WorldWideScience

Sample records for active specific immunotherapy

  1. Active specific immunotherapy using the immune reaction of a low-dose irradiated tumor tissue

    Active specific immunotherapy using the immune reaction of a low-dose irradiated tumor tissue was studied on the transplanted MM46 tumor of female C3H/He mice after radiotherapy. MM46 tumor cells were inoculated into the right hind paws of mice. On the 5th day, irradiation with the dose irradiated tumor tissue (2000 rad on the fifth day), were injected into the left hind paws of the tumor-bearing mice. Effectiveness of this active specific immunotherapy against tumor was evaluated by the regression of tumor and survival rate of mice. Tumor was markedly regressed and survival rate was significantly increased by the active specific immunitherapy

  2. Allergen-specific immunotherapy

    Moote William

    2011-11-01

    Full Text Available Abstract Allergen-specific immunotherapy is a potentially disease-modifying therapy that is effective for the treatment of allergic rhinitis/conjunctivitis, allergic asthma and stinging insect hypersensitivity. However, despite its proven efficacy in these conditions, it is frequently underutilized in Canada. The decision to proceed with allergen-specific immunotherapy should be made on a case-by-case basis, taking into account individual patient factors such as the degree to which symptoms can be reduced by avoidance measures and pharmacological therapy, the amount and type of medication required to control symptoms, the adverse effects of pharmacological treatment, and patient preferences. Since this form of therapy carries the risk of anaphylactic reactions, it should only be prescribed by physicians who are adequately trained in the treatment of allergy. Furthermore, injections must be given under medical supervision in clinics that are equipped to manage anaphylaxis. In this article, the authors review the indications and contraindications, patient selection criteria, and the administration, safety and efficacy of allergen-specific immunotherapy.

  3. Specificity in cancer immunotherapy

    Schietinger, Andrea; Philip, Mary; Schreiber, Hans

    2008-01-01

    From the earliest days in the field of tumor immunology three questions have been asked: do cancer cells express tumor-specific antigens, does the immune system recognize these antigens, and if so, what is their biochemical nature? We now know that truly tumor-specific antigens exist, that they are caused by somatic mutations, and that these antigens can induce both humoral and cell-mediated immune responses. Because tumor-specific antigens are exclusively expressed by the cancer cell and are...

  4. Immunotherapy with GD2 specific monoclonal antibodies

    Targeted immunotherapy focuses anti-tumor activity of antibodies and effector cells, which are actively developed by the host or adoptively transferred, onto tumor cells and into tumor sites. Such tumor selective therapy can be more specific and efficient. The value of such an approach is evident in the classical interaction of antibodies. This paper reports that the ganglioside GD2 is an ideal antigen for specific tumor targeting because of its relative lack of heterogeneity among human neuroblastoma, its high density on tumor cells, its lack of antigen modulation upon binding to antibody, and its restricted distribution in normal tissues

  5. Allergen specific immunotherapy in nasobronchial allergy.

    Joshi S

    2003-12-01

    Full Text Available BACKGROUND: More than one antigen has been used for immunotherapy of allergic disorders. So far less than five antigens have been employed with variable results. AIM: To evaluate effect of multiple antigens up to six in the immunotherapy of nasobronchial allergy. SETTING AND DESIGN: Based on clinical history, symptoms present for at least 3 years with set criteria of immunomodulation for asthma and rhinitis: documented IgE mediated asthma and rhinitis, failure in allergen avoidance and moderate to severe clinical manifestations. MATERIAL AND METHODS: Five hundred cases of various allergic disorders attending allergy clinic of Bombay hospital were screened. Allergen specific immunotherapy was initiated in 131 subjects (56 -rhinitis and 75 asthma with prior consent. Patients suffering from allergic disorders secondary to diseases or drug therapy were excluded. Multiple allergen immunotherapy was given at specific intervals up to a period of one year. Allergen extracts were prepared as per standard technique. For statistical analysis "students′t test" was used. RESULTS AND CONCLUSIONS: Significant improvement in PEFR, reduction in skin sensitivity to allergens used in immunotherapy formulation and symptomatic relief without any untoward reaction show that multiple allergen immunotherapy is as effective as monoallergen immunotherapy in nasobronchial allergy.

  6. Allergen-Specific Immunotherapy in Food Anaphylaxis

    Kerzl, Regina; Mempel, Martin; Ring, Johannes

    2008-01-01

    Specific immunotherapy (SIT) protocols for nutritional allergens have only recently been established with a focus on oral allergy syndrome because of pollen cross-reacting antibodies. For these patients, a substantial number of studies have been published suggesting benefits from SIT. The situation in true anaphylaxis to food allergens such as peanut allergy is more complex, and therapeutic strategies are based on individual protocols rather than controlled studies. However, in defined cases,...

  7. [Scleroderma related to specific immunotherapy. A report of a case].

    Morfín Maciel, Blanca María; Castillo Morfín, Blanca María

    2009-01-01

    It has been described two main phenotypes of helper T cells. On activation, the immune system develops the most effective Th response. Whereas Th1 cells promote cell-mediate immunity against intracellular pathogens and an over expression could favor autoimmune diseases; Th2 cells develop humoral immunity against extracellular pathogens promoting allergic response. Normally, the two profiles coexist in the same individual with different grades of expression. Recently, it has been described a new subset: Th17, which is related to tissue injury in autoimmune diseases. Then, allergic and autoimmune diseases result from an unbalanced response of the immune system. Allergen-specific immunotherapy is the only curative treatment of a specific allergy, which leads to a life-long tolerance against allergens. There are no controlled studies about the effectiveness or risks associated with allergen-specific immunotherapy in patients with autoimmune disorders. On the other hand, scleroderma is an autoimmune chronic systemic disorder of unknown etiology characterized by excess collagen deposition in the skin and viscera, along with vascular injury. We report a girl with allergic asthma and with a second degree family history of systemic sclerosis who developed localized scleroderma during allergen specific immunotherapy. Because allergy vaccination alter the balance between effector and regulatory T-cell populations, which regulate immune tolerance, a positive family history of autoimmunity in first or second degree, could be a contraindication for allergen-specific immunotherapy. PMID:19768975

  8. Mechanisms of allergen-specific immunotherapy

    Fujita Hiroyuki; Soyka Michael B; Akdis Mübeccel; Akdis Cezmi A

    2012-01-01

    Abstract Allergen-specific immunotherapy (allergen-SIT) is a potentially curative treatment approach in allergic diseases. It has been used for almost 100 years as a desensitizing therapy. The induction of peripheral T cell tolerance and promotion of the formation of regulatory T-cells are key mechanisms in allergen-SIT. Both FOXP3+CD4+CD25+ regulatory T (Treg) cells and inducible IL-10- and TGF-β-producing type 1 Treg (Tr1) cells may prevent the development of allergic diseases and play a ro...

  9. Immunological mechanisms of allergen-specific immunotherapy.

    Jutel, Marek; Akdis, C A

    2011-06-01

    The studies on the mechanisms of specific immunotherapy (SIT) point out its targets that decide on the efficacy of SIT and hence might be used for its further improvement. Several mechanisms have been proposed to explain the beneficial effects of immunotherapy. The knowledge of the mechanisms underlying allergic diseases and curative treatment possibilities has experienced exciting advances over the last three decades. Studies in several clinical trials in allergen-SIT have demonstrated that the induction of a tolerant state against allergens in many ways represents a key step in the development of a healthy immune response against allergens. Several cellular and molecular mechanisms have been demonstrated: allergen-specific suppressive capacities of both inducible subsets of CD4(+) CD25(+) forkhead box P3(+) T-regulatory and IL-10-secreting type 1 T-regulatory cells increase in peripheral blood; suppression of eosinophils, mast cells, and basophils; Ab isotype change from IgE to IgG4. This review aims at the better understanding of the observed immunological changes associated with allergen SIT. PMID:21466562

  10. Immunotherapy

    ... Help raise $300,000 this month to find cures. Loading... Immunotherapy Immunotherapy SHARE: Print Glossary Immunotherapy, also ... destroy the antigens. In most circumstances, the body's natural immune system seems unable to identify cancer as ...

  11. Allergen specific immunotherapy in nasobronchial allergy.

    Joshi S; Tripathi D; Dhar H

    2003-01-01

    BACKGROUND: More than one antigen has been used for immunotherapy of allergic disorders. So far less than five antigens have been employed with variable results. AIM: To evaluate effect of multiple antigens up to six in the immunotherapy of nasobronchial allergy. SETTING AND DESIGN: Based on clinical history, symptoms present for at least 3 years with set criteria of immunomodulation for asthma and rhinitis: documented IgE mediated asthma and rhinitis, failure in allergen avoidance and modera...

  12. Mechanisms of allergen-specific immunotherapy.

    Fujita, Hiroyuki; Soyka, Michael B; Akdis, Mübeccel; Akdis, Cezmi A

    2012-01-01

    Allergen-specific immunotherapy (allergen-SIT) is a potentially curative treatment approach in allergic diseases. It has been used for almost 100 years as a desensitizing therapy. The induction of peripheral T cell tolerance and promotion of the formation of regulatory T-cells are key mechanisms in allergen-SIT. Both FOXP3+CD4+CD25+ regulatory T (Treg) cells and inducible IL-10- and TGF-β-producing type 1 Treg (Tr1) cells may prevent the development of allergic diseases and play a role in successful allergen-SIT and healthy immune response via several mechanisms. The mechanisms of suppression of different pro-inflammatory cells, such as eosinophils, mast cells and basophils and the development of allergen tolerance also directly or indirectly involves Treg cells. Furthermore, the formation of non-inflammatory antibodies particularly IgG4 is induced by IL-10. Knowledge of these molecular basis is crucial in the understanding the regulation of immune responses and their possible therapeutic targets in allergic diseases. PMID:22409879

  13. Mechanisms of allergen-specific immunotherapy

    Fujita Hiroyuki

    2012-01-01

    Full Text Available Abstract Allergen-specific immunotherapy (allergen-SIT is a potentially curative treatment approach in allergic diseases. It has been used for almost 100 years as a desensitizing therapy. The induction of peripheral T cell tolerance and promotion of the formation of regulatory T-cells are key mechanisms in allergen-SIT. Both FOXP3+CD4+CD25+ regulatory T (Treg cells and inducible IL-10- and TGF-β-producing type 1 Treg (Tr1 cells may prevent the development of allergic diseases and play a role in successful allergen-SIT and healthy immune response via several mechanisms. The mechanisms of suppression of different pro-inflammatory cells, such as eosinophils, mast cells and basophils and the development of allergen tolerance also directly or indirectly involves Treg cells. Furthermore, the formation of non-inflammatory antibodies particularly IgG4 is induced by IL-10. Knowledge of these molecular basis is crucial in the understanding the regulation of immune responses and their possible therapeutic targets in allergic diseases.

  14. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    Ahn, Brian J. [Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Pollack, Ian F. [Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Okada, Hideho, E-mail: okadah@upmc.edu [Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States)

    2013-11-01

    Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas.

  15. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    Brian J. Ahn

    2013-11-01

    Full Text Available Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas.

  16. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas

  17. Combination immunotherapy and active-specific tumor cell vaccination augments anti-cancer immunity in a mouse model of gastric cancer

    van den Engel Natasja K

    2011-08-01

    Full Text Available Abstract Background Active-specific immunotherapy used as an adjuvant therapeutic strategy is rather unexplored for cancers with poorly characterized tumor antigens like gastric cancer. The aim of this study was to augment a therapeutic immune response to a low immunogenic tumor cell line derived from a spontaneous gastric tumor of a CEA424-SV40 large T antigen (CEA424-SV40 TAg transgenic mouse. Methods Mice were treated with a lymphodepleting dose of cyclophosphamide prior to reconstitution with syngeneic spleen cells and vaccination with a whole tumor cell vaccine combined with GM-CSF (a treatment strategy abbreviated as LRAST. Anti-tumor activity to subcutaneous tumor challenge was examined in a prophylactic as well as a therapeutic setting and compared to corresponding controls. Results LRAST enhances tumor-specific T cell responses and efficiently inhibits growth of subsequent transplanted tumor cells. In addition, LRAST tended to slow down growth of established tumors. The improved anti-tumor immune response was accompanied by a transient decrease in the frequency and absolute number of CD4+CD25+FoxP3+ T cells (Tregs. Conclusions Our data support the concept that whole tumor cell vaccination in a lymphodepleted and reconstituted host in combination with GM-CSF induces therapeutic tumor-specific T cells. However, the long-term efficacy of the treatment may be dampened by the recurrence of Tregs. Strategies to counteract suppressive immune mechanisms are required to further evaluate this therapeutic vaccination protocol.

  18. EAACI: A European Declaration on Immunotherapy. Designing the future of allergen specific immunotherapy.

    Calderon, Moises A; Demoly, Pascal; Gerth van Wijk, Roy; Bousquet, Jean; Sheikh, Aziz; Frew, Anthony; Scadding, Glenis; Bachert, Claus; Malling, Hans J; Valenta, Rudolph; Bilo, Beatrice; Nieto, Antonio; Akdis, Cezmi; Just, Jocelyne; Vidal, Carmen; Varga, Eva M; Alvarez-Cuesta, Emilio; Bohle, Barbara; Bufe, Albrecht; Canonica, Walter G; Cardona, Victoria; Dahl, Ronald; Didier, Alain; Durham, Stephen R; Eng, Peter; Fernandez-Rivas, Montserrat; Jacobsen, Lars; Jutel, Marek; Kleine-Tebbe, Jörg; Klimek, Ludger; Lötvall, Jan; Moreno, Carmen; Mosges, Ralph; Muraro, Antonella; Niggemann, Bodo; Pajno, Giovanni; Passalacqua, Giovanni; Pfaar, Oliver; Rak, Sabina; Senna, Gianenrico; Senti, Gabriela; Valovirta, Erkka; van Hage, Marianne; Virchow, Johannes C; Wahn, Ulrich; Papadopoulos, Nikolaos

    2012-01-01

    Allergy today is a public health concern of pandemic proportions, affecting more than 150 million people in Europe alone. In view of epidemiological trends, the European Academy of Allergy and Clinical Immunology (EAACI) predicts that within the next few decades, more than half of the European population may at some point in their lives experience some type of allergy.Not only do allergic patients suffer from a debilitating disease, with the potential for major impact on their quality of life, career progression, personal development and lifestyle choices, but they also constitute a significant burden on health economics and macroeconomics due to the days of lost productivity and underperformance. Given that allergy triggers, including urbanization, industrialization, pollution and climate change, are not expected to change in the foreseeable future, it is imperative that steps are taken to develop, strengthen and optimize preventive and treatment strategies.Allergen specific immunotherapy is the only currently available medical intervention that has the potential to affect the natural course of the disease. Years of basic science research, clinical trials, and systematic reviews and meta-analyses have convincingly shown that allergen specific immunotherapy can achieve substantial results for patients, improving the allergic individuals' quality of life, reducing the long-term costs and burden of allergies, and changing the course of the disease. Allergen specific immunotherapy not only effectively alleviates allergy symptoms, but it has a long-term effect after conclusion of the treatment and can prevent the progression of allergic diseases.Unfortunately, allergen specific immunotherapy has not yet received adequate attention from European institutions, including research funding bodies, even though this could be a most rewarding field in terms of return on investments, translational value and European integration and, a field in which Europe is recognized as a

  19. EAACI: A European Declaration on Immunotherapy. Designing the future of allergen specific immunotherapy

    Calderon Moises A

    2012-10-01

    Full Text Available Abstract Allergy today is a public health concern of pandemic proportions, affecting more than 150 million people in Europe alone. In view of epidemiological trends, the European Academy of Allergy and Clinical Immunology (EAACI predicts that within the next few decades, more than half of the European population may at some point in their lives experience some type of allergy. Not only do allergic patients suffer from a debilitating disease, with the potential for major impact on their quality of life, career progression, personal development and lifestyle choices, but they also constitute a significant burden on health economics and macroeconomics due to the days of lost productivity and underperformance. Given that allergy triggers, including urbanization, industrialization, pollution and climate change, are not expected to change in the foreseeable future, it is imperative that steps are taken to develop, strengthen and optimize preventive and treatment strategies. Allergen specific immunotherapy is the only currently available medical intervention that has the potential to affect the natural course of the disease. Years of basic science research, clinical trials, and systematic reviews and meta-analyses have convincingly shown that allergen specific immunotherapy can achieve substantial results for patients, improving the allergic individuals’ quality of life, reducing the long-term costs and burden of allergies, and changing the course of the disease. Allergen specific immunotherapy not only effectively alleviates allergy symptoms, but it has a long-term effect after conclusion of the treatment and can prevent the progression of allergic diseases. Unfortunately, allergen specific immunotherapy has not yet received adequate attention from European institutions, including research funding bodies, even though this could be a most rewarding field in terms of return on investments, translational value and European integration and, a field in

  20. Activated human gammadelta T cells as stimulators of specific CD8+ T-cell responses to subdominant Epstein Barr virus epitopes: potential for immunotherapy of cancer.

    Landmeier, Silke; Altvater, Bianca; Pscherer, Sibylle; Juergens, Heribert; Varnholt, Lena; Hansmeier, Anna; Bollard, Catherine M; Moosmann, Andreas; Bisping, Guido; Rossig, Claudia

    2009-04-01

    The efficacy of current cancer vaccines is limited by the functional heterogeneity and poor availability and expansion of professional antigen-presenting cells (APCs). Besides their potent innate effector properties, gammadelta T cells have been suggested to be involved in the initiation and maintenance of adaptive immune responses. Here, we investigated the capacity of human gammadelta T cells to induce expansion of virus-specific T cells to Epstein Barr virus (EBV) antigens. Aminobisphosphonate-stimulated human peripheral blood-derived gammadelta T cells (Vgamma2+Vdelta2+) acquired a dual phenotype characteristic for both APCs and effector memory T cells. Coincubation of activated gammadelta T cells pulsed with human leukocyte antigen-restricted epitopes of either the highly stimulatory EBV lytic cycle antigen Bam H1 Z fragment leftward open reading frame or the tumor-associated latent EBV antigen latent membrane protein 2a (LMP2a) with autologous peripheral blood lymphocytes induced selective expansion of peptide-specific, fully functional CD3CD8 cytolytic effector memory T cells. Furthermore, gammadelta T APCs efficiently processed and presented endogenous antigen, as demonstrated by the capacity of LMP2a gene-transduced gammadelta T cells to induce expansion of T cells with broad specificity for various LMP2a peptides. The capacity of autologous gammadelta T cells to induce LMP2a-specific autologous cytotoxic T lymphocytes was confirmed in 2 patients with Hodgkin lymphoma. In summary, bisphosphonate-activated human gammadelta T cells stimulate expansion of cytotoxic effector T cells specific for both subdominant and dominant viral epitopes and thus show promise as a novel source of efficient APCs for immunotherapy of viral and malignant disease. PMID:19242369

  1. Activated human γδ T cells as stimulators of specific CD8+ T cell responses to subdominant Epstein Barr virus (EBV) epitopes: Potential for immunotherapy of cancer

    Landmeier, Silke; Altvater, Bianca; Pscherer, Sibylle; Juergens, Heribert; Varnholt, Lena; Hansmeier, Anna; Bollard, Catherine M.; Moosmann, Andreas; Bisping, Guido; Rossig, Claudia

    2011-01-01

    The efficacy of current cancer vaccines is limited by the functional heterogeneity and poor availability and expansion of professional antigen-presenting cells (APCs). Besides their potent innate effector properties, γδ T cells have been suggested to be involved in the initiation and maintenance of adaptive immune responses. Here, we investigated the capacity of human γδ T cells to induce expansion of virus-specific T cells to Epstein Barr virus (EBV) antigens. Aminobisphosphonate-stimulated human peripheral blood-derived γδ T cells (Vγ9+Vδ2+) acquired a dual phenotype characteristic for both APCs and effector memory T cells. Coincubation of activated γδ T cells pulsed with HLA-restricted epitopes of either the highly stimulatory EBV lytic cycle antigen BZLF-1 or the tumor-associated latent EBV antigen LMP2a with autologous peripheral blood lymphocytes induced selective expansion of peptide-specific, fully functional CD3+CD8+ cytolytic effector memory T cells. Furthermore, γδ T-APCs efficiently processed and presented endogenous antigen, as demonstrated by the capacity of LMP2a gene-transduced γδ T cells to induce expansion of T cells with broad specificity for various LMP2a peptides. The capacity of autologous γδ T cells to induce LMP2a-specific autologous CTLs was confirmed in two patients with Hodgkin lymphoma. In summary, bisphosphonate-activated human γδ T cells stimulate expansion of cytotoxic effector T cells specific for both subdominant and dominant viral epitopes and thus show promise as a novel source of efficient APCs for immunotherapy of viral and malignant disease. PMID:19242369

  2. Allergen-specific immunotherapy and risk of autoimmune disease

    Linneberg, Allan; Madsen, Flemming; Skaaby, Tea

    2012-01-01

    After 100 years of experience with allergen-specific immunotherapy (SIT), an issue that is still unresolved is whether SIT can act as a trigger of, or as a risk factor for, autoimmune disease. We searched the literature for evidence on this topic.......After 100 years of experience with allergen-specific immunotherapy (SIT), an issue that is still unresolved is whether SIT can act as a trigger of, or as a risk factor for, autoimmune disease. We searched the literature for evidence on this topic....

  3. Mucin 1-specific active cancer immunotherapy with tecemotide (L-BLP25) in patients with multiple myeloma: An exploratory study

    Rossmann, Eva; Österborg, Anders; Löfvenberg, Eva; Choudhury, Aniruddha; Forssmann, Ulf; von Heydebreck, Anja; Schröder, Andreas; Mellstedt, Håkan

    2014-01-01

    Patients (n = 34) with previously untreated, slowly progressive asymptomatic stage I/II multiple myeloma or with stage II/III multiple myeloma in stable response/plateau phase following conventional anti-tumor therapy were immunized repeatedly with the antigen-specific cancer immunotherapeutic agent tecemotide (L-BLP25). Additionally, patients were randomly allocated to either single or multiple low doses of cyclophosphamide to inhibit regulatory T cells (Treg). Immunization with tecemotide r...

  4. Perspectives on allergen-specific immunotherapy in childhood

    Calderon, M A; Gerth van Wijk, R; Eichler, I;

    2012-01-01

    -specific immunotherapy in childhood. Unmet needs are identified. To fill the gaps and to bridge the different points of view, recommendations are made to researchers, to scientific and patient organizations and to regulators and ethical committees. Working together for the benefit of the community is essential. The...

  5. Allergen-specific immunotherapy and risk of autoimmune disease

    Linneberg, Allan; Madsen, Flemming; Skaaby, Tea

    2012-01-01

    After 100 years of experience with allergen-specific immunotherapy (SIT), an issue that is still unresolved is whether SIT can act as a trigger of, or as a risk factor for, autoimmune disease. We searched the literature for evidence on this topic....

  6. T-cell regulatory mechanisms in specific immunotherapy

    Jutel, M; Akdis, C. A.

    2008-01-01

    Allergen-specific immunotherapy (SIT) is the only treatment which leads to a lifelong tolerance against previously disease-causing allergens due to restoration of normal immunity against allergens. The description of T-regulatory (Treg) cells being involved in prevention of sensitization to allergens has led to great interest whether they represent a major target for allergen-SIT and whether it would be possible to manipulate Treg cells to increase its efficacy. Activationinduced cell death, ...

  7. ALLERGEN-SPECIFIC IMMUNOTHERAPY: VACCINES FOR ALLERGIC DISEASES

    Fedorov, A. S.; L. S. Litvinova; V. I. But-Gusaim; S. N. Litvinenko

    2015-01-01

    Allergen-specific immunotherapy (ASIT) is the most effective method of allergy treatment which consists of exposure to small doses of antigen responsible for development of allergic condition in the particular patient. Therefore, one may achieve desensitization to this antigen. The history of ASIT application lasts for more than 100 years, and, over this time, huge clinical evidence for the usage of the method has been accumulated. Use of ASIT causes reduction of allergy symptoms and treatmen...

  8. Novel allergen preparations for use in allergen-specific immunotherapy

    Neimert Andersson, Theresa

    2008-01-01

    Allergy is a common disease in the industrialized countries, affecting approximately 25% of the population. Therefore, there is a need to find new treatment strategies to improve the quality of life for allergic individuals. Today the only treatment that gives long-lasting reduction of allergic symptoms is allergen-specific immunotherapy (SIT). However, despite successful clinical outcome, the method as it is performed today has some drawbacks such as therapy associated side...

  9. Tumor-Associated Antigens for Specific Immunotherapy of Prostate Cancer

    Prostate cancer (PCa) is the most common noncutaneous cancer diagnosis and the second leading cause of cancer-related deaths among men in the United States. Effective treatment modalities for advanced metastatic PCa are limited. Immunotherapeutic strategies based on T cells and antibodies represent interesting approaches to prevent progression from localized to advanced PCa and to improve survival outcomes for patients with advanced disease. CD8+ cytotoxic T lymphocytes (CTLs) efficiently recognize and destroy tumor cells. CD4+ T cells augment the antigen-presenting capacity of dendritic cells and promote the expansion of tumor-reactive CTLs. Antibodies mediate their antitumor effects via antibody-dependent cellular cytotoxicity, activation of the complement system, improving the uptake of coated tumor cells by phagocytes, and the functional interference of biological pathways essential for tumor growth. Consequently, several tumor-associated antigens (TAAs) have been identified that represent promising targets for T cell- or antibody-based immunotherapy. These TAAs comprise proteins preferentially expressed in normal and malignant prostate tissues and molecules which are not predominantly restricted to the prostate, but are overexpressed in various tumor entities including PCa. Clinical trials provide evidence that specific immunotherapeutic strategies using such TAAs represent safe and feasible concepts for the induction of immunological and clinical responses in PCa patients. However, further improvement of the current approaches is required which may be achieved by combining T cell- and/or antibody-based strategies with radio-, hormone-, chemo- or antiangiogenic therapy

  10. Tumor-Associated Antigens for Specific Immunotherapy of Prostate Cancer

    Kiessling, Andrea [Biologics Safety and Disposition, Preclinical Safety, Translational Sciences, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Werk Klybeck, Klybeckstraße 141, Basel CH-4057 (Switzerland); Wehner, Rebekka [Institute of Immunology, Medical Faculty, University of Technology Dresden, Fetscherstraße 74, Dresden 01307 (Germany); Füssel, Susanne [Department of Urology, Medical Faculty, University of Technology Dresden, Fetscherstraße 74, Dresden 01307 (Germany); Bachmann, Michael [Institute of Immunology, Medical Faculty, University of Technology Dresden, Fetscherstraße 74, Dresden 01307 (Germany); Wirth, Manfred P. [Department of Urology, Medical Faculty, University of Technology Dresden, Fetscherstraße 74, Dresden 01307 (Germany); Schmitz, Marc, E-mail: marc.schmitz@tu-dresden.de [Institute of Immunology, Medical Faculty, University of Technology Dresden, Fetscherstraße 74, Dresden 01307 (Germany)

    2012-02-22

    Prostate cancer (PCa) is the most common noncutaneous cancer diagnosis and the second leading cause of cancer-related deaths among men in the United States. Effective treatment modalities for advanced metastatic PCa are limited. Immunotherapeutic strategies based on T cells and antibodies represent interesting approaches to prevent progression from localized to advanced PCa and to improve survival outcomes for patients with advanced disease. CD8{sup +} cytotoxic T lymphocytes (CTLs) efficiently recognize and destroy tumor cells. CD4{sup +} T cells augment the antigen-presenting capacity of dendritic cells and promote the expansion of tumor-reactive CTLs. Antibodies mediate their antitumor effects via antibody-dependent cellular cytotoxicity, activation of the complement system, improving the uptake of coated tumor cells by phagocytes, and the functional interference of biological pathways essential for tumor growth. Consequently, several tumor-associated antigens (TAAs) have been identified that represent promising targets for T cell- or antibody-based immunotherapy. These TAAs comprise proteins preferentially expressed in normal and malignant prostate tissues and molecules which are not predominantly restricted to the prostate, but are overexpressed in various tumor entities including PCa. Clinical trials provide evidence that specific immunotherapeutic strategies using such TAAs represent safe and feasible concepts for the induction of immunological and clinical responses in PCa patients. However, further improvement of the current approaches is required which may be achieved by combining T cell- and/or antibody-based strategies with radio-, hormone-, chemo- or antiangiogenic therapy.

  11. T-cell regulatory mechanisms in specific immunotherapy.

    Jutel, Marek; Akdis, Cezmi A

    2008-01-01

    Allergen-specific immunotherapy (SIT) is the only treatment which leads to a lifelong tolerance against previously disease-causing allergens due to restoration of normal immunity against allergens. The description of T-regulatory (Treg) cells being involved in prevention of sensitization to allergens has led to great interest whether they represent a major target for allergen-SIT and whether it would be possible to manipulate Treg cells to increase its efficacy. Activationinduced cell death, anergy and/or immune response modulation by Treg cells are essential mechanisms of peripheral T-cell tolerance. There is growing evidence that anergy, tolerance and active suppression are not entirely distinct, but rather represent linked mechanisms possibly involving the same cells and multiple suppressor mechanisms. Skewing of allergen-specific effector T cells to Treg cells appears as a crucial event in the control of healthy immune response to allergens and successful allergen-SIT. The Treg cell response is characterized by abolished allergen- induced specific T-cell proliferation and suppressed Thelper (Th)1- and Th2-type cytokine secretion. In addition, mediators of allergic inflammation that trigger cAMP-associated G-protein-coupled receptors, such as histamine receptor-2, may contribute to peripheral tolerance mechanisms. The increased levels of interleukin-10 and transforming growth factor-Beta that are produced by Treg cells potently suppress IgE production, while simultaneously increasing production of non-inflammatory isotypes IgG4 and IgA, respectively. In addition, Treg cells directly or indirectly suppress effector cells of allergic inflammation such as mast cells, basophils and eosinophils. In conclusion, peripheral tolerance to allergens is controlled by multiple active suppression mechanisms. It is associated with regulation of antibody isotypes and effector cells to the direction of a healthy immune response. By the application of the recent knowledge in Treg

  12. Dynamic evaluation of the response to specific immunotherapy

    Full text: Objectives: Evaluate in vivo response to specific immunotherapy in maintenance status, with leukocytes labelled with 99mTc-HMPAO. Methods: The leukocytes were labelled with 99mTc-HMPAO using the standard technique. After resuspension the labelled white cells with cell-free plasma they were injected intravenously in a peripheral vein faraway from the place where the therapeutic allergen suspension was applied. The both two administration were made at the same time. Simultaneously with the two injections, a 90 min dynamic acquisition, at thorax level, 64x64 matrix, at two frame/minute in anterior view, was carried out through a gamma camera. Static images, 256x256, 5 minutes, at 2, 3, 4, 5, 6, 8 and 21 hours after injections, of thorax and pelvis in anterior view, were acquired. During the examination, the local erythema was monitored. Results: The results obtained show that 40 min after injection local inflammatory activity at the IT administration place, with a progressive increase of local activity. 60 minutes after injection, ascendant lymphatic drainage directed to the homolateral axillary region ant to the lymphoid tissue of the upper mediastinum and anterior region of the neck were visualized. The static images show a progressive improvement of the inflammatory area corresponding to the place where IT was applied, with individualization of focal supraclavicular areas, bilaterally. In the latter images, thoracic, mediastinal, bowel and upper cervical localizations, were observed. Discussion and conclusions: In the patients studied, the specific IT shows great efficiency linked with the tolerability to different allergens (provocation test) achieved and with a significant fall of the Prick reactivity. However, at the aqueous extract application place, the local erythema with papula is always less than 60 mm. In these patients, the inflammatory response was significantly bigger in depth, time dependent, even after complete disappearance of the erythema

  13. The clinical-immunological analysis of a specific and combined immunotherapy of patients with cervical cancer

    D. K. Kenbayeva; A. F. Lazarev

    2012-01-01

    Research objective is the comparative assessment of efficiency of two various ways of an immunotherapy of patients with cervical cancer. 57 patients with cervical cancer, the III stages, distributed on 3 groups – combined radiotherapy, a combination of a radiotherapy and specific immunotherapy, and also a radiotherapy, specific and adaptive immunotherapy are surveyed. Clinical efficiency of treatment was estimated by means of primary tumor regression and 3-year survival rate. The scheme of co...

  14. Allergen-specific immunotherapy in pediatric allergic asthma.

    Yukselen, Ayfer

    2016-07-01

    Allergen-specific immunotherapy (AIT) is the only curative way that can change the immunologic response to allergens and thus can modify the natural progression of allergic diseases. There are some important criteria which contributes significantly on efficacy of AIT, such as the allergen extract used for treatment, the dose and protocol, patient selection in addition to the severity and control of asthma. The initiation of AIT in allergic asthma should be considered in intermittent, mild and moderate cases which coexisting with other allergic diseases such as allergic rhinitis, and in case of unacceptable adverse effects of medications. Two important impact of AIT; steroid sparing effect and preventing from progression to asthma should be taken into account in pediatric asthma when making a decision on starting of AIT. Uncontrolled asthma remains a significant risk factor for adverse events and asthma should be controlled both before and during administration of AIT. The evidence concerning the efficacy of subcutaneous (SCIT) and sublingual immunotherapy (SLIT) for treatment of pediatric asthma suggested that SCIT decreases asthma symptoms and medication scores, whereas SLIT can ameliorate asthma symptoms. Although the effectiveness of SCIT has been shown for both seasonal and perennial allergens, the data for SLIT is less convincing for perennial allergies in pediatric asthma. PMID:27489785

  15. Allergen-specific immunotherapy in pediatric allergic asthma

    2016-01-01

    Allergen-specific immunotherapy (AIT) is the only curative way that can change the immunologic response to allergens and thus can modify the natural progression of allergic diseases. There are some important criteria which contributes significantly on efficacy of AIT, such as the allergen extract used for treatment, the dose and protocol, patient selection in addition to the severity and control of asthma. The initiation of AIT in allergic asthma should be considered in intermittent, mild and moderate cases which coexisting with other allergic diseases such as allergic rhinitis, and in case of unacceptable adverse effects of medications. Two important impact of AIT; steroid sparing effect and preventing from progression to asthma should be taken into account in pediatric asthma when making a decision on starting of AIT. Uncontrolled asthma remains a significant risk factor for adverse events and asthma should be controlled both before and during administration of AIT. The evidence concerning the efficacy of subcutaneous (SCIT) and sublingual immunotherapy (SLIT) for treatment of pediatric asthma suggested that SCIT decreases asthma symptoms and medication scores, whereas SLIT can ameliorate asthma symptoms. Although the effectiveness of SCIT has been shown for both seasonal and perennial allergens, the data for SLIT is less convincing for perennial allergies in pediatric asthma. PMID:27489785

  16. The clinical-immunological analysis of a specific and combined immunotherapy of patients with cervical cancer

    D. K. Kenbayeva

    2012-01-01

    Full Text Available Research objective is the comparative assessment of efficiency of two various ways of an immunotherapy of patients with cervical cancer. 57 patients with cervical cancer, the III stages, distributed on 3 groups – combined radiotherapy, a combination of a radiotherapy and specific immunotherapy, and also a radiotherapy, specific and adaptive immunotherapy are surveyed. Clinical efficiency of treatment was estimated by means of primary tumor regression and 3-year survival rate. The scheme of combined immunotherapy was shown to possess the most clinical efficiency. Positive dynamics of cell immunity indicators was accompanied to clinical efficiency of treatment.

  17. Oncolytic immunotherapy through tumor-specific translation and cytotoxicity of poliovirus.

    Brown, Michael C; Gromeier, Matthias

    2015-05-01

    Achieving tumor-specific, robust, and durable effector cytotoxic immune responses is key to successful immunotherapy. This has been accomplished with adoptive cell transfer of ex vivo-expanded autologous tumor-infiltrating or engineered T cells, or with immune checkpoint inhibitors, enhancing inherent T cell reactivity. A natural ability to recruit effector responses makes tumor-targeting ('oncolytic') viruses attractive as immunotherapy vehicles. However, most viruses actively block inflammatory and immunogenic events; or, host innate immune responses may prevent immune initiating events in the first place. Moreover, the mechanisms of how virus infection can produce effector responses against host (tumor) neo-antigens are unclear. We are pioneering oncolytic immunotherapy based on poliovirus, which has no specific mechanism to interfere with host immune activation, exhibits lytic cytotoxicity in the presence of an antiviral interferon response and pre-existing immunity, and engages a powerful innate immune sensor implicated in recruiting cytotoxic T cell responses. Central to this approach is a unique confluence of factors that drive tumor-specific viral translation and cytotoxicity. PMID:26105699

  18. Food allergy to apple and specific immunotherapy with birch pollen

    Hansen, Kirsten Skamstrup; Khinchi, Marianne Søndergaard; Skov, Per Stahl;

    2004-01-01

    Conflicting results concerning the effect of specific pollen immunotherapy (SIT) on allergy to plant foods have been reported. The aim of this study was to investigate the effect of SIT using a birch pollen extract on food allergy with focus on allergy to apple. Seventy-four birch pollen...... (SLIT), and 8 (placebo) patients after treatment compared to 10, 4, and 10 patients, respectively, before SIT. The symptom scores to apple during challenges decreased in all groups, but only significantly in the placebo group (p = 0.03). As evaluated by the questionnaire, the severity of food allergy in......-allergic patients were included in a double-blind, double-dummy, and placebo-controlled comparison of sublingual-swallow (SLIT) and subcutaneous (SCIT) administration of a birch pollen extract. Sixty-nine percent of these patients reported allergy to apple. The clinical reactivity to apple was evaluated by open...

  19. Specific allergen immunotherapy attenuates allergic airway inflammation in a rat model of Alstonia scholaris pollen induced airway allergy.

    Datta, Ankur; Moitra, Saibal; Hazra, Iman; Mondal, Somnath; Das, Prasanta Kumar; Singh, Manoj Kumar; Chaudhuri, Suhnrita; Bhattacharya, Debanjan; Tripathi, Santanu Kumar; Chaudhuri, Swapna

    2016-01-01

    Pollen grains are well established to be an important cause of respiratory allergy. Current pharmacologic therapies for allergic asthma do not cure the disease. Allergen specific immunotherapy is the only treatment method which re-directs the immune system away from allergic response leading to a long lasting effect. The mechanism by which immunotherapy achieves this goal is an area of active research world-wide. The present experimental study was designed to develop an experimental model of allergic lung inflammation based on a relevant human allergen, Alstonia scholaris pollen, and to establish the immunological and cellular features of specific allergen immunotherapy using this same pollen extract. Our results revealed that Alstonia scholaris pollen sensitization and challenge causes eosinophilic airway inflammation with mucin hypersecretion. This is associated with increased total IgE, increased expression of FcɛRI on lung mast cells and increased levels of IL-4, IL-5 & IL-13 as confirmed by ELISA, in-situ immunofluorescence and FACS assay. Allergen specific immunotherapy reduced airway inflammation and also decreased total IgE level, FcɛRI expression, IL-4, IL-5 & IL-13 levels. It was further noted that the reduction of these levels was more by intra-nasal route than by intra-peritoneal route. Thus we present a novel animal model of Alstonia scholaris pollen allergic disease and specific allergen immunotherapy which will pave the way towards the development of better treatment modalities. PMID:26667977

  20. Congruence between international guidelines and mite specific immunotherapy prescribing practices.

    Antonicelli, L; Braschi, M C; Bilò, M B; Angino, A; Pala, A P; Baldacci, S; Maio, S; Bonifazi, F

    2011-10-01

    Both rhinitis (ARIA) and asthma (GINA) guidelines recommend allergen-specific immunotherapy (SIT) tailored to the specific levels of severity of each disease. Real world studies evaluating congruence between these recommendations and prescribing practice in the single patient with comorbidity are lacking. An observational polycentric study was carried out in 518 patients recruited from 34 allergy centers throughout Italy. A questionnaire was administered to each consecutive patient over a span of four months. Taking into account guideline recommendations for both diseases, concomitant in the same patient, three subsets resulted: patients not eligible for SIT (11%); patients eligible for SIT for one disease only (60%); patients eligible for SIT for both diseases (29%). SIT was prescribed in 257 (49.6%) subjects. The level of SIT prescription was about 50% in all three groups. Consistent with the ARIA guidelines, a correlation between the prescription of SIT and the severity of rhinitis was documented (r=0.87; p=0.001). An association with asthma severity was found (p=0.02), but the trend was inconsistent with the GINA recommendations. Young age was the most important factor for SIT prescription both in the eligible for one disease and in the eligible for both diseases subset. The tendency towards worsening of symptoms was a factor for SIT in the eligible for one disease subset. In mite allergic patients with rhinitis and asthma comorbidity, the severity of rhinitis and the young age are the most important factors driving the SIT prescription. The congruence of SIT prescription was better for the ARIA than GINA guidelines. PMID:21628094

  1. ALLERGEN-SPECIFIC IMMUNOTHERAPY: VACCINES FOR ALLERGIC DISEASES

    A. S. Fedorov

    2015-10-01

    Full Text Available Allergen-specific immunotherapy (ASIT is the most effective method of allergy treatment which consists of exposure to small doses of antigen responsible for development of allergic condition in the particular patient. Therefore, one may achieve desensitization to this antigen. The history of ASIT application lasts for more than 100 years, and, over this time, huge clinical evidence for the usage of the method has been accumulated. Use of ASIT causes reduction of allergy symptoms and treatment needs and, moreover, it has the potential for long-term clinical benefit, by preventing the development of allergy and its symptoms. The treatment affects basic immunological mechanisms responsible for the development of clinical symptoms. ASIT is an antiinflammatory, pathogenetic and prophylactic treatment of allergic airway disease. The review considers the results of major clinical trials of the ASIT applications for treatment of allergic diseases of the respiratory system (allergic rhinitis and bronchial asthma. Various schemes of ASIT are discussed including its different variants (injectable and sublingual ASIT, the issues of preparation choice for ASIT from those currently available on the pharmaceutical market, patient selection criteria, and the issues of modern molecular allergodiagnostic (allergic sensitization mapping of the patient at molecular level, in order to optimize them. Immunological mechanisms of ASIT are also considered, since appropriate views are rather contraversial. The ASIT effect is mediated through the following basic immunological mechanisms: the suppressed increase of the eosinophil concentrations, reduced duration of the delayed hypersensitivity phase, as well as initiation and maintenance of the Th2-to-Th1-like immune response transition. Regulatory T-cells play a major role in implementation of the immunological mechanism in ASIT, they have a significant impact on the Th2 response suppression. Such suppression may proceed

  2. Specific immunotherapy (SIT in the treatment of allergic rhinitis

    Gorenoi, Vitali

    2010-03-01

    Full Text Available Scientific background: Allergic rhinitis (AR exhibits a prevalence of approx. 20% in Germany and causes enormous costs in the health care system. Specific immunotherapy (SIT is considered to be the only potentially causal therapy for AR and mainly administered by two routes, subcutaneous (SCIT and sublinguale (SLIT. SIT promises a reduction of symptoms and the need for medication in patients with AR. Research questions: The question arises, to what extent is SIT effective and cost effective in the treatment of AR and which ethical-social and legal aspects have to be considered regarding its application. Methods: The literature search was accomplished in the electronic data bases MEDLINE, EMBASE etc. in February 2008. The medical evaluation was based on systematic reviews of blinded, randomised controlled studies (RCT. The economic evaluation included health-economic studies on the basis of RCT. Additionally, it was also searched for publications explicitly addressing ethical-social and legal aspects of the use of SIT. Results: Medical evaluationTwo reviews on SCIT and three on SLIT were included in the medical evaluation. For the evaluation of SIT with grass pollen results for short and medium-term effects are considered from several studies, for SIT with other seasonal allergens (e. g. tree pollen and with house dust mite allergens from clearly fewer studies and for SIT with other perennial allergens only from a few. The reviews report a significant reduction of the symptom and medication score in favour of SCIT with seasonal allergens and recognise the effectiveness at least for grass pollen allergens. Also for other seasonal allergens SCIT is appraised as effective. The reviews about SLIT determine a significant reduction of the symptom and the medication score in favour of SLIT vs. placebo in short and medium term follow-up in evaluations across all allergens. The subgroup analyses show a significant reduction of the symptom and medication

  3. Activated human γδ T cells as stimulators of specific CD8+ T cell responses to subdominant Epstein Barr virus (EBV) epitopes: Potential for immunotherapy of cancer

    Landmeier, Silke; Altvater, Bianca; Pscherer, Sibylle; Juergens, Heribert; Varnholt, Lena; Hansmeier, Anna; Bollard, Catherine M.; Moosmann, Andreas; Bisping, Guido; Rossig, Claudia

    2009-01-01

    The efficacy of current cancer vaccines is limited by the functional heterogeneity and poor availability and expansion of professional antigen-presenting cells (APCs). Besides their potent innate effector properties, γδ T cells have been suggested to be involved in the initiation and maintenance of adaptive immune responses. Here, we investigated the capacity of human γδ T cells to induce expansion of virus-specific T cells to Epstein Barr virus (EBV) antigens. Aminobisphosphonate-stimulated ...

  4. The blocking activity of birch pollen-specific immunotherapy-induced IgG4 is not qualitatively superior to that of other IgG subclasses

    Ejrnaes, Anne M; Bødtger, Uffe; Larsen, Jørgen N; Svenson, Morten

    2004-01-01

    for the clinical efficacy of SIT. In this study, fractionated serum samples from 14 SIT-treated birch pollen allergic individuals enabled determination of the inhibitory capacity of IgG4 alone versus non-IgG4 IgG. Allergen-binding activities of IgG and the IgG-mediated inhibition of allergen binding...... to autologous IgE were detected using 125I-labelled rBet v 1.2801, a recombinant variant of the major allergen of Betula verrucosa pollen. Results show that IgG4-depletion resulted in equivalent reductions in binding and blocking activities. In contrast, a significant but less than two-fold higher...

  5. Peptide-based allergen specific immunotherapy for the treatment of allergic disorders.

    El-Qutob, David; Reche, Pedro; Subiza, José L; Fernández-Caldas, Enrique

    2015-01-01

    Allergen specific immunotherapy (ASIT) and environmental control are the only etiologic treatments of allergic rhino-conjunctivitis, asthma and atopic dermatitis. The clinical benefit of ASIT relies on the selection of the patients and the identification and administration of the allergen, or allergens. Different routes of administration have been investigated, including subcutaneous, intradermal, epicutaneous, sublingual, inhaled, or intra-lymphatic. While subcutaneous and sublingual allergen specific immunotherapy may require from 3 to 5 years of treatment, clinical efficacy with intra-lymphatic treatment can be achieved after 3 injections. The most severe side effect of ASIT is anaphylaxis. Novel approaches are being investigated to reduce the allergenicity of immunotherapy vaccines, maintaining immunogenicity. Peptide immunotherapy has been directed mostly against autoimmune diseases, but the use of synthetic peptides for ASIT is a promising field in basic science, applied immunology and in clinical development. Short synthetic peptides bear allergen-specific CD4 T-cell epitopes which induce tolerance by stimulating regulatory (Treg) and Th1 cells. In the present patent review, we describe new trends in allergen immunotherapy using peptides, which, from a clinical point of view, are promising. PMID:25760734

  6. Optimizing complement-activating antibody-based cancer immunotherapy: a feasible strategy?

    Maio Michele

    2004-06-01

    Full Text Available Abstract Passive immunotherapy with monoclonal antibodies (mAb targeted to specific tumor-associated antigens is amongst the most rapidly expanding approaches to biological therapy of cancer. However, until now a limited number of therapeutic mAb has demonstrated clinical efficacy in selected neoplasia. Results emerging from basic research point to a deeper characterization of specific biological features of neoplastic cells as crucial to optimize the clinical potential of therapeutic mAb, and to identify cancer patients who represent the best candidates to antibody-based immunotherapy. Focus on the tissue distribution and on the functional role of membrane complement-regulatory proteins such as Protectin (CD59, which under physiologic conditions protects tissues from Complement (C-damage, might help to optimize the efficacy of immunotherapeutic strategies based on C-activating mAb.

  7. Specific immunotherapy generates CD8(+) CD196(+) T cells to suppress lung cancer growth in mice.

    Zhang, Jian; Liu, Jing; Chen, Huiguo; Wu, Weibin; Li, Xiaojun; Wu, Yonghui; Wang, Zhigang; Zhang, Kai; Li, Yun; Weng, Yimin; Liao, Hongying; Gu, Lijia

    2016-08-01

    That specific immunotherapy can inhibit cancer growth has been recognized; its efficiency is to be improved. This study aimed to inhibit lung cancer (LC) growth in a mouse model by using an LC-specific vaccination. In this study, a LC mouse model was created by adoptive transplantation with LC cells. The tumor-bearing mice were vaccinated with LC cell extracts plus adjuvant TNBS or adoptive transplantation with specific CD8(+) CD196(+) T cells. The results showed that the vaccination with LC extracts (LCE)/TNBS markedly inhibited the LC growth and induced CD8(+) CD196(+) T cells in LC tissue and the spleen. These CD8(+) CD196(+) T cells proliferated and produce high levels of perforin upon exposure to LCE and specifically induced LC cell apoptosis. Exposure to TNBS induced RAW264.7 cells to produce macrophage inflammatory protein-3α; the latter activated signal transducer and activator of transcription 3 and further induced perforin expression in the CD8(+) CD196(+) T cells. Adoptive transfer with specific CD8(+) CD196(+) T cells suppressed LC growth in mice. In conclusion, immunization with LC extracts and TNBS can induce LC-specific CD8(+) CD196(+) T cells in LC-bearing mice and inhibit LC growth. PMID:26910585

  8. Increased Expression of miR-146a in Children With Allergic Rhinitis After Allergen-Specific Immunotherapy

    LUO, XI; Hong, Haiyu; Tang, Jun; Wu, Xingmei; Lin, Zhibin; Ma, Renqiang; Fan, Yunping; Xu, Geng; Liu, Dabo; Li, Huabin

    2015-01-01

    Purpose MicroRNAs (miRs) were recently recognized to be important for immune cell differentiation and immune regulation. However, whether miRs were involved in allergen-specific immunotherapy (SIT) remains largely unknown. This study sought to examine changes in miR-146a and T regulatory cells in children with persistent allergic rhinitis (AR) after 3 months of subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT). Methods Twenty-four HDM-sensitized children with persistent AR...

  9. Contribution of regulatory T cells to alleviation of experimental allergic asthma after specific immunotherapy

    Maazi, H.; Shirinbak, S.; Willart, M.; Hammad, H. M.; Cabanski, M.; Boon, L.; Ganesh, V.; Baru, A. M.; Hansen, G.; Lambrecht, B. N.; Sparwasser, T.; Nawijn, M. C.; van Oosterhout, A. J. M.

    2012-01-01

    Background Allergen-specific immunotherapy (SIT) has been used since 1911, yet its mechanism of action remains to be elucidated. There is evidence indicating that CD4+FOXP3+ regulatory T cells (Treg cells) are induced during SIT in allergic patients. However, the contribution of these cells to SIT h

  10. Specific IgG and its subclass antibodies after immunotherapy with gynandropsis gynandra

    Latha G

    2005-01-01

    Full Text Available Background : About 10 to 15 % of the Indian population is known to suffer from major allergic disorders such as Asthma, Rhinitis, Atopic Dermatitis and Urticaria. Aeroallergens play a major role in the pathogenesis of respiratory allergic diseases. Among the aeroallergens, pollens are major causative agents. The predominance of pollen allergens necessitate the need to assess the specific immunotherapy (SIT in allergic patients. Objective : To evaluate the effect of immunotherapy based on the presence of IgG and its subclass antibodies towards whole pollen antigen of Gynandropsis gynandra (G.gynandra and its fractions. Material and Methods : A study was conducted in 30 bronchial asthma patients on immunotherapy, by assessing the levels of IgG and its subclasses specific to G. gynandra pollen. Results : There was a significant increase in IgG and its subclass antibodies to whole pollen antigen and its fractions i.e.> 90kD, 46-37kD and 36-32kD after the course of IT. Conclusion : The use of peptide fractions may be more appropriate instead of the whole pollen antigen to test the effect of immunotherapy.

  11. Is immunotherapy-induced birch-pollen-specific IgG4 a marker for decreased allergen-specific sensitivity?

    Bodtger, U; Ejrnaes, A M; Hummelshoj, L;

    2005-01-01

    The role of IgG4 during allergen-specific immunotherapy (SIT) is still controversial. The available studies present paramount differences in in vitro techniques, allergens, and clinical outcome parameters. By implementing a sensitive method, and pivotal clinical outcome parameters, we wanted to...

  12. Targeting phospho-Ser422 by active Tau Immunotherapy in the THYTau22 mouse model: a suitable therapeutic approach. : Active Tau immunotherapy

    Troquier, Laëticia; Caillierez, Raphaëlle; Burnouf, Sylvie; Fernandez-Gomez, Francisco,; Grosjean, Marie-Eve; Zommer, Nadège; Sergeant, Nicolas; Schraen-Maschke, Susanna; Blum, David; Buee, Luc

    2012-01-01

    Recent data indicate that Tau immunotherapy may be relevant for interfering with neurofibrillary degeneration in Alzheimer disease and related disorders referred to as Tauopathies. The key question for immunotherapy is the choice of the epitope to target. Abnormal phosphorylation is a well-described post-translational modification of Tau proteins and may be a good target. In the present study, we investigated the effects of active immunization against the pathological epitope phospho-Ser422 i...

  13. Mechanisms of allergen-specific immunotherapy and immune tolerance to allergens

    Cezmi A Akdis; Akdis, Mübeccel

    2015-01-01

    Substantial progress in understanding mechanisms of immune regulation in allergy, asthma, autoimmune diseases, tumors, organ transplantation and chronic infections has led to a variety of targeted therapeutic approaches. Allergen-specific immunotherapy (AIT) has been used for 100 years as a desensitizing therapy for allergic diseases and represents the potentially curative and specific way of treatment. The mechanisms by which allergen-AIT has its mechanisms of action include the very early d...

  14. Specific immunotherapy plus Clostridium butyricum alleviates ulcerative colitis in patients with food allergy.

    Bin Lan; Yang, Fan; Lu, Dong; Lin, Zhenlv

    2016-01-01

    The aberrant T cell activation plays an important role in the pathogenesis of intestinal inflammation, such as ulcerative colitis (UC). C. butyricum (Cb) is a probiotic and has been employed in the treatment of immune diseases. This study tests a hypothesis that specific immunotherapy (SIT) plus oral Cb (an over-the-counter probiotic) alleviates the UC symptoms. In this study, we conducted a randomized, double-blind, clinical study at our hospital. A total of 80 patients with relapsing-remitting ulcerative colitis and high levels of specific IgE antibody was randomly divided into 4 groups, and were treated with SIT or/and Cb, or placebo, respectively for 1 year. The results showed that a food antigen-specific Th2 polarization immune response was observed in UC patients with food allergy (FA). The frequency of regulatory B cells was significantly less in UC patients with FA as compared with healthy subjects. The UC patients with FA were treated with SIT and Cb showed significant amelioration of UC clinical symptoms, reduction of using UC-control medicines, and suppression of the skewed Th2 polarization, which did not occur in those treated with either SIT alone, or Cb alone, or placebo. In conclusion, combination of SIT and Cb efficiently alleviates a fraction of UC patients. PMID:27167186

  15. Epitope hunting in rheumatoid arthritis : towards antigen specific immunotherapy

    de Jong, H.

    2013-01-01

    Current treatment options in rheumatoid arthritis aim to dampen the immune response a-specifically. In the last decennia new strategies have emerged that have fewer side effects due to more specificity by focussing on those cells of the immune system that deal with regulation. Epitope specific immun

  16. Mechanisms of allergen-specific immunotherapy: T-regulatory cells and more.

    Verhagen, Johan; Blaser, Kurt; Akdis, Cezmi A; Akdis, Mübeccel

    2006-05-01

    Activation-induced cell death, anergy, or immune response modulation by regulatory T cells (Treg cells) are essential mechanisms of peripheral T-cell tolerance. Genetic predisposition and environmental instructions tune thresholds for the activation of T cells, other inflammatory cells, and resident tissue cells in allergic diseases. Skewing allergen-specific effector T cells to a Treg-cell phenotype seems to be crucial in maintaining a healthy immune response to allergens and successful allergen-specific immunotherapy. The Treg-cell response is characterized by an abolished allergen-specific T-cell proliferation and the suppressed secretion of T-helper 1- and T-helper 2-type cytokines. Suppressed proliferative and cytokine responses against allergens are induced by multiple suppressor factors, including cytokines such as interleukin-10 (IL-10) and transforming growth factor beta (TGF-beta), and cell surface molecules such as cytotoxic T-lymphocyte antigen-4, programmed death-1, and histamine receptor 2. The increased levels of IL-10 and TGF-beta produced by Treg cells potently suppress IgE production while simultaneously increasing the production of noninflammatory isotypes IgG4 and IgA, respectively. In addition, Treg cells directly or indirectly suppress the activity of effector cells of allergic inflammation, such as mast cells, basophils, and eosinophils. In conclusion, peripheral tolerance to allergens is controlled by multiple active suppression mechanisms on T cells, regulation of antibody isotypes, and suppression of effector cells. The application of current knowledge of Treg cells and related mechanisms of peripheral tolerance may soon lead to more rational and safer approaches to the prevention and cure of allergic disease. PMID:16701141

  17. Trends in Specific Immunotherapy for Allergic Rhinitis: A Survey of Chinese ENT Specialists

    Zhou, Han; Tao, Qi-Lei; Wei, Jun-Min; Xu, Geng; Cheng, Lei

    2014-01-01

    Purpose Specific immunotherapy (SIT) is a suitable but uncommon treatment option for allergic rhinitis (AR) in China. The current understanding and attitude of Chinese ENT (ear, nose, and throat) specialists in regards to SIT is unclear. This study investigates current trends in the awareness and application status of SIT among Chinese ENT specialists. Methods We performed a nationwide, cross-sectional survey with a specially designed questionnaire given to 800 ENT specialists in China. A mem...

  18. Allergen specific immunotherapy: The future cure for allergic asthma. Mechanisms and improvement in a mouse model

    Taher, Y.A.

    2007-01-01

    Allergic asthma is a disease characterized by persistent allergen-driven airway inflammation, remodeling and airway hyperresponsiveness (AHR). CD4+ T-cells, in particular T-helper type 2 (Th2) cells, play a critical role in orchestrating the disease process through the release of cytokines like IL-4, IL-5 and IL-13. Allergen-specific immunotherapy (IT) is currently the only disease-modifying treatment with long-term suppression of allergen-induced complaints. However, although IT is effective...

  19. Generation of hypoallergenic neoglycoconjugates for dendritic cell targeted vaccination: A novel tool for specific immunotherapy

    Weinberger, Esther E.; Himly, Martin; Myschik, Julia; Hauser, Michael; Altmann, Friedrich; Isakovic, Almedina; Scheiblhofer, Sandra; Thalhamer, Josef; Weiss, Richard

    2013-01-01

    The incidence of allergic disorders and asthma continuously increased over the past decades, consuming a considerable proportion of the health care budget. Allergen-specific subcutaneous immunotherapy represents the only intervention treating the underlying causes of type I allergies, but still suffers from unwanted side effects and low compliance. There is an urgent need for novel approaches improving safety and efficacy of this therapy. In the present study we investigated carbohydrate-medi...

  20. Effect of Pollen-Specific Sublingual Immunotherapy on Oral Allergy Syndrome: An Observational Study

    Bergmann, Karl-Christian; Wolf, Hendrik; Schnitker, Jörg

    2008-01-01

    Background Oral allergy syndrome (OAS) triggered by fruit and vegetables often occurs in patients with pollen-induced rhinoconjunctivitis because of cross-reactive epitopes in pollen and associated foods. This open observational study examined the effect of pollen-specific sublingual immunotherapy ([SLIT] B. U. Pangramin or SLITone involving birch/alder/hazel, grasses/rye, and/or mugwort) on OAS triggered by several foods in patients treated in standard practice. Very few studies have examine...

  1. Guideline on allergen-specific immunotherapy in IgE-mediated allergic diseases

    Pfaar, Oliver; Bachert, Claus; Bufe, Albrecht; Buhl, Roland; Ebner, Christof; Eng, Peter; Friedrichs, Frank; Fuchs, Thomas; Hamelmann, Eckard; Hartwig-Bade, Doris; Hering, Thomas; Huttegger, Isidor; Jung, Kirsten; Klimek, Ludger; Kopp, Matthias Volkmar

    2014-01-01

    Summary The present guideline (S2k) on allergen-specific immunotherapy (AIT) was established by the German, Austrian and Swiss professional associations for allergy in consensus with the scientific specialist societies and professional associations in the fields of otolaryngology, dermatology and venereology, pediatric and adolescent medicine, pneumology as well as a German patient organization (German Allergy and Asthma Association; Deutscher Allergie- und Asthmabund, DAAB) according to the ...

  2. Induction of Specific Immunotherapy with Hymenoptera Venoms Using Ultrarush Regimen in Children: Safety and Tolerance

    Alice Köhli-Wiesner

    2012-01-01

    Full Text Available Background & Objective. Ultrarush induction for specific venom immunotherapy has been shown to be reliable and efficacious in adults. In this study its safety and tolerance in children was evaluated. Methods. Retrospective analysis of 102 ultrarush desensitizations carried out between 1997 and 2005 in 94 children, aged 4 to 15 years. Diagnosis and selection for immunotherapy were according to recommendations of the European Academy of Allergy and Clinical Immunology. Systemic adverse reactions (SARs were described using the classification of H. L. Mueller. Results. All patients reached the cumulative dose of 111.1 μg hymenoptera venom within 210 minutes. Six patients (6% had allergic reactions grade I; 2 patients (2% grade II and 5 patients (5% grade III. Three patients (3% showed unclassified reactions. SARs did not occur in the 15 patients aged 4 to 8 years and they were significantly more frequent in girls (29% compared with boys (12% (=0.034, multivariant analysis and in bee venom extract treated patients (20% compared to those treated with wasp venom extract (8% (OR 0.33, 95% Cl 0.07–1.25. Conclusion. Initiation of specific immunotherapy by ultrarush regimen is safe and well tolerated in children and should be considered for treating children with allergy to hymenoptera venom.

  3. Specific IgE response to different grass pollen allergen components in children undergoing sublingual immunotherapy

    Marcucci Francesco

    2012-06-01

    Full Text Available Abstract Background Grass pollen is a major cause of respiratory allergy worldwide and contain a number of allergens, some of theme (Phl p 1, Phl p 2, Phl p 5, and Phl 6 from Phleum pratense, and their homologous in other grasses are known as major allergens. The administration of grass pollen extracts by immunotherapy generally induces an initial rise in specific immunoglobulin E (sIgE production followed by a progressive decline during the treatment. Some studies reported that immunotherapy is able to induce a de novo sensitisation to allergen component previously unrecognized. Methods We investigated in 30 children (19 males and 11 females, mean age 11.3 years, 19 treated with sublingual immunotherapy (SLIT by a 5-grass extract and 11 untreated, the sIgE and sIgG4 response to the different allergen components. Results Significant increases (p  Conclusions These findings confirm that the initial phase of SLIT with a grass pollen extract enhances the sIgE synthesis and show that the sIgE response concerns the same allergen components which induce IgE reactivity during natural exposure.

  4. Distinct modulation of allergic T cell responses by subcutaneous versus sublingual allergen-specific immunotherapy

    Schulten, Véronique; Tripple, Victoria; Andersen, Kristian Aasbjerg; Backer, Vibeke; Lund, Gitte; Würtzen, Peter Adler; Sette, Alessandro; Peters, Bjoern

    2016-01-01

    mechanisms involved have not been fully explored. OBJECTIVE: To compare changes in the allergen-specific T cell response induced by subcutaneous versus sublingual administration of allergen-specific immunotherapy (AIT). METHODS: Grass pollen allergic patients were randomized into groups receiving either SCIT......: The most dominant immunological changes on a cellular level was a decrease in IL-5 in the SCIT group and a significant, transient increase of IL-10 observed after 10 months of treatment in both treated groups. The distinct routes of AIT administration may induce different immune-modulatory mechanisms...

  5. C-type Lectin Receptor Expression on Human Basophils and Effects of Allergen-Specific Immunotherapy.

    Lundberg, K; Rydnert, F; Broos, S; Andersson, M; Greiff, L; Lindstedt, M

    2016-09-01

    Basophils are emerging as immunoregulatory cells capable of interacting with their environment not only via their characteristic IgE-mediated activation, but also in an IgE-independent manner. Basophils are known to express and respond to stimulation via TLR2, TLR4, DC-SIGN and DCIR, but whether basophils also express other C-type lectin receptors (CLRs) is largely unknown. In this study, we investigate the CLR expression profile of human basophils using multicolour flow cytometry. As FcRs as well as some CLRs are associated with allergen recognition and shown to be involved in subsequent immune responses, the expression of CLRs and FcRs on peripheral blood basophils, as well as their frequency, was monitored for 1 year in subjects undergoing subcutaneous allergen-specific immunotherapy (AIT). Here, we show that human basophils express CLECSF14, DEC205, Dectin-1, Dectin-2 and MRC2. Furthermore, we demonstrate that the frequencies of basophils expressing the allergy-associated CLRs Dectin-1 and Dectin-2 were significantly reduced after 1 year and 8 weeks of AIT, respectively. In contrast, the frequency of basophils positive for FcγRII, as well as the fraction of total basophils, significantly increased after 1 year of AIT. The herein demonstrated expression of various CLRs on basophils, and their altered CLR and FcR expression profile upon AIT, suggest yet unexplored ways by which basophils can interact with antigens and may point to novel immunoregulatory functions targeted through AIT. PMID:27354239

  6. Current issues on sublingual allergen-specific immunotherapy in children with asthma and allergic rhinitis

    Živković Zorica

    2016-01-01

    Full Text Available In 1993 the European Academy of Allergy and Clinical Immunology was the first official organization to recognize that sublingual administration could be “promising route” for allergic desensitization. A few years later, the World Health Organization recommended this therapy as “a viable alternative to the injection route in adults.” The first meta-analysis showed sublingual allergen specific immunotherapy (SLIT effectiveness for allergic rhinitis and another study showed SLIT can actually help prevent the development of asthma both in adults and in children. The main goal of this review article is to present insight into the most up-to-date understanding of the clinical efficacy and safety of immunotherapy in the treatment of pediatric patients with allergic rhinitis and asthma. A literature review was performed on PubMed from 1990 to 2015 using the terms “asthma,” “allergic rhinitis,” “children,” “allergen specific immune therapy.” Evaluating data from double-blind placebo-controlled randomized clinical trials (DB-PC-RCTs, the clinical efficacy (assessed as the reduction of symptom score and the need of rescue medicament of SLIT for allergic rhinitis and allergic asthma, has been confirmed in various meta-analysis Outcomes such as rhinoconjunctivitis score and medication scores, combined scores, quality of life, days with severe symptoms, immunological endpoints, and safety parameters were all improved in the SLIT-tablet compared with placebo group. SLIT safety has been already proven in many DB-PC-RCTs and real-life settings. In accordance with all of the above mentioned, the goals for future trials and studies are the development of comprehensive guidelines for clinical practice on immunotherapy, embracing all the different potential participants. The importance of allergen immunotherapy is of special relevance in the pediatric age, when the plasticity and modulability of the immune system are maximal, and when

  7. [The immunological mechanisms contributing to the clinical efficacy of allergen specific immunotherapy (SIT) in allergic diseases].

    Asher, Ilan; Mahlab-Guri, Keren; Sthoeger, Zev

    2013-09-01

    The prevalence of allergic diseases has increased dramatically in the western world. In the last 2 decades, the frequency of asthma and allergic rhinitis has doubled. Allergen specific immunotherapy [SIT] has been used successfully for more than 100 years for the treatment of allergic disorders. Allergen SIT provides not only symptomatic relief, but it is potentially curative. The immunologic mechanisms of allergen SIT include all parts of the immune system. Regulatory T cells (TR1, Treg), have a major pivotal role in the success of immunotherapy. Along with the regulatory T cells, elevated suppressor cytokines (IL-10), suppression of TH2 cells, increasing titer of specific IgG4 and gradual decline in the number and function of basophils and mast cells also contribute to the success of the treatment (SIT). The above immune mechanisms are connected and related to each other acting at different times with the treatment with SIT. In this review we focused on the current knowledge and understanding of the different immune mechanisms which are involved in the success of SIT. PMID:24364093

  8. Ex Vivo Generation of Human Alloantigen-Specific Regulatory T Cells from CD4posCD25high T Cells for Immunotherapy

    Peters, Jorieke H; Hilbrands, Luuk B.; Koenen, Hans J. P. M.; Joosten, Irma

    2008-01-01

    Background Regulatory T cell (Treg) based immunotherapy is a potential treatment for several immune disorders. By now, this approach proved successful in preclinical animal transplantation and auto-immunity models. In these models the success of Treg based immunotherapy crucially depends on the antigen-specificity of the infused Treg population. For the human setting, information is lacking on how to generate Treg with direct antigen-specificity ex vivo to be used for immunotherapy. Methodolo...

  9. Ex vivo generation of human alloantigen-specific regulatory T cells from CD4(pos)CD25(high) T cells for immunotherapy.

    Peters, J H; Hilbrands, L.B.; Koenen, H.J.P.M.; Joosten, I.

    2008-01-01

    BACKGROUND: Regulatory T cell (Treg) based immunotherapy is a potential treatment for several immune disorders. By now, this approach proved successful in preclinical animal transplantation and auto-immunity models. In these models the success of Treg based immunotherapy crucially depends on the antigen-specificity of the infused Treg population. For the human setting, information is lacking on how to generate Treg with direct antigen-specificity ex vivo to be used for immunotherapy. METHODOL...

  10. Evaluation of new sensitizations in asthmatic children monosensitized to house dust mite by specific immunotherapy.

    Harmanci, Koray; Razi, Cem H; Toyran, Muge; Kanmaz, Gozde; Cengizlier, Mehmet R

    2010-03-01

    Specific immunotherapy (SIT) is one of the treatment modalities recomended for the management of asthma and allergic rhinitis by international guidelines. A potential benefit of immunotherapy (IT) is to prevent the development of sensitisation to new allergens. There is stil no conclusion on this subject. One hundred twenty-two children 8-18 years old with intermittent asthma, with or without allergic rhinitis, all of whom were monosensitised to house dust mite (HDM) were selected. Sixty two of these children accepted to receive SIT with HDM extract for 4 years and the remaining 60 did not accept SIT and were treated with asthma medications only. This second group of children served as the control group. At the end of the 4-year study period, 36 of the 53 patients (67.9%) in the SIT group showed no new sensitizations, compared to 38 of 52 (73.0%) in the control group (p = 0.141). The most frequent new sensitizations at the end of the study were pollens, grasses and olive polen, followed by animal dander, alternaria and cockroach. In conclusion, SIT may not prevent the onset of new sensitizations in asthmatic children monosensitized to house dust mites. Further investigation is required to clarify the immunologic mechanisms and other factors by which SIT reduces or not the development of new sensitizations in monosensitized children. PMID:20527510

  11. Association of subcutaneous allergen-specific immunotherapy with incidence of autoimmune disease, ischemic heart disease, and mortality

    Linneberg, Allan; Jacobsen, Rikke Kart; Jespersen, Lasse;

    2012-01-01

    Subcutaneous allergen-specific immunotherapy (SCIT) is a well-documented treatment of IgE-mediated allergic disease. Little is known about potential effects of SCIT on the risk of other chronic immune-related diseases. Over the years, a few casuistic reports have caused concern that SCIT might ac...... as a trigger of autoimmune disease.......Subcutaneous allergen-specific immunotherapy (SCIT) is a well-documented treatment of IgE-mediated allergic disease. Little is known about potential effects of SCIT on the risk of other chronic immune-related diseases. Over the years, a few casuistic reports have caused concern that SCIT might act...

  12. Non-specific immunity of BCG vaccine: A perspective of BCG immunotherapy

    Najeeha Talat Iqbal

    2014-01-01

    Full Text Available BCG is a widely used vaccine worldwide for neonates including Pakistan. BCG has more than 90% coverage through the EPI program which was introduced in 1965 in Pakistan. BCG has limited efficacy against the transmissible form of pulmonary tuberculosis in high TB endemic countries. However, BCG vaccination continues in these countries because BCG confers protection against the disseminated form of TB in children. BCG has also shown some protection against leprosy and certain forms of cancers. One reason for such nonspecific protection may be that BCG activates APCs via PAMPS that interacts with TLRs (2, 4 & 8, which initiate the inflammatory cascade thereby recruiting inflammatory cells to the site of infection and providing maturation signals for neutrophils, macrophages and dendritic cells. Such activation may be crucial for restricting the infection at the initial site. Furthermore, activation of the pro-inflammatory cascade also results in expression of adhesion molecules, co-stimulatory molecules as well as MHC class II molecule. MHC class II molecules engage CD4+ cells via the TCR receptor while the adhesion and costimulatory molecules bind to their respective receptors on CD4+ T cells for additional high affinity binding for T cell activation. Although activation of the innate arm may not provide subsequent memory, activation of T cells may introduce a certain level of memory response and therefore, may form a rational basis for BCG immunotherapy. This review, therefore, focuses on the immune activation related to both the innate and adaptive arm of the immune response that has been reported and further explores the utility of BCG immunotherapy related to non TB conditions.

  13. LYMPHOCYTE PHENOTYPE IN PATIENTS WITH SKIN MELANOMA AFTER IMMUNOTHERAPY OF ACTIVATED LYMPHOCYTES

    E. V. Abakushina

    2015-01-01

    Full Text Available The major medical problem in the treatment of skin melanoma is improvement methods of treatment, increasing their effectiveness and safety. In this study, adoptive immunotherapy, using lymphocytes activated in vitro, was performed in 15 patients with metastatic melanoma. Evaluated the phenotype of peripheral blood lymphocytes and activation markers (HLA-DR, CD25, CD314, CD38, CD69 before and 3-4 weeks after immunotherapy. It is shown that for these patients is characterized by increasing the number of CD25+ and Treg lymphocytes in the bloodstream, which has not changed after immunotherapy. Adoptive immunotherapy in combination with chemotherapy resulted in a decrease of absolute number of lymphocyte, B- and T-lymphocytes, T helper cells, NKT-cells, CD314+ lymphocytes, CD38+ lymphocytes and immature T-lymphocytes (CD3+CD38+ (р < 0,05. However, there was a positive dynamic to increase the percentage of NK-cells to 32% and CD69+NK-cells to 21% and significant increase in expression of HLA-DR on all lymphocytes (p < 0.05. Adoptive immunotherapy characterized by the absence of side effects and can be recommended as accompanying to basic radiation and chemotherapy.

  14. [Recombinant allergens for diagnosis and specific immunotherapy--value in pediatric patients].

    Couderc, Rémy; Just, Jocelyne

    2013-03-01

    Identification of culprit allergens is important for prophylactic measures and specific allergen immunotherapy (SIT). Since the late 1980s, the use of molecular cloning technology has led to a major improvement in our knowledge of epitopes involved in IgE-mediated allergy, and has also allowed in vitro production of recombinant allergens of interest for the diagnosis of allergenic sensitization. It has also improved our understanding of allergen cross-reactivity, which can be responsible for severe clinical manifestations, particularly in children with food allergy and allergic asthma. Better knowledge of molecular and cellular mechanisms of allergenic sensitization, based on the use of natural or modified recombinant allergens, has led to the development of effective SIT strategies which, in the foreseeable future, could provide genuine cure, therefore avoiding use of symptomatic therapeutics, starting very early in childhood. PMID:25163347

  15. Allergen-specific subcutaneous immunotherapy in allergic asthma: immunologic mechanisms and improvement

    Yousef A. Taher

    2010-06-01

    Full Text Available Allergic asthma is a disease characterized by persistent allergen-driven airway inflammation, remodeling, and airway hyperresponsiveness. CD4+ T-cells, especially T-helper type 2 cells, play a critical role in orchestrating the disease process through the release of the cytokines IL-4, IL-5, and IL-13. Allergen-specific immunotherapy (SIT is currently the only treatment with a long-term effect via modifying the natural course of allergy by interfering with the underlying immunological mechanisms. However, although SIT is effective in allergic rhinitis and insect venom allergy, in allergic asthma it seldom results in complete alleviation of the symptoms. Improvement of SIT is needed to enhance its efficacy in asthmatic patients. Herein, the immunoregulatory mechanisms underlying the beneficial effects of SIT are discussed with the ultimate aim to improve its treatment efficacy.

  16. Activation of matrix metalloproteinases following anti-Aβ immunotherapy; implications for microhemorrhage occurrence

    Ridnour Lisa A

    2011-09-01

    Full Text Available Abstract Background Anti-Aβ immunotherapy is a promising approach to the prevention and treatment of Alzheimer's disease (AD currently in clinical trials. There is extensive evidence, both in mice and humans that a significant adverse event is the occurrence of microhemorrhages. Also, vasogenic edema was reported in phase 2 of a passive immunization clinical trial. In order to overcome these vascular adverse effects it is critical that we understand the mechanism(s by which they occur. Methods We have examined the matrix metalloproteinase (MMP protein degradation system in two previously published anti-Aβ immunotherapy studies. The first was a passive immunization study in which we examined 22 month old APPSw mice that had received anti-Aβ antibodies for 1, 2 or 3 months. The second is an active vaccination study in which we examined 16 month old APPSw/NOS2-/- mice treated with Aβ vaccination for 4 months. Results There is a significant activation of the MMP2 and MMP9 proteinase degradation systems by anti-Aβ immunotherapy, regardless of whether this is delivered through active vaccination or passive immunization. We have characterized this activation by gene expression, protein expression and zymography assessment of MMP activity. Conclusions Since the MMP2 and MMP9 systems are heavily implicated in the pathophysiology of intracerbral hemorrhage, these data may provide a potential mechanism of microhemorrhage due to immunotherapy. Increased activity of the MMP system, therefore, is likely to be a major factor in increased microhemorrhage occurrence.

  17. Association of subcutaneous allergen-specific immunotherapy with incidence of autoimmune disease, ischemic heart disease, and mortality

    Linneberg, Allan; Jacobsen, Rikke Kart; Jespersen, Lasse; Abildstrøm, Steen Z

    2012-01-01

    Subcutaneous allergen-specific immunotherapy (SCIT) is a well-documented treatment of IgE-mediated allergic disease. Little is known about potential effects of SCIT on the risk of other chronic immune-related diseases. Over the years, a few casuistic reports have caused concern that SCIT might act...... as a trigger of autoimmune disease....

  18. Human Leukocyte Antigen-G and Regulatory T Cells During Specific Immunotherapy for Pollen Allergy

    Dalgaard, Louise Torp; Sørensen, Anja Elaine; Johnsen, Claus;

    2013-01-01

    Background: TH2-biased immune responses are important in allergy pathogenesis. Mechanisms of allergen-specific immunotherapy (SIT) might include the induction of regulatory T cells (Tregs) and immunoglobulin (Ig) G4 blocking antibodies, a reduction in the number of effector cells, and skewing of......G4). Methods: Eleven birch and/or grass pollen-allergic patients and 10 healthy nonatopic controls were studied before and during SIT. Tregs, chemokine receptors, soluble HLA-G (sHLA-G), Ig-like transcript (ILT) 2, specific IgE, and IgG4 were studied. Peripheral blood mononuclear cells (PBMCs) were...... stimulated with pollen extract in vitro and immune factors were evaluated. Results: During SIT, the main changes in the peripheral blood were an increase in CXCR3+CD4+CD25+CD127low/- Tregs and a decrease in CCR4+CD4+CD25+CD127low/- Tregs, an increase in allergen-specific IgG4, and a decrease in sHLA-G during...

  19. Design of tumor-specific immunotherapies using dendritic cells - effect of bromelain on dendritic cell maturation

    Karlsen, Marie

    2009-01-01

    Immunotherapy using dendritic cells (DC) has shown promising results in clinical trials, but few relevant successes are recorded. Therefore, the choice of an appropriate DC population is critical for the outcome of this treatment. The DC used today in immunotherapy are often matured with a cytokine cocktail consisting of TNF-α, IL-1β, IL-6 and PGE2. These cells have deficits in their cytokine production, and also their migratory capacity in vivo needs improvement. After being introduced to br...

  20. Mechanisms of allergen-specific immunotherapy and immune tolerance to allergens.

    Akdis, Cezmi A; Akdis, Mübeccel

    2015-01-01

    Substantial progress in understanding mechanisms of immune regulation in allergy, asthma, autoimmune diseases, tumors, organ transplantation and chronic infections has led to a variety of targeted therapeutic approaches. Allergen-specific immunotherapy (AIT) has been used for 100 years as a desensitizing therapy for allergic diseases and represents the potentially curative and specific way of treatment. The mechanisms by which allergen-AIT has its mechanisms of action include the very early desensitization effects, modulation of T- and B-cell responses and related antibody isotypes as well as inhibition of migration of eosinophils, basophils and mast cells to tissues and release of their mediators. Regulatory T cells (Treg) have been identified as key regulators of immunological processes in peripheral tolerance to allergens. Skewing of allergen-specific effector T cells to a regulatory phenotype appears as a key event in the development of healthy immune response to allergens and successful outcome in AIT. Naturally occurring FoxP3(+) CD4(+)CD25(+) Treg cells and inducible type 1 Treg (Tr1) cells contribute to the control of allergen-specific immune responses in several major ways, which can be summarized as suppression of dendritic cells that support the generation of effector T cells; suppression of effector Th1, Th2 and Th17 cells; suppression of allergen-specific IgE, and induction of IgG4; suppression of mast cells, basophils and eosinophils and suppression of effector T cell migration to tissues. New strategies for immune intervention will likely include targeting of the molecular mechanisms of allergen tolerance and reciprocal regulation of effector and regulatory T cell subsets. PMID:26023323

  1. IL-10 and regulatory T cells cooperate in allergen-specific immunotherapy to ameliorate allergic asthma.

    Böhm, Livia; Maxeiner, Joachim; Meyer-Martin, Helen; Reuter, Sebastian; Finotto, Susetta; Klein, Matthias; Schild, Hansjörg; Schmitt, Edgar; Bopp, Tobias; Taube, Christian

    2015-02-01

    Human studies demonstrated that allergen-specific immunotherapy (IT) represents an effective treatment for allergic diseases. IT involves repeated administration of the sensitizing allergen, indicating a crucial contribution of T cells to its medicinal benefit. However, the underlying mechanisms of IT, especially in a chronic disease, are far from being definitive. In the current study, we sought to elucidate the suppressive mechanisms of IT in a mouse model of chronic allergic asthma. OVA-sensitized mice were challenged with OVA or PBS for 4 wk. After development of chronic airway inflammation, mice received OVA-specific IT or placebo alternately to airway challenge for 3 wk. To analyze the T cell-mediated mechanisms underlying IT in vivo, we elaborated the role of T-bet-expressing Th1 cells, T cell-derived IL-10, and Ag-specific thymic as well as peripherally induced Foxp3(+) regulatory T (Treg) cells. IT ameliorated airway hyperresponsiveness and airway inflammation in a chronic asthma model. Of note, IT even resulted in a regression of structural changes in the airways following chronic inhaled allergen exposure. Concomitantly, IT induced Th1 cells, Foxp3(+), and IL-10-producing Treg cells. Detailed analyses revealed that thymic Treg cells crucially contribute to the effectiveness of IT by promoting IL-10 production in Foxp3-negative T cells. Together with the peripherally induced Ag-specific Foxp3(+) Treg cells, thymic Foxp3(+) Treg cells orchestrate the curative mechanisms of IT. Taken together, we demonstrate that IT is effective in a chronic allergic disease and dependent on IL-10 and thymic as well as peripherally induced Ag-specific Treg cells. PMID:25527785

  2. Neoadjuvant immunotherapy enhances radiosensitivity through natural killer cell activation.

    Chi, Chau-Hwa; Wang, Yu-Shan; Yang, Chieh-Han; Chi, Kwan-Hwa

    2010-02-01

    We investigated whether natural killer (NK) cells in the tumor microenvironment have a radiosensitization effect. The radiosensitization effect of combined CpG and Herceptin((R)) (Genentech, Inc., South San Francisco, CA) (CpG/Herceptin), given before or after radiation, was evaluated by using a murine colon cancer cell line overexpressing human HER2/neu, CT26HER2/neu. In vitro radiosensitization effects were investigated by coculture of CT26HER2/neu with splenocytes, CpG, and Herceptin before applying radiation. Tumor cells, cocultured with CpG-pretreated splenocytes and Herceptin, were more vulnerable to radiation damage. In BALB/c mice injected with CT26HER2/neu, CpG/Herceptin administered before radiotherapy was associated with a better retardation of tumor growth than when administered after radiotherapy. The radiosensitization effect was significantly abrogated by NK-cell depletion, indicating that NK cells play an essential role in it. Further, surviving mice treated with CpG or CpG/Herceptin and reverse transcriptase were resistant to renewed tumor challenge, suggesting the presence of an induced immune response to the tumor. Neoadjuvant immunotherapy with CpG/Herceptin may improve response to radiotherapy of HER2/neu-expressing tumors. PMID:20187795

  3. Combined active and passive immunization enhances the efficacy of immunotherapy against nicotine in rats.

    Roiko, Samuel A; Harris, Andrew C; Keyler, Daniel E; Lesage, Mark G; Zhang, Yan; Pentel, Paul R

    2008-06-01

    Vaccination against nicotine reduces the behavioral effects of nicotine in rats, and it is under clinical evaluation as a treatment for tobacco addiction. Efficacy is limited by the need for high serum nicotine-specific antibody (NicAb) levels, and currently available nicotine vaccines do not uniformly generate the required NicAb levels. Passive immunization with a nicotine-specific monoclonal antibody (Nic311) has also shown efficacy in rats. The principal aim of this study was to determine whether the combined use of vaccination and passive immunization would produce greater effects than vaccination alone on nicotine pharmacokinetics and locomotor sensitization (LMS) to nicotine. Rats were treated with vaccination alone, Nic311 alone, both, or neither, and then they were administered 10 daily injections of 0.3 mg/kg nicotine s.c. Treatment with Nic311 or vaccination alone increased the binding of nicotine in serum, reduced the unbound serum nicotine concentration and nicotine distribution to brain, and attenuated the development of LMS. Combined use of vaccination and passive immunization produced higher total serum NicAb levels, greater changes in nicotine pharmacokinetics, and a greater attenuation of LMS than either treatment alone. The total serum NicAb concentration was significantly correlated with brain nicotine levels and locomotor activity. These data indicate that providing higher serum NicAb concentrations improves the efficacy of immunotherapy against nicotine and that supplementing vaccination with passive immunization is a potential strategy to accomplish this. PMID:18305013

  4. FoxP3 Tregs Response to Sublingual Allergen Specific Immunotherapy in Children Depends on the Manifestation of Allergy.

    Stelmaszczyk-Emmel, Anna; Zawadzka-Krajewska, Anna; Głodkowska-Mrówka, Eliza; Demkow, Urszula

    2015-01-01

    Over the last decades allergic diseases has become a major health problem worldwide. The only specific treatment to date is allergen specific immunotherapy (ASIT). Although it was shown that ASIT generates allergen-tolerant T cells, detailed mechanism underlying its activity is still unclear and there is no reliable method to monitor its effectiveness. The aim of our study was to evaluate ASIT influence on the frequency of forkhead box P3 (FoxP3) Tregs in allergic children with various clinical manifestations. The relative number of FoxP3 Tregs in 32 blood samples from allergic children at baseline and/or after 1 year of ASIT was assessed by flow cytometry. In the entire studied group, the percentage of FoxP3 Tregs did not increase 1 year after ASIT. Nevertheless, the percentage of FoxP3 Tregs after ASIT significantly increased in children with respiratory allergy (conjunctivitis, asthma, and rhinitis) coexisting with nonrespiratory manifestations (food allergy and/or atopic dermatitis), whereas, in patients with respiratory allergy only, the percentage of FoxP3 Tregs decreased. To the best of our knowledge, this is the first report showing various differential FoxP3 Tregs response to ASIT in allergic children. FoxP3 Tregs number could be useful in treatment monitoring. Further studies are warranted to confirm these observations. PMID:26457309

  5. FoxP3 Tregs Response to Sublingual Allergen Specific Immunotherapy in Children Depends on the Manifestation of Allergy

    Anna Stelmaszczyk-Emmel

    2015-01-01

    Full Text Available Over the last decades allergic diseases has become a major health problem worldwide. The only specific treatment to date is allergen specific immunotherapy (ASIT. Although it was shown that ASIT generates allergen-tolerant T cells, detailed mechanism underlying its activity is still unclear and there is no reliable method to monitor its effectiveness. The aim of our study was to evaluate ASIT influence on the frequency of forkhead box P3 (FoxP3 Tregs in allergic children with various clinical manifestations. The relative number of FoxP3 Tregs in 32 blood samples from allergic children at baseline and/or after 1 year of ASIT was assessed by flow cytometry. In the entire studied group, the percentage of FoxP3 Tregs did not increase 1 year after ASIT. Nevertheless, the percentage of FoxP3 Tregs after ASIT significantly increased in children with respiratory allergy (conjunctivitis, asthma, and rhinitis coexisting with nonrespiratory manifestations (food allergy and/or atopic dermatitis, whereas, in patients with respiratory allergy only, the percentage of FoxP3 Tregs decreased. To the best of our knowledge, this is the first report showing various differential FoxP3 Tregs response to ASIT in allergic children. FoxP3 Tregs number could be useful in treatment monitoring. Further studies are warranted to confirm these observations.

  6. T Cell Epitope Immunotherapy Induces a CD4+ T Cell Population with Regulatory Activity

    Verhoef Adrienne

    2005-01-01

    Full Text Available Background Synthetic peptides, representing CD4+ T cell epitopes, derived from the primary sequence of allergen molecules have been used to down-regulate allergic inflammation in sensitised individuals. Treatment of allergic diseases with peptides may offer substantial advantages over treatment with native allergen molecules because of the reduced potential for cross-linking IgE bound to the surface of mast cells and basophils. Methods and Findings In this study we address the mechanism of action of peptide immunotherapy (PIT in cat-allergic, asthmatic patients. Cell-division-tracking dyes, cell-mixing experiments, surface phenotyping, and cytokine measurements were used to investigate immunomodulation in peripheral blood mononuclear cells (PBMCs after therapy. Proliferative responses of PBMCs to allergen extract were significantly reduced after PIT. This was associated with modified cytokine profiles generally characterised by an increase in interleukin-10 and a decrease in interleukin-5 production. CD4+ cells isolated after PIT were able to actively suppress allergen-specific proliferative responses of pretreatment CD4neg PBMCs in co-culture experiments. PIT was associated with a significant increase in surface expression of CD5 on both CD4+ and CD8+ PBMCs. Conclusion This study provides evidence for the induction of a population of CD4+ T cells with suppressor/regulatory activity following PIT. Furthermore, up-regulation of cell surface levels of CD5 may contribute to reduced reactivity to allergen.

  7. Basophil sensitivity through CD63 or CD203c is a functional measure for specific immunotherapy

    Dahl Ronald

    2010-02-01

    Full Text Available Abstract Background Subcutaneous Immunotherapy (SCIT modifies the allergic response and relieves allergic symptoms. SCIT is the only and a very effective treatment for insect venom allergy. We hypothesized that basophil sensitivity, measured through the basophil activation test, would decrease during SCIT up dosing. Expression of CD203c was compared to CD63 as marker for basophil activation, using a Bland Altman plot and ROC curves. Methods Patients (n = 18 starting subcutaneous SCIT for wasp allergy with an up dosing scheme of 7 to 11 weeks were enrolled. Heparinised blood samples were drawn at weeks 1-4, 7 and at the first maintenance visit. Basophils were stimulated at 7 log dilutions of V. vespula allergen for 15 min, and were stained with CD203c and CD63. Basophils were identified as CD203c+ leukocytes, and the proportion of CD63+ and CD203c+ cells were plotted against allergen concentration. A sigmoid curve was fitted to the points, and the allergen concentration at which half of the maximal activation was achieved, LC50, was calculated. In another series of experiments, LC50 calculated in whole blood (AP was subtracted from LC50 calculated with basophils suspended in plasma from a nonatopic donor (HS to determine the protective effect of soluble factors in blood of patients treated with SCIT. Results Heparin blood basophil activation was similar through CD63 and CD203c. Basophils were significantly more sensitized three weeks after initiation of SCIT compared to baseline (p Conclusion Basophil activation is a versatile and sensitive tool that measures changes in the humoral immune response to allergen during SCIT.

  8. Sarcoma Immunotherapy

    Gouw, Launce G., E-mail: launce.gouw@hsc.utah.edu [Departments of Oncology, Huntsman Cancer Institute at the University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112 (United States); Jones, Kevin B. [Departments of Orthopaedic Surgery, Huntsman Cancer Institute at the University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112 (United States); Sharma, Sunil [Departments of Oncology, Huntsman Cancer Institute at the University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112 (United States); Randall, R. Lor [Departments of Orthopaedic Surgery, Huntsman Cancer Institute at the University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112 (United States)

    2011-11-10

    Much of our knowledge regarding cancer immunotherapy has been derived from sarcoma models. However, translation of preclinical findings to bedside success has been limited in this disease, though several intriguing clinical studies hint at the potential efficacy of this treatment modality. The rarity and heterogeneity of tumors of mesenchymal origin continues to be a challenge from a therapeutic standpoint. Nonetheless, sarcomas remain attractive targets for immunotherapy, as they can be characterized by specific epitopes, either from their mesenchymal origins or specific alterations in gene products. To date, standard vaccine trials have proven disappointing, likely due to mechanisms by which tumors equilibrate with and ultimately escape immune surveillance. More sophisticated approaches will likely require multimodal techniques, both by enhancing immunity, but also geared towards overcoming innate mechanisms of immunosuppression that favor tumorigenesis.

  9. Sarcoma Immunotherapy

    Much of our knowledge regarding cancer immunotherapy has been derived from sarcoma models. However, translation of preclinical findings to bedside success has been limited in this disease, though several intriguing clinical studies hint at the potential efficacy of this treatment modality. The rarity and heterogeneity of tumors of mesenchymal origin continues to be a challenge from a therapeutic standpoint. Nonetheless, sarcomas remain attractive targets for immunotherapy, as they can be characterized by specific epitopes, either from their mesenchymal origins or specific alterations in gene products. To date, standard vaccine trials have proven disappointing, likely due to mechanisms by which tumors equilibrate with and ultimately escape immune surveillance. More sophisticated approaches will likely require multimodal techniques, both by enhancing immunity, but also geared towards overcoming innate mechanisms of immunosuppression that favor tumorigenesis

  10. Tau passive immunotherapy in mutant P301L mice: antibody affinity versus specificity.

    Cristina d'Abramo

    Full Text Available The use of antibodies to treat neurodegenerative diseases has undergone rapid development in the past decade. To date, immunotherapeutic approaches to Alzheimer's disease have mostly targeted amyloid beta as it is a secreted protein that can be found in plasma and CSF and is consequently accessible to circulating antibodies. Few recent publications have suggested the utility of treatment of tau pathology with monoclonal antibodies to tau. Our laboratory has begun a systematic study of different classes of tau monoclonal antibodies using mutant P301L mice. Three or seven months old mutant tau mice were inoculated weekly with tau monoclonal antibodies at a dose of 10 mg/Kg, until seven or ten months of age were reached respectively. Our data strongly support the notion that in P301L animals treated with MC1, a conformational monoclonal antibody specific for PHF-tau, the rate of development of tau pathology is effectively reduced, while injecting DA31, a high affinity tau sequence antibody, does not exert such benefit. MC1 appears superior to DA31 in overall effects, suggesting that specificity is more important than affinity in therapeutic applications. Unfortunately the survival rate of the P301L treated mice was not improved when immunizing either with MC1 or PHF1, a high affinity phospho-tau antibody previously reported to be efficacious in reducing pathological tau. These data demonstrate that passive immunotherapy in mutant tau models may be efficacious in reducing the development of tau pathology, but a great deal of work remains to be done to carefully select the tau epitopes to target.

  11. Pediatric investigation plans for specific immunotherapy: Questionable contributions to childhood health.

    Rose, Klaus; Kopp, Matthias Volkmar

    2015-12-01

    Allergen-specific immunotherapy (SIT) is the only disease-modifying treatment for children, adolescents, and adults with allergic diseases. The EU has a combined system of national and EU-wide marketing authorization for all medicines. Germany introduced a new therapy allergen ordinance in 2008. Allergen products manufacturers had to apply for marketing authorization application for the major allergen groups (grass group, birch group, mites group, bee/wasp venom). Due to the EU pediatric regulation, in force since 2007, manufacturers had also to submit a pediatric investigation plan (PIP) for each allergen product. We investigated the allergic rhinoconjunctivitis (ARC) standard PIP, developed jointly by the European Medicines Agency (EMA) and the German Paul Ehrlich Institut (PEI). We analyzed the 118 EMA PIP decisions, looked for SIT trials in children in www.clinicaltrials.gov, and further analyzed EMA/EU justifications. The PIPs request a 1-year dose-finding study in adults, a 5-year placebo-controlled (PC) efficacy & safety (E&S) study in adults, and a 5-year PC E&S study in children. Fifty-eight PIP development programs will have to be performed until 2031. But children benefit even more from SIT for ARC than adults. There is no convincing medical/scientific justification for PC E&S studies in children in the relevant EMA documents. The PIP requirement to withhold effective treatment to thousands of children in the placebo group over a 5-year period raises profound concerns. The EMA justifications are formalistic and lack scientific foundation. A critical academic review of the ARC PIPs and the entire PIP system is urgently needed. PMID:26495999

  12. Breast Cancer Immunotherapy

    JuhuaZhou; YinZhong

    2004-01-01

    Breast cancer is a leading cause of cancer-related deaths in women worldwide. Although tumorectomy, radiotherapy, chemotherapy and hormone replacement therapy have been used for the treatment of breast cancer, there is no effective therapy for patients with invasive and metastatic breast cancer. Immunotherapy may be proved effective in treating patients with advanced breast cancer. Breast cancer immunotherapy includes antibody based immunotherapy, cancer vaccine immunotherapy, adoptive T cell transfer immunotherapy and T cell receptor gene transfer immunotherapy. Antibody based immunotherapy such as the monoclonal antibody against HER-2/neu (trastuzumab) is successfully used in the treatment of breast cancer patients with over-expressed HER-2/neu, however, HER-2/neu is over-expressed only in 25-30% of breast cancer patients. Cancer vaccine immunotherapy is a promising method to treat cancer patients. Cancer vaccines can be used to induce specific anti-tumor immunity in breast cancer patients, but cannot induce objective tumor regression. Adoptive T cell transfer immunotherapy is an effective method in the treatment of melanoma patients. Recent advances in anti-tumor T cell generation ex vivo and limited clinical trial data have made the feasibility of adoptive T cell transfer immunotherapy in the treatment of breast cancer patients. T cell receptor gene transfer can redirect the specificity of T cells. Chimeric receptor, scFv(anti-HER-2/neu)/zeta receptor, was successfully used to redirect cytotoxic T lymphocyte hybridoma cells to obtain anti-HER-2/neu positive tumor cells, suggesting the feasibility of treatment of breast cancer patients with T cell receptor gene transfer immunotherapy. Clinical trials will approve that immunotherapy is an effective method to cure breast cancer disease in the near future. Cellular & Molecular Immunology.

  13. Breast Cancer Immunotherapy

    Juhua Zhou; Yin Zhong

    2004-01-01

    Breast cancer is a leading cause of cancer-related deaths in women worldwide. Although tumorectomy,radiotherapy, chemotherapy and hormone replacement therapy have been used for the treatment of breast cancer, there is no effective therapy for patients with invasive and metastatic breast cancer. Immunotherapy may be proved effective in treating patients with advanced breast cancer. Breast cancer immunotherapy includes antibody based immunotherapy, cancer vaccine immunotherapy, adoptive T cell transfer immunotherapy and T cell receptor gene transfer immunotherapy. Antibody based immunotherapy such as the monoclonal antibody against HER-2/neu (trastuzumab) is successfully used in the treatment of breast cancer patients with over-expressed HER-2/neu, however, HER-2/neu is over-expressed only in 25-30% of breast cancer patients. Cancer vaccine immunotherapy is a promising method to treat cancer patients. Cancer vaccines can be used to induce specific anti-tumor immunity in breast cancer patients, but cannot induce objective tumor regression. Adoptive T cell transfer immunotherapy is an effective method in the treatment of melanoma patients. Recent advances in anti-tumor T cell generation ex vivo and limited clinical trial data have made the feasibility of adoptive T cell transfer immunotherapy in the treatment of breast cancer patients. T cell receptor gene transfer can redirect the specificity of T cells. Chimeric receptor, scFv(anti-HER-2/neu)/zeta receptor, was successfully used to redirect cytotoxic T lymphocyte hybridoma cells to obtain anti-HER-2/neu positive tumor cells, suggesting the feasibility of treatment of breast cancer patients with T cell receptor gene transfer immunotherapy. Clinical trials will approve that immunotherapy is an effective method to cure breast cancer disease in the near future.

  14. Antigen-specific immunotherapy in ovarian cancer and p53 as tumor antigen

    Vermeij, Renee; Leffers, Ninke; Melief, Cornelis J.; Daemen, Toos; Nijman, Hans W.

    2012-01-01

    This review discusses the results of different immunization strategies, identifies possible drawbacks in study design and provides potential solutions for augmentation of clinical efficacy. A potential target for cancer immunotherapy is p53, as approximately 50% of ovarian cancer cells carry p53 mut

  15. Specific immunotherapy can greatly reduce the need for systemic steroids in allergic rhinitis

    Aasbjerg, Kristian; Torp-Pedersen, C; Backer, V

    2012-01-01

    Worldwide, more than 400 million individuals have allergic rhinitis, which has a significant impact on the individual's general health. Most patients self-medicate with over-the-counter drugs, but severe cases need treatment with topical corticosteroids and/or immunotherapy (SCIT). Although the A...

  16. Classification of current anticancer immunotherapies

    Vacchelli, Erika; Pedro, José-Manuel Bravo-San; Buqué, Aitziber; Senovilla, Laura; Baracco, Elisa Elena; Bloy, Norma; Castoldi, Francesca; Abastado, Jean-Pierre; Agostinis, Patrizia; Apte, Ron N.; Aranda, Fernando; Ayyoub, Maha; Beckhove, Philipp; Blay, Jean-Yves; Bracci, Laura; Caignard, Anne; Castelli, Chiara; Cavallo, Federica; Celis, Estaban; Cerundolo, Vincenzo; Clayton, Aled; Colombo, Mario P.; Coussens, Lisa; Dhodapkar, Madhav V.; Eggermont, Alexander M.; Fearon, Douglas T.; Fridman, Wolf H.; Fučíková, Jitka; Gabrilovich, Dmitry I.; Galon, Jérôme; Garg, Abhishek; Ghiringhelli, François; Giaccone, Giuseppe; Gilboa, Eli; Gnjatic, Sacha; Hoos, Axel; Hosmalin, Anne; Jäger, Dirk; Kalinski, Pawel; Kärre, Klas; Kepp, Oliver; Kiessling, Rolf; Kirkwood, John M.; Klein, Eva; Knuth, Alexander; Lewis, Claire E.; Liblau, Roland; Lotze, Michael T.; Lugli, Enrico; Mach, Jean-Pierre; Mattei, Fabrizio; Mavilio, Domenico; Melero, Ignacio; Melief, Cornelis J.; Mittendorf, Elizabeth A.; Moretta, Lorenzo; Odunsi, Adekunke; Okada, Hideho; Palucka, Anna Karolina; Peter, Marcus E.; Pienta, Kenneth J.; Porgador, Angel; Prendergast, George C.; Rabinovich, Gabriel A.; Restifo, Nicholas P.; Rizvi, Naiyer; Sautès-Fridman, Catherine; Schreiber, Hans; Seliger, Barbara; Shiku, Hiroshi; Silva-Santos, Bruno; Smyth, Mark J.; Speiser, Daniel E.; Spisek, Radek; Srivastava, Pramod K.; Talmadge, James E.; Tartour, Eric; Van Der Burg, Sjoerd H.; Van Den Eynde, Benoît J.; Vile, Richard; Wagner, Hermann; Weber, Jeffrey S.; Whiteside, Theresa L.; Wolchok, Jedd D.; Zitvogel, Laurence; Zou, Weiping

    2014-01-01

    During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into “passive” and “active” based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches. PMID:25537519

  17. Adoptive Immunotherapy for Hematological Malignancies Using T Cells Gene-Modified to Express Tumor Antigen-Specific Receptors

    Hiroshi Fujiwara

    2014-12-01

    Full Text Available Accumulating clinical evidence suggests that adoptive T-cell immunotherapy could be a promising option for control of cancer; evident examples include the graft-vs-leukemia effect mediated by donor lymphocyte infusion (DLI and therapeutic infusion of ex vivo-expanded tumor-infiltrating lymphocytes (TIL for melanoma. Currently, along with advances in synthetic immunology, gene-modified T cells retargeted to defined tumor antigens have been introduced as “cellular drugs”. As the functional properties of the adoptive immune response mediated by T lymphocytes are decisively regulated by their T-cell receptors (TCRs, transfer of genes encoding target antigen-specific receptors should enable polyclonal T cells to be uniformly redirected toward cancer cells. Clinically, anticancer adoptive immunotherapy using genetically engineered T cells has an impressive track record. Notable examples include the dramatic benefit of chimeric antigen receptor (CAR gene-modified T cells redirected towards CD19 in patients with B-cell malignancy, and the encouraging results obtained with TCR gene-modified T cells redirected towards NY-ESO-1, a cancer-testis antigen, in patients with advanced melanoma and synovial cell sarcoma. This article overviews the current status of this treatment option, and discusses challenging issues that still restrain the full effectiveness of this strategy, especially in the context of hematological malignancy.

  18. Tumor-derived vaccines containing CD200 inhibit immune activation: implications for immunotherapy.

    Xiong, Zhengming; Ampudia-Mesias, Elisabet; Shaver, Rob; Horbinski, Craig M; Moertel, Christopher L; Olin, Michael R

    2016-09-01

    There are over 400 ongoing clinical trials using tumor-derived vaccines. This approach is especially attractive for many types of brain tumors, including glioblastoma, yet so far the clinical response is highly variable. One contributor to poor response is CD200, which acts as a checkpoint blockade, inducing immune tolerance. We demonstrate that, in response to vaccination, glioma-derived CD200 suppresses the anti-tumor immune response. In contrast, a CD200 peptide inhibitor that activates antigen-presenting cells overcomes immune tolerance. The addition of the CD200 inhibitor significantly increased leukocyte infiltration into the vaccine site, cytokine and chemokine production, and cytolytic activity. Our data therefore suggest that CD200 suppresses the immune system's response to vaccines, and that blocking CD200 could improve the efficacy of cancer immunotherapy. PMID:27485078

  19. T cells expressing CD19-specific Engager Molecules for the Immunotherapy of CD19-positive Malignancies

    Mireya Paulina Velasquez; David Torres; Kota Iwahori; Sunitha Kakarla; Caroline Arber; Tania Rodriguez-Cruz; Arpad Szoor; Bonifant, Challice L.; Claudia Gerken; Cooper, Laurence J.N.; Xiao-Tong Song; Stephen Gottschalk

    2016-01-01

    T cells expressing chimeric antigen receptors (CARs) or the infusion of bispecific T-cell engagers (BITEs) have shown antitumor activity in humans for CD19-positive malignancies. While BITEs redirect the large reservoir of resident T cells to tumors, CAR T cells rely on significant in vivo expansion to exert antitumor activity. We have shown that it is feasible to modify T cells to secrete solid tumor antigen-specific BITEs, enabling T cells to redirect resident T cells to tumor cells. To ada...

  20. Functional inactivation of EBV-specific T-lymphocytes in nasopharyngeal carcinoma: implications for tumor immunotherapy.

    Jiang Li

    Full Text Available Nasopharyngeal carcinoma (NPC is an Epstein-Barr virus (EBV associated malignancy with high prevalence in Southern Chinese. In order to assess whether defects of EBV-specific immunity may contribute to the tumor, the phenotype and function of circulating T-cells and tumor infiltrating lymphocytes (TILs were investigated in untreated NPC patients. Circulating naïve CD3+CD45RA+ and CD4+CD25- cells were decreased, while activated CD4+CD25+ T-cells and CD3-CD16+ NK-cells were increased in patients compared to healthy donors. The frequency of T-cells recognizing seven HLA-A2 restricted epitopes in LMP1 and LMP2 was lower in the patients and remained low after stimulation with autologous EBV-carrying cells. TILs expanded in low doses of IL-2 exhibited an increase of CD3+CD4+, CD3+CD45RO+ and CD4+CD25+ cells and 2 to 5 fold higher frequency of LMP1 and LMP2 tetramer positive cells compared to peripheral blood. EBV-specific cytotoxicity could be reactivated from the blood of most patients, whereas the TILs lacked cytotoxic activity and failed to produce IFNgamma upon specific stimulation. Thus, EBV-specific rejection responses appear to be functionally inactivated at the tumor site in NPC.

  1. Ex vivo generation of human alloantigen-specific regulatory T cells from CD4(posCD25(high T cells for immunotherapy.

    Jorieke H Peters

    Full Text Available BACKGROUND: Regulatory T cell (Treg based immunotherapy is a potential treatment for several immune disorders. By now, this approach proved successful in preclinical animal transplantation and auto-immunity models. In these models the success of Treg based immunotherapy crucially depends on the antigen-specificity of the infused Treg population. For the human setting, information is lacking on how to generate Treg with direct antigen-specificity ex vivo to be used for immunotherapy. METHODOLOGY/PRINCIPAL FINDINGS: Here, we demonstrate that in as little as two stimulation cycles with HLA mismatched allogeneic stimulator cells and T cell growth factors a very high degree of alloantigen-specificity was reached in magnetic bead isolated human CD4(posCD25(high Treg. Efficient increases in cell numbers were obtained. Primary allogeneic stimulation appeared a prerequisite in the generation of alloantigen-specific Treg, while secondary allogeneic or polyclonal stimulation with anti-CD3 plus anti-CD28 monoclonal antibodies enriched alloantigen-specificity and cell yield to a similar extent. CONCLUSIONS/SIGNIFICANCE: The ex vivo expansion protocol that we describe will very likely increase the success of clinical Treg-based immunotherapy, and will help to induce tolerance to selected antigens, while minimizing general immune suppression. This approach is of particular interest for recipients of HLA mismatched transplants.

  2. Tumor-specific immunotherapy of murine bladder cancer with butanol-extracted antigens and ethylchlorformate polymerized tumor protein.

    Rochester, M G; Sarosdy, M F; Pickett, S H; Stogdill, B J; Lamm, D L

    1988-09-01

    Successful treatment of superficial bladder cancer using nonspecific immunotherapy with Bacillus Calmette-Guerin (BCG) has been well documented. Investigation of two potential tumor-specific immunotherapeutic agents using a murine transitional-cell carcinoma model (MBT-2) is reported. The survival of mice immunized with tumor proteins obtained by treating tumor cells with either 1-butanol or ethylchlorformate was compared to the survival of animals immunized with BCG. Long-term immunity conferred by each of these agents was also assessed. Significant protection by both agents was noted in all treatment groups compared to controls. Long-term immunity was also found to result from treatment with both investigational agents as well as with BCG. Butanol-extracted antigens and ethylchlorformate polymerized tumor protein may be useful as immunotherapeutic alternatives to BCG. PMID:3411695

  3. Quality assurance ofallergen-specific immunotherapy during a national outbreak of anaphylaxis: results of a continuous sentinel event surveillance system

    Madsen, F; Frølund, L; Christensen, M;

    2009-01-01

    BACKGROUND AND OBJECTIVE: Subcutaneous allergen-specific immunotherapy (SCIT) is an effective treatment for patients with allergic asthma and rhinitis. SCIT may be performed in many different ways and good safety profiles have been published. Other studies, however, have reported high frequencies...... of severe adverse events (SAEs) but without identifying the causes. After an increase in SCIT-related SAEs in Denmark between 2003 and 2004, strict performance regulations were imposed by the authorities. Because safety data from national databases were not available, we implemented a surveillance...... injection was calculated at < 1.3 per 10 000 injections. DISCUSSION: Our results confirm the good safety profile of SCIT. We applied a sentinel SCIT surveillance system that may offer a means of guaranteeing safety by providing online feedback to all participating clinics when SAEs occur in order to explore...

  4. P53-specific T cell responses in patients with malignant and benign ovarian tumors : Implications for p53 based immunotherapy

    Lambeck, Annechien; Leffers, Ninke; Hoogeboom, Baukje-Nynke; Sluiter, Wim; Hamming, Ineke; Klip, Harry; ten Hoor, Klaske; Esajas, Martha; van Oven, Magda; Drijfhout, Jan-Wouter; Platteel, Inge; Offringa, Rienk; Hollema, Harry; Melief, Kees; van der Burg, Sjoerd; van der Zee, Ate; Daemen, Toos; Nijman, Hans

    2007-01-01

    Despite intensive treatment, 70% of the ovarian cancer patients will develop recurrent disease, emphasizing the need for new approaches such as immunotherapy. A promising antigenic target for immunotherapy in ovarian cancer is the frequently overexpressed p53 protein. The aim of the study was to eva

  5. BRAIN CANCER IMMUNOTHERAPY (REVIEW)

    Yashin К.S.; Medyanik I.А.

    2014-01-01

    The review analyzes Russian and foreign reports concerned with a rapidly developing brain cancer treatment technique — immunotherapy. There has been presented a current view on the basic concept of antitumor immunity, on the problem of immune system interaction with a tumor in general and under the conditions of an immunologically privileged nervous system, shown the theoretical background of efficiency of immunotherapy used against brain cancer (the capability of tumor antigens and activated...

  6. Recent progress in allergen immunotherapy.

    Nouri-Aria, Kayhan T

    2008-03-01

    The efficacy of allergen immunotherapy for the treatment of allergic rhinoconjunctivitis with or without seasonal bronchial asthma and anaphylaxis caused by the sting of the hymenoptera class of insects has been clearly demonstrated in numerous well-designed, placebo-controlled trials. Immunotherapy whether by subcutaneous injection of allergen extract or by oral/sublingual routes modifies peripheral and mucosal TH2 responses in favour of TH1 responses and augments IL-10 synthesis by TRegs both locally and by peripheral T cells. Recent researches into the cellular and molecular basis of allergic reactions have advanced our understanding of the mechanisms involved in allergic diseases. They have also helped the development of innovative approaches that are likely to further improve the control of allergic responses in the future. Novel approaches to immunotherapy that are currently being explored include the use of peptide-based allergen preparations, which do not bind IgE and therefore do not activate mast cells, but reduce both Th1 and Th2-cytokine synthesis, while increasing levels of IL-10. Alternative strategies include the use of adjuvants, such as nucleotide immunostimulatory sequences derived from bacteria CpG or monophosphoryl lipid A that potentiate Th1 responses. Blocking the effects of IgE using anti-IgE such as omalizumab, a recombinant humanized monoclonal antibody that selectively binds to IgE, has been shown to be a useful strategy in the treatment of allergic asthma and rhinitis. The combination of anti-IgE-monoclonal antibody omalizumab with allergen immunotherapy has proved beneficial for the treatment of allergic diseases, offering improved efficacy, limited adverse effects, and potential immune-modifying effects. This combination may also accelerate the rapidity by which immunotherapy induces TReg cells. If allergic diseases are due to a lack of allergen-specific TReg cells, then effective therapies should target the induction and the

  7. Phase I clinical trial of HER2-specific immunotherapy with concomitant HER2 kinase inhibtion

    Hamilton Erika

    2012-02-01

    Full Text Available Abstract Background Patients with HER2-overexpressing metastatic breast cancer, despite initially benefiting from the monoclonal antibody trastuzumab and the EGFR/HER2 tyrosine kinase inhibitor lapatinib, will eventually have progressive disease. HER2-based vaccines induce polyclonal antibody responses against HER2 that demonstrate enhanced anti-tumor activity when combined with lapatinib in murine models. We wished to test the clinical safety, immunogenicity, and activity of a HER2-based cancer vaccine, when combined with lapatinib. Methods We immunized women (n = 12 with metastatic, trastuzumab-refractory, HER2-overexpressing breast cancer with dHER2, a recombinant protein consisting of extracellular domain (ECD and a portion of the intracellular domain (ICD of HER2 combined with the adjuvant AS15, containing MPL, QS21, CpG and liposome. Lapatinib (1250 mg/day was administered concurrently. Peripheral blood antibody and T cell responses were measured. Results This regimen was well tolerated, with no cardiotoxicity. Anti-HER2-specific antibody was induced in all patients whereas HER2-specific T cells were detected in one patient. Preliminary analyses of patient serum demonstrated downstream signaling inhibition in HER2 expressing tumor cells. The median time to progression was 55 days, with the majority of patients progressing prior to induction of peak anti-HER2 immune responses; however, 300-day overall survival was 92% (95% CI: 77-100%. Conclusions dHER2 combined with lapatinib was safe and immunogenic with promising long term survival in those with HER2-overexpressing breast cancers refractory to trastuzumab. Further studies to define the anticancer activity of the antibodies induced by HER2 vaccines along with lapatinib are underway. Trial registry ClinicalTrials.gov NCT00952692

  8. Countermeasure development : Specific Immunoprophylaxis and Immunotherapy of Combined Acute Radiation Syndromes.

    Popov, Dmitri; Maliev, Slava

    healthy mammals induces development of lymphocytosis, leukocytosis, trombocytosis, and ac-tivation of blood coagulation cascade. Administration of SRT (IV or IM) to radiation naive animals induces leukopeina, thrombopenia, lymphopenia as a result of clonogenic programmed cell death. Blood coagulation cascade suppression is registered. Materials and Methods: Cows, horses, rabbits, rats, mice were used for different stages of our experiments. Animals were quarantined at laboratory conditions for three weeks prior to experimentation. Isolation of the SRT was provided from the central lymphatic duct of irradiated cows. Immunization of horses and rabbits to obtain Antiradiation Antibodies (Specific Antiradiation Antidote -SAR) was provided. Animals: cows, mice, rats were irradiated in the VSRI (Kazan), Academy of Vet-erinary Medicine (Moscow), Scientific Research Institute of Radiobiology (Gomel), Scientific Research Nuclear Center (Dubna). Equipment for gamma-irradiation: " Pyma", "Panorama" -Co gamma radiation source. Irradiation was performed by different doses corresponding to induction of severe forms of the Acute Radiation Syndromes (ARS). Mice and rats were re-ceiving the combined radiation and thermal injury. Model of the thermal injury: Burns -10% of total body surface. Third grade of burns was used as a model. Thermal Injury was given after irradiation. Preparations of Antiradiation Vaccine -contained a toxoid form of Radiation Toxins were used for immune-prophylaxis. Preparations of Antiradiation Antidote IgG con-tained antibodies to Radiation Toxins was used for immune-therapy. Scheme of experiments: I. Control: Group A. Animals with the ARS not received any treatment. Group B. Animals with the thermal injury not received any treatment. Group C. Animals with combined forms of the ARS not received any treatment. II. Specific Immune-prophylaxis with Antiradiation Vaccine (AV): Group D. Animals undergone immune-prophylaxis by AV. Irradiation was provided 24 days after

  9. Antitumor and Adjuvant Activity of λ-carrageenan by Stimulating Immune Response in Cancer Immunotherapy.

    Luo, Min; Shao, Bin; Nie, Wen; Wei, Xia-Wei; Li, Yu-Li; Wang, Bi-Lan; He, Zhi-Yao; Liang, Xiao; Ye, Ting-Hong; Wei, Yu-Quan

    2015-01-01

    λ-Carrageenan is a seaweed polysaccharide which has been generally used as proinflammatory agent in the basic research, however, how the immunomodulating activity of λ-carrageenan affects tumor microenvironment remains unknown. In this study, we found that intratumoral injection of λ-carrageenan could inhibit tumor growth in B16-F10 and 4T1 bearing mice and enhance tumor immune response by increasing the number of tumor-infiltrating M1 macrophages, DCs and more activated CD4(+)CD8(+) T lymphocytes in spleen. In addition, λ-carrageenan could enhance the secretion of IL17A in spleen and significantly increase the level of TNF-α in tumor, most of which was secreted by infiltrating macrophages. Moreover, λ-carrageenan exhibited an efficient adjuvant effect in OVA-based preventative and therapeutic vaccine for cancer treatment, which significantly enhanced the production of anti-OVA antibody. The toxicity analysis suggested that λ-carrageenan was with a good safety profile. Thus, λ-carrageenan might be used both as a potent antitumor agent and an efficient adjuvant in cancer immunotherapy. PMID:26098663

  10. Effective Arrestin–Specific Immunotherapy of Experimental Autoimmune Uveitis with RTL: A Prospect for Treatment of Human Uveitis

    Kyger, Madison; Worley, Aneta; Huan, Jianya; McDowell, Hugh; Smith, W. Clay; Burrows, Gregory G.; Mattapallil, Mary J.; Caspi, Rachel R.; Adamus, Grazyna

    2013-01-01

    Purpose: To evaluate the immunotherapeutic efficacy of recombinant T cell receptor ligands (RTLs) specific for arrestin immunity in treatment of experimental autoimmune uveitis (EAU) in humanized leukocyte antigen (HLA-DR3) transgenic (Tg) mice. Methods: We generated de novo recombinant human DR3-derived RTLs bearing covalently tethered arrestin peptides 291–310 (RTL351) or 305–324 (RTL352). EAU was induced by immunization of HLA-DR3 mice with arrestin or arrestin peptide and treated with RTLs by subcutaneous delivery. T cell proliferation and cytokine expression was measured in RTL-treated and control mice. Results: RTL351 prevented the migration of cells outside of the spleen and the recruitment of inflammatory cells into the eye, and provided full protection against inflammation from EAU induced with arrestin or arrestin peptides. RTL351 significantly inhibited T cell proliferation and secretion of inflammatory cytokines interleukin 2 (IL-2), interferon γ (IFN-γ), IL-6, and IL-17 and chemokines (macrophage inflammatory proteins [MIP-1a] and regulated and normal T cell expressed and secreted [RANTES]), which is in agreement with the suppression of intraocular inflammation. RTL350 (“empty,” no peptide) and RTL352 were not effective. Conclusions: Immunotherapy with a single RTL351 successfully prevented and treated arrestin-induced EAU in HLA-DR3 mice and provided proof of concept for therapy of autoimmune uveitis in human patients. The beneficial effects of RTL351 should be attributed to a significant decrease in Th1/Th17 mediated inflammation. Translational Relevance: Successful therapies for autoimmune uveitis must specifically inhibit pathogenic inflammation without inducing generalized immunosuppression. RTLs can offer such an option. The single retina-specific RTLs may have a value as potential immunotherapeutic drug for human autoimmune uveitis because they effectively prevent disease induced by multiple T cell specificities. PMID:24049712

  11. Development of a questionnaire to assess patient satisfaction with allergen-specific immunotherapy in adults: item generation, item reduction, and preliminary validation

    Justícia JL

    2011-05-01

    Full Text Available Jose Luis Justícia1, Eva Baró2, Victoria Cardona3, Pedro Guardia4, Pedro Ojeda5, José Maria Olaguíbel6, José Maria Vega7, Carmen Vidal81Medical Department, Stallergenes Ibérica, Barcelona, Spain; 2Health Outcomes Research Department, 3D Health Research, Barcelona, Spain; 3Hospital Vall d'Hebron, Barcelona, Spain; 4Hospital Virgen Macarena, Sevilla, Spain; 5Clínica de Asma y Alergia Dres. Ojeda, Madrid, Spain; 6Complejo Hospitalario de Navarra, Pamplona, Spain; 7Hospital Regional Universitario Carlos Haya Málaga, Spain; 8Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, SpainBackground: Allergen-specific immunotherapy (SIT is a treatment capable of modifying the natural course of allergy, so ensuring good adherence to SIT is fundamental. Up until now there has not existed an instrument specifically developed to measure patient satisfaction with SIT, although its assessment could help us to comprehend better and improve treatment adherence and effectiveness. The aim of this study was to develop an instrument to measure adult patient satisfaction with SIT.Methods: Items were generated from a literature review, focus groups with allergic adult patients undergoing SIT, and a meeting with experts. Potential items were administered to allergic patients undergoing SIT in an observational, cross-sectional, multicenter study. Item reduction was based on quantitative and qualitative criteria. A preliminary assessment of feasibility, reliability, and validity of the retained items was performed.Results: An initial pool of 70 items was administered to 257 patients undergoing SIT. Fifty-four items were eliminated resulting in a provisional instrument with 16 items. Factor analysis yielded four factors that were identified as perceived efficacy, activities and environment, cost-benefit balance, and overall satisfaction, explaining 74.8% of variance. Ceiling and floor effects were negligible for overall score. Overall score was

  12. DETECTION OF ALLERGEN SPECIFIC PLASMA CELLS IN ALLERGIC PATIENTS TREATED WITH SUBCUTANEOUS IMMUNOTHERAPY

    Schmid, Johannes Martin; Dahl, Ronald; Hoffmann, Hans Jürgen

    immune response in allergic patients and results in an inhibition of the specific type 1 allergic response. This inhibition is mainly brought about by a change in the immunoglobulin response pattern from allergen specific IgE towards predominantly IgG. Seven days after vaccination with tetanus vaccine...

  13. Vaccine development for allergen-specific immunotherapy based on recombinant allergens and synthetic allergen peptides: Lessons from the past and novel mechanisms of action for the future

    Valenta, Rudolf; Campana, Raffaela; Focke-Tejkl, Margit; Niederberger, Verena

    2016-01-01

    In the past, the development of more effective, safe, convenient, broadly applicable, and easy to manufacture vaccines for allergen-specific immunotherapy (AIT) has been limited by the poor quality of natural allergen extracts. Progress made in the field of molecular allergen characterization has now made it possible to produce defined vaccines for AIT and eventually for preventive allergy vaccination based on recombinant DNA technology and synthetic peptide chemistry. Here we review the char...

  14. Mechanistic insights into the oncolytic activity of vesicular stomatitis virus in cancer immunotherapy

    Simovic B

    2015-10-01

    Full Text Available Boris Simovic, Scott R Walsh, Yonghong Wan Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada Abstract: Immunotherapy and oncolytic virotherapy have both shown anticancer efficacy in the clinic as monotherapies but the greatest promise lies in therapies that combine these approaches. Vesicular stomatitis virus is a prominent oncolytic virus with several features that promise synergy between oncolytic virotherapy and immunotherapy. This review will address the cytotoxicity of vesicular stomatitis virus in transformed cells and what this means for antitumor immunity and the virus' immunogenicity, as well as how it facilitates the breaking of tolerance within the tumor, and finally, we will outline how these features can be incorporated into the rational design of new treatment strategies in combination with immunotherapy. Keywords: virotherapy, rhabdovirus, anti-tumor immunity, t cell, natural killer cell, therapeutic vaccine

  15. Specific immunotherapy has long-term preventive effect of seasonal and perennial asthma

    Jacobsen, L; Niggemann, B; Dreborg, S;

    2007-01-01

    rhinoconjunctivitis and conjunctival sensitivity persisted at the 10-year follow-up. Significantly less actively treated subjects had developed asthma at 10-year follow-up as evaluated by clinical symptoms [odds ratio 2.5 (1.1-5.9)]. Patients who developed asthma among controls were 24/53 and in the SIT group 16...

  16. Mucin 1-specific immunotherapy in a mouse model of spontaneous breast cancer.

    Mukherjee, Pinku; Madsen, Cathy S; Ginardi, Amelia R; Tinder, Teresa L; Jacobs, Fred; Parker, Joanne; Agrawal, Babita; Longenecker, B Michael; Gendler, Sandra J

    2003-01-01

    Human mucin 1 (MUC1) is an epithelial mucin glycoprotein that is overexpressed in 90% of all adenocarcinomas including breast, lung, pancreas, prostate, stomach, colon, and ovary. MUC1 is a target for immune intervention, because, in patients with solid adenocarcinomas, low-level cellular and humoral immune responses to MUC1 have been observed, which are not sufficiently strong to eradicate the growing tumor. The hypothesis for this study is that enhancing MUC1-specific immunity will result in antitumor immunity. To test this, the authors have developed a clinically relevant breast cancer model that demonstrates peripheral and central tolerance to MUC1 and develops spontaneous tumors of the mammary gland. In these mice, the authors tested a vaccine formulation comprised of liposomal-MUC1 lipopeptide and human recombinant interleukin-2. Results indicate that when compared with untreated mice, immunized mice develop T cells that express intracellular IFN-gamma, are reactive with MHC class I H-2Db/MUC1 tetramer, and are cytotoxic against MUC1-expressing tumor cells in vitro. The presence of MUC1-specific CTL did not translate into a clinical response as measured by time of tumor onset, tumor burden, and survival. The authors demonstrate that some of the immune-evasion mechanisms used by the tumor cells include downregulation of MHC-class I molecule, expression of TGF-beta2, and decrease in IFN-gamma -expressing effector T cells as tumors progress. Finally, utilizing an injectable breast cancer model, the authors show that targeting a single tumor antigen may not be an effective antitumor treatment, but that immunization with dendritic cells fed with whole tumor lysate is effective in breaking tolerance and protecting mice from subsequent tumor challenge. A physiologically relevant spontaneous breast cancer model has been developed to test improved immunotherapeutic approaches. PMID:12514429

  17. Nanomedicine for Cancer Immunotherapy: Tracking Cancer-Specific T-Cells in Vivo with Gold Nanoparticles and CT Imaging.

    Meir, Rinat; Shamalov, Katerina; Betzer, Oshra; Motiei, Menachem; Horovitz-Fried, Miryam; Yehuda, Ronen; Popovtzer, Aron; Popovtzer, Rachela; Cohen, Cyrille J

    2015-06-23

    Application of immune cell-based therapy in routine clinical practice is challenging due to the poorly understood mechanisms underlying success or failure of treatment. Development of accurate and quantitative imaging techniques for noninvasive cell tracking can provide essential knowledge for elucidating these mechanisms. We designed a novel method for longitudinal and quantitative in vivo cell tracking, based on the superior visualization abilities of classical X-ray computed tomography (CT), combined with state-of-the-art nanotechnology. Herein, T-cells were transduced to express a melanoma-specific T-cell receptor and then labeled with gold nanoparticles (GNPs) as a CT contrast agent. The GNP-labeled T-cells were injected intravenously to mice bearing human melanoma xenografts, and whole-body CT imaging allowed examination of the distribution, migration, and kinetics of T-cells. Using CT, we found that transduced T-cells accumulated at the tumor site, as opposed to nontransduced cells. Labeling with gold nanoparticles did not affect T-cell function, as demonstrated both in vitro, by cytokine release and proliferation assays, and in vivo, as tumor regression was observed. Moreover, to validate the accuracy and reliability of the proposed cell tracking technique, T-cells were labeled both with green fluorescent protein for fluorescence imaging, and with GNPs for CT imaging. A remarkable correlation in signal intensity at the tumor site was observed between the two imaging modalities, at all time points examined, providing evidence for the accuracy of our CT cell tracking abilities. This new method for cell tracking with CT offers a valuable tool for research, and more importantly for clinical applications, to study the fate of immune cells in cancer immunotherapy. PMID:26039633

  18. Low-Dose Cyclophosphamide Synergizes with Dendritic Cell-Based Immunotherapy in Antitumor Activity

    Joris D. Veltman

    2010-01-01

    Full Text Available Clinical immunotherapy trials like dendritic cell-based vaccinations are hampered by the tumor's offensive repertoire that suppresses the incoming effector cells. Regulatory T cells are instrumental in suppressing the function of cytotoxic T cells. We studied the effect of low-dose cyclophosphamide on the suppressive function of regulatory T cells and investigated if the success rate of dendritic cell immunotherapy could be improved. For this, mesothelioma tumor-bearing mice were treated with dendritic cell-based immunotherapy alone or in combination with low-dose of cyclophosphamide. Proportions of regulatory T cells and the cytotoxic T cell functions at different stages of disease were analyzed. We found that low-dose cyclophosphamide induced beneficial immunomodulatory effects by preventing the induction of Tregs, and as a consequence, cytotoxic T cell function was no longer affected. Addition of cyclophosphamide improved immunotherapy leading to an increased median and overall survival. Future studies are needed to address the usefulness of this combination treatment for mesothelioma patients.

  19. Microarray gene expression analysis to evaluate cell type specific expression of targets relevant for immunotherapy of hematological malignancies

    M.J. Pont (Margot); M.W. Honders; A.N. Kremer; C. van Kooten (Cees); C. Out; P.S. Hiemstra (Pieter); H.C. De Boer; M.J. Jager (Martine); E. Schmelzer; R.G.J. Vries (Robert); A.S. Al Hinai; W.G. Kroes (W.); R. Monajemi (Ramin); J.J. Goeman (Jelle); S. Böhringer (Stefan); W.A.F. Marijt; J.H.F. Falkenburg (Frederik); M. Griffioen

    2016-01-01

    textabstractCellular immunotherapy has proven to be effective in the treatment of hematological cancers by donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation and more recently by targeted therapy with chimeric antigen or T-cell receptor-engineered T cells. However, de

  20. Mechanisms of immunotherapy to aeroallergens.

    Shamji, M H; Durham, S R

    2011-09-01

    Allergen immunotherapy is allergen-specific, allergen dose- and time-dependent and is associated with long-term clinical and immunological tolerance that persists for years after discontinuation. Successful immunotherapy is accompanied by the suppression of numbers of T-helper 2 (Th2) effector cells, eosinophils, basophils, c-kit+mast cells and neutrophils infiltration in target organs, induction of IL-10 and/or TGF-β+Treg cells and increases in 'protective' non-inflammatory blocking antibodies, particularly IgG4 and IgA2 subclasses with inhibitory activity. These events are accompanied by a reduction and/or a redirection of underlying antigen-specific Th2-type T cell-driven hypersensitivity to the allergen(s) used for therapy. This suppression occurs within weeks or months as a consequence of the appearance of a population of regulatory T cells that exert their effects by mechanisms involving cell-cell contact, but also by the release of cytokines such as IL-10 (increases IgG4) and TGF-β (increases specific IgA). The more delayed-in-time appearance of antigen-specific T-helper 1 responses and alternative mechanisms such as Th2 cell anergy and/or apoptosis may also be involved. The mechanisms of sublingual immunotherapy are similar to those following a subcutaneous administration of allergen, whereas it is likely that additional events following antigen presentation in the sublingual mucosa and regional lymph nodes are involved. These insights have resulted in novel approaches and portend future biomarkers that may be surrogate or predictive of the clinical response to treatment. PMID:21762223

  1. Regulation of Gag- and Env-Specific CD8+ T Cell Responses in ART-Naive HIV-Infected Patients: Potential Implications for Individualized Immunotherapy.

    Christian Prebensen

    Full Text Available Strategies to develop a functional cure for HIV infection will likely require boosting of effector T cell responses to eliminate reactivated, latently infected cells. We have recently explored an assay for assessing antigen-specific regulation of T cell proliferation, which was related to clinical progression in untreated patients and to vaccine efficacy in two trials of therapeutic Gag-based vaccines. We here expand the same assay to further investigate regulation mediated by various inhibitory pathways. Peripheral blood mononuclear cells from 26 asymptomatic HIV-infected, antiretroviral therapy-naïve patients were stimulated with Gag and Env overlapping peptide panels for 5 days. Monoclonal antibodies (mAbs blocking inhibitory mediators interleukin (IL 10, transforming growth factor (TGF β, programmed death ligand (PD-L 1 and herpes virus entry mediator (HVEM were added to parallel cultures. Functional T cell regulation (FTR was defined as the difference in proliferation between stimulated cultures with and without blocking mAbs. FTR was detected in 54% of patients. Blockade of IL-10/PD-L1 and IL10/TGF-β detected all cases with Gag- and Env-associated FTR, respectively. In accordance with previous findings, isolated Env FTR was associated with higher plasma HIV RNA and lower CD4 counts, while patients with both Gag and Env FTR also had higher Gag- and Env-specific proliferative CD8+ T cell responses. There was no association between FTR and frequencies of activated regulatory T cells. In conclusion, we observed substantial heterogeneity in FTR between patients, inhibitory pathways and HIV antigens. FTR may help to individualize immunomodulation and warrants further assessment in clinical immunotherapy trials.

  2. Regulation of Gag- and Env-Specific CD8+ T Cell Responses in ART-Naïve HIV-Infected Patients: Potential Implications for Individualized Immunotherapy

    Prebensen, Christian; Lind, Andreas; Dyrhol-Riise, Anne-Ma; Kvale, Dag

    2016-01-01

    Strategies to develop a functional cure for HIV infection will likely require boosting of effector T cell responses to eliminate reactivated, latently infected cells. We have recently explored an assay for assessing antigen-specific regulation of T cell proliferation, which was related to clinical progression in untreated patients and to vaccine efficacy in two trials of therapeutic Gag-based vaccines. We here expand the same assay to further investigate regulation mediated by various inhibitory pathways. Peripheral blood mononuclear cells from 26 asymptomatic HIV-infected, antiretroviral therapy-naïve patients were stimulated with Gag and Env overlapping peptide panels for 5 days. Monoclonal antibodies (mAbs) blocking inhibitory mediators interleukin (IL) 10, transforming growth factor (TGF) β, programmed death ligand (PD–L) 1 and herpes virus entry mediator (HVEM) were added to parallel cultures. Functional T cell regulation (FTR) was defined as the difference in proliferation between stimulated cultures with and without blocking mAbs. FTR was detected in 54% of patients. Blockade of IL-10/PD-L1 and IL10/TGF-β detected all cases with Gag- and Env-associated FTR, respectively. In accordance with previous findings, isolated Env FTR was associated with higher plasma HIV RNA and lower CD4 counts, while patients with both Gag and Env FTR also had higher Gag- and Env-specific proliferative CD8+ T cell responses. There was no association between FTR and frequencies of activated regulatory T cells. In conclusion, we observed substantial heterogeneity in FTR between patients, inhibitory pathways and HIV antigens. FTR may help to individualize immunomodulation and warrants further assessment in clinical immunotherapy trials. PMID:27128502

  3. Microarray Gene Expression Analysis to Evaluate Cell Type Specific Expression of Targets Relevant for Immunotherapy of Hematological Malignancies.

    M J Pont

    Full Text Available Cellular immunotherapy has proven to be effective in the treatment of hematological cancers by donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation and more recently by targeted therapy with chimeric antigen or T-cell receptor-engineered T cells. However, dependent on the tissue distribution of the antigens that are targeted, anti-tumor responses can be accompanied by undesired side effects. Therefore, detailed tissue distribution analysis is essential to estimate potential efficacy and toxicity of candidate targets for immunotherapy of hematological malignancies. We performed microarray gene expression analysis of hematological malignancies of different origins, healthy hematopoietic cells and various non-hematopoietic cell types from organs that are often targeted in detrimental immune responses after allogeneic stem cell transplantation leading to graft-versus-host disease. Non-hematopoietic cells were also cultured in the presence of IFN-γ to analyze gene expression under inflammatory circumstances. Gene expression was investigated by Illumina HT12.0 microarrays and quality control analysis was performed to confirm the cell-type origin and exclude contamination of non-hematopoietic cell samples with peripheral blood cells. Microarray data were validated by quantitative RT-PCR showing strong correlations between both platforms. Detailed gene expression profiles were generated for various minor histocompatibility antigens and B-cell surface antigens to illustrate the value of the microarray dataset to estimate efficacy and toxicity of candidate targets for immunotherapy. In conclusion, our microarray database provides a relevant platform to analyze and select candidate antigens with hematopoietic (lineage-restricted expression as potential targets for immunotherapy of hematological cancers.

  4. Autologous MUC1-Specific Th1 Effector Cell Immunotherapy Induce Differential Levels of Systemic TReg Cell Subpopulations That Result in Increased Ovarian Cancer Patient Survival

    Dobrzanski, Mark J.; Rewers-Felkins, Kathleen A.; Quinlin, Imelda S.; Samad, Khaliquzzaman A.; Phillips, Catherine A.; Robinson, William; Dobrzanski, David J.; Wright, Stephen E.

    2009-01-01

    Adoptive T cell immunotherapy using autologous lymphocytes is a viable treatment for patients with cancer and requires participation of Ag-specific CD4 and CD8 T cells. Here, we assessed the immunotherapeutic effects of autologous MUC1 peptide-stimulated CD4+ effector cells following adoptive transfer in patients with ovarian cancer. Using MUC1 peptide and IL-2 for ex vivo CD4+/Th1 effector cell generation, we show that three monthly treatment cycles of peripheral blood T cell restimulation a...

  5. In Vivo and In Vitro Studies of Th17 Response to Specific Immunotherapy in House Dust Mite-Induced Allergic Rhinitis Patients

    Li, Chun Wei; Lu, Han Gui; Chen, Hua; Lin, Zhi Bin; Wang, Yun; Li, Tian Ying

    2014-01-01

    T helper (Th)17 cells have been implicated in the development of allergic rhinitis (AR), but their response to specific immunotherapy (SIT) remains unclear. We investigated the impact of SIT on Th17 response and Th1/Th2 changes in AR patients. Blood samples from AR patients (n = 20) who were monosensitized to house dust mite (HDM) were collected before the initiation of SIT (SIT-untreated) and after the end of 2-year SIT (SIT-treated) treatment. Twenty healthy volunteers were recruited as con...

  6. Systemic Reactions Induced by Allergen Specific Immunotherapy%变应原免疫治疗致全身反应

    关凯; 文昭明

    2011-01-01

    目的 对变应原免疫治疗过程中发生的全身反应进行临床观察,以期找到其发生规律,便于及时发现、处理和预防.方法 回顾近15年接受变应原免疫治疗(AIT)过程中出现全身反应的29例患者,依据反应发生时间与程度按欧洲变态反应和临床免疫学会(EAACI)分类标准分为4级.结果 29例患者均为吸入变应原致呼吸道过敏性疾病,在AIT过程中共出现59例次全身反应.29例患者中男女比例17:12,开始接受AIT的平均年龄为27.3岁(6~59岁).吸入变应原致敏情况:夏秋花粉24例(蒿属花粉22例、葎草花粉1例、混合夏秋花粉1例),蚕丝4例,交链孢霉1例.皮下注射后症状出现时间:≤20 min占67.8% (40/59),≤30 min占84.7% (50/59).59例次全身反应中,荨麻疹占55.9% (33/59),哮喘占50.9% (30/59),上呼吸道过敏症状占23.7%(14/59),喉水肿占5.1% (3/59),低血容量休克占1.7%(1/59).全身反应中,较轻的Ⅰ类和Ⅱ类占76.3% (45/59),较重的Ⅲ类和Ⅳ类均发生于皮下注射后15 min内.结论 全身反应严重程度与皮试反应强度无关.AIT注射后应留院密切观察,特别是前15 min应予充分重视.%Objective Systemic reactions induced by allergen specific immunotherapy (SIT) injections can be observed in clinical practice, which are rarely life-threaten but the most dangerous reactions. Summary of the clinical features will benefit to early recognition, adequate management and prevention of systemic reactions. Methods Systemic reactions were collected and reviewed from patients who were prescribed SIT by using aqueous allergen extracts during the past fifteen years from Department of Allergy, Peking Union Medical College Hospital. All systemic reactions were graded into level I to IV based on the grading system of EAACI Immunotherapy Position Paper, according to the onset and severity of clinical symptoms. Results 59 systemic reactions were collected from 29 respiratory allergic

  7. Immunotherapy with MVA-BN®-HER2 induces HER-2-specific Th1 immunity and alters the intratumoral balance of effector and regulatory T cells.

    Mandl, Stefanie J; Rountree, Ryan B; Dalpozzo, Katie; Do, Lisa; Lombardo, John R; Schoonmaker, Peter L; Dirmeier, Ulrike; Steigerwald, Robin; Giffon, Thierry; Laus, Reiner; Delcayre, Alain

    2012-01-01

    MVA-BN®-HER2 is a new candidate immunotherapy designed for the treatment of HER-2-positive breast cancer. Here, we demonstrate that a single treatment with MVA-BN®-HER2 exerts potent anti-tumor efficacy in a murine model of experimental pulmonary metastasis. This anti-tumor efficacy occurred despite a strong tumor-mediated immunosuppressive environment characterized by a high frequency of regulatory T cells (T(reg)) in the lungs of tumor-bearing mice. Immunogenicity studies showed that treatment with MVA-BN®-HER2 induced strongly Th1-dominated HER-2-specific antibody and T-cell responses. MVA-BN®-HER2-induced anti-tumor activity was characterized by an increased infiltration of lungs with highly activated, HER-2-specific, CD8+CD11c+ T cells accompanied by a decrease in the frequency of T(reg) cells in the lung, resulting in a significantly increased ratio of effector T cells to T(reg) cells. In contrast, administration of HER2 protein formulated in Complete Freund's Adjuvant (CFA) induced a strongly Th2-biased immune response to HER-2. However, this did not lead to significant infiltration of the tumor-bearing lungs by CD8+ T cells or the decrease in the frequency of T(reg) cells nor did it result in anti-tumor efficacy. In vivo depletion of CD8+ cells confirmed that CD8 T cells were required for the anti-tumor activity of MVA-BN®-HER2. Furthermore, depletion of CD4+ or CD25+ cells demonstrated that tumor-induced T(reg) cells promoted tumor growth and that CD4 effector cells also contribute to MVA-BN®-HER2-mediated anti-tumor efficacy. Taken together, our data demonstrate that treatment with MVA-BN®-HER2 controls tumor growth through mechanisms including the induction of Th1-biased HER-2-specific immune responses and the control of tumor-mediated immunosuppression. PMID:21822917

  8. Mouse Models of Tumor Immunotherapy.

    Ngiow, Shin Foong; Loi, Sherene; Thomas, David; Smyth, Mark J

    2016-01-01

    Immunotherapy is now evolving into a major therapeutic option for cancer patients. Such clinical advances also promote massive interest in the search for novel immunotherapy targets, and to understand the mechanism of action of current drugs. It is projected that a series of novel immunotherapy agents will be developed and assessed for their therapeutic activity. In light of this, in vivo experimental mouse models that recapitulate human malignancies serve as valuable tools to validate the efficacy and safety profile of immunotherapy agents, before their transition into clinical trials. In this review, we will discuss the major classes of experimental mouse models of cancer commonly used for immunotherapy assessment and provide examples to guide the selection of appropriate models. We present some new data concerning the utility of a carcinogen-induced tumor model for comparing immunotherapies and combining immunotherapy with chemotherapy. We will also highlight some recent advances in experimental modeling of human malignancies in mice that are leading towards personalized therapy in patients. PMID:26922998

  9. Immunotherapy of non-Hodgkin's lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells.

    Turtle, Cameron J; Hanafi, Laïla-Aïcha; Berger, Carolina; Hudecek, Michael; Pender, Barbara; Robinson, Emily; Hawkins, Reed; Chaney, Colette; Cherian, Sindhu; Chen, Xueyan; Soma, Lorinda; Wood, Brent; Li, Daniel; Heimfeld, Shelly; Riddell, Stanley R; Maloney, David G

    2016-09-01

    CD19-specific chimeric antigen receptor (CAR)-modified T cells have antitumor activity in B cell malignancies, but factors that affect toxicity and efficacy have been difficult to define because of differences in lymphodepletion and heterogeneity of CAR-T cells administered to individual patients. We conducted a clinical trial in which CD19 CAR-T cells were manufactured from defined T cell subsets and administered in a 1:1 CD4(+)/CD8(+) ratio of CAR-T cells to 32 adults with relapsed and/or refractory B cell non-Hodgkin's lymphoma after cyclophosphamide (Cy)-based lymphodepletion chemotherapy with or without fludarabine (Flu). Patients who received Cy/Flu lymphodepletion had increased CAR-T cell expansion and persistence, and higher response rates [50% complete remission (CR), 72% overall response rate (ORR)] than patients who received Cy-based lymphodepletion without Flu (8% CR, 50% ORR). The CR rate in patients treated with Cy/Flu at the maximally tolerated dose was 64% (82% ORR; n = 11). Cy/Flu minimized the effects of an immune response to the murine single-chain variable fragment component of the CAR, which limited CAR-T cell expansion and clinical efficacy in patients who received Cy-based lymphodepletion without Flu. Severe cytokine release syndrome (sCRS) and grade ≥3 neurotoxicity were observed in 13 and 28% of all patients, respectively. Serum biomarkers, one day after CAR-T cell infusion, correlated with subsequent sCRS and neurotoxicity. Immunotherapy with CD19 CAR-T cells in a defined CD4(+)/CD8(+) ratio allowed identification of correlative factors for CAR-T cell expansion, persistence, and toxicity, and facilitated optimization of lymphodepletion that improved disease response and overall and progression-free survival. PMID:27605551

  10. Cancer Immunotherapy of Targeting Angiogenesis

    JianmeiHou; LingTian; YuquanWei

    2004-01-01

    Tumor growth and metastasis are angiogenesis-dependent. Anti-angiogenic therapy may be a useful approach to cancer therapy. This review discussed tumor angiogenesis and immunotherapy of targeting tumor angiogenesis from two main aspects: (1) active vaccination to induce effective anti-angiogenesis immunity; (2) passive immunotherapy with anti-pro-angiogenic molecules relevant antibody. Evidence from the recent years suggested that anti-angiogenic therapy should be one of the most promising approaches to cancer therapy.

  11. Integrated cancer therapy combined radiotherapy and immunotherapy. The challenge of using Gc protein-derived macrophage activating factor (GcMAF) as a key molecule

    Radiation oncologists know the conflict between radiotherapy and immunotherapy, but now challenged trails of the integrative cancer therapies combined radiation therapy and various immunoreaction/immune therapies begin. We therefore review the recent results of basic research and clinical trial of the integrated cancer therapies which combined radiotherapy and various immune therapies/immunoreaction, and the challenged studies of combined use of radiotherapy and our developed cancer immunotherapy using serum GcMAF which is human serum containing Gc protein-derived macrophage activating factor (GcMAF). (author)

  12. Pathological Mobilization and Activities of Dendritic Cells in Tumor-Bearing Hosts: Challenges and Opportunities for Immunotherapy of Cancer

    Tesone, Amelia J.; Svoronos, Nikolaos; Allegrezza, Michael J.; Conejo-Garcia, Jose R.

    2013-01-01

    A common characteristic of solid tumors is the pathological recruitment of immunosuppressive myeloid cells, which in certain tumors includes dendritic cells (DCs). DCs are of particular interest in the field of cancer immunotherapy because they induce potent and highly specific anti-tumor immune responses, particularly in the early phase of tumorigenesis. However, as tumors progress, these cells can be transformed into regulatory cells that contribute to an immunosuppressive microenvironment favoring tumor growth. Therefore, controlling DC phenotype has the potential to elicit effective anti-tumor responses while simultaneously weakening the tumor’s ability to protect itself from immune attack. This review focuses on the dual nature of DCs in the tumor microenvironment, the regulation of DC phenotype, and the prospect of modifying DCs in situ as a novel immunotherapeutic approach. PMID:24339824

  13. Sublingual allergen immunotherapy

    Calderón, M A; Simons, F E R; Malling, Hans-Jørgen;

    2012-01-01

    To cite this article: Calderón MA, Simons FER, Malling H-J, Lockey RF, Moingeon P, Demoly P. Sublingual allergen immunotherapy: mode of action and its relationship with the safety profile. Allergy 2012; 67: 302-311. ABSTRACT: Allergen immunotherapy reorients inappropriate immune responses in......-presenting cells (mostly Langerhans and myeloid dendritic cells) exhibit a tolerogenic phenotype, despite constant exposure to danger signals from food and microbes. This reduces the induction of pro-inflammatory immune responses leading to systemic allergic reactions. Oral tissues contain relatively few mast...... cells and eosinophils (mostly located in submucosal areas) and, in comparison with subcutaneous tissue, are less likely to give rise to anaphylactic reactions. SLIT-associated immune responses include the induction of circulating, allergen-specific Th1 and regulatory CD4+ T cells, leading to clinical...

  14. Brain Cancer Immunotherapy (Review

    Yashin К.S.

    2014-12-01

    Full Text Available The review analyzes Russian and foreign reports concerned with a rapidly developing brain cancer treatment technique — immunotherapy. There has been presented a current view on the basic concept of antitumor immunity, on the problem of immune system interaction with a tumor in general and under the conditions of an immunologically privileged nervous system, shown the theoretical background of efficiency of immunotherapy used against brain cancer (the capability of tumor antigens and activated lymphocytes to penetrate the blood-brain barrier. There has been demonstrated the role of a transforming growth factor β, interleukin 10, cyclooxygenase-2, prostaglandin Е2, protein MCP-1, interactions Fas-receptor/Fas-ligand, antigen-4 cytotoxic Т-lymphocytes in tumor immunoresistance development. The review presents a current classification of the types of active and passive immunotherapy, each of the types being considered separately specifying the characteristics, the results of preclinical and clinical trials of each type efficiency, and possible side effects. Special attention has been paid to a new concept of a key role of tumor stem cells in the pathogenesis of cerebral gliomas and the target action on these cells.

  15. The efficiency of peptide immunotherapy for respiratory allergy.

    Incorvaia, Cristoforo; Montagni, Marcello; Ridolo, Erminia

    2016-06-01

    Allergen immunotherapy (AIT) was introduced more than a century ago and is yet the only disease-modifying treatment for allergy. AIT is currently conducted with whole allergen extracts and several studies clearly support its efficacy in the treatment of respiratory allergies, however the need for a long treatment - that affects costs and patients compliance - and possible IgE-mediated adverse events are still unresolved issues. Peptide immunotherapy is based on the use of short synthetic peptides which represent major T-cell epitopes of the allergen with markedly reduced ability to cross-link IgE and activate mast cells and basophils. Data from clinical trials confirmed the efficacy and tolerability of peptide immunotherapy in patients with cat allergy, with a sustained clinical effect after a short course treatment. Peptide therapy is a promising safe and effective new specific treatment for allergy to be developed for the most important allergens causing rhinitis or asthma. PMID:26901667

  16. A Functionally Superior Second-Generation Vector Expressing an Aurora Kinase-A-Specific T-Cell Receptor for Anti-Leukaemia Adoptive Immunotherapy.

    Casey, Nicholas Paul; Fujiwara, Hiroshi; Tanimoto, Kazushi; Okamoto, Sachiko; Mineno, Junichi; Kuzushima, Kiyotaka; Shiku, Hiroshi; Yasukawa, Masaki

    2016-01-01

    Aurora Kinase A is a cancer-associated protein normally involved in the regulation of mitosis. Being over-expressed in a range of cancers, it is a suitable target for cell-based immunotherapy. Gene transfer of T-cell receptor sequences cognisant of HLA-A*0201-restricted Aurora Kinase A antigen has previously been shown to transfer specific immunoreactivity against the target peptide in a Human Lymphocyte Antigen-restricted manner. While T cell receptor gene-transfer has great potential in overcoming the difficulties of isolating and expanding tumour-reactive lymphocytes from a patient's own cells, one hurdle is potential mispairing and competition between exogenous and endogenous T cell receptor chains. We have used a retroviral vector design bearing a short-interfering RNA that downregulates endogenous T cell receptor chains, without affecting expression of the transgenic T cell receptor sequences. The T cell receptor expression cassette also includes a 2A self-cleaving peptide, resulting in equimolar expression of the T cell receptor alpha and beta chains, further enhancing formation of the desired T cell receptor. Via a simple, modular cloning method, we have cloned the alpha and beta chains of the anti-Aurora Kinase A-reactive T cell receptor into this 'siTCR' vector. We then compared the activity of this vector against the original, 'conventional' vector across a panel of assays. T cell receptors expressed from the siTCR-vector retained the cytotoxic functionality of the original vector, with evidence of reduced off-target reactivity. The rate of expression of correctly-formed T cell receptors was superior using the siTCR design, and this was achieved at lower vector copy numbers. Maintaining T cell receptor efficacy with a reduced vector copy number reduces the risk of genotoxicity. The siTCR design also reduces the risk of mispairing and cross-reactivity, while increasing the functional titre. Such improvements in the safety of T cell receptor gene

  17. A Functionally Superior Second-Generation Vector Expressing an Aurora Kinase-A-Specific T-Cell Receptor for Anti-Leukaemia Adoptive Immunotherapy.

    Nicholas Paul Casey

    Full Text Available Aurora Kinase A is a cancer-associated protein normally involved in the regulation of mitosis. Being over-expressed in a range of cancers, it is a suitable target for cell-based immunotherapy. Gene transfer of T-cell receptor sequences cognisant of HLA-A*0201-restricted Aurora Kinase A antigen has previously been shown to transfer specific immunoreactivity against the target peptide in a Human Lymphocyte Antigen-restricted manner. While T cell receptor gene-transfer has great potential in overcoming the difficulties of isolating and expanding tumour-reactive lymphocytes from a patient's own cells, one hurdle is potential mispairing and competition between exogenous and endogenous T cell receptor chains. We have used a retroviral vector design bearing a short-interfering RNA that downregulates endogenous T cell receptor chains, without affecting expression of the transgenic T cell receptor sequences. The T cell receptor expression cassette also includes a 2A self-cleaving peptide, resulting in equimolar expression of the T cell receptor alpha and beta chains, further enhancing formation of the desired T cell receptor. Via a simple, modular cloning method, we have cloned the alpha and beta chains of the anti-Aurora Kinase A-reactive T cell receptor into this 'siTCR' vector. We then compared the activity of this vector against the original, 'conventional' vector across a panel of assays. T cell receptors expressed from the siTCR-vector retained the cytotoxic functionality of the original vector, with evidence of reduced off-target reactivity. The rate of expression of correctly-formed T cell receptors was superior using the siTCR design, and this was achieved at lower vector copy numbers. Maintaining T cell receptor efficacy with a reduced vector copy number reduces the risk of genotoxicity. The siTCR design also reduces the risk of mispairing and cross-reactivity, while increasing the functional titre. Such improvements in the safety of T cell

  18. Hypoallergenic molecules for subcutaneous immunotherapy.

    Jongejan, Laurian; van Ree, Ronald; Poulsen, Lars K

    2016-01-01

    Although a large part of the population suffers from allergies, a cure is not yet available. Allergen-specific immunotherapy (AIT) offers promise for these patients. AIT has proven successful in insect and venom allergies; however, for food allergy this is still unclear. In this editorial we focus on the recent advances in a proof of concept study in food allergy, FAST (Food allergy specific immunotherapy), which may increase interest within the biomolecular and pharmaceutical industry to embark on similar projects of immunology driven precision medicine within the allergy field. PMID:26558320

  19. Monocyte galactose/N-acetylgalactosamine-specific C-type lectin receptor stimulant immunotherapy of an experimental glioma. Part 1: stimulatory effects on blood monocytes and monocyte-derived cells of the brain

    Kushchayev SV

    2012-09-01

    Full Text Available Sergiy V Kushchayev,1 Tejas Sankar,1 Laura L Eggink,4,5 Yevgeniya S Kushchayeva,5 Philip C Wiener,1,5 J Kenneth Hoober,5,6 Jennifer Eschbacher,3 Ruolan Liu,2 Fu-Dong Shi,2 Mohammed G Abdelwahab,4 Adrienne C Scheck,4 Mark C Preul11Neurosurgery Research Laboratory, 2Neuroimmunology Laboratory, 3Department of Pathology, 4Neurooncology Research, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, 5School of Life Sciences, Arizona State University, Tempe, 6Susavion Biosciences, Inc, Tempe, AZ, USAObjectives: Immunotherapy with immunostimulants is an attractive therapy against gliomas. C-type lectin receptors specific for galactose/N-acetylgalactosamine (GCLR regulate cellular differentiation, recognition, and trafficking of monocyte-derived cells. A peptide mimetic of GCLR ligands (GCLRP was used to activate blood monocytes and populations of myeloid-derived cells against a murine glioblastoma.Methods: The ability of GCLRP to stimulate phagocytosis by human microglia and monocyte-derived cells of the brain (MDCB isolated from a human glioblastoma was initially assessed in vitro. Induction of activation markers on blood monocytes was assayed by flow cytometry after administration of GCLRP to naive mice. C57BL/6 mice underwent stereotactic intracranial implantation of GL261 glioma cells and were randomized for tumor size by magnetic resonance imaging, which was also used to assess increase in tumor size. Brain tumor tissues were analyzed using flow cytometry, histology, and enzyme-linked immunosorbent assay with respect to tumor, peritumoral area, and contralateral hemisphere regions.Results: GCLRP exhibited strong stimulatory effect on MDCBs and blood monocytes in vitro and in vivo. GCLRP was associated with an increased percentage of precursors of dendritic cells in the blood (P = 0.003, which differentiated into patrolling macrophages in tumoral (P = 0.001 and peritumoral areas (P = 0.04, rather than into dendritic cells

  20. Zinc-phosphate nanoparticles with reversibly attached TNF-α analogs: an interesting concept for potential use in active immunotherapy

    The authors’ intention was to prepare nanometer-sized zinc-phosphate nanoparticles that would be capable of binding histidine-rich TNF-α analogs onto their surface via a coordinative bond. Zinc-phosphate nanoparticles with a size of around 60 nm were prepared by a wet precipitation method and characterized using SEM, EDX, XRD, and DLS. First, BSA was bound as a testing protein, afterward two TNF-α analogs with decreased activity were bound to the described nanoparticles. The efficiency of binding and the existence of coordinative bond were confirmed with SDS-PAGE analysis. During binding, particle storage, and release experiments, the prepared TNF-α analogs retained their biological activity—hence the epitopes necessary for formation of antibodies stayed intact. The particle size did not change within a period of 2 weeks. No significant agglomeration was observed, the particles could be quickly dispersed in ultrasound. The present nanoparticles and the general approach of coordinative binding are widely applicable for natural and engineered histidine-rich proteins. The nanoparticles bearing appropriate TNF-α analogs could also be potentially used for active immunotherapy to tackle the chronic inflammatory diseases associated with pathogenically elevated levels of TNF-α.

  1. Regulatory activity of azabisphosphonate-capped dendrimers on human CD4+ T cell proliferation enhances ex-vivo expansion of NK cells from PBMCs for immunotherapy

    Caminade Anne-Marie

    2009-09-01

    specificity of the interaction of dendrimers with CD4+ T cell, we hypothesize that regulatory activity may signal through a specific receptor that remains to be indentified. Therefore phosphonate-capped dendrimers constitute not only tools for the ex-vivo expansion of NK cells in immunotherapy of cancers but their mode of action could also lead to further medical applications where T cell activation and proliferation need to be dampened.

  2. Concentrated protein body product derived from rice endosperm as an oral tolerogen for allergen-specific immunotherapy--a new mucosal vaccine formulation against Japanese cedar pollen allergy.

    Yuhya Wakasa

    Full Text Available The endoplasmic reticulum-derived type-I protein body (PB-I from rice endosperm cells is an ideal candidate formulation for the oral delivery of bioencapsulated peptides as tolerogens for allergen-specific immunotherapy. In the present study, PBs containing the deconstructed Japanese cedar pollen allergens Cryptomeria japonica 1 (Cry j 1 and Cry j 2 were concentrated by treatment with thermostable α-amylase at 90°C to remove the starch from milled rice powder, which resulted in a 12.5-fold reduction of dry weight compared to the starting material. The modified Cry j 1 and Cry j 2 antigens in this concentrated PB product were more resistant to enzymatic digestion than those in the milled seed powder despite the absence of intact cell wall and starch, and remained stable for at least 10 months at room temperature without detectable loss or degradation. The high resistance of these allergens could be attributed to changes in protein physicochemical properties induced by the high temperature concentration process, as suggested by the decreased solubility of the antigens and seed proteins in PBs in step-wise-extraction experiments. Confocal microscopy showed that the morphology of antigen-containing PB-Is was preserved in the concentrated PB product. The concentrated PB product induced specific immune tolerance against Cry j 1 and Cry j 2 in mice when orally administered, supporting its potential use as a novel oral tolerogen formulation.

  3. The immunotherapy of Alzheimer's disease

    Weksler Marc E

    2004-11-01

    Full Text Available Abstract Only a small percentage of patients with Alzheimer's disease benefit from current drug therapy and for only a relatively short time. This is not surprising as the goal of these drugs is to enhance existing cerebral function in Alzheimer patients and not to block the progression of cognitive decline. In contrast, immunotherapy is directed at clearing the neurotoxic amyloid beta peptide from the brain that directly or indirectly leads to cognitive decline in patients with Alzheimer's disease. The single trial of active immunization with the amyloid beta peptide provided suggestive evidence of a reduction in cerebral amyloid plaques and of stabilization in cognitive function of half the patients who developed good antibody responses to the amyloid beta peptide. However, 6% of actively immunized Alzheimer patients developed sterile meningoencephalitis that forced the cessation of the clinical trial. Passive immunotherapy in animal models of Alzheimer's disease has provided similar benefits comparable to those seen with active immunotherapy and has the potential of being effective in the half of Alzheimer's disease patients who do not make a significant anti-amyloid beta peptide antibody response and without inducing T-cell-mediated encephalitis. Published studies of 5 patients with sporadic Alzheimer disease treated with intravenous immunoglobulin containing anti-amyloid beta peptide antibodies showed that amyloid beta peptide was mobilized from the brain and cognitive decline was interrupted. Further studies of passive immunotherapy are urgently required to confirm these observations.

  4. Adherence to Sublingual Immunotherapy.

    Incorvaia, Cristoforo; Mauro, Marina; Leo, Gualtiero; Ridolo, Erminia

    2016-02-01

    Adherence is a major issue in any medical treatment. Allergen immunotherapy (AIT) is particularly affected by a poor adherence because a flawed application prevents the immunological effects that underlie the clinical outcome of the treatment. Sublingual immunotherapy (SLIT) was introduced in the 1990s, and the early studies suggested that adherence and compliance to such a route of administration was better than the traditional subcutaneous route. However, the recent data from manufacturers revealed that only 13% of patients treated with SLIT reach the recommended 3-year duration. Therefore, improved adherence to SLIT is an unmet need that may be achieved by various approaches. The utility of patient education and accurate monitoring during the treatment was demonstrated by specific studies, while the success of technology-based tools, including online platforms, social media, e-mail, and a short message service by phone, is currently considered to improve the adherence. This goal is of pivotal importance to fulfill the object of SLIT that is to modify the natural history of allergy, ensuring a long-lasting clinical benefit, and a consequent pharmaco-economic advantage, when patients complete at least a 3-year course of treatment. PMID:26758865

  5. Vaccine development for allergen-specific immunotherapy based on recombinant allergens and synthetic allergen peptides: Lessons from the past and novel mechanisms of action for the future.

    Valenta, Rudolf; Campana, Raffaela; Focke-Tejkl, Margit; Niederberger, Verena

    2016-02-01

    In the past, the development of more effective, safe, convenient, broadly applicable, and easy to manufacture vaccines for allergen-specific immunotherapy (AIT) has been limited by the poor quality of natural allergen extracts. Progress made in the field of molecular allergen characterization has now made it possible to produce defined vaccines for AIT and eventually for preventive allergy vaccination based on recombinant DNA technology and synthetic peptide chemistry. Here we review the characteristics of recombinant and synthetic allergy vaccines that have reached clinical evaluation and discuss how molecular vaccine approaches can make AIT more safe and effective and thus more convenient. Furthermore, we discuss how new technologies can facilitate the reproducible manufacturing of vaccines of pharmaceutical grade for inhalant, food, and venom allergens. Allergy vaccines in clinical trials based on recombinant allergens, recombinant allergen derivatives, and synthetic peptides allow us to target selectively different immune mechanisms, and certain of those show features that might make them applicable not only for therapeutic but also for prophylactic vaccination. PMID:26853127

  6. Monocyte galactose/N-acetylgalactosamine-specific C-type lectin receptor stimulant immunotherapy of an experimental glioma. Part 1: stimulatory effects on blood monocytes and monocyte-derived cells of the brain

    Immunotherapy with immunostimulants is an attractive therapy against gliomas. C-type lectin receptors specific for galactose/N-acetylgalactosamine (GCLR) regulate cellular differentiation, recognition, and trafficking of monocyte-derived cells. A peptide mimetic of GCLR ligands (GCLRP) was used to activate blood monocytes and populations of myeloid-derived cells against a murine glioblastoma. The ability of GCLRP to stimulate phagocytosis by human microglia and monocyte-derived cells of the brain (MDCB) isolated from a human glioblastoma was initially assessed in vitro. Induction of activation markers on blood monocytes was assayed by flow cytometry after administration of GCLRP to naive mice. C57BL/6 mice underwent stereotactic intracranial implantation of GL261 glioma cells and were randomized for tumor size by magnetic resonance imaging, which was also used to assess increase in tumor size. Brain tumor tissues were analyzed using flow cytometry, histology, and enzyme-linked immunosorbent assay with respect to tumor, peritumoral area, and contralateral hemisphere regions. GCLRP exhibited strong stimulatory effect on MDCBs and blood monocytes in vitro and in vivo. GCLRP was associated with an increased percentage of precursors of dendritic cells in the blood (P = 0.003), which differentiated into patrolling macrophages in tumoral (P = 0.001) and peritumoral areas (P = 0.04), rather than into dendritic cells, as in control animals. Treatment with GCLRP did not result in a significant change in survival of mice bearing a tumor. In vitro and in vivo activation of monocytes was achieved by administration of GCLR to mice. GCLRP-activated blood monocytes were recruited to the brain and exhibited specific phenotypes corresponding with tumor region (glioma, peritumoral zone, and contralateral glioma-free hemisphere). GCLRP treatment alone was associated with increased glioma mass as the result of the infiltration of phagocytic cells. Regional specificity for MDCB may have

  7. Big Data Offers Novel Insights for Oncolytic Virus Immunotherapy

    Stephanie L. Swift

    2016-02-01

    Full Text Available Large-scale assays, such as microarrays, next-generation sequencing and various “omics” technologies, have explored multiple aspects of the immune response following virus infection, often from a public health perspective. Yet a lack of similar data exists for monitoring immune engagement during oncolytic virus immunotherapy (OVIT in the cancer setting. Tracking immune signatures at the tumour site can create a snapshot or longitudinally analyse immune cell activation, infiltration and functionality within global populations or individual cells. Mapping immune changes over the course of oncolytic biotherapy—from initial infection to tumour stabilisation/regression through to long-term cure or escape/relapse—has the potential to generate important therapeutic insights around virus-host interactions. Further, correlating such immune signatures with specific tumour outcomes has significant value for guiding the development of novel oncolytic virus immunotherapy strategies. Here, we provide insights for OVIT from large-scale analyses of immune populations in the infection, vaccination and immunotherapy setting. We analyse several approaches to manipulating immune engagement during OVIT. We further explore immunocentric changes in the tumour tissue following immunotherapy, and compile several immune signatures of therapeutic success. Ultimately, we highlight clinically relevant large-scale approaches with the potential to strengthen future oncolytic strategies to optimally engage the immune system.

  8. Big Data Offers Novel Insights for Oncolytic Virus Immunotherapy.

    Swift, Stephanie L; Stojdl, David F

    2016-02-01

    Large-scale assays, such as microarrays, next-generation sequencing and various "omics" technologies, have explored multiple aspects of the immune response following virus infection, often from a public health perspective. Yet a lack of similar data exists for monitoring immune engagement during oncolytic virus immunotherapy (OVIT) in the cancer setting. Tracking immune signatures at the tumour site can create a snapshot or longitudinally analyse immune cell activation, infiltration and functionality within global populations or individual cells. Mapping immune changes over the course of oncolytic biotherapy-from initial infection to tumour stabilisation/regression through to long-term cure or escape/relapse-has the potential to generate important therapeutic insights around virus-host interactions. Further, correlating such immune signatures with specific tumour outcomes has significant value for guiding the development of novel oncolytic virus immunotherapy strategies. Here, we provide insights for OVIT from large-scale analyses of immune populations in the infection, vaccination and immunotherapy setting. We analyse several approaches to manipulating immune engagement during OVIT. We further explore immunocentric changes in the tumour tissue following immunotherapy, and compile several immune signatures of therapeutic success. Ultimately, we highlight clinically relevant large-scale approaches with the potential to strengthen future oncolytic strategies to optimally engage the immune system. PMID:26861383

  9. Big Data Offers Novel Insights for Oncolytic Virus Immunotherapy

    Swift, Stephanie L.; Stojdl, David F.

    2016-01-01

    Large-scale assays, such as microarrays, next-generation sequencing and various “omics” technologies, have explored multiple aspects of the immune response following virus infection, often from a public health perspective. Yet a lack of similar data exists for monitoring immune engagement during oncolytic virus immunotherapy (OVIT) in the cancer setting. Tracking immune signatures at the tumour site can create a snapshot or longitudinally analyse immune cell activation, infiltration and functionality within global populations or individual cells. Mapping immune changes over the course of oncolytic biotherapy—from initial infection to tumour stabilisation/regression through to long-term cure or escape/relapse—has the potential to generate important therapeutic insights around virus-host interactions. Further, correlating such immune signatures with specific tumour outcomes has significant value for guiding the development of novel oncolytic virus immunotherapy strategies. Here, we provide insights for OVIT from large-scale analyses of immune populations in the infection, vaccination and immunotherapy setting. We analyse several approaches to manipulating immune engagement during OVIT. We further explore immunocentric changes in the tumour tissue following immunotherapy, and compile several immune signatures of therapeutic success. Ultimately, we highlight clinically relevant large-scale approaches with the potential to strengthen future oncolytic strategies to optimally engage the immune system. PMID:26861383

  10. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF.

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki

    2008-07-01

    Serum Gc protein (known as vitamin D(3)-binding protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of prostate cancer patients was lost or reduced because Gc protein was deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Therefore, macrophages of prostate cancer patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent MAF (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages activated by GcMAF develop a considerable variation of receptors that recognize the abnormality in malignant cell surface and are highly tumoricidal. Sixteen nonanemic prostate cancer patients received weekly administration of 100 ng of GcMAF. As the MAF precursor activity increased, their serum Nagalase activity decreased. Because serum Nagalase activity is proportional to tumor burden, the entire time course analysis for GcMAF therapy was monitored by measuring the serum Nagalase activity. After 14 to 25 weekly administrations of GcMAF (100 ng/week), all 16 patients had very low serum Nagalase levels equivalent to those of healthy control values, indicating that these patients are tumor-free. No recurrence occurred for 7 years. PMID:18633461

  11. Novel Approaches to Pediatric Cancer: Immunotherapy

    Payal A. Shah

    2015-06-01

    Full Text Available From the early 20th century, immunotherapy has been studied as a treatment modality for cancers, including in children. Since then, developments in monoclonal antibodies and vaccine therapies have helped to usher in a new era of cancer immunotherapeutics. However, efficacy of these types of therapies has been limited, mostly in part due to low tumor immunogenicity, cancer escape pathways, and toxicities. As researchers investigate the cellular and molecular components of immunotherapies, mechanisms to improve tumor specificity and overcome immune escape have been identified. The goal of immunotherapy now has been to modulate tumor escape pathways while amplifying the immune response by combining innate and adaptive arms of the immune system. Although several limiting factors have been identified, these recent advances in immunotherapy remain at the forefront of pediatric oncologic therapeutic trials. Immunotherapy is now coming to the forefront of precision treatment for a variety of cancers, with evidence that agents targeting immunosuppressive mechanisms for cancer progression can be effective therapy [1-3]. In this review, we review various types of immunotherapy, including the cellular biology, limitations, recent novel therapeutics, and the application of immunotherapy to pediatric oncology.

  12. Allergen immunotherapy in polysensitized patient.

    Hrubiško, M; Špičák, V

    2016-05-01

    Specific allergen immunotherapy (AIT) is the only therapeutic method with positive impact on natural course of allergic disease - affecting clinical development (including the progression of rhinitis to asthma) and new sensitisations. The actual problem is the increasing number of patients manifesting poly-sensitivity in allergy skin tests and / or in specific IgE tests. Usually, AIT is not recommended in such individuals. The objective we are facing is that in many patients tested as poly-reactive, we have to distinguish in which cases it is a true polysensitization, and when it is due to cross-reactivity of specific IgE antibodies induced by panallergens. This may really determine when AIT may be an appropriate course of action. The article focuses on this problem in more detail, applying the long time Czech and Slovak experience with allergy testing and allergen immunotherapy. PMID:27152601

  13. Trends in Cancer Immunotherapy

    Murphy, Joseph F.

    2010-01-01

    Modulation of the immune system for therapeutic ends has a long history, stretching back to Edward Jenner’s use of cowpox to induce immunity to smallpox in 1796. Since then, immunotherapy, in the form of prophylactic and therapeutic vaccines, has enabled doctors to treat and prevent a variety of infectious diseases, including cholera, poliomyelitis, diphtheria, measles and mumps. Immunotherapy is now increasingly being applied to oncology. Cancer immunotherapy attempts to harness the power an...

  14. Inmunoterapia local Local immunotherapy

    E. Lasa

    2003-01-01

    Full Text Available La inmunoterapia específica, junto con la evitación del alergeno y el tratamiento sintomático, forma parte del tratamiento de la patología alérgica. La modalidad más antigua, más conocida y mejor estudiada es la inmunoterapia subcutánea (ITSC, cuya eficacia tanto a corto como a largo plazo, ha sido ampliamente demostrada en numerosos estudios. Sin embargo, a pesar de haberse demostrado segura, no está exenta de efectos adversos y precisa ser administrada bajo supervisión de personal médico. Esto ha animado a buscar nuevas vías de administración de eficacia similar, con un buen perfil de seguridad, y de buena cumplimentación por parte del paciente. De las distintas alternativas estudiadas la más relevante es la inmunoterapia sublingual (ITSL. En ésta, se administra el antígeno en forma de gotas debajo de la lengua. Existen diferentes pautas de administración en función del alergeno implicado. La dosis óptima de tratamiento está aún sin determinar, hallándose en este momento en un rango amplio de dosis respecto a la inmunoterapia subcutánea. Su mecanismo de acción es poco conocido aunque en diversos estudios se han observado cambios inmunológicos. La ITSL ha mostrado un buen perfil de seguridad con escasos efectos secundarios, habitualmente de carácter local. Asimismo se han realizado distintos ensayos clínicos en los que se ha demostrado su eficacia en el tratamiento de la alergia respiratoria tanto en niños como en adultos. Por ello, aunque aún existen datos sin resolver respecto a esta vía de administración de inmunoterapia, ha sido propuesta por la OMS como una alternativa válida a la ITSC.Specific immunotherapy, together with avoidance of the allergen and symptomatic treatment, forms part of the treatment of allergic pathology. The oldest, best known and most studied form is subcutaneous immunotherapy (SCIT, whose efficacy, both in the short and the long term, has been widely demonstrated in numerous studies

  15. Immunotherapy for tuberculosis: future prospects

    Abate G

    2016-04-01

    Full Text Available Getahun Abate,1 Daniel F Hoft1,2 1Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, 2Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, USA Abstract: Tuberculosis (TB is still a major global health problem. A third of the world's population is infected with Mycobacterium tuberculosis. Only ~10% of infected individuals develop TB but there are 9 million TB cases with 1.5 million deaths annually. The standard prophylactic treatment regimens for latent TB infection take 3–9 months, and new cases of TB require at least 6 months of treatment with multiple drugs. The management of latent TB infection and TB has become more challenging because of the spread of multidrug-resistant and extremely drug-resistant TB. Intensified efforts to find new TB drugs and immunotherapies are needed. Immunotherapies could modulate the immune system in patients with latent TB infection or active disease, enabling better control of M. tuberculosis replication. This review describes several types of potential immunotherapies with a focus on those which have been tested in humans. Keywords: tuberculosis, HDT, immunotherapy, treatment

  16. Human cerebrospinal fluid contains CD4+ memory T cells expressing gut- or skin-specific trafficking determinants: relevance for immunotherapy

    Campbell James J

    2006-07-01

    Full Text Available Abstract Background Circulating memory T cells can be divided into tissue-specific subsets, which traffic through distinct tissue compartments during physiologic immune surveillance, based on their expression of adhesion molecules and chemokine receptors. We reasoned that a bias (either enrichment or depletion of CSF T cell expression of known organ-specific trafficking determinants might suggest that homing of T cells to the subarachnoid space could be governed by a CNS-specific adhesion molecule or chemokine receptor. Results The expression of cutaneous leukocyte antigen (CLA and CC-chemokine receptor 4 (CCR4; associated with skin-homing as well as the expression of integrin α4β7 and CCR9 (associated with gut-homing was analyzed on CD4+ memory T cells in CSF from individuals with non-inflammatory neurological diseases using flow cytometry. CSF contained similar proportions of CD4+ memory T cells expressing CLA, CCR4, integrin α4β7 and CCR9 as paired blood samples. Conclusion The results extend our previous findings that antigen-experienced CD4+ memory T cells traffic through the CSF in proportion to their abundance in the peripheral circulation. Furthermore, the ready access of skin- and gut-homing CD4+ memory T cells to the CNS compartment via CSF has implications for the mechanisms of action of immunotherapeutic strategies, such as oral tolerance or therapeutic immunization, where immunogens are administered using an oral or subcutaneous route.

  17. New strategies for allergen immunotherapy.

    Carnés, Jerónimo; Robinson, Douglas S

    2008-06-01

    Specific allergen immunotherapy, consisting in the administration of increasing amounts of offending allergens into sensitive patients was first used nearly one hundred years ago and remains in use worldwide for treatment of allergic rhinitis and asthma. It has been recognised as the only effective treatment for type I allergic diseases when the appropriate quantities of allergens are used. The immunological mechanisms by which specific immunotherapy is effective include the modulation of T cells and the response of B-cells and is accompanied by significant decreases of specific IgE and increases in allergen specific IgG antibodies, mainly IgG4. While specific allergen injection immunotherapy is highly effective and the most common way of administration other routes such as oral or intranasal ways have been considered as and alternative to subcutaneous injections. During the last century, allergenic vaccines have been prepared using individual allergens adsorbed to different adjuvant substances. These vaccines have demonstrated efficacy and good results in different clinical trials. However, many novel approaches to allergen immunotherapy have been developed in the last years in order to increase the safety and efficacy of allergenic vaccines. In that way, different and modern vaccines have been prepared including more purified products such as depigmented allergen extracts; allergoids, consisting on big molecules of thousands of kDa, which contain all the individual allergens and show a significant decrease in severe adverse reactions; peptides or small aminoacid sequences; recombinant allergens; hypoallergenic vaccines where the IgE binding sites have been modified; or allergen-CpG fusion molecules. New presentations are under study and new treatments will be developed in the near future with the objective that the prevention of allergic disease may become a reality. The review article also discuss recent patent related to the field. PMID:19075996

  18. Carbon anhydrase IX specific immune responses in patients with metastatic renal cell carcinoma potentially cured by interleukin-2 based immunotherapy

    Rasmussen, Susanne; Donskov, Frede; Pedersen, Johannes W;

    2013-01-01

    carcinoma (mRCC). However, the involvement of CAIX specific CD8+ T cells and/or NK cells in the tumor eradication is unknown. We investigated T cell and antibody reactivity against overlapping 15-mer CAIX-peptides as well as HLA haplotype frequency and NK cell cytotoxicity in 11 patients with no evidence of...... during treatment and samples from healthy controls. We observed more focused but only weak and not consistent CAIX specific T-cells in the late observation and early observation response groups compared with the healthy control group. An increased frequency of the class II alleles HLA-DRB4 01:01, HLA......-DPB 01:01 and HLA-DPB 03:01 was noted in the NED patients. In contrast, NK cytotoxicity was low even in the late observation response group as compared with controls. In particular, a HLA-B*40:01 restricted CD8+ T cell response recognizing the CAIX- derived peptide SEEEGSLKL was identified. This may have...

  19. Efficacy and toxicity management of CAR-T cell immunotherapy: A matter of responsiveness control or tumor-specificity?

    Alonso-Camino, Vanesa; Harwood, Seandean Lykke; Alvarez-Méndez, Ana M; Álvarez-Vallina, Luis

    2016-01-01

    responsiveness of CAR-T cells, with varying degrees of complexity. Some of them might ameliorate the acute and chronic toxicities associated with current CAR constructs. However, further embellishments to CAR therapy may complicate clinical implementation and possibly create new immunogenicity issues. In...... functions through the CAR. Most existing CARs recognize TAAs, which are also found in normal tissues. CAR-T cell-mediated destruction of normal tissues constitutes a major roadblock to CAR-T cell therapy, and must be avoided or mitigated. There is a broad range of strategies for modulating antigen...... contrast, the development of CARs targeting truly tumor-specific antigens might circumvent on-target/off-tumor toxicities without adding additional complexity to CAR-T cell therapies, but these antigens have been elusive and may require novel selection strategies for their discovery....

  20. A randomized, controlled study of specific immunotherapy in monosensitized subjects with seasonal rhinitis: effect on bronchial hyperresponsiveness, sputum inflammatory markers and development of asthma symptoms.

    Crimi, Nunzio; Li Gotti, Fabrizio; Mangano, Giuseppe; Paolino, Giuseppina; Mastruzzo, Claudio; Vancheri, Carlo; Lisitano, Natalina; Polosa, Riccardo

    2004-01-01

    Allergic rhinitis is often associated with bronchial hyperresponsiveness (BHR) and airway inflammation, and it seems to be an important risk factor for the development of asthma. Specific immunotherapy (SIT) reduces symptoms and medication requirements in subjects with allergic rhinitis, but the mechanisms by which SIT promotes these beneficial effects are less clear. We have investigated the effects of Parietaria-SIT on rhinitis symptoms, BHR to inhaled methacholine, eosinophilic inflammation and cytokine production (interferon gamma and interleukin-4) in the sputum. The effect on asthma progression was also examined. Thirty non-asthmatic subjects with seasonal rhinitis and monosensitized to Parietaria judaica participated in a randomized, double-blind, placebo-controlled, parallel group study. Participants were randomly assigned to receive injections of a Parietaria pollen vaccine (n = 15) or matched placebo injections (n = 15) in a rapid updosing cluster regimen for 7 weeks, followed by monthly injections for 34 months. Throughout the 3-year study we collected data on symptoms and medication score, airway responsiveness to methacholine, eosinophilia and soluble cytokines in sputum, followed by a complete evaluation of the clinical course of atopy. Hay fever symptom and medication scores were well controlled by SIT. By the end of the study, in the placebo group, symptom and medication scores significantly increased by a median (interquartile range) of 121% (15-280%) and 263% (0-4400%) respectively (p controlling hay fever symptoms and rescue medications, but no changes in the BHR to methacholine or sputum eosinophilia were observed. Moreover, Parietaria-SIT appears to prevent the natural progression of allergic rhinitis to asthma, suggesting that SIT should be considered earlier in the management of this condition. PMID:15317270

  1. New routes for allergen immunotherapy

    Johansen, Pål; von Moos, Seraina; Mohanan, Deepa; Kündig, Thomas M.; Senti, Gabriela

    2012-01-01

    IgE-mediated allergy is a highly prevalent disease in the industrialized world. Allergen-specific immunotherapy (SIT) should be the preferred treatment, as it has long lasting protective effects and can stop the progression of the disease. However, few allergic patients choose to undergo SIT, due to the long treatment time and potential allergic adverse events. Since the beneficial effects of SIT are mediated by antigen presenting cells inducing Th1, Treg and antibody responses, whereas the a...

  2. IL-2 activated NK cell immunotherapy of three children after haploidentical stem cell transplantation.

    Koehl, Ulrike; Sörensen, Jan; Esser, Ruth; Zimmermann, Stefanie; Grüttner, Hans Peter; Tonn, Torsten; Seidl, Christian; Seifried, Erhard; Klingebiel, Thomas; Schwabe, Dirk

    2004-01-01

    Natural killer (NK) cells are thought to be of benefit in HLA-mismatched hematopoietic transplantation (H-SCT). Therefore, we developed a protocol for clinical-use expansion of highly enriched and IL-2-stimulated NK cells. Purification of unstimulated leukaphereses by a two-step T cell depletion with a final CD56 enrichment procedure leads to a mean purity of 95% CD56(+)CD3- NK cells with a four- to five-log depletion of T cells. So far, three pediatric patients with multiply relapsed acute lymphoblastic leukemia (ALL) or acute myelogenous leukemia (AML) were treated with repeated transfusions post-H-SCT. Directed killer immunoglobulin-like receptor (KIR) mismatches were demonstrated in all three cases. Although all patients showed blast persistence at the time of transplant, they reached complete remission and complete donor chimerism within 1 month post-H-SCT. NK cell therapy was tolerated well without graft-versus-host disease (GvHD) induction or other adverse events. The AML patient died of early relapse on day +80, while the ALL patients died of thrombotic-thrombocytopenic purpura and atypical viral pneumonia on days +45 and +152, respectively. This initial trial showed the feasibility of good manufacturing practice (GMP)-compliant NK cell isolation and expansion for clinical applications. We now launch a clinical phase I trial with activated NK cells post-H-SCT. PMID:15528141

  3. Sialoglyco proteins trypanosome cruz i. Possible to use for specific active immunotherapy strategies in colon cancer?

    Introduction: The sialyl-Tn structure (SAa2-6GalNAcaSer / Thr) is expressed in cancer colon and not in normal colon tissue, with an intermediate expression in premalignant lesions. Dimethylhydrazine (DMH) induced colon cancer in rats with similar morphology carcinomas human colorectal and express sialyl-Tn similarly. It has been observed that infection of rats the flagellated protozoan Trypanosoma cruzi is associated with a lower incidence colon cancer in this experimental model. There is still no explanation this phenomenon. Recently, our group demonstrated the presence of antigen sialyl-Tn in T. cruzi. Objectives: To evaluate the antitumor effect of immunobiological extracts of T. cruzi in the model of colon carcinogenesis induced by DMH, determining the role of the glycoproteins expressing sialyl Tn. Methodology: was induced colonic carcinogenesis in 16 Wistar rats by injection weekly DMH (15 mg / Kg). The animals were divided into four groups: (A) only treated with the carcinogen; (B) Simultaneous immunization carcinogenesis with extracts of T. cruzi (epimastigotes); (C) Simultaneous immunization carcinogenesis with extracts of T. cruzi I deglycosylated (m-periodate 80 mM); and (D) Carcinogenesis Simultaneous immunization with ovine submaxillary mucin (OSM), rich in antigen sialyl-Tn. After five immunizations (weeks 0, 4, 8, 10 and 12) the animals were sacrificed at week 24 and the colon was evaluated istopathologically. Results: compatible with carcinomas of colon, macroscopic lesions were observed in 3/4 rats from group A, group B in fourth in 4/4 in group C and group D. When 0/4 microscopic analysis, the animals in groups A and C showed lesions more invasive than the lesions observed in animals of group B. Conclusions: These Preliminary results suggest that immunization with T. cruzi extracts can have a protective effect against the development of colon cancer, where the epitopes Carb may be responsible for this effect. He is currently in course further study with a larger number of animals and sialoglycoproteins purified from T. cruzi, in order to determine their potential utility as new anti-tumor immunogenic

  4. Venom conjugated polylactide applied as biocompatible material for passive and active immunotherapy against scorpion envenomation.

    Ayari-Riabi, Sana; Trimaille, Thomas; Mabrouk, Kamel; Bertin, Denis; Gigmes, Didier; Benlasfar, Zakaria; Zaghmi, Ahlem; Bouhaouala-Zahar, Balkiss; Elayeb, Mohamed

    2016-04-01

    Scorpion envenoming represents a public health issue in subtropical regions of the world. Treatment and prevention need to promote antitoxin immunity. Preserving antigenic presentation while removing toxin effect remains a major challenge in toxin vaccine development. Among particulate adjuvant, particles prepared with poly (d,l-lactide) polymer are the most extensively investigated due to their excellent biocompatibility and biodegradability. The aim of this study is to develop surfactant-free PLA nanoparticles that safely deliver venom toxic fraction to enhance specific immune response. PLA nanoparticles are coated with AahG50 (AahG50/PLA) and BotG50 (BotG50/PLA): a toxic fraction purified from Androctonus australis hector and Buthus occitanus tunetanus venoms, respectively. Residual toxicities are evaluated following injections of PLA-containing high doses of AahG50 (or BotG50). Immunization trials are performed with the detoxified fraction administered alone without adjuvant. A comparative study of the effect of Freund is also included. The neutralizing capacity of sera is determined in naive mice. Six months later, immunized mice are challenged subcutaneously with increased doses of AahG50. Subcutaneous lethal dose 50 (LD50) of AahG50 and BotG50 is of 575μg/kg and 1300μg/kg respectively. By comparison, BotG50/PLA is totally innocuous while 50% of tested mice survive 2875μg AahG50/kg. Alhydrogel and Freund are not able to detoxify such a high dose. Cross-antigenicity between particulate and soluble fraction is also, ensured. AahG50/PLA and BotG50/PLA induce high antibody levels in mice serum. The neutralizing capacity per mL of anti-venom was 258μg/mL and 186μg/mL calculated for anti-AahG50/PLA and anti-BotG50/PLA sera, respectively. Animals immunized with AahG50/PLA are protected against AahG50 injected dose of 3162μg/kg as opposed all non-immunized mice died at this dose. We find that the detoxification approach based PLA nanoparticles, benefit the

  5. Immunotherapy for bladder cancer

    Fuge O

    2015-05-01

    Full Text Available Oliver Fuge,1 Nikhil Vasdev,1 Paula Allchorne,2 James SA Green2 1Department of Urology, Lister Hospital, Stevenage, UK; 2Department of Urology, Bartshealth NHS Trust, Whipps Cross Rd, London, UK Abstract: It is nearly 40 years since Bacillus Calmette–Guérin (BCG was first used as an immunotherapy to treat superficial bladder cancer. Despite its limitations, to date it has not been surpassed by any other treatment. As a better understanding of its mechanism of action and the clinical response to it have evolved, some of the questions around optimal dosing and treatment protocols have been answered. However, its potential for toxicity and failure to produce the desired clinical effect in a significant cohort of patients presents an ongoing challenge to clinicians and researchers alike. This review summarizes the evidence behind the established mechanism of action of BCG in bladder cancer, highlighting the extensive array of immune molecules that have been implicated in its action. The clinical aspects of BCG are discussed, including its role in reducing recurrence and progression, the optimal treatment regime, toxicity and, in light of new evidence, whether or not there is a superior BCG strain. The problems of toxicity and non-responders to BCG have led to development of new techniques aimed at addressing these pitfalls. The progress made in the laboratory has led to the identification of novel targets for the development of new immunotherapies. This includes the potential augmentation of BCG with various immune factors through to techniques avoiding the use of BCG altogether; for example, using interferon-activated mononuclear cells, BCG cell wall, or BCG cell wall skeleton. The potential role of gene, virus, or photodynamic therapy as an alternative to BCG is also reviewed. Recent interest in the immune check point system has led to the development of monoclonal antibodies against proteins involved in this pathway. Early findings suggest

  6. Adoptive immunotherapy of human pancreatic cancer with lymphokine-activated killer cells and interleukin-2 in a nude mouse model

    A pancreatic cancer cell line was grown in orthotopic and heterotopic positions in young Swiss/NIH nude mice, which were tested with adoptive immunotherapy. Mice were injected with 1 x 10(7) human cancer cells in the subcutaneous tissue and duodenal lobe of the pancreas. The mice were randomly divided into four groups: group IA (LAK + IL-2) (N = 25) received 2 X 10(7) human lymphokine-activated killer (LAK) cells from normal donors by tail vein injection followed by 10,000 units of human recombinant interleukin-2 (IL-2) given intraperitoneally every 12 hours for 28 days; group IB (IL-2) (N = 27) was given the same dose of IL-2 alone; group IC (RPMI-1640) (N = 18) received a placebo consisting of 1 ml of RPMI-1640 intraperitoneally every 12 hours; and group ID (LAK) (N = 14) received 2 X 10(7) LAK cells but no IL-2. Toxicity was significantly higher in group IB, with a mortality rate of 45.5% (10/22 animals) versus a 0% mortality (0/25) in group IA. None of the group IA or IB animals died of pancreatic cancer during the experiment. The animals that did not receive IL-2 died before 28 days in 14.2% of group IC and in 16.7% of group ID. The area under the growth curve of subcutaneous tumors during the course of treatment and the pancreatic tumor weight at the end of treatment were compared in each group. Subcutaneous tumors had a reduced rate of growth in group IA animals compared to all the other treatments. Pancreatic tumor growth was slowed in group IA. The animals treated with IL-2 alone (group IB) showed some slowing of tumor growth that was intermediate between group IA, group IC, and group ID. A similar experiment was done with irradiated (375 rad) mice. Nine nude mice with tumors were treated with LAK + IL-2 (group IIA), eight received IL-2 alone (group IIB), and seven received placebo (group IIC)

  7. New Concepts in Tumor Antigens: Their Significance in Future Immunotherapies for Tumors

    Fan Yang; Xiao-Feng Yang

    2005-01-01

    The identification and molecular characterization of self-antigens expressed by human malignancies that are capable of elicitation of anti-tumor immune responses in patients have been an active field in tumor immunology.More than 2,000 tumor antigens have been identified, and most of these antigens are self-antigens. These significant progresses have led to the renaissance of tumor immunology and studies on anti-tumor immunotherapy.However, despite of the progress in the identification of self-tumor antigens, current antigen-specific immunotherapies for tumors are far less satisfied than expected, which reflects the urgent need to improve our understanding on self-tumor antigens. In order to develop more effective antigen specific anti-tumor immunotherapies and to monitor the responses to these immunotherapies in patients with tumors, many important fundamental questions need to be addressed. We propose for the first time that the studies in addressing the characteristics of self-tumor antigens and autoantigens are grouped as a new subject termed "antigenology". In this brief review, we would outline the progress in the identification of tumor antigens in solid tumors and hematologic malignancies, and overview the new concepts and principles of antigenology and their significance for future immunotherapies to these malignancies. Cellular & Molecular Immunology.

  8. Heat shock proteins and immunotherapy

    XinZHAO; XueMeiXU; GuoxingSONG

    2005-01-01

    Being one of the most abundant intracellular proteins,heat shock proteins(HSPs) have many housekeeping functions which are crucial for the survival of organisms.In addition,some HSPs are new immunoactive molecules which play important roles in both adaptive and innate immunity.They could activate CD8+ and CD4+ lymphocytes,induce innate immune response including natural killer(NK) cell activation and cytokine secretion,and induce maturation of dendritic cells(DCs).These characteristics have been used for immunotherapy of various types of cancers and infectious disenses.This review focuses on the main HSP families——HSP70 and 90 families.The mechanism of HSPs’ function in eliciting immune response are elucidated and various forms of HSPs used in immunotherapy are discussed in details.At the end of this review,authors summarize clinical trials related to HSPs and evaluate their clinical efficacy.

  9. Generation and Characterization of a Human/Mouse Chimeric GD2-Mimicking Anti-Idiotype Antibody Ganglidiximab for Active Immunotherapy against Neuroblastoma.

    Christin Eger

    Full Text Available Vaccination with proteins mimicking GD2 that is highly expressed on neuroblastoma (NB cells is a promising strategy in treatment of NB, a pediatric malignancy with poor prognosis. We previously showed efficacy of ganglidiomab in vivo, a murine anti-idiotype (anti-Id IgG1. In order to tailor immune responses to variable regions, we generated a new human/mouse chimeric anti-Id antibody (Ab ganglidiximab by replacing murine constant fragments with corresponding human IgG1 regions. DNA sequences encoding for variable regions of heavy (VH and light chains (VL were synthesized by RT-PCR from total RNA of ganglidiomab-producing hybridoma cells and further ligated into mammalian expression plasmids with coding sequences for constant regions of human IgG1 heavy and light chains, respectively. We established a stable production cell line using Chinese hamster ovarian (CHO cells co-transfected with two expression plasmids driving the expression of either ganglidiximab heavy or light chain. After purification from supernatants, anti-idiotypic characteristics of ganglidiximab were demonstrated. Binding of ganglidiximab to anti-GD2 Abs of the 14.18 family as well as to NK-92tr cells expressing a GD2-specific chimeric antigen receptor (scFv(ch14.18-zeta was shown using standard ELISA and flow cytometry analysis, respectively. Ganglidiximab binding affinities to anti-GD2 Abs were further determined by surface plasmon resonance technique. Moreover, binding of anti-GD2 Abs to the nominal antigen GD2 as well as GD2-specific Ab-mediated cytotoxicity (ADCC, CDC was competitively inhibited by ganglidiximab. Finally, ganglidiximab was successfully used as a protein vaccine in vivo to induce a GD2-specific humoral immune response. In summary, we report generation and characterization of a new human/mouse chimeric anti-Id Ab ganglidiximab for active immunotherapy against NB. This Ab may be useful to tailor immune responses to the paratope regions mimicking GD2

  10. Immunotherapy for bladder cancer.

    Fuge, Oliver; Vasdev, Nikhil; Allchorne, Paula; Green, James Sa

    2015-01-01

    It is nearly 40 years since Bacillus Calmette-Guérin (BCG) was first used as an immunotherapy to treat superficial bladder cancer. Despite its limitations, to date it has not been surpassed by any other treatment. As a better understanding of its mechanism of action and the clinical response to it have evolved, some of the questions around optimal dosing and treatment protocols have been answered. However, its potential for toxicity and failure to produce the desired clinical effect in a significant cohort of patients presents an ongoing challenge to clinicians and researchers alike. This review summarizes the evidence behind the established mechanism of action of BCG in bladder cancer, highlighting the extensive array of immune molecules that have been implicated in its action. The clinical aspects of BCG are discussed, including its role in reducing recurrence and progression, the optimal treatment regime, toxicity and, in light of new evidence, whether or not there is a superior BCG strain. The problems of toxicity and non-responders to BCG have led to development of new techniques aimed at addressing these pitfalls. The progress made in the laboratory has led to the identification of novel targets for the development of new immunotherapies. This includes the potential augmentation of BCG with various immune factors through to techniques avoiding the use of BCG altogether; for example, using interferon-activated mononuclear cells, BCG cell wall, or BCG cell wall skeleton. The potential role of gene, virus, or photodynamic therapy as an alternative to BCG is also reviewed. Recent interest in the immune check point system has led to the development of monoclonal antibodies against proteins involved in this pathway. Early findings suggest benefit in metastatic disease, although the role in superficial bladder cancer remains unclear. PMID:26000263

  11. Mathematical Model Creation for Cancer Chemo-Immunotherapy

    Lisette de Pillis

    2009-01-01

    Full Text Available One of the most challenging tasks in constructing a mathematical model of cancer treatment is the calculation of biological parameters from empirical data. This task becomes increasingly difficult if a model involves several cell populations and treatment modalities. A sophisticated model constructed by de Pillis et al., Mixed immunotherapy and chemotherapy of tumours: Modelling, applications and biological interpretations, J. Theor. Biol. 238 (2006, pp. 841–862; involves tumour cells, specific and non-specific immune cells (natural killer (NK cells, CD8+T cells and other lymphocytes and employs chemotherapy and two types of immunotherapy (IL-2 supplementation and CD8+T-cell infusion as treatment modalities. Despite the overall success of the aforementioned model, the problem of illustrating the effects of IL-2 on a growing tumour remains open. In this paper, we update the model of de Pillis et al. and then carefully identify appropriate values for the parameters of the new model according to recent empirical data. We determine new NK and tumour antigen-activated CD8+T-cell count equilibrium values; we complete IL-2 dynamics; and we modify the model in de Pillis et al. to allow for endogenous IL-2 production, IL-2-stimulated NK cell proliferation and IL-2-dependent CD8+T-cell self-regulations. Finally, we show that the potential patient-specific efficacy of immunotherapy may be dependent on experimentally determinable parameters.

  12. Immunological Changes on Allergic Response after Beevenom Immunotherapy

    Dong-Ha Han

    2004-12-01

    Full Text Available Beevenom immunotherapy(BVIT in allergic patients is a well-established treatment modality for the prevention of systemic anaphylactic reactions caused by insect stings. BVIT is accompanied by increases in allergen-specific IgG, particularly the IgG4 isotype, which blocks not only IgE-dependent histamine release from basophils but also IgE-mediated antigen presentation to T cells. Inhibition of T cells after BVIT also involves decreased induction of the costimulatory molecule ICOS, which, in turn, seems to be dependent on the presence of IL-10, also associated with the inhibited status of T cells after BVIT. Suppression of T cells by IL-10 is an active process, which depends on the expression and participation of CD28. Immune tolerance in specific allergen immunotherapy might be a consequence of decreased Th2 or increased Th1 response of allergen specific T lymphocytes. BVIT shifted cytokine responses to allergen from a TH-2 to a TH-1 dominant pattern, suggesting direct effects on T cells. Many studies showed that severe side effects due to venom immunotherapy are rare. These results suggest that immunological changes after BVIT may be applied to be therapeutic alternative of general allergic diseases including beevenom allergy.

  13. Defining the critical hurdles in cancer immunotherapy

    Fox Bernard A

    2011-12-01

    Full Text Available Abstract Scientific discoveries that provide strong evidence of antitumor effects in preclinical models often encounter significant delays before being tested in patients with cancer. While some of these delays have a scientific basis, others do not. We need to do better. Innovative strategies need to move into early stage clinical trials as quickly as it is safe, and if successful, these therapies should efficiently obtain regulatory approval and widespread clinical application. In late 2009 and 2010 the Society for Immunotherapy of Cancer (SITC, convened an "Immunotherapy Summit" with representatives from immunotherapy organizations representing Europe, Japan, China and North America to discuss collaborations to improve development and delivery of cancer immunotherapy. One of the concepts raised by SITC and defined as critical by all parties was the need to identify hurdles that impede effective translation of cancer immunotherapy. With consensus on these hurdles, international working groups could be developed to make recommendations vetted by the participating organizations. These recommendations could then be considered by regulatory bodies, governmental and private funding agencies, pharmaceutical companies and academic institutions to facilitate changes necessary to accelerate clinical translation of novel immune-based cancer therapies. The critical hurdles identified by representatives of the collaborating organizations, now organized as the World Immunotherapy Council, are presented and discussed in this report. Some of the identified hurdles impede all investigators; others hinder investigators only in certain regions or institutions or are more relevant to specific types of immunotherapy or first-in-humans studies. Each of these hurdles can significantly delay clinical translation of promising advances in immunotherapy yet if overcome, have the potential to improve outcomes of patients with cancer.

  14. Immunotherapy of hematological malignancies using dendritic cells.

    Van de Velde, Ann L R; Berneman, Zwi N; Van Tendeloo, Viggo F I

    2008-03-01

    The arsenal of therapeutic weapons against hematological malignancies is constantly growing. Unravelling the secrets of tumor immunobiology has allowed researchers to manipulate the immune system in order to stimulate tumor immunity or to bypass tumor-induced immunosuppression. An area of great interest is active specific immunotherapy where dendritic cell (DC)-based therapeutic vaccines for cancer have definitely grabbed the spotlight. DC are intensively investigated as cellular adjuvants to harness the immune system to fight off cancer by augmenting the number and effector functions of tumor-specific CD8+ cytotoxic T lymphocytes. In the present review we present a comprehensive synopsis and an update of the use of DC in hematological malignancies. In the future, more basic research as well as more clinical trials are warranted to fully establish the value of DC vaccination as an adjuvant therapy for modern hematological oncology. PMID:18390412

  15. Activities of AREVA Med. Extraction and purification of the 212Pb isotope from Thorium for radio-immunotherapy

    After having recalled the definition of radio-immunotherapy (RIT) and the benefits of alpha RIT for the treatment of some cancers, this document explains the choice of the 212-Pb isotope instead of the 212-Bi isotope (the first one has a longer half-life than the second). The Pb isotope in fact progressively transforms itself into the Bi isotope. The production process is evoked with its important steps. A second part reports the first clinic tests performed in the Alabama Centre for the treatment of different cancer (breast, colon, ovarian, pancreas, stomach). Processes and doses are discussed

  16. Adoptive immunotherapy via CD4+ versus CD8+ T cells

    Vy Phan-Lai

    2016-04-01

    Full Text Available The goal of cancer immunotherapy is to induce specific and durable antitumor immunity. Adoptive T cell therapy (ACT has garnered wide interest, particularly in regard to strategies to improve T cell efficacy in trials. There are many types of T cells (and subsets which can be selected for use in ACT. CD4+ T cells are critical for the regulation, activation and aid of host defense mechanisms and, importantly, for enhancing the function of tumor-specific CD8+ T cells. To date, much research in cancer immunotherapy has focused on CD8+ T cells, in melanoma and other cancers. Both CD4+ T cells and CD8+ T cells have been evaluated as ACT in mice and humans, and both are effective at eliciting antitumor responses. IL-17 producing CD4+ T cells are a new subset of CD4+ T cells to be evaluated in ACT models. This review discusses the benefits of adoptive immunotherapy mediated by CD8+ and CD4+ cells. It also discusses the various type of T cells, source of T cells, and ex vivo cytokine growth factors for augmenting clinical efficacy of ACT. [Biomed Res Ther 2016; 3(4.000: 588-595

  17. Immunotherapy for malignant glioma

    Carter M Suryadevara

    2015-01-01

    Full Text Available Malignant gliomas (MG are the most common type of primary malignant brain tumor. Most patients diagnosed with glioblastoma (GBM, the most common and malignant glial tumor, die within 12-15 months. Moreover, conventional treatment, which includes surgery followed by radiation and chemotherapy, can be highly toxic by causing nonspecific damage to healthy brain and other tissues. The shortcomings of standard-of-care have thus created a stimulus for the development of novel therapies that can target central nervous system (CNS-based tumors specifically and efficiently, while minimizing off-target collateral damage to normal brain. Immunotherapy represents an investigational avenue with the promise of meeting this need, already having demonstrated its potential against B-cell malignancy and solid tumors in clinical trials. T-cell engineering with tumor-specific chimeric antigen receptors (CARs is one proven approach that aims to redirect autologous patient T-cells to sites of tumor. This platform has evolved dramatically over the past two decades to include an improved construct design, and these modern CARs have only recently been translated into the clinic for brain tumors. We review here emerging immunotherapeutic platforms for the treatment of MG, focusing on the development and application of a CAR-based strategy against GBM.

  18. Cancer immunotherapy in children

    More often than not, cancer immunotherapies that work in adults are used in modified ways in children. Seldom are new therapies developed just for children, primarily because of the small number of pediatric patients relative to the adult cancer patient

  19. Immunotherapy for Cervical Cancer

    In an early phase NCI clinical trial, two patients with metastatic cervical cancer had a complete disappearance of their tumors after receiving treatment with a form of immunotherapy called adoptive cell transfer.

  20. Development of cancer immunotherapy

    To increase the curative rate of cancer patients, we developed ideal biological response modifier from medicinal plants: Ginsan, KC68IId-8, KC-8Ala, KG-30. Ginsan activated natural killer cell activity of spleen cells more than 5.4 times than lentinan, 1.4 times than picibanil. Radioprotective activity of Ginsan is stronger than WR2721, glucan, and selenium. The immunogenicity of MOPC tumor cells was augmented by treatment with IL-10 antisense oligonucleotide and by transfection with VEGF sense-, antisense gene. The immunogenicity of MOPC tumor cells was augmented by treatment with IL-10 antisense oligonucleotide and by transfection with VEGF sense-, antisense gene. The immunogenicity of A20 tumor cells was also augmented by transfection with B7.1 gene. The immunosuppression of gamma-irradiation was due to the reduction of Th1 sytokine gene expression through STAT pathway. These research will devote to develop new cancer immunotherapy and to reduce side effect of cancer radiotherapy and chemotherapy

  1. Immunotherapy of Brain Cancer.

    Roth, Patrick; Preusser, Matthias; Weller, Michael

    2016-01-01

    The brain has long been considered an immune-privileged site precluding potent immune responses. Nevertheless, because of the failure of conventional anti-cancer treatments to achieve sustained control of intracranial neoplasms, immunotherapy has been considered as a promising strategy for decades. However, several efforts aimed at exploiting the immune system as a therapeutic weapon were largely unsuccessful. The situation only changed with the introduction of the checkpoint inhibitors, which target immune cell receptors that interfere with the activation of immune effector cells. Following the observation of striking effects of drugs that target CTLA-4 or PD-1 against melanoma and other tumor entities, it was recognized that these drugs may also be active against metastatic tumor lesions in the brain. Their therapeutic activity against primary brain tumors is currently being investigated within clinical trials. In parallel, other immunotherapeutics such as peptide vaccines are at an advanced stage of clinical development. Further immunotherapeutic strategies currently under investigation comprise adoptive immune cell transfer as well as inhibitors of metabolic pathways involved in the local immunosuppression frequently found in brain tumors. Thus, the ongoing implementation of immunotherapeutic concepts into clinical routine may represent a powerful addition to the therapeutic arsenal against various brain tumors. PMID:27260656

  2. Development of cancer immunotherapy

    Yun, Yeon Sook; Chung, H. Y.; Yi, S. Y.; Kim, K. W.; Kim, B. K.; Chung, I. S.; Park, J. Y

    1999-04-01

    To increase the curative rate of cancer patients, we developed ideal biological response modifier from medicinal plants: Ginsan, KC68IId-8, KC-8Ala, KG-30. Ginsan activated natural killer cell activity of spleen cells more than 5.4 times than lentinan, 1.4 times than picibanil. Radioprotective activity of Ginsan is stronger than WR2721, glucan, and selenium. The immunogenicity of MOPC tumor cells was augmented by treatment with IL-10 antisense oligonucleotide and by transfection with VEGF sense-, antisense gene. The immunogenicity of MOPC tumor cells was augmented by treatment with IL-10 antisense oligonucleotide and by transfection with VEGF sense-, antisense gene. The immunogenicity of A20 tumor cells was also augmented by transfection with B7.1 gene. The immunosuppression of gamma-irradiation was due to the reduction of Th1 sytokine gene expression through STAT pathway. These research will devote to develop new cancer immunotherapy and to reduce side effect of cancer radiotherapy and chemotherapy.

  3. Cancer Immunotherapy: A Review

    Anna Meiliana

    2016-04-01

    Full Text Available BACKGROUND: The goals of treating patients with cancer are to cure the disease, prolong survival, and improve quality of life. Immune cells in the tumor microenvironment have an important role in regulating tumor progression. Therefore, stimulating immune reactions to tumors can be an attractive therapeutic and prevention strategy. CONTENT: During immune surveillance, the host provides defense against foreign antigens, while ensuring it limits activation against self antigens. By targeting surface antigens expressed on tumor cells, monoclonal antibodies have demonstrated efficacy as cancer therapeutics. Recent successful antibody-based strategies have focused on enhancing antitumor immune responses by targeting immune cells, irrespective of tumor antigens. The use of antibodies to block pathways inhibiting the endogenous immune response to cancer, known as checkpoint blockade therapy, has stirred up a great deal of excitement among scientists, physicians, and patients alike. Clinical trials evaluating the safety and efficacy of antibodies that block the T cell inhibitory molecules cytotoxic T-lymphocyte-associated protein 4 (CTLA-4 and programmed cell death 1 (PD-1 have reported success in treating subsets of patients. Adoptive cell transfer (ACT is a highly personalized cancer therapy that involve administration to the cancer-bearing host of immune cells with direct anticancer activity. In addition, the ability to genetically engineer lymphocytes to express conventional T cell receptors or chimeric antigen receptors has further extended the successful application of ACT for cancer treatment. SUMMARY: For cancer treatment, 2011 marked the beginning of a new era. The underlying basis of cancer immunotherapy is to activate a patient’s own T cells so that they can kill their tumors. Reports of amazing recoveries abound, where patients remain cancer-free many years after receiving the therapy. The idea of harnessing immune cells to fight cancer is

  4. The future of sublingual immunotherapy.

    Marcucci, F; Duse, M; Frati, F; Incorvaia, C; Marseglia, G L; La Rosa, M

    2009-01-01

    Sublingual immunotherapy (SLIT) is currently the most prescribed form of allergen immunotherapy in many European countries. Its use has been accepted in the international consensus publications, and recently also the scepticism of USA scientists is attenuated. Still, this treatment may be improved, and the possible developments consist of modification of the materials, use of adjuvants and use of recombinant allergens. Moreover, new applications of SLIT, such as food allergy, seem promising. Concerning materials, the future form of SLIT is likely to be represented by tablets, which were already tested for efficacy and safety with grass pollen extracts, and are likely to increase the convenience for the patient by the use of no-updosing schedule. Adjuvants fitting with the characteristics of SLIT seem to be CpG oligodeoxynucleotides (CpG), able to interact with the Toll-like receptor 9 (TLR9) whose activation induces a Th1-like pattern of cytokine release, combination of 1,25-dihydroxyvitamin D3 plus dexamethasone (VitD3-Dex), and Lactobacillus plantarum. The approach with recombinant allergens, named component-resolved diagnosis, offers the possibility to tailor immunotherapy, which was found to be effective in two randomized trials of subcutaneous SIT (16-17), while studies with SLIT are not yet available. Regarding food allergy, an important controlled study demonstrated that SLIT with hazelnut is able to increase patients tolerance over possible reactions from inadvertent assumption of the culprit food, and warrants for further trials with other foods. PMID:19944008

  5. Immunotherapy with MVA-BN®-HER2 induces HER-2-specific Th1 immunity and alters the intratumoral balance of effector and regulatory T cells

    Mandl, Stefanie J; Rountree, Ryan B; Dalpozzo, Katie; Do, Lisa; Lombardo, John R.; Schoonmaker, Peter L.; Dirmeier, Ulrike; Steigerwald, Robin; Giffon, Thierry; Laus, Reiner; Delcayre, Alain

    2011-01-01

    MVA-BN®-HER2 is a new candidate immunotherapy designed for the treatment of HER-2-positive breast cancer. Here, we demonstrate that a single treatment with MVA-BN®-HER2 exerts potent anti-tumor efficacy in a murine model of experimental pulmonary metastasis. This anti-tumor efficacy occurred despite a strong tumor-mediated immunosuppressive environment characterized by a high frequency of regulatory T cells (Treg) in the lungs of tumor-bearing mice. Immunogenicity studies showed that treatmen...

  6. Enzyme specific activity in functionalized nanoporous supports

    Lei Chenghong; Soares, Thereza A; Shin, Yongsoon; Liu Jun; Ackerman, Eric J [Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352 (United States)], E-mail: Eric.Ackerman@pnl.gov

    2008-03-26

    Here we reveal that enzyme specific activity can be increased substantially by changing the protein loading density (P{sub LD}) in functionalized nanoporous supports so that the enzyme immobilization efficiency (I{sub e}, defined as the ratio of the specific activity of the immobilized enzyme to the specific activity of the free enzyme in solution) can be much higher than 100%. A net negatively charged glucose oxidase (GOX) and a net positively charged organophosphorus hydrolase (OPH) were entrapped spontaneously in NH{sub 2}- and HOOC-functionalized mesoporous silica (300 A, FMS) respectively. The specific activity of GOX entrapped in FMS increased with decreasing P{sub LD}. With decreasing P{sub LD}, I{sub e} of GOX in FMS increased from<35% to>150%. Unlike GOX, OPH in HOOC-FMS showed increased specific activity with increasing P{sub LD}. With increasing P{sub LD}, the corresponding I{sub e} of OPH in FMS increased from 100% to>200%. A protein structure-based analysis of the protein surface charges directing the electrostatic interaction-based orientation of the protein molecules in FMS demonstrates that substrate access to GOX molecules in FMS is limited at high P{sub LD}, consequently lowering the GOX specific activity. In contrast, substrate access to OPH molecules in FMS remains open at high P{sub LD} and may promote a more favorable confinement environment that enhances the OPH activity.

  7. Enzyme specific activity in functionalized nanoporous supports

    Here we reveal that enzyme specific activity can be increased substantially by changing the protein loading density (PLD) in functionalized nanoporous supports so that the enzyme immobilization efficiency (Ie, defined as the ratio of the specific activity of the immobilized enzyme to the specific activity of the free enzyme in solution) can be much higher than 100%. A net negatively charged glucose oxidase (GOX) and a net positively charged organophosphorus hydrolase (OPH) were entrapped spontaneously in NH2- and HOOC-functionalized mesoporous silica (300 A, FMS) respectively. The specific activity of GOX entrapped in FMS increased with decreasing PLD. With decreasing PLD, Ie of GOX in FMS increased from150%. Unlike GOX, OPH in HOOC-FMS showed increased specific activity with increasing PLD. With increasing PLD, the corresponding Ie of OPH in FMS increased from 100% to>200%. A protein structure-based analysis of the protein surface charges directing the electrostatic interaction-based orientation of the protein molecules in FMS demonstrates that substrate access to GOX molecules in FMS is limited at high PLD, consequently lowering the GOX specific activity. In contrast, substrate access to OPH molecules in FMS remains open at high PLD and may promote a more favorable confinement environment that enhances the OPH activity

  8. Targeting inhibition of Foxp3 by a CD28 2'-Fluro oligonucleotide aptamer conjugated to P60-peptide enhances active cancer immunotherapy.

    Lozano, Teresa; Soldevilla, Mario Martínez; Casares, Noelia; Villanueva, Helena; Bendandi, Maurizio; Lasarte, Juan Jose; Pastor, Fernando

    2016-06-01

    The specific inhibition of Treg function has long been a major technical challenge in cancer immunotherapy. So far no single cell-surface marker has been identified that could be used to distinguish Treg cells from other lymphocytes. The only available specific marker mostly expressed in Treg is Foxp3, which is an intracellular transcription factor. A targeting molecule able to penetrate the membrane and inhibit Foxp3 within the cell is needed. P60-peptide is able to do that, but due to lack of target specificity, the doses are extremely high. In this study we have shown as a proof of concept that P60 Foxp3 inhibitor peptide can be conjugated with a CD28 targeting aptamer to deliver the peptide to CD28-expressing cells. The AptCD28-P60 construct is a clinically feasible reagent that improves the efficacy of the unconjugated P60 peptide very significantly. This approach was used to inhibit Treg function in a vaccination context, and it has shown a significant improvement in the induced immune response, entailing a lower tumor load in an antigen-specific cancer vaccine protocol. PMID:26999456

  9. Strategies of mucosal immunotherapy for allergic diseases

    Yi-Ling Ye; Ya-Hui Chuang; Bor-Luen Chiang

    2011-01-01

    Incidences of allergic disease have recently increased worldwide.Allergen-specific immunotherapy (SIT) has long been a controversial treatment for allergic diseases.Although beneficial effects on clinically relevant outcomes have been demonstrated in clinical trials by subcutaneous immunotherapy (SCIT),there remains a risk of severe and sometimes fatal anaphylaxis.Mucosal immunotherapy is one advantageous choice because of its non-injection routes of administration and lower side-effect profile.This study reviews recent progress in mucosal immunotherapy for allergic diseases.Administration routes,antigen quality and quantity,and adjuvants used are major considerations in this field.Also,direct uses of unique probiotics,or specific cytokines,have been discussed.Furthermore,some researchers have reported new therapeutic ideas that combine two or more strategies.The most important strategy for development of mucosal therapies for allergic diseases is the improvement of antigen formulation,which includes continuous searching for efficient adjuvants,collecting more information about dominant T-cell epitopes of allergens,and having the proper combination of each.In clinics,when compared to other mucosal routes,sublingual immunotherapy (SLIT) is a preferred choice for therapeutic administration,although local and systemic side effects have been reported.Additionally,not every allergen has the same beneficial effect.Further studies are needed to determine the benefits of mucosal immunotherapy for different allergic diseases after comparison of the different administration routes in children and adults.Data collected from large,well-designed,double-blind,placebo-controlled,and randomized trials,with post-treatment follow-up,can provide robust substantiation of current evidence.

  10. Anti-CD40-mediated cancer immunotherapy

    Hassan, Sufia Butt; Sørensen, Jesper Freddie; Olsen, Barbara Nicola;

    2014-01-01

    activation and thus enhancement of immune responses. Treatment with anti-CD40 monoclonal antibodies has been exploited in several cancer immunotherapy studies in mice and led to the development of anti-CD40 antibodies for clinical use. Here, Dacetuzumab and Lucatumumab are in the most advanced stage...... with other cancer immunotherapies, in particular interleukin (IL)-2. An in-depth analysis of this immunotherapy is provided elsewhere. In the present review, we provide an update of the most recent clinical trials with anti-CD40 antibodies. We present and discuss recent and ongoing clinical trials...... in this field, including clinical studies which combine anti-CD40 treatment with other cancer-treatments, such as Rituximab and Tremelimumab....

  11. Immunotherapy of childhood Sarcomas

    Stephen S Roberts

    2015-08-01

    Full Text Available Pediatric sarcomas are a heterogeneous group of malignant tumors of bone and soft tissue origin. Although more than 100 different histologic subtypes have been described, the majority of pediatric cases belong to the Ewing’s family of tumors, rhabdomyosarcoma and osteosarcoma. Most patients that present with localized stage are curable with surgery and/or chemotherapy; however, those with metastatic disease at diagnosis or those who experience a relapse continue to have a very poor prognosis. New therapies for these patients are urgently needed. Immunotherapy is an established treatment modality for both liquid and solid tumors, and in pediatrics, most notably for neuroblastoma and osteosarcoma. In the past, immunomodulatory agents such as interferon, interleukin-2, and Liposomal-muramyl  tripeptide phosphatidyl-ethanolamine (L-MTP have been tried, with some activity seen in subsets of patients; additionally, various cancer vaccines have been studied with possible benefit. Monoclonal antibody therapies against tumor antigens such as disialoganglioside GD2 or immune checkpoint targets such as CTLA4 and PD-1 are being actively explored in pediatric sarcomas. Building on the success of adoptive T cell therapy for EBV-related lymphoma, strategies to redirect T cells using chimeric antigen receptors and bispecific antibodies are rapidly evolving with potential for the treatment of sarcomas. This review will focus on recent preclinical and clinical developments in targeted agents for pediatric sarcomas with emphasis on the immunobiology of immune checkpoints, immunoediting, tumor microenvironment, antibody engineering, cell engineering, and tumor vaccines. The future integration of antibody based and cell based therapies into an overall treatment strategy of sarcoma will be discussed.

  12. Immunotherapy of Childhood Sarcomas.

    Roberts, Stephen S; Chou, Alexander J; Cheung, Nai-Kong V

    2015-01-01

    Pediatric sarcomas are a heterogeneous group of malignant tumors of bone and soft tissue origin. Although more than 100 different histologic subtypes have been described, the majority of pediatric cases belong to the Ewing's family of tumors, rhabdomyosarcoma and osteosarcoma. Most patients that present with localized stage are curable with surgery and/or chemotherapy; however, those with metastatic disease at diagnosis or those who experience a relapse continue to have a very poor prognosis. New therapies for these patients are urgently needed. Immunotherapy is an established treatment modality for both liquid and solid tumors, and in pediatrics, most notably for neuroblastoma and osteosarcoma. In the past, immunomodulatory agents such as interferon, interleukin-2, and liposomal-muramyl tripeptide phosphatidyl-ethanolamine have been tried, with some activity seen in subsets of patients; additionally, various cancer vaccines have been studied with possible benefit. Monoclonal antibody therapies against tumor antigens such as disialoganglioside GD2 or immune checkpoint targets such as CTLA-4 and PD-1 are being actively explored in pediatric sarcomas. Building on the success of adoptive T cell therapy for EBV-related lymphoma, strategies to redirect T cells using chimeric antigen receptors and bispecific antibodies are rapidly evolving with potential for the treatment of sarcomas. This review will focus on recent preclinical and clinical developments in targeted agents for pediatric sarcomas with emphasis on the immunobiology of immune checkpoints, immunoediting, tumor microenvironment, antibody engineering, cell engineering, and tumor vaccines. The future integration of antibody-based and cell-based therapies into an overall treatment strategy of sarcoma will be discussed. PMID:26301204

  13. [Dendritic cells in cancer immunotherapy].

    Gato, M; Liechtenstein, T; Blanco-Luquín, I; Zudaire, M I; Kochan, G; Escors, D

    2015-01-01

    Since the beginning of the 20th century, biomedical scientists have tried to take advantage of the natural anti-cancer activities of the immune system. However, all the scientific and medical efforts dedicated to this have not resulted in the expected success. In fact, classical antineoplastic treatments such as surgery, radio and chemotherapy are still first line treatments. Even so, there is a quantity of experimental evidence demonstrating that cancer cells are immunogenic. However, the effective activation of anti-cancer T cell responses closely depends on an efficient antigen presentation carried out by professional antigen presenting cells such as DC. Although there are a number of strategies to strengthen antigen presentation by DC, anti-cancer immunotherapy is not as effective as we would expect according to preclinical data accumulated in recent decades. We do not aim to make an exhaustive review of DC immunotherapy here, which is an extensive research subject already dealt with in many specialised reviews. Instead, we present the experimental approaches undertaken by our group over the last decade, by modifying DC to improve their anti-tumour capacities. PMID:26486534

  14. Plasma Onco-Immunotherapy: Novel Approach to Cancer Treatment

    Fridman, Alexander

    2015-09-01

    Presentation is reviewing the newest results obtained by researchers of A.J. Drexel Plasma Institute on direct application of non-thermal plasma for direct treatment of different types of cancer by means of specific stimulation of immune system in the frameworks of the so-called onco-immunotherapy. Especial attention is paid to analysis of depth of penetration of different plasma-medical effects, from ROS, RNS, and ions to special biological signaling and immune system related processes. General aspects of the plasma-stimulation of immune system are discussed, pointing out specific medical applications. Most of experiments have been carried out using nanosecond pulsed DBD at low power and relatively low level of treatment doses, guaranteeing non-damage no-toxicity treatment regime. The nanosecond pulsed DBD physics is discussed mostly regarding its space uniformity and control of plasma parameters relevant to plasma medical treatment, and especially relevant to depth of penetration of different plasma medical effects. Detailed mechanism of the plasma-induced onco-immunotherapy has been suggested based upon preliminary in-vitro experiments with DBD treatment of different cancer cells. Sub-elements of this mechanism related to activation of macrophages and dendritic cells, specific stressing of cancer cells and the immunogenic cell death (ICD) are to be discussed based on results of corresponding in-vitro experiments. In-vivo experiments focused on the plasma-induced onco-immunotherapy were carried out in collaboration with medical doctors from Jefferson University hospital of Philadelphia. Todays achievements and nearest future prospective of clinical test focused on plasma-controlled cancer treatment are discussed in conclusion.

  15. Chimeric antigen receptor engineering: a right step in the evolution of adoptive cellular immunotherapy.

    Figueroa, Jose A; Reidy, Adair; Mirandola, Leonardo; Trotter, Kayley; Suvorava, Natallia; Figueroa, Alejandro; Konala, Venu; Aulakh, Amardeep; Littlefield, Lauren; Grizzi, Fabio; Rahman, Rakhshanda Layeequr; Jenkins, Marjorie R; Musgrove, Breeanna; Radhi, Saba; D'Cunha, Nicholas; D'Cunha, Luke N; Hermonat, Paul L; Cobos, Everardo; Chiriva-Internati, Maurizio

    2015-03-01

    Cancer immunotherapy comprises different therapeutic strategies that exploit the use of distinct components of the immune system, with the common goal of specifically targeting and eradicating neoplastic cells. These varied approaches include the use of specific monoclonal antibodies, checkpoint inhibitors, cytokines, therapeutic cancer vaccines and cellular anticancer strategies such as activated dendritic cell (DC) vaccines, tumor-infiltrating lymphocytes (TILs) and, more recently, genetically engineered T cells. Each one of these approaches has demonstrated promise, but their generalized success has been hindered by the paucity of specific tumor targets resulting in suboptimal tumor responses and unpredictable toxicities. This review will concentrate on recent advances on the use of engineered T cells for adoptive cellular immunotherapy (ACI) in cancer. PMID:25901860

  16. Enzyme Specific Activity in Functionalized Nanoporous Supports

    Lei, Chenghong; Soares, Thereza A.; Shin, Yongsoon; Liu, Jun; Ackerman, Eric J.

    2008-03-26

    Enzyme specific activity can be increased or decreased to a large extent by changing protein loading density in functionalized nanoporous support, where organophosphorus hydrolase can display a constructive orientation and thus leave a completely open entrance for substrate even at higher protein loading density, but glucose oxidase can not.

  17. Role of IL-2 in cancer immunotherapy.

    Jiang, Tao; Zhou, Caicun; Ren, Shengxiang

    2016-06-01

    Interleukin-2 (IL-2) is one of the key cytokines with pleiotropic effects on immune system. It has been approved for the treatment of metastatic renal cell carcinoma and metastatic melanoma. Recent progress has been made in our understanding of IL-2 in regulating lymphocytes that has led to exciting new directions for cancer immunotherapy. While improved IL-2 formulations might be used as monotherapies, their combination with other anticancer immunotherapies, such as adoptive cell transfer regimens, antigen-specific vaccination, and blockade of immune checkpoint inhibitory molecules, for example cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and programmed death 1 (PD-1) mono-antibodies, would held the promise of treating metastatic cancer. Despite the comprehensive studies of IL-2 on immune system have established the application of IL-2 for cancer immunotherapy, a number of poignant obstacles remain for future research. In the present review, we will focus on the key biological features of IL-2, current applications, limitations, and future directions of IL-2 in cancer immunotherapy. PMID:27471638

  18. Immunotherapy with the storage mite lepidoglyphus destructor.

    Armentia-Medina, A; Tapias, J A; Martín, J F; Ventas, P; Fernández, A

    1995-01-01

    We carried out a double-blind clinical trial of immunotherapy on 35 patients sensitized to the storage mite Lepidoglyphus destructor (Ld). Before and after 12 months of specific hyposensitization (Abelló Lab., Spain) we performed in vivo (skin tests with Ld, methacholine and challenge tests), and in vitro tests (specific IgE, IgG, IgG1 and IgG4 to Ld and specific IgE, IgG, IgG1 and IgG4 to their major allergen Lep dI). We also monitored the efficacy and safety of the immunotherapy with clinical and analytical controls (symptoms and medication score, detection of immune complexes). After therapy we found a significant decrease in specific skin reactivity, dose of positive challenge tests, and hyperresponsiveness to methacholine. Sputum eosinophilia decreased. Specific IgE to Ld was increased and we also observed an increase in specific IgG1 and IgG4 to Ld and Lep DI. The placebo group showed no changes in these variables. There were no severe secondary reactions after treatment with the extract. Patients-self-evaluation was favourable and their labour absence decreased. No development of circulating immune complexes was associated with this immunotherapy. PMID:8526179

  19. Cancer immunotherapy with surgery

    Orita,Kunzo

    1977-08-01

    Full Text Available With the recent advances in the immunological surveillance system, an understanding of the role of host immunity has become essential to the management of carcinogenesis, tumor proliferation, recurrence and metastasis. Although it is important to continue chemical and surgical treatment of cancer, support of the anti-tumor immune system of the host should also be considered. Long term remission has been reported in leukemia by treating with BCG after chemotherapy whereas surgical treatment is usually more effective in preventing cancer recurrence in digestive organ cancer. The first step is extirpating the tumor as thoroughly as possible and the second step is chemo-immunotherapy. Cancer immunity, however weak, constitutes the basis for other treatments in selectively attacking cancer cells remaining after surgery, chemotherapy or irradiation. Immunotherapy should thus not replace chemotherapy or radiotherapy, but these methods should be employed in combination to attain more favorable results.

  20. Immunotherapy of Melanoma.

    Snyder, Alexandra; Zamarin, Dmitriy; Wolchok, Jedd D

    2015-01-01

    The history of immunotherapy is rooted in the treatment of melanoma and therapy with immune checkpoint-blocking agents is now a cornerstone for the treatment of metastatic melanoma. The first effective immunotherapies approved by the US Food and Drug Administration in melanoma included interleukin-2 for metastatic disease and interferon alpha in the adjuvant setting. These were followed by a group of new therapies, including checkpoint-blocking antibodies targeting cytotoxic T lymphocyte-associated protein 4 and programmed cell death protein 1. Therapies intended to 'reeducate' T cells, such as tumor-infiltrating lymphocyte therapy, oncolytic viruses and tumor vaccines, have yielded promising results and are under development. Finally, the integration of the above therapies as well as development of new coinhibitory and costimulatory agents, though in early stages, appear very promising and likely represent the next phase in drug development for the treatment of metastatic melanoma. PMID:26376963

  1. Monocyte galactose/N-acetylgalactosamine-specific C-type lectin receptor stimulant immunotherapy of an experimental glioma. Part II: combination with external radiation improves survival

    A peptide mimetic of a ligand for the galactose/N-acetylgalactosamine-specific C-type lectin receptors (GCLR) exhibited monocyte-stimulating activity, but did not extend survival when applied alone against a syngeneic murine malignant glioma. In this study, the combined effect of GCLRP with radiation was investigated. C57BL/6 mice underwent stereotactic intracranial implantation of GL261 glioma cells. Animals were grouped based on randomized tumor size by magnetic resonance imaging on day seven. One group that received cranial radiation (4 Gy on days seven and nine) only were compared with animals treated with radiation and GCLRP (4 Gy on days seven and nine combined with subcutaneous injection of 1 nmol/g on alternative days beginning on day seven). Magnetic resonance imaging was used to assess tumor growth and correlated with survival rate. Blood and brain tissues were analyzed with regard to tumor and contralateral hemisphere using fluorescence-activated cell sorting analysis, histology, and enzyme-linked immunosorbent assay. GCLRP activated peripheral monocytes and was associated with increased blood precursors of dendritic cells. Mean survival increased (P < 0.001) and tumor size was smaller (P < 0.02) in the GCLRP + radiation group compared to the radiation-only group. Accumulation of dendritic cells in both the tumoral hemisphere (P < 0.005) and contralateral tumor-free hemisphere (P < 0.01) was associated with treatment. Specific populations of monocyte-derived brain cells develop critical relationships with malignant gliomas. The biological effect of GCLRP in combination with radiation may be more successful because of the damage incurred by tumor cells by radiation and the enhanced or preserved presentation of tumor cell antigens by GCLRP-activated immune cells. Monocyte-derived brain cells may be important targets for creating effective immunological modalities such as employing the receptor system described in this study

  2. Bladder cancer immunotherapy.

    Lamm, D L; Thor, D E; Stogdill, V D; Radwin, H M

    1982-11-01

    A randomized controlled prospective evaluation of intravesical and percutaneous bacillus Calmette-Guerin immunotherapy was done in 57 patients with transitional cell carcinoma of the bladder. In addition, 9 patients at high risk for tumor recurrence were treated with bacillus Calmette-Guerin produced a self-limited cystitis and 1 complication (hydronephrosis) of immunotherapy was observed. Of the 57 randomized patients 54 were followed for 3 to 30 months. Tumor recurrence was documented in 13 of 26 controls (50 per cent) and only 6 of 28 patients (21 per cent) treated with bacillus Calmette-Guerin (p equals 0.027, chi-square). The interval free of disease was prolonged significantly with bacillus Calmette-Guerin treatment (p equals 0.014, generalized Wilcoxon test). Importantly, a simple purified protein derivative skin test distinguished those patients who responded to bacillus Calmette-Guerin immunotherapy from those who did not. Only 1 of 17 treated patients (6 per cent) whose purified protein derivative test converted from negative to positive had tumor recurrence compared to 5 recurrences (38 per cent) among the 13 patients whose test remained negative or had been positive before treatment (p equals 0.022, chi-square). Bacillus Calmette-Guerin was given to 10 patients with stage B transitional cell carcinoma who were not candidates for cystectomy and 7 are free of disease. Of 5 patients with carcinoma in situ 3 remain free of tumor after bacillus Calmette-Guerin treatment and 5 of 6 who had multiple recurrences after intravesical chemotherapy responded favorably to bacillus Calmette-Guerin immunotherapy. PMID:6757467

  3. Change in peripheral blood lymphocyte count in dogs following adoptive immunotherapy using lymphokine-activated T killer cells combined with palliative tumor resection.

    Mie, Keiichiro; Shimada, Terumasa; Akiyoshi, Hideo; Hayashi, Akiyoshi; Ohashi, Fumihito

    2016-09-01

    We evaluated changes in peripheral blood lymphocyte (PBL) count in dogs following adoptive immunotherapy using lymphokine-activated T killer cells (T-LAK) in combination with surgery. Fifteen tumor-bearing dogs treated with T-LAK therapy combined with palliative resection of tumors were enrolled in the present study. T-LAK were generated from autologous peripheral blood mononuclear cells (PBMC) by culture with recombinant human interleukin -2 (rhIL-2) and solid phase anti-canine cluster of differentiation (CD)3 antibody. T-LAK were administrated intravenously at 2-4-week intervals. After the first administration of T-LAK, counts of PBL and T lymphocyte subsets (CD3(+), CD4(+) and CD8(+) cells) increased and the CD4/CD8 ratio decreased, with significant increases in CD8(+) cells (P<0.05). In 8 tumor-bearing dogs that were administered sequential T-LAK, available data on changes in PBL and T lymphocyte phenotypes until the fifth administration were also analyzed. In tumor-bearing dogs administered 5 rounds of T-LAK, CD8(+) cell counts were maintained high until the fifth administration of T-LAK. Moreover, the CD4/CD8 ratio remained low until the fifth administration of T-LAK. These results indicate that T-LAK therapy combined with surgery may increase peripheral blood T lymphocytes, particularly CD8(+) cells, in tumor-bearing dogs. PMID:27436446

  4. Production of high specific activity silicon-32

    Phillips, D.R. [Los Alamos National Lab., NM (United States); Brzezinski, M.A. [Univ. of California, Santa Barbara, CA (United States). Marine Biotechnology Center

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development Project (LDRD) at Los Alamos National Laboratory (LANL). There were two primary objectives for the work performed under this project. The first was to take advantage of capabilities and facilities at Los Alamos to produce the radionuclide {sup 32}Si in unusually high specific activity. The second was to combine the radioanalytical expertise at Los Alamos with the expertise at the University of California to develop methods for the application of {sup 32}Si in biological oceanographic research related to global climate modeling. The first objective was met by developing targetry for proton spallation production of {sup 32}Si in KCl targets and chemistry for its recovery in very high specific activity. The second objective was met by developing a validated field-useable, radioanalytical technique, based upon gas-flow proportional counting, to measure the dynamics of silicon uptake by naturally occurring diatoms.

  5. Production of high specific activity silicon-32

    This is the final report of a three-year, Laboratory Directed Research and Development Project (LDRD) at Los Alamos National Laboratory (LANL). There were two primary objectives for the work performed under this project. The first was to take advantage of capabilities and facilities at Los Alamos to produce the radionuclide 32Si in unusually high specific activity. The second was to combine the radioanalytical expertise at Los Alamos with the expertise at the University of California to develop methods for the application of 32Si in biological oceanographic research related to global climate modeling. The first objective was met by developing targetry for proton spallation production of 32Si in KCl targets and chemistry for its recovery in very high specific activity. The second objective was met by developing a validated field-useable, radioanalytical technique, based upon gas-flow proportional counting, to measure the dynamics of silicon uptake by naturally occurring diatoms

  6. An Undergraduate Laboratory Activity Demonstrating Bacteriophage Specificity

    Mary E. Allen

    2013-02-01

    Full Text Available Bacteriophage are among the most diverse and numerous microbes inhabiting our planet. Yet many laboratory activities fail to engage students in meaningful exploration of their diversity, unique characteristics, and abundance. In this curriculum activity students use a standard plaque assay to enumerate bacteriophage particles from a natural sample and use the scientific method to address questions about host specificity and diversity. A raw primary sewage sample is enriched for bacteriophage using hosts in the family Enterobacteriaceae. Students hypothesize about host specificity and use quantitative data (serial dilution and plaque assay to test their hypotheses. Combined class data also help them answer questions about phage diversity. The exercise was field tested with a class of 47 students using pre- and posttests. For all learning outcomes posttest scores were higher than pretest scores at or below p = 0.01. Average individualized learning gain (G was also calculated for each learning outcome. Students’ use of scientific language in reference to bacteriophage and host interaction significantly improved (p = 0.002; G = 0.50. Improved means of expression helped students construct better hypotheses on phage host specificity (G = 0.31, p = 0.01 and to explain the plaque assay method (G = 0.33, p = 0.002. At the end of the exercise students also demonstrated improved knowledge and understanding of phage specificity as related to phage therapy in humans (p < 0.001; G = 51.

  7. Arylesterase Phenotype-Specific Positive Association Between Arylesterase Activity and Cholinesterase Specific Activity in Human Serum

    Yutaka Aoki

    2014-01-01

    Full Text Available Context: Cholinesterase (ChE specific activity is the ratio of ChE activity to ChE mass and, as a biomarker of exposure to cholinesterase inhibitors, has a potential advantage over simple ChE activity. Objective: To examine the association of several potential correlates (serum arylesterase/paraoxonase activity, serum albumin, sex, age, month of blood collection, and smoking with plasma ChE specific activity. Methods: We analyzed data from 195 cancer-free controls from a nested case-control study, accounting for potential confounding. Results: Arylesterase activity had an independent, statistically significant positive association with ChE specific activity, and its magnitude was the greatest for the arylesterase phenotype corresponding to the QQ PON1192 genotype followed by phenotypes corresponding to QR and RR genotypes. Serum albumin was positively associated with ChE specific activity. Conclusions: Plasma arylesterase activity was positively associated with plasma ChE specific activity. This observation is consistent with protection conferred by a metabolic phenotype resulting in reduced internal dose.

  8. Development of PROSTVAC immunotherapy in prostate cancer.

    Singh, Parminder; Pal, Sumanta K; Alex, Anitha; Agarwal, Neeraj

    2015-01-01

    PROSTVAC immunotherapy is a heterologous prime-boost regimen of two different recombinant pox-virus vectors; vaccinia as the primary immunotherapy, followed by boosters employing fowlpox, to provoke immune responses against prostate-specific antigen. Both vectors contain transgenes for prostate-specific antigen and a triad of T-cell costimulatory molecules (TRICOM). In a placebo-controlled Phase II trial of men with minimally symptomatic, chemotherapy-naive metastatic castration-resistant prostate cancer, PROSTVAC was well tolerated and associated with a 44% reduction in death. With a novel mechanism of action, and excellent tolerability, PROSTVAC has the potential to dramatically alter the treatment landscape of prostate cancer, not only as a monotherapy, but also in combination with other novel agents, such as immune check point inhibitors and novel androgen receptor blockers. A Phase III trial recently completed accrual. PMID:26235179

  9. Cancer immunotherapy: the beginning of the end of cancer?

    Farkona, Sofia; Diamandis, Eleftherios P.; Blasutig, Ivan M

    2016-01-01

    These are exciting times for cancer immunotherapy. After many years of disappointing results, the tide has finally changed and immunotherapy has become a clinically validated treatment for many cancers. Immunotherapeutic strategies include cancer vaccines, oncolytic viruses, adoptive transfer of ex vivo activated T and natural killer cells, and administration of antibodies or recombinant proteins that either costimulate cells or block the so-called immune checkpoint pathways. The recent succe...

  10. Amyloid beta peptide immunotherapy in Alzheimer disease.

    Delrieu, J; Ousset, P J; Voisin, T; Vellas, B

    2014-12-01

    Recent advances in the understanding of Alzheimer's disease pathogenesis have led to the development of numerous compounds that might modify the disease process. Amyloid β peptide represents an important molecular target for intervention in Alzheimer's disease. The main purpose of this work is to review immunotherapy studies in relation to the Alzheimer's disease. Several types of amyloid β peptide immunotherapy for Alzheimer's disease are under investigation, active immunization and passive administration with monoclonal antibodies directed against amyloid β peptide. Although immunotherapy approaches resulted in clearance of amyloid plaques in patients with Alzheimer's disease, this clearance did not show significant cognitive effect for the moment. Currently, several amyloid β peptide immunotherapy approaches are under investigation but also against tau pathology. Results from amyloid-based immunotherapy studies in clinical trials indicate that intervention appears to be more effective in early stages of amyloid accumulation in particular solanezumab with a potential impact at mild Alzheimer's disease, highlighting the importance of diagnosing Alzheimer's disease as early as possible and undertaking clinical trials at this stage. In both phase III solanezumab and bapineuzumab trials, PET imaging revealed that about a quarter of patients lacked fibrillar amyloid pathology at baseline, suggesting that they did not have Alzheimer's disease in the first place. So a new third phase 3 clinical trial for solanezumab, called Expedition 3, in patients with mild Alzheimer's disease and evidence of amyloid burden has been started. Thus, currently, amyloid intervention is realized at early stage of the Alzheimer's disease in clinical trials, at prodromal Alzheimer's disease, or at asymptomatic subjects or at risk to develop Alzheimer's disease and or at asymptomatic subjects with autosomal dominant mutation. PMID:25459121

  11. Aptamers: A Feasible Technology in Cancer Immunotherapy

    Villanueva, H.; Pastor, F.

    2016-01-01

    Aptamers are single-chained RNA or DNA oligonucleotides (ODNs) with three-dimensional folding structures which allow them to bind to their targets with high specificity. Aptamers normally show affinities comparable to or higher than that of antibodies. They are chemically synthesized and therefore less expensive to manufacture and produce. A variety of aptamers described to date have been shown to be reliable in modulating immune responses against cancer by either blocking or activating immune receptors. Some of them have been conjugated to other molecules to target the immune system and reduce off-target side effects. Despite the success of first-line treatments against cancer, the elevated number of relapsing cases and the tremendous side effects shown by the commonly used agents hinder conventional treatments against cancer. The advantages provided by aptamers could enhance the therapeutic index of a given strategy and therefore enhance the antitumor effect. Here we recapitulate the provided benefits of aptamers with immunomodulatory activity described to date in cancer therapy and the benefits that aptamer-based immunotherapy could provide either alone or combined with first-line treatments in cancer therapy. PMID:27413756

  12. Agreement of skin test with IL-4 production and CD40L expression by T cells upon immunotherapy of subjects with systemic reactions to Hymenoptera stings.

    Urra, José M; Cabrera, Carmen M; Alfaya, Teresa; Feo-Brito, Francisco

    2016-02-01

    Venom immunotherapy is the only curative intervention for subjects with Hymenoptera venom allergy who suffering systemic reactions upon bee or wasp stings. Venom immunotherapy can restore normal immunity against venom allergens, as well as providing to allergic subjects a lifetime tolerance against venoms. Nevertheless, it is necessary using safety assays to monitoring the development of tolerance in the VIT protocols to avoid fatal anaphylactic reactions. The purpose of this study was to assess the modifications in several markers of tolerance induction in subjects with Hymenoptera venom allergy undergoing immunotherapy. The studies were performed at baseline time and after six month of VIT. Intradermal skin tests, basophil activation tests, specific IgE levels; and the T-cell markers (IL-4 and IFN-γ producing cells; and expression of the surface activation markers CD40L and CTLA-4) were assayed. At six month of immunotherapy all parameters studied had significant alterations. All decreased, except the IFN-γ producing cells. In addition, modifications in intradermal skin test showed a significant correlation with both, CD40L expression on CD4 T lymphocytes (p=0.043) and IL-4 producing T lymphocytes (p=0.012). Neither basophil activation test nor serum levels of sIgE demonstrated any correlation with the immunological parameters studied nor among them. These results suggest that both IL-4 production and CD40L expression could be two good indicators of the beneficial effects of venom immunotherapy which translate into skin tests. PMID:26774053

  13. An Approach to Breast Cancer Immunotherapy: The Apoptotic Activity of Recombinant Anti-Interleukin-6 Monoclonal Antibodies in Intact Tumour Microenvironment of Breast Carcinoma.

    Abou-Shousha, S; Moaaz, M; Sheta, M; Motawea, M A

    2016-06-01

    Current work is one of our comprehensive preclinical studies, a new approach to breast cancer (BC) immunotherapy through induction of tumour cell apoptosis. Tumour growth is not just a result of uncontrolled cell proliferation but also of reduced apoptosis. High levels of interleukin-6 (IL-6) are associated with metastatic BC and correlated with poor survival as it promotes growth of tumour-initiating cells during early tumorigenesis protecting these cells from apoptosis. Therefore, this study aims at investigating the potential of anti-IL-6 monoclonal antibodies to suppress IL-6 proliferative/anti-apoptotic activities in intact tumour microenvironment of BC. Fresh sterile tumour and normal breast tissue specimens were taken from 50 female Egyptian patients with BC undergoing radical mastectomy. A unique tissue culture system designed to provide cells of each intact tumour/normal tissue sample with its proper microenvironment either supplemented or not with anti-IL-6 monoclonal antibodies. To evaluate the apoptotic activity of anti-IL-6 as a novel candidate for BC treatment strategy, we compared its effects with those obtained using tumour necrosis-related apoptosis-inducing ligand TRAIL as an established apoptotic agent. Our results revealed that levels of either anti-IL-6- or TRAIL-induced apoptosis in the tumour or normal tissue cultures were significantly higher than those in their corresponding untreated ones (P Recombinant anti-IL-6 monoclonal antibodies could represent a novel effective element of immunotherapeutic treatment strategy for BC. The selectivity and anti-apoptotic potential of anti-IL-6 is highly hopeful in IL-6- abundant BC tumour microenvironment. PMID:26971879

  14. Advances in immunotherapy for non-small cell lung cancer.

    Reckamp, Karen L

    2015-12-01

    In most patients, lung cancer presents as advanced disease with metastases to lymph nodes and/or distant organs, and survival is poor. Lung cancer is also a highly immune-suppressing malignancy with numerous methods to evade antitumor immune responses, including deficiencies in antigen processing and presentation, release of immunomodulatory cytokines, and inhibition of T-cell activation. Advances in understanding the complex interactions of the immune system and cancer have led to novel therapies that promote T-cell activation at the tumor site, resulting in prolonged clinical benefit. Immune checkpoint inhibitors, specifically programmed death receptor 1 pathway antibodies, have demonstrated impressively durable responses and improved survival in patients with non-small cell lung cancer. This article will review the recent progress made in immunotherapy for lung cancer with data from trials evaluating programmed death receptor 1 and cytotoxic T-lymphocyte-associated protein 4 monoclonal antibodies in addition to cancer vaccines. The review will focus on studies that have been published and the latest randomized trials exploring immune therapy in lung cancer. These results form the framework for a new direction in the treatment of lung cancer toward immunotherapy. PMID:27058851

  15. Treg细胞在儿童过敏性哮喘SIT治疗过程中的变化%Change of treg cells during house dust mites specific immunotherapy for children with allergic asthma

    朱俊民; 李付广

    2013-01-01

    Objective The aim of this study is to observe house dust mite (HDM) allergic children with asthma allergen-specific immunotherapy (SIT) in peripheral blood CD4+CD25+CD127-Tcells accounted for the percentage of CD4+T cells changes and their role in the SIT treatment, preliminary study of children with allergic asthma SIT mechanism, so as to provide new ideas for the prevention and treatment of asthma. Methods First Affiliated Hospital of Zhengzhou University pediatric clinic 48 cases of children with allergic asthma patients divided into two groups, one group for standardization SIT 1.5~2 years later, the two groups were collected peripheral blood. Each flow cytometry specimens CD4+CD25+CD127-T cells accounted for the percentage of CD4+Tcells, the results were statistically analyzed using statistical software. Results CD4+CD25+CD127-Tcells accounted for the percentage of CD4+T cells in HDM-SIT group was significantly higher. Conclusion The present study further confirmed SIT asthma treatment is effective;in HDM-SIT groupCD4+CD25+CD127-Tcells accounted for the percentage of CD4+Tcells increasedCD4+CD25+CD127-Tcells, suggesting that CD4+CD25+CD127-T cells may be specifically allergic asthma in children immunotherapy plays an important role.%目的:本研究通过观察对室尘螨(HDM)过敏的儿童哮喘患者,过敏原特异性免疫治疗(allergen specific immunotherapy, SIT)后外周血CD4+CD25+CD127-Treg细胞(regulatory T cell, Treg)细胞)占CD4+T cell的百分比的变化,以及它们在SIT治疗中的作用,初步探讨儿童过敏性哮喘SIT的机制,从而为哮喘的防治提供新思路。方法选取郑州大学第一附属医院儿科门诊48例儿童过敏性哮喘患者分两组,一组进行标准化SIT 1.5~2年后,采集两组患者的外周静脉血。用流式细胞仪检测每组标本中CD4+CD25+CD127-T细胞占CD4+T细胞的百分比,结果采用统计学软件进行统计学分析。结果CD4+CD25+CD127-T细胞占CD4+T

  16. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF1

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki

    2008-01-01

    Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of prostate cancer patients was lost or reduced because Gc protein was deglycosylated by serum α-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Therefore, macrophages of prostate cancer patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Stepwise treatment of pu...

  17. Immunotherapy in Melanoma, Gastrointestinal (GI, and Pulmonary Malignancies

    Alexander B. Dillon

    2015-03-01

    Full Text Available Oncologic immunotherapy involves stimulating the immune system to more effectively identify and eradicate tumor cells that have successfully adapted to survive the body's natural immune defenses. Immunotherapy has shown great promise thus far by prolonging the lives of patients with a variety of malignancies, and has added a crucial new set of tools to the oncologists' armamentarium. The aim of this paper is to provide an overview of immunotherapy treatment options that are currently available and under active research for melanoma, gastrointestinal (esophageal, gastric, pancreatic, and colorectal, and pulmonary malignancies. Potential biomarkers that may predict favorable responses to immunotherapies are discussed where applicable, as are future avenues of research in this rapidly evolving field.

  18. [Immunotherapy for Alzheimer's disease].

    Falkentoft, Alexander Christian; Hasselbalch, Steen Gregers

    2016-01-18

    Passive anti-beta-amyloid (Aß) immunotherapy has been shown to clear brain Aß deposits. Results from phase III clinical trials in mild-to-moderate Alzheimer's disease (AD) patients with two monoclonal antibodies bapineuzumab and solanezumab and intravenous immunoglobulin have been disappointing. Subsequent analysis of pooled data from both phase III trials with solanezumab showed a reduction in cognitive decline in patients with mild AD. Solanezumab and new monoclonal antibodies are being tested in patients with prodromal and preclinical AD in search for a disease-modifying treatment. PMID:26815584

  19. CCL21 Cancer Immunotherapy

    Cancer, a major health problem, affects 12 million people worldwide every year. With surgery and chemo-radiation the long term survival rate for the majority of cancer patients is dismal. Thus novel treatments are urgently needed. Immunotherapy, the harnessing of the immune system to destroy cancer cells is an attractive option with potential for long term anti-tumor benefit. Cytokines are biological response modifiers that stimulate anti-tumor immune responses. In this review, we discuss the anti-tumor efficacy of the chemotactic cytokine CCL21 and its pre-clinical and clinical application in cancer

  20. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF1

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki

    2008-01-01

    Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of prostate cancer patients was lost or reduced because Gc protein was deglycosylated by serum α-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Therefore, macrophages of prostate cancer patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized β-galactosidase and sialidase generated the most potent MAF (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages activated by GcMAF develop a considerable variation of receptors that recognize the abnormality in malignant cell surface and are highly tumoricidal. Sixteen nonanemic prostate cancer patients received weekly administration of 100 ng of GcMAF. As the MAF precursor activity increased, their serum Nagalase activity decreased. Because serum Nagalase activity is proportional to tumor burden, the entire time course analysis for GcMAF therapy was monitored by measuring the serum Nagalase activity. After 14 to 25 weekly administrations of GcMAF (100 ng/week), all 16 patients had very low serum Nagalase levels equivalent to those of healthy control values, indicating that these patients are tumor-free. No recurrence occurred for 7 years. PMID:18633461

  1. Immunotherapy of HIV-infected patients with Gc protein-derived macrophage activating factor (GcMAF).

    Yamamoto, Nobuto; Ushijima, Naofumi; Koga, Yoshihiko

    2009-01-01

    Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage activating factor (MAF). The MAF precursor activity of serum Gc protein of HIV-infected patients was lost or reduced because Gc protein is deglycosylated by alpha-N-acetylgalactosaminidase (Nagalase) secreted from HIV-infected cells. Therefore, macrophages of HIV-infected patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Since Nagalase is the intrinsic component of the envelope protein gp120, serum Nagalase activity is the sum of enzyme activities carried by both HIV virions and envelope proteins. These Nagalase carriers were already complexed with anti-HIV immunoglobulin G (IgG) but retained Nagalase activity that is required for infectivity. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage activating factor (termed GcMAF), which produces no side effects in humans. Macrophages activated by administration of 100 ng GcMAF develop a large amount of Fc-receptors as well as an enormous variation of receptors that recognize IgG-bound and unbound HIV virions. Since latently HIV-infected cells are unstable and constantly release HIV virions, the activated macrophages rapidly intercept the released HIV virions to prevent reinfection resulting in exhaustion of infected cells. After less than 18 weekly administrations of 100 ng GcMAF for nonanemic patients, they exhibited low serum Nagalase activities equivalent to healthy controls, indicating eradication of HIV-infection, which was also confirmed by no infectious center formation by provirus inducing agent-treated patient PBMCs. No recurrence occurred and their healthy CD + cell counts were maintained for 7 years. PMID:19031451

  2. Immunotherapy of metastatic colorectal cancer with vitamin D-binding protein-derived macrophage-activating factor, GcMAF.

    Yamamoto, Nobuto; Suyama, Hirofumi; Nakazato, Hiroaki; Yamamoto, Nobuyuki; Koga, Yoshihiko

    2008-07-01

    Serum vitamin D binding protein (Gc protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of colorectal cancer patients was lost or reduced because Gc protein is deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Deglycosylated Gc protein cannot be converted to MAF, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage-activating factor (GcMAF) ever discovered, but it produces no side effect in humans. Macrophages treated with GcMAF (100 microg/ml) develop an enormous variation of receptors and are highly tumoricidal to a variety of cancers indiscriminately. Administration of 100 nanogram (ng)/ human maximally activates systemic macrophages that can kill cancerous cells. Since the half-life of the activated macrophages is approximately 6 days, 100 ng GcMAF was administered weekly to eight nonanemic colorectal cancer patients who had previously received tumor-resection but still carried significant amounts of metastatic tumor cells. As GcMAF therapy progressed, the MAF precursor activities of all patients increased and conversely their serum Nagalase activities decreased. Since serum Nagalase is proportional to tumor burden, serum Nagalase activity was used as a prognostic index for time course analysis of GcMAF therapy. After 32-50 weekly administrations of 100 ng GcMAF, all colorectal cancer patients exhibited healthy control levels of the serum Nagalase activity, indicating eradication of metastatic tumor cells. During 7 years after the completion of GcMAF therapy, their serum Nagalase activity did not increase, indicating no recurrence of cancer, which was also supported by the annual CT scans of these patients. PMID:18058096

  3. Immunotherapy of metastatic breast cancer patients with vitamin D-binding protein-derived macrophage activating factor (GcMAF).

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki; Ushijima, Naofumi

    2008-01-15

    Serum vitamin D3-binding protein (Gc protein) is the precursor for the principal macrophage activating factor (MAF). The MAF precursor activity of serum Gc protein of breast cancer patients was lost or reduced because Gc protein was deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Patient serum Nagalase activity is proportional to tumor burden. The deglycosylated Gc protein cannot be converted to MAF, resulting in no macrophage activation and immunosuppression. Stepwise incubation of purified Gc protein with immobilized beta-galactosidase and sialidase generated probably the most potent macrophage activating factor (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages treated in vitro with GcMAF (100 pg/ml) are highly tumoricidal to mammary adenocarcinomas. Efficacy of GcMAF for treatment of metastatic breast cancer was investigated with 16 nonanemic patients who received weekly administration of GcMAF (100 ng). As GcMAF therapy progresses, the MAF precursor activity of patient Gc protein increased with a concomitant decrease in serum Nagalase. Because of proportionality of serum Nagalase activity to tumor burden, the time course progress of GcMAF therapy was assessed by serum Nagalase activity as a prognostic index. These patients had the initial Nagalase activities ranging from 2.32 to 6.28 nmole/min/mg protein. After about 16-22 administrations (approximately 3.5-5 months) of GcMAF, these patients had insignificantly low serum enzyme levels equivalent to healthy control enzyme levels, ranging from 0.38 to 0.63 nmole/min/mg protein, indicating eradication of the tumors. This therapeutic procedure resulted in no recurrence for more than 4 years. PMID:17935130

  4. [Aβ immunotherapy for Alzheimer's disease].

    Sakai, Kenji; Yamada, Masahito

    2013-04-01

    Alzheimer's disease (AD) is one of the neurodegenerative diseases characterized by the deposition of amyloid-β-protein (Aβ) as senile plaques in the brain parenchyma and phosphorylated-tau accumulation as neurofibrillary tangles in the neurons. Although details of the disease pathomechanisms remain unclear, Aβ likely acts as a key protein for AD initiation and progression, followed by abnormal tau phosphorylation and neuronal death (amyloid-cascade hypothesis). According to this hypothesis, Aβ immunization therapies are created to eliminate Aβ from the brain, and to prevent the neurons from damage by these pathogenic proteins. There are two methods for Aβ immunotherapies: active and passive immunization. Previous studies have shown Aβ removal and improved cognitive function in animal models of AD. Clinical trials on various drugs, including AN1792, bapineuzumab, and solanezumab, have been carried out; however, all trials have failed to demonstrate apparent clinical benefits. On the contrary, side effects emerged, such as meningoencephalitis, vasogenic edema, which are currently called amyloid related imaging abnormalities (ARIA)-E and microhemorrhage (ARIA-H). In neuropathological studies of immunized cases, Aβ was removed from the brain parenchyma and phosphorylated-tau was reduced in the neuronal processes. Moreover, deterioration of the cerebral amyloid angiopathy (CAA) and an increase of microhemorrhages and microinfarcts were described. Aβ is cleared from the brain mainly via the lymphatic drainage pathway. ARIA could stem from severe CAA due to dysfunction of the drainage pathway after immunotherapy. Aβ immunization has a potential of cure for AD patients, although the above-described problems must be overcome before applying this therapy in clinical treatment. PMID:23568994

  5. 466 Bee venom Immunotherapy with Standardized Extract, Two Case Comunication and Clinical Progress

    Cardona, Aristoteles Alvarez; Nieto, Leticia Hernandez; Melendez, Alvaro Pedroza

    2012-01-01

    Background Bee venom immunotherapy is a safe and effective treatment, indicated in patients with previous history of severe systemic reactions to bee venom, demonstrating succesful desensitization in more than 90% of cases with standardized extract. Currently in Mexico there is no standardized extract commercially available for treatment, despite of having high activity of beekeeping and occupational exposure with at least 17,478 registered stings per year and an annually honey production of nearly 70 tons. Methods We present the clinical progress of 2 patients with history of severe systemic reactions to bee venom and occupational exposure, both with demonstrated sensitization by specific IgE and who underwent specific immunotherapy with standardized extract (Alk-US) reaching a maintenance weekly dose of 100 mcg (PLA2) for the last 4 years. Results Both patients sufered of accidental stings after reached the maintenance dose presenting mild local reactions to stings. Both patients had very different clinical course presenting a wide variety of adverse reactions during desensitization protocol; from mild local to generalized reactions all generally well tolerated allowed to reach the maintenance dose with succesful desensitization proved by accidental exposure without severe systemic reactions. Conclusions Bee venom specific immunotherapy with standardized extract is a well tolerated and efective treatment preventing the development of life threathening reactions in sensitized patients. It is important to promote the use and availability of standardized extract in developing countries with poor safety measures and high occupational exposure.

  6. Immunotherapy for B-Cell Lymphoma: Current Status and Prospective Advances

    Hollander, Nurit

    2012-01-01

    Therapy for non-Hodgkin’s lymphoma has progressed significantly over the last decades. However, the majority of patients remain incurable, and novel therapies are needed. Because immunotherapy ideally offers target selectivity, an ever increasing number of immunotherapies, both passive and active, are undergoing development. The champion of passive immunotherapy to date is the anti-CD20 monoclonal antibody rituximab that revolutionized the standard of care for lymphoma. The great success of r...

  7. RNA-Based Vaccines in Cancer Immunotherapy

    Megan A. McNamara

    2015-01-01

    Full Text Available RNA vaccines traditionally consist of messenger RNA synthesized by in vitro transcription using a bacteriophage RNA polymerase and template DNA that encodes the antigen(s of interest. Once administered and internalized by host cells, the mRNA transcripts are translated directly in the cytoplasm and then the resulting antigens are presented to antigen presenting cells to stimulate an immune response. Alternatively, dendritic cells can be loaded with either tumor associated antigen mRNA or total tumor RNA and delivered to the host to elicit a specific immune response. In this review, we will explain why RNA vaccines represent an attractive platform for cancer immunotherapy, discuss modifications to RNA structure that have been developed to optimize mRNA vaccine stability and translational efficiency, and describe strategies for nonviral delivery of mRNA vaccines, highlighting key preclinical and clinical data related to cancer immunotherapy.

  8. Immunotherapy of Cryptococcus infections.

    Antachopoulos, C; Walsh, T J

    2012-02-01

    Despite appropriate antifungal treatment, the management of cryptococcal disease remains challenging, especially in immunocompromised patients, such as human immunodeficiency virus-infected individuals and solid organ transplant recipients. During the past two decades, our knowledge of host immune responses against Cryptococcus spp. has been greatly advanced, and the role of immunomodulation in augmenting the response to infection has been investigated. In particular, the role of 'protective' Th1 (tumour necrosis factor-α, interferon (IFN)-γ, interleukin (IL)-12, and IL-18) and Th17 (IL-23 and IL-17) and 'non-protective' Th2 (IL-4, IL-10, and IL-13) cytokines has been extensively studied in vitro and in animal models of cryptococcal infection. Immunomodulation with monoclonal antibodies against the capsular polysaccharide glucuronoxylomannan, glucosylceramides, melanin and β-glucan and, lately, with radioimmunotherapy has also yielded promising results in animal models. As a balance between sufficiently protective Th1 responses and excessive inflammation is important for optimal outcome, the effect of immunotherapy may range from beneficial to deleterious, depending on factors related to the host, the infecting organism, and the immunomodulatory regimen. Clinical evidence supporting immunomodulation in patients with cryptococcal infection remains too limited to allow firm recommendations. Limited human data suggest a role for IFN-γ. Identification of surrogate markers characterizing patients' immunological status could possibly suggest candidate patients for immunotherapy and the type of immunomodulation to be administered. PMID:22264261

  9. Sublingual immunotherapy in children: facts and needs

    Frati Franco

    2009-10-01

    Full Text Available Abstract Allergen specific immunotherapy (SIT is the practice of administering gradually increasing doses of the specific causative allergen to reduce the clinical reactivity of allergic subjects, and is the only treatment targeting the causes of hypersensitivity and not only the symptoms, as done by drugs. The traditional, subcutaneous immunotherapy (SCIT was burdened by the problem of systemic reactions which may be sometimes severe and - though very rarely - even fatal. This was the background to develop non injections routes for SIT and particularly sublingual immunotherapy (SLIT, that emerged as a real treatment option for respiratory allergy. A number of studies was conducted to evaluate efficacy and safety of SLIT, the first meta-analysis - including 22 placebo-controlled trials - concluded for positive results in both issues, but the number of studies on children was too low to draw definite conclusions. Since then, many other studies became available and make possible to analyze SLIT in children in its well defined aspects as well as in sides still requiring more solid data.

  10. Oncolytic viruses: a step into cancer immunotherapy

    Pol JG

    2011-12-01

    Full Text Available Jonathan G Pol, Julien Rességuier, Brian D LichtyMcMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, CanadaAbstract: Oncolytic virotherapy is currently under investigation in phase I–III clinical trials for approval as a new cancer treatment. Oncolytic viruses (OVs selectively infect, replicate in, and kill tumor cells. For a long time, the therapeutic efficacy was thought to depend on the direct viral oncolysis (virocentric view. The host immune system was considered as a brake that impaired virus delivery and spread. Attention was paid primarily to approaches enhancing virus tumor selectivity and cytotoxicity and/or that limited antiviral responses. Thinking has changed over the past few years with the discovery that OV therapy was also inducing indirect oncolysis mechanisms. Among them, induction of an antitumor immunity following OV injection appeared to be a key factor for an efficient therapeutic activity (immunocentric view. Indeed, tumor-specific immune cells persist post-therapy and can search and destroy any tumor cells that escape the OVs, and thus immune memory may prevent relapse of the disease. Various strategies, which are summarized in this manuscript, have been developed to enhance the efficacy of OV therapy with a focus on its immunotherapeutic aspects. These include genetic engineering and combination with existing cancer treatments. Several are currently being evaluated in human patients and already display promising efficacy.Keywords: oncolytic virus, cancer immunotherapy, tumor antigen, cancer vaccine, combination strategies

  11. Active immunotherapy of allergic asthma with a recombinant human interleukin-5 protein as vaccine in a murine model

    TAN Guang-hong; WANG Cai-chun; HUANG Feng-ying; WANG Hua; HUANG Yong-hao; LIN Ying-ying

    2007-01-01

    Background Eosinophils are highly related to allergic asthma inflammation. Interleukin (IL)-5 is the major chemokine of eosinophils, inhibition of the activity of IL-5 thus seems to be a potential approach to asthma therapy. The current study was performed to determine whether a recombinant human IL-5 protein as a xenogeneic vaccine has the capability of inducing anti-asthma activities.Methods Recombinant human IL-5 was used as a protein vaccine. Mouse asthma model was established to observe the anti-asthma activities. Lung histology was observed; eosinophils in blood and bronchoalveolar lavage were stained and counted. Airway hyperresponsiveness was determined by whole body plethysmograph. Antibody characters and cytokines were detected with enzyme linked immunosorbent assay (ELISA) and Western blot assay.Results Vaccination with recombinant human IL-5 protein as vaccine significantly reduced airway inflammation and airway hyperresponsiveness, and shifted the cytokine production from Th2 (IL-4) to Th1 (INF-γ) in mice allergic-asthma model. Immunization with recombinant human IL-5 protein vaccine bypassed the immunological tolerance and induced production of polyclonal antibodies that were cross-reactive with murine IL-5.Conclusions Active immunization with xenogeneic homologous IL-5 may be a possible therapeutic approach to the treatment of asthma and potentially of other eosinophilic disorders.

  12. Potentiating Cancer Immunotherapy Using Papaya Mosaic Virus-Derived Nanoparticles.

    Lebel, Marie-Ève; Chartrand, Karine; Tarrab, Esther; Savard, Pierre; Leclerc, Denis; Lamarre, Alain

    2016-03-01

    The recent development of novel immunotherapies is revolutionizing cancer treatment. These include, for example, immune checkpoint blockade, immunomodulation, or therapeutic vaccination. Although effective on their own, combining multiple approaches will most likely be required in order to achieve the maximal therapeutic benefit. In this regard, the papaya mosaic virus nanoparticle (PapMV) has shown tremendous potential as (i) an immunostimulatory molecule, (ii) an adjuvant, and (iii) a vaccine platform through its intrinsic capacity to activate the innate immune response in an IFN-α-dependent manner. Here, we demonstrate that intratumor administration of PapMV significantly slows down melanoma progression and prolongs survival. This correlates with enhanced chemokine and pro-inflammatory-cytokine production in the tumor and increased immune-cell infiltration. Proportions of total and tumor-specific CD8(+) T cells dramatically increase following PapMV treatment whereas those of myeloid-derived suppressor cells (MDSC) concomitantly decrease. Moreover, systemic PapMV administration prevents metastatic tumor-implantation in the lungs. Importantly, PapMV also synergistically improves the therapeutic benefit of dendritic cell (DC)-based vaccination and PD-1 blockade by potentiating antitumor immune responses. This study illustrates the immunostimulatory potential of a plant virus-derived nanoparticle for cancer therapy either alone or in conjunction with other promising immunotherapies in clinical development. PMID:26891174

  13. Immunotherapy with irradiated tumour cells and BCG in experimental osteosarcoma

    The effects of immunotherapy with irradiated tumour cells and BCG were studied in a non-metastasizing variety of the Dunn osteosarcoma transplantable in mice. Experimental animals which had been preimmunized with three injections of 0.7 to 1.4 x 106 irradiated tumour cells each 1 to 3 weeks before administration of 1 x 106 living tumour cells, showed a tumour incidence of 23 per cent. This was significantly (P<0.005) lower than the 92 per cent tumour incidence in the control animals. Non-specific immunotherapy with BCG given subcutaneously at a dose of 1.0 mg of dry-weight bacterial mass three times at 3-weeks intervals was found to have no protective effect against the osteosarcoma. The tumour incidence was 90 per cent for BCG-treated and 94 per cent for control animals. The osteosarcomas were studied light and electron microscopically and also with regard to the histochemical alkaline phosphatase activity. No structural difference was found between the tumours of the various groups. The demonstrated immunotherapeutic response is in contrast o the low degree of immunogenicity of the osteosarcoma, which we will report elsewhere. (author)

  14. Modified immunotherapy for alopecia areata.

    Yoshimasu, Takashi; Furukawa, Fukumi

    2016-07-01

    Squaric acid dibutylester (SADBE) is a commonly used contact sensitizer in immunotherapy for alopecia areata (AA). Severe contact dermatitis is induced by the currently high recommended sensitization dose of 1%-2% SADBE, often decreasing patient compliance. We assessed a modified immunotherapy for AA using SADBE at a starting concentration of 0.01% without sensitization. After one or two weeks of initial 0.01% SADBE application, the concentration of SADBE was increased gradually to 0.025%, 0.05%, 0.1%, 0.25%, 0.5%, 1% and 2% until the patients felt itching or erythema at the AA lesion site. The modified immunotherapy showed a response rate of 69.4% (25/36), equivalent to conventional immunotherapy using SADBE starting at 1%-2% sensitization. Furthermore, we investigated the combination therapy of SADBE and multiple courses of steroid pulses for AA. The response rate for combination therapy was 73.7% (28/38); however, the group receiving combination therapy showed a significant prevalence of severe AA compared with the group receiving modified immunotherapy only. We reviewed the efficacy and safety of modified immunotherapy without initial sensitization and combination therapy with immunotherapy and multiple courses of pulses for AA. PMID:26932732

  15. Mechanisms of subcutaneous allergen immunotherapy.

    Soyer, Ozge U; Akdis, Mubeccel; Akdis, Cezmi A

    2011-05-01

    Allergen-specific immunotherapy (SIT) is the only curative approach in the treatment of allergic diseases defined up-to-date. Peripheral T-cell tolerance to allergens, the goal of successful allergen-SIT, is the primary mechanism in healthy immune responses to allergens. By repeated administration of increased doses of the causative allergen, allergen-SIT induces a state of immune tolerance to allergens through the constitution of T regulatory (Treg) cells, including allergen-specific interleukin (IL)-10-secreting Treg type 1 cells and CD4(+)CD25(+)Treg cells; induction of suppressive cytokines, such as IL-10 and transforming growth factor β; suppression of allergen-specific IgE and induction of IgG4 and IgA; and suppression of mast cells, basophils, eosinophils, and inflammatory dendritic cells. This review summarizes the current knowledge on the mechanisms of allergen-SIT with emphasis on the roles of Treg cells in allergen-SIT. PMID:21530813

  16. Homing of radiolabelled recombinant interleukin-2 activated natural killer cells and their efficacy in adoptive immunotherapy against murine fibrosarcoma

    Anuradha Rai; Ashim K Chakravarty

    2007-12-01

    Natural killer (NK) cells are spontaneously cytotoxic against tumour target cells. Their number was found to be four times more in the spleen of tumour-bearing Swiss albino mice. After activation with recombinant interleukin-2 (rIL-2), NK cells were tested and found to seek out the tumour site when injected intravenously in tumour-bearing mice. Their potential for fighting tumours in vivo was further seen following adoptive transfer of rIL-2 activated NK (A-NK) cells in tumour-bearing mice. After surgical removal of tumour load, adoptive transfer of A-NK cells inhibited tumour recurrence in 92.3% cases, thereby suggesting the use of this protocol for therapeutic purposes to obtain a better outcome.

  17. The microenvironment differentially impairs passive and active immunotherapy in Chronic lymphocytic leukemia - Potential therapeutic synergism of CXCR4 antagonists

    Buchner, Maike; Brantner, Philipp; Prinz, Gabriele; Burger, Meike; Baer, Constance; Dierks, Christine; Pfeifer, Dietmar; Mertelsmann, Roland; Gribben, John G.; Veelken, Hendrik; Zirlik, Katja

    2010-01-01

    Abstract Direct contact with stromal cells protects chronic lymphocytic leukemia (CLL) B cells from chemotherapy-induced apoptosis in vitro. Blockade of CXCR4 signaling antagonizes stroma-mediated interactions and restores CLL chemosensitivity. In vivo, administration of CXCR4 antagonists may also effect efficient mobilization of hematopoetic progenitor cells. Therefore, combinations of CXCR4 blockade with cytoreductive treatment with selective activity on CLL cells may avoid poten...

  18. Chapter 3: Allergen immunotherapy: definition, indication, and reactions.

    Georgy, Mary S; Saltoun, Carol A

    2012-01-01

    Specific allergen immunotherapy is the administration of increasing amounts of specific allergens to which the patient has type I immediate hypersensitivity. It is a disease modifying therapy, indicated for the treatment of allergic rhinitis, allergic asthma, and hymenoptera hypersensitivity. Specific IgE antibodies for appropriate allergens for immunotherapy must be documented. Indications for allergen immunotherapy include (1) inadequate symptom control despite pharmacotherapy and avoidance measures, (2) a desire to reduce the morbidity from allergic rhinitis and/or asthma or reduce the risk of anaphylaxis from a future insect sting, (3) when the patient experiences undesirable side effects from pharmacotherapy, and (4) when avoidance is not possible. Furthermore, patients may seek to benefit from economic savings of allergen immunotherapy compared with pharmacotherapy over time. Several studies have reported that immunotherapy in children with allergic rhinitis appears to prevent the development of new allergic sensitizations and/or new-onset asthma. Humoral, cellular, and tissue level changes occur with allergen immunotherapy including large increases in antiallergen IgG(4) antibodies, a decrease in the postseasonal rise of antiallergen IgE antibodies, reduced numbers of nasal mucosal mast cells and eosinophils, induction of Treg cells, and suppression of Th2 more than Th1 lymphocytes. There is a corresponding increase in IL-10 and transforming growth factor beta. In the United States, allergen immunotherapy is administered by the subcutaneous route in the physician's office, whereas primarily in some countries in Europe, it is administered for allergic rhinitis and asthma by the sublingual route by the patient at home. PMID:22794676

  19. Conference Scene: novelties in immunotherapy.

    Mitsias, Dimitris I; Kalogiros, Lampros A; Papadopoulos, Nikolaos G

    2013-10-01

    The only method aiming to permanently cure allergic disorders is allergen immunotherapy. Over the last 20 years there has been great progress in understanding the mechanisms that govern allergen immunotherapy in order to meet three basic prerequisites: safety, effectiveness and compliance. In the present summary report from the European Academy of Allergology and Clinical Immunology-World Allergy Organization Congress held last June in Milan, we review key points concerning the main axes as diagnosis, novel modalities, routes and protocols, as well as two important immunotherapy fields: food and insect venom allergy. PMID:24088073

  20. Immunotherapy for nasopharyngeal cancer-a review.

    Jain, Amit; Chia, Whay Kuang; Toh, Han Chong

    2016-04-01

    Nasopharyngeal carcinoma (NPC) is associated with the Epstein-Barr virus (EBV) and characterized by peritumoral immune infiltrate. Advanced NPC has high lethality. Immunotherapy directed against EBV antigen targets has been previously explored in clinical trials, and is likely to be validated as an important target in NPC as randomized data emerges in the future. Cancer vaccines and adoptive T cell therapy have been explored in the clinic, with the latter showing the greatest success. Recent advances in gene sequencing technology now allow personalized tumor epitope mapping, whilst the advent of immune checkpoint inhibitors targeting the PD-1/PD-L1 axis offers the opportunity to activate adaptive T cell response in vivo. Anti-PD1 antibodies have shown promising activity in early phase clinical trials, and randomized studies against chemotherapy are underway. As immunotherapy is incorporated into standard treatment paradigms, issues of optimal combinations with targeting agents, immune adjuvants, and sequence with chemotherapy and radiation therapy will need to be addressed. Effective strategies to increase tumor antigenicity, improve immunological memory and reduce immune escape, will need to be developed to improve treatment outcomes. Here we present a brief history of the evolution of immunotherapy in NPC, and highlight key concepts relevant to its further development in the clinic. PMID:27121882

  1. Generation of IgE-based immunotherapies against HER-2 overexpressing tumours

    In combination with chemotherapy or radiation, passive immunotherapy with monoclonal antibodies is state of the art in cancer therapy. For this purpose, two properties of antibodies are harnessed: i) via the Fab fragment they bind a specific tumour antigen and ii) via the Fc portion they recruit effector cells and activate the complement system. One of these antibodies is trastuzumab (Herceptin), a growth-inhibitory humanized monoclonal IgG1 antibody recognizing the tumour antigen HER-2, which is overexpressed in 30% of human breast cancers. Interestingly, all antibodies applied for passive immunotherapy are so far exclusively of the IgG subclass. In contrast, antibodies of the IgE subclass are best-known for their detrimental function in type I hypersensitivity. It is little-known that IgE has anti-tumour capacity which could be exploited for immunotherapy of cancer. Thus, the aim of this doctoral thesis was to examine alternative strategies for cancer treatment based on IgE antibodies, and to compare their efficacy with that of IgG. The oral immunization route is well suited for the induction of a Th2 immunity including high affine IgE responses to administered antigens. Therefore, the establishment of an IgE dependent food allergy model in mice is described, which we applied also for our cancer studies. When mice were fed with different concentrations of ovalbumin under concomitant anti-acid medication, an antigen-specific IgE induction in a Th2 environment could be achieved. This oral vaccination regimen was also used for feeding HER-2 mimotopes, i.e. epitope-mimics of the anti-HER-2 IgG antibody trastuzumab. Indeed, these mimotopes induced IgE antibodies recognizing the tumour antigen which were able to bind HER-2 overexpressing breast cancer cells and led to tumour cell lysis. Complementary to this active immunotherapeutic approach a trastuzumab-like IgE antibody for passive immunotherapy was constructed. We could show that this trastuzumab IgE exhibited the

  2. Laser immunotherapy of canine and feline neoplasia

    Woods, J. P.; Bartels, Kenneth E.; Davidson, Ellen B.; Ritchey, Jerry W.; Lehenbauer, Terry W.; Nordquist, Robert E.; Chen, Wei R.

    1998-07-01

    The major cause of treatment failure in human and veterinary cancer patients is tumor invasion and metastasis. The inability of local therapy (surgery, radiation, photodynamic therapy) to eradicate a metastatic cancer presents a challenge in the therapy of residual or micrometastatic disease. Because of its local therapy limitations, chromophore-enhanced selective photothermal laser treatment has been augmented with a superimposed laser-induced systemic photobiological reaction, laser immunotherapy. Laser immunotherapy is a novel cancer treatment consisting of: (1) a laser in the infrared wavelength range (i.e. 805 nm solid state laser); (2) a photosensitizer of the corresponding absorption peak [i.e. indocyanine green (ICG)]; and (3) an immunoadjuvant [i.e. glycated chitosan gel (GCG)]. The intratumor injection of the photosensitizer (ICG) and immunoadjuvant (GCG) solution is followed by noninvasive laser irradiation. The laser energy causes tumor cell destruction by photothermal interaction to reduce the tumor burden and at the same time exposes tumor antigens. The immunoadjuvant concomitantly stimulates the host to mount a systemic anti-tumor immune response against the remaining cells of the tumor and to induce a long-term, tumor-specific immunity. This study investigates the feasibility of utilizing laser immunotherapy as an adjunctive therapy for the control of feline fibrosarcoma in future.

  3. Prostate cancer immunotherapy: beyond immunity to curability.

    Simons, Jonathan W

    2014-11-01

    Metastatic prostate cancer is the second leading cause of death from cancer in the United States. It is the first prevalent cancer in which overall survival in advanced disease is modestly, but objectively, improved with outpatient delivered dendritic cell-based immunotherapy. More prostate cancer patients have enrolled through Facebook and trusted-site Internet searches in clinical trials for prostate cancer vaccine-based immunotherapy than in immunotherapy trials for lung, breast, colon, pancreas, ovarian, and bladder cancer combined in the past 7 years. Exceptional responses to anti-CTLA-4 treatment have been documented in clinics, and prostate cancer neoantigen characterization and T-cell clonotyping are in their research ascendancy. The prostate is an accessory organ; it is not required for fertility, erectile function, or urinary continence. The true evolutionary advantage of having a prostate for male mammalian physiology is a topic of speculation in seminar rooms and on bar stools, but it remains unknown. Hundreds of prostate lineage-unique proteins (PLUP) exist among the >37,000 normal human prostate lineage-unique open reading frames that can be targeted for immunologic ablation of PLUP(+) prostate cancer cells by prostate-specific autoimmunity. This bioengineered graft-versus-prostate disease is a powerful strategy that can eliminate deaths from prostate cancer. Immunologic tolerance to prostate cancer can be overcome at every clinical stage of presentation. This Cancer Immunology at the Crossroads article aims to present advances in the past two decades of basic, translational, and clinical research in prostate cancer, including bioengineering B-cell and T-cell responses, and ongoing prostate cancer immunotherapy trials. PMID:25367978

  4. Imaging Biomarkers in Immunotherapy

    Juergens, Rosalyn A.; Zukotynski, Katherine A.; Singnurkar, Amit; Snider, Denis P.; Valliant, John F.; Gulenchyn, Karen Y.

    2016-01-01

    Immune-based therapies have been in use for decades but recent work with immune checkpoint inhibitors has now changed the landscape of cancer treatment as a whole. While these advances are encouraging, clinicians still do not have a consistent biomarker they can rely on that can accurately select patients or monitor response. Molecular imaging technology provides a noninvasive mechanism to evaluate tumors and may be an ideal candidate for these purposes. This review provides an overview of the mechanism of action of varied immunotherapies and the current strategies for monitoring patients with imaging. We then describe some of the key researches in the preclinical and clinical literature on the current uses of molecular imaging of the immune system and cancer. PMID:26949344

  5. Immunotherapy in children and adolescents with allergic rhinoconjunctivitis : a systematic review

    Roeder, Esther; Berger, Marjolein Y.; de Groot, Hans; van Wijk, Roy Gerth

    2008-01-01

    Allergen-specific immunotherapy is one of the cornerstones of allergic rhinoconjunctivitis treatment. Since the development of non-invasive administration forms with better safety profiles, there is an increasing tendency to prescribe immunotherapy in youngsters. However, no overview is available on

  6. Antigen-Specific CD4 T Cells Are Induced after Intravesical BCG-Instillation Therapy in Patients with Bladder Cancer and Show Similar Cytokine Profiles as in Active Tuberculosis

    Elsäßer, Julia; Janssen, Martin W.; Becker, Frank; Suttmann, Henrik; Schmitt, Kai; Sester, Urban; Stöckle, Michael; Sester, Martina

    2013-01-01

    Specific T cell immunity in patients with active tuberculosis is associated with a decrease in multifunctionality. However, it is unknown whether cytokine profiles differ in patients with primary infection and those with prior contact. We therefore used intravesical immunotherapy with attenuated live Bacille Calmette–Guérin (BCG) in patients with urothelial carcinoma as a model to characterise the induction of systemic immunity towards purified protein derivate (PPD) and to study whether cyto...

  7. Targeted immunotherapy in Hodgkin lymphoma

    Hutchings, Martin

    2015-01-01

    In this issue of Blood, Rothe et al introduce a new principle of targeted Hodgkin lymphoma (HL) immunotherapy in their report from a phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13.......In this issue of Blood, Rothe et al introduce a new principle of targeted Hodgkin lymphoma (HL) immunotherapy in their report from a phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13....

  8. Suppressive effects of antigens on the activity of specific activated lymphocytes: A test to define the specificity of activated lymphocytes

    HU Jun; PAN Sheng-jun; CAI Zhen-jie; GUAN De-lin; LIU Xiao-cheng

    2006-01-01

    Objective:With the regular mixed lymphocytes culture (MLC) to detect the allograft rejection, the reactivity of the activated lymphocytes (primed lymphocytes) of a recipient shows sometimes increase and sometimes decrease against the antigens from the donor, which is inconsistent with the clinical results. In order to establish a convenient method for testing the specificity of the activated lymphocytes in vitro, so as to know the rejection occurred or not by testing the existence of the specific activated lymphocytes against donor's HLA antigens in the recipient's peripheral blood. Methods: Anti-IL-2 neutralizing monoclonal antibody (anti-IL-2 N-mAb) and immunosuppressors were introduced in this test system in the presence of specific stimulators and activated lymphocytes. Results: When the activated lymphocytes were chosen from the one-way MLC 4 d to undergo re-stimulation by specific stimulators, the activity of activated lymphocytes in the treatment group was suppressed significantly compared with that in the control group. The result of this test method is consistent with the biopsy in the clinical diagnosis of rejection.Conclusion :It suggests that the activated lymphocytes can be inactivated by specific antigens in certain conditions. This can be a useful tool to define the specificity of the activated lymphocytes.

  9. Induction/Engineering, Detection, Selection, and Expansion of Clinical-Grade Human Antigen-Specific CD8+ Cytotoxic T Cell Clones for Adoptive Immunotherapy

    Matjaž Jeras

    2010-01-01

    Full Text Available Adoptive transfer of effector antigen-specific immune cells is becoming a promising treatment option in allogeneic transplantation, infectious diseases, cancer, and autoimmune disorders. Within this context, the important role of CD8+ cytotoxic T cells (CTLs is objective of intensive studies directed to their in vivo and ex vivo induction, detection, selection, expansion, and therapeutic effectiveness. Additional questions that are being addressed by the scientific community are related to the establishment and maintenance of their longevity and memory state as well as to defining critical conditions underlying their transitions between discrete, but functionally different subtypes. In this article we review and comment latest approaches and techniques used for preparing large amounts of antigen-specific CTLs, suitable for clinical use.

  10. The INIS Study. International Neonatal Immunotherapy Study: non-specific intravenous immunoglobulin therapy for suspected or proven neonatal sepsis: an international, placebo controlled, multicentre randomised trial

    ,

    2008-01-01

    Background Sepsis is an important cause of neonatal death and perinatal brain damage, particularly in preterm infants. While effective antibiotic treatment is essential treatment for sepsis, resistance to antibiotics is increasing. Adjuvant therapies, such as intravenous immunoglobulin, therefore offer an important additional strategy. Three Cochrane systematic reviews of randomised controlled trials in nearly 6,000 patients suggest that non-specific, polyclonal intravenous immunoglobulin is ...

  11. The INIS Study. International Neonatal Immunotherapy Study: Non-specific intravenous immunoglobulin therapy for suspected or proven neonatal sepsis: An international, placebo controlled, multicentre randomised trial

    Brocklehurst, P; Brearley, S; Haque, K; Leslie, A; Salt, A; Stenson, B.; Stephenson, J; Tarnow-Mordi, W; INIS Study Collaborative Group, The

    2008-01-01

    Background: Sepsis is an important cause of neonatal death and perinatal brain damage, particularly in preterm infants. While effective antibiotic treatment is essential treatment for sepsis, resistance to antibiotics is increasing. Adjuvant therapies, such as intravenous immunoglobulin, therefore offer an important additional strategy. Three Cochrane systematic reviews of randomised controlled trials in nearly 6,000 patients suggest that non-specific, polyclonal intravenous immunoglobuli...

  12. Particle platforms for cancer immunotherapy

    Serda RE

    2013-04-01

    Full Text Available Rita Elena Serda Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX, USA Abstract: Elevated understanding and respect for the relevance of the immune system in cancer development and therapy has led to increased development of immunotherapeutic regimens that target existing cancer cells and provide long-term immune surveillance and protection from cancer recurrence. This review discusses using particles as immune adjuvants to create vaccines and to augment the anticancer effects of conventional chemotherapeutics. Several particle prototypes are presented, including liposomes, polymer nanoparticles, and porous silicon microparticles, the latter existing as either single- or multiparticle platforms. The benefits of using particles include immune-cell targeting, codelivery of antigens and immunomodulatory agents, and sustained release of the therapeutic payload. Nanotherapeutic-based activation of the immune system is dependent on both intrinsic particle characteristics and on the immunomodulatory cargo, which may include danger signals known as pathogen-associated molecular patterns and cytokines for effector-cell activation. Keywords: adjuvant, particle, immunotherapy, dendritic cell, cancer, vaccine

  13. New routes for allergen immunotherapy.

    Johansen, Pål; von Moos, Seraina; Mohanan, Deepa; Kündig, Thomas M; Senti, Gabriela

    2012-10-01

    IgE-mediated allergy is a highly prevalent disease in the industrialized world. Allergen-specific immunotherapy (SIT) should be the preferred treatment, as it has long lasting protective effects and can stop the progression of the disease. However, few allergic patients choose to undergo SIT, due to the long treatment time and potential allergic adverse events. Since the beneficial effects of SIT are mediated by antigen presenting cells inducing Th1, Treg and antibody responses, whereas the adverse events are caused by mast cells and basophils, the therapeutic window of SIT may be widened by targeting tissues rich in antigen presenting cells. Lymph nodes and the epidermis contain high density of dendritic cells and low numbers of mast cells and basophils. The epidermis has the added benefit of not being vascularised thereby reducing the chances of anaphylactic shock due to leakage of allergen. Hence, both these tissues represent highly promising routes for SIT and are the focus of discussion in this review. PMID:23095873

  14. Immuno-therapy of Acute Radiation Syndromes : Extracorporeal Immuno-Lympho-Plasmo-Sorption.

    Popov, Dmitri; Maliev, Slava

    Methods Results Summary and conclusions Introduction: Existing Medical Management of the Acute Radiation Syndromes (ARS) does not include methods of specific immunotherapy and active detoxication. Though the Acute Radiation Syndromes were defined as an acute toxic poisonous with development of pathological processes: Systemic Inflammatory Response Syndrome (SIRS), Toxic Multiple Organ Injury (TMOI), Toxic Multiple Organ Dysfunction Syndrome(TMODS), Toxic Multiple Organ Failure (TMOF). Radiation Toxins of SRD Group play an important role as the trigger mechanisms in development of the ARS clinical symptoms. Methods: Immuno-Lympho-Plasmo-Sorption is a type of Immuno-therapy which includes prin-ciples of immunochromato-graphy, plasmopheresis, and hemodialysis. Specific Antiradiation Antitoxic Antibodies are the active pharmacological agents of immunotherapy . Antiradia-tion Antitoxic Antibodies bind selectively to Radiation Neurotoxins, Cytotoxins, Hematotox-ins and neutralize their toxic activity. We have developed the highly sensitive method and system for extracorporeal-immune-lypmh-plasmo-sorption with antigen-specific IgG which is clinically important for treatment of the toxic and immunologic phases of the ARS. The method of extracorporeal-immune-lypmh-plasmo-sorption includes Antiradiation Antitoxic Antibodies (AAA) immobilized on microporous polymeric membranes with a pore size that is capable to provide diffusion of blood-lymph plasma. Plasma of blood or lymph of irradiated mammals contains Radiation Toxins (RT) that have toxic and antigenic properties. Radiation Toxins are Antigen-specific to Antitoxic blocking antibodies (Immunoglobulin G). Plasma diffuses through membranes with immobilized AAA and AA-antibodies bind to the polysaccharide chain of tox-ins molecules and complexes of AAA-RT that are captured on membrane surfaces. RT were removed from plasma. Re-transfusion of plasma of blood and lymph had been provided. We show a statistical significant

  15. Less is more: lymphodepletion followed by hematopoietic stem cell transplant augments adoptive T-cell-based anti-tumor immunotherapy

    Wrzesinski, Claudia; Restifo, Nicholas P

    2005-01-01

    Adoptive T-cell immunotherapy combined with non-myeloablative lymphodepletion has emerged as the most effective immunotherapy treatment for patients with metastatic melanoma (objective response rates of 50%). The mechanisms underlying this major advance in the field of immunotherapy include the elimination of regulatory elements and increased access to activating cytokines. This results in the activation of low-affinity T cells, enabling them to destroy tumors. We propose that a more complete...

  16. Requirements for acquiring a high-quality house dust mite extract for allergen immunotherapy

    Frati F

    2012-05-01

    Full Text Available Franco Frati,1 Cristoforo Incorvaia,2 Marie David,3 Silvia Scurati,3 Simona Seta,4 Guglielmo Padua,4 Eleonora Cattaneo,1 Carlo Cavaliere,5 Alessia Di Rienzo,6 Ilaria Dell'Albani,1 Paola Puccinelli11Medical and Scientific and Regulatory Department, Stallergenes, Milan, Italy; 2Allergy/Pulmonary Rehabilitation, ICP Hospital, Milan, Italy; 3Laboratoire Stallergenes, Antony, France; 4Marketing Department, Stallergenes, Milan, Italy; 5Ear, Nose and Throat Department, University Sapienza, Rome, Italy; 6Azienda Sanitaria Locale, Allergology Service, Frosinone, ItalyAbstract: The house dust mite is a major cause of respiratory allergy worldwide. The management of mite allergy is based on avoidance measures, drug treatment, and allergen immunotherapy, but only allergen immunotherapy is able to modify the natural history of the disease. Injectable subcutaneous immunotherapy was introduced a century ago, while sublingual immunotherapy was proposed in the 1980s and emerged in the ensuing years as an effective and safe option to subcutaneous immunotherapy. However, the quality of the extracts to be used in allergen immunotherapy is crucial for the success of treatment. The mite extract for sublingual immunotherapy known as Staloral 300 was developed to offer optimal characteristics concerning the mite culture medium, standardization, and allergen dose. Double-blind, placebo-controlled trials with Staloral 300 have provided a substantial part of the clinical evidence analyzed in a meta-analysis of the efficacy of allergen immunotherapy in mite-induced rhinitis and asthma. Safety and tolerability are very good, mild local reactions in the mouth being the most common side effect. This makes it feasible to carry out sublingual immunotherapy for the 3–5-year duration needed to achieve long-lasting tolerance to the specific allergen. The performance of Staloral 300 may provide optimal conditions for an effective and safe sublingual immunotherapy in patients with

  17. Therapeutic Response in Patients with Advanced Malignancies Treated with Combined Dendritic Cell–Activated T Cell Based Immunotherapy and Intensity–Modulated Radiotherapy

    Hasumi, Kenichiro; Aoki, Yukimasa; Watanabe, Ryuko [Hasumi International Research Foundation, Tokyo Research Center, 1-44-6 Asagaya-kita, Suginami- ku, Tokyo 166-0001 (Japan); Hankey, Kim G.; Mann, Dean L., E-mail: dmann001@umaryland.edu [Department of Pathology, University of Maryland School of Medicine, MSTF Room 700, 10 South Pine Street, Baltimore, Maryland 21040 (United States)

    2011-04-28

    Successful cancer immunotherapy is confounded by the magnitude of the tumor burden and the presence of immunoregulatory elements that suppress an immune response. To approach these issues, 26 patients with advanced treatment refractory cancer were enrolled in a safety/feasibility study wherein a conventional treatment modality, intensity modulated radiotherapy (IMRT), was combined with dendritic cell-based immunotherapy. We hypothesized that radiation would lower the tumor burdens, decrease the number/function of regulatory cells in the tumor environment, and release products of tumor cells that could be acquired by intratumoral injected immature dendritic cells (iDC). Metastatic lesions identified by CT (computed tomography) were injected with autologous iDC combined with a cytokine-based adjuvant and KLH (keyhole limpet hemocyanin), followed 24 h later by IV-infused T-cells expanded with anti-CD3 and IL-2 (AT). After three to five days, each of the injected lesions was treated with fractionated doses of IMRT followed by another injection of intratumoral iDC and IV-infused AT. No toxicity was observed with cell infusion while radiation-related toxicity was observed in seven patients. Five patients had progressive disease, eight demonstrated complete resolution at treated sites but developed recurrent disease at other sites, and 13 showed complete response at various follow-up times with an overall estimated Kaplan-Meier disease-free survival of 345 days. Most patients developed KLH antibodies supporting our hypothesis that the co-injected iDC are functional with the capacity to acquire antigens from their environment and generate an adaptive immune response. These results demonstrate the safety and effectiveness of this multimodality strategy combining immunotherapy and IMRT in patients with advanced malignancies.

  18. The INIS Study. International Neonatal Immunotherapy Study: non-specific intravenous immunoglobulin therapy for suspected or proven neonatal sepsis: an international, placebo controlled, multicentre randomised trial

    2008-12-01

    Full Text Available Abstract Background Sepsis is an important cause of neonatal death and perinatal brain damage, particularly in preterm infants. While effective antibiotic treatment is essential treatment for sepsis, resistance to antibiotics is increasing. Adjuvant therapies, such as intravenous immunoglobulin, therefore offer an important additional strategy. Three Cochrane systematic reviews of randomised controlled trials in nearly 6,000 patients suggest that non-specific, polyclonal intravenous immunoglobulin is safe and reduces sepsis by about 15% when used as prophylaxis but does not reduce mortality in this situation. When intravenous immunoglobulin is used in the acute treatment of neonatal sepsis, however, there is a suggestion that it may reduce mortality by 45%. However, the existing trials of treatment were small and lacked long-term follow-up data. This study will assess reliably whether treatment of neonatal sepsis with intravenous immunoglobulin reduces mortality and adverse neuro-developmental outcome. Methods and design A randomised, placebo controlled, double blind trial. Babies with suspected or proven neonatal sepsis will be randomised to receive intravenous immunoglobulin therapy or placebo. Eligibility criteria Babies must be receiving antibiotics and have proven or suspected serious infection AND have at least one of the following: birthweight less than 1500 g OR evidence of infection in blood culture, cerebrospinal fluid or usually sterile body fluid OR be receiving respiratory support via an endotracheal tube AND there is substantial uncertainty that intravenous immunoglobulin is indicated. Exclusion criteria Babies are excluded if intravenous immunoglobulin has already been given OR intravenous immunoglobulin is thought to be needed OR contra-indicated. Trial treatment Babies will be given either 10 ml/kg of intravenous immunoglobulin or identical placebo solution over 4–6 hours, repeated 48 hours later. Primary outcome Mortality or

  19. Development of a 'mouse and human cross-reactive' affinity-matured exosite inhibitory human antibody specific to TACE (ADAM17) for cancer immunotherapy.

    Kwok, Hang Fai; Botkjaer, Kenneth A; Tape, Christopher J; Huang, Yanchao; McCafferty, John; Murphy, Gillian

    2014-06-01

    We previously showed that a human anti-TACE antibody, D1(A12), is a potent inhibitor of TNF-α converting enzyme (TACE) ectodomain proteolysis and has pharmacokinetic properties suitable for studies of the inhibition of TACE-dependent growth factor shedding in relation to possible therapeutic applications. However, the lack of murine TACE immunoreactivity limits pre-clinical in vivo studies to human xenograft models which are poor analogies to in situ pathology and are not considered clinically predictive. Here, to overcome these limitations, we set out to develop a 'mouse and human cross-reactive' specific anti-TACE antibody. We first re-investigated the originally selected anti-TACE ectodomain phage-display clones, and isolated a lead 'mouse-human cross-reactive' anti-TACE scFv, clone A9. We reformatted scFv-A9 into an IgG2 framework for comprehensive biochemical and cellular characterization and further demonstrated that A9 is an exosite TACE inhibitor. However, surface plasmon resonance analysis and quenched-fluorescent (QF) peptide assay indicated that IgG reformatting of A9 caused low binding affinity and an 80-fold reduction in TACE ectodomain inhibition, severely limiting its efficacy. To address this, we constructed second generation phage-display randomization libraries focused on the complementarity-determining region 3, and carried out affinity selections shuffling between human and mouse TACE ectodomain as antigen in addition to an off-rate selection to increase the chance of affinity improvement. The bespoke 'three-step' selections enabled a 100-fold affinity enhancement of A9 IgG, and also improved its IC50 in a QF peptide assay to 0.2 nM. In human and mouse cancer cell assays, matured A9 IgG showed significant cell-surface TACE inhibition as a monotherapy or combination therapy with chemotherapeutic agent. Collectively, these data suggest that we successfully developed an exosite inhibitor of TACE with sub-nanomolar affinity, which possesses both

  20. Acquired resistance to immunotherapy and future challenges.

    Restifo, Nicholas P; Smyth, Mark J; Snyder, Alexandra

    2016-02-01

    Advances in immunotherapy have resulted in remarkable clinical responses in some patients. However, one of the biggest challenges in cancer therapeutics is the development of resistant disease and disease progression on or after therapy. Given that many patients have now received various types of immunotherapy, we asked three scientists to give their views on the current evidence for whether acquired resistance to immunotherapy exists in patients and the future challenges posed by immunotherapy. PMID:26822578

  1. Treating allergic rhinitis by sublingual immunotherapy: a review

    Cristoforo Incorvaia

    2012-06-01

    Full Text Available OBJECTIVE: Allergic rhinitis (AR is a disease with high and increasing prevalence. The management of AR includes allergen avoidance, anti-allergic drugs, and allergen specific immunotherapy (AIT, but only the latter works on the causes of allergy and, due to its mechanisms of action, modifies the natural history of the disease. Sublingual immunotherapy (SLIT was proposed in the 1990s as an option to traditional, subcutaneous immunotherapy. MATERIAL AND METHODS: We reviewed all the available controlled trials on the efficacy and safety of SLIT. RESULTS AND CONCLUSION: Thus far, more than 60 trials, globally evaluated in 6 meta-analyses, showed that SLIT is an effective and safe treatment for AR. However, it must be noted that to expect clinical efficacy in the current practice SLIT has to be performed following the indications from controlled trials, that is, sufficiently high doses to be regularly administered for at least 3 consecutive years.

  2. IMMUNOTHERAPY FOR EPSTEIN-BARR VIRUS-RELATED LYMPHOMAS

    Alana Kennedy-Nasser

    2009-11-01

    Full Text Available Latent EBV infection is associated with several malignancies, including EBV post-transplant lymphoproliferative disorders (LPD, Hodgkin and non-Hodgkin lymphomas, nasopharyngeal carcinoma and Burkitt lymphoma. The range of expression of latent EBV antigens varies in these tumors, which influences how susceptible the tumors are to immunotherapeutic approaches. Tumors expressing type III latency, such as in LPD, express the widest array of EBV antigens making them the most susceptible to immunotherapy. Treatment strategies for EBV-related tumors include restoring normal cellular immunity by adoptive immunotherapy with EBV-specific T cells and targeting the malignant B cells with monoclonal antibodies. We review the current immunotherapies and future studies aimed at targeting EBV antigen expression in these tumors.

  3. The Role of Surgical Pathology in Guiding Cancer Immunotherapy.

    Lovitch, Scott B; Rodig, Scott J

    2016-05-23

    The recognition that the immune system can identify and destroy tumor cells has driven a paradigm shift in our understanding of human cancer. Therapies designed to enhance this capacity, including cancer vaccines and coinhibitory receptor blockade, have demonstrated clinical efficacy in treating tumors refractory to conventional therapy. In this review, we discuss how the analysis of the immune microenvironment in primary tissue biopsy samples can be used to stratify patients according to clinical outcome, identify patients likely to benefit from specific immunotherapies, and tailor combination immunotherapy to individual patients and tumor types. As immunotherapy gains in complexity and is used in combination with agents that target oncogenic, intracellular signaling pathways, diagnostic pathologists will play an increasingly important part in identifying and quantifying cellular and molecular biomarkers in tissue samples that reflect the nature and magnitude of the antitumor immune response. PMID:27193453

  4. CD28 co-stimulation via tumour-specific chimaeric receptors induces an incomplete activation response in Epstein–Barr virus-specific effector memory T cells

    Altvater, B; Pscherer, S; Landmeier, S; Niggemeier, V; Juergens, H; Vormoor, J; Rossig, C

    2006-01-01

    Expression of tumour antigen-specific chimaeric receptors in T lymphocytes can redirect their effector functions towards tumour cells. Integration of the signalling domains of the co-stimulatory molecule CD28 into chRec enhances antigen-specific proliferation of polyclonal human T cell populations. While CD28 plays an essential role in the priming of naive CD4+ T cells, its contribution to effector memory T cell responses is controversial. We compared the function of the chRec with and without the CD28 co-stimulatory domain, expressing it in peripheral blood T cells or Epstein–Barr virus (EBV)-specific T cell lines. The chimaeric T cell receptors contain an extracellular single-chain antibody domain, to give specificity against the tumour ganglioside antigen GD2. The transduced cytotoxic T lymphocytes (CTL) maintained their specificity for autologous EBV targets and their capacity to proliferate after stimulation with EBV-infected B cells. Intracellular cytokine staining demonstrated efficient and comparable antigen-specific interferon (IFN)-γ secretion by CTL following engagement of both the native and the chimaeric receptor, independent of chimaeric CD28 signalling. Furthermore, tumour targets were lysed in an antigen-specific manner by both chRec. However, while antigen engagement by CD28ζ chRec efficiently induced expansion of polyclonal peripheral blood lymphocytes in an antigen-dependent manner, CD28 signalling did not induce proliferation of EBV–CTL in response to antigen-expressing tumour cells. Thus, the co-stimulatory requirement for the efficient activation response of antigen-specific memory cells cannot be mimicked simply by combining CD28 and ζ signalling. The full potential of this highly cytolytic T cell population for adoptive immunotherapy of cancer requires further exploration of their co-stimulatory requirements. PMID:16734614

  5. CD28 co-stimulation via tumour-specific chimaeric receptors induces an incomplete activation response in Epstein-Barr virus-specific effector memory T cells.

    Altvater, B; Pscherer, S; Landmeier, S; Niggemeier, V; Juergens, H; Vormoor, J; Rossig, C

    2006-06-01

    Expression of tumour antigen-specific chimaeric receptors in T lymphocytes can redirect their effector functions towards tumour cells. Integration of the signalling domains of the co-stimulatory molecule CD28 into chRec enhances antigen-specific proliferation of polyclonal human T cell populations. While CD28 plays an essential role in the priming of naive CD4(+) T cells, its contribution to effector memory T cell responses is controversial. We compared the function of the chRec with and without the CD28 co-stimulatory domain, expressing it in peripheral blood T cells or Epstein-Barr virus (EBV)-specific T cell lines. The chimaeric T cell receptors contain an extracellular single-chain antibody domain, to give specificity against the tumour ganglioside antigen G(D2). The transduced cytotoxic T lymphocytes (CTL) maintained their specificity for autologous EBV targets and their capacity to proliferate after stimulation with EBV-infected B cells. Intracellular cytokine staining demonstrated efficient and comparable antigen-specific interferon (IFN)-gamma secretion by CTL following engagement of both the native and the chimaeric receptor, independent of chimaeric CD28 signalling. Furthermore, tumour targets were lysed in an antigen-specific manner by both chRec. However, while antigen engagement by CD28 zeta chRec efficiently induced expansion of polyclonal peripheral blood lymphocytes in an antigen-dependent manner, CD28 signalling did not induce proliferation of EBV-CTL in response to antigen-expressing tumour cells. Thus, the co-stimulatory requirement for the efficient activation response of antigen-specific memory cells cannot be mimicked simply by combining CD28 and zeta signalling. The full potential of this highly cytolytic T cell population for adoptive immunotherapy of cancer requires further exploration of their co-stimulatory requirements. PMID:16734614

  6. Advances in Immunotherapies for Non-small Cell Lung Cancer

    Yuan HE

    2014-03-01

    Full Text Available Globally, Lung cancer is the leading cause of cancer-related death of high morbidity and mortality with poor prognosis, which needs some more effective and less toxic therapies. The immunotherapies offer a novel approach for the treatment of patients with non-small cell lung cancer (NSCLC in both the adjuvant and palliative disease settings. A number of promising immunotherapies based on different mechanism have now been evaluated showing an increasing response rate. Moreover, further phase II/III clinical trials will be indicated to explore its value. These include checkpoint inhibitors (anti-CTLA4 antibody, anti-PD-1 antibody, anti-PD-L1 antibody, active vaccination (L-BLP25 liposome vaccine, Belagenpumatucel-L vaccine, MAGE-A3 protein vaccine and adoptive vaccination (CIK cells. The purpose of this paper will draw a summary on the theory, clinical trials, toxicity and problems to be solved of the immunotherapies in NSCLC.

  7. Immunotherapy for Urothelial Carcinoma: Current Status and Perspectives

    Intravesical instillation of bacillus Calmette Guérin (BCG) for the treatment of urothelial carcinoma (UC) of the bladder is based on the BCG-induced immune response, which eradicates and prevents bladder cancer. The results of recent studies have suggested that not only major histocompatibility complex (MHC)-nonrestricted immune cells such as natural killer cells, macrophages, neutrophils, etc., but also MHC-restricted CD8+ T cells play an important role and are one of the main effectors in this therapy. Better understanding of the mechanism of BCG immunotherapy supports the idea that active immunotherapy through its augmented T cell response can have great potential for the treatment of advanced UC. In this review, progress in immunotherapy for UC is discussed based on data from basic, translational and clinical studies. We also review the escape mechanism of cancer cells from the immune system, and down-regulation of MHC class I molecules

  8. Immunotherapy for Urothelial Carcinoma: Current Status and Perspectives

    Kitamura, Hiroshi, E-mail: hkitamu@sapmed.ac.jp; Tsukamoto, Taiji [Department of Urology, Sapporo Medical University School of Medicine, South 1 West 16, Chuo-ku, Sapporo 060-8543 (Japan)

    2011-07-29

    Intravesical instillation of bacillus Calmette Guérin (BCG) for the treatment of urothelial carcinoma (UC) of the bladder is based on the BCG-induced immune response, which eradicates and prevents bladder cancer. The results of recent studies have suggested that not only major histocompatibility complex (MHC)-nonrestricted immune cells such as natural killer cells, macrophages, neutrophils, etc., but also MHC-restricted CD8{sup +} T cells play an important role and are one of the main effectors in this therapy. Better understanding of the mechanism of BCG immunotherapy supports the idea that active immunotherapy through its augmented T cell response can have great potential for the treatment of advanced UC. In this review, progress in immunotherapy for UC is discussed based on data from basic, translational and clinical studies. We also review the escape mechanism of cancer cells from the immune system, and down-regulation of MHC class I molecules.

  9. New modalities of cancer treatment for NSCLC: focus on immunotherapy

    Recent advances in the understanding of immunology and antitumor immune responses have led to the development of new immunotherapies, including vaccination approaches and monoclonal antibodies that inhibit immune checkpoint pathways. These strategies have shown activity in melanoma and are now being tested in lung cancer. The antibody drugs targeting cytotoxic T-lymphocyte-associated antigen-4 and programmed cell death protein-1 immune checkpoint pathways work by restoring immune responses against cancer cells, and are associated with unconventional response patterns and immune-related adverse events as a result of their mechanism of action. As these new agents enter the clinic, nurses and other health care providers will require an understanding of the unique efficacy and safety profiles with immunotherapy to optimize potential patient benefits. This paper provides a review of the new immunotherapeutic agents in development for lung cancer, and strategies for managing patients on immunotherapy

  10. New advances in leukaemia immunotherapy by the use of Chimeric Artificial Antigen Receptors (CARs: state of the art and perspectives for the near future

    Cribioli Elisabetta

    2011-09-01

    Full Text Available Abstract Leukaemia immunotherapy represents a fascinating and promising field of translational research, particularly as an integrative approach of bone marrow transplantation. Adoptive immunotherapy by the use of donor-derived expanded leukaemia-specific T cells has showed some kind of clinical response, but the major advance is nowadays represented by gene manipulation of donor immune cells, so that they acquire strict specificity towards the tumour target and potent lytic activity, followed by significant proliferation, increased survival and possibly anti-tumour memory state. This is achieved by gene insertion of Chimeric T-cell Antigen Receptors (CARs, which are artificial molecules containing antibody-derived fragments (to bind the specific target, joined with potent signalling T-Cell Receptor (TCR-derived domains that activate the manipulated cells. This review will discuss the main application of this approach particularly focusing on the paediatric setting, raising advantages and disadvantages and discussing relevant perspectives of use in the nearest future.

  11. Non-Specific Immunotherapies and Adjuvants

    ... Local Offices Volunteer Employment Become a Supplier Report Fraud or ... reserved. The American Cancer Society is a qualified 501(c)(3) tax-exempt organization. Cancer.org is provided courtesy of ...

  12. Allergenic Characterization of New Mutant Forms of Pru p 3 as New Immunotherapy Vaccines

    C. Gómez-Casado

    2013-01-01

    Full Text Available Nowadays, treatment of food allergy only considered the avoidance of the specific food. However, the possibility of cross-reactivity makes this practice not very effective. Immunotherapy may exhibit as a good alternative to food allergy treatment. The use of hypoallergenic molecules with reduced IgE binding capacity but with ability to stimulate the immune system is a promising tool which could be developed for immunotherapy. In this study, three mutants of Pru p 3, the principal allergen of peach, were produced based on the described mimotope and T cell epitopes, by changing the specific residues to alanine, named as Pru p 3.01, Pru p 3.02, and Pru p 3.03. Pru p 3.01 showed very similar allergenic activity as the wild type by in vitro assays. However, Pru p 3.02 and Pru p 3.03 presented reduced IgE binding with respect to the native form, by in vitro, ex vivo, and in vivo assays. In addition, Pru p 3.03 had affected the IgG4 binding capacity and presented a random circular dichroism, which was reflected in the nonrecognition by specific antibodies anti-Pru p 3. Nevertheless, both Pru p 3.02 and Pru p 3.03 maintained the binding to IgG1 and their ability to activate T lymphocytes. Thus, Pru p 3.02 and Pru p 3.03 could be good candidates for potential immunotherapy in peach-allergic patients.

  13. Immunotherapy and immunoescape in colorectal cancer

    2007-01-01

    Immunotherapy encompasses a variety of interventions and techniques with the common goal of eliciting tumor cell destructive immune responses. Colorectal carcinoma often presents as metastatic disease that impedes curative surgery. Novel strategies such as active immunization with dendritic cells (DCs), gene transfer of cytokines into tumor cells or administration of immunostimulatory monoclonal antibodies (such as anti-CD137 or anti-CTLA-4) have been assessed in preclinical studies and are at an early clinical development stage. Importantly, there is accumulating evidence that chemotherapy and immunotherapy can be combined in the treatment of some cases with colorectal cancer, with synergistic potentiation as a result of antigens cross-presented by dendritic cells and/or elimination of competitor or suppressive T lymphocyte populations (regulatory T-cells). However, genetic and epigenetic unstable carcinoma cells frequently evolve mechanisms of immunoevasion that are the result of either loss of antigen presentation, or an active expression of immunosuppressive substances. Some of these actively immunosuppressive mechanisms are inducible by cytokines that signify the arrival of an effector immune response. For example, induction of 2, 3 indoleamine dioxygenase (IDO) by IFNy in colorectal carcinoma cells. Combinational and balanced strategies fostering antigen presentation, T-cell costimulation and interference with immune regulatory mechanisms will probably take the stage in translational research in the treatment of colorectal carcinoma.

  14. Allergen immunotherapy for allergic rhinoconjunctivitis

    Dhami, Sangeeta; Nurmatov, Ulugbek; Roberts, Graham;

    2016-01-01

    BACKGROUND: The European Academy of Allergy and Clinical Immunology (EAACI) is in the process of developing the EAACI Guidelines for Allergen Immunotherapy (AIT) for the Management of Allergic Rhinoconjunctivitis. We seek to critically assess the effectiveness, cost-effectiveness and safety of AI...

  15. Peptide immunotherapy in experimental autoimmune encephalomyelitis

    Stephen M Anderton

    2015-06-01

    Full Text Available We now have potent drugs available to treat the inflammatory component of multiple sclerosis (MS. However, not all patients respond, the drugs are not curative, and the associated risks to beneficial immune surveillance are considerable. A more desirable approach is to specifically target those comparatively rare T lymphocytes that are orchestrating the autoimmune attack. Using the autoantigen itself to instill immune tolerance in those cells remains a holy grail of immunotherapy. Peptide immunotherapy (PIT is highly effective at silencing autoimmune responses in experimental autoimmune encephalomyelitis (EAE, and clinical trials of PIT are underway in MS. This review discusses the current paradigms for PIT-induced tolerance in naïve T cells. It highlights the need for better understanding of the mode of action of PIT upon memory and effector T cells that are responsible for driving/sustaining ongoing autoimmune pathology. Recent studies in EAEsuggest genetic and epigenetic changes in these pathogenic T-cell populations in response to PIT. Finally, future challenges to effective translation of PIT to the clinic are considered.

  16. Monocyte-derived dendritic cells are essential for CD8+ T cell activation and anti-tumor responses after local immunotherapy

    Sabine eKuhn; Jianping eYang; F eRonchese

    2015-01-01

    Tumors harbor several populations of dendritic cells with the ability to prime tumor-specific T cells. However, these T cells mostly fail to differentiate into armed effectors and are unable to control tumor growth. We have previously shown that treatment with immunostimulatory agents at the tumor site can activate anti-tumor immune responses, and is associated with the appearance of a population of monocyte-derived dendritic cells in the tumor and tumor-draining lymph node. Here we use dendr...

  17. [Development of Nucleic Acid-Based Adjuvant for Cancer Immunotherapy].

    Kobiyama, Kouji; Ishii, Ken J

    2015-09-01

    Since the discovery of the human T cell-defined tumor antigen, the cancer immunotherapy field has rapidly progressed, with the research and development of cancer immunotherapy, including cancer vaccines, being conducted actively. However, the disadvantages of most cancer vaccines include relatively weak immunogenicity and immune escape or exhaustion. Adjuvants with innate immunostimulatory activities have been used to overcome these issues, and these agents have been shown to enhance the immunogenicity of cancer vaccines and to act as mono-therapeutic anti-tumor agents. CpG ODN, an agonist for TLR9, is one of the promising nucleic acid-based adjuvants, and it is a potent inducer of innate immune effector functions. CpG ODN suppresses tumor growth in the absence of tumor antigens and peptide administration. Therefore, CpG ODN is expected to be useful as a cancer vaccine adjuvant as well as a cancer immunotherapy agent. In this review, we discuss the potential therapeutic applications and mechanisms of CpG ODN for cancer immunotherapy. PMID:26469159

  18. Activated human γδ T cells induce peptide-specific CD8+ T-cell responses to tumor-associated self-antigens.

    Altvater, Bianca; Pscherer, Sibylle; Landmeier, Silke; Kailayangiri, Sareetha; Savoldo, Barbara; Juergens, Heribert; Rossig, Claudia

    2012-03-01

    Specific cellular immunotherapy of cancer requires efficient generation and expansion of cytotoxic T lymphocytes (CTLs) that recognize tumor-associated self-antigens. Here, we investigated the capacity of human γδ T cells to induce expansion of CD8+ T cells specific for peptides derived from the weakly immunogenic tumor-associated self-antigens PRAME and STEAP1. Coincubation of aminobisphosphonate-stimulated human peripheral blood-derived γδ T cells (Vγ9+Vδ2+), loaded with HLA-A*02-restricted epitopes of PRAME, with autologous peripheral blood CD8+ T cells stimulated the expansion of peptide-specific cytolytic effector memory T cells. Moreover, peptide-loaded γδ T cells efficiently primed antigen-naive CD45RA+ CD8+ T cells against PRAME peptides. Direct comparisons with mature DCs revealed equal potency of γδ T cells and DCs in inducing primary T-cell responses and peptide-specific T-cell activation and expansion. Antigen presentation by γδ T-APCs was not able to overcome the limited capacity of peptide-specific T cells to interact with targets expressing full-length antigen. Importantly, T cells with regulatory phenotype (CD4+ CD25hiFoxP3+) were lower in cocultures with γδ T cells compared to DCs. In summary, bisphosphonate-activated γδ T cells permit generation of CTLs specific for weakly immunogenic tumor-associated epitopes. Exploiting this strategy for effective immunotherapy of cancer requires strategies that enhance the avidity of CTL responses to allow for efficient targeting of cancer. PMID:21928126

  19. Immunotherapy Treatments of Warm Autoimmune Hemolytic Anemia

    Bainan Liu

    2013-01-01

    Full Text Available Warm autoimmune hemolytic anemia (WAIHA is one of four clinical types of autoimmune hemolytic anemia (AIHA, with the characteristics of autoantibodies maximally active at body temperature. It produces a variable anemia—sometimes mild and sometimes severe. With respect to the absence or presence of an underlying condition, WAIHA is either idiopathic (primary or secondary, which determines the treatment strategies in practice. Conventional treatments include immune suppression with corticosteroids and, in some cases, splenectomy. In recent years, the number of clinical studies with monoclonal antibodies and immunosuppressants in the treatment of WAIHA increased as the knowledge of autoimmunity mechanisms extended. This thread of developing new tools of treating WAIHA is well exemplified with the success in using anti-CD20 monoclonal antibody, Rituximab. Following this success, other treatment methods based on the immune mechanisms of WAIHA have emerged. We reviewed these newly developed immunotherapy treatments here in order to provide the clinicians with more options in selecting the best therapy for patients with WAIHA, hoping to stimulate researchers to find more novel immunotherapy strategies.

  20. Nanoparticle Targeting of Neutrophils for Improved Cancer Immunotherapy

    Chu, Dafeng; Zhao, Qi; Yu, Jian; Zhang, Faya; Zhang, Hui; Wang, Zhenjia

    2016-01-01

    Cancer immunotherapy using tumor specific monoclonal antibodies (mAbs) presents a novel approach for cancer treatment. A monoclonal antibody TA99 specific for gp75 antigen of melanoma, initiates neutrophil recruitment in tumor responsible for cancer therapy. Here we report a strategy for hijacking neutrophils in vivo using nanoparticles (NPs) to deliver therapeutics into tumor. In a mouse model of melanoma, we showed that systemically delivered albumin NPs increased in tumor when TA99 antibod...

  1. Adapted ECHO-7 virus Rigvir immunotherapy (oncolytic virotherapy) prolongs survival in melanoma patients after surgical excision of the tumour in a retrospective study

    Doniņa, Simona; Strēle, Ieva; Proboka, Guna; Auziņš, Jurgis; Alberts, Pēteris; Jonsson, Björn; Venskus, Dite; Muceniece, Aina

    2015-01-01

    An oncolytic, nonpathogenic ECHO-7 virus adapted for melanoma that has not been genetically modified (Rigvir) is approved and registered for virotherapy, an active and specific immunotherapy, in Latvia since 2004. The present retrospective study was carried out to determine the effectiveness of Rigvir in substage IB, IIA, IIB and IIC melanoma patients on time to progression and overall survival. White patients (N=79) who had undergone surgical excision of the primary melanoma tumour were incl...

  2. Seasonal versus perennial immunotherapy: evaluation after three years of treatment.

    Muñoz Lejarazu, D; Bernaola, G; Fernández, E; Audícana, M; Ventas, P; Martín, S; Fernández de Corres, L

    1993-01-01

    We have performed a comparative study to evaluate seasonal and perennial schedules after 3 years of immunotherapy. Sixty patients suffering from rhinitis and/or asthma due to grass pollen sensitization were randomly allocated to receive a semi-depot extract of Phleum pratense according to a perennial or seasonal schedule. The last year of the study, 14 patients were recruited as a control group without immunotherapy. The cumulative dose was 602 BU in the perennial group and 372 BU in the seasonal group. The frequency and severity of side-effects were similar and very low in both treated groups. The IgE level was significantly lower after perennial immunotherapy at the end of the first 2 years. A seasonal decrease in specific IgG levels was observed in patients who interrupted immunotherapy, while this was not observed in patients under the perennial schedule. Symptoms and medication scores did not show differences between groups. Nevertheless, we found a significant difference between treated patients and the control group. PMID:8281355

  3. Review on immunotherapy in airway allergen sensitised patients.

    van der Valk, J P M; de Jong, N W; Gerth van Wijk, R

    2015-07-01

    Allergen immunotherapy is a more than 100-year-old treatment in particular for birch pollen, grass pollen, house dust mite and cat dander sensitised allergic patients. The mechanism of allergen-specific immunotherapy is complex. Different hypotheses have been postulated to explain the mode of action, such as a decrease of the number of tissue mast cells, eosinophils and basophils, an increase of IgG4 and IgA synthesis, a shift from Th2 to Th1 cells and an increase in the number and function of IL-10 producing T-regulatory cells (T-reg). All these immunological effects may contribute to immune tolerance and long-term changes in the immune system. The efficacy and safety of subcutaneous (SCIT) and sublingual immunotherapy (SLIT) with pollen and house dust mite have been investigated in many trials, meta-analyses and reviews. Nowadays grass pollen SLIT and SCIT, and birch pollen and house dust mite SCIT are implemented in clinical practice to treat therapy-resistant patients. However, the treatment is not effective for all patients and often not without side effects. Therefore, the development of new, safer and more effective immunotherapies is needed. These are approached along novel routes, including improved administration, combined treatment with immune response modifiers, fusion with immune response modifiers, allergen coupled to adjuvants and reconstruction of natural extracts with multiple recombinant allergens or with modified allergens. These developments are promising, but more research is required to implement them in clinical practice. PMID:26228190

  4. T-cell apoptosis in asthmatics before and after immunotherapy

    This study aimed to observe some of the mechanisms of allergen specific immunotherapy and to see if the idea of delayed Th2 lymphocytes apoptosis is a contributing factor in asthma pathogenesis that could be corrected by immunotherapy. The study was conducted on 40 persons 30 asthmatic patients, 10 healthy control groups. After taking full history and clinical examination all subjects was submitted to the following assays: 1- Measuring of the CD95 on T lymphocytes in fresh blood samples using flow cytometric analysis. 2- Measuring level of lgE (nephlometer).3-Measuring level of IL-4 (ELISA).4-Measuring level of IFN-gamma (ELISA). CD95 was significantly increased in asthmatic patients denoting up regulation of the receptor on T-lymphocytes in asthmatics . The percent of CD95 was decreased in treated asthmatic subjects with no statistical significant difference. Total lgE and serum IL-4 were significantly increased in asthmatics denoting allergic nature, these levels were decreased after the immunotherapy confirming a relation ship between the application course duration of the immunotherapy and the relief of the inflammatory symptoms and remolding.

  5. Experimental studies of tumor immunotherapy. II. Tumor immunotherapy following tumor extirpation

    Hayashi,Shigeo

    1976-06-01

    Full Text Available In order to approach human cancer immunotherapy, the author carried out the immunotherapy with BCG on mice having homotransplanted cancer, observed the posttransplantation results with lapse of time, conduced daily macrophage inhibition test (MI test and found the immunotherapy to be effective. At the same time the MI test proved to be a useful criterion in determining the course of cancer progress and effectiveness of the immunotherapy.

  6. Review of Cancer Immunotherapy: Application of Chimeric Antigen Receptor T Cells and Programmed Death 1/Programmed Death-ligand 1 Antibodies

    Tengfei Zhang

    2015-01-01

    Full Text Available Cancer immunotherapy strategies based on chimeric antigen receptor (CAR transduced T cells or antibodies against immune checkpoints, cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4 and programmed death 1 (PD-1, achieved significant successes from bench to clinic in the past 2 years. CARs are artificial engineered receptors that can specifically target tumor cell surface antigen, activate T cell and further enhance T cell function, independent of major histocompatibility complex. CAR T cells have shown promising outcomes in cancers, especially in hematologic malignancies. CTLA-4 and PD-1 are two important immune checkpoints negatively regulating T cell activation. Clinical benefits of CTLA-4/PD-1 antibodies are significant in melanoma and other solid tumors. PD-1 is predicted to have fewer side effects and greater antitumor activity than CTLA-4. In this review, we will summarize current immunotherapies based on CAR T cells and PD-1.

  7. Emerging immunotherapy in pediatric lymphoma.

    Erker, Craig; Harker-Murray, Paul; Burke, Michael J

    2016-01-01

    Hodgkin and non-Hodgkin lymphoma collectively are the third most common cancer diagnosed in children each year. For children who relapse or have refractory disease, outcomes remain poor. Immunotherapy has recently emerged as a novel approach to treat hematologic malignancies. The field has been rapidly expanding over the past few years broadening its armamentarium which now includes monoclonal antibodies, antibody-drug conjugates and cellular therapies including bispecific T-cell engagers and chimeric antigen receptor-engineered T cells. Many of these agents are in their infancy stages and only beginning to make their mark on lymphoma treatment while others have begun to show promising efficacy in relapsed disease. In this review, the authors provide an overview of current and emerging immunotherapies in the field of pediatric lymphoma. PMID:26616565

  8. The integrin αvβ6: a novel target for CAR T-cell immunotherapy?

    Whilding, Lynsey M; Vallath, Sabari; Maher, John

    2016-04-15

    Immunotherapy of cancer using chimeric antigen receptor (CAR) T-cells is a rapidly expanding field. CARs are fusion molecules that couple the binding of a tumour-associated cell surface target to the delivery of a tailored T-cell activating signal. Re-infusion of such genetically engineered T-cells to patients with haematological disease has demonstrated unprecedented response rates in Phase I clinical trials. However, such successes have not yet been observed using CAR T-cells against solid malignancies and this is, in part, due to a lack of safe tumour-specific targets. The αvβ6 integrin is strongly up-regulated in multiple solid tumours including those derived from colon, lung, breast, cervix, ovaries/fallopian tube, pancreas and head and neck. It is associated with poorer prognosis in several cancers and exerts pro-tumorigenic activities including promotion of tumour growth, migration and invasion. By contrast, physiologic expression of αvβ6 is largely restricted to wound healing. These attributes render this epithelial-specific integrin a highly attractive candidate for targeting using immunotherapeutic strategies such as CAR T-cell adoptive immunotherapy. This mini-review will discuss the role and expression of αvβ6 in cancer, as well as its potential as a therapeutic target. PMID:27068939

  9. Adoptive immunotherapy for cancer: the next generation of gene-engineered immune cells.

    Berry, L J; Moeller, M; Darcy, P K

    2009-10-01

    Adoptive cellular immunotherapy involving transfer of tumor-reactive T cells has shown some notable antitumor responses in a minority of cancer patients. In particular, transfer of tumor-infiltrating lymphocytes has resulted in long-term objective responses in patients with advanced melanoma. However, the inability to isolate sufficient numbers of tumor-specific T cells from most malignancies has restricted the broad utility of this approach. An emerging approach to circumvent this limitation involves the genetic modification of effector cells with T cell receptor (TCR) transgenes or chimeric single-chain variable fragment (scFv) receptors that can specifically redirect T cells to tumor. There has been much progress in the design of TCR and scFv receptors to enhance the antigen-specific activation of effector cells and their trafficking and persistence in vivo. Considerable effort has been directed toward improving the safety of this approach and reducing the immunogenicity of the receptor. This review discusses the latest developments in the field of adoptive immunotherapy using genetically modified immune cells that have been transduced with either TCR or scFv receptor transgenes and used in preclinical and clinical settings as anticancer agents. PMID:19775368

  10. System Specification for Immobilized Low Activity Waste (ILAW) Disposal System

    This specification provides the system level requirements for receiving, transporting, and disposing of the Immobilized Low-Activity Waste (ILAW) canisters generated by the RPP-Waste Treatment Plant. It also identified the requirements for the disposition of failed melters, both High Level and Low-Activity, and Low-Activity samples

  11. Immunotherapy for metastatic colorectal cancer

    Ellebaek, Eva; Andersen, Mads Hald; Svane, Inge Marie;

    2012-01-01

    presents the most interesting strategies investigated so far: cancer vaccination including antigen-defined vaccination and dendritic cell vaccination, chemo-immunotherapy, and adoptive cell transfer. Future treatment options as well as the possibility of combining existing therapies will be discussed along......Although no immunotherapeutic treatment is approved for colorectal cancer (CRC) patients, promising results from clinical trials suggest that several immunotherapeutic strategies may prove efficacious and applicable to this group of patients. This review describes the immunogenicity of CRC and...

  12. Antibody Peptide Based Antifungal Immunotherapy

    Magliani, Walter; Conti, Stefania; Giovati, Laura; Zanello, Pier Paolo; Sperindè, Martina; Ciociola, Tecla; Polonelli, Luciano

    2012-01-01

    Fungal infections still represent relevant human illnesses worldwide and some are accompanied by unacceptably high mortality rates. The limited current availability of effective and safe antifungal agents makes the development of new drugs and approaches of antifungal vaccination/immunotherapy every day more needed. Among them, small antibody(Ab)-derived peptides are arousing great expectations as new potential antifungal agents. In this topic, the search path from the study of the yeast kill...

  13. The immunotherapy of Alzheimer's disease

    Weksler Marc E

    2004-01-01

    Abstract Only a small percentage of patients with Alzheimer's disease benefit from current drug therapy and for only a relatively short time. This is not surprising as the goal of these drugs is to enhance existing cerebral function in Alzheimer patients and not to block the progression of cognitive decline. In contrast, immunotherapy is directed at clearing the neurotoxic amyloid beta peptide from the brain that directly or indirectly leads to cognitive decline in patients with Alzheimer's d...

  14. Quality of Life Improvement with Sublingual Immunotherapy: A Prospective Study of Efficacy

    Mary S. Morris; Amanda Lowery; Theodoropoulos, Demetrios S.; R. Daniel Duquette; Morris, David L

    2012-01-01

    Due to its excellent safety profile, ease of administration, and economic considerations, sublingual immunotherapy (SLIT) is becoming a preferred form of allergen specific immunotherapy. The efficacy of SLIT is still debated. The purpose of this act of practice trial is to evaluate quality of life outcomes in patients treated with SLIT. Fifty one patients with allergic rhinoconjunctivitis demonstrated by skin testing completed the Rhinoconjunctivitis Quality of Life Questionnaire (RQLQ) at in...

  15. Novel immunotherapies in lymphoid malignancies.

    Batlevi, Connie Lee; Matsuki, Eri; Brentjens, Renier J; Younes, Anas

    2016-01-01

    The success of the anti-CD20 monoclonal antibody rituximab in the treatment of lymphoid malignancies provided proof-of-principle for exploiting the immune system therapeutically. Since the FDA approval of rituximab in 1997, several novel strategies that harness the ability of T cells to target cancer cells have emerged. Reflecting on the promising clinical efficacy of these novel immunotherapy approaches, the FDA has recently granted 'breakthrough' designation to three novel treatments with distinct mechanisms. First, chimeric antigen receptor (CAR)-T-cell therapy is promising for the treatment of adult and paediatric relapsed and/or refractory acute lymphoblastic leukaemia (ALL). Second, blinatumomab, a bispecific T-cell engager (BiTE(®)) antibody, is now approved for the treatment of adults with Philadelphia-chromosome-negative relapsed and/or refractory B-precursor ALL. Finally, the monoclonal antibody nivolumab, which targets the PD-1 immune-checkpoint receptor with high affinity, is used for the treatment of Hodgkin lymphoma following treatment failure with autologous-stem-cell transplantation and brentuximab vedotin. Herein, we review the background and development of these three distinct immunotherapy platforms, address the scientific advances in understanding the mechanism of action of each therapy, and assess the current clinical knowledge of their efficacy and safety. We also discuss future strategies to improve these immunotherapies through enhanced engineering, biomarker selection, and mechanism-based combination regimens. PMID:26525683

  16. New modalities of cancer treatment for NSCLC: focus on immunotherapy

    Davies M

    2014-02-01

    Full Text Available Marianne Davies Smilow Cancer Hospital at Yale-New Haven Hospital, New Haven, CT, USA Abstract: Recent advances in the understanding of immunology and antitumor immune responses have led to the development of new immunotherapies, including vaccination approaches and monoclonal antibodies that inhibit immune checkpoint pathways. These strategies have shown activity in melanoma and are now being tested in lung cancer. The antibody drugs targeting cytotoxic T-lymphocyte-associated antigen-4 and programmed cell death protein-1 immune checkpoint pathways work by restoring immune responses against cancer cells, and are associated with unconventional response patterns and immune-related adverse events as a result of their mechanism of action. As these new agents enter the clinic, nurses and other health care providers will require an understanding of the unique efficacy and safety profiles with immunotherapy to optimize potential patient benefits. This paper provides a review of the new immunotherapeutic agents in development for lung cancer, and strategies for managing patients on immunotherapy. Keywords: immunotherapy, lung cancer, vaccination, nivolumab, ipilimumab, nursing

  17. Biologic Therapy (Immunotherapy) for Kidney Cancer

    ... for kidney cancer Targeted therapies for kidney cancer Biologic therapy (immunotherapy) for kidney cancer Chemotherapy for kidney cancer Pain control for kidney cancer Treatment choices by stage for ...

  18. Novel targets for immunotherapy in glomerulonephritis

    Mary H Foster

    2008-09-01

    Full Text Available Mary H FosterDepartment of Medicine and Research Service, Duke University Medical Center and Durham Veterans Affairs Medical Center, Durham, North Carolina, USAAbstract: Glomerulonephritis is a common cause of chronic kidney disease and end stage renal failure. Current therapy relies on variably effective, nonspecific and toxic immunosuppression. Recent insights into underlying biology and disease pathogenesis in human glomerulonephritis combined with advances in the fields of inflammation and autoimmunity promise a cadre of novel targeted interventions. This review highlights the therapeutic potential of two antigens, alpha3 (IVNC1 collagen and podocyte neutral endopeptidase, and two cell signaling and effector molecules, IgG Fc receptors and complement, judged to be particularly amenable to therapeutic manipulation in man. It is anticipated that continued dissection of pathogenesis in the diverse disorders that comprise the glomerulonephritides will provide the basis for individualized disease-specific therapy.Keywords: glomerulonephritis, immunotherapy, Goodpasture syndrome, membranous nephropathy

  19. Immunotherapy for B-cell lymphoma: current status and prospective advances.

    Hollander, Nurit

    2012-01-01

    Therapy for non-Hodgkin's lymphoma has progressed significantly over the last decades. However, the majority of patients remain incurable, and novel therapies are needed. Because immunotherapy ideally offers target selectivity, an ever increasing number of immunotherapies, both passive and active, are undergoing development. The champion of passive immunotherapy to date is the anti-CD20 monoclonal antibody rituximab that revolutionized the standard of care for lymphoma. The great success of rituximab catalyzed the development of new passive immunotherapy strategies that are currently undergoing clinical evaluation. These include improvement of rituximab efficacy, newer generation anti-CD20 antibodies, drug-conjugated and radio labeled anti-CD20 antibodies, monoclonal antibodies targeting non-CD20 lymphoma antigens, and bispecific antibodies. Active immunotherapy aims at inducing long-lasting antitumor immunity, thereby limiting the likelihood of relapse. Current clinical studies of active immunotherapy for lymphoma consist largely of vaccination and immune checkpoint blockade. A variety of protein- and cell-based vaccines are being tested in ongoing clinical studies. Recently completed phase III clinical trials of an idiotype protein vaccine suggest that the vaccine may have clinical activity in a subset of patients. Efforts to enhance the efficacy of active immunotherapy are ongoing with an emphasis on optimization of antigen delivery and presentation of vaccines and modulation of the immune system toward counteracting immunosuppression, using antibodies against immune regulatory checkpoints. This article discusses results of the various immunotherapy approaches applied to date for B-cell lymphoma and the ongoing trials to improve their effect. PMID:22566889

  20. Immunotherapy for B-cell lymphoma: current status and prospective advances

    Nurit eHollander

    2012-01-01

    Full Text Available Therapy for non-Hodgkin's lymphoma has progressed significantly over the last decades. However, the majority of patients remain incurable, and novel therapies are needed. Because immunotherapy ideally offers target selectivity, an ever increasing number of immunotherapies, both passive and active, are undergoing development. The champion of passive immunotherapy to date is the anti-CD20 monoclonal antibody rituximab that revolutionized the standard of care for lymphoma. The great success of rituximab catalyzed the development of new passive immunotherapy strategies that are currently undergoing clinical evaluation. These include improvement of rituximab efficacy, newer generation anti-CD20 antibodies, drug-conjugated and radiolabelled anti-CD20 antibodies, monoclonal antibodies targeting non-CD20 lymphoma antigens, and bispecific antibodies. Active immunotherapy aims at inducing long-lasting antitumor immunity, thereby limiting the likelihood of relapse. Current clinical studies of active immunotherapy for lymphoma consist largely of vaccination and immune checkpoint blockade. A variety of protein- and cell-based vaccines are being tested in ongoing clinical studies. Recently completed phase III clinical trials of an idiotype protein vaccine suggest that the vaccine may have clinical activity in a subset of patients. Efforts to enhance the efficacy of active immunotherapy are ongoing with an emphasis on optimization of antigen delivery and presentation of vaccines and modulation of the immune system toward counteracting immunosuppression, using antibodies against immune regulatory checkpoints. This article discusses results of the various immunotherapy approaches applied to date for B-cell lymphoma and the ongoing trials to improve their effect.

  1. Metallic samples specific activity determination by mathematical modelling

    The problem of specific activity determination of metallic samples containing radionuclides has been generally solved for a subject demanded by Iron and Steel Workes Galati. In order to establish the dependence between specific activity and the counting rate furnished by the counting equipment, the method used consists in mathematical modelling of the sample detector assembly as well as of the pertinent physical processes. The method and obtained results are described. (author)

  2. Mathematical method for pig iron specific activity determination

    An original method for pig iron specific activity determination is presented. The mathematical method described is based on the Monte Carlo procedure and is referred to two practical stiuations determined by whether the nature of radionuclide contaminating the pig iron is known or not. Two methods for pig iron specific activity determination, a global and a spectrometric one, are presented, each of them being used in one of the practical situations mentioned above. (author)

  3. "Evaluation of Six Years Allergen Immunotherapy in Allergic Rhinitis and Allergic Asthma "

    "Reza Farid

    2006-03-01

    Full Text Available Allergen immunotherapy involves the administration of gradually increasing quantities of specific allergens to patients with IgE-mediated conditions until a dose is reached that is effective in reducing disease severity from natural exposure. In the present study we evaluated a period of six years immunotherapy allergic rhinitis and allergic asthma patients with positive skin prick test of common aeroallergen. The immunotherapy was performed on 156 patients. One hundred twenty of the cases were allergic rhinitis (80%, 29 cases had allergic asthma and 7 cases were mixed (4.5%. 70% in allergic rhinitis group, 75% in allergic asthma group and 42.8% in mixed group completely improved. Immunotherapy, an older therapeutic method, has now been updated, and with appropriate indications, precautions and methods, has been clearly shown to be effective in the treatment of allergic rhinitis and in some cases of asthma and insect hypersensitivity.

  4. Advances in Cancer Immunotherapy

    Snook, Adam E.; Waldman, Scott A.

    2013-01-01

    Our immune system is characterized by remarkable specificity, potency and memory – the ability of a single vaccine treatment to provide life-long protection. No pharmacologic treatment for any indication can provide the same level of safety, efficacy and long-lasting effect that a vaccine can. Thus, researchers and clinicians alike have sought to apply these characteristics to the treatment of cancer. Yet, for the last 125 years, the field has failed to realize this potential. Here, we will r...

  5. FAST: towards safe and effective subcutaneous immunotherapy of persistent life-threatening food allergies

    Zuidmeer-Jongejan Laurian

    2012-03-01

    Full Text Available Abstract The FAST project (Food Allergy Specific Immunotherapy aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT, using subcutaneous injections with aqueous food extracts may be effective but has proven to be accompanied by too many anaphylactic side-effects. FAST aims to develop a safe alternative by replacing food extracts with hypoallergenic recombinant major allergens as the active ingredients of SIT. Both severe fish and peach allergy are caused by a single major allergen, parvalbumin (Cyp c 1 and lipid transfer protein (Pru p 3, respectively. Two approaches are being evaluated for achieving hypoallergenicity, i.e. site-directed mutagenesis and chemical modification. The most promising hypoallergens will be produced under GMP conditions. After pre-clinical testing (toxicology testing and efficacy in mouse models, SCIT with alum-absorbed hypoallergens will be evaluated in phase I/IIa and IIb randomized double-blind placebo-controlled (DBPC clinical trials, with the DBPC food challenge as primary read-out. To understand the underlying immune mechanisms in depth serological and cellular immune analyses will be performed, allowing identification of novel biomarkers for monitoring treatment efficacy. FAST aims at improving the quality of life of food allergic patients by providing a safe and effective treatment that will significantly lower their threshold for fish or peach intake, thereby decreasing their anxiety and dependence on rescue medication.

  6. COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC function

    Veltman Joris D

    2010-08-01

    Full Text Available Abstract Background Myeloid-derived suppressor cells (MDSC are a heterogeneous population of immature cells that accumulates in tumour-bearing hosts. These cells are induced by tumour-derived factors (e.g. prostaglandins and have a critical role in immune suppression. MDSC suppress T and NK cell function via increased expression of arginase I and production of reactive oxygen species (ROS and nitric oxide (NO. Immune suppression by MDSC was found to be one of the main factors for immunotherapy insufficiency. Here we investigate if the in vivo immunoregulatory function of MDSC can be reversed by inhibiting prostaglandin synthesis by specific COX-2 inhibition focussing on ROS production by MDSC subtypes. In addition, we determined if dietary celecoxib treatment leads to refinement of immunotherapeutic strategies. Methods MDSC numbers and function were analysed during tumour progression in a murine model for mesothelioma. Mice were inoculated with mesothelioma tumour cells and treated with cyclooxygenase-2 (COX-2 inhibitor celecoxib, either as single agent or in combination with dendritic cell-based immunotherapy. Results We found that large numbers of infiltrating MDSC co-localise with COX-2 expression in those areas where tumour growth takes place. Celecoxib reduced prostaglandin E2 levels in vitro and in vivo. Treatment of tumour-bearing mice with dietary celecoxib prevented the local and systemic expansion of all MDSC subtypes. The function of MDSC was impaired as was noticed by reduced levels of ROS and NO and reversal of T cell tolerance; resulting in refinement of immunotherapy. Conclusions We conclude that celecoxib is a powerful tool to improve dendritic cell-based immunotherapy and is associated with a reduction in the numbers and suppressive function of MDSC. These data suggest that immunotherapy approaches benefit from simultaneously blocking cyclooxygenase-2 activity.

  7. COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC function

    Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature cells that accumulates in tumour-bearing hosts. These cells are induced by tumour-derived factors (e.g. prostaglandins) and have a critical role in immune suppression. MDSC suppress T and NK cell function via increased expression of arginase I and production of reactive oxygen species (ROS) and nitric oxide (NO). Immune suppression by MDSC was found to be one of the main factors for immunotherapy insufficiency. Here we investigate if the in vivo immunoregulatory function of MDSC can be reversed by inhibiting prostaglandin synthesis by specific COX-2 inhibition focussing on ROS production by MDSC subtypes. In addition, we determined if dietary celecoxib treatment leads to refinement of immunotherapeutic strategies. MDSC numbers and function were analysed during tumour progression in a murine model for mesothelioma. Mice were inoculated with mesothelioma tumour cells and treated with cyclooxygenase-2 (COX-2) inhibitor celecoxib, either as single agent or in combination with dendritic cell-based immunotherapy. We found that large numbers of infiltrating MDSC co-localise with COX-2 expression in those areas where tumour growth takes place. Celecoxib reduced prostaglandin E2 levels in vitro and in vivo. Treatment of tumour-bearing mice with dietary celecoxib prevented the local and systemic expansion of all MDSC subtypes. The function of MDSC was impaired as was noticed by reduced levels of ROS and NO and reversal of T cell tolerance; resulting in refinement of immunotherapy. We conclude that celecoxib is a powerful tool to improve dendritic cell-based immunotherapy and is associated with a reduction in the numbers and suppressive function of MDSC. These data suggest that immunotherapy approaches benefit from simultaneously blocking cyclooxygenase-2 activity

  8. UML activity diagrams in requirements specification of logic controllers

    Grobelna, Iwona; Grobelny, Michał

    2015-12-01

    Logic controller specification can be prepared using various techniques. One of them is the wide understandable and user-friendly UML language and its activity diagrams. Using formal methods during the design phase increases the assurance that implemented system meets the project requirements. In the approach we use the model checking technique to formally verify a specification against user-defined behavioral requirements. The properties are usually defined as temporal logic formulas. In the paper we propose to use UML activity diagrams in requirements definition and then to formalize them as temporal logic formulas. As a result, UML activity diagrams can be used both for logic controller specification and for requirements definition, what simplifies the specification and verification process.

  9. Immunotherapy in gastrointestinal cancer: Recent results, current studies and future perspectives.

    Moehler, Markus; Delic, Maike; Goepfert, Katrin; Aust, Daniela; Grabsch, Heike I; Halama, Niels; Heinrich, Bernd; Julie, Catherine; Lordick, Florian; Lutz, Manfred P; Mauer, Murielle; Alsina Maqueda, Maria; Schild, Hansjoerg; Schimanski, Carl C; Wagner, Anna-Dorothea; Roth, Arnaud; Ducreux, Michel

    2016-05-01

    The new therapeutic approach of using immune checkpoint inhibitors as anticancer agents is a landmark innovation. Early studies suggest that immune checkpoint inhibition might also be effective in patients with gastrointestinal cancer. To improve the efficacy of immunotherapy, different strategies are currently under evaluation. This review summarises the discussion during the European Organisation for Research and Treatment of Cancer Gastrointestinal Tract Cancer Translational Research Meeting in Mainz in November 2014 and provides an update on the most recent results of immune therapy in gastrointestinal cancers. Knowledge of potential relationships between tumour cells and their microenvironment including the immune system will be essential in gastrointestinal malignancies. In this context, the density of T cell infiltration within colorectal cancer metastases has been associated with response to chemotherapy, and a high expression of programmed cell death ligand 1 (PD-L1) in advanced gastric cancer has been related with poor prognosis. Effective targets might include neo-antigens encoded from genes carrying tumour-specific somatic mutations. Tailored immunotherapy based on such mutations could enable the effective targeting of an individual patient's tumour with vaccines produced on demand. Other strategies considering checkpoint inhibitors have shown efficacy by targeting cytotoxic T-lymphocyte-associated protein 4 and PD-1 or PD-L1. DNA mismatch repair-deficient tumours appear to be potentially the best candidates for these therapies. Finally, the combination of oncolytic viruses with immunotherapy might boost antitumour activity as well. Further evaluation of these promising immunological therapeutic approaches will require large prospective clinical studies. PMID:27039171

  10. Specific activity 137Cs at fishes of Ukraine current state

    Specific activity of 137Cs at fishes of reservoirs of 30 kilometers ChNPP zone (Pripyat river and its bays, lakes, cool-ing-pond of ChNPP, etc.), water basins of Dneprovsky cascade, Shatsky lakes and Black sea near town Sudak is investigated during 2010 - 2012. Levels of specific activity of 137Cs at fishes in many respects are defined by flowage of the reservoir. Normally, the flowage of the reservoir is more, the levels of specific activity of 137Cs at fishes are less. The greatest specific activity of 137Cs at fishes was registered in the north of Ukraine in closed and half-closed reservoirs of 30 kilometers ChNPP zone - to 32000 Bqk/kg. In the southern direction activity of 137Cs at fishes decreases from 4,8 to 78,5 Bq/kg in Kyiv water basin to 1 - 6 Bq/kg, in the Kahovsky water basin and to 0,6 - 1,9 Bq/kg in the Black sea. In large reservoirs the greatest specific activity of 137Cs, as a rule, is registered in fishes of the higher trophic levels

  11. A2aR antagonists: Next generation checkpoint blockade for cancer immunotherapy

    Robert D. Leone

    2015-01-01

    Full Text Available The last several years have witnessed exciting progress in the development of immunotherapy for the treatment of cancer. This has been due in great part to the development of so-called checkpoint blockade. That is, antibodies that block inhibitory receptors such as CTLA-4 and PD-1 and thus unleash antigen-specific immune responses against tumors. It is clear that tumors evade the immune response by usurping pathways that play a role in negatively regulating normal immune responses. In this regard, adenosine in the immune microenvironment leading to the activation of the A2a receptor has been shown to represent one such negative feedback loop. Indeed, the tumor microenvironment has relatively high concentrations of adenosine. To this end, blocking A2a receptor activation has the potential to markedly enhance anti-tumor immunity in mouse models. This review will present data demonstrating the ability of A2a receptor blockade to enhance tumor vaccines, checkpoint blockade and adoptive T cell therapy. Also, as several recent studies have demonstrated that under certain conditions A2a receptor blockade can enhance tumor progression, we will also explore the complexities of adenosine signaling in the immune response. Despite important nuances to the A2a receptor pathway that require further elucidation, studies to date strongly support the development of A2a receptor antagonists (some of which have already been tested in phase III clinical trials for Parkinson Disease as novel modalities in the immunotherapy armamentarium.

  12. Cancer Immunotherapy: A Review

    Anna Meiliana; Nurrani Mustika Dewi; Andi Wijaya

    2016-01-01

    BACKGROUND: The goals of treating patients with cancer are to cure the disease, prolong survival, and improve quality of life. Immune cells in the tumor microenvironment have an important role in regulating tumor progression. Therefore, stimulating immune reactions to tumors can be an attractive therapeutic and prevention strategy. CONTENT: During immune surveillance, the host provides defense against foreign antigens, while ensuring it limits activation against self antigens. By targetin...

  13. Selective expression and immunogenicity of the cancer/testis antigens SP17, AKAP4 and PTTG1 in non-small cell lung cancer: new candidates for active immunotherapy.

    Chiriva-Internati, Maurizio; Mirandola, Leonardo; Figueroa, Jose A; Yu, Yuefei; Grizzi, Fabio; Kim, Minji; Jenkins, Marjorie; Cobos, Everardo; Jumper, Cynthia; Alalawi, Raed

    2014-05-01

    ABSTRACT BACKGROUND. Lung cancer is the leading cause of cancer deaths in both genders worldwide, with an incidence only second to prostate cancer in men and breast cancer in women. The lethality of the disease highlights the urgent need for innovative therapeutic options. Immunotherapy can afford efficient and specific targeting of tumor cells, improving efficacy and reducing the side effects of current therapies. We have previously reported the aberrant expression of cancer/testis antigens (CTAs) in tumors of unrelated histological origin. In this study we investigated the expression and immunogenicity of the cancer/testis antigens (CTAs) Sperm Protein 17 (SP17), A-kinase anchor protein 4 (AKAP4) and Pituitary Tumor Transforming Gene 1 (PTTG1) in human non-small cell lung cancer (NSCLC) cell lines and primary tumors. METHODS. We used RT-PCR, immunofluorescence, flow cytometry, ELISA and cytotoxicity assays to determine the expression levels and immunogenicity of SP17, AKAP4 and PTTG1 in human NSCLC cell lines and primary tumors. RESULTS. We found that SP17, AKAP4 and PTTG1 are aberrantly expressed in NSCLC cancer cell lines and primary tumor tissues from patients, compared to normal lung cell lines and tissues. We established the immunogenicity of these CTAs by measuring CTA-specific autoantibodies in patients' sera and generating CTA-specific autologous cytotoxic lymphocytes (CTLs) from patients' peripheral blood mononuclear cells (PBMCs). CONCLUSIONS. Our results provide proof of principle that the CTAs SP17/AKAP4/PTTG1 are expressed in both human NSCLC cell lines and primary tumors and can elicit an immunogenic response in NSCLC patients. Based on our findings, further studies are warranted to explore the feasibility of developing CTA-specific immunotherapeutic strategies for NSCLC patients. PMID:24811938

  14. Oral Immunotherapy for Food Allergy.

    Burbank, Allison J; Sood, Puja; Vickery, Brian P; Wood, Robert A

    2016-02-01

    Food allergy is a potentially life-threatening condition with no approved therapies, apart from avoidance and injectable epinephrine for acute allergic reactions. Oral immunotherapy (OIT) is an experimental treatment in which food-allergic patients consume gradually increasing quantities of the food to increase their threshold for allergic reaction. This therapy carries significant risk of allergic reactions. The ability of OIT to desensitize patients to particular foods is well-documented, although the ability to induce tolerance has not been established. This review focuses on recent studies for the treatment of food allergies such as cow's milk, hen's egg, and peanut. PMID:26617227

  15. Identifying multiple tumor-specific epitopes from large-scale screening for overexpressed mRNA

    Buus, Søren; Claesson, Mogens Helweg

    2004-01-01

    The rationale of a T-cell epitope-based approach to cancer treatment is primarily rooted in the hypothesis that CD8(+) cytotoxic T cells (CTLs) can be manipulated to specifically identify and kill cancer cells. A solid understanding of CTL specificity and activation is a fundamental requirement for...... tumor immunotherapy. The means to identify tumor-specific CTL epitopes and to monitor corresponding CTL responses are important enabling technologies. Recent advances in these enabling technologies include their ability to exploit genomic, transcriptomic and proteomic information. These advances...... constitute new opportunities, which will enable approaches to tumor immunotherapy that encompass both human diversity and tumor heterogeneity, increase the efficacy of tumor immunotherapy and potentially provide the opportunity for individualized therapy....

  16. Medical-legal considerations in the practice of allergy: personal reflections on lessons learned from an immunotherapy fatality.

    Hallett, Jeffrey S

    2004-01-01

    Fatalities after administration of specific allergen immunotherapy are rare occurrences in a general allergy practice, as is medical negligence litigation. The author has experienced both and now relates his personal reflections on the lessons that were learned from the experiences. The twelve lessons that are reviewed encompass observations that are relevant not only to immunotherapy litigation but also to any general medical negligence litigation that one might encounter. Three principles of practice that are specific for allergen immunotherapy administration and that were closely scrutinized during the litigation are also reviewed. PMID:15709451

  17. Anti-amyloid-beta to tau-based immunization: developments in immunotherapy for Alzheimer's disease

    Lambracht-Washington D

    2013-08-01

    Full Text Available Doris Lambracht-Washington, Roger N Rosenberg Department of Neurology and Neurotherapeutics, Alzheimer's Disease Center, University of Texas Southwestern Medical Center, Dallas, TX, USA Abstract: Immunotherapy might provide an effective treatment for Alzheimer's disease (AD. A unique feature of AD immunotherapies is that an immune response against a self-antigen needs to be elicited without causing adverse autoimmune reactions. Current research is focused on two possible targets in this regard. One is the inhibition of accumulation and deposition of amyloid beta 1–42 (Aβ42, which is one of the major peptides found in senile plaques, and the second target is hyperphosphorylated tau, which forms neurofibrillary tangles inside the nerve cell and shows association with the progression of dementia. Mouse models have shown that immunotherapy targeting Aβ42 as well as tau with the respective anti-Aβ or anti-tau antibodies can provide significant improvements in these mice. While anti-Aβ immunotherapy (active and passive immunizations is already in several stages of clinical trials, tau-based immunizations have been analyzed only in mouse models. Recently, as a significant correlation of progression of dementia and levels of phosphorylated tau have been found, high interest has again focused on further development of tau-based therapies. While Aβ immunotherapy might delay the onset of AD, immunotherapy targeting tau might provide benefits in later stages of this disease. Last but not least, targeting Aβ and tau simultaneously with immunotherapy might provide additional therapeutic effects, as these two pathologies are likely synergistic; this is an approach that has not been tested yet. In this review, we will summarize animal models used to test possible therapies for AD, some of the facts about Aβ42 and tau biology, and present an overview on halted, ongoing, and upcoming clinical trials together with ongoing preclinical studies targeting tau

  18. Immunotherapy of BALB/c mice bearing Ehrlich ascites tumor with vitamin D-binding protein-derived macrophage activating factor.

    Yamamoto, N; Naraparaju, V R

    1997-06-01

    Vitamin D3-binding protein (DBP; human DBP is known as Gc protein) is the precursor of macrophage activating factor (MAF). Treatment of mouse DBP with immobilized beta-galactosidase or treatment of human Gc protein with immobilized beta-galactosidase and sialidase generated a remarkably potent MAF, termed DBPMAF or GcMAF, respectively. The domain of Gc protein responsible for macrophage activation was cloned and enzymatically converted to the cloned MAF, designated CdMAF. In Ehrlich ascites tumor-bearing mice, tumor-specific serum alpha-N-acetylgalactosaminidase (NaGalase) activity increased linearly with time as the transplanted tumor cells grew in the peritoneal cavity. Therapeutic effects of DBPMAF, GcMAF, and CdMAF on mice bearing Ehrlich ascites tumor were assessed by survival time, the total tumor cell count in the peritoneal cavity, and serum NaGalase activity. Mice that received a single administration of DBPMAF or GcMAF (100 pg/mouse) on the same day after transplantation of tumor (1 x 10(5) cells) showed a mean survival time of 35 +/- 4 days, whereas tumor-bearing controls had a mean survival time of 16 +/- 2 days. When mice received the second DBPMAF or GcMAF administration at day 4, they survived more than 50 days. Mice that received two DBPMAF administrations, at days 4 and 8 after transplantation of 1 x 10(5) tumor cells, survived up to 32 +/- 4 days. At day 4 posttransplantation, the total tumor cell count in the peritoneal cavity was approximately 5 x 10(5) cells. Mice that received two DBPMAF administrations, at days 0 and 4 after transplantation of 5 x 10(5) tumor cells, also survived up to 32 +/- 4 days, while control mice that received the 5 x 10(5) ascites tumor cells only survived for 14 +/- 2 days. Four DBPMAF, GcMAF, or CdMAF administrations to mice transplanted with 5 x 10(5) Ehrlich ascites tumor cells with 4-day intervals showed an extended survival of at least 90 days and an insignificantly low serum NaGalase level between days 30 and 90

  19. Synthesis of high specific activity tritium labelled compounds

    Tritiated methyl iodide of high specific activity is synthetized by Fischer-Tropsch reaction of tritium with carbon monoxide, tritiated methanol obtained is reacted with hydriodic acid. It is used for the synthesis of S-adenosyl L-methionine 3H-methyl and of diazepam 3H-methyl derivatives. Synthesis of 3-PPP3H: (hydroxy-3 phenyl)-3N-n propyl [3H-2.3] piperidine [3H-2.3] with a specific activity of 4.25 T Bq/mM (115 Ci/mM) and of baclofene 3H with a specific activity of 0.925 TBq (25 Ci/mM) are also described

  20. Specific activity measurement of 64Cu: A comparison of methods

    Effective specific activity of 64Cu (amount of radioactivity per µmol metal) is important in order to determine purity of a particular 64Cu lot and to assist in optimization of the purification process. Metal impurities can affect effective specific activity and therefore it is important to have a simple method that can measure trace amounts of metals. This work shows that ion chromatography (IC) yields similar results to ICP mass spectrometry for copper, nickel and iron contaminants in 64Cu production solutions. - Highlights: • Comparison of TETA titration, ICP mass spectrometry, and ion chromatography to measure specific activity. • Validates ion chromatography by using ICP mass spectrometry as the “gold standard”. • Shows different types and amounts of metal impurities present in 64Cu

  1. Big Data Offers Novel Insights for Oncolytic Virus Immunotherapy

    Swift, Stephanie L.; Stojdl, David F

    2016-01-01

    Large-scale assays, such as microarrays, next-generation sequencing and various “omics” technologies, have explored multiple aspects of the immune response following virus infection, often from a public health perspective. Yet a lack of similar data exists for monitoring immune engagement during oncolytic virus immunotherapy (OVIT) in the cancer setting. Tracking immune signatures at the tumour site can create a snapshot or longitudinally analyse immune cell activation, infiltration and funct...

  2. Construction and characterisation of a stably transfected BHK cell line permanently secreting the canine interleukin 12 as a source for adoptive cancer immunotherapy in dogs

    Kocoski, Vladimir

    2008-01-01

    BACKGROUND AND AIM OF THE STUDY: The dog represents the most important tumor patient in the veterinary medicine. Furthermore, the growing knowledge of tumor biology and immunology in dogs increases the interest of this species as a promising model in studies of tumor immunotherapy in human. Concerning the tumor treatment, one of the latest therapeutical approaches is the tumor immunotherapy, especially the adoptive immunotherapy, which is based on in vitro lymphocyte activation by cytokines. ...

  3. Radio-immunotherapy

    Radioimmunotherapy (R.I.T.) is a new modality of targeted therapy in which irradiation from radionuclides is delivered to tumor targets using monoclonal antibodies (MAb) directed to tumor-associated antigen. R.I.T. has been developed for more than 20 years. Today, R.I.T. can be used in clinical practice using non-ablative activity of murine anti-CD20 90Y-ibritumomab tiuxetan (Zevalin) for treatment of patients with relapsed or refractory follicular lymphomas (F.L.), with overall response rate of 70 to 80% and 20 to 30% of complete response. Different approaches are explored to improve efficacy of R.I.T. in N.H.L.: myelo-ablative R.I.T. or HD treatment, R.I.T. as consolidation after chemotherapy to target M.R.D., R.I.T. in first-line treatment, fractionated R.I.T., R.I.T. using other Ag targets. For solid tumors, interesting results have been obtained using anti-CEA R.I.T. delivered as consolidation treatment or using pre-targeting system. (authors)

  4. Engineering approaches to immunotherapy.

    Swartz, Melody A; Hirosue, Sachiko; Hubbell, Jeffrey A

    2012-08-22

    As the science of immunology grows increasingly mechanistic, motivation for developing quantitative, design-based engineering approaches has also evolved, both for therapeutic interventions and for elucidating immunological pathways in human disease. This has seeded the nascent field of "immunoengineering," which seeks to apply engineering analyses and design approaches to problems in translational immunology. For example, cell engineers are creating ways to tailor and use immune cells as living therapeutics; protein engineers are devising new methods of rapid antibody discovery; biomaterials scientists are guiding vaccine delivery and immune-cell activation with novel constructs; and systems immunologists are deciphering the evolution and maintenance of T and B cell receptor repertoires, which could help guide vaccine design. The field is multidisciplinary and collaborative, with engineers and immunologists working together to better understand and treat disease. We discuss the scientific progress in this young, yet rapidly evolving research area, which has yielded numerous start-up companies that are betting on impact in clinical and commercial translation in the near future. PMID:22914624

  5. Effects of surgery, immunization, and laser immunotherapy on a non-immunogenic metastic tumor model

    Chen, Wei R.; Huang, Zheng; Andrienko, Kirill; Stefanov, Stefan; Wolf, Roman F.; Liu, Hong

    2006-08-01

    Traditional local cancer treatment modalities include surgery and radiation, which has the immediate tumor response due to tumor removal or radiation induced cell death. However, such therapeutic approaches usually do not result in eradiation of tumors, particularly when treating metastatic tumors. In fact, local treatment of primary tumors may stimulate the growth and spread of remote metastasis. Commonly used systemic therapies include chemotherapy and immunotherapy, which target the dividing cells or the immune systems. However, in addition to the severe side effects, chemotherapy often suppresses the immune systems, hence lessening the host's ability to fight the disease. Immunotherapy, on the other hand, aims at educating and stimulating immune systems using either general immune enhancements or antigen-oriented specific immune stimulation. However, so far, the traditional immunotherapy has yielded only limited success in treating cancer patients. A different approach is needed. To combine the advantages of both local therapies for acute and targeted treatment responses and the systemic therapies for stimulation of the immune systems, laser immunotherapy was proposed to use selective photothermal therapy as the local treatment modality and the adjuvant-assisted immunotherapy for systemic control. Laser immunotherapy has show positive results in treating metastatic tumors. In this study, we conducted a comparative study using surgery, freeze-thaw immunization and laser immunotherapy in the treatment of metastatic rat mammary tumors. Our results showed that removal of the primary tumors was unsuccessful at changing the course of tumor progression. The tumor cell lysate immunization delayed the emergence of metastases but did not provide immunity against the tumor challenge. Laser immunotherapy, on the other hand, resulted in regression and eradication.

  6. Immunotherapy in children and adolescents with allergic rhinoconjunctivitis: a systematic review.

    Röder, Esther; Berger, Marjolein Y; de Groot, Hans; van Wijk, Roy Gerth

    2008-05-01

    Allergen-specific immunotherapy is one of the cornerstones of allergic rhinoconjunctivitis treatment. Since the development of non-invasive administration forms with better safety profiles, there is an increasing tendency to prescribe immunotherapy in youngsters. However, no overview is available on the efficacy of immunotherapy in all its different administration forms in youngsters. Therefore, we systematically reviewed randomized controlled trials (RCTs) to evaluate the effect of immunotherapy with inhalant allergens on symptoms and medication use in children and adolescents with allergic rhinoconjunctivitis. Medline, EMBASE, the Cochrane Controlled Clinical Trials Register and reference lists of recent reviews and published trials were searched. RCTs including youngsters aged 0-18 yr with allergic rhinoconjunctivitis and comparing immunotherapy with placebo, symptomatic treatment or a different administration form of immunotherapy were included. Primary outcome measures were rhinoconjunctivitis symptom and/or medication scores. Methodological quality was assessed using the validated Delphi list. A method of best evidence synthesis, a rating system with levels of evidence based on the overall quality and the outcome of the trials, was used to assess efficacy. Six subcutaneous (SCIT), four nasal (LNIT), seven oral (OIT) and 11 sublingual (SLIT) immunotherapy trials, comprising 1619 youngsters, were included. Only 39% of the trials were of high methodological quality. For the SCIT and OIT subgroups the level of evidence for efficacy was conflicting. Moderate evidence of effect was found for LNIT. Analysis of the SLIT subgroup showed no evidence of effect. The evidence for the perennial and seasonal allergen trials within the subgroups varied from moderate evidence of effect to no evidence of effect. In conclusion, there is at present insufficient evidence that immunotherapy in any administration form has a positive effect on symptoms and/or medication use in

  7. Novel Antibody-Based Proteins for Cancer Immunotherapy

    Fuenmayor, Jaheli; Montaño, Ramon F., E-mail: jfuenmay@ivic.gob.ve [Laboratorio de Patología Celular y Molecular, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas. Caracas, 1020-A (Venezuela, Bolivarian Republic of)

    2011-08-19

    The relative success of monoclonal antibodies in cancer immunotherapy and the vast manipulation potential of recombinant antibody technology have encouraged the development of novel antibody-based antitumor proteins. Many insightful reagents have been produced, mainly guided by studies on the mechanisms of action associated with complete and durable remissions, results from experimental animal models, and our current knowledge of the human immune system. Strikingly, only a small percent of these new reagents has demonstrated clinical value. Tumor burden, immune evasion, physiological resemblance, and cell plasticity are among the challenges that cancer therapy faces, and a number of antibody-based proteins are already available to deal with many of them. Some of these novel reagents have been shown to specifically increase apoptosis/cell death of tumor cells, recruit and activate immune effectors, and reveal synergistic effects not previously envisioned. In this review, we look into different approaches that have been followed during the past few years to produce these biologics and analyze their relative success, mainly in terms of their clinical performance. The use of antibody-based antitumor proteins, in combination with standard or novel therapies, is showing significant improvements in objective responses, suggesting that these reagents will become important components of the antineoplastic protocols of the future.

  8. Novel Antibody-Based Proteins for Cancer Immunotherapy

    The relative success of monoclonal antibodies in cancer immunotherapy and the vast manipulation potential of recombinant antibody technology have encouraged the development of novel antibody-based antitumor proteins. Many insightful reagents have been produced, mainly guided by studies on the mechanisms of action associated with complete and durable remissions, results from experimental animal models, and our current knowledge of the human immune system. Strikingly, only a small percent of these new reagents has demonstrated clinical value. Tumor burden, immune evasion, physiological resemblance, and cell plasticity are among the challenges that cancer therapy faces, and a number of antibody-based proteins are already available to deal with many of them. Some of these novel reagents have been shown to specifically increase apoptosis/cell death of tumor cells, recruit and activate immune effectors, and reveal synergistic effects not previously envisioned. In this review, we look into different approaches that have been followed during the past few years to produce these biologics and analyze their relative success, mainly in terms of their clinical performance. The use of antibody-based antitumor proteins, in combination with standard or novel therapies, is showing significant improvements in objective responses, suggesting that these reagents will become important components of the antineoplastic protocols of the future

  9. Assays for predicting and monitoring responses to lung cancer immunotherapy

    Immunotherapy has become a key strategy for cancer treatment, and two immune checkpoints, namely, programmed cell death 1 (PD-1) and its ligand (PD-L1), have recently emerged as important targets. The interaction blockade of PD-1 and PD-L1 demonstrated promising activity and antitumor efficacy in early phase clinical trials for advanced solid tumors such as non-small cell lung cancer (NSCLC). Many cell types in multiple tissues express PD-L1 as well as several tumor types, thereby suggesting that the ligand may play important roles in inhibiting immune responses throughout the body. Therefore, PD-L1 is a critical immunomodulating component within the lung microenvironment, but the correlation between PD-L1 expression and prognosis is controversial. More evidence is required to support the use of PD-L1 as a potential predictive biomarker. Clinical trials have measured PD-L1 in tumor tissues by immunohistochemistry (IHC) with different antibodies, but the assessment of PD-L1 is not yet standardized. Some commercial antibodies lack specificity and their reproducibility has not been fully evaluated. Further studies are required to clarify the optimal IHC assay as well as to predict and monitor the immune responses of the PD-1/PD-L1 pathway

  10. T Cell-Tumor Interaction Directs the Development of Immunotherapies in Head and Neck Cancer

    A. E. Albers

    2010-01-01

    Full Text Available The competent immune system controls disease effectively due to induction, function, and regulation of effector lymphocytes. Immunosurveillance is exerted mostly by cytotoxic T-lymphocytes (CTLs while specific immune suppression is associated with tumor malignancy and progression. In squamous cell carcinoma of the head and neck, the presence, activity, but also suppression of tumor-specific CTL have been demonstrated. Functional CTL may exert a selection pressure on the tumor cells that consecutively escape by a combination of molecular and cellular evasion mechanisms. Certain of these mechanisms target antitumor effector cells directly or indirectly by affecting cells that regulate CTL function. This results in the dysfunction or apoptosis of lymphocytes and dysregulated lymphocyte homeostasis. Another important tumor-escape mechanism is to avoid recognition by dysregulation of antigen processing and presentation. Thus, both induction of functional CTL and susceptibility of the tumor and its microenvironment to become T cell targets should be considered in CTL-based immunotherapy.

  11. Chimeric Antigen Receptor-Engineered T Cells for Immunotherapy of Cancer

    Marc Cartellieri

    2010-01-01

    Full Text Available CD4+ and CD8+ T lymphocytes are powerful components of adaptive immunity, which essentially contribute to the elimination of tumors. Due to their cytotoxic capacity, T cells emerged as attractive candidates for specific immunotherapy of cancer. A promising approach is the genetic modification of T cells with chimeric antigen receptors (CARs. First generation CARs consist of a binding moiety specifically recognizing a tumor cell surface antigen and a lymphocyte activating signaling chain. The CAR-mediated recognition induces cytokine production and tumor-directed cytotoxicity of T cells. Second and third generation CARs include signal sequences from various costimulatory molecules resulting in enhanced T-cell persistence and sustained antitumor reaction. Clinical trials revealed that the adoptive transfer of T cells engineered with first generation CARs represents a feasible concept for the induction of clinical responses in some tumor patients. However, further improvement is required, which may be achieved by second or third generation CAR-engrafted T cells.

  12. High efficiency cell-specific targeting of cytokine activity

    Garcin, Geneviève; Paul, Franciane; Staufenbiel, Markus; Bordat, Yann; van der Heyden, José; Wilmes, Stephan; Cartron, Guillaume; Apparailly, Florence; de Koker, Stefaan; Piehler, Jacob; Tavernier, Jan; Uzé, Gilles

    2014-01-01

    Systemic toxicity currently prevents exploiting the huge potential of many cytokines for medical applications. Here we present a novel strategy to engineer immunocytokines with very high targeting efficacies. The method lies in the use of mutants of toxic cytokines that markedly reduce their receptor-binding affinities, and that are thus rendered essentially inactive. Upon fusion to nanobodies specifically binding to marker proteins, activity of these cytokines is selectively restored for cell populations expressing this marker. This ‘activity-by-targeting’ concept was validated for type I interferons and leptin. In the case of interferon, activity can be directed to target cells in vitro and to selected cell populations in mice, with up to 1,000-fold increased specific activity. This targeting strategy holds promise to revitalize the clinical potential of many cytokines.

  13. Intraperitoneal alpha-radioimmunotherapy in mice using different specific activities

    Elgqvist, Jörgen; Andersson, Håkan; Haglund, Elin; Jensen, Holger; Kahu, Helena; Lindegren, Sture; Warnhammar, Elisabet; Hultborn, Ragnar

    2009-01-01

    The aim of this study was to investigate the therapeutic efficacy of the alpha-radioimmunotherapy of ovarian cancer in mice, using different specific activities. This study was performed by using the monoclonal antibody, MX35 F(ab')(2), labeled with the alpha-particle-emitter, 211At....

  14. Epigenetic modifiers in immunotherapy: a focus on checkpoint inhibitors.

    Terranova-Barberio, Manuela; Thomas, Scott; Munster, Pamela N

    2016-06-01

    Immune surveillance should be directed to suppress tumor development and progression, involving a balance of coinhibitory and costimulatory signals that amplify immune response without overwhelming the host. Immunotherapy confers durable clinical benefit in 'immunogenic tumors', whereas in other tumors the responses are modest. Thus, immune checkpoint inhibitors may need to be combined with strategies to boost immune response or increase the tumor immune profile. Epigenetic aberrations contribute significantly to carcinogenesis. Recent findings suggest that epigenetic drugs prime the immune response by increasing expression of tumor-associated antigens and immune-related genes, as well as modulating chemokines and cytokines involved in immune system activation. This review describes our current understanding regarding epigenetic and immunotherapy combination, focusing on immune response priming to checkpoint blockade. PMID:27197539

  15. Immunotherapy of Metastases Enhances Subsequent Chemotherapy

    Hanna, Michael G.; Key, Marc E.

    1982-07-01

    In many multimodal therapies of cancer, postsurgical chemotherapy is administered before immunotherapy for treatment of micrometastatic disease. This sequence may not be the most efficacious. Experiments in which strain 2 guinea pigs bearing syngeneic L10 hepatocarcinomas were given immunotherapy showed that infiltrating immune effector cells not only were tumoricidal but disrupted the characteristically compact structure of metastatic foci. When cytotoxic drugs were administered at the peak of this inflammatory response, the survival rate of the guinea pigs increased significantly. We conclude that postsurgical immunotherapy can enhance the effect of cytotoxic drugs administered subsequently.

  16. Immunotherapy of cancer employing adoptive T cell transfer

    QIAOLI

    2005-01-01

    The current concept of“Adoptive T Cell Immunotherapy of Cancer”is quite different from how it was originally conceived.With the development of modern technology in molecular biology,cell biology,immunology and biochemistry during the last twenty years or so,adoptive immunotherapy has grown from its initial form of a simple“blood cell transfer”into its present process which involves host vauccination,effector cell activation/polarization and genetic modification.With the use of immune adjuvants and the identification/characterization of tumor-reactive T cell subsets,or in combination with other therapeutic strategies,adoptively transferred T cells have become much more potent inmediating tumor regression.In addition,studies on the trafficking of infused T cells,cell transfer performed in lymphopenic models,as well as the discovery of novel techniques in immune monitoring for the generation of effector cells in vitro and after cell transfer in vivo have provided useful tools to further improve the therapeutic efficacy of this approach.This article will review these related aspects of adoptive T cell immunotherapy of cancer with specific comments on certain critical areas in the application of this approach.With the rapidly evolving advances in this area,it is hoped that this cellular immunologic therapy as it was conceptualized in the past,can become more useful in the treatment of human cancer in the near future.

  17. Immunomonitoring in glioma immunotherapy: current status and future perspectives.

    Lamano, Jonathan B; Ampie, Leonel; Choy, Winward; Kesavabhotla, Kartik; DiDomenico, Joseph D; Oyon, Daniel E; Parsa, Andrew T; Bloch, Orin

    2016-03-01

    Given the continued poor clinical outcomes and refractory nature of glioblastoma multiforme to traditional interventions, immunotherapy is gaining traction due to its potential for specific tumor-targeting and long-term antitumor protective surveillance. Currently, development of glioma immunotherapy relies on overall survival as an endpoint in clinical trials. However, the identification of surrogate immunologic biomarkers can accelerate the development of successful immunotherapeutic strategies. Immunomonitoring techniques possess the potential to elucidate immunological mechanisms of antitumor responses, monitor disease progression, evaluate therapeutic effect, identify candidates for immunotherapy, and serve as prognostic markers of clinical outcome. Current immunomonitoring assays assess delayed-type hypersensitivity, T cell proliferation, cytotoxic T-lymphocyte function, cytokine secretion profiles, antibody titers, and lymphocyte phenotypes. Yet, no single immunomonitoring technique can reliably predict outcomes, relegating immunological markers to exploratory endpoints. In response, the most recent immunomonitoring assays are incorporating emerging technologies and novel analysis techniques to approach the goal of identifying a competent immunological biomarker which predicts therapy responsiveness and clinical outcome. This review addresses the current status of immunomonitoring in glioma vaccine clinical trials with emphasis on correlations with clinical response. PMID:26638171

  18. Stage-specific fucosyltransferase activity during mouse spermatogenesis

    This laboratory is involved in the biochemical characterization of developing spermatogenic cells. The authors have measured the in vitro activity of fucosyltransferase (FT) in germ cells. FT activity was assayed with a procedure modified from Letts et al. using GDP-[14C]-fucose and asialofetuin as substrates. After incubation for 15 minutes at 330C, the reaction was stopped by adding cold 500 mM EDTA. Radiolabeled asialofetuin was isolated using Bio-Gel P-10 chromatography. The FT activity of germ cells purified from seminiferous tubules was 18.5 +/- 1.7 pmol/mg protein-min. To see if this activity varied at different stages of development, germ cells were further separated in a STAPUT chamber using a 2-4% BSA gradient. Pachytene spermatocytes or round spermatids were purified to at least 87%. The FT activity in isolated pachytene spermatocytes was 24.4 +/- 1.2 pmol/mg protein-min while the activity in isolated round spermatids was 49.0 +/- 7.2 pmol/mg protein-min. These results suggest that the highest FT activity is in developing spermatogenic cells with round spermatids having nearly twice the FT activity as pachytene spermatocytes. This increase in FT activity may be biologically significant since it occurs at a time when the Golgi apparatus is undergoing differentiation and when stage-specific fucosylated proteins appear

  19. IMUNODIAGNOSTIC AND IMMUNOTHERAPY OF AUTISM

    Vladimir TRAJKOVSKI

    2000-06-01

    Full Text Available Infantile autism is one of the most disabling illnesses of neurological, emotional and intellectual development. The cause of autism remains unknown. However, recent investigations suggest that this disorder shares several features of established autoimmune disorders.The aim of this article is to describe the news of imunodiagnostic and immunotherapy in autism. Interpretation of data is made by conceptual and methodological differences between studies. The autoimmune response is most likely directed against the brain myelin, perhaps secondary to a viral infection. The idea that autism is an autoimmune disorder is further strengthened by the fact that autistic patients respond well to treatment with immune modulating drugs. Immune interventions can produce immune modulation-state of suppression or stimulation. Immune therapy should always be done in consultation with physicians.

  20. Present and future perspectives on immunotherapy for advanced renal cell carcinoma: Going to the core or beating around the bush?

    Hidenori Kawashima

    2015-03-01

    Full Text Available Metastatic lesions of renal cell carcinoma (RCC occasionally regress spontaneously after surgical removal of the primary tumor. Although this is an exceptionally rare occurrence, RCC has thus been postulated to be immunogenic. Immunotherapies, including cytokine therapy, peptide-based vaccines, and immune checkpoint inhibitors have therefore been used to treat patients with advanced, metastatic RCC. We review the history, trends, and recent progress in immunotherapy for advanced RCC and discuss future perspectives, with consideration of our experimental work on galectin 9 and PINCH as promising specific immunotherapy targets. 

  1. DNA-inorganic hybrid nanovaccine for cancer immunotherapy

    Zhu, Guizhi; Liu, Yijing; Yang, Xiangyu; Kim, Young-Hwa; Zhang, Huimin; Jia, Rui; Liao, Hsien-Shun; Jin, Albert; Lin, Jing; Aronova, Maria; Leapman, Richard; Nie, Zhihong; Niu, Gang; Chen, Xiaoyuan

    2016-03-01

    Cancer evolves to evade or compromise the surveillance of the immune system, and cancer immunotherapy aims to harness the immune system in order to inhibit cancer development. Unmethylated CpG dinucleotide-containing oligonucleotides (CpG), a class of potent adjuvants that activate the toll-like receptor 9 (TLR9) located in the endolysosome of many antigen-presenting cells (APCs), are promising for cancer immunotherapy. However, clinical application of synthetic CpG confronts many challenges such as suboptimal delivery into APCs, unfavorable pharmacokinetics caused by limited biostability and short in vivo half-life, and side effects associated with leaking of CpG into the systemic circulation. Here we present DNA-inorganic hybrid nanovaccines (hNVs) for efficient uptake into APCs, prolonged tumor retention, and potent immunostimulation and cancer immunotherapy. hNVs were self-assembled from concatemer CpG analogs and magnesium pyrophosphate (Mg2PPi). Mg2PPi renders hNVs resistant to nuclease degradation and thermal denaturation, both of which are demanding characteristics for effective vaccination and the storage and transportation of vaccines. Fluorophore-labeled hNVs were tracked to be efficiently internalized into the endolysosomes of APCs, where Mg2PPi was dissolved in an acidic environment and thus CpG analogs were exposed to hNVs. Internalized hNVs in APCs led to (1) elevated secretion of proinflammatory factors, and (2) elevated expression of co-stimulatory factors. Compared with molecular CpG, hNVs dramatically prolonged the tissue retention of CpG analogs and reduced splenomegaly, a common side effect of CpG. In a melanoma mouse model, two injections of hNVs significantly inhibited the tumor growth and outperformed the molecular CpG. These results suggest hNVs are promising for cancer immunotherapy.Cancer evolves to evade or compromise the surveillance of the immune system, and cancer immunotherapy aims to harness the immune system in order to inhibit

  2. Grass pollen immunotherapy: where are we now.

    Würtzen, Peter A; Gupta, Shashank; Brand, Stephanie; Andersen, Peter S

    2016-04-01

    During allergen immunotherapy (AIT), the allergic patient is exposed to the disease-inducing antigens (allergens) in order to induce clinical and immunological tolerance and obtain disease modification. Large trials of grass AIT with highly standardized subcutaneous and sublingual tablet vaccines have been conducted to document the clinical effect. Induction of blocking antibodies as well as changes in the balance between T-cell phenotypes, including induction of regulatory T-cell subtypes, have been demonstrated for both treatment types. These observations increase the understanding of the immunological mechanism behind the clinical effect and may make it possible to use the immunological changes as biomarkers of clinical effect. The current review describes the recent mechanistic findings for subcutaneous immunotherapy and sublingual immunotherapy/tablet treatment and discusses how the observed immunological changes translate into a scientific foundation for the observed clinical effects of grass pollen immunotherapy and lead to new treatment strategies for grass AIT. PMID:26973122

  3. Adoptive T cell therapy: Addressing challenges in cancer immunotherapy

    Yee Cassian

    2005-04-01

    Full Text Available Abstract Adoptive T cell therapy involves the ex vivo selection and expansion of effector cells for the treatment of patients with cancer. In this review, the advantages and limitations of using antigen-specific T cells are discussed in counterpoint to vaccine strategies. Although vaccination strategies represent more readily available reagents, adoptive T cell therapy provides highly selected T cells of defined phenotype, specificity and function that may influence their biological behavior in vivo. Adoptive T cell therapy offers not only translational opportunities but also a means to address fundamental issues in the evolving field of cancer immunotherapy.

  4. Chemically sulfated natural galactomannans with specific antiviral and anticoagulant activities.

    Muschin, Tegshi; Budragchaa, Davaanyam; Kanamoto, Taisei; Nakashima, Hideki; Ichiyama, Koji; Yamamoto, Naoki; Shuqin, Han; Yoshida, Takashi

    2016-08-01

    Naturally occurring galactomannans were sulfated to give sulfated galactomannans with degrees of substitution of 0.7-1.4 per sugar unit and molecular weights of M¯n=0.6×10(4)-2.4×10(4). Sulfated galactomannans were found to have specific biological activities in vitro such as anticoagulant, anti-HIV and anti-Dengue virus activities. The biological activities were compared with those of standard dextran and curdlan sulfates, which are polysaccharides with potent antiviral activity and low cytotoxicity. It was found that sulfated galactomannans had moderate to high anticoagulant activity, 13.4-36.6unit/mg, compared to that of dextran and curdlan sulfates, 22.7 and 10.0unit/mg, and high anti-HIV and anti-Dengue virus activities, 0.04-0.8μg/mL and 0.2-1.1μg/mL, compared to those curdlan sulfates, 0.1μg/mL, respectively. The cytotoxicity on MT-4 and LCC-MK2 cells was low. Surface plasmon resonance (SPR) of sulfated galactomannans revealed strong interaction with poly-l-lysine as a model compound of virus proteins, and suggested that the specific biological activities might originate in the electrostatic interaction of negatively charged sulfate groups of sulfated galactomannans and positively charged amino groups of surface proteins of viruses. These results suggest that sulfated galactomannans effectively prevented the infection of cells by viruses and the degree of substitution and molecular weights played important roles in the biological activities. PMID:27154517

  5. Thrombin-specific inactivation of endothelial cell derived plasminogen activator

    Although thrombin (T) has diverse functions in the overall hemostatic mechanism, relatively little is known about its direct effect on components of the fibrinolytic enzyme system. The authors have investigated the interaction of T with plasminogen activators (PA) derived from bovine aortic endothelial cells (EC) in culture (2-5th passage, preconfluent monolayers). Varying concentrations of purified bovine or human thrombin were added to EC-conditioned media (CM). CM + T mixtures were assayed at various times for PA activity using purified plasminogen and a sensitive 125I-fibrinogenolytic or caseinolytic assay. T (5 nM), but not plasmin or trypsin at equivalent concentrations, resulted in a time-dependent inhibition of the PA activity in CM. T had no effect on the PA activity of urokinase, streptokinase or preformed plasmin. The ability of T to inactivate the EC-derived PA was abolished by prior treatment of T with active site-directed reagents. SDS-PAGE and zymography with copolymerized fibrinogen and plasminogen revealed further specificity in that only one of the multiple-molecular weight forms of PA present in EC-CM was inactivated by T. The authors conclude that in a highly specific fashion, T inactivates the predominant PA present in EC-CM by limited proteolysis. Thus, another potentially important function of T is suggested which may have particular significance in the temporal regulation of coagulation and fibrinolysis at the blood-endothelium interface

  6. Is immunotherapy an opportunity for effective treatment of drug addiction?

    Zalewska-Kaszubska, Jadwiga

    2015-11-27

    Immunotherapy has a great potential of becoming a new therapeutic strategy in the treatment of addiction to psychoactive drugs. It may be used to treat addiction but also to prevent neurotoxic complications of drug overdose. In preclinical studies two immunological methods have been tested; active immunization, which relies on the administration of vaccines and passive immunization, which relies on the administration of monoclonal antibodies. Until now researchers have succeeded in developing vaccines and/or antibodies against addiction to heroin, cocaine, methamphetamine, nicotine and phencyclidine. Their effectiveness has been confirmed in preclinical studies. At present, clinical studies are being conducted for vaccines against nicotine and cocaine and also anti-methamphetamine monoclonal antibody. These preclinical and clinical studies suggest that immunotherapy may be useful in the treatment of addiction and drug overdose. However, there are a few problems to be solved. One of them is controlling the level of antibodies due to variability between subjects. But even obtaining a suitable antibody titer does not guarantee the effectiveness of the vaccine. Additionally, there is a risk of intentional or unintentional overdose. As vaccines prevent passing of drugs through the blood/brain barrier and thereby prevent their positive reinforcement, some addicted patients may erroneously seek higher doses of psychoactive substances to get "high". Consequently, vaccination should be targeted at persons who have a strong motivation to free themselves from drug dependency. It seems that immunotherapy may be an opportunity for effective treatment of drug addiction if directed to adequate candidates for treatment. For other addicts, immunotherapy may be a very important element supporting psycho- and pharmacotherapy. PMID:26432911

  7. Sublingual allergen immunotherapy in HIV-positive patients.

    Iemoli, E; Borgonovo, L; Fusi, A; Magni, C; Ricci, E D; Rizzardini, G; Piconi, S

    2016-03-01

    HIV infection is a relative contraindication for allergic immunotherapy (AIT). In the last decade, highly active antiretroviral therapy (HAART) has improved the immune function and life expectancy in HIV-infected patients whose respiratory allergic incidence is similar to the general population. We evaluated the safety and clinical effectiveness of sublingual immunotherapy in a group of grass pollen-allergic HAART-treated HIV-positive patients. Thirteen patients received sublingual immunotherapy (SLIT) tablet (Oralair, Stallergenes©) and symptomatic therapy and were compared with nine patients receiving symptomatic therapy alone. Clinical benefits were evaluated by the analysis of total combined score (TCS), sum of symptom-medication score, and a quality of life (QoL) questionnaire. HIV viral load and peripheral TCD4 lymphocytes were analyzed at the beginning and at the end of the study. Clinical efficacy data showed a significant improvement in SLIT-treated patients compared to controls (TCS: P = 0.0001; QoL: P = 0.03). We did not observe any significant alteration of TCD4 cell counts and viral load (VL) in both groups. Our preliminary data showed that SLIT therapy in viro-immunological controlled HAART treated HIV positive patients was efficacious, safe and well tolerated. PMID:26228482

  8. Novel strategies for ultrahigh specific activity targeted nanoparticles

    Zhou, Dong

    2012-12-13

    We have developed novel strategies optimized for preparing high specific activity radiolabeled nanoparticles, targeting nuclear imaging of low abundance biomarkers. Several compounds have been labeled with F-18 and Cu-64 for radiolabeling of SCK-nanoparticles via Copper(I) catalyzed or copper-free alkyne-azide cyclolization. Novel strategies have been developed to achieve ultrahigh specific activity with administrable amount of dose for human study using copper-free chemistry. Ligands for carbonic anhydrase 12 (CA12), a low abundance extracellular biomarker for the responsiveness of breast cancer to endocrine therapie, have been labeled with F-18 and Cu-64, and one of them has been evaluated in animal models. The results of this project will lead to major improvements in the use of nanoparticles in nuclear imaging and will significantly advance their potential for detecting low abundance biomarkers of medical importance.

  9. Method for preparing high specific activity 177Lu

    Mirzadeh, Saed; Du, Miting; Beets, Arnold L.; Knapp, Jr., Furn F.

    2004-04-06

    A method of separating lutetium from a solution containing Lu and Yb, particularly reactor-produced .sup.177 Lu and .sup.177 Yb, includes the steps of: providing a chromatographic separation apparatus containing LN resin; loading the apparatus with a solution containing Lu and Yb; and eluting the apparatus to chromatographically separate the Lu and the Yb in order to produce high-specific-activity .sup.177 Yb.

  10. Accelerator Production and Separations for High Specific Activity Rhenium-186

    Jurisson, Silvia S. [Univ. of Missouri, Columbia, MO (United States); Wilbur, D. Scott [Univ. of Washington, Seattle, WA (United States)

    2016-04-01

    Tungsten and osmium targets were evaluated for the production of high specific activity rhenium-186. Rhenium-186 has potential applications in radiotherapy for the treatment of a variety of diseases, including targeting with monoclonal antibodies and peptides. Methods were evaluated using tungsten metal, tungsten dioxide, tungsten disulfide and osmium disulfide. Separation of the rhenium-186 produced and recycling of the enriched tungsten-186 and osmium-189 enriched targets were developed.

  11. Effect of mature dendritic cells primed with autologous tumor antigens, patients with epithelial ovarian cancer to stimulate the cytotoxic activity of mononuclear cells in vitro.

    Irina Obleuhova

    2013-01-01

    Along with conservative treatment of epithelial ovarian carcinoma, which has the highest frequency of occurrence of gynecological cancers, specific immunotherapy is a modern and advanced way of treating the disease. Special role in the immunotherapy vaccine therapy is based on dendritic cells (DC). Therefore, the purpose of this study was to assess the effectiveness of the modulation of cytotoxic activity in vitro (in a culture of mononuclear cells) using autologous dendritic cells and tumor ...

  12. Semiallogenic fusions of MSI+ tumor cells and activated B cells induce MSI-specific T cell responses

    Klier Ulrike

    2011-09-01

    Full Text Available Abstract Background Various strategies have been developed to transfer tumor-specific antigens into antigen presenting cells in order to induce cytotoxic T cell responses against tumor cells. One approach uses cellular vaccines based on fusions of autologous antigen presenting cells and allogeneic tumor cells. The fusion cells combine antigenicity of the tumor cell with optimal immunostimulatory capacity of the antigen presenting cells. Microsatellite instability caused by mutational inactivation of DNA mismatch repair genes results in translational frameshifts when affecting coding regions. It has been shown by us and others that these mutant proteins lead to the presentation of immunogenic frameshift peptides that are - in principle - recognized by a multiplicity of effector T cells. Methods We chose microsatellite instability-induced frameshift antigens as ideal to test for induction of tumor specific T cell responses by semiallogenic fusions of microsatellite instable carcinoma cells with CD40-activated B cells. Two fusion clones of HCT116 with activated B cells were selected for stimulation of T cells autologous to the B cell fusion partner. Outgrowing T cells were phenotyped and tested in functional assays. Results The fusion clones expressed frameshift antigens as well as high amounts of MHC and costimulatory molecules. Autologous T cells stimulated with these fusions were predominantly CD4+, activated, and reacted specifically against the fusion clones and also against the tumor cell fusion partner. Interestingly, a response toward 6 frameshift-derived peptides (of 14 tested could be observed. Conclusion Cellular fusions of MSI+ carcinoma cells and activated B cells combine the antigen-presenting capacity of the B cell with the antigenic repertoire of the carcinoma cell. They present frameshift-derived peptides and can induce specific and fully functional T cells recognizing not only fusion cells but also the carcinoma cells. These

  13. Semiallogenic fusions of MSI+ tumor cells and activated B cells induce MSI-specific T cell responses

    Various strategies have been developed to transfer tumor-specific antigens into antigen presenting cells in order to induce cytotoxic T cell responses against tumor cells. One approach uses cellular vaccines based on fusions of autologous antigen presenting cells and allogeneic tumor cells. The fusion cells combine antigenicity of the tumor cell with optimal immunostimulatory capacity of the antigen presenting cells. Microsatellite instability caused by mutational inactivation of DNA mismatch repair genes results in translational frameshifts when affecting coding regions. It has been shown by us and others that these mutant proteins lead to the presentation of immunogenic frameshift peptides that are - in principle - recognized by a multiplicity of effector T cells. We chose microsatellite instability-induced frameshift antigens as ideal to test for induction of tumor specific T cell responses by semiallogenic fusions of microsatellite instable carcinoma cells with CD40-activated B cells. Two fusion clones of HCT116 with activated B cells were selected for stimulation of T cells autologous to the B cell fusion partner. Outgrowing T cells were phenotyped and tested in functional assays. The fusion clones expressed frameshift antigens as well as high amounts of MHC and costimulatory molecules. Autologous T cells stimulated with these fusions were predominantly CD4+, activated, and reacted specifically against the fusion clones and also against the tumor cell fusion partner. Interestingly, a response toward 6 frameshift-derived peptides (of 14 tested) could be observed. Cellular fusions of MSI+ carcinoma cells and activated B cells combine the antigen-presenting capacity of the B cell with the antigenic repertoire of the carcinoma cell. They present frameshift-derived peptides and can induce specific and fully functional T cells recognizing not only fusion cells but also the carcinoma cells. These hybrid cells may have great potential for cellular immunotherapy and

  14. [The reaction of the T-immunity system in patients with malignant skin melanoma and stomach cancer to active nonspecific immunotherapy].

    Glinkina, L S; Bruvere, R Zh

    1992-01-01

    Changes in E-receptor-bearing T-lymphocyte level (total and that of active T-lymphocytes) were studied in peripheral blood and resected material obtained from skin malignant melanoma and gastric cancer patients treated with rigvir, an original immunomodulator of the viral origin. Injection of rigvir into peripheral blood was followed by an increase in active T-lymphocyte level and stimulated their migration into tumor. The latter was determined by stage and rate of tumor advancement. PMID:1300766

  15. 205 Allergy Training and Immunotherapy in Latin America: How Survey-Results Lead to a Regional Overview

    Gomez, R. Maximiliano; Linnemann, Désirée Larenas; Passalacqua, Giovanni; González-Díaz, Sandra; Coce, Victor H.; Canonica, Giorgio Walter; Baena-Cagnani, Carlos E

    2012-01-01

    Background In April 2011 a group of Latin American (LA) allergy experts, leaders in their countries in the area of immunotherapy, met in Cordoba, Argentina, to discuss how allergy and allergen-specific immunotherapy (ASIT) can be improved in the region. The need for a situational sketch was expressed. Methods A questionnaire on allergy training (AT), ASIT, extracts and legislation was sent out to 22 leaders in the field of nine LA countries to obtain an overview of the LA situation. Results R...

  16. Allergen Immunotherapy: Past, Present, and Future.

    Jutel, Marek; Kosowska, Anna; Smolinska, Sylwia

    2016-05-01

    Allergen-specific immunotherapy (AIT), although in clinical use for more than a century, is still the only causal treatment of allergic diseases. The safety and efficacy of AIT has been demonstrated in a large number of clinical trials. In addition to allergy symptom reduction AIT plays an essential role in preventing new allergies and asthma and shows long-term effects after discontinuation of treatment. Ideally, it is capable of curing allergy. However, AIT is not effective in all allergic individuals and is not equally effective in the treatment of various hypersensitivities to different allergens. For many years, the route of administration and the vaccine compositions have been evolving. Still there is a strong need for research in the field of new AIT modalities to increase its effectiveness and safety. Growing evidence on immunological effects of AIT, especially new T cell subsets involved in antigen/allergen tolerance, provides novel concepts for safer and more effective vaccination. Pharmacoeconomic studies have demonstrated a clear advantage of AIT over pharmacologic therapies. PMID:26922928

  17. L1 Cell Adhesion Molecule-Specific Chimeric Antigen Receptor-Redirected Human T Cells Exhibit Specific and Efficient Antitumor Activity against Human Ovarian Cancer in Mice.

    Hao Hong

    Full Text Available New therapeutic modalities are needed for ovarian cancer, the most lethal gynecologic malignancy. Recent clinical trials have demonstrated the impressive therapeutic potential of adoptive therapy using chimeric antigen receptor (CAR-redirected T cells to target hematological cancers, and emerging studies suggest a similar impact may be achieved for solid cancers. We sought determine whether genetically-modified T cells targeting the CE7-epitope of L1-CAM, a cell adhesion molecule aberrantly expressed in several cancers, have promise as an immunotherapy for ovarian cancer, first demonstrating that L1-CAM was highly over-expressed on a panel of ovarian cancer cell lines, primary ovarian tumor tissue specimens, and ascites-derived primary cancer cells. Human central memory derived T cells (TCM were then genetically modified to express an anti-L1-CAM CAR (CE7R, which directed effector function upon tumor antigen stimulation as assessed by in vitro cytokine secretion and cytotoxicity assays. We also found that CE7R+ T cells were able to target primary ovarian cancer cells. Intraperitoneal (i.p. administration of CE7R+ TCM induced a significant regression of i.p. established SK-OV-3 xenograft tumors in mice, inhibited ascites formation, and conferred a significant survival advantage compared with control-treated animals. Taken together, these studies indicate that adoptive transfer of L1-CAM-specific CE7R+ T cells may offer a novel and effective immunotherapy strategy for advanced ovarian cancer.

  18. Production of N-13 labeled compounds with high specific activity

    Suzuki, Kazutoshi; Sasaki, Motoji; Yoshida, Yuichiro; Haradahira, Terushi; Inoue, Osamu [National Inst. of Radiological Sciences, Chiba (Japan)

    1997-03-01

    Nitrogen-13 was produced by irradiating ultra pure water saturated with a pure gas (N2, O2, He, H2) with 18 MeV protons. Ion species generated by irradiation were analyzed with radio ion chromatography systems. An automated equipment was developed to synthesize anhydrous (13N)NH3 as a synthetic precursor and (13N)p-nitrophenyl carbamate ((13N)NPC) as a model compound, using the (13N)NH3. The radiochemical yield and specific activity of (13N)NPC was high enough to carry out the receptor study with PET. (author)

  19. Melanoma immunotherapy dominates the field.

    Diamantopoulos, Panagiotis; Gogas, Helen

    2016-07-01

    The incidence of melanoma is increasing worldwide and despite early detection and intervention, the number of patients dying from metastatic disease continues to rise. The prognosis of advanced melanoma remains poor, with median survival between 6 and 9 months. Over the past 30 years and despite extensive clinical research, the treatment options for metastatic disease were limited and melanoma is still considered as one of the most therapy-resistant malignancies. Single-agent and combination chemotherapy, hormonal therapy, biochemotherapy, immunotherapy, targeted agent therapy and combination regimens failed to show a significant improvement in overall survival (OS). Recent advances and in-depth understanding of the biology of melanoma, have contributed to the development of new agents. Based on the molecular and immunological background of the disease, these new drugs have shown benefit in overall and progression-free survival (PFS). As the picture of the disease begins to change, oncologists need to alter their approach to melanoma treatment and consider disease biology together with targeted individualized treatment. In this review the authors attempt to offer an insight in the present and past melanoma treatment options, with a focus on the recently approved immunotherapeutic agents and the clinical perspectives of these new weapons against metastatic melanoma. PMID:27563656

  20. Immunotherapy in Sarcoma: Future Horizons.

    Burgess, Melissa; Gorantla, Vikram; Weiss, Kurt; Tawbi, Hussein

    2015-11-01

    Immunologic approaches to cancer are over a century old. Over the years, the strategy has been fine-tuned from inciting infections in subjects to inhibiting negative regulatory signals from the innate immune system. Sarcomas are among the first tumors to be considered for immune interventions. From Coley's toxin to cytokine-based therapies to adoptive cell therapy, there have been numerous immunotherapeutic investigations in this patient population. A promising strategy includes adoptive T cell therapy which has been studied in small cohorts of synovial sarcoma, a subtype that is known to widely express the cancer testis antigen, NY-ESO-1. Additionally, recent data in metastatic melanoma and renal cell carcinoma demonstrate the utility and tremendous efficacy of immune checkpoint blockade with increased rates of durable responses compared to standard therapies. Responses in traditionally "non-immunogenic" tumors, such as lung and bladder cancers, provide ample rationale for the study of immune checkpoint inhibitors in sarcoma. While immunotherapy has induced some responses in sarcomas, further research will help clarify optimal patient selection for future clinical trials and new combinatorial immunotherapeutic strategies. PMID:26423769

  1. Immunotherapy in renal cell carcinoma.

    Bukowski, R M

    1999-06-01

    Patients with metastatic renal cell carcinoma continue to present a therapeutic challenge. Current therapeutic approaches involve surgery and various types of immunotherapy. The rationale for this latter form of therapy include the observations of spontaneous tumor regression, the presence of a T-cell-mediated immune response, and the tumor responses observed in patients receiving cytokine therapy. Analysis of prognostic factors in these patients demonstrates that clinical responses occur most frequently in individuals with good performance status. The cytokines interleukin-2 (IL-2, aldesleukin [Proleukin], interferon-alfa (Intron A, Roferon-A), or the combination produce responses in 15% to 20% of patients. Randomized trials suggest that administration of interferon-alfa may result in a modest improvement in median survival. Investigation of the molecular genetics of renal cell carcinoma and the presence of T-lymphocyte immune dysregulation have suggested new therapeutic strategies. Further preclinical and clinical studies investigating inhibitors of angiogenesis or pharmacologic methods to reverse immune dysregulation are ongoing. Therapeutic results in patients with renal cell carcinoma remain limited, and investigational approaches are warranted. PMID:10378218

  2. Towards immunotherapy with redirected T cells in a large animal model: Ex vivo activation, expansion, and genetic modification of canine T cells

    Mata, Melinda; Vera, Juan; Gerken, Claudia; Rooney, Cliona M; Miller, Tasha; Pfent, Catherine; Wang, Lisa L.; Wilson-Robles, Heather M.; Gottschalk, Stephen

    2014-01-01

    Adoptive transfer of T cells expressing chimeric antigen receptors (CARs) has shown promising anti-tumor activity in early phase clinical studies, especially for hematological malignancies. However, most preclinical models do not reliably mimic human disease. We reasoned that developing an adoptive T-cell therapy approach for spontaneous osteosarcoma (OS) occurring in dogs would more closely reproduce the condition in human cancer. To generate CAR-expressing canine T cells we developed expans...

  3. A Method for Specific Activity Measurement of 241Am Solution

    According to the principle of coincidence theory, the specific activity of 241Am solution was determined on 4πα+4πγ counting standard device by γ efficiency extrapolation, and the problems of constant correction coefficients of self-absorption and scattering in α ionization chamber method were solved. The method was based on the alteration of detection efficiency when the height of elevator was altered, and the activity was obtained by γ fitting extrapolation according to detection efficiency. The results of more than 20 alpha radioactive sources by this method in our work are accordant with those of 2πα ionization chamber, and their uncertainties are improved to 0.4%. (authors)

  4. Immunotherapy using algal-produced Ara h 1 core domain suppresses peanut allergy in mice.

    Gregory, James A; Shepley-McTaggart, Ariel; Umpierrez, Michelle; Hurlburt, Barry K; Maleki, Soheila J; Sampson, Hugh A; Mayfield, Stephen P; Berin, M Cecilia

    2016-07-01

    Peanut allergy is an IgE-mediated adverse reaction to a subset of proteins found in peanuts. Immunotherapy aims to desensitize allergic patients through repeated and escalating exposures for several months to years using extracts or flours. The complex mix of proteins and variability between preparations complicates immunotherapy studies. Moreover, peanut immunotherapy is associated with frequent negative side effects and patients are often at risk of allergic reactions once immunotherapy is discontinued. Allergen-specific approaches using recombinant proteins are an attractive alternative because they allow more precise dosing and the opportunity to engineer proteins with improved safety profiles. We tested whether Ara h 1 and Ara h 2, two major peanut allergens, could be produced using chloroplast of the unicellular eukaryotic alga, Chlamydomonas reinhardtii. C. reinhardtii is novel host for producing allergens that is genetically tractable, inexpensive and easy to grow, and is able to produce more complex proteins than bacterial hosts. Compared to the native proteins, algal-produced Ara h 1 core domain and Ara h 2 have a reduced affinity for IgE from peanut-allergic patients. We further found that immunotherapy using algal-produced Ara h 1 core domain confers protection from peanut-induced anaphylaxis in a murine model of peanut allergy. PMID:26801740

  5. Bystander immunotherapy as a strategy to control allergen-driven airway inflammation.

    Navarro, S; Lazzari, A; Kanda, A; Fleury, S; Dombrowicz, D; Glaichenhaus, N; Julia, V

    2015-07-01

    Allergic asthma is a chronic inflammatory disease characterized by airway hyperresponsiveness (AHR), lung infiltration of Th2 cells, and high levels of IgE. To date, allergen-specific immunotherapy (SIT) is the only treatment that effectively alleviates clinical symptoms and has a long-term effect after termination. Unfortunately, SIT is unsuitable for plurisensitized patients, and highly immunogenic allergens cannot be used. To overcome these hurdles, we sought to induce regulatory CD4(+) T cells (Treg) specific to an exogenous antigen that could be later activated as needed in vivo to control allergic responses. We have established an experimental approach in which mice tolerized to ovalbumin (OVA) were sensitized to the Leishmania homolog of receptors for activated c kinase (LACK) antigen, and subsequently challenged with aerosols of LACK alone or LACK and OVA together. Upon OVA administration, AHR and allergic airway responses were strongly reduced. OVA-induced suppression was mediated by CD25(+) Treg, required CTLA-4 and ICOS signaling and resulted in decreased numbers of migrating airway dendritic cells leading to a strong impairment in the proliferation of allergen-specific Th2 cells. Therefore, inducing Treg specific to a therapeutic antigen that could be further activated in vivo may represent a safe and novel curative approach for allergic asthma. PMID:25425267

  6. A novel strategy to improve antigen presentation for active immunotherapy in cancer. Fusion of the human papillomavirus type 16 E7 antigen to a cell penetrating peptide

    Facilitating the delivery of exogenous antigens to antigen-presenting cells, ensuing processing and presentation via the major histocompatibility complex class I and induction of an effective immune response are fundamental for an effective therapeutic cancer vaccine. In this regard, we propose the use of cell-penetrating peptides fused to a tumor antigen. To demonstrate this concept we designed a fusion protein comprising a novel cell-penetrating and immunostimulatory peptide corresponding to residues 32 to 51 of the Limulus anti-lipopolysaccharide factor protein (LALF32-51) linked to human papillomavirus 16 E7 antigen (LALF32-51-E7). In this work, we demonstrated that the immunization with LALF32-51-E7 using the TC-1 mouse model induces a potent and long-lasting anti-tumor response supported on an effective E7-specific CD8+T-cell response. The finding that therapeutic immunization with LALF32-51 or E7 alone, or an admixture of LALF32-51 and E7, does not induce significant tumor reduction indicates that covalent linkage between LALF32-51 and E7 is required for the anti-tumor effect. These results support the use of this novel cell-penetrating peptide as an efficient means for delivering therapeutic targets into cellular compartments with the induction of a cytotoxic CD8+T lymphocyte immune response. This approach is promissory for the treatment of tumors associated with the human papillomavirus 16, which is responsible for the 50% of cervical cancer cases worldwide and other malignancies. Furthermore, protein-based vaccines can circumvent the major histocompatibility complex specificity limitation associated with peptide vaccines providing a greater extent in their application

  7. Current Studies of Immunotherapy on Glioblastoma.

    Agrawal, Neena Stephanie; Miller, Rickey; Lal, Richa; Mahanti, Harshini; Dixon-Mah, Yaenette N; DeCandio, Michele L; Vandergrift, W Alex; Varma, Abhay K; Patel, Sunil J; Banik, Naren L; Lindhorst, Scott M; Giglio, Pierre; Das, Arabinda

    2014-04-01

    Glioblastoma is a form of brain tumor with a very high morbidity and mortality. Despite decades of research, the best treatments currently in clinical practice only extend survival by a number of months. A promising alternative to conventional treatment for glioblastomas is immunotherapy. Although proposed over a century ago, the field of cancer immunotherapy has historically struggled to translate it into effective clinical treatments. Better understanding is needed of the various regulatory and co-stimulatory factors in the glioblastoma patient for more efficient immunotherapy treatments. The tumor microenvironment is anatomically shielded from normal immune-surveillance by the blood-brain barrier, irregular lymphatic drainage system, and it's in a potently immunosuppressive environment. Immunotherapy can potentially manipulate these forces effectively to enhance anti-tumor immune response and clinical benefit. New treatments utilizing the immune system show promise in terms of targeting and efficacy. This review article attempts to discuss current practices in glioblastoma treatment, the theory behind immunotherapy, and current research into various clinical trials. PMID:25346943

  8. Effect of house dust mite immunotherapy on interleukin-10-secreting regulatory T cells in asthmatic children

    WANG Wei; XIANG Li; LIU Yong-ge; WANG Yong-hong; SHEN Kun-ling

    2010-01-01

    Background Subcutaneous specific immunotherapy has been demonstrated to be capable of inducing T-cell regulatory response.Interleukin-10 (IL-10) plays a crucial role in inducing allergen-specific tolerance.However the reports of the changes of IL-10 in house dust mite (HDM)-specific immunotherapy were varied.The aim of this study was to evaluate the function of IL-10-secreting regulatory T cells in asthma children successfully treated with HDM immunotherapy.Methods Peripheral blood mononuclear cells (PBMCs) were isolated from 27 patients following 1.5--2 years of HDM-specific immunotherapy (SIT, SIT group) and from 27 matched treated asthmatic children allergic to HDM (asthmagroup).After 48 hours of in vitro stimulation with HDM extracts, IL-10-secreting regulatory T cells were measured by four colour flow cytometry.Sera were tested for allergen-specific IgG4 and IgE using the Immuno CAP 100 assay.Results PBMCs from children undergoing immunotherapy following HDM extracts stimuli produced significantly more IL-10 compared with the asthma group.The frequency of iTreg cells and aTreg cells increased in SIT group after HDM stimulation, while it was not affected in the asthma group.Among the iTreg cells and aTreg cells, the frequency of CD4+CD25-Foxp3-IL-10+ Treg cells increased the most which was 2 times higher than that in unstimulated cultures in SIT group.The levels of HDM-specific IgG4 of SIT group was significiently higher compared with asthma group, but there was no correlation of the levels of HDM-specific IgG4 and IL-10 secreting Treg cells.Conclusions HDM-specific immunotherapy can successfully upregulate the frequency of IL-10-secreting Treg cells.CD4+CD25-Foxp3-IL-10+ Treg cells may play a key role in inducing the immune tolerance in HDM-specific immunotherapy.

  9. Use of new technology to improve utilization and adherence to immunotherapy.

    Joshi, Smita; Dimov, Ves

    2014-01-01

    Technology and social media have dramatically altered the landscape in which we practice medicine. Clinicians have increasingly turned to technology and the internet to enhance patient care. Allergists have used these modalities to improve utilization and adherence to immunotherapy. Electronic medical records (EMRs) are being widely adopted by allergy practices and some offer allergy/immunology specific modules that aid in daily workflow. The development of specialized devices that reduce pain associated with immunotherapy administration may improve compliance with immunotherapy. Social media and other forms of electronic communication such as e-mail, Facebook, Twitter, short message service (SMS), and YouTube give clinicians multiple avenues to disseminate information and reach their patients, possibly improving patient adherence to therapy. Finally, tablet computers, online networks, and electronic surveys provide additional ways to connect patients and physicians. PMID:25709743

  10. Activities and specificities of homodimeric TALENs in Saccharomyces cerevisiae

    Aouida, Mustapha

    2013-10-01

    The development of highly efficient genome engineering reagents is of paramount importance to launch the next wave of biotechnology. TAL effectors have been developed as an adaptable DNA binding scaffold that can be engineered to bind to any user-defined sequence. Thus, TAL-based DNA binding modules have been used to generate chimeric proteins for a variety of targeted genome modifications across eukaryotic species. For example, TAL effectors fused to the catalytic domain of FokI endonuclease (TALENs) were used to generate site-specific double strand breaks (DSBs), the repair of which can be harnessed to dictate user-desired, genome-editing outcomes. To cleave DNA, FokI endonuclease must dimerize which can be achieved using a pair of TALENs that bind to the DNA targeted in a tail-to-tail orientation with proper spacing allowing the dimer formation. Because TALENs binding to DNA are dependent on their repeat sequences and nucleotides binding specificities, homodimers and heterodimers binding can be formed. In the present study, we used several TALEN monomers with increased repeats binding degeneracy to allow homodimer formation at increased number of genomic loci. We assessed their binding specificities and genome modification activities. Our results indicate that homodimeric TALENs could be used to modify the yeast genome in a site-specific manner and their binding to the promoter regions might modulate the expression of target genes. Taken together, our data indicate that homodimeric TALENs could be used to achieve different engineering possibilities of biotechnological applications and that their transcriptional modulations need to be considered when analyzing their phenotypic effects. © 2013 Springer-Verlag.

  11. Allergen-Specific IgG Antibodies Purified from Mite-Allergic Patients Sera Block the IgE Recognition of Dermatophagoides pteronyssinus Antigens: An In Vitro Study

    Isabella Lima Siman; Lais Martins de Aquino; Leandro Hideki Ynoue; Juliana Silva Miranda; Ana Claudia Arantes Marquez Pajuaba; Jair Pereira Cunha-Júnior; Deise Aparecida de Oliveira Silva; Ernesto Akio Taketomi

    2013-01-01

    One of the purposes of specific immunotherapy (SIT) is to modulate humoral immune response against allergens with significant increases in allergen-specific IgG levels, commonly associated with blocking activity. The present study investigated in vitro blocking activity of allergen-specific IgG antibodies on IgE reactivity to Dermatophagoides pteronyssinus (Dpt) in sera from atopic patients. Dpt-specific IgG antibodies were purified by ammonium sulfate precipitation followed by protein-G affi...

  12. A case of malignant melanoma of the maxilla treated by adoptive immunotherapy after fast neutron therapy

    A 77-year-old male patient with malignant melanoma was treated by fast neutron therapy and immunotherapy. Total dose of fast neutron applied to the primary lesion was 1905 cGy per 21 fractionation for 46 days. For adoptive immunotherapy, lymphocytes were collected from the peripheral blood drawn from the patient 2 days after the injection of cyclophosphamide. T cells were further purified by passing the lymphocytes through nylon wool. Cytotoxic T cells were induced by incubating the T cells mixed with allogeneic malignant melanoma cells and a small number of patient's adherent cells, and activated with recombinant interleukin-2 (γ IL-2). Our patient and the patient from whom stimulating melanoma cells were derived shared A locous 24 and B locous 51 of MHC class I antigens in common. Thus prepared cytotoxic T cells were inoculated to the patient via the maxillary artery, 3 to 4 times a week for one month. Total amount of cells transferred was 5.6 x 108 (97% lymphocytes). Primary lesion reduced markedly by the therapies. During adoptive immunotherapy, increase in natural killer cells and decrease in both suppressor/inducer T-cells and macrophages were observed. However, lung metastases appeared 3 months after adoptive immunotherapy. While the nonspecific immunotherapy (OK-432 injection) was being conducted thereafter, growth of the metastatic lesions of the lung was kept gentle but became obvious after the suspension of the treatment. (author)

  13. Effects of sublingual immunotherapy on allergic inflammation: an update.

    Yacoub, Mona-Rita; Colombo, Giselda; Marcucci, Francesco; Caminati, Marco; Sensi, Laura; Di Cara, Giuseppe; Frati, Franco; Incorvaia, Cristoforo

    2012-08-01

    The most common allergic diseases, and especially the respiratory disorders such as rhinitis and asthma, are closely related to the allergic inflammation elicited by the causative allergen. This makes inflammation the main target of anti-allergic therapies. Among the available treatments, allergen specific immunotherapy (AIT) has a patent effect on allergic inflammation, which persists also after its discontinuation, and is the only therapy able to modify the natural history of allergy. The traditional, subcutaneous route of administration was demonstrated to modify the allergen presentation by dendritic cells (DCs) that in turn correct the phenotype of allergen-specific T cells, switching from the Th2-type response, typical of allergic inflammation and characterized by the production of IL-4, IL-5, IL-13, IL-17, and IL-32 cytokines to a Th1-type response. This immune deviation is related to an increased IFN-gamma and IL-2 production as well as to the anergy of Th2 or to tolerance, the latter being related to the generation of allergen-specific T regulatory (Treg) cells, which produce cytokines such as IL-10 and TGF-beta. Anti-inflammatory mechanisms observed during sublingual AIT with high allergen doses proved to be similar to subcutaneous immunotherapy. Data obtained from biopsies clearly indicate that the pathophysiology of the oral mucosa, with particular importance for mucosal DCs, plays a crucial role in inducing tolerance to the administered allergen. PMID:22506880

  14. Update on benefit of immunotherapy and targeted therapy in melanoma: the changing landscape

    Srivastava N

    2014-06-01

    Full Text Available Neeharika Srivastava, David McDermott Department of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA Abstract: Malignant melanoma is on the rise. There have been recent advances in targeted agents and immunotherapies that have improved the management and treatment of patients with advanced melanoma. This review discusses the clinical efficacy and unique side effects of targeted immunotherapy and the role of predictive biomarkers in better selection of patients who would derive most benefit from specific treatments. Additionally, this review addresses concerns about the best sequencing algorithms for the currently available targeted agents. By thoroughly and extensively researching through PubMed and the American Society of Clinical Oncology, 69 published articles and abstracts were identified as addressing topics related to malignant melanoma and immunotherapy. The research was divided into subcategories discussing cytokine-based therapy, immunotherapy, molecularly targeted agents, other novel targeted agents, and combination regimens for malignant melanoma. New immune checkpoint inhibitors and targeted agents are able to improve immune-mediated regulatory effects against tumors and, specifically in advanced melanoma, are associated with improvement in overall survival. These new agents have distinct side effects that are often controlled and reversed with dose reductions and/or use of corticosteroids. Currently, there are clinical trials underway to assess the role of combination therapy, whereas other trials are focusing on devising algorithms to delineate how best to sequentially administer these drugs. Although there has been tremendous progress in the management of advanced melanoma with immunotherapy and targeted agents, there is still much to be learned about clinically useful predictive biomarkers and combination therapies as well as how to administer these agents safely. Keywords: melanoma, immunotherapy

  15. Bioinformatics for cancer immunotherapy target discovery

    Olsen, Lars Rønn; Campos, Benito; Barnkob, Mike Stein;

    2014-01-01

    cancer immunotherapies has yet to be fulfilled. The insufficient efficacy of existing treatments can be attributed to a number of biological and technical issues. In this review, we detail the current limitations of immunotherapy target selection and design, and review computational methods to streamline......The mechanisms of immune response to cancer have been studied extensively and great effort has been invested into harnessing the therapeutic potential of the immune system. Immunotherapies have seen significant advances in the past 20 years, but the full potential of protective and therapeutic...... and co-targets for single-epitope and multi-epitope strategies. We provide examples of application to the well-known tumor antigen HER2 and suggest bioinformatics methods to ameliorate therapy resistance and ensure efficient and lasting control of tumors....

  16. The number of FceRI receptors on basophils decreases during subcutaneous immunotherapy

    Schmid, J. M.; Dahl, R.; Hoffmann, H. J.

    2015-01-01

    Background: Allergen specific immunotherapy is the only disease modifying treatment of allergic diseases. It induces complex cellular and humoral changes leading to an inhibition of type-1 allergic reactions. Method: Twenty four young grass pollen allergic adults suffering from seasonal rhino-con...

  17. Immunotherapy of murine sarcomas using lymphokine activated killer cells: optimization of the schedule and route of administration of recombinant interleukin-2

    Interleukin-2 (IL-2) at high doses or at low doses in concert with lymphokine-activated killer (LAK) cells can produce regression of established pulmonary and hepatic metastases from a variety of tumors in mice. IL-2 appears to mediate its antitumor effect through the generation of LAK cells in vivo from endogenous lymphocytes and by the stimulation of host and transferred LAK cell proliferation in tissues. In this paper we have investigated different strategies for IL-2 administration to determine which regimen produced maximal in vivo proliferation and optimal immunotherapeutic efficacy of LAK cells. Tissue expansion of lymphoid cells was assessed using an assay of in vivo labeling of dividing cells by the thymidine analogue, 5-[125I]iododeoxyuridine. The therapeutic effect of the different IL-2 administration protocols was determined by evaluating their efficacy in the treatment of established, 3-day pulmonary metastases from sarcomas in mice. The selection of IL-2 injection regimens for evaluation was based upon pharmacokinetic studies of IL-2 in mice. A single i.v. or i.p. dose yielded high peak IL-2 levels that could be measured for only a few hours after injection, while IL-2 given i.p. thrice daily produced titers that were detectable throughout the study periods (greater than or equal to 6 units/ml of serum after 100,000 units of IL-2 i.p. thrice daily). Using the proliferation and therapy models, we tested the same cumulative daily doses of IL-2 administered by i.v. or i.p. once daily, or i.p. thrice daily regimens. The i.p. thrice daily protocol stimulated greater lymphoid cell proliferation in the lungs, for example, than did the other regimens

  18. Assays for predicting and monitoring responses to lung cancer immunotherapy

    Teixidó, Cristina; Karachaliou, Niki; González-Cao, Maria; Morales-Espinosa, Daniela; Rosell, Rafael

    2015-01-01

    Immunotherapy has become a key strategy for cancer treatment, and two immune checkpoints, namely, programmed cell death 1 (PD-1) and its ligand (PD-L1), have recently emerged as important targets. The interaction blockade of PD-1 and PD-L1 demonstrated promising activity and antitumor efficacy in early phase clinical trials for advanced solid tumors such as non-small cell lung cancer (NSCLC). Many cell types in multiple tissues express PD-L1 as well as several tumor types, thereby suggesting ...

  19. Specific activity measurement of radioelement in construction material

    Human beings have always been exposed to radiation from both natural and technological sources. The main components of the construction materials produced from earth and thus they contain radioelement naturally exist. The most important source of external radiation exposure in buildings is caused by the gamma rays emitted from members of the uranium and thorium decay chains and 40K occurring naturally in building materials. The aim of this work is to determine the specific activity concentrations (Bq/kg) of 226Ra, 232Th and 40K in some building materials used for construction purposes in the houses. The measurement has been performed using gamma ray spectrometer with the NaI(Tl) detector.

  20. Allele-specific DNA methylation reinforces PEAR1 enhancer activity.

    Izzi, Benedetta; Pistoni, Mariaelena; Cludts, Katrien; Akkor, Pinar; Lambrechts, Diether; Verfaillie, Catherine; Verhamme, Peter; Freson, Kathleen; Hoylaerts, Marc F

    2016-08-18

    Genetic variation in the PEAR1 locus is linked to platelet reactivity and cardiovascular disease. The major G allele of rs12041331, an intronic cytosine guanine dinucleotide-single-nucleotide polymorphism (CpG-SNP), is associated with higher PEAR1 expression in platelets and endothelial cells than the minor A allele. The molecular mechanism underlying this difference remains elusive. We have characterized the histone modification profiles of the intronic region surrounding rs12041331 and identified H3K4Me1 enhancer-specific enrichment for the region that covers the CpG-SNP. Interestingly, methylation studies revealed that the CpG site is fully methylated in leukocytes of GG carriers. Nuclear protein extracts from megakaryocytes, endothelial cells, vs control HEK-293 cells show a 3-fold higher affinity for the methylated G allele compared with nonmethylated G or A alleles in a gel electrophoretic mobility shift assay. To understand the positive relationship between methylation and gene expression, we studied DNA methylation at 4 different loci of PEAR1 during in vitro megakaryopoiesis. During differentiation, the CpG-SNP remained fully methylated, while we observed rapid methylation increases at the CpG-island overlapping the first 5'-untranslated region exon, paralleling the increased PEAR1 expression. In the same region, A-allele carriers of rs12041331 showed significantly lower DNA methylation at CGI1 compared with GG homozygote. This CpG-island contains binding sites for the methylation-sensitive transcription factor CTCF, whose binding is known to play a role in enhancer activation and/or repression. In conclusion, we report the molecular characterization of the first platelet function-related CpG-SNP, a genetic predisposition that reinforces PEAR1 enhancer activity through allele-specific DNA methylation. PMID:27313330

  1. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies

  2. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    Tucker, Jo A.; Jochems, Caroline [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Gulley, James L. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Schlom, Jeffrey, E-mail: js141c@nih.gov; Tsang, Kwong Y. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2012-12-11

    Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies.

  3. Application-specific architectures of CMOS monolithic active pixel sensors

    Szelezniak, Michal; Besson, Auguste; Claus, Gilles; Colledani, Claude; Degerli, Yavuz; Deptuch, Grzegorz; Deveaux, Michael; Dorokhov, Andrei; Dulinski, Wojciech; Fourches, Nicolas; Goffe, Mathieu; Grandjean, Damien; Guilloux, Fabrice; Heini, Sebastien; Himmi, Abdelkader; Hu, Christine; Jaaskelainen, Kimmo; Li, Yan; Lutz, Pierre; Orsini, Fabienne; Pellicioli, Michel; Shabetai, Alexandre; Valin, Isabelle; Winter, Marc

    2006-11-01

    Several development directions intended to adapt and optimize monolithic active pixel sensors for specific applications are presented in this work. The first example, compatible with the STAR microvertex upgrade, is based on a simple two-transistor pixel circuitry. It is suited for a long integration time, room-temperature operation and minimum power dissipation. In another approach for this application, a specific readout method is proposed, allowing optimization of the integration time independently of the full frame-readout time. The circuit consists of an in-pixel front-end voltage amplifier, with a gain on the order of five, followed by two analog memory cells. The extended version of this scheme, based on the implementation of more memory cells per pixel, is the solution considered for the outer layers of a microvertex detector at the international linear collider. For the two innermost layers, a circuit allowing fast frame scans together with on-line, on-chip data sparsification is proposed. The first results of this prototype demonstrate that the fixed pattern dispersion is reduced below a noise level of 15 e -, allowing the use of a single comparator or a low-resolution ADC per pixel column. A common element for most of the mentioned readout schemes is a low-noise, low power consumption, layout efficient in-pixel amplifier. A review of possible solutions for this element together with some experimental results is presented.

  4. 癌症的免疫治疗和细胞治疗%Immunotherapy and cell therapy for cancer

    Jeremy COPP; 谢伟东; 张朝杰; Jon BERGLIN

    2016-01-01

    最近,癌症免疫治疗作为可行性的新治疗法而得到广泛青睐。免疫治疗主要分为2种类型,即被动免疫治疗和主动免疫治疗。被动免疫治疗包括单克隆抗体和(或)抗体-药物偶联物治疗;主动免疫治疗包括癌症疫苗和嵌合抗原受体T细胞(CAR-T)治疗。癌症疫苗是利用患者自身的细胞作为抗原递呈细胞,识别特异性的肿瘤抗原。CAR-T治疗是利用遗传工程改造的患者的T细胞,通过嵌合抗原受体识别肿瘤抗原。最近一些成功的案例,包括美国FDA批准的癌症免疫疗法,让各大制药公司对癌症免疫治疗研究报以强烈兴趣,如使用抗免疫检查点抑制剂单克隆抗体治疗肿瘤和针对前列腺癌的Provenge癌症疫苗,以及治疗复发或难治性急性淋巴细胞白血病的具有突破性的CAR-T免疫治疗。本综述讨论了目前肿瘤免疫学领域的最新进展以及未来的发展方向。%Cancer immunotherapies are recently gaining attention as viable therapeutic options. There are two types of immunotherapy:passive and active. The passive immunotherapies include several treatments such as monoclonal antibodies,either alone or as antibody-drug conjugates. The active immunotherapies include cancer vaccines which utilize the patient′s own cells as antigen presenting cells and target specific cancer antigens,and chimeric antigen receptor T-cell(CAR-T)therapy which engineers a patient′s T-cells to recognize cancer antigens through chimeric antigen receptors. Recent successes include the US FDA approval of a number of cancer immunotherapies such as treatments utilizing monoclonal antibodies against immune checkpoint inhibitors,the Provenge cancer vaccine that targets prostrate cancer,and a CAR-T against relapsed/refractory acute lymphoblastic leukemia that was designated with breakthrough drug status,all of which has had drug companies investigating cancer immunotherapies with intense

  5. The biochemical aftermath of anti-amyloid immunotherapy

    Nicoll James AR

    2010-10-01

    Full Text Available Abstract Background Active and passive immunotherapy in both amyloid-beta precursor protein (APP transgenic mice and Alzheimer's Disease (AD patients have resulted in remarkable reductions in amyloid plaque accumulation, although the degree of amyloid regression has been highly variable. Nine individuals with a clinical diagnosis of AD dementia were actively immunized with the Aβ peptide 1-42 (AN-1792 and subjected to detailed postmortem biochemical analyses. These patients were compared to 6 non-immunized AD cases and 5 non-demented control (NDC cases. Results All patients were assessed for the presence of AD pathology including amyloid plaques, neurofibrillary tangles and vascular amyloidosis. This effort revealed that two immunotherapy recipients had dementia as a consequence of diseases other than AD. Direct neuropathological examination consistently demonstrated small to extensive areas in which amyloid plaques apparently were disrupted. Characterization of Aβ species remnants by ELISA suggested that total Aβ levels may have been reduced, although because the amounts of Aβ peptides among treated individuals were extremely variable, those data must be regarded as tentative. Chromatographic analysis and Western blots revealed abundant dimeric Aβ peptides. SELDI-TOF mass spectrometry demonstrated a substantive number of Aβ-related peptides, some of them with elongated C-terminal sequences. Pro-inflammatory TNF-α levels were significantly increased in the gray matter of immunized AD cases compared to the NDC and non-immunized AD groups. Conclusions Immunotherapy responses were characterized by extreme variability. Considering the broad range of biological variation that characterizes aging and complicates the recognition of reliable AD biomarkers, such disparities will make the interpretation of outcomes derived from epidemiologic and therapeutic investigations challenging. Although in some cases the apparent removal of amyloid plaques

  6. Subcutaneous Immunotherapy Improves the Symptomatology of Allergic Rhinitis.

    Lourenço, Edmir Américo; Caldeira, Eduardo José; Carvalho, César Alexandre Fabrega; Cunha, Marcelo Rodriques; Carvalho, Marcus Vinícius Henriques; Passos, Saulo Duarte

    2016-01-01

    Introduction The relevance of allergic rhinitis is unquestionable. This condition affects people's quality of life and its incidence has increased over the last years. Objective Thus, this study aims to analyze the effectiveness of subcutaneous injectable immunotherapy in cases of nasal itching, sneeze, rhinorrhea and nasal congestion in allergic rhinitis patients. Methods In the present study, the same researcher analyzed the records of 281 patients. Furthermore, the researchers identified allergens through puncture cutaneous tests using standardized extracts containing acari, fungi, pet hair, flower pollen, and feathers. Then, the patients underwent treatment with subcutaneous specific immunotherapy, using four vaccine vials for desensitization, associated with environmental hygiene. The authors analyzed conditions of nasal itching, sneeze, rhinorrhea, and nasal congestion throughout the treatment, and assigned them with a score ranging from zero (0), meaning absence of these symptoms to three (3), for severe cases. The symptoms were statistically compared in the beginning, during, and after treatment. Results In this study, authors analyzed the cases distribution according to age and the evolution of symptomatology according to the scores, comparing all phases of treatment. The average score for the entire population studied was 2.08 before treatment and 0.44 at the end. These results represent an overall improvement of ∼79% in symptomatology of allergic rhinitis in the studied population. Conclusion The subcutaneous immunotherapy as treatment of allergic rhinitis led to a reduction in all symptoms studied, improving the quality of life of patients, proving itself as an important therapeutic tool for these pathological conditions. PMID:26722338

  7. Sublingual Immunotherapy for Allergic Fungal Sinusitis.

    Melzer, Jonathan M; Driskill, Brent R; Clenney, Timothy L; Gessler, Eric M

    2015-10-01

    Allergic fungal sinusitis (AFS) is a condition that has an allergic basis caused by exposure to fungi in the sinonasal tract leading to chronic inflammation. Despite standard treatment modalities, which typically include surgery and medical management of allergies, patients still have a high rate of recurrence. Subcutaneous immunotherapy (SCIT) has been used as adjuvant treatment for AFS. Evidence exists to support the use of sublingual immunotherapy (SLIT) as a safe and efficacious method of treating allergies, but no studies have assessed the utility of SLIT in the management of allergic fungal sinusitis. A record review of cases of AFS that are currently or previously treated with sublingual immunotherapy from 2007 to 2011 was performed. Parameters of interest included serum IgE levels, changes in symptoms, Lund-McKay scores, decreased sensitization to fungal allergens associated with AFS, and serum IgE levels. Ten patients with diagnosed AFS were treated with SLIT. No adverse effects related to the use of SLIT therapy were identified. Decreases in subjective complaints, exam findings, Lund-McKay scores, and serum IgE levels were observed. Thus, sublingual immunotherapy appears to be a safe adjunct to the management of AFS that may improve patient outcomes. PMID:25902841

  8. Steroids vs immunotherapy for allergic rhinitis

    Aasbjerg, Kristian; Backer, Vibeke

    2014-01-01

    Treatment for seasonal allergic rhinitis induced by airborne allergens can be divided into two major groups: symptom-dampening drugs, such as antihistamines and corticosteroids, and disease-modifying drugs in the form of immunotherapy. It has been speculated that depot-injection corticosteroids g...

  9. Topical immunotherapy with diphenylcyclopropenone-induced vitiligo.

    Kutlubay, Zekayi; Engin, Burhan; Songur, Abdullah; Serdaroglu, Server; Tuzun, Yalcin

    2016-08-01

    Topical immunotherapy made by diphenylcyclopropenone (DPCP) is an alternative treatment that can be used safely and efficaciously in recalcitrant alopecia areata patients. DPCP-induced vitiligo is a rare, but documented, unwanted side effect. The real mechanism of DPCP-induced vitiligo is not well known. PMID:26963903

  10. Can immunotherapy be useful as a “functional cure” for infection with Human Immunodeficiency Virus-1?

    Vanham Guido

    2012-09-01

    Full Text Available Abstract Immunotherapy aims to assist the natural immune system in achieving control over viral infection. Various immunotherapy formats have been evaluated in either therapy-naive or therapy-experienced HIV-infected patients over the last 20 years. These formats included non-antigen specific strategies such as cytokines that stimulate immunity or suppress the viral replication, as well as antibodies that block negative regulatory pathways. A number of HIV-specific therapeutic vaccinations have also been proposed, using in vivo injection of inactivated virus, plasmid DNA encoding HIV antigens, or recombinant viral vectors containing HIV genes. A specific format of therapeutic vaccines consists of ex vivo loading of autologous dendritic cells with one of the above mentioned antigenic formats or mRNA encoding HIV antigens. This review provides an extensive overview of the background and rationale of these different therapeutic attempts and discusses the results of trials in the SIV macaque model and in patients. To date success has been limited, which could be explained by insufficient quality or strength of the induced immune responses, incomplete coverage of HIV variability and/or inappropriate immune activation, with ensuing increased susceptibility of target cells. Future attempts at therapeutic vaccination should ideally be performed under the protection of highly active antiretroviral drugs in patients with a recovered immune system. Risks for immune escape should be limited by a better coverage of the HIV variability, using either conserved or mosaic sequences. Appropriate molecular adjuvants should be included to enhance the quality and strength of the responses, without inducing inappropriate immune activation. Finally, to achieve a long-lasting effect on viral control (i.e. a “functional cure” it is likely that these immune interventions should be combined with anti-latency drugs and/or gene therapy.

  11. Determination of the specific activity of carrier-free 125I preparations by neutron activation analysis

    Heydorn, Kaj

    Chemical methods are unsuitable for the determination of the specific activity of commerical125I preparations because of the unknown chemical state of the iodine in solutions more than a few weeks old.125I and127I were determined in samples from seven different manufacturers by instrumental neutron...

  12. [Psychological aspects of immunotherapies in the treatment of malignant melanoma].

    Kovács, Péter; Pánczél, Gitta; Melegh, Krisztina; Balatoni, Tímea; Pörneczy, Edit; Lõrincz, Lenke; Czirbesz, Kata; Gorka, Eszter; Liszkay, Gabriella

    2016-03-01

    Psychological problems may arise in connection with oncomedical treatments in three ways: 1. acute and/or 2. chronic ways, as well as 3. co-morbid psychiatric diseases that already exist must also be taken into account. Immunotherapies have the most common and also clinically relevant psychological side effects. Fatigue, anhedonia, social isolation, psychomotor slowness is reported during treatment. Anti-CTLA-4 antibody (ipilimumab) immunotherapy can present one of the most modern opportunities for adequate treatment for patients having distant metastasis or unresectable tumour. In relation to immunotherapies, acute psychological side effects (acute stress) emerging during treatments develop in a way that can mostly be linked to environmental factors, e.g. notification of diagnosis, hospitalisation, progression, deterioration in quality of life, imminent dates of control. Crisis is a temporary and threatening condition that endangers psychological balance. In such conditions, enhanced psychological vulnerability must be taken into account and doctors play a key role in the rapid recognition of the condition. Chronic psychological problems, which may arise from the depressogenic effect of the applied treatment or originated from a pre-melanoma psychiatric condition, may exceed the diagnostic and psychotherapeutic competences of a clinical psychologist. Even in case of a well-defined depressogenic biological mechanism such as the activation of the pro-inflammatory cytokine pathway, positive environmental effects can reduce symptoms and thus increase compliance. Side effects can be treated successfully using psychotherapeutic methods and/or psychiatric medicines. The application of routinely used complex psychosocial screening packages can provide the easiest method to identify worsening psychological condition during immunotherapy and give rapid feedback to the oncologist and the patient. Team work is of particular importance in a situation like this as it requires

  13. Is active participation in specific sport activities linked with back pain?

    Mogensen, A.M.; Gausel, AM; Wedderkopp, Niels;

    2007-01-01

    A cross-sectional survey of 439 children/adolescents aged 12-13, living in Odense, Denmark, in the year 2001. To investigate (1) if there is any difference in back pain reporting among those practising specific sports as compared with non-performers and (2) if there is an association between...... specific kinds of sports and self-reported back problems. Back pain is a common complaint in young people and physical inactivity is generally thought to contribute to this. However, some specific sport activities may be detrimental or beneficial to the spine. Information was collected through a semi......-structured interview, a physical examination, and a questionnaire. Associations for back pain, low back pain, mid back pain and neck pain in the preceding month were investigated in relation to specific sports. Associations were controlled for body mass index, puberty stage and sex. There was no association between...

  14. Workshop on immunotherapy combinations. Society for immunotherapy of cancer annual meeting Bethesda, November 3, 2011

    Forero Ivan

    2012-05-01

    Full Text Available Abstract Although recent FDA approvals on ipilimumab and sipuleucel-T represent major milestones, the ultimate success of immunotherapy approaches will likely benefit from appropriate combinations with other immunotherapeutic and/or non-immunotherapeutic approaches. However, implementation of ideal combinations in the clinic may still face formidable challenges in regulatory, drug-availability and intellectual property aspects. The 2011 SITC annual meeting hosted a workshop on combination immunotherapy to discuss: 1 the most promising combinations found in the laboratory; 2 early success of combination immunotherapy in clinical trials; 3 industry perspectives on combination approaches, and 4 relevant regulatory issues. The integrated theme was how to accelerate the implementation of efficacious combined immunotherapies for cancer patients. Rodent animal models are providing many examples of synergistic combinations that typically include more than two agents. However, mouse and human immunology differ in a significant number of mechanisms and hence we might be missing opportunities peculiar to humans. Nonetheless, incisive animal experimentation with deep mechanistic insight remains the best compass that we can use to guide our paths in combinatorial immunotherapy. Combination immunotherapy clinical trials are already in progress and preliminary results are extremely promising. As a key to translate promising combinations into clinic, real and “perceived” business and regulatory hurdles were debated. A formidable step forward would be to be able to test combinations of investigational agents prior to individual approval. Taking together the FDA and the industrial perspective on combinatorial immunotherapy, the audience was left with the clear message that this is by no means an impossible task. The general perception is that the road ahead of us is full of combination clinical trials which hopefully will bring clinical benefit to our cancer

  15. Workshop on immunotherapy combinations. Society for Immunotherapy of Cancer annual meeting Bethesda, November 3, 2011.

    Martinez Forero, Ivan; Okada, Hideho; Topalian, Suzanne L; Gajewski, Thomas F; Korman, Alan J; Melero, Ignacio

    2012-01-01

    Although recent FDA approvals on ipilimumab and sipuleucel-T represent major milestones, the ultimate success of immunotherapy approaches will likely benefit from appropriate combinations with other immunotherapeutic and/or non-immunotherapeutic approaches. However, implementation of ideal combinations in the clinic may still face formidable challenges in regulatory, drug-availability and intellectual property aspects. The 2011 SITC annual meeting hosted a workshop on combination immunotherapy to discuss: 1) the most promising combinations found in the laboratory; 2) early success of combination immunotherapy in clinical trials; 3) industry perspectives on combination approaches, and 4) relevant regulatory issues. The integrated theme was how to accelerate the implementation of efficacious combined immunotherapies for cancer patients. Rodent animal models are providing many examples of synergistic combinations that typically include more than two agents. However, mouse and human immunology differ in a significant number of mechanisms and hence we might be missing opportunities peculiar to humans. Nonetheless, incisive animal experimentation with deep mechanistic insight remains the best compass that we can use to guide our paths in combinatorial immunotherapy. Combination immunotherapy clinical trials are already in progress and preliminary results are extremely promising. As a key to translate promising combinations into clinic, real and "perceived" business and regulatory hurdles were debated. A formidable step forward would be to be able to test combinations of investigational agents prior to individual approval. Taking together the FDA and the industrial perspective on combinatorial immunotherapy, the audience was left with the clear message that this is by no means an impossible task. The general perception is that the road ahead of us is full of combination clinical trials which hopefully will bring clinical benefit to our cancer patients at a fast pace. PMID

  16. HEAT SHOCK PROTEIN gp96 AND CANCER IMMUNOTHERAPY

    岳培彬; 杨树德; 黄常志

    2002-01-01

    Heat shock protein gp96 is a highly conserved and monomorphic glycoprotein in the endoplasmic reticulum.It functions as molecular chaperone and can associate with a variety of antigenic peptides noncovalently in vivo and in vitro. Recent studies have indicated that gp96 molecules participate in major histocompatibility complex class I - restricted antigen presentation pathway. Immunization of mice with gp96 preparations isolated from cancer cells can elicit a cancer - specific protective T cell immune response that is recallable, which is a prerequisite for gp96 as a therapeutic vaccine against cancers. The immunogenicity of gp96 molecules has been attributed to the antigenic peptides associated with them. These phenomena provide a new pathway for cancer immunotherapy. The mechanism that the gp96 -peptide complex induces specific immune response and the explorations for gp96 - peptide complex as a therapeutic cancer vaccine are reviewed.

  17. Nanoparticle Targeting of Neutrophils for Improved Cancer Immunotherapy

    Chu, Dafeng; Zhao, Qi; Yu, Jian; Zhang, Faya; Zhang, Hui; Wang, Zhenjia

    2016-01-01

    Cancer immunotherapy using tumor specific monoclonal antibodies (mAbs) presents a novel approach for cancer treatment. A monoclonal antibody TA99 specific for gp75 antigen of melanoma, initiates neutrophil recruitment in tumor responsible for cancer therapy. Here we report a strategy for hijacking neutrophils in vivo using nanoparticles (NPs) to deliver therapeutics into tumor. In a mouse model of melanoma, we showed that systemically delivered albumin NPs increased in tumor when TA99 antibody was injected; and the nanoparticle tumor accumulation was mediated by neutrophils. After the administration of pyropheophorbide-a (Ppa) loaded albumin NPs and TA99, photodynamic therapy significantly suppressed the tumor growth and increased mouse survival compared with treatment with the NPs or TA99. The study reveals a new avenue to treat cancer by nanoparticle hitchhiking of immune systems to enhance delivery of therapeutics into tumor sites. PMID:26989887

  18. A specific, transmembrane interface regulates fibroblast activation protein (FAP) homodimerization, trafficking and exopeptidase activity.

    Wonganu, Benjamaporn; Berger, Bryan W

    2016-08-01

    Fibroblast activation protein (FAP) is a cell-surface serine protease which promotes invasiveness of certain epithelial cancers and is therefore a potential target for cancer drug development and delivery. Unlike dipeptidyl peptidase IV (DPPIV), FAP exhibits prolyl endopeptidase activity and is active as a homodimer with specificity for type I collagen. The mechanism that regulates FAP homodimerization and its relation to prolyl endopeptidase activity is not completely understood. Here, we investigate key residues in the FAP TM domain that may be significant for FAP homodimerization. Mutations to predicted TM interfacial residues (G10L, S14L, and A18L) comprising a small-X3-small motif reduced FAP TM-CYTO dimerization relative to wild type as measured using the AraTM assay, whereas predicted off-interface residues showed no significant change from wild type. The results implied that the predicted small-X3-small dimer interface affect stabilization of FAP TM-CYTO homodimerization. Compared with FAPwild-type, the interfacial TM residue G10L significantly decreased FAP endopeptidase activity more than 25%, and also reduced cell-surface versus intracellular expression relative to other interfacial residues S14L and A18L. Thus, our results suggest FAP dimerization is important for both trafficking and protease activity, and is dependent on a specific TM interface. PMID:27155568

  19. Sublingual immunotherapy (SLIT)--indications, mechanism, and efficacy: Position paper prepared by the Section of Immunotherapy, Polish Society of Allergy.

    Jutel, Marek; Bartkowiak-Emeryk, Małgorzata; Bręborowicz, Anna; Cichocka-Jarosz, Ewa; Emeryk, Andrzej; Gawlik, Radosław; Gonerko, Paweł; Rogala, Barbara; Nowak-Węgrzyn, Anna; Samoliński, Bolesław

    2016-01-01

    SLIT (sublingual immunotherapy,) induces allergen-specific immune tolerance by sublingual administration of a gradually increasing dose of an allergen. The mechanism of SLIT is comparable to those during SCIT (subcutaneous immunotherapy), with the exception of local oral dendritic cells, pre-programmed to elicit tolerance. In the SLIT dose, to achieve the same efficacy as in SCIT, it should be 50-100 times higher with better safety profile. The highest quality evidence supporting the efficacy of SLIT lasting 1-3 years has been provided by the large scale double-blind, placebo-controlled (DBPC) trials for grass pollen extracts, both in children and adults with allergic rhinitis. Current indications for SLIT are allergic rhinitis (and conjunctivitis) in both children and adults sensitized to pollen allergens (trees, grass, Parietaria), house dust mites (Dermatophagoides pteronyssinus, Dermatophagoides farinae), cat fur, as well as mild to moderate controlled atopic asthma in children sensitized to house dust mites. There are positive findings for both asthma and new sensitization prevention. Severe adverse events, including anaphylaxis, are very rare, and no fatalities have been reported. Local adverse reactions develop in up to 70 - 80% of patients. Risk factors for SLIT adverse events have not been clearly identified. Risk factors of non-adherence to treatment might be dependent on the patient, disease treatment, physician-patient relationship, and variables in the health care system organization. PMID:27012173

  20. Inmunoterapias para las adicciones a las drogas Immunotherapies for Drug Addictions

    Montoya, Iván D.

    2008-01-01

    Immunotherapies in the form of vaccines (active immunization) or monoclonal antibodies (passive immunization) appear safe and a promising treatment approaches for some substance-related disorders. The mechanism of action of the antibody therapy is by preventing the rapid entry of drugs of abuse into the central nervous system. In theory, immunotherapies could have several clinical applications. Monoclonal antibodies may be useful to treat drug overdoses and prevent the neurotoxic effects of drugs by blocking the access of drugs to the brain. Vaccines may help to prevent the development of addiction, initiate drug abstinence in those already addicted to drugs, or prevent drug use relapse by reducing the pharmacological effects and rewarding properties of the drugs of abuse on the brain. Passive immunization with monoclonal antibodies has been investigated for cocaine, methamphetamine, nicotine, and phencyclidine (PCP). Active immunization with vaccines has been studied for cocaine, heroin, methamphetamine, and nicotine. These immunotherapies seem promising therapeutic tools and are at different stages in their development before they can be approved by regulatory agencies for the treatment of substance-related disorders. The purpose of this article is to review the current immunotherapy approaches with emphasis on the risks and benefits for the treatment of these disorders. PMID:18551223

  1. Production of 117mSn with high specific activity

    Complete text of publication follows. Introduction. The production of 117mSn is commonly carried out by the 116Sn(n,γ)117mSn or 117Sn(n,n')117mSn nuclear reaction in nuclear reactor. However this method is unable produce 117mSn in high level of the specific activity, which is the basic requirement for application in nuclear medicine. An alternative way for the production would be the 116Cd(α,3n)117mSn nuclear reaction using a cyclotron. According to the literature the cross section of this reaction is acceptably high, as can be seen in the following picture. The thick target yield is 6MBq/μ Ah and the activities of potential contaminating radioisotopes produced by side reaction are negligible, if the energy of the irradiating beam will be chosen precisely. The natural abundance of 116Cd is 7,5%, it means that the price of the enriched material is reasonable. A potential cyclotron facility with α-beam was found at JINR, Dubna, Russia where the radiochemical background also exist. This cyclotron facility is able to do routine irradiation with the necessary energy range (38-25 MeV) and beam intensity (at least 50 μA). Experimental. The Cd-target was prepared as follows: the Cd-metal (22 mg) was dissolved in concentrated nitric acid and then evaporated to dryness producing Cd(NO3)2 salt. The Cd(NO3)2 salt was then re-dissolved in water, followed by the addition of a spatula tip of sugar and a few drops of methanol. The sugar allowed for adhesion of the salt to the target plate, and the methanol facilitated even wetting and hence homogeneous application of the Cd to the target surface. The target holder/plate comprised of a block of aluminium metal.The cadmium salt was then applied to the target holder painted across the surface. Results and discussion. After irradiation the Cd-target material and the 117mSn product was stripped from the aluminium backing by washing with concentrated nitric acid. The solution was slightly evaporated, after that the salt was

  2. The current role of sublingual immunotherapy in the treatment of allergic rhinitis in adults and children

    Simonetta Masieri

    2011-02-01

    Full Text Available Cristoforo Incorvaia1, Simonetta Masieri2, Silvia Scurati3, Silvia Soffia3, Paola Puccinelli3, Franco Frati31Allergy/Pulmonary rehabilitation, Istituti Clinici di Perfezionamento, Milan, Italy; 2ENT Clinic, University La Sapienza, Rome, Italy; 3Medical and Scientific Department, Stallergenes, Milan, ItalyAbstract: Allergic rhinitis is a very common disease affecting about 20% of people. It may be treated by allergen avoidance when possible, by antiallergic drugs such as antihistamines and topical corticosteroids, and by allergen-specific immunotherapy. The latter is the only treatment able to act on the causes and not only on the symptoms of respiratory allergy and is able to maintain its efficacy even after stopping, provided an adequate duration of treatment of 3–5 years is ensured. Sublingual immunotherapy (SLIT was introduced in the 1990s as a possible solution to the problem of adverse systemic reactions to subcutaneous immunotherapy and has been demonstrated by more than 50 trials and globally evaluated thus far by five meta-analyses as an effective and safe treatment for allergic rhinitis. Life-threatening reactions are extremely rare. However, it is important to note that clinical efficacy occurs only if SLIT meets its needs, ie, sufficiently high doses are regularly administered for at least 3 consecutive years. This is often overlooked in the current practice and may prevent the same success reported by trials from being achieved.Keywords: allergic rhinitis, sublingual immunotherapy, efficacy, safety, compliance, meta-analysis 

  3. Combined Treatment Effects of Radiation and Immunotherapy: Studies in an Autochthonous Prostate Cancer Model

    Wada, Satoshi [Department of Oncology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Harris, Timothy J.; Tryggestad, Erik [Department of Radiation Oncology and Molecular Radiation Sciences, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Yoshimura, Kiyoshi [Department of Oncology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Zeng, Jing [Department of Radiation Oncology and Molecular Radiation Sciences, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Yen, Hung-Rong; Getnet, Derese; Grosso, Joseph F.; Bruno, Tullia C. [Department of Oncology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); De Marzo, Angelo M. [Department of Pathology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); and others

    2013-11-15

    Purpose: To optimize the combination of ionizing radiation and cellular immunotherapy using a preclinical autochthonous model of prostate cancer. Methods and Materials: Transgenic mice expressing a model antigen under a prostate-specific promoter were treated using a platform that integrates cone-beam CT imaging with 3-dimensional conformal therapy. Using this technology we investigated the immunologic and therapeutic effects of combining ionizing radiation with granulocyte/macrophage colony-stimulating factor-secreting cellular immunotherapy for prostate cancer in mice bearing autochthonous prostate tumors. Results: The combination of ionizing radiation and immunotherapy resulted in a significant decrease in pathologic tumor grade and gross tumor bulk that was not evident with either single-modality therapy. Furthermore, combinatorial therapy resulted in improved overall survival in a preventive metastasis model and in the setting of established micrometastases. Mechanistically, combined therapy resulted in an increase of the ratio of effector-to-regulatory T cells for both CD4 and CD8 tumor-infiltrating lymphocytes. Conclusions: Our preclinical model establishes a potential role for the use of combined radiation-immunotherapy in locally advanced prostate cancer, which warrants further exploration in a clinical setting.

  4. Specifications

    As part of the Danish RERTR Program, three fuel elements with LEU U3O8-Al fuel and three fuel elements with LEU U3Si2-Al fuel were manufactured by NUKEM for irradiation testing in the DR-3 reactor at the Risoe National Laboratory in Denmark. The specifications for the elements with U3O8-Al fuel are presented here as an illustration only. Specifications for the elements with U3Si2-Al fuel were very similar. In this example, materials, material numbers, documents numbers, and drawing numbers specific to a single fabricator have been deleted. (author)

  5. Regulation of platelet activating factor receptor coupled phosphoinositide-specific phospholipase C activity

    Morrison, W.J.

    1988-01-01

    The major objectives of this study were two-fold. The first was to establish whether binding of platelet activating factor (PAF) to its receptor was integral to the stimulation of polyphosphoinositide-specific phospholipase C (PLC) in rabbit platelets. The second was to determine regulatory features of this receptor-coupled mechanism. ({sup 3}H)PAF binding demonstrated two binding sites, a high affinity site with a inhibitory constant (Ki) of 2.65 nM and a low affinity site with a Ki of 0.80 {mu}M. PAF receptor coupled activation of phosphoinositide-specific PLC was studied in platelets which were made refractory, by short term pretreatments, to either PAF or thrombin. Saponin-permeabilized rabbit platelets continue to regulate the mechanism(s) coupling PAF receptors to PLC stimulation. However, TRP{gamma}S and GDP{beta}S, which affect guanine nucleotide regulatory protein functions, were unable to modulate the PLC activity to any appreciable extent as compared to PAF. The possible involvement of protein kinase C (PKC) activation in regulating PAF-stimulated PLC activity was studied in rabbit platelets pretreated with staurosporine followed by pretreatments with PAF or phorbol 12-myristate 13-acetate (PMA).

  6. Advances of Immunotherapy in Small Cell Lung Cancer

    Jingjing LIU

    2014-06-01

    Full Text Available Small cell lung cancer (SCLC is complex heterogeneous due to unclear biological characteristics in terms of cell origin, pathogenesis and driver genes etc. Diagnosis and treatment of SCLC has been slowly improved and few breakthroughs have been discovered up to now. Therefore new strategies are urgently needed to improve the efficacy of SCLC treatment. Tumor immunotherapy has potential to restore and trigger the immune system to recognize and eliminate tumor cells, notably it has only minimal adverse impact on normal tissue. Cancer vaccine, adoptive immunotherapy, cytokines and checkpoint inhibitors have now been launched for clinical treatment of SCLC. Ipilimumab is the most promising medicine of immunotherapy. Immunotherapy is expected to bring new vision to the treatment of SCLC. And further researches are needed on such problems affecting efficacy of immunotherapy as the heterogeneity of SCLC, the uncertainty of target for immunotherapy, the immune tolerance, etc.

  7. Specific Energy Characteristics of Nanoporous Carbon Activated by Orthophosphoric Acid

    B.I. Rachiy

    2015-12-01

    Full Text Available This paper investigated the effect of the amount of phosphoric acid on the structure nanoporous carbon materials (NCM obtained from raw materials of plant origin. The results voltammetry defined specific capacitance characteristics of NCM and conditions its synthesis with optimal energy parameters established. It is shown that reducing the number of lignin-cellulose materials in precursor volume due to carbonization leads to a decline in specific capacity of NCM approximately 6-20 %.

  8. Sensitivity and Specificity of Hypnosis Effects on Gastric Myoelectrical Activity

    Paul Enck; Jochen Hefner; Herbert, Beate M.; Nazar Mazurak; Katja Weimer; Muth, Eric R.; Stephan Zipfel; Ute Martens

    2016-01-01

    Objectives: The effects of hypnosis on physiological (gastrointestinal) functions are incompletely understood, and it is unknown whether they are hypnosis-specific and gut-specific, or simply unspecific effects of relaxation. Design: Sixty-two healthy female volunteers were randomly assigned to either a single session of hypnotic suggestion of ingesting an appetizing meal and an unappetizing meal, or to relax and concentrate on having an appetizing or unappetizing meal, while the electrog...

  9. Coinhibitory Pathways in Immunotherapy for Cancer.

    Baumeister, Susanne H; Freeman, Gordon J; Dranoff, Glenn; Sharpe, Arlene H

    2016-05-20

    The immune system is capable of recognizing tumors and eliminates many early malignant cells. However, tumors evolve to evade immune attack, and the tumor microenvironment is immunosuppressive. Immune responses are regulated by a number of immunological checkpoints that promote protective immunity and maintain tolerance. T cell coinhibitory pathways restrict the strength and duration of immune responses, thereby limiting immune-mediated tissue damage, controlling resolution of inflammation, and maintaining tolerance to prevent autoimmunity. Tumors exploit these coinhibitory pathways to evade immune eradication. Blockade of the PD-1 and CTLA-4 checkpoints is proving to be an effective and durable cancer immunotherapy in a subset of patients with a variety of tumor types, and additional combinations are further improving response rates. In this review we discuss the immunoregulatory functions of coinhibitory pathways and their translation to effective immunotherapies for cancer. PMID:26927206

  10. ATMPs for Cancer Immunotherapy: A Regulatory Overview.

    Galli, Maria Cristina

    2016-01-01

    This chapter discusses European regulatory requirements for development of advanced therapy medicinal products (ATMP) for cancer immunotherapy approaches, describing the framework for clinical trials and for marketing authorization.Regulatory critical issues and challenges for developing ATMP are also discussed, with focus on potency determination, long-term follow-up, comparability, and insertional mutagenesis issues. Some of the most critical features of GMP application to ATMP are also described. PMID:27033211

  11. Local immunotherapy in experimental murine lung inflammation

    sprotocols

    2015-01-01

    Authors: Caroline Uebel, Sonja Koch, Anja Maier, Nina Sopel, Anna Graser, Stephanie Mousset & Susetta Finotto ### Abstract Innovative local immunotherapy for severe lung diseases such as asthma, chronic obstructive pulmonary disease or lung cancer requires a successful delivery to access the desired cellular target in the lung. An important route is the direct instillation into the airways in contrast to delivery through the digestive tract. This protocol details a method to deliv...

  12. Adoptive immunotherapy for cancer: building on success

    Gattinoni, Luca; Powell, Daniel J.; Rosenberg, Steven A.; Restifo, Nicholas P

    2006-01-01

    Adoptive cell transfer after host preconditioning by lymphodepletion represents an important advance in cancer immunotherapy. Here, we describe how a lymphopaenic environment enables tumour-reactive T cells to destroy large burdens of metastatic tumour and how the state of differentiation of the adoptively transferred T cells can affect the outcome of treatment. We also discuss how the translation of these new findings might further improve the efficacy of adoptive cell transfer through the u...

  13. Multivalent glycomimetics in experimental anticancer immunotherapy

    Vannucci, Luca; Pospíšil, Miloslav; Krist, Pavel; Křen, Vladimír; Huliková, Katarína; Luptovcová, Martina; Svoboda, Jan; Kuldová, Markéta; Bezouška, Karel; Rossmann, Pavel; Difato, Francesco; Mosca, F.; Fišerová, Anna

    Praha : Blackwell Publishing, 2006, s. 51-51. [Annual Meeting of the European Society for Clinical Investigation /40./. Prague (CZ), 15.03.2006-18.03.2006] R&D Projects: GA ČR GA524/04/0102; GA AV ČR IAA500200509 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z50110509 Keywords : immunotherapy * lectin-like receptors Subject RIV: EE - Microbiology, Virology

  14. Molecular biomarkers for grass pollen immunotherapy

    Popescu, Florin-Dan

    2014-01-01

    Grass pollen allergy represents a significant cause of allergic morbidity worldwide. Component-resolved diagnosis biomarkers are increasingly used in allergy practice in order to evaluate the sensitization to grass pollen allergens, allowing the clinician to confirm genuine sensitization to the corresponding allergen plant sources and supporting an accurate prescription of allergy immunotherapy (AIT), an important approach in many regions of the world with great plant biodiversity and/or wher...

  15. Immunotherapy: A useful strategy to help combat multidrug resistance

    Curiel, Tyler J.

    2012-01-01

    Multidrug resistance (MDR) renders cancer cells relatively invulnerable to treatment with many standard cytotoxic anti-cancer agents. Cancer immunotherapy could be an important adjunct other strategies to treat MDR positive cancers, as resistance to immunotherapy generally is unrelated to mechanisms of resistance to cytotoxic agents. Immunotherapy to combat MDR positive tumors could use any of the following strategies: direct immune attack against MDR positive cells, using MDR as an immune ta...

  16. Review on Immunotherapies for Lung Cancer

    Sha JIN

    2012-10-01

    Full Text Available Lung cancer is a highly malignant disease with poor prognosis, most cases are diagnosed at a very late stage. More effective medications or therapies should be developed to improve its prognosis. The advancement of tumor immunity and tumor immunosuppression facilitated the feasibility of immunotherapies for lung cancer. Ipilimumab, antibody to Programmed death-1 (PD-1, Toll-like receptor agonists, liposomal BLP25 (L- BLP25, belagenpumatucel-L, melanoma-associated antigen A3 (MAGE-A3 vaccine and talactoferrin have been proved to be effective for lung cancer through early clinical trials, most of the drugs have moved forward to phase III trials, so as to collect much higher level evidence to support the immunotherapies incorporated into the multidisciplinary treatment of lung cancer. The selection of target patients at appropriate stages, breaking down of tumor immunosuppression as well as the objective measurement of tumor response to the therapy are major challenges for the development of immunotherapies for lung cancer. The clarifying of the mechanism of immune escape led to the above drug development, and immune-senescence has already become the hotspot in this field.

  17. Dendritic cell-tumor cell hybrids and immunotherapy

    Cathelin, Dominique; Nicolas, Alexandra; Bouchot, André;

    2011-01-01

    Dendritic cells (DC) are professional antigen-presenting cells currently being used as a cellular adjuvant in cancer immunotherapy strategies. Unfortunately, DC-based vaccines have not demonstrated spectacular clinical results. DC loading with tumor antigens and DC differentiation and activation...... still require optimization. An alternative technique for providing antigens to DC consists of the direct fusion of dendritic cells with tumor cells. These resulting hybrid cells may express both major histocompatibility complex (MHC) class I and II molecules associated with tumor antigens and the...... appropriate co-stimulatory molecules required for T-cell activation. Initially tested in animal models, this approach has now been evaluated in clinical trials, although with limited success. We summarize and discuss the results from the animal studies and first clinical trials. We also present a new approach...

  18. Activity Specific Knowledge Characteristics in the Internationalization Process

    Søberg, Peder Veng

    2012-01-01

    characteristics of the knowledge, which is most important for the internationalization in emerging markets within multinational corporations (MNCs). The most important knowledge for the internationalization of R&D activities is more tacit than it is for manufacturing activities and international purchasing...... developed that illustrates differences between the most important knowledge for the internationalization of key business activities within MNCs. It is proposed that the technical dimension of tacit knowledge is more easily codified than the cognitive dimension of tacit knowledge. The cognitive dimension of...... local tacit knowledge is crucial for the internationalization of marketing activities, whereas the technical dimension of tacit R&D knowledge from the home base is crucial for the internationalization of R&D activities....

  19. Clinical and laboratory 2-year outcome of oral immunotherapy in patients with cow's milk allergy.

    Elizur, A; Appel, M Y; Goldberg, M R; Yichie, T; Levy, M B; Nachshon, L; Katz, Y

    2016-02-01

    Studies examining the long-term effect of oral immunotherapy in food-allergic patients are limited. We investigated cow's milk-allergic patients, >6 months after the completion of oral immunotherapy (n = 197). Questionnaires, skin prick tests, and basophil activation assays were performed. Of the 195 patients contacted, 180 (92.3%) were consuming milk protein regularly. Half experienced adverse reactions, mostly mild. Thirteen patients (6.7%) required injectable epinephrine. Higher reaction rate after immunotherapy was associated with more anaphylactic episodes before treatment and a lower starting dose (OR = 2.1, P = 0.035 and OR = 2.3, P = 0.035, respectively). Reaction rate in patients who were 6-15 months, 15-30 months, or >30 months post-treatment decreased from 0.28/month to 0.21/month to 0.15/month, respectively (P Milk-induced %CD63 and %CD203c expression was significantly lower in patients >24 months vs in patients <24 months post-treatment (P = 0.038 and P = 0.047, respectively). In conclusion, many patients experience mild adverse reactions after completing oral immunotherapy and some require injectable epinephrine. Progressive desensitization, both clinically and in basophil reactivity, occurs over time. PMID:26482941

  20. Advance of Cellular Immunotherapy in Clinical and Translational Medicine of Lung Cancer

    YAN Fei; YU Shao-rong; FENG Ji-feng

    2016-01-01

    Lung cancer is one of the most common cancers and ranks the ifrst in the mortality worldwide. The core of immunotherapy, especially cellular immunotherapy, is to activate the T cell-mediated tumor-killing effect in patients with tumors, so as to increase their anti-tumor effect. Surgery and radio- and chemotherapy cannot radically eliminate cancerous cells, but immunotherapy is an important supplementary method in killing tumor stem cells and non-proliferating cells. Cellular immunotherapy contains dendritic cells (DC), cytokine-induced killer (CIK), DC-CIK, natural killer T cells (NKT) and γδ T cells, which provides new techniques for the comprehensive treatment of lung cancer. Using CIK combined with DC, radiochemotherapy, radiofrequency ablation and monomers of Chinese medicine to induce CIK cells that directionally migrate to cancerous nest can increase tumor-killing ability and immunoregulatory ability of CIK cells, reduce adverse and toxic reactions and increase patients’ quality of life, and NKT cell and γδ T cell therapies have also been gradually perfected and promoted in clinical translation. This study mainly introduced the clinical translation of DC vaccines, CIK cells and DC-CIK treatment for lung cancer, hoping to provide new pathways and reference for the clinical treatment of lung cancer.

  1. The Future of Glioblastoma Therapy: Synergism of Standard of Care and Immunotherapy

    Mira A. Patel

    2014-09-01

    Full Text Available The current standard of care for glioblastoma (GBM is maximal surgical resection with adjuvant radiotherapy and temozolomide (TMZ. As the 5-year survival with GBM remains at a dismal <10%, novel therapies are needed. Immunotherapies such as the dendritic cell (DC vaccine, heat shock protein vaccines, and epidermal growth factor receptor (EGFRvIII vaccines have shown encouraging results in clinical trials, and have demonstrated synergistic effects with conventional therapeutics resulting in ongoing phase III trials. Chemoradiation has been shown to have synergistic effects when used in combination with immunotherapy. Cytotoxic ionizing radiation is known to trigger pro-inflammatory signaling cascades and immune activation secondary to cell death, which can then be exploited by immunotherapies. The future of GBM therapeutics will involve finding the place for immunotherapy in the current treatment regimen with a focus on developing strategies. Here, we review current GBM therapy and the evidence for combination of immune checkpoint inhibitors, DC and peptide vaccines with the current standard of care.

  2. The Future of Glioblastoma Therapy: Synergism of Standard of Care and Immunotherapy

    Patel, Mira A.; Kim, Jennifer E.; Ruzevick, Jacob [Department of Neurosurgery, The Johns Hopkins University School of Medicine, 600 N. Wolfe St., Phipps Building Rm 123, Baltimore, MD 21287 (United States); Li, Gordon [Department of Neurosurgery, Stanford University Medical Center, 1201 Welch Rd., P309 MSLS, Stanford, CA 94305 (United States); Lim, Michael, E-mail: mlim3@jhmi.edu [Department of Neurosurgery, The Johns Hopkins University School of Medicine, 600 N. Wolfe St., Phipps Building Rm 123, Baltimore, MD 21287 (United States)

    2014-09-29

    The current standard of care for glioblastoma (GBM) is maximal surgical resection with adjuvant radiotherapy and temozolomide (TMZ). As the 5-year survival with GBM remains at a dismal <10%, novel therapies are needed. Immunotherapies such as the dendritic cell (DC) vaccine, heat shock protein vaccines, and epidermal growth factor receptor (EGFRvIII) vaccines have shown encouraging results in clinical trials, and have demonstrated synergistic effects with conventional therapeutics resulting in ongoing phase III trials. Chemoradiation has been shown to have synergistic effects when used in combination with immunotherapy. Cytotoxic ionizing radiation is known to trigger pro-inflammatory signaling cascades and immune activation secondary to cell death, which can then be exploited by immunotherapies. The future of GBM therapeutics will involve finding the place for immunotherapy in the current treatment regimen with a focus on developing strategies. Here, we review current GBM therapy and the evidence for combination of immune checkpoint inhibitors, DC and peptide vaccines with the current standard of care.

  3. The Future of Glioblastoma Therapy: Synergism of Standard of Care and Immunotherapy

    The current standard of care for glioblastoma (GBM) is maximal surgical resection with adjuvant radiotherapy and temozolomide (TMZ). As the 5-year survival with GBM remains at a dismal <10%, novel therapies are needed. Immunotherapies such as the dendritic cell (DC) vaccine, heat shock protein vaccines, and epidermal growth factor receptor (EGFRvIII) vaccines have shown encouraging results in clinical trials, and have demonstrated synergistic effects with conventional therapeutics resulting in ongoing phase III trials. Chemoradiation has been shown to have synergistic effects when used in combination with immunotherapy. Cytotoxic ionizing radiation is known to trigger pro-inflammatory signaling cascades and immune activation secondary to cell death, which can then be exploited by immunotherapies. The future of GBM therapeutics will involve finding the place for immunotherapy in the current treatment regimen with a focus on developing strategies. Here, we review current GBM therapy and the evidence for combination of immune checkpoint inhibitors, DC and peptide vaccines with the current standard of care

  4. Resistance of CD45RA- T cells to apoptosis and functional impairment, and activation of tumor-antigen specific T cells during radiation therapy of prostate cancer.

    Tabi, Zsuzsanna; Spary, Lisa K; Coleman, Sharon; Clayton, Aled; Mason, Malcolm D; Staffurth, John

    2010-07-15

    The effect of radiation therapy (RT) to the pelvis on circulating T cells was studied in prostate cancer (PCa) patients to provide a baseline for a more informed design of combination radioimmunotherapy. Peripheral blood samples taken from 12 PCa patients with locally advanced tumor before, during, and after hypofractionated RT were analyzed for T cell phenotype and function. There was significantly more loss of naive and early memory compared with more differentiated T cells during RT. The proportions of annexin-V(+) and Fas-expressing T cells were elevated in patients during RT and in PBMC irradiated in vitro ( 2-fold in the presence of an IkappaB-kinase inhibitor, indicating a protective effect via this pathway. T cell proliferation was impaired during RT with IL-2-dependent recovery post-RT. Recall T cell responses to common viral Ags, measured by IFN-gamma production, were little affected by RT. In vitro irradiation of healthy donor PBMCs resulted in a significantly increased frequency of responding T cells, due at least partly to the preferential elimination of CD45RA(+) T cells. Most importantly, antitumor CD4(+) and CD8(+) T cell responses were detectable after, but not before or during RT. The results indicate that generating tumor-specific T cell responses before RT and boosting their activity post-RT are ways likely to amplify the frequency and function of antitumor T cells, with implications for scheduling immunotherapy in PCa. PMID:20548027

  5. Gene program-specific regulation of PGC-1{alpha} activity

    Schmidt, Søren F; Mandrup, Susanne

    2011-01-01

    . 1232-1244) demonstrated that phosphorylation of PGC-1α by the p70 ribosomal protein S6 kinase 1 (S6K1) specifically interfered with the interaction between PGC-1α and HNF4α in liver and blocked the coactivation of the gluconeogenic target genes. This demonstrates how independent fine-tuning of gene...

  6. 10 CFR 810.8 - Activities requiring specific authorization.

    2010-01-01

    ... of Comoros* Congo* (Zaire) Cuba* Djibouti* Equatorial Guinea* Eritrea* Gabon* Georgia* Guinea* Guinea... operation above five megawatts thermal. (6) Training in the activities of paragraphs (c)(1) through (5)...

  7. Control of viremia and prevention of AIDS following immunotherapy of SIV-infected macaques with peptide-pulsed blood.

    Robert De Rose

    2008-05-01

    Full Text Available Effective immunotherapies for HIV are needed. Drug therapies are life-long with significant toxicities. Dendritic-cell based immunotherapy approaches are promising but impractical for widespread use. A simple immunotherapy, reinfusing fresh autologous blood cells exposed to overlapping SIV peptides for 1 hour ex vivo, was assessed for the control of SIV(mac251 replication in 36 pigtail macaques. An initial set of four immunizations was administered under antiretroviral cover and a booster set of three immunizations administered 6 months later. Vaccinated animals were randomized to receive Gag peptides alone or peptides spanning all nine SIV proteins. High-level, SIV-specific CD4 and CD8 T-cell immunity was induced following immunization, both during antiretroviral cover and without. Virus levels were durably approximately 10-fold lower for 1 year in immunized animals compared to controls, and a significant delay in AIDS-related mortality resulted. Broader immunity resulted following immunizations with peptides spanning all nine SIV proteins, but the responses to Gag were weaker in comparison to animals only immunized with Gag. No difference in viral outcome occurred in animals immunized with all SIV proteins compared to animals immunized against Gag alone. Peptide-pulsed blood cells are an immunogenic and effective immunotherapy in SIV-infected macaques. Our results suggest Gag alone is an effective antigen for T-cell immunotherapy. Fresh blood cells pulsed with overlapping Gag peptides is proceeding into trials in HIV-infected humans.

  8. Vγ9Vδ2 T cells as a promising innovative tool for immunotherapy of hematologic malignancies

    Serena Meraviglia

    2011-12-01

    Full Text Available The potent anti-tumor activities of γδ T cells, their ability to produce pro-inflammatory cytokines, and their strong cytolytic activity have prompted the development of protocols in which γδ agonists or ex vivo-expanded γδ cells are administered to tumor patients. γδ T cells can be selectively activated by either synthetic phosphoantigens or by drugs that enhance their accumulation into stressed cells as aminobisphosphonates, thus offering new avenues for the development of γδ T cell-based immunotherapies. The recent development of small drugs selectively activating Vγ9Vδ2 T lymphocytes, which upregulate the endogenous phosphoantigens, has enabled the investigators to design the experimental approaches of cancer immunotherapies; several ongoing phase I and II clinical trials are focused on the role of the direct bioactivity of drugs and of adoptive cell therapies involving phosphoantigen- or aminobisphosphonate-activated Vγ9Vδ2 T lymphocytes in humans. In this review, we focus on the recent advances in the activation/expansion of γδ T cells in vitro and in vivo that may represent a promising target for the design of novel and highly innovative immunotherapy in patients with hematologic malignancies.

  9. Microsatellite instability as a predictive factor for immunotherapy in malignant melanoma.

    Kubecek, Ondrej; Trojanova, Petronela; Molnarova, Veronika; Kopecky, Jindrich

    2016-08-01

    Immunotherapy has attracted attention as a novel treatment modality for malignant melanoma. Although the use of immunotherapy in metastatic melanoma has shown promising results, there remains a lack of predictive biomarkers indicating treatment benefit from immunotherapy. There is growing evidence suggesting that microsatellite instability (MSI) as a product of DNA mismatch repair deficiency, may be one of possible predictive markers in malignant melanoma. It has been proposed that the immunogenicity of some tumors might be determined by mutational heterogeneity and could be the key to the success of immune therapies. This is also supported by the fact that tumors with the highest amount of somatic mutations, such as malignant melanoma have showed positive results with immune checkpoint inhibitors. There are promising data regarding the association between MSI status and immunogenicity from studies with colorectal cancer, where MSI is linked to improved prognosis compared to microsatellite stable cancers. MSI in colon cancer is linked to a significant increase of immunocompetent cells responsible for the antitumor activity - CD3(+), CD8(+), CD45RO(+), and T-bet(+) lymphocytes and decrease of inhibition factors such as Foxp3, IL-6, IL-17, and TGF-β. On the other hand, taking into account the progression-dependent accumulation of somatic mutations in MSI tumors and consequent high levels of neo-antigens, the possible drug resistance of MSI tumors to traditional treatment, and the presence of inhibition checkpoints within the MSI tumors, there is a solid rationale for the use of novel therapeutic strategies such as immunotherapy in MSI melanomas. We presume that the MSI phenotype in malignant melanoma might be helpful to identify patients, who would be more likely to profit from immunotherapy than from conventional therapy. PMID:27372860

  10. Regulatory T cell effects in antitumor laser immunotherapy: a mathematical model and analysis

    Dawkins, Bryan A.; Laverty, Sean M.

    2016-03-01

    Regulatory T cells (Tregs) have tremendous influence on treatment outcomes in patients receiving immunotherapy for cancerous tumors. We present a mathematical model incorporating the primary cellular and molecular components of antitumor laser immunotherapy. We explicitly model developmental classes of dendritic cells (DCs), cytotoxic T cells (CTLs), primary and metastatic tumor cells, and tumor antigen. Regulatory T cells have been shown to kill antigen presenting cells, to influence dendritic cell maturation and migration, to kill activated killer CTLs in the tumor microenvironment, and to influence CTL proliferation. Since Tregs affect explicitly modeled cells, but we do not explicitly model dynamics of Treg themselves, we use model parameters to analyze effects of Treg immunosuppressive activity. We will outline a systematic method for assigning clinical outcomes to model simulations and use this condition to associate simulated patient treatment outcome with Treg activity.

  11. Mechanism for Spontaneous Calcium Activity and Spinal Cord Neurotransmitter Specification, and the Role of Calcium Activity in Dopamine Specification in the Brain and Spinal Cord

    Velázquez Ulloa, Norma Andrea

    2009-01-01

    Spontaneous electrical activity is a feature of the nervous system from early stages of development preceding synapse formation. An example of this is calcium-spike activity, which is displayed by embryonic Xenopus laevis spinal cord neurons, and has a role in neurotransmitter specification. Here I present data identifying a mechanism for calcium-spike activity that depends on GABA or glutamate activation of metabotropic receptors, and their recruitment of PKA or PKC. This work attributes a r...

  12. Programmed death-1 & its ligands: promising targets for cancer immunotherapy.

    Shrimali, Rajeev K; Janik, John E; Abu-Eid, Rasha; Mkrtichyan, Mikayel; Khleif, Samir N

    2015-01-01

    Novel strategies for cancer treatment involving blockade of immune inhibitors have shown significant progress toward understanding the molecular mechanism of tumor immune evasion. The preclinical findings and clinical responses associated with programmed death-1 (PD-1) and PD-ligand pathway blockade seem promising, making these targets highly sought for cancer immunotherapy. In fact, the anti-PD-1 antibodies, pembrolizumab and nivolumab, were recently approved by the US FDA for the treatment of unresectable and metastatic melanoma resistant to anticytotoxic T-lymphocyte antigen-4 antibody (ipilimumab) and BRAF inhibitor. Here, we discuss strategies of combining PD-1/PD-ligand interaction inhibitors with other immune checkpoint modulators and standard-of-care therapy to break immune tolerance and induce a potent antitumor activity, which is currently a research area of key scientific pursuit. PMID:26250412

  13. Indoleamine 2, 3-dioxygenase: potential in cancer immunotherapy

    Indoleamine 2, 3-dioxygenase (IDO) is a potent immunosuppressive enzyme that has a significant role in different types of cancers. There is evidence that shows its involvement in a number of infectious diseases and auto-immune disorders. In vitro and in vivo studies indicate that 1-methyl tryptophan, being a competitive inhibitor, has shown to actively control the conditions in which IDO is over-expressed. Dendritic cells are the natural site of secretion of IDO in the host immune system. However, the expression takes place only in the presence of tolerogenic signals that lead to suppression of T-cell mediated immunogenic responses. Different therapies are being designed by employing the role of IDO in conditions such as stress, depression, cancer, pregnancy, and organ transplant, which reflect the promising role of this new target in cancer immunotherapy. (author)

  14. A mathematical model of the dynamics of antitumor laser immunotherapy

    Dawkins, Bryan A.; Laverty, Sean M.

    2014-02-01

    We use a mathematical model to describe and predict the population dynamics of tumor cells, immune cells, and other immune components in a host undergoing laser immunotherapy treatment against metastatic cancer. We incorporate key elements of the treatment into the model: a function describing the laser-induced primary tumor cell death and parameters capturing the role and strength of the primary immunoadjuvant, glycated chitosan. We focus on identifying conditions that ensure a successful treatment. In particular, we study the patient response (i.e., anti-tumor immune dynamics and treatment outcome) in two different but related mathematical models as we vary quantitative features of the immune system (supply, proliferation, death, and interaction rates). We compare immune dynamics of a `baseline' immune model against an `augmented' model (with additional cell types and antibodies) and in both, we find that using strong immunoadjuvants, like glycated chitosan, that enhance dendritic cell activity yields more promising patient outcomes.

  15. Nanoliposomes containing Eucalyptus citriodora as antibiotic with specific antimicrobial activity.

    Lin, Lin; Cui, Haiying; Zhou, Hui; Zhang, Xuejing; Bortolini, Christian; Chen, Menglin; Liu, Lei; Dong, Mingdong

    2015-02-14

    Bacterial infections are a serious issue for public health and represent one of the major challenges of modern medicine. In this work, a selective antimicrobial strategy based on triggering of pore-forming toxin, which is secreted by infective bacteria, was designed to fight Staphylococcus aureus. The antimicrobial activity is realized by employing Eucalyptus citriodora oil as antibiotic which in this study is encapsulated in nanoliposomes. PMID:25573466

  16. Repetitive transcranial magnetic stimulation activates specific regions in rat brain

    Ji, Ru-Rong; Schlaepfer, Thomas E.; Aizenman, Carlos D.; Epstein, Charles M.; Qiu, Dike; Huang, Justin C.; Rupp, Fabio

    1998-01-01

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique to induce electric currents in the brain. Although rTMS is being evaluated as a possible alternative to electroconvulsive therapy for the treatment of refractory depression, little is known about the pattern of activation induced in the brain by rTMS. We have compared immediate early gene expression in rat brain after rTMS and electroconvulsive stimulation, a well-established animal model for electroconvulsive ther...

  17. Target cell-specific modulation of neuronal activity by astrocytes

    Kozlov, A. S.; Angulo, M. C.; Audinat, E.; Charpak, S

    2006-01-01

    Interaction between astrocytes and neurons enriches the behavior of brain circuits. By releasing glutamate and ATP, astrocytes can directly excite neurons and modulate synaptic transmission. In the rat olfactory bulb, we demonstrate that the release of GABA by astrocytes causes long-lasting and synchronous inhibition of mitral and granule cells. In addition, astrocytes release glutamate, leading to a selective activation of granule-cell NMDA receptors. Thus, by releasing excitatory and inhibi...

  18. Bystander immunotherapy as a strategy to control allergen-driven airway inflammation.

    Navarro, Séverine; Lazzari, Anne; Kanda, Akira; Fleury, Sébastien; Dombrowicz, David; Glaichenhaus, Nicolas; Julia, Valérie

    2014-01-01

    International audience Allergic asthma is a chronic inflammatory disease characterized by airway hyperresponsiveness (AHR), lung infiltration of Th2 cells, and high levels of IgE. To date, allergen-specific immunotherapy (SIT) is the only treatment that effectively alleviates clinical symptoms and has a long-term effect after termination. Unfortunately, SIT is unsuitable for plurisensitized patients, and highly immunogenic allergens cannot be used. To overcome these hurdles, we sought to i...

  19. Use of new technology to improve utilization and adherence to immunotherapy

    Joshi, Smita; Dimov, Ves

    2014-01-01

    Technology and social media have dramatically altered the landscape in which we practice medicine. Clinicians have increasingly turned to technology and the internet to enhance patient care. Allergists have used these modalities to improve utilization and adherence to immunotherapy. Electronic medical records (EMRs) are being widely adopted by allergy practices and some offer allergy/immunology specific modules that aid in daily workflow. The development of specialized devices that reduce pai...

  20. Regressing and progressing metastatic lesions: resistance to immunotherapy is predetermined by irreversible HLA class I antigen alterations.

    Aptsiauri, Natalia; Carretero, Rafael; Garcia-Lora, Angel; Real, Luis M; Cabrera, Teresa; Garrido, Federico

    2008-11-01

    Despite the significant efforts to enhance immune reactivity against malignancies the clinical effect of anti-tumor vaccines and cancer immunotherapy is still below expectations. Understanding of the possible causes of such poor clinical outcome has become very important for improvement of the existing cancer treatment modalities. In particular, the critical role of HLA class I antigens in the success of T cell based immunotherapy has led to a growing interest in investigating the expression and function of these molecules in metastatic cancer progression and, especially in response to immunotherapy. In this report, we illustrate that two types of metastatic lesions are commonly generated in response to immunotherapy according to the pattern of HLA class I expression. We found that metastatic lesions, that progress after immunotherapy have low level of HLA class I antigens, while the regressing lesions demonstrate significant upregulation of these molecules. Presumably, immunotherapy changes tumor microenvironment and creates an additional immune selection pressure on tumor cells. As a result, two subtypes of metastatic lesions arise from pre-existing malignant cells: (a) regressors, with upregulated HLA class I expression after therapy, and (b) progressors with resistance to immunotherapy and with low level of HLA class I. Tumor cells with reversible defects (soft lesions) respond to therapy by upregulation of HLA class I expression and regress, while tumor cells with structural irreversible defects (hard lesions) demonstrate resistance to immunostimulation, fail to upregulate HLA class I antigens and eventually progress. These two types of metastases appear independently of type of the immunotherapy used, either non-specific immunomodulators (cytokines or BCG) or autologous tumor vaccination. Similarly, we also detected two types of metastatic colonies in a mouse fibrosarcoma model after in vitro treatment with IFN-gamma. One type of metastases characterized by

  1. Stem cells and cancer immunotherapy: Arrowhead’s 2nd annual cancer immunotherapy conference

    Bot, Adrian; Chiriva-Internati, Maurizio; Cornforth, Andrew; Brian J Czerniecki; Ferrone, Soldano; Geles, Kenneth; Greenberg, Philip D.; Hurt, Elaine; Koya, Richard C.; Masoud H Manjili; Matsui, William; Morgan, Richard A.; Palena, Claudia M; Powell Jr, Daniel J; Restifo, Nicholas P

    2014-01-01

    Investigators from academia and industry gathered on April 4 and 5, 2013, in Washington DC at the Arrowhead’s 2nd Annual Cancer Immunotherapy Conference. Two complementary concepts were discussed: cancer “stem cells” as targets and therapeutic platforms based on stem cells.

  2. Class I histone deacetylase inhibitor entinostat suppresses regulatory T cells and enhances immunotherapies in renal and prostate cancer models.

    Li Shen

    Full Text Available BACKGROUND: Immunosuppressive factors such as regulatory T cells (Tregs limit the efficacy of immunotherapies. Histone deacetylase (HDAC inhibitors have been reported to have antitumor activity in different malignancies and immunomodulatory effects. Herein, we report the Tregs-targeting and immune-promoting effect of a class I specific HDAC inhibitor, entinostat, in combination with either IL-2 in a murine renal cell carcinoma (RENCA model or a survivin-based vaccine therapy (SurVaxM in a castration resistant prostate cancer (CR Myc-CaP model. METHODS AND RESULTS: RENCA or CR Myc-CaP tumors were implanted orthotopically or subcutaneously, respectively. Inoculated mice were randomized into four treatment groups: vehicle, entinostat, cytokine or vaccine, and combination. Tregs in the blood were assessed by FACS analysis. Real time quantitative PCR and Western blot analysis of isolated T cell subpopulations from spleen were performed to determine Foxp3 gene and protein expression. The suppressive function of Tregs was tested by T cell proliferation assay. Low dose (5 mg/kg entinostat reduced Foxp3 levels in Tregs and this was associated with enhanced tumor growth inhibition in combination with either IL-2 or a SurVaxM vaccine. Entinostat down-regulated Foxp3 expression transcriptionally and blocked Tregs suppressive function without affecting T effector cells (Teffs. In vitro low dose entinostat (0.5 µM induced STAT3 acetylation and a specific inhibitor of STAT3 partially rescued entinostat-induced down-regulation of Foxp3, suggesting that STAT3 signaling is involved in Foxp3 down-regulation by entinostat. CONCLUSIONS: These results demonstrate a novel immunomodulatory effect of class I HDAC inhibition and provide a rationale for the clinical testing of entinostat to enhance cancer immunotherapy.

  3. INTRAPLEURAL IMMUNOTHERAPY FOR METASTATIC PLEURISIES IN PATIENTS WITH BREAST CANCER

    K. S. Titov; L. V. Demidov; M. V. Kiselevsky; I. N. Mikhailova; I. Zh. Shubina; A. N. Gritsai; I. E. Sinelnikov; L. M. Rodionova

    2009-01-01

    Intrapleural immunotherapy for metastatic pleurisies demonstrates a high efficiency in the treatment of patients with breast cancer (BC). This immunotherapy modality is regarded as one of the stages of complex treatment in patients with disseminated BC and allows its capabilities to be extended for their further management.

  4. Active thermal insulation for induction heating of specific metal parts

    Ulrych, B.; Kotlan, V.; Doležel, Ivo

    Plzeň : University of West Bohemia, 2011, s. 3-4. ISBN 978-80-7043-993-7. [AMTEE’11- Advanced Methods of the Theory of Electrical Engineering. Klatovy (CZ), 06.09.2011-09.09.2011] R&D Projects: GA ČR(CZ) GAP102/11/0498; GA ČR GA102/09/1305 Institutional research plan: CEZ:AV0Z20570509 Keywords : active thermal insulation * induction heating * temperature field Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering http://amtee.zcu.cz/AMTEE/Default.aspx

  5. HPV-Specific Immunotherapy : Key Role for Immunomodulators

    Van de Wall, Stephanie; Nijman, Hans W.; Daemen, Toos

    2014-01-01

    Cervical cancer is the second most common malignancy among women worldwide. The prime causal factor of the disease is a persistent infection with human papillomavirus (HPV) with individuals failing to mount a sufficient immune response against the virus. Despite the current success of HPV16- and 18-

  6. Determination of specific activity of 230Th in uranium ore samples

    2000-01-01

    A new method suitable for determining specific activity of 230Th in uranium ore samples is built. The method is characterized by adding the 230Th/ 232Th standard dilution agent with lower activity ratio (Its 230Th/ 232Th activity ratio and 230Th have been known) to the samples and using isotopic dilution analysis. The method can be applied to analyses of 230Th specific activity in various 230Th/ 232Th activity ratio samples. The precision can also be improved.

  7. Synthesis of tritiated 3-hydroxy-5-androstene-17-one with high specific activity

    Tritiated DHA with a high specific activity is necessary for radioimmunoassays. We synthesized DHA labelled with tritium in three positions (Specific Activity: 90 Ci/mM). Data concerning U.V. spectra NMR and optical activity are given for the main products and for side-reactions compounds. (author)

  8. Preventive capacity of allergen immunotherapy on the natural history of allergy.

    Incorvaia, C

    2013-06-01

    Allergen immunotherapy (AIT) is the practice of administering gradually increasing doses of the specific causative allergen to reduce the clinical reactivity of allergic subjects. A bulk of literature demonstrates that AIT is an effective and safe treatment to reduce allergic symptoms and the use of drugs. The preventive capacity of AIT is less investigated. The studies thus far available showed that this treatment, in both forms of subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT) is able to prevent the development of asthma in patients with allergic rhinitis and the occurrence of new sensitizations in patients monosensitized. Such outcomes demonstrate the ability of AIT to change the natural history of respiratory allergy. Of particular importance, SCIT with Hymenoptera venom has an invaluable role in preventing potentially fatal anaphylactic reactions to the culprit sting in venom-allergic patients. Ongoing studies are aimed at evaluating the possible capacity of AIT in primary prevention of allergy. All these capabilities are related to the mechanisms of action of AIT. In fact, both SCIT and SLIT are able to modify the allergen presentation by dendritic cells that in turn modify the phenotype of allergen-specific T cells, switching from the Th2-type response, typical of allergic inflammation, to a Th1-type response. An important role is played by allergen-specific T regulatory (Treg) cells, which produce suppressive cytokines such as IL-10 and TGF-beta. PMID:24396984

  9. How to design and evaluate randomized controlled trials in immunotherapy for allergic rhinitis: an ARIA-GA(2) LEN statement

    Bousquet, J; Schünemann, H J; Bousquet, P J;

    2011-01-01

    Specific immunotherapy (SIT) is one of the treatments for allergic rhinitis. However, for allergists, nonspecialists, regulators, payers, and patients, there remain gaps in understanding the evaluation of randomized controlled trials (RCTs). Although treating the same diseases, RCTs in SIT and ph...

  10. Stinging insect allergy: current perspectives on venom immunotherapy

    Ludman SW

    2015-07-01

    Full Text Available Sian W Ludman,1 Robert J Boyle2 1Paediatric Allergy Department, St Mary's Hospital, Imperial Healthcare NHS Trust, London, UK; 2Department of Paediatrics, Imperial College London, London, UKAbstract: Systemic allergic reactions to insect stings affect up to 5% of the population during their lifetime, and up to 32% of beekeepers. Such reactions can be fatal, albeit very rarely, and fear of a further systemic reaction (SR can lead to significant anxiety and quality of life impairment. A recent Cochrane systematic review confirmed that venom immunotherapy (VIT is an effective treatment for people who have had a systemic allergic reaction to an insect sting. VIT reduces risk of a further SR (relative risk 0.10, 95% confidence interval 0.03–0.28, but VIT also reduces risk of a future large local reaction, and significantly improves disease-specific quality of life. However, health economic analysis showed that VIT is generally not cost effective for preventing future SRs; most people are stung infrequently, most SRs resolve without long-term consequences, and a fatal outcome is extremely rare. VIT only becomes cost effective if one is stung frequently (eg, beekeepers or if quality of life improvement is considered. Thus, for most people with insect sting allergy, anxiety and quality of life impairment should be the overriding consideration when making treatment decisions, highlighting the importance of a patient-centered approach. Areas which need to be explored in future research include efforts to improve the safety and convenience of VIT such as the use of sublingual immunotherapy; quality of life effects of venom allergy in children and adolescents as well as their parents; and the optimal duration of treatment.Keywords: anaphylaxis, quality of life

  11. Immunotherapy and Immune Evasion in Prostate Cancer

    Thakur, Archana, E-mail: thakur@karmanos.org; Vaishampayan, Ulka [Department of Oncology, Wayne State University, Detroit, MI 48201 (United States); Lum, Lawrence G., E-mail: thakur@karmanos.org [Department of Oncology, Wayne State University, Detroit, MI 48201 (United States); Department of Medicine, Wayne State University, Detroit, MI 48201 (United States); Department of Immunology and Microbiology, Wayne State University, Detroit, MI 48201 (United States)

    2013-05-24

    Metastatic prostate cancer remains to this day a terminal disease. Prostatectomy and radiotherapy are effective for organ-confined diseases, but treatment for locally advanced and metastatic cancer remains challenging. Although advanced prostate cancers treated with androgen deprivation therapy achieves debulking of disease, responses are transient with subsequent development of castration-resistant and metastatic disease. Since prostate cancer is typically a slowly progressing disease, use of immune-based therapies offers an advantage to target advanced tumors and to induce antitumor immunity. This review will discuss the clinical merits of various vaccines and immunotherapies in castrate resistant prostate cancer and challenges to this evolving field of immune-based therapies.

  12. Immunotherapy and Immune Evasion in Prostate Cancer

    Metastatic prostate cancer remains to this day a terminal disease. Prostatectomy and radiotherapy are effective for organ-confined diseases, but treatment for locally advanced and metastatic cancer remains challenging. Although advanced prostate cancers treated with androgen deprivation therapy achieves debulking of disease, responses are transient with subsequent development of castration-resistant and metastatic disease. Since prostate cancer is typically a slowly progressing disease, use of immune-based therapies offers an advantage to target advanced tumors and to induce antitumor immunity. This review will discuss the clinical merits of various vaccines and immunotherapies in castrate resistant prostate cancer and challenges to this evolving field of immune-based therapies

  13. Hepatitis B immunopathogenesis and immunotherapy.

    Golsaz-Shirazi, Forough; Shokri, Fazel

    2016-04-01

    Worldwide there are over 248 million chronic carriers of HBV of whom about a third eventually develop severe HBV-related complications. Due to the major limitations of current therapeutic approaches, the development of more effective strategies to improve therapeutic outcomes in chronic hepatitis B (CHB) patients seems crucial. Immune activation plays a critical role in spontaneous viral control; therefore, new modalities based on stimulation of the innate and adaptive immune responses could result in the resolution of infection and are promising approaches. Here, we summarize the HBV immunopathogenesis, and discuss the encouraging results obtained from the promising immune-based innovations, such as therapeutic vaccination, cytokine therapy, cell-based therapies and blocking inhibitory receptors, as current and future immunotherapeutic interventions. PMID:26973127

  14. A software architectural framework specification for neutron activation analysis

    Neutron Activation Analysis (NAA) is a sensitive multi-element nuclear analytical technique that has been routinely applied by research reactor (RR) facilities to environmental, nutritional, health related, geological and geochemical studies. As RR facilities face calls to increase their research output and impact, with existing or reducing budgets, automation of NAA offers a possible solution. However, automation has many challenges, not the least of which is a lack of system architecture standards to establish acceptable mechanisms for the various hardware/software and software/software interactions among data acquisition systems, specialised hardware such as sample changers, sample loaders, and data processing modules. This lack of standardization often results in automation hardware and software being incompatible with existing system components, in a facility looking to automate its NAA operations. This limits the availability of automation to a few RR facilities with adequate budgets or in-house engineering resources. What is needed is a modern open system architecture for NAA, that provides the required set of functionalities. This paper describes such an 'architectural framework' (OpenNAA), and portions of a reference implementation. As an example of the benefits, calculations indicate that applying this architecture to the compilation and QA steps associated with the analysis of 35 elements in 140 samples, with 14 SRM's, can reduce the time required by over 80 %. The adoption of open standards in the nuclear industry has been very successful over the years in promoting interchangeability and maximising the lifetime and output of nuclear measurement systems. OpenNAA will provide similar benefits within the NAA application space, safeguarding user investments in their current system, while providing a solid path for development into the future. (author)

  15. Melittin-MIL-2 fusion protein as a candidate for cancer immunotherapy

    Liu, Mingjun; Wang, Haitao; Liu, Linjie; Wang, Bin; Sun, Guirong

    2016-01-01

    Background Cytokine fusion protein that modulates the immune response holds great potential for cancer immunotherapy. IL-2 is an effective treatment against advanced cancers. However, the therapeutic efficacy of IL-2 is limited by severe systemic toxicity. Several mutants recombinant IL-2 can increase antitumor activity and minimize systemic toxicity. Melittin is an attractive anticancer candidate because of its wide-spectrum lytic properties. We previously generated a bifunctional fusion pro...

  16. Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy

    Klebanoff, Christopher A.; Khong, Hung T.; Antony, Paul A.; Douglas C Palmer; Restifo, Nicholas P

    2005-01-01

    Lymphodepletion followed by adoptive cell transfer (ACT) of autologous, tumor-reactive T cells boosts antitumor immunotherapeutic activity in mouse and in humans. In the most recent clinical trials, lymphodepletion together with ACT has an objective response rate of 50% in patients with solid metastatic tumors. The mechanisms underlying this recent advance in cancer immunotherapy are beginning to be elucidated and include: the elimination of cellular cytokine ‘sinks’ for homeostatic γC-cytoki...

  17. Development of a hypoallergenic recombinant parvalbumin for first-in-man subcutaneous immunotherapy of fish allergy

    Zuidmeer-Jongejan, Laurian; Huber, Hans; Swoboda, Ines;

    2015-01-01

    BACKGROUND: The FAST (food allergy-specific immunotherapy) project aims at developing safe and effective subcutaneous immunotherapy for fish allergy, using recombinant hypoallergenic carp parvalbumin, Cyp c 1. OBJECTIVES: Preclinical characterization and good manufacturing practice (GMP) production...... chromatography and mass spectrometry. Allergenicity was assessed by ImmunoCAP inhibition and basophil histamine release assay, immunogenicity by immunization of laboratory animals and stimulation of patients' peripheral blood mononuclear cells (PBMCs). Reference molecules were purified wild-type Cyp c 1 (natural...... and/or recombinant). GMP-compliant alum-adsorbed mCyp c 1 was tested for acute toxicity in mice and rabbits and for repeated-dose toxicity in mice. Accelerated and real-time protocols were used to evaluate stability of mCyp c 1 as drug substance and drug product. RESULTS: Purified mCyp c 1 behaves as...

  18. Immunotherapy of Cancer: Towards a New Era

    John B.A.G. Haanen

    2014-11-01

    Full Text Available In the past two decades, immunotherapy of cancer has developed into an established treatment option. At first, the development of monoclonal antibodies – targeting overexpressed cell surface molecules on tumour cells – resulted in improved survival when combined with standard chemotherapy or radiotherapy. More recently, T cell immunotherapy has impacted on survival of certain cancer types. In melanoma especially, but now also in renal cell cancer and non-small cell lung cancer, immune checkpoint inhibitors, such as cytotoxic T lymphocyte–associated antigen-4 (anti-CTLA4 and blockade of programmed death receptor-1-PD- ligand 1 (PD1-PD-L1 interaction, represent a completely new treatment paradigm, lowering the threshold for an anticancer immune response and breaking self-tolerance. Adoptive T cell transfer using tumour- infiltrating lymphocytes or genetically modified T cells are under development, but have shown impressive clinical efficacy in several Phase II studies. These emerging but highly promising treatments can give rise to durable tumour control in diseases that were lethal in all patients only a few years ago.

  19. A stochastic model for immunotherapy of cancer.

    Baar, Martina; Coquille, Loren; Mayer, Hannah; Hölzel, Michael; Rogava, Meri; Tüting, Thomas; Bovier, Anton

    2016-01-01

    We propose an extension of a standard stochastic individual-based model in population dynamics which broadens the range of biological applications. Our primary motivation is modelling of immunotherapy of malignant tumours. In this context the different actors, T-cells, cytokines or cancer cells, are modelled as single particles (individuals) in the stochastic system. The main expansions of the model are distinguishing cancer cells by phenotype and genotype, including environment-dependent phenotypic plasticity that does not affect the genotype, taking into account the effects of therapy and introducing a competition term which lowers the reproduction rate of an individual in addition to the usual term that increases its death rate. We illustrate the new setup by using it to model various phenomena arising in immunotherapy. Our aim is twofold: on the one hand, we show that the interplay of genetic mutations and phenotypic switches on different timescales as well as the occurrence of metastability phenomena raise new mathematical challenges. On the other hand, we argue why understanding purely stochastic events (which cannot be obtained with deterministic models) may help to understand the resistance of tumours to therapeutic approaches and may have non-trivial consequences on tumour treatment protocols. This is supported through numerical simulations. PMID:27063839

  20. Personalized cancer immunotherapy using Systems Medicine approaches.

    Gupta, Shailendra K; Jaitly, Tanushree; Schmitz, Ulf; Schuler, Gerold; Wolkenhauer, Olaf; Vera, Julio

    2016-05-01

    The immune system is by definition multi-scale because it involves biochemical networks that regulate cell fates across cell boundaries, but also because immune cells communicate with each other by direct contact or through the secretion of local or systemic signals. Furthermore, tumor and immune cells communicate, and this interaction is affected by the tumor microenvironment. Altogether, the tumor-immunity interaction is a complex multi-scale biological system whose analysis requires a systemic view to succeed in developing efficient immunotherapies for cancer and immune-related diseases. In this review we discuss the necessity and the structure of a systems medicine approach for the design of anticancer immunotherapies. We support the idea that the approach must be a combination of algorithms and methods from bioinformatics and patient-data-driven mathematical models conceived to investigate the role of clinical interventions in the tumor-immunity interaction. For each step of the integrative approach proposed, we review the advancement with respect to the computational tools and methods available, but also successful case studies. We particularized our idea for the case of identifying novel tumor-associated antigens and therapeutic targets by integration of patient's immune and tumor profiling in case of aggressive melanoma. PMID:26174229

  1. Antibody-Mediated Autoimmune Encephalopathies and Immunotherapies.

    Gastaldi, Matteo; Thouin, Anaïs; Vincent, Angela

    2016-01-01

    Over the last 15 years it has become clear that rare but highly recognizable diseases of the central nervous system (CNS), including newly identified forms of limbic encephalitis and other encephalopathies, are likely to be mediated by antibodies (Abs) to CNS proteins. The Abs are directed against membrane receptors and ion channel-associated proteins that are expressed on the surface of neurons in the CNS, such as N-methyl D-aspartate receptors and leucine-rich, glioma inactivated 1 protein and contactin-associated protein like 2, that are associated with voltage-gated potassium channels. The diseases are not invariably cancer-related and are therefore different from the classical paraneoplastic neurological diseases that are associated with, but not caused by, Abs to intracellular proteins. Most importantly, the new antibody-associated diseases almost invariably respond to immunotherapies with considerable and sometimes complete recovery, and there is convincing evidence of their pathogenicity in the relatively limited studies performed so far. Treatments include first-line steroids, intravenous immunoglobulins, and plasma exchange, and second-line rituximab and cyclophosphamide, followed in many cases by steroid-sparing agents in the long-term. This review focuses mainly on N-methyl D-aspartate receptor- and voltage-gated potassium channel complex-related Abs in adults, the clinical phenotypes, and treatment responses. Pediatric cases are referred to but not reviewed in detail. As there have been very few prospective studies, the conclusions regarding immunotherapies are based on retrospective studies. PMID:26692392

  2. Laser immunotherapy for treatment of patients with advanced breast cancer and melanoma

    Li Xiaosong [Department of Oncology, the First Affiliated Hospital of Chinese PLA General Hospital, Beijing (China); Hode, Tomas; Guerra, Maria C [Immunophotonics Inc., 1601 South Providence Road, Columbia, Missouri 65211 (United States); Ferrel, Gabriela L [Hospital Nacional Edgardo Rebagliati Martins, Av. Edgardo Rebagliati 490 - Jesus Maria, Lima (Peru); Nordquist, Robert E [Wound Healing of Oklahoma, Inc., Oklahoma City, Oklahoma (United States); Chen, Wei R, E-mail: wchen@uco.edu [Department of Engineering and Physics, University of Central Oklahoma, Edmond, Oklahoma (United States)

    2011-02-01

    Laser immunotherapy (LIT) was developed for the treatment of metastatic tumors. It combines local selective photothermal interaction and active immunological stimulation to induce a long-term, systemic anti-tumor immunity. During the past sixteen years, LIT has been advanced from bench-top to bedside, with promising outcomes. In our pre-clinical and preliminary clinical studies, LIT has demonstrated the capability in inducing immunological responses, which not only can eradicate the treated primary tumors, but also can eliminate untreated metastases at distant sites. Specifically, LIT has been used to treat advanced melanoma and breast cancer patients during the past five years. LIT was shown to be effective in controlling both primary tumors and distant metastases in late-stage patients, who have failed conventional therapies such as surgery, chemotherapy, radiation, and other more advanced approaches. The methodology and the development of LIT are presented in this paper. The patients' responses to LIT are also reported in this paper. The preliminary results obtained in these studies indicated that LIT could be an effective modality for the treatment of patients with late-stage, metastatic cancers, who are facing severely limited options.

  3. Laser immunotherapy for treatment of patients with advanced breast cancer and melanoma

    Laser immunotherapy (LIT) was developed for the treatment of metastatic tumors. It combines local selective photothermal interaction and active immunological stimulation to induce a long-term, systemic anti-tumor immunity. During the past sixteen years, LIT has been advanced from bench-top to bedside, with promising outcomes. In our pre-clinical and preliminary clinical studies, LIT has demonstrated the capability in inducing immunological responses, which not only can eradicate the treated primary tumors, but also can eliminate untreated metastases at distant sites. Specifically, LIT has been used to treat advanced melanoma and breast cancer patients during the past five years. LIT was shown to be effective in controlling both primary tumors and distant metastases in late-stage patients, who have failed conventional therapies such as surgery, chemotherapy, radiation, and other more advanced approaches. The methodology and the development of LIT are presented in this paper. The patients' responses to LIT are also reported in this paper. The preliminary results obtained in these studies indicated that LIT could be an effective modality for the treatment of patients with late-stage, metastatic cancers, who are facing severely limited options.

  4. Therapeutic efficacy of tumor-derived heat shock protein 70 immunotherapy combining interleukin-2 on tumor-bearing mice

    傅庆国; 孟凡东; 沈晓东; 郭仁宣

    2003-01-01

    Objective To investigate the therapeutic efficacy of compound immunotherapy of tumor-derived heat shock protein 70 (HSP70) and interleukin-2 (IL-2) on tumor-bearing mice, and to provide reference for translating this strategy to human cancer. Methods Cell culture, techniques for protein extraction and purification, SDS-PAGE, Wes tern blot and capillary electrophoresis for HSP70 detection and purity analysis, and animal experiments were used. Mice were treated with HSP70 5 or 10 μg and IL-2 50 kU, 100 kU or 2 kU (maintaining dosage) at pre viously designated intervals. Results Both the mono-administration of either HSP70 or IL-2 and the compound immunoth erapy of HSP70 and IL-2 obviously inhibited the growth of the implanted tumor and prolonged the life span of the mice to different extents. However, long periods of tumor-free suvival (over 90 days) were demonstrated only in HSP70 10 μg group, HSP70 10 μg-IL-2 50 kU group, and HSP70 10 μg-IL-2 100 kU group (4 0%, 40%, 60% respectively). On the other hand, none of the mice in the rest gr oups achieved long-term survival. Statistical significance was apparent in com parison with the groups without long period survival (P<0.025-0.05). Conclusion Our research revealed that tumor-derived HSP70 immunotherapy was much more effective than IL-2 alone. And in compound immunotherapy, HSP70 was the main factor in delaying or eradicating the tumors. The proper combination of HSP70 and IL-2 (10 μg HSP70 and 100 kU IL-2 in this experimental mouse model) clea rly enhanced the immunotherapy efficacy which indicated that the specific immuno therapy as a main part of tumor immunotherapy assisted by cytokine immunotherapy would be a promising strategy in cancer treatment.

  5. The rationale for combined chemo/immunotherapy using a Toll-like receptor 3 (TLR3) agonist and tumour-derived exosomes in advanced ovarian cancer.

    Adams, M; Navabi, H; Croston, D; Coleman, S; Tabi, Z; Clayton, A; Jasani, B; Mason, M D

    2005-03-18

    A clinical trial employing an immunotherapeutic approach based on the use of a Toll-like receptor 3 (TLR3) agonist and tumour-derived exosomes carrying tumour-associated antigens is planned in advanced ovarian cancer in conjunction with conventional first line chemotherapy. Most patients with ovarian cancer present with advanced disease and despite high initial response rate to chemotherapy the majority will relapse within 2 years with poor overall survival. Tumour antigen-specific T cells are naturally occurring in ovarian cancer patients and T cell infiltration of the tumour is highly prognostic. Novel immunotherapy to expand and activate tumour antigen-specific T cells combined with adjuvant treatment to overcome tumour-induced immunosuppression is considered to be therapeutically beneficial. The rationale for adopting such a combined approach is discussed here. PMID:15755631

  6. Treg细胞在过敏性免疫应答和过敏原特异性免疫治疗中的作用机制研究进展%Update on mechanisms of T-regulatory (Treg) cell functions in allergic immune responses and their roles during allergen specific immunotherapy

    王运刚; 杨李

    2013-01-01

    调节性T细胞(Treg细胞)是过敏性免疫应答过程中重要的调节细胞,在过敏原特异性免疫治疗诱导外周免疫耐受的过程中发挥关键性作用.过敏原特异性效应T细胞向Treg细胞的倾斜是机体正常发挥免疫应答的关键,也是过敏原特异性免疫治疗成功的标志之一.天然Treg细胞(CD4+ CD25+ FOXO3+ Treg细胞)和TR1细胞(分泌IL-10的Treg细胞)在控制过敏原特异性免疫反应方面的作用途径包括抑制(树突状细胞)DCs的作用,抑制Th1、Th2、Th17细胞效应,抑制过敏原特异性IgE的分泌,诱导IgG4的产生,抑制肥大细胞、嗜碱性粒细胞、嗜酸性粒细胞,抑制效应T细胞向组织迁移.因此,正确理解免疫调节和过敏原SIT机制对基础研究和临床实验都有重要意义.本文结合目前对免疫调节机制的研究现状,对Treg细胞在过敏性免疫中的功能及在过敏原SIT期间的作用进行综述.%Regulatory T (Treg) cells have been identified as key regulators of immunologic processes in peripheral tolerance to allergens.Skewing of allergen-specific effector T cells to a regulatory phenotype appears to be key to the devel opment of a healthy immune response to allergens and successful outcomes in patients undergoing allergen-specific immunotherapy.Naturally occurring forkhead box protein 3-positive CD4 + CD25+ Treg cells and inducible TR1 cells contribute to the control of allergen-specific immune responses in several major ways.They suppress dendritic cells that facilitate the production of effector T cells; they suppress effector TH1,TH2,and TH17 cells; they suppress allergen-specific IgE and induce IgG4 ; they suppress mast cells,basophils,and eosinophils; and they suppress effector T-cell migration to tissues.Understanding the mechanisms of immune regulation and allergen SIT is currently a key topic in basic and clinical research.This review describes Treg cell functions in allergic immune responses and their roles during

  7. The expression of Foxp3 and interleukin-27 in children with allergic asthma treated with specific immunotherapy%儿童过敏性哮喘特异性免疫治疗中Foxp3和白细胞介素27 mRNA的表达变化研究

    孔珍珍; 张智凤; 付宗强; 臧文巧; 轩小燕; 李付广

    2013-01-01

    Objective Objective To investigate the expression of Foxp3 transcription factor,Interleu kin-27 (IL-27) p28 and EBI3 in children with allergic asthma treated with specific immunotherapy (SIT).Methods According to the time of antigen-specific immunotherapy,the periphery venous blood of 39 children with allergic asthma were harvested at the time of one year before SIT,one year and two years after SIT respectively,then the peripheral blood mononuclear cells (PBMCs) were separated and total RNA was extracted and reverse transcribed into cDNA.The expression of Foxp3,IL-27p28 and EBI3 mRNA in PBMCs were detected by real-time PCR.Meanwhile,the clinical effects of the treatment were observed.Results According to the time of SIT treatment,the clinical symptom was significantly alleviated,Comparing to the expression before SIT treatment,1 or 2 years after SIT treatment,the expression of Foxp3 mRNA in peripheral blood was significantly increased to 5.03 times or 1.93 times the expression at pretreatment respectively (P =0.0008,P =0.033).The expression of IL-27 EBI3 mRNA was increased to 1.56 times and 1.32 times the pretreatment respectively (P =0.088,P =0.244).The expression of IL-27 p28 mRNA significantly increased to 2.18 times the pretreatment at 1 year after SIT treatment (P =0.027),but its expression returned to basic level as pretreatment at 2 years after of SIT treatment.Conclusions SIT is an effective therapy for the children with allergic asthma.Therefore,Foxp3 and IL-27 may play important roles in the pathogontosis of asthma.%目的 探讨在过敏性哮喘尘螨特异性免疫治疗(SIT)过程中转录因子Foxp3、IL-27 p28和EBI3 mRNA在外周血单个核细胞中表达的变化.方法 根据进行抗原特异性免疫治疗的时间,采集过敏性哮喘患儿39例,分离其SIT治疗前、治疗一年后和治疗两年后的外周静脉血单个核细胞,提取总RNA,逆转录成cDNA,利用荧光定量PCR的方法检测Foxp3、IL-27 p28和EBI3 mRNA的表达情

  8. Metronomic Doses of Temozolomide Enhance the Efficacy of Carbon Nanotube CpG Immunotherapy in an Invasive Glioma Model.

    Ouyang, Mao; White, Ethan E; Ren, Hui; Guo, Qin; Zhang, Ian; Gao, Hang; Yanyan, Song; Chen, Xuebo; Weng, Yiming; Da Fonseca, Anna; Shah, Sunny; Manuel, Edwin R; Zhang, Leying; Vonderfecht, Steven L; Alizadeh, Darya; Berlin, Jacob M; Badie, Behnam

    2016-01-01

    Even when treated with aggressive current therapies, most patients with glioblastoma survive less than two years. Rapid tumor growth, an invasive nature, and the blood-brain barrier, which limits the penetration of large molecules into the brain, all contribute to the poor tumor response associated with conventional therapies. Immunotherapy has emerged as a therapeutic approach that may overcome these challenges. We recently reported that single-walled carbon nanotubes (SWCNTs) can be used to dramatically increase the immunotherapeutic efficacy of CpG oligonucleotides in a mouse model of glioma. Following implantation in the mouse brain, the tumor cell line used in these previous studies (GL261) tends to form a spherical tumor with limited invasion into healthy brain. In order to evaluate SWCNT/CpG therapy under more clinically-relevant conditions, here we report the treatment of a more invasive mouse glioma model (K-Luc) that better recapitulates human disease. In addition, a CpG sequence previously tested in humans was used to formulate the SWCNT/CpG which was combined with temozolomide, the standard of care chemotherapy for glioblastoma patients. We found that, following two intracranial administrations, SWCNT/CpG is well-tolerated and improves the survival of mice bearing invasive gliomas. Interestingly, the efficacy of SWCNT/CpG was enhanced when combined with temozolomide. This enhanced anti-tumor efficacy was correlated to an increase of tumor-specific cytotoxic activity in splenocytes. These results reinforce the emerging understanding that immunotherapy can be enhanced by combining it with chemotherapy and support the continued development of SWCNT/CpG. PMID:26829221

  9. Metronomic Doses of Temozolomide Enhance the Efficacy of Carbon Nanotube CpG Immunotherapy in an Invasive Glioma Model.

    Mao Ouyang

    Full Text Available Even when treated with aggressive current therapies, most patients with glioblastoma survive less than two years. Rapid tumor growth, an invasive nature, and the blood-brain barrier, which limits the penetration of large molecules into the brain, all contribute to the poor tumor response associated with conventional therapies. Immunotherapy has emerged as a therapeutic approach that may overcome these challenges. We recently reported that single-walled carbon nanotubes (SWCNTs can be used to dramatically increase the immunotherapeutic efficacy of CpG oligonucleotides in a mouse model of glioma. Following implantation in the mouse brain, the tumor cell line used in these previous studies (GL261 tends to form a spherical tumor with limited invasion into healthy brain. In order to evaluate SWCNT/CpG therapy under more clinically-relevant conditions, here we report the treatment of a more invasive mouse glioma model (K-Luc that better recapitulates human disease. In addition, a CpG sequence previously tested in humans was used to formulate the SWCNT/CpG which was combined with temozolomide, the standard of care chemotherapy for glioblastoma patients. We found that, following two intracranial administrations, SWCNT/CpG is well-tolerated and improves the survival of mice bearing invasive gliomas. Interestingly, the efficacy of SWCNT/CpG was enhanced when combined with temozolomide. This enhanced anti-tumor efficacy was correlated to an increase of tumor-specific cytotoxic activity in splenocytes. These results reinforce the emerging understanding that immunotherapy can be enhanced by combining it with chemotherapy and support the continued development of SWCNT/CpG.

  10. Intrathecal-specific glutamic acid decarboxylase antibodies at low titers in autoimmune neurological disorders.

    Sunwoo, Jun-Sang; Chu, Kon; Byun, Jung-Ick; Moon, Jangsup; Lim, Jung-Ah; Kim, Tae-Joon; Lee, Soon-Tae; Jung, Keun-Hwa; Park, Kyung-Il; Jeon, Daejong; Jung, Ki-Young; Kim, Manho; Lee, Sang Kun

    2016-01-15

    Autoantibodies to glutamic acid decarboxylase (Gad-Abs) are implicated in various neurological syndromes. The present study aims to identify intrathecal-specific GAD-Abs and to determine clinical manifestations and treatment outcomes. Nineteen patients had GAD-Abs in cerebrospinal fluid but not in paired serum samples. Neurological syndromes included limbic encephalitis, temporal lobe epilepsy, cerebellar ataxia, autonomic dysfunction, and stiff-person syndrome. Immunotherapy had beneficial effects in 57.1% of patients, and the patients with limbic encephalitis responded especially well to immunotherapy. Intrathecal-specific antibodies to GAD at low titers may appear as nonspecific markers of immune activation within the central nervous system rather than pathogenic antibodies causing neuronal dysfunction. PMID:26711563

  11. Checkpoint inhibitors in cancer immunotherapy: Cross reactivity of a CTLA-4 antibody and IDO-inhibitor L-1MT in pigs

    Al-Shatrawi, Zina Adil; Frøsig, Thomas Mørch; Jungersen, Gregers

    Blockade of checkpoint inhibitors has recently shown very convincing results in the treatment of cancer. One key target is CTLA-4, which has been demonstrated to be a potent negative regulator of lymphocyte activation. The treatment with the FDA-approved fully human CTLA-4 monoclonal antibody...... a non-specific activation of porcine T cells. This will be further investigated to provide the basis for in vivo studies investigating checkpoint inhibitor blockade in combination with other cancer immunotherapies. Eventually our goal is to establish pigs as an alternative large animal model...... Ipilimumab increases anticancer T-cell reactivity and overall survival of metastatic cancer patients. Indole-amine 2,3-dioxygenase (IDO) is another checkpoint inhibitor which suppresses T-cell immunity by the depletion of tryptophan in the T-cell microenvironment, and also inhibition of IDO by L-1...

  12. Immunological comparison of allergen immunotherapy tablet treatment and subcutaneous immunotherapy against grass allergy

    Aasbjerg, K; Backer, V; Lund, G;

    2014-01-01

    BACKGROUND: IgE-mediated allergic rhinitis to grass pollen can successfully be treated with either allergen immunotherapy tablets (SLIT tablet) or SQ-standardized subcutaneous immunotherapy (SCIT). The efficacy of these two treatment modalities for grass allergy is comparable, but the immunological...... mechanisms may differ. ClinicalTrials.gov ID: NCT01889875. OBJECTIVES: To compare the immunological changes induced by SQ-standardized SCIT and SLIT tablet. METHODS: We randomized 40 individuals with grass pollen rhinitis into groups receiving SCIT, SLIT tablet, or neither and followed them for 15 months...... differed significantly in both SCIT and SLIT-tablet treatment groups when compared to the control group. Both SCIT and SLIT-tablet groups were significantly different from the control group after 1–3 months of treatment. In general, the changes induced by SCIT reached twice that of SLIT tablet, with the...

  13. Natural Killer cell recognition of melanoma: new clues for a more effective immunotherapy

    Raquel eTarazona

    2016-01-01

    Full Text Available Natural killer cells participate in the early immune response against melanoma and also contribute to the development of an adequate adaptive immune response by their crosstalk with dendritic cells and cytokine secretion. Melanoma resistance to conventional therapies together with its high immunogenicity justifies the development of novel therapies aimed to stimulate effective immune responses against melanoma. However, melanoma cells frequently escape to CD8 T cell recognition by the down-regulation of major histocompatibility complex class I molecules. In this scenario, Natural killer cells emerge as potential candidates for melanoma immunotherapy due to their capacity to recognize and destroy melanoma cells expressing low levels of major histocompatibility complex class I molecules. In addition, the possibility to combine immune checkpoint blockade with other NK cell potentiating strategies (e.g. cytokine induction of activating receptors has opened new perspectives in the potential use of adoptive NK cell-based immunotherapy in melanoma.

  14. Evolving synergistic combinations of targeted immunotherapies to combat cancer.

    Melero, Ignacio; Berman, David M; Aznar, M Angela; Korman, Alan J; Pérez Gracia, José Luis; Haanen, John

    2015-08-01

    Immunotherapy has now been clinically validated as an effective treatment for many cancers. There is tremendous potential for synergistic combinations of immunotherapy agents and for combining immunotherapy agents with conventional cancer treatments. Clinical trials combining blockade of cytotoxic T lymphocyte-associated antigen 4 (CTLA4) and programmed cell death protein 1 (PD1) may serve as a paradigm to guide future approaches to immuno-oncology combination therapy. In this Review, we discuss progress in the synergistic design of immune-targeting combination therapies and highlight the challenges involved in tailoring such strategies to provide maximal benefit to patients. PMID:26205340

  15. Improving cancer immunotherapy by targeting the STATe of MDSCs

    de Haas, Nienke; de Koning, Coco; Spilgies, Lisanne; de Vries, I. Jolanda M.; Hato, Stanleyson V.

    2016-01-01

    ABSTRACT Cancer immunotherapy is a promising therapeutic avenue; however, in practice its efficacy is hampered by an immunosuppressive tumor microenvironment that consists of suppressive cell types like myeloid-derived suppressor cells (MDSCs). Eradication or reprogramming of MDSCs could therefore enhance clinical responses to immunotherapy. Here, we review clinically available drugs that target MDSCs, often through inhibition of STAT signaling, which is essential for MDSC accumulation and suppressive functions. Interestingly, several drugs used for non-cancerous indications and natural compounds similarly inhibit MDSCs by STAT inhibition, but have fewer side effects than anticancer drugs. Therefore, they show great potential for combination strategies with immunotherapy.

  16. Workshop on immunotherapy combinations. Society for immunotherapy of cancer annual meeting Bethesda, November 3, 2011

    Forero Ivan; Okada Hideho; Topalian Suzanne L; Gajewski Thomas F; Korman Alan J; Melero Ignacio

    2012-01-01

    Abstract Although recent FDA approvals on ipilimumab and sipuleucel-T represent major milestones, the ultimate success of immunotherapy approaches will likely benefit from appropriate combinations with other immunotherapeutic and/or non-immunotherapeutic approaches. However, implementation of ideal combinations in the clinic may still face formidable challenges in regulatory, drug-availability and intellectual property aspects. The 2011 SITC annual meeting hosted a workshop on combination imm...

  17. Different Subsets of T Cells, Memory, Effector Functions, and CAR-T Immunotherapy

    Vita Golubovskaya

    2016-03-01

    Full Text Available This review is focused on different subsets of T cells: CD4 and CD8, memory and effector functions, and their role in CAR-T therapy––a cellular adoptive immunotherapy with T cells expressing chimeric antigen receptor. The CAR-T cells recognize tumor antigens and induce cytotoxic activities against tumor cells. Recently, differences in T cell functions and the role of memory and effector T cells were shown to be important in CAR-T cell immunotherapy. The CD4+ subsets (Th1, Th2, Th9, Th17, Th22, Treg, and Tfh and CD8+ memory and effector subsets differ in extra-cellular (CD25, CD45RO, CD45RA, CCR-7, L-Selectin [CD62L], etc.; intracellular markers (FOXP3; epigenetic and genetic programs; and metabolic pathways (catabolic or anabolic; and these differences can be modulated to improve CAR-T therapy. In addition, CD4+ Treg cells suppress the efficacy of CAR-T cell therapy, and different approaches to overcome this suppression are discussed in this review. Thus, next-generation CAR-T immunotherapy can be improved, based on our knowledge of T cell subsets functions, differentiation, proliferation, and signaling pathways to generate more active CAR-T cells against tumors.

  18. Different Subsets of T Cells, Memory, Effector Functions, and CAR-T Immunotherapy

    Golubovskaya, Vita; Wu, Lijun

    2016-01-01

    This review is focused on different subsets of T cells: CD4 and CD8, memory and effector functions, and their role in CAR-T therapy––a cellular adoptive immunotherapy with T cells expressing chimeric antigen receptor. The CAR-T cells recognize tumor antigens and induce cytotoxic activities against tumor cells. Recently, differences in T cell functions and the role of memory and effector T cells were shown to be important in CAR-T cell immunotherapy. The CD4+ subsets (Th1, Th2, Th9, Th17, Th22, Treg, and Tfh) and CD8+ memory and effector subsets differ in extra-cellular (CD25, CD45RO, CD45RA, CCR-7, L-Selectin [CD62L], etc.); intracellular markers (FOXP3); epigenetic and genetic programs; and metabolic pathways (catabolic or anabolic); and these differences can be modulated to improve CAR-T therapy. In addition, CD4+ Treg cells suppress the efficacy of CAR-T cell therapy, and different approaches to overcome this suppression are discussed in this review. Thus, next-generation CAR-T immunotherapy can be improved, based on our knowledge of T cell subsets functions, differentiation, proliferation, and signaling pathways to generate more active CAR-T cells against tumors. PMID:26999211

  19. Amyloid-based immunotherapy for Alzheimer's disease in the time of prevention trials: the way forward.

    Panza, Francesco; Solfrizzi, Vincenzo; Imbimbo, Bruno P; Tortelli, Rosanna; Santamato, Andrea; Logroscino, Giancarlo

    2014-03-01

    Both active and passive anti-β-amyloid (Aβ) immunotherapies for the treatment of Alzheimer's disease (AD) have demonstrated clearance of brain Aβ deposits. Among passive immunotherapeutics, two Phase III clinical trials in mild-to-moderate AD patients with bapineuzumab, a humanized monoclonal antibody directed at the N-terminal sequence of Aβ, were disappointing. Also solanezumab, directed at the mid-region of Aβ, failed in two Phase III trials in mild-to-moderate AD. Another Phase III trial with solanezumab is ongoing in mildly affected AD patients based on encouraging results in this subgroup. Second-generation active Aβ vaccines (CAD106, ACC-001, and Affitope AD02) and new passive anti-Aβ immunotherapies (gantenerumab and crenezumab) have been developed and are under clinical testing. These new anti-Aβ immunotherapies are being tested in prodromal AD, in presymptomatic subjects with AD-related mutations, or in asymptomatic subjects at risk of developing AD. These primary and secondary prevention trials will definitely test the Aβ cascade hypothesis of AD. PMID:24490853

  20. Energy Landscape Topography Reveals the Underlying Link Between Binding Specificity and Activity of Enzymes

    Chu, Wen-Ting; Wang, Jin

    2016-06-01

    Enzyme activity (often quantified by kcat/Km) is the main function of enzyme when it is active against the specific substrate. Higher or lower activities are highly desired for the design of novel enzyme and drug resistance. However, it is difficult to measure the activities of all possible variants and find the “hot-spot” within the limit of experimental time. In this study, we explore the underlying energy landscape of enzyme-substrate interactions and introduce the intrinsic specificity ratio (ISR), which reflects the landscape topography. By studying two concrete systems, we uncover the statistical correlation between the intrinsic specificity and the enzyme activity kcat/Km. This physics-based concept and method show that the energy landscape topography is valuable for understanding the relationship between enzyme specificity and activity. In addition, it can reveal the underlying mechanism of enzyme-substrate actions and has potential applications on enzyme design.

  1. Listeria monocytogenes phosphatidylinositol-specific phospholipase C: Kinetic activation and homing in on different interfaces†

    Chen, Wei; Goldfine, Howard; Ananthanarayanan, Bharath; Cho, Wonhwa; Roberts, Mary F.

    2009-01-01

    The phosphatidylinositol-specific phospholipase C from Listeria monocytogenes forms aggregates with anionic lipids leading to low activity. The specific activity of the enzyme can be enhanced by dilution of the protein, addition of both zwitterionic / neutral amphiphiles (e.g., diheptanoylphosphatidylcholine or Triton X-100) or 0.1–0.2 M inorganic salts. Activation by amphiphiles occurs with both micellar (phosphatidylinositol dispersed in detergents) and monomeric (dibutroylphosphatidylinosi...

  2. A specific method for measurement of nitric oxide synthase enzymatic activity in peritoneal biopsies.

    Combet, S.; Balligand, Jean-Luc; Lameire, N.; Goffin, Eric; Devuyst, Olivier

    2000-01-01

    A specific method for measurement of nitric oxide synthase enzymatic activity in peritoneal biopsies. BACKGROUND: Nitric oxide (NO) is synthesized by NO synthase (NOS) isoforms that are expressed in the peritoneum. Thus far, NOS activity in the peritoneum has been assessed by nonspecific methods. We describe the application of a specific method for determination of NOS activity in rat and human peritoneal biopsies. METHODS: The L-citrulline assay is based on the stoechiometric production of N...

  3. Efficacy of intralesional immunotherapy for the treatment of warts: A review of the literature.

    Aldahan, Adam Souhail; Mlacker, Stephanie; Shah, Vidhi V; Kamath, Preetha; Alsaidan, Mohammed; Samarkandy, Sahal; Nouri, Keyvan

    2016-05-01

    Warts are common epidermal growths caused by human papillomavirus that often cause significant discomfort and embarrassment. Current treatment options include topical therapies, cryotherapy, laser vaporization, and surgical excision. Many of these options are destructive and may result in scarring, while less aggressive approaches can lead to lesion recurrence. Additionally, these local modalities are not practical for patients with a large number of warts. Systemic approaches such as immunotherapy have demonstrated success in treating multiple lesions by combining a targeted approach with upregulation of the host immune system. An extensive literature review was performed to evaluate the various vaccine antigens that have been used intralesionally to treat cutaneous and anogenital warts. The specific intralesional immunotherapies that have been studied include: Candida albicans; measles, mumps, and rubella; Trichophyton; and tuberculin antigens such as purified protein derivative, Mycobacterium w vaccine, and Bacillus Calmette-Guerin. Intralesional vaccine injection represents a safe, effective, and tolerable treatment for warts, including recalcitrant and anogenital warts. This approach has been somewhat overlooked in the past despite substantial evidence of high response rates with a low side effect profile. Large comparative trials are necessary to determine the most effective immunotherapy treatment option as well as the most appropriate dosing parameters. PMID:26991521

  4. Preserved antiviral adaptive immunity following polyclonal antibody immunotherapy for severe murine influenza infection

    Stevens, Natalie E.; Hatjopolous, Antoinette; Fraser, Cara K.; Alsharifi, Mohammed; Diener, Kerrilyn R.; Hayball, John D.

    2016-01-01

    Passive immunotherapy may have particular benefits for the treatment of severe influenza infection in at-risk populations, however little is known of the impact of passive immunotherapy on the formation of memory responses to the virus. Ideally, passive immunotherapy should attenuate the severity of infection while still allowing the formation of adaptive responses to confer protection from future exposure. In this study, we sought to determine if administration of influenza-specific ovine polyclonal antibodies could inhibit adaptive immune responses in a murine model of lethal influenza infection. Ovine polyclonal antibodies generated against recombinant PR8 (H1N1) hemagglutinin exhibited potent prophylactic capacity and reduced lethality in an established influenza infection, particularly when administered intranasally. Surviving mice were also protected against reinfection and generated normal antibody and cytotoxic T lymphocyte responses to the virus. The longevity of ovine polyclonal antibodies was explored with a half-life of over two weeks following a single antibody administration. These findings support the development of an ovine passive polyclonal antibody therapy for treatment of severe influenza infection which does not affect the formation of subsequent acquired immunity to the virus. PMID:27380890

  5. Preserved antiviral adaptive immunity following polyclonal antibody immunotherapy for severe murine influenza infection.

    Stevens, Natalie E; Hatjopolous, Antoinette; Fraser, Cara K; Alsharifi, Mohammed; Diener, Kerrilyn R; Hayball, John D

    2016-01-01

    Passive immunotherapy may have particular benefits for the treatment of severe influenza infection in at-risk populations, however little is known of the impact of passive immunotherapy on the formation of memory responses to the virus. Ideally, passive immunotherapy should attenuate the severity of infection while still allowing the formation of adaptive responses to confer protection from future exposure. In this study, we sought to determine if administration of influenza-specific ovine polyclonal antibodies could inhibit adaptive immune responses in a murine model of lethal influenza infection. Ovine polyclonal antibodies generated against recombinant PR8 (H1N1) hemagglutinin exhibited potent prophylactic capacity and reduced lethality in an established influenza infection, particularly when administered intranasally. Surviving mice were also protected against reinfection and generated normal antibody and cytotoxic T lymphocyte responses to the virus. The longevity of ovine polyclonal antibodies was explored with a half-life of over two weeks following a single antibody administration. These findings support the development of an ovine passive polyclonal antibody therapy for treatment of severe influenza infection which does not affect the formation of subsequent acquired immunity to the virus. PMID:27380890

  6. Adoptive immunotherapy for acute leukemia:New insights in chimeric antigen receptors

    Ma?l; Heiblig; Mohamed; Elhamri; Mauricette; Michallet; Xavier; Thomas

    2015-01-01

    Relapses remain a major concern in acute leukemia. It is well known that leukemia stem cells(LSCs) hide in hematopoietic niches and escape to the immune system surveillance through the outgrowth of poorly immunogenic tumor-cell variants and the suppression of the active immune response. Despitethe introduction of new reagents and new therapeutic approaches, no treatment strategies have been able to definitively eradicate LSCs. However, recent adoptive immunotherapy in cancer is expected to revolutionize our way to fight against this disease, by redirecting the immune system in order to eliminate relapse issues. Initially described at the onset of the 90’s, chimeric antigen receptors(CARs) are recombinant receptors transferred in various T cell subsets, providing specific antigens binding in a non-major histocompatibility complex restricted manner, and effective on a large variety of human leukocyte antigen-divers cell populations. Once transferred, engineered T cells act like an expanding "living drug" specifically targeting the tumor-associated antigen, and ensure long-term antitumor memory. Over the last decades, substantial improvements have been made in CARs design. CAR T cells have finally reached the clinical practice and first clinical trials have shown promising results. In acute lymphoblastic leukemia, high rate of complete and prolonged clinical responses have been observed after anti-CD19 CAR T cell therapy, with specific but manageable adverse events. In this review, our goal was to describe CAR structures and functions, and to summarize recent data regarding pre-clinical studies and clinical trials in acute leukemia.

  7. Biomarkers for Allergen Immunotherapy: A "Panoromic" View.

    Moingeon, Philippe

    2016-02-01

    Biomarkers (BMKs) are biological parameters that can be measured to predict or monitor disease severity or treatment efficacy. The induction of regulatory dendritic cells (DCs) concomitantly with a downregulation of proallergic DC2s (ie, DCs supporting the differentiation of T-helper lymphocyte type 2 cells) in the blood of patients allergic to grass pollen has been correlated with the early onset of allergen immunotherapy efficacy. The combined use of omics technologies to compare biological samples from clinical responders and nonresponders is being implemented in the context of nonhypothesis-driven approaches. Such comprehensive "panoromic" strategies help identify completely novel candidate BMKs, to be subsequently validated as companion diagnostics in large-scale clinical trials. PMID:26617233

  8. The Role of Immunotherapy in Multiple Myeloma

    Mehmet Kocoglu

    2016-01-01

    Full Text Available Multiple myeloma is the second most common hematologic malignancy. The treatment of this disease has changed considerably over the last two decades with the introduction to the clinical practice of novel agents such as proteasome inhibitors and immunomodulatory drugs. Basic research efforts towards better understanding of normal and missing immune surveillence in myeloma have led to development of new strategies and therapies that require the engagement of the immune system. Many of these treatments are under clinical development and have already started providing encouraging results. We, for the second time in the last two decades, are about to witness another shift of the paradigm in the management of this ailment. This review will summarize the major approaches in myeloma immunotherapies.

  9. Sublingual immunotherapy in the treatment of children.

    Pham-Thi, N; de Blic, J; Scheinmann, P

    2006-01-01

    Children with controlled intermittent mild-to-moderate asthma, controlled rhinitis and a single sensitivity may be appropriate candidates for sublingual immunotherapy (SLIT). Positive effects of SLIT may depend on initiation in early childhood and a long duration of treatment. To ensure optimum compliance, sociological, economic and familial factors should also be taken in to consideration when prescribing SLIT. Evidence from recent long-term trials indicates that SLIT interfered with the atopic march and the allergic progression from rhinitis to asthma without any severe adverse side effects. Local immune response has been seen to be blunted with SLIT, which suggests that treatment has an immunomodulatory effect. In addition, it may also decrease the risk of new sensitizations. Ongoing developments in SLIT, particularly advances in dosing and new indications, such as food allergies, will increase the use of this treatment modality in children. PMID:16792599

  10. Failure of low-dose recombinant human IL-2 to support the survival of virus-specific CTL clones infused into severe combined immunodeficient foals: lack of correlation between in vitro activity and in vivo efficacy.

    Mealey, Robert H; Littke, Matt H; Leib, Steven R; Davis, William C; McGuire, Travis C

    2008-01-15

    Although CTL are important for control of lentiviruses, including equine infectious anemia virus (EIAV), it is not known if CTL can limit lentiviral replication in the absence of CD4 help and neutralizing antibody. Adoptive transfer of EIAV-specific CTL clones into severe combined immunodeficient (SCID) foals could resolve this issue, but it is not known whether exogenous IL-2 administration is sufficient to support the engraftment and proliferation of CTL clones infused into immunodeficient horses. To address this question we adoptively transferred EIAV Rev-specific CTL clones into four EIAV-challenged SCID foals, concurrent with low-dose aldesleukin (180,000U/m2), a modified recombinant human IL-2 (rhuIL-2) product. The dose was calculated based on the specific activity on equine PBMC in vitro, and resulted in plasma concentrations considered sufficient to saturate high affinity IL-2 receptors in humans. Despite specific activity on equine PBMC that was equivalent to recombinant equine IL-2 and another form of rhuIL-2, aldesleukin did not support the engraftment and expansion of infused CTL clones, and control of viral load and clinical disease did not occur. It was concluded that survival of Rev-specific CTL clones infused into EIAV-challenged SCID foals was not enhanced by aldesleukin at the doses used in this study, and that in vitro specific activity did not correlate with in vivo efficacy. Successful adoptive immunotherapy with CTL clones in immunodeficient horses will likely require higher doses of rhuIL-2, co-infusion of CD4+ T lymphocytes, or administration of equine IL-2. PMID:17727961

  11. Quantitation of fibroblast activation protein (FAP-specific protease activity in mouse, baboon and human fluids and organs

    Fiona M. Keane

    2014-01-01

    Full Text Available The protease fibroblast activation protein (FAP is a specific marker of activated mesenchymal cells in tumour stroma and fibrotic liver. A specific, reliable FAP enzyme assay has been lacking. FAP's unique and restricted cleavage of the post proline bond was exploited to generate a new specific substrate to quantify FAP enzyme activity. This sensitive assay detected no FAP activity in any tissue or fluid of FAP gene knockout mice, thus confirming assay specificity. Circulating FAP activity was ∼20- and 1.3-fold less in baboon than in mouse and human plasma, respectively. Serum and plasma contained comparable FAP activity. In mice, the highest levels of FAP activity were in uterus, pancreas, submaxillary gland and skin, whereas the lowest levels were in brain, prostate, leukocytes and testis. Baboon organs high in FAP activity included skin, epididymis, bladder, colon, adipose tissue, nerve and tongue. FAP activity was greatly elevated in tumours and associated lymph nodes and in fungal-infected skin of unhealthy baboons. FAP activity was 14- to 18-fold greater in cirrhotic than in non-diseased human liver, and circulating FAP activity was almost doubled in alcoholic cirrhosis. Parallel DPP4 measurements concorded with the literature, except for the novel finding of high DPP4 activity in bile. The new FAP enzyme assay is the first to be thoroughly characterised and shows that FAP activity is measurable in most organs and at high levels in some. This new assay is a robust tool for specific quantitation of FAP enzyme activity in both preclinical and clinical samples, particularly liver fibrosis.

  12. Immune checkpoint‑targeted cancer immunotherapies

    Julian Swatler

    2016-01-01

    Full Text Available Tumor cells may express on their surface various characteristic antigens that can induce antitumor immunity. However, cancer in human body may induce an immunosuppressive microenvironment that limits immune response to its antigens. For many years scientists have tried to develop an immunotherapy which would induce a potent antitumor immune response and lead to an elimination of the disease. One of the most promising immunotherapies is blockade of immune checkpoints, i.e. a group of costimulatory molecules negatively regulating the immune system. Their blockade would overcome immune tolerance in the tumor microenvironment and amplify antitumor immunity. What’s more, immune checkpoint blockade may turn out even more profitable, as some of immune checkpoints and their ligands are expressed on tumor surface and on tumor infiltrating lymphocytes, contributing to the immunosuppressive cancer microenvironment. Phase III clinical trials have confirmed efficacy of an anti‑CTLA‑4 antibody ipilimumab, thereby leading to its acceptance for the treatment of advanced melanoma. Thanks to promising results of the phase I clinical trials, a breakthrough therapy designation and an early approval for the treatment have been granted to anti‑PD‑1 antibodies ‑ nivolumab (for the treatment of advanced melanoma and advanced non‑small cell lung cancer and pembrolizumab (for the treatment of advanced melanoma and, in the treatment of advanced bladder cancer, an anti‑PD‑L1 antibody ‑ MPDL3280A as well. Other immune checkpoints, such as LAG‑3, TIM‑3, BTLA, B7‑H3 and B7‑H4, are also under early evaluation.

  13. Single-Chain Fragment Variable Passive Immunotherapies for Neurodegenerative Diseases

    Liang Huang

    2013-09-01

    Full Text Available Accumulation of misfolded proteins has been implicated in a variety of neurodegenerative diseases including prion diseases, Alzheimer’s disease (AD, Parkinson’s disease (PD, and Huntington’s disease (HD. In the past decade, single-chain fragment variable (scFv -based immunotherapies have been developed to target abnormal proteins or various forms of protein aggregates including Aβ, SNCA, Htt, and PrP proteins. The scFvs are produced by fusing the variable regions of the antibody heavy and light chains, creating a much smaller protein with unaltered specificity. Because of its small size and relative ease of production, scFvs are promising diagnostic and therapeutic reagents for protein misfolded diseases. Studies have demonstrated the efficacy and safety of scFvs in preventing amyloid protein aggregation in preclinical models. Herein, we discuss recent developments of these immunotherapeutics. We review efforts of our group and others using scFv in neurodegenerative disease models. We illustrate the advantages of scFvs, including engineering to enhance misfolded conformer specificity and subcellular targeting to optimize therapeutic action.

  14. Increasing specificity of correlate research: exploring correlates of children's lunchtime and after-school physical activity.

    Rebecca M Stanley

    Full Text Available BACKGROUND: The lunchtime and after-school contexts are critical windows in a school day for children to be physically active. While numerous studies have investigated correlates of children's habitual physical activity, few have explored correlates of physical activity occurring at lunchtime and after-school from a social-ecological perspective. Exploring correlates that influence physical activity occurring in specific contexts can potentially improve the prediction and understanding of physical activity. Using a context-specific approach, this study investigated correlates of children's lunchtime and after-school physical activity. METHODS: Cross-sectional data were collected from 423 South Australian children aged 10.0-13.9 years (200 boys; 223 girls attending 10 different schools. Lunchtime and after-school physical activity was assessed using accelerometers. Correlates were assessed using purposely developed context-specific questionnaires. Correlated Component Regression analysis was conducted to derive correlates of context-specific physical activity and determine the variance explained by prediction equations. RESULTS: The model of boys' lunchtime physical activity contained 6 correlates and explained 25% of the variance. For girls, the model explained 17% variance from 9 correlates. Enjoyment of walking during lunchtime was the strongest correlate for both boys and girls. Boys' and girls' after-school physical activity models explained 20% variance from 14 correlates and 7% variance from the single item correlate, "I do an organised sport or activity after-school because it gets you fit", respectively. CONCLUSIONS: Increasing specificity of correlate research has enabled the identification of unique features of, and a more in-depth interpretation of, lunchtime and after-school physical activity behaviour and is a potential strategy for advancing the physical activity correlate research field. The findings of this study could be used to

  15. A practical view of immunotherapy for food allergy

    Song, Tae Won

    2016-01-01

    Food allergy is common and sometimes life threatening for Korean children. The current standard treatment of allergen avoidance and self-injectable epinephrine does not change the natural course of food allergy. Recently, oral, sublingual, and epicutaneous immunotherapies have been studied for their effectiveness against food allergy. While various rates of desensitization (36% to 100%) and tolerance (28% to 75%) have been induced by immunotherapies for food allergy, no single established pro...

  16. Dendritic cell-based cancer immunotherapy for colorectal cancer

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Saito, Keisuke; Takami, Shinichiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-01-01

    Colorectal cancer (CRC) is one of the most common cancers and a leading cause of cancer-related mortality worldwide. Although systemic therapy is the standard care for patients with recurrent or metastatic CRC, the prognosis is extremely poor. The optimal sequence of therapy remains unknown. Therefore, alternative strategies, such as immunotherapy, are needed for patients with advanced CRC. This review summarizes evidence from dendritic cell-based cancer immunotherapy strategies that are curr...

  17. Regulation of cell death in cancer - possible implications for immunotherapy

    Simone eFulda

    2013-01-01

    Since most anticancer therapies including immunotherapy trigger programmed cell death in cancer cells, defective cell death programs can lead to treatment resistance and tumor immune escape. Therefore, evasion of programmed cell death may provide one possible explanation as to why cancer immunotherapy has so far only shown modest clinical benefits for children with cancer. A better understanding of the molecular mechanisms that regulate sensitivity and resistance to programmed cell death is e...

  18. Induced Pluripotent Stem Cell as a New Source for Cancer Immunotherapy.

    Rami, Farzaneh; Mollainezhad, Halimeh; Salehi, Mansoor

    2016-01-01

    The immune system consists of cells, proteins, and other molecules that beside each other have a protective function for the host against foreign pathogens. One of the most essential features of the immune system is distinguishability between self- and non-self-cells. This function has an important role in limiting development and progression of cancer cells. In this case, the immune system can detect tumor cell as a foreign pathogen; so, it can be effective in elimination of tumors in their early phases of development. This ability of the immune system resulted in the development of a novel therapeutic field for cancer treatment using host immune components which is called cancer immunotherapy. The main purpose of cancer immunotherapy is stimulation of a strong immune response against the tumor cells that can result from expressing either the immune activator cytokines in the tumor area or gene-modified immune cells. Because of the problems of culturing and manipulating immune cells ex vivo, in recent years, embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) have been used as new sources for generation of modified immune stimulatory cells. In this paper, we reviewed some of the progressions in iPSC technology for cancer immunotherapy. PMID:27019752

  19. Thyroid dysfunction associated with immunotherapy for patients with cancer.

    Schwartzentruber, D J; White, D E; Zweig, M H; Weintraub, B D; Rosenberg, S A

    1991-12-01

    The authors performed a prospective study to evaluate thyroid dysfunction in 130 patients with cancer who were receiving interleukin-2 (IL-2)-based immunotherapy. Primary hypothyroidism was the most common abnormality, occurring in 12% of patients before, 38% during, and 23% after immunotherapy. Hyperthyroidism occurred in 1%, 4%, and 7% of patients at those time intervals. Among patients initially euthyroid (n = 111), primary hypothyroidism developed in 32% during and 14% after immunotherapy, persisting a median of 54 days. Three patients required levothyroxine. Hyperthyroidism developed in 2% of patients during immunotherapy and 6% after. Thyroid dysfunction was not a function of sex, diagnosis, type of treatment, or response to immunotherapy. Elevated titers of antithyroglobulin and antithyroid microsomal antibodies were detected after treatment in 9% and 7%, respectively, of all patients without prior antibody abnormalities and did not correlate with response to therapy. The high incidence of therapy-induced thyroid dysfunction suggests that thyroid function should be carefully monitored in all patients receiving IL-2-based immunotherapy. PMID:1933775

  20. Promiscuous activity of ER glucosidase II discovered through donor specificity analysis of UGGT

    Research highlights: → UGGT has a narrow donor specificity. → UGGT gave several non-natural high-mannose-type glycans. → G-II has a promiscuous activity as broad specificity hexosidase. -- Abstract: In glycoprotein quality control system in the endoplasmic reticulum (ER), UGGT (UDP-glucose:glycoprotein glucosyltransferase) and glucosidase II (G-II) play key roles. UGGT serves as a glycoprotein folding sensor by virtue of its unique specificity to glucosylate glycoproteins at incompletely folded stage. By using various UDP-Glc analogues, we first analyzed donor specificity of UGGT, which was proven to be rather narrow. However, marginal activity was observed with UDP-galactose and UDP-glucuronic acid as well as with 3-, 4- and 6-deoxy glucose analogues to give corresponding transfer products. Intriguingly, G-II smoothly converted all of them back to Man9GlcNAc2, providing an indication that G-II has a promiscuous activity as a broad specificity hexosidase.