fisheries FISHERY CONSERVATION AND... PROVISIONS Shark Finning § 600.1204 Shark finning; possession at sea and landing of shark fins. (a)(1)...

  11. FIN 515 DEVRY Material-fin515dotcom

    Sandywilliam6

    2015-01-01

    FIN 515 Entire Course (Devry) For more course tutorials visit www.fin515.com   Week 1 Homework Problems and Mini Case Week 2 Homework Assignment; Problems Week 3 Homework Assignment; Problems Week 3 Homework Problems; 5-1, 5-2, 5-6 Week 4 Homework Problems page 297, 371 Week 4 Midterm; Business Valuation and Stock Valuation Week 5 Homework Problem10-8,10-9,11-2,11-3 Week 5 Project Case 11-7-New-Project Analysis Week 6 Homework Problem12...

  12. FIN 515 devry course Tutorial / fin515dotcom

    anil14

    2015-01-01

    FIN 515 Entire Course (Devry) For more course tutorials visit www.fin515.com   Week 1 Homework Problems and Mini Case Week 2 Homework Assignment; Problems Week 3 Homework Assignment; Problems Week 3 Homework Problems; 5-1, 5-2, 5-6 Week 4 Homework Problems page 297, 371 Week 4 Midterm; Business Valuation and Stock Valuation Week 5 Homework Problem10-8,10-9,11-2,11-3 Week 5 Project Case 11-7-New-Project Analysis Week 6 Homework Problem12...

  13. FIN 515 UOP Course Tutorial/TutorialRank

    apj

    2015-01-01

    For more course tutorials visit www.tutorialrank.com Tutorial Purchased: 4 Times, Rating: A+     FIN 515 Week 1-7 All Discussion Questions (DEVRY) FIN 515 Week 1 Homework assignments (DEVRY) FIN 515 Week 2 Homework Assignment (DEVRY) FIN 515 Week 3 Homework Assignment (DEVRY) FIN 515 Week 4 Homework Assignment (DEVRY) FIN 515 Week 4 Midterm Exam (DEVRY) FIN 515 Week 5 Homework Assignment (DEVRY) FIN 515 Week 5 Project (DEVRY) FIN 5...

  14. Ice nucleating particles measured during the laboratory and field intercomparisons FIN-2 and FIN-3 by the diffusion chamber FRIDGE

    Weber, Daniel; Schrod, Jann; Curtius, Joachim; Haunold, Werner; Thomson, Erik; Bingemer, Heinz

    2016-04-01

    The measurement of atmospheric ice nucleating particles (INP) is still challenging. In the absence of easily applicable INP standards the intercomparison of different methods during collaborative laboratory and field workshops is a valuable tool that can shine light on the performance of individual methods for the measurement of INP [1]. FIN-2 was conducted in March 2015 at the AIDA facility in Karlsruhe as an intercomparison of mobile instruments for measuring INP [2]. FIN-3 was a field campaign at the Desert Research Institutes Storm Peak Laboratory in Colorado in September 2015 [3]. The FRankfurt Ice nucleation Deposition freezinG Experiment (FRIDGE) participated in both experiments. FRIDGE measures ice nucleating particles by electrostatic precipitation of aerosol particles onto Si-wafers in a collection unit, followed by activation, growth, and optical detection of ice crystals on the substrate in an isostatic diffusion chamber [4,5]. We will present and discuss results of our measurements of deposition/condensation INP and of immersion INP with FRIDGE during FIN-2 and FIN-3. Acknowledgements: The valuable contributions of the FIN organizers and their institutions, and of the FIN Workshop Science team are gratefully acknowledged. Our work was supported by Deutsche Forschungsgemeinschaft (DFG) under the Research Unit FOR 1525 (INUIT) and the EU FP7-ENV- 2013 BACCHUS project under Grant Agreement 603445.

  15. A biorobotic model of the sunfish pectoral fin for investigations of fin sensorimotor control

    Phelan, Chris; Tangorra, James [Department of Mechanical Engineering, Drexel University, Philadelphia, PA 19104 (United States); Lauder, George [Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138 (United States); Hale, Melina, E-mail: tangorra@coe.drexel.ed [Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637 (United States)

    2010-09-15

    A comprehensive understanding of the control of flexible fins is fundamental to engineering underwater vehicles that perform like fish, since it is the fins that produce forces which control the fish's motion. However, little is known about the fin's sensory system or about how fish use sensory information to modulate the fin and to control propulsive forces. As part of a research program that involves neuromechanical and behavioral studies of the sunfish pectoral fin, a biorobotic model of the pectoral fin and of the fin's sensorimotor system was developed and used to investigate relationships between sensory information, fin ray motions and propulsive forces. This robotic fin is able to generate the motions and forces of the biological fin during steady swimming and turn maneuvers, and is instrumented with a relatively small set of sensors that represent the biological lateral line and receptors hypothesized to exist intrinsic to the pectoral fin. Results support the idea that fin ray curvature, and the pressure in the flow along the wall that represents the fish body, capture time-varying characteristics of the magnitude and direction of the force created throughout a fin beat. However, none of the sensor modalities alone are sufficient to predict the propulsive force. Knowledge of the time-varying force vector with sufficient detail for the closed-loop control of fin ray motion will result from the integration of characteristics of many sensor modalities.

  16. A biorobotic model of the sunfish pectoral fin for investigations of fin sensorimotor control

    A comprehensive understanding of the control of flexible fins is fundamental to engineering underwater vehicles that perform like fish, since it is the fins that produce forces which control the fish's motion. However, little is known about the fin's sensory system or about how fish use sensory information to modulate the fin and to control propulsive forces. As part of a research program that involves neuromechanical and behavioral studies of the sunfish pectoral fin, a biorobotic model of the pectoral fin and of the fin's sensorimotor system was developed and used to investigate relationships between sensory information, fin ray motions and propulsive forces. This robotic fin is able to generate the motions and forces of the biological fin during steady swimming and turn maneuvers, and is instrumented with a relatively small set of sensors that represent the biological lateral line and receptors hypothesized to exist intrinsic to the pectoral fin. Results support the idea that fin ray curvature, and the pressure in the flow along the wall that represents the fish body, capture time-varying characteristics of the magnitude and direction of the force created throughout a fin beat. However, none of the sensor modalities alone are sufficient to predict the propulsive force. Knowledge of the time-varying force vector with sufficient detail for the closed-loop control of fin ray motion will result from the integration of characteristics of many sensor modalities.

  17. Experimental investigation of self heating effect (SHE) in multiple-fin SOI FinFETs

    In this work, the self-heating effect (SHE) on metal gate multiple-fin SOI FinFETs is studied by adopting the ac conductance technique to extract the thermal resistance and temperature rise in both n-channel and p-channel SOI FinFETs with various geometry parameters. It is shown that the SHE degrades by over 10% of the saturation output current in the n-channel and by over 7% in the p-channel. The extracted thermal resistances Rth increase with the scaled down gate length, reducing the number of fin and shrinking the fin width. The temperature rise caused by the SHE increases with the scaled down gate length, increasing the number of fin and shrinking the fin width under the saturated operation condition. Additionally, due to a larger power density in the n-channel SOI FinFETs under the same bias condition, the temperature in the n-channel FinFETs is higher than that in the p-channel FinFETs. Because the Si thermal conductivity decreases as the temperature increases, Rth is larger in the n-channel FinFETs than in the p-channel FinFETs. Therefore, tradeoffs have to be made between the thermal properties and the device’s electrical performance by careful design optimizations of SOI FinFETs. (paper)

  18. High Fin Width Mosfet Using Gaa Structure

    S.L.Tripathi; Ramanuj Mishra; R. A. Mishra

    2012-01-01

    This paper describes the design and optimization of gate-all-around (GAA) MOSFETs structures. The optimum value of Fin width and Fin height are investigated for superior sub threshold behavior. Also the performance of Fin shaped GAA with gate oxide HfO2 are simulated and compared with conventional gate oxide SiO2 for the same structure. As a result, it was observed that the GAA with high K dielectric gate oxide has more possibility to optimize the Fin width with improved performance. All the ...

  19. High Fin Width Mosfet Using Gaa Structure

    S.L.Tripathi

    2012-11-01

    Full Text Available This paper describes the design and optimization of gate-all-around (GAA MOSFETs structures. The optimum value of Fin width and Fin height are investigated for superior subthreshold behavior. Also the performance of Fin shaped GAA with gate oxide HfO2 are simulated and compared with conventional gate oxide SiO2 for the same structure. As a result, it was observed that the GAA with high K dielectric gate oxide has more possibility to optimize the Fin width with improved performance. All the simulations are performed on 3-D TCAD device simulator.

  20. High Fin Width Mosfet Using Gaa Structure

    S.L.Tripathi

    2012-10-01

    Full Text Available This paper describes the design and optimization of gate-all-around (GAA MOSFETs structures. The optimum value of Fin width and Fin height are investigated for superior sub threshold behavior. Also the performance of Fin shaped GAA with gate oxide HfO2 are simulated and compared with conventional gate oxide SiO2 for the same structure. As a result, it was observed that the GAA with high K dielectric gate oxide has more possibility to optimize the Fin width with improved performance. All the simulations are performed on 3-D TCAD device simulator.

  1. Simulation of Grid-Fin Control Surfaces

    Aftosmis, Michael J.

    2011-01-01

    Conference poster using previously disclosed techniques and methods (see ARC 16210 & 16212). We present simulations of grid-fin control surfaces to demonstrate geometric complexity and numerical robustness. These results have relevance to high-performance computing and performance of grid-fin-based control systems.

  2. Plastic Guidance Fins for Long Rod Projectiles .

    Mark L. Bundy

    1997-10-01

    Full Text Available Projectile tail fins on long rod kinetic energy (KE penetrators serve the same purpose as fletchings (feathers on an arrow, namely, they help align the projectile axis with its velocity vector. This reduces the projectile's yaw and hence reduces its aerodynamic drag. In addition, a low yaw angle at target impact helps to maximise the projectile's target penetration. It is typical for projectiles to exit the gun muzzle and enter free flight at some ndn-zero yaw angle. Aerodynamic forces acting on yawed tail fins create a stabilising torque about the projectile's centre of gravity (CG. This torque can be increased by making the fin material lighter. Most conventional long rod penetrators fired from high performance guns have tail fins made from aluminium. However, aluminium can undergo catastrophic oxidation (rapid burning in-bore. Coating aluminium with Al/sub 2/O/sub 3/ {hardcoat prevents ignition of the substrate, provided solid propellant grain impacts do not chip the brittle hardcoat off the surface. Plastic is lighter than aluminium and less exothermic when oxidized. Therefore, other factors aside, it is conceivable that plastic fins could increase projectile stability while incurring less thermal erosion than aluminium. However, thermal loads are not the only concern when considering plastic as an alternative tail fin material. The mechanical strength of plastic is also a critical factor. This paper discusses some of the successes and failures of plastic fins, at least relatively thin fins, for use as KE stabilisers.

  3. Comparative performance of rippled fin plate fin and tube heat exchangers

    Continuous rippled fins are preferred to interrupted fins in applications where fouling by fibrous matter or insects is a problem. The performance characteristic of three rippled fin heat exchangers have been measured in a thermal wind tunnel. The results of these measurements are reported and comparisons are made wtih published data on similar surfaces. The performance evaluation criteria used as the basis for the comparisons were those recommened by Shah (1978). The tested rippled fin surfaces were found to have a higher performance than a similar surface reported in Kay and London (1984). The heat transfer enhancement was found to be dependent upon the profile of the fin

  4. A comparison of two formulations of the fin efficiency for straight fins

    Ebrahim Momoniat

    2012-01-01

    A formulation of the fin efficiency based on Newton's law of cooling is compared with a formulation based on a ratio of heat transferred from the fin surface to the surrounding fluid to the heat conducted through the base.The first formulation requires that the solution of the nonlinear fin equations for constant heat transfer coefficient and constant thermal conductivity is known,whilst the second formulation of the fin efficiency requires only that a first integral of the model equation is known.This paper shows the first formulation of the fin efficiency contains approximation errors as only power series and approximate solutions to the nonlinear fin equations have been determined.The second formulation of the fin efficiency is exact when the first integrals can be determined.

  5. FIN 415 UOP Course Tutorial/TutorialRank

    apj

    2015-01-01

    For more course tutorials visit www.tutorialrank.com Tutorial Purchased: 6 Times, Rating: A+   FIN 415 Week 1 Individual Assignment Risk Management Overview Paper FIN 415 Week 2 Team Assignment Risk Management Identification and Assessment Paper FIN 415 Week 3 Individual Assignment Risk Management Techniques Paper FIN 415 Week 3 Individual Assignment Risk Management Problem, Set I FIN 415 Week 3 Team Assignment Risk Measurement Summary FIN 415 Week 4 I...

  6. The Cx43-like connexin protein Cx40.8 is differentially localized during fin ontogeny and fin regeneration.

    Sarah V Gerhart

    Full Text Available Connexins (Cx are the subunits of gap junctions, membraneous protein channels that permit the exchange of small molecules between adjacent cells. Cx43 is required for cell proliferation in the zebrafish caudal fin. Previously, we found that a Cx43-like connexin, cx40.8, is co-expressed with cx43 in the population of proliferating cells during fin regeneration. Here we demonstrate that Cx40.8 exhibits novel differential subcellular localization in vivo, depending on the growth status of the fin. During fin ontogeny, Cx40.8 is found at the plasma membrane, but Cx40.8 is retained in the Golgi apparatus during regeneration. We next identified a 30 amino acid domain of Cx40.8 responsible for its dynamic localization. One possible explanation for the differential localization is that Cx40.8 contributes to the regulation of Cx43 in vivo, perhaps modifying channel activity during ontogenetic growth. However, we find that the voltage-gating properties of Cx40.8 are similar to Cx43. Together our findings reveal that Cx40.8 exhibits differential subcellular localization in vivo, dependent on a discrete domain in its carboxy terminus. We suggest that the dynamic localization of Cx40.8 differentially influences Cx43-dependent cell proliferation during ontogeny and regeneration.

  7. Fin shape thermal optimization using Bejan's constuctal theory

    Lorenzini, Giulio

    2011-01-01

    The book contains research results obtained by applying Bejan's Constructal Theory to the study and therefore the optimization of fins, focusing on T-shaped and Y-shaped ones. Heat transfer from finned surfaces is an example of combined heat transfer natural or forced convection on the external parts of the fin, and conducting along the fin. Fin's heat exchange is rather complex, because of variation of both temperature along the fin and convective heat transfer coefficient. Furthermore possible presence of more fins invested by the same fluid flow has to be considered.Classical fin theory tri

  8. Fin1-PP1 Helps Clear Spindle Assembly Checkpoint Protein Bub1 from Kinetochores in Anaphase.

    Bokros, Michael; Gravenmier, Curtis; Jin, Fengzhi; Richmond, Daniel; Wang, Yanchang

    2016-02-01

    The spindle assembly checkpoint (SAC) monitors chromosome attachment defects, and the assembly of SAC proteins at kinetochores is essential for its activation, but the SAC disassembly process remains unknown. We found that deletion of a 14-3-3 protein, Bmh1, or hyperactivation of Cdc14 early anaphase release (FEAR) allows premature SAC silencing in budding yeast, which depends on a kinetochore protein Fin1 that forms a complex with protein phosphatase PP1. Previous works suggest that FEAR-dependent Fin1 dephosphorylation promotes Bmh1-Fin1 dissociation, which enables kinetochore recruitment of Fin1-PP1. We found persistent kinetochore association of SAC protein Bub1 in fin1Δ mutants after anaphase entry. Therefore, we revealed a mechanism that clears SAC proteins from kinetochores. After anaphase entry, FEAR activation promotes kinetochore enrichment of Fin1-PP1, resulting in SAC disassembly at kinetochores. This mechanism is required for efficient SAC silencing after SAC is challenged, and untimely Fin1-kinetochore association causes premature SAC silencing and chromosome missegregation. PMID:26832405

  9. CFD Analysis of Plate Fin Tube Heat Exchanger for Various Fin Inclinations

    Subodh Bahirat,; P. V. Joshi

    2014-01-01

    ANSYS Fluent software is used for three dimensional CFD simulations to investigate heat transfer and fluid flow characteristics of six different fin angles with plain fin tube heat exchangers. The numerical simulation of the fin tube heat exchanger was performed by using a three dimensional numerical computation technique. Geometry of model is created and meshed by using ANSYS Workbench software. To solve the equation for the fluid flow and heat transfer analysis ANSYS FLUENT ...

  10. Studi Analitik dan Numerik Perpindahan Panas pada Fin Trapesium (Studi Kasus pada Finned Tube Heat Exchanger

    Ahmad Zaini

    2013-09-01

    Full Text Available Penambahan fin pada pipa penukar kalor merupakan suatu upaya memperbesar perpindahan kalor konduksi dan konveksi, dengan cara memperluas bidang geometri. Pada penelitian ini dianalisa secara analitik dan numerik perpindahan kalor pada fin dengan profil longitudinal tidak seragam atau berubah terhadap jarak dari dasar fin, dengan memvariasikan ketebalan ujung fin. Hasil dari kedua studi ini tidak jauh berbeda, pada keduanya menjelaskan bahwa fin dengan ketebalan ujung 0,9 mm (fin trapesium terbalik paling baik dari 5 variasi lainnya; serta perubahan temperatur paling besar terjadi pada sepertiga pertama dari panjang  fin, ini artinya pelepasan kalor terbesar terjadi pada daerah tersebut. Perbedaannya adalah pada persentase penurunan temperatur sepanjang  fin terhadap temperatur dasar fin, untuk ketebalan 0,9 mm pada studi analitik sebesar 91,92% dan pada studi numerik sebesar 91,78%. Hal ini berarti metode penyelesaian persamaan diferensial orde 2 dengan koefisien variabel dengan cara pembedahan koefisien variabel pada ODE, sudah benar dan valid. Namun bila ditinjau dari waktu yang diperlukan untuk komputasinya, studi analitik membutuhkan waktu lebih lama. Waktu yang diperlukan dalam komputasinya tergantung dari fungsi koefisien variabel.

  11. Methylmercury in dried shark fins and shark fin soup from American restaurants.

    Nalluri, Deepthi; Baumann, Zofia; Abercrombie, Debra L; Chapman, Demian D; Hammerschmidt, Chad R; Fisher, Nicholas S

    2014-10-15

    Consumption of meat from large predatory sharks exposes human consumers to high levels of toxic monomethylmercury (MMHg). There also have been claims that shark fins, and hence the Asian delicacy shark fin soup, contain harmful levels of neurotoxic chemicals in combination with MMHg, although concentrations of MMHg in shark fins are unknown. We measured MMHg in dried, unprocessed fins (n=50) of 13 shark species that occur in the international trade of dried shark fins as well as 50 samples of shark fin soup prepared by restaurants from around the United States. Concentrations of MMHg in fins ranged from 9 to 1720 ng/g dry wt. MMHg in shark fin soup ranged from fins and soup from large, high trophic level sharks such as hammerheads (Sphyrna spp.). Consumption of a 240 mL bowl of shark fin soup containing the average concentration of MMHg (4.6 ng/mL) would result in a dose of 1.1 μg MMHg, which is 16% of the U.S. EPA's reference dose (0.1 μg MMHg per 1 kg per day in adults) of 7.4 μg per day for a 74 kg person. If consumed, the soup containing the highest measured MMHg concentration would exceed the reference dose by 17%. While shark fin soup represents a potentially important source of MMHg to human consumers, other seafood products, particularly the flesh of apex marine predators, contain much higher MMHg concentrations and can result in substantially greater exposures of this contaminant for people. PMID:24835340

  12. A Biologically Derived Pectoral Fin for Yaw Turn Manoeuvres

    Jonah R. Gottlieb

    2010-01-01

    Full Text Available A bio-robotic fin has been developed that models the pectoral fin of the bluegill sunfish as the fish turned to avoid an obstacle. This work involved biological studies of the sunfish fin, the development of kinematic models of the motions of the fin's rays, CFD based predictions of the 3D forces and flows created by the fin, and the implementation of simplified models of the fin's kinematics and mechanical properties in a physical model. The resulting robotic fin produced the forces and flows that drove the manoeuvre and had a sufficiently high number of degrees of freedom to create a variety of non-biologically derived motions. The results indicate that for robotic fins to produce a level of performance on par with biological fins, both the kinematics and the mechanical properties of the biological fin must be modelled well.

  13. THERMAL ANALYSIS OF CPU WITH COMPOSITE PIN FIN HEAT SINKS

    Mohan, R; Dr.P.Govindarajan

    2010-01-01

    This paper describes about pin fin and slot parallel plate heat sinks with copper and carbon carbon composite(CCC) base plate material mounted on CPU’s. The parameters such as fin geometry, base plate material, base plate thickness, number of fins, fin thickness are considered and primarily in this paper fin geometry, base platethicknesses, base plate materials are optimized for improving the thermal performance of a heat sink in the next generation. In this research work, the thermal model o...

  14. Heat transfer through constant section fins at hear transfer coefficient, changed along the fin height

    Paper presents an analytical solution of the problem to determine the efficiency coefficient of a constant section fin at heat transfer coefficient changing along fin height. It is determined, that the commonly applied assumption about the constancy of a convectional coefficient of heat emission when calculating the efficiency of a fin based on the value of the reduced coefficient of heat emission results in the error reaching 15%. It is shown that to reduce it up to 2-3% when calculating the efficiency coefficient of a fin one should have the experimental values of both the reduced coefficient of heat emission and the convectional coefficient of heat emission at a surface supporting the fins

  15. Comparative Study of Effect of Fin Arrangement on Propulsion Performance of Bio-inspired Underwater Vehicles with Multiple SMA Fins

    Jian-hui He

    2015-09-01

    Full Text Available A biologically inspired underwater vehicle (BIUV was built using multiple lightweight bio inspired shape memory alloy (SMA fins. An unsteady 3D computational fluid dynamics (CFD method using an unstructured, grid-based, and unsteady Navier-Stokes solver with automatic adaptive re-meshing was adopted to compute unsteady flow. The hydrodynamics of multiple fins at a certain Reynolds number (Re = Uc/ν, where U is the upstream flow velocity, c is the chord length, and ν is the kinematic viscosity was studied and simulated using CFD to estimate hydrodynamic forces and characterize flow and vortex patterns created by the fins. Two common arrangements of multiple fins on the BIUV were considered: a posterior fin that is parallel to the anterior fins (case 1 and a posterior fin that is perpendicular to the anterior fins (case 2. First, the influence of the distance between two anterior undulating fins on the propulsion performance of both arrangements of multiple fins on the BIUV was investigated. The effect of the distance between the anterior undulating fins and the posterior oscillating fin was also analysed. The length of the posterior oscillating fin was varied and the fin surface area was held constant (24 mm2 to illustrate the influence of this parameter. Finally, the effect of frequency, amplitude, and wave number of anterior undulating fins on the non-dimensional drag coefficient of the posterior oscillating fin was investigated. Based on the flow structures, the reasons for the different performances of the BIUV are discussed. BIUV performances largely depend on the arrangements of multiple fins and the gap between the fins. Dimension and kinematic parameters also affect the performance of the BIUV. The results provide a physical insight into the understanding of fin interaction in fish or BIUVs that are propelled by multiple fins.

  16. Performance of tubes-and plate fins heat exchangers

    By means of a two-dimensional analysis performance, and using local heat transfer coefficients, the plate fin temperature distribution, the air bulk temperature along the stream path and the fin efficiency can be obtained, for several Reynolds numbers and fin materials. Herein are also presented the average heat transfer coefficients for isothermal plate fins, referring to heat exchangers with central-tube and rear-tube row and to two-row tubes heat exchangers configurations. It is possible to obtain the real tax or the real area of heat transfer, using the average hea transfer coefficients for isothermal plate fins and the fin efficiency. (Author)

  17. Investigation of negative bias temperature instability dependence on fin width of silicon-on-insulator-fin-based field effect transistors

    Young, Chadwin D., E-mail: chadwin.young@utdallas.edu; Wang, Zhe [Materials Science and Engineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080 (United States); Neugroschel, Arnost [Department of Electrical and Computer Enginering, University of Florida, Gainesville, Florida 32611 (United States); Majumdar, Kausik; Matthews, Ken; Hobbs, Chris [SEMATECH, Albany, New York 12203 (United States)

    2015-01-21

    The fin width dependence of negative bias temperature instability (NBTI) of double-gate, fin-based p-type Field Effect Transistors (FinFETs) fabricated on silicon-on-insulator (SOI) wafers was investigated. The NBTI degradation increased as the fin width narrowed. To investigate this phenomenon, simulations of pre-stress conditions were employed to determine any differences in gate oxide field, fin band bending, and electric field profile as a function of the fin width. The simulation results were similar at a given gate stress bias, regardless of the fin width, although the threshold voltage was found to increase with decreasing fin width. Thus, the NBTI fin width dependence could not be explained from the pre-stress conditions. Different physics-based degradation models were evaluated using specific fin-based device structures with different biasing schemes to ascertain an appropriate model that best explains the measured NBTI dependence. A plausible cause is an accumulation of electrons that tunnel from the gate during stress into the floating SOI fin body. As the fin narrows, the sidewall device channel moves in closer proximity to the stored electrons, thereby inducing more band bending at the fin/dielectric interface, resulting in a higher electric field and hole concentration in this region during stress, which leads to more degradation. The data obtained in this work provide direct experimental proof of the effect of electron accumulation on the threshold voltage stability in FinFETs.

  18. Successful euthanasia of a juvenile fin whale.

    Daoust, P Y; Ortenburger, A I

    2001-01-01

    A stranded juvenile fin whale was successfully euthanized with an intravenous injection of sedative and cardioplegic drugs. Veterinarians may face a number of serious difficulties if called to perform this task, and advance preparation is required for successful euthanasia of these animals.

  19. Room to high temperature measurements of flexible SOI FinFETs with sub-20-nm fins

    Diab, Amer El Hajj

    2014-12-01

    We report the temperature dependence of the core electrical parameters and transport characteristics of a flexible version of fin field-effect transistor (FinFET) on silicon-on-insulator (SOI) with sub-20-nm wide fins and high-k/metal gate-stacks. For the first time, we characterize them from room to high temperature (150 °C) to show the impact of temperature variation on drain current, gate leakage current, and transconductance. Variation of extracted parameters, such as low-field mobility, subthreshold swing, threshold voltage, and ON-OFF current characteristics, is reported too. Direct comparison is made to a rigid version of the SOI FinFETs. The mobility degradation with temperature is mainly caused by phonon scattering mechanism. The overall excellent devices performance at high temperature after release is outlined proving the suitability of truly high-performance flexible inorganic electronics with such advanced architecture.

  20. Curvature-induced stiffening of a fish fin

    Nguyen, Khoi; Bandi, Mahesh M; Venkadesan, Madhusudhan; Mandre, Shreyas

    2016-01-01

    Fish behaviour and its ecological niche require modulation of its fin stiffness. Using mathematical analyses of rayed fish fins, we show that curvature transverse to the rays is central to fin stiffness. We model the fin as rays with anisotropic bending that are connected by an elastic membrane. For fins with transverse curvature, external loads that bend the rays also splay them apart, which stretches the membrane. This coupling, between ray bending and membrane stretching, underlies the curvature-induced stiffness. A fin that appears flat may still exhibit bending-stretching coupling if the principal bending axes of adjacent rays are misaligned by virtue of intrinsic geometry, i.e. morphologically flat yet functionally curved. Analysis of the pectoral fin of a mackerel shows such functional curvature. Furthermore, as identified by our analyses, the mackerel's fin morphology endows it with the potential to modulate stiffness over a wide range.

  1. CFD Analysis of Plate Fin Tube Heat Exchanger for Various Fin Inclinations

    Subodh Bahirat,

    2014-08-01

    Full Text Available ANSYS Fluent software is used for three dimensional CFD simulations to investigate heat transfer and fluid flow characteristics of six different fin angles with plain fin tube heat exchangers. The numerical simulation of the fin tube heat exchanger was performed by using a three dimensional numerical computation technique. Geometry of model is created and meshed by using ANSYS Workbench software. To solve the equation for the fluid flow and heat transfer analysis ANSYS FLUENT was used in the fin-tube heat exchanger. The fluid flow and heat transfer are simulated and result compared for both laminar and turbulent flow models k-epsilon and SST k-omega, with steady state solvers to calculate heat transfer, flow velocity and temperature fields of variable inclined fin angles (Ɵ = 00 ,100 , 200 , 300 , 400 ,500 . Model is validate by comparing the simulated value of velocity, temperature and colburn factor with experimental and numerical results investigated by WANG [1] and GHORI KIRAR [10]. Reasonable agreement is found between the simulations and other results, and the ANSYS Fluent software is sufficient for simulating the flow fields in tube fin heat exchanger.

  2. Uniform fin sizes versus uniform fin root temperatures for unsymmetrically obstructed solar probe RTGs

    The Solar Probe will approach the sun within four solar radii or 0.02 AU. Because of that proximity, the spacecraft must be protected by a thermal shield. The protected umbra is a cone of 4 m diameter and 7.5 m height, and all temperature-sensitive flight components must fit within the cone. Therefore, the radioisotope thermal generators which power the Solar Probe cannot be separated from each other and from other payload components by deploying them on long booms, as was done on previous missions. Instead, the RTGs must be located near and thermally isolated from the spacecraft's payload. As a result, only about half of each RTGs circumference has a direct view of space. The other half is cooled indirectly, by means of a semi-cylindrical reflector. For a standard RTG design with uniform radiator fins, the unsymmetrical reflectors result in significant circumferential variations in the thermocouples' cold-junction temperatures, voltages, and currents. This can be avoided by varying the dimensions of the radiator fins, so as to produce a uniform set of fin root temperatures. The paper compares the performance of such variable-fin RTGs with that of uniform-fin RTGs. It derives the fin dimensions required for circumferential isothermicity, identifies a design that maximizes the RTG's specific power, and proves the practicality of that design option

  3. Numerical Analysis and Optimization of Engine Cylinder Fins of Varying

    Saravanan

    2014-01-01

    The main aim of the project is to analyze the thermal properties by varying geometry, material and thickness of cylinder fins. Parametric models of cylinder with fins have been developed to predict the transient thermal behavior. The models are created by varying the geometry, rectangular, circular and curved shaped fins and also by varying thickness of the fins. The 3D modeling software used is Pro/Engineer.The analysis is done using ANSYS. Presently Material used for manufac...

  4. Research on the Pin Fin Efficiency and Structure

    Fan Bailin; Huang Ganghan; Xu Long; Wang Yanjun; Zhang Pei

    2013-01-01

    The performance of pin fin heat sink can be to measure through the temperature field. The temperature field and efficiency of the Pin Fin were analyzed, Pin fin efficiency curve was drowned also the distribution of the temperature field along the length of the pin fin curve was drawn. Thermal resistance was composed by thermal resistance of Aluminum substrate、 thermal resistance of convective heat transfer and the thermal resistance of the cooling liquid. The change rule was studied through t...

  5. Three-dimensional natural convection in finned cubical enclosures

    Three-dimensional natural convection of air in a cubical enclosure with a fin on the hot wall is numerically investigated for Rayleigh numbers of 103-106. The fin, with a thickness of 1/10 of the cavity side, is placed horizontally on the hot wall. The solid to fluid thermal conductivity ratio (R k) and the fin width are varied. Because the fin is shorter than the cavity side, the cold flow sweeps the lower fin face and the hot wall at the clearances between the fin sides and the lateral walls, where high vertical velocities are reached. The fin inhibits the frontal and lateral access of fluid to the upper fin face, especially at low Rayleigh numbers. Low values of R k cause heat transfer reductions. The contribution of the fin faces increases at high R k causing heat transfer enhancements above 20%, which exceed the ones obtained in most two-dimensional studies. In the range of Ra from 105 to 106, maximum heat transfer rates are found for dimensionless fin widths of 0.6 and 0.8 respectively. It is concluded that for 105 ≤ Ra ≤ 106 a fin of partial width is more effective in promoting heat transfer than a fin of full width

  6. Enhanced hydrodynamic performance of flexible fins using macro fiber composite actuators

    Recent studies on the role of body flexibility in propulsion suggest that fish have the ability to control the shape or modulate the stiffness of the fins for optimized performance. Inspired by nature’s ability to modulate stiffness and shape for different operating conditions, this paper investigates active control of flapping foils for thrust tailoring using Macro Fiber Composites (MFCs). A coupled piezohydroelastic model has been developed to predict the propulsive performance of an actively deforming fin. The effect of important parameters such as oscillation frequency, flexibility of the fin, applied voltage and the phase difference between applied voltage and heaving on propulsive performance are studied and reported. It is observed that distributed actuation along fin produces maximum performance through proper selection of the phase difference between heaving and voltage. The optimal phase for lower values of fin stiffness is approximately 90° and it approaches 0° for higher stiffness values. Experiments performed to determine the effect of active control using MFCs validate the theoretical results. (paper)

  7. Composite hydrophilic coating for conditioner aluminum fins

    1999-01-01

    To solve the so-called "white rust" and 'water bridge" problems of the aluminum fins for heat exchanger of automobile air conditioner, aimed at nationalizing the art of hydrophilic coating technology, the choice of coating forming and curing materials was investigated. By measuring the water contact angle, SEM surface scanning and ingredients analysis of the coating, optimal parameters and composition are acquired. The coating forming mechanisms of the composition was also expatiated. The coating obtained has good hydrophilic and other properties.

  8. NUMERICAL AND EXPERIMENTAL STUDIES OF INFLUENCE OF THE CAUDAL FIN SHAPE ON THE PROPULSION PERFORMANCE OF A FLAPPING CAUDAL FIN

    ZHANG Xi; SU Yu-min; WANG Zhao-li

    2011-01-01

    This article presents a comprehensive study of the effects of the caudal fin shape on the propulsion performance of a eandal fin in harmonic heaving and pitching.A numerical simulation based on an unsteady panel method was carried out to analyze the hydrodynamic performance of flapping caudal fins of three shapes (the whale caudal fin with the largest projected area, the dolphin caudal fin with the median projected area, and the tuna caudal fin with the smallest projected area).Then, a series of hydrodynamic experiments for three caudal fin shapes were performed.Both computational and experimental results indicate that the tuna caudal fin produces the highest efficiency.However the mean thrust coefficient of the tuna caudal fin is the smallest.It is found that although the mean thrust coefficient for the tuna caudal fin is not large, the input power of the tuna caudal fin is also quite small.So the tuna caudal fin achieves a high efficiency.

  9. Study on Thermo-Conductive Plastic Finned Tube Radiators

    1997-01-01

    This paper discusses thermo-conductive plastic finned tube radiators used in water saving type power stations.First,the development of thermo-conductive plastics is introduced.Second,in order to determine the rational geometric dimensions of thermo-conductive plastic finned tubes,an objective function which takes the minimum volume of the consumed material for making finned tubes as an object is introduced.On the basis of the function,the economy comparison between thermo-conductive plastic finned tubes and metal finned tubes is conducted.

  10. An IPMC-enabled bio-inspired bending/twisting fin for underwater applications

    This paper discusses the design, fabrication, and characterization of an ionic polymer–metal composite (IPMC) actuator-based bio-inspired active fin capable of bending and twisting motion. It is pointed out that IPMC strip actuators are used in the simple cantilever configuration to create simple bending (flapping-like) motion for propulsion in underwater autonomous systems. However, the resulting motion is a simple 1D bending and performance is rather limited. To enable more complex deformation, such as the flapping (pitch and heaving) motion of real pectoral and caudal fish fins, a new approach which involves molding or integrating IPMC actuators into a soft boot material to create an active control surface (called a ‘fin’) is presented. The fin can be used to realize complex deformation depending on the orientation and placement of the actuators. In contrast to previously created IPMCs with patterned electrodes for the same purpose, the proposed design avoids (1) the more expensive process of electroless plating platinum all throughout the surface of the actuator and (2) the need for specially patterning the electrodes. Therefore, standard shaped IPMC actuators such as those with rectangular dimensions with varying thicknesses can be used. One unique advantage of the proposed structural design is that custom shaped fins and control surfaces can be easily created without special materials processing. The molding process is cost effective and does not require functionalizing or ‘activating’ the boot material similar to creating IPMCs. For a prototype fin (90 mm wide × 60 mm long × 1.5 mm thick), the measured maximum tip displacement was approximately 44 mm and the twist angle of the fin exceeded 10°. Lift and drag measurements in water where the prototype fin with an airfoil profile was dragged through water at a velocity of 21 cm s−1 showed that the lift and drag forces can be affected by controlling the IPMCs embedded into the fin structure. These

  11. Studying Fin Whales with Seafloor Seismic Networks

    Wilcock, W. S.; Soule, D. C.; Weirathmueller, M.; Thomson, R.

    2011-12-01

    Baleen whales are found throughout the world's oceans and their welfare captivates the general public. Depending on the species, baleen whales vocalize at frequencies ranging from ~10 Hz to several kilohertz. Passive acoustic studies of whale calls are used to investigate behavior and habitat usage, monitor the recovery of populations from whaling and assess the impacts of anthropogenic sounds. Since airguns are a significant source of sound in the oceans, the research goals of academic seismologists can lead to conflicts with those who advocate for whale conservation while being unwilling to consider the societal benefits of marine geophysical studies. In contrast, studies that monitor earthquakes with ocean bottom seismometers (OBSs) provide an opportunity to enhance studies of baleen whales and improve relationships with environmental advocates. The bandwidth of the typical high-frequency or intermediate-band ocean bottom seismometer overlaps the call frequency of the two largest baleen whale species; blue whales generate sequences of 10- to 20-s-long calls centered at ~16 Hz and fin whales produce long sequences of downswept 1-s-long chirps centered at ~20 Hz. Several studies have demonstrated the potential of OBS networks to monitor calling patterns and determine tracks for fin and blue whales. We will summarize the results from a study to track fin whales near the Endeavour hydrothermal vent fields on the Juan de Fuca Ridge and investigate a potential correlation between the density of whales and enhanced zooplankton found throughout the water column overlying the vent fields. From 2003-2006 an 8-station local seismic network that was designed to monitor hydrothermal earthquakes also recorded ~300,000 fin whale vocalizations, mostly in the fall and winter. Automatic picking and localization techniques that are analogous to those used to analyze earthquakes are employed to determine whale tracks. The tracks are then used to interpret calling patterns in the

  12. An approach to optimal fin diameter based on entropy minimization

    Masoud Asadi

    2013-04-01

    Full Text Available Pin fin geometries provide a large surface area of heat transfer and reduce the thermal resistance of the package. One of the important features of this type of fins is that they often take less space and contribute less to the weight and cost of the product. Pin fin arrays are used widely in many applications such as gas turbine or electronic circuits cooling, where pin fin geometries use due to their low cost of manufacturing and easy installing. In gas turbine application heat transfer from the blade to the coolant air can be increased by installing pin fins. In fact, Pin fin arrays increase heat transfer by increasing the flow turbulence and surface area of the airfoil exposed to the coolant. The overall performance of a heat exchanger with pin-fin typically depends on a number of parameters including the fin diameter, dimensions of the baseplate and pin-fins, thermal joint resistance and location heat sources. These parameters have an impact on the optimal design of a heat exchanger. Fin diameter is a key parameter to determine overall heat exchanger efficiency and entropy generation. In this paper, our objective is introducing an Equation to calculate optimal fin diameter based on minimizing entropy generation.

  13. Investigating the effect of non-similar fins in thermoeconomic optimization of plate fin heat exchanger

    Thermoeconomic optimization of plate fin heat exchanger with similar (SF) and different (DF) or non-similar fin in each side is presented in this work. For this purpose, both heat exchanger effectiveness and total annual cost (TAC) are optimized simultaneously using multi-objective particle swarm optimization algorithm. The above procedure is performed for various mass flow rates in each side. The optimum results reveal that no thermoeconomic improvement is observed in the case of same mass flow rate in each side while both effectiveness and TAC are improved in the case of different mass flow rate. For example, effectiveness and TAC are improved 0.95% and 10.17% respectively, for the DF compared with SF. In fact, the fin configuration should be selected more compact in a side with lower mass flow rate compared with the other side in the thermoeconomic viewpoint. Furthermore, for the thermodynamic optimization viewpoint both SF and DF have the same optimum result while for the economic (or thermoeconomic) optimization viewpoint, the significant decrease in TAC is accessible in the case of DF compared with SF. - Highlights: • Thermoeconomic modeling of compact heat exchanger. • Selection of fin and heat exchanger geometries as nine decision variables. • Applying MOPSO algorithm for multi objective optimization. • Considering the similar and different fin specification in each side. • Investigation of optimum design parameters for various mass flow rates

  14. THERMAL ANALYSIS OF CPU WITH COMPOSITE PIN FIN HEAT SINKS

    R.Mohan

    2010-09-01

    Full Text Available This paper describes about pin fin and slot parallel plate heat sinks with copper and carbon carbon composite(CCC base plate material mounted on CPU’s. The parameters such as fin geometry, base plate material, base plate thickness, number of fins, fin thickness are considered and primarily in this paper fin geometry, base platethicknesses, base plate materials are optimized for improving the thermal performance of a heat sink in the next generation. In this research work, the thermal model of the computer system with various fin geometry heat sink design has been selected and the fluid flow, thermal flow characteristics of heat sinks have been studied. The plate, pin and Elliptical fin geometry heat sinks have been used with base plate to enhance the heat dissipation. In this study a complete computer chassis with different heat sinks are investigated and the performances of the heat sinks are compared.

  15. Investigation of Fish Caudal Fin Locomotion Using a Bio-inspired Robotic Model

    Ziyu Ren

    2016-05-01

    Full Text Available Due to its advantages of realizing repeatable experiments, collecting data and isolating key factors, the bio-robotic model is becoming increasingly important in the study of biomechanics. The caudal fin of fish has long been understood to be central to propulsion performance, yet its contribution to manoeuverability, especially for homocercal caudal fin, has not been studied in depth. In the research outlined in this paper, we designed and fabricated a robotic caudal fin to mimic the morphology and the three-dimensional (3D locomotion of the tail of the Bluegill Sunfish (Lepomis macrochirus. We applied heave and pitch motions to the robot to model the movement of the caudal peduncle of its biological counterpart. Force measurements and 2D and 3D digital particle image velocimetry were then conducted under different movement patterns and flow speeds. From the force data, we found the addition of the 3D caudal fin locomotion significantly enhanced the lift force magnitude. The phase difference between the caudal fin ray and peduncle motion was a key factor in simultaneously controlling the thrust and lift. The increased flow speed had a negative impact on the generation of lift force. From the average 2D velocity field, we observed that the vortex wake directed water both axially and vertically, and formed a jet like structure with notable wake velocity. The 3D instantaneous velocity field at 0.6 T indicated the 3D motion of the caudal fin may result in asymmetry wake flow patterns relative to the mid-sagittal plane and change the heading direction of the shedding vortexes. Based on these results, we hypothesized that live fish may actively tune the movement between the caudal fin rays and the peduncle to change the wake structure behind the tail and hence obtain different thrust and lift forces, which contributes to its high manoeuvrability.

  16. Influence of Tip Clearance on Forced Convection Heat Transfer of a Finned Plate in a Duct

    Optimizations are required for a proper enhancement of cooling capability. An important phenomenological consideration is to be reveals for a finned plate in a duct. Due to the high friction near the fin region and low friction near the wall region, the forced flow tends to bypass from fin region to wall region. The bypass flow increases the net flow and enhances the heat transfer for a moderate tip clearance which is defined by the distance from the tip of the fin and the wall. Meanwhile for a large tip clearance, most of the flow bypasses and does not contribute the heat transfer and impairs the heat transfer. This study is a preliminary numerical study on the influence of the tip clearance on the heat transfer of the finned plate in a duct. The study aimed at supporting an experimental research exploring the phenomena for a very small tip clearance. Thus material properties and test conditions were chosen to meet the experimental conditions. It investigated the phenomena at Pr of 2,014 and ReS of 58.3. In order to investigate the small tip clearance phenomena, a simple numerical scheme was developed using a commercial CFD code. A case with the same experimental condition was tested using the numerical scheme and the error was about 12%. The results show the clear evidence of the flow bypass from the fin region to wall region, which impair the heat removal capacity of the finned plate in a duct. The study has the relevance with the reactor cavity cooling system performance enhancement activities in the VHTR. The numerical scheme will be tested for narrower and wider tip clearances and find an optimal tip clearance

  17. Influence of Tip Clearance on Forced Convection Heat Transfer of a Finned Plate in a Duct

    Park, Haekyun; Chung, Bumjin [Kyung Hee Univ., Yongin (Korea, Republic of)

    2014-05-15

    Optimizations are required for a proper enhancement of cooling capability. An important phenomenological consideration is to be reveals for a finned plate in a duct. Due to the high friction near the fin region and low friction near the wall region, the forced flow tends to bypass from fin region to wall region. The bypass flow increases the net flow and enhances the heat transfer for a moderate tip clearance which is defined by the distance from the tip of the fin and the wall. Meanwhile for a large tip clearance, most of the flow bypasses and does not contribute the heat transfer and impairs the heat transfer. This study is a preliminary numerical study on the influence of the tip clearance on the heat transfer of the finned plate in a duct. The study aimed at supporting an experimental research exploring the phenomena for a very small tip clearance. Thus material properties and test conditions were chosen to meet the experimental conditions. It investigated the phenomena at Pr of 2,014 and ReS of 58.3. In order to investigate the small tip clearance phenomena, a simple numerical scheme was developed using a commercial CFD code. A case with the same experimental condition was tested using the numerical scheme and the error was about 12%. The results show the clear evidence of the flow bypass from the fin region to wall region, which impair the heat removal capacity of the finned plate in a duct. The study has the relevance with the reactor cavity cooling system performance enhancement activities in the VHTR. The numerical scheme will be tested for narrower and wider tip clearances and find an optimal tip clearance.

  18. Performance Evaluation of Plate-Fin-And Tube Heat Exchanger with Wavy Fins- A Review

    Sandip S. Kale

    2014-09-01

    Full Text Available The plate fin-and-tube heat exchangers are widely used in variety of industrial applications, particularly in the heating, air-conditioning and refrigeration, HVAC industries. In most cases the working fluid is liquid on the tube side exchanging heat with a gas, usually air. It is seen that the performance of heat exchangers can be greatly increased with the use of unconventionally shaped flow passages such as plain, perforated offset strip, louvered, wavy, vortex generator and pin. The current study is focused on wavy-fin. The wavy surface can lengthen the path of airflow and cause better airflow mixing. In order to design better heat exchangers and come up with efficient designs, a thorough understanding of the flow of air in these channels is required. Hence this study focuses on the heat transfer and friction characteristics of the air side for wavy fin and tube heat exchanger.

  19. Advances in Understanding the Role of Aerosols on Ice Clouds from the Fifth International Ice Nucleation (FIN) Workshops

    Cziczo, D. J.; Moehler, O.; DeMott, P. J.

    2015-12-01

    The relationship of ambient aerosol particles to the formation of ice-containing clouds is one of the largest uncertainties in understanding climate. This is due to several poorly understood processes including the microphysics of how particles nucleate ice, the number of effective heterogeneous ice nuclei and their atmospheric distribution, the role of anthropogenic activities in producing or changing the behavior of ice forming particles and the interplay between effective heterogeneous ice nuclei and homogeneous ice formation. Our team recently completed a three-part international workshop to improve our understanding of atmospheric ice formation. Termed the Fifth International Ice Nucleation (FIN) Workshops, our motivation was the limited number of measurements and a lack of understanding of how to compare data acquired by different groups. The first activity, termed FIN1, addressed the characterization of ice nucleating particle size, number and chemical composition. FIN2 addressed the determination of ice nucleating particle number density. Groups modeling ice nucleation joined FIN2 to provide insight on measurements critically needed to model atmospheric ice nucleation and to understand the performance of ice chambers. FIN1 and FIN2 took place at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) chamber at the Karlsruhe Institute of Technology. A particular emphasis of FIN1 and FIN2 was the use of 'blind' intercomparisons using a highly characterized, but unknown to the instrument operators, aerosol sample. The third activity, FIN3, took place at the Desert Research Institute's Storm Peak Laboratory (SPL). A high elevation site not subject to local emissions, SPL allowed for a comparison of ice chambers and subsequent analysis of the ice residuals under the challenging conditions of low particle loading, temperature and pressure found in the atmosphere. The presentation focuses on the improvement in understanding how mass spectra from different

  20. Life-long preservation of the regenerative capacity in the fin and heart in zebrafish

    Junji Itou

    2012-06-01

    The zebrafish is a widely used model animal to study the regeneration of organs, such as the fin and heart. Their average lifetime is about 3 years, and recent studies have shown that zebrafish exhibit aging-related degeneration, suggesting the possibility that aging might affect regenerative potential. In order to investigate this possibility, we compared regeneration of the fin and heart after experimental amputation in young (6–12 month old and old (26–36 month old fish. Comparison of recovery rate of the caudal fin, measured every two or three days from one day post amputation until 13 days post amputation, show that fins in young and old fish regenerate at a similar rate. In the heart, myocardium regeneration and cardiomyocyte proliferation occurred similarly in the two groups. Moreover, neo-vascularization, as well as activation of fibroblast growth factor signaling, which is required for neo-vascularization, occurred similarly. The epicardial tissue is a thin layer tissue that covers the heart, and starts to express several genes immediately in response to injury. The expression of epicardial genes, such as wt1b and aldh1a2, in response to heart injury was comparable in two groups. Our results demonstrate that zebrafish preserve a life-long regenerative ability of the caudal fin and heart.

  1. Undulating fins produce off-axis thrust and flow structures.

    Neveln, Izaak D; Bale, Rahul; Bhalla, Amneet Pal Singh; Curet, Oscar M; Patankar, Neelesh A; MacIver, Malcolm A

    2014-01-15

    While wake structures of many forms of swimming and flying are well characterized, the wake generated by a freely swimming undulating fin has not yet been analyzed. These elongated fins allow fish to achieve enhanced agility exemplified by the forward, backward and vertical swimming capabilities of knifefish, and also have potential applications in the design of more maneuverable underwater vehicles. We present the flow structure of an undulating robotic fin model using particle image velocimetry to measure fluid velocity fields in the wake. We supplement the experimental robotic work with high-fidelity computational fluid dynamics, simulating the hydrodynamics of both a virtual fish, whose fin kinematics and fin plus body morphology are measured from a freely swimming knifefish, and a virtual rendering of our robot. Our results indicate that a series of linked vortex tubes is shed off the long edge of the fin as the undulatory wave travels lengthwise along the fin. A jet at an oblique angle to the fin is associated with the successive vortex tubes, propelling the fish forward. The vortex structure bears similarity to the linked vortex ring structure trailing the oscillating caudal fin of a carangiform swimmer, though the vortex rings are distorted because of the undulatory kinematics of the elongated fin. PMID:24072799

  2. Computational Research on Modular Undulating Fin for Biorobotic Underwater Propulsor

    Yong-hua Zhang; Lai-bing Jia; Shi-wu Zhang; Jie Yang; K.H.Low

    2007-01-01

    Biomimetic design employs the principles of nature to solve engineering problems.Such designs which are hoped to be quick,efficient,robust,and versatile,have taken advantage of optimization via natural selection.In the present research.an environment-friendly propulsion system mimicking undulating fins of stingray was built.A non-conventional method was considered to model the flexibility of the fins of stingray.A two-degree-of-freedom mechanism comprised of several linkages was designed and constructed to mimic the actual flexible fin.The driving linkages were used to form a mechanical fin consisting of several fin segments,which are able to produce undulations,similar to those produced by the actual fins.Owing to the modularity of the design of the mechanical fin,various undulating patterns can be realized.Some qualitative observations,obtained by experiments,predicted that the thrusts produced by the mechanical fin are different among various undulating patterns.To fully understand this experimental phenomenon is very important for better performance and energy saving for our biorobotic underwater propulsion system.Here,four basic undulating patterns of the mechanical fin were performed using two-dimensional unsteady computational fluid dynamics(CFD)method.An unstructured,grid-based,unsteady Navier-Stokes solver with automatic adaptive re-meshing was used to compute the unsteady flow around the fin through twenty complete cycles.The pressure distribution on fin surface was computed and integrated to provide fin forces which were decomposed into lift and thrust.The pressure force and friction force were also computed throughout the swimming cycle.Finally,vortex contour maps of these four basic fin undulating patterns were displayed and compared.

  3. Stability Criterion for a Finned Spinning Projectile

    S. D. Naik

    2000-01-01

    Full Text Available The state-of-the-art in gun projectile technology has been used for the aerodynamic stabilisation.This approach is acceptable for guided and controlled rockets but the free-flight rockets suffer fromunacceptable dispersion. Sabot projectiles with both spin and fms developed during the last decadeneed careful analysis. In this study, the second method of Liapunov has been used to develop stability criterion for a projectile to be designed with small fins and is made to spin in the flight. This criterion is useful for the designer.

  4. Optimal design study of cylindrical finned reactor for solar adsorption cooling machine

    Allouache, N. [Univ. des Sciences et de la Technologie Houari Boumediene, Bab Ezzouar (Algeria). Faculte de Genie Mecanique et de Genie des Procedes; Al Mers, A. [Moulay Ismail Univ., Meknes (Morocco). Ecole National Superieure d' Art et Metiers

    2010-07-01

    Solid adsorption cooling machines use medium temperature industrial waste heat together with a renewable energy source, such as solar energy. The adsorption cooling machine consists of an evaporator, a condenser and a reactor containing a solid adsorbent. In this study, a model was developed for thermodynamic performance analysis and optimization of a cylindrical finned solar reactor in an adsorption refrigerator working with activated carbon-ammonia. The heat and mass transfer in the adsorption cooling machine was determined. The model was validated using experimental results. The study investigated the sensitivity of the machine performance versus the geometrical configuration of the reactor. The study showed that for an optimized reactor, a higher fin number significantly reduces the heat losses of the reactor. It was concluded that the solar coefficient of performance (COP) of an optimized reactor can reach 45 per cent when the number of fins varies between 5 and 6. 10 refs., 4 figs.

  5. Thermal Analysis of Fin and Tube Heat Exchanger

    Ms N. B. Rairker

    2014-06-01

    Full Text Available This paper studied experimentally the effect of heat transfer of fin and tube type heat exchanger for different mass flow rate of fluid. The thermal stresses induced on fin and tube is also studied by ansys software at steady state condition by changing the width of fin and diameter of tube. Readings were taken experimentally by changing mass flow rate of fluid at respective temperatures. Comparison was done on theoretically and experimentally obtained results. It is observed that as the width of fin increases thermal stresses on fin also increases. Likewise for tube, by varying diameter of tube different values of stress are obtained. It is also observed at full valve position maximum thermal stresses are induced on fin as well as tube.

  6. Numerical simulation of heat exchangers elliptical tubes and corrugated fins

    The intensified heat exchangers fins are widely used in the automotive and domestic industry. The low heat transfer coefficients on the air side are the main reason why these fins of heat exchangers need to be intensified. In this paper, the numerical simulation of a wavy fin type is made with elliptical tubes. The dimensions of the fin is in the range of those used in air conditioning equipment. The friction factor and the mass transfer coefficient as a function of the Reynolds number for this type of fin, always within the laminar regime is determined. The numerical model against experimental results published in the literature is validated. In addition the mechanisms that produce intensified heat transfer fin in such occur. (full text)

  7. Air cooling effect of fins on a Honda shine bike

    Padhiyar Abhesinh J

    2015-05-01

    Full Text Available The main of aim of this work is to study various researches done in past to improve heat transfer rate of cooling fins by changing cylinder block fin geometry. Low rate of heat transfer through cooling fins is the main problem in this type of cooling. So efficiency of the engine is increase by increase the heat transfer. Examples of direct air cooling in modern automobiles are rare. The most common example is the commercials Automobile bike like a Honda Shine, Bajaj bike, Honda splendor etc. It is conclude about shape try to this fins is more effectively heat transfer in Honda shine bike compare to existing fins. After FEA Analysis it checking on fin whether efficiency of heat transfer increases or not. This work validation with Experimental and Mathematical.

  8. The role of flexibility on propulsive performance of flapping fins

    Kancharala, Ashok Kumar

    2015-01-01

    The versatility of the fish to adapt to diverse swimming requirements has attracted the attention of researchers in studying bioinspired propulsion for developing efficient underwater robotics. The tail/caudal fin is a major source of thrust generation and is believed that the fish modulates its fin stiffness to optimize the propulsive performance. Inspired by the stiffness modulation of fish fins, the objective of this research is to predict and evaluate the effect of flexibility on propulsi...

  9. Enhanced Heat Exchanger with Offset Spine Fin Design

    Kempiak, Michael; Junge, Brent

    2014-01-01

    An Offset Spine Fin Spine (segmented) fin coils have been used in certain applications as a result of their effective use of coil material. One can improve coil heat transfer performance by adding more fins per inch (FPI). This comes at the expense of air side pressure drop, which requires more fan energy to achieve the same air flow. When this type of fin is used in an evaporator, there is a secondary penalty associated with the fan heat that must be removed by the refrigeration system. Also...

  10. Grid Fin Stabilization of the Orion Launch Abort Vehicle

    Pruzan, Daniel A.; Mendenhall, Michael R.; Rose, William C.; Schuster, David M.

    2011-01-01

    Wind tunnel tests were conducted by Nielsen Engineering & Research (NEAR) and Rose Engineering & Research (REAR) in conjunction with the NASA Engineering & Safety Center (NESC) on a 6%-scale model of the Orion launch abort vehicle (LAV) configured with four grid fins mounted near the base of the vehicle. The objectives of these tests were to 1) quantify LAV stability augmentation provided by the grid fins from subsonic through supersonic Mach numbers, 2) assess the benefits of swept grid fins versus unswept grid fins on the LAV, 3) determine the effects of the LAV abort motors on grid fin aerodynamics, and 4) generate an aerodynamic database for use in the future application of grid fins to small length-to-diameter ratio vehicles similar to the LAV. The tests were conducted in NASA Ames Research Center's 11x11-foot transonic wind tunnel from Mach 0.5 through Mach 1.3 and in their 9x7-foot supersonic wind tunnel from Mach 1.6 through Mach 2.5. Force- and moment-coefficient data were collected for the complete vehicle and for each individual grid fin as a function of angle of attack and sideslip angle. Tests were conducted with both swept and unswept grid fins with the simulated abort motors (cold jets) off and on. The swept grid fins were designed with a 22.5deg aft sweep angle for both the frame and the internal lattice so that the frontal projection of the swept fins was the same as for the unswept fins. Data from these tests indicate that both unswept and swept grid fins provide significant improvements in pitch stability as compared to the baseline vehicle over the Mach number range investigated. The swept fins typically provide improved stability as compared to the unswept fins, but the performance gap diminished as Mach number was increased. The aerodynamic performance of the fins was not observed to degrade when the abort motors were turned on. Results from these tests indicate that grid fins can be a robust solution for stabilizing the Orion LAV over a wide

  11. Lightweight Radiator Fins for Space Nuclear Power Project

    National Aeronautics and Space Administration — This SBIR Phase 1 project shall investigate concept radiator fins that incorporate novel carbon materials for improved performance of segmented high temperature...

  12. Influence of fins on tractor-type podded propulsor performance

    Xie, Xue-Shen; Huang, Sheng

    2009-09-01

    A mathematical model of podded propulsors was established in order to investigate the influence of fins. The hydrodynamic performance of podded propulsors with and without fins was calculated, with interactions between propellers and pods and fins derived by iterative calculation. The differential equation based on velocity potential was adopted and hyperboloidal panels were used to avoid gaps between surface panels. The Newton-Raphson iterative procedure was used on the trailing edge to meet the pressure Kutta condition. The velocity distribution was calculated with the Yanagizawa method to eliminate the singularity caused by use of the numerical differential. Comparisons of the performance of podded propulsors with different fins showed that the thrust of propeller in a podded propulsor with fins is greater. The resistance of the pod is also reduced because of the thrust of the fin. The hydrodynamic performance of a podded propulsor with two fins is found to be best, the performance of a podded propulsor with one fin is not as good as two fins, and the performance of the common type is the worst.

  13. Fin o metamorfosis de la escuela

    José Joaquín Brunner

    1996-10-01

    Full Text Available El autor adhiere a la idea de que la escuela una es una de las matrices de la modernidad por cuanto separa la transmisión cultural de cualquier soporte físico (escritura, radicándola en el propio proceso de escolarización: su gramática consistiría en redes de clasificación del conocimiento, siendo el orden escolar esencialmente un procedimiento; el juego que juega la escuela es el de la obtención de los usos de adquisición del conocimiento. De esta forma el “fin de la escritura” como tecnología predominante del conocimiento, significara el conocimiento de una nueva era de escolarización.

  14. Performance Evaluation of Plate-Fin-And Tube Heat Exchanger with Wavy Fins- A Review

    Sandip S. Kale; V.W.Bhatkar

    2014-01-01

    The plate fin-and-tube heat exchangers are widely used in variety of industrial applications, particularly in the heating, air-conditioning and refrigeration, HVAC industries. In most cases the working fluid is liquid on the tube side exchanging heat with a gas, usually air. It is seen that the performance of heat exchangers can be greatly increased with the use of unconventionally shaped flow passages such as plain, perforated offset strip, louvered, wavy, vortex generator an...

  15. Dehumidification in greenhouses by condensation on finned pipes

    Campen, J.C.; Bot, G.P.A.

    2001-01-01

    In this study, an experimental dehumidifying system for greenhouses is tested. The system uses finned pipes fixed under the gutter of the greenhouse. The pipes are cooled below the dewpoint of the greenhouse air by cold water. The humid air passes the pipe and fins by natural convection and condensa

  16. FinFET modeling for IC simulation and design

    Hu, Chenming; Lu, Darsen D

    2015-01-01

    This book is the first to explain FinFET modeling for IC simulation and the industry standard - BSIM-CMG - describing the rush in demand for advancing the technology from planar to 3D architecture, as now enabled by the approved industry standard. The book gives a strong foundation on the physics and operation of FinFET, details aspects of the BSIM-CMG model such as surface potential, charge and current calculations, and includes a dedicated chapter on parameter extraction procedures, providing a step-by-step approach for the efficient extraction of model parameters. With this book you will learn: * Why you should use FinFET* The physics and operation of FinFET* Details of the FinFET standard model (BSIM-CMG)* Parameter extraction in BSIM-CMG* FinFET circuit design and simulation * Authored by the lead inventor and developer of FinFET, and developers of the BSIM-CM standard model, providing an experts' insight into the specifications of the standard* The first book on the industry-standard FinFET model - BSIM...

  17. A characteristic correlation for heat transfer over serrated finned tubes

    Highlights: • Numerical investigation og heat transfer over serrated finned tubes. • Fins used on the outside of the tubes of a sodium to air heat exchanger. • RANS approach with RNG k–ε model to handle turbulence to handle closure. • Validation with in-house experiments. • Parametric studies culminating in a correlation for Nusselt number. - Abstract: Conjugate heat transfer from serrated fins on the outside of the tubes of a sodium to air tubular heat exchanger of sodium cooled fast breeder reactors, has been investigated by combined experimental and computational approaches. For the latter approach, the RNG k–ε model, which is applicable for a wide range of Reynolds numbers, was used for turbulence closure. The numerical model employed was validated by conducting in-house heat transfer experiments on a single serrated finned tube. A detailed parametric study has been carried out to investigate the effect of serration depth, fin pitch, fin height and fin thickness. In addition to pure cross flow, the effect of angle of attack of the flow on the heat transfer also has been studied. A correlation for determining the Nusselt number over a serrated finned tube has been proposed taking into account the serration parameters. This is expected to be useful in the design of sodium to air heat exchangers of fast breeder reactors

  18. Replacement fin processing for III-V on Si: From FinFets to nanowires

    Waldron, Niamh; Merckling, Clement; Teugels, Lieve; Ong, Patrick; Sebaai, Farid; Barla, Kathy; Collaert, Nadine; Thean, Voon-Yew (Aaron)

    2016-01-01

    In this paper we review the details and results of the replacement fin process technique used to successfully demonstrate InGaAs based channel devices from FinFets to ultra scaled nanowires on 300 mm Si substrates. For FinFet devices a Mg p-type doping solution was developed to counteract the unintentional n-type doping of the InP buffer layer which resulted in high source-drain leakage. However, the performance of these devices is found to be limited by the Mg doping as the mobility is degraded. By switching to a GAA architecture the problem of source-leakage through the InP buffer is effectively eliminated and best devices with LG = 60 nm have a peak transconductance of 1030 μS/μm with a SSSAT of 125 mV/dec are achieved. A comparison of gate first to gate last processing highlights the importance of using a low thermal budget process to maintain the integrity of the InGaAs/high-K interface. Nanowires with a diameter of 6 nm were demonstrated to show quantization induced immunity to Dit resulting in a SSSAT as low as 66 mV/dec for 85 nm LG devices.

  19. Hydrodynamics of a robotic fish tail: effects of the caudal peduncle, fin ray motions and the flow speed.

    Ren, Ziyu; Yang, Xingbang; Wang, Tianmiao; Wen, Li

    2016-02-01

    Recent advances in understanding fish locomotion with robotic devices have included the use of biomimetic flapping based and fin undulatory locomotion based robots, treating two locomotions separately from each other. However, in most fish species, patterns of active movements of fins occur in concert with the body undulatory deformation during swimming. In this paper, we describe a biomimetic robotic caudal fin programmed with individually actuated fin rays to mimic the fin motion of the Bluegill Sunfish (Lepomis macrochirus) and coupled with heave and pitch oscillatory motions adding to the robot to mimic the peduncle motion which is derived from the undulatory fish body. Multiple-axis force and digital particle image velocimetry (DPIV) experiments from both the vertical and horizontal planes behind the robotic model were conducted under different motion programs and flow speeds. We found that both mean thrust and lift could be altered by changing the phase difference (φ) from 0° to 360° between the robotic caudal peduncle and the fin ray motion (spanning from 3 mN to 124 mN). Notably, DPIV results demonstrated that the caudal fin generated multiple wake flow patterns in both the vertical and horizontal planes by varying φ. Vortex jet angle and thrust impulse also varied significantly both in these two planes. In addition, the vortex shedding position along the spanwise tail direction could be shifted around the mid-sagittal position between the upper and lower lobes by changing the phase difference. We hypothesize that the fish caudal fin may serve as a flexible vectoring propeller during swimming and may be critical for the high maneuverability of fish. PMID:26855405

  20. Numerical and Experimental Research on Modular Oscillating Fin

    Yong-hua Zhang; Yan Song; Jie Yang; K. H. Low

    2008-01-01

    Fishes are famous for their ability to position themselves accurately even in turbulent flows. This ability is the result of the coordinated movement of fins which extend from the body. We have embarked on a research program designed to develop an agile and high efficient biologically inspired robotic fish based on the performance of hybrid mechanical fins. To accomplish this goal, a mechanical ray-like fin actuated by Shape Memory Alloy (SMA) is developed, which can realize both oscillatory locomotion and undulatory locomotion. We first give a brief introduction on the mechanical structure of our fin and then carr yout theoretic analysis on force generation. Detailed information of these theoretical results is later revealed by Computational Fluid Dynamic (CFD), and is final validated by experiments. This robotic fin has potential application as a propulsor for future underwater vehicles in addition to being a valuable scientific instrument.

  1. Cryopreservation of goldfish fins and optimization for field scale cryobanking.

    Moritz, Charlotte; Labbe, Catherine

    2008-06-01

    When gametes and embryos are not available, cryobanking of somatic tissues is one possibility to keep a genetic record of fish valuables in a context of biodiversity conservation and animal breeding management. Cryopreservation of whole fin pieces would be more advantageous than the commonly used cryopreservation of cells after fin culture, as it would allow extensive sampling without immediate need for laboratory facilities. The objective of this work was to assess the cryopreservation ability of fin pieces from goldfish (Carassius auratus) and to test whether a laboratory procedure could be adapted to field conditions. Caudal fin explants were cryopreserved in culture medium with 125mM sucrose and 10% Me(2)SO. After 14days of culture, the frozen-thawed explants showed the same cell growth rate and grew the same somatic cell number as the fresh ones. Cells proliferated inside and around the explants as shown by BrdU labeling. Neither the size of the fin pieces nor the freezer type, -70 degrees C upright or -20 degrees C chest, influenced the outcome of cryopreservation. Fin pieces were stored 4days at 4 degrees C in dry conditions prior to cryopreservation without alteration of the fin explant culture success. This study demonstrated that field collecting of goldfish fin pieces is possible as whole fin pieces can be stored in standard fridge or be shipped at subzero temperature before they are frozen into a plain -20 degrees C chest freezer. After incorporation in cryobanks in liquid nitrogen, thawed fin pieces reliably produce somatic cells in cell culture conditions. PMID:18346725

  2. Fabrication of AlGaN/GaN Ω-shaped nanowire fin-shaped FETs by a top-down approach

    Im, Ki-Sik; Sindhuri, Vodapally; Jo, Young-Woo; Son, Dong-Hyeok; Lee, Jae-Hoon; Cristoloveanu, Sorin; Lee, Jung-Hee

    2015-06-01

    An AlGaN/GaN-based Ω-shaped nanowire fin-shaped FET (FinFET) with a fin width of 50 nm was fabricated using tetramethylammonium hydroxide (TMAH)-based lateral wet etching. An atomic layer deposited (ALD) HfO2 side-wall layer served as the etching mask. ALD Al2O3 and TiN layers were used as the gate dielectric and gate metal, respectively. The Ω-shaped gate structure fully depletes the active fin body and almost completely separates the depleted fin from the underlying thick GaN buffer layer, resulting in superior device performance. The top-down processing proposed in this work provides a viable pathway towards gate-all-around devices for III-nitride semiconductors.

  3. Evaluating the Fin-ray Trajectory Tracking of Bio-inspired Robotic Undulating Fins via an Experimental-numerical Approach

    Xiaojia Xiang

    2014-07-01

    Full Text Available In the past decade, biomimetic undulating fin propulsion has been one of the main topics considered by scientists and researchers in the field of robotic fish. This technology is inspired by the biological wave-like propulsion of ribbon-finned fish. The swimming modes have aquatic application potentials with greater manoeuvrability, less detectable noise or wake and better efficiency at low speeds. The present work concentrates on the evaluation of fin-ray trajectory tracking of biorobotic undulating fins at the levels of kinematics and hydrodynamics by using an experimental-numerical approach. Firstly, fin-ray tracking inconsistence between the desired and actual undulating trajectories is embodied with experimental data of the fin prototype. Next, the dynamics' nonlinearity is numerically and analytically unveiled by using the computational fluid dynamics (CFD method, from the viewpoint of vortex shedding and the hydro-effect. The evaluation of fin-ray tracking performance creates a good basis for control design to improve the fin-ray undulation of prototypes.

  4. The role of tip deflection on the thrust produced by rigid flapping fins

    Huera-Huarte, Francisco; Gharib, Morteza

    2015-11-01

    It is well known that flexibility plays an important role in the propulsion performance and efficiency of oscillating fin based propulsion systems. Compliance is one of the aspects that has received more attention, as it seems to be a common feature in nature's flyers and swimmers. Active control strategies are also common in nature. We will show how by deflecting only the last 10% of length of a rigid fin, at the tip, the thrust can be changed dramatically. This can be thought as an alternative to passive flexibility for controlling very efficiently the momentum transfer in the wake and therefore the thrust generation when flapping. A series of experiments have been carried with a robotic fin that allowed the control of its flapping kinematics as well as the control of the motions of its tip independently. We will be showing situations in which the tip was kept at a certain fixed position during a power stroke, and others in which it moved either in-phase or out-of-phase with the fin. The observed thrust and wake dynamics will be discussed for all these situations. The authors would like to acknowledge the financial support provided by the Gordon and Betty Moore Foundation and by the Spanish Ministerio de Economia y competitividad (MINECO) through grant DPI2012-37904. Visiting Associate in Aerospace, California Institute of Technology.

  5. The hydrodynamics of ribbon-fin propulsion during impulsive motion.

    Shirgaonkar, Anup A; Curet, Oscar M; Patankar, Neelesh A; Maciver, Malcolm A

    2008-11-01

    Weakly electric fish are extraordinarily maneuverable swimmers, able to swim as easily forward as backward and rapidly switch swim direction, among other maneuvers. The primary propulsor of gymnotid electric fish is an elongated ribbon-like anal fin. To understand the mechanical basis of their maneuverability, we examine the hydrodynamics of a non-translating ribbon fin in stationary water using computational fluid dynamics and digital particle image velocimetry (DPIV) of the flow fields around a robotic ribbon fin. Computed forces are compared with drag measurements from towing a cast of the fish and with thrust estimates for measured swim-direction reversals. We idealize the movement of the fin as a traveling sinusoidal wave, and derive scaling relationships for how thrust varies with the wavelength, frequency, amplitude of the traveling wave and fin height. We compare these scaling relationships with prior theoretical work. The primary mechanism of thrust production is the generation of a streamwise central jet and the associated attached vortex rings. Under certain traveling wave regimes, the ribbon fin also generates a heave force, which pushes the body up in the body-fixed frame. In one such regime, we show that as the number of waves along the fin decreases to approximately two-thirds, the heave force surpasses the surge force. This switch from undulatory parallel thrust to oscillatory normal thrust may be important in understanding how the orientation of median fins may vary with fin length and number of waves along them. Our results will be useful for understanding the neural basis of control in the weakly electric knifefish as well as for engineering bio-inspired vehicles with undulatory thrusters. PMID:18931321

  6. Novel FinFET Device Using Asymmetric Doping

    Moradi, Farshad

    2012-01-01

    In this paper, a new technique is proposed to improve the device characteristics by introducing asymmetric doping at the source and the drain of the conventional FinFET. Specifically, the proposed device exhibits 9X increase of the Ion/Ioff ratio and 3X improved DIBL compared to conventional symm...... symmetric FinFET devices. We note a reduction in sub-threshold swing (SS) of 16% with 7% Ion degradation. The proposed FinFETs can be utilized in SRAM cells and logic circuits to improve their functionality at ultra-scaled technologies....

  7. Air cooling effect of fins on a Honda shine bike

    Padhiyar Abhesinh J; Vasim G Machhar

    2015-01-01

    The main of aim of this work is to study various researches done in past to improve heat transfer rate of cooling fins by changing cylinder block fin geometry. Low rate of heat transfer through cooling fins is the main problem in this type of cooling. So efficiency of the engine is increase by increase the heat transfer. Examples of direct air cooling in modern automobiles are rare. The most common example is the commercials Automobile bike like a Honda Shine, Bajaj bike, Honda sp...

  8. El proteccionismo de fin de siglo

    Marcela SABATÉ SORT

    2010-02-01

    Full Text Available RESUMEN: Dentro del análisis de la política comercial de la Europa continental, este trabajo profundiza en la reacción proteccionista que, contrastando con la apertura anterior, caracteriza el final del siglo XIX y los primeros años del XX, justo hasta el comienzo de la Gran Guerra. Para ello indaga en los factores, especialmente las consecuencias de la "Gran Depresión", que provocan este cambio, en las políticas comerciales de los principales países europeos ante la crisis y en los niveles de protección establecidos. Unas reflexiones finales sobre el común movimiento de elevación arancelaria que preside la evolución de las políticas comerciales del continente en esta etapa y el diverso grado de protección decidido, permiten definir con exactitud la reacción proteccionista realmente acometida. Palabras Clave. Política comercial, Proteccionismo, Crisis económica, Estado, Fin de siglo. ABSTRACT: Within the analysis of the commercial policy of continental Europe, this study delves deeper into the protectionist reaction which, in contrast with the former openness, characterised the end of the nineteenth century and the beginning of the twentieth, right up until he beginning of the Great War. It inquires into the factors that provoked this change, especially the consequences of the Great Depression, and into the commercial policies of the main European countries in the face of this crisis, as well as the levels of protection established. Some final reflections on the common movement to raise tariffs which presided the evolution of the continent's commercial policies during this stage and the diverse degree of protection decided on make it possible to precisely define the protectionist action really undertaken. Key Words: Commercial Policy, Protectionism, Economic Crisis, State, Turn of the Century.

  9. Steady-state and transient heat transfer through fins of complex geometry

    Taler Dawid

    2014-06-01

    Full Text Available Various methods for steady-state and transient analysis of temperature distribution and efficiency of continuous-plate fins are presented. For a constant heat transfer coefficient over the fin surface, the plate fin can be divided into imaginary rectangular or hexangular fins. At first approximate methods for determining the steady-state fin efficiency like the method of equivalent circular fin and the sector method are discussed. When the fin geometry is complex, thus transient temperature distribution and fin efficiency can be determined using numerical methods. A numerical method for transient analysis of fins with complex geometry is developed. Transient temperature distributions in continuous fins attached to oval tubes is computed using the finite volume - finite element methods. The developed method can be used in the transient analysis of compact heat exchangers to calculate correctly the heat flow rate transferred from the finned tubes to the fluid.

  10. NUMERICAL SIMULATION OF FISH SWIMMING WITH RIGID PECTORAL FINS

    XU Yi-gang; WAN De-cheng

    2012-01-01

    The numerical simulation of the self-propelled motion of a fish with a pair of rigid pectoral fins is presented.A Navier-Stokes equation solver incorporating with the multi-block and overset grid method is developed to deal with the multi-body and moving body problems.The lift-based swimming mode is selected for the fin motion.In the lift-based swimming mode,the fin can generate great thrust and at the same tune have no generation of lift force.It can be found when a pair of rigid pectoral fins generates the hydrodynamic moment,it may also generate a lateral force opposite to the centripetal direction,which has adverse effect on the turn motion of the fish.Furthermore,the periodic vortex structure generation and shedding,and their effects on the generation of hydrodynamic force are also demonstrated in this article.

  11. Magnetoresistance measurement of permalloy thin film rings with triangular fins

    Magnetization reversals in permalloy rings controlled by nucleation sites using triangular fins at the same side and diagonal with respect to the field direction are demonstrated by magnetoresistance measurement and micromagnetic simulation. In the ring with triangular fins at the same side, there exists two-step reversal from onion to flux-closure state (or vortex state) and then from flux-closure (or vortex state) to reverse onion state; in the ring with diagonal triangular fins, one-step reversal occurs directly from onion to reverse onion state. The reversal processes are repeatable and controllable in contrast to an ideal ring without triangular fins where one-step and two-step reversals occur randomly in sweep-up and sweep-down processes.

  12. Flexible nanoscale high-performance FinFETs

    Sevilla, Galo T.

    2014-10-28

    With the emergence of the Internet of Things (IoT), flexible high-performance nanoscale electronics are more desired. At the moment, FinFET is the most advanced transistor architecture used in the state-of-the-art microprocessors. Therefore, we show a soft-etch based substrate thinning process to transform silicon-on-insulator (SOI) based nanoscale FinFET into flexible FinFET and then conduct comprehensive electrical characterization under various bending conditions to understand its electrical performance. Our study shows that back-etch based substrate thinning process is gentler than traditional abrasive back-grinding process; it can attain ultraflexibility and the electrical characteristics of the flexible nanoscale FinFET show no performance degradation compared to its rigid bulk counterpart indicating its readiness to be used for flexible high-performance electronics.

  13. Simulation of thermo-mechanical effect in bulk-silicon FinFETs

    Burenkov, Alex; LORENZ, Jürgen

    2016-01-01

    The thermo-mechanical effect in bulk-silicon FinFETs of the 14 nm CMOS technology node is studied by means of numerical simulation. The electrical performance of such devices is significantly enhanced by the intentional introduction of mechanical stress during the device processing. The thermo-mechanical effect modifies the mechanical stress distribution in active regions of the transistors when they are heated. This can lead to a modification of the electrical performance. Numerical simulati...

  14. Blue and fin whale acoustics and ecology off Antarctic Peninsula

    Sirovic, Ana

    2006-01-01

    Blue (Balaenoptera musculus) and fin whales (B. physalus) in the Southern Ocean were subjects of extensive whaling industry during the twentieth century. Their current population numbers remain low, making population monitoring using traditional visual surveys difficult. Both blue and fin whales produce low frequency, regularly repeated calls and are suitable for acoustic monitoring. Eight, continuously recording acoustic recorders were deployed off the Western Antarctic Peninsula (WAP) betwe...

  15. Aerodynamic assessment of humpback whale ventral fin shapes

    Rita Espasa, Damià

    2011-01-01

    The ventral fins of the humpback whale (Megaptera novaeangliae) include a bulbous leading edge acting as a natural high-lift device. It has been suggested that application of this concept to wing design may yield advantages over traditional shapes (Miklosovic, et al., 2004). During the course of this project, the aerodynamic performance of whale fin models will be compared with conventional wing shapes. Based on the results of the study new wing design paradigms will be developed to improve t...

  16. Magneto-mechanical actuation model for fin-based locomotion

    Carbajal, Juan Pablo; 10.2495/DN100331

    2011-01-01

    In this paper, we report the results from the analysis of a numerical model used for the design of a magnetic linear actuator with applications to fin-based locomotion. Most of the current robotic fish generate bending motion using rotary motors which implies at least one mechanical conversion of the motion. We seek a solution that directly bends the fin and, at the same time, is able to exploit the magneto-mechanical properties of the fin material. This strong fin-actuator coupling blends the actuator and the body of the robot, allowing cross optimization of the system's elements. We study a simplified model of an elastic element, a spring-mass system representing a flexible fin, subjected to nonlinear forcing, emulating magnetic interaction. The dynamics of the system is studied under unforced and periodic forcing conditions. The analysis is focused on the limit cycles present in the system, which allows the periodic bending of the fin and the generation of thrust. The frequency, maximum amplitude and cente...

  17. Fin characteristics of aerator devices with lateral deflectors

    WU Jian-hua; LI Dan; MA Fei; QIAN Shang-tuo

    2013-01-01

    The fins will be formed if the lateral deflectors in the side-walls with a bottom aerator device are improperly designed,and the flow regime downstream of the aerator device will be worsened.In this paper,the height and the length of the fins induced by the lateral deflectors are theoretically analyzed along with their influencing factors,and the fin characteristics are experimentally investigated on the basis of the theoretical analysis.It is shown that the intensities of the fins are strongly dependent on the ratio of the lateral cavity length to the bottom cavity length,and other factors,like the working head,the height and the angle of the lateral deflector,the flow Froude number around the aerator device,affect the fins indirectly through the changes of the lateral cavity length.When an aerator device with lateral deflectors is designed,it is crucial to match the above mentioned ratio,and to make the ratio of the two cavity lengths less than 1.0 in order to avoid the generation of the fins.

  18. Fin propulsion on a human-powered submarine

    Anderson, Iain A.; Pocock, Benjamin; Harbuz, Antoni; Algie, Cam; Vochezer, Daniel; Chao, Ryan; Lu, Benjamin

    2015-03-01

    Nearly all surface and underwater vessels are driven by screw propulsion; ideal for coupling to rotary engines and well understood after over a century of development. But most aquatic creatures use fins for swimming. Although there are sound evolutionary reasons why fish have fins and not propellers, they are nevertheless agile, fast and efficient. Although fish-like robots such as the MIT Robotuna are providing good insight into fin-based swimming there are advantages for using humans in the experimental device. Like an airplane test pilot they can write crash reports. We present preliminary observations for the human powered finned submarine: Taniwha. The sub participated in the 2nd European International Submarine races in Gosport UK where it received a trophy for "Best Non-Propeller Performance". Two sets of Hobie Mirage fin drives fixed to the upper and lower rear surfaces of the sub are pedaled by the pilot. The pilot also has two levers at the front, one to pitch a pair of dive planes and one for yawing a large rudder. Good speed, we estimate to be greater than 6 m/s is possible with these fins although we haven't explored their full potential. Straying too near the surface or bottom can lead to an instability, synonymous to a stall, such that control is lost. The mechanism for this will be discussed and solutions offered. Fish are 400 million years in front of us but one day we'll catch them.

  19. Stress analysis of plate-fin structures in recuperator

    A high performance compact recuperator with 95% effectiveness is required to achieve a high thermal efficiency power generation of up to 50% in High Temperature Gas Cooled Reactor (HTGR) coupled with closed cycle helium gas turbine. Though a plate-fin type heat exchanger is proposed for this recuperator, much research and development works are needed to establish this high performance goal since there exists no state-of-the-art technology in such a high pressure and high temperature one. One of the important works is to establish the structural analysis and evaluation method in this plate-fin type heat exchanger. This paper describes the results of stress analysis of the plate-fin structure under the internal pressure as the first step of this work. First, the modeling of a unit plate-fin structure for the analysis was examined and a three layers model was confirmed to be most adequate. The stress distribution within the structure was clarified by using this model. Second, the three layers model was simplified to one layer model with sufficient accuracy. By using this model, both the effects of an inclined angle of fin and a thickness of separate on the strength were examined parametrically. Under the relevant design conditions, it was revealed that the optimum inclined angle of fin locates in the neighborhood of 76 degree rather than most difficult fabrication angle 90 degree and there is possibility to adopt thinner thickness than 0.5 mm in the current design. (author)

  20. Evaluation Performance ofan Annular Composite Fin by UsingMATLAB Programming

    Padma Lochannayak; suvendumohanty

    2015-01-01

    The aim of this project is analysis the efficiency ratio in an annular fin by the variation of heat transfer coefficient for any surface condition by using MATLAB software to calculate the base fin efficiency and the coated fin efficiency by the variation of heat transfer coefficient, radius ratio and base fin thickness of an annular fin and compare the coating fin efficiency to base fin efficiency. If the heat transfer coefficient is 50W/m2K the increase efficiency ratio is 10.46...

  1. Temperature-time distribution and thermal stresses on the RTG fins and shell during water cooling

    Turner, R. H.

    1983-01-01

    Radioisotope thermoelectric generator (RTG) packages designed for space missions generally do not require active cooling. However, the heat they generate cannot remain inside of the launch vehicle bay and requires active removal. Therefore, before the Shuttle bay door is closed, the RTG coolant tubes attached to the heat rejection fins must be filled with water, which will circulate and remove most of the heat from the cargo bay. There is concern that charging a system at initial temperature around 200 C with water at 24 C can cause unacceptable thermal stresses in the RTG shell and fins. A computer model is developed to estimate the transient temperature distribution resulting from such charging. The thermal stresses resulting from the temperature gradients do not exceed the elastic deformation limit for the material. Since the simplified mathematical model for thermal stresses tends to overestimate stresses, it is concluded that the RTG can be cooled by introducing water at 24 C to the initially hot fin coolant tubes while the RTG is in the Shuttle cargo bay.

  2. 3D modeling of dual-gate FinFET.

    Mil'shtein, Samson; Devarakonda, Lalitha; Zanchi, Brian; Palma, John

    2012-01-01

    The tendency to have better control of the flow of electrons in a channel of field-effect transistors (FETs) did lead to the design of two gates in junction field-effect transistors, field plates in a variety of metal semiconductor field-effect transistors and high electron mobility transistors, and finally a gate wrapping around three sides of a narrow fin-shaped channel in a FinFET. With the enhanced control, performance trends of all FETs are still challenged by carrier mobility dependence on the strengths of the electrical field along the channel. However, in cases when the ratio of FinFET volume to its surface dramatically decreases, one should carefully consider the surface boundary conditions of the device. Moreover, the inherent non-planar nature of a FinFET demands 3D modeling for accurate analysis of the device performance. Using the Silvaco modeling tool with quantization effects, we modeled a physical FinFET described in the work of Hisamoto et al. (IEEE Tran. Elec. Devices 47:12, 2000) in 3D. We compared it with a 2D model of the same device. We demonstrated that 3D modeling produces more accurate results. As 3D modeling results came close to experimental measurements, we made the next step of the study by designing a dual-gate FinFET biased at Vg1 >Vg2. It is shown that the dual-gate FinFET carries higher transconductance than the single-gate device. PMID:23148493

  3. Fouling of HVAC fin and tube heat exchangers

    Fin and tube heat exchangers are used widely in residential, commercial and industrial HVAC applications. Invariably, indoor and outdoor air contaminants foul these heat exchangers. This fouling can cause decreased capacity and efficiency of the HVAC equipment as well as indoor air quality problems related to microbiological growth. This paper describes laboratory studies to investigate the mechanisms that cause fouling. The laboratory experiments involve subjecting a 4.7 fins/cm (12 fins/inch) fin and tube heat exchanger to an air stream that contains monodisperse particles. Air velocities ranging from 1.5-5.2 m/s (295 ft/min-1024 ft/min) and particle sizes from 1-8.6(micro)m are used. The measured fraction of particles that deposit as well as information about the location of the deposited material indicate that particles greater than about 1(micro)m contribute to fouling. These experimental results are used to validate a scaling analysis that describes the relative importance of several deposition mechanisms including impaction, Brownian diffusion, turbophoresis, thermophoresis, diffusiophoresis, and gravitational settling. The analysis is extended to apply to different fin spacings and particle sizes typical of those found in indoor air

  4. Fouling of HVAC fin and tube heat exchangers

    Siegel, Jeffrey; Carey, Van P.

    2001-07-01

    Fin and tube heat exchangers are used widely in residential, commercial and industrial HVAC applications. Invariably, indoor and outdoor air contaminants foul these heat exchangers. This fouling can cause decreased capacity and efficiency of the HVAC equipment as well as indoor air quality problems related to microbiological growth. This paper describes laboratory studies to investigate the mechanisms that cause fouling. The laboratory experiments involve subjecting a 4.7 fins/cm (12 fins/inch) fin and tube heat exchanger to an air stream that contains monodisperse particles. Air velocities ranging from 1.5-5.2 m/s (295 ft/min-1024 ft/min) and particle sizes from 1--8.6 {micro}m are used. The measured fraction of particles that deposit as well as information about the location of the deposited material indicate that particles greater than about 1 {micro}m contribute to fouling. These experimental results are used to validate a scaling analysis that describes the relative importance of several deposition mechanisms including impaction, Brownian diffusion, turbophoresis, thermophoresis, diffusiophoresis, and gravitational settling. The analysis is extended to apply to different fin spacings and particle sizes typical of those found in indoor air.

  5. Research on the Pin Fin Efficiency and Structure

    Fan Bailin

    2013-06-01

    Full Text Available The performance of pin fin heat sink can be to measure through the temperature field. The temperature field and efficiency of the Pin Fin were analyzed, Pin fin efficiency curve was drowned also the distribution of the temperature field along the length of the pin fin curve was drawn. Thermal resistance was composed by thermal resistance of Aluminum substrate、 thermal resistance of convective heat transfer and the thermal resistance of the cooling liquid. The change rule was studied through the calculation on Aluminum plate thermal resistance、 thermal resistance of convective heat transfer and the thermal resistance of the cooling liquid. Its change regularity was simulated by toolbox In the MATLAB, and it was found that thermal resistance of convective heat transfer effect on the efficiency was most obvious in a certain amount of the heat and flow for thermal resistance of the Pin-fin radiator under the premise. The structural parameters of radiator were related to the size of thermal resistance.

  6. A Three-Dimensional Kinematics Analysis of a Koi Carp Pectoral Fin by Digital Image Processing

    Lei Wang; Min Xu; Bo Liu; Kin Huat Low; Jie Yang; Shiwu Zhang

    2013-01-01

    Pectoral fins fascinate researchers for their important role in fish maneuvers.By possessing a complicated flexible structure with several fin rays made by a thin film,the fin exhibits a three-dimensional (3D) motion.The complex 3D fin kinematics makes it challenging to study the performance of pectoral fin.Nevertheless,a detailed study on the 3D motion pattern of pectoral fins is necessary to the design and control ofa bio-inspired fin rays.Therefore,a highspeed photography system is introduced in this paper to study the 3D motion of a Koi Carp by analyzing the two views of its pectoral fin simultaneously.The key motions of the pectoral fins are first captured in both hovering and retreating.Next,the 3D configuration of the pectoral fins is reconstructed by digital image processing,in which the movement of fin rays during fish retreating and hovering is obtained.Furthermore,the method of Singular Value Decomposition (SVD) is adopted to extract the basic motion patterns of pectoral fins from extensive image sequences,i.e.expansion,bending,cupping,and undulation.It is believed that the movement of the fin rays and the basic patterns of the pectoral fins obtained in the present work can provide a good foundation for the development and control of bionic flexible pectoral fins for underwater propeller.

  7. Laser Welding Of Finned Tubes Made Of Austenitic Steels

    Stolecki M.

    2015-09-01

    Full Text Available This paper describes the technology of welding of finned tubes made of the X5CrNi1810 (1.4301 austenitic steel, developed at Energoinstal SA, allowing one to get high quality joints that meet the requirements of the classification societies (PN-EN 15614, and at the same time to significantly reduce the manufacturing costs. The authors described an automatic technological line equipped with a Trumph disc laser and a tube production technological process. To assess the quality of the joints, one performed metallographic examinations, hardness measurements and a technological attempt to rupture the fin. Analysis of the results proved that the laser-welded finned tubes were performed correctly and that the welded joints had shown no imperfections.

  8. Wake Vortex Structure Characteristics of a Flexible Oscillating Fin

    Zhi-dong Wang; Pei Chen; Xiao-qing Zhang

    2008-01-01

    We compute the wake of a two-dimensional and three-dimensional flexible fin in an unsteady flow field with heaving and pitching motions using FLUENT. Deflexion mode is used for a non-uniform cantilever beam with non-uniformly distributed load. The effect of chordwise deflexion length on the characteristics of propulsion is discussed for two-dimensional flexible fin.The thrust coefficient decreases, propulsive efficiency increases and the intensity of turbulence attenuates gradually as the deflexion length increases. For a three-dimensional flexible fin, the intensity of the vortex in the plane of symmetry is higher than that in the plane at 3/4 span length of the caudal fro. But the propulsive performance achieved is not what we expected with the given deflexion mode.

  9. Transient thermal analysis of longitudinal fins with internal heat generation considering temperature-dependent properties and different fin profiles

    Highlights: • Transient thermal analysis of the longitudinal fins is presented. • The properties of fin are considered as a function of temperature. • An approximate technique named Hybrid DTM–FDM is used for solving the problem. • The effect of physical parameters on temperature distribution is investigated. - Abstract: The present paper aims to study the transient thermal analysis of longitudinal fins with variable cross section considering internal heat generation. The profile shapes of the fins are considered rectangular, convex, triangular and concave. It is assumed that both thermal conductivity and internal heat generation are as linear functions of temperature. The power-law temperature-dependent model is used to simulate different types of heat transfer such as laminar film boiling, natural convection, nucleate boiling and radiation. The governing equation is derived as a nonlinear partial differential equation (PDE) that is solved using a hybrid approximate technique based on the differential transform method (DTM) and finite difference method (FDM). The results are presented to study the effects of some physical parameters such as fin profile shape, thermal conductivity, convection heat transfer coefficient and internal heat generation

  10. Thermohydraulic analysis of smooth and finned annular ducts

    The present work is concerned with the turbulent heat transfer and pressure drop in smooth and finned annular ducts overage heat transfer coefficients have been obtained by means of the heat exchanger theory. In addition, friction factors have also been determined. The experiments were performed by utilizing four double-pipe heat exchangers. The flowing fluids, in the heat exchangers, were air and water. The average heat transfer coefficients, for air flowing in the annular section, were determined by measuring the overall heat transfer coefficients of the heat exchangers. In order to attain fully developed conditions, the heat exchangers had a starting length of 30 hydraulic diameters. The thermal boundary conditions consisted of uniform temperature on the inner surface, the outer surface being insulated. The heat transfer coefficients and friction factors are presented in dimensionaless forms, as functions of the Reynolds number of the flow. The results for the smooth and finned annular ducts were compared. The purpose of such comparison was to study the influence of the fins on the pressure drop and heat transfer rate. In the case of the finned nular ducts, it is shown that the fin efficiency has some fluence on the heat transfer rates. The, a two-dimensional at transfer analysis was performed in order to obtain the n efficiency and the annular region efficiency. It is also shown that the overall thermal performance of finned surfaces epends mainly on the Nusselt number and on the region eficiency. These parameters are presented as functions of the Reynolds number of the flow and the geometry of the problem. (author)

  11. FLOW DISTRIBUTION IN A SOLAR COLLECTOR PANEL WITH HORIZONTAL FINS

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    2005-01-01

    The objective of this work is to theoretically and experimentally investigate the flow and temperature distribution in a solar collector panel with an absorber consisting of horizontal fins. Fluid flow and heat transfer in the collector panel are studied by means of computational fluid dynamics...... (CFD) calculations. Further, experimental investigations of a 12.5 m² solar collector panel with 16 parallel connected horizontal fins are carried out. The flow distribution through the absorber is evaluated by means of temperature measurements on the backside of the absorber tubes. The measured...

  12. Investigation of Heat Transfer Through Fins Using Fem

    Mr. H.N. Gandate

    2014-10-01

    Full Text Available Analysis of heat distribution, thermal stresses and strain for engine cylinder and fins are discussed in this paper. The cylinder and fins being analysed using finite (FE software ANSYS AND by FE (simple model. When a cylinder is subjected to certain pressure and temperature thermal distribution and thermal stresses analysis of cylinder is necessary to avoid the failure during working condition. In this work the temperature distribution and thermal stresses are evaluated by considering only temperature effect, temperature and gas pressure effect and also evaluate the same by considering the effect of cylinder head.

  13. Evaluation Performance ofan Annular Composite Fin by UsingMATLAB Programming

    Padma Lochannayak

    2015-04-01

    Full Text Available The aim of this project is analysis the efficiency ratio in an annular fin by the variation of heat transfer coefficient for any surface condition by using MATLAB software to calculate the base fin efficiency and the coated fin efficiency by the variation of heat transfer coefficient, radius ratio and base fin thickness of an annular fin and compare the coating fin efficiency to base fin efficiency. If the heat transfer coefficient is 50W/m2K the increase efficiency ratio is 10.46 – 28.02% for zinc coating fin from the literature but the MATLAB result is 9.3 - 25.54% , the gain efficiency ratio at thicker base fin (d=0.001m is 11.72%, at the thinner base fin (d=0.0002m is 33.57% from the literature but the MATLAB result is 7.45% (d=0.001m and 32.14% (d=0.0002m for zinc coating fin and the gain efficiency ratio at thicker base fin (d=0.001m is 11.92%, at the thinner base fin (d=0.0002m is 33.61% from the literature but the MATLAB result is 7.51% (d=0.001m and 32.16% (d=0.0002m for zinc alloy coating fin.

  14. Numerical simulation and experimental verification on thermal performance of a novel fin-plate thermosyphon

    Numerical investigation of a novel fin-plate thermosyphon (FPT), used to cool the high heat dissipation electronic devices, was performed. Three dimensional model of FPT is established using the Fluent software. The effects of fin pinch, fin thickness and fin type at the air side on thermal characteristics of FPT are presented with the air flow velocity various from 1.0 m/s to 4.0 m/s. The numerical results showed a good agreement with the corresponding experimental data. The heat transfer efficiency and pressure drops of FPT for plain fins were reduced by increasing the fin space. It also can be indicated that the cooling performance of FPT with serrated fins was better than plain fins for the same structural parameters. - Highlights: ► A novel diffusion welded fin-plate thermosyphon (FPT) was designed and performed. ► The plain fins heat transfer efficiency increases with the decrease of fin spaces. ► The fin thickness is less influential on FPT performance. ► Thermal performance of serrated fins is significantly much higher than that of plain fins.

  15. A high density FinFET one-time programmable cell with new intra-fin cell isolation for advanced system on chip applications

    Chen, Yu-Zheng; Yuan, Jo En; Peng, Ping Chun; Hsiao, Woan Yun; King, Ya-Chin; Lin, Chrong Jung

    2016-04-01

    A fully CMOS compatible one-time programmable (OTP) cell with a novel intra-fin cell isolation (IFCI) structure on a FinFET CMOS process has been proposed. The IFCI OTP cell utilizes the field-enhanced dielectric breakdown at fin corners to perform a fast and low-voltage program operation. Moreover, an ultrasmall intra-fin cell-to-cell isolation is firstly introduced to markedly shrink the cell size by eliminating the area-consuming spacing of fin-to-fin isolation. The IFCI FinFET OTP with fast program speed, excellent read disturb immunity, and reliable data retention is a promising solution for logic nonvolatile memory (NVM) technology in advanced CMOS nodes.

  16. Numerical study of an innovative design of a finned double-pipe heat exchanger with variable fin-tip thickness

    Highlights: • Variable fin tip angle significantly effect the velocity and temperature distribution. • Significant gain in the thermal performance with decrease in the friction factor. • Variable fin tip angle must be considered an important parameter in designing finned annulus. - Abstract: The analysis of fully developed laminar convective heat transfer in an innovate design of a finned double-pipe heat exchanger (DPHE) with longitudinal fins of variable thickness of the tip subjected to the constant heat transfer rate boundary conditions is investigated here. The tip thickness is controlled by the ratio of tip to base angles as a parameter whose values varying from 0 to 1 correspond to the fin shapes varying from the triangular to the rectangular cross-section. Upto the knowledge of the authors, this parameter is being introduced for the first time in the literature. Discontinuous Galerkin finite element method (DG-FEM) has been employed in the present work. The overall performance of the proposed DPHE has been investigated by considering the friction factor, the Nusselt number and the j-factor. Upto 178% gain in the Nusselt number and 89% gain in the j-factor have been achieved relative to the rectangular cross-section. Such gains relative to the triangular cross-section are respectively 9.5% and 19%. The results indicate that the newly introduced parameter the ratio of tip to base angles has proved to play significant role in the design of a double-pipe heat exchanger in reducing the cost, weight and frictional loss, in improving the heat transfer rate and making the exchanger energy-efficient. Therefore, it must be considered as an important design parameter for heat exchanger design

  17. DSA patterning options for FinFET formation at 7nm node

    Liu, Chi-Chun C.; Franke, Elliott; Lie, Fee Li; Sieg, Stuart; Tsai, Hsinyu; Lai, Kafai; Truong, Hoa; Farrell, Richard; Somervell, Mark; Sanders, Daniel; Felix, Nelson; Guillorn, Michael; Burns, Sean; Hetzer, David; Ko, Akiteru; Arnold, John; Colburn, Matthew

    2016-03-01

    Several 27nm-pitch directed self-assembly (DSA) processes targeting fin formation for FinFET device fabrication are studied in a 300mm pilot line environment, including chemoepitaxy for a conventional Fin arrays, graphoepitaxy for a customization approach and a hybrid approach for self-aligned Fin cut. The trade-off between each DSA flow is discussed in terms of placement error, Fin CD/profile uniformity, and restricted design. Challenges in pattern transfer are observed and process optimization are discussed. Finally, silicon Fins with 100nm depth and on-target CD using different DSA options with either lithographic or self-aligned customization approach are demonstrated.

  18. Thickness-varying flexible plunging fins swim more efficiently

    Li, Yuanda; Yeh, Peter; Alexeev, Alexander

    2015-11-01

    We use three dimensional computer simulations to probe the hydrodynamics of oscillating flexible fins with varying thickness. The fin is modeled as an elastic rectangular plate with the thickest section at the leading edge, decreasing linearly until the trailing edge. The plate is modeled as infinitely thin, and we assume that the thickest part of the fin is much smaller compared to its other length scales. Therefore, we simulate the swimmer as two dimensional plate and introduce the effect of the thickness gradient by including an appropriate mass gradient and stiffness gradient along the length of the plate. The flexible fin is actuated by a plunging motion at its leading edge. We evaluate the performance of the swimmer by measuring the steady state thrust, free swimming velocity, input power, and swimming economy as a function of driving frequency and the magnitude of the thickness gradient. We find a wideband frequency range in which the swimming economy is increased as compared to a uniformly thick swimmer. These findings may shed insight into some of the physical mechanisms that allow fish to have high swimming efficiency.

  19. Differential Transformation Method for Temperature Distribution in a Radiating Fin

    Rahimi, M.; Hosseini, M. J.; Barari, Amin;

    2011-01-01

    Radiating extended surfaces are widely used to enhance heat transfer between a primary surface and the environment. In this paper, the differential transformation method (DTM) is proposed for solving nonlinear differential equation of temperature distribution in a heat radiating fin. The concept of...

  20. Eddy current test of fin tubes for a heat exchanger

    Eddy current probes were designed for the test of fin tubes. Fin tubes, often used for heat exchangers, have uneven outer and inner surfaces to enhance the heat emission. The surface roughness make it difficult to detect flaws employing eddy current test(ECT). In order to overcome the difficulties we performed two types of works, one is the delopment of ECT probes, and the other is the signal processing including fast Fourier transform and digital filtering. In the development of ECT probes, we adopted empirical design method. Our ECT probes for fin tubes are inside diameter type. And we are specially concerned about geometric features such as the widths of the coils composing an ECT probe. We fabricated four probes with various coil widths. Eddy current test was performed using those ECT probes on specimens with artificial flaws. After analyzing the output signals, we found that, in order for the effective testing, the width of a coil should be determined considering the pitch of the fins of a tube. And we also learned that the frequency filtering could improve the s/n ratio.

  1. The Linear and Nonlinear Electro-MechanicalFin Actuator

    Zeina A. Abdul Redha

    2011-01-01

    Full Text Available Electromechanical actuators are used in a wide variety of aerospace applications such as missiles, aircrafts and spy-fly etc. In this work a linear and nonlinear fin actuator mathematical model has been developed and its response is investigated by developing an algorithm for the system using MATLAB. The algorithm used to the linear model is the state space algorithm while the algorithm used to the nonlinear model is the discrete algorithm. The huge moment constant is varied from (-3000 to 3000 and the damping ratio is varied from (0.4 to 0.8. The comparison between linear and nonlinear fin actuator response results shows that for linear model, the maximum overshoot is about 10%, rising time is 0.23 sec. and steady state occur at 0.51 sec., while For nonlinear model the maximum overshoot is about 5%, rising time is 0.26 sec. and steady state occurs at 2 sec.; i.e., the nonlinear fin actuator system gives faster and more accurate response than does the linear fin actuator system.

  2. Distinct roles of Shh and Fgf signaling in regulating cell proliferation during zebrafish pectoral fin development

    Neumann Carl J

    2008-09-01

    Full Text Available Abstract Background Cell proliferation in multicellular organisms must be coordinated with pattern formation. The major signaling pathways directing pattern formation in the vertebrate limb are well characterized, and we have therefore chosen this organ to examine the interaction between proliferation and patterning. Two important signals for limb development are members of the Hedgehog (Hh and Fibroblast Growth Factor (Fgf families of secreted signaling proteins. Sonic hedgehog (Shh directs pattern formation along the anterior/posterior axis of the limb, whereas several Fgfs in combination direct pattern formation along the proximal/distal axis of the limb. Results We used the genetic and pharmacological amenability of the zebrafish model system to dissect the relative importance of Shh and Fgf signaling in regulating proliferation during development of the pectoral fin buds. In zebrafish mutants disrupting the shh gene, proliferation in the pectoral fin buds is initially normal, but later is strongly reduced. Correlating with this reduction, Fgf signaling is normal at early stages, but is later lost in shh mutants. Furthermore, pharmacological inhibition of Hh signaling for short periods has little effect on either Fgf signaling, or on expression of G1- and S-phase cell-cycle genes, whereas long periods of inhibition lead to the downregulation of both. In contrast, even short periods of pharmacological inhibition of Fgf signaling lead to strong disruption of proliferation in the fin buds, without affecting Shh signaling. To directly test the ability of Fgf signaling to regulate proliferation in the absence of Shh signaling, we implanted beads soaked with Fgf protein into shh mutant fin buds. We find that Fgf-soaked beads rescue proliferation in the pectoral find buds of shh mutants, indicating that Fgf signaling is sufficient to direct proliferation in zebrafish fin buds in the absence of Shh. Conclusion Previous studies have shown that both

  3. Open Channel Natural Convection Heat Transfer on a Vertical Finned Plate

    Park, Joo Hyun; Heo, Jeong Hwan; Chung, Bum Jin [Kyung Hee Univ., Yongin (Korea, Republic of)

    2013-10-15

    The natural convection heat transfer of vertical plate fin was investigated experimentally. Heat transfer systems were replaced by mass-transfer systems, based on the analogy concept. The experimental results lie within the predictions of the existing heat transfer correlations of plate-fin for the natural convections. An overlapped thermal boundary layers caused increasing heat transfer, and an overlapped momentum boundary layers caused decreasing heat transfer. As the fin height increases, heat transfer was enhanced due to increased inflow from the open side of the fin spacing. When fin spacing and fin height are large, heat transfer was unaffected by the fin spacing and fin height. Passive cooling by natural convection becomes more and more important for the nuclear systems as the station black out really happened at the Fukushima NPPs. In the RCCS (Reactor Cavity Cooling System) of a VHTR (Very High Temperature Reactor), natural convection cooling through duct system is adopted. In response to the stack failure event, extra cooling capacity adopting the fin array has to be investigated. The finned plate increases the surface area and the heat transfer increases. However, the plate of fin arrays may increase the pressure drop and the heat transfer decreases. Therefore, in order to enhance the passive cooling with fin arrays, the parameters for the fin arrays should be optimized. According to Welling and Wooldridge, a natural convection on vertical plate fin is function of Gr, Pr, L, t, S, and H. The present work investigated the natural convection heat transfer of a vertical finned plate with varying the fin height and the fin spacing. In order achieve high Rayleigh numbers, an electroplating system was employed and the mass transfer rates were measured using a copper sulfate electroplating system based on the analogy concept.

  4. Eddy-Current Testing of Finned Fuel Cladding

    Eddy-current methods of testing reactor-fuel components are well established. The literature, however, mainly describes tests which are applied to simple geometries such as cylindrical rods or tubes. Recent AECL fuel designs have called for cladding with heat transfer or locating fins along the length of the fuel. This paper describes the application of eddy-current techniques to three such designs. The function and geometry of the fins must be considered in the selection of the optimum test parameters and the most suitable test coil geometry. Thus, the presence of fins may limit or restrict the test but they will not prevent a successful test. Where the fin geometry is complex eddy currents may well be the most suitable of the non-destructive methods which can be used for flaw detection. The thickness of aluminium cladding over a uranium core is measured with a small probe coil placed between the fins and shielded from them. Two flaw detection tests are described, one on sintered aluminium product (SAP) tubing using an internal bobbin coil and the other on an aluminium-clad uranium-aluminium alloy rod with an external encircling coil. The instrumentation described is relatively simple. A small portable instrument was designed for the cladding thickness measurement. For flaw detection a standard oscilloscope with a plug-in carrier-amplifier module provides a means of sensing and displaying the test coil impedance variations. This equipment ,although it does not permit sophisticated methods of eliminating unwanted noise is adequate for a variety of testing applications and has been specified for routine fuel testing on a production basis. (author)

  5. DRY/WET PERFORMANCE OF A PLATE-FIN AIR COOLED HEAT EXCHANGER WITH CONTINUOUS CORRUGATED FINS

    The report describes work to (1) determine experimentally the performance and operating characteristics of a plate-fin heat exchanger during dry/wet or 'deluge' operation and (2) continue developing the deluge heat/mass transfer model. This work supports the improvement of power ...

  6. Changes in dive behavior during naval sonar exposure in killer whales, long-finned pilot whales, and sperm whales

    Sivle, L.D.; Kvadsheim, P. H.; Fahlman, A.; Lam, F.P.A.; Tyack, P. L.; Miller, P.J.O.

    2012-01-01

    Anthropogenic underwater sound in the environment might potentially affect the behavior of marine mammals enough to have an impact on their reproduction and survival. Diving behavior of four killer whales (Orcinus orca), seven long-finned pilot whales (Globicephala melas), and four sperm whales (Physeter macrocephalus) was studied during controlled exposures to naval sonar [low frequency active sonar (LFAS): 1-2 kHz and mid frequency active sonar (MFAS): 6-7 kHz] during three field seasons (2...

  7. Changes in dive behavior during naval sonar exposure in killer whales, long-finned pilot whales, and sperm whales

    Lise Doksæter Sivle; Petter Helgevold Kvadsheim; Andreas eFahlman; Frans-Peter eLam; Peter eTyack; Patrick eMiller

    2012-01-01

    Anthropogenic underwater sound in the environment might potentially affect the behavior of marine mammals enough to have an impact on their reproduction and survival. Diving behavior of four killer whales (Orcinus orca), seven long-finned pilot whales (Globicephala melas), and four sperm whales (Physeter macrocephalus) was studied during controlled exposures to naval sonar [low frequency active sonar (LFAS): 1–2 kHz and mid frequency active sonar (MFAS): 6–7 kHz] during three field seasons (2...

  8. Actuation of a robotic fish caudal fin for low reaction torque

    Yun, Dongwon; Kim, Kyung-Soo; Kim, Soohyun; Kyung, Jinho; Lee, Sunghee

    2011-07-01

    In this paper, a novel caudal fin for actuating a robotic fish is presented. The proposed caudal fin waves in a vertical direction with a specific spatial shape, which is determined by a so-called shape factor. For a specific shape factor, a traveling wave with a vertical phase difference is formed on a caudal fin during fin motion. It will be shown by the analysis that the maximum reaction torque at the joint of a caudal fin varies depending on the shape factors. Compared with a conventional plate type caudal fin, the proposed fin with a shape factor of 2π can eliminate the reaction torque perfectly, while keeping the propulsion force unchanged. The benefits of the proposed fin will be demonstrated by experiments.

  9. Locomotion and Depth Control of Robotic Fish with Modular Undulating Fins

    Kin Huat Low

    2006-01-01

    This paper presents an environmental-friendly robotic system mimicking the undulating fins of a fish. To mimic the actual flexible fin of real fish, a fin-like mechanism with a series of connecting linkages is modeled and attached to the robotic fish, by virtue of a specially designed strip. Each link is able to turn and slide with respect to the adjacent link.These driving linkages are then used to form a mechanical fin consisting of several fin segments, which are able to produce undulations, similar to those produced by the actual fish fins. Owing to the modular and re-configurable design of the mechanical fin, we are able to construct biomimetic robotic fish with various swimming modes by fin undulations. Some qualitative and workspace observations by experiments of the robotic fish are shown and discussed.

  10. Pyramidal Fin Arrays Performance Using Streamwise Anisotropic Materials by Cold Spray Additive Manufacturing

    Cormier, Yannick; Dupuis, Philippe; Jodoin, Bertrand; Corbeil, Antoine

    2016-01-01

    This work evaluates the thermal and hydrodynamic performance of pyramidal fin arrays produced using cold spray as an additive manufacturing process. Near-net-shaped pyramidal fin arrays of pure aluminum, pure nickel, and stainless steel 304 were manufactured. Fin array characterization such as fin porosity level and surface roughness evaluation was performed. The thermal conductivities of the three different coating materials were measured by laser flash analysis. The results obtained show a lower thermal efficiency for stainless steel 304, whereas the performances of the aluminum and nickel fin arrays are similar. This result is explained by looking closely at the fin and substrate roughness induced by the cold gas dynamic additive manufacturing process. The multi-material fin array sample has a better thermal efficiency than stainless steel 304. The work demonstrates the potential of the process to produce streamwise anisotropic fin arrays as well as the benefits of such arrays.

  11. Evaluation report of the Nordic-Baltic annex to the INEX-2-FIN-exercise April 17, 1997

    NONE

    1997-10-01

    Under the auspices of the NKS programme and as a part of EKO-4 project a special Nordic-Baltic emergency exercise was carried out. In order to rationalise exercise activities it was organised as an annex to the international INEX-2-FIN exercise arranged by the OECD/NEA on April 17, 1997. Some countries carried out simultaneous national exercises as well. Only the Nordic-Baltic exercise is discussed in this report. The objectives of the INEX-2-FIN exercise were to test real time information exchange, decision making based on plant conditions and real weather, and public information. These objectives determined the framework for the scenario and necessary scripts of the exercise. For the Nordic-Baltic annex of the exercise five more detailed objectives, subordinated to the INEX-2-FIN objectives, were defined by the planning group under EKO-4 project. Since the exercise was the first of this kind for the Baltic countries only one of the special objectives was designed for them, namely N4. An independent evaluators group, consisting of one member from each participating country plus a chairperson, was set to evaluate the Nordic-Baltic annex of the INEX-2-FIN exercise. However, because of lack of personnel in the Baltic countries the evaluators were the same persons as in the planning group. (au)

  12. Evaluation report of the Nordic-Baltic annex to the INEX-2-FIN-exercise April 17, 1997

    Under the auspices of the NKS programme and as a part of EKO-4 project a special Nordic-Baltic emergency exercise was carried out. In order to rationalise exercise activities it was organised as an annex to the international INEX-2-FIN exercise arranged by the OECD/NEA on April 17, 1997. Some countries carried out simultaneous national exercises as well. Only the Nordic-Baltic exercise is discussed in this report. The objectives of the INEX-2-FIN exercise were to test real time information exchange, decision making based on plant conditions and real weather, and public information. These objectives determined the framework for the scenario and necessary scripts of the exercise. For the Nordic-Baltic annex of the exercise five more detailed objectives, subordinated to the INEX-2-FIN objectives, were defined by the planning group under EKO-4 project. Since the exercise was the first of this kind for the Baltic countries only one of the special objectives was designed for them, namely N4. An independent evaluators group, consisting of one member from each participating country plus a chairperson, was set to evaluate the Nordic-Baltic annex of the INEX-2-FIN exercise. However, because of lack of personnel in the Baltic countries the evaluators were the same persons as in the planning group. (au)

  13. Note: Dynamic analysis of a robotic fish motion with a caudal fin with vertical phase differences

    Yun, Dongwon; Kim, Kyung-Soo; Kim, Soohyun; Kyung, Jinho; Lee, Sunghwi

    2013-03-01

    In this paper, a robotic fish with a caudal fin with vertical phase differences is studied, especially focusing on the energy consumption. Energies for thrusting a conventional robotic fish and one with caudal fin with vertical phase differences are obtained and compared each other. It is shown that a robotic fish with a caudal fin with vertical phase differences can save more energy, which implies the efficient thrusting via a vertically waving caudal fin.

  14. Comparative design evaluation of plate fin heat exchanger and coiled finned tube heat exchanger for helium liquefier in the temperature range of 300-80 K

    Present indigenous helium liquefaction system at RRCAT uses the cross-counter flow coiled-finned tube heat exchangers developed completely from Indian resources. These coiled-finned tube heat exchangers are mainly suitable up to medium capacity helium liquefiers. For large capacity helium liquefier, plate fin heat exchangers are more suitable options. This paper presents the comparative evaluation of the design of both types of heat exchangers in the temperature range of 300-80 K for helium liquefier. (author)

  15. North Atlantic blue and fin whales suspend their spring migration to forage in middle latitudes: building up energy reserves for the journey?

    Mónica A Silva

    Full Text Available The need to balance energy reserves during migration is a critical factor for most long-distance migrants and an important determinant of migratory strategies in birds, insects and land mammals. Large baleen whales migrate annually between foraging and breeding sites, crossing vast ocean areas where food is seldom abundant. How whales respond to the demands and constraints of such long migrations remains unknown. We applied a behaviour discriminating hierarchical state-space model to the satellite tracking data of 12 fin whales and 3 blue whales tagged off the Azores, to investigate their movements, behaviour (transiting and area-restricted search, ARS and daily activity cycles during the spring migration. Fin and blue whales remained at middle latitudes for prolonged periods, spending most of their time there in ARS behaviour. While near the Azores, fin whale ARS behaviour occurred within a restricted area, with a high degree of overlap among whales. There were noticeable behavioural differences along the migratory pathway of fin whales tracked to higher latitudes: ARS occurred only in the Azores and north of 56°N, whereas in between these areas whales travelled at higher overall speeds while maintaining a nearly direct trajectory. This suggests fin whales may alternate periods of active migration with periods of extended use of specific habitats along the migratory route. ARS behaviour in blue whales occurred over a much wider area as whales slowly progressed northwards. The tracks of these whales terminated still at middle latitudes, before any behavioural switch was detected. Fin whales exhibited behavioural-specific diel rhythms in swimming speed but these varied significantly between geographic areas, possibly due to differences in the day-night cycle across areas. Finally, we show a link between fin whales seen in the Azores and those summering in eastern Greenland-western Iceland along a migratory corridor located in central Atlantic

  16. Multiphysics Numerical Modeling of a Fin and Tube Heat Exchanger

    Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph

    2015-01-01

    In the present research work, a modeling effort to predict the performance of a liquid-gas type fin and tube heat exchanger design is made. Three dimensional (3D) steady state numerical model is developed using commercial software COMSOL Multiphysics based on finite element method (FEM). For the...... purposes here, only gas flowing over the fin side is simulated assuming constant inner tube wall temperature. The study couples conjugate heat transfer mechanism with turbulent flow in order to describe the temperature and velocity profile. In addition, performance characteristics of the heat exchanger...... design in terms of heat transfer and pressure loss are determined by parameters such as overall heat transfer coefficient, Colburn j-factor, flow resistance factor, and efficiency index. The model provides useful insights necessary for optimization of heat exchanger design....

  17. Single basin solar still with fin for enhancing productivity

    Distilled water productivity of the single basin solar still is very low. In this work, to augment evaporation of the still basin water, fins were integrated at the basin of the still. Thus production rate accelerated. Also, for further increase in exposure area sponges were used. Experimental results were compared with ordinary basin type still and still with wicks. The governing energy balance equations were solved analytically and compared with experimental results. It was found that 29.6% productivity increased, when wick type solar still was used, 15.3% productivity increased when sponges were used and 45.5% increased when fins were used. A good agreement had been achieved with theoretical results

  18. Saddle-fin cell transistors with oxide etch rate control by using tilted ion implantation (TIS-fin) for sub-50-nm DRAMs

    As DRAM cell pitch size decreases, the need for a high performance transistor is increasing. Though saddle-fin (S-fin) transistors have superior characteristics, S-fin transistors are well known to be more sensitive to process variation. To make uniform S-fin transistors, for the first time, we developed a new fin formation method using tilted ion implantation along the wordline direction after a recess gate etch. Due to the increased etch rate of the oxide film by ion implantation damage, fins are made at the bottom channel of the recess gate after wet etching. The resulting tilt implanted saddle-fin (TIS-fin) transistor has remarkably improved characteristics, such as ∼8% subthreshold swing (SS) and a 40% drain induced barrier lowering (DIBL) decrease. Especially, the TIS-fin with a neutral dopant has a reduced threshold voltage (Vth) variation within a wafer (<100 mV), which is comparable with that of a mass-produced sphere-shaped recessed channel array transistor (SRCAT).

  19. An experimental study of a pin-fin heat exchanger

    Ramthun, David L.

    2003-01-01

    Approved for public release; distribution is unlimited A detailed experimental study has been carried out on the heat transfer and pressure drop characteristics of a compact heat exchanger with pin fins. A modular wind-tunnel with a rectangular cross-section duct-flow area was constructed that would accommodate the heat exchanger test section with varying pin designs. The flow in the tunnel was achieved through a suction-type blower, and a leading entrance length section was added to achie...

  20. Parametric study of propeller boss cap fins for container ships

    Lim Sang-Seop; Kim Tae-Won; Lee Dong-Myung; Kang Chung-Gil; Kim Soo-Young

    2014-01-01

    The global price of oil, which is both finite and limited in quantity, has been rising steadily because of the increasing requirements for energy in both developing and developed countries. Furthermore, regulations have been strengthened across all industries to address global warming. Many studies of hull resistance, propulsion and operation of ships have been performed to reduce fuel consumption and emissions. This study examined the design parameters of the propeller boss cap fin (PBCF) an...

  1. FINITE DIFFERENCE MODEL OF A CIRCULAR FIN WITH RECTANGULAR PROFILE

    GİRGİN, İbrahim; EZGİ, Cüneyt

    2015-01-01

    Numerical methods are commonly used in engineering where the analytical resultsare not reached or as a support of experimental studies. Various techniques are being usedas a numeritical method as finite difference, finite volume or finite elements, etc. In thisstudy, numerical solutions are obtained for a circular fin of rectangular profile using finitedifference method, and the results are compared to the analytical solutions. It is seen thatthe analytical solution and numerical results are ...

  2. Lionfish predators use flared fin displays to initiate cooperative hunting

    Lönnstedt, Oona M; Ferrari, Maud C. O.; Chivers, Douglas P.

    2014-01-01

    Despite considerable study, mystery surrounds the use of signals that initiate cooperative hunting in animals. Using a labyrinth test chamber, we examined whether a lionfish, Dendrochirus zebra, would initiate cooperative hunts with piscine partners. We found that D. zebra uses a stereotyped flared fin display to alert conspecific and heterospecific lionfish species Pterois antennata to the presence of prey. Per capita success rate was significantly higher for cooperative hunters when compare...

  3. Design & modelling of a composite rudderless aeroelastic fin structure

    Trapani, Matteo

    2010-01-01

    This thesis presents the study of a gapless and rudderless aeroelastic fin (GRAF) to enhance the directional stability and controllability of an aircraft. The GRAF concept was proposed and developed in the wake of previous research, targeted to improve flight performance and manoeuvrability, and to reduce fuel consumption and airframe weight. The study involved the subjects of aerodynamics, structural design and analysis, and flight mechanics. The work includes conceptual de...

  4. Dorsal and anal fin function in bluegill sunfish Lepomis macrochirus: three-dimensional kinematics during propulsion and maneuvering.

    Standen, E M; Lauder, G V

    2005-07-01

    Dorsal and anal fins are median fins located above and below the centre of mass of fishes, each having a moment arm relative to the longitudinal axis. Understanding the kinematics of dorsal and anal fins may elucidate how these fins are used in concert to maintain and change fish body position and yet little is known about the functions of these fins. Using three synchronized high-speed cameras (500 frames s(-1)) we studied the three-dimensional kinematics of dorsal and anal fins during steady swimming (0.5-2.5 TL s(-1), where TL = total length) and during slow speed maneuvers (0.5 TL s(-1)). By digitizing points along every other fin ray in the soft-rayed portion of the fins we were able to determine not only the movement of the fin surface but also the curvature of individual fin rays and the resulting fin surface shape. We found that dorsal and anal fins begin oscillating, in phase, at steady swimming speeds above 1.0 TL s(-1) and that maximum lateral displacement of the trailing edge of the fins as well as fin area increase with increasing steady swimming speed. Differences in area, lateral displacement and moment arm between the dorsal and anal fin suggest that dorsal and anal fins produce balancing torques during steady swimming. During maneuvers, fin area is maximized and mean lateral excursion of both fins is greater than during steady swimming, with large variation among maneuvers. Fin surface shape changes dramatically during maneuvers. At any given point in time the spanwise (base to tip) curvature along fin rays can differ between adjacent rays, suggesting that fish have a high level of control over fin surface shape. Also, during maneuvers the whole surface of both dorsal and anal fins can be bent without individual fin rays exhibiting significant curvature. PMID:16000544

  5. Bionic asymmetry: from amiiform fish to undulating robotic fins

    HU TianJiang; SHEN LinCheng; LOW K.H.

    2009-01-01

    Similar to bionic non-smooth which has been successfully applied in anti-resistance and anti-adhesion, bionic asymmetry is also an inherent property of biological systems and is worth exploring for con-ceivable pragmatic applications. Therefore, bionic asymmetry for undulations is of main interest in this paper. We initially investigate bionic asymmetry with a case study of the undulating robotic fin, RoboGnilos, which evolved from the long dorsal fin of Gymnarchus niloticus in the amiiforrn mode. Since the performance of the pre-existing undulating fins is hardly satisfactory, we obtain bionic in-spirations of undulatory asymmetry through observations and measurements on the specimen of G. niloticus, to improve upon the performance. Consequently, the newly acquired innovation for bionic asymmetry is incorporated into the previously derived kinematics model, and also applied to the ex-perimental prototype. Both computational and experimental results verify that bionic asymmetric un-dulation generates better propulsion performance (in terms of linear velocity and efficiency) than the traditional symmetric modes with the same undulatory parameters.

  6. Simulation Studies on A Cross Flow Plate Fin Heat Exchanger

    M. Thirumarimurugan

    2008-01-01

    Full Text Available Compact heat exchangers which were initially developed for the aerospace industries in the1940s have been considerably improved in the past few years. The main reasons for the goodperformance of compact heat exchangers are their special design which includes turbulent which inturn use high heat transfer coefficient and resists fouling, and maximum temperature driving forcebetween the hot and cold fluids. Numerous types use special enhancement techniques to achieve therequired heat transfer in smaller plot areas and, in many cases, less initial investment. One such type ofcompact heat exchanger is the Plate-fin heat exchanger. The complexity of compact heat exchangerdesign equations results from the exchangers unique ability to transfer heat between multiple processstreams and a wide array of possible flow configurations. This paper presents the performanceevaluation of cross flow plate fin heat exchanger with several different Gas-Liquid systems.Experimental results such as exchanger effectiveness, overall heat transfer coefficients were calculatedfor the flow systems of Cross flow Heat Exchangers. A steady state model for the outlet temperature ofboth the cold and hot fluid and overall heat transfer coefficient of a plate-fin cross flow heat exchangerwas developed and simulated using MATLAB, which was verified with the experiments conducted.

  7. Numerical Study on Hydrodynamic Performance of Bionic Caudal Fin

    Kai Zhou

    2016-01-01

    Full Text Available In this work, numerical simulations are conducted to reveal the hydrodynamic mechanism of caudal fin propulsion. In the modeling of a bionic caudal fin, a universal kinematics model with three degrees of freedom is adopted and the flexible deformation in the spanwise direction is considered. Navier-Stokes equations are used to solve the unsteady fluid flow and dynamic mesh method is applied to track the locomotion. The force coefficients, torque coefficient, and flow field characteristics are extracted and analyzed. Then the thrust efficiency is calculated. In order to verify validity and feasibility of the algorithm, hydrodynamic performance of flapping foil is analyzed. The present results of flapping foil compare well with those in experimental researches. After that, the influences of amplitude of angle of attack, amplitude of heave motion, Strouhal number, and spanwise flexibility are analyzed. The results show that, the performance can be improved by adjusting the motion and flexibility parameters. The spanwise flexibility of caudal fin can increase thrust force with high propulsive efficiency.

  8. Optimization of fin geometry in heat convection with entransy theory

    The entransy theory developed in recent years is used to optimize the aspect ratio of a plate fin in heat convection. Based on a two-dimensional model, the theoretical analysis shows that the minimum thermal resistance defined with the concept of entransy dissipation corresponds to the maximum heat transfer rate when the temperature of the heating surface is fixed. On the other hand, when the heat flux of the heating surface is fixed, the minimum thermal resistance corresponds to the minimum average temperature of the heating surface. The entropy optimization is also given for the heat transfer processes. It is observed that the minimum entropy generation, the minimum entropy generation number, and the minimum revised entropy generation number do not always correspond to the best heat transfer performance. In addition, the influence factors on the optimized aspect ratio of the plate fin are also discussed. The optimized ratio decreases with the enhancement of heat convection, while it increases with fin thermal conductivity increasing. (general)

  9. The effect of ether anesthesia on fin-clipping rate

    Eschmeyer, Paul H.

    1953-01-01

    As part of an experimental program to learn the effects of stocking lake trout (Salvelinus namaycush) in Lake Superior, 141, 392 fingerlings were marked at the Charlevoix (Michigan) Station of the U.S. Fish and Wildlife Service in October 1952. The adipose fin was removed from all fish, the right pelvic from the remainder. A random sample of 2, 417 of the fish showed an average total length of 4.0 inches (range, 2.7 to 5.4). The mean weight of all fish marked was slightly less than one-third ounce (49 fish per pound). The local women, none of whom had previous experience in the work, were employed to mark the fish. Bone-cutting forceps were used for excision of the fins, and each worker wore a bobbinet glove to facilitate handling of the fish. On alternate days the fish were anesthetized with ether before marking, to determine the effect of its use on the fin-clipping rate.

  10. High performance flexible CMOS SOI FinFETs

    Fahad, Hossain M.

    2014-06-01

    We demonstrate the first ever CMOS compatible soft etch back based high performance flexible CMOS SOI FinFETs. The move from planar to non-planar FinFETs has enabled continued scaling down to the 14 nm technology node. This has been possible due to the reduction in off-state leakage and reduced short channel effects on account of the superior electrostatic charge control of multiple gates. At the same time, flexible electronics is an exciting expansion opportunity for next generation electronics. However, a fully integrated low-cost system will need to maintain ultra-large-scale-integration density, high performance and reliability - same as today\\'s traditional electronics. Up until recently, this field has been mainly dominated by very weak performance organic electronics enabled by low temperature processes, conducive to low melting point plastics. Now however, we show the world\\'s highest performing flexible version of 3D FinFET CMOS using a state-of-the-art CMOS compatible fabrication technique for high performance ultra-mobile consumer applications with stylish design. © 2014 IEEE.

  11. The FLUFF code for calculating finned surface heat transfer -description and user's guide

    FLUFF is a computer code for calculating heat transfer from finned surfaces by convection and radiation. It can also represent heat transfer by radiation to a partially emitting and absorbing medium within the fin cavity. The FLUFF code is useful not only for studying the behaviour of finned surfaces but also for deriving heat fluxes which can be applied as boundary conditions to other heat transfer codes. In this way models of bodies with finned surfaces may be greatly simplified since the fins need not be explicitly represented. (author)

  12. Crystallographic Silicon-Etching for Ultra-High Aspect-Ratio FinFET

    Jovanovic, V.; Suligoj, T.; Nanver, L.K.

    2008-01-01

    The fabrication process for the FinFET with ultra-high fin-height to fin-width aspect-ratio is presented. The processing is based on the crystallographic etching of (110) bulk silicon-wafers by TMAH to expose the vertical (111) planes. The nitride-spacers are used as the hard-mask for the fin-etching and the fins are isolated by the planarization and etch-back of the thick isolation oxide. The demonstration devices exhibit nearly ideal S of 62-64 mV/dec and DIBL of 10 mV/V or lower, for the g...

  13. Structure optimization and performance experiments of a solar-powered finned-tube adsorption refrigeration system

    Highlights: • New-structure finned-tube adsorption bed for enhancing heat and mass transfer. • Temperatures on different parts of the adsorption tubes differ little. • Maximum COP of 0.122 and maximum daily ice-making of 6.5 kg are achieved by experiments. • Cooling efficiency of system with valve control higher than that without valve control. - Abstract: A large-diameter aluminum-alloy finned-tube absorbent bed collector was designed and optimized by enhancing the heat and mass transfer in the collector. The collection efficiency of the adsorbent bed collector was between 31.64% and 42.7%, and the temperature distribution in the absorbent bed was relatively uniform, beneficial to adsorption/desorption of the adsorbate in the absorbent bed. A solar-powered solid adsorption refrigeration system with the finned-tube absorbent bed collector was built. Some experiments corresponding to the adsorption/desorption process with and without a valve control were conducted in four typical weather conditions: sunny with clear sky, sunny with partly cloudy sky, cloudy sky and overcast sky. Activated carbon–methanol was utilized as the working pair for adsorption refrigeration in the experiments. The experiments achieved the maximum COP of 0.122 and the maximum daily ice-making of 6.5 kg. Under the weather conditions of sunny with clear sky, sunny with partly cloudy sky, and cloudy sky, ice-making phenomenon were observed. Even in the overcast-sky weather condition, the cooling efficiency of the system still reached 0.039 when the total solar radiation was 11.51 MJ. The cooling efficiency of the solar-powered adsorption refrigeration system with a valve control in the adsorption/desorption process was significantly higher than that without a valve control

  14. Fin des temps et temps de la fin dans l’univers médiéval

    Álvares, Cristina; Arrouye, Jean; Berthelot, Anne; Anca BRATU; Bureau, Pierre; Cazanave, Caroline; Charpentier, Hélène; Combarieu du Grès, Micheline de; Deluz, Christiane; Diogo, Américo; Gourc, Jacques; Gros, Gérard; Houdeville, Michelle; Hüe, Denis; Joly, Jehanne

    2014-01-01

    Ce volume rassemble les communications présentées au dix-huitième Colloque du C.U.E.R.M.A. qui s'est tenu à Aix-en-Provence en février 1993 sur le thème : FIN DES TEMPS ET TEMPS DE LA FIN AU MOYEN AGE Comme les années précédentes, nous avons utilisé les dactylogrammes fournis par les conférenciers. Ainsi les communications ont-elles la présentation exacte déterminée par leurs auteurs. Le C.U.E.R. M.A. remercie l'Université de Provence qui a fourni son aide pour l'organisation du colloque e...

  15. A successful application of homotopy perturbation method for efficiency and effectiveness assessment of longitudinal porous fins

    Highlights: • Homotopy perturbation method has been applied to porous fins. • Dimensionless efficiency and effectiveness expressions have been firstly developed. • Effects of porous and convection parameters on thermal analysis have been clarified. • Ratio of porous fin to solid fin heat transfer rate has been given for various cases. • Reliability and practicality of homotopy perturbation method has been illustrated. - Abstract: In our previous works, thermal performance of straight fins with both constant and temperature-dependent thermal conductivity has been investigated in detail and dimensionless analytical expressions of fin efficiency and fin effectiveness have been developed for the first time in literature via homotopy perturbation method. In this study, previous works have been extended to porous fins. Governing equations have been formulated by performing Darcy’s model. Dimensionless temperature distribution along the length of porous fin has been determined as a function of porosity and convection parameters. The ratio of porous fin to solid fin heat transfer rate has also been evaluated as a function of thermo-geometric fin parameter. The results have been compared with those of finite difference method for a specific case and an excellent agreement has been observed. The expressions developed are beneficial for thermal engineers for preliminary assessment of thermophysical systems instead of consuming time in heat conduction problems governed by strongly nonlinear differential equations

  16. Dry/wet performance of a plate-fin air-cooled heat exchanger with continuous corrugated fins

    The performance and operating characteristics of a plate-fin heat exchanger in dry/wet or deluge operations was experimentally determined. Development of the deluge heat/mass transfer model continued. The experiments were conducted in a specially-designed wind tunnel at the PNL. Air that was first heated and humidified to specified conditions was circulated at a controlled rate through a 2 ft x 6 ft heat exchanger module. The heat exchanger used in the tests was a wavy surface, plate fin on tube configuration. Hot water was circulated through the tubes at high flow rates to maintain an essentially isothermal condition on the tube side. Deionized water sprayed on the top of the vertically oriented plate fins was collected at the bottom of the core and recirculated. Instrumentation was provided for measurement of flow rates and thermodynamic conditions in the air, in the core circulation water, and in the deluge water. Measurements of the air side pressure drop and heat rejection rate were made as a function of air flow rate, air inlet temperature and humidity, deluge water flow rate, and the core inclination from the vertical. An overall heat transfer coefficient and an effective deluge film convective coefficient was determined. The deluge model, for predicting heat transfer from a wet finned heat exchanger was further developed and refined, and a major extension of the model was formulated that permits simultaneous calculation of both the heat transfer and evaporation rates from the wetted surface. The experiments showed an increase in the heat rejection rate due to wetting, accompanied by a proportional increase in the air side pressure drop. For operation at the same air side pressure drop, the enhancement ratio Q/sub w//Q/sub d/ varied between 2 and 5 for the conditions tested. Thus, the potential enhancement of heat transfer due to wetting can be substantial

  17. Dry/wet performance of a plate-fin air-cooled heat exchanger with continuous corrugated fins

    Hauser, S.G.; Kreid, D.K.; Johnson, B.M.

    1981-01-01

    The performance and operating characteristics of a plate-fin heat exchanger in dry/wet or deluge operations was experimentally determined. Development of the deluge heat/mass transfer model continued. The experiments were conducted in a specially-designed wind tunnel at the PNL. Air that was first heated and humidified to specified conditions was circulated at a controlled rate through a 2 ft x 6 ft heat exchanger module. The heat exchanger used in the tests was a wavy surface, plate fin on tube configuration. Hot water was circulated through the tubes at high flow rates to maintain an essentially isothermal condition on the tube side. Deionized water sprayed on the top of the vertically oriented plate fins was collected at the bottom of the core and recirculated. Instrumentation was provided for measurement of flow rates and thermodynamic conditions in the air, in the core circulation water, and in the deluge water. Measurements of the air side pressure drop and heat rejection rate were made as a function of air flow rate, air inlet temperature and humidity, deluge water flow rate, and the core inclination from the vertical. An overall heat transfer coefficient and an effective deluge film convective coefficient was determined. The deluge model, for predicting heat transfer from a wet finned heat exchanger was further developed and refined, and a major extension of the model was formulated that permits simultaneous calculation of both the heat transfer and evaporation rates from the wetted surface. The experiments showed an increase in the heat rejection rate due to wetting, accompanied by a proportional increase in the air side pressure drop. For operation at the same air side pressure drop, the enhancement ratio Q/sub w//Q/sub d/ varied between 2 and 5 for the conditions tested. Thus, the potential enhancement of heat transfer due to wetting can be substantial.

  18. A Computational Fluid Dynamics (CFD) Analysis of an Undulatory Mechanical Fin Driven by Shape Memory Alloy

    Yong-Hua Zhang; Jian-Hui He; Jie Yang; Shi-Wu Zhang; Kin Huat Low

    2006-01-01

    Many fishes use undulatory fin to propel themselves in the underwater environment. These locomotor mechanisms have a popular interest to many researchers. In the present study, we perform a three-dimensional unsteady computation of an undulatory mechanical fin that is driven by Shape Memory Alloy (SMA). The objective of the computation is to investigate the fluid dynamics of force production associated with the undulatory mechanical fin. An unstructured,grid-based, unsteady Navier-Stokes solver with automatic adaptive remeshing is used to compute the unsteady flow around the fin through five complete cycles. The pressure distribution on fin surface is computed and integrated to provide fin forces which are decomposed into lift and thrust. The velocity field is also computed throughout the swimming cycle. Finally, a comparison is conducted to reveal the dynamics of force generation according to the kinematic parameters of the undulatory fin (amplitude, frequency and wavelength).

  19. The Influence of Culture on the International Management of Shark Finning

    Dell'Apa, Andrea; Chad Smith, M.; Kaneshiro-Pineiro, Mahealani Y.

    2014-08-01

    Shark finning is prohibited in many countries, but high prices for fins from the Asian market help maintain the international black-market and poaching. Traditional shark fin bans fail to recognize that the main driver of fin exploitation is linked to cultural beliefs about sharks in traditional Chinese culture. Therefore, shark finning should be addressed considering the social science approach as part of the fishery management scheme. This paper investigates the cultural significance of sharks in traditional Chinese and Hawaiian cultures, as valuable examples of how specific differences in cultural beliefs can drive individuals' attitudes toward the property of shark finning. We suggest the use of a social science approach that can be useful in the design of successful education campaigns to help change individuals' attitudes toward shark fin consumption. Finally, alternative management strategies for commercial fishers are provided to maintain self-sustainability of local coastal communities.

  20. A Novel Implementation of a Flexible Robotic Fin Actuated by Shape Memory Alloy

    Qin Yan; Lei Wang; Bo Liu; Jie Yang; Shiwu Zhang

    2012-01-01

    In this paper,study of a novel flexible robotic-fin actuated by Shape Memory Alloy (SMA) is presented.The developed robotic fin is capable of implementing various 3-Dimensional (3D) motions,which plays an important role in robot propulsion and maneuverability.Firstly,the morphological and mechanics parameters of a real pectoral fin from a carp are investigated.Secondly,a detailed design of the flexible pectoral fin driven by SMA is presented according to the previous morphological and mechanics analyses.Thirdly,a simplified theoretical model on the SMA fin plate is derived.The thermodynamics of the SMA plate and the relationship between curvature and phase transformation are analyzed.Finally,several simulations and model experiments are conducted according to the previous analyses.The results of the experiments are useful for the control of the robotic fin.The experimental results reveal that the SMA actuated fin ray has a good actuating performance.

  1. PNS predictions for supersonic/hypersonic flows over finned missile configurations

    Bhutta, Bilal A.; Lewis, Clark H.

    1992-01-01

    Finned missile design entails accurate and computationally fast numerical techniques for predicting viscous flows over complex lifting configurations at small to moderate angles of attack and over Mach 3 to 15; these flows are often characterized by strong embedded shocks, so that numerical algorithms are also required to capture embedded shocks. The recent real-gas Flux Vector Splitting technique is here extended to investigate the Mach 3 flow over a typical finned missile configuration with/without side fin deflections. Elliptic grid-generation techniques for Mach 15 flows are shown to be inadequate for Mach 3 flows over finned configurations and need to be modified. Fin-deflection studies indicate that even small amounts of missile fin deflection can substantially modify vehicle aerodynamics. This 3D parabolized Navier-Stokes scheme is also extended into an efficient embedded algorithm for studying small axially separated flow regions due to strong fin and control surface deflections.

  2. An improved model for predicting performance of finned tube heat exchanger under frosting condition, with frost thickness variation along fin

    Tso, C.P. [Multimedia University, Jalan Ayer Keroh Lama, Melaka (Malaysia). Faculty of Engineering and Technology; Cheng, Y.C.; Lai, A.C.K. [Nanyang Technological University, Singapore (Singapore). School of Mechanical and Aerospace Engineering

    2006-01-15

    Frost accumulation on a heat exchanger, a direct result of combined heat and mass transfer between the moist air flowing across a cold surface, causes heat transfer performance degradation due to the insulating effect of frost layer and the coil blockage as the frost grows. The complex geometry of finned tube heat exchangers leads to uneven wall and air temperature distribution inside the coil, and causes variations of frost growth rate and densification along the coil. In this study, a general distributed model with frost formation was developed. The equations for finned tube heat exchanger were derived in non-steady-state manner and quasi-steady state in the frost model. In order to make the model more realistic, the variation of frost along fin due to uneven temperature distribution was included. The presented model is able to predict the dynamic behavior of an air cooler both under non-frost and frost condition. Comparisons were made based on the frost mass accumulation, pressure drop across coil and energy transfer coefficient, and results were found to agree well with reported experimental results. (author)

  3. The effects of perforation sizes on laminar heat transfer characteristics of an array of perforated fins

    Highlights: ► Thermal effects of perforation sizes and numbers are studied in perforated fins. ► Flow is laminar and perforations are along the length of fins. ► Porosity is defined as volume of perforations divided by volume of a solid fin. ► At a constant porosity, fins with fewer perforations have higher heat transfer rates. ► At a constant porosity, perforated fins do not affect total drag. - Abstract: Shaeri and Yaghoubi [25] reported the highest heat transfer rate in a laminar flow for a perforated fin with the most perforations (porosity), regardless of investigation on the effects of perforation sizes. In this study, the effects of size and number of perforations on laminar heat transfer characteristics of an array of perforated fins at the highest porosity of the study of Shaeri and Yaghoubi [25] have been numerically investigated. The Navier–Stokes and energy equations are solved by the finite volume procedure using the SIMPLE algorithm. Results show that at a specific porosity, the thermal entrance length of each perforation of a fin with a lower number of perforations is larger than that of each perforation of a fin with a higher number of perforations. Therefore, in a laminar flow and at a constant porosity, a fin with fewer perforations is more efficient to enhance the heat transfer rate compared with a fin with more perforations. Although perforated fins have higher friction drag and lower pressure drag with respect to solid fins, perforated fins do not affect total drag.

  4. Energetics of median and paired fin swimming, body and caudal fin swimming, and gait transition in parrotfish (Scarus schlegeli) and triggerfish (Rhinecanthus aculeatus)

    Korsmeyer, Keith E; Steffensen, John Fleng; Herskin, Jannik

    2002-01-01

    To determine the energetic costs of rigid-body, median or paired-fin (MPF) swimming versus undulatory, body-caudal fin (BCF) swimming, we measured oxygen consumption as a function of swimming speed in two MPF swimming specialists, Schlegel's parrotfish and Picasso triggerfish. The parrotfish swam...

  5. Co-Occurrence and Habitat Use of Fin Whales, Striped Dolphins and Atlantic Bluefin Tuna in the Northwestern Mediterranean Sea.

    Robert Klaus Bauer

    Full Text Available Different dolphin and tuna species have frequently been reported to aggregate in areas of high frontal activity, sometimes developing close multi-species associations to increase feeding success. Aerial surveys are a common tool to monitor the density and abundance of marine mammals, and have recently become a focus in the search for methods to provide fisheries-independent abundance indicators for tuna stock assessment. In this study, we present first density estimates corrected for availability bias of fin whales (Balaenoptera physalus and striped dolphins (Stenella coeruleoalba from the Golf of Lions (GoL, compared with uncorrected estimates of Atlantic bluefin tuna (ABFT; Thunnus thynnus densities from 8 years of line transect aerial surveys. The raw sighting data were further used to analyze patterns of spatial co-occurrence and density of these three top marine predators in this important feeding ground in the Northwestern Mediterranean Sea. These patterns were investigated regarding known species-specific feeding preferences and environmental characteristics (i. e. mesoscale activity of the survey zone. ABFT was by far the most abundant species during the surveys in terms of schools and individuals, followed by striped dolphins and fin whales. However, when accounted for availability bias, schools of dolphins and fin whales were of equal density. Direct interactions of the species appeared to be the exception, but results indicate that densities, presence and core sighting locations of striped dolphins and ABFT were correlated. Core sighting areas of these species were located close to an area of high mesoscale activity (oceanic fronts and eddies. Fin whales did not show such a correlation. The results further highlight the feasibility to coordinate research efforts to explore the behaviour and abundance of the investigated species, as demanded by the Marine Strategy Framework Directive (MSFD.

  6. Co-Occurrence and Habitat Use of Fin Whales, Striped Dolphins and Atlantic Bluefin Tuna in the Northwestern Mediterranean Sea.

    Bauer, Robert Klaus; Fromentin, Jean-Marc; Demarcq, Hervé; Brisset, Blandine; Bonhommeau, Sylvain

    2015-01-01

    Different dolphin and tuna species have frequently been reported to aggregate in areas of high frontal activity, sometimes developing close multi-species associations to increase feeding success. Aerial surveys are a common tool to monitor the density and abundance of marine mammals, and have recently become a focus in the search for methods to provide fisheries-independent abundance indicators for tuna stock assessment. In this study, we present first density estimates corrected for availability bias of fin whales (Balaenoptera physalus) and striped dolphins (Stenella coeruleoalba) from the Golf of Lions (GoL), compared with uncorrected estimates of Atlantic bluefin tuna (ABFT; Thunnus thynnus) densities from 8 years of line transect aerial surveys. The raw sighting data were further used to analyze patterns of spatial co-occurrence and density of these three top marine predators in this important feeding ground in the Northwestern Mediterranean Sea. These patterns were investigated regarding known species-specific feeding preferences and environmental characteristics (i. e. mesoscale activity) of the survey zone. ABFT was by far the most abundant species during the surveys in terms of schools and individuals, followed by striped dolphins and fin whales. However, when accounted for availability bias, schools of dolphins and fin whales were of equal density. Direct interactions of the species appeared to be the exception, but results indicate that densities, presence and core sighting locations of striped dolphins and ABFT were correlated. Core sighting areas of these species were located close to an area of high mesoscale activity (oceanic fronts and eddies). Fin whales did not show such a correlation. The results further highlight the feasibility to coordinate research efforts to explore the behaviour and abundance of the investigated species, as demanded by the Marine Strategy Framework Directive (MSFD). PMID:26458254

  7. Alterations in Body Fluid Balance During Fin Swimming in 29 °C Water in a Population of Special Forces Divers.

    Castagna, O; Desruelle, A V; Blatteau, J E; Schmid, B; Dumoulin, G; Regnard, J

    2015-12-01

    Highly trained "combat swimmers" encounter physiological difficulties when performing missions in warm water. The aim of this study was to assess the respective roles of immersion and physical activity in perturbing fluid balance of military divers on duty in warm water. 12 trained divers performed 2 dives each (2 h, 3 m depth) in fresh water at 29 °C. Divers either remained Static or swam continuously (Fin) during the dive. In the Fin condition, oxygen consumption and heart rate were 2-fold greater than during the Static dive. Core and skin temperatures were also higher (Fin: 38.5±0.4 °C and 36.2±0.3 °C and Static: 37.2±0.3 °C and 34.3±0.3 °C; respectively p=0.0002 and p=0.0003). During the Fin dive, the average mass loss was 989 g (39% urine loss, 41% sweating and 20% insensible water loss and blood sampling); Static divers lost 720 g (84% urine loss, 2% sweating and 14% insensible water loss and blood sampling) (p=0.003). In the Fin condition, a greater decrease in total body mass and greater sweating occurred, without effects on circulating renin and aldosterone concentrations; diuresis was reduced, and plasma volume decreased more than in the Static condition. PMID:26422054

  8. Optimization of “T”-Shaped Fins Geometry Using Constructal Theory and “FEA” Concepts

    ManasRanjanPadhy

    2014-12-01

    Full Text Available This paper reports the geometric (constructal optimization of T-shaped fin assemblies, where the objective is to maximize the global thermal conductance of the assembly, subject to total volume and fin-material constraints. Assemblies of plate fins are considered. It is shown that every geometric feature of the assembly is delivered by the optimization principle and the constraints. These optimal features are reported in dimensionless terms for this entire class of fin assemblies. Based on the constructal theory by Dr. A Bejan, T-shaped fins are developed for better heat conductance as compared to conventional fins. Now the geometry of this T type of fin contains many geometry parameters which affect the overall conductance of the fin. With the same material constraint and volume constraints optimal geometry ratios has been calculated so as to design the fin for its best performance. With focus to the practical situations and heat flow patterns, it is quite complex to calculate the temperatures on a T-shaped fin. It requires the help of FEA concepts and CAE software to optimize the geometry.

  9. Pectoral fin morphology of batoid fishes (Chondrichthyes: Batoidea): explaining phylogenetic variation with geometric morphometrics.

    Franklin, Oliver; Palmer, Colin; Dyke, Gareth

    2014-10-01

    The diverse cartilaginous fish lineage, Batoidea (rays, skates, and allies), sister taxon to sharks, comprises a huge range of morphological diversity which to date remains unquantified and unexplained in terms of evolution or locomotor style. A recent molecular phylogeny has enabled us to confidently assess broadscale aspects of morphology across Batoidea. Geometric morphometrics quantifies the major aspects of shape variation, focusing on the enlarged pectoral fins which characterize batoids, to explore relationships between ancestry, locomotion and habitat. A database of 253 specimens, encompassing 60 of the 72 batoid genera, reveals that the majority of morphological variation across Batoidea is attributable to fin aspect-ratio and the chordwise location of fin apexes. Both aspect-ratio and apex location exhibit significant phylogenetic signal. Standardized independent linear contrast analysis reveals that fin aspect-ratio can predict locomotor style. This study provides the first evidence that low aspect-ratio fins are correlated with undulatory-style locomotion in batoids, whereas high aspect-ratio fins are correlated with oscillatory locomotion. We also show that it is phylogeny that determines locomotor style. In addition, body- and caudal fin-locomotors are shown to exhibit low aspect-ratio fins, whereas a pelagic lifestyle correlates with high aspect-ratio fins. These results emphasize the importance of phylogeny in determining batoid pectoral fin shape, however, interactions with other constraints, most notably locomotor style, are also highlighted as significant. PMID:24797832

  10. Optimal design of plate-fin heat exchangers by a Bees Algorithm

    In this study, the application of Bees Algorithm (BA) in the optimum design of a cross flow plate-fin heat exchanger with offset strip fin is investigated. First, heat exchanger is optimized and designed according to the effectiveness optimization. Then, an analysis based on the second law of thermodynamics and minimizations of entropy generation units is performed. Specific heat duty, space restriction and permitted pressure drop are considered as the constraints for maximizing the effectiveness and minimizing the entropy generation units. Hot and cold flow length of the heat exchangers, number of fin layers, fin frequency, fin height, fin strip length and fin thickness are introduced as optimization variables. The effectiveness and accuracy of the suggested algorithm are compared with literature. The results have shown that BA can find optimum configuration with higher accuracy in comparison with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Imperialist Competitive Algorithm (ICA) and preliminary design. - Highlights: •We analyzed a plate-fin heat exchanger with offset strip fins. •This is the first application of a Bees Algorithm for plate-fin heat exchanger design. •Preliminarily design and effectiveness of PFHE was improved by minimizing the entropy generation units. •The results show the superiority of this method over GA, PSO and ICA and preliminary design

  11. Patterning challenges in advanced device architectures: FinFETs to nanowires

    Horiguchi, N.; Milenin, A. P.; Tao, Z.; Hubert, H.; Altamirano-Sanchez, E.; Veloso, A.; Witters, L.; Waldron, N.; Ragnarsson, L.-Å.; Kim, M. S.; Kikuchi, Y.; Mertens, H.; Raghavan, P.; Piumi, D.; Collaert, N.; Barla, K.; Thean, A. V.

    2016-03-01

    Si FinFET scaling is getting more difficult due to extremely narrow fin width control and power dissipation. Nanowire FETs and high mobility channel are attractive options for CMOS scaling. Nanowire FETs can maintain good electrostatics with relaxed nanowire diameter. High mobility channel can provide good performance at low power operation. However their fin patterning is challenging due to fins consisted of different materials or fragile high mobility material. Controlled etch and strip are necessary for good fin cd and profile control. Fin height increase is a general trend of scaled FinFETs and nanowire FETs, which makes patterning difficult not only in fin, but also in gate, spacer and replacement metal gate. It is important that gate and spacer etch have high selectivity to fins and good cd and profile control even with high aspect ratio of fin and gate. Work function metal gate patterning in scaled replacement metal gate module needs controlled isotropic etch without damaging gate dielectric. SF6 based etch provides sharp N-P boundary and improved gate reliability.

  12. N. meningitidis 1681 is a member of the FinO family of RNA chaperones.

    Chaulk, S.; Lu, J.; Tan, K.; Arthur, D.; Edwards, R.; Frost, L.; Joachimiak, A.; Glover, J. (Biosciences Division); (Univ. of Alberta)

    2010-11-01

    The conjugative transfer of F-like plasmids between bacteria is regulated by the plasmid-encoded RNA chaperone, FinO, which facilitates sense - antisense RNA interactions to regulate plasmid gene expression. FinO was thought to adopt a unique structure, however many putative homologs have been identified in microbial genomes and are considered members of the FinO-conjugation-repressor superfamily. We were interested in determining whether other members were also able to bind RNA and promote duplex formation, suggesting that this motif does indeed identify a putative RNA chaperone. We determined the crystal structure of the N. meningitidis MC58 protein NMB1681. It revealed striking similarity to FinO, with a conserved fold and a large, positively charged surface that could function in RNA interactions. Using assays developed to study FinO-FinP sRNA interactions, NMB1681, like FinO, bound tightly to FinP RNA stem-loops with short 5-foot and 3-foot single-stranded tails but not to ssRNA. It also was able to catalyze strand exchange between an RNA duplex and a complementary single-strand, and facilitated duplexing between complementary RNA hairpins. Finally, NMB1681 was able to rescue a finO deficiency and repress F plasmid conjugation. This study strongly suggests that NMB1681 is a FinO-like RNA chaperone that likely regulates gene expression through RNA-based mechanisms in N. meningitidis.

  13. Thermal-hydraulic performance of novel louvered fin using flat tube cross-flow heat exchanger

    Junqi DONG; Jiangping CHEN; Zhijiu CHEN

    2008-01-01

    Experimental studies were conducted to investigate the air-side heat transfer and pressure drop characteristics of a novel louvered fins and flat tube heat exchangers. A series of tests were conducted for 9 heat exchangers with different fin space and fin length, at a constant tube-side water flow rate of 2.8 m/h. The air side thermal performance data were analyzed using the effectiveness-NTU method. Results were presented as plot of Colburn j factor and friction factor f against the Reynolds number in the range of 500-6500. The characteristics of the heat transfer and pressure drop of different fin space and fin length were analyzed and compared. In addition, the curves of the heat transfer coefficients vs. pumping power per unit heat transfer area were plotted. Finally, the area optimization factor was used to evaluate the thermal hydraulic performance of the louvered fins with differential geometries. The results showed that the j and ffactors increase with the decrease of the fin space and fin length, and the fin space has more obvious effect on the thermal hydraulic characteristics of the novel louvered fins.

  14. Application of homotopy analysis method and inverse solution of a rectangular wet fin

    Highlights: • Solution of a wet fin with is obtained by homotopy analysis method (HAM). • Present HAM results have been well-validated with literature results. • Inverse analysis is done using genetic algorithm. • Measurement error of ±10–12% (approx.) is found to yield satisfactory reconstructions. - Abstract: This paper presents the analytical solution of a rectangular fin under the simultaneous heat and mass transfer across the fin surface and the fin tip, and estimates the unknown thermal and geometrical configurations of the fin using inverse heat transfer analysis. The local temperature field is obtained by using homotopy analysis method for insulated and convective fin tip boundary conditions. Using genetic algorithm, the thermal and geometrical parameters, viz., thermal conductivity of the material, surface heat transfer coefficient and dimensions of the fin have been simultaneously estimated for the prescribed temperature field. Earlier inverse studies on wet fin have been restricted to the analysis of nonlinear governing equation with either insulated tip condition or finite tip temperature only. The present study developed a closed-form solution with the consideration of nonlinearity effects in both governing equation and boundary condition. The study on inverse optimization leads to many feasible combination of fin materials, thermal conditions and fin dimensions. Thus allows the flexibility for designing a fin under wet conditions, based on multiple combinations of fin materials, fin dimensions and thermal configurations to achieve the required heat transfer duty. It is further determined that the allowable measurement error should be limited to ±10–12% in order to achieve satisfactory reconstruction

  15. Markkinointiviestintäsuunnitelma : Air D Fin Oy

    Häkkinen, Susanna; Laakkonen, Niko

    2013-01-01

    Opinnäytetyömme aiheena oli markkinointiviestinnän suunnitelman tekeminen pienelle toimintansa alkuvaiheessa olevalle perheyritykselle, Air D Fin Oy:lle. Tutkimuskysymyksenämme oli selvittää mitkä ovat pk-yrityksen yksityisasiakkaille suunnatun markkinointiviestinnän tärkeimmät keinot ja välineet. Lisäksi tavoitteena oli löytää tutkimuksen avulla AirD:n yksityisasiakkaiden asiakasprofiili ja selvittää kuluttajien kiinnostus tuotetta kohtaan. AirD on eteläsuomalainen perheyritys, joka on p...

  16. New developments in compact plate-fin heat exchangers

    The extension of compact plate-fin heat exchanger capabilities in order to accommodate the performance requirements of regeneratively cooled hypersonic ramjet engines, laser weapons, aircraft engine infrared suppressors, and large high-efficiency gas turbine cycles is described. Attention is given to cooling fluid flow path geometry and heat exchanger fabrication techniques, such novel materials as alumina and silicon carbide, and space and weight constraints imposed on designs by airborne application. It is shown that operating temperatures, pressures and area densities have been significantly increased

  17. Het fin-de-siècle als vertoning

    W. Krul

    2002-01-01

    Full Text Available

    1900

    Wessel Krul
    In their publication entitled 1900: Hoogtij van burgerlijke cultuur, the authors, Jan Bank and Maarten van Buuren, failed to pay adequate attention to the contrasts and differences that typified Dutch culture at the fin de siècle. The book therefore lacks analytical precision. The term 'bourgeois culture' should not have been applied in such an all-inclusive and unambiguous manner.

  18. Transfer coefficients for plate fin and elliptical tube heat exchangers

    In order to determine transfer coefficients for plate fin and elliptical tube exchangers, mass transfer experiments have been performed using the naphthalene sublimation technique. By means of the heat-mass transfer analogy, the results can be converted to heat transfer results. The transfer coefficients were compared with those for circular tube exchangers and the comparison revealed no major differences. This is a positive outcome, since the use of elliptical tubes may reduce substantially the pressure drop, without affecting the transfer characteristics.(Author)

  19. Coning motion stability of wrap around fin rockets

    2007-01-01

    Both the asymptotical stability criterion and the bounded stability criterion of the coning motion for wrap around fin(WAF) rockets are proposed through the analy-sis of coning motion equations,which can be easily used to determine the exis-tence of the coning motion during the rocket design. The correctness of the crite-rions is verified by mathematical simulation examples of a WAF rocket with differ-ent setting angles. It is also found that the setting angle of WAF has great effects on the rolling moment and side moment of the rocket.

  20. Coning motion stability of wrap around fin rockets

    MAO XueRui; YANG ShuXing; XU Yong

    2007-01-01

    Both the asymptotical stability criterion and the bounded stability criterion of the coning motion for wrap around fin (WAF) rockets are proposed through the analysis of coning motion equations, which can be easily used to determine the existence of the coning motion during the rocket design. The correctness of the criterions is verified by mathematical simulation examples of a WAF rocket with different setting angles. It is also found that the setting angle of WAF has great effects on the rolling moment and side moment of the rocket.

  1. Laser Welding Of Finned Tubes Made Of Austenitic Steels

    Stolecki M.; Bijok H.; Kowal Ł.; Adamiec J.

    2015-01-01

    This paper describes the technology of welding of finned tubes made of the X5CrNi1810 (1.4301) austenitic steel, developed at Energoinstal SA, allowing one to get high quality joints that meet the requirements of the classification societies (PN-EN 15614), and at the same time to significantly reduce the manufacturing costs. The authors described an automatic technological line equipped with a Trumph disc laser and a tube production technological process. To assess the quality of the joints, ...

  2. Numerical Appraisal of Heat Transfer and Flow in Concentric Annuli Permeable and Impermeable Fins by using Nanofluids

    Dr. Khalid Faisal Sultan

    2014-01-01

    Numerical study was carried out to investigate the natural convection heat transfer enhancement by using utilizing various nanofluids in a three – dimensional annulus. The annulus between two concentric cylinders with porous (permeable)fins , solid (impermeable) fins, without fins and these fins attached to the inner cylinder. The inner cylinder and two fins are maintained at constant wall temperature (CWT),while the outer cylinder is diathermal (adiabatic).The problem was solved ...

  3. Selection criteria for plain and segmented finned tubes for heat recovery systems

    Reid, D. R.; Taborek, J.

    1994-04-01

    Heat recovery heat exchangers with gas as one of the streams depend on the use of finned tubes to compensate for the inherently low gas heat transfer coefficient. Standard frequency welded 'plain' fins were generally used in the past, until the high-frequency resistance welding technology permitted a cost-effective manufacture of 'segmented' fins. The main advantage of this fin design is that it permits higher heat flux and hence smaller, lighter weight units for most operating conditions. While the criteria that dictate optimum design, such as compactness, weight, and cost per unit area favor the segmented fin design, a few other considerations such as fouling, ease of cleaning, and availability of dependable design methods have to be considered. This paper analyzes the performance parameters that affect the selection of either fin type.

  4. Analytical solution of non-Fourier heat conduction problem on a fin under periodic boundary conditions

    Ahmadikia, H. [University of Isfahan, Isfahan (Iran, Islamic Republic of); Rismanian, M. [Bu-Ali Sina University, Hamadan (Iran, Islamic Republic of)

    2011-11-15

    Fourier and hyperbolic models of heat transfer on a fin that is subjected to a periodic boundary condition are solved analytically. The differential equation in Fourier and non-Fourier models is solved by the Laplace transform method. The temperature distribution on the fin is obtained using the residual theorem in a complex plan for the inverse Laplace transform method. The thermal shock is generated at the base of the fin, which moves toward the tip of the fin and is reflected from the tip. The current study of various parameters on the thermal shock location shows that relaxation time has a great influence on the temperature distribution on the fin. An unsteady boundary condition in the base fin caused the shock, which is generated continuously from the base and has interacted with the other reflected thermal shocks. Results of the current study show that the hyperbolic heat conduction equation can violate the second thermodynamic law under some unsteady boundary conditions.

  5. Analytical solution of non-Fourier heat conduction problem on a fin under periodic boundary conditions

    Fourier and hyperbolic models of heat transfer on a fin that is subjected to a periodic boundary condition are solved analytically. The differential equation in Fourier and non-Fourier models is solved by the Laplace transform method. The temperature distribution on the fin is obtained using the residual theorem in a complex plan for the inverse Laplace transform method. The thermal shock is generated at the base of the fin, which moves toward the tip of the fin and is reflected from the tip. The current study of various parameters on the thermal shock location shows that relaxation time has a great influence on the temperature distribution on the fin. An unsteady boundary condition in the base fin caused the shock, which is generated continuously from the base and has interacted with the other reflected thermal shocks. Results of the current study show that the hyperbolic heat conduction equation can violate the second thermodynamic law under some unsteady boundary conditions

  6. Forced convection heat transfer correlation for finned plates in a duct

    Forced convection heat transfer experiments were conducted for plate-fin in a duct using various fin spacing, fin height, duct width, Reynolds number for Prandtl numbers 2,014. Based upon analogy concept, mass transfer rate were measured instead of heat transfer rates. The heat transfer rates were enhanced with the increase of fin height and decrease of fin spacing as they increase the heat transfer area. Meanwhile, heat transfer rates were impaired with the increase of the duct width as the bypass flows increased to tip clearance region. Forced convection heat transfer correlations were developed for laminar and turbulent flow conditions and for narrow and wide ducts. The work draws attention to the tip clearance on the heat transfer of the finned plate in a duct. (author)

  7. One Dimensional Finite Element Analysis of Heat Dissipation from Rectangular Fin with Longitudinal Hexagonal Perforations

    Isam H. E. Qasem

    2015-06-01

    Full Text Available In this study the finite element method (FEM is used in solving the heat dissipation from a perforated fin. This fin is horizontal rectangular fin subjected to natural convection and provided with longitudinal hexagonal perforations. The orientation of these perforations is described as they have two sides parallel to the fin sides. The body of the fin is discretized into the sufficient finite elements. The number of these elements can be altered as required according to the automatic mesh generation. The heat dissipation of the perforated fin is computed and compared with that of the solid one of the same dimensions and same thermal properties. The comparison refers to acceptable results and heat dissipation enhancement due to certain perforation.

  8. De la fin de la guerre froide au début de la guerre sans fin

    Ferrier, Jean Pierre

    2006-01-01

    El Profesor Ferrier nos describe los acontecimientos de la sociedad internacional en los ultimos 15 años y señala la profunda diferencia entre "la estabilidad" durante la guerra fría y la "revolucion" que se ha producido en el escenario internacional a partir de la caida del muro de Berlin. Hace especial referencia al comportamiento de la superpotencia (Estados Unidos) y su guerra sin fin contra los "nuevos enemigos" en los diferentes teatros internacionales en su lucha por imponer el "Bien" ...

  9. Natural Convection in a Finned Rayleigh-Benard Cubical Enclosure

    The papers deals with a numerical 3D study of natural convection in a finned Rayleigh-Be nard (RB) cubical enclosure. A single fin with a thickness of 10 pour cent of the cavity side (and a height of 50 pour cent ) is placed vertically on the bottom hot wall at TH. The working fluid is air with Prandtl number Pr = 0.71 and the Rayleigh number (Ra) varies from 103 to 105. The solid-to-fluid thermal conductivity ratio (kR) was fixed at RK = 7000, corresponding to a metal of high conductivity. The top wall is at the temperature TC H and the remaining four surfaces are insulated. Inside the RB enclosure, the flow structure and the temperature distribution are presented in terms of mean velocity vector plots and isotherm plots. The effects of the Rayleigh number on the mean heat transfer rate through the cold wall are presented and discussed. A correlation between the averaged Nusselt number through the top wall and Ra is proposed

  10. Experimental investigation of water sprayed finned heat exchanger tube bundles

    Experimental investigations have been made to study the performance of two finned tube-bundle heat exchangers (FORGO type) when wetted by water sprays. The heat exchangers are designed to cool water in a dry cooling tower. The test-elements had a frontal area of 1 m2. The water sprays were created by 20 nozzles, 200 mm in front of the heat exchangers. Air velocities at the inlet of the coolers were in the range 0,8 m/s to 12 m/s and initial temperature differences ITD reached 45 degrees C. The test facility was designed to determine the combined latent and sensible heat fluxes in the wetted heat exchanger, the airside pressure drop and the air humidity and temperature at the exchanger inlet and outlet, and to measure the weight of the water wetting the cooler's surface. The sprayed test elements were investigated in different positions, but most of the experiments were carried out in the position with the fins horizontal

  11. Lionfish predators use flared fin displays to initiate cooperative hunting.

    Lönnstedt, Oona M; Ferrari, Maud C O; Chivers, Douglas P

    2014-06-01

    Despite considerable study, mystery surrounds the use of signals that initiate cooperative hunting in animals. Using a labyrinth test chamber, we examined whether a lionfish, Dendrochirus zebra, would initiate cooperative hunts with piscine partners. We found that D. zebra uses a stereotyped flared fin display to alert conspecific and heterospecific lionfish species Pterois antennata to the presence of prey. Per capita success rate was significantly higher for cooperative hunters when compared with solitary ones, with hunt responders assisting hunt initiators in cornering the prey using their large extended pectoral fins. The initiators would most often take the first strike at the group of prey, but both hunters would then alternate striking at the remaining prey. Results suggest that the cooperative communication signal may be characteristic to the lionfish family, as interspecific hunters were equally coordinated and successful as intraspecific hunters. Our findings emphasize the complexity of collaborative foraging behaviours in lionfish; the turn-taking in strikes suggests that individuals do not solely try to maximize their own hunting success: instead they equally share the resources between themselves. Communicative group hunting has enabled Pteroine fish to function as highly efficient predators. PMID:24966203

  12. Fluid Dynamics of Biomimetic Pectoral Fin Propulsion Using Immersed Boundary Method

    Ningyu Li; Yumin Su

    2016-01-01

    Numerical simulations are carried out to study the fluid dynamics of a complex-shaped low-aspect-ratio pectoral fin that performs the labriform swimming. Simulations of flow around the fin are achieved by a developed immersed boundary (IB) method, in which we have proposed an efficient local flow reconstruction algorithm with enough robustness and a new numerical strategy with excellent adaptability to deal with complex moving boundaries involved in bionic flow simulations. The prescribed fin...

  13. Predicting propulsive forces using distributed sensors in a compliant, high DOF, robotic fin.

    Kahn, Jeff C; Peretz, David J; Tangorra, James L

    2015-06-01

    Engineered robotic fins have adapted principles of propulsion from bony-finned fish, using spatially-varying compliance and complex kinematics to produce and control the fin's propulsive force through time. While methods of force production are well understood, few models exist to predict the propulsive forces of a compliant, high degree of freedom, robotic fin as it moves through fluid. Inspired by evidence that the bluegill sunfish (Lepomis macrochirus) has bending sensation in its pectoral fins, the objective of this study is to understand how sensors distributed within a compliant robotic fin can be used to estimate and predict the fin's propulsive force. A biorobotic model of a bluegill sunfish pectoral fin was instrumented with pressure and bending sensors at multiple locations. Experiments with the robotic fin were executed that varied the swimming gait, flapping frequency, stroke phase, and fin stiffness to understand the forces and sensory measures that occur during swimming. A convolution-based, multi-input-single-output (MISO) model was selected to model and study the relationships between sensory data and propulsive force. Subsets of sensory data were studied to determine which sensor modalities and sensor placement locations resulted in the best force predictions. The propulsive forces of the fin were accurately predicted using the linear MISO model on intrinsic sensory data. Bending sensation was more effective than pressure sensation for predicting propulsive forces, and the importance of bending sensation was consistent with several results in biology and engineering studies. It was important to have a spatial distribution of sensors and multiple sensory modalities in order to predict forces across large changes to dynamics. The relationship between propulsive forces and intrinsic sensory measures is complex, and good models should allow for temporal lags between forces and sensory data, changes to the model within a fin stroke, and changes to the

  14. Cultural identities of Chinese business : networks of the shark-fin business in Hong Kong.

    Gordon C. K. Cheung; Chang, Chak Yan

    2011-01-01

    From a global standard, shark-fin consumption certainly violates international norms on bio-diversity and endangers the existence of the shark species. Furthermore, the commercial shark-fin industry generates additional adverse environmental impacts. Nevertheless, shark-fin consumption has served an important role in the cultural aspect of Chinese ‘foodway’. More importantly, the business relations and networks behind this industry have never been comprehensively studied. In so doing, this pa...

  15. Flow structure of natural dehumidification over a horizontal finned-tube

    Hirbodi, Kamran; Yaghoubi, Mahmood

    2016-08-01

    In the present study, structure of water drops formation, growth, coalescence and departure over a horizontal finned-tube during natural dehumidification is investigated experimentally. Starting time of repelling the drops as well as heat transfer rate and the rate of dripping condensates in quasi-steady-state conditions are presented. Furthermore, cold airflow pattern around the horizontal finned-tube is visualized by using smoke generation scheme during natural dehumidification process. The finned-tube has a length of 300 mm, and inner and outer fin diameters, fin thickness and fin spacing are 25.4, 56, 0.4 and 2 mm, respectively. The tests are conducted in an insulated control room with dimensions of 5.8 m × 3 m × 4 m. Ambient air temperature, relative humidity and fin base temperature are selected from 25 to 35 °C, from 40 to 70 % and from 4 to 8 °C, respectively. Observations show that natural condensation from humid air over the test case is completely dropwise. Droplets only form on the edge of the fin and lateral fin surfaces remain almost dry. Dehumidification process over the tested finned-tube is divided into four stages; nucleation, formation, growth and departure of drops. It is also observed that the condensate inundation leaves the tube bottom in the form of droplets. Smoke visualization depicts that humid airflows downward around the cold finned-tube surface without noticeable turbulence and separation in the initial stages of dehumidification process. But the airflow has some disturbances in the intermediate stage and especially during drop departure on the edge of the fins.

  16. A Study of the Twin Fin Concept for Cruise Ship Applications

    Nyström, Frida

    2015-01-01

    The aim with this thesis is to investigate if the Twin Fin concept can be a beneficial propulsion system for large cruise ships, about 300 m long. The Twin Fin concept is a new propulsion system, launched in 2014 by Caterpillar Propulsion [1]. The concept is diesel-electric and has two fins, containing a gearbox and an electric motor, immersed in water [2]. Previous investigations have shown the concept to have several advantages compared to other propulsion systems . A seismic vessel, Polarc...

  17. Oscillatory Adaptive Yaw-Plane Control of Biorobotic Autonomous Underwater Vehicles Using Pectoral-Like Fins

    Mugdha S. Naik; Sahjendra N. Singh

    2007-01-01

    This article considers the control of a biorobotic autonomous underwater vehicle (BAUV) in the yaw plane using biologically inspired oscillatory pectoral-like fins of marine animals. The fins are assumed to be oscillating harmonically with a combined linear (sway) and angular (yaw) motion producing unsteady forces, which are used for fish-like control of BAUVs. Manoeuvring of the BAUV in the yaw plane is accomplished by altering the bias (mean) angle of the angular motion of the fin. For the ...

  18. 3-D NUMERICAL STUDY AND COMPARISON OF ECCENTRIC AND CONCENTRIC ANNULAR-FINNED TUBE HEAT EXCHANGERS

    FAROUK TAHROUR; ABDELMOUMENE HAKIM BENMACHICHE; MOUNIR AKSAS; CHERIF BOUGRIOU

    2015-01-01

    The use of 3-D computational fluid dynamics (CFD) is proposed to simulate the conjugate conduction-convection of heat transfer problems in eccentric annularfinned tube heat exchangers. The numerical simulation results allow us to evaluate the heat transfer coefficient over fin surfaces, the fin efficiency and the pressure drop. The aim of the present paper is to determine the optimum tube position in the circular fin that maximizes heat dissipation and minimizes pressure drop. In addition, th...

  19. Automated Identification of Individual Great White Sharks from Unrestricted Fin Imagery

    Hughes, Benjamin J; Burghardt, Tilo

    2015-01-01

    The objective of this paper is automatically to identify individual great white sharks in a database of thousands of unconstrained fin images. The approach put forward appreciates shark fins in natural imagery as smooth, flexible and partially occluded objects with an individuality encoding trailing edge. In order to recover animal identities therefrom. We first introduce an open contour stroke model which extends multi-scale region segmentation to achieve robust fin detection. Secondly, we s...

  20. Simulation study of a 3-D device integrating FinFET and UTBFET

    Fahad, Hossain M.

    2015-01-01

    By integrating 3-D nonplanar fins and 2-D ultrathin bodies, wavy FinFETs merge two formerly competing technologies on a silicon-on-insulator platform to deliver enhanced transistor performance compared with conventional trigate FinFETs with unprecedented levels of chip-area efficiency. This makes it suitable for ultralarge-scale integration high-performance logic at and beyond the 10-nm technology node.

  1. Blue and fin whale call source levels and propagation range in the Southern Ocean

    Sirovic, Anna; Hildebrand, John A.; Wiggins, Sean

    2007-01-01

    Blue (Balaenoptera musculus) and fin whales (B. physalus) produce high-intensity, low-frequency calls, which probably function for communication during mating and feeding. The source levels of blue and fin whale calls off the Western Antarctic Peninsula were calculated using recordings made with calibrated, bottom-moored hydrophones. Blue whales were located up to a range of 200 km using hyperbolic localization and time difference of arrival. The distance to fin whales, estimated using multi...

  2. Temperature-Sensitive Mutations That Cause Stage-Specific Defects in Zebrafish Fin Regeneration

    Johnson, S. L.; Weston, J A

    1995-01-01

    When amputated, the fins of adult zebrafish rapidly regenerate the missing tissue. Fin regeneration proceeds through several stages, including wound healing, establishment of the wound epithelium, recruitment of the blastema from mesenchymal cells underlying the wound epithelium, and differentiation and outgrowth of the regenerate. We screened for temperature-sensitive mutations that affect the regeneration of the fin. Seven mutations were identified, including five that fail to regenerate th...

  3. Nonlinear flutter wind tunnel test and numerical analysis of folding fins with freeplay nonlinearities

    Yang Ning; Wang Nan; Zhang Xin; Liu Wei

    2016-01-01

    The flutter characteristics of folding control fins with freeplay are investigated by numerical simulation and flutter wind tunnel tests. Based on the characteristics of the structures, fins with different freeplay angles are designed. For a 0° angle of attack, wind tunnel tests of these fins are conducted, and vibration is observed by accelerometers and a high-speed camera. By the expansion of the connected relationships, the governing equations of fit for the nonlinear aeroelastic analysis ...

  4. Boxfishes (Teleostei: Ostraciidae) as a model system for fishes swimming with many fins: kinematics

    Hove, J. R.; O'Bryan, L. M.; Gordon, M.S.; Webb, P. W.; Weihs, D.

    2001-01-01

    Swimming movements in boxfishes were much more complex and varied than classical descriptions indicated. At low to moderate rectilinear swimming speeds (5 TL s^(-1)) was characterized by the use of a caudal burst-and-coast variant. Adduction was always faster than abduction in the pectoral fins. There were no measurable refractory periods between successive phases of the fin movement cycles. Dorsal and anal fin movements were synchronized at speeds greater than 2.5 ...

  5. Efficiency and optimisation of fin with temperature-dependent thermal conductivity: a simplified solution

    Bouaziz, M.N.; Hanini, S.

    2007-11-15

    An analytical simplified solution is proposed for temperature distribution and fin efficiency, when thermal conductivity is temperature dependent. An optimal linearization technique is used to solve the nonlinear equation. Based on classical solution, some accurate results are obtained and presented with thermal conductivity parameter and fin parameter. Arithmetic mean temperature is less precise than an equivalent thermal conductivity. Optimal thickness for rectangular fin is derived. (orig.)

  6. Analysis of natural convective heat transfer of nano coated aluminium fins using Taguchi method

    Senthilkumar, R.; Nandhakumar, A. J. D.; Prabhu, S.

    2013-01-01

    Rectangular aluminium fins were preferred for analysis and coated by carbon nano tubes using PVD to enhance the heat transfer rate of fins. Convective heat transfer rates for coated and non-coated surfaces were calculated and compared. The temperature and heat transfer characteristics were investigated using Nusselt, Grashof, Prandtl and Rayleigh numbers and also optimized by Taguchi method and ANOVA analysis. The average percentage of increase in fin efficiency is 5 %.

  7. Plate-fin array cooling using a finger-like piezoelectric fan

    In this study, the heat transfer of a plate-fin array cooled by a vibrating finger-like piezoelectric fan comprising four flexible rectangular blades was investigated. The results indicated that the heat transfer enhancement of the fin array cooled by a vibrating piezoelectric fan at x/L = 0.5 and H = 5 mm ranged between 1.5 and 3.3, regardless of the fin array orientation. However, the heat transfer enhancement caused by a fan being placed at either edge of the fin array yielded a dissimilar result between both of the fin array orientations because of the superimposed effects of the boundary layer development and the air flow induced by the fan. This dissimilarity was especially noticeable when the piezoelectric fan was composed of aluminum blades to accommodate the moderate Reynolds number. In addition to the Reynolds number, the ratio of the fan blade vibration envelope to the source area determined the Nu number of the piezoelectric fan-cooled fin array. This design enhanced the fin array heat transfer and reduced cooler volume by embedding multiple vibrating beams into the fin array. -- Highlights: • Heat transfer of a piezoelectric fan-cooled plate-fin array was investigated. • Effects of fan position, fan height and fan material on heat transfer were examined. • Similar heat transfer enhancement range was shown for both fin array orientations. • Fin heat transfer with a running Al fan at x = 0 was higher than that at x = 0.25L. • Besides fan Reynolds number, the area ratio also determined Nu of the fin array

  8. Flow structure of natural dehumidification over a horizontal finned-tube

    Hirbodi, Kamran; Yaghoubi, Mahmood

    2015-08-01

    In the present study, structure of water drops formation, growth, coalescence and departure over a horizontal finned-tube during natural dehumidification is investigated experimentally. Starting time of repelling the drops as well as heat transfer rate and the rate of dripping condensates in quasi-steady-state conditions are presented. Furthermore, cold airflow pattern around the horizontal finned-tube is visualized by using smoke generation scheme during natural dehumidification process. The finned-tube has a length of 300 mm, and inner and outer fin diameters, fin thickness and fin spacing are 25.4, 56, 0.4 and 2 mm, respectively. The tests are conducted in an insulated control room with dimensions of 5.8 m × 3 m × 4 m. Ambient air temperature, relative humidity and fin base temperature are selected from 25 to 35 °C, from 40 to 70 % and from 4 to 8 °C, respectively. Observations show that natural condensation from humid air over the test case is completely dropwise. Droplets only form on the edge of the fin and lateral fin surfaces remain almost dry. Dehumidification process over the tested finned-tube is divided into four stages; nucleation, formation, growth and departure of drops. It is also observed that the condensate inundation leaves the tube bottom in the form of droplets. Smoke visualization depicts that humid airflows downward around the cold finned-tube surface without noticeable turbulence and separation in the initial stages of dehumidification process. But the airflow has some disturbances in the intermediate stage and especially during drop departure on the edge of the fins.

  9. Thermal performance of a porus radial fin with natural convection and radiative heat losses

    Darvishi M.T.

    2015-01-01

    Full Text Available An analytic (series solution is developed to describe the thermal performance of a porous radial fin with natural convection in the fluid saturating the fin and radiation heat loss from the top and bottom surfaces of the fin. The HAM results for the temperature distribution and base heat flux are compared with the direct numerical results and found to be very accurate.

  10. Is caudal fin colour in tigerfish Hydrocynus vittatus a sex or population trait?

    Soekoe, M.; F. H. van der Bank; Smit, N.J.

    2013-01-01

    Tigerfish caudal fin colours vary from yellow to red, with distinct dissimilarities previously noted. To understand these colour differences, tigerfish were collected during 2008 to 2010 from four southern African populations in the Upper Zambezi River (ZAM), Okavango Delta (OKA), Pongolapoort Dam (POD) and Phongolo River (POR), and caudal fin colouration was classified according to pattern and sex. Muscle and liver tissue were assayed by starch electrophoresis. Caudal fin colour in OKA, ZAM ...

  11. The impact of fin profile and interface condition on performance characteristics of heat sinks

    Thermal management of electronic products relies mainly on the effective dissipation of heat. Heat sinks (containing multiple extended surfaces or fin array) are commonly used for heat dissipation network. The performance of an individual fin depends on its geometry, material properties and operating environment (i.e. free or forced convection). In the first part of this paper, the four most commonly used fin profiles are studied for pin, longitudinal and annular fins using non-dimensional finite element formulation. In the second part, the performance of different thermal interfaces is studied for polymer and metallic fins. Polymer composite materials result in significant increase in the performance of a fin; however manufacturing can be a constraint to construct an effective heat sink due to interface conditions at the fin and base plate junction. It is found that the joint at fin base plate has considerable stress effect in the heat sink system. The press fit joint must have high contact pressure to maintain an appropriate thermal contact conductance (TCC) in order to have thermal performance comparable to an adhesive joint, but the two joints have different state of thermal and contact stresses. -- Highlights: ► The effect of fin profile on performance for pin, longitudinal and annular fins is studied. ► The significant effect is found only for pin fins under considered conditions. ► The effect of interface at orthotropic pin fin and metallic base plate is studied. ► Two interface conditions called epoxy-bonded and press-fitted are studied. ► The contact pressure and stresses decrease at high temperature for press-fitted interface

  12. Study of flexible fin and compliant joint stiffness on propulsive performance: theory and experiments

    The caudal fin is a major source of thrust generation in fish locomotion. Along with the fin stiffness, the stiffness of the joint connecting the fish body to the tail plays a major role in the generation of thrust. This paper investigates the combined effect of fin and joint flexibility on propulsive performance using theoretical and experimental studies. For this study, fluid–structure interaction of the fin has been modeled using the 2D unsteady panel method coupled with nonlinear Euler–Bernoulli beam theory. The compliant joint has been modeled as a torsional spring at the leading edge of the fin. A comparison of self-propelled speed and efficiency with parameters such as heaving and pitching amplitude, oscillation frequency, flexibility of the fin and the compliant joint is reported. The model also predicts the optimized stiffnesses of the compliant joint and the fin for maximum efficiency. Experiments have been carried out to determine the effect of fin and joint stiffness on propulsive performance. Digital image correlation has been used to measure the deformation of the fins and the measured deformation is coupled with the hydrodynamic model to predict the performance. The predicted theoretical performance behavior closely matches the experimental values. (paper)

  13. A study on heat transfer enhancement using straight and twisted internal fin inserts

    Tijing, Leonard D.; Pak, Bock Choon; Baek, Byung Joon [Chonbuk National Univ., Jeongju (Korea, Republic of); Cho, Young I. [Drexel Univ., Pennsylvania (United States)

    2005-07-01

    The present study investigated the effect of internal aluminum fins with a star shape cross section on the heat transfer enhancement and pressure drop in a counterflow heat exchanger. A concentric tube heat exchanger was used with water as the working fluid. The heat transfer rate increased by 12-51% over the plain tube value, depending on the internal fin configuration used. However, the pressure drop also increased substantially by an average of 286-338%. The results showed that a straight fin configuration is good enough to produce a heat transfer increase in a counterflow heat exchanger. Twisted fin configurations did not further increase the heat transfer rate.

  14. ENHANCEMENT OF NATURAL CONVECTION HEAT TRANSFER FROM RECTANGULAR FINS BY CIRCULAR PERFORATIONS

    Wadhah Hussein Abdul Razzaq Al- Doori

    2011-12-01

    Full Text Available The importance of heat transfer by natural convection in enclosures can be found in many engineering applications, such as energy transfer in buildings, solar collectors, nuclear reactors and electronic packaging. An experimental study was conducted to investigate heat transfer by natural convection in a rectangular fin plate with circular perforations as heat sinks. The patterns of the perforations included 24 circular perforations (holes for the first fin; the number of perforations increased by eight for each fin to 56 in the fifth fin. These perforations were distributed in 6-14 rows and four columns. Experiments were carried out in an experimental facility that was specifically designed and constructed for this purpose. It was observed that the temperature along the non-perforated fin dropped from 30 to 25°C, but the temperature drop for the perforated fins was from 30 to 23.7°C at low power (6 W. The drop in temperature between the fin base and the tip increased as the diameter of the perforations increased. The temperature drop at the highest power (220 W was from 250 to 49°C for the non-perforated fin and from 250 to 36°C for the perforated fins. The heat transfer rate and the coefficient of heat transfer increased with an increased number of perforations.

  15. Incongruence between the sexes in preferences for body and dorsal fin size in Xiphophorus variatus.

    MacLaren, R David; Fontaine, Adam

    2013-01-01

    Female preference for male fin enhancements in poeciliid fishes may be driven by a preexisting perceptual bias for increased male lateral projection area (LPA). This hypothesis suggests that a male with enlarged body and/or fin size projects a larger image onto the female's retina at a given viewing distance, eliciting a greater sensory and thus behavioral response out of the female than a smaller male. Given the shared sensory/neural systems of opposite sex conspecifics, we might expect the LPA bias to also be present in males of at least some poeciliid species. However, we need not expect congruence between the sexes in the state of the bias over evolutionary time. To examine whether the sexes share a bias for sailfin-like dorsal fins, a trait not present in their evolutionary history, the bias favoring increased dorsal fin size and LPA observed in female Xiphophorus variatus, among other poeciliids, was investigated by testing male preference for dummy females varying in dorsal fin size, body size, and dorsal fin:body size ratio. In three sets of simultaneous choice experiments, males preferred females of larger body size when fin size was held constant and when total LPA was held constant, but showed no preference for larger fins when body size was held constant. The LPA bias is therefore less permissive in males than females with selection favoring a male's ability to discriminate between female body size - an indicator of fertility/fecundity - and fin size, which offers no known fitness benefits. PMID:23137586

  16. Female bias for enlarged male body and dorsal fins in Xiphophorus variatus.

    MacLaren, R David; Gagnon, John; He, Ran

    2011-06-01

    Female preference for male fin elaborations in Poeciliid fishes may be driven by a sensory bias for increased lateral projection area (LPA) that has existed since the lineages diverged from a common ancestor. Previous research supports this hypothesis demonstrating female Poecilia latipinna, Poecilia mexicana, and Poecilia reticulata prefer males of larger body and dorsal fin size, but exhibit no such preferences when controlling for total LPA. In the current study, we further tested this hypothesis by presenting female platys, Xiphophorus variatus, with pairs of dummy males differing in: (1) body size (holding dorsal fin size constant); (2) dorsal fin size (holding body size constant); and (3) dorsal fin: body size ratio (holding total LPA constant). Females spent more time near dummies of greater body and dorsal fin size; however, in the third experiment, neither fin size, body size, nor any particular dorsal fin+body size combination was preferred. These results provide additional support for the LPA and sensory bias hypotheses, demonstrating that female X. variatus not only prefer males with "swords", but sailfin-like dorsal fins as well when body size is held constant. Shared preference for increased LPA is consistent with common ancestry of the sensory/neural systems in females of all four species. PMID:21457765

  17. DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

    Davood Domairry Ganji

    2011-01-01

    Full Text Available In this paper, homotopy perturbation method has been used to evaluate the temperature distribution of annular fin with temperature-dependent thermal conductivity and to determine the temperature distribution within the fin. This method is useful and practical for solving the nonlinear heat transfer equation, which is associated with variable thermal conductivity condition. The homotopy perturbation method provides an approximate analytical solution in the form of an infinite power series. The annular fin heat transfer rate with temperature-dependent thermal conductivity has been obtained as a function of thermo-geometric fin parameter and the thermal conductivity parameter describing the variation of the thermal conductivity.

  18. Alternative solutions for longitudinal fins of rectangular, trapezoidal, and concave parabolic profiles

    The traditional thermal analysis of fins is based on the assumption of specified thermal boundary conditions at the base and tip of the fin. For situations when the fin base is in contact with a fluid experiencing condensation and the fin is required to remove the energy released by the fluid, the base is subjected to two boundary conditions: a fixed temperature and a fixed heat flux. This paper develops solutions for the temperature distribution in the fins under these conditions. Solutions are provided for rectangular, trapezoidal, and concave parabolic (finite tip thickness). Results illustrating the relationship between the dimensionless heat flux, the fin parameter, and dimensionless tip temperature are provided for all three geometries. The case of convective fin tip is also considered and lead to a relationship between the dimensionless heat flux, the fin parameter, and the Biot number at the tip. The results presented here provide tools that not only complement the traditional analyses but are believed to have more direct relevance for the fin designers.

  19. Burnout in the boiling of water and freon-113 on tubes with annular fins

    This paper presents the results of numerical calculations of burnout heat flux associated with the boiling of Freon-113 and water on an annular fin of constant thickness which have been approximated by simple analytical relations. These are used to calculate the critical burnout parameters of tubes with an annular fin assembly. The calculated data may be used for the analysis of tubes with an annular fin assembly over a wide range of variation of the thermophysical properties of the material and geometrical parameters of the fin assembly

  20. Effect of an Artificial Caudal Fin on the Performance of a Biomimetic Fish Robot Propelled by Piezoelectric Actuators

    2007-01-01

    This paper addresses the design of a biomimetic fish robot actuated by piezoceramic actuators and the effect of artificial caudal fins on the fish robot's performance. The limited bending displacement produced by a lightweight piezocomposite actuator was amplified and transformed into a large tail beat motion by means of a linkage system. Caudal fins that mimic the shape of a mackerel fin were fabricated for the purpose of examining the effect of caudal fin characteristics on thrust production at an operating frequency range. The thickness distribution of a real mackerel's fin was measured and used to design artificial caudal fins. The thrust performance of the biomimetic fish robot propelled by fins of various thicknesses was examined in terms of the Strouhal number, the Froude number, the Reynolds number, and the power consumption. For the same fin area and aspect ratio, an artificial caudal fin with a distributed thickness shows the best forward speed and the least power consumption.

  1. Embedded SMA wire actuated biomimetic fin: a module for biomimetic underwater propulsion

    Wang, Zhenlong; Hang, Guanrong; Wang, Yangwei; Li, Jian; Du, Wei

    2008-04-01

    An embedded shape memory alloy (SMA) wire actuated biomimetic fin is presented, and based on this module for biomimetic underwater propulsion, a micro robot fish (146 mm in length, 30 g in weight) and a robot squid (242 mm in length, 360 g in weight) were developed. Fish swim by undulating their body and/or fins. Squid and cuttlefish can also swim by undulating their fins. To simplify engineering modeling, the undulating swimming movement is assumed to be the integration of the movements of many flexible bending segments connected in parallel or in series. According to this idea, a biomimetic fin which can bend flexibly was developed. The musculature of a cuttlefish fin was investigated to aid the design of the biomimetic fin. SMA wires act as 'muscle fibers' to drive the biomimetic fin just like the transverse muscles of the cuttlefish fin. During the bending phase, elastic energy is stored in the elastic substrate and skin, and during the return phase, elastic energy is released to power the return movement. Theorem analysis of the bending angle was performed to estimate the bending performance of the biomimetic fin. Experiments were carried out on single-face fins with latex rubber skin and silicone skin (SF-L and SF-S) to compare the bending angle, return time, elastic energy storage and reliability. Silicone was found to be the better skin. A dual-face fin with silicone skin (DF-S) was tested in water to evaluate the actuating performance and to validate the reliability. Thermal analysis of the SMA temperature was performed to aid the control strategy. The micro robot fish and robot squid employ one and ten DF-S, respectively. Swimming experiments with different actuation frequencies were carried out. The speed and steering radius of the micro robot fish reached 112 mm s-1 and 136 mm, respectively, and the speed and rotary speed of the robot squid reached 40 mm s-1 and 22° s-1, respectively.

  2. The morphology of the cephalic lobes and anterior pectoral fins in six species of batoids.

    Mulvany, Samantha; Motta, Philip J

    2013-09-01

    Many benthic batoids utilize their pectoral fins for both undulatory locomotion and feeding. Certain derived, pelagic species of batoids possess cephalic lobes, which evolved from the anterior pectoral fins. These species utilize the pectoral fins for oscillatory locomotion while the cephalic lobes are used for feeding. The goal of this article was to compare the morphology of the cephalic lobes and anterior pectoral fins in species that possess and lack cephalic lobes. The skeletal elements (radials) of the cephalic lobes more closely resembled the radials in the pectoral fin of undulatory species. Second moment of area (I), calculated from cephalic lobe radial cross sections, and the number of joints revealed greater flexibility and resistance to bending in multiple directions as compared to pectoral fin radials of oscillatory species. The cephalic lobe musculature was more complex than the anterior pectoral fin musculature, with an additional muscle on the dorsal side, with fiber angles running obliquely to the radials. In Rhinoptera bonasus, a muscle presumably used to help elevate the cephalic lobes is described. Electrosensory pores were found on the cephalic lobes (except Mobula japonica) and anterior pectoral fins of undulatory swimmers, but absent from the anterior pectoral fins of oscillatory swimmers. Pore distributions were fairly uniform except in R. bonasus, which had higher pore numbers at the edges of the cephalic lobes. Overall, the cephalic lobes are unique in their anatomy but are more similar to the anterior pectoral fins of undulatory swimmers, having more flexibility and maneuverability compared to pectoral fins of oscillatory swimmers. The maneuverable cephalic lobes taking on the role of feeding may have allowed the switch to oscillatory locomotion and hence, a more pelagic lifestyle. PMID:23801572

  3. Physical Scaling Limits of FinFET Structure: A Simulation Study

    Gaurav Saini

    2011-03-01

    Full Text Available In this work an attempt has been made to analyze the scaling limits of Double Gate (DG underlap andTriple Gate (TG overlap FinFET structure using 2D and 3D computer simulations respectively. Toanalyze the scaling limits of FinFET structure, simulations are performed using three variables: finthickness,fin-height and gate-length. From 2D simulation of DG FinFET, it is found that the gate-length(L and fin-thickness (Tfin ratio plays a key role while deciding the performance of the device. DrainInduced Barrier Lowering (DIBL and Subthreshold Swing (SS increase abruptly when (L/Tfin ratio goesbelow 1.5. So, there will be a trade-off in between SCEs and on- current of the device since on-off currentratio is found to be high at small dimensions. From 3D simulation study on TG FinFET, It is found thatboth fin-thickness (Tfin and fin-height (Hfin can control the SCEs. However, Tfin is found to be moredominant parameter than Hfin while deciding the SCEs. DIBL and SS increase as (Leff/Tfin ratiodecreases. The (Leff/Tfin ratio can be reduced below 1.5 unlike DG FinFET for the same SCEs. However,as this ratio approaches to 1, the SCEs can go beyond acceptable limits for TG FinFET structure. Therelative ratio of Hfin and Tfin should be maximum at a given Tfin and Leff to get maximum on-current perunit width. However, increasing Hfin degrades the fin stability and degrades SCEs.

  4. Relying on fin erosion to identify hatchery-reared brown trout in a Tennessee river

    Meerbeek, Jonathan R.; Bettoli, Phillip William

    2012-01-01

    Hatchery-induced fin erosion can be used to identify recently stocked catchable-size brown trout Salmo trutta during annual surveys to qualitatively estimate contributions to a fishery. However, little is known about the longevity of this mark and its effectiveness as a short-term (≤ 1 year) mass-marking technique. We evaluated hatchery-induced pectoral fin erosion as a mass-marking technique for short-term stocking evaluations by stocking microtagged brown trout in a tailwater and repeatedly sampling those fish to observe and measure their pectoral fins. At Dale Hollow National Fish Hatchery, 99.1% (228 of 230) of microtagged brown trout in outdoor concrete raceways had eroded pectoral fins 1 d prior to stocking. Between 34 and 68 microtagged and 26-35 wild brown trout were collected during eight subsequent electrofishing samples. In a blind test based on visual examination of pectoral fins at up to 322 d poststocking, one observer correctly identified 91.7% to 100.0% (mean of 96.9%) of microtagged brown trout prior to checking for microtags. In the laboratory, pectoral fin length and width measurements were recorded to statistically compare the fin measurements of wild and microtagged hatchery brown trout. With only one exception, all pectoral fin measurements on each date averaged significantly larger for wild trout than for microtagged brown trout. Based on the number of pectoral fin measurements falling below 95% prediction intervals, 93.7% (148 of 158) of microtagged trout were correctly identified as hatchery fish based on regression models up to 160 d poststocking. Only 72.2% (70 of 97) of microtagged trout were identified correctly after 160 d based on pectoral fin measurements and the regression models. We concluded that visual examination of pectoral fin erosion was a very effective way to identify stocked brown trout for up to 322 d poststocking.

  5. Embedded SMA wire actuated biomimetic fin: a module for biomimetic underwater propulsion

    An embedded shape memory alloy (SMA) wire actuated biomimetic fin is presented, and based on this module for biomimetic underwater propulsion, a micro robot fish (146 mm in length, 30 g in weight) and a robot squid (242 mm in length, 360 g in weight) were developed. Fish swim by undulating their body and/or fins. Squid and cuttlefish can also swim by undulating their fins. To simplify engineering modeling, the undulating swimming movement is assumed to be the integration of the movements of many flexible bending segments connected in parallel or in series. According to this idea, a biomimetic fin which can bend flexibly was developed. The musculature of a cuttlefish fin was investigated to aid the design of the biomimetic fin. SMA wires act as 'muscle fibers' to drive the biomimetic fin just like the transverse muscles of the cuttlefish fin. During the bending phase, elastic energy is stored in the elastic substrate and skin, and during the return phase, elastic energy is released to power the return movement. Theorem analysis of the bending angle was performed to estimate the bending performance of the biomimetic fin. Experiments were carried out on single-face fins with latex rubber skin and silicone skin (SF-L and SF-S) to compare the bending angle, return time, elastic energy storage and reliability. Silicone was found to be the better skin. A dual-face fin with silicone skin (DF-S) was tested in water to evaluate the actuating performance and to validate the reliability. Thermal analysis of the SMA temperature was performed to aid the control strategy. The micro robot fish and robot squid employ one and ten DF-S, respectively. Swimming experiments with different actuation frequencies were carried out. The speed and steering radius of the micro robot fish reached 112 mm s−1 and 136 mm, respectively, and the speed and rotary speed of the robot squid reached 40 mm s−1 and 22° s−1, respectively

  6. Analysis of CHF experiment data for finned fuel bundle

    The HANARO uses finned-element fuel bundles. For thermal-hydraulic safety analysis, used is the MATRA-h code which is a modified version of KAERI's MATRA-α. The subchannel analysis model was determined by using the in-core irradiation test results and hydraulic experiment results for fuel bundle. The validity of the analysis model was investigated by comparing the MATRA-h predictions with the experimental results from several bundle CHF tests. The comparison showed that the code predictions for the CHF power were very close to or less than the experimental results. Thus, it was confirmed that the subchannel analysis using MATRA-h is to be applicable to the prediction of CHF phenomenon in HANARO fuel bundle

  7. Applications of conducting polymers: robotic fins and other devices

    Tangorra, James L.; Anquetil, Patrick A.; Weideman, Nathan S.; Fofonoff, Timothy; Hunter, Ian W.

    2007-04-01

    Conducting polymers are becoming viable engineering materials and are gradually being integrated into a wide range of devices. Parallel efforts conducted to characterize their electromechanical behavior, understand the factors that affect actuation performance, mechanically process films, and address the engineering obstacles that must be overcome to generate the forces and displacements required in real-world applications have made it possible to begin using conducting polymers in devices that cannot be made optimal using traditional actuators and materials. The use of conducting polymers has allowed us to take better advantage of biological architectures for robotic applications and has enabled us to pursue the development of novel sensors, motors, and medical diagnostic technologies. This paper uses the application of conducting polymer actuators to a biorobotic fin for unmanned undersea vehicles (UUVs) as a vehicle for discussing the efforts in our laboratory to develop conducting polymers into a suite of useful actuators and engineering components.

  8. Depth-Trim Mapping Control of Underwater Vehicle with Fins

    LI Ye; PANG Yong-jie; HUANG Shu-ling; WAN Lei

    2011-01-01

    Underwater vehicle plays an important role in ocean engineering.Depth control by fin is one of the difficulties for underwater vehicle in motion control.Depth control is indirect due to the freedom coupling between trim and axial motion.It includes the method of dynamic analysis and lift-resistance-coefficient experiment and theory algorithm.By considering the current speed and depth deviation,comprehensive interpretation is used in object-planning instruction.Expected depth is transformed into expected trim.Dynamic output fluctuation can be avoided,which is caused by linear mapping of deviation.It is steady and accurate for the motion of controlled underwater vehicles.The feasibility and efficiency of the control method are testified in the pool and natural area for experiments.

  9. Compensation of airflow maldistribution in fin-and-tube evaporators

    Kærn, Martin Ryhl; Tiedemann, Thomas

    2012-01-01

    Compensation of airflow maldistribution in fin-and tube evaporators for residential air-conditioning is investigated with regards to circuitry design and control of individual channel superheats. In particularly, the interlaced and the face split circuitry designs are compared numerically using a...... linear velocity profile and a CFD predicted velocity profile obtained from Kærn (2011d) in dry and wet conditions. The circuitry models are validated experimentally in wet conditions, and for this purpose a test case interlaced evaporator (17.58 kW) was reconstructed in order to become a face split...... evaporator by modifying its U-bend connections. Furthermore, a 14% and 28% blockage of the face split evaporator is studied experimentally with control of individual channel superheats. It is shown that the face split circuitry with compensation gives the best performance in both dry and wet conditions...

  10. Methods and criteria for safety analysis (FIN L2535)

    In response to the NRC request for a proposal dated October 20, 1992, Westinghouse Savannah River Company (WSRC) submit this proposal to provide contractural assistance for FIN L2535, ''Methods and Criteria for Safety Analysis,'' as specified in the Statement of Work attached to the request for proposal. The Statement of Work involves development of safety analysis guidance for NRC licensees, arranging a workshop on this guidance, and revising NRC Regulatory Guide 3.52. This response to the request for proposal offers for consideration the following advantages of WSRC in performing this work: Experience, Qualification of Personnel and Resource Commitment, Technical and Organizational Approach, Mobilization Plan, Key Personnel and Resumes. In addition, attached are the following items required by the NRC: Schedule II, Savannah River Site - Job Cost Estimate, NRC Form 189, Project and Budget Proposal for NRC Work, page 1, NRC Form 189, Project and Budget Proposal for NRC Work, page 2, Project Description

  11. Les besoins des adolescents en fin de vie

    Junod, Félicia; Marini, Gaëlle; Machado Magalhães, Stéfanie; Helou, Nancy

    2016-01-01

    Contexte : Les soins palliatifs ont émergé en réponse au vieillissement démographique. Ils sont donc peu développés au niveau de la pédiatrie, ce qui entrave la continuité des soins pour cette population. Or, l’accès à ces soins pour les adolescents doit être spécifique à leurs besoins. Objectifs : Identifier quels sont les besoins des adolescents en fin de vie. Stratégies de recherche : Deux bases de données ont été utilisées : CINAHL et MedLine, par le biais de mots-clés, de descripteurs et...

  12. Filipinas, fin de siglo: imágenes y realidad

    Elizalde, María Dolores

    1998-08-01

    Full Text Available The objective of this paper is to present an image of the Philippines at the end of the 19th century, different to the picture of underveloped islands, inhabitated by savages unable to selfgovernment, transmited by the historiography and caricatures of that time. With this purpose, they are studied the process of redefinition of the Spanish colonial goverment, the strengthening of a new filipino society, the development of the economy and commerce, and the strong international interests in the islands.

    El presente artículo pretende ofrecer una imagen de las Filipinas de fin de siglo, diferente de la transmitida por la historiografía tradicional y por la viñetas y caricaturas de la época. Frente a los estereotipos de unas islas atrasadas, incapaces del autogobierno, habitadas por salvajes a los que había que civilizar, se impone una realidad definida por el gobierno colonial de España, en pleno proceso de redefinición; por el afianzamiento de una burguesía ilustrada filipina, la pujanza de una clase campesina y obrera, la fuerza de un movimiento de afirmación nacional, y el desarrollo de una economía agroexportadora en pleno crecimiento; y por la presencia de fuertes intereses internacionales que hay que entender insertos en la marea de expansión colonial y reparto de mercados y territorios ultramarinos; intereses internacionales de los que se da cuenta a través de un análisis de comercio, inversiones y presencia diplomática de las grandes potencias en las Filipinas de fin de siglo.

  13. Necropsy report of a fin whale (Balaenoptera physalus) stranded in Denmark in 2010

    Alstrup, Aage K. O.; Hedayat, Abdi; Jensen, Trine Hammer;

    2013-01-01

    There is little detailed information on stranded fin whales (Balaenoptera physalus) in the scientific literature (Notarbartolo di Sciara et al., 2003). In Denmark, at least eight fin whales stranded between the years 1603 and 1958 (Kinze, 1995). On 16 June 2010, a live subadult or adult male fin...... whale stranded in the Bay of Vejle (55º 69' N, 9º 58' E), Denmark. Despite several attempts, it was not possible to rescue the fin whale, which was only partially exposed by the water. The fin whale succumbed after 5 d stranded in shallow water. The dead fin whale was transported to a nearby pier, and a...

  14. Factors promoting increased rate of tissue regeneration: the zebrafish fin as a tool for examining tissue engineering design concepts.

    Boominathan, Vijay P; Ferreira, Tracie L

    2012-12-01

    Student interest in topics of tissue engineering is increasing exponentially as the number of universities offering programs in bioengineering are on the rise. Bioengineering encompasses all of the STEM categories: Science, Technology, Engineering, and Math. Inquiry-based learning is one of the most effective techniques for promoting student learning and has been demonstrated to have a high impact on learning outcomes. We have designed program outcomes for our bioengineering program that require tiered activities to develop problem solving skills, peer evaluation techniques, and promote team work. While it is ideal to allow students to ask unique questions and design their own experiments, this can be difficult for instructors to have reagents and supplies available for a variety of activities. Zebrafish can be easily housed, and multiple variables can be tested on a large enough group to provide statistical value, lending them well to inquiry-based learning modules. We have designed a laboratory activity that takes observation of fin regeneration to the next level: analyzing conditions that may impact regeneration. Tissue engineers seek to define the optimum conditions to grow tissue for replacement parts. The field of tissue engineering is likely to benefit from understanding natural mechanisms of regeneration and the factors that influence the rate of regeneration. We have outlined the results of varying temperature on fin regeneration and propose other inquiry modules such as the role of pH in fin regeneration. Furthermore, we have provided useful tools for developing critical thinking and peer review of research ideas, assessment guidelines, and grading rubrics for the activities associated with this exercise. PMID:23244692

  15. A Numerical Study of Natural Convection Heat Transfer in Fin Ribbed Radiator

    Hua-Shu Dou

    2015-01-01

    Full Text Available This paper numerically investigates the thermal flow and heat transfer by natural convection in a cavity fixed with a fin array. The computational domain consists of both solid (copper and fluid (air areas. The finite volume method and the SIMPLE scheme are used to simulate the steady flow in the domain. Based on the numerical results, the energy gradient function K of the energy gradient theory is calculated. It is observed from contours of the temperature and energy gradient function that the position where thermal instability takes place correlates well with the region of large K values, which demonstrates that the energy gradient method reveals the physical mechanism of the flow instability. Furthermore, the effects of the fin height, the fin number, and the fin shape on the heat transfer rate are also investigated. It is found that the thermal performance of the fin array is determined by the combined effect of the fin space and fin height. It is also observed that the effect of fin shape on heat transfer is insignificant.

  16. Influence of Chimney Flow Pattern on Natural Convection Heat Transfer of Open Channel Finned Plates

    Hong, Seung-Hyun; Chung, Bum-Jin [Kyung Hee University, Yongin (Korea, Republic of)

    2015-05-15

    The enhancement of the efficiency and effectiveness of the passive cooling system, have long been the topic of those studies. In this study, we investigated the heat transfer enhancement of finned plates, especially the chimney effect appeared in finned plates. The fin not only enlarges the heat transfer area but also draws fresh fluid from the open side of the channel composed of the base plate and fins, which further enhances the cooling capability of finned plate – a chimney flow pattern. This study aims at investigating the influence of the chimney flow pattern on the natural convection heat transfer of the finned plate. To analyze the phenomenological study, both experimental and numerical analyses were performed. Numerical analysis was performed for the natural convection heat transfer of a finned plate in an open channel. In order to investigate the influence of the chimney flow pattern the heat transfer, several fin height were simulated and compared. The temperature profiles varied drastically depending on the values of the Prandtl number. As the Prandtl number increases, the thermal boundary layer reduces.

  17. Influence of Chimney Flow Pattern on Natural Convection Heat Transfer of Open Channel Finned Plates

    The enhancement of the efficiency and effectiveness of the passive cooling system, have long been the topic of those studies. In this study, we investigated the heat transfer enhancement of finned plates, especially the chimney effect appeared in finned plates. The fin not only enlarges the heat transfer area but also draws fresh fluid from the open side of the channel composed of the base plate and fins, which further enhances the cooling capability of finned plate – a chimney flow pattern. This study aims at investigating the influence of the chimney flow pattern on the natural convection heat transfer of the finned plate. To analyze the phenomenological study, both experimental and numerical analyses were performed. Numerical analysis was performed for the natural convection heat transfer of a finned plate in an open channel. In order to investigate the influence of the chimney flow pattern the heat transfer, several fin height were simulated and compared. The temperature profiles varied drastically depending on the values of the Prandtl number. As the Prandtl number increases, the thermal boundary layer reduces

  18. The impact of line edge roughness on the stability of a FinFET SRAM

    3D mixed-mode device-circuit simulation is presented to investigate the impact of line edge roughness (LER) on the stability of a FinFET SRAM. In this work, LER sequence is statistically generated by a Fourier analysis of the power spectrum of Gaussian autocorrelation function. The sensitivity of 20 nm FinFET SRAM of Read and Write static noise margins (SNM) to fin LER is evaluated. The results show that FinFET SRAM is more tolerant of disturbance in write operation than in read disturbance. The dependence of Read SNM on fin LER's root mean square (RMS) amplitude, fin thickness and supply voltage is also analyzed. Furthermore, methods to reduce the LER effect on the FinFET SRAM's read stability are introduced. Optimization of the cell ratio by a multiple-fin design, control of the access transistor's gate bias voltage and replacement of a 6T cell with an 8T cell are possible solutions to continue the scaling trend of SRAM in the nanoscale CMOS technology

  19. Mechanical Properties of Cold Gas Dynamic-Sprayed Near-Net-Shaped Fin Arrays

    Cormier, Yannick; Dupuis, Philippe; Jodoin, Bertrand; Corbeil, Antoine

    2015-02-01

    This work focuses on the study of the adhesion and thermal performance of near-net-shaped pyramidal fin arrays manufactured by cold spray on aluminum alloy substrate coated with various bond coats: a cold-sprayed bond coat as well as nitrogen- and air-propelled arc-sprayed bond coats. Furthermore, the effects of the fin density, fin height, and substrate surface roughness on the adhesion strength of the fins deposited on Al6061 substrates were characterized. It was found that the fin density, the fin height, and the substrate roughness have little impact on the adhesion strength of this system. The adhesion strength was found to be inversely proportional to the surface hardness when investigating these parameters for the different thermal-spray bond coatings, with all the fin systems having a much greater strength than the theoretical application stresses. Finally, it was found that the increase in the fin's base layer's roughness increases the overall heat transfer, with the bond coat material having a negligible effect on the thermal resistance for this type of heat-exchanger configuration.

  20. Fin-efficiency calculation for condensation in the presence of noncondensable gases

    Panchal, C. B.

    Plate-fin heat exchangers are being considered for many condenser applications. They are commonly used for the gas-separation process because they can provide a high thermal performance to obtain a low mean-temperature difference, essential for the gas-separation process. Plate-fin heat exchangers are also considered for the heat-pump system using nonazeotropic refrigerant mixtures. The brazed plate-fin condenser was considered to be a leading candidate for the Ocean Thermal Energy Conversion (OTEC) system, where high-performance heat exchangers are essential for maintaining a low mean-temperature difference. Calculation of the fin efficiency is difficult for condensation in the presence of noncondensable gases due to the spatial variation of the interfacial temperature. An analysis was carried out to develop a simplified method to calculate the fin efficiency for condensation of a vapor in the presence of noncondensable gases. The analysis includes the variation in the interfacial temperature along the fin surface. Appropriate assumptions are made to simplify the coupled heat-conduction equation in the fin and the heat/mass fluxes at the interface. The resulting expression for the fin efficiency includes mass-flux parameters, and it is similar to the common expression used for single-phase flow.

  1. Mediterranean Fin Whales (Balaenoptera physalus) Threatened by Dolphin MorbilliVirus

    Mazzariol, Sandro; Centelleghe, Cinzia; Beffagna, Giorgia; Povinelli, Michele; Terracciano, Giuliana; Cocumelli, Cristiano; Pintore, Antonio; Denurra, Daniele; Casalone, Cristina; Pautasso, Alessandra; Di Francesco, Cristina Esmeralda; Di Guardo, Giovanni

    2016-01-01

    During 2011–2013, dolphin morbillivirus was molecularly identified in 4 stranded fin whales from the Mediterranean Sea. Nucleoprotein, phosphoprotein, and hemagglutinin gene sequences of the identified strain were highly homologous with those of a morbillivirus that caused a 2006–2007 epidemic in the Mediterranean. Dolphin morbillivirus represents a serious threat for fin whales.

  2. Performance of residential air-conditioning systems with flow maldistribution in fin-and-tube evaporators

    Kærn, Martin Ryhl; Brix, Wiebke; Elmegaard, Brian;

    2011-01-01

    Refrigerant and airflow maldistribution in fin-and-tube evaporators for residential air-conditioning was investigated with numerical modeling. Fin-and-tube heat exchangers usually have a pre-defined circuitry. However, the objective in this study was to perform a generic investigation of each...

  3. Mediterranean Fin Whales (Balaenoptera physalus) Threatened by Dolphin MorbilliVirus.

    Mazzariol, Sandro; Centelleghe, Cinzia; Beffagna, Giorgia; Povinelli, Michele; Terracciano, Giuliana; Cocumelli, Cristiano; Pintore, Antonio; Denurra, Daniele; Casalone, Cristina; Pautasso, Alessandra; Di Francesco, Cristina Esmeralda; Di Guardo, Giovanni

    2016-02-01

    During 2011-2013, dolphin morbillivirus was molecularly identified in 4 stranded fin whales from the Mediterranean Sea. Nucleoprotein, phosphoprotein, and hemagglutinin gene sequences of the identified strain were highly homologous with those of a morbillivirus that caused a 2006-2007 epidemic in the Mediterranean. Dolphin morbillivirus represents a serious threat for fin whales. PMID:26812485

  4. Natural Convection-Radiation from a Vertical Base-Fin Array with Emissivity Determination

    Korada Viswanatha Sharma

    2014-07-01

    Full Text Available Experiments have been conducted to determine the emissivity for black chrome coated and uncoated aluminum surfaces. The emissivity of the surfaces is estimated considering combined convection radiation heat transfer and observed to be a constant in the range of 60 to 110°C. The combined heat transfer coefficients from black chrome coated vertical base vertical fin array of size 70 x 70 mm consisting of 22 aluminum fins with a fin spacing of 10 mm by natural convection and radiation has been determined at different heat inputs. Theoretical analysis of single fin geometry of constant thickness considering both convection and radiation has been used to predict the temperature distribution and heat flow. The theoretical values of heat flow estimated for a fin array is in good agreement with the experimental observations validating the emissivity of the surface. The experimental data is further validated with the equations of Nusselt presented by Churchill and Chu.

  5. Convective Heat Transfer Augmentation by Flexible fins in Laminar Channel Pulsating flow

    Joshi, Rakshitha U; Bhardwaj, Rajneesh

    2015-01-01

    Fluid-structure interaction (FSI) of thin flexible fins coupled with convective heat transfer has applications in energy harvesting and in understanding functioning of several biological systems. We numerically investigate FSI of the thin flexible fins involving large-scale flow-induced deformation as a potential heat transfer enhancement technique. An in-house, strongly-coupled fluid-structure interaction (FSI) solver is employed in which flow and structure solvers are based on sharp-interface immersed boundary and finite element method, respectively. We consider twin flexible fins in a heated channel with laminar pulsating cross flow. The vortex ring past the fin sweep higher sources of vorticity generated on the channel walls out into the downstream - promoting the mixing of the fluid. The moving fin assists in convective mixing, augmenting convection in bulk and at the walls; and thereby reducing thermal boundary layer thickness and improving heat transfer at the channel walls. The thermal augmentation is...

  6. Laminar fluid flow and heat transfer in a fin-tube heat exchanger with vortex generators

    Yanagihara, J.I.; Rodriques, R. Jr. [Polytechnic School of Univ. of Sao Paolo, Sao Paolo (Brazil). Dept. of Mechanical Engineering

    1996-12-31

    Development of heat transfer enhancement techniques for fin-tube heat exchangers has great importance in industry. In recent years, heat transfer augmentation by vortex generators has been considered for use in plate fin-tube heat exchangers. The present work describes a numerical investigation about the influence of delta winglet pairs of vortex generators on the flow structure and heat transfer of a plate fin-tube channel. The Navier-Stokes and Energy equations are solved by the finite volume method using a boundary-fitted coordinate system. The influence of vortex generators parameters such as position, angle of attack and aspect ratio were investigated. Local and global influences of vortex generators in heat transfer and flow losses were analyzed by comparison with a model using smooth fin. The results indicate great advantages of this type of geometry for application in plate fin-tube heat exchangers, in terms of large heat transfer enhancement and small pressure loss penalty. (author)

  7. NUMERICAL STUDY ON FLOW DISTRIBUTION IN PLATE-FIN HEAT EXCHANGERS

    张哲; 厉彦忠

    2003-01-01

    Objective To investigate the flow distribution in plate-fin heat exchangers and optimize the design of header configuration for plate-fin heat exchangers. Methods A mathematical model of header was proposed. The effects of the header configuration on the flow distribution in plate-fin heat exchangers were investigated by CFD. The second header configuration with a two-stage-distributing structure was brought forward to improve the performance of flow distribution. Results It is found that the flow maldistribution is very serious in the direction of header length for the conventional header used in industry. The numerical predictions indicate that the improved header configurations can effectively improve the performance of flow distribution in plate-fin heat exchangers. Conclusion The numerical simulation confirms that CFD should be a suitable tool for predicting the flow distribution. The method has a wide variety of applications in the design of plate-fin heat exchangers.

  8. Bio-inspired flexible joints with passive feathering for robotic fish pectoral fins.

    Behbahani, Sanaz Bazaz; Tan, Xiaobo

    2016-06-01

    In this paper a novel flexible joint is proposed for robotic fish pectoral fins, which enables a swimming behavior emulating the fin motions of many aquatic animals. In particular, the pectoral fin operates primarily in the rowing mode, while undergoing passive feathering during the recovery stroke to reduce hydrodynamic drag on the fin. The latter enables effective locomotion even with symmetric base actuation during power and recovery strokes. A dynamic model is developed to facilitate the understanding and design of the joint, where blade element theory is used to calculate the hydrodynamic forces on the pectoral fins, and the joint is modeled as a paired torsion spring and damper. Experimental results on a robotic fish prototype are presented to illustrate the effectiveness of the joint mechanism, validate the proposed model, and indicate the utility of the proposed model for the optimal design of joint depth and stiffness in achieving the trade-off between swimming speed and mechanical efficiency. PMID:27144946

  9. Performance analysis of pin fins with temperature dependent thermal parameters using the variation of parameters method

    Cihat Arslantürk

    2016-08-01

    Full Text Available The performance of pin fins transferring heat by convection and radiation and having variable thermal conductivity, variable emissivity and variable heat transfer coefficient was investigated in the present paper. Nondimensionalizing the fin equation, the problem parameters which affect the fin performance were obtained. Dimensionless nonlinear fin equation was solved with the variation of parameters method, which is quite new in the solution of nonlinear heat transfer problems. The solution of variation of parameters method was compared with known analytical solutions and some numerical solution. The comparisons showed that the solutions are seen to be perfectly compatible. The effects of problem parameters were investigated on the heat transfer rate and fin efficiency and results were presented graphically.

  10. Histology, histochemistry and stereology of the adipose fin of Prochilodus lineatus.

    Alves, Rebeca Mamede da Silva; Pereira, Bruno Fiorelini; Pitol, Dimítrius Leonardo; Senhorini, José Algusto; Rocha, Rita de Cássia Gimenes de Alcântara; Caetano, Flavio Henrique

    2012-05-01

    The adipose fin is small, nonpared, and usually located medially between the dorsal and caudal fin. Its taxonomic occurrence is very restrict; thus, it represents an important trace for taxon distinction. As it does not play a known vital physiological roll and it is easily removed, it is commonly used in marking and recapture studies. The present study characterizes the adipose fin of Prochilodus lineatus, as it is poorly explored by the literature. The adipose fin consists basically of a loose connective core, covered by a stratified epithelium supported by collagen fibers. At the epithelium, pigmented cells and alarm substance cells are found. Despite the name, adipocytes or lipid droplets are not observed on the structure of the fin. PMID:22038664

  11. The use of pelvic fins for benthic locomotion during foraging behavior in Potamotrygon motoro (Chondrichthyes: Potamotrygonidae

    Akemi Shibuya

    2015-06-01

    Full Text Available Synchronized bipedal movements of the pelvic fins provide propulsion (punting during displacement on the substrate in batoids with benthic locomotion. In skates (Rajidae this mechanism is mainly generated by the crural cartilages. Although lacking these anatomical structures, some stingray species show modifications of their pelvic fins to aid in benthic locomotion. This study describes the use of the pelvic fins for locomotory performance and body re-orientation in the freshwater stingray Potamotrygon motoro (Müller & Henle, 1841 during foraging. Pelvic fin movements of juvenile individuals of P. motoro were recorded in ventral view by a high-speed camera at 250-500 fields/s-1. Potamotrygon motoro presented synchronous, alternating and unilateral movements of the pelvic fins, similar to those reported in skates. Synchronous movements were employed during straightforward motion for pushing the body off the substrate as well as for strike feeding, whereas unilateral movements were used to maneuver the body to the right or left during both locomotion and prey capture. Alternating movements of the pelvic fins are similar to bipedal movements in terrestrial and semi-aquatic tetrapods. The pelvic fins showed coordinated movements during feeding even when stationary, indicating that they have an important function in maintaining body posture (station holding during prey capture and manipulation. The use of pelvic fins during prey stalking may be advantageous because it results in less substrate disturbance when compared to movements generated by pectoral fin undulation. The range of pelvic fin movements indicates more complex control and coordination of the pelvic radial muscles.

  12. Characteristics and formation mechanism for stainless steel fiber with periodic micro-fins

    Tang, Tao; Wan, Zhenping; Lu, Longsheng; Tang, Yong

    2016-05-01

    Metal fibers have been widely used in many industrial applications due to their unique advantages. In certain applications, such as catalyst supports or orthopedic implants, a rough surface or tiny outshoots on the surface of metal fibers to increase surface area are needed. However, it has not been concerned about the surface morphologies of metal fiber in the current research of metal fiber manufacturing. In this paper, a special multi-tooth tool composed of a row of triangular tiny teeth is designed. The entire cutting layer of multi-tooth tool bifurcates into several thin cutting layers due to tiny teeth involved in cutting. As a result, several stainless steel fibers with periodic micro-fins are produced simultaneously. Morphology of periodic micro-fins is found to be diverse and can be classified into three categories: unilateral plane, unilateral tapering and bilateral. There are two forming mechanisms for the micro-fins. One is that periodic burrs remained on the free side of cutting layer of a tiny tooth create micro-fins of stainless steel fiber produced by the next neighboring tiny tooth; the other is that the connections between two fibers stuck together come to be micro-fins if the two fibers are finally detached. Influence of cutting conditions on formation of micro-fins is investigated. Experimental results show that cutting depth has no significant effect on micro-fin formation, high cutting speed is conducive to micro-fin formation, and feed should be between 0.12 mm/r and 0.2 mm/r to reliably obtain stainless steel fiber with micro-fins. This research presents a new pattern of stainless steel fiber characterized by periodic micro-fins formed on the edge of fiber and its manufacturing method.

  13. FEM simulation for cold press forging forming of the round-fin heat sink

    Wang, Kesheng; Han, Yu; Zhang, Haiyan; Zhang, Lihan

    2013-05-01

    In this paper, the finite element method is used to investigate the forming process of cold press forging for the round-fin heat sink in the automotive lighting. A series of simulations on the round-fin heat sink forming using the program DEFORM were carried out. The blank thickness and friction coefficient on the formation of round-fin were studied, and the tooling structure with counterpressure on the heat sink formation was also investigated. The results show that the blank thickness is very good for the round-fin formation, and the thicker the blank is, the better the round-fin can be formed; and also When both the punch-blank interface and the die-blank interface have the same value of friction factor, the larger value of friction factor is in favor of round-fin forming, the further investigation reveals that the friction at the punch-blank interface has more significant effect on preventing the initiation of flow-through compared with the friction at the die-blank interface, which implies that the punch-blank interface has more significant effect on the material flow in the formation of round-fin. Meanwhile, The tooling structure with counterpressure is helpful to the formation of round-fin heat sink, which not only ensures the height of each round-fin on the heat sink is uniform but also retards the initiation of flow-through on the reverse side of round-fin. In addition, the experiments of press forging process were conducted to validate the finite element analysis, and the simulation results are in good agreement with the experimental data.

  14. A numerical method for PCM-based pin fin heat sinks optimization

    Highlights: • Optimization of PCM-based heat sink by using the Taguchi method. • Derivation of optimal PCM percentage to reach the maximum critical time. • Optimization is performed for four different critical temperatures. • Effective design factors are fins’ height and fins’ number. • The optimum configuration depends on geometric properties and the critical temperature. - Abstract: This paper presents a numerical investigation on geometric optimization of PCM-based pin fin heat sinks. Paraffin RT44HC is used as PCM while the fins and heat sink base is made of aluminum. The fins act as thermal conductivity enhancers (TCEs). The main goal of the study is to obtain the configurations that maximize the heat sink operational time. An approach witch couples Taguchi method with numerical simulations is utilized for this purpose. Number of fins, fins height, fins thickness and the base thickness are parameters which are studied for optimization. In this study natural convection and PCM volume variation during melting process are considered in the simulations. Optimization is performed for different critical temperatures of 50 °C, 60 °C, 70 °C and 80 °C. Results show that a complex relation exists between PCM and TCE volume percentages. The optimal case strongly depends on the fins’ number, fins’ height and thickness and also the critical temperature. The optimum PCM percentages are found to be 60.61% (corresponds to 100 pin fin heat sink with 4 mm thick fins) for critical temperature of 50 °C and 82.65% (corresponds to 100 pin fin heat sink with 2 mm thick fins) for other critical temperatures

  15. Calling behavior of blue and fin whales off California

    Oleson, Erin Marie

    Passive acoustic monitoring is an effective means for evaluating cetacean presence in remote regions and over long time periods, and may become an important component of cetacean abundance surveys. To use passive acoustic recordings for abundance estimation, an understanding of the behavioral ecology of cetacean calling is crucial. In this dissertation, I develop a better understanding of how blue (Balaenoptera musculus) and fin (B. physalus ) whales use sound with the goal of evaluating passive acoustic techniques for studying their populations. Both blue and fin whales produce several different call types, though the behavioral and environmental context of these calls have not been widely investigated. To better understand how calling is used by these whales off California I have employed both new technologies and traditional techniques, including acoustic recording tags, continuous long-term autonomous acoustic recordings, and simultaneous shipboard acoustic and visual surveys. The outcome of these investigations has led to several conclusions. The production of blue whale calls varies with sex, behavior, season, location, and time of day. Each blue whale call type has a distinct behavioral context, including a male-only bias in the production of song, a call type thought to function in reproduction, and the production of some calls by both sexes. Long-term acoustic records, when interpreted using all call types, provide a more accurate measure of the local seasonal presence of whales, and how they use the region annually, seasonally and daily. The relative occurrence of different call types may indicate prime foraging habitat and the presence of different segments of the population. The proportion of animals heard calling changes seasonally and geographically relative to the number seen, indicating the calibration of acoustic and visual surveys is complex and requires further study on the motivations behind call production and the behavior of calling whales

  16. Optimization of a Finned Shell and Tube Heat Exchanger Using a Multi-Objective Optimization Genetic Algorithm

    Heidar Sadeghzadeh; Mehdi Aliehyaei; Marc A. Rosen

    2015-01-01

    Heat transfer rate and cost significantly affect designs of shell and tube heat exchangers. From the viewpoint of engineering, an optimum design is obtained via maximum heat transfer rate and minimum cost. Here, an analysis of a radial, finned, shell and tube heat exchanger is carried out, considering nine design parameters: tube arrangement, tube diameter, tube pitch, tube length, number of tubes, fin height, fin thickness, baffle spacing ratio and number of fins per unit length of tube. The...

  17. Propulsion efficiency of bodies appended with multiple flapping fins: When more is less

    Bandyopadhyay, Promode R.; Leinhos, Henry A.

    2013-04-01

    Underwater animals propel themselves by flapping their pectoral and caudal fins in a narrow range of frequencies, given by Strouhal number St, to produce transitional vortex jets (St is generally expressed non-dimensionally as the product of flapping frequency and stroke (arc) length divided by forward speed). The organized nature of the selection of St and of the vortex jet is thought to maximize hydrodynamic efficiency, although the exact mechanism is not known. Our recent Stuart-Landau equation models, which have self-regulation properties, indicate that the fin and its jet vortices couple. Temporal maps of forces in single isolated fins show a bimodal behavior in certain ranges of the transitional Reynolds number; this behavior bears resemblance to neural bifurcation properties that owe their origin to the self-regulation mechanism. In view of our theoretical and biorobotic evidence of self-regulation in single flapping fins, we explore if this property is altered in a fin-appended body, the goal being to understand how the narrow selection of St, self-regulation, and maximization of hydrodynamic efficiency are related. Swimming vehicles of 1-m scale have been built where a rigid cylindrical body is appended with six flapping fins, three at each end. The fins are rigid, have a rounded leading edge and a laminar section (NACA 0012), and are hinged at one end. The planform is an abstracted version of the penguin wing; it has low aspect ratio and a chord Reynolds number that varies in the transitional range from 10 000 to 60 000. The fin geometry, Reynolds number range, and the nonflexible nature of the main body are in common with those in penguins, and the length and displacement volume are similar to those of sharks. The maximum hydrodynamic efficiency of the fin-appended body (0.40) is lower than that of the single fin (0.57), but is close to that of a fish using several fins. The propulsion density (kW/m3 of displacement volume) of the fin-appended cylinder

  18. A novel trapezoid fin pattern applicable for air-cooled heat sink

    Chen, Chien-Hung; Wang, Chi-Chuan

    2015-11-01

    The present study proposed a novel step or trapezoid surface design applicable to air-cooled heat sink under cross flow condition. A total of five heat sinks were made and tested, and the corresponding fin patterns are (a) plate fin; (b) step fin (step 1/3, 3 steps); (c) 2-step fin (step 1/2, 2 steps); (d) trapezoid fin (trap 1/3, cutting 1/3 length from the rear end) and (e) trapezoid fin (trap 1/2, cutting 1/2 length from the rear end). The design is based on the heat transfer augmentation via (1) longer perimeter of entrance region and (2) larger effective temperature difference at the rear part of the heat sink. From the test results, it is found that either step or trapezoid design can provide a higher heat transfer conductance and a lower pressure drop at a specified frontal velocity. The effective conductance of trap 1/3 design exceeds that of plate surface by approximately 38 % at a frontal velocity of 5 m s-1 while retains a lower pressure drop of 20 % with its surface area being reduced by 20.6 %. For comparisons exploiting the overall thermal resistance versus pumping power, the resultant thermal resistance of the proposed trapezoid design 1/3, still reveals a 10 % lower thermal resistance than the plate fin surface at a specified pumping power.

  19. Fluid Dynamics of Biomimetic Pectoral Fin Propulsion Using Immersed Boundary Method.

    Li, Ningyu; Su, Yumin

    2016-01-01

    Numerical simulations are carried out to study the fluid dynamics of a complex-shaped low-aspect-ratio pectoral fin that performs the labriform swimming. Simulations of flow around the fin are achieved by a developed immersed boundary (IB) method, in which we have proposed an efficient local flow reconstruction algorithm with enough robustness and a new numerical strategy with excellent adaptability to deal with complex moving boundaries involved in bionic flow simulations. The prescribed fin kinematics in each period consists of the power stroke and the recovery stroke, and the simulations indicate that the former is mainly used to provide the thrust while the latter is mainly used to provide the lift. The fin wake is dominated by a three-dimensional dual-ring vortex wake structure where the partial power-stroke vortex ring is linked to the recovery-stroke ring vertically. Moreover, the connection of force production with the fin kinematics and vortex dynamics is discussed in detail to explore the propulsion mechanism. We also conduct a parametric study to understand how the vortex topology and hydrodynamic characteristics change with key parameters. The results show that there is an optimal phase angle and Strouhal number for this complicated fin. Furthermore, the implications for the design of a bioinspired pectoral fin are discussed based on the quantitative hydrodynamic analysis. PMID:27478363

  20. Fluid Dynamics of Biomimetic Pectoral Fin Propulsion Using Immersed Boundary Method

    Ningyu Li

    2016-01-01

    Full Text Available Numerical simulations are carried out to study the fluid dynamics of a complex-shaped low-aspect-ratio pectoral fin that performs the labriform swimming. Simulations of flow around the fin are achieved by a developed immersed boundary (IB method, in which we have proposed an efficient local flow reconstruction algorithm with enough robustness and a new numerical strategy with excellent adaptability to deal with complex moving boundaries involved in bionic flow simulations. The prescribed fin kinematics in each period consists of the power stroke and the recovery stroke, and the simulations indicate that the former is mainly used to provide the thrust while the latter is mainly used to provide the lift. The fin wake is dominated by a three-dimensional dual-ring vortex wake structure where the partial power-stroke vortex ring is linked to the recovery-stroke ring vertically. Moreover, the connection of force production with the fin kinematics and vortex dynamics is discussed in detail to explore the propulsion mechanism. We also conduct a parametric study to understand how the vortex topology and hydrodynamic characteristics change with key parameters. The results show that there is an optimal phase angle and Strouhal number for this complicated fin. Furthermore, the implications for the design of a bioinspired pectoral fin are discussed based on the quantitative hydrodynamic analysis.

  1. Fish's Muscles Distortion and Pectoral Fins Propulsion of Lift-Based Mode

    Yang, S. B.; Han, X. Y.; Qiu, J.

    As a sort of MPF(median and/or paired fin propulsion), pectoral fins propulsion makes fish easier to maneuver than other propulsion, according to the well-established classification scheme proposed by Webb in 1984. Pectoral fins propulsion is classified into oscillatory propulsion, undulatory propulsion and compound propulsion. Pectoral fins oscillatory propulsion, is further ascribable to two modes: drag-based mode and lift-based mode. And fish exhibits strong cruise ability by using lift-based mode. Therefore to robot fish design using pectoral fins lift-based mode will bring a new revolution to resources exploration in blue sea. On the basis of the wave plate theory, a kinematic model of fish’s pectoral fins lift-based mode is established associated with the behaviors of cownose ray (Rhinoptera bonasus) in the present work. In view of the power of fish’s locomotion from muscle distortion, it would be helpful benefit to reveal the mechanism of fish’s locomotion variation dependent on muscles distortion. So this study puts forward the pattern of muscles distortion of pectoral fins according to the character of skeletons and muscles of cownose ray in morphology and simulates the kinematics of lift-based mode using nonlinear analysis software. In the symmetrical fluid field, the model is simulated left-right symmetrically or asymmetrically. The results qualitatively show how muscles distortion determines the performance of fish locomotion. Finally the efficient muscles distortion associated with the preliminary dynamics is induced.

  2. Design, Implementation and Control of a Fish Robot with Undulating Fins

    Mohsen Siahmansouri

    2011-11-01

    Full Text Available Biomimetic robots can potentially perform better than conventional robots in underwater vehicle designing. This paper describes the design of the propulsion system and depth control of a robotic fish. In this study, inspired by knife fish, we have designed and implemented an undulating fin to produce propulsive force. This undulating fin is a segmental anal fin that produces sinusoidal wave to propel the robot. The relationship between the individual fin segment and phase angles with the overall fin trajectory has also been discussed. This propulsive force can be adjusted and directed for fish robot manoeuvre by a mechanical system with two servomotors. These servomotors regulate the direction and depth of swimming. A wireless remote control system is designed to adjust the servomotors which enables us to control revolution, speed and phase differences of neighbor servomotors of fins. Finally, Field trials are conducted in an outdoor pool to demonstrate the relationship between robotic fish speed and fin parameters like phase difference, the number of phase and undulatory amplitude.

  3. Dynamic stiffness testing-based flutter analysis of a fin with an actuator

    Zhang Renjia

    2015-10-01

    Full Text Available Engineering-oriented modeling and synthesized modeling of the fin-actuator system of a missile fin are introduced, including mathematical modeling of the fin, motor and multi-stage gear reducer. The fin-actuator model is verified using dynamic stiffness testing. Good agreement is achieved between the test and theoretical results. The parameter-variable analysis indicates that the inertia of the motor rotor, reduction ratio of the reducer, connection stiffness and damping between the actuator and fin shaft have significant impacts on the dynamic stiffness characteristics. In flutter analysis, test data are directly used in the frequency domain method and indirectly used in the time domain method through the updated fin-actuator model. The two methods play different roles in engineering applications but are of equal importance. The results indicate that dynamic stiffness and constant stiffness treatments may lead to completely different flutter characteristics. Attention should be paid to the design of the fin-actuator system of a missile.

  4. The Oldest Actinopterygian Highlights the Cryptic Early History of the Hyperdiverse Ray-Finned Fishes.

    Lu, Jing; Giles, Sam; Friedman, Matt; den Blaauwen, Jan L; Zhu, Min

    2016-06-20

    Osteichthyans comprise two divisions, each containing over 32,000 living species [1]: Sarcopterygii (lobe-finned fishes and tetrapods) and Actinopterygii (ray-finned fishes). Recent discoveries from China highlight the morphological disparity of early sarcopterygians and extend their origin into the late Silurian [2-4]. By contrast, the oldest unambiguous actinopterygians are roughly 30 million years younger, leaving a long temporal gap populated by fragments and rare body fossils of controversial phylogenetic placement [5-10]. Here we reinvestigate the enigmatic osteichthyan Meemannia from the Early Devonian (∼415 million years ago) of China, previously identified as an exceptionally primitive lobe-finned fish [3, 7, 11, 12]. Meemannia combines "cosmine"-like tissues taken as evidence of sarcopterygian affinity with actinopterygian-like skull roof and braincase geometry, including endoskeletal enclosure of the spiracle and a lateral cranial canal. We report comparable histological structures in undoubted ray-finned fishes and conclude that they are general osteichthyan features. Phylogenetic analysis places Meemannia as an early-diverging ray-finned fish, resolving it as the sister lineage of Cheirolepis [13] plus all younger actinopterygians. This brings the first appearance of ray-fins more in line with that of lobe-fins and fills a conspicuous faunal gap in the otherwise diverse late Silurian-earliest Devonian vertebrate faunas of the South China Block [4]. PMID:27212403

  5. Analytical and numerical solution along with PC spreadsheets modeling for a composite fin

    Mokheimer, E. M. A.; Antar, M. A.; Farooqi, J.; Zubair, S. M.

    Heat transfer through composite fins is investigated by both analytical and numerical methods. In this regard, governing differential equations of the two dimensional fin and one dimensional cladding are studied to examine the effect of Biot number and ratio of thermal conductivities of the fin material to the cladding, on the dimensionless temperature profiles. The results show that one dimensional analysis, traditionally used in fin analysis, is not applicable for composite fins, particularly when the conductivity ratio of the composite fin materials is low. In addition, the use of spreadsheet programs in solving the fin problem is investigated in somewhat more detail with regard to the solution as well as presentation of the graphical results. Zusammenfassung Die Wärmeabfuhr durch Kompositrippen wird sowohl analytisch, als auch numerisch untersucht, wobei die Rippe selbst als zweidimensionales, die Umhüllung als eindimensionales Gebiet den Differentialgleichungen der Wärmeleitung zugrunde gelegt werden. Dem Einfluß der Biot-Zahl und des Verhältnisses der Wärmeleitfähigkeiten von Rippen- und Umhüllungsmaterial auf die dimensionslosen Temperaturprofile gilt besonderes Interesse. Die Ergebnisse zeigen, daß die übliche eindimensionale Rippentheorie bei Kompositrippen nicht hinreicht, besonders wenn das Verhältnis der Leitfähigkeiten beider Materialien niedrig ist. Die Methode der Tabellenberechnung wird besonders eingehend behandelt und zwar sowohl mit Blick auf die Lösung, wie auch die graphische Darstellung der Ergebnisse.

  6. Experimental Analysis Of Heat Transfer From Square Perforated Fins In Staggered Arrangement

    Siddiqui. M. Abdullah

    2015-08-01

    Full Text Available This project gives the experimental analysis of heat transfer over a flat surface equipped with Square perforated pin fins in staggered arrangement in a rectangular channel. The Fin dimensions are 100mm in height & 25mm in width. The range of Reynolds number is fixed & about 13,500– 42,000, the clearance ratio (C/H 0, 0.33 and 1, the inter-fin spacing ratio (Sy /D 1.208, 1.524, 1.944 and 3.417. Sy i.e. stream wise distance is varies and Sx i.e. span wise distance is constant. The friction factor, enhancement efficiency and heat transfer correlate in equations with each other. Here we are comparing Square pin fins with cylindrical pin fins. Staggered arrangement and perforation will enhance the heat transfer rate. Clearance ratio and inter-fin spacing ratio affect on Enhancement efficiency. Both lower clearance ratio and lower inter-fin spacing ratio and comparatively lower Reynolds number give higher thermal performance. Friction factor & Nusselt number are Key parameter which relates with efficiency enhancement and heat transfer rate.

  7. Thermal management of electronics using phase change material based pin fin heat sinks

    This paper reports the results of an experimental study carried out to explore the thermal characteristics of phase change material based heat sinks for electronic equipment cooling. The phase change material (PCM) used in this study is n – eicosane. All heat sinks used in the present study are made of aluminium with dimensions of 80 × 62 mm2 base with a height of 25 mm. Pin fins acts as the thermal conductivity enhancer (TCE) to improve the distribution of heat more uniformly as the thermal conductivity of the PCM is very low. A total of three different pin fin heat sink geometries with 33, 72 and 120 pin fins filled with phase change materials giving rise to 4%, 9% and 15% volume fractions of the TCE respectively were experimentally investigated. Baseline comparisons are done with a heat sink filled with PCM, without any fin. Studies are conducted for heat sinks on which a uniform heat load is applied at the bottom for the finned and unfinned cases. The effect of pin fins of different volume fractions with power levels ranging from 4 to 8 W corresponding to a heat flux range of 1. 59 to 3.17 kW/m2, was explored in this paper. The volume fraction of the PCM (PCM volume / (Total volume – fin volume)) is also varied as 0. 3, 0.6 and 1 to determine the effect of PCM volume on the overall performance of the electronic equipment.

  8. Characteristics of a micro-fin evaporator: Theoretical analysis and experimental verification

    Zheng Hui-Fan

    2013-01-01

    Full Text Available A theoretical analysis and experimental verification on the characteristics of a micro-fin evaporator using R290 and R717 as refrigerants were carried out. The heat capacity and heat transfer coefficient of the micro-fin evaporator were investigated under different water mass flow rate, different refrigerant mass flow rate, and different inner tube diameter of micro-fin evaporator. The simulation results of the heat transfer coefficient are fairly in good agreement with the experimental data. The results show that heat capacity and the heat transfer coefficient of the micro-fin evaporator increase with increasing logarithmic mean temperature difference, the water mass flow rate and the refrigerant mass flow rate. Heat capacity of the micro-fin evaporator for diameter 9.52 mm is higher than that of diameter 7.00 mm with using R290 as refrigerant. Heat capacity of the micro-fin evaporator with using R717 as refrigerant is higher than that of R290 as refrigerant. The results of this study can provide useful guidelines for optimal design and operation of micro-fin evaporator in its present or future applications.

  9. Computational Study on a Squid-Like Underwater Robot with Two Undulating Side Fins

    Md. Mahbubar Rahman; Yasuyuki Toda; Hiroshi Miki

    2011-01-01

    The undulating fin propulsion system is an instance of the bio-inspired propulsion systems. In the current study, the swimming motion of a squid-like robot with two undulating side fins, mimicking those of a Stingray or a Cuttlefish, was investigated through flow computation around the body. We used the finite analytic method for space discretization and Euler implicit scheme for time discretization along with the PISO algorithm for velocity pressure coupling. A body-fitted moving grid was generated using the Poisson equation at each time step. Based on the computed results, we discussed the features of the flow field and hydrodynamic forces acting on the body and fin. A simple relationship among the fin's principal dimensions was established. Numerical computation was done for various aspect ratios, fin angles and frequencies in order to validate the proposed relationship among principal dimensions. Subsequently, the relationship was examined base on the distribution of pressure difference between upper and lower surfaces and the distribution of the thrust force. In efficiency calculations, the undulating fins showed promising results. Finally, for the fin, the open characteristics from computed data showed satisfactory conformity with the experimental results.

  10. Embedded Fin-Like Metal/CNT Hybrid Structures for Flexible and Transparent Conductors.

    Jiang, Di; Wang, Nan; Edwards, Michael; Mu, Wei; Nylander, Andreas; Fu, Yifeng; Jeppson, Kjell; Liu, Johan

    2016-03-01

    In this paper, an embedded fin-like metal-coated carbon nanotube (Fin-M/CNT) structure is demonstrated for flexible and transparent conductor wire applications. Embedded in a polydimethylsiloxane polymeric substrate, Fin-M/CNT wires with a minimum width of 5 μm and a minimum pitch of 10 μm have been achieved. Direct current resistances of single Fin-M/CNT wires, where the supporting CNT structures have been covered by Ti/Al/Au metal coatings of different thicknesses, have been measured. The high aspect ratio of the fin-like structures not only improves the adhesion between the wires and the polymeric substrate, but also yields a low resistance at a small surface footprint. In addition, transparent Fin-M/CNT grid lines with hexagonal patterns, with a sheet resistance of as low as 45 Ω sq(-1) , have been achieved at an optical transmittance of 88%. The robustness of the Fin-M/CNT structures has been demonstrated in bending tests up to 500 cycles and no significant changes in wire resistances are observed. PMID:26766128

  11. Effect of vapour velocity on condensate retention on horizontal pin-fin tubes

    Highlights: • Effect of vapour velocity on condensate retention is reported on pin-fin tubes. • Condensate was simulated using R-141b, water and ethylene glycol. • Vapour was simulated using air. • Retention angle when less than 90° at low velocity, increased with velocity increase. • Velocity marginally effected retention angle when greater than 90° at low velocity. - Abstract: New experimental data for condensate retention angle as a function of vapour velocity (0–19 m/s) are reported on six horizontal pin-fin tubes and an equivalent integral-fin tube (i.e. with same longitudinal fin spacing, tooth thickness, tooth height, inner and outer diameter as that of pin-fin tubes) using water, ethylene glycol and R-141b. Only geometric parameter varied was the circumferential pin spacing. For all tubes tested, an increase in vapour velocity causes an increase in condensate retention angle for the cases when retention angle was less than 90° at low approaching zero vapour velocity. For the cases when the retention angle was greater than 90° at low approaching zero vapour velocity, vapour velocity shows negligible effect on retention angle for all pin-fin tubes, while for the case of integral-fin tube (i.e. using R-141b as a test fluid where retention angle is greater than 90° at low approaching zero vapour velocity) retention angle decreased with increasing vapour velocity

  12. Flexibilidad laboral: ¿fin del trabajo permanente?

    Carmen Añez Hernández

    2016-05-01

    Full Text Available Los trabajos transitorios o atípicos, siguen posicionándose y funcionando trastocando la protección del sistema de regulación y protección del trabajo permanente. De ahí, la importancia de reflexionar teóricamente sobre el tema. Para su desarrollo se plantean los siguientes objetivos: demostrar que la flexibilización laboral ha incidido en la ruptura de las relaciones laborales, caracterizar como la subcontratación laboral encubre dichas relaciones, analizar el despido laboral y sus consecuencias en los trabajadores. El artículo se desarrolló teóricamente, especialmente tomando como referencia autores como: Bravo (2010, Quintero (2010, González (2012 De La Garza (2007, Ugarte (2007, entre otros, lo cual permitió analizar la temática abordada. Los resultados reflejan que dicha estrategia está impulsando la agudización de las condiciones precarias de los derechos laborales, con lo cual se está ante un capitalismo irracional, que tiene como propósito que los trabajadores sufraguen los efectos de las pretensiones de los capitalistas por conseguir mayores tasas de ganancia y niveles más altos de productividad. En consecuencia, la flexibilización de las relaciones laborales está destinada a ocultar los derechos de los trabajadores, agudizar el despido laboral, y propiciar el fin de un trabajo permanente.

  13. CFD-based Analysis of Aeroelastic behavior of Supersonic Fins

    Tianxing Cai

    2011-02-01

    Full Text Available The main goal of this paper is to analyze the flutter boundary, transient loads of a supersonic fin, and the flutter with perturbation. Reduced order mode (ROM based on Volterra Series is presented to calculate the flutter boundary, and CFD/CSD coupling is used to compute the transient aerodynamic load. The Volterra-based ROM is obtained using the derivative of unsteady aerodynamic step-response, and the infinite plate spline is used to perform interpolation of physical quantities between the fluid and the structural grids. The results show that inertia force plays a significant role in the transient loads, the moment cause by inertia force is lager than the aerodynamic force, because of the huge transient loads, structure may be broken by aeroelasticity below the flutter dynamic pressure. Perturbations of aircraft affect the aeroelastic response evident, the reduction of flutter dynamic pressure by rolling perturbation form 15.4% to 18.6% when Mach from 2.0 to 3.0. It is necessary to analyze the aeroelasticity behaviors under the compositive force environment.

  14. A robotic device with a passive undulating ribbon fin: kinematics and propulsive performance

    Liu, Hanlin; Curet, Oscar

    2015-11-01

    Many aquatic animals swim with high maneuverability using undulating ribbon fins. In this type of swimming, the organism propels by sending one or multiple traveling waves along an elongated fin. In previous work, robotic models with fully actuated fins where the parameters of the traveling waves are fully prescribed have been used to study the propulsive performance and fluid dynamics of this type of propulsion. However, less work has been done in ribbon fins with passively undulating waves. In this work, we use a robotic device to study the kinematics and propulsive performance of a passively undulating ribbon fin. The physical model is composed of fifteen rays interconnected with a membrane. Only two rays are actuated while the other rays are free to rotate through a common axis. The robotic fin was tested in a flume at different flow conditions. In a series of experiments we measured fin kinematics, propulsive forces and power consumption. As the leading two rays are actuated, a traveling wave with decaying amplitude passes through the passive rays. As the frequency of the actuated rays increases, the enclosed area of the undulating wave and the traveling wave frequency increase while the wavelength decreases. Our data also show that the propulsive force generated by the fin scaled with the enclosed area and the square of the relative velocity between incoming flow and traveling wave. These results suggest that both natural swimmers and underwater vehicles using ribbon-fin-based propulsion can potentially take advantage of passive undulating waves. National Science Foundation Grant No. 1420774

  15. Effect of caudal fin flexibility on the propulsive efficiency of a fish-like swimmer

    A computational model is used to examine the effect of caudal fin flexibility on the propulsive efficiency of a self-propelled swimmer. The computational model couples a penalization method based Navier–Stokes solver with a simple model of flow induced deformation and self-propelled motion at an intermediate Reynolds number of about 1000. The results indicate that a significant increase in efficiency is possible by careful choice of caudal fin rigidity. The flow-physics underlying this observation is explained through the use of a simple hydrodynamic force model and guidelines for bioinspired designs of flexible fin propulsors are proposed. (paper)

  16. Thermal performance analysis of optimized hexagonal finned heat sinks in impinging air jet

    Yakut, Kenan; Yeşildal, Faruk; Karabey, Altuǧ; Yakut, Rıdvan

    2016-04-01

    In this study, thermal performance analysis of hexagonal finned heat sinks which optimized according to the experimental design and optimization method of Taguchi were investigated. Experiments of air jet impingement on heated hexagonal finned heat sinks were carried out adhering to the L18(21*36) orthogonal array test plan. Optimum geometries were determined and named OH-1, OH-2. Enhancement efficiency with the first law of thermodynamics was analyzed for optimized heat sinks with 100, 150, 200 mm heights of hexagonal fin. Nusselt correlations were found out and variations of enhancement efficiency with Reynolds number presented in η-Re graphics.

  17. Natural Convection-Radiation from a Vertical Base-Fin Array with Emissivity Determination

    Korada Viswanatha Sharma; Ovinis Mark; Hassan Suhaimi B

    2014-01-01

    Experiments have been conducted to determine the emissivity for black chrome coated and uncoated aluminum surfaces. The emissivity of the surfaces is estimated considering combined convection radiation heat transfer and observed to be a constant in the range of 60 to 110°C. The combined heat transfer coefficients from black chrome coated vertical base vertical fin array of size 70 x 70 mm consisting of 22 aluminum fins with a fin spacing of 10 mm by natural convection and radiation has been d...

  18. The fin-to-limb transition as the re-organization of a Turing pattern

    Onimaru, Koh; Marcon, Luciano, 1983-; Musy, Marco; TANAKA, MIKIKO; Sharpe, James

    2016-01-01

    A Turing mechanism implemented by BMP, SOX9 and WNT has been proposed to control mouse digit patterning. However, its generality and contribution to the morphological diversity of fins and limbs has not been explored. Here we provide evidence that the skeletal patterning of the catshark Scyliorhinus canicula pectoral fin is likely driven by a deeply conserved Bmp–Sox9–Wnt Turing network. In catshark fins, the distal nodular elements arise from a periodic spot pattern of Sox9 expression, in co...

  19. Numerical Study on the Effect of Tube Rows on the Heat Transfer Characteristic of Dimpled Fin

    Xuehong Wu; Lihua Feng; Dandan Liu; Hao Meng; Yanli Lu

    2014-01-01

    The dimpled fin has excellent heat transfer performance and has attracted a lot of attention to apply on the fin and tube heat exchanger. A study presents to investigate the effects of number of tube rows on the air-side heat transfer characteristics of dimpled fin for velocity ranging from 1 to 3 m/s. The Q/ΔP and Q/(ΔP×V) are used to evaluate the heat transfer performance of the heat exchanger. The results show that the dimpled arrangement can change the mainstream direction, increase the d...

  20. Fin whale vocalizations observed with ocean bottom seismometers of cabled observatories off east Japan Pacific Ocean

    Iwase, Ryoichi

    2015-07-01

    Fin whale vocalizations were found in the archived waveform data from both hydrophones and ocean bottom seismometers (OBSs) of a cabled observatory off Kushiro-Tokachi in Hokkaido. A fin whale was localized on the basis of the incident orientation estimated with a single OBS and the time difference of multipath arrival of sound pressure data from a hydrophone. Furthermore, several fin whale vocalizations were found in the archived OBS waveform data from other cabled observatories off east Japan Pacific Ocean. These findings suggest that the cabled OBSs would be significant apparatuses for real-time monitoring of the presence of baleen whales around Japan.

  1. Experimental Analysis Of Heat Transfer From Square Perforated Fins In Staggered Arrangement

    Siddiqui. M. Abdullah; Dr. A. T. Autee

    2015-01-01

    This project gives the experimental analysis of heat transfer over a flat surface equipped with Square perforated pin fins in staggered arrangement in a rectangular channel. The Fin dimensions are 100mm in height & 25mm in width. The range of Reynolds number is fixed & about 13,500– 42,000, the clearance ratio (C/H) 0, 0.33 and 1, the inter-fin spacing ratio (Sy /D) 1.208, 1.524, 1.944 and 3.417. Sy i.e. stream wise distance is varies and Sx i.e. span wise distance is constant. Th...

  2. Classical Lie Point Symmetry Analysis of a Steady Nonlinear One-Dimensional Fin Problem

    R. J. Moitsheki

    2012-01-01

    Full Text Available We consider the one-dimensional steady fin problem with the Dirichlet boundary condition at one end and the Neumann boundary condition at the other. Both the thermal conductivity and the heat transfer coefficient are given as arbitrary functions of temperature. We perform preliminary group classification to determine forms of the arbitrary functions appearing in the considered equation for which the principal Lie algebra is extended. Some invariant solutions are constructed. The effects of thermogeometric fin parameter and the exponent on temperature are studied. Also, the fin efficiency is analyzed.

  3. The combined effect of radiation and convection on the efficiency of conductive single plate fins

    The efficiencies of conductive single-plate fins transferring waste heat by convection and radiation were determined. The solution of the nonlinear differential equation governing the steady-state temperature distribution on the fin surface was found to depend upon four parameters. Numerical means were used, and the results analysed and compared with particular cases. Typical temperature profiles revealed that there are certain values of the parameters for which the fin can dissipate heat by radiation, while receiving heat by convection. Also, it was found that the efficiency decreases as the convection and radiation parameters increase. (Author)

  4. FIN13, a novel growth factor-inducible serine-threonine phosphatase which can inhibit cell cycle progression.

    Guthridge, M A; Bellosta, P; Tavoloni, N; Basilico, C.

    1997-01-01

    We have identified a novel type 2C serine-threonine phosphatase, FIN13, whose expression is induced by fibroblast growth factor 4 and serum in late G1 phase. The protein encoded by FIN13 cDNA includes N- and C-terminal domains with significant homologies to type 2C phosphatases, a domain homologous to collagen, and an acidic domain. FIN13 expression predominates in proliferating tissues. Bacterially expressed FIN13 and FIN13 expressed in mammalian cells exhibit serine-threonine phosphatase ac...

  5. Magnetic Heat Transfer Enhancements on Fin-Tube Heat Exchangers

    Yan SU; C.T. HSU

    2007-01-01

    通过DNS方法解耦合的三维非稳态流动和固流体能量方程组,本文研究了两平行磁质平板和圆管所组成的肋片式圆管换热器单元与震荡流体间的传热过程.对不同的磁场频率和振幅的三维动态流热场的模拟结果表明增强磁场频率和振幅能很有效地增加周期平均传热强度达到强化传热的目的.%Two narrowly-gapped magnetic parallel plates embedding a circular disk was considered as a unit-cell to represent the fin-tube heat exchanger where heat from a circular tube was dissipated by a series of parallel equally-spaced thin plates in normal to the tube. The unsteady 3-D continuity,Navier-Stokes and energy equations for fluids and solids describing the convective heat transfer for the unit-cell geometry were solved numerically with DNS method. The present study aims on using oscillating flows and magnetic fields to enhance the heat transfer for various amplitudes and frequencies of the magnetic field. Results from cycle-averaged heat fluxes from the cylinder wall show that the increase in magnetic amplitude and frequency will greatly enhance the heat transfer. The effects of the oscillating magnetic field were discussed and the three dimensional flow and temperature fields were also presented.

  6. Changes in dive behavior during naval sonar exposure in killer whales, long-finned pilot whales, and sperm whales.

    Sivle, L D; Kvadsheim, P H; Fahlman, A; Lam, F P A; Tyack, P L; Miller, P J O

    2012-01-01

    Anthropogenic underwater sound in the environment might potentially affect the behavior of marine mammals enough to have an impact on their reproduction and survival. Diving behavior of four killer whales (Orcinus orca), seven long-finned pilot whales (Globicephala melas), and four sperm whales (Physeter macrocephalus) was studied during controlled exposures to naval sonar [low frequency active sonar (LFAS): 1-2 kHz and mid frequency active sonar (MFAS): 6-7 kHz] during three field seasons (2006-2009). Diving behavior was monitored before, during and after sonar exposure using an archival tag placed on the animal with suction cups. The tag recorded the animal's vertical movement, and additional data on horizontal movement and vocalizations were used to determine behavioral modes. Killer whales that were conducting deep dives at sonar onset changed abruptly to shallow diving (ShD) during LFAS, while killer whales conducting deep dives at the onset of MFAS did not alter dive mode. When in ShD mode at sonar onset, killer whales did not change their diving behavior. Pilot and sperm whales performed normal deep dives (NDD) during MFAS exposure. During LFAS exposures, long-finned pilot whales mostly performed fewer deep dives and some sperm whales performed shallower and shorter dives. Acoustic recording data presented previously indicates that deep diving (DD) is associated with feeding. Therefore, the observed changes in dive behavior of the three species could potentially reduce the foraging efficiency of the affected animals. PMID:23087648

  7. Experimental research of inclined-micro-fin flat tube on single phase convection heat transfer

    The experimental research of heat transfer and flow resistance characteristics of single phase water in four inclined-micro-fin flat tubes with different physical dimensions was conducted. At the same time,suitable criteria were selected to evaluate the efficiency of inclined-micro-fin flat tubes within the experimental scope and the optimal working region was determined. The results indicate that inclined-micro-fin flat tubes can greatly enhance the single-phase heat transfer in turbulent flow and the maximum heat transfer coefficient attains to 5.9 times of that in smooth tube. The quantities of heat transfer for inclined-micro-fin flat tubes are three times higher than that of smooth tube with the same of heat exchange area and pump power. (authors)

  8. Analytical Thermal and Cost Optimization of Micro-Structured Plate-Fin Heat Sink

    Rezaniakolaei, Alireza; Rosendahl, Lasse

    Microchannel heat sinks have been widely used in the field of thermo-fluids due to the rapid growth in technological applications which require high rates of heat transfer in relatively small spaces and volumes. In this work, a micro plate-fin heat sink is optimized parametrically, to minimize the...... thermal resistance and to maximize the cost performance of the heat sink. The width and the height of the microchannels, and the fin thickness are analytically optimized at a wide range of pumping power. Using an effective numeric test, the generated equations also discuss the optimum parameters at three...... sizes of the substrate plat of the heat sink. Results show that, at any pumping power there are specific values of the channel width and fin thickness which produce minimum thermal resistance in the heat sink. The results also illustrate that, a larger channel width and a smaller fin thickness lead to a...

  9. A Comparative Study of Conventional and Tip-Fin Propeller Performance

    Andersen, Poul

    1997-01-01

    During more than a decade several attempts have been made to obtain higher propeller efficiencies by radically modifying the geometry in the tip region of the blade. In the tip-fin propeller a tip fin or winglet is attached to the blade tip and integrated into the blade in such a way that the blade...... tip is softly curved towards the suction side.Whereas the developments previously have been concentrated mainly on increasing the efficiency of the propeller, the emphasis of current efforts has been on both high efficiency as well as good cavitation properties. This has resulted in a design with a...... combination of skew and tip fin. To evaluate the design, open-water, self-propulsion and cavitation model tests have been carried out. The tests are done for the conventional propeller originally designed for the ship and for a tip-fin propeller designed for the same ship under the same operation conditions...

  10. Thermal analysis of annular fins with temperature-dependent thermal properties

    I. G. AKSOY

    2013-01-01

    The thermal analysis of the annular rectangular profile fins with variable thermal properties is investigated by using the homotopy analysis method (HAM). The thermal conductivity and heat transfer coefficient are assumed to vary with a linear and power-law function of temperature, respectively. The effects of the thermal-geometric fin parameter and the thermal conductivity parameter variations on the temperature distribution and fin efficiency are investigated for different heat transfer modes. Results from the HAM are compared with numerical results of the finite difference method (FDM). It can be seen that the variation of dimensionless parameters has a significant effect on the temperature distribution and fin efficiency.

  11. Thermal-hydraulic performance of the finned surface of a compact heat exchanger

    In this work the thermal-hydraulic behavior of the finned surface of a compact heat exchanger is obtained in tube-fin configuration corrugated (wavy). Through numerical simulation are determined average values ​​of intensification of heat transfer and pressure loss in the inter-channel finned. The objective is to characterize the surface to use as a reference, to make comparisons with other heat exchange surfaces enhanced using traditional techniques combined with more current, such as vortex generators. The study is conducted in laminar flow, with Reynolds numbers below 1000. In the working model compact exchanger tubes and corrugated fins (wavy) heat is described, and the results of the coefficient of overall heat transfer and the pressure drop are explained from the local characteristics of the velocity field and temperature inside the heat exchanger. (Full text)

  12. Simulation on Thermal Integrity of the Fin/Tube Brazed Joint of Heat Exchangers

    Yiyu QIAN; Feng GAO; Fengjiang WANG; Hui ZHAO

    2003-01-01

    In the applications of heat exchangers, the fin efficiency of heat transfer is the key issue. Thermal distribution withinthe brazed joints in heat exchanger under loading conditions is investigated in this paper. Simulated results showedthat the therma

  13. DNR 100K Lakes - Fishing in the Neighborhood (FiN) Ponds

    Minnesota Department of Natural Resources — This layer represents ponds included in DNR's Fishing in the Neighborhood (FiN) program. This program establishes local ponds to provide urban fishing opportunities...

  14. Supersonic aerodynamic characteristics of a series of wrap-around-fin missile configurations

    Fournier, R. H.

    1977-01-01

    A parametric study of wrap-around-fin missile configurations was conducted at Mach numbers from 1.60 to 2.86 in the Langley Unitary Plan wind tunnel. The fin configurations investigated included variations in chord length, leading edge sweep, thickness ratio, and leading edge shape. The investigation also included a smooth and a stepped-down afterbody required for flush retraction of the wrap-around-fin configuration. The investigation indicated no unusual longitudinal characteristics; however, all the wrap-around-fin configurations tested indicated erratic lateral behavior, particularly in the form of induced roll at zero angle of attack and irregular variations of roll with angle of attack and Mach number. The magnitude of rolling moment at an angle of attack of 0 deg is estimated to represent approximately 0.25 deg or less roll control deflection. The stepped-down afterbody has a marked effect on reducing the induced roll.

  15. Control characteristics for wrap-around fins on cruise missiles configurations

    Sawyer, W. C.; Monta, W. J.; Carter, W. V.; Alexander, W. K.

    1981-01-01

    This paper presents selected results of a panel loads study conducted as part of the final phase of an extensive investigation of an air-breathing missile concept employing wrap-around aerodynamic surfaces. Typical results for M = 2.36 are presented for the fin load results, plus a brief review of basic results of the previously reported tests. Vapor screen results are also discussed. The present results indicate that the fin load characteristics are nearly identical for planar and curved fins having the same projected planform and would permit the use of planar-surface predictions for supersonic speeds in the preliminary design stages of missiles employing wrap-around curved fins.

  16. Comparative Study for Improving the Thermal and Fluid Flow Performance of Micro Channel Fin Geometries Using Numerical Simulation

    S.Subramanian

    2015-07-01

    Full Text Available There is a continuous quest for improving the performance of micro channels for handling the increased dissipation of heat from electronics circuits. The Oblique fin micro channels are attractive as they perform better than plate fin & pin fin configurations. There are scopes for further improvements in oblique fin micro channels. Hence this work is about the investigation for the performance enhancement by modifying the oblique fin geometry. Seven variants of micro channel geometries have been explored using three dimensional numerical simulations. The variants are plate fin, in-line pin fin, staggered pin fin, oblique fin, oblique fin with two slit angles, oblique with nozzle type slit and improved oblique fin. The simulation results are validated using the published data. To ensure a common reference for comparison, hydraulic diameter, inlet flow conditions, heat loads and the boundary conditions are kept identical across all the geometries. The results of simulation are compared for the thermal & fluid flow performances. Heat transfer correlations have been developed using the simulation data. The proposed modification is found to enhance the performance significantly

  17. Influence of Alumina Addition to Aluminum Fins for Compact Heat Exchangers Produced by Cold Spray Additive Manufacturing

    Farjam, Aslan; Cormier, Yannick; Dupuis, Philippe; Jodoin, Bertrand; Corbeil, Antoine

    2015-10-01

    In this work, aluminum and aluminum-alumina powder mixtures were used to produce pyramidal fin arrays on aluminum substrates using cold spray as an additive manufacturing process. Using aluminum-alumina mixtures instead of pure aluminum powder could be seen as a cost-effective measure, preventing nozzle clogging or the need to use expensive polymer nozzles that wear out rapidly during cold spray. The fin geometries that were produced were observed using a 3D digital microscope to determine the flow passages width and fins' geometric details. Heat transfer and pressure drop tests were carried out using different ranges of appropriate Reynolds numbers for the sought commercial application to compare each fin array and determine the effect of alumina content. It was found that the presence of alumina reduces the fins' performance when compared to pure aluminum fins but that they were still outperforming traditional fins. Numerical simulations were performed to model the fin arrays and were used to predict the pressure loss in the fin array and compare these results with experimental values. The numerical model opens up new avenues in predicting different applicable operating conditions and other possible fin shapes using the same fin composition, instead of performing costly and time-consuming experiments.

  18. Research and Simulation of a flexible robotic fish tail fin propulsion system

    Luo Hong Yu

    2016-01-01

    Full Text Available This article uses a flexible crescent caudal fin tuna as the research object, sets up the robot fish physical model ,researches the propulsion and advancing speed of the model, discusses forward speed, sliding and swing amplitude, frequency and phase to the flexible tail fin propulsive performance, and uses MATLAB to simulate, motion simulation is consistent with the way to achieve the real movement of the fish.

  19. Shark Fin Test und rheologische Eigenschaften von elastomeren Abformmaterialien : eine Korrelationsanalyse

    Stelzig, Jürgen

    2009-01-01

    Es war das Ziel dieser Arbeit, die Ergebnisse des Shark Fin Tests mit Hilfe von rheologischer Kenngrößen dentaler Abformmaterialien zu beschreiben. Es wurden acht Abformmaterialien, vier Polyether und jeweils zwei A-Silikone und Hybridmaterialien untersucht. Die Prüfung der rheologischen Eigenschaften (komplexe Viskosität, Nullviskosität und Fließgrenze) wurden mit Hilfe eines Rheo Stress 600 Rheometers (Thermo/ Fisher Scientific, Karlsruhe), der Shark Fin Test mit einer Shark ...

  20. Fin Fish Biodiversity Of A Tropical Sal Estuary, Goa, West Coast Of India

    Nandadeep U. Fal Dessai

    2013-01-01

    Sal estuary represents rich biodiversity because of the heavy rains during the south west monsoon and lack of any industrial development along the banks of the river. Attempt was made to survey the fin fish biodiversity along the estuary to fulfill the lack of adequate information regarding estuarine fisheries. Hydrological parameters were analysed during the study period and found to be highly influencing. Fishes were caught near shore by using gill nets and cast nets. About 35 fin fishes we...

  1. Collector Efficiency in Downward-Type Internal-Recycle Solar Air Heaters with Attached Fins

    Chii-Dong Ho; Ho-Ming Yeh

    2013-01-01

    The internal-recycle operation effect on collector efficiency in downward-type rectangular solar air heaters with attached fins is theoretically investigated. It is found that considerable collector efficiency is obtainable if the collector has attached fins and the operation is carried out with internal recycling. The recycling operation increases the fluid velocity to decrease the heat transfer resistance, compensating for the undesirable effect of decreasing the heat transfer driving force...

  2. Numerical and experimental study of the performance of a drop-shaped pin fin heat exchanger

    Boulares, Jihed

    2003-01-01

    Approved for public release; distribution is unlimited. This research presents the results of a combined numerical and experimental study of heat transfer and pressure drop behavior in a compact heat exchanger (CHE) designed with drop-shaped pin fins. A numerical study using ANSYS was first conducted to select the optimum pin shape and configuration for the CHE. This was followed by an experimental study to validate the numerical model. The results indicate that the drop shaped pin fins ...

  3. Establishment of a turbot fin cell line and its susceptibility to turbot reddish body iridovirus

    Fan, Ting-Jun; Ren, Bing-Xin; Geng, Xiao-Fen; Yu, Qiu-Tao; Li-yan WANG

    2010-01-01

    A turbot, Scophthalmusmaximus, fin (TF) cell line was established and susceptibility to turbot reddish body iridovirus (TRBIV) was determined in this study. Primary culture of TF cells was initiated from fin tissue pieces partially digested with trypsin, collagenase II and hyaluronidase. Digested tissue pieces were cultured at 24 °C in Leibovitz-15 medium (pH 7.2), supplemented with 20% fetal bovine serum, carboxymethyl chitosan, N-acetylglucosamine hydrochloride, basic fibroblast growth fact...

  4. Was the tail bud the ancestral centre where the fin developmental program evolved in chordates?

    Cotoras, D.D.; M.L. Allende

    2015-01-01

    The structural origin of the vertebrates’ paired limbs is still an unsolved problem. Historically, two hypotheses have been raised to explain the origin of vertebrate limbs: the Archipterygium Hypothesis and the Fin Fold Hypothesis. Current knowledge provides support for both ideas. In the recent years, it has been also suggested that (1) all appendages correspond to body axis duplications and (2) they are originated by the ventralization of the developmental program present in the median fin...

  5. Development of a Methodology to Measure Aerodynamic Forces on Pin Fins in Channel Flow

    Brumbaugh, Scott J

    2006-01-01

    The desire for smaller, faster, and more efficient products places a strain on thermal management in components ranging from gas turbine blades to computers. Heat exchangers that utilize internal cooling flows have shown promise in both of these industries. Although pin fins are often placed in the cooling channels to augment heat transfer, their addition comes at the expense of increased pressure drop. Consequently, the pin fin geometry must be judiciously chosen to achieve the desired he...

  6. Origin of fin-clipped salmonids collected at two thermal discharges on Lake Michigan

    Fin clips observed on fish collected during tagging studies at the Point Beach and Waukegan thermal discharges were recorded and the data were tabulated by species. Using fin clip and fish size, attempts were made to identify probable stocking locations and dates from agency records. Data are presented for lake trout, rainbow trout, brown trout, and Coho salmon. Tables are presented to show probable stocking locations and dates

  7. Studi Eksperimen Analisa Performa Compact Heat Exchanger Louvered Fin Flat Tube untuk pemanfaatan Waste Energy

    Taqwim Ismail; Ary Bachtiar Khrisna Putra

    2014-01-01

    Waste Heat Recovery merupakan instalasi yang digunakan untuk memanfaatkan kembali waste energy seperti exhaust gas. Penelitian dilakukan pada compact heat exchanger tipe louvered fin flat tube sebagai salah satu komponen penyusun waste heat recovery system. Eksperimen dilakukan dengan mendesain compact heat exchanger tipe louvered fin flat tube kemudian dilakukan pengujian pada compact heat exchanger yang telah didesain. Pengujian dilakukan dengan memberikan tiga variasi kecepatan putaran fan...

  8. Diversification of the pectoral fin shape in damselfishes (Perciformes, Pomacentridae) of the Eastern Pacific

    Aguilar-Medrano, Rosalia; Frederich, Bruno; Eduardo F. Balart; De Luna, Efrain

    2013-01-01

    Fin shape strongly influences performance of locomotion across all swimming styles. In this study, we focused on the diversity of the pectoral fin morphology in damselfishes of the Eastern Pacific. Underwater observations and a review of literature allowed the characterization of ten behavioral groups. Territorial and non-territorial species were discriminated easily with traditional morphometrics. Five ecomorphological groups were recognized by geometric morphometric analyses. Geometric data...

  9. Solidification of binary alloy in a finned enclosure from the bottom

    Tan, F.L. [Nanyang Technological University, School of Mechanical and Aerospace Engineering, Singapore (Singapore)

    2009-01-15

    This paper presents experimental findings on the phenomenon of solidification of a binary alloy in a finned enclosure using aqueous ammonium chloride solution. Solidification experiments are carried out over a wide range of initial composition of binary alloy solution from hypoeutectic to hypereutectic concentration ranging from 8, 16 and 24% of ammonium chloride are discussed. An interesting ''snowing'' phenomenon is observed for the hypereutectic concentration in a finned enclosure. (orig.)

  10. Out-of-plane strain effect on silicon-based flexible FinFETs

    Ghoneim, Mohamed T.

    2015-06-21

    Summary form only given. We report out-of-plane strain effect on silicon based flexible FinFET, with sub 20 nm wide fins and hafnium silicate based high-κ gate dielectric. Since ultra-thin inorganic solid state substrates become flexible with reduced thickness, flexing induced strain does not enhance performance. However, detrimental effects arise as the devices are subject to various out-of-plane stresses (compressive and tensile) along the channel length.

  11. Shape optimization of rotating rectangular channels with pin-fins by kriging method

    This paper presents numerical optimization of the design of a rotating rectangular channel with staggered arrays of pin-fins with Kriging metamodeling technique. Two non-dimensional variables, the ratio of the height to diameter of the pin-fin and the ratio of the spacing between the pin-fins to diameter of the pin-fins are chosen as design variables. The objective function as a linear combination of heat transfer and friction loss related terms with a weighting factor is selected for the optimization. Objective function values at twenty training points generated by Latin Hypercube Sampling (LHS) are evaluated by three-dimensional ReynoldsAveraged Navier-Stokes (RANS) method with the Shear Stress Transport (SST) turbulence model. The prediction of objective function by Kriging metamodeling at optimum point shows reasonable accuracy in comparison with the values calculated by RANS analysis. With increase in height of the pin-fin, heat transfer is decreased and at the same time pressure drop is also decreased, while opposite behavior is obtained for the pin-fin spacing.

  12. Cooling Effect Improvement by Dimensional Modification of Annular Fins in Two Stage Reciprocating Compressor

    Mr. Ashish D. Vasiyar,

    2014-05-01

    Full Text Available The Reciprocating Compressor fins are made from Aluminum alloy and it is provided for increase in contact area in convective heat transfer. Air cooling is a method of dissipating heat It works by making the object to be cooled have a larger surface area or have an increased flow of air over its surface. a fin is a surface that extends from an object to increase the rate of heat transfer to or from the environment by increasing convection. The aim of present work study is to prepare a finite element model of fin. The result of finite element model will be verified with experimental work with thermocouple. After comparing results of FEA model we can modify boundary condition, material shape & size for improvement in efficiency & cooling rate. It is possible to find optimum solution with FEA package ANSYS 14 used for modeling and analysis. Effectiveness of fin can be improved by changing geometry of fin. So after increase effectiveness it can increase cooling rate and minimize the time for cooling process of Reciprocating compressor. Aim of this work is increase effectiveness of the fin for best performance.

  13. Pool boiling on surfaces with mini-fins and micro-cavities

    The experimental studies presented here focused on pool boiling heat transfer on mini-fin arrays, mini-fins with perforated covering and surfaces with micro-cavities. The experiments were carried out for water and fluorinert FC-72 at atmospheric pressure. Mini-fins of 0.5 and 1 mm in height were uniformly spaced on the base surface. The copper foil with holes of 0.1 mm in diameter (pitch 0.2/0.4 mm), sintered with the fin tips, formed a system of connected perpendicular and horizontal tunnels. The micro-cavities were obtained through spark erosion. The maximal depth of the craters of these cavities was 15 – 30 μm and depended on the parameters of the branding-pen settings. At medium and small heat fluxes, structures with mini-fins showed the best boiling heat transfer performance both for water and FC-72. At medium and high heat fluxes (above 70 kW/m2 for water and 25 kW/m2 for FC-72), surfaces with mini-fins without porous covering and micro-cavities produced the highest heat transfer coefficients. The surfaces obtained with spark erosion require a proper selection of geometrical parameters for particular liquids – smaller diameters of cavities are suitable for liquids with lower surface tension (FC-72).

  14. Mechanism of Tonal Noise Generation from Circular Cylinder with Spiral Fin

    Ryo Yamashita; Hidechito Hayashi; Tetsuya Okumura; Hiromitsu Hamakawa

    2014-01-01

    The pitch of the spiral finned tube influences seriously to the acoustic resonance in the heat exchanger.In this research,the flow characteristics in relating to the aeolian tone from the finned cylinder are studied by the numerical simulation.It is observed that the tonal noise generated from the finned tube at two pitch spaces.The ratio of the fin pitch to the cylinder diameter is changed at 0.11 and 0.27.The tone level increases and the frequency decreases with the pitch shorter.The separation flow from the cylinder generates the span-wise vortices,Karman vortices,and the separation flow from the fin generates the stream-wise vortices.When the fin pitch ratio is small,the stream-wise vortices line up to span-wise and become weak rapidly.Only the Karman vortices are remained and integrate in span.So the Karman vortex became large.This causes the low frequency and the large aeolian tone.

  15. Indirect adaptive output feedback control of a biorobotic AUV using pectoral-like mechanical fins

    Naik, Mugdha S; Singh, Sahjendra N [Department of Electrical and Computer Engineering, University of Nevada, Las Vegas, NV 89154-4026 (United States); Mittal, Rajat [Department of Mechanical and Aerospace Engineering, George Washington University, Washington University, DC 22052 (United States)], E-mail: sahaj@egr.unlv.edu

    2009-06-01

    This paper treats the question of servoregulation of autonomous underwater vehicles (AUVs) in the yaw plane using pectoral-like mechanical fins. The fins attached to the vehicle have oscillatory swaying and yawing motion. The bias angle of the angular motion of the fin is used for the purpose of control. Of course, the design approach considered here is applicable to AUVs for other choices of oscillation patterns of the fins, which produce periodic forces and moments. It is assumed that the vehicle parameters, hydrodynamic coefficients, as well the fin forces and moments are unknown. For the trajectory control of the yaw angle, a sampled-data indirect adaptive control system using output (yaw angle) feedback is derived. The control system has a modular structure, which includes a parameter identifier and a stabilizer. For the control law derivation, an internal model of the exosignals (reference signal (constant or ramp) and constant disturbance) is included. Unlike the direct adaptive control scheme, the derived control law is applicable to minimum as well as nonminimum phase biorobotic AUVs (BAUVs). This is important, because for most of the fin locations on the vehicle, the model is a nonminimum phase. In the closed-loop system, the yaw angle trajectory tracking error converges to zero and the remaining state variables remain bounded. Simulation results are presented which show that the derived modular control system accomplishes precise set point yaw angle control and turning maneuvers in spite of the uncertainties in the system parameters using only yaw angle feedback.

  16. Indirect adaptive output feedback control of a biorobotic AUV using pectoral-like mechanical fins

    This paper treats the question of servoregulation of autonomous underwater vehicles (AUVs) in the yaw plane using pectoral-like mechanical fins. The fins attached to the vehicle have oscillatory swaying and yawing motion. The bias angle of the angular motion of the fin is used for the purpose of control. Of course, the design approach considered here is applicable to AUVs for other choices of oscillation patterns of the fins, which produce periodic forces and moments. It is assumed that the vehicle parameters, hydrodynamic coefficients, as well the fin forces and moments are unknown. For the trajectory control of the yaw angle, a sampled-data indirect adaptive control system using output (yaw angle) feedback is derived. The control system has a modular structure, which includes a parameter identifier and a stabilizer. For the control law derivation, an internal model of the exosignals (reference signal (constant or ramp) and constant disturbance) is included. Unlike the direct adaptive control scheme, the derived control law is applicable to minimum as well as nonminimum phase biorobotic AUVs (BAUVs). This is important, because for most of the fin locations on the vehicle, the model is a nonminimum phase. In the closed-loop system, the yaw angle trajectory tracking error converges to zero and the remaining state variables remain bounded. Simulation results are presented which show that the derived modular control system accomplishes precise set point yaw angle control and turning maneuvers in spite of the uncertainties in the system parameters using only yaw angle feedback

  17. A novel mini-DNA barcoding assay to identify processed fins from internationally protected shark species.

    Andrew T Fields

    Full Text Available There is a growing need to identify shark products in trade, in part due to the recent listing of five commercially important species on the Appendices of the Convention on International Trade in Endangered Species (CITES; porbeagle, Lamna nasus, oceanic whitetip, Carcharhinus longimanus scalloped hammerhead, Sphyrna lewini, smooth hammerhead, S. zygaena and great hammerhead S. mokarran in addition to three species listed in the early part of this century (whale, Rhincodon typus, basking, Cetorhinus maximus, and white, Carcharodon carcharias. Shark fins are traded internationally to supply the Asian dried seafood market, in which they are used to make the luxury dish shark fin soup. Shark fins usually enter international trade with their skin still intact and can be identified using morphological characters or standard DNA-barcoding approaches. Once they reach Asia and are traded in this region the skin is removed and they are treated with chemicals that eliminate many key diagnostic characters and degrade their DNA ("processed fins". Here, we present a validated mini-barcode assay based on partial sequences of the cytochrome oxidase I gene that can reliably identify the processed fins of seven of the eight CITES listed shark species. We also demonstrate that the assay can even frequently identify the species or genus of origin of shark fin soup (31 out of 50 samples.

  18. A novel mini-DNA barcoding assay to identify processed fins from internationally protected shark species.

    Fields, Andrew T; Abercrombie, Debra L; Eng, Rowena; Feldheim, Kevin; Chapman, Demian D

    2015-01-01

    There is a growing need to identify shark products in trade, in part due to the recent listing of five commercially important species on the Appendices of the Convention on International Trade in Endangered Species (CITES; porbeagle, Lamna nasus, oceanic whitetip, Carcharhinus longimanus scalloped hammerhead, Sphyrna lewini, smooth hammerhead, S. zygaena and great hammerhead S. mokarran) in addition to three species listed in the early part of this century (whale, Rhincodon typus, basking, Cetorhinus maximus, and white, Carcharodon carcharias). Shark fins are traded internationally to supply the Asian dried seafood market, in which they are used to make the luxury dish shark fin soup. Shark fins usually enter international trade with their skin still intact and can be identified using morphological characters or standard DNA-barcoding approaches. Once they reach Asia and are traded in this region the skin is removed and they are treated with chemicals that eliminate many key diagnostic characters and degrade their DNA ("processed fins"). Here, we present a validated mini-barcode assay based on partial sequences of the cytochrome oxidase I gene that can reliably identify the processed fins of seven of the eight CITES listed shark species. We also demonstrate that the assay can even frequently identify the species or genus of origin of shark fin soup (31 out of 50 samples). PMID:25646789

  19. Experimental and numerical investigation to evaluate the performance of triangular finned tube heat exchanger

    Vinous M. Hameed, Bashar Muslem Essa

    2015-01-01

    Full Text Available Experimental and numerical investigation has been performed in this work to evaluate the performance for triangular finned tube heat exchanger. Experimental work included designing and manufacturing of shaped triangular fins from copper material of (10mm length, (10mm height, (1mm thickness, (22 mm distance between every two fins shaped and (15mm pitch between each two of fins which are install on the straight copper tube of (2m length having (20mm inner diameter and (22mm outer diameter. The inner tube is inserted inside the Perspex tube of (54mm inner diameter and (60mm outer diameter. Cold Air and hot water are used as working fluids in the shell side and tube side, respectively. Air at various mass flow rates (0.001875 to 0.003133 kg/sec flows through annuli and water at Reynold's numbers ranging from (10376.9 to 23348.03 flows through the inner tube. Performance of (smooth and finned tube heat exchanger was investigated experimentally. Experimental results showed that the enhancement of heat dissipation for triangular finned tube is (3.252 to4.502 times than that of smooth tube respectively. Numerical simulation has been carried out on present heat exchanger to analyze flow field and heat transfer using COMSOL computational fluid dynamic (CFD package model. The comparison between experimental work and numerical results showed good agreement.

  20. A new nanoscale fin field effect transistor with embedded intrinsic region for high temperature applications

    Karimi, Fa.; Orouji, Ali A.

    2016-08-01

    The present paper reveals a novel structure of nanoscale Silicon-On-Insulator (SOI) Fin Field Effect Transistor (FinFET) in which an intrinsic region (EIR) is embedded into the buried oxide layer. The key idea in this work is to improve the critical thermal problems raised by the self-heating effect (SHE). The EIR-FinFET device has lower thermal resistance, reduced hot carrier effect, lower threshold voltage roll-off, and lower critical electric field in comparison with the C-FinFET. Also, higher DC transconductance, lower DC conductance and a better gate capacitance are obtained because the intrinsic region is embedded in a suitable place. Moreover, the simulation result with three-dimensional and two-carrier device simulator demonstrates an improved output characteristic of the proposed structure due to the reduced self-heating effect. The intrinsic silicon layer is located under the source and fin regions and provides more space to dissipate the accumulated heat. Due to the high thermal conductivity of the silicon and decreasing corner effects there, the heat will flow easily and the lattice temperature will decrease. All the extracted results attempt to show the superiority of the EIR-FinFET device over the conventional one, and its effect on the operation of nanoscale low power and high speed devices.

  1. A numerical study of entry region laminar mixed convection over shrouded vertical fin arrays

    A computational study of laminar mixed convection over a shrouded vertical rectangular fin array attached to a vertical base has been performed. Maintaining the base-fin system above the surrounding temperature, a fan velocity is imposed to enhance the heat transfer through the mixed convection process. Present study finds the effects of clearance spacing, fin spacing, fin length, Reynolds number and Grashof number on the thermal performance of the base-fin system. Mixed convection inlet velocity is decoupled to forced and natural convection velocity components and the resulting pressure drop across the duct length arises purely due to the forced convection velocity component. Thus, Reynolds number is estimated based on forced convection velocity component as the inlet velocity does not vanish even in pure natural convection. Computed local Nusselt number shows sharp drop near the entrance and reaches a fully developed value after a certain stream-wise distance from the entrance. Further, fully developed local Nusselt number shows a clear maximum at the clearance spacing of 0.075 and 0.15 for the inter-fin spacing of 0.3 and 0.5 respectively. Pressure drop across the duct, induced natural convection velocity and overall Nusselt number are well correlated with the governing parameters of the problem. (authors)

  2. EXPERIMENTAL INVESTIGATION AND COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF MISSILE WITH GRID FIN IN SUBSONIC FLOW

    K.Mohamed Bak

    2010-11-01

    Full Text Available The present work deals with the investigation of aerodynamic force coefficients and flow field structure in subsonic flow on missile configuration with grid fin using Wind tunnel and CFD. The experimental work has been performed using the low speed wind tunnel, which is having a rectangular test section of 3ft height, 4ft width and 6 ft length. Reynolds number range for the models are Re = 4.79 x 105 to 1.3 x 106 and tested for different angle of attack ranging from –15 to +15. Grid fin usually produce much higher lifting forces and pitching moments to overcome the drag, which are created at high angle of attack operations. CFD is used for the prediction of aerodynamic force coefficients and flow field structure around missile with grid fin is investigated for subsonic flow. The work involves computational analysis using CFD and validating the results using wind tunnel test. The body with grid fin configuration produces the greater normal force coefficient at various angles of attack thanplanar. The axial force coefficient on the grid fin missile configuration was about 0.8 times greater than planar. The computational results of grid fin from the software package are compared with wind tunnel test data and measured data was observed for missile.

  3. Variation in Spot and Stripe Patterns in Original and Regenerated Zebrafish Caudal Fins.

    Anorve-Andress, Kyle; Arcand, Amy Lucille; Borg, Bethanie R; Brown, Jayce Lee; Chartrand, Caitlin A; Frank, Marisohn L; Jansen, Jedediah N; Joyce, Michael J; Joyce, Michael T; Kinney, Joseph A; Kruggel, Spencer Lee; Lecy, Amanda D; Ma, Phyo; Malecha, Katchen M; Melgaard, Kelsey; Miller, Paula L; Nelson, Kristina K; Nieto Robles, Marvin; Perosino, Tianna Ruth; Peterson, Jenna Marie; Rollins, April Diane; Scherkenbach, Whitney Lee; Smith, Andrea L; Sodergren, Kelsey A; Stiller, Jacob Jo; Wehber, Kevin R; Liang, Jennifer Ostrom

    2016-08-01

    Tissue regeneration requires not only the replacement of lost cells and tissues, but also the recreation of morphologies and patterns. Skin pigment pattern is a relatively simple system that can allow researchers to uncover the underlying mechanisms of pattern formation. To gain insight into how pigment patterns form, undergraduate students in the senior level course Developmental Biology designed an experiment that assayed pigment patterns in original and regenerated caudal fins of wild-type, striped, and mutant, spotted zebrafish. A majority of the WT fins regenerated with a similar striped pattern. In contrast, the pattern of spots even in the original fins of the mutants varied among individual fish. Similarly, the majority of the spots in the mutants did not regenerate with the same morphology, size, or spacing as the original fins. This was true even when only a small amount of fin was removed, leaving most of the fin to potentially reseed the pattern in the regenerating tissue. This suggests that the mechanism that creates the wild-type, striped pattern persists to recreate the pattern during regeneration. The mechanism that creates the spots in the mutants, however, must include an unknown element that introduces variability. PMID:27096743

  4. Mechanical properties on multi stage blazed fin body with ultra fine off-set fin for compact heat exchanger at elevated temperature

    Three-stage blazed plate fin core model of ultra fine off-set fin, -(thickness x height x pitch x off-set pitch=0.2 mm x 1.2 mm x 1.6 mm x 5 mm) blazed by Ni blazing material of the recuperator for 600 MW High Temperature Gas Cooled Reactor Gas Turbine (GTHTR300) system was fabricated and tested on its high temperature mechanical properties. The following results were derived. (1) High temperature static, fatigue and creep mode of fracture mainly occurred at ultra fine off-set fin made of SUS304. (2) Tested model showed almost the same high temperature strength, fatigue and creep behaviors of SUS304 as a main structural material at elevated temperature up to 873 K, (3) Recuperator designed for the GTHTR300 could be testified on the database of SUS304 base material and (4) The recuperator with the same fin plate structure could be practically applied to the GTHTR300. (author)

  5. Conjugate Heat transfer Analysis of helical fins with airfoil crosssection and its comparison with existing circular fin design for air cooled engines employing constant rectangular cross-section

    Ashwin Shridhar

    2015-06-01

    Full Text Available Air Cooled Engines have been used in a variety of applications, ranging from airplanes to motorbikes and even stationary or portable engines. Since modern automobiles and airplanes use engines delivering more power, they have to be cooled more efficiently due to which a more complex water cooling system is used for cooling engines with large displacements. Hence air cooling is becoming a thing of the past, especially in the aviation sector due to the advent of more efficient gas turbine engines. However air cooled internal combustion engines are still being used in a wide variety of two-wheelers ranging from small single cylinder engines to heavy duty liter class V-twins and Inline fours, due to the non-practicalities associated with the installment of a bulky water cooling system in two-wheelers. So one can ascertain that there is a scope for improving the efficiency of air cooled engines even further. The objective of this paper is to analyze currently existing fin design employed in most of the air cooled engines and improve it by changing the cross-section to a streamlined one and also making the fins in a helical orientation as opposed to the regular circular fins employed. Our analysis comprises of a computational fluid dynamics study of both the fin models with identical dimensions and simulated in the same environment using ANSYS FLUENT 15 software and we attempt to compare their performance using the temperature and heat transfer coefficient distribution plots obtained.

  6. Parametric study of propeller boss cap fins for container ships

    Lim Sang-Seop

    2014-06-01

    Full Text Available The global price of oil, which is both finite and limited in quantity, has been rising steadily because of the increasing requirements for energy in both developing and developed countries. Furthermore, regulations have been strengthened across all industries to address global warming. Many studies of hull resistance, propulsion and operation of ships have been performed to reduce fuel consumption and emissions. This study examined the design parameters of the propeller boss cap fin (PBCF and hub cap for 6,000TEU container ships to improve the propulsion efficiency. The design parameters of PBCF have been selected based on the geometrical shape. Computational fluid dynamics (CFD analysis with a propeller open water (POW test was performed to check the validity of CFD analysis. The design of experiment (DOE case was selected as a full factorial design, and the experiment was analyzed by POW and CFD analysis. Analysis of variance (ANOVA was performed to determine the correlation among design parameters. Four design alternatives of PBCF were selected from the DOE. The shape of a propeller hub cap was selected as a divergent shape, and the divergent angle was determined by the DOE. Four design alternatives of PBCF were attached to the divergent hub cap, and the POW was estimated by CFD. As a result, the divergent hub cap with PBCF has a negative effect on the POW, which is induced by an increase in torque coefficient. A POW test and cavitation test were performed with a divergent hub cap with PBCF to verify the CFD result. The POW test result showed that the open water efficiency was increased approximately 2% with a divergent hub cap compared to a normal cap. The POW test result was similar to the CFD result, and the divergent hub cap with the PBCF models showed lower open water efficiency. This was attributed to an increase in the torque coefficient just like the CFD results. A cavitation test was performed using the 2 models selected. The test

  7. Performance and cost benefits analysis of double-pass solar collector with and without fins

    Highlights: • The thermal performances and cost analysis of the double-pass solar collector with and without fins absorber were discussed. • The theoretical and experimental study on the double-pass solar air collector with and without fins absorber was conducted. • The ratio of AC/AEG or the cost benefit ratio was presented. • The double-pass solar collector with fins absorber is more cost-effective compared to without fins absorber. - Abstract: The performance and cost benefit analysis of double-pass solar collector with and without fins have been conducted. The theoretical model using steady state analysis has been developed and compared with the experimental results. The performance curves of the double-pass solar collector with and without fins, which included the effects of mass flow rate and solar intensity on the thermal efficiency of the solar collector, were obtained. Results indicated that the thermal efficiency is proportional to the solar intensity at a specific mass flow rate. The thermal efficiency increased by 9% at a solar intensity of 425–790 W/m2 and mass flow rate of 0.09 kg/s. The theoretical and experimental analysis showed a similar trend as well as close agreement. Moreover, a cost-effectiveness model has been developed examine the cost benefit ratio of double-pass solar collector with and without fins. Evaluation of the annual cost (AC) and the annual energy gain (AEG) of the collector were also performed. The results show that the double-pass solar collector with fins is more cost-effective compared to the double-pass solar collector without fins for mass flow rate of 0.01–0.07 kg/s. Also, simulations were obtained for the double-pass solar collector with fins at Nusselt number of 5.42–36.21. The energy efficiency of collector increases with the increase of Nusselt number. The results show that by increasing the Nusselt number simultaneously would drop the outlet temperature at any solar intensity. Increase in Nusselt number

  8. High thresholds for avoidance of sonar by free-ranging long-finned pilot whales (Globicephala melas).

    Antunes, R; Kvadsheim, P H; Lam, F P A; Tyack, P L; Thomas, L; Wensveen, P J; Miller, P J O

    2014-06-15

    The potential effects of exposing marine mammals to military sonar is a current concern. Dose-response relationships are useful for predicting potential environmental impacts of specific operations. To reveal behavioral response thresholds of exposure to sonar, we conducted 18 exposure/control approaches to 6 long-finned pilot whales. Source level and proximity of sonar transmitting one of two frequency bands (1-2 kHz and 6-7 kHz) were increased during exposure sessions. The 2-dimensional movement tracks were analyzed using a changepoint method to identify the avoidance response thresholds which were used to estimate dose-response relationships. No support for an effect of sonar frequency or previous exposures on the probability of response was found. Estimated response thresholds at which 50% of population show avoidance (SPLmax=170 dB re 1 μPa, SELcum=173 dB re 1 μPa(2) s) were higher than previously found for other cetaceans. The US Navy currently uses a generic dose-response relationship to predict the responses of cetaceans to naval active sonar, which has been found to underestimate behavioural impacts on killer whales and beaked whales. The navy curve appears to match more closely our results with long-finned pilot whales, though it might underestimate the probability of avoidance for pilot-whales at long distances from sonar sources. PMID:24820645

  9. Heavy metals in tissues of stranded short-finned pilot whales

    Selected tissues from four short-finned pilot whales that stranded at Cumberland Island National Seashore were analyzed for total cadmium, mercury and selenium by neutron activation. Cadmium reached a maximum mean wet weight concentration of 31.4 ppm in the kidney tissues. Maximum mean wet weight concentrations of mercury, 230.9 ppm, and selenium, 44.2 ppm, were found in the liver tissues. The lowest concentration of each metal was found in the blubber. Postmortem examination showed that the whales had no food in their stomachs. The whales must have been utilizing metabolic reserves, contaminated with residual concentrations of heavy metals, prior to beaching. This utilization of reserves probably resulted in the high concentrations of cadmium, mercury and selenium found in the liver and kidney tissues. Since the heavy metal concentrations were three to four times greater in the stranded whales, as compared to apparently healthy whales of the same species, it is suggested that heavy metal toxicosis may have been a factor contributing to this particular stranding. (Auth.)

  10. Energetics of median and paired fin swimming, body and caudal fin swimming, and gait transition in parrotfish (Scarus schlegeli) and triggerfish (Rhinecanthus aculeatus).

    Korsmeyer, Keith E; Steffensen, John Fleng; Herskin, Jannik

    2002-05-01

    To determine the energetic costs of rigid-body, median or paired-fin (MPF) swimming versus undulatory, body-caudal fin (BCF) swimming, we measured oxygen consumption as a function of swimming speed in two MPF swimming specialists, Schlegel's parrotfish and Picasso triggerfish. The parrotfish swam exclusively with the pectoral fins at prolonged swimming speeds up to 3.2 total lengths per second (L s(-1); 30 min critical swimming speed, U(crit)). At higher speeds, gait transferred to a burst-and-coast BCF swimming mode that resulted in rapid fatigue. The triggerfish swam using undulations of the soft dorsal and anal fins up to 1.5 L s(-1), beyond which BCF undulations were recruited intermittently. BCF swimming was used continuously above 3.5 L s(-1), and was accompanied by synchronous undulations of the dorsal and anal fins. The triggerfish were capable of high, prolonged swimming speeds of up to 4.1 L s(-1) (30 min U(crit)). In both species, the rates of increase in oxygen consumption with swimming speed were higher during BCF swimming than during rigid-body MPF swimming. Our results indicate that, for these species, undulatory swimming is energetically more costly than rigid-body swimming, and therefore support the hypothesis that MPF swimming is more efficient. In addition, use of the BCF gait at higher swimming speed increased the cost of transport in both species beyond that predicted for MPF swimming at the same speeds. This suggests that, unlike for terrestrial locomotion, gait transition in fishes does not occur to reduce energetic costs, but to increase recruitable muscle mass and propulsive surfaces. The appropriate use of the power and exponential functions to model swimming energetics is also discussed. PMID:11948202

  11. Computational heat transfer analysis and combined ANN–GA optimization of hollow cylindrical pin fin on a vertical base plate

    C Balachandar; S Arunkumar; M Venkatesan

    2015-09-01

    In the devices like laptops, microprocessors, the electric circuits generate heat while performing work which necessitates the use of fins. In the present work, the heat transfer characteristics of hollow cylindrical pin fin array on a vertical rectangular base plate is studied using commercial CFD code ANSYS FLUENT© . The hollow cylindrical pin fins are arranged inline. The heat transfer augmentation is studied for different parameters such as inner radius, outer radius, height of the fins and number of pin fins. The base plate is supplied with a constant heat flux in the range of 20–500W. The base plate dimensions are kept constant. The base plate temperature is predicted using Artificial Neural Network (ANN) by training the network based on the results of numerical simulation. The trained ANN is used to analyse the fin in terms of enhanced heat transfer and weight reduction when compared to solid pin fin. Optimization of the hollow cylindrical pin fin parameters to obtain maximum heat transfer from the base plate is carried out using Genetic Algorithm (GA) applied on the trained neural network. The analysis using the numerical simulation and neural network shows that the hollow fins provide an increased heat transfer and a weight reduction of about 90% when compared to solid cylindrical pin fins.

  12. Large filter feeding marine organisms as indicators of microplastic in the pelagic environment: the case studies of the Mediterranean basking shark (Cetorhinus maximus) and fin whale (Balaenoptera physalus).

    Fossi, Maria Cristina; Coppola, Daniele; Baini, Matteo; Giannetti, Matteo; Guerranti, Cristiana; Marsili, Letizia; Panti, Cristina; de Sabata, Eleonora; Clò, Simona

    2014-09-01

    The impact of microplastics (plastic fragments smaller than 5 mm) on large filter feeding marine organisms such as baleen whales and sharks are largely unknown. These species potentially are ingesting micro-litter by filter feeding activity. Here we present the case studies of the Mediterranean fin whale (Balaenoptera physalus) and basking shark (Cetorhinus maximus) exploring the toxicological effects of microplastics in these species measuring the levels of phthalates in both species. The results show higher concentration of MEHP in the muscle of basking shark in comparison to fin whale blubber. These species can be proposed as indicators of microplastics in the pelagic environment in the implementation of Descriptor 8 and 10 of the EU Marine Strategy Framework Directive (MSFD). PMID:24612776

  13. Fabrication and experiment of micro-pin-finned microchannels to study surface roughness effects on convective heat transfer

    Rectangular microchannels with three different micro-pin-finned spacings (2 μm, 4 μm and 8 μm) are fabricated using MEMS technique and the effect of the surface roughness on the convective heat transfer characteristics is examined under laminar flow conditions for 70 < Re < 250. The measured Poiseuille numbers (Po), defined as f Re as a measure of the friction, for the micro-pin-finned surfaces are lower than that for the smooth surface, which is attributed to the apparent slip associated with the flow separation and reattachment occurring in the regions between the pin-fins. Poiseuille number decreases with increasing pin-fin spacing because of its increased slip region. The measured Nusselt numbers, as a measure of the convective heat transfer enhancement, for the micro-pin-finned surfaces also decreases with increasing fin spacing, but Nu for 2 μm spacing is higher than that for the smooth surface and the Nusselt numbers for both 4- and 8 μm spacings are lower than the smooth surface case. Also, numerical predictions performed for the range of 2D pin fin spacings from 1 to 32 μm confirm that the competition between the heat transfer enhancement on the top surfaces of the fins and the heat transfer deterioration in the pin-fin spacing areas determines the overall heat transfer rate. The heat transfer on the top surfaces of the pin-fins tends to increase because of the locally developing flows both at the leading edge and the trailing edge of each fin. In contrast, the heat transfer in the pin-fin spacing areas decreases to the conduction level since the recirculation flows within the fin valleys are constricted by a suspended boundary. (paper)

  14. Early evolution of the lungfish pectoral fin endoskeleton: evidence from the Middle Devonian (Givetian Pentlandia macroptera

    ZerinaJohanson

    2014-08-01

    Full Text Available As the closest living relatives of tetrapods, lungfishes are frequently used as extant models for exploring the fin-to-limb transition. These studies have generally given little consideration to fossil taxa. This is because although lungfish fins are relatively common in the fossil record, the internal structure of these fins is virtually unknown. Information on pectoral-fin endoskeletons in fossil representatives of Dipnomorpha (the lungfish total group is limited to poorly preserved remains in the lungfish Dipterus and Conchopoma and more complete material in the porolepiform Glyptolepis. Here we describe a well-preserved pectoral-fin endoskeleton in the Middle Devonian (Givetian lungfish Pentlandia macroptera from the John O’Groats fish bed, Caithness, northeastern Scotland. The skeleton is in association with a cleithrum and clavicle, and consists of a series of at least eight mesomeres. Extensive series of preaxial and postaxial radials are present. Some of the radials are jointed, but none branch. No mesomere articulates with multiple radials on either its pre- or post-axial face. The first two mesomeres, corresponding to the humerus and ulna, bear well-developed axial processes. Uniquely among dipnomorphs, a distinct ossification centre corresponding to the radius is present in Pentlandia. A review of anatomy and development of the pectoral-fin endoskeleton in the living Neoceratodus is presented based on cleared and stained material representing different size stages. These developmental data, in conjunction with new details of primitive lungfish conditions based on Pentlandia, highlight many of the derived features of the pectoral-fin skeleton of Neoceratodus, and clarify patterns of appendage evolution within the dipnomorphs more generally.

  15. Kinematics of the ribbon fin in hovering and swimming of the electric ghost knifefish.

    Ruiz-Torres, Ricardo; Curet, Oscar M; Lauder, George V; Maciver, Malcolm A

    2013-03-01

    Weakly electric knifefish are exceptionally maneuverable swimmers. In prior work, we have shown that they are able to move their entire body omnidirectionally so that they can rapidly reach prey up to several centimeters away. Consequently, in addition to being a focus of efforts to understand the neural basis of sensory signal processing in vertebrates, knifefish are increasingly the subject of biomechanical analysis to understand the coupling of signal acquisition and biomechanics. Here, we focus on a key subset of the knifefish's omnidirectional mechanical abilities: hovering in place, and swimming forward at variable speed. Using high-speed video and a markerless motion capture system to capture fin position, we show that hovering is achieved by generating two traveling waves, one from the caudal edge of the fin and one from the rostral edge, moving toward each other. These two traveling waves overlap at a nodal point near the center of the fin, cancelling fore-aft propulsion. During forward swimming at low velocities, the caudal region of the fin continues to have counter-propagating waves, directly retarding forward movement. The gait transition from hovering to forward swimming is accompanied by a shift in the nodal point toward the caudal end of the fin. While frequency varies significantly to increase speed at low velocities, beyond approximately one body length per second, the frequency stays near 10 Hz, and amplitude modulation becomes more prominent. A coupled central pattern generator model is able to reproduce qualitative features of fin motion and suggest hypotheses regarding the fin's neural control. PMID:23197089

  16. Annual Acoustic Presence of Fin Whale (Balaenoptera physalus) Offshore Eastern Sicily, Central Mediterranean Sea.

    Sciacca, Virginia; Caruso, Francesco; Beranzoli, Laura; Chierici, Francesco; De Domenico, Emilio; Embriaco, Davide; Favali, Paolo; Giovanetti, Gabriele; Larosa, Giuseppina; Marinaro, Giuditta; Papale, Elena; Pavan, Gianni; Pellegrino, Carmelo; Pulvirenti, Sara; Simeone, Francesco; Viola, Salvatore; Riccobene, Giorgio

    2015-01-01

    In recent years, an increasing number of surveys have definitively confirmed the seasonal presence of fin whales (Balaenoptera physalus) in highly productive regions of the Mediterranean Sea. Despite this, very little is yet known about the routes that the species seasonally follows within the Mediterranean basin and, particularly, in the Ionian area. The present study assesses for the first time fin whale acoustic presence offshore Eastern Sicily (Ionian Sea), throughout the processing of about 10 months of continuous acoustic monitoring. The recording of fin whale vocalizations was made possible by the cabled deep-sea multidisciplinary observatory, "NEMO-SN1", deployed 25 km off the Catania harbor at a depth of about 2,100 meters. NEMO-SN1 is an operational node of the European Multidisciplinary Seafloor and water-column Observatory (EMSO) Research Infrastructure. The observatory was equipped with a low-frequency hydrophone (bandwidth: 0.05 Hz-1 kHz, sampling rate: 2 kHz) which continuously acquired data from July 2012 to May 2013. About 7,200 hours of acoustic data were analyzed by means of spectrogram display. Calls with the typical structure and patterns associated to the Mediterranean fin whale population were identified and monitored in the area for the first time. Furthermore, a background noise analysis within the fin whale communication frequency band (17.9-22.5 Hz) was conducted to investigate possible detection-masking effects. The study confirms the hypothesis that fin whales are present in the Ionian Sea throughout all seasons, with peaks in call detection rate during spring and summer months. The analysis also demonstrates that calls were more frequently detected in low background noise conditions. Further analysis will be performed to understand whether observed levels of noise limit the acoustic detection of the fin whales vocalizations, or whether the animals vocalize less in the presence of high background noise. PMID:26581104

  17. Fvm Analysis for Thermal and Hydraulic Behaviour of Circular Finned Mpfhs by Using Ag-H20 Nano

    Fluid Kuber Dwivedi

    2014-07-01

    Full Text Available In this exploration the influence of using two types of Nano fluids (Ag-water and Al203-water as a coolant at volumetric concentration is taken (c= 4% in micro pin fin heat sink with circular fins in addition to the un-finned micro-channel heat sink is deliberated with the help of commercially available computational fluid dynamics software Fluent 14. The evaluation of flow and heat transfer characteristics of MPFHS and cooling fluids has been made under the similar boundary condition; at the range of Reynolds number used is (100-500. The gotten outcomes is exemplified that, Ag-water Nano fluid is gives the minimum pressure drop and slightly maximum heat transfer rate compared to Al203-water Nano fluid. And circular finned heat sink is dissipating more amount of heat compared to un-finned micro-channel heat sink. But it is also gives the maximum pressure drop due to finned area.

  18. Structure and Output Characteristics of a TEM Array Fitted to a Fin Heat Exchanger

    Zhang, Z.; Chen, L. N.; Chen, Z. J.; Xiao, G. Q.; Liu, Z. J.

    2015-06-01

    In the design of a thermoelectric generator, both the heat transfer area and the number of thermoelectric modules (TEMs) should be increased accordingly as the generator power increases; crucially, both aspects need to be coordinated. A kilowatt thermoelectric generator with a fin heat exchanger is proposed for use in a constant-speed diesel generator unit. Interior fins enhance convective heat transfer, whereas an exterior fin segment increases the heat transfer area. The heat transfer surface is double that of a plane heat exchanger, and the temperature field over the exterior fins is constrained to a one-dimensional distribution. Between adjoining exterior fins, there is a cooling water channel with trapezoid cross-section, enabling compact TEMs and cooling them. Hence, more TEMs are built as a series-parallel array of TEMs with lower resistance and more stable output current. Under nonuniform conditions, to prevent circulation and energy loss, bypass diodes and antidiodes are added. Experiments and numerical calculations show that, with matching and optimization of the heat exchanger and TEM array, a stable maximum output power is obtainable from the interior of the thermoelectric generator system, which can be connected to an external maximum power point tracking system.

  19. Evolutionary multiobjective design of a flexible caudal fin for robotic fish.

    Clark, Anthony J; Tan, Xiaobo; McKinley, Philip K

    2015-12-01

    Robotic fish accomplish swimming by deforming their bodies or other fin-like appendages. As an emerging class of embedded computing system, robotic fish are anticipated to play an important role in environmental monitoring, inspection of underwater structures, tracking of hazardous wastes and oil spills, and the study of live fish behaviors. While integration of flexible materials (into the fins and/or body) holds the promise of improved swimming performance (in terms of both speed and maneuverability) for these robots, such components also introduce significant design challenges due to the complex material mechanics and hydrodynamic interactions. The problem is further exacerbated by the need for the robots to meet multiple objectives (e.g., both speed and energy efficiency). In this paper, we propose an evolutionary multiobjective optimization approach to the design and control of a robotic fish with a flexible caudal fin. Specifically, we use the NSGA-II algorithm to investigate morphological and control parameter values that optimize swimming speed and power usage. Several evolved fin designs are validated experimentally with a small robotic fish, where fins of different stiffness values and sizes are printed with a multi-material 3D printer. Experimental results confirm the effectiveness of the proposed design approach in balancing the two competing objectives. PMID:26601975

  20. A Novel Mini-DNA Barcoding Assay to Identify Processed Fins from Internationally Protected Shark Species

    Fields, Andrew T.; Abercrombie, Debra L.; Eng, Rowena; Feldheim, Kevin; Chapman, Demian D.

    2015-01-01

    There is a growing need to identify shark products in trade, in part due to the recent listing of five commercially important species on the Appendices of the Convention on International Trade in Endangered Species (CITES; porbeagle, Lamna nasus, oceanic whitetip, Carcharhinus longimanus scalloped hammerhead, Sphyrna lewini, smooth hammerhead, S. zygaena and great hammerhead S. mokarran) in addition to three species listed in the early part of this century (whale, Rhincodon typus, basking, Cetorhinus maximus, and white, Carcharodon carcharias). Shark fins are traded internationally to supply the Asian dried seafood market, in which they are used to make the luxury dish shark fin soup. Shark fins usually enter international trade with their skin still intact and can be identified using morphological characters or standard DNA-barcoding approaches. Once they reach Asia and are traded in this region the skin is removed and they are treated with chemicals that eliminate many key diagnostic characters and degrade their DNA (“processed fins”). Here, we present a validated mini-barcode assay based on partial sequences of the cytochrome oxidase I gene that can reliably identify the processed fins of seven of the eight CITES listed shark species. We also demonstrate that the assay can even frequently identify the species or genus of origin of shark fin soup (31 out of 50 samples). PMID:25646789

  1. Experimental study of heat transfer and pressures drops for cans with spiral herring-bone fins

    Cans fitted with herring-bone fins are used for cooling uranium in certain nuclear reactor. By herring-bone is meant a staggered arrangement of the fins which have a plane of symmetry parallel to the general direction of liquid flow. The main geometrical parameter are then: the number of fins, the number of herring-bones, the angle of inclination of the fins with respect to the can axis, the dimensions of the fins, the can diameter and the channel diameter. The research is essentially experimental. The test are of three types: full size tests, in conditions approaching those in the reactor (constant flux, CO2 under pressure); full size tests but with a constant wall temperature, much easier to set up, and intended to distinguish rapidly between the merits of the various types of can; large-scale tests with air at atmospheric pressure for studying the phenomena in more detail. For each can tried out there is a corresponding pressure drop coefficient, a mean thermal exchange coefficient Mo-bar and a minimum exchange coefficient Momin and Mo-bar are related by the expression Momin = Mo-bar * fc * f, where fc and f are respectively circumferential and longitudinal singularity factor determined from a statistical study of all the temperatures measured for each can. The results are presented in about thirty tables and figures the most noteworthy results being summarized in the conclusion. (authors)

  2. A flow separation study over a shortfin mako shark pectoral fin

    Bradshaw, Michael; Lang, Amy; Wahidi, Redha; Smith, Drew; Motta, Philip

    2011-11-01

    Many animals possess performance enhancing mechanisms, such as the denticles found on the skin of the shortfin mako shark (Isurus oxyrinchus). The shortfin mako, one of the fastest sharks on the planet, is covered by small, tooth-like scales that vary in bristling capability. Previous biological findings have shown that the scales increase in flexibility from the leading to trailing edge over the pectoral fin. As this fin is a primary control surface, the scale bristling may provide a mechanism for separation control that leads to decreased drag and increased maneuverability. Such findings can potentially lead to the development of similar micro-scale mechanisms to improve the efficiency of aerospace design. A left pectoral fin (71 cm span) was tested in a water tunnel facility under static and dynamic conditions. Digital Particle Image Velocimetry (DPIV) was used to characterize the flow over the fin. Various angles of attack at two speeds were tested (Re of 44,500 and 68,000). Two chord-wise locations, approximately mid-span where three-dimensional effects were minimized, were viewed to analyze the flow. After the initial testing, the fin was painted to eliminate the effect of the scales and retested to observe flow separation. Supported by REU SITE EEC grant number 1062611.

  3. The fin-to-limb transition as the re-organization of a Turing pattern.

    Onimaru, Koh; Marcon, Luciano; Musy, Marco; Tanaka, Mikiko; Sharpe, James

    2016-01-01

    A Turing mechanism implemented by BMP, SOX9 and WNT has been proposed to control mouse digit patterning. However, its generality and contribution to the morphological diversity of fins and limbs has not been explored. Here we provide evidence that the skeletal patterning of the catshark Scyliorhinus canicula pectoral fin is likely driven by a deeply conserved Bmp-Sox9-Wnt Turing network. In catshark fins, the distal nodular elements arise from a periodic spot pattern of Sox9 expression, in contrast to the stripe pattern in mouse digit patterning. However, our computer model shows that the Bmp-Sox9-Wnt network with altered spatial modulation can explain the Sox9 expression in catshark fins. Finally, experimental perturbation of Bmp or Wnt signalling in catshark embryos produces skeletal alterations which match in silico predictions. Together, our results suggest that the broad morphological diversity of the distal fin and limb elements arose from the spatial re-organization of a deeply conserved Turing mechanism. PMID:27211489

  4. The fin-to-limb transition as the re-organization of a Turing pattern

    Onimaru, Koh; Marcon, Luciano; Musy, Marco; Tanaka, Mikiko; Sharpe, James

    2016-01-01

    A Turing mechanism implemented by BMP, SOX9 and WNT has been proposed to control mouse digit patterning. However, its generality and contribution to the morphological diversity of fins and limbs has not been explored. Here we provide evidence that the skeletal patterning of the catshark Scyliorhinus canicula pectoral fin is likely driven by a deeply conserved Bmp–Sox9–Wnt Turing network. In catshark fins, the distal nodular elements arise from a periodic spot pattern of Sox9 expression, in contrast to the stripe pattern in mouse digit patterning. However, our computer model shows that the Bmp–Sox9–Wnt network with altered spatial modulation can explain the Sox9 expression in catshark fins. Finally, experimental perturbation of Bmp or Wnt signalling in catshark embryos produces skeletal alterations which match in silico predictions. Together, our results suggest that the broad morphological diversity of the distal fin and limb elements arose from the spatial re-organization of a deeply conserved Turing mechanism. PMID:27211489

  5. Blue and fin whale call source levels and propagation range in the Southern Ocean.

    Sirović, Ana; Hildebrand, John A; Wiggins, Sean M

    2007-08-01

    Blue (Balaenoptera musculus) and fin whales (B. physalus) produce high-intensity, low-frequency calls, which probably function for communication during mating and feeding. The source levels of blue and fin whale calls off the Western Antarctic Peninsula were calculated using recordings made with calibrated, bottom-moored hydrophones. Blue whales were located up to a range of 200 km using hyperbolic localization and time difference of arrival. The distance to fin whales, estimated using multipath arrivals of their calls, was up to 56 km. The error in range measurements was 3.8 km using hyperbolic localization, and 3.4 km using multipath arrivals. Both species produced high-intensity calls; the average blue whale call source level was 189+/-3 dB re:1 microPa-1 m over 25-29 Hz, and the average fin whale call source level was 189+/-4 dB re:1 microPa-1 m over 15-28 Hz. Blue and fin whale populations in the Southern Ocean have remained at low numbers for decades since they became protected; using source level and detection range from passive acoustic recordings can help in calculating the relative density of calling whales. PMID:17672667

  6. Experimental Investigation of Innovative Internal Trailing Edge Cooling Configurations with Pentagonal Arrangement and Elliptic Pin Fin

    L. Tarchi

    2008-01-01

    Full Text Available This paper describes a heat transfer experimental study of four different internal trailing edge cooling configurations based on pin fin schemes. The aim of the study is the comparison between innovative configurations and standard ones. So, a circular pin fin configuration with an innovative pentagonal scheme is compared to a standard staggered scheme, while two elliptic pin fin configurations are compared to each other turning the ellipse from the streamwise to the spanwise direction. For each configuration, heat transfer and pressure loss measurements were made keeping the Mach number fixed at 0.3 and varying the Reynolds number from 9000 to 27000. In order to investigate the overall behavior of both endwall and pedestals, heat transfer measurements are performed using a combined transient technique. Over the endwall surface, the classic transient technique with thermochromic liquid crystals allows the measurement of a detailed heat transfer coefficient (HTC map. Pin fins are made of high thermal conductivity material, and an inverse data reduction method based on a finite element code allows to evaluate the mean HTC of each pin fin. Results show that the pentagonal arrangement generates a nonuniform HTC distribution over the endwall surface, while, in terms of average values, it is equivalent to the staggered configuration. On the contrary, the HTC map of the two elliptic configurations is similar, but the spanwise arrangement generates higher heat transfer coefficients and pressure losses.

  7. How predation shaped fish: the impact of fin spines on body form evolution across teleosts.

    Price, S A; Friedman, S T; Wainwright, P C

    2015-11-22

    It is well known that predators can induce morphological changes in some fish: individuals exposed to predation cues increase body depth and the length of spines. We hypothesize that these structures may evolve synergistically, as together, these traits will further enlarge the body dimensions of the fish that gape-limited predators must overcome. We therefore expect that the orientation of the spines will predict which body dimension increases in the presence of predators. Using phylogenetic comparative methods, we tested this prediction on the macroevolutionary scale across 347 teleost families, which display considerable variation in fin spines, body depth and width. Consistent with our predictions, we demonstrate that fin spines on the vertical plane (dorsal and anal fins) are associated with a deeper-bodied optimum. Lineages with spines on the horizontal plane (pectoral fins) are associated with a wider-bodied optimum. Optimal body dimensions across lineages without spines paralleling the body dimension match the allometric expectation. Additionally, lineages with longer spines have deeper and wider body dimensions. This evolutionary relationship between fin spines and body dimensions across teleosts reveals functional synergy between these two traits and a potential macroevolutionary signature of predation on the evolutionary dynamics of body shape. PMID:26559954

  8. The Experimental Study of Atmospheric Stirling Engines Using Pin-Fin Arrays' Heat Exchangers

    Isshiki, Seita; Sato, Hidekazu; Konno, Shoji; Shiraishi, Hiroaki; Isshiki, Naotsugu; Fujii, Iwane; Mizui, Hiroyuki

    This paper reports experimental results on two kinds of atmospheric Stirling engines that were designed and manufactured using a pin-fin array heat exchanger for the heater and cooler (abbreviated to “pin-fin Stirling engine” hereafter). The first one is a large β type pin-fin Stirling engine with a 1.7-liter displacement volume and power piston volume. The heater consists of an aluminum circular disk with a diameter of 270mm and with large-scale pin-fin arrays carved into the surface. The maximum output reached 91W at a temperature difference of 330K, which is 36% of the scheduled value and 68% of the Kolin's cubic power law. The maximum thermal efficiency was estimated 4.2%. The second engine is an α type pin-fin Stirling engine. Glass syringes were used for the piston-cylinder system and the Ross-yoke mechanism was used for the crank mechanism. By changing temperature difference, the characteristic of output torque in the large range was measured with a precision torque detector.

  9. Turbulent Heat Transfer of a Finned Plate in a Duct as Tip Clearance Changes

    Fins are employed to enhance the cooling performance of a system. There are a number of studies relevant to geometry of fins. Meanwhile, the studies relevant to tip clearance, have not performed enough, which is the distance between the tips of the fins and the wall. We investigated the optimal tip clearance, which maximizes the heat transfers by experimental and numerical analyses with wider range of ReDh than the previous studies. Turbulent heat transfers of a finned plate were measured. For an extended range of tip clearance and ReDh than other studies. A joint experimental and numerical analyses was performed to measure heat transfers. Mass transfer experiments using electroplating system was used and FLUENT 6.3.26 was used for the calculation. For the narrow tip clearances below 5 mm, were investigated by numerical method only. The bypass flow to the tip clearance region contributes to heat transfer area at the tip clearance region and does not contributes that of the fin region. Thus, the optimal tip clearance was founded and it exists vicinity of 0.2 mm

  10. Turbulent Heat Transfer of a Finned Plate in a Duct as Tip Clearance Changes

    Park, Hae-Kyun; Chung, Bum-Jin [Kyung Hee University, Yongin (Korea, Republic of)

    2015-05-15

    Fins are employed to enhance the cooling performance of a system. There are a number of studies relevant to geometry of fins. Meanwhile, the studies relevant to tip clearance, have not performed enough, which is the distance between the tips of the fins and the wall. We investigated the optimal tip clearance, which maximizes the heat transfers by experimental and numerical analyses with wider range of Re{sub Dh} than the previous studies. Turbulent heat transfers of a finned plate were measured. For an extended range of tip clearance and Re{sub Dh} than other studies. A joint experimental and numerical analyses was performed to measure heat transfers. Mass transfer experiments using electroplating system was used and FLUENT 6.3.26 was used for the calculation. For the narrow tip clearances below 5 mm, were investigated by numerical method only. The bypass flow to the tip clearance region contributes to heat transfer area at the tip clearance region and does not contributes that of the fin region. Thus, the optimal tip clearance was founded and it exists vicinity of 0.2 mm.

  11. CFD simulation of propeller and rudder performance when using additional thrust fins

    2007-01-01

    To analyse a possible way to improve the propulsion performance of ships, the unstructured grid and the Reynolds Average Navier-Stokes equations were used to calculate the performance of a propeller and rudder fitted with additional thrust fins in the viscous flow field.The computational fluid dynamics software FLUENT was used to simulate the thrust and torque coefficient as a function of the advance coefficient of propeller and the thrust efficiency of additional thrust fins.The pressure and velocity flow behind the propeller was calculated.The geometrical nodes of the propeller were constituted by FORTRAN program and the NUMBS method was used to create a configuration of the propeller, which was then used by GAMMBIT to generate the calculation model.The thrust efficiency of fins was calculated as a function of the number of additional fins and the attack angles.The results of the calculations agree fairly well with experimental data, which shows that the viscous flow solution we present is useful in simulating the performance of propellers and rudders with additional fins.

  12. A comparison of pectoral fin contact between two different wild dolphin populations

    Dudzinski, K.M.; Gregg, J.D.; Ribic, C.A.; Kuczaj, S.A.

    2009-01-01

    Contact behaviour involving the pectoral fin has been documented in a number of dolphin species, and various explanations about its function have been offered. Pectoral fin contact can take a variety of forms, and involves a number of body parts and movements, likely differing depending upon social or ecological context. For this study, we compare the pectoral fin contact behaviour of two species of wild dolphins: Indo-Pacific bottlenose dolphins (Tursiops aduncus) from around Mikura Island, Japan, and Atlantic spotted dolphins (Stenella frontalis) from The Bahamas. The two study populations exhibit surprising similarity in the ways in which pectoral fin contacts are used, despite differences in species and environmental conditions at the two sites. Differences in contact rates for calves between the two sites suggest that calf-focused aggression from adult dolphins is more prevalent at Mikura than in The Bahamas. Our results suggest that pectoral fin contact behaviour seems to be driven primarily by social pressures, and may be similar in function to allogrooming described in primates. ?? 2008 Elsevier B.V.

  13. Heat Transfer and Friction Characteristics of Wavy Fin with Hydrophilic Coating under Dehumidifying Conditions

    ZHANG Yuan-ming; DING Guo-liang; MA Xiao-kui

    2007-01-01

    An experimental study on the airside heat transfer and friction characteristics of seven hydrophilic-coated wavy finned tube heat exchangers is performed under dehumidifying conditions. The effects of fin pitch, number of tube rows and inlet air relative humidity on the airside characteristics are investigated. The airside heat transfer and friction characteristics are presented in the form of Colburn factor and friction factor, respectively. The test results indicate that the Colburn factor and friction factor increase with decreasing fin pitch. The Colburn factor of 2tube row heat exchanger is higher than that of 3 row heat exchanger, while their friction factors are nearly equal. As the inlet relative humidity increases, the Colburn factor increases and the friction factor is almost unchanged. The airside heat transfer and friction correlations are proposed for the hydrophilic-coated wavy fin with mean deviations of 6.5% and 9.1%, respectively. They can be used to design or evaluate hydrophilic-coated wavy fin-and-tube heat exchangers.

  14. Hydrodynamic Performance of an Undulatory Robot: Functional Roles of the Body and Caudal Fin Locomotion

    Li Wen

    2013-01-01

    Full Text Available Both body undulation and caudal fin flapping play essential locomotive roles while a fish is swimming, but how these two affect the swimming performance and hydrodynamics of fish individually is yet to be known. We implemented a biomimetic robotic fish that travel along a servo towing system, which can be regarded as “treadmill” of the model. Hydrodynamics was studied as a function of the principal kinetic parameters of the undulatory body and caudal fin of the model in a self‐propelled condition, under which the time‐averaged measured axial net force becomes zero. Thrust efficiency was estimated from two‐dimensional digital particle image velocimetry (DPIV measurements in the horizontal and mid‐caudal fin plane. The Single‐Row Reverse Karman wake (2S is commonly observed in many previous studies of live fish swimming. However, we show that a Double‐Row Two‐Paired vortices (2P wake was generated by the robotic model for most kinetic parameter combinations. Interestingly, the 2S wake emerged within the results of a narrow range of robotic caudal fin pitch angles (0≤θ≤10°, occurring concurrently with enhanced thrust efficiency. We also show that, compared with the effect of body wavelength (λ, the wake structure behind the robotic swimmer is more sensitive to the Strouhal number (St and caudal fin pitch angle (θ.

  15. Fin Field Effect Transistors Performance in Analog and RF for High-k Dielectrics

    D. Nirmal

    2011-04-01

    Full Text Available The high-k is needed to replace SiO2 as the gate dielectric to reduce the gate leakage current. The impact of a high-k gate dielectric on the device short channel performance and scalability of nanoscale double gate Fin Field Effect Transistors (FinFET CMOS is examined by 2-D device simulations. DG FinFETs are designed with high-k at the high performance node of the 2008 Semiconductor Industry Association International Technology Roadmap for Semiconductors (ITRS. DG FinFET CMOS can be optimally designed to yield outstanding performance with good trade-offs between speed and power consumption as the gate length is scaled to < 10 nm. Using technology computer aided design (TCAD tools a 2-D FinFET device is created and the simulations are performed on it. The optimum value of threshold voltage is identified as VT=0.653V with e=23(ZrO2 for the 2-D device structure. For the 2-D device structure, the leakage current has been reduced to 9.47´10-14 A. High-k improves the Ion/Ioff ratio of transistors for future high-speed logic applications and also improves the storage capability.Defence Science Journal, 2011, 61(3, pp.235-240, DOI:http://dx.doi.org/10.14429/dsj.61.695

  16. Studi Eksperimental Vertical Axis Wind Turbine Tipe Savonius dengan Variasi Jumlah Fin pada Sudu

    Ola Dwi Sandra Hasan

    2013-09-01

    Full Text Available Salah satu  teknologi sistem konversi energi angin  yang ada adalah turbin Savonius yang merupakan salah satu jenis Vertical Axis Wind Turbine ( VAWT . Turbin Savonius  memiliki  karakteristik strating torsi yang baik, mudah dalam pembutannya dan dapat menerima angin dari segala arah namun kekurangan yang dimiliki adalah coefficient of power (Cp turbin yang rendah. Untuk itu banyak dilakukan penelitian untuk meningkatkan efisiensi dari turbin Savonius. Salah satunya adalah penambahan end plate yang mampu meningkatkan perbedaan tekanan dari kedua sisi sudu sehingga memperbesar drag positif turbin. Untuk itu pada penelitian ini dilakukan variasi jumlah penambahan fin pada sudu. Variasi jumlah fin yang dilakukan adalah 1,2,4 dan 7 fin serta pengujian dengan menggunakan generator dan tanpa generator. Dari hasil pengujian, variasi fin yang dapat meningkatkan Cp turbin Savonius adalah variasi 1 fin jika dibandingkan  turbin standarnya dengan nilai Cp sebesar 0,11.  SKEA turbin Savonius menggunakan generator 12 V;400W dapat  menghasilkan daya maksimal 5,71 Watt pada putaran 134 rpm

  17. Mixed convection flow of nanofluid in a square enclosure with an intruded rectangular fin

    Cong, Ran; Zhou, Xuanyu; De Souza Machado, Bruno; Das, Prodip K.

    2016-07-01

    Mixed convection flow in enclosures has been a subject of interest for many years due to their ever increasing applications in solar collectors, electronic cooling, lubrication technologies, food processing, and nuclear reactors. In comparison, little effort has been given to the problem of mixed convection in enclosures filled with nanofluids, while the addition of nanoparticles in a fluid base to alter specific material properties is considered a feasible solution for many heat transfer problems. Mixed convection of nanofluids is a challenging problem as the addition of nanoparticles changes the fluid's thermo-physical properties as well as due to the complex interactions among inertia, viscous, and buoyancy forces. In this study, a two-dimensional steady-state numerical model has been developed to investigate mixed convection flow of nanofluids in a square enclosure with an intruded rectangular fin and to optimize the fin geometry for maximizing the heat transfer using the Constructal design. The model has been developed using ANSYS-FLUENT for various fin geometries. Flow fields, temperature fields, and heat transfer rates are examined for different values of Rayleigh and Reynolds numbers for several geometries of the fin with the aim of maximizing the heat transfer from the fin to the surrounding flow. Outcome of this study provides important insight into the heat transfer behavior of nanofluids, which will help in developing novel geometries with enhanced and controlled heat transfer for solar collectors and electronic devices.

  18. Small Tails Tell Tall Tales--Intra-Individual Variation in the Stable Isotope Values of Fish Fin.

    Brian Hayden

    Full Text Available Fish fin is a widely used, non-lethal sample material in studies using stable isotopes to assess the ecology of fishes. However, fish fin is composed of two distinct tissues (ray and membrane which may have different stable isotope values and are not homogeneously distributed within a fin. As such, estimates of the stable isotope values of a fish may vary according to the section of fin sampled.To assess the magnitude of this variation, we analysed carbon (δ13C, nitrogen (δ15N, hydrogen (δ2H and oxygen (δ18O stable isotopes of caudal fin from juvenile, riverine stages of Atlantic salmon (Salmo salar and brown trout (Salmo trutta. Individual fins were sub-sectioned into tip, mid and base, of which a further subset were divided into ray and membrane.Isotope variation between fin sections, evident in all four elements, was primarily related to differences between ray and membrane. Base sections were13C depleted relative to tip (~1‰ with equivalent variation evident between ray and membrane. A similar trend was evident in δ2H, though the degree of variation was far greater (~10‰. Base and ray sections were 18O enriched (~2‰ relative to tip and membrane, respectively. Ray and membrane sections displayed longitudinal variation in 15N mirroring that of composite fin (~1‰, indicating that variation in15N values was likely related to ontogenetic variation.To account for the effects of intra-fin variability in stable isotope analyses we suggest that researchers sampling fish fin, in increasing priority, 1 also analyse muscle (or liver tissue from a subsample of fish to calibrate their data, or 2 standardize sampling by selecting tissue only from the extreme tip of a fin, or 3 homogenize fins prior to analysis.

  19. Analytical Solution and Symbolic Computation for the Temperature Distribution of the Annular Fin under Fully Wet-Surface Condition

    Koonprasert, Sanoe; Sangsawang, Rilrada

    2008-09-01

    This paper presents the analytical solutions and symbolic computations for the temperature distribution of the annular fin under fully-wet surface condition. During the process of dehumidification, the annular fin is separated into two regions. The mathematical models for each region are based on the conservation of energy principle. An assumption used in this paper is the humidity ratio of the saturated air on the wet surface varies linearly with the local fin temperature. The mathematical models are solved by the Cauchy-Euler Equation and modified Bessel Equation to form analytical solutions. Besides, the symbolic computations are shown by the Maple software to visualize the temperature distribution along the fin.

  20. Impact of extension implantation conditions of fin field-effect transistors on gate-induced drain leakage

    Matsukawa, Takashi; Liu, Yongxun; Mori, Takahiro; Morita, Yukinori; O'uchi, Shinichi; Otsuka, Shintaro; Migita, Shinji; Masahara, Meishoku

    2016-04-01

    The influence of the extension doping conditions on gate-induced drain leakage (GIDL) has been investigated to optimize fin field-effect transistors (FinFETs) for ultralow-power (ULP) applications. An increased GIDL for a smaller fin thickness and a dependence on the implanted ion species, i.e., a larger GIDL for As than for P, are recognized. These results suggest that the residual defects due to extension doping increase the GIDL, and the suppression of the defects by the optimization of the doping process is the key to the optimization of FinFETs for ULP applications.

  1. Numerical analysis of steady state and transient analysis of high temperature ceramic plate-fin heat exchanger

    Highlights: • Rip saw fin design is considered to be the best because it has thin fins and has higher heat transfer coefficient. • Minimum principal stress and maximum safety factor are obtained for the inverted bolt fin design. • Maximum principal stress and minimum safety factor are obtained for triangular fin design. • Thermal stress has significant impact than mechanical stress. • High principal stress is found at the startup and shutdown stage. - Abstract: In this study three-dimensional model of ceramic plate-fin high temperature heat exchanger with different fin designs and arrangements is analyzed numerically using ANSYS FLUENT and ANSYS structural module. The ability of ceramics to withstand high temperature and corrosion makes silicon carbide (SiC) suitable candidate material to be used in high temperature heat exchanger. The operating temperature of heat exchanger is 950 °C and the operating pressure is 1.5 MPa. The working fluids are helium, sulfur trioxide, sulfur dioxide, oxygen and the water vapor. Fluid flow and heat transfer analysis are carried out for steady and transient state in FLUENT. The obtained thermal and pressure load for the steady and transient state from ANSYS FLUENT are imported to ANSYS structural module to obtain the principal stress and the factor of safety. Different arrangements of rectangular fins, triangular fins, inverted bolt fins and ripsaw fins are studied. From the results it is found that the minimum stress and the maximum safety factor are obtained for inverted bolt fins. The triangular fins have the maximum principal stress and minimum factor of safety. However, the fluid flow and heat transfer analysis show inverted bolt fins and triangular fins produce higher pressure drop and friction factor. The steady state maximum principal stress is 10.08 MPa, 9.90 MPa and 11.43 MPa for straight, staggered and top and bottom ripsaw fin arrangement. The corresponding safety factors are 21.80, 21.95 and 19

  2. Research on the influence of action between fin and anti-rolling tank on the integrated stabilization effect

    YU Li-jun; JIN Hong-zhang; WANG Hui; YANG Sheng

    2007-01-01

    Through analyzing the roll model of the integrated system of fin and anti-rolling tank, this paper uses binomial equation to simplify the module and check how the approximate parameters simulate the original function. Based on the simplified module, the influence of fin and anti-rolling tank on the coefficient items of the roll module is discussed, and the influencing factors between fin and anti-rolling tank are analysed. And through simulation, the influence of action between fin and anti-rolling tank on the static characteristics, and the integrated stabilization effect, are analyzed.

  3. A numerical analysis on heat transfer performance from various gap size between finned tube module and side-wall in finned tube evaporator

    Lee, Soo Yoon; Shin, Seung Won [Hongik Univ, Seoul (Korea, Republic of); Ahn, Joon [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2009-07-01

    Recently, Heat Recovery Steam Generator(HRSG) is widely used in various commercial places such as hospital, restaurant, and sauna for steam generation equipment due to increasing demand on steam usage for disinfection or fumigation. In HRSG, finned tube type evaporator is usually utilized to enhance heat transfer performance for higher steam generation. Most previous research so far has been focused on heat transfer enhancement aspect from geometry of each individual fin such as pitch distance, length, and thickness. In current study, we have tried to identify the effect from gap size between tube module and side wall on overall heat transfer. We found out that the gap size has considerable effect on total heat transfer rate. We also observed that both heat transfer performance and pressure drop is decreasing with increasing gas size.

  4. Computational and experimental study on dynamic behavior of underwater robots propelled by bionic undulating fins

    2010-01-01

    Bionic undulating fins, inspired by undulations of the median and/or paired fin (MPF) fish, have a bright prospective for un-derwater missions with higher maneuverability, lower noisy, and higher efficiency. In the present study, a coupled computa-tional fluid dynamics (CFD) model was proposed and implemented to facilitate numerical simulations on hydrodynamic ef-fects of the bionic undulating robots. Hydrodynamic behaviors of underwater robots propelled by two bionic undulating fins were computationally and experimentally studied within the three typical desired movement patterns, i.e., marching, yawing and yawing-while-marching. Moreover, several specific phenomena in the bionic undulation mode were unveiled and dis-cussed by comparison between the CFD and experimental results under the same kinematics parameter sets. The contributed work on the dynamic behavior of the undulating robots is of importance for study on the propulsion mechanism and control algorithms.

  5. Plate Fin Heat Exchanger Model with Axial Conduction and Variable Properties

    Hansen, B J; Klebaner, A; 10.1063/1.4706971

    2012-01-01

    Future superconducting radio frequency (SRF) cavities, as part of Project X at Fermilab, will be cooled to superfluid helium temperatures by a cryogenic distribution system supplying cold supercritical helium. To reduce vapor fraction during the final Joule-Thomson (J-T) expansion into the superfluid helium cooling bath, counter-flow, plate-fin heat exchangers will be utilized. Due to their compact size and ease of fabrication, plate-fin heat exchangers are an effective option. However, the design of compact and high-effectiveness cryogenic heat exchangers operating at liquid helium temperatures requires consideration of axial heat conduction along the direction of flow, in addition to variable fluid properties. Here we present a numerical model that includes the effects of axial conduction and variable properties for a plate fin heat exchanger. The model is used to guide design decisions on heat exchanger material choice and geometry. In addition, the J-T expansion process is modeled with the heat exchanger ...

  6. Fin Fish Biodiversity Of A Tropical Sal Estuary, Goa, West Coast Of India

    Nandadeep U. Fal Dessai

    2013-09-01

    Full Text Available Sal estuary represents rich biodiversity because of the heavy rains during the south west monsoon and lack of any industrial development along the banks of the river. Attempt was made to survey the fin fish biodiversity along the estuary to fulfill the lack of adequate information regarding estuarine fisheries. Hydrological parameters were analysed during the study period and found to be highly influencing. Fishes were caught near shore by using gill nets and cast nets. About 35 fin fishes were recorded belonging to 28 families. The distribution varies according to the environmental conditions. Some of the important fin fishes found in this estuary are Mugil cephalus, Gerres filamentosus, Sillago sihama, Etroplus suratensis, Arius arius, Lutjanus argentimaculatus, Acanthopagrus berda and Lobotes surinamensis. Some of the fresh water species are also observed in the Sal river. In future, Industrialization along the bank of the estuary may threaten the species diversity and need necessary laws for conservation of biodiversity

  7. Correlations Based on CFD and Their Applications in Optimization for Staggered and Parallel Plate Fin Heatsinks

    2002-01-01

    Both parallel and staggered plate fin arrays have shown promise for use in high performance heatsinks regard of its individual manufacturing costs. The geometrical and operational parameters are very important to their cooling performance as heatsinks in practical applications. Fluent 5.0 commercial CFD (computational fluid dynamic) code is used to simulate the flow and heat transfer of those heatsinks of different realistic parameters. Based on those simulations, two correlations, concerning Nusselt number and friction factor as the functions of geometrical and operational parameters, FB (fin-base area ratio), PR (ratio of spanwise pitch to lengthwise pitch) and Re, were developed. From the both, the performance comparisons for optimizing geometrical and operational parameters of a fixed dimension heatsink are shown at constant pumping power and constant thermal resistance. Several optimized parameters were obtained with the discussion to various goals in real application. It demonstrates that in some particular situations, the parallel plate fin heatsinks can out perform the staggered ones.

  8. Extraction of parasitic and channel resistance components in FinFETs using TCAD tools

    Narayanan, Sudarshan; Banghart, Edmund; Zeitzoff, Peter; Korablev, Konstantin; Pandey, Shesh Mani; Gendron-Hansen, Amaury; Benistant, Francis

    2016-09-01

    A novel TCAD conductance integration method is presented to evaluate and extract the channel resistance as well as the three-dimensional (3D) parasitic resistance components in a FinFET device. It is shown that results with this method agree well with a well-known 3D analytical model and that the method accurately simulates the parasitic resistance of realistic 3D FinFETs. Furthermore, the method is shown to be an effective aid in designing FinFETs with minimized parasitic resistance. Finally, the method introduces a useful figure of merit (called βy) that quantifies precisely the amount of current spreading that occurs in each region of the device.

  9. Computational Fluid Dynamics (CFD Analysis of Natural Convection of Convergent-Divergent Fins in Marine Environments

    K. Alawadhi

    2014-12-01

    Full Text Available Computational Fluid Dynamics (CFD analysis was carried out for the convergent-divergent fins arranged inline and staggered on the base plate as per the experimental setup provided in the technical paper [1]. This paper reports on the validation of results of modeling and simulation in CFD. The simulation was carried out using the ANSYS 12.0 as the CFD modeling software. The main objective of the CFD analysis was to calculate the temperature distribution on the surface of the base plate and surface of the convergent-divergent fins for the given inline and staggered arrangement of fins due to the effect of natural convection heat transfer for different heat power inputs, and also to compare the CFD results with the experimental results.

  10. Preparation of nano-sized hydrophilic aluminum fins coating materials for air conditioner

    陈志明; 韩峰; 邵利

    2002-01-01

    Semicontinuous seeded emulsion copolymerization of acrylic acid, acrylamide and divinylbenzene was carried out at 80℃ with ammonium persulphate as the initiator and the polyether with comb configuration as the emulsifier to prepare approximately mono-dispersed nano-sized polymer particles with average diameter 90nm. The particles were used to combine with special polyether and de-ionized water was added to obtain nano-sized hydrophilic aluminum fins coating materials with solid content of 10%. The aluminum fins were coated with the materials to get the film showing self-assembly properties in some degree. The obtained hydrophilic fins have contact angles <5° with de-ionized water, minimum value 0°, after 4 cycles of wet and dry, contact angles <10° with de-ionized water.

  11. Measurements and analysis of force and moment of caudal fin model in C-start

    ZHAO Liang; JING Jun; LU Xiyun; YIN Xiezhen

    2006-01-01

    The unsteady hydrodynamic forces and moments acting on caudal-fin models of fish with different shapes and different swing durations were experimentally measured to simulate the fish C-starts. The motion of models was characterized by rotating the model to a maximum deflection angle in an excursion time Tu and back to the initial position in a return time Td around its root-axis. Studies show that the caudal-fin plays an important role in fish C-starts and the caudal-fins with different shapes and different swing durations generate different forces and moments. In addition, the hydrodynamic forces and moments acting on the models with different shapes can be normalized by the 2nd and 3rd moments of area, respectively. The forces and moments acting on the models with different swing durations, but the same ratio of Tu to Td can also be scaled.

  12. FinCC and the National Documentation Model in EHR--user feedback and development suggestions.

    Kinnunen, Ulla-Mari; Junttila, Kristiina; Liljamo, Pia; Sonninen, Anna Liisa; Härkönen, Mikko; Ensio, Anneli

    2014-01-01

    The structure of the Finnish nursing documentation model is based on the decision-making process and a standardized nursing terminology: Finnish Care Classification (FinCC). Nearly 20,000 nurses use the FinCC although not all healthcare organizations utilize it. Development projects for the common national nursing documentation framework have been carried out, for example, in 2010-2011 the aim of a project by the Ministry of Social Affairs and Health and the National Institute of Health and Welfare was to suggest recommendations for the Finnish nursing documentation model. The final report of the project was sent to different organizations all over the country for further feedback statements. The aim of this paper is to summarize the message of the statements (n=37) from primary and specialized care, universities including universities of applied science, professional nursing associations, trade unions and national authorities. Development suggestions for the FinCC and electronic health records will be introduced. PMID:24943544

  13. Forming process of cross-connected finned micro-grooves in copper strips

    CHI Yong; TANG Yong; CHEN Jin-chang; DENG Xue-xiong; LIU Lin; WAN Zhen-ping; LIU Xiao-qing

    2007-01-01

    Using ploughing-extrusion method, a cross-connected finned micro-grooves structure was formed on the surface of copper strips with thickness of 0.4 mm. The structure was fabricated by making 'V'-grooves in copper strips and perpendicular 'V'-grooves on the opposite side that intersect the first set of grooves. Micro pores appear at the intersection of these cross-connected grooves, and micro fins appear on the groove fringes. So it can be defined as 'pore-groove-fin' structure. The preferable 'pore-groove-fin' structure can be obtained under the condition that the tool edge inclination angle (χγ) is 45°, both the major extrusion angle (γo) and the minor extrusion angle (γ'o) are 30°, both the major formation angle (β) and the minor formation angle (β') are 10°, the ploughing-extrusion depth (fd) is 0.32 mm and the groove pitch is 0.4 mm on surfaces A and B. The formed included angle of groove A is 70°, and the groove depth is 0.3 mm, while the included angle of opposite perpendicular groove B is 20° with the groove depth of 0.35 mm. The obtained fin height is 0.15 mm, the elliptical pore length is 0.2 mm and the width is 0.05 mm. Experiments show that fd has the greatest influence on the formation of micro pores. Bulges appear on the opposite surface B when the ploughing-extrusion depth on surface A (fdA) reaches a critical value. The ploughing-extrusion depth on surface B (fdB) has great influence on the re-growth of fin structure.

  14. Inverse analysis of a rectangular fin using the lattice Boltzmann method

    Highlights: • Lattice Boltzmann method is used to study a transient conductive-convective fin. • LBM and Conjugate Gradient Method (CGM) are used to solve an inverse problem in fins. • LBM–ACGM estimates the unknown boundary conditions of fins accurately. • The accuracy and CPU time of LBM–ACGM are compared to IFDM–ACGM. • LBM–ACGM could be a good alternative for the conventional inverse methods. - Abstract: Inverse methods have many applications in determining unknown variables in heat transfer problems when direct measurements are impossible. As most common inverse methods are iterative and time consuming especially for complex geometries, developing more efficient methods seems necessary. In this paper, a direct transient conduction–convection heat transfer problem (fin) under several boundary conditions was solved by using lattice Boltzmann method (LBM), and then the results were successfully validated against both the finite difference method and analytical solution. Then, in the inverse problem both unknown base temperatures and heat fluxes in the rectangular fin were estimated by combining the adjoint conjugate gradient method (ACGM) and LBM. A close agreement between the exact values and estimated results confirmed the validity and accuracy of the ACGM–LBM. To compare the calculation time of ACGM–LBM, the inverse problem was solved by implicit finite difference methods as well. This comparison proved that the ACGM–LBM was an accurate and fast method to determine unknown thermal boundary conditions in transient conduction–convection heat transfer problems. The findings can efficiently determine the unknown variables in fins when a desired temperature distribution is available

  15. Verification of the performance of impact limiting fins for transportation containers

    Empirical data are frequently applied in designing the crush limiting fins for the special transport containers used for shipping radioactive materials. One of the most widely accepted sets of design curves was derived from research work done at Oak Ridge National Laboratories (ORNL) in 1971. This report presents the results of experimental work aimed at verifying particular aspects of the applicability of the ORNL design curves. The main objective was to check the fundamental assumption inherent in the ORNL data - namely that the design curve data can be extrapolated to any fin configuration regardless of the length and number of fins. Using a drop facility similar to ORNL, but with a modern computerized data capture system, data were collected from 625 specimens. These comprised both single and multiple fin types, that differed in height, thickness, length, angle of inclination and orientation. Included were several duplicate ORNL fin specimens for reference. Results obtained from the work reported here indicate that the basic premise regarding the extrapolation from the design curve data is reasonable. However, the results do not produce curves consistent with the ORNL curves. The newer curves of absorbed energy versus percent deformation are flatter, indicating that the percent deformation for a given energy input can sometimes vary considerably. For plots of the peak force per fin width versus height/thickness ratios the sharp upward trend for height/thickness ratios below 10 is not observed. The results obtained indicate that further work should be performed to determine the reason for the differences between the ORNL data and those data obtained from this project

  16. Design and Implementation of Paired Pectoral Fins Locomotion of Labriform Fish Applied to a Fish Robot

    Patar Ebenezer Sitorus; Yul Yunazwin Nazaruddin; Edi Leksono; Agus Budiyono

    2009-01-01

    In present, there are increasing interests in the research on mechanical and control system of underwater vehicles. These ongoing research efforts are motivated by more pervasive applications of such vehicles including seabed oil and gas explorations, scientific deep ocean surveys, military purposes, ecological and water environmental studies, and also entertainments.However, the performance of underwater vehicles with screw type propellers is not prospective in terms of its efficiency and maneuverability. The main weaknesses of this kind of propellers are the production of vortices and sudden generation of thrust forces which make the control of the position and motion difficult.On the other hand, fishes and other aquatic animals are efficient swimmers, posses high maneuverability, are able to follow trajectories, can efficiently stabilize themselves in currents and surges, create less wakes than currently used underwater vehicle,and also have a noiseless propulsion. The fish's locomotion mechanism is mainly controlled by its caudal fin and paired pectoral fins. They are classified into Body and/or Caudal Fin (BCF) and Median and/or paired Pectoral Fins (MPF). The study of highly efficient swimming mechanisms of fish can inspire a better underwater vehicles thruster design and its mechanism.There are few studies on underwater vehicles or fish robots using paired pectoral fins as thruster. The work presented in this paper represents a contribution in this area covering study, design and implementation of locomotion mechanisms of paired pectoral fins in a fish robot. The performance and viability of the biomimetic method for underwater vehicles are highlighted through in-water experiment of a robotic fish.

  17. Condensation heat transfer and pressure drop of R-134a saturated vapour inside a brazed compact plate fin heat exchanger with serrated fin

    Ramana Murthy, K. V.; Ranganayakulu, C.; Ashok Babu, T. P.

    2016-05-01

    This paper presents the experimental heat transfer coefficient and pressure drop measured during R-134a saturated vapour condensation inside a small brazed compact plate fin heat exchanger with serrated fin surface. The effects of saturation temperature (pressure), refrigerant mass flux, refrigerant heat flux, effect of fin surface characteristics and fluid properties are investigated. The average condensation heat transfer coefficients and frictional pressure drops were determined experimentally for refrigerant R-134a at five different saturated temperatures (34, 38, 40, 42 and 44 °C). A transition point between gravity controlled and forced convection condensation has been found for a refrigerant mass flux around 22 kg/m2s. In the forced convection condensation region, the heat transfer coefficients show a three times increase and 1.5 times increase in frictional pressure drop for a doubling of the refrigerant mass flux. The heat transfer coefficients show weak sensitivity to saturation temperature (Pressure) and great sensitivity to refrigerant mass flux and fluid properties. The frictional pressure drop shows a linear dependence on the kinetic energy per unit volume of the refrigerant flow. Correlations are provided for the measured heat transfer coefficients and frictional pressure drops.

  18. The pectoral fin muscles of the coelacanth Latimeria chalumnae: Functional and evolutionary implications for the fin-to-limb transition and subsequent evolution of tetrapods.

    Miyake, Tsutomu; Kumamoto, Minayori; Iwata, Masamitsu; Sato, Ryuichi; Okabe, Masataka; Koie, Hiroshi; Kumai, Nori; Fujii, Kenichi; Matsuzaki, Koji; Nakamura, Chiho; Yamauchi, Shinya; Yoshida, Kosuke; Yoshimura, Kohtaroh; Komoda, Akira; Uyeno, Teruya; Abe, Yoshitaka

    2016-09-01

    To investigate the morphology and evolutionary origin of muscles in vertebrate limbs, we conducted anatomical dissections, computed tomography and kinematic analyses on the pectoral fin of the African coelacanth, Latimeria chalumnae. We discovered nine antagonistic pairs of pronators and supinators that are anatomically and functionally distinct from the abductor and adductor superficiales and profundi. In particular, the first pronator and supinator pair represents mono- and biarticular muscles; a portion of the muscle fibers is attached to ridges on the humerus and is separated into two monoarticular muscles, whereas, as a biarticular muscle, the main body is inserted into the radius by crossing two joints from the shoulder girdle. This pair, consisting of a pronator and supinator, constitutes a muscle arrangement equivalent to two human antagonistic pairs of monoarticular muscles and one antagonistic pair of biarticular muscles in the stylopod between the shoulder and elbow joints. Our recent kinesiological and biomechanical engineering studies on human limbs have demonstrated that two antagonistic pairs of monoarticular muscles and one antagonistic pair of biarticular muscles in the stylopod (1) coordinately control output force and force direction at the wrist and ankle and (2) achieve a contact task to carry out weight-bearing motion and maintain stable posture. Therefore, along with dissections of the pectoral fins in two lungfish species, Neoceratodus forsteri and Protopterus aethiopicus, we discuss the functional and evolutionary implications for the fin-to-limb transition and subsequent evolution of tetrapods. Anat Rec, 299:1203-1223, 2016. © 2016 Wiley Periodicals, Inc. PMID:27343022

  19. Electronic transport in InGaAs/Al2O3 nFinFETs

    Li, Shengwei; Hu, Yaodong; Wu, Yangqing; Huang, Daming; Ye, Peide D.; Li, Ming-Fu

    2014-01-01

    Based on the multiple subbands quasi-ballistic transport theory, we investigate the electronic transport of nano size In0.53Ga0.47As nFinFETs with Al2O3 gate dielectric, emphasizing the saturation current region. 1D mobile charge density and gate capacitance density are introduced for the first time to describe the nano-FinFET transport property under volume inversion. With the extracted effective channel mobility of electrons in the linear region from our experiments, the electron mean free ...

  20. High temperature study of flexible silicon-on-insulator fin field-effect transistors

    Diab, Amer

    2014-09-29

    We report high temperature electrical transport characteristics of a flexible version of the semiconductor industry\\'s most advanced architecture: fin field-effect transistor on silicon-on-insulator with sub-20 nm fins and high-κ/metal gate stacks. Characterization from room to high temperature (150 °C) was completed to determine temperature dependence of drain current (Ids), gate leakage current (Igs), transconductance (gm), and extracted low-field mobility (μ0). Mobility degradation with temperature is mainly caused by phonon scattering. The other device characteristics show insignificant difference at high temperature which proves the suitability of inorganic flexible electronics with advanced device architecture.

  1. Visualization of the Design Space of a Caudal Fin with Hydro-Elastic Effect

    Shimizu, Eriko; Jeong, Shinkyu; Obayashi, Shigeru; Isogai, Koji

    Performance of a fish caudal fin is brought out from many factors, such as the shape, the movement and the elasticity. The present study treats all of these factors simultaneously and attempts to visualize the complex design space using Kriging and SOM. As a result, the present study succeeded in visualizing the complex structure of the design space of the oscillating wing (caudal fin), and the combined effects of the design variables are shown. This data will become extremely useful for practical design of fish robots and other nautical machines.

  2. Heat transfer simulation of motorcycle fins under varying velocity using CFD method

    Shahril, K.; Mohd Kasim, Nurhayati Binti; Sabri, M.

    2013-12-01

    Motorcycle engine releases heat to the atmosphere through the mode of force convection. To solve this, fins are provided on the outer of the cylinder. The heat transfer rate is defined depending on the velocity of vehicle, fin geometry and the ambient temperature. Increasing the temperature difference between the object and the environment, increasing the convection heat transfer coefficient, or increasing the surface area of the object increases the heat transfer. Many experimental methods are available in literature to analyze the effect of these factors on the heat transfer rate. However, CFD analysis will be use to simulate the heat transfer of the engine block. ANSYS software is selected to run the simulation.

  3. RESULTS OF INVESTIGATIONS ON THERMAL CHARACTERISTICS OF AIR HEATER BUNDLE MADE OF BIMETALLIC FINNED TUBES

    V. B. Kuntysh

    2014-01-01

    Full Text Available The paper presents a scheme and description of a new aerodynamic stand that has a 300x300 mm cross-section operating channel. The stand is used for studying thermal and aerodynamic characteristics of bundles made of finned tubes of actual dimensions in crossflow. The paper provides results of an exploratory test pertaining to heat transfer and resistance of four row staggered bundle made of tubes with aluminium spiral fins having outside diameter of 26 mm which are used in the systems of ventilation, air-conditioning and heating of buildings and also in transport heat exchangers.

  4. Effect of refrigerant mal-distribution in fin-and-tube evaporators on system performance

    Kærn, Martin Ryhl; Elmegaard, Brian; Larsen, Lars Finn Sloth

    2009-01-01

    Refrigerant mal-distribution in fin-and-tube evaporators for residential air-conditioning (RAC) is investigated numerically in this paper. A model of the system is developed in the object-oriented modeling language Modelica. Themodels of the compressor and expansion valve are static, whereas...... the condenser is a dynamic moving boundary model. The evaporator model is a dynamic distributed one-dimensional homogeneous equilibrium model, in order to capture the distribution phenomena. Fin-and-tube heat exchangers usually have a complex circuitry, however the evaporator will be simplified to be two...

  5. Analysis of divided-wall column for extractive distillation; Suichoku bunkatsugata chushutsu joryuto ni kansuru kaiseki

    Midori, S.; Zheng, S.N.; Yamada, I. [Kyowa Yuka Co., Ltd., Mie (Japan). Yokkaichi Factory

    2000-09-10

    The divided-wall column (hereinafter called DWC) has received widespread attention in terms of its compact structure and high thermal efficiency, which offers savings in capital and energy costs, since it was originally reported by Wright and Elizabeth i 1949. Some DWCs, have already been commercialized successfully including that of the authors in 1996. However, with the existing DWC construction, they cannot be applied to the separation of azeotropic systems or close boiling component systems, and the application has been limited to ordinary ternary systems, i. e. the separation of light, middle, and heavy fractions. In this paper, a new extractive distillation column that the concept of DWC can be applied to is shown, and a comparison with the conventional two-column sequence has been presented in terms of process compactness and heat integration. The devised column here is called DWC-E, and it has the following features: (1) DWC-E is divided from the column top to the midportion between the feed plate and the bottom by a vertical wall (splitting plate), and (2) DWC-E is compact-type process with only two top condensers and one reboiler. Moreover, a simulation of acetone-methanol-water extractive distillation is carried out to examine the validity of DWC-E. The result shows that DWC-E can save a maximum of 36 % energy consumption compared to the conventional two-column sequence. (author)

  6. Fluid dynamics of flapping aquatic flight in the bird wrasse: three-dimensional unsteady computations with fin deformation.

    Ramamurti, Ravi; Sandberg, William C; Löhner, Rainald; Walker, Jeffrey A; Westneat, Mark W

    2002-10-01

    Many fishes that swim with the paired pectoral fins use fin-stroke parameters that produce thrust force from lift in a mechanism of underwater flight. These locomotor mechanisms are of interest to behavioral biologists, biomechanics researchers and engineers. In the present study, we performed the first three-dimensional unsteady computations of fish swimming with oscillating and deforming fins. The objective of these computations was to investigate the fluid dynamics of force production associated with the flapping aquatic flight of the bird wrasse Gomphosus varius. For this computational work, we used the geometry of the wrasse and its pectoral fin, and previously measured fin kinematics, as the starting points for computational investigation of three-dimensional (3-D) unsteady fluid dynamics. We performed a 3-D steady computation and a complete set of 3-D quasisteady computations for a range of pectoral fin positions and surface velocities. An unstructured, grid-based, unsteady Navier-Stokes solver with automatic adaptive remeshing was then used to compute the unsteady flow about the wrasse through several complete cycles of pectoral fin oscillation. The shape deformation of the pectoral fin throughout the oscillation was taken from the experimental kinematics. The pressure distribution on the body of the bird wrasse and its pectoral fins was computed and integrated to give body and fin forces which were decomposed into lift and thrust. The velocity field variation on the surface of the wrasse body, on the pectoral fins and in the near-wake was computed throughout the swimming cycle. We compared our computational results for the steady, quasi-steady and unsteady cases with the experimental data on axial and vertical acceleration obtained from the pectoral fin kinematics experiments. These comparisons show that steady state computations are incapable of describing the fluid dynamics of flapping fins. Quasi-steady state computations, with correct incorporation of

  7. Species identification of shark fins and cartilages with FINS method%FINS方法鉴定鱼翅和鲨鱼软骨的鲨鱼种类

    黄文胜; 韩建勋; 董洁; 邓婷婷; 王娉; 吴亚君; 陈颖

    2011-01-01

    Shark species such as Basking shark(Cetorhinus maximus), Great White shark(Carcharodon carcharias), Whale shark(Rhincodon typus) are some of the most endangered trade fish in the world. However, identification of these species in traded forms, fins and cartilages, may be difficult depending on the presentation of the products, which may hamper conservation efforts on trade control. In this paper, we established a genetic methodology, forensically Informative nucleotide sequencing(FINS), for species identification in shark fins and cartilages. By blastning the mitochondrial sequences of 5 shark species Heterodontus francisci, Chiloscyllium plagiosum, Squalus acanthia, Scyliorhinus canicula, Mustelus manazo, the degenerated primers for amplification of 5' region of the cytochrome oxidase I (COX I) gene were designed and synthesized. The polymerase chain reaction was employed to obtain a 680 bp amplicon from the mitochondrial COX I gene with touchdown cycling program to circumvent spurious priming and the products were purified and two directional sequenced. The sequences of COX I gene from individual sample and the reference sequences in the genebank were analyzed using a genetic distance method by which species the sample belong to determined. 126 different samples of commercial shark fins and cartilages obtained in Guangdong shark fin processing factories and fishery markets were analyzed and showing that FINS is a suitable technique for species identification of shark fins. The results also showed that the most shark fins come from blue shark, others come from the Porbeagle, Mako, the Caribbean sharpnose shark, the Milk shark, the Australian weasel shark, the Narrownose smooth-hound shark, the scalloped hammerhead shark and guitarfish rays, Callorhinchus callorhynchus and Hydrolagus spp., but none of the species on red list of the convention on International trade in endangered species of wild fauna and Flora(CITES)was founded in any

  8. The Species and Origin of Shark Fins in Taiwan's Fishing Ports, Markets, and Customs Detention: A DNA Barcoding Analysis.

    Chuang, Po-Shun; Hung, Tzu-Chiao; Chang, Hung-An; Huang, Chien-Kang; Shiao, Jen-Chieh

    2016-01-01

    The increasing consumption of shark products, along with the shark's fishing vulnerabilities, has led to the decrease in certain shark populations. In this study we used a DNA barcoding method to identify the species of shark landings at fishing ports, shark fin products in retail stores, and shark fins detained by Taiwan customs. In total we identified 23, 24, and 14 species from 231 fishing landings, 316 fin products, and 113 detained shark fins, respectively. All the three sample sources were dominated by Prionace glauca, which accounted for more than 30% of the collected samples. Over 60% of the species identified in the fin products also appeared in the port landings, suggesting the domestic-dominance of shark fin products in Taiwan. However, international trade also contributes a certain proportion of the fin product markets, as four species identified from the shark fin products are not found in Taiwan's waters, and some domestic-available species were also found in the customs-detained sample. In addition to the species identification, we also found geographical differentiation in the cox1 gene of the common thresher sharks (Alopias vulpinus), the pelagic thresher shark (A. pelagicus), the smooth hammerhead shark (Sphyrna zygaena), and the scalloped hammerhead shark (S. lewini). This result might allow fishing authorities to more effectively trace the origins as well as enforce the management and conservation of these sharks. PMID:26799827

  9. The Species and Origin of Shark Fins in Taiwan's Fishing Ports, Markets, and Customs Detention: A DNA Barcoding Analysis.

    Po-Shun Chuang

    Full Text Available The increasing consumption of shark products, along with the shark's fishing vulnerabilities, has led to the decrease in certain shark populations. In this study we used a DNA barcoding method to identify the species of shark landings at fishing ports, shark fin products in retail stores, and shark fins detained by Taiwan customs. In total we identified 23, 24, and 14 species from 231 fishing landings, 316 fin products, and 113 detained shark fins, respectively. All the three sample sources were dominated by Prionace glauca, which accounted for more than 30% of the collected samples. Over 60% of the species identified in the fin products also appeared in the port landings, suggesting the domestic-dominance of shark fin products in Taiwan. However, international trade also contributes a certain proportion of the fin product markets, as four species identified from the shark fin products are not found in Taiwan's waters, and some domestic-available species were also found in the customs-detained sample. In addition to the species identification, we also found geographical differentiation in the cox1 gene of the common thresher sharks (Alopias vulpinus, the pelagic thresher shark (A. pelagicus, the smooth hammerhead shark (Sphyrna zygaena, and the scalloped hammerhead shark (S. lewini. This result might allow fishing authorities to more effectively trace the origins as well as enforce the management and conservation of these sharks.

  10. Experimental study of heat transfer and pressure drop characteristics on shell-side of pin-fin tube oil cooler

    The comparative experimental study for one smooth tube oil cooler and three pin-fin tube oil coolers was performed by using lubricating oil as heat transfer medium. The experimental results indicate that in the range of experimental study, total heat transfer coefficient of pin-fin tube oil coolers is about 1.4-2 times higher than that of the smooth tube oil cooler. The heat transfer and pressure drop characteristics are greatly different for different structures of pin-fin tube oil coolers. The effects of the structure of pin-fin tube and shell-side flow path number are dominant to influence heat transfer and pressure drop characteristics of oil coolers. In the range of experimental study, large pin-fin height is conducive to the oil flow disturbance, but not conducive to the heat transfer on the tube-base heat transfer surface of pin-fin tube; single-pass pin-fin tube oil cooler offers high total heat transfer coefficient and volumetric heat transfer capacity, the global heat transfer performance and the friction characteristics are better than that of two-pass pin-fin tube oil cooler. (authors)

  11. Optimum design of a radial heat sink with a fin-height profile for high-power LED lighting applications

    Highlights: • A radial heat sink was designed for high-power LED lighting applications. • Fin-height profiles reflecting the chimney-flow characteristics of a radial heat sink were proposed. • Multi-disciplinary optimization was carried out to simultaneously minimize the thermal resistance and mass. • The cooling performance of the optimized design showed improvement without additional mass increment. - Abstract: Light-emitting diode (LED) lighting offers greater energy efficiency than conventional lighting. However, if the heat from the LEDs is not properly dissipated, the lifespan and luminous efficiency are diminished. In the present study, a heat sink of LED lighting was optimized with respect to its fin-height profile to obtain reliable cooling performance for high-power LED lighting applications. Natural convection and radiation heat transfer were taken into consideration and an experiment was conducted to validate the numerical model. Fin-height profiles reflecting a three-dimensional chimney-flow pattern were proposed. The outermost fin height, the difference between fin heights, and the number of fin arrays were adopted as design variables via sensitivity analysis, and the heat sink configuration was optimized in three dimensions. Optimization was conducted to simultaneously minimize the thermal resistance and mass. The result was compared with the Pareto fronts of a plate-fin heat sink examined in a previous study. The cooling performance of the optimized design showed an improvement of more than 45% while preserving a mass similar to that of the plate-fin heat sink

  12. Numerical study of finned heat pipe-assisted thermal energy storage system with high temperature phase change material

    Highlights: • A finned heat pipe-assisted latent heat thermal energy storage system is studied. • The effects of heat pipes spacing and fins geometrical features are investigated. • Smaller heat pipes spacing and longer fins improve the melting rate. • The optimal heat pipe and fin arrangements are determined. - Abstract: In the present study, the thermal characteristics of a finned heat pipe-assisted latent heat thermal energy storage system are investigated numerically. A transient two-dimensional finite volume based model employing enthalpy-porosity technique is implemented to analyze the performance of a thermal energy storage unit with square container and high melting temperature phase change material. The effects of heat pipe spacing, fin length and numbers and the influence of natural convection on the thermal response of the thermal energy storage unit have been studied. The obtained results reveal that the natural convection has considerable effect on the melting process of the phase change material. Increasing the number of heat pipes (decreasing the heat pipe spacing) leads to the increase of melting rate and the decrease of base wall temperature. Also, the increase of fin length results in the decrease of temperature difference within the phase change material in the container, providing more uniform temperature distribution. It was also shown that number of the fins does not have a significant effect on the performance of the system

  13. Genetic identification of a small and highly isolated population of fin whales (Balaenoptera physalus) in the Sea of Cortez, Mexico

    Berube, M; Urban, J; Dizon, AE; Brownell, RL; Palsboll, PJ

    2002-01-01

    For many years, researchers have speculated that fin whales are year-round residents in the Sea of Cortez (= Gulf of California). Previous work by Berube and co-workers has shown that the degree of genetic diversity among fin whales in the Sea of Cortez at nuclear and mitochondrial loci is highly re

  14. The Effects of Caudal Fin Shape on the Propulsion Performance of Flapping Caudal Fin%尾鳍形状对摆动尾鳍推进性能的影响

    张曦; 苏玉民; 王兆立

    2012-01-01

    研究了尾鳍形状对摆动尾鳍推进性能的影响.设计了一套摆尾仿生推进装置,实验分析了仿金枪鱼、仿海豚、仿白鲸3种尾鳍的推进性能.同时采用数值方法对尾鳍的水动力性能进行了计算.实验和数值结果表明,仿金枪鱼尾鳍的平均推力系数和输入功率系数最小,推进效率最高.对尾涡的分析表明,仿金枪鱼尾鳍尾涡强度最弱,分布范围最小.%A comprehensive study was presented on the effects of the caudal fin shape on the propulsion performance of a harmonically heaving and pitching caudal fin.A bio-caudal fin propulsion mechanics was designed and a series of hydrodynamic experiments for three caudal fin shapes(the whale caudal fin,the dolphin caudal fin,and the tuna caudal fin) were performed.Then numerical simulations were done.Both the experimental and computational results indicate that the tuna caudal fin produces the highest efficiency,although the mean thrust coefficient and input power coefficient of the tuna caudal fin was the smallest.The characteristics of wake were analyzed to find that not only the wake scale of the tuna caudal fin is the smallest,but also the vorticity magnitude of the tuna caudal fin is the weakest.

  15. A Flexible Fin with Bio-Inspired Stiffness Profile and Geometry

    T. Salum(a)e; M. Kruusmaa

    2011-01-01

    Biological evidence suggests that fish use mostly anterior muscles for steady swimming while the caudal part of the body is passive and,acting as a carrier of energy,transfers the momentum to the surrounding water.Inspired by those findings we hypothesize that certain swimming patterns can be achieved without copying the distributed actuation mechanism of fish but rather using a single actuator at the anterior part to create the travelling wave.To test the hypothesis a pitching flexible fin made of silicone rubber and silicone foam was designed by copying the stiffness distribution profile and geometry of a rainbow trout.The kinematics of the fin was compared to that of a steadily swimming trout.Fin's propulsive wave length and tail-beat amplitude were determined while it was actuated by a single servo motor.Results showed that the propulsive wave length and tail-beat amplitude of a steadily swimming 50 cm rainbow trout was achieved with our biomimetic fin while stimulated using certain actuation parameters (frequency 2.31 Hz and amplitude 6.6 degrees).The study concluded that fish-like swimming can be achieved by mimicking the stiffness and geometry of a rainbow trout and disregarding the details of the actuation mechanism.

  16. Performance comparison of pin fin in-duct flow arrays with various pin cross-sections

    Sahiti, N. [LSTM-Erlangen, Institute of Fluid Mechanics, Friedrich-Alexander-University, Erlangen-Nuremberg, Cauerstr. 4, D-91058 Erlangen (Germany)]. E-mail: sahiti@lstm.uni-erlangen.de; Lemouedda, A. [Department of Process Engineering, Georg-Simon-Ohm University of Applied Sciences, Wassertorstr. 10, D-90489 Nuremberg (Germany); Stojkovic, D. [LSTM-Erlangen, Institute of Fluid Mechanics, Friedrich-Alexander-University, Erlangen-Nuremberg, Cauerstr. 4, D-91058 Erlangen (Germany); Durst, F. [LSTM-Erlangen, Institute of Fluid Mechanics, Friedrich-Alexander-University, Erlangen-Nuremberg, Cauerstr. 4, D-91058 Erlangen (Germany); Franz, E. [Department of Process Engineering, Georg-Simon-Ohm University of Applied Sciences, Wassertorstr. 10, D-90489 Nuremberg (Germany)

    2006-08-15

    Pin fin arrays are frequently used for cooling of high thermal loaded electronic components. Whereas the pin fin accomplishment regarding heat transfer is always higher than that of other fin configurations, the high pressure drop accompanying pins seriously reduces their overall performance. In order to check how the form of pin cross-section influences the pressure drop and heat transfer capabilities, six forms of pin cross-section were numerically investigated. By employing the conjugate heat transfer boundary conditions, numerical simulations close to realistic working conditions were performed. Two geometric comparison criteria were applied so that the conclusions derived from numerical computations were valid for various possible geometric parameters and working conditions. Both staggered and inline pin arrangements were investigated as these are common in practical applications. The heat transfer and pressure drop characteristics are presented in terms of appropriate dimensionless variables. The final judgment of the performance of the pin fin cross-section was performed based on the heat exchanger performance plot. Such a plot allows the assessment of the pin performance including their heat transfer and the pressure drop.

  17. Performance comparison of pin fin in-duct flow arrays with various pin cross-sections

    Pin fin arrays are frequently used for cooling of high thermal loaded electronic components. Whereas the pin fin accomplishment regarding heat transfer is always higher than that of other fin configurations, the high pressure drop accompanying pins seriously reduces their overall performance. In order to check how the form of pin cross-section influences the pressure drop and heat transfer capabilities, six forms of pin cross-section were numerically investigated. By employing the conjugate heat transfer boundary conditions, numerical simulations close to realistic working conditions were performed. Two geometric comparison criteria were applied so that the conclusions derived from numerical computations were valid for various possible geometric parameters and working conditions. Both staggered and inline pin arrangements were investigated as these are common in practical applications. The heat transfer and pressure drop characteristics are presented in terms of appropriate dimensionless variables. The final judgment of the performance of the pin fin cross-section was performed based on the heat exchanger performance plot. Such a plot allows the assessment of the pin performance including their heat transfer and the pressure drop

  18. Cyanobacterial Neurotoxin β-N-Methylamino-L-alanine (BMAA in Shark Fins

    John Pablo

    2012-02-01

    Full Text Available Sharks are among the most threatened groups of marine species. Populations are declining globally to support the growing demand for shark fin soup. Sharks are known to bioaccumulate toxins that may pose health risks to consumers of shark products. The feeding habits of sharks are varied, including fish, mammals, crustaceans and plankton. The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA has been detected in species of free-living marine cyanobacteria and may bioaccumulate in the marine food web. In this study, we sampled fin clips from seven different species of sharks in South Florida to survey the occurrence of BMAA using HPLC-FD and Triple Quadrupole LC/MS/MS methods. BMAA was detected in the fins of all species examined with concentrations ranging from 144 to 1836 ng/mg wet weight. Since BMAA has been linked to neurodegenerative diseases, these results may have important relevance to human health. We suggest that consumption of shark fins may increase the risk for human exposure to the cyanobacterial neurotoxin BMAA.

  19. Creatine supplementation improves the anaerobic performance of elite junior fin swimmers.

    Juhász, Imre; Györe, I; Csende, Zs; Rácz, L; Tihanyi, J

    2009-09-01

    The objective of this study was to determine whether creatine supplementation (CrS) could improve mechanical power output, and swimming performance in highly trained junior competitive fin swimmers. Sixteen male fin swimmers (age:15.9+/-1.6 years) were randomly and evenly assigned to either a creatine (CR, 4x5 g/day creatine monohydrate for 5 days) or placebo group (P, same dose of a dextrose-ascorbic acid placebo) in a double-blind research. Before and after CrS the average power output was determined by a Bosco-test and the swimming time was measured in two maximal 100 m fin swims. After five days of CrS the average power of one minute continuous rebound jumps increased by 20.2%. The lactate concentration was significantly less after 5 minutes restitution at the second measurement in both groups. The swimming time was significantly reduced in both first (pre: 50.69+/-1.41 s; post: 48.86+/-1.34 s) and second (pre: 50.39+/-1.38 s; post: 48.53+/-1.35 s) sessions of swimming in CR group, but remained almost unchanged in the P group.The results of this study indicate that five day Cr supplementation enhances the dynamic strength and may increase anaerobic metabolism in the lower extremity muscles, and improves performance in consecutive maximal swims in highly trained adolescent fin swimmers. PMID:19706374

  20. Numerical Modeling of Fin and Tube Heat Exchanger for Waste Heat Recovery

    Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph

    2016-01-01

    In the present work, multiphysics numerical modeling is carried out to predict the performance of a liquid-gas fin and tube heat exchanger design. Three-dimensional (3D) steady-state numerical model using commercial software COMSOL based on finite element method (FEM) is developed. The study...

  1. Effects of thin fin on natural convection in porous triangular enclosures

    Varol, Yasin [Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235 (United States); Oztop, Hakan F. [Department of Mechanical Engineering, Firat University, TR-23119, Elazig (Turkey); Varol, Asaf [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26505 (United States)

    2007-10-15

    A two-dimensional solution of natural convection in solid adiabatic thin fin attached to porous right triangular enclosures has been analyzed numerically. The vertical wall of the enclosure is insulated while the bottom and the inclined walls are isothermal. The temperature of the bottom wall is higher than the temperature of the inclined wall. Governing equations, which are written using Darcy model, are solved via the finite difference technique. The Successive Under Relaxation (SUR) method was used to solve linear algebraic equations. Dimensionless location of the thin fin from 0.2 to 0.6, the aspect ratio of triangular enclosure from 0.25 to 1, Rayleigh number from 100 to 1000 and the dimensionless height of the fin from 0.1 to 0.4 are used as governing parameters that are effective on heat transfer and fluid flow. Results for the mean Nusselt number, velocity profiles, the contour maps of the streamlines and isotherms are presented. It is observed that the thin fin can be used as a passive control element for flow field, temperature distribution and heat transfer. (author)

  2. Cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) in shark fins.

    Mondo, Kiyo; Hammerschlag, Neil; Basile, Margaret; Pablo, John; Banack, Sandra A; Mash, Deborah C

    2012-02-01

    Sharks are among the most threatened groups of marine species. Populations are declining globally to support the growing demand for shark fin soup. Sharks are known to bioaccumulate toxins that may pose health risks to consumers of shark products. The feeding habits of sharks are varied, including fish, mammals, crustaceans and plankton. The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) has been detected in species of free-living marine cyanobacteria and may bioaccumulate in the marine food web. In this study, we sampled fin clips from seven different species of sharks in South Florida to survey the occurrence of BMAA using HPLC-FD and Triple Quadrupole LC/MS/MS methods. BMAA was detected in the fins of all species examined with concentrations ranging from 144 to 1836 ng/mg wet weight. Since BMAA has been linked to neurodegenerative diseases, these results may have important relevance to human health. We suggest that consumption of shark fins may increase the risk for human exposure to the cyanobacterial neurotoxin BMAA. PMID:22412816

  3. Geometric sensitivity of electrochemical fin shape on three dimensional microstructure network conductivity analysis

    DeGostin, Matthew B.; Nakajo, Arata; Cassenti, Brice N.; Peracchio, Aldo A.; Nelson, George J.; Chiu, Wilson K. S.

    2015-09-01

    A rapid microstructural assessment tool has previously been developed to support electrode design efforts by modeling charge transport and surface electrochemistry through networks of transport channels represented by ideal axisymmetric electrochemical fins. Analytical solutions have allowed these fins to take the form of a positive curvature sphere, a neutral curvature conical frustum, and a negative curvature smooth exponential profile. The present paper aims to enhance the geometric sensitivity of the network modeling tool by fitting ideal fin shapes to individual channels within the microstructure via dimensionless parameters describing channel morphology. The tool is used to directly compute effective transport properties of a range of microstructures, including artificial packed sphere structures and real solid oxide fuel cell electrode and gas membrane material microstructures imaged by X-ray nanotomography. Results obtained are compared with detailed finite element analyses and predictions from percolation theory. It is shown that the model can capture transport losses associated with microstructure on the particle scale, highlighting its potential as a less computationally demanding complement to detailed numerical models such as finite element or lattice Boltzmann methods for preliminary electrode design screening. Results also emphasize the importance of capturing local microstructural effects of specific transport networks, as electrochemical fin results provide more accurate performance predictions than percolation theory for structures near their percolation threshold.

  4. An amputation resets positional information to a proximal identity in the regenerating zebrafish caudal fin

    Azevedo Ana

    2012-08-01

    Full Text Available Abstract Background Zebrafish has emerged as a powerful model organism to study the process of regeneration. This teleost fish has the ability to regenerate various tissues and organs like the heart, spinal cord, retina and fins. In this study, we took advantage of the existence of an excellent morphological reference in the zebrafish caudal fin, the bony ray bifurcations, as a model to study positional information upon amputation. We investigated the existence of positional information for bifurcation formation by performing repeated amputations at different proximal-distal places along the fin. Results We show that, while amputations performed at a long distance from the bifurcation do not change its final proximal-distal position in the regenerated fin, consecutive amputations done at 1 segment proximal to the bifurcation (near the bifurcation induce a positional reset and progressively shift its position distally. Furthermore, we investigated the potential role of Shh and Fgf signalling pathways in the determination of the bifurcation position and observed that they do not seem to be involved in this process. Conclusions Our results reveal that, an amputation near the bifurcation inhibits the formation of the regenerated bifurcation in the pre-amputation position, inducing a distalization of this structure. This shows that the positional memory for bony ray bifurcations depends on the proximal-distal level of the amputation.

  5. Synchronous seasonal change in fin whale song in the North Pacific.

    Oleson, Erin M; Širović, Ana; Bayless, Alexandra R; Hildebrand, John A

    2014-01-01

    Fin whale (Balaenoptera physalus) song consists of down-swept pulses arranged into stereotypic sequences that can be characterized according to the interval between successive pulses. As in blue (B. musculus) and humpback whales (Megaptera novaeangliae), these song sequences may be geographically distinct and may correlate with population boundaries in some regions. We measured inter-pulse intervals of fin whale songs within year-round acoustic datasets collected between 2000 and 2006 in three regions of the eastern North Pacific: Southern California, the Bering Sea, and Hawaii. A distinctive song type that was recorded in all three regions is characterized by singlet and doublet inter-pulse intervals that increase seasonally, then annually reset to the same shorter intervals at the beginning of each season. This song type was recorded in the Bering Sea and off Southern California from September through May and off Hawaii from December through April, with the song interval generally synchronized across all monitoring locations. The broad geographic and seasonal occurrence of this particular fin whale song type may represent a single population broadly distributed throughout the eastern Pacific with no clear seasonal migratory pattern. Previous studies attempting to infer population structure of fin whales in the North Pacific using synchronous individual song samples have been unsuccessful, likely because they did not account for the seasonal lengthening in song intervals observed here. PMID:25521493

  6. Synchronous seasonal change in fin whale song in the North Pacific.

    Erin M Oleson

    Full Text Available Fin whale (Balaenoptera physalus song consists of down-swept pulses arranged into stereotypic sequences that can be characterized according to the interval between successive pulses. As in blue (B. musculus and humpback whales (Megaptera novaeangliae, these song sequences may be geographically distinct and may correlate with population boundaries in some regions. We measured inter-pulse intervals of fin whale songs within year-round acoustic datasets collected between 2000 and 2006 in three regions of the eastern North Pacific: Southern California, the Bering Sea, and Hawaii. A distinctive song type that was recorded in all three regions is characterized by singlet and doublet inter-pulse intervals that increase seasonally, then annually reset to the same shorter intervals at the beginning of each season. This song type was recorded in the Bering Sea and off Southern California from September through May and off Hawaii from December through April, with the song interval generally synchronized across all monitoring locations. The broad geographic and seasonal occurrence of this particular fin whale song type may represent a single population broadly distributed throughout the eastern Pacific with no clear seasonal migratory pattern. Previous studies attempting to infer population structure of fin whales in the North Pacific using synchronous individual song samples have been unsuccessful, likely because they did not account for the seasonal lengthening in song intervals observed here.

  7. Nonlinear flutter wind tunnel test and numerical analysis of folding fins with freeplay nonlinearities

    Yang Ning

    2016-02-01

    Full Text Available The flutter characteristics of folding control fins with freeplay are investigated by numerical simulation and flutter wind tunnel tests. Based on the characteristics of the structures, fins with different freeplay angles are designed. For a 0° angle of attack, wind tunnel tests of these fins are conducted, and vibration is observed by accelerometers and a high-speed camera. By the expansion of the connected relationships, the governing equations of fit for the nonlinear aeroelastic analysis are established by the free-interface component mode synthesis method. Based on the results of the wind tunnel tests, the flutter characteristics of fins with different freeplay angles are analyzed. The results show that the vibration divergent speed is increased, and the divergent speed is higher than the flutter speed of the nominal linear system. The vibration divergent speed is increased along with an increase in the freeplay angle. The developed free-interface component mode synthesis method could be used to establish governing equations and to analyze the characteristics of nonlinear aeroelastic systems. The results of the numerical simulations and the wind tunnel tests indicate the same trends and critical velocities.

  8. Analysis and design of a flat central finned-tube radiator

    Auer, B. M.; Haller, H. C.; Krebs, R. P.

    1971-01-01

    Computer program based on fixed conductance parameter yields minimum weight design. Second program employs variable conductance parameter and variable ratio of fin length to tube outside radius, and is used for radiator designs with geometric limitations. Major outputs of the two programs are given.

  9. Numerical analysis of thermal behavior of a heat exchanger made of double-finned annulus

    The present paper reports a boundary integral solution analysis of a countercurrent heat exchanger made of a double-finned annulus. The enhancement of the heat transfer surface is obtained by longitudinal straight finns which are placed on the intermediate surface. The Nusselt number is compared with data obtained from analytical solution available for limiting-cases. (author)

  10. Oscillatory Adaptive Yaw-Plane Control of Biorobotic Autonomous Underwater Vehicles Using Pectoral-Like Fins

    Mugdha S. Naik

    2007-01-01

    Full Text Available This article considers the control of a biorobotic autonomous underwater vehicle (BAUV in the yaw plane using biologically inspired oscillatory pectoral-like fins of marine animals. The fins are assumed to be oscillating harmonically with a combined linear (sway and angular (yaw motion producing unsteady forces, which are used for fish-like control of BAUVs. Manoeuvring of the BAUV in the yaw plane is accomplished by altering the bias (mean angle of the angular motion of the fin. For the derivation of the adaptive control system, it is assumed that the physical parameters, the hydrodynamic coefficients, and the fin force and moment are not known. A direct adaptive sampled-data control system for the trajectory control of the yaw-angle using only yaw-angle measurement is derived. The parameter adaptation law is based on the normalised gradient scheme. Simulation results for the set point control, sinusoidal trajectory tracking and turning manoeuvres are presented, which show that the control system accomplishes precise trajectory control in spite of the parameter uncertainties.

  11. MEMS silicon-based micro-evaporator with diamond-shaped fins

    Mihailovic, M.; Rops, C.; Creemer, J.F.; Sarro, P.M.

    2010-01-01

    A new design of micro-evaporators, with 45 channels (100 μm deep) and diamond-shaped fins (40μm wide, 160μm long, 20μm separation), is fabricated by anodic bonding of silicon and glass wafers, in a five masks process. This new design improves stability of the working conditions, and has a localized

  12. Lectura de los trabajos de fin de Máster Leonor Lidón

    Lidón Heras, Leonor

    2010-01-01

    Lectura de los trabajos de fin de Máster. Máster en Derechos Humanos, Democracia y Justicia Internacional. Institut Universitari de Drets Humans de la Universitat de València. Lectora: Leonor Lidón Heras. Facultat de Dret. Universitat de València.Duración: 43M

  13. Compensation of flow maldistribution in fin-and-tube evaporators for residential air-conditioning

    Kærn, Martin Ryhl; Brix, Wiebke; Elmegaard, Brian;

    2011-01-01

    Compensation of flow maldistribution in multi-channel fin-and-tube evaporators for residential air-conditioning is investigated by numerical modeling. The considered sources of maldistribution are distribution of the liquid and vapor phases in the distributor and non-uniform airflow distribution...

  14. Ray-finned fishes (Osteichthyes, Actinopterygii) from the type Maastrichtian, the Netherlands and Belgium

    Friedman, M.

    2012-01-01

    Ray-finned fishes are a diverse, but understudied, component of the Maastrichtian marine fauna of the southeast Netherlands (Limburg) and northeast Belgium (Liège-Limburg). The most extensive reviews of fishes from these uppermost Cretaceous deposits were made in the early and mid-Twentieth Century,

  15. El cine como realización del fin del arte

    Juan Carlos Arias

    2006-01-01

    Full Text Available Muchos han afirmado que el ideal del arte defendido por el modernismo ha llegado a su fin. El relato fundado por el arte moderno ya no aplica para ciertas prácticas contemporáneas, lo cual ha llevado a pensar que, más allá de ser necesario un nuevo relato que dé cuenta del arte en sus diversas manifestaciones, hay que reconocer el fin de los relatos, la incapacidad de producir una nueva narrativa que reemplace a la modernista para incluir y legitimar las formas del arte hoy. Es este fin de las narrativas lo que podemos comprender, siguiendo a Arthur Danto, como fin del arte, concepto que designa el paso del arte moderno al arte contemporáneo. El objetivo de este texto es comprender qué sitio ocupa el cine dentro de este tránsito —que, más que cronológico, es conceptual—, al analizar las nociones de pureza e impureza en el arte.

  16. The relationship between the mercury concentration in fish muscles and scales/fins and its significance

    Červenka, R.; Bednařík, A.; Komárek, J.; Ondračková, Markéta; Jurajda, Pavel; Vítek, T.; Spurný, P.

    2011-01-01

    Roč. 9, č. 6 (2011), s. 1109-1116. ISSN 1895-1066 R&D Projects: GA MŠk LC522 Institutional research plan: CEZ:AV0Z60930519 Keywords : Mercury determination * Fish muscle * Scale * Fin Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 1.073, year: 2011

  17. Shape optimization of the caudal fin of the three-dimensional self-propelled swimming fish

    Xin, ZhiQiang; Wu, ChuiJie

    2013-02-01

    Shape optimization of the caudal fin of the three-dimensional self-propelled swimming fish, to increase the swimming efficiency and the swimming speed and control the motion direction more easily, is investigated by combining optimization algorithms, unsteady computational fluid dynamics and dynamic control in this study. The 3D computational fluid dynamics package contains the immersed boundary method, volume of fluid method, the adaptive multi-grid finite volume method and the control strategy of fish swimming. Through shape optimizations of various swimming speeds, the results show that the optimal caudal fins of different swimming modes are not exactly the same shape. However, the optimal fish of high swimming speed, whose caudal fin shape is similar to the crescent, also have higher efficiency and better maneuverability than the other optimal bionic fish at low and moderate swimming speeds. Finally, the mechanisms of vorticity creation of different optimal bionic fish are studied by using boundary vorticity-flux theory, and three-dimensional wake structures of self-propelled swimming of these fish are comparatively analyzed. The study of vortex dynamics reveals the nature of efficient swimming of the 3D bionic fish with the lunate caudal fin.

  18. Compound forming technology of outside 3D integral fin of copper tubes

    XIANG Jian-hua; TANG Yong; YE Bang-yan; ZHOU Wei; YAN Hui; HU Zhi-hua

    2009-01-01

    Using rolling-ploughing-extrusion compound processing methods, a 3D integral-fin structure on outside surface of red copper tube with diameter of 16.0 mm and wall thickness of 1.5 mm was obtained. When both rolling depth and ploughing-extrusion (P-E) depth were 0.2 mm, rotating speed was 50 r/min, feed speed was 0.16 mm/r, 3D fin structures with height of 0.25 mm were gotten. Two different fin structures were obtained in grooves formed with rolling-ploughing-extrusion compound forming technology and observed by scanning electron microscope(SEM). One is the compound structure with V-shaped groove and U-shaped groove, and the other is the single structure with V-shaped grooves. Two kinds of groove structures obtained by rolling processing and ploughing extrusion processing are restricted together by groove interval and rolling depth, and pitch and P-E depth, respectively. Based on the analysis of interaction of rolling and P-E processing, it is found from the result that the outside 3D integral-fin can be achieved by rolling-ploughing-extrusion compound processing when single V-shaped groove structures are formed by both rolling and P-E processing.

  19. Nonlinear flutter wind tunnel test and numerical analysis of folding fins with freeplay nonlinearities

    Yang Ning; Wang Nan; Zhang Xin; Liu Wei

    2016-01-01

    The flutter characteristics of folding control fins with freeplay are investigated by numer-ical simulation and flutter wind tunnel tests. Based on the characteristics of the structures, fins with different freeplay angles are designed. For a 0? angle of attack, wind tunnel tests of these fins are conducted, and vibration is observed by accelerometers and a high-speed camera. By the expansion of the connected relationships, the governing equations of fit for the nonlinear aeroelastic analysis are established by the free-interface component mode synthesis method. Based on the results of the wind tunnel tests, the flutter characteristics of fins with different freeplay angles are analyzed. The results show that the vibration divergent speed is increased, and the divergent speed is higher than the flutter speed of the nominal linear system. The vibration divergent speed is increased along with an increase in the freeplay angle. The developed free-interface component mode synthesis method could be used to establish governing equations and to analyze the characteristics of nonlinear aeroe-lastic systems. The results of the numerical simulations and the wind tunnel tests indicate the same trends and critical velocities.

  20. Mitogenomic Phylogenetics of Fin Whales (Balaenoptera physalus spp.) : Genetic Evidence for Revision of Subspecies

    Archer, Frederick I.; Morin, Phillip A.; Hancock-Hanser, Brittany L.; Robertson, Kelly M.; Leslie, Matthew S.; Berube, Martine; Panigada, Simone; Taylor, Barbara L.

    2013-01-01

    There are three described subspecies of fin whales (Balaenoptera physalus): B. p. physalus Linnaeus, 1758 in the Northern Hemisphere, B. p. quoyi Fischer, 1829 in the Southern Hemisphere, and a recently described pygmy form, B. p. patachonica Burmeister, 1865. The discrete distribution in the North

  1. Hydrodynamic thrust generation and power consumption investigations for piezoelectric fins with different aspect ratios

    Shahab, S.; Tan, D.; Erturk, A.

    2015-12-01

    Bio-inspired hydrodynamic thrust generation using piezoelectric transduction has recently been explored using Macro-Fiber Composite (MFC) actuators. The MFC technology strikes a balance between the actuation force and structural deformation levels for effective swimming performance, and additionally offers geometric scalability, silent operation, and ease of fabrication. Recently we have shown that mean thrust levels comparable to biological fish of similar size can be achieved using MFC fins. The present work investigates the effect of length-to-width (L/b) aspect ratio on the hydrodynamic thrust generation performance of MFC cantilever fins by accounting for the power consumption level. It is known that the hydrodynamic inertia and drag coefficients are controlled by the aspect ratio especially for L/b< 5. The three MFC bimorph fins explored in this work have the aspect ratios of 2.1, 3.9, and 5.4. A nonlinear electrohydroelastic model is employed to extract the inertia and drag coefficients from the vibration response to harmonic actuation for the first bending mode. Experiments are then conducted for various actuation voltage levels to quantify the mean thrust resultant and power consumption levels for different aspect ratios. Variation of the thrust coefficient of the MFC bimorph fins with changing aspect ratio is also semi-empirically modeled and presented.

  2. Fin whale abundance in the eastern North Atlantic estimated from Spanish NASS-89 data

    Buckland, S.T. (Stephen); Cattanach, K.L.; Lens, S. (Santiago)

    1992-01-01

    Applying standard line transect analysis to the Spanish NASS-89 sightings survey data, the abundance of fin whales in the eastern Atlantic west of Iberia and south-west of the British Isles is estimated as 17,335 whales (CV=0.266; 95% confidence interval (10,400, 28,900) whales).

  3. Effects of Fin Leading Edge Sweep on Shock-Shock Interaction at Mach 6

    Berry, Scott A.; Nowak, Robert J.

    1996-01-01

    The effects of fin leading edge sweep on peak heating rates due to shock-shock interaction have been experimentally examined in the Langley 20-Inch Mach 6 Tunnel. The shock interaction was produced by the intersection of a planar incident shock (16.8 deg shock angle relative to the freestream, generated by a 9 deg wedge) with the bow shock formed around a O.5-inch diameter cylindrical leading edge fin. Heating distributions along the leading edge stagnation line have been obtained using densely spaced thin film resistive-type sensors. Schlieren images were obtained to illustrate the very complex shock-shock interactions. The fin leading edge sweep angle was varied from 15-degrees swept back to 45-degrees swept forward for a freestream unit Reynolds number of 2 x 10(exp 6)/ft. Two models were utilized during the study, one with 0.025-inch spacing between gage centers, and the other 0.015-inch spacing. Gage spatial resolution on the order of 0.015-in appeared to accurately capture the narrow spike in heating. Peak heating due to shock interaction was maximized when the fin was swept forward 15 deg and 25 deg, both promoting augmentations about 7 times the baseline value. The schlieren images for these cases revealed Type 4 and Type 3 interactions, respectively.

  4. The end of the mining activities. Report for the President of the Republic followed by answers of interested organisms and administrations; La fin des activites minieres. Rapport au President de la Republique suivi des reponses des administrations et des organismes interesses

    NONE

    2000-12-01

    During more than 200 years, the coal mining took an important place in the economy. The end of this activity will occur in 2005 in France. So the french Government decided to evaluate, in this report, a retrospective and a prospective on the mining costs, the economic and environmental impacts. Legal aspects and the case of the uranium and the potash mines are also presented. (A.L.B.)

  5. The impact of process variations on input impedance and mitigation using a circuit technique in FinFET-based LNA

    The effect of process variations of a FinFET-based low noise amplifier (LNA) are mitigated by using the device in an independently driven mode, i.e. an independently driven double gate (IDDG) FinFET. A 45 nm gate length IDDG FinFET-based cascoded LNA, operating at 5 GHz, is designed and studied to assess the impact of process variation on the LNA performance metrics such as input impedance, gain and noise figure. Four geometrical parameters, gate length, channel width, gate oxide thickness and fin width, and one non-geometrical parameter, channel doping concentration, are considered in the study. The effect of these variations on the input impedance (the desired value is 50 Ω purely real) of the LNA is compensated by the second gate bias of the IDDG FinFET. (paper)

  6. The impact of process variations on input impedance and mitigation using a circuit technique in FinFET-based LNA

    Suresh, D.; Nagarajan, K. K.; Srinivasan, R.

    2015-04-01

    The effect of process variations of a FinFET-based low noise amplifier (LNA) are mitigated by using the device in an independently driven mode, i.e. an independently driven double gate (IDDG) FinFET. A 45 nm gate length IDDG FinFET-based cascoded LNA, operating at 5 GHz, is designed and studied to assess the impact of process variation on the LNA performance metrics such as input impedance, gain and noise figure. Four geometrical parameters, gate length, channel width, gate oxide thickness and fin width, and one non-geometrical parameter, channel doping concentration, are considered in the study. The effect of these variations on the input impedance (the desired value is 50 Ω purely real) of the LNA is compensated by the second gate bias of the IDDG FinFET. Project supported by the Defense Research Development Organization (DRDO), Government of India.

  7. Simplified analytical solutions and numerical computation of one and two-dimensional circular fins with contact conductance and end cooling

    Yovanovich, M. M.; Culham, J. R.; Lemczyk, T. F.

    1986-01-01

    One and two-dimensional solutions are obtained for annular fins of constant cross-section having uniform base, end and side conductances. The solutions are dependent upon one geometric parameter and three fin parameters which relate the internal conductive resistance to the three boundary resistances. The two and one-dimensional solutions are compared by means of the heat flow rate or fin efficiency ratios. Simple polynomials are developed for fast, accurate numerical computation of the modified Bessel functions which appear in the solutions. For annular fins used in typical microelectronic applications the analytical expressions are also reduced to alternate expressions which are shown to be expressible by means of simple polynomials which converge to unity for large values of the arguments. Numerical computations were performed on an IBM-PC and some typical results are reported in graphical form. These plots give the heat loss ratio as a function of the dimensionless geometric and fin parameters.

  8. Stability and control characteristics of a monoplanar missile configuration with triform-tail-fin arrangements at Mach numbers from 1.70 to 2.86

    Lamb, M.

    1981-01-01

    A wind-tunnel missile model with either a lower vertical tail fin with a pair of horizontal fins having 0 deg, 22.5 deg, or 30 deg dihedral or an upper vertical tail fin with horizontal fins having 0 deg, -22.5 deg, or -30 deg dihedral was investigated. The results indicated that those configurations with horizontal fins at or below the horizontal plane had nearly linear pitching-moment characteristics, while those with the horizontal fins above the horizontal plane experienced pitch-up which increased with increasing horizontal-fin-dihedral angle. At zero angle of attack, the configurations were directionally stable at most test Mach numbers. Generally, those configurations with the upper vertical fin had positive effective dihedral at zero angle of attack, while those with he lower vertical fin had negative effective dihedral. For roll control, three deflected tail fins produced more total roll control than two horizontal fins. For yaw control, three tail fins deflected equally or differentially produced more total yaw control than the single vertical fin.

  9. Local Heat Transfer for Finned-Tube Heat Exchangers using Oval Tubes

    O' Brien, James Edward; Sohal, Manohar Singh

    2000-08-01

    This paper presents the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with either a circular tube or an elliptical tube in crossflow. The duct was designed to simulate a single passage in a fin-tube heat exchanger. Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficient distributions were then calculated from a locally applied one-dimensional semi-infinite inverse heat conduction model. Heat transfer results were obtained over an airflow rate ranging from 1.56 x 10-3 to 15.6 x 10-3 kg/s. These flow rates correspond to a duct-height Reynolds number range of 630 – 6300 with a duct height of 1.106 cm and a duct width-toheight ratio, W/H, of 11.25. The test cylinder was sized such that the diameter-to-duct height ratio, D/H is 5. The elliptical tube had an aspect ratio of 3:1 and a/H equal to 4.33. Results presented in this paper reveal visual and quantitative details of local fin-surface heat transfer distributions in the vicinity of circular and oval tubes and their relationship to the complex horseshoe vortex system that forms in the flow stagnation region. Fin surface stagnation-region Nusselt numbers are shown to be proportional to the square-root of Reynolds number.

  10. Three-dimensional performance analysis of plain fin tube heat exchangers in transitional regime

    Three-dimensional CFD simulations are carried out to investigate heat transfer and fluid flow characteristics of a four-row plain fin-and-tube heat exchanger using the Commercial Computational Fluid Dynamics Code ANSYS CFX 12.0. Heat transfer and pressure drop characteristics of the heat exchanger are investigated for Reynolds numbers ranging from 400 to 2000. Fluid flow and heat transfer are simulated and results compared using both laminar and turbulent flow models (k-ω) with steady and incompressible fluid flow. Model validation is carried out by comparing the simulated case friction factor (f) and Colburn factor (j) with the experimental data of Wang et al.. Reasonable agreement is found between the simulations and experimental data. In this study the effect of geometrical parameters such as fin pitch, longitudinal pitch and transverse pitch of tube spacing are studied. Results are presented in the form of friction factor (f) and Colburn factor (j). For both laminar and transitional flow conditions heat transfer and friction factor decrease with the increase of longitudinal and transverse pitches of tube spacing whereas they increase with fin pitches for both in-line and staggered configurations. Efficiency index increases with the increase of longitudinal and transverse pitches of tube spacing but decreases with increase of fin pitches. For a particular Reynolds number, the efficiency index is higher in in-line arrangement than the staggered case. - Highlights: ► 3D CFD simulations for plain-fin-and-tube heat exchanger. ► Validated with experimental data. ► Parametric study for the effects of fluid flow and heat transfer.

  11. Algeria 2002. Concluded; Algerie 2002. Suite et fin

    Anon.

    2002-10-01

    While reinforcing its existing network of oil and gas pipelines, Algeria is launching three more projects of new international gas pipelines and wishes to become one of the main power suppliers of the European Union. The second part of this dossier about Algeria comprises several articles. The first article is the second part of the interview of C. Khelil, Minister of energy and mines and president of Sonatrach company, about the organisational changes and the international development of Sonatrach. The second article treats of the increase of Algeria's hydrocarbons transportation capacity proportionally to its ambitions of oil and gas production in the coming years. The third article presents the activities of Sonatrach (exploration-production, discoveries, partnerships, pipeline transport, liquefaction, refining and petrochemistry, exports, trading and shipping). The next articles present the activities of Sonatrach's daughter companies: Enac (pipelines construction), Naftec (refineries), Egzia (management of industrial infrastructures and networks), Enip (management, exploitation and development of petrochemical industries), Somik (LNG equipments and infrastructures), Egzik (management of the industrial security and safety of petrochemical infrastructures), Naftal (fuel commercialization and service stations), SNTM-Hyproc (LNG transport), JGC Corp (engineering), IAP (training) etc.. (J.S.)

  12. Locomotion of neutrally buoyant fish with flexible caudal fin.

    Iosilevskii, Gil

    2016-06-21

    Historically, burst-and-coast locomotion strategies have been given two very different explanations. The first one was based on the assumption that the drag of an actively swimming fish is greater than the drag of the same fish in motionless glide. Fish reduce the cost of locomotion by swimming actively during a part of the swimming interval, and gliding through the remaining part. The second one was based on the assumption that muscles perform efficiently only if their contraction rate exceeds a certain threshold. Fish reduce the cost of locomotion by using an efficient contraction rate during a part of the swimming interval, and gliding through the remaining part. In this paper, we suggest yet a third explanation. It is based on the assumption that propulsion efficiency of a swimmer can increase with thrust. Fish reduce the cost of locomotion by alternating high thrust, and hence more efficient, bursts with passive glides. The paper presents a formal analysis of the respective burst-and-coast strategy, shows that the locomotion efficiency can be practically as high as the propulsion efficiency during burst, and shows that the other two explanations can be considered particular cases of the present one. PMID:27067246

  13. Natural convection heat transfer from fin arrays-experimental and theoretical study on effect of inclination of base on heat transfer

    S.V. Naidu; V. Dharma Rao; B. Govinda Rao; A. Sombabu; B. Sreenivasulu

    2010-01-01

    The problem of natural convection heat transfer from fin arrays with inclination is studied experimentally and theoretically to find the effect of inclination of the base of the fin array on heat transfer rate. A numerical model is developed by taking an enclosure, which is formed by two adjacent vertical fins and horizontal base. Results obtained from this enclosure are used to predict heat transfer rate from the fin array. All the governing equations related to fluid in the enclosure, toget...

  14. The Species and Origin of Shark Fins in Taiwan’s Fishing Ports, Markets, and Customs Detention: A DNA Barcoding Analysis

    Po-Shun Chuang; Tzu-Chiao Hung; Hung-An Chang; Chien-Kang Huang; Jen-Chieh Shiao

    2016-01-01

    The increasing consumption of shark products, along with the shark's fishing vulnerabilities, has led to the decrease in certain shark populations. In this study we used a DNA barcoding method to identify the species of shark landings at fishing ports, shark fin products in retail stores, and shark fins detained by Taiwan customs. In total we identified 23, 24, and 14 species from 231 fishing landings, 316 fin products, and 113 detained shark fins, respectively. All the three sample sources w...

  15. Population trends in Pacific Oceanic sharks and the utility of regulations on shark finning.

    Clarke, Shelley C; Harley, Shelton J; Hoyle, Simon D; Rice, Joel S

    2013-02-01

    Accurate assessment of shark population status is essential for conservation but is often constrained by limited and unreliable data. To provide a basis for improved management of shark resources, we analyzed a long-term record of species-specific catches, sizes, and sexes of sharks collected by onboard observers in the western and central Pacific Ocean from 1995 to 2010. Using generalized linear models, we estimated population-status indicators on the basis of catch rate and biological indicators of fishing pressure on the basis of median size to identify trends for blue (Prionace glauca), mako (Isurus spp.), oceanic whitetip (Carcharhinus longimanus), and silky (Carcharhinus falciformis) sharks. Standardized catch rates of longline fleets declined significantly for blue sharks in the North Pacific (by 5% per year [CI 2% to 8%]), for mako sharks in the North Pacific (by 7% per year [CI 3% to 11%]), and for oceanic whitetip sharks in tropical waters (by 17% per year [CI 14% to 20%]). Median lengths of silky and oceanic whitetip sharks decreased significantly in their core habitat, and almost all sampled silky sharks were immature. Our results are consistent with results of analyses of similar data sets. Combined, these results and evidence of targeted fishing for sharks in some regional fisheries heighten concerns for sustainable utilization, particularly for oceanic whitetip and North Pacific blue sharks. Regional regulations that prohibit shark finning (removal of fins and discarding of the carcass) were enacted in 2007 and are in many cases the only form of control on shark catches. However, there is little evidence of a reduction of finning in longline fisheries. In addition, silky and oceanic whitetip sharks are more frequently retained than finned, which suggests that even full implementation of and adherence to a finning prohibition may not substantially reduce mortality rates for these species. We argue that finning prohibitions divert attention from

  16. High-fin staggered tube banks: Heat transfer and pressure drop for turbulent single phase gas flow

    1986-10-01

    This Data Item ESDU 86022 is an addition to the Heat Transfer Sub-series. New correlations are presented for external heat transfer coefficient and static pressure loss for single phase flow over plain circular fins of either retangular or tapered cross section on round tubes. The correlations were derived by a regression analysis of experimental results extracted from the literature for a wide range of tube bundle configurations. Fin densities of 4 to 11 per inch (equivalent to fin pitches of 6.4 to 2.3 mm) tube outside diameters of 3/8 to 2 inch (10 to 51 mm), fin heights of 1/4 to 5/8 inch (6 to 16 mm), and ratios of fin tip to fin root diameter of 1.2 to 2.4 were covered. For heat transfer the range of Reynolds number based on tube outer diameter was from 2,000 to 40,000 and for pressure drop from 5,000 to 50,000. Comparison of the prediction with experiment shows that for heat transfer 85% of the data points were within 10% of estimated and for pressure drop 72% were within 10%. A comprehensive worked example showing the use of the method for an air cooled heat exchanger bundle is included. The applicability of this method to nonintegral fins is considered and factors influencing the thermal resistance of the interface are discussed. Effects of fouling are also briefly covered.

  17. Temperature-dependent characteristics of AlGaN/GaN FinFETs with sidewall MOS channel

    Im, Ki-Sik; Kang, Hee-Sung; Kim, Do-Kywn; Vodapally, Sindhuri; Park, YoHan; Lee, Jae-Hoon; Kim, Yong-Tae; Cristoloveanu, Sorin; Lee, Jung-Hee

    2016-06-01

    AlGaN/GaN fin-shaped field-effect transistors (FinFETs) with variable fin width have been fabricated and characterized. Low-temperature measurements reveal distinct operation modes for wide FinFET, narrow FinFET and planar FET. The wide fin device exhibits broad transconductance (gm) that decreases sublinearly with increasing temperature due to the existence of the sidewall metal-oxide-semiconductor (MOS) channel. By comparison, the conventional planar AlGaN/GaN metal-insulator-semiconductor heterostructure FET (MISHFET) features relatively narrow gm curve and near-exponentially decay of gm with temperature. The effect of the sidewall channel becomes more prominent for the narrow fin device and leads to two distinct gm peaks. The first peak at negative gate voltage corresponds to the two-dimensional electron gas (2-DEG) channel, while the second peak at positive gate voltage is related to the sidewall MOS channel. Measurements also show that the electrons in 2-DEG channel experience polar-optical-phonon scattering unlike the electrons in the sidewall MOS channel which are mainly subject to Coulomb scattering.

  18. Drive current of accumulation-mode p-channel SOI-based wrap-gated Fin-FETs

    Comparisons are performed to study the drive current of accumulation-mode (AM) p-channel wrap-gated Fin-FETs. The drive current of the AM p-channel FET is 15%-26% larger than that of the inversion-mode (IM) p-channel FET with the same wrap-gated fin channel, because of the body current component in the AM FET, which becomes less dominative as the gate overdrive becomes larger. The drive currents of the AM p-channel wrap-gated Fin-FETs are 50% larger than those of the AM p-channel planar FETs, which arises from effective conducting surface broadening and volume accumulation in the AM wrap-gated Fin-FETs. The effective conducting surface broadening is due to wrap-gate-induced multi-surface conduction, while the volume accumulation, namely the majority carrier concentration anywhere in the fin cross section exceeding the fin doping density, is due to the coupling of electric fields from different parts of the wrap gate. Moreover, for AM p-channel wrap-gated Fin-FETs, the current in channel along (110) is larger than that in channel along (100), which arises from the surface mobility difference due to different transport directions and surface orientations. That is more obvious as the gate overdrive becomes larger, when the surface current component plays a more dominative role in the total current. (semiconductor devices)

  19. Temperature dependency of double material gate oxide (DMGO) symmetric dual-k spacer (SDS) wavy FinFET

    Pradhan, K. P.; Priyanka; Sahu, P. K.

    2016-01-01

    Symmetric Dual-k Spacer (SDS) Trigate Wavy FinFET is a novel hybrid device that combines three significant and advanced technologies i.e., ultra-thin-body (UTB), FinFET, and symmetric spacer engineering on a single silicon on insulator (SOI) platform. This innovative architecture promises to enhance the device performance as compared to conventional FinFET without increasing the chip area. For the first time, we have incorporated two different dielectric materials (SiO2, and HfO2) as gate oxide to analyze the effect on various performance metrics of SDS wavy FinFET. This work evaluates the response of double material gate oxide (DMGO) on parameters like mobility, on current (Ion), transconductance (gm), transconductance generation factor (TGF), total gate capacitance (Cgg), and cutoff frequency (fT) in SDS wavy FinFET. This work also reveals the presence of biasing point i.e., zero temperature coefficient (ZTC) bias point. The ZTC bias point is that point where the device parameters become independent of temperature. The impact of operating temperature (T) on above said various performances are also subjected to extensive analysis. This further validates the reliability of DMGO-SDS FinFET and its application opportunities involved in modeling analog/RF circuits for a broad range of temperature applications. From extensive 3-D device simulation, we have determined that the inclusion of DMGO in SDS wavy FinFET is superior in performance.

  20. Burnout experiments on the externally-finned swirl tube for steady-state and high-heat flux beam stops

    An experimental study to develop beam stops for the next generation of neutral beam injectors was started, using an ion source developed for the JT-60 neutral beam injector. A swirl tube is one of the most promising candidates for a beam stop element which can handle steady-state and high-heat flux beams. In the present experiments, a modified swirl tube, namely an externally-finned swirl tube, was tested together with a simple smooth tube, an externally finned tube, and an internally finned tube. The major dimensions of the tubes are 10 mm in outer-diameter, 1.5 mm in wall thickness, 15 mm in external fin width, and 700 mm in length. The burnout heat flux (CHF) normal to the externally finned swirl tube was 4.1±0.1 kW/cm2, where the Gaussian e-folding half-width of the beam intensity distribution was about 90 mm, the flow rate of the cooling water was 30 l/min, inlet and outlet gauge pressures were about 1 MPa and 0.2 MPa, respectively, and the temperature of the inlet water was kept to 200C during a pulse. A burnout heat flux ratio, which is defined by the ratio of the CHF value of the externally-finned swirl tube to that of the externally-finned tube, turned out to be about 1.5. Burnout heat fluxes of the tubes with a swirl tape or internal fins increase linearly with an increase of the flow rate. It was found that the tube with external fins has effects that not only reduce the thermal stress but also improve the characteristics of boiling heat transfer. (orig.)

  1. Fvm Analysis for Thermal and Hydraulic Behaviour of Circular Finned Mpfhs by Using Ag-H20 Nano

    Fluid Kuber Dwivedi; Rupesh Kumar Malviya

    2014-01-01

    In this exploration the influence of using two types of Nano fluids (Ag-water and Al203-water) as a coolant at volumetric concentration is taken (c= 4%) in micro pin fin heat sink with circular fins in addition to the un-finned micro-channel heat sink is deliberated with the help of commercially available computational fluid dynamics software Fluent 14. The evaluation of flow and heat transfer characteristics of MPFHS and cooling fluids has been made under the similar boundary condition; at t...

  2. The Effect of a Piezoelectric Fan on Forced Air Heat Transfer in a Pin-Fin Heat Sink

    Tzer-Ming Jeng; Sheng-Chung Tzeng; Chi-Huang Liu

    2015-01-01

    An investigation was carried out on the effect of airflow from the blade of a piezoelectric fan on the main cooling airflow across a pin-fin heat sink. The study considered the respective orientation and distances between the piezoelectric blade and the heat sink in a rectangular channel where the airflow was uniform and axial. Three different pin-fin heat sinks with in-line pin-fin arrays were used: 5´5, 7´7 and 9´9. Variable parameters included the Reynolds number of the main airflow and th...

  3. Isolation and characterization of collagen from fish waste material- skin, scales and fins of Catla catla and Cirrhinus mrigala

    Mahboob, Shahid

    2014-01-01

    The collagen of skin, scales and fins of Catla catla and Cirrhinus mrigala were isolated and characterised. Nine fishes of each fish species of three weight groups were collected from a commercial fish farm. Collagen characterisation using SDS-PAGE revealed the molecular weights (kDa) of the C. catla skin, scales, and fins which ranged from 120 to 210, 70 to 201, and 68 to 137 kDa, respectively. The size of the collagen of C. mrigala skin, scales and fins ranged from 114 to 201, 77 to 210, an...

  4. Neural Modeling of High-Frequency Forward Transmission Coefficient for HEMT and FinFET Technologies

    Zlatica Marinković

    2011-12-01

    Full Text Available This paper is devoted to examining the ability of artificial neural networks to model the forward transmission coefficient, which represents an important figure of merit for microwave transistors. This analysis is carried out for two different on-wafer devices, namely GaAs HEMT and Si FinFET. As far as the HEMT technology is concerned, the model is developed for three devices which differ in gate width. For the FinFET technology, the model is determined not only for the whole device but also for the actual transistor by using the de-embedding procedure to subtract the effects of pads, transmission lines, and substrate from the measurements. The obtained models have been developed and validated in a wide range of bias conditions for a frequency range up to 50 GHz.

  5. The ''del'fin'' high-power laser facility for heating spherical thermonuclear targets

    The ''Del'fin'' twelve-channel laser facility for high-temperature heating of thermonuclear targets in a spherical gemonetry is described. It consists of a neodymium driver laser with maximum energy -- 10 kj, pulse duration 10- /sup 10/ -109 sec, and divergence --5.10 /sup -4/ rad, a vacuum chamber in which the laser radiation interacts with the plasma, and the devices for the diagnostics of the laser and plasma parameters. The ''Del'fin'' focusing system, which ensures a high degree of symmetry of the spherical irradiation of the target at a maximum flux density on its surface -- 10 /sup 15/ W/cm2, is described. The problem of realizing the maximum ability of heating spherical thermonuclear targets by radiation from high-power laser systems is considered

  6. An Unusual Developmental Profile of Salla Disease in a Patient with the SallaFIN Mutation

    Liisa E. Paavola

    2012-01-01

    Full Text Available Salla disease (SD is a disorder caused by defective storage of free sialic acid and results from mutations in the SLC17A5 gene. Early developmental delay of motor functions, and later cognitive skills, is typical. We describe a developmental profile of an unusual homozygous patient, who harboured the SallaFIN (p.R39C mutation gene. The study involved neurological examination, neuropsychological investigation, and brain imaging. The neurocognitive findings were atypical in comparison with other patients with the SallaFIN mutation. Interestingly, there was no deterioration in the patient's neurological condition during adulthood. Her neurocognitive skills were remarkably higher than those of other patients with a conventional phenotype of SD. Our results suggest that the phenotype of SD is broad. Unidentified genetic or environmental variation might explain the unique SD type of this case.

  7. A study on the development of fouling evaluation method for finned tube heat exchanger

    Heat exchangers in nuclear power plants are used for various purposes, such as safe shutdown of nuclear reactor, increase of thermal efficiency, maintenance of temperature inside building, final heat sink, reduction of thermal stress by cold water injection, etc. As operating time of these heat exchangers progresses, fouling generated by water-borne deposits increases and thermal performance decreases. Even though thermal performance tests for heat exchangers without phase change in domestic nuclear power plants have performed with a fixed interval, thermal performance tests for finned tube heat exchangers with condensation have not performed to date. This paper describes the development of fouling evaluation method for finned tube heat exchangers and the result of prototype evaluation for the heat exchanger using the mixture of C3 and N-C4 as a refrigerant

  8. Direct Two–Phase Numerical Simulation of Snowdrift Remediation using Three–Dimensional Deflection Fins

    E Maldonado

    2012-01-01

    Full Text Available We present a versatile three – dimensional two – phase model for simulating snow drift relocation around buildings utilizing deflection fins of various shapes and sizes. The first phase involves numerically obtaining the air velocity profile around the building and fin using a velocity – pressure Navier – Stokes algorithm, while the second phase involves direct classical simulation of snowfall with particle – particle, particle – surface and one – way particle – gusting wind interactions introduced to control accumulation, erosion, clumping and drifting. Because the simulation technique is direct, it is potentially useful for storms and surfaces with widely varying conditions. We are also able to consider the effect of crosswinds.

  9. HEAT TRANSFER ENHANCEMENT OF SMALL SCALE HEAT SINKS USING VIBRATING PIN FIN

    Suabsakul Gururatana

    2013-01-01

    Full Text Available Heat sinks are widely adopted in electronics cooling together with different technologies to enhance the cooling process. For the small electronics application, the small scale pin fins heat sinks are extensively used to dissipate heat in electronics devices. Due to the limit of space in the small devices, it is impossible to increase heat transfer area. In order to improve the heat transfer performance, the applying the forced vibration is one of challenging method. This study applies the vibration frequency between 50 to 1,000 Hz to pin fins heat sinks. The results of numerical simulation clearly show satisfied heat transfer augmentation. However, the Pressure drop significantly increases with frequency. This phenomenon affects the heat transfer enhancement performance that it increases with frequency until certain value then it drops rapidly. The results of this study can help designing heat sinks for electronics cooling by employing the concept of vibration.

  10. Heat transfer and pressure drop of a reactor fuel element model with polyzonal spiral finning

    Heat transfer and pressure drop of a reactor fuel element model with polyzonal spiral finning have been investigated. The St-number distribution over length and perimeter of he finning are given. The mean and minimum Stk-number are plotted against the Re-number. The influence of the gap between two fuel elements upon heat transfer and pressure drop, in dependence on the Re-number, and the influence of the length of the fuel element on pressure drop across the gap are shown. The influence of the relative position of the splitters of two neighboring fuel elements on pressure drop and heat transfer is shown. The investigations were performed in the Re-number range 15,000 to 100,000 (author)

  11. Experimental study of a double exposure solar cooker with finned cooking vessel

    Harmim, Arezki; Boukar, Mebarek; Amar, M' hamed [Unite de Recherche en Energies, Renouvelables en Milieu Saharien, P.O. Box 478, Adrar (Algeria)

    2008-04-15

    A comparative experimental study of a box type solar cooker with two different cooking vessels was conducted, the first one conventional and the second one identical to the first in shape and volume but its external lateral surface provided with fins. Fins are shown to improve the heat transfer from the internal hot air of the cooker towards the interior of the vessel where the food to be cooked is placed. This reduces the cooking time considerably. The tests were carried out on the experimental platform of the Research Unit in Renewable Energies in Saharan Medium of Adrar, located at 27 53'N latitude and 0 17'W longitude in the Algerian Sahara. (author)

  12. Thermo economic life cycle cost optimization of an annular fin heat exchanger

    In this paper the design of annular fin heat exchanger based on economic optimization has been carried out. The optimization process targeted minimizing the life cycle cost of annular fin heat exchanger that has the same frontal area, effectiveness and heat load of available practical standard geometry exchangers. The life cycle cost includes both capital and operating costs. Beside the pumping cost, both the cost of energy destruction due to irreversibilities and 10% inflation rate are included in the operating cost. The optimization process is implemented using Evolutionary Algorithm (EA). Evolutionary Algorithm is a numerical technique which is initiated by randomly generating a set of possible solutions: The optimized design has shown a significant decrease in the life cycle cost as compared with that of standard geometry that has minimum life cycle cost. Based on the optimized design relations for Col burn and friction factors are developed. (author)

  13. A 2D inverse problem of predicting boiling heat transfer in a long fin

    Orzechowski, Tadeusz

    2015-12-01

    A method for the determination of local values of the heat transfer coefficient on non-isothermal surfaces was analyzed on the example of a long smooth-surfaced fin made of aluminium. On the basis of the experimental data, two cases were taken into consideration: one-dimensional model for Bi calculated from the integral of the equation describing temperature distribution on the fin. The corresponding boiling curve was plotted on the basis of temperature gradient distribution as a function of superheat. For thicker specimens, where Bi > 0.1, the problem was modelled using a 2-D heat conduction equation, for which the boundary conditions were posed on the surface observed with a thermovision camera. The ill-conditioned inverse problem was solved using a method of heat polynomials, which required validation.

  14. Optimization in plate-fin safety structure of heat exchanger using genetic and Monte Carlo algorithm

    A safety structure of plate-fin heat exchanger is designed for special applications to prevent fluid leakage from adjacent channel walls. A fractional volume of a cavity layer between two channels is filled with high thermal conductive column-shape metal. Genetic algorithm is used for optimization of column distributions to achieve the maximum heat transfer performance, and its output is better than the simple direct optimization. To optimize with uncertain fluid condition, a direct genetic algorithm method, two improved genetic algorithm methods and a specific type of Monte Carlo algorithm method are applied in searching suitable solution. The optimized structure can provide a new feasible and safety plate-fin heat exchanger, and its results obtained by using genetic algorithm and Monte Carlo algorithm can provide some guidelines for optimal designs of heat exchangers

  15. Analytical and Experimental Study of Recycling Baffled Double-Pass Solar Air Heaters with Attached Fins

    Chun Sheng Lin

    2013-03-01

    Full Text Available The study of the heat transfer of solar air heaters with a new design using an absorbing plate with fins and baffles, which facilitate the recycling of flowing air, is reported. The mathematical formulation and analytical analysis for such a recyclic baffled double-pass solar air heater were developed theoretically. The performance of the device was studied experimentally as well. The theoretical predicted and experimental results were compared with another design, i.e., a downward-type single-pass solar air heater without recycle and double-pass operations reported in our previous work. Significant improvement in heat-transfer efficiency is achieved with the baffle and fin design due to the recycling heating and the extended heat transfer area. The effects of mass flow rate and recycle ratio on the heat-transfer efficiency enhancement as well as on the power consumption increment are also discussed.

  16. An experimental study of flow boiling in a rectangular channel with offset strip fins

    An experimental study on saturated flow boiling heat transfer of R113 was performed in a vertical rectangular channel with offset strip fins. Two-phase pressure gradients and boiling heat transfer coefficients in an electrically heated test section were measured for the quality range of 0-0.6, mass flux range of 17-43 kg/m2 s and heat flux of 500-3000 W/m2. Two-phase frictional multiplier was determined as a function of Martinelli parameter. The two-phase forced convective component of the local boiling heat transfer coefficient was found to be well correlated with the Reynolds number factor. A superposition method for the flow boiling heat transfer coefficient that included the contribution of saturated nucleate boiling was verified also for flow boiling in a channel with offset strip fins. The predictions of local flow boiling heat transfer coefficients were found to be in good agreement with experimental data

  17. Experimental investigation of the effect vertical oscillation on the heat transfer coefficient of the finned tube

    Kadhim S. K.

    2016-01-01

    Full Text Available The aim of this work is to investigate experimentally the effect of the forced vibrations on the free convection heat transfer coefficient using heated longitudinally finned cylinder made of Aluminium. The effect of the vibration frequency ranged from 2 to16 Hz with various heat fluxes ranged from 500-1500 W/m2. It was found that, the relation between the heat transfer coefficient and amplitude of vibration increased for all inclination angles from (0°-45°, while the increment of inclination angle decreases the values of convection heat transfer coefficient. The results show that the heat transfer coefficient ratio (hv/ho of longitudinal finned cylinders in (0° angle was (8% and (30% greater than those for the (30° and (45° respectively.

  18. Caudal fin in the white shark, Carcharodon carcharias (Lamnidae): a dynamic propeller for fast, efficient swimming.

    Lingham-Soliar, Theagarten

    2005-05-01

    The caudal peduncle and caudal fin of Carcharodon carcharias together form a dynamic locomotory structure. The caudal peduncle is a highly modified, dorsoventrally compressed and rigid structure that facilitates the oscillations of the caudal fin. Its stiffness appears to be principally achieved by a thick layer of adipose tissue ranging from 28-37% of its cross-sectional area, reinforced by cross-woven collagen fibers. Numerous overlying layers of collagen fibers of the stratum compactum, oriented in steep left- and right-handed helices (approximately 65 degrees to the shark's long axis), prevent bowstringing of the perimysial fibers, which lie just below the dermal layer. Perimysial fibers, muscles, and the notochord are restricted to the dorsal lobe of the caudal fin and comprise the bulk of its mass. Adipose tissue reinforces the leading edge of the dorsal lobe of the caudal fin and contributes to maintaining the ideal cross-sectional geometry required of an advanced hydrofoil. Most of the mass of the ventral lobe consists of the ceratotrichia or fin rays separated by thin partitions of connective tissue. Dermal fibers of the stratum compactum of the dorsal lobe occur in numerous distinct layers. The layers are more complex than in other sharks and appear to reflect a hierarchical development in C. carcharias. The fiber layer comprises a number of thick fiber bundles along the height of the layer and the layers get thicker deeper into the stratum compactum. Each of these layers alternates with a layer a single fiber-bundle deep, a formation thought to give stability to the stratum compactum and to enable freer movements of the fiber system. In tangential sections of the stratum compactum the fiber bundles in the dorsal lobe can be seen oriented with respect to the long axis of the shark at approximately 55-60 degrees in left- and right-handed helices. Because of the backward sweep of the dorsal lobe (approximately 55 degrees to the shark's long axis) the right

  19. IN MY OPINION: Fin de siècle

    Dobson, K.

    1999-01-01

    Welcome to 1999 - the Year of Decision. The Year of the Eclipse and Millenium Doom, at the end of which all our computers will seize up and wonder why Queen Victoria isn't answering her e-mails. But if we survive this the Year 2000 will usher in yet another National Curriculum, redesigned Advanced levels ('academic') and GNVQs ('vocational') and the Modularization of Everything. So what are you, dear reader, going to do about it all? At this stage I must apologise to readers outside the immediate territories to which the above applies and for whom the exact details are irrelevant. However, there are some general issues, which might be of interest. Physics is not the most popular school subject in Europe - or even North America (if my favourite sitcom Third Rock from the Sun can be relied upon to give an accurate picture of current US educational issues). The decisions referred to in the opening sentence are ones that will be made by the UK Government on the advice (or possibly against the advice) of the Qualifications and Curriculum Authority (QCA). In the summer and autumn of 1998, QCA held a number of semi-formal focus groups in which teachers and others considered how the current National Curriculum was working, and how it might be improved. The QCA is due to produce draft proposals this month and will decide upon its recommendations to the Secretary of State after a period of 'informal consultations'. The Secretary of State's proposals will then be open to formal consultation from April to August. Decisions will be made and published in the autumn and implemented in September 2000. I would suspect (and hope) that the readers of this journal are amongst the most concerned and best informed physics teachers in the UK. They might, I suppose, be the only physics teachers left in the UK. And I hope that they will take an active part in these consultations. The Institute of Physics has had a Working Party beavering away on what physics in a National Curriculum should

  20. Compact modeling of experimental N- and P-channel FinFETs

    Song, Jooyoung

    2010-01-01

    As the conventional bulk CMOS shrinks towards the deep sub -100 nm regime, the advantages of scaling are seriously limited by a series of adverse effects such as random dopant fluctuation, short-channel effects, and mobility degradation primarily due to the high substrate doping level required in ultra small devices. As a solution to extend the scaling limit further, FinFETs have become an important subject of intensive VLSI research. In this dissertation, the analytic potential model for sym...

  1. SIMULATION OF BOILING HEAT TRANSFER AROUND MICRO PIN-FIN HEAT EXCHANGER: PROGRESS AND CHALLENGES

    Boiling at microscales is a challenging problem for the computational models as well as the resources. During boiling, the formation and departure of vapor bubbles from the heated surface involves the physics from nano/micro level to the macro level. Therefore, a hierarchical methodology is needed to incorporate the nano/microscale physics with the macroscale system performance. Using micro-fabrication techniques, microstructures (micropin-fins) can be fabricated around the tubes in the heat exchanger of Pressurized Water Reactors (PWRs) to increase the heat-exchanging efficiency and reduce the overall size of the heat-exchanger for the given heat transfer rates. Combined with high fidelity simulations of the thermal transport in the entire system, optimal design of microstructure patterns and layouts can be worked out pragmatically. Properly patterned microstructures on the pipe in the steam generation zone should create more nuclei for bubble to form and result in a reduced average bubble size and shorter retention time, i.e. the time for the vapor phase sticking on the pipe surface. The smaller average steam bubble size and shorter bubble retention time will enhance the overall thermal efficiency. As a preliminary step, a periodic arrangement of micropin-fins containing four in-line cylindrical fins was modeled. The governing equations for the mass, momentum and energy transport were solved in the fluid in a conjugate heat transfer mode. In the future, several studies will be conducted to simulate different geometric arrangements, different fin cross-sections, and realistic operating conditions including phase-change with boiling by adding complexities in simple steps

  2. Steady Thermal Analysis of Two-Dimensional Cylindrical Pin Fin with a Nonconstant Base Temperature

    Charis Harley; Moitsheki, Raseelo J.

    2011-01-01

    Steady heat transfer through a pin fin is studied. Thermal conductivity, heat transfer coefficient, and the source or sink term are assumed to be temperature dependent. In the model considered, the source or sink term is given as an arbitrary function. We employ symmetry techniques to determine forms of the source or sink term for which the extra Lie point symmetries are admitted. Method of separation of variables is used to construct exact solutions when the governing equation is linear. Sym...

  3. Calling under pressure: short-finned pilot whales make social calls during deep foraging dives

    Frants H Jensen; Perez, Jacobo Marrero; Johnson, Mark; Soto, Natacha Aguilar; Madsen, Peter T.

    2011-01-01

    Toothed whales rely on sound to echolocate prey and communicate with conspecifics, but little is known about how extreme pressure affects pneumatic sound production in deep-diving species with a limited air supply. The short-finned pilot whale (Globicephala macrorhynchus) is a highly social species among the deep-diving toothed whales, in which individuals socialize at the surface but leave their social group in pursuit of prey at depths of up to 1000 m. To investigate if these animals commun...

  4. An Unusual Developmental Profile of Salla Disease in a Patient with the SallaFIN Mutation

    Paavola, Liisa E.; Remes, Anne M.; Sonninen, Pirkko H.; Vesa V. Kiviniemi; Korhonen, Tapio T.; Kari Majamaa

    2012-01-01

    Salla disease (SD) is a disorder caused by defective storage of free sialic acid and results from mutations in the SLC17A5 gene. Early developmental delay of motor functions, and later cognitive skills, is typical. We describe a developmental profile of an unusual homozygous patient, who harboured the SallaFIN (p.R39C) mutation gene. The study involved neurological examination, neuropsychological investigation, and brain imaging. The neurocognitive findings were atypical in comparison with ot...

  5. Thermal and Fluid Dynamic Performance of Pin Fin Heat Transfer Surfaces

    Sahiti, Naser

    2006-01-01

    This thesis is organized into nine Chapters. Chapter 2 gives an overview of some highly effec-tive heat transfer surfaces used basically for the enhancement of single-phase convective heat transfer in the air conditioning, refrigeration, unit air heater and automobile industries. It follows the analysis of basic parameters that influence the performance of the fins and at the end a rela-tively simple analytical method for the assessment of the order of the magnitude of heat transfer enhanceme...

  6. Caudal fin allometry in the white shark Carcharodon carcharias: implications for locomotory performance and ecology

    Lingham-Soliar, Theagarten

    2005-05-01

    Allometric scaling analysis was employed to investigate the consequences of size evolution on hydrodynamic performance and ecology in the white shark Carcharodon carcharias. Discriminant analysis using the power equation y=axb was negative for caudal fin span (S) versus fork length (FL) in C. carcharias. In contrast in two delphinid species, Delphinus capensis and Tursiops aduncus, the span of the flukes versus fork length rises in positive allometric fashion, and strong positive allometry of S versus √A (area) was also recorded. The latter reflects a high lift/drag ratio. S versus √A in C. carcharias displays negative allometry and consequently a lower lift/drag ratio. A lower aspect ratio (AR) caudal fin in C. carcharias compared to that of the delphinids (mean 3.33 and 4.1, respectively) and other thunniform swimmers provides the potential for better maneuverability and acceleration. The liver in sharks is frequently associated with a buoyancy function and was found to be positively allometric in C. carcharias. The overall findings suggest that the negatively allometric caudal fin morphometrics in C. carcharias are unlikely to have deleterious evolutionary fitness consequences for predation. On the contrary, when considered in the context of positive liver allometry in C. carcharias it is hereby suggested that buoyancy may play a dominant role in larger white sharks in permitting slow swimming while minimizing energy demands needed to prevent sinking. In contrast hydrodynamic lift is considered more important in smaller white sharks. Larger caudal fin spans and higher lift/drag ratio in smaller C. carcharias indicate greater potential for prolonged, intermediate swimming speeds and for feeding predominantly on fast-moving fish, in contrast to slow-swimming search patterns of larger individuals for predominantly large mammalian prey. Such data may provide some answers to the lifestyle and widespread habitat capabilities of this still largely mysterious animal.

  7. Cyanobacterial Neurotoxin β-N-Methylamino-L-alanine (BMAA) in Shark Fins

    John Pablo; Mash, Deborah C.; Banack, Sandra A; Neil Hammerschlag; Margaret Basile; Kiyo Mondo

    2012-01-01

    Sharks are among the most threatened groups of marine species. Populations are declining globally to support the growing demand for shark fin soup. Sharks are known to bioaccumulate toxins that may pose health risks to consumers of shark products. The feeding habits of sharks are varied, including fish, mammals, crustaceans and plankton. The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) has been detected in species of free-living marine cyanobacteria and may bioaccumulate in the ...

  8. Heat transfer analysis of a fin with temperature-dependent thermal conductivity and heat transfer coefficient

    Hadi Mirgolbabaee

    2015-02-01

    Results are presented for the dimensionless temperature distribution and fin efficiency for different values of the problem parameters which for the purpose of comparison, obtained equation were calculated with mentioned methods. It was found the proposed solution is very accurate, efficient, and convenient for the discussed problem, furthermore convergence problems for solving nonlinear equations by using AGM appear small so the results demonstrate that the AGM could be applied through other methods in nonlinear problems with high nonlinearity.

  9. HEAT TRANSFER ENHANCEMENT OF SMALL SCALE HEAT SINKS USING VIBRATING PIN FIN

    Suabsakul Gururatana; Xianchang Li

    2013-01-01

    Heat sinks are widely adopted in electronics cooling together with different technologies to enhance the cooling process. For the small electronics application, the small scale pin fins heat sinks are extensively used to dissipate heat in electronics devices. Due to the limit of space in the small devices, it is impossible to increase heat transfer area. In order to improve the heat transfer performance, the applying the forced vibration is one of challenging method. This study applies the vi...

  10. A Numerical Study of Natural Convection Heat Transfer in Fin Ribbed Radiator

    Hua-Shu Dou; Gang Jiang; Lite Zhang

    2015-01-01

    This paper numerically investigates the thermal flow and heat transfer by natural convection in a cavity fixed with a fin array. The computational domain consists of both solid (copper) and fluid (air) areas. The finite volume method and the SIMPLE scheme are used to simulate the steady flow in the domain. Based on the numerical results, the energy gradient function K of the energy gradient theory is calculated. It is observed from contours of the temperature and energy gradient function that...

  11. Distribution and Abundance of Fin whales and other baleen whales in the European Atlantic

    MacLeod, K. (Kelly); Burt, L. (Louise); Cañadas, A.; Lens, S.; Rogan, E.; Santos, M. B.; Uriarte, A.; Van-Canneyt, O.; Vázquez, J. A.; Hammond, P. S.

    2009-01-01

    The abundance of fin whales (Balaenoptera physalus) and other baleen whales was generated from data collected during shipboard sightings surveys as part of the Cetacean Offshore Distribution and Abundance in the European Atlantic project (CODA). The survey area covered offshore waters beyond the continental shelf of the UK, Ireland, France and Spain. The area was stratified into four blocks and was surveyed by five ships during July 2007. Double platform methods employing the trialco...

  12. Forward and inverse solutions of a conductive, convective and radiative cylindrical porous fin

    Highlights: • Numerical solution for a cylindrical porous fin is obtained. • Inverse problem is solved using hybrid DE–NLP algorithm. • Effect of permeability is found to be considerably higher. • Many feasible combinations of parameters yield similar temperature. - Abstract: This paper deals with the numerical study of a conductive, convective and radiative cylindrical porous fin. At first, Runge–Kutta method-based numerical solution is obtained for calculating the temperature distribution, and then an inverse problem is solved for estimation of unknown parameters. Five critical parameters such as the porosity, emissivity, solid thermal conductivity, thickness and the permeability have been simultaneously predicted for satisfying a prescribed temperature distribution on the surface of the porous fin. This is achieved by solving an inverse problem using the hybrid evolutionary–nonlinear programming optimization algorithm. The effect of random measurement errors between ±10% has been considered. The estimated values of non-dimensional entities such as porosity and surface emissivity are found to be approximately within the range, 0.28–0.92 and 0.27–0.75, respectively. Additionally, the thermal conductivity, thickness and the permeability are found to be almost between 17 and 140 W/m K, 8.7 × 10−4 to 0.007 m and 2 × 10−11 to 5 × 10−8 m2, respectively. The present study reveals that many feasible combinations of available materials satisfy the same temperature field, thus providing an opportunity for selecting any combination from the available alternatives. Moreover, the hybrid method is found to perform better and yield relatively faster convergence than individual methods. The sensitivity analysis reveals that the effect of fin permeability on the temperature field is considerably high than other parameters

  13. La revelación del fin del mundo: Tierra del Fuego

    Giucci, Guillermo

    2009-01-01

    Se propone una reflexión sobre la relación entre movilidad, conocimiento y transformación. Examino en particular la importancia del Estrecho de Magallanes en el siglo XVI, capítulo inicial del largo y tormentoso proceso de revelación de la Tierra del Fuego, región hoy conocida como el "Fin del Mundo".

  14. Numerical analysis of fin-tube plate heat exchanger by using CFD technique

    Ahmed F. Khudheyer; Mahmoud Sh. Mahmoud

    2011-01-01

    Three-dimensional CFD simulations are carried out to investigate heat transfer and fluid flow characteristics of a two-row plain fin-and-tube heat exchanger using Open FOAM, an open-source CFD code. Heat transfer and pressure drop characteristics of the heat exchanger are investigated for Reynolds numbers ranging from 330 to 7000. Model geometry is created, meshed, calculated, and post-processed using open source software. Fluid flow and heat transfer are simulated and results compared using ...

  15. Proust et l’art fin de siècle

    Yvonne Goga

    2009-01-01

    Novateur du roman moderne, Marcel Proust subit pourtant l’influence des artistes fin de siècle. Notre étude se propose de mettre en évidence les aspects de l’esthétique proustienne qui laissent voir les traces de l’esthétisme et de la littérature décadente dans À la recherche du temps perdu.

  16. Proust et l’art fin de siècle

    Yvonne Goga

    2009-11-01

    Full Text Available Novateur du roman moderne, Marcel Proust subit pourtant l’influence des artistes fin de siècle. Notre étude se propose de mettre en évidence les aspects de l’esthétique proustienne qui laissent voir les traces de l’esthétisme et de la littérature décadente dans À la recherche du temps perdu.

  17. MEMS silicon-based micro-evaporator with diamond-shaped fins

    Mihailovic, M.; Rops, C.; Creemer, J.F.; Sarro, P.M.

    2010-01-01

    A new design of micro-evaporators, with 45 channels (View the MathML source100μm deep) and diamond-shaped fins (View the MathML source40μm wide, View the MathML source160μm long, View the MathML source20μm separation), is fabricated by anodic bonding of silicon and glass wafers, in a five masks proc

  18. Studi Eksperimen Analisa Performa Compact Heat Exchanger Circular Tubes Continuous Plate Fin Untuk Pemanfaatan Waste Energy

    Rachmadi Gewa Saputra; Ary Bachtiar Khrisna Putra

    2014-01-01

    Harga minyak dunia cenderung mengalami peningkatan dalam beberapa tahun terakhir sehingga manusia berfikir untuk memanfaatkan setiap penggunaan minyak bumi. Dengan berkembangnya teknologi saat ini waste energy yang berupa gas hasil pembakaran pada engine dapat dimanfaatkan menjadi bentuk energi lain menggunakan heat recovery system. Pada tugas akhir ini dilakukan desain sebuah heat exchanger tipe circular tubes continuous plate fin dengan susunan tube aligned yang digunakan untuk menyerap was...

  19. Ray-finned fishes (Osteichthyes, Actinopterygii) from the type Maastrichtian, the Netherlands and Belgium

    Friedman, M.

    2012-01-01

    Ray-finned fishes are a diverse, but understudied, component of the Maastrichtian marine fauna of the southeast Netherlands (Limburg) and northeast Belgium (Liège-Limburg). The most extensive reviews of fishes from these uppermost Cretaceous deposits were made in the early and mid-Twentieth Century, but little research on this important assemblage has been executed since. The present paper provides figures and brief descriptions of fishes from the Maastrichtian type area as an aid for field i...

  20. An evaluation of the precision of fin ray, otolith, and scale age determinations for brook trout

    Stolarski, J.T.; Hartman, K.J.

    2008-01-01

    The ages of brook trout Salvelinus fontinalis are typically estimated using scales despite a lack of research documenting the effectiveness of this technique. The use of scales is often preferred because it is nonlethal and is believed to require less effort than alternative methods. To evaluate the relative effectiveness of different age estimation methodologies for brook trout, we measured the precision and processing times of scale, sagittal otolith, and pectoral fin ray age estimation techniques. Three independent readers, age bias plots, coefficients of variation (CV = 100 x SD/mean), and percent agreement (PA) were used to measure within-reader, among-structure bias and within-structure, among-reader precision. Bias was generally minimal; however, the age estimates derived from scales tended to be lower than those derived from otoliths within older (age > 2) cohorts. Otolith, fin ray, and scale age estimates were within 1 year of each other for 95% of the comparisons. The measures of precision for scales (CV = 6.59; PA = 82.30) and otoliths (CV = 7.45; PA = 81.48) suggest higher agreement between these structures than with fin rays (CV = 11.30; PA = 65.84). The mean per-sample processing times were lower for scale (13.88 min) and otolith techniques (12.23 min) than for fin ray techniques (22.68 min). The comparable processing times of scales and otoliths contradict popular belief and are probably a result of the high proportion of regenerated scales within samples and the ability to infer age from whole (as opposed to sectioned) otoliths. This research suggests that while scales produce age estimates rivaling those of otoliths for younger (age > 3) cohorts, they may be biased within older cohorts and therefore should be used with caution. ?? Copyright by the American Fisheries Society 2008.