WorldWideScience

Sample records for active rf pulse

  1. The Development of the Electrically Controlled High Power RF Switch and Its Application to Active RF Pulse Compression Systems

    In the past decades, there has been increasing interest in pulsed high power RF sources for building high-gradient high-energy particle accelerators. Passive RF pulse compression systems have been used in many applications to match the available RF sources to the loads requiring higher RF power but a shorter pulse. Theoretically, an active RF pulse compression system has the advantage of higher efficiency and compactness over the passive system. However, the key component for such a system an element capable of switching hundreds of megawatts of RF power in a short time compared to the compressed pulse width is still an open problem. In this dissertation, we present a switch module composed of an active window based on the bulk effects in semiconductor, a circular waveguide three-port network and a movable short plane, with the capability to adjust the S-parameters before and after switching. The RF properties of the switch module were analyzed. We give the scaling laws of the multiple-element switch systems, which allow the expansion of the system to a higher power level. We present a novel overmoded design for the circular waveguide three-port network and the associated circular-to-rectangular mode-converter. We also detail the design and synthesis process of this novel mode-converter. We demonstrate an electrically controlled ultra-fast high power X-band RF active window built with PIN diodes on high resistivity silicon. The window is capable of handling multi-megawatt RF power and can switch in 2-300ns with a 1000A current driver. A low power active pulse compression experiment was carried out with the switch module and a 375ns resonant delay line, obtaining 8 times compression gain with a compression ratio of 20.

  2. Ferroelectric Switch For An Active RF Pulse Compressor

    Principles and preliminary design for a microwave active pulse compressor using an electrically-controlled ferroelectric switch are presented. The design of an 11.4 GHz, 500 MW pulse compressor with a pulse width of about 40 nsec and a compression ratio of 10 is described. It is planned to test this compressor using the Omega-P/NRL X-band magnicon

  3. Optically Controlled 30 GHz High Power Active RF Phase Switch for the CTF3 RF Pulse Compressor

    Syratchev, Igor V; Kocharovsky, Vl; Kuzukov, S; Stepanov, A

    2005-01-01

    To achieve the high peak power level of 150 MW, necessary to demonstrate the full performance of the new CLIC accelerating structure, a 70 ns RF pulse compressor with resonant delay lines has been built and installed in the CTF3 test area. An active high power RF phase switch would make the operation of the whole 30 GHz power production complex more reliable and robust, with the potential to increase the compression efficiency. By itself, such a device can be used for many other applications. In this paper we propose a possible solution based on an over-moded RF circuit with active element made from a semiconductor controlled by a laser beam.

  4. X-Band Active-Passive Rf Pulse Compressor with Plasma Switches

    Vikharev, A.L.; Ivanov, O.A.; Gorbachev, A.M.; /Nizhnii Novgorod, IAP /Omega-P, New Haven; Lobaev, M.A.; Isaev, V.A.; /Nizhnii Novgorod, IAP; Tantawi, S.G.; Lewandowski, J.R.; /SLAC; Hirshfield, J.L.; /Omega-P, New Haven /Yale U.

    2012-04-27

    As proposed by SLAC, the efficiency of a pulse compressor of the SLED-II type could be increased by changing both the phase of the microwave source and the coupling coefficient of the delay line. In the existing SLED-II system at frequency 11.4 GHz, the resonant delay line is coupled with the source via an iris with a constant reflection coefficient. Replacement of the iris with an active component makes it possible to create an active SLED-II system. In this paper, the use of plasma switches as the active elements is discussed. Plasma switches have been developed and tested at a high-power level for production of flattop compressed pulses. Active switching of SLED-II has demonstrated a marked increase in efficiency (by 20%) and power gain (by 37%) as compared with passive switching. The active compressor has produced 173 ns rf flattop output pulses with a power of about 112 MW.

  5. Development of recirculating RF pulse compression system

    An RF pulse compression technique using recirculating resonant cavity is under development for accelerating energy reinforcement for KEK B-factory. Cavity design and fabrication of cold model are described. (author)

  6. Pulsed rf systems for large storage rings

    The possibility is considered that by using a pulsed rf system a substantial reduction can be made in the rf power requirement for the next generation of large storage rings. For a ring with a sufficiently large circumference, the time between bunch passages, T/sub b/, can exceed the cavity filling time, T/sub f/. As the ratio T/sub b//T/sub f/ increases, it is clear that at some point the average power requirement can be reduced by pulsing the rf to the cavities. In this mode of operation, the rf power is turned on a filling time or so before the arrival of a bunch and is switched off again at the time of bunch passage. There is no rf energy in the accelerating structure, and hence no power dissipation, for most of the period between bunches

  7. RF synchronized short pulse laser ion source

    Fuwa, Yasuhiro, E-mail: fuwa@kyticr.kuicr.kyoto-u.ac.jp; Iwashita, Yoshihisa; Tongu, Hiromu; Inoue, Shunsuke; Hashida, Masaki; Sakabe, Shuji [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Okamura, Masahiro [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Yamazaki, Atsushi [Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603 (Japan)

    2016-02-15

    A laser ion source that produces shortly bunched ion beam is proposed. In this ion source, ions are extracted immediately after the generation of laser plasma by an ultra-short pulse laser before its diffusion. The ions can be injected into radio frequency (RF) accelerating bucket of a subsequent accelerator. As a proof-of-principle experiment of the ion source, a RF resonator is prepared and H{sub 2} gas was ionized by a short pulse laser in the RF electric field in the resonator. As a result, bunched ions with 1.2 mA peak current and 5 ns pulse length were observed at the exit of RF resonator by a probe.

  8. High field rf superconductivity: to pulse or not to pulse

    Experimental data on the behavior of superconductors under the application of rf fields of amplitude comparable to their critical fields are sporadic and not always consistent. In many cases the field level at which breakdown in superconducting rf cavities should be expected has not been clearly established. Tests conducted with very short (approx. 1 μs) rf pulses indicate that in this mode of operation fields close to the critical values can be consistently reached in superconducting cavities without breakdown. The advantages and disadvantages of the pulsed method are discussed compared to those of the more standard continuous wave (cw) systems. 60 references

  9. High field RF superconductivity: to pulse or not to pulse

    Experimental data on the behavior of superconductors under the application of RF fields of amplitude comparable to their critical fields are sporadic and not always consistent. In many cases the field level at which breakdown in superconducting RF cavities should be expected has not been clearly established. Tests conducted with very short ( about 1 μs) RF pulses indicate that in this mode of operation fields close to the critical values can be consistently reached in superconducting cavities without breakdown. The advantages and disadvantages of the pulsed method are discussed compared to those of the more standard continuous wave (cw) systems

  10. Pulsed rf systems for large storage rings

    In this note we consider the possibility that by using a pulsed rf system, perhaps a system which operates at a somewhat higher frequency, a substantial reduction can be made in the rf power requirement for the next generation of large storage rings. A large effort over a period of many years has been expended in the attempt to increase the shunt impedance of rf structures for cw systems. Without turning to superconductivity only modest gains in the shunt impedance remain to be made by further detailed adjustments in cell shape. On the other hand, very little effort has as yet gone into the optimization of structures for pulsed systems. The structure parameters to be quoted in this report do not therefore necessarily represent values close to those for an optimum design. It is expected that the system designs set out here can be improved upon with further experimental and theoretical work. 11 refs., 3 figs

  11. Mass production report of C-band RF pulse compressor

    A C-band rf pulse compressor stores the rf power from a klystron and generates a compressed rf pulse that has higher peak power in order to obtain a higher acceleration gradient. The XFEL project at SPring-8 uses 64 pulse compressor units. In December 2009, we completed the fabrication and RF measurement of these units. A high-power rf test was conducted in the test stand at RIKEN. The peak output power from pulse compressor is 260 MW, and the acceleration gradient of the accelerating structure is achieved to be 40 MV/m. (author)

  12. Pulsed RF Plasma Source for Materials Processing

    Nasiruddin, Abutaher Mohammad

    A pulsed rf plasma source was evaluated for materials processing. A pulsed rf discharge of carbon tetrafluoride (CF_4), sulfur hexafluoride (SF _6), oxygen (O_2), or acetylene (C_2H_2 ) created the plasmas. The frequency and duration of the rf discharge were about 290 kHz and 30 musec, respectively. The repetition rate was 1 discharge per minute. Plasma diagnostics included Langmuir probes, a photodiode dectector, an optical multichannel analyzer (OMA), and a microwave interferometer. Langmuir probe measurements showed that at a position 67 cm away from the rf coil, CF_4 plasma arrived in separate packets. Plasma densities and electron temperatures at this position were in the range 4 times 10^{11} cm ^{-3} to 1.8 times 10^{13} cm ^{-3} and 2 eV to 8.3 eV, respectively. The OMA measurements identified neutral atomic fluorine in the CF_4 plasma and neutral atomic oxygen in the O_2 plasma. A plasma slab model of the microwave interferometer was applied to predict the interferometer response. The measured response was found to be almost identical to the predicted response. The influence of different reactor parameters on plasma parameters was studied. Metal barriers of different geometry were used to control the ratio of charged particles to atomic neutrals in the plasma chamber. Four plasma structures were identified: precursor plasma, shock induced plasma, driver plasma, and delayed glow plasma. Pulsed CF _4 and SF_6 plasmas were used to etch silicon dioxide (SiO_2 ) grown on silicon wafers. The SF_6 plasma etched SiO_2 at a rate of about 0.71 A per discharge and the CF_4 plasma deposited a non-uniform film (possibly polymer) instead of etching. The C_2H _2 plasma deposited plasma polymerized acetylene on a KBr pellet with a deposition rate of 127 A per discharge. An FT-IR spectrum of the deposited film showed that carbon -to-carbon double bonds as well as carbon-to-hydrogen bonds were present. This device can be used in plasma assisted deposition and/or synthesis

  13. RF pulse shape control using a recurrent algorithm for a FEL RF-gun cavity

    FEL application requires a very constant RF accelerating field during the pulse. A classical feedback regulation loop cannot be very efficient when pulse duration is just a few times longer than the filling time of the cavity as the loop gain cannot be high enough. For that reason, the authors decided to control the RF shape along the macropulse in a recurrent way: the pulse profile is corrected step by step by computation from the measurement of previous pulses and the desired shape. The control algorithm is given and its performances are presented

  14. UV pulse shaping for the photocathode RF gun

    Recently, manipulation with the drive laser plays a significant role in high brightness electron beam production by the photocathode RF gun. The article takes efforts on the temporal shaping of the driving laser for the photocathode RF gun. Method based on pulse stacking by birefringent crystal of α-BBO serials was tried to directly shape ultraviolet laser pulse. Using four pieces of α-BBO crystals to separate an input UV pulse with appropriate duration into 16 sub-pulses can form a ps-spaced pulse train suitable for coherent THz production. The group delay dispersion induced by the crystals was also carefully considered. To avoid beam deterioration by long path propagation, imaging relay of the shaped pulse was applied.

  15. UV pulse shaping for the photocathode RF gun

    Yan Lixin, E-mail: yanlx@mail.tsinghua.edu.cn [Accelerator Laboratory, Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle and Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084 (China); Key Laboratory of High Energy Radiation Imaging Fundamental Science for National Defense, Beijing 100084 (China); Du Qiang; Du Yingchao; Hua Jianfei; Huang Wenhui; Tang Chuanxiang [Accelerator Laboratory, Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle and Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084 (China); Key Laboratory of High Energy Radiation Imaging Fundamental Science for National Defense, Beijing 100084 (China)

    2011-05-01

    Recently, manipulation with the drive laser plays a significant role in high brightness electron beam production by the photocathode RF gun. The article takes efforts on the temporal shaping of the driving laser for the photocathode RF gun. Method based on pulse stacking by birefringent crystal of {alpha}-BBO serials was tried to directly shape ultraviolet laser pulse. Using four pieces of {alpha}-BBO crystals to separate an input UV pulse with appropriate duration into 16 sub-pulses can form a ps-spaced pulse train suitable for coherent THz production. The group delay dispersion induced by the crystals was also carefully considered. To avoid beam deterioration by long path propagation, imaging relay of the shaped pulse was applied.

  16. Theoretical Studies of the Output Pulse with Variation of the Pumping Pulse for RF Excited CO2 Pulsed Waveguide Laser

    A Rauf; ZHOU Wei; XIN Jian-guo

    2006-01-01

    The behavior of a RF-excited waveguide CO2 laser in the pulse regime is studied theoretically. The output pulse evolution is studied by applying three types of pulses namely the square, sine and the triangular ones as the excitation pulses. The frequency dependence behavior of the output pulse is also presented.

  17. Lasertron, a pulsed RF-source using laser triggered photocathode

    A new pulsed RF-source, 'Lasertron', are being developed as a possible RF-power source for future electron-positron linear colliders. In a series of systematic study, a prototype lasertron has been fabricated and tested. A peak power of 80 kW is attained at 2.856 GHz RF-frequency in 1-μs time duration. This paper describes the experimental results of the lasertron including the developments of the photocathode and the laser system. Test results are compared with the analysis of beam dynamics in the lasertron. (author)

  18. ASL: Comparison of presaturation and RF pulse optimization

    Holm, David; Sidaros, Karam

    2005-01-01

    In arterial spin labelling, the difference between the tag and control image is on the order of 1% of the equilibrium magnetization. A small offset between the images not related to perfusion, can therefore lead to large errors in the measured perfusion. One source of error is non-ideal RF pulses...... resulting in the inversion pulse affecting the acquired signal from the imaging area. This systematic error can be reduced by increasing the gap between the inversion and imaging regions, by using optimized inversion pulses e.g. FOCI1 or by saturating the signal from static tissue in the imaging area prior...... to acquiring the image. In this simulation study, the use of presaturation is compared with using optimized RF pulses. Furthermore the effect of using and optimizing crusher gradients is reported....

  19. Compact rf polarizer and its application to pulse compression systems

    Franzi, Matthew; Wang, Juwen; Dolgashev, Valery; Tantawi, Sami

    2016-06-01

    We present a novel method of reducing the footprint and increasing the efficiency of the modern multi-MW rf pulse compressor. This system utilizes a high power rf polarizer to couple two circular waveguide modes in quadrature to a single resonant cavity in order to replicate the response of a traditional two cavity configuration using a 4-port hybrid. The 11.424 GHz, high-Q, spherical cavity has a 5.875 cm radius and is fed by the circularly polarized signal to simultaneously excite the degenerate T E114 modes. The overcoupled spherical cavity has a Q0 of 9.4 ×104 and coupling factor (β ) of 7.69 thus providing a loaded quality factor QL of 1.06 ×104 with a fill time of 150 ns. Cold tests of the polarizer demonstrated good agreement with the numerical design, showing transmission of -0.05 dB and reflection back to the input rectangular WR 90 waveguide less than -40 dB over a 100 MHz bandwidth. This novel rf pulse compressor was tested at SLAC using XL-4 Klystron that provided rf power up to 32 MW and generated peak output power of 205 MW and an average of 135 MW over the discharged signal. A general network analysis of the polarizer is discussed as well as the design and high power test of the rf pulse compressor.

  20. Reducing the Heat Load on the LCLS 120 Hz RF Gun with RF Pulse Shaping

    The LCLS injector must operate at 120 Hz repetition frequency but to date the maximum operating frequency of an S-band rf gun has been 50 Hz. The high fields desired for the LCLS gun operation limit the repetition frequency due to thermal expansion causing rf detuning and field redistribution. One method of addressing the thermal loading problem is too reduce the power lost on the cavity walls by properly shaping the rf pulse incident on the gun. The idea is to reach the steady state field value in the gun faster than the time constant of the gun would allow when using a flat incident rf pulse. By increasing the incident power by about a factor of three and then decreasing the incident power when the field reaches the desired value in the gun, the field build up time can be decreased by more than a factor of three. Using this technique the heat load is also decreased by more than a factor of three. In addition the rf coupling coefficient can be increased from the typical critically coupled designs to an overcoupled design which also helps reduce the field build up time. Increasing the coupling coefficient from 1 to 2 reduces the heat load by another 25% and still limits the reflected power and coupling hole size to manageable levels

  1. RF modulation studies on the S band pulse compressor

    Shu, G; Pei, S; Xiao, O

    2015-01-01

    An S band SLED-type pulse compressor has been manufactured by IHEP to challenge the 100 MW maximum input power, which means the output peak power is about 500 MW at the phase reversal time. In order to deal with the RF breakdown problem, the dual side-wall coupling irises model was used. To further improve the reliability at very high power, amplitude modulation and phase modulation with flat-top output were taken into account. The RF modulation studies on an S-band SLED are presented in this paper. Furthermore, a method is developed by using the CST Microwave Studio transient solver to simulate the time response of the pulse compressor, which can be a verification of the modulate theory. In addition, the experimental setup was constructed and the flat-top output is obtained in the low power tests.

  2. Scaling of colliding-beam rings based on pulsed rf

    This note examines the cost-scaling of electron-positron storage rings based on pulsed RF systems. The first section uses the nomenclature of P. Wilson to obtain the basic relations between efficiency of power transfer and structure lengths required. The second section uses these properties to obtain the cost equations as a function of energy for an ''optimized'' machine. The optimized radius goes as the 1.7 power of the peak energy. 3 figs., 1 tab

  3. Recent Advances in RF Pulse Compressor Systems at SLAC

    We will review the design of the dual-mode X-band rf system proposed for the Next Linear Collider (NLC). Recent experimental data are presented. The system is to produce 400 ns pulses with power levels up to 600 MW. A proof-of-principle experiment is being constructed at SLAC. Four 50 MW klystrons will power a fully dual-moded resonance delay line pulse compression system. Both the transfer line and the delay lines are dual-moded. The modes carried by the transfer line are controlled by the rf phases of the different klystrons. The modes in the delay lines are controlled by a set of mode converters at the input and the end of each delay line. By manipulating the modes in the transfer line, one can achieve either no pulse compression or a pulse compression ratio of 4. The total output power will be 200 MW for 1.6 microseconds or 600 MW for 400 nanoseconds

  4. Plasma Switch for High-Power Active Pulse Compressor

    Hirshfield, Jay L. [Omega-P, Inc.

    2013-11-04

    Results are presented from experiments carried out at the Naval Research Laboratory X-band magnicon facility on a two-channel X-band active RF pulse compressor that employed plasma switches. Experimental evidence is shown to validate the basic goals of the project, which include: simultaneous firing of plasma switches in both channels of the RF circuit, operation of quasi-optical 3-dB hybrid directional coupler coherent superposition of RF compressed pulses from both channels, and operation of the X-band magnicon directly in the RF pulse compressor. For incident 1.2 ?s pulses in the range 0.63 ? 1.35 MW, compressed pulses of peak powers 5.7 ? 11.3 MW were obtained, corresponding to peak power gain ratios of 8.3 ? 9.3. Insufficient bakeout and conditioning of the high-power RF circuit prevented experiments from being conducted at higher RF input power levels.

  5. Superconducting RF activities at SACLAY

    In 1986, it was decided at Saclay to build a facility to study and test Niobium superconducting 1.5 GHz electron accelerating structures. Since then, several laboratories have been set up to master all the parts of the process: computer and copper modeling, R.F. surface preparation, cryogenic testing, helium handling, and R.F. testing at both room and liquid helium temperatures. All of these facilities are now in operation and numerous tests have been carried out on single-cell cavities with and without HOM couplers. In addition, first tests have been performed on a five-cell cavity, and superfluid thermometry has been developed on a rotating system. This paper gives the main results for these topics. 2 refs., 6 figs., 1 tab

  6. Analysis of polymers by pulsed RF glow discharge mass spectrometry

    Complete text of publication follows. Glow discharge spectroscopy is widely used for elemental analysis and depth profiling of various inorganic materials. Capacitively coupled RF glow discharges allow the analysis of non-conductive materials, and pulsed RF operation allows the analysis of thermally sensitive samples like glasses. However, the glow discharge technique has been rarely used for analysis of organic materials. The instrument recently developed by Tofwerk AG and Horiba Jobin Yvon combines the pulsed RF glow discharge with a fast time-of-flight mass spectrometer and can be used for simultaneous detection of a large number of mass peaks that occur with organic materials. The instrument can also be operated in negative ion mode thus eliminating some of the interferences that normally appear in positive ion mode due to the argon process gas and residual impurities. Furthermore, the negative ion detection mode offers greater sensitivity for halogens. The sputtering process and subsequent plasma reactions produce a unique mass spectrum of molecular fragments for each polymer and this fingerprint mass spectrum can be used for identifying polymers. We generated fingerprint mass spectra for a set of polymers (PTFE, CTFE, PE, PET, PMMA) and we demonstrated depth profiling of polymer multilayers on a silicon and glass substrates. Unlike in SIMS, the depth profiling with GD-MS is very quick, complete depth profiles can be recorded within minutes. The method can also be used to detect inorganic traces in polymers that are frequently present as contaminants or residuals of catalysts used during the fabrication process. Our measurements showed the presence of lead in polyethylene and antimony in PET commercial samples. We also measured zinc in ZnO-doped ethylene-propylene-diene rubbers. The authors acknowledge the financial support from the EC through the GLADNET Marie Curie Research Training Network (MRTN-CT-2006-035459) and the EMDPA project (STREP-NMP n deg 032202).

  7. A new RF tagging pulse based on the Frank poly-phase perfect sequence

    Laustsen, Christoffer; Greferath, Marcus; Ringgaard, Steffen;

    2014-01-01

    Radio frequency (RF) spectrally selective multiband pulses or tagging pulses, are applicable in a broad range of magnetic resonance methods. We demonstrate through simulations and experiments a new phase-modulation-only RF pulse for RF tagging based on the Frank poly-phase perfect sequence. In...... addition, we introduce an extended version with a WURST modulation (Frank-WURST). The new pulses exhibit interesting and flexible spin tagging properties and are easily implemented in existing MR sequences, where they can substitute slice-selective pulses with no additional alterations....

  8. Superconducting RF activities at Cornell University

    This paper outlines the RF superconductivity research and development work that has taken place at Cornell Laboratory of Nuclear Studies over the past years. The work that has been performed since the last RF superconductivity workshop is emphasized together with a discussion of the direction of future efforts. Past work is summarized first, focusing on research and development activities in the area of RF superconductivity. Superconducting TeV linear collider is then discussed focusing on the application of superconducting RF to a future TeV linear collider. Linear collider structure development is then described centering on the development of a simpler (thereby cheaper) structure for a TeV linear collider. B-factory with superconducting RF is outlined focusing on the formulation of a conceptual design for a B-factory. B-factory structure development is discussed in relation to the advancement in the capability of SC cavities to carry beam currents of several amperes necessary for a high luminosity storage ring. High gradients are discussed as the key to the realization of a high energy superconducting linac or a superconducting RF B-factory. (N.K.)

  9. Development of a dual-pulse RF driver for an S-band (= 2856 MHz) RF electron linear accelerator

    Cha, Sungsu; Kim, Yujong; Lee, Byeong-No; Lee, Byung Cheol; Cha, Hyungki; Ha, Jang Ho; Park, Hyung Dal; Lee, Seung Hyun; Kim, Hui Su; Buaphad, Pikad

    2016-04-01

    The radiation equipment research division of Korea Atomic Energy Research Institute has developed a Container Inspection System (CIS) using a Radio Frequency (RF) electron linear accelerator for port security. The primary purpose of the CIS is to detect nuclear materials and explosives, as well country-specific prohibited substances, e.g., smuggled. The CIS consists of a 9/6 MeV dualenergy electron linear accelerator for distinguishing between organic and inorganic materials. The accelerator consists of an electron gun, an RF accelerating structure, an RF driver, a modulator, electromagnets, a cooling system, a X-ray generating target, X-ray collimator, a detector, and a container moving system. The RF driver is an important part of the configuration because it is the RF power source: it supplies the RF power to the accelerating structure. A unique aspect of the RF driver is that it generates dual RF power to generate dual energy (9/6 MeV). The advantage of this RF driver is that it can allow the pulse width to vary and can be used to obtain a wide range of energy output, and pulse repetition rates up to 300 Hz. For this reason, 140 W (5 MW - 9 MeV) and 37 W (3.4 MW - 6 MeV) power outputs are available independently. A high power test for 20 minutes demonstrate that stable dual output powers can be generated. Moreover, the dual power can be applied to the accelerator which has stable accelerator operation. In this paper, the design, fabrication and high power test of the RF driver for the RF electron linear accelerator (linac) are presented.

  10. Design and characterization of an RF pulse train generator for large-signal analysis

    In this paper an RF pulse train signal is introduced that can serve as a reference signal for the phase calibration of the large-signal network analyser (LSNA) under modulated excitations. Hence, the pulse train generator is specifically designed to fulfil the requirements of such a calibration signal. The design and characterization of the RF signal generator are discussed in this work

  11. Development of C-band RF pulse compressor

    C-band RF compressor is a device that generates high peak RF-power by saving, and compressing the RF-power output from the klystron. In SCSS: The SPring-8 Compact SASE Source, Q-factor of C-band RF compressor is lower than theoretical figure. To improve Q-factor of C-band RF compressor, we changed the production method of C-band RF compressor from Electron Beam Welding (EBW) to the brazing in XFEL: X-ray Free Electron Lasers. As a result, Q-factor of C-band RF compressor has been improved, and it succeeded in the work improvement. (author)

  12. IOT RF Power Sources for Pulsed and CW Linacs

    Bohlen, H P

    2004-01-01

    For many years, klystrons have been the preferred RF power amplifiers for both pulsed and CW linacs at UHF and higher frequencies. Their properties have earned them that position. But in recent years in UHF terrestrial television transmitters the earlier predominant klystron has been replaced the Inductive Output Tube (IOT) because the IOT provides higher efficiency and, due to its excellent linearity, can handle the simultaneous amplification of both the vision and the sound signal. Its robustness and life expectancy equals that of a klystron, and it more than compensates its lower gain by a lower price and a smaller size. For linac operation, derivates of UHF TV IOTs, capable of up to 80 kW CW output power, are already available and operating. In L-Band, they are presently joined by recently developed 15 to 30 kW CW IOTs. HOM-IOTs are expected to extend the CW range in UHF to 1 MW and beyond. Pulsed operation of an IOT can be achieved without a high-voltage modulator. Since the beam current is grid-controll...

  13. RF-modulated pulsed fiber optic lidar transmitter for improved underwater imaging and communications

    Kimpel, F.; Chen, Y.; Fouron, J.-L.; Akbulut, M.; Engin, D.; Gupta, S.

    2011-03-01

    We present results on the design, development and initial testing of a fiber-optic based RF-modulated lidar transmitter operating at 532nm, for underwater imaging application in littoral waters. The design implementation is based on using state-of-the-art high-speed FPGAs, thereby producing optical waveforms with arbitrary digital-RF-modulated pulse patterns with carrier frequencies >= 3GHz, with a repetition rate of 0.5-1MHz, and with average powers >=5W (at 532nm). Use of RF-modulated bursts above 500MHz, instead of single optical pulse lidar detection, reduces the effect of volumetric backscatter for underwater imaging application, leading to an improved signal-to-noise-ratio (SNR) and contrast, for a given range. Initial underwater target detection tests conducted at Patuxent River Naval Air Station, MD, in a large water-tank facility, validates the advantages of this hybrid-lidar-radar (HLR) approach for improved underwater imaging, over a wide range of turbidity levels and both white and black targets. The compact, robust and power-efficient fiber laser architecture lends very well to lidar sensor integration on unmanned-underwater-vehicle (UUV) platforms. HLR transmitters can also provide similar advantages in active-sensing situations dominated by continuous backscatter, e.g. underwater communications, imaging through smoke and fire environment, rotor-craft landing in degraded visual environment, and pointing-tracking of active-EO sensors through fog.

  14. Status of 30 GHz High Power RF Pulse Compressor for CTF3

    Syratchev, I V

    2006-01-01

    A 70 ns 30 GHz pulse compressor with resonant delay lines has been built and installed in the CTF3 test area to obtain the high peak power of 150 MW necessary to demonstrate the full performance of the new CLIC accelerating structure. This pulse compressor will be commissioned at high power in 2006. Different methods to provide fast RF phase switching are discussed. The current status of the CTF3 RF pulse compressor commissioning and first results are presented

  15. The development of the RF-pulse for the low level SAR used by the MRI

    The Magnetic Resonance Imaging (MRI) is important diagnostic image equipment as a medical instrument which does not use the radiation. The signal acquisition of the MRI irradiates human body with electromagnetic wave ( radio frequency : RF-pulse), and it collects MR signal of the human body. The safety of RF-pulse used by MRI has been defined at specific absorption ratio (SAR) [Watt/Kg]. Recently, there was a case in which the SAR became high-level by a diversity of the imaging sequence for the MRI in the selection of the imaging procedure. The effect of the electromagnetic wave on human body had to be considered, when the SAR became high-level, and there was the necessity of the development of the RF-pulse for the low level SAR. We produced the RF-pulse of the SAR for the low level experimentally. The trial manufacture RF-pulse carried out the imaging test by MRI equipment used by the clinic actually. The radiofrequency pulse used in SAR type sequence for low level produced original functional type radiofrequency pulse based on the Fourier cosine development experimentally. Evaluation method of original functional type radiofrequency pulse were frequency characteristics and slice profile characteristics required by the numerical simulation analysis using Bloch equation. In the clinical equipment, the following were carried out. Slice thickness adjustment and optimization of the power condition degree of 90-180. Low SAR type pulse sequence using original functional type RF-pulse reduced RF watt [K W] to 25.6%. And, contrast lowering in the multi-slice imaging was suppressed at 12.5%. The improvement was able to realize SAR reduction and picture quality on imaging pulse sequence using the low SAR type RF-pulse. (author)

  16. Simulation study on ultrashort pulse electron generation in laser photocathode RF gun linac

    A new S-band femtosecond electron linear accelerator, which was constructed with a laser driven photocathode RF gun, a linear accelerator (linac) and a magnetic pulse compressor, was developed in Osaka University for the study of radiation-induced ultrafast physical and chemical reactions in femtosecond time regions. In order to generate the ultrashort pulse electrons, we simulated the electron generation in the RF gun with a picosecond Nd: YLF laser light by PARMELA code with space-charge effects. The energy modulation of the electron pulse in the linac was also calculated with the optimum of the RF phase. The pulse compression in the magnetic pulse compressor was simulated by Trace-3D code. A few tens femtosecond electron pulse was obtained by optimizing the magnetic fields in the magnetic pulse compressor. (author)

  17. Development of Indium Tin Oxide by Pulsed RF Sputtering Method for Solar Cell Application

    Partha Pratim Ray; Animesh Layek; Somnath Middya

    2012-01-01

    The present study has deposited Indium Tin Oxide (ITO) thin films by pulsed RF sputtering technique at low temperature for the application in solar cell. In stead of using RF magnetron sputtering we have used pulsed RF sputtering to deposit ITO thin film. We have been able to deposit about 90 nm thin ITO films with both low resistivity and high transmittance at low substrate temperature (100°C). The effect of Oxygen (O2) admixture to sputtering gas (Argon) and different pulse modes on the ele...

  18. High-Power Multimode X-Band RF Pulse Compression System for Future Linear Colliders

    Tantawi, S.G.; Nantista, C.D.; Dolgashev, V.A.; Pearson, C.; Nelson, J.; Jobe, K.; Chan, J.; Fant, K.; Frisch, J.; /SLAC; Atkinson, D.; /LLNL, Livermore

    2005-08-10

    We present a multimode X-band rf pulse compression system suitable for a TeV-scale electron-positron linear collider such as the Next Linear Collider (NLC). The NLC main linac operating frequency is 11.424 GHz. A single NLC rf unit is required to produce 400 ns pulses with 475 MW of peak power. Each rf unit should power approximately 5 m of accelerator structures. The rf unit design consists of two 75 MW klystrons and a dual-moded resonant-delay-line pulse compression system that produces a flat output pulse. The pulse compression system components are all overmoded, and most components are designed to operate with two modes. This approach allows high-power-handling capability while maintaining a compact, inexpensive system. We detail the design of this system and present experimental cold test results. We describe the design and performance of various components. The high-power testing of the system is verified using four 50 MW solenoid-focused klystrons run off a common 400 kV solid-state modulator. The system has produced 400 ns rf pulses of greater than 500 MW. We present the layout of our system, which includes a dual-moded transmission waveguide system and a dual-moded resonant line (SLED-II) pulse compression system. We also present data on the processing and operation of this system, which has set high-power records in coherent and phase controlled pulsed rf.

  19. Design and development of 50 V, 300 A pulse power supply for solid state RF amplifiers

    A 50 V, 300 A pulse power supply has been designed and developed to bias pulsed RF amplifiers for Spallation Neutron Source (SNS). This power supply has four pulse modules of 50 V, 75 A each, to drive four numbers of pulse RF amplifiers simultaneously. A capacitor bank is charged by a 50 V, 40 A, DC power supply operating in CCCV mode and energy stored in it is utilized for generating output pulses with the help of MOSFET switches employed in pulse modules. An external trigger pulse is used to synchronize the output pulses of all pulse modules within the pulse power supply, and it can also be utilized to synchronize several such pulse power supplies required for high power pulse application. The drive pulses of desired duty cycle and frequency are sent through gate driver circuits to MOSFET switches used in pulse modules. Adequate steps have been taken for minimizing the overshoot and ringing in the output pulse and have been presented in this paper. Efforts have been put to equalize the lengths of the wires used in the power path of each module of this power supply. The ON period of the output pulse can be varied from 500 μS to 2 mS with repetition frequency of 50 Hz. This pulse power supply was first tested on resistive dummy load at various duty cycle points. The rise time and fall time of the pulse was observed to be less than 5μS and pulse droop was observed to be less than 0.5% when each pulse module was tested up to 75 A peak current. The pulse power supply was also tested with solid state RF amplifier and test results are presented in this paper. (author)

  20. High transverse field muSR with pi/2-RF pulse spin control technique

    Kadono, R., E-mail: ryosuke.kadono@kek.j [Muon Science Laboratory, Institute for Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Department of Materials Structure Science, Graduate University for Advanced Studies, Tsukuba, Ibaraki 305-0801 (Japan); Satoh, K.H. [Department of Materials Structure Science, Graduate University for Advanced Studies, Tsukuba, Ibaraki 305-0801 (Japan); Koda, A. [Muon Science Laboratory, Institute for Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Department of Materials Structure Science, The Graduate University for Advanced Studies, Tsukuba, Ibaraki 305-0801 (Japan); Nishiyama, K. [Muon Science Laboratory, Institute for Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Mihara, M. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan)

    2009-04-15

    We report on the time-differential muSR measurement at 200 MHz (under a transverse field of 1.475 T) using a pulsed muon beam at KEK (deltaapprox =50ns). The initial muon spin direction is flipped by 90{sup 0} using a radio-frequency (RF) pulse immediately after muon implantation, which allows observation of muSR time spectra without limitation of beam pulse width delta. A prospect for the routine use of this pi/2-RF pulse technique at the J-PARC MUSE is discussed.

  1. Comparative study of structural and optical properties of pulsed and RF plasma polymerized aniline films

    Graphical abstract: - Highlights: • Pulse DC and RF plasma is used for synthesis of conducting polymer films. • Conjugated structure retention is better at optimum powers in both the processes. • Conjugated structure retention is better in case of RF plasma prepared films. • Band gap is lower in case of RF plasma prepared films at higher power. • Defect in pulse plasma prepared film is less than RF plasma prepared thin films. - Abstract: Plasma polymerization of aniline is carried out by means of continuous RF and pulsed DC glow discharge plasma in a common reactor at different applied powers. The discharge control variables are optimized for good quality film growth and the role of fragmentation of the molecular structure on the structural, optical, morphological and optophysical properties of the deposited plasma polymerized aniline (PPAni) layers is investigated. Retention of the conjugated structure is found to be prominent at optimum applied power to the plasma in both the continuous RF and pulsed DC polymerization techniques. Improvement in conjugated structure and chain length have been observed in both the continuous RF and pulse DC PPAni thin films with the increase in applied power to the plasma up to a certain limit of applied power when working pressure is fixed at 0.15 mbar. A decrease in optical bandgap with the increase in applied power to the plasma is observed in both the pulsed DC and RF PPAni thin films, but it is more significant in case of RF PPAni films. The plasma polymerized aniline thin films are found to emit photoluminescence due to band to band transition and defects generated in the structure

  2. Superconducting rf activities at Cornell University

    Development of rf superconductivity for high energy accelerators has been a robust activity at the Cornell Laboratory of Nuclear Studies (LNS) for many years. In order to realize the potential of rf superconductivity, a two-pronged approach has been followed. On the one hand accelerator applications were selected where the existing state-of-the art of superconducting rf is competitive with alternate technologies, then LNS engaged in a program to design, construct and test suitable superconducting cavities, culminating in a full system test in an operating accelerator. On the second front the discovery and invention of ideas, techniques and materials required to make superconducting rf devices approach the ideal in performance has been aggressively pursued. Starting with the development of superconducting cavities for high energy electron synchrotrons, the technology was extended to high energy e+e- storage rings. The LE5 cavity design has now been adopted for use in the Continuous Electron Beam Accelerator Facility (CEBAF). When completed, this project will be one of the largest applications of SRF technology, using 440 LE5 modules[4]. In the last two years, the cavity design and the technology have been transferred to industry and CEBAF. Cornell has tested the early industrial prototypes and cavity pairs. LNS has developed, in collaboration with CEBAF, designs and procedures for cavity pair and cryomodule assembly and testing. Advanced research for future electron accelerators is badly needed if particle physicists hope to expand the energy frontier. Superconducting cavity technology continues to offer attractive opportunities for further advances in achievable voltage at reasonable cost for future accelerators. For Nb, the full potential implies an order of magnitude increase over current capabilities. 20 references, 11 figures

  3. Development and deployment of CW and pulsed digital low level RF systems for accelerators at RRCAT

    Indus-2, a 2.5 GeV synchrotron radiation source has four 505.8 MHz RF stations to increase the electron beam energy and compensate the synchrotron radiation losses. Each RF station consists of RF cavity, high power RF amplifier and Low Level RF (LLRF) system operating in CW mode. LLRF control system is used to keep the amplitude and phase of the RF field stable in the RF cavity. The LLRF system of Indus-2 was based on analogue technology and had its inherent limitations. In last few years significant up gradation has been done in Indus-2 RF system that includes development, installation and commissioning of CW, Digital LLRF systems in all four RF stations. These Digital LLRF systems have replaced analogue LLRF systems resulting in improved performance of Indus-2 by providing better RF cavity field stability. Digital LLRF systems are more reliable, adaptable, reproducible, precise and immune to noise and drift errors. All these properties play important role in enhancing the quality and increasing the availability of the synchrotron radiation for the users. In this paper, we shall discuss the development, installation and commissioning of CW Digital LLRF systems in Indus-2 and development of pulsed Digital LLRF system for IRFEL. The results of their deployment and experience of optimization for Klystron and solid state RF amplifier will also be presented

  4. Long pulse H- beam extraction with a rf driven ion source on a high power level

    IPP Garching is investigating the applicability of rf driven negative ion sources for the neutral beam injection of International Thermonuclear Experimental Reactor. The setup of the tested source was improved to enable long pulses up to 100 kW rf power. The efficiency of negative ion production decreases at high power. The extracted H- currents as well as the symmetry of the plasma density close to the plasma grid and of the beam divergence depend on the magnetic filter field. The pulse duration is limited by the increase in coextracted electrons, which depends on the rf power and the caesium conditions on the plasma grid.

  5. A Generalized Estimate of the SLR B Polynomial Ripples for RF Pulse Generation.

    Raddi; Klose

    1998-06-01

    The nonlinearity of the parameter relations for the Shinnar-Le Roux RF pulse design algorithm has induced to performa classification based on the features of the slice profile dueto the RF pulse. In the present paper a generalization ofthe relation between the ripple amplitudes of the SLR B polynomial and those of the slice profile is given. It allows generation of RF pulses with better slice profiles and slightly reduced energy, avoiding any a priori classification. The effect of our estimation has been shown by generating several pulses by generalized estimation of B polynomial ripples. In addition, their behavior has been compared to that of analogous pulses generated by means of the classification just mentioned. Copyright 1998 Academic Press. PMID:9632551

  6. Medium Power 352 MHZ solid state pulsed RF amplifiers for the CERN LINAC4 Project

    Broere, J; Gómez Martínez, Y; Rossi, M

    2011-01-01

    Economic, modular and highly linear pulsed RF amplifiers have recently been developed to be used for the three buncher cavities in the CERN Linac4. The amplifiers are water-cooled and can provide up to 33 kW pulsed RF Power, 1.5 ms pulse length and 50 Hz repetition rate. Furthermore a 60 kW unit is under construction to provide the required RF Power for the debuncher cavity. The concept is based on 1.2 kW RF power modules using the latest 6th generation LDMOS technology. For integration into the CERN control environment the amplifiers have an internal industrial controller, which will provide easy control and extended diagnostic functions. This paper describes the construction, performance, including linearity, phase stability and EMC compliance tests

  7. Development of High Power X-Band Semiconductor RF Switch for Pulse Compression Systems of Future Linear Colliders

    We describe development of semiconductor X-band high-power RF switches. The target applications are high-power RF pulse compression systems for future linear colliders. We describe the design methodology of the architecture of the whole switch systems. We present the scaling law that governs the relation between power handling capability and number of elements. We designed and built several active waveguide windows for the active element. The waveguide window is a silicon wafer with an array of four hundred PIN/NIP diodes covering the surface of the window. This waveguide window is located in an over-moded TE01 circular waveguide. The results of high power RF measurements of the active waveguide window are presented. The experiment is performed at power levels of a few megawatts at X-band

  8. Electron Beam Energy Compensation by Controlling RF Pulse Shape

    Kii, T; Kusukame, K; Masuda, K; Nakai, Y; Ohgaki, H; Yamazaki, T; Yoshikawa, K; Zen, H

    2005-01-01

    We have studied on improvement of electron beam macropulse properties from a thermionic RF gun. Though a thermionic RF gun has many salient features, there is a serious problem that back-bombardment effect worsens quality of the beam. To reduce beam energy degradation by this effect, we tried to feed non-flat RF power into the gun. As a result, we successfully obtained about 1.5 times longer macropulse and two times larger total charge per macropulse. On the other hand, we calculated transient evolution of RF power considering non-constant beam loading. The beam loading is evaluated from time evolution of cathode temperature, by use of one dimensional heat conduction model and electron trajectories' calculations by a particle simulation code. Then we found good agreement between the experimental and calculation results. Furthermore, with the same way, we studied the electron beam output dependence on the cathode radius.

  9. Repetitively pulsed cryogenically cooled quasi-sealed-off slab RF discharge first-overtone CO laser

    Ionin, A. A.; Kozlov, A. Yu.; Rulev, O. A.; Seleznev, L. V.; Sinitsyn, D. V.

    2016-07-01

    A slab first-overtone CO laser of improved design excited by repetitively pulsed RF discharge was researched and developed. Its quasi-sealed-off operation appeared to be possible only by using active gas mixture composition with extremely high content of oxygen — up to 50 % with respect to CO concentration. Average output power of the first-overtone CO laser came up to ~2 W with the efficiency of ~2 %. The laser spectrum obtained by using three sets of output couplers consisted of more than 100 vibrational-rotational spectral lines in 28 vibrational first-overtone bands of CO molecule within 2.55÷3.90 μm wavelength range. The number of laser radiation pulses which could be produced by the laser in sealed-off mode of operation (without gas mixture renovation) reached ~5×105 at the averaged output power near its maximum, and ~106 at lower (near its half-maximum) averaged output power. Special features of laser radiation temporal behavior were discussed. Under repetitively pulse pump with repetition rate from 300 up to 7500 Hz, a temporal profile of the CO laser radiation changed from the train of time-separated laser pulses with high peak power to quasi-CW mode of operation.

  10. Improving excitation and inversion accuracy by optimized RF pulse using genetic algorithm.

    Pang, Yong; Shen, Gary X

    2007-05-01

    In this study, a Genetic Algorithm (GA) is introduced to optimize the multidimensional spatial selective RF pulse to reduce the passband and stopband errors of excitation profile while limiting the transition width. This method is also used to diminish the nonlinearity effect of the Bloch equation for large tip angle excitation pulse design. The RF pulse is first designed by the k-space method and then coded into float strings to form an initial population. GA operators are then applied to this population to perform evolution, which is an optimization process. In this process, an evaluation function defined as the sum of the reciprocal of passband and stopband errors is used to assess the fitness value of each individual, so as to find the best individual in current generation. It is possible to optimize the RF pulse after a number of iterations. Simulation results of the Bloch equation show that in a 90 degrees excitation pulse design, compared with the k-space method, a GA-optimized RF pulse can reduce the passband and stopband error by 12% and 3%, respectively, while maintaining the transition width within 2 cm (about 12% of the whole 32 cm FOV). In a 180 degrees inversion pulse design, the passband error can be reduced by 43%, while the transition is also kept at 2 cm in a whole 32 cm FOV. PMID:17379555

  11. Design and application of robust rf pulses for toroid cavity NMR spectroscopy

    Skinner, Thomas E; Woelk, Klaus; Gershenzon, Naum I; Glaser, Steffen J

    2010-01-01

    We present robust radio frequency (rf) pulses that tolerate a factor of six inhomogeneity in the B1 field, significantly enhancing the potential of toroid cavity resonators for NMR spectroscopic applications. Both point-to-point (PP) and unitary rotation (UR) pulses were optimized for excitation, inversion, and refocusing using the gradient ascent pulse engineering (GRAPE) algorithm based on optimal control theory. In addition, the optimized parameterization (OP) algorithm applied to the adiabatic BIR-4 UR pulse scheme enabled ultra-short (50 microsec) pulses with acceptable performance compared to standard implementations. OP also discovered a new class of non-adiabatic pulse shapes with improved performance within the BIR-4 framework. However, none of the OP-BIR4 pulses are competitive with the more generally optimized UR pulses. The advantages of the new pulses are demonstrated in simulations and experiments. In particular, the DQF COSY result presented here represents the first implementation of 2D NMR sp...

  12. Response of a coupled two-spin system to on-resonance amplitude modulated RF pulses

    Zhou, Jinyuan; Ye, Chaohui; Sanctuary, B. C.

    A weakly scalar-coupled two-spin system subjected to two amplitude modulated RF pulses on exact resonance is treated by means of the rotation operator approach. The theory presented here enables coherence evolution to be evaluated by the routine procedure and to be expressed in analytical form. The evolution behaviour from the equilibrium state is discussed in some detail. It is shown that the application of rotation matrix and quaternion elements clarifies evolution expressions. The numerical calculation is performed by way of quaternions. Examples of BURP (band-selective, uniform response, purephase) and sinc-shaped RF pulses are given and the case of time-symmetrical RF pulses is analysed further.

  13. 3 GHz Barrel Open Cavity (BOC) RF pulse compressor for CTF3

    Brown, Peter

    2004-01-01

    A prototype 3 GHz RF pulse compressor, based on a single 'Barrel shaped Open Cavity' (BOC), was designed, manufactured and successfully high power tested into a RF load. It is now planned to install five such devices in the CTF3 drive beam linac currently being built at CERN. A specific feature of the BOC is the so-called "whispering gallery" mode which has a high internal Q-factor. Contrary to other cavity-based pulse compressors, such as SLED or LIPS, with this mode one can operate in a resonant rotating wave regime. Consequently, when used as an RF pulse compressor a single BOC is sufficient, whereas the LIPS and SLED schemes require two cavities and a 3-dB hybrid. A short description of the BOC and the results of high power operation specific to the CTF3 drive beam linac are presented.

  14. RF-sheath assessment of ICRF antenna geometry for long pulses

    Monitoring powered ion cyclotron resonance frequency (ICRF) antennas in magnetic fusion devices has revealed localized modifications of the plasma edge in the antenna shadow, most of them probably related to an enhanced polarization of the scrape-off layer (SOL) through radio-frequency (RF) sheath rectification. Although tolerable on present short RF pulses, sheaths should be minimized, as they may hinder proper operation of steady-state antennas and other subsystems connected magnetically to them, such as lower hybrid grills. As a first step towards mitigating RF sheaths in the design of future antennas, the present paper analyses the spatial structure of sheath potential maps in their vicinity, in relation with the 3D topology of RF near fields and the geometry of antenna front faces. Various combinations of poloidal radiating straps are first considered, and results are confronted to those inferred from transmission line theory. The dependence of sheath potentials on RF voltages or RF currents is studied. The role of RF near-field symmetries along tilted field lines is stressed to interpret such effects as that of strap phasing. A generalization of the 'dipole effect' is proposed. With similar arguments, the behavior of Faraday screen corners, where hot spots concentrate on Tore-Supra (TS), is then studied. The merits of aligning the antenna structure with the tilted magnetic field are thus discussed. The effect of switching from TS (high RF voltage near corners) to ITER-like electrical configurations of the straps (high voltage near equatorial plane) is also analyzed. (authors)

  15. Development of 325 MHz 1.8 kW pulse RF power amplifier

    With the advancement in the RF MOSFET fabrication technologies newer and newer devices are available with improved performance. This progress is guiding the path to develop solid state power amplifiers (SSPA) for medium to high power RF applications. Researchers and developers around the world, are now developing high power solid state RF sources, in place of old tube based (Klystron or Tetrodes like) sources. The advantages of solid state are extreme modularity, high reliability, graceful degradation, indigenous development, better signal quality, safe operation, minimum time to repair and high life span. In this view, a pulsed RF power amplifier has been developed which works at 325 MHz frequency and can deliver peak power up to 1.8 kW. It utilizes two push-pull RF MOSFETs each about 1 kW of power ratting. The frequency and pulse parameters have been decided on the basis of its targeted application in upcoming H- Linac and SNS projects. A number of such amplifiers (in hundreds of numbers) will be built and utilized in the development of final solid state RF power source. (author)

  16. Tuning of the RF pulse compressor in the C-band accelerator at SACLA

    The main accelerator of SACLA (SPring-8 Angstrom Compact Free Electron Laser) is the C-band (5712 MHz) accelerator. In order to obtain high accelerating gradient (typ. 35 MV/m), an RF pulse compressor (SLED) is used. Precise tuning of resonant frequency is necessary to maximize power efficiency, to reduce the RF reflection, and to improve the stability. Mechanical tuners of both cavities were adjusted to meet the target value of 5712 ±0.05 MHz and VSWR < 1.15. After the high power RF conditioning, the resonant frequencies were finally tuned to be 5712 ±0.02 MHz by controlling the temperature of cooling water. In order to suppress the 'spiky' waveform in the RF pulse compressor output, which causes the HV breakdown, an amplitude modulation was applied. It effectively reduced 20% of the peak power compared to the simple square wave, conserving the effective acceleration energy gain. The beam energy multiplication factor was about 2, which is consistent with the designed value. We confirmed the operational performance of the RF pulse compressor, which enables us to obtain designed accelerating gradient of 35 MV/m. (author)

  17. 1 MW, 352.2 MHz, CW and Pulsed RF test stand

    A 1 MW, 352.2 MHz, RF test stand based on Thales make TH 2089 klystron amplifier is being developed at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore for characterization and qualification of RF components, cavities and related subsystems. Provision to vary RF power from 50 kW to 1 MW with adequate flexibility for testing wide range of HV components, RF components and cavities is incorporated in this test stand. The paper presents a brief detail of various power supplies like high voltage cathode bias power supply, modulating anode power supply, filament power supply, electromagnet power supplies and ion pump power supplies along with their interconnections for biasing TH 2089 klystron amplifier. A digital control and interlock system is being developed to realize proper sequence of operation of various power supplies and to monitor the status of crucial parameters in this test set up. This RF test stand will be a unique national facility, capable of providing both CW and pulse RF power for realizing reliable RF power sources for various projects including the development of high energy proton linac under ADSS program of the Department of Atomic Energy. (author)

  18. Composite RF pulses for B1+-insensitive volume excitation at 7 Tesla

    Moore, Jay; Jankiewicz, Marcin; Zeng, Huairen; Anderson, Adam W.; Gore, John C.

    2010-07-01

    A new class of composite RF pulses that perform well in the presence of specific ranges of B0 and B1+ inhomogeneities has been designed for volume (non-selective) excitation in MRI. The pulses consist of numerous (˜100) short (˜10 μs) block-shaped sub-pulses each with different phases and amplitudes derived from numerical optimization. Optimized pulses are designed to be effective over a specific range of frequency offsets and transmit field variations and are thus implementable regardless of field strength, transmit coil configuration, or the subject-specific spatial distribution of the static and RF fields. In the context of 7 T human brain imaging, both simulations and phantom experiments indicate that optimized pulses result in similar on-resonance flip-angle uniformity as BIR-4 pulses but with the advantages of superior off-resonance stability and significantly reduced average power. The pulse design techniques presented here are thus well-suited for practical application in ultra-high field human MRI.

  19. Controlled Fluxes of Silicon Nanoparticles By Extraction from a Pulsed RF Plasma

    Girshick, Steven; Larriba-Andaluz, Carlos

    2015-09-01

    Deposition of silicon nanoparticles onto substrates may be a means of growing monocrystalline silicon films at low substrate temperature if the nanoparticles' impact energy and size can be controlled to provide melting or amorphization of the nanoparticle without damaging the underlying film. In order to explore conditions that could produce such controlled fluxes of nanoparticles we numerically model a pulsed RF argon-silane plasma, with a positive DC bias applied during the afterglow phase of each pulse so as to extract and accelerate negatively charged silicon particles. Operating parameters studied include pulse on time, pulse off time, DC bias voltage, RF voltage and pressure. This set of parameters is tested to find conditions under which one can achieve a periodic steady state with repeatable pulse-to-pulse conditions that maximize silicon film growth rates while maintaining nanoparticle impact energies in the range 0.5-2.0 eV/atom. We utilize a previously developed 1-D dusty plasma numerical model, modified to consider pulsing and applied substrate bias. This model self-consistently solves for the coupled behavior of plasma, chemistry, and aerosol. Results show that it is possible by this method to produce nanoparticle fluxes that are tailored with respect to their distribution of impact energies and mass deposition rates. Partially supported by US Dept. of Energy Office of Fusion Energy Science (DE-SC0001939), US National Science Foundation (CHE-124752), and Minnesota Supercomputing Institute.

  20. Concurrent recording of RF pulses and gradient fields - comprehensive field monitoring for MRI.

    Brunner, David O; Dietrich, Benjamin E; Çavuşoğlu, Mustafa; Wilm, Bertram J; Schmid, Thomas; Gross, Simon; Barmet, Christoph; Pruessmann, Klaas P

    2016-09-01

    Reconstruction of MRI data is based on exact knowledge of all magnetic field dynamics, since the interplay of RF and gradient pulses generates the signal, defines the contrast and forms the basis of resolution in spatial and spectral dimensions. Deviations caused by various sources, such as system imperfections, delays, eddy currents, drifts or externally induced fields, can therefore critically limit the accuracy of MRI examinations. This is true especially at ultra-high fields, because many error terms scale with the main field strength, and higher available SNR renders even smaller errors relevant. Higher baseline field also often requires higher acquisition bandwidths and faster signal encoding, increasing hardware demands and the severity of many types of hardware imperfection. To address field imperfections comprehensively, in this work we propose to expand the concept of magnetic field monitoring to also encompass the recording of RF fields. In this way, all dynamic magnetic fields relevant for spin evolution are covered, including low- to audio-frequency magnetic fields as produced by main magnets, gradients and shim systems, as well as RF pulses generated with single- and multiple-channel transmission systems. The proposed approach permits field measurements concurrently with actual MRI procedures on a strict common time base. The combined measurement is achieved with an array of miniaturized field probes that measure low- to audio-frequency fields via (19) F NMR and simultaneously pick up RF pulses in the MRI system's (1) H transmit band. Field recordings can form the basis of system calibration, retrospective correction of imaging data or closed-loop feedback correction, all of which hold potential to render MRI more robust and relax hardware requirements. The proposed approach is demonstrated for a range of imaging methods performed on a 7 T human MRI system, including accelerated multiple-channel RF pulses. Copyright © 2015 John Wiley & Sons, Ltd

  1. Development of ultra-violet femtosecond pulse radiolysis system based on a photocathode rf electron-gun linac

    Two important radical species of alkyl radical (R·) and hydroxyl radicals (OH·) in nuclear fuel reprocessing or radiation cancer therapy have absorption bands around the 250 nm in Ultra-violet region. Despite the OH· and R· are important active species in the radiation chemistry, since those absorption coefficients are small and lack of time resolution of pulse radiolysis, a direct study of the reaction dynamics has been difficult until now. In order to elucidate the formation and reaction with solutes, measurable wavelength was extended to ultraviolet of the femtosecond pulse radiolysis system using a photocathode RF gun accelerator. Problems of ultraviolet femtosecond pulse radiolysis measurement, the time dependent behaviors of R· and OH· are reported. (author)

  2. The Next Linear Collider Test Accelerator's RF Pulse Compression And Transmission Systems

    The overmoded rf transmission and pulsed power compression system for SLAC's Next Linear Collider (NLC) program requires a high degree of transmission efficiency and mode purity to be economically feasible. To this end, a number of new, high power components and systems have been developed at X-band, which transmit rf power in the low loss, circular TE01 mode with negligible mode conversion. In addition, a highly efficient SLED-II* pulse compressor has been developed and successfully tested at high power. The system produced a 200 MW, 250 ns wide pulse with a near-perfect flat-top. In this paper we describe the design and test results of the high power pulse compression system using SLED-II. The NLC rf systems use low loss highly over-moded circular waveguides operating in the TE01 mode. The efficiency of the systems is sensitive to the mode purity of the mode excited inside these guides. We used the so called flower petal mode transducer (2) to excite the TE01 mode. This type of mode transducer is efficient, compact and capable of handling high levels of power. To make more efficient systems, we modified this device by adding several mode selective chokes to act as mode purifiers. To manipulate the rf signals we used these modified mode converters to convert back and forth between over-moded circular waveguides and single-moded WR90 rectangular waveguides. Then, we used the relatively simple rectangular waveguide components to do the actual manipulation of rf signals. For example, two mode transducers and a mitered rectangular waveguide bend comprise a 90 degree bend. Also, a magic tee and four mode transducers would comprise a four-port-hybrid, etc. We will discuss the efficiency of an rf transport system based on the above methodology. We also used this methodology in building the SLEDII pulse compression system. At SLAC we built 4 of these pulse systems. In this paper we describe the SLEDII system and compare the performance of these 4 systems at SLAC. We

  3. A high-charge and short-pulse RF photocathode gun for wake-field acceleration

    Gai, W.; Li, X.; Conde, M.; Power, J.; Schoessow, P.

    1998-02-01

    In this paper we present a design report on 1-1/2 cell, L-Band RF photocathode gun which is capable of generating and accelerating electron beams with peak currents >10 kA. We address several critical issues of high-current RF photoinjectors such as longitudinal space charge effect, and transverse emittance growth. Unlike conventional short electron pulse generation, this design does not require magnetic pulse compression. Based on numerical simulations using SUPERFISH and PARMELA, this design will produce 100 nC beam at 18 MeV with r.m.s. bunch length 1.25 mm and normalized transverse emittance 108 mm mrad. Applications of this source beam for wake-field acceleration are also discussed.

  4. High-power RF pulse compression with SLED-II at SLAC

    Increasing the peak rf power available from X-band microwave tubes by means of rf pulse compression is envisioned as a way of achieving the few-hundred-megawatt power levels needed to drive a next-generation linear collider with 50-100 MW klystrons. SLED-II is a method of pulse compression similar in principal to the SLED method currently in use on the SLC and the LEP injector linac. It utilizes low-loss resonant delay lines in place of the storage cavities of the latter. This produces the added benefit of a flat-topped output pulse. At SLAC, the authors have designed and constructed a prototype SLED-II pulse-compression system which operates in the circulator TE01 mode. It includes a circular-guide 3-dB coupler and other novel components. Low-power and initial high-power tests have been made, yielding a peak power multiplication of 4.8 at an efficiency of 40%. The system will be used in providing power for structure tests in the ASTA (Accelerator Structures Test Area) bunker. An upgraded second prototype will have improved efficiency and will serve as a model for the pulse compression system of the NLCTA (Next Linear Collider Test Accelerator)

  5. Very long pulse high-RF power test of a lower hybrid frequency antenna module

    Goniche, M.; Brossaud, J.; Barral, C.; Berger-By, G.; Bibet, Ph.; Poli, S.; Rey, G.; Tonon, G. [Association Euratom-CEA, Centre d`Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Seki, M.; Obara, K. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1994-03-01

    Outgassing, induced by very long RF waves injection at high power density was studied in a module, able to be used for a lower hybrid frequency antenna. Good RF properties of the module are reported, however, resonance phenomena with strong absorption of RF power (15%) was observed at high temperature (T>400 deg C). A large outgassing data base is provided by the 75 shots cumulating 27 hours of RF injection. The comparison with previous experiments (Tore Supra and TdV prototype modules) confirm the effect of baking and results are consistent. Outgassing increases exponentially with -1/T, and a desorption model with an activation energy Ed {approx} 0.35 eV fits the data up to 400 deg C. In order to design vacuum pumping system for large lower hybrid frequency antenna, outgassing rates are given for different working temperatures. (author). 11 refs., 55 figs.

  6. Pulsed RF discharges, glow and filamentary mode at atmospheric pressure in argon

    The properties of a pulsed radio frequency capacitive discharge are investigated at atmospheric pressure in argon. The discharge can operate in two different modes: a homogeneous glow discharge or turn into filaments. By pulsing the 13.56 MHz generator both the filamentary and the glow modes can be selected depending on the pulse width and period. For a 5 μs pulse width (∼70 RF cycles in the pulse), short pulse periods (less than 100 μs) result in a filamentary discharge while long pulse periods (greater than 1 ms) result in a glow discharge. Optical emission spectroscopy and power measurements were performed to estimate the plasma temperature and density. Water vapour was introduced to the discharge as a source of hydrogen and the Stark broadening of the Balmer Hβ line was measured to allow the plasma density to be estimated as 1015 cm-3 in the filamentary mode. The estimation of the glow mode density was based on power balance and yielded a density of 5 x 1011 cm-3. Emission line ratio measurements coupled with the Saha equation resulted in an estimate of electron temperature of approximatively 1.3 eV for the glow mode and 1.7 eV for the filaments. Using the glow mode at a duty cycle of 10% is effective in decreasing the hydrophobicity of polymer films while keeping the temperature low

  7. SU-E-T-558: An Exploratory RF Pulse Sequence Technique Used to Induce Differential Heating in Tissues Containing Iron Oxide Nanoparticles for a Possible Hyperthermic Adjuvant Effect to Radiotherapy

    Yee, S; Ionascu, D; Wilson, G [William Beaumont Hospital, Royal Oak, MI (United States); Thapa, R [Oakland University, Rochester, MI (United States)

    2014-06-01

    Purpose: In pre-clinical trials of cancer thermotherapy, hyperthermia can be induced by exposing localized super-paramagnetic iron oxide nanoparticles (SPION) to external alternating magnetic fields generated by a solenoid electrical circuit (Zhao et al., Theranostics 2012). Alternatively, an RF pulse technique implemented in a regular MRI system is explored as a possible hyperthermia induction technique . Methods: A new thermal RF pulse sequence was developed using the Philips pulse programming tool for the 3T Ingenia MRI system to provide a sinusoidal magnetic field alternating at the frequency of 1.43 kHz (multiples of sine waves of 0.7 ms period) before each excitation RF pulse for imaging. The duration of each thermal RF pulse routine was approximately 3 min, and the thermal pulse was applied multiple times to a phantom that contains different concentrations (high, medium and low) of SPION samples. After applying the thermal pulse each time, the temperature change was estimated by measuring the phase changes in the T1-weighted inversion-prepared multi-shot turbo field echo (TFE) sequence (TR=5.5 ms, TE=2.7 ms, inversion time=200 ms). Results: The phase values and relative differences among them changed as the number of applied thermal RF pulses increased. After the 5th application of the thermal RF pulse, the relative phase differences increased significantly, suggesting the thermal activation of the SPION. The increase of the phase difference was approximately linear with the SPION concentration. Conclusion: A sinusoidal RF pulse from the MRI system may be utilized to selectively thermally activate tissues containing super-paramagnetic iron oxide nanoparticles.

  8. SU-E-T-558: An Exploratory RF Pulse Sequence Technique Used to Induce Differential Heating in Tissues Containing Iron Oxide Nanoparticles for a Possible Hyperthermic Adjuvant Effect to Radiotherapy

    Purpose: In pre-clinical trials of cancer thermotherapy, hyperthermia can be induced by exposing localized super-paramagnetic iron oxide nanoparticles (SPION) to external alternating magnetic fields generated by a solenoid electrical circuit (Zhao et al., Theranostics 2012). Alternatively, an RF pulse technique implemented in a regular MRI system is explored as a possible hyperthermia induction technique . Methods: A new thermal RF pulse sequence was developed using the Philips pulse programming tool for the 3T Ingenia MRI system to provide a sinusoidal magnetic field alternating at the frequency of 1.43 kHz (multiples of sine waves of 0.7 ms period) before each excitation RF pulse for imaging. The duration of each thermal RF pulse routine was approximately 3 min, and the thermal pulse was applied multiple times to a phantom that contains different concentrations (high, medium and low) of SPION samples. After applying the thermal pulse each time, the temperature change was estimated by measuring the phase changes in the T1-weighted inversion-prepared multi-shot turbo field echo (TFE) sequence (TR=5.5 ms, TE=2.7 ms, inversion time=200 ms). Results: The phase values and relative differences among them changed as the number of applied thermal RF pulses increased. After the 5th application of the thermal RF pulse, the relative phase differences increased significantly, suggesting the thermal activation of the SPION. The increase of the phase difference was approximately linear with the SPION concentration. Conclusion: A sinusoidal RF pulse from the MRI system may be utilized to selectively thermally activate tissues containing super-paramagnetic iron oxide nanoparticles

  9. Measurement of voltage and current in continuous and pulsed rf and dc glow discharges

    Electrical measurements are an important tool for the characterisation of glow discharges and have proved to be useful for a variety of needs in fundamental studies and as control parameter. Therefore, extensive hardware developments and studies of current-voltage (I-U) characteristics in continuous and pulsed, dc and rf modes have been made [1] and will be presented together with new results. In continuous dc mode, the I-U curves are non-linear and may be characterised by a threshold voltage U0 and saturation current Imax (both cathode material and pressure dependent). On the other hand P-U curves are to a large extent linear and very similar in the continuous rf mode [2]. The ionic part of time resolved I-U curves of rf discharges however shows almost a linear behaviour and the capacitive component is small. This led to the assumption that gas heating is responsible for the non-linearity between I and U in continuous dc discharges. Consistent with this assumption, a dependence of the I-U curves of pulsed discharges on the duty cycle was found. The comparison of the curves with those at low duty cycle (cold) led to a rough estimation of the gas temperature. Further investigation and cooperation with modelling groups is needed and planned to explain these results.

  10. Characterization of stationary and pulsed inductively coupled RF discharges for plasma sterilization

    Sterilization of bio-medical materials using radio frequency (RF) excited inductively coupled plasmas (ICPs) has been investigated. A double ICP has been developed and studied for homogenous treatment of three-dimensional objects. Sterilization is achieved through a combination of ultraviolet light, ion bombardment and radical treatment. For temperature sensitive materials, the process temperature is a crucial parameter. Pulsing of the plasma reduces the time average heat strain and also provides additional control of the various sterilization mechanisms. Certain aspects of pulsed plasmas are, however, not yet fully understood. Phase resolved optical emission spectroscopy and time resolved ion energy analysis illustrate that a pulsed ICP ignites capacitively before reaching a stable inductive mode. Time resolved investigations of the post-discharge, after switching off the RF power, show that the plasma boundary sheath in front of a substrate does not fully collapse for the case of hydrogen discharges. This is explained by electron heating through super-elastic collisions with vibrationally excited hydrogen molecules

  11. Measurement of electron density transients in pulsed RF discharges using a frequency boxcar hairpin probe

    Peterson, David; Coumou, David; Shannon, Steven

    2015-11-01

    Time resolved electron density measurements in pulsed RF discharges are shown using a hairpin resonance probe using low cost electronics, on par with normal Langmuir probe boxcar mode operation. Time resolution of 10 microseconds has been demonstrated. A signal generator produces the applied microwave frequency; the reflected waveform is passed through a directional coupler and filtered to remove the RF component. The signal is heterodyned with a frequency mixer and rectified to produce a DC signal read by an oscilloscope. At certain points during the pulse, the plasma density is such that the applied frequency is the same as the resonance frequency of the probe/plasma system, creating reflected signal dips. The applied microwave frequency is shifted in small increments in a frequency boxcar routine to determine the density as a function of time. A dc sheath correction is applied for the grounded probe, producing low cost, high fidelity, and highly reproducible electron density measurements. The measurements are made in both inductively and capacitively coupled systems, the latter driven by multiple frequencies where a subset of these frequencies are pulsed. Measurements are compared to previous published results, time resolved OES, and in-line measurement of plasma impedance. This work is supported by the NSF DOE partnership on plasma science, the NSF GOALI program, and MKS Instruments.

  12. Characterization of stationary and pulsed inductively coupled RF discharges for plasma sterilization

    Gans, T.; Osiac, M.; O'Connell, D.; Kadetov, V. A.; Czarnetzki, U.; Schwarz-Selinger, T.; Halfmann, H.; Awakowicz, P.

    2005-05-01

    Sterilization of bio-medical materials using radio frequency (RF) excited inductively coupled plasmas (ICPs) has been investigated. A double ICP has been developed and studied for homogenous treatment of three-dimensional objects. Sterilization is achieved through a combination of ultraviolet light, ion bombardment and radical treatment. For temperature sensitive materials, the process temperature is a crucial parameter. Pulsing of the plasma reduces the time average heat strain and also provides additional control of the various sterilization mechanisms. Certain aspects of pulsed plasmas are, however, not yet fully understood. Phase resolved optical emission spectroscopy and time resolved ion energy analysis illustrate that a pulsed ICP ignites capacitively before reaching a stable inductive mode. Time resolved investigations of the post-discharge, after switching off the RF power, show that the plasma boundary sheath in front of a substrate does not fully collapse for the case of hydrogen discharges. This is explained by electron heating through super-elastic collisions with vibrationally excited hydrogen molecules.

  13. Realization of 50-way RF cavity combiner for planar triode based pulse power source at 325 MHz

    Using Planar triodes, it is proposed to realize pulse RF power system which is capable of delivering few 100 kW RF power at a design frequency in the frequency range of 300-1500 MHz; realizing its advantage of high degree of amplitude and phase stability, linearity and capability of withstanding high VSWR. Within its power and operating frequency range, Planar triode based system offers advantage over both klystron/lOT as well as solid-state devices based RF power system. Unlike klystron/lOT based, planar triode is operated with comparatively moderate anode voltage- in the range of 5-10 kV-thus avoiding issues related to high voltage operation; and unlike solid state devices, it require much less supply current to handle and simple thermal management system. For that a 50-way cavity combiner was realized at 325 MHz which can combine RF output available from 5 kW planar triode based RF amplifiers to deliver more than 200 kW pulse RF power system at its design frequency. The combining structure is configured in form of a cylindrical cavity which is coupled to planar triode based amplifiers by means of door-knob type coupler positioned around its periphery at a radial distance decided by required value of coupling factor. For combined RF output, E-field coupling is realized in form of a capacitive stub which provide required coupling between E-probe and the cavity. The overall structure is designed and simulated for the required performance in terms of phase and amplitude imbalance caused due to manufacturing tolerances, insertion losses, isolation between combing ports etc. In the paper design of combining structure is discussed and a scheme is presented to realize pulse RF power source which is capable of delivering few 100 kW pulse RF power at 325 MHz. (author)

  14. RF study and simulations of a C-band Barrel Open Cavity (BOC) pulse compressor

    Shu, Guan; He, Xiang

    2014-01-01

    This paper focuses on the RF study of a C-band(5712MHz) BOC pulse compressor. The operating principle of BOC is presented and the technical specifications are determined. The main components of BOC such as the cavity, the matching waveguide, the coupling slots and the tuning rings were numerically simulated by 3-D codes software HFSS and CST Microwave Studio(MWS). The "whispering gallery" mode TM6,1,1 with an unload Q of 100000 was chosen to oscillate in the cavity. An energy multiplication factor of 1.99 and a peak power gain of 6.34 were achieved theoretically.

  15. Compact RF-driven, pulsed ion sources for neutron tube applications

    Compact radio-frequency (RF) driven ion sources are being developed in the Lawrence Berkeley National Laboratory (LBNL) for sealed-accelerator-tube neutron generator applications. This portable generator is projected to produce a neutron flux in the range of 109 to 1010 D-T neutrons per second. A 2 MHz RF-driven ion source designed for a 5-cm-diameter neutron tube has been developed. Typical operating parameters include repetition rates up to 100 pps, with pulse widths between 10 and 80 μs and source operating pressure as low as 4 m Torr. By using a computer designed 100 keV accelerator column, peak extractable hydrogen current exceeding 1 A has been from a 3-mm-diameter aperture, together with H+ yields over 94% have been achieved. An RF impedance matching network has also been successfully miniaturized to ∼5 cm diameter and tested. For low duty factor operations, the ion source and matching circuit do not require any cooling. (author)

  16. Dynamics of pulsed reactive RF discharges in response to thin film deposition

    Sikimić, B.; Stefanović, I.; Denysenko, I. B.; Winter, J.; Sadeghi, N.

    2014-04-01

    A power-modulated radio-frequency (f = 13.56 MHz) argon plasma supplied by reactive acetylene to deposit an amorphous hydrocarbon film on the electrodes is studied. The effects of gradual film deposition on electron density, electron temperature, argon metastable Arm(3P2) density, and dc-bias voltage are investigated. The time evolutions of plasma parameters during a pulsing cycle are studied as a function of the applied RF power and the thickness of the deposited film. Analytical estimations show a slower expansion of the sheath size and a slower decay of the ion flux after film deposition on the electrodes. The observed changes in the plasma parameters during the power-on and afterglow phases of the pulsed plasma can be correlated with the presence of impurities desorbed from the chamber walls in the discharge volume.

  17. Generation of femtosecond electron single pulse using laser photocathode RF gun

    A new laser photocathode RF electron gun was installed in the second linac of the S-band twin linac system of Nuclear Engineering Research Laboratory(NERL) of University of Tokyo in August in 1997. Since then, the behavior of the new gun has been tested and the characteristic parameters have been evaluated. At the exit of the gun, the energy is 4.7 MeV, the charge per bunch 1 nC, the pulse width is 10 ps(FWHM), respectively, for 6 MW RF power supply from a klystron. The electron bunch is accelerated up to 17 MeV. The horizontal normalized emittance is 1 π mm.mrad. Then, the bunch is compressed to be 440 fs(FWHM) with 0.35 nC by the chicane-type magnetic pulse compressor. The gun is planned to be used for femtosecond X-ray generation via the head-on Thomson scattering and laser wakefield acceleration in 1998. (author)

  18. Development Of A Compact Photo-injector With RF-focusing Lens For Short Pulse Electron Source Application

    Grabenhofer, Alexander; Eaton, Douglas W.; Shin, Young-Min

    2014-01-01

    For development of compact ultrafast electron source system, we are currently designing a short-pulse RF-gun with RF focusing structure by means of a series of comprehensive modeling analysis processes. EM design of a 2.5 cell resonant cavity with input coupler, acceleration dynamics of photo-emitted electron bunch, EM design of RF-lens with input coupler, and phasespace analysis of focused electron bunch are systematically examined with multi-physics simulators. All the features of the 2.856...

  19. Hybrid Simulation of Duty Cycle Influences on Pulse Modulated RF SiH4/Ar Discharge

    Wang, Xifeng; Song, Yuanhong; Zhao, Shuxia; Dai, Zhongling; Wang, Younian

    2016-04-01

    A one-dimensional fluid/Monte-Carlo (MC) hybrid model is developed to describe capacitively coupled SiH4/Ar discharge, in which the lower electrode is applied by a RF source and pulse modulated by a square-wave, to investigate the modulation effects of the pulse duty cycle on the discharge mechanism. An electron Monte Carlo simulation is used to calculate the electron energy distribution as a function of position and time phase. Rate coefficients in chemical reactions can then be obtained and transferred to the fluid model for the calculation of electron temperature and densities of different species, such as electrons, ions, and radicals. The simulation results show that, the electron energy distribution f(ɛ) is modulated evidently within a pulse cycle, with its tail extending to higher energies during the power-on period, while shrinking back promptly in the afterglow period. Thus, the rate coefficients could be controlled during the discharge, resulting in modulation of the species composition on the substrate compared with continuous excitation. Meanwhile, more negative ions, like SiH‑3 and SiH‑2, may escape to the electrodes owing to the collapse of ambipolar electric fields, which is beneficial to films deposition. Pulse modulation is thus expected to provide additional methods to customize the plasma densities and components. supported by National Natural Science Foundation of China (No. 11275038)

  20. Plasma deposition of fluorocarbon thin films from c-C4F8 using pulsed and continuous rf excitation

    Fluorocarbon films of varying composition have been deposited from pulsed and continuous plasmas of octafluorocyclobutane (c-C4F8) and c-C4F8/Ar. Continuous plasma deposition rates are a very weak function of applied rf power (may be within experimental error). Pulsed plasma deposition rates are significantly lower than continuous plasma rates at the same average power. The pulsed plasma deposition rates can be attributed almost entirely to the plasma on time during the pulse, but there is a slight dependence on pulse off time. Ar addition affects the deposition rates through a residence time effect, but also affects the deposition chemistry by reducing the degree of C4F8 dissociation, resulting in more fluorinated films. Refractive indices for all films increase approximately linearly with applied rf power, with the pulsed plasma-deposited films falling on the same curve. Carbon 1s x-ray photoelectron spectroscopy shows that the continuous plasma-deposited films become increasingly fluorinated as the rf power is decreased. Pulsed plasma films are more fluorinated than similar average power continuous plasma films: 44% CF2 for 10/50 (400 W on time, 67 W average power) versus 37% for 50 W continuous. Literature and preliminary gas-phase measurements suggest that the C4F8 is not fully dissociated in either plasma system and that larger species in the gas phase may play a significant role in the deposition mechanisms

  1. Reduction of field emission in superconducting cavities with high power pulsed RF

    A systematic study is presented of the effects of pulsed high power RF processing (HPP) as a method of reducing field emission (FE) in superconducting radio frequency (SRF) cavities to reach higher accelerating gradients for future particle accelerators. The processing apparatus was built to provide up to 150 kW peak RF power to 3 GHz cavities, for pulse lengths from 200 μs to 1 ms. Single-cell and nine-cell cavities were tested extensively. The thermal conductivity of the niobium for these cavities was made as high as possible to ensure stability against thermal breakdown of superconductivity. HPP proves to be a highly successful method of reducing FE loading in nine-cell SRF cavities. Attainable continuous wave (CW) fields increase by as much as 80% from their pre-HPP limits. The CW accelerating field achieved with nine-cell cavities improved from 8-15 MV/m with HPP to 14-20 MV/m. The benefits are stable with subsequent exposure to dust-free air. More importantly, HPP also proves effective against new field emission subsequently introduced by cold and warm vacuum ''accidents'' which admitted ''dirty'' air into the cavities. Clear correlations are obtained linking FE reduction with the maximum surface electric field attained during processing. In single cells the maximums reached were Epeak=72 MV/m and Hpeak=1660 Oe. Thermal breakdown, initiated by accompanying high surface magnetic fields is the dominant limitation on the attainable fields for pulsed processing, as well as for final CW and long pulse operation. To prove that the surface magnetic field rather than the surface electric fields is the limitation to HPP effectiveness, a special two-cell cavity with a reduced magnetic to electric field ratio is successfully tested. During HPP, pulsed fields reach Epeak=113 MV/m (Hpeak=1600 Oe) and subsequent CW low power measurement reached Epeak=100 MV/m, the highest CW field ever measured in a superconducting accelerator cavity. ((orig.))

  2. Superconducting RF Deflecting Cavity Design and Prototype for Short X-ray Pulse Generation

    Deflecting RF cavities are proposed to be used in generating short x-ray pulses (on ∼1-picosecond order) at the Advanced Photon Source (APS) at Argonne National Laboratory (ANL) using a novel scheme by Zholents. To meet the required deflecting voltage, impedance budget from higher order, lower order and the same order modes (HOM, LOM and SOM) of the APS storage ring, extensive deflecting cavity design studies have been conducted with numerical simulations and cavity prototypes. In this paper, we report recent progress on a single cell S-band (2.8-GHz) superconducting deflecting cavity design with waveguide damping. A copper and a niobium prototype cavity were fabricated and tested, respectively to benchmark the cavity and damping designs. A new damping scheme has been proposed which provides stronger damping to both HOM and LOM by directly coupling to a damping waveguide on the cavity equator.

  3. A synthetic pulse method for excitation of RF-accelerator structures

    Caspers, Fritz

    1986-01-01

    It is proposed to excite RF-cavity accelerator structures in a phaselocked multifrequency mode of operation. The purpose is to obtain high accelerating gradients with smaller average losses than in the conventional single-frequency operation scheme. In general the resonant frequencies are not harmonically related to each other. Assuming finite Q-values one can always find a frequency fo such that within a 3 dB bandwidth all resonances considered are at integer multiples of f0. For the gap voltage one obtains in this case a periodic pulse in the time domain with T = 1/f0. Increasing the peak gap voltage by adding (exciting) further higher modes with equal CW power on each mode (equal shout impedances assumed) results in power losses proportional to $V_{peak}$ instead of $P_{loss} ~ V_{peak}^2$ for single-frequency operation.

  4. Power combining scheme for 50 kW pulsed solid state RF power amplifier unit at 325 MHz

    Development of 50 kW pulsed Solid State RF Power amplifier (SSPA) unit at 325 MHz is under progress at RRCAT for our Spallation Neutron Source (SNS) program. RF Power combining is mandatory requirement for SSPA, as output of solid state RF devices is moderate. As a part of this system, 16-Way radial power combiner, 16-Way radial power divider and 100 kW (pulsed RF : pulse width-2 ms, repetition rate-50 Hz) 2-Way power combiner have been successfully designed, developed and characterized at 325 MHz. 16-Way power combiner have output at 3 1/8' inch rigid coaxial line and 16 inputs at N-type connector while 16-Way Power divider has input and 16 outputs at N- type connector. 100 kW 2-Way power combiner have two inputs and output at 3 1/8 inch rigid coaxial line. It is proposed to achieve 50 kW RF output by combining 32 nos. of previously developed pulsed 1.8 kW solid state RF amplifier modules with the help of two nos. of 16-Way radial power combiners, power dividers and one no. of 100 kW 2-Way RF power combiner. Measured return loss at 325 MHz using Rohde and Schwarz make vector network analyzer for 16-Way power combiners and 16-Way power dividers were found to be better than 23 dB and 20 dB respectively. Amplitude and phase variation of 16 nos. of coupling coefficients between input and output were limited to ± 0.1 dB and ±l1° respectively for both the structures. Return loss for 100 kW pulsed RF 2-Way power combiner at 325 MHz has been measured better than 20 dB and amplitude and phase symmetry of both inputs were better than to ± 0.03 dB and ± 0.50° respectively. (author)

  5. Transmit Array Spatial Encoding (TRASE) using broadband WURST pulses for RF spatial encoding in inhomogeneous B0 fields

    Stockmann, Jason P.; Cooley, Clarissa Z.; Guerin, Bastien; Rosen, Matthew S.; Wald, Lawrence L.

    2016-07-01

    Transmit Array Spatial Encoding (TRASE) is a promising new MR encoding method that uses transmit RF (B1+) phase gradients over the field-of-view to perform Fourier spatial encoding. Acquisitions use a spin echo train in which the transmit coil phase ramp is modulated to jump from one k-space point to the next. This work extends the capability of TRASE by using swept radiofrequency (RF) pulses and a quadratic phase removal method to enable TRASE where it is arguably most needed: portable imaging systems with inhomogeneous B0 fields. The approach is particularly well-suited for portable MR scanners where (a) inhomogeneous B0 fields are a byproduct of lightweight magnet design, (b) heavy, high power-consumption gradient coil systems are a limitation to siting the system in non-conventional locations and (c) synergy with the use of spin echo trains is required to overcome intra-voxel dephasing (short T2∗) in the inhomogeneous field. TRASE does not use a modulation of the B0 field to encode, but it does suffer from secondary effects of the inhomogeneous field. Severe artifacts arise in TRASE images due to off-resonance effects when the RF pulse does not cover the full bandwidth of spin resonances in the imaging FOV. Thus, for highly inhomogeneous B0 fields, the peak RF power needed for high-bandwidth refocusing hard pulses becomes very expensive, in addition to requiring RF coils that can withstand thousands of volts. In this work, we use swept WURST RF pulse echo trains to achieve TRASE imaging in a highly inhomogeneous magnetic field (ΔB0/B0 ∼ 0.33% over the sample). By accurately exciting and refocusing the full bandwidth of spins, the WURST pulses eliminate artifacts caused by the limited bandwidth of the hard pulses used in previous realizations of TRASE imaging. We introduce a correction scheme to remove the unwanted quadratic phase modulation caused by the swept pulses. Also, a phase alternation scheme is employed to mitigate artifacts caused by mixture of

  6. Development of long pulse RF heating and current drive for H-mode scenarios with metallic walls in WEST

    Ekedahl, Annika, E-mail: annika.ekedahl@cea.fr; Bourdelle, Clarisse; Artaud, Jean-François; Bernard, Jean-Michel; Bufferand, Hugo; Colas, Laurent; Decker, Joan; Delpech, Léna; Dumont, Rémi; Goniche, Marc; Helou, Walid; Hillairet, Julien; Lombard, Gilles; Magne, Roland; Mollard, Patrick; Nardon, Eric; Peysson, Yves; Tsitrone, Emmanuelle [CEA, IRFM, F-13108 Saint Paul-lez-Durance (France)

    2015-12-10

    The longstanding expertise of the Tore Supra team in long pulse heating and current drive with radiofrequency (RF) systems will now be exploited in the WEST device (tungsten-W Environment in Steady-state Tokamak) [1]. WEST will allow an integrated long pulse tokamak programme for testing W-divertor components at ITER-relevant heat flux (10-20 MW/m{sup 2}), while treating crucial aspects for ITER-operation, such as avoidance of W-accumulation in long discharges, monitoring and control of heat fluxes on the metallic plasma facing components (PFCs) and coupling of RF waves in H-mode plasmas. Scenario modelling using the METIS-code shows that ITER-relevant heat fluxes are compatible with the sustainment of long pulse H-mode discharges, at high power (up to 15 MW / 30 s at I{sub P} = 0.8 MA) or high fluence (up to 10 MW / 1000 s at I{sub P} = 0.6 MA) [2], all based on RF heating and current drive using Ion Cyclotron Resonance Heating (ICRH) and Lower Hybrid Current Drive (LHCD). This paper gives a description of the ICRH and LHCD systems in WEST, together with the modelling of the power deposition of the RF waves in the WEST-scenarios.

  7. Spectroscopic evaluation of a magnetically boosted pulsed RF-GD for time of flight mass spectrometry

    Complete text of publication follows. Glow discharge spectroscopies have gained importance as analytical techniques for direct solid analysis due to the current requirements for the rapid characterization of new materials. Different approaches to enhance the glow discharge analytical capabilities have been studied. The application of a magnetic field to the GD (in particular parallel to the sample surface) enlarges the electron paths in their way to the anode increasing the probability of collisions. As a result an increase in the signal intensities of the species in the plasma has been observed. In this work a compact magnetically boosted radiofrequency glow discharge is constructed and evaluated coupled to a time of flight mass spectrometer. The pulsed-rf-GD-TOF-MS system consist of a radiofrequency glow discharge bay unit (Horiba Jobin Yvon, France) with a modified Grimm type GD source including a flow tube (EMDPA, Switzerland) and a fast orthogonal time of flight mass spectrometer (Tofwerk, Switzerland) with a micro channel plate (MCP) detector. In this work conductive and non-conductive samples have been analyzed at different plasma conditions (pressure and applied power). Moreover the effects of using different pulse widths and duty cycles have been investigated. Different magnetic field strengths have been used in order to improve the signal intensities and the effects of applying axial and transversal magnetic fields have been studied. P. Vega acknowledges the Ph.D. fellowship from FICYT (Government of Asturias, Spain). J. Pisonero acknowledges from the 'Ramon y Cajal' Research Program of the Ministry of Sciencie and Innovation of Spain. Part of this work was supported by FP6 Contract STREP-NMP, No. 032202 of the European Union.

  8. Relativistic acceleration and retardation effects on photoemission of intense electron short pulses, in RF-FEL photoinjectors

    In high-power free electron lasers, self-field effects in the electron beam are often the most important phenomenon on which the beam quality depends. These effects are generally conceived as space-charge effects, and described by a Poisson equation in a beam frame. In RF-FEL photoinjectors, the electrons of the intense short pulse produced by laser irradiation are submitted, just after their photoemission, to such a strong acceleration that relativistic acceleration and retardation effects are discussed, from the rigorous calculation of the Lienard-Wiechert velocity- and acceleration electric and magnetic fields, as a function of RF-electric field and beam parameters. The beam pulse is assumed to be axisymmetric, with a constant photoemitted current density. Consequences for the maximum current density that can be extracted are considered (the 'self-field limit,' a name more appropriate than 'space-charge limit' for the present conditions where electro-dynamic phenomena play an important role)

  9. Possibility to Use Low Temperature Pulsed RF Sputtered Indium Tin Oxide for the Fabrication of Organic Solar Cell

    Partha Pratim Ray; Animesh Layek; Somnath Middya

    2013-01-01

    In this work we have used pulsed RF sputtering method to deposit indium tin oxide (ITO) for the fabrication of P3HT:PCBM based bulk heterojunction polymer solar cell. We have deposited ITO at low substrate temperature (100°C) and for different pulse modes. Oxygen was used as an admixture to the sputtering gas argon, and the percentage was varied from 0 to 6%. During deposition, plasma was studied by optical emission spectroscopy (OES) method. For our present range of deposition conditions low...

  10. Tilt optimized flip uniformity (TOFU) RF pulse for uniform image contrast at low specific absorption rate levels in combination with a surface breast coil at 7 Tesla

    van Kalleveen, Irene M. L.; Boer, VO; Luijten, Peter R.; Klomp, DWJ

    2015-01-01

    Purpose: Going to ultrahigh field MRI (e. g., 7 Tesla [ T]), the nonuniformity of the B_1 field and the increased radiofrequency (RF) power deposition become challenging. While surface coils improve the power efficiency in B_1, its field remains nonuniform. In this work, an RF pulse was designed tha

  11. Synchronization of femtosecond laser pulses and RF signal by using a Sagnac loop Mach-Zehnder interferometer

    For future advanced energy recovery linac to generate femtosecond X-ray pulses, precise synchronization between sub-systems is highly desired. Typical synchronization methods based on direct photo detection are limited by detector nonlinearities, which lead to amplitude-to-phase conversion and introduce excess timing jitter. In this paper, we experimentally demonstrate an optical-electronic mixed phase lock loop to synchronize the RF signal and laser pulses. In this synchronism setup, a Sagnac-loop Mach-Zehnder interferometer has been used to suppress the excess noise of direct photo detection. This scheme transfers the timing information into a intensity imbalance between the two output beams of the interferometer. As experimental demonstration, the single side-band phase noise of RF signal from the VCO is locked to the mode-locked Ti:Sapphire laser in the spectrum covering the range of 10 kHz to 1 MHz. This synchronization scheme greatly reduces the phase noise and timing jitter of the RF signal. (author)

  12. Development Of A Compact Photo-injector With RF-focusing Lens For Short Pulse Electron Source Application

    Grabenhofer, Alexander; Shin, Young-Min

    2014-01-01

    For development of compact ultrafast electron source system, we are currently designing a short-pulse RF-gun with RF focusing structure by means of a series of comprehensive modeling analysis processes. EM design of a 2.5 cell resonant cavity with input coupler, acceleration dynamics of photo-emitted electron bunch, EM design of RF-lens with input coupler, and phasespace analysis of focused electron bunch are systematically examined with multi-physics simulators. All the features of the 2.856 GHz cavity geometry were precisely engineered for acceleration energies ranging from 100 keV to 500 keV (safety limited) to be powered by our 5 MW S-band klystron. The klystron (Thales TH2163) and modulator system (ScandiNova K1 turnkey system) were successfully installed and tested. Performance tests of the klystron system show peak output power > 5 MW, as per operation specifications. At the quasi-relativistic energies, the electron source is capable of generating 100fC -- 1 pC electron bunch with pulse duration close ...

  13. Hairpin resonator probes with frequency domain boxcar operation for time resolved density measurements in pulsed RF discharges

    Peterson, David; Kummerer, Theresa; Coumou, David; Shannon, Steven

    2014-10-01

    In this work, microsecond time resolved electron density measurements in pulsed RF discharges are shown using an automated hairpin resonance probe using relatively low cost electronics, on par with normal Langmuir probe boxcar mode operation. A low cost signal generator is used to produce the applied microwave frequency and the reflected waveform is filtered to remove the RF component. The signal is then heterodyned with a simple frequency mixer to produce a dc signal read by an oscilloscope to determine the electron density. The applied microwave frequency is automatically shifted in small increments in a frequency boxcar routine through a Labview™program to determine the resonant frequency. A simple dc sheath correction is then easily applied since the probe is fully floating, producing low cost, high fidelity, and highly reproducible electron density measurements. The measurements are made in a capacitively coupled, parallel plate configuration in a 13.56 MHz, 50--200 W RF discharge pulsed at 500 Hz, 200 W, 50% duty cycle. The gas input ranged from 50--100 mTorr pure Ar or with 5--10% O/He mixtures.

  14. Femtosecond Synchronisation of Ultrashort Pulse Lasers to a Microwave RF Clock

    Winter, Axel; Knabbe, Ernst-Axel; Simonov, Anatoli; Simrock, Stefan; Steffen, Bernd; Sytov, Sergei

    2005-01-01

    A precise synchronization between the laser repetition rate and the linac-RF is mandatory for electro-optic sampling or pump-probe experiments. The level of stability is usually determined by measuring of the spectral noise power density of the feedback signal when the system is locked. However, an independent measurement is needed to confirm this. In this paper, we present an approach exploiting electronic techniques to synchronize a TiSa laser to the RF of the DESY VUVFEL with sub-50 fs stability. The remaining time jitter is measured by an RF monitoring system independent of the locking PLL.

  15. Ultra-fast pulse radiolysis system combined with a laser photocathode RF gun and a femtosecond laser

    Muroya, Y; Watanabe, T; Wu, G; Kobayashi, T; Yoshii, K; Ueda, T; Uesaka, M; Katsumura, Y

    2002-01-01

    In order to study the early events in radiation physics and chemistry, two kinds of new pulse radiolysis systems with higher time resolution based on pump-and-probe method have been developed at the Nuclear Engineering Research Laboratory, the University of Tokyo. The first one, a few picosecond (2 ps at FWHM) electron beam (pump) from an 18 MeV S-band Linac using a laser photocathode RF gun (BNL/KEK/SHI type: GUN IV) was operated with a femtosecond laser pulse (100 fs at FWHM), which also acted as the analyzing light (probe). The synchronization precision between the pump and the probe was 1.7 ps (rms). In a 1.0 cm sample cell, a time resolution of 12 ps was achieved. The second one, a picosecond (4 ps at FWHM) electron pulse from a 35 MeV S-band Linac employing a conventional thermionic gun with a sub-harmonic buncher, was synchronized with the femtosecond laser pulse, with a synchronization jitter of 2.8 ps (rms). A time resolution of 22 ps was obtained with 2 cm cell. This makes it possible to do the puls...

  16. Joint design of kT-points trajectories and RF pulses under explicit SAR and power constraints in the large flip angle regime

    Gras, Vincent; Luong, Michel; Amadon, Alexis; Boulant, Nicolas

    2015-12-01

    In Magnetic Resonance Imaging at ultra-high field, kT-points radiofrequency pulses combined with parallel transmission are a promising technique to mitigate the B1 field inhomogeneity in 3D imaging applications. The optimization of the corresponding k-space trajectory for its slice-selective counterpart, i.e. the spokes method, has been shown in various studies to be very valuable but also dependent on the hardware and specific absorption rate constraints. Due to the larger number of degrees of freedom than for spokes excitations, joint design techniques based on the fine discretization (gridding) of the parameter space become hardly tractable for kT-points pulses. In this article, we thus investigate the simultaneous optimization of the 3D blipped k-space trajectory and of the kT-points RF pulses, using a magnitude least squares cost-function, with explicit constraints and in the large flip angle regime. A second-order active-set algorithm is employed due to its demonstrated success and robustness in similar problems. An analysis of global optimality and of the structure of the returned trajectories is proposed. The improvement provided by the k-space trajectory optimization is validated experimentally by measuring the flip angle on a spherical water phantom at 7T and via Quantum Process Tomography.

  17. Superconducting RF cavity activities for the MAX project

    Within the framework of the MAX Project associated with the detailed study of the MYRRHA Facility linac, two tasks relating to the design of superconducting accelerating components are under progress. Cryogenic tests, in a cryo-module configuration of a 700 MHz, beta = 0.47, elliptical RF superconducting cavity are performed with the aim of evaluating and improving the reliability of the different components (RF cavity, power coupler, cold tuning system and the cryogenic features). The other task addresses the first superconducting linac section cryo-module. It is composed of two 350 MHz, beta = 0.5 spoke type cavities cooled at 2 K. This paper presents the results on the elliptical cavity and the status of the spoke cryo-module design. (authors)

  18. Compression and radiation of high-power short rf pulses. II. A novel antenna array design with combined compressor/radiator elements

    Sirenko, Kostyantyn

    2011-01-01

    The paper discusses the radiation of compressed high power short RF pulses using two different types of antennas: (i) A simple monopole antenna and (ii) a novel array design, where each of the elements is constructed by combining a compressor and a radiator. The studies on the monopole antenna demonstrate the possibility of a high power short RF pulse\\'s efficient radiation even using simple antennas. The studies on the novel array design demonstrate that a reduced size array with lower pulse distortion and power decay can be constructed by assembling the array from elements each of which integrates a compressor and a radiator. This design idea can be used with any type of antenna array; in this work it is applied to a phased array.

  19. Generation of subpicosecond X-ray pulses using RF orbit deflection

    A technique is proposed for producing high average intensity X-ray radiation from a storage ring for studies of the ultrafast phenomena on a subpicosecond time scale. Two RF cavity accelerating structures excited in the E110 mode can be installed in a storage ring to create vertical displacements of electrons correlated with their longitudinal position in the bunch. The magnitude of these displacements can be sufficient for the X-ray radiation of the electron bunch between accelerating structures to be viewed as produced by a large number of independent sources, each of a subpicosecond duration

  20. Installation, testing and commissioning of 10 kW pulse RF amplifier system@476MHz using planar triode for IR FEL

    A 10 kW pulse rf amplifier@476MHz for IR-FEL has been tested using YU176A planar triode. The above triode is very compact and ideally suited for high pulse power application without needing rf combining structure. The maximum pulse width of the rf amplifier is 50 μSec and repetition rate 50 Hz.The amplifier is configured in grounded grid class-AB mode. This amplifier utilises three power supply namely filament(6.3 V,4 A), grid (-70 V,10 mA) and plate supply (7 kV,10 mA). The peak plate current during the 10 kW rf pulse power is around 2.4 A. So, a capacitor charging power supply has been realized using 7 kV,10 mA supply which charges a 5 μF high voltage capacitor, output of which is connected to the plate of amplifier. The same topology has been used for grid bias supply. Programmable logic controller(S7-200,Siemens) based sequencing, monitoring and interlock unit has been used for the safe and reliable operation of the amplifier. A peak rf power monitoring system using sample and hold circuit has been integrated with the amplifier. The amplifier has been characterized for its linearity, gain, efficiency, amplitude and phase stability etc which closely matches to the design value. The amplifier has been operated more than 50 hrs. @10 kW pulse power at dummy load to ensure its long term reliability. The complete amplifier system has been installed and commissioned in FEL complex. (author)

  1. Development of C-Band RF Front-end of Precision Coherent Mono-pulse C-Band Radar

    Arun Kumar Ray

    2014-07-01

    Full Text Available A compact, robust and high performance front-end of a radar receiver is designed and demonstrated in this paper. The important parameters like noise figure, sensitivity, selectivity, dynamic range and tracking range are superior to that of the existing systems and facilitate online monitoring of the above important parameters. The gain and phase matching facility are incorporated. The local oscillator is integrated within the module which in turn reduces the losses as compare with the existing local oscillator, placed in the instrumentation cabin. The frequency, amplitude, delay between skin and transponder frequency can be controlled remotely by computer program. Therefore, the mixed mode operation (skin and transponder of radar receiver is possible. Moreover, the SPDT switch is integrated in the same module for RF simulation to facilitate the three channel mono-pulse receiver calibration, receiver health monitoring and range calibration of precision coherent mono-pulse C-band radar. The components used are monolithic microwave integrated circuit based technologies with superior specifications, makes the total module miniaturized and reduced the hardware complications. The total power consumption is much less and improves the overall performance than the existing front-end.Defence Science Journal, Vol. 64, No. 4, July 2014, pp. 358-365, DOI:http://dx.doi.org/10.14429/dsj.64.4245 

  2. Ginsenoside Rf, a component of ginseng, regulates lipoprotein metabolism through peroxisome proliferator-activated receptor α

    We investigated whether ginseng regulates lipoprotein metabolism by altering peroxisome proliferator-activated receptor α (PPARα)-mediated pathways, using a PPARα-null mouse model. Administration of ginseng extract, ginsenosides, and ginsenoside Rf (Rf) to wild-type mice not only significantly increased basal levels of hepatic apolipoprotein (apo) A-I and C-III mRNA compared with wild-type controls, but also substantially reversed the reductions in mRNA levels of apo A-I and C-III expected following treatment with the potent PPARα ligand Wy14,643. In contrast, no effect was detected in the PPARα-null mice. Testing of eight main ginsenosides on PPARα reporter gene expression indicated that Rf was responsible for the effects of ginseng on lipoprotein metabolism. Furthermore, the inhibition of PPARα-dependent transactivation by Rf seems to occur at the level of DNA binding. These results demonstrate that ginseng component Rf regulates apo A-I and C-III mRNA and the actions of Rf on lipoprotein metabolism are mediated via interactions with PPARα

  3. Slice-Selective RF pulses for In-vivo B1+ Inhomogeneity Mitigation at 7 Tesla using Parallel RF Excitation with a 16-Element Coil

    Setsompop, Kawin; Alagappan, Vijayanand; Gagoski, Borjan; Witzel, Thomas; Polimeni, Jonathan; Potthast, Andreas; Hebrank, Franz; Fontius, Ulrich; Schmitt, Franz; Wald, Lawrence L.; Adalsteinsson, Elfar

    2008-01-01

    Slice-selective RF waveforms that mitigate severe B1+ inhomogeneity at 7 Tesla using parallel excitation were designed and validated in a water phantom and human studies on six subjects using a 16-element degenerate stripline array coil driven with a butler matrix to utilize the 8 most favorable birdcage modes. The parallel RF waveform design applied magnitude least squares criteria with an optimized k-space excitation trajectory to significantly improve profile uniformity compared to convent...

  4. Ion energy distribution measurements in rf and pulsed dc plasma discharges

    A commercial retarding field analyzer is used to measure the time-averaged ion energy distributions of impacting ions at the powered electrode in a 13.56 MHz driven, capacitively coupled, parallel plate discharge operated at low pressure. The study is carried out in argon discharges at 10 mTorr where the sheaths are assumed to be collisionless. The analyzer is mounted flush with the powered electrode surface where the impacting ion and electron energy distributions are measured for a range of discharge powers. A circuit model of the discharge, in combination with analytical solutions for the ion energy distribution in radio-frequency sheaths, is used to calculate other important plasma parameters from the measured energy distributions. Radio-frequency compensated Langmuir probe measurements provide a comparison with the retarding field analyzer data. The time-resolved capability of the retarding field analyzer is also demonstrated in a separate pulsed dc magnetron reactor. The analyzer is mounted on the floating substrate holder and ion energy distributions of the impinging ions on a growing film, with 100 ns time resolution, are measured through a pulse period of applied magnetron power, which are crucial for the control of the microstructure and properties of the deposited films. (paper)

  5. High-field actively detuneable transverse electromagnetic (TEM) coil with low-bias voltage for high-power RF transmission.

    Avdievich, Nikolai I; Bradshaw, Ken; Kuznetsov, Andrey M; Hetherington, Hoby P

    2007-06-01

    The design and construction of a 4T (170 MHz) transverse electromagnetic (TEM) actively detuneable quadrature head coil is described. Conventional schemes for active detuning require high negative bias voltages (>300 V) to prevent leakage of RF pulses with amplitudes of 1-2 kW. To extend the power handling capacity and avoid the use of high DC bias voltages, we developed an alternate method of detuning the volume coil. In this method the PIN diodes in the detuning circuits are shorted when the RF volume coil is tuned, and negatively biased with -12 V when the coil is detuned. To preserve the high Q(U)/Q(L) ratio of the TEM coil, we modified the method of Nabetani and Watkins (Proceedings of the 13th Annual Meeting of ISMRM, Kyoto, Japan, 2004, abstract 1574) by utilizing a high-impedance (approximately 200 Omega), lumped-element, quarter-wavelength transformer. A Q(U) of 500 was achieved for the detuneable TEM, such that incorporation of the detuning network had minimal effect (<1 dB) on the performance of the coil in vivo. PMID:17534919

  6. Replacement of RF power supply and cooling system and sub-picosecond single pulse beam test

    We have replaced the 15 MW Klystron (2856 MHz) system and the 5 kW amplifier system of Sub-harmonic Buncher (476 MHz) in our LINAC facility. The peak power fluctuation of the klystron was measured within 0.2 % and the phase stability was measured within 0.5 degrees. Also we have replaced the cooling system of the accelerating tubes for controlling the water temperature within 0.01 degree. Then the fluctuation of the sub-pico second single pulse beams have been more stable than the old systems. The peak currents stability was measured within 2.5% (rms) and the averaging beam current stability was measured within about 10% during 30 min. (author)

  7. Technology development for RF accelerators

    Accelerator Control Division (ACnD) is having mandate for the design and development of key technologies in RF particle accelerators and for specialized applications in the field of RF Power, Controls, Magnetism, Superconductivity, Beam diagnostics and magnetic and electric field measurements. The activities being carried out in ACnD are mainly divided into three sectors, viz. (1) The Indian Accelerator program, (2) Accelerator development in collaboration with international laboratories and (3) specialized and specific applications for physics and material science applications. For the LEHIPA project at BARC, ACnD is involved in the development of Low level RF control systems, RF protection interlock systems, RF power systems and transmission lines, Drift Tube Linac and Permanent Magnets Based Drift Tubes. ACnD is also working in collaboration with international laboratories like Fermi National Accelerator Laboratory (FNAL), USA and GANIL, France. Under these collaborations, ACnD is responsible for the design and delivery of Low level RF controls and interlock systems, Solid state RF power amplifiers, Beam handling systems including warm quadrupoles and Superconducting focusing magnets and Beam diagnostics elements. ACnD is also working in specialized fields including high field magnets for MHD studies, magnetic sensors and magnetic flow meters for ITER (International Thermonuclear Experimental Reactor); focusing magnets for miniature klystron for mission critical applications, Field press and Pulsed field magnetizers for permanent magnets development, and High uniformity magnets for heavy ion penning traps. (author)

  8. Plasma deposition of piezoelectric ZnO layers by rf sputtering, SolGel and pulsed laser deposition

    Waetje, Kerstin; Ebbecke, Jens; Wixforth, A. [Institut fuer Physik der Universitaet Augsburg, Experimentalphysik I, Universitaetsstrasse 1, 86135 Augsburg (Germany); Thorwarth, Goetz; Ven, Mark van de [Institut fuer Physik der Universitaet Augsburg, Experimentalphysik IV, Universitaetsstrasse 1, 86135 Augsburg (Germany)

    2008-07-01

    As ''lab-on-a-chip-devices'' suited for analyses of least amounts of liquids are emerging from prototype status, cost-effective materials for mass production of these devices are sought. For handling and mixing components, surface acoustic waves generated by piezoelectric elements are routinely employed; however, the LiNbO{sub 3} single crystals used in such units are a significant cost factor. As an alternative, zinc oxide layers deposited onto the glass substrates hold the promise of cheaper production and easier integration into the assembly. In the present study, experiments regarding the deposition of such layers using different plasma processes are presented. Film synthesis was performed using rf magnetron sputtering, pulsed laser deposition and plasma based ion bombardment of Sol-Gel films on crystalline and amorphous substrates. The impacts of significant deposition parameters are discussed. At optimum deposition parameters, excellent columnar growth in the preferred c-axis orientation could be observed. The suitability of such films for the desired application is substanciated through first mixing experiments using optically lithographed interdigital transducers (IDTs). (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Deposition of PZT thin film onto copper-coated polymer films by mean of pulsed-DC and RF-reactive sputtering

    Suchaneck, G.; Labitzke, R.; Adolphi, B.; Jastrabík, Lubomír; Adámek, Petr; Drahokoupil, Jan; Hubička, Zdeněk; Kiselev, D.A.; Kholkin, A. L.; Gerlach, G.; Dejneka, Alexandr

    2011-01-01

    Roč. 205, č. 2 (2011), S241-S244. ISSN 0257-8972 R&D Projects: GA ČR GC202/09/J017; GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : pulsed DC reactive sputtering * RF reactive sputtering * complex oxide film deposition * polymer substrate Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.867, year: 2011

  10. Long pulse operation with actively cooled limiters

    We present here the major results obtained with actively cooled plasma facing components during long pulse operation (plasma duration >3 x surface temperature time constant=steady-state). Shots up to 120 s have been achieved in Tore Supra when the plasma was leaning on the large inner toroidal actively cooled limiter with a moderate deposited power density heat flux (up to 0.3 MW/m2). For larger power density heat flux up to 4.5 MW/m2 (design value), modular limiters have been used. A prerequisite for any actively cooled limiter is the absence of any cooling defect (crack parallel to the surface in the tile or non-correct bonding). If a defect is present it leads to a super-brilliance event (with its corresponding local power heat flux increase) which propagates. This deleterious effect is unfortunately a runaway effect. (orig.)

  11. Measurements of the temporal and spatial phase variations of a 33 GHz pulsed free electron laser amplifier and application to high gradient RF acceleration

    Volfbeyn, P.; Bekefi, G. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-12-31

    We report the results of temporal and spatial measurements of phase of a pulsed free electron laser amplifier (FEL) operating in combined wiggler and axial guide magnetic fields. The 33 GHz FEL is driven by a mildly relativistic electron beam (750 kV, 90-300 A, 30 ns) and generates 61 MW of radiation with a high power magnetron as the input source. The phase is measured by an interferometric technique from which frequency shifting is determined. The results are simulated with a computer code. Experimental studies on a CERN-CLIC 32.98 GHz 26-cell high gradient accelerating section (HGA) were carried out for input powers from 0.1 MW to 35 MW. The FEL served as the r.f. power source for the HGA. The maximum power in the transmitted pulse was measured to be 15 MW for an input pulse of 35 MW. The theoretically calculated shunt impedance of 116 M{Omega}/m predicts a field gradient of 65 MeV/m inside the HGA. For power levels >3MW the pulse transmitted through the HGA was observed to be shorter than the input pulse and pulse shortening became more serious with increasing power input. At the highest power levels the output pulse length (about 5 nsec) was about one quarter of the input pulse length. Various tests suggest that these undesirable effects occur in the input coupler to the HGA. Light and X-ray production inside the HGA have been observed.

  12. Arcing and rf signal generation during target irradiation by a high-energy, pulsed neutral particle beam

    We present a theory describing the dynamics of arc discharges in bulk dielectric materials on board space-based vehicles. Such ''punch-through'' arcs can occur in target satellites irradiated by high-energy (250 MeV), pulsed (100 mA x 10 ms) neutral particle beams. We treat the arc as a capacitively limited avalanche current in the target dielectric material, and we find expressions for the arc duration, charge transport, currents, and discharge energy. These quantities are adjusted to be consistent with known scaling laws for the area of charge depleted by the arc. After a brief account of the statistical distribution of voltages at which the arc starts and stops, we calculate the signal strength and frequency spectrum of the electromagnetic radiation broadcast by the arc. We find that arcs from thick (/similar to/1 cm) targets can generate rf signals detectable up to 1000 km from the target, bu a radio receiver operating at frequency 80 MHz, bandwidth 100 kHz, and detection threshold -105 dBm. These thick-target arc signals are 10 to 20 dB above ambient noise at the receiver, and they provide target hit assessment if the signal spectrum can be sampled at several frequencies in the nominal range 30-200 MHz. Thin-target (/similar to/1 mm) arc signals are much weaker, but when they are detecable in conjunction with thick-target signals, target discrimination is possible by comparing the signal frequency spectra. 24 refs., 12 figs

  13. Bactericidal activity of high voltage pulsed current (HVPC in vitro

    Kramer, Axel

    2006-08-01

    Full Text Available The positive effect of electrical stimulation (ES on wound healing has been shown in vitro and in vivo. Based on increased blood flow, protein denaturation and stimulation of cellular defence, an antibacterial effect of ES is to be expected. Although the antibacterial effect of ES already has been demonstrated in vitro, little attention has been paid to the direct antibacterial effect of changing polarity of the applied current. The aim of this study was to investigate the antibacterial effect of positive and negative monophasic high voltage pulsed current (HVPV on typical gram positive and gram negative pathogens of chronic wounds.Using the WoundEL®-System, three gram negative (E. coli, P. aeruginosa, K. pneumoniae and three gram positive (S. aureus, S. epidermidis, E. faecium organisms were tested against positive and negative polarity HVPV. All tested organisms were significantly (P < 0.01 reduced by ES. The reduction differed significantly (P = 0.02 between positive and negative polarity, with the highest log10 RF achieved with positive polarity. Using positive polarity, the maximum RF was measured for Escherichia coli (median log10 RF 0.83; 25th percentile 0.59, 75th percentile 0.98, the lowest for Staphylococcus epidermidis (median log10 RF 0.20; 25th percentile 0.17, 75th percentile 0.24. Yet, there was no significant difference with positive ES against gram positive (P = 0.35 or gram negative (P = 0.71 organisms.

  14. Status of RF deflecting cavity design for the generation of short x-ray pulses in the Advanced Photon Source storage ring

    The Advanced Photon Source (APS) at Argonne National Laboratory is exploring the possibility of using radio frequency deflection to generate x-ray radiation pulses on the order of 1 pico-second (Delta t - 70%) or less. This scheme is based on a proposal by A. Zholents et al. that relies on manipulating the transverse momentum of the electrons in a bunch by using an rf deflecting cavity to induce a longitudinally dependent vertical deflection of the beam. The beam will then travel through a number of undulators before arriving at a second set of deflecting cavities where the deflection is reversed such that the remainder of the storage ring is largely unperturbed. Considerable effort has been expended on the design of a superconducting rf deflecting cavity operating in the S-band at 2.8 GHz to address fundamental design issues including cavity geometry, deflecting voltage, rf power coupling, tuning, and damping of higher-order and lower-order modes. In this paper we present simulation results and analysis of an optimized superconducting rf deflecting cavity design for the APS storage ring.

  15. A comparison of a passive (filtered) and an active (driven) probe for RF plasma diagnostics

    Two different electrostatic probes have been tested simultaneously in the same plasma. The passive design uses a distributed inductive chain to block radio frequency (RF) signals from the probe tip. The tip itself is capacitively coupled to a secondary ring electrode of large area, which effectively drives the probe tip potential in phase with the plasma space potential. The active design substitutes an externally generated sinusoidal signal (synchronous with the plasma excitation) of controllable phase and amplitude for the signal from the ring. Both probes were located on the mid-plane of a capacitively coupled RF plasma, but sufficiently spaced to prevent interference with one by the other. In most cases the passive probe is found to float more positive than the active one. Both probes give results in close agreement when the plasma excitation is predominantly sinusoidal. The passive probe has a broad-band response which enables its tip to follow more closely non-sinusoidal RF potentials in the plasma. The active probe is more expensive in terms of components external to the plasma chamber but is considerably simpler to construct. (author)

  16. FERROELECTRIC SWITCH FOR A HIGH-POWER Ka-BAND ACTIVE PULSE COMPRESSOR

    Hirshfield, Jay L. [Omega-P, Inc.

    2013-12-18

    Results are presented for design of a high-power microwave switch for operation at 34.3 GHz, intended for use in an active RF pulse compressor. The active element in the switch is a ring of ferroelectric material, whose dielectric constant can be rapidly changed by application of a high-voltage pulse. As envisioned, two of these switches would be built into a pair of delay lines, as in SLED-II at SLAC, so as to allow 30-MW μs-length Ka-band pulses to be compressed in time by a factor-of-9 and multiplied in amplitude to generate 200 MW peak power pulses. Such high-power pulses could be used for testing and evaluation of high-gradient mm-wave accelerator structures, for example. Evaluation of the switch design was carried out with an X-band (11.43 GHz) prototype, built to incorporate all the features required for the Ka-band version.

  17. Effect of Embedded RF Pulsing for Selective Etching of SiO2 in the Dual-Frequency Capacitive Coupled Plasmas.

    Kim, Nam Hun; Jeon, Min Hwan; Kim, Tae Hyung; Yeom, Geun Young

    2015-11-01

    The characteristics of embedded pulse plasma using 60 MHz radio frequency as the source power and 2 MHz radio frequency as the bias power were investigated for the etching of SiO2 masked with an amorphous carbon layer (ACL) using an Ar/C4F8/O2 gas mixture. Especially, the effects of the different pulse duty ratio of the embedded dual-frequency pulsing between source power and bias power on the characteristics on the plasma and SiO2 etching were investigated. The experiment was conducted by varying the source duty percentage from 90 to 30% while bias duty percentage was fixed at 50%. Among the different duty ratios, the source duty percentage of 60% with the bias duty percentage of 50% exhibited the best results in terms of etch profile and etch selectivity. The change of the etch characteristics by varying the duty ratios between the source power and bias power was believed to be related to the different characteristics of gas dissociation, fluorocarbon passivation, and ion bombardment observed during the different source/bias pulse on/off combinations. In addition, the instantaneous high electron temperature peak observed during each initiation of the source pulse-on period appeared to affect the etch characteristics by significant gas dissociation. The optimum point for the SiO2 etching with the source/bias pulsed dual-frequency capacitively coupled plasma system was obtained by avoiding this instant high electron temperature peak while both the source power and bias power were pulsed almost together, therefore, by an embedded RF pulsing. PMID:26726572

  18. Influence of RF excitation during pulsed laser deposition in oxygen atmosphere on the structural properties and luminescence of nanocrystalline ZnO:Al thin films

    Thin ZnO:Al layers were deposited by pulsed laser deposition in vacuum and in oxygen atmosphere at gas pressures between 10 and 70 Pa and by applying radio-frequency (RF) plasma. Grazing incidence small angle x-ray scattering and grazing incidence x-ray diffraction (GIXRD) data showed that an increase in the oxygen pressure leads to an increase in the roughness, a decrease in the sample density, and changes in the size distribution of nanovoids. The nanocrystal sizes estimated from GIXRD were around 20 nm, while the sizes of the nanovoids increased from 1 to 2 nm with the oxygen pressure. The RF plasma mainly influenced the nanostructural properties and point defects dynamics. The photoluminescence consisted of three contributions, ultraviolet (UV), blue emission due to Zn vacancies, and red emission, which are related to an excess of oxygen. The RF excitation lowered the defect level related to blue emission and narrowed the UV luminescence peak, which indicates an improvement of the structural ordering. The observed influence of the deposition conditions on the film properties is discussed as a consequence of two main effects: the variation of the energy transfer from the laser plume to the growing film and changes in the growth chemistry

  19. Influence of RF excitation during pulsed laser deposition in oxygen atmosphere on the structural properties and luminescence of nanocrystalline ZnO:Al thin films

    Meljanac, Daniel, E-mail: dmeljan@irb.hr; Plodinec, Milivoj; Siketić, Zdravko; Gracin, Davor [Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb (Croatia); Juraić, Krunoslav [Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia and Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/IV, 8010 Graz (Austria); Krstulović, Nikša; Salamon, Krešimir; Skenderović, Hrvoje; Kregar, Zlatko; Rakić, Iva Šrut [Institute of Physics, Bijenička 46, 10000 Zagreb (Croatia); Bernstorff, Sigrid [Elettra-Sincrotrone Trieste, SS 14, Km 163.5, I-34049 Basovizza (TS) (Italy)

    2016-03-15

    Thin ZnO:Al layers were deposited by pulsed laser deposition in vacuum and in oxygen atmosphere at gas pressures between 10 and 70 Pa and by applying radio-frequency (RF) plasma. Grazing incidence small angle x-ray scattering and grazing incidence x-ray diffraction (GIXRD) data showed that an increase in the oxygen pressure leads to an increase in the roughness, a decrease in the sample density, and changes in the size distribution of nanovoids. The nanocrystal sizes estimated from GIXRD were around 20 nm, while the sizes of the nanovoids increased from 1 to 2 nm with the oxygen pressure. The RF plasma mainly influenced the nanostructural properties and point defects dynamics. The photoluminescence consisted of three contributions, ultraviolet (UV), blue emission due to Zn vacancies, and red emission, which are related to an excess of oxygen. The RF excitation lowered the defect level related to blue emission and narrowed the UV luminescence peak, which indicates an improvement of the structural ordering. The observed influence of the deposition conditions on the film properties is discussed as a consequence of two main effects: the variation of the energy transfer from the laser plume to the growing film and changes in the growth chemistry.

  20. Design of a high charge (10-100 nC) and short pulse (2-5 ps) RF photocathode gun for wakefield acceleration

    Gai, W.; Li, X.; Conde, M.; Power, J.; Schoessow, P.

    1999-07-01

    In this paper we present a design report on a 1-1/2 cell, L Band RF photocathode gun that is capable of generating and accelerating electron beams with peak currents >10 kA. We have performed simulation for bunch intensities in the range of 10-100 nC with peak axial electrical field at the photocathode of 30-100 MV/m. Unlike conventional short electron pulse generation, this design does not require magnetic pulse compression. Based on numerical simulations using SUPERFISH and PARMELA, this design will produce 20-100 nC beam at 18 MeV with rms bunch length 0.6-1.25 mm and normalized transverse emittance 30-108 mm mrad. Applications of this beam for wakefield acceleration is also discussed.

  1. Pulse radiolysis facilities and activities in Japan

    Pulse radiolysis studies in Japan have been reviewed in special reference to the facilities and the people who have engaged in the experiments. Main achievement is summarized with the list of selected publications. (author)

  2. Sensitivity enhancement of short time activation analysis by pulse activation

    TRIGA-reactors have the unique possibility of increasing the power by a factor of up to 1200, to produce a corresponding up to 1200 fold increase in flux by pulsing the reactor. This feature is, however, seldom applied for activation analysis owing to the fact that the sensitivity enhancement is optimal only for short lived nuclides or isometric states in the sub-second range of half lives. As the maximal information density is confined to a short time interval, a fast transfer system and a measuring system allowing to handle the extremely high countrates are imperative. Both systems now being commercially available, it is possible to overcome the major draw back of conventional activation analysis, namely the long time delay between arrival of the sample and obtaining the results, for those elements having short lived nuclides or isomeric states

  3. Active load equivalent for a superpower microsecond-pulse generator

    Performance, structure and results of experimental studies of an active dummy lead for super-high-power pulse generator built according to the layout of pulse modulator with capacitor energy storage are described. The active dummy load represents nonlinear artificial shaping line with 2.5 Ohm wave resistance, which gives an opportunity to shape current pulses with amplitude ≅10 kA at storage charging voltage level of 50 kV. The active dummy load application provides for regeneration of more than 50% of storage energy back into power source, and thus it allows one to decrease sufficiently the test cost

  4. Shielding for thermoacoustic tomography with RF excitation

    Mitchell, M.; Becker, G.; Dey, P.; Generotzky, J.; Patch, S. K.

    2008-02-01

    Radiofrequency (RF) pulses used to generate thermoacoustic computerized tomography (TCT) signal couple directly into the pulser-receiver and oscilloscope, swamping true TCT signal. We use a standard RF enclosure housing both RF amplifier and object being imaged. This is similar to RF shielding of magnetic resonance imaging (MRI) suites and protects electronics outside from stray RF. Unlike MRI, TCT receivers are ultrasound transducers, which must also be shielded from RF. A transducer housing that simultaneously shields RF and permits acoustic transmission was developed specifically for TCT. We compare TCT signals measured with and without RF shielding.

  5. Monopolar Intracochlear Pulse Trains Selectively Activate the Inferior Colliculus

    Schoenecker, Matthew C.; Bonham, Ben H.; Stakhovskaya, Olga A.; Snyder, Russell L.; Leake, Patricia A.

    2012-01-01

    Previous cochlear implant studies using isolated electrical stimulus pulses in animal models have reported that intracochlear monopolar stimulus configurations elicit broad extents of neuronal activation within the central auditory system—much broader than the activation patterns produced by bipolar electrode pairs or acoustic tones. However, psychophysical and speech reception studies that use sustained pulse trains do not show clear performance differences for monopolar versus bipolar confi...

  6. (19)F MRSI of capecitabine in the liver at 7 T using broadband transmit-receive antennas and dual-band RF pulses.

    van Gorp, Jetse S; Seevinck, Peter R; Andreychenko, Anna; Raaijmakers, Alexander J E; Luijten, Peter R; Viergever, Max A; Koopman, Miriam; Boer, Vincent O; Klomp, Dennis W J

    2015-11-01

    Capecitabine (Cap) is an often prescribed chemotherapeutic agent, successfully used to cure some patients from cancer or reduce tumor burden for palliative care. However, the efficacy of the drug is limited, it is not known in advance who will respond to the drug and it can come with severe toxicity. (19)F Magnetic Resonance Spectroscopy (MRS) and Magnetic Resonance Spectroscopic Imaging (MRSI) have been used to non-invasively study Cap metabolism in vivo to find a marker for personalized treatment. In vivo detection, however, is hampered by low concentrations and the use of radiofrequency (RF) surface coils limiting spatial coverage. In this work, the use of a 7T MR system with radiative multi-channel transmit-receive antennas was investigated with the aim of maximizing the sensitivity and spatial coverage of (19)F detection protocols. The antennas were broadband optimized to facilitate both the (1)H (298 MHz) and (19)F (280 MHz) frequencies for accurate shimming, imaging and signal combination. B1(+) simulations, phantom and noise measurements showed that more than 90% of the theoretical maximum sensitivity could be obtained when using B1(+) and B1(-) information provided at the (1)H frequency for the optimization of B1(+) and B1(-) at the (19)F frequency. Furthermore, to overcome the limits in maximum available RF power, whilst ensuring simultaneous excitation of all detectable conversion products of Cap, a dual-band RF pulse was designed and evaluated. Finally, (19)F MRS(I) measurements were performed to detect (19)F metabolites in vitro and in vivo. In two patients, at 10 h (patient 1) and 1 h (patient 2) after Cap intake, (19)F metabolites were detected in the liver and the surrounding organs, illustrating the potential of the set-up for in vivo detection of metabolic rates and drug distribution in the body. PMID:26373355

  7. On active disturbance rejection based control design for superconducting RF cavities

    Superconducting RF (SRF) cavities are key components of modern linear particle accelerators. The National Superconducting Cyclotron Laboratory (NSCL) is building a 3 MeV/u re-accelerator (ReA3) using SRF cavities. Lightly loaded SRF cavities have very small bandwidths (high Q) making them very sensitive to mechanical perturbations whether external or self-induced. Additionally, some cavity types exhibit mechanical responses to perturbations that lead to high-order non-stationary transfer functions resulting in very complex control problems. A control system that can adapt to the changing perturbing conditions and transfer functions of these systems would be ideal. This paper describes the application of a control technique known as 'Active Disturbance Rejection Control' (ARDC) to this problem.

  8. Photocatalytic Activity of TiO2 Thin Films Obtained by the Sputtering RF in Wastewater

    Cardona Bedoya, Jairo Armando; Sanchez Velandia, Wilmer Asmed; Delgado Rosero, Miguel Iban; Florido Cuellar, Alex Enrique; Zelaya Angel, Orlando; Mendoza Alvarez, Julio G.

    2011-03-01

    The photocatalytic activity of Ti O2 thin films in wastewater, under an UV irradiation, is studied. The films were prepared on corning glass substrates by the sputtering RF technique. We present evidence on the photocatalytic degradation, carried out by advanced oxidation processes (AOPs) in domestic wastewater pretreated with UASB (upflow anaerobic sludge blanket) reactors. Ti O2 films were illuminated with ultraviolet light during a time of 4 hours (λ ≅ 264 nm). We could see the effect of degraded operation in the absorbance measurement using UV-VIS spectrophotometry. The results show an increased rate of degradation of the wastewater by 30% compared to the values reflected biologically treated wastewater by anaerobic reactors.

  9. Etch Properties of Amorphous Carbon Material Using RF Pulsing in the O2/N2/CHF3 Plasma.

    Jeon, Min Hwan; Park, Jin Woo; Yun, Deok Hyun; Kim, Kyong Nam; Yeom, Geun Young

    2015-11-01

    The amorphous carbon layer (ACL), used as the hardmask for the etching of nanoscale semi-conductor materials, was etched using O2/CHF3 in addition to O2/N2 using pulsed dual-frequency capacitively coupled plasmas, and the effects of source power pulsing for different gas combinations on the characteristics of the plasmas and ACL etching were investigated. As the etch mask for ACL, a patterned SiON layer was used. The etch rates of ACL were decreased with the decrease of pulse duty percentage for both O2/N2 and O2/CHF3 due to decrease of the reactive radicals, such as F and O, with decreasing pulse duty percentage. In addition, at the same pulse duty percentage, the etch selectivity of ACL/SiON with O2/CHF3 was also significantly lower than that with O2/N2. However, the etch profiles of ACL with O2/CHF3 was more anisotropic and the etch profiles were further improved with decreasing the pulse duty percentage than those of ACL with O2/N2. The improved anisotropic etch profiles of ACL with decreasing pulse duty percentage for O2/CHF3 were believed to be related to the formation of a more effective passivation layer, such as a thick fluorocarbon layer, on the sidewall of the ACL during the etching with O2/CHF3, compared to the weak C-N passivation layer formed on the sidewall of ACL when using O2/N2. PMID:26726555

  10. Active experiments in geospace plasmas with gigawatts of RF power at HAARP

    Sheerin, James

    2016-07-01

    The ionosphere provides a relatively quiescent plasma target, stable on timescales of minutes, for a whole host of active plasma experiments. The largest HF transmitter built to date is the HAARP phased-array HF transmitter near Gakona, Alaska which can deliver up to 3.6 Gigawatts (ERP) of CW RF power in the range of 2.8 - 10 MHz to the ionosphere with millisecond pointing, power modulation, and frequency agility. With an ionospheric background thermal energy in the range of only 0.1 eV, this amount of power gives access to the highest regimes of the nonlinearity (RF intensity to thermal pressure) ratio. HAARP's unique features have enabled the conduct of a number of nonlinear plasma experiments in the inter¬action region of overdense ionospheric plasma including generation of artificial aurorae, artificial ionization layers, VLF wave-particle interactions in the magnetosphere, parametric instabilities, stimulated electromagnetic emissions (SEE), strong Langmuir turbulence (SLT) and suprathermal electron acceleration. Diagnostics include the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, spacecraft radio beacons, HF receivers to record stimulated electromagnetic emissions (SEE) and optics for optical emissions. We report on short timescale ponderomotive overshoot effects, artificial field-aligned irregularities (AFAI), the aspect angle dependence of the intensity of the HF-enhanced plasma line, and production of suprathermal electrons. Applications are made to the controlled study of fundamental nonlinear plasma processes of relevance to laboratory plasmas, ionospheric irregularities affecting spacecraft communication and navigation systems, artificial ionization mirrors, wave-particle interactions in the magnetosphere, active global magnetospheric experiments, and many more.

  11. Passive and active RF-microwave circuits course and exercises with solutions

    Jarry, Pierre

    2015-01-01

    Microwave and radiofrequency (RF) circuits play an important role in communication systems. Due to the proliferation of radar, satellite, and mobile wireless systems, there is a need for design methods that can satisfy the ever increasing demand for accuracy, reliability, and fast development times. This book explores the principal elements for receiving and emitting signals between Earth stations, satellites, and RF (mobile phones) in four parts; the theory and realization of couplers, computation and realization of microwave and RF filters, amplifiers and microwave and RF oscillators. Pas

  12. Monitor and control of neuronal activities with femtosecond pulse laser

    ZHOU Wei; LIU XiuLi; L(U) XiaoHua; LI JiaSong; LUO QingMing; ZENG ShaoQun

    2008-01-01

    Combined with the fluorescence labeling technique, two-photon microscopy excited with femtosecond pulse laser has become an important tool for neuroscience research. In this research, the calcium signals from neurons in rat cortex slice were monitored by a custom-built two-photon microscopy, and the spontaneous calcium signals and the pharmacological responses as well as the responses to femtosecond pulse laser stimulation were recorded. The results showed that the amplitude of the cal-cium signals increased in direct proportion to the corresponding electrical activities. Glutamate induced a calcium transient, but continuous application resulted in smaller response. Simultaneous monitoring of neuronal populations distinguished the neurons of different microcircuits. The femtosecond pulse laser induced local or global calcium signals in the pyramidal neurons. The approach of interrogation and control of neural activities using femtosecond pulse laser is non-contact, nondestructive, repeatable, and without any additional substrates, which will contribute to the development of neuroscience.

  13. Advanced RF power sources for linacs

    Wilson, P.B.

    1996-10-01

    In order to maintain a reasonable over-all length at high center-of-mass energy, the main linac of an electron-positron linear collider must operate at a high accelerating gradient. For copper (non-superconducting) accelerator structures, this implies a high peak power per unit length and a high peak power per RF source, assuming a limited number of discrete sources are used. To provide this power, a number of devices are currently under active development or conceptual consideration: conventional klystrons with multi-cavity output structures, gyroklystrons, magnicons, sheet-beam klystrons, multiple-beam klystrons and amplifiers based on the FEL principle. To enhance the peak power produced by an rf source, the SLED rf pulse compression scheme is currently in use on existing linacs, and new compression methods that produce a flatter output pulse are being considered for future linear colliders. This paper covers the present status and future outlook for the more important rf power sources and pulse compression systems. It should be noted that high gradient electron linacs have applications in addition to high-energy linear colliders; they can, for example, serve as compact injectors for FEL`s and storage rings.

  14. Recent Long-Pulse Test Results of KSTAR ICRF Antenna with Active Cooling

    KSTAR ICRF (Ion Cyclotron Range of Frequency) system is being developed for the high-power and longpulse operation. For a 300 s operation at a high power of 6 MW, the antenna has many cooling channels inside the current strap, Faraday shield, cavity wall, and vacuum transmission line (VTL) to remove the dissipated RF loss power and incoming plasma heat loads. In the previous test campaign, the standoff capability was increased to 31.2 kVp, 300 s from 24.3 kVp, 300 s by applying water cooling on the ICRF antenna, but it was limited by an overheating of the vacuum feedthrough (VF) and the transmission line of the unmatched section which did not have cooling channels. During the recent RF test campaign (campaign-8), the cooling system for the VF and the transmission line of the unmatched section was developed to enhance the cooling capability. The cooling channels for inner conductors of VF and the transmission line were carefully designed and installed inside their inner conductors, which were connected in series. Outer conductors near the current maximum were also watercooled by using Al cooling blocks which have a cooling channel inside them. The high power and long pulse capabilities of the antenna were experimentally estimated with active cooling on both of the antenna and the unmatched transmission line

  15. Recent Long-Pulse Test Results of KSTAR ICRF Antenna with Active Cooling

    Bae, Y. D.; Kwak, J. G.; Yoon, J. S.; Wang, S. J. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    KSTAR ICRF (Ion Cyclotron Range of Frequency) system is being developed for the high-power and longpulse operation. For a 300 s operation at a high power of 6 MW, the antenna has many cooling channels inside the current strap, Faraday shield, cavity wall, and vacuum transmission line (VTL) to remove the dissipated RF loss power and incoming plasma heat loads. In the previous test campaign, the standoff capability was increased to 31.2 kVp, 300 s from 24.3 kVp, 300 s by applying water cooling on the ICRF antenna, but it was limited by an overheating of the vacuum feedthrough (VF) and the transmission line of the unmatched section which did not have cooling channels. During the recent RF test campaign (campaign-8), the cooling system for the VF and the transmission line of the unmatched section was developed to enhance the cooling capability. The cooling channels for inner conductors of VF and the transmission line were carefully designed and installed inside their inner conductors, which were connected in series. Outer conductors near the current maximum were also watercooled by using Al cooling blocks which have a cooling channel inside them. The high power and long pulse capabilities of the antenna were experimentally estimated with active cooling on both of the antenna and the unmatched transmission line.

  16. Activation Layer Stabilization of High Polarization Photocathodes in Sub-Optimal RF Gun Environments

    Gregory A. Mulhollan

    2010-11-16

    Specific activation recipes for bulk, 100 nm thick MBE grown and high polarization III-V photocathode material have been developed which mitigate the effects of exposure to background gasses. Lifetime data using four representative gasses were acquired for bulk GaAs, 100 nm unstrained GaAs and strained superlattice GaAs/GaAsP, all activated both with Cs and then Cs and Li (bi-alkali). Each photoemitter showed marked resilience improvement when activated using the bi-alkali recipe compared to the standard single alkali recipe. A dual alkali activation system at SLAC was constructed, baked and commissioned with the purpose of performing spin-polarization measurements on electrons emitted from the bi-alkali activated surfaces. An end station at SSRL was configured with the required sources for energy resolved photoemission measurements on the bi-alkali activated and CO2 dosed surfaces. The bi-alkali recipes were successfully implemented at SLAC/SSRL. Measurements at SLAC of the photoelectron spin-polarization from the modified activation surface showed no sign of a change in value compared to the standard activated material, i.e., no ill effects. Analysis of photoemission data indicates that the addition of Li to the activation layer results in a multi-layer structure. The presence of Li in the activation layer also acts as an inhibitor to CO2 absorption, hence better lifetimes in worse vacuum were achieved. The bi-alkali activation has been tested on O2 activated GaAs for comparison with NF3 activated surfaces. Comparable resilience to CO2 exposure was achieved for the O2 activated surface. An RF PECVD amorphous silicon growth system was modified to allow high temperature heat cleaning of GaAs substrates prior to film deposition. Growth versus thickness data were collected. Very thin amorphous silicon germanium layers were optimized to exhibit good behavior as an electron emitter. Growth of the amorphous silicon germanium films on the above substrates was fine tuned

  17. R&D activities on RF contacts for the ITER ion cyclotron resonance heating launcher

    Hillairet, Julien; Bamber, Rob; Beaumont, Bertrand; Bernard, Jean-Michel; Delaplanche, Jean-Marc; Durodié, Frédéric; Lamalle, Philippe; Lombard, Gilles; Nicholls, Keith; Shannon, Mark; Vulliez, Karl; Cantone, Vincent; Hatchressian, Jean-Claude; Lebourg, Philippe; Martinez, André; Mollard, Patrick; Mouyon, David; Pagano, Marco; Patterlini, Jean-Claude; Soler, Bernard; Thouvenin, Didier; Toulouse, Lionel; Verger, Jean-Marc; Vigne, Terence; Volpe, Robert

    2015-01-01

    Embedded RF contacts are integrated within the ITER ICRH launcher to allow assembling, sliding and to lower the thermo-mechanical stress. They have to withstand a peak RF current up to 2.5 kA at 55 MHz in steady-state conditions, in the vacuum environment of themachine.The contacts have to sustain a temperature up to 250{\\textdegree}Cduring several days in baking operations and have to be reliable during the whole life of the launcher without degradation. The RF contacts are critical components for the launcher performance and intensive R&D is therefore required, since no RF contactshave so far been qualified at these specifications. In order to test and validate the anticipated RF contacts in operational conditions, CEA has prepared a test platform consisting of a steady-state vacuum pumped RF resonator. In collaboration with ITER Organization and the CYCLE consortium (CYclotronCLuster for Europe), an R&D program has been conducted to develop RF contacts that meet the ITER ICRH launcher specification...

  18. Convex optimization of MRI exposure for mitigation of RF-heating from active medical implants

    Córcoles, Juan; Zastrow, Earl; Kuster, Niels

    2015-09-01

    Local RF-heating of elongated medical implants during magnetic resonance imaging (MRI) may pose a significant health risk to patients. The actual patient risk depends on various parameters including RF magnetic field strength and frequency, MR coil design, patient’s anatomy, posture, and imaging position, implant location, RF coupling efficiency of the implant, and the bio-physiological responses associated with the induced local heating. We present three constrained convex optimization strategies that incorporate the implant’s RF-heating characteristics, for the reduction of local heating of medical implants during MRI. The study emphasizes the complementary performances of the different formulations. The analysis demonstrates that RF-induced heating of elongated metallic medical implants can be carefully controlled and balanced against MRI quality. A reduction of heating of up to 25 dB can be achieved at the cost of reduced uniformity in the magnitude of the B1+ field of less than 5%. The current formulations incorporate a priori knowledge of clinically-specific parameters, which is assumed to be available. Before these techniques can be applied practically in the broader clinical context, further investigations are needed to determine whether reduced access to a priori knowledge regarding, e.g. the patient’s anatomy, implant routing, RF-transmitter, and RF-implant coupling, can be accepted within reasonable levels of uncertainty.

  19. Rf power saving in large storage rings

    Farkas, Z.D.

    1979-05-15

    This note considers the application of CARTOP, constant amplitude rf to pulse converter, to obtain average and peak power gains in large e/sup + -/ rings. CARTOP is a scheme where energy storage and modulation converts a continuous radio frequency (rf) wave into periodic rf pulses. A system with CARTOP is shown. The modulated rf goes through an energy storing network (ESN) that contains at least one energy storing cavity (ESC), which acts as a flywheel. Between pulses, it takes energy from the klystron and during the pulse it delivers energy to an accelerating cavity (AC).

  20. Pulse-Driven Magnetoimpedance Sensor Detection of Cardiac Magnetic Activity

    Nakayama, Shinsuke; Sawamura, Kenta; Mohri, Kaneo; Uchiyama, Tsuyoshi

    2011-01-01

    This study sought to establish a convenient method for detecting biomagnetic activity in the heart. Electrical activity of the heart simultaneously induces a magnetic field. Detection of this magnetic activity will enable non-contact, noninvasive evaluation to be made. We improved the sensitivity of a pulse-driven magnetoimpedance (PMI) sensor, which is used as an electric compass in mobile phones and as a motion sensor of the operation handle in computer games, toward a pico-Tesla (pT) level...

  1. SiOx Ink-Repellent Layer Deposited by Radio Frequency (RF) Plasmas in Continuous Wave and Pulse Mode

    Low surface energy layers, proposed application for non-water printing in computer to plate (CTP) technology, are deposited in both continuous wave and pulse radio frequency (13.56 MHz) plasma with hexamethyldisiloxane (HMDSO) as precursor. It is found that the plasma mode dominates the polymer growth rate and the surface composition. Derived from the spectra of X-ray photoelectron spectroscopy (XPS) and combined with printable test it is concluded that concentration of Si in coatings plays an important role for the ink printability and the ink does not adhere on the surface with high silicon concentration

  2. Envelope evolution of a laser pulse in an active medium

    The authors show that the envelope velocity, venv, of a short laser pulse can, via propagation in an active medium, be made less than, equal to, or even greater than c, the vacuum phase velocity of light. Simulation results, based on moving frame propagation equations coupling the laser pulse, active medium and plasma, are presented, as well as equations that determines the design value of super- and sub-luminous venv. In this simulation the laser pulse evolves in time in a moving frame as opposed to their earlier work where the profile was fixed. The elimination of phase slippage and pump depletion effects in the laser wakefield accelerator is discussed as a particular application. Finally they discuss media properties necessary for an experimental realization of this technique

  3. Generation of unipolar pulses in a circular Raman-active medium excited by few-cycle optical pulses

    Arkhipov, R M; Babushkin, I; Pakhomov, A V; Tolmachev, Yu A; Rosanov, N N

    2016-01-01

    We study theoretically a new possibility of unipolar pulses generation in Raman-active medium excited by a series of few-cycle optical pulses. We consider the case when the Raman-active particles are uniformly distributed along the circle, and demonstrate a possibility to obtain a unipolar rectangular video pulses with an arbitrarily long duration, ranging from a minimum value equal to the natural period of the low frequency vibrations in the Raman-active medium.

  4. Nociceptor activation and damage by pulsed E-fields

    Nene, Deepti; Jiang, Nan; Rau, Kristofer K.; Richardson, Martin; Cooper, Brian Y.

    2006-05-01

    We assessed the capacity of ultrashort E-fields to activate rat cutaneous nociceptors. Experiments were conducted in vitro on nociceptive neurons representing hairy skin and glabrous skin. Electrical and optical recording methods were used to assess action potentials and membrane damage thresholds. Strength duration (SD) curves were formed for E-field pulses from 500 μsec to 350 ns. There were no differences in the SD time contant (taue (59 μsec) or ultrashort thresholds (129 V/cm at 350 ns) for hairy or glabrous skin nociceptors, for nociceptors with distinct geometry or for nociceptors expressing different combinations of voltage sensitive Na + channels (TTX s and TTX r Na v) or hyperpolarization activated channels (HCN; I H). Subthreshold activation was possible with high frequency pulsing at ultrashort durations (350 ns; 4,000 Hz). Relative to single pulse thresholds, activation threshold could be reduced over 50% by high frequency burst trains (4,000 Hz; 1-40 msec). Nociceptors were not damaged by E-field activation. Irreversible membrane disruption occurred at significantly higher field strength and varied by cell radius (3,266-4,240 V/cm, 350 ns, 40 Hz, 5 sec). Pulse frequency had no influence on acute membrane failure (10, 20, 40, 4,000 Hz; 5 sec).

  5. Rf power sources for linear colliders

    The next generation of linear colliders requires peak power sources of over 200 MW per meter at frequencies above 10 GHz at pulse widths of less than 100 nsec. Several power sources are under active development, including a conventional klystron with rf pulse compression, a relativistic klystron (RK) and a crossed-field amplifier. Power from one of these has energized a 0.5 meter two- section High Gradient Accelerator (HGA) and accelerated a beam at over 80 MeV meter. Results of tests with these experimental devices are presented here

  6. Low Activation Vanadium Alloys for Fusion Power Reactors - the RF Results

    Full text: The Results of development and researches of functional properties of low activation vanadium alloys (V-Ti-Cr and V-Cr-W-Zr-C systems) being developed for the cores of nuclear fusion and fission (Gen-IV, space) power reactors are presented. Scientific and technological problems of the investigations are related with enhancement of functional properties based on: 1. Special optimized thermal (TT), thermomechanical (TMT) and thermochemical (TCT) treatments of V-4Ti-4Cr alloys. 2. Development of new (V-Cr-W-Zr-C system) vanadium alloys. The TMT and TCT regimes ensuring the capability of significant (up to 2 times) enhancement of yield strength in the temperature range up to 800°C keeping relatively high plasticity reserve have been found for alloys. The results of the theoretical, modeling and simulating studies of characteristics of self-point defects and dislocations, their interactions and mobility are presented. Nuclear physics characteristics (primary radiation damage, activation, transmutation, postreactor cooling) of alloys irradiated for a long time in neutron spectra of the fusion reactor DEMO-RF (15.3 dpa/year) and fast power reactor BN-600 (80 dpa/year) are calculated. The interaction characteristics of V-4Ti-4Cr alloy with hydrogen and the influence of hydrogen on mechanical properties of the alloy (impact toughness, internal friction) have been studied. Obtained results allows one to recommend the vanadium alloys for applications in nuclear reactors at operating temperature window 300 - 800(850)°C. The planes of high-dose and high- temperature reactor tests of vanadium alloys are scheduled at material science assemblies of reactor BN-600 (2013 - 2015, doses 50 - 200 dpa, irradiation temperatures 400 - 800°C). (author)

  7. RF transport

    Choroba, Stefan

    2013-01-01

    This paper deals with the techniques of transport of high-power radiofrequency (RF) power from a RF power source to the cavities of an accelerator. Since the theory of electromagnetic waves in waveguides and of waveguide components is very well explained in a number of excellent text books it will limit itself on special waveguide distributions and on a number of, although not complete list of, special problems which sometimes occur in RF power transportation systems.

  8. RACC-PULSE, Neutron Activation in Fusion Reactor System

    1 - Description of program or function: CCC-0388/RACC was specifically developed to compute the radioactivity and radioactivity-related parameters (e.g. afterheat, biological hazard potential, etc.) due to neutron activation within Inertial Fusion Energy and Magnetic Fusion energy reactor systems. It can also be utilized to compute the radioactivity in fission, accelerator or any other neutron generating and neutron source system. This new designated RACC-PULSE is based on CCC-0388 and has the capability to model irradiation histories of varying flux levels having varying pulse widths (on times) and dwell periods (off times) and varying maintenance periods. This provides the user with the flexibility of modeling most any complexity of irradiation history beginning with simple steady state operating systems to complex multi-flux level pulse/intermittent operating systems. 2 - Method of solution: The solution method implemented within the RACC-PULSE code is a matrix based method which relies on the evaluation of the Matrix Exponential for the pulse period (on period), dwell period (off time) and post shutdown periods. For the pulsed and dwell periods, the Matrix Exponential was evaluated using the squaring and scaling technique outlined in a review article by Molar and Van Loan entitled Nineteen Dubious Ways to Compute the Exponential of a Matrix. A balanced binary tree method utilized for parameter storage in information systems was employed to evaluate the linear chains constructed for the post shutdown period. The RACC-Pulse code retains the capability of modeling the standard slab, cylinder, sphere and torus geometries in multi-dimensions as well as the point or zero-dimension geometry for Monte Carlo code interfacing. It provides easy interfacing with many of the standard multigroup, multidimensional neutron/photon transport code systems currently employed by the fusion community and implemented on the UNICOS Cray 2 System at NERSC. An auxiliary code is provided

  9. Beryllium neutron activation detector for pulsed DD fusion sources

    A compact fast neutron detector based on beryllium activation has been developed to perform accurate neutron fluence measurements on pulsed DD fusion sources. It is especially well suited to moderate repetition-rate (9Be(n,α)6He cross-section, energy calibration of the proportional counters, and numerical simulations of neutron interactions and beta-particle paths using MCNP5. The response function R(En) is determined over the neutron energy range 2-4 MeV. The count rate capability of the detector has been studied and the corrections required for high neutron fluence measurements are discussed. For pulsed DD neutron fluencies >3×104 cm-2, the statistical uncertainty in the fluence measurement is better than 1%. A small plasma focus device has been employed as a pulsed neutron source to test two of these new detectors, and their responses are found to be practically identical. Also the level of interfering activation is found to be sufficiently low as to be negligible.

  10. Different pulse pattern generation by frequency detuning in pulse modulated actively mode-locked ytterbium doped fiber laser

    Chen, He; Chen, Sheng-Ping; Si, Lei; Zhang, Bin; Jiang, Zong-Fu

    2015-10-01

    We report the results of our recent experimental investigation of the modulation frequency detuning effect on the output pulse dynamics in a pulse modulated actively mode-locked ytterbium doped fiber laser. The experimental study shows the existence of five different mode-locking states that mainly depend on the modulation frequency detuning, which are: (a) amplitude-even harmonic/fundamental mode-locking, (b) Q-switched harmonic/fundamental mode-locking, (c) sinusoidal wave modulation mode, (d) pulses bundle state, and (e) noise-like state. A detailed experimental characterization of the output pulses dynamics in each operating mode is presented.

  11. The TESLA RF System

    The TESLA project proposed by the TESLA collaboration in 2001 is a 500 to 800GeV e+/e- linear collider with integrated free electron laser facility. The accelerator is based on superconducting cavity technology. Approximately 20000 superconducting cavities operated at 1.3GHz with a gradient of 23.4MV/m or 35MV/m will be required to achieve the energy of 500GeV or 800GeV respectively. For 500GeV ∼600 RF stations each generating 10MW of RF power at 1.3GHz at a pulse duration of 1.37ms and a repetition rate of 5 or 10Hz are required. The original TESLA design was modified in 2002 and now includes a dedicated 20GeV electron accelerator in a separate tunnel for free electron laser application. The TESLA XFEL will provide XFEL radiation of unprecedented peak brilliance and full transverse coherence in the wavelength range of 0.1 to 6.4nm at a pulse duration of 100fs. The technology of both accelerators, the TESLA linear collider and the XFEL, will be identical, however the number of superconducting cavities and RF stations for the XFEL will be reduced to 936 and 26 respectively. This paper describes the layout of the entire RF system of the TESLA linear collider and the TESLA XFEL and gives an overview of its various subsystems and components

  12. The TESLA RF System

    Choroba, S.

    2003-12-01

    The TESLA project proposed by the TESLA collaboration in 2001 is a 500 to 800GeV e+/e- linear collider with integrated free electron laser facility. The accelerator is based on superconducting cavity technology. Approximately 20000 superconducting cavities operated at 1.3GHz with a gradient of 23.4MV/m or 35MV/m will be required to achieve the energy of 500GeV or 800GeV respectively. For 500GeV ˜600 RF stations each generating 10MW of RF power at 1.3GHz at a pulse duration of 1.37ms and a repetition rate of 5 or 10Hz are required. The original TESLA design was modified in 2002 and now includes a dedicated 20GeV electron accelerator in a separate tunnel for free electron laser application. The TESLA XFEL will provide XFEL radiation of unprecedented peak brilliance and full transverse coherence in the wavelength range of 0.1 to 6.4nm at a pulse duration of 100fs. The technology of both accelerators, the TESLA linear collider and the XFEL, will be identical, however the number of superconducting cavities and RF stations for the XFEL will be reduced to 936 and 26 respectively. This paper describes the layout of the entire RF system of the TESLA linear collider and the TESLA XFEL and gives an overview of its various subsystems and components.

  13. Enhancement or Reduction of Sonochemical Activity of Pulsed Ultrasound Compared to Continuous Ultrasound at 20 kHz?

    Yujing Sun

    2013-04-01

    Full Text Available Little is known about the efficacy of pulsed ultrasound compared with continuous ultrasound. Previous studies on the efficacy of pulsed ultrasound were not systematic and gave different results. In this study, the effects of pulse length, pulse interval, pulse length × pulse intervals, and treatment time on sonochemical activity were investigated using a simple oxidation of iodide method and a comparison of the efficacy of pulsed ultrasound and continuous ultrasound is made. The results showed that the main factor in the efficacy of pulsed ultrasound was pulse length when pulse length varied from 0.1 to 1 s. However, the main factors were pulse length, the pulse length × pulse interval, and pulse interval when pulse length varied from 1 to 9 s. Pulsed ultrasound had no effect when the pulse length was 0.1 s; however, the sonochemical activity of pulsed ultrasound decreased compared to continuous ultrasound as the pulse length varied from 0.1 to 1 s. The sonochemical activity of pulsed ultrasound either increased or decreased compared to continuous ultrasound when pulse length varied from 1 to 9 s, but the increase or decrease had no clear trend. The sonochemical activity was constant at Ton/Toff = 2 s/2 s and slightly decreased at Ton/Toff = 3 s/2 s with time, whereas the sonochemical activity of continuous ultrasound significantly decreased with time. Enhancement or reduction of sonochemical activity of pulsed ultrasound compared to continuous ultrasound depended on the pulse length and pulse interval.

  14. Locking Lasers to RF in an Ultrafast FEL

    Using a novel, phase-stabilized RF-over-fiber scheme, they transmit 3GHz over 300m with 27fs RMS error in 250kHz bandwidth over 12 hours, and phase lock a laser to enable ultrafast pump-probe experiments. Free-electron lasers (FELs) are capable of producing short-duration (< 10fs), high-energy X-ray pulses for a range of scientific applications. The recently activated Linac Coherent Light Source (LCLS) FEL facility at SLAC will support experiments which require synchronized light pulses for pump-probe schemes. They developed and operated a fiber optic RF transmission system to synchronize lasers to the emitted X-ray pulses, which was used to enable the first pump-probe experiments at the LCLS.

  15. MuRF1 activity is present in cardiac mitochondria and regulates reactive oxygen species production in vivo

    Mattox, Taylor A; Young, Martin E; Rubel, Carrie E; Spaniel, Carolyn; Rodríguez, Jessica E; Grevengoed, Trisha J; Gautel, Mathias; Xu, Zhelong; Anderson, Ethan J; Willis, Monte S

    2014-01-01

    perfusion experiments on MuRF1 transgenic hearts demonstrated significant changes in glucose oxidation. However, total oxygen consumption was decreased [corrected]. This data provides evidence for MuRF1 as a novel regulator of cardiac ROS, offering another mechanism by which increased MuRF1 expression may...

  16. Pulse-driven magnetoimpedance sensor detection of cardiac magnetic activity.

    Shinsuke Nakayama

    Full Text Available This study sought to establish a convenient method for detecting biomagnetic activity in the heart. Electrical activity of the heart simultaneously induces a magnetic field. Detection of this magnetic activity will enable non-contact, noninvasive evaluation to be made. We improved the sensitivity of a pulse-driven magnetoimpedance (PMI sensor, which is used as an electric compass in mobile phones and as a motion sensor of the operation handle in computer games, toward a pico-Tesla (pT level, and measured magnetic fields on the surface of the thoracic wall in humans. The changes in magnetic field detected by this sensor synchronized with the electric activity of the electrocardiogram (ECG. The shape of the magnetic wave was largely altered by shifting the sensor position within 20 mm in parallel and/or perpendicular to the thoracic wall. The magnetic activity was maximal in the 4th intercostals near the center of the sterna. Furthermore, averaging the magnetic activity at 15 mm in the distance between the thoracic wall and the sensor demonstrated magnetic waves mimicking the P wave and QRS complex. The present study shows the application of PMI sensor in detecting cardiac magnetic activity in several healthy subjects, and suggests future applications of this technology in medicine and biology.

  17. Report on Superconducting RF Activities at CERN from 2001 to 2003

    Losito, R; Chiaveri, Enrico; Montesinos, E; Tückmantel, Joachim; Valuch, D; 11th Workshop on RF Superconductivity

    2003-01-01

    The main project on superconducting RF at CERN in the period from 2001 to 2003 has been the 400 MHz SC system for the LHC. Five modules, each containing four single-cell niobium (Nb) sputtered cavities, have been assembled and low-power tested at room temperature and at 4.5 K. Production of the first four power couplers has been delayed but high-power tests should start on the first module this autumn. A small program of R&D is maintained on the SPL. Both the beta = 0.7 and beta = 0.8 cavities have been high-power tested up to nominal field without particular problems. A detailed characterization of the cavity mechanical resonances is going on and some preliminary results are presented. A computer code has been written to predict the effects of Lorentz detuning and microphonics on the stability of the RF feedback loops in SC linacs where several cavities are driven by a single high power source. Fast ferrite phase shifters are being developed to allow the decoupling of the feedback loops of individual cav...

  18. RF Test of KSTAR ICRF Antenna without any Cooling

    Bae, Young Dug; Kwak, Jong Gu; Wang, Sun Jeong; Joon, Jae Sung; Hong, Bong Guen

    2005-11-15

    The antenna of the KSTAR ICRF heating system was newly fabricated, which has many enhanced aspects in comparison with the prototype antenna. RF test for the modified antenna was performed without any cooling of the antenna during RF test campaign-5. The maximum standoff voltage was estimated through the RF tests and antenna performance was tested during 300-sec long pulse test. A bottom half of the current strap-1 was connected to the test section with an electrical length of 20 m which is equal to two times of the wave length at a frequency of 30 MHz. So a standing wave was generated on the test section. As a result, the maximum standoff voltage was 40.0 kVp at a pulse length of 5 sec. It was limited by a breakdown on the teflon insulator used in transmission line. Long pulse test showed the maximum standoff voltage was 24.3 kVp at a pulse length of 300 sec. It was limited by overheating of the antenna. It was confirmed that it is impossible to increase available voltage at 300-sec long pulse operation without any cooling. It means that active cooling of the antenna is necessary to increase the standoff voltage. During this test campaign, a range of multifactor discharge was experimentally determined, and conditioning effect was estimated.

  19. Repetitive sub-gigawatt rf source based on gyromagnetic nonlinear transmission line.

    Romanchenko, Ilya V; Rostov, Vladislav V; Gubanov, Vladimir P; Stepchenko, Alexey S; Gunin, Alexander V; Kurkan, Ivan K

    2012-07-01

    We demonstrate a high power repetitive rf source using gyromagnetic nonlinear transmission line to produce rf oscillations. Saturated NiZn ferrites act as active nonlinear medium first sharpening the pumping high voltage nanosecond pulse and then radiating at central frequency of about 1 GHz: shock rise time excites gyromagnetic precession in ferrites forming damping rf oscillations. The optimal length of nonlinear transmission line was found to be of about 1 m. SINUS-200 high voltage driver with Tesla transformer incorporated into pulse forming line has been designed and fabricated to produce bursts of 1000 pulses with 200 Hz repetition rate. A band-pass filter and mode-converter have been designed to extract rf pulse from low-frequency component and to form TE(11) mode of circular waveguide with linear polarization. A wide-band horn antenna has been fabricated to form Gaussian distribution of radiation pattern. The peak value of electric field strength of a radiated pulse at the distance of 3.5 m away from antenna is measured to be 160 kV/m. The corresponding rf peak power of 260 MW was achieved. PMID:22852710

  20. RF control of ICR proton linac

    At the ICR Kyoto University, the proton linac has been developed. The RF high power is fed into the cavity from the klystron and the RF pulse width is 65 μsec. The RF amplitude and the phase in the cavity are affected by the beam loading and the pulse shape of the klystron cathode voltage. The fast RF stabilization system are required to accelerate the high beam stably. The stabilization system consists of the auto level control (ALC) and the phase locked loop (PLL). The designed band width is more than 1 MHz. The main modules of the circuit are the PIN diode attenuator, the fast phase detector, the phase shifter and the wideband feedback amplifier. The variation of the RF amplitude and the RF phase are 0.5 % with ALC and 5deg with PLL, respectively. (author)

  1. The Effects of Burst Activity on Soft Gamma Repeater Pulse Properties and Persistent Emission

    Woods, Peter M.

    2002-01-01

    Soft Gamma Repeaters (SGRs) undergo changes in their pulse properties and persistent emission during episodes of intense burst activity. SGR 1900+14 has undergone large flux increases following recent burst activity. Both SGR 1900+14 and SGR 1806-20 have shown significant changes in their pulse profile and spin-down rates during the last several years. The pulse profile changes are linked with the burst activity whereas the torque variations are not directly correlated with the bursts. Here, ...

  2. Overview of LANL short-pulse ion acceleration activities

    Flippo, Kirk A. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Schmitt, Mark J. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Offermann, Dustin [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Cobble, James A. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Gautier, Donald [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Kline, John [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Workman, Jonathan [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Archuleta, Fred [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Gonzales, Raymond [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Hurry, Thomas [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Johnson, Randall [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Letzring, Samuel [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Montgomery, David [Los Alamos National Laboratory; Reid, Sha-Marie [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Shimada, Tsutomu [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Gaillard, Sandrine A. [Univ. of Nevada, Reno, NV (United States); Sentoku, Yasuhiko [Univ. of Nevada, Reno, NV (United States); Bussman, Michael [Forschungszentrum Dresden (Germany); Kluge, Thomas [Forschungszentrum Dresden (Germany); Cowan, Thomas E. [Forschungszentrum Dresden (Germany); Rassuchine, Jenny M. [Forschungszentrum Dresden - Rossendorf (Germany); Lowenstern, Mario E. [Univ. of Michigan, Ann Arbor, MI (United States); Mucino, J. Eduardo [Univ. of Michigan, Ann Arbor, MI (United States); Gall, Brady [Univ. of Missouri, Columbia, MO (United States); Korgan, Grant [Nanolabz, Reno, NV (United States); Malekos, Steven [Nanolabz, Reno, NV (United States); Adams, Jesse [Nanolabz, Reno, NV (United States); Bartal, Teresa [Univ. of California, San Diego, CA (United States); Chawla, Surgreev [Univ. of California, San Diego, CA (United States); Higginson, Drew [Univ. of California, San Diego, CA (United States); Beg, Farhat [Univ. of California, San Diego, CA (United States); Nilson, Phil [Lab. for Laser Energetics, Rochester, NY (United States); Mac Phee, Andrew [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Le Pape, Sebastien [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Hey, Daniel [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Mac Kinnon, Andy [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Geissel, Mattias [Sandia National Lab. (SNL), Albuquerque, NM (United States); Schollmeier, Marius [Sandia National Lab. (SNL), Albuquerque, NM (United States); Stephens, Rich [General Atomics, San Diego, CA (United States)

    2009-12-02

    An overview of Los Alamos National Laboratory's activities related to short-pulse ion acceleration is presented. LANL is involved is several projects related to Inertial Confinement Fusion (Fast Ignition) and Laser-Ion Acceleration. LANL has an active high energy X-ray backlighter program for radiographing ICF implosions and other High Energy Density Laboratory Physics experiments. Using the Trident 200TW laser we are currently developing high energy photon (>10 keV) phase contrast imaging techniques to be applied on Omega and the NIF. In addition we are engaged in multiple programs in laser ion acceleration to boost the ion energies and efficiencies for various potential applications including Fast Ignition, active material interrogation, and medical applications. Two basic avenues to increase ion performance are currently under study: one involves ultra-thin targets and the other involves changing the target geometry. We have recently had success in boosting proton energies above 65 MeV into the medical application range. Highlights covered in the presentation include: The Trident Laser System; X-ray Phase Contrast Imaging for ICF and HEDLP; Improving TNSA Ion Acceleration; Scaling Laws; Flat Targets; Thin Targets; Cone Targets; Ion Focusing;Trident; Omega EP; Scaling Comparisons; and, Conclusions.

  3. RF breakdown by toroidal helicons

    S K P Tripathi; D Bora; M Mishra

    2001-04-01

    Bounded whistlers are well-known for their efficient plasma production capabilities in thin cylindrical tubes. In this paper we shall present their radio frequency (RF) breakdown and discharge sustaining capabilities in toroidal systems. Pulsed RF power in the electronmagnetohydrodynamic (EMHD) frequency regime is fed to the neutral background medium. After the breakdown stage, discharge is sustained by toroidal bounded whistlers. In these pulsed experiments the behaviour of the time evolution of the discharge could be studied in four distinct phases of RF breakdown, steady state attainment, decay and afterglow. In the steady state average electron density of ≈ 1012 per cc and average electron temperature of ≈ 20 eV are obtained at 10-3 mbar of argon filling pressure. Experimental results on toroidal mode structure, background effects and time evolution of the electron distribution function will be presented and their implications in understanding the breakdown mechanism are discussed.

  4. Circuit design for RF transceivers

    Leenaerts, Domine; Vaucher, Cicero S

    2007-01-01

    Second edition of this successful 2001 RF Circuit Design book, has been updated, latest technology reviews have been added as well as several actual case studies. Due to the authors being active in industry as well as academia, this should prove to be an essential guide on RF Transceiver Design for students and engineers.

  5. The Background in Flow Measurement using Pulsed Neutron Activation

    In flow measurement with Pulsed Neutron Activation (PNA), water flowing in a pipe is activated with 14 MeV neutrons, producing the radioactive nuclide 16N. The gamma radiation emitted from this radionuclide will produce a characteristic peak in a time spectrum from a detector downstream. Experiments have shown that the peak is superimposed on a background distribution, which can affect the measurement. As it is necessary to correct for the background, different subtraction methods have been used in the past, although the origin of the background has not been known. In this work the source of the background has been investigated. It has been found that there are two components of the background: one time dependent and one time independent. The time-dependent component is shown to be caused by stationary 16N in the surroundings. A method for subtracting the background in a reproducible way has been developed. This was done by fitting the peak with an empirical function consisting of several Taylor distributions

  6. Two-phase flow measurement by pulsed neutron activation techniques

    The Pulsed Neutron Activation (PNA) technique for measuring the mass flow velocity and the average density of two-phase mixtures is described. PNA equipment can be easily installed at different loops, and PNA techniques are non-intrusive and independent of flow regimes. These features of the PNA technique make it suitable for in-situ measurement of two-phase flows, and for calibration of more conventional two-phase flow measurement devices. Analytic relations governing the various PNA methods are derived. The equipment and procedures used in the first air-water flow measurement by PNA techniques are discussed, and recommendations are made for improvement of future tests. In the present test, the mass flow velocity was determined with an accuracy of 2%, and average densities were measured down to 0.08 g/cm3 with an accuracy of 0.04 g/cm3. Both the accuracy of the mass flow velocity measurement and the lower limit of the density measurement are functions of the injected activity and of the total number of counts. By using a stronger neutron source and a larger number of detectors, the measurable density can be decreased by a factor of 12 to .007 g/cm3 for 12.5 cm pipes, and to even lower ranges for larger pipes

  7. RF power generation

    Carter, R G

    2011-01-01

    This paper reviews the main types of r.f. power amplifiers which are, or may be, used for particle accelerators. It covers solid-state devices, tetrodes, inductive output tubes, klystrons, magnetrons, and gyrotrons with power outputs greater than 10 kW c.w. or 100 kW pulsed at frequencies from 50 MHz to 30 GHz. Factors affecting the satisfactory operation of amplifiers include cooling, matching and protection circuits are discussed. The paper concludes with a summary of the state of the art for the different technologies.

  8. Exploring Pulses through Math, Science, and Nutrition Activities

    Smith, Diane K.; Mandal, Bidisha; Wallace, Michael L.; Riddle, Lee Anne; Kerr, Susan; Atterberry, Kelly Ann; Miles, Carol

    2016-01-01

    Purpose/Objectives: The Healthy, Hunger-Free Kids Act of 2010 includes pulses as a required component of the school lunch menu standard. Pulses are nutritionally important staple food crops, and include dry beans, dry peas, garbanzo beans, and lentils. This current study examined the short-term effectiveness of a Science, Technology, Engineering,…

  9. RF transformer

    Smith, James L.; Helenberg, Harold W.; Kilsdonk, Dennis J.

    1979-01-01

    There is provided an improved RF transformer having a single-turn secondary of cylindrical shape and a coiled encapsulated primary contained within the secondary. The coil is tapered so that the narrowest separation between the primary and the secondary is at one end of the coil. The encapsulated primary is removable from the secondary so that a variety of different capacity primaries can be utilized with one secondary.

  10. RF system of FELI linac

    FELI (Free Electron Laser Research Institute, Inc.) is constracting a Free Electron Laser facility covering from 20μm (infrared region) to 0.35μm (ultra violet region), using an S-band linac. The building will be completed in November 1993 and linac will start to be installed in December 1993. RF system of linac for FEL is required of long pulse duration and high stability. An S-band klystron (Toshiba E3729) is operated in three pulse operation modes (pulse width and peak RF power); 24μs-24MW, 12.5μs-34MW, 0.5μs-70MW. Each klystron modulator has the PFN consisting of 4 parallel networks of 24 capacitors and 24 inductors, and it has a line switch of optical thyristor stack. (author)

  11. Amplification of Frequency-Modulated Similariton Pulses in Length-Inhomogeneous Active Fibers

    I. O. Zolotovskii

    2012-01-01

    Full Text Available The possibility of an effective gain of the self-similar frequency-modulated (FM wave packets is studied in the length-inhomogeneous active fibers. The dynamics of parabolic pulses with the constant chirp has been considered. The optimal profile for the change of the group-velocity dispersion corresponding to the optimal similariton pulse amplification has been obtained. It is shown that the use of FM pulses in the active (gain and length-inhomogeneous optical fibers with the normal group-velocity dispersion can provide subpicosecond optical pulse amplification up to the energies higher than 1 nJ.

  12. Overview of High Power Vacuum Dry RF Load Designs

    Krasnykh, Anatoly [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-27

    A specific feature of RF linacs based on the pulsed traveling wave (TW) mode of operation is that only a portion of the RF energy is used for the beam acceleration. The residual RF energy has to be terminated into an RF load. Higher accelerating gradients require higher RF sources and RF loads, which can stably terminate the residual RF power. RF feeders (from the RF source though the accelerating section to the load) are vacuumed to transmit multi-megawatt high power RF. This overview will outline vacuumed RF loads only. A common method to terminate multi-MW RF power is to use circulated water (or other liquid) as an absorbing medium. A solid dielectric interface (a high quality ceramic) is required to separate vacuum and liquid RF absorber mediums. Using such RF load approaches in TW linacs is troubling because there is a fragile ceramic window barrier and a failure could become catastrophic for linac vacuum and RF systems. Traditional loads comprising of a ceramic disk have limited peak and average power handling capability and are therefore not suitable for high gradient TW linacs. This overview will focus on ''vacuum dry'' or ''all-metal'' loads that do not employ any dielectric interface between vacuum and absorber. The first prototype is an original design of RF loads for the Stanford Two-Mile Accelerator.

  13. Single frequency RF powered ECG telemetry system

    Ko, W. H.; Hynecek, J.; Homa, J.

    1979-01-01

    It has been demonstrated that a radio frequency magnetic field can be used to power implanted electronic circuitry for short range telemetry to replace batteries. A substantial reduction in implanted volume can be achieved by using only one RF tank circuit for receiving the RF power and transmitting the telemetered information. A single channel telemetry system of this type, using time sharing techniques, was developed and employed to transmit the ECG signal from Rhesus monkeys in primate chairs. The signal from the implant is received during the period when the RF powering radiation is interrupted. The ECG signal is carried by 20-microsec pulse position modulated pulses, referred to the trailing edge of the RF powering pulse. Satisfactory results have been obtained with this single frequency system. The concept and the design presented may be useful for short-range long-term implant telemetry systems.

  14. The main results of activity implemented by RF Gosatomnadzor in 2000

    The organizational structure and functions of the Russian Nuclear Authority (GAN) are presented. The main objects of regulations are: 29 NPP, 109 research facilities, 9 ships, 15 production reactors, 11 nuclear fuel fabrication facilities, 18 reprocessing facilities, 6 research and development facilities using nuclear material, 2 uranium mining facilities, radiation sources and storage facilities. The main outcomes of 2000 in the fields of regulation activities, licensing, supervisory activities and legislation are reported

  15. RF structure: fabrication and conditioning

    Some key issues in the fabrication of RF accelerating cavities are described in this lecture. In order to discuss those issues, two extremes are presented: a continuous-wave standing-wave cavity for storage-ring use, and a pulsed-wave traveling-wave structure for linear-accelerator use. Simple and tedious but very important issues, tuning the cavity frequency and minimizing the RF loss, are discussed in detail. Some characteristics appearing in the conditioning stage are then presented to show the significant influence of cleanness in the fabrication stage on performance in high field operation. (author)

  16. RF superconducting cavities

    Kojima, Y

    1980-01-01

    The history and present activity in research on RF superconducting cavities in various countries are reviewed. The program of the July 1980 Karlsruhe workshop is reproduced and research activity in this field at Stanford HEPL and SLAC, Cornell, Oregon, Brookhaven, KEK (Japan), Weismann (Israel), Genoa, CERN and Karlsruhe (KfK) listed. The theoretical basis of surface resistance and intracavity magnetic field, multipacing and non-resonant electron loading are outlined. (20 refs).

  17. RF power sources for 5--15 TeV linear colliders

    After outlining the design of the NLC rf system at 1 TeV, the possibility of a leap in linear collider energy into the 5--15 TeV energy range is considered. To keep the active accelerator length and ac wall-plug power within reasonable bounds, higher accelerating gradients at higher rf frequencies will be necessary. Scaling relations are developed for basic rf system parameters as a function of frequency, and some specific parameter examples are given for colliders at 34 Ghz and 91 Ghz. Concepts for rf pulse compression system design and for high power microwave sources at 34 Ghz (for example sheet-beam and multiple-beam klystrons) are briefly discussed

  18. Short range RF communication for jet engine control

    Sexton, Daniel White (Inventor); Hershey, John Erik (Inventor)

    2007-01-01

    A method transmitting a message over at least one of a plurality of radio frequency (RF) channels of an RF communications network is provided. The method comprises the steps of detecting a presence of jamming pulses in the at least one of the plurality of RF channels. The characteristics of the jamming pulses in the at least one of the plurality of RF channels is determined wherein the determined characteristics define at least interstices between the jamming pulses. The message is transmitted over the at least one of the plurality of RF channels wherein the message is transmitted within the interstices of the jamming pulse determined from the step of determining characteristics of the jamming pulses.

  19. Active microwave pulse compressor using an electron-beam triggered switch.

    Ivanov, O A; Lobaev, M A; Vikharev, A L; Gorbachev, A M; Isaev, V A; Hirshfield, J L; Gold, S H; Kinkead, A K

    2013-03-15

    A high-power active microwave pulse compressor is described that operates by modulating the quality factor of an energy storage cavity by means of mode conversion controlled by a triggered electron-beam discharge across a switch cavity. This Letter describes the principle of operation, the design of the switch cavity, the configuration used for the tests, and the experimental results. The pulse compressor produced output pulses with 140-165 MW peak power, record peak power gains of 16∶1-20∶1, and FWHM pulse duration of 16-20 ns at a frequency of 11.43 GHz. PMID:25166547

  20. Photocatalyst activation in a pulsed low pressure discharge

    The effect of combining plasma and photocatalyst for Volatile Organic Compounds (VOC) removal was investigated in a pulsed low-pressure dc discharge. The photocatalyst was TiO2 while the VOC was acetylene (1000 ppm) diluted in dry air. The temporal evolution of C2H2 concentration was measured by Tunable Diode Laser Absorption Spectroscopy (TDLAS) in the mid-infrared region during the plasma pulse (one second). The contribution of external ultraviolet radiation and plasma exposure were quantified, both with and without a photocatalyst. The synergetic effect was clearly demonstrated

  1. A Miniature-Implantable RF-Wireless Active Glaucoma Intraocular Pressure Monitor.

    Chow, Eric Y; Chlebowski, Arthur L; Irazoqui, Pedro P

    2010-12-01

    Glaucoma is a detrimental disease that causes blindness in millions of people worldwide. There are numerous treatments to slow the condition but none are totally effective and all have significant side effects. Currently, a continuous monitoring device is not available, but its development may open up new avenues for treatment. This work focuses on the design and fabrication of an active glaucoma intraocular pressure (IOP) monitor that is fully wireless and implantable. Major benefits of an active IOP monitoring device include the potential to operate independently from an external device for extended periods of time and the possibility of developing a closed-loop monitoring and treatment system. The fully wireless operation is based off using gigahertz-frequency electromagnetic wave propagation, which allows for an orientation independent transfer of power and data over reasonable distances. Our system is comprised of a micro-electromechanical systems (MEMS) pressure sensor, a capacitive power storage array, an application-specific integrated circuit designed on the Texas Instruments (TI) 130 nm process, and a monopole antenna all assembled into a biocompatible liquid-crystal polymer-based tadpole-shaped package. PMID:23850751

  2. On the Procedures for the Demonstration of the RF Safety of Active and Passive Implants in MRI Environments

    Eugenia CABOT; Maria CABANES-SEMPERE; Niels KUSTER

    2016-01-01

    As a diagnostic method, magnetic resonance imaging (MRI) is not allowed to be used in patients with medical implants, including both active implants (such as cardiac deifbrillators or deep brain stimulators) and passive implants (such as orthopedics implants and support). MRI imaging scanning can produce magnetic ifelds, which will produce concentrated electromagnetic induction on metal edges of the implants, such as electrodes. The magnetic ifeld can also signiifcantly increase the temperature of surrounding tissues. Besides, the currents and voltage produced by active implants when exposed to MRI scanning can lead to damage and malfunction of pulse generators. Therefore, patients with medical implants cannot receive MRI as a diagnostic method. This safety protocol prevents a large group of patients from receiving MRI diagnosis. This leads to the conclusion that the safety evaluation of implants under MRI environment requires the combination of accurate data analysis and experimental techniques so as to establish the standard testing program.

  3. Two-channel active high-power X-band pulse compressor

    A two-channel active pulse compressor has been developed that is able to provide output-pulses of at least 100 MW peak power with pulse duration of 100 nsec at X-band, with a power gain of 12-15 and with an energy efficiency of 60%. This paper describes the design of the compressor and the driving generator-compressor microwave circuit. Each channel of the compressor is connected to the driving generator and the load via a novel 3-dB quasi-optical coupler. Variations in phase of compressed output pulses from this active pulse compressor were measured. The moderate-power tests of a prototype design of such a compressor using 100 kW-level microwaves demonstrated coherent addition of the compressed pulses from each of the compressor channels. The paper also describes design of a modified output reflector, with which the two-channel active pulse compressor can produce output pulses with a peak power of at least 500 MW and a power gain 12-15

  4. Release factor RF3 in E.coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP-dependent manner.

    Freistroffer, D V; Pavlov, M Y; MacDougall, J; Buckingham, R H; Ehrenberg, M

    1997-01-01

    Ribosomes complexed with synthetic mRNA and peptidyl-tRNA, ready for peptide release, were purified by gel filtration and used to study the function of release factor RF3 and guanine nucleotides in the termination of protein synthesis. The peptide-releasing activity of RF1 and RF2 in limiting concentrations was stimulated by the addition of RF3 and GTP, stimulated, though to a lesser extent, by RF3 and a non-hydrolysable GTP analogue, and inhibited by RF3 and GDP or RF3 without guanine nucleo...

  5. Initial operation of high power ICRF system for long pulse in EAST

    The ICRF heating system on EAST upgraded by active cooling aims for long pulse operation. In this paper, the main technical features of the ICRF system are described. One of a major challenges for long pulse operation is RF-edge interactions induced impurity production and heat loading. In EAST, ICRF antenna protections and Faraday screen bars damaged due to LH electron beam are found. Preliminary results for the analysis of the interaction between LHCD and ICRF antenna are discussed. Increase of metal impurities in the plasma during RF pulse and in a larger core radiation are also shown. These RF-edge interactions at EAST and some preliminary results for the optimizing RF performance will be presented

  6. Initial operation of high power ICRF system for long pulse in EAST

    Qin, C. M., E-mail: chmq@ipp.ac.cn; Zhao, Y. P.; Zhang, X. J.; Wan, B. N.; Gong, X. Z.; Mao, Y. Z.; Yuan, S.; Chen, G. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-12-10

    The ICRF heating system on EAST upgraded by active cooling aims for long pulse operation. In this paper, the main technical features of the ICRF system are described. One of a major challenges for long pulse operation is RF-edge interactions induced impurity production and heat loading. In EAST, ICRF antenna protections and Faraday screen bars damaged due to LH electron beam are found. Preliminary results for the analysis of the interaction between LHCD and ICRF antenna are discussed. Increase of metal impurities in the plasma during RF pulse and in a larger core radiation are also shown. These RF-edge interactions at EAST and some preliminary results for the optimizing RF performance will be presented.

  7. ɣ And pulse radiolytic study of the antioxidant activity of vitamin E

    Jore, D.; Ferradini, C.; Patterson, L. K.

    The radical mechanisms involved in the antioxidant activity of vitamin E are examined by pulse and steady state ɣ radiolysis. A kinetic scheme is proposed for ɣtocopherol oxidation by H 3C-CH(OH)OO . radicals.

  8. High Intensity, Pulsed, D-D Neutron Generator

    Williams, D L

    2010-01-01

    Single ion-beam RF-plasma neutron generators are presented as a laboratory source of intense neutrons. The continuous and pulsed operations of such a neutron generator using the deuterium-deuterium fusion reaction are reported. The neutron beam can be pulsed by switching the RF plasma and/or a gate electrode. These generators are actively vacuum pumped so that a continuous supply of deuterium gas is present for the production of ions and neutrons. This contributes to the generator's long l...

  9. Activation of different MEMS resonant modes with pulsed digital oscillators

    Domínguez Pumar, Manuel; Blokhina, Elena; Pons Nin, Joan; Feely, Orla; Sanchez Rojas, Jose Luis

    2010-01-01

    The objective of this work is to show that is possible to excite different vibration modes of MEMS resonators using Pulsed Digital Oscillators. This class of circuits exhibit two different behaviours: the oscillation and the anti-oscillation mode. In the oscillation mode, th eoscillator in average provides energy to the resonator, whereas in the anti-oscillation mode, it extracts energy of the resonator until a limit cyucle is reached near the origin. It will be shown that by preparing suitab...

  10. Experimental investigations on the influence of the photocathode laser pulse parameters on the electron bunch quality in an RF-photoelectron source

    Free Electron Lasers based on the SASE principle like the European XFEL require electron bunches having peak currents of several kiloamperes as well as very low transverse emittance. While high peak currents can be generated using longitudinal bunch compression techniques, the transverse emittance must have values as low as 1mmmrad already at the source. The development of electron sources fulfilling these demanding specifications is the goal of the Photo Injector Test Facility (PITZ) in DESY, Zeuthen site. The key component of a photoinjector is the electron gun cavity where the electrons bunches are generated and immediately accelerated. The extraction of the electrons is based on the photoelectric effect of the cathode which requires a laser system having special capabilities. In the first part of the thesis, measurements are presented which were performed to investigate whether the laser and the laser transport system fulfill these requirements. The second part of the thesis is dedicated to simulations as well as experimental studies on the impact of the temporal and spatial parameters of the laser pulses on the electron bunch quality. This influence is possible because the response time of the Cs2Te photocathode is short compared to the laser pulse duration. Based on these investigations, suggestions for improvements are given and tolerances for the laser pulse properties are defined. (orig.)

  11. Experimental investigations on the influence of the photocathode laser pulse parameters on the electron bunch quality in an RF-photoelectron source

    Haenel, Marc

    2010-07-15

    Free Electron Lasers based on the SASE principle like the European XFEL require electron bunches having peak currents of several kiloamperes as well as very low transverse emittance. While high peak currents can be generated using longitudinal bunch compression techniques, the transverse emittance must have values as low as 1mmmrad already at the source. The development of electron sources fulfilling these demanding specifications is the goal of the Photo Injector Test Facility (PITZ) in DESY, Zeuthen site. The key component of a photoinjector is the electron gun cavity where the electrons bunches are generated and immediately accelerated. The extraction of the electrons is based on the photoelectric effect of the cathode which requires a laser system having special capabilities. In the first part of the thesis, measurements are presented which were performed to investigate whether the laser and the laser transport system fulfill these requirements. The second part of the thesis is dedicated to simulations as well as experimental studies on the impact of the temporal and spatial parameters of the laser pulses on the electron bunch quality. This influence is possible because the response time of the Cs{sub 2}Te photocathode is short compared to the laser pulse duration. Based on these investigations, suggestions for improvements are given and tolerances for the laser pulse properties are defined. (orig.)

  12. Polyol synthesis of nanosized Pt/C electrocatalysts assisted by pulse microwave activation

    Lebegue, E.; Baranton, S.; Coutanceau, C. [Laboratoire de Catalyse en Chimie Organique (LACCO), UMR 6503 CNRS, Universite de Poitiers, 40 av recteur Pineau, F-86000 Poitiers (France)

    2011-02-01

    A polyol process assisted by pulse microwave activation was used to prepare efficient Pt/C electrocatalysts for PEMFC applications with reducing cost. Catalysts from pulsed microwave method were compared with a catalyst issued from a classical method, in terms of active surface area, platinum loading and activity towards the oxygen reduction reaction. A design of experiments (DOE derived from the Taguchi method) has been implemented to optimize experimental parameters only related to pulse microwave activation, the intrinsic synthesis parameters (concentration of platinum salt, platinum/carbon weight ratio and pH) being kept constant. Controlled parameters were duration of microwave pulse, maximum temperature and total duration of the synthesis. Considered responses were catalyst active surface area and the Pt/C loading. An optimized configuration of synthesis parameter was proposed. The confirmation experiment revealed a trend in agreement with that expected. Three catalysts (two from pulsed microwave synthesis method and one prepared by the classical method) were characterized by transmission electron microscopy, cyclic voltammetry and CO stripping. Catalysts from pulsed microwave method display higher characteristics than the one prepared by the classical method. The Pt/C catalyst from the confirmation experiment displays the highest catalytic activity toward oxygen reduction reaction. (author)

  13. Development and advances in conventional high power RF systems

    The development of rf systems capable of producing high peak power (hundreds of megawatts) at relatively short pulse lengths (0.1--5 microseconds) is currently being driven mainly by the requirements of future high energy linear colliders, although there may be applications to industrial, medical and research linacs as well. The production of high peak power rf typically involves four basic elements: a power supply to convert ac from the ''wall plug'' to dc; a modulator, or some sort of switching element, to produce pulsed dc power; an rf source to convert the pulsed dc to pulsed rf power; and possibly an rf pulse compression system to further enhance the peak rf power. Each element in this rf chain from wall plug to accelerating structure must perform with high efficiency in a linear collider application, such that the overall system efficiency is 30% or more. Basic design concepts are discussed for klystrons, modulators and rf pulse compression systems, and their present design status is summarized for applications to proposed linear colliders

  14. Tickling the retina: integration of subthreshold electrical pulses can activate retinal neurons

    Sekhar, S.; Jalligampala, A.; Zrenner, E.; Rathbun, D. L.

    2016-08-01

    Objective. The field of retinal prosthetics has made major progress over the last decade, restoring visual percepts to people suffering from retinitis pigmentosa. The stimulation pulses used by present implants are suprathreshold, meaning individual pulses are designed to activate the retina. In this paper we explore subthreshold pulse sequences as an alternate stimulation paradigm. Subthreshold pulses have the potential to address important open problems such as fading of visual percepts when patients are stimulated at moderate pulse repetition rates and the difficulty in preferentially stimulating different retinal pathways. Approach. As a first step in addressing these issues we used Gaussian white noise electrical stimulation combined with spike-triggered averaging to interrogate whether a subthreshold sequence of pulses can be used to activate the mouse retina. Main results. We demonstrate that the retinal network can integrate multiple subthreshold electrical stimuli under an experimental paradigm immediately relevant to retinal prostheses. Furthermore, these characteristic stimulus sequences varied in their shape and integration window length across the population of retinal ganglion cells. Significance. Because the subthreshold sequences activate the retina at stimulation rates that would typically induce strong fading (25 Hz), such retinal ‘tickling’ has the potential to minimize the fading problem. Furthermore, the diversity found across the cell population in characteristic pulse sequences suggests that these sequences could be used to selectively address the different retinal pathways (e.g. ON versus OFF). Both of these outcomes may significantly improve visual perception in retinal implant patients.

  15. LANSCE RF System Refurbishment

    Rees, Daniel; Kwon, Sung-il; Lyles, John T M; Lynch, Michael; Prokop, Mark; Reass, William; Tallerico, Paul J

    2005-01-01

    The Los Alamos Neutron Science Center (LANSCE) is in the planning phase of a refurbishment project that will sustain reliable facility operations well into the next decade. The LANSCE accelerator was constructed in the late 1960s and early 1970s and is a national user facility that provides pulsed protons and spallation neutrons for defense and civilian research and applications. We will be replacing all the 201 MHz RF systems and a substantial fraction of the 805 MHz RF systems and high voltage systems. The current 44 LANSCE 805 MHz, 1.25 MW klystrons have an average in-service time in excess of 110,000 hours. All 44 must be in service to operate the accelerator. There are only 9 spares left. The klystrons receive their DC power from the power system originally installed in 1960. Although this power system has been extremely reliable, gas analysis of the insulating oil is indicating age related degradation that will need attention in the next few years. This paper will provide the design details of the new R...

  16. Considerations concerning the use of counting active personal dosimeters in pulsed fields of ionising radiation.

    Ambrosi, Peter; Borowski, Markus; Iwatschenko, Michael

    2010-06-01

    Active personal electronic dosimeters (APDs) exhibit limitations in pulsed radiation fields, which cannot be overcome without the use of new detection technology. As an interim solution, this paper proposes a method by which some conventional dosimeters can be operated in a way such that, based on the basic knowledge about the pulsed radiation field, any dosimetric failure of the dosimeter is signalised by the instrument itself. This method is not applicable to all combinations of APD and pulsed radiation field. The necessary requirements for the APD and for the parameters of the pulsed radiation field are given in the paper. Up to now, all such requirements for APDs have not been tested or verified in a type test. The suitability of the method is verified for the use of one APD used in two clinical pulsed fields. PMID:20083488

  17. New insights into the mechanisms of signal formation in RF-spoiled gradient echo sequences.

    Azizieh, Céline; Denolin, Vincent; Metens, Thierry

    2005-01-01

    RF spoiling is a well established method to produce T1-weighted images with short repetition time gradient-echo sequences, by eliminating coherent transverse magnetization with appropriate RF phase modulation. This paper presents two novel approaches to describe signal formation in such sequences. Both methods rely on the formulation of RF spoiling as a linear increase of the precession angle between RF pulses, which is an alternative to the commonly used quadratic pulse phase scheme. The fir...

  18. Design of S-band RF photocathode gun

    A linear electron accelerator used for medical or industrial applications needs moderate beam currents of about 120 mA (peak). In such cases the emittance or the energy spread are not very critical parameters. The Pierce type gun with the standing wave linac is suitable for such applications where emittance of the order of 15 π-mm-mrad or more is acceptable. In contrast, the RF photo cathode gun can be used to achieve emittance of the order of 3 to 5 π-mm-mrad at a charge of about 1 nC. In an RF photo cathode gun, laser pulses will strike the photo cathode to produce electron bunches. This paper presents the basic technologies needed for successful implementation of RF gun mainly for an activity like the inverse Compton source. The proposed design is presented with detailed calculations and simulations for operating the RF gun in multi bunch mode. The gun will be operating at 2998 MHz frequency and the expected energy gain is a 5 MeV using a 10 MW Klystron. A multi bunch train with 1 nC charge per bunch and 100 bunches per train will be accelerated such that the peak to peak energy difference is less than 1%. (author)

  19. Short-pulse actively Q-switched Er:YAG lasers.

    Ottaway, David J; Harris, Lachlan; Veitch, Peter J

    2016-07-11

    We report the shortest duration pulses obtained to date from an actively Q-switched Er:YAG laser pumped by a low spectral and spatial brightness laser diode. The 14.5 ns, 6 mJ pulses were obtained using a 1470 nm laser diode end-pumped co-planar folded zigzag slab architecture. We also present an analytical model that accurately predicts the pulse energy-duration product achievable from virtually all Q-switched Er:YAG lasers and high repetition rate quasi-three-level Q-switched lasers in general. PMID:27410810

  20. On the Theory of High-Power Ultrashort Pulse Propagation in Raman-Active Media

    Belenov, E. M.; Isakov, V. A.; Kanavin, A. P.; Smetanin, I. V.

    1996-01-01

    The propagation of an intense femtosecond pulse in a Raman-active medium is analyzed. An analytic solution which describes in explicit form the evolution of the light pulse is derived. The field of an intense light wave undergoes a substantial transformation as the wave propagates through the medium. The nature of this transformation can change over time scales comparable to the period of the optical oscillations. As a result, the pulse of sufficiently high energy divides into stretched and compressed domains where the field decreases and increases respectively.

  1. Noise characterization of a pulse train generated by actively mode-locked lasers

    Eliyahu, Danny; Salvatore, Randal A.; Yariv, Amnon

    1996-01-01

    We analyze the entire power spectrum of pulse trains generated by a continuously operating actively mode-locked laser in the presence of noise. We consider the effect of amplitude, pulse-shape, and timing-jitter fluctuations that are characterized by stationary processes. Effects of correlations between different parameters of these fluctuations are studied also. The nonstationary timing-jitter fluctuations of passively mode-locked lasers and their influence on the power spectrum is discussed...

  2. Application of neutron activation analysis system in Xi'an pulsed reactor

    Zhang Wen Shou; Yu Qi

    2002-01-01

    Neutron Activation Analysis System in Xi'an Pulsed Reactor is consist of rabbit fast radiation system and experiment measurement system. The functions of neutron activation analysis are introduced. Based on the radiation system. A set of automatic data handling and experiment simulating system are built. The reliability of data handling and experiment simulating system had been verified by experiment

  3. Optimized Pulse Width Modulation for transformerless active-NPC inverters

    Achilladelis, Nikolaos; Koutroulis, Eftichios; Blaabjerg, Frede

    2014-01-01

    The transformerless DC/AC inverter topologies are employed in Photovoltaic systems in order to improve the power conversion efficiency, power density and cost. The Active-Neutral Point Clamped (Active-NPC) transformerless inverters have the advantage of achieving better thermal balance among their...... power semiconductors. In this paper, a new modulation technique is proposed for optimally controlling the power switches employed in transformerless Active-NPC inverters. The design results demonstrate that compared to the existing PWM strategies, using the proposed method results in lower total power...... losses and significantly better distribution of the power losses among the semiconductors of the Active-NPC inverter....

  4. Tritium control and activation in the Pulse*Star reactor

    Pulse*Star is an inertial fusion reactor that uses LiPb coolant in a pool type geometry. LiPb does not release great quantities of chemical energy in a fire, and the pool geometry reduces the difficulty of safely transporting the extremely dense fluid. The compact geometry and good neutronics qualities of LiPb lead to a thermal-to-fusion energy ratio of 1.26, a tritium breeding ratio of 1.22, and a net electric power density 29 times higher than in a fission reactor containment building. The afterheat of the coolant and steel is low enough that emergency cooling systems will be either simple or not required. The gamma dose rate of the bell jar or screen is high enough to require remote maintenance of these components. The steam generators and pumps are on the borderline between limited hands-on and remote maintenance. With additional design attention, limited hands-on maintenance could be feasible for these components. The biological hazard potential indicates that only 10-7 to 10-6 of the reactor central region can be vaporized and released; these are values typical of other fusion reactor designs

  5. TARN rf stacking system

    Repetitive rf stacking system for the TARN was developed. The developed system consists of ferrite loaded rf cavity, rf power amplifier, ferrite bias power supply and low level rf electronics. Ferrite material and rf signal source were studied to obtain a high-duty and precise moving rf bucket. Phase lock technic worked at a low intensity beam was also studied. Repetition rate of 50 Hz and final stacking number of 50 were attained at the injection beam energy of 7 MeV/u. (author)

  6. Recycler barrier RF buckets

    Bhat, C.M.; /Fermilab

    2011-03-01

    The Recycler Ring at Fermilab uses a barrier rf systems for all of its rf manipulations. In this paper, I will give an overview of historical perspective on barrier rf system, the longitudinal beam dynamics issues, aspects of rf linearization to produce long flat bunches and methods used for emittance measurements of the beam in the RR barrier rf buckets. Current rf manipulation schemes used for antiproton beam stacking and longitudinal momentum mining of the RR beam for the Tevatron collider operation are explained along with their importance in spectacular success of the Tevatron luminosity performance.

  7. Recycler barrier RF buckets

    Bhat, C M

    2012-01-01

    The Recycler Ring at Fermilab uses a barrier rf system for all of its rf manipulations. In this paper, I will give an overview of historical perspective on barrier rf systems, the longitudinal beam dynamics issues, aspects of rf linearization to produce long flat bunches and methods used for emittance measurements of the beam in the RR barrier rf buckets. Current rf manipulation schemes used for antiproton beam stacking and longitudinal momentum mining of the RR beam for the Tevatron collider operation are explained along with their importance in spectacular success of the Tevatron luminosity performance.

  8. Electron dynamics in RF sources with a laser controlled emission

    Khodak, I V; Metrochenko, V V

    2001-01-01

    Photoemission radiofrequency (RF) electron sources are sources of electron beams with extremely high brightness. Beam bunching processes in such devices are well studied in case when laser pulse duration is much lower of rf oscillation period.At the same time photoemission RF guns have some merits when operating in 'long-pulse' mode. In this case the laser pulse duration is much higher of rf oscillation period but much lower of rise time of oscillations in a gun cavity. Beam parameters at the gun output are compared for photoemission and thermoemission cathode applications. The paper presents results of a beam dynamics simulation in such guns with different resonance structures. Questions connected with defining of the current pulse peak value that can be obtained in such guns are discussed.

  9. Electron dynamics in RF sources with a laser controlled emission

    Photoemission radiofrequency (RF) electron sources are sources of electron beams with extremely high brightness. Beam bunching processes in such devices are well studied in case when laser pulse duration is much lower of rf oscillation period.At the same time photoemission RF guns have some merits when operating in 'long-pulse' mode. In this case the laser pulse duration is much higher of rf oscillation period but much lower of rise time of oscillations in a gun cavity. Beam parameters at the gun output are compared for photoemission and thermoemission cathode applications. The paper presents results of a beam dynamics simulation in such guns with different resonance structures. Questions connected with defining of the current pulse peak value that can be obtained in such guns are discussed

  10. Modulator considerations for the SNS RF system

    The Spallation Neutron Source (SNS) is an intense neutron source for neutron scattering experiments. The project is in the research stage, with construction funding beginning next year. The SNS is comprised of an ion source, a 1,000 MeV, H- linear accelerator, an accumulator ring, a neutron producing target, and experimental area to utilize the scattering of the neutrons. The linear accelerator is RF driven, and the peak beam current is 27 mA and the beam duty factor is 5.84%. The peak RF power required is 104 MW, and the H- beam pulse length is 0.97 ms at a 60 Hz repetition rate. The RF pulses must be about 0.1 ms longer than the beam pulses, due to the Q of the accelerating cavities, and the time required to establish control of the cavity fields. The modulators for the klystrons in this accelerator are discussed in this paper. The SNS is designed to be expandable, so the beam power can be doubled or even quadrupled in the future. One of the double-power options is to double the beam pulse length and duty factor. The authors are specifying the klystrons to operate in this twice-duty-factor mode, and the modulator also should be expandable to 2 ms pulses at 60 Hz. Due to the long pulse length and low RF frequency of 805 MHz, the klystron power is specified at 2.5 MW peak, and the RF system will have 56 klystrons at 805 MHz, and three 1.25 MW peak power klystrons at 402.5 MHz for the low energy portion of the accelerator. The low frequency modulators are conventional floating-deck modulation anode control systems

  11. RF Electron Gun with Driven Plasma Cathode

    Khodak, Igor

    2005-01-01

    It's known that RF guns with plasma cathodes based on solid-state dielectrics are able to generate an intense electron beam. In this paper we describe results of experimental investigation of the single cavity S-band RF gun with driven plasma cathode. The experimental sample of the cathode based on ferroelectric ceramics has been designed. Special design of the cathode permits to separate spatially processes of plasma development and electron acceleration. It has been obtained at RF gun output electron beam with particle energy ~500 keV, pulse current of 4 A and pulse duration of 80 ns. Results of experimental study of beam parameters are referred in. The gun is purposed to be applied as the intense electron beam source for electron linacs.

  12. Using Pulse Rate in Estimating Workload Evaluating a Load Mobilizing Activity

    Juan Alberto Castillo

    2014-06-01

    Full Text Available Introduction: The pulse rate is a direct indicator of the state of the cardiovascular system, in ad-dition to being an indirect indicator of the energy expended in performing a task. The pulse of a person is the number of pulses recorded in a peripheral artery per unit time; the pulse appears as a pressure wave moving along the blood vessels, which are flexible, “in large arterial branches, speed of 7-10 m/s in the small arteries, 15 to 35 m/s”. Materials and methods: The aim of this study was to assess heart rate, using the technique of recording the frequency of the pulse, oxy-gen consumption and observation of work activity in the estimation of the workload in a load handling task for three situations: lift/transfer/deposit; before, during and after the task the pulse rate is recorded for 24 young volunteers (10 women and 14 men under laboratory conditions. We performed a gesture analysis of work activity and lifting and handling strategies. Results: We observed an increase between initial and final fp in both groups and for the two tasks, a dif¬ference is also recorded in the increase in heart rate of 17.5 for charging 75 % of the participants experienced an increase in fp above 100 lat./min. Par 25 kg, registered values indicate greater than 114 lat./min and 17.5 kg than 128 lat./min values. Discussion: The pulse rate method is recommended for its simplicity of use for operational staff, supervisors and managers and indus¬trial engineers not trained in the physiology method can also be used by industrial hygienists.

  13. Antenna Technology and other Radio Frequency (RF) Communications Activities at the Glenn Research Center in Support of NASA's Exploration Vision

    Miranda, Felix A.

    2007-01-01

    NASA s Vision for Space Exploration outlines a very ambitious program for the next several decades of the Space Agency endeavors. Ahead is the completion of the International Space Station (ISS); safely flight the shuttle (STS) until 2010; develop and fly the Crew Exploration Vehicle (Orion) by no later than 2014; return to the moon by no later than 2020; extend human presence across the solar system and beyond; implement a sustainable and affordable human and robotic program; develop supporting innovative technologies, knowledge and infrastructure; and promote international and commercial participation in exploration. To achieve these goals, a series of enabling technologies must be developed or matured in a timely manner. Some of these technologies are: spacecraft RF technology (e.g., high power sources and large antennas which using surface receive arrays can get up to 1 Gbps from Mars), uplink arraying (reduce reliance on large ground-based antennas and high operation costs; single point of failure; enable greater data-rates or greater effective distance; scalable, evolvable, flexible scheduling), software define radio (i.e., reconfigurable, flexible interoperability allows for in flight updates open architecture; reduces mass, power, volume), and optical communications (high capacity communications with low mass/power required; significantly increases data rates for deep space). This presentation will discuss some of the work being performed at the NASA Glenn Research Center, Cleveland, Ohio, in antenna technology as well as other on-going RF communications efforts.

  14. Influence of deposition atmosphere on photocatalytic activity of TiO2/SiOx double-layers prepared by RF magnetron sputtering

    TiO2/SiOx double-layers have been prepared at room temperature by RF magnetron sputtering. The TiO2 top-layer was deposited in an Ar atmosphere, while the SiOx bottom-layer was deposited in an Ar/O2 atmosphere. Samples were characterized using X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, and photoluminescence techniques. The photocatalytic activity of the samples was evaluated by the photodegradation of methylene blue; the results showed that the photocatalytic activity of the TiO2/SiOx double-layers was superior to that of the TiO2 single-layers. The presence of the SiOx bottom-layer improved the photocatalytic activity of the TiO2 layer because it may act as a trap for electrons generated in the TiO2 layer thus preventing electron-hole recombinations.

  15. Traveling-wave pulse on a superconductive active transmission line using resonant tunneling diodes

    Analytic study and computer experiment investigations on a superconductive active transmission line using resonant tunneling diodes (RTDs) are discussed. It is shown, based on nonlinear wave propagation effects, that the line supports pulse propagation appearing as pairs of kink–antikink profiles. This behavior is due to compensation between the effects of amplification and dissipation along the network. (paper)

  16. Traveling-wave pulse on a superconductive active transmission line using resonant tunneling diodes

    Klofaï, Yerima; Essimbi, B. Z.; Jäger, D.

    2013-10-01

    Analytic study and computer experiment investigations on a superconductive active transmission line using resonant tunneling diodes (RTDs) are discussed. It is shown, based on nonlinear wave propagation effects, that the line supports pulse propagation appearing as pairs of kink-antikink profiles. This behavior is due to compensation between the effects of amplification and dissipation along the network.

  17. gamma. and pulse radiolytic study of the antioxidant activity of vitamin E

    Jore, D.; Ferradini, C.; Patterson, L.K.

    1986-01-01

    The radical mechanisms involved in the antioxidant activity of vitamine E are examined by pulse and steady state ..gamma.. radiolysis. A kinetic scheme is proposed for ..cap alpha.. tocopherol oxidation of H/sub 3/C-CH(OH)00 radicals.

  18. Development of a low-level RF control system for PET cyclotron CYCIAE-14

    Li, Pengzhan, E-mail: lipengzhan@ciae.ac.cn; Yin, Zhiguo; Ji, Bin; Zhang, Tianjue; Zhao, Zhenlu

    2014-01-21

    The project of a 14 MeV PET cyclotron aiming at medical diagnosis and treatment was proposed and started at CIAE in 2010. The low-level RF system is designed to stabilize acceleration voltage and control the resonance of the cavity. Based on the experience of the existing CRM Cyclotron in CIAE, a new start-up sequence is developed and tested. The frequency sweeping is used to activate the RF system. Before the tuner is put into use, a new state called “DDS tuning” is applied to trace the resonance frequency to the designed value. This new option state helps to cover the tuning range, if a large frequency variation occurs because of a thermal cavity deformation. The logic control unit detects the spark, reflection, Pulse/CW state and the frequency of the RF source to perform all kinds of protection and state operations. The test bench and on-line test are carried out to verify the initial design. -- Highlights: • The low-level RF system is designed and verified for PET cyclotron CYCIAE-14. • The frequency sweeping is used to activate the RF system. • A new state called “DDS tuning” is applied to trace the resonance frequency. • This new option state helps to cover the tuning range. • Protection module allows a quick restart after an alarm and improves cyclotron's efficiency.

  19. 2 MW Active Bouncer Converter Design for Long Pulse Klystron Modulators

    Aguglia, D

    2012-01-01

    This paper presents some design issues of a 2 MW interleaved buck converter which is used as an active bouncer droop compensator for a 5.5MW long pulse klystron modulator. This novel design concept presents many challenges in terms of voltage ripple versus pulse rise-time. Issues related to the voltage ripple specification versus output filter design are discussed in detail. The design study is analyzed analytically, simulated numerically and is validated by experimental results obtained from a full power prototype.

  20. Novel Active Bouncer Topology for Klystron Modulators based on Pulsed Transformers

    AUTHOR|(CDS)2079689; Aguglia, Davide; Viarouge, Philippe; Cros, Jérôme

    2015-01-01

    Active droop compensation systems, so called active bouncers, for klystron modulators based on monolithic pulse transformers perform the regulation of the output pulse voltage while simultaneously withstand all the primary current of the modulator. This imposes the utilization of high power semiconductors which can produce high switching losses and degrade the overall system efficiency. In order to overcome this issue, this paper proposes a new active bouncer topology based on the parallel connection of two different power converters: the first one is in charge of handling the majority of the primary current at high efficiency, and the second one is used to fine tune the bouncer voltage via a high bandwidth converter rated at a fraction of the first parallel connected converter. Detailed comparison between a classical active bouncer and two variants of the proposed topology are presented and based on numerical simulations.

  1. RF-system design of proton synchrotron for hadron therapy

    A conceptual design of the RF-system for the medical proton synchrotron is presented. The synchrotron will be able to accelerate high-intensity proton beam of 6.25 · 1010 protons per pulse till the energy of 60 - 220 MeV with the repetition rate of 1 Hz. The RF-system consists of a RF-cavity with a magnetic material, a power amplifier, a tuning control system and a beam control system. The RF-system must supply 2 kV peak voltage in the frequency range from 1 to 5 MHz

  2. Method of electron emission control in RF guns

    Khodak, I V

    2001-01-01

    The electron emission control method for a RF gun is considered.According to the main idea of the method,the additional resonance system is created in a cathode region where the RF field strength could be varied using the external pulse equipment. The additional resonance system is composed of a coaxial cavity coupled with a RF gun cylindrical cavity via an axial hole. Computed results of radiofrequency and electrodynamic performances of such a two-cavity system and results of the RF gun model pilot study are presented in. Results of particle dynamics simulation are described.

  3. Method of electron emission control in RF guns

    The electron emission control method for a RF gun is considered.According to the main idea of the method,the additional resonance system is created in a cathode region where the RF field strength could be varied using the external pulse equipment. The additional resonance system is composed of a coaxial cavity coupled with a RF gun cylindrical cavity via an axial hole. Computed results of radiofrequency and electrodynamic performances of such a two-cavity system and results of the RF gun model pilot study are presented in. Results of particle dynamics simulation are described

  4. Autonomous portable pulsed-periodical generator of high-power radiofrequency-pulses based on gas discharge with hollow cathode

    Bulychev, Sergey V.; Dubinov, Alexander E.; L'vov, Igor L.; Popolev, Vyacheslav L.; Sadovoy, Sergey A.; Sadchikov, Eugeny A.; Selemir, Victor D.; Valiulina, Valeria K.; Vyalykh, Dmitry V.; Zhdanov, Victor S.

    2016-05-01

    Portable autonomous generator of high-power RF-pulses based on the gas discharge with hollow cathode has been designed, fabricated, and tested. Input and output characteristics are the following: discharge current amplitude is 800 A, duration of generated RF-pulses is 350 ns, carrier frequency is ˜90 MHz, power in RF-pulse is 0.5 MW, pulse repetition rate is 0.5 kHz, and device efficiency is ˜25%.

  5. Chaotic parametric soliton-like pulses in ferromagnetic-film active ring resonators

    The generation of quasi-periodic sequences of parametric soliton-like pulses in an active ring resonator with a ferromagnetic film via the three-wave parametric instability of a magnetostatic surface wave is studied theoretically and experimentally. These dissipative structures form in time due to the competition between the cubic nonlinearity caused by parametric coupling between spin waves and the time dispersion caused by the resonant cavity that is present in a self-oscillatory system. The development of dynamic chaos due to the parametric instability of a magnetostatic surface wave results in irregular behavior of a phase. However, this behavior does not break a quasi-periodic pulse sequence when the gain changes over a wide range. The generated soliton-like pulses have a chaotic nature, which is supported by the maximum Lyapunov exponent estimated from experimental time series

  6. Active microwave pulse compressors employing oversized resonators and distributed plasma switches

    Principles and preliminary design considerations for microwave pulse compressors using electrically-switched Bragg reflectors were presented by Petelin, Vikharev and Hirshfield at AAC'96. This paper presents results of experiments to study performance of several proto-type designs of such compressors. In moderate-power tests using a plasma-switched TE011 cavity as the active element, a 25 nsec, 1.8 MW output pulse was realized, corresponding to a peak power gain of 20:1, with an energy efficiency of 30%. A high-power prototype of a 60% energy efficient compressor is under construction that is designed to yield a 100 nsec. 100 MW output pulse with a peak power gain of 17:1. Details of this design are described

  7. Active microwave pulse compressors employing oversized resonators and distributed plasma switches

    Principles and preliminary design considerations for microwave pulse compressors using electrically-switched Bragg reflectors were presented by Petelin, Vikharev and Hirshfield at AAC close-quote 96 (1). This paper presents results of experiments to study performance of several proto-type designs of such compressors. In moderate-power tests using a plasma-switched TE011 cavity as the active element, a 25 nsec, 1.8 MW output pulse was realized, corresponding to a peak power gain of 20:1, with an energy efficiency of 30%. A high-power prototype of a 60% energy efficient compressor is under construction that is designed to yield a 100 nsec. 100 MW output pulse with a peak power gain of 17:1. Details of this design are described. copyright 1999 American Institute of Physics

  8. Chaotic parametric soliton-like pulses in ferromagnetic-film active ring resonators

    Grishin, S. V., E-mail: grishfam@sgu.ru; Golova, T. M.; Morozova, M. A.; Romanenko, D. V. [Tchernyshevsky State University (Russian Federation); Seleznev, E. P. [Saratov Branch, Russian Academy of Sciences, Kotel’nikov Institute of Radio Engineering and Electronics (Russian Federation); Sysoev, I. V.; Sharaevskii, Yu. P. [Tchernyshevsky State University (Russian Federation)

    2015-10-15

    The generation of quasi-periodic sequences of parametric soliton-like pulses in an active ring resonator with a ferromagnetic film via the three-wave parametric instability of a magnetostatic surface wave is studied theoretically and experimentally. These dissipative structures form in time due to the competition between the cubic nonlinearity caused by parametric coupling between spin waves and the time dispersion caused by the resonant cavity that is present in a self-oscillatory system. The development of dynamic chaos due to the parametric instability of a magnetostatic surface wave results in irregular behavior of a phase. However, this behavior does not break a quasi-periodic pulse sequence when the gain changes over a wide range. The generated soliton-like pulses have a chaotic nature, which is supported by the maximum Lyapunov exponent estimated from experimental time series.

  9. Efficiency of generation of chemically active species by pulsed corona discharges

    G-values for the production of chemically active species by pulsed corona discharges are estimated within the framework of analytical streamer theory. Estimates for the production of oxygen and nitrogen atoms in the heads of propagating streamers are compared with recent experimental results obtained with the use of very short current pulses of duration of several nanoseconds. Production of oxygen and nitrogen atoms for long current pulses, of duration of several hundred nanoseconds, at a stage after bridging the discharge gap by a streamer is also considered. It is shown that, while oxygen atoms are produced during the discharge, generation of nitrogen atoms takes place mainly after the discharge, in collisions between vibrationally excited nitrogen molecules. (fast track communication)

  10. Scanning beam switch experiment for intense rf power generation

    Humphries, Stanley, Jr.; Babcock, Steven R.; Wilson, J. M.; Adler, Richard J.

    1991-04-01

    1407_57The SBS_1 experiment at Sandia National Laboratories is designed to demonstrate the feasibility of the Scanning Beam Switch for high-power rf generation. The primary application is to pulsed rf linacs and high-frequency induction accelerators. It is expected that the apparatus will generate rf output power exceeding 100 MW at 50 MHz over a 5 microsecond(s) pulse. The device can operate as an oscillator or high gain amplifier. To achieve the capability for long-macropulse and high-duty-cycle operation, SBS_1 uses a large dispenser cathode and vacuum triode input driver.

  11. RF Test of the KSTAR ICRF Antenna with a Water Cooling during Test Campaign-6

    Bae, Young-Dug; Kwak, Jong-Gu; Wang, Sun-Jeong; Joon, Jae-Sung; Hwang, Churl-Kew; Hong, Bong-Guen

    2006-12-15

    The RF high power tests for the KSTAR ICRF system were performed with a water cooling of the antenna during RF test campaign-6, and the test results were compared with the test results of RF test campaign-5 without any cooling. The water-cooled antenna showed several enhanced performances in comparison with the non-cooled case, and the standoff voltage was significantly increased. By utilizing a water cooling of the antenna, the temperature increase of the antenna was lowered, and the outgassing rate was decreased. So the probability of RF discharge in RFTC was fairly reduced. The bandwidth of the frequency tuning required to minimize the reflected power was also much lower than the non-cooling case, and the reflected power could be maintained at much lower level. As a result, we achieved a standoff voltage of 42.0 kVp for a pulse length of 5 sec, and 31.2 kVp for 300 sec, which considerably exceeds the previous performance achieved during RF test campaign-5, 40.0 kVp/5 sec and 24.3 kVp/300 sec. The maximum achievable standoff voltage for a long pulse was limited by an overheating of the vacuum feed through and inner conductors of the transmission line and that for short pulse was limited by a breakdown on the teflon insulator in a transmission line. In order to increase the standoff voltage, it is required that an active cooling system for the vacuum feed through and the transmission line should be installed, and the teflon insulator should be replaced with a quartz one.

  12. An RF cavity for barrier bucket experiment in the AGS

    A barrier bucket experiment in the AGS is planed in 1998. An accumulation of the beam, which intensity of 1.0 x 1014ppp is, acceleration after the injection with a barrier bucket scheme and other RF gymnastics experiments will be studied. An isolated RF pulse of 40 kV per cavity is necessary for the experiment. The RF frequency is 2 MHz and the isolated pulse is generated at the repetition rate of the revolution frequency of 357 kHz. We have developed the barrier cavity for this experiment. The cavity is loaded with FINEMET core. It has low Q value but high shunt impedance. It makes the necessary power less than that of ferrite-loaded cavity for an isolated RF pulse. (author)

  13. Hybrid biocomposite with a tunable antibacterial activity and bioactivity based on RF magnetron sputter deposited coating and silver nanoparticles

    Ivanova, A.A. [Department of Theoretical and Experimental Physics, Center of Technology, National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Surmenev, R.A., E-mail: rsurmenev@gmail.com [Department of Theoretical and Experimental Physics, Center of Technology, National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart (Germany); Surmeneva, M.A.; Mukhametkaliyev, T. [Department of Theoretical and Experimental Physics, Center of Technology, National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Loza, K.; Prymak, O.; Epple, M. [Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen (Germany)

    2015-02-28

    Highlights: • A biocomposite of hydroxyapatite film and silver nanoparticles (AgNPs) was tested. • The concentration of the released silver in phosphate or acetate buffer was studied. • The concentration and release rate of AgNPs can be controlled in a tailored manner. - Abstract: In this work, we describe fabrication techniques used to prepare a multifunctional biocomposite based on a hydroxyapatite (HA) coating and silver nanoparticles (AgNPs). AgNPs synthesized by a wet chemical reduction method were deposited on Ti substrates using a dripping/drying method followed by deposition of calcium phosphate (CaP) coating via radio-frequency (RF) magnetron sputter-deposition. The negatively charged silver nanoparticles (zeta potential −21 mV) have a spherical shape with a metallic core diameter of 50 ± 20 nm. The HA coating was deposited as a dense nanocrystalline film over a surface of AgNPs. The RF-magnetron sputter deposition of HA films on the AgNPs layer did not affect the initial content of AgNPs on the substrate surface as well as NPs size and shape. SEM cross-sectional images taken using the backscattering mode revealed a homogeneous layer of AgNPs under the CaP layer. The diffraction patterns from the coatings revealed reflexes of crystalline HA and silver. The concentration of Ag ions released from the biocomposites after 7 days of immersion in phosphate and acetate buffers was estimated. The obtained results revealed that the amount of silver in the solutions was 0.27 ± 0.02 μg mL{sup −1} and 0.54 ± 0.02 μg mL{sup −1} for the phosphate and acetate buffers, respectively, which corresponded well with the minimum inhibitory concentration range known for silver ions in literature. Thus, this work establishes a new route to prepare a biocompatible layer using embedded AgNPs to achieve a local antibacterial effect.

  14. Hybrid biocomposite with a tunable antibacterial activity and bioactivity based on RF magnetron sputter deposited coating and silver nanoparticles

    Highlights: • A biocomposite of hydroxyapatite film and silver nanoparticles (AgNPs) was tested. • The concentration of the released silver in phosphate or acetate buffer was studied. • The concentration and release rate of AgNPs can be controlled in a tailored manner. - Abstract: In this work, we describe fabrication techniques used to prepare a multifunctional biocomposite based on a hydroxyapatite (HA) coating and silver nanoparticles (AgNPs). AgNPs synthesized by a wet chemical reduction method were deposited on Ti substrates using a dripping/drying method followed by deposition of calcium phosphate (CaP) coating via radio-frequency (RF) magnetron sputter-deposition. The negatively charged silver nanoparticles (zeta potential −21 mV) have a spherical shape with a metallic core diameter of 50 ± 20 nm. The HA coating was deposited as a dense nanocrystalline film over a surface of AgNPs. The RF-magnetron sputter deposition of HA films on the AgNPs layer did not affect the initial content of AgNPs on the substrate surface as well as NPs size and shape. SEM cross-sectional images taken using the backscattering mode revealed a homogeneous layer of AgNPs under the CaP layer. The diffraction patterns from the coatings revealed reflexes of crystalline HA and silver. The concentration of Ag ions released from the biocomposites after 7 days of immersion in phosphate and acetate buffers was estimated. The obtained results revealed that the amount of silver in the solutions was 0.27 ± 0.02 μg mL−1 and 0.54 ± 0.02 μg mL−1 for the phosphate and acetate buffers, respectively, which corresponded well with the minimum inhibitory concentration range known for silver ions in literature. Thus, this work establishes a new route to prepare a biocompatible layer using embedded AgNPs to achieve a local antibacterial effect

  15. The Influence of the Nearest Environment of the Active Zone on the Power Pulse Dynamics in the IBR-2 Reactor

    Pepelyshev, Yu N

    2005-01-01

    An analysis of the IBR-2 reactor power pulse shape measured over the entire dynamic range of neutron flux variation (10$^{4})$, i.e., from the maximum pulse power to the background power between pulses, has been carried out. Three variants of the model describing the reactor dynamics during the power pulse have been investigated. The best approximation to the experimental data has been obtained by adding to the six equations describing the effect of delay neutrons on the power pulse of two analogous ones describing the effect of the neutrons reflected from the structural elements of the reactor. It is shown that the most probable source of additional groups of neutrons may be the neutron moderators enveloping the active zone as well as the elements of the biological concrete shielding that are closest to the active zone. These additional groups of neutrons influence essentially the formation of the power pulse.

  16. Characteristics of High Speed Electro-thermal Jet Activated by Pulsed DC Discharge

    Jichul Shin

    2010-01-01

    Experimental study of synthetic jet produced by pulsed direct current (DC) discharge is presented.High velocity jet is activated electro-thermally by high frequency pulsed DC discharge in small cavity.A cavity of 2.38 mm diameter cylinder bounded by circular electrode is made in a ceramic plate and a small orifice of 1.78 mm diameter is drilled in the middle of cavity.High frequency pulsed DC discharge instantaneously heats air in the cavity and produces high velocity jet at the exit of the orifice.Schlieren imaging at high framing rate of 100 kHz reveals the presence of supersonic precursor shock followed by the jet emerging from the orifice.The jet velocity reaches as high as about 300 m/s.Jet with smaller cavity volume produces lesser effect and jet velocity reaches maximum at certain cavity volume with given discharge current and orifice size.As duty time of pulse increases from 5 to 20 μs at fixed frequency of 5 kHz,the jet velocity also increases and becomes nearly constant with further increase in duty time.At fixed duty time of 20 μs,higher frequency pulsing of 10 kHz produces degradation of the jet as the discharge pulse continues.The jet developed in this study is demonstrated to be strong enough to penetrate deep into supersonic boundary layer and to produce a bow shock when the jet is issued into Math 3 supersonic flow.

  17. 1 kW S-band RF solid state amplifier for BEPC linac microwave driver system

    This paper presents the development of a 1 kW S-Band RF Solid State Amplifier (SSA) for the BEPC Linac. 1 kW peak power with a pulse width of 2-10 μs under low voltage operation is achieved by combining eight 160 W high power Solid State Amplifiers using a low-loss (0.3 dB) combiner. Other key performance parameters are: RF phase drift during pulse ≤±1 degree, RF rise time/fall time is 88 ns/40 ns, RF pulse flatness is 0.7%, and RF power stability is 0.1 dB

  18. RF installation for the grain disinfestation

    Zajtzev, B V; Kobetz, A F; Rudiak, B I

    2001-01-01

    The ecologically pure method of grain product disinfestations through the grain treatment with the RF electric field is described. The experimental data obtained showed that with strengths of the electrical RF field of E=5 kV/cm and frequency of 80 MHz the relative death rate is 100%.The time of the grain treatment it this case is 1 sec. The pulses with a duration of 600 mu s and repetition rate of 2 Hz were used, the duration of the front was 10 mu s. The schematic layout of installation with a productivity of 50 tones/h and power of 10 kW is given.

  19. New SLED 3 system for Multi-mega Watt RF compressor

    Xu, Chen; Tantawi, Sami

    2014-01-01

    A compact X band SLED is introduced for X band RF compressing application. This SLED compressor consists two major parts: a rectangular to circular waveguide converter and an overmoded spherical cavity. The RF compressor is designed to convert 50 magawatt X band RF power with pulse length 1.5 microseconds and deliver 200 megawatts with pulse length 106 nanoseconds to the X band accelerating structure.

  20. Densities of active species in N2 and N2–H2 RF pink afterglow

    The transverse distribution of N2 radiative states has been analyzed in the early afterglow of RF N2 flowing discharge with the introduction of a few H2 molecules (10−5–10−3) in the discharge. The transverse distributions of N2, 1st (580 nm), 2nd pos (316 nm) and N2+,1st neg (391.4 nm) band intensities have a sharp profile in pure N2. As more H2 was introduced into N2, a sharper profile for the N2+,1st neg was observed, and inversely a broader profile for the N2, 1st pos. With the introduction of H2 into N2 the early afterglow was changed from a sharp pink to a broad late afterglow where the N + N recombination is the dominant process. After NO titration of N-atom density in pure N2 late afterglow, the variation of N-atom and N2(A) density in the N2–H2 early afterglow is deduced. The N2(X, v > 13) density is also estimated. (paper)

  1. RF gymnastics in synchrotrons

    Garoby, R.

    2011-01-01

    The RF systems installed in synchrotrons can be used to change the longitudinal beam characteristics. 'RF gymnastics' designates manipulations of the RF parameters aimed at providing such non-trivial changes. Some keep the number of bunches constant while changing bunch length, energy spread, emittance, or distance between bunches. Others are used to change the number of bunches. After recalling the basics of longitudinal beam dynamics in a hadron synchrotron, this paper deals with the most c...

  2. RF feedback for KEKB

    Ezura, Eizi; Yoshimoto, Shin-ichi; Akai, Kazunori [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    This paper describes the present status of the RF feedback development for the KEK B-Factory (KEKB). A preliminary experiment concerning the RF feedback using a parallel comb-filter was performed through a choke-mode cavity and a klystron. The RF feedback has been tested using the beam of the TRISTAN Main Ring, and has proved to be effective in damping the beam instability. (author)

  3. RF guns: a review

    Free Electron Lasers and future linear colliders require very bright electron beams. Conventional injectors made of DC guns and RF bunchers have intrinsic limitations. The recently proposed RF guns have already proven their capability to produce bright beams. The necessary effort to improve further these performances and to gain reliability is now undertaken by many laboratories. More than twenty RF gun projects both thermionic and laser-driven are reviewed. Their specific characteristics are outlined and their nominal performances are given

  4. Antimicrobial activity of biopolymer–antibiotic thin films fabricated by advanced pulsed laser methods

    We report on thin film deposition by matrix assisted pulsed laser evaporation (MAPLE) of two polymer–drug composite thin film systems. A pulsed KrF* excimer laser source (λ = 248 nm, τ = 25 ns, ν = 10 Hz) was used to deposit composite thin films of poly(D,L-lactide) (PDLLA) containing several gentamicin concentrations. FTIR spectroscopy was used to demonstrate that MAPLE-transferred materials exhibited chemical structures similar to those of drop cast materials. Scanning electron microscopy data indicated that MAPLE may be used to fabricate thin films of good morphological quality. The activity of PDLLA–gentamicin composite thin films against Staphylococcus aureus bacteria was demonstrated using drop testing. The influence of drug concentration on microbial viability was also assessed. Our studies indicate that polymer–drug composite thin films prepared by MAPLE may be used to impart antimicrobial activity to implants, medical devices, and other contact surfaces.

  5. Antimicrobial activity of biopolymer–antibiotic thin films fabricated by advanced pulsed laser methods

    Cristescu, R., E-mail: rodica.cristescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Popescu, C.; Dorcioman, G.; Miroiu, F.M.; Socol, G.; Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Gittard, S.D.; Miller, P.R.; Narayan, R.J. [Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599-7575 (United States); Enculescu, M. [National Institute for Materials Physics, PO Box MG-7, Bucharest-Magurele (Romania); Chrisey, D.B. [Tulane University, Department of Physics and Engineering Physics, New Orleans, LA (United States)

    2013-08-01

    We report on thin film deposition by matrix assisted pulsed laser evaporation (MAPLE) of two polymer–drug composite thin film systems. A pulsed KrF* excimer laser source (λ = 248 nm, τ = 25 ns, ν = 10 Hz) was used to deposit composite thin films of poly(D,L-lactide) (PDLLA) containing several gentamicin concentrations. FTIR spectroscopy was used to demonstrate that MAPLE-transferred materials exhibited chemical structures similar to those of drop cast materials. Scanning electron microscopy data indicated that MAPLE may be used to fabricate thin films of good morphological quality. The activity of PDLLA–gentamicin composite thin films against Staphylococcus aureus bacteria was demonstrated using drop testing. The influence of drug concentration on microbial viability was also assessed. Our studies indicate that polymer–drug composite thin films prepared by MAPLE may be used to impart antimicrobial activity to implants, medical devices, and other contact surfaces.

  6. Differential pulse voltammetric studies on the effects of Al(Ⅲ) on the lactate dehydrogenase activity

    2007-01-01

    In this paper, differential pulse voltammetry (DPV) was applied to study the effects of aluminum Al(Ⅲ) on the lactate dehydrogenase (LDH) activity. Michaelis-Menten constant (KNADHm) and maximum velocity (vmax) in the enzyme promoting catalytic reaction of "pyruvate(Pyr) + NADH + H+ LDH(=) lactate + NAD+" under different conditions by monitoring DPV reduction current of NAD+ were reported.(C) 2007 Shu Ping Bi. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  7. Biological activities of Allium sativum essential oil against pulse beetle, Callosobruchus chinensis (Coleoptera: Bruchidae)

    Chaubey Mukesh Kumar

    2014-01-01

    Essential oil from Allium sativum was isolated and investigated for its repellent, insecticidal, ovipositional and egg hatching inhibition activities against pulse beetle, Callosobruchus chinensis (Coleoptera: Bruchidae). A. sativum essential oil repelled bruchid adults at a very low concentration in choice oviposition assay. A. sativum essential oil caused both fumigant and contact toxicity in C. chinensis adults in a concentration dependent manner. Oviposition potency of C. chinensis adults...

  8. S. cerevisiae fermentation activity after moderate pulsed electric field pre-treatments.

    Mattar, Jessy R; Turk, Mohammad F; Nonus, Maurice; Lebovka, Nikolai I; El Zakhem, Henri; Vorobiev, Eugene

    2015-06-01

    The batch fermentation process, inoculated by Pulsed Electric Field (PEF) treated wine yeasts (Saccharomyces cerevisiae Actiflore F33), was studied. PEF treatment was applied to the aqueous yeast suspensions ([Y] = 0.012 g/L) at the electric field strengths of E = 100 and 6000 V/cm using the same treatment protocol (number of pulses n = 1000, pulse duration ti = 100 μs, and pulse repetition time Δt = 100 ms). Electrical conductivity was increasing during and after the PEF treatment, which reflected cell electroporation. Then, fermentation was run for 150 h in an incubator (30 °C) with synchronic agitation. Electro-stimulation was revealing itself by the improvement of fermentation characteristics, and thus increased yeast metabolism. At the end of the lag phase (t = 40 h), fructose consumption in samples with electrically activated inoculum exceeded that of the control samples by ≈ 2.33 times for E = 100 V/cm and by ≈ 3.98 for E = 6000 V/cm. At the end of the log phase (120 h of fermentation), ≈ 30% mass reduction was reached in samples with PEF-treated inocula (E = 6000 V/cm), whereas the same mass reduction of the control sample required approximately 20 extra hours of fermentation. PMID:25204702

  9. Developments in Pulsed Neutron Activation for Determination of Water Flow in Pipes

    Mattsson, H

    2003-01-01

    In PNA (pulsed neutron activation) it is important that the measured data can be related to the total mass flow. In this thesis two fundamental problems of the measurement technique and data treatment have been investigated: transport/mixing and background radiation. The principle of PNA is to introduce a radioactive substance into a pipe by bombarding fluid in the pipe with neutron pulses. The fluid in the pipe is activated and subsequently transported and mixed with the flow. Gamma radiation emitted from the activity is measured with one or two detectors downstream from the activation point. The time-resolved signal from the detectors is used to calculate the average velocity of the water flow. Due to the short distance between the neutron generator and the pipe the activity in the pipe becomes highly inhomogeneous. The transport and mixing of the activity were simulated using colour which was injected into the flow. It was found that the inhomogeneous activity distribution must be taken into account if the...

  10. Developments in Pulsed Neutron Activation for Determination of Water Flow in Pipes

    Mattsson, Haakan

    2003-06-01

    In PNA (pulsed neutron activation) it is important that the measured data can be related to the total mass flow. In this thesis two fundamental problems of the measurement technique and data treatment have been investigated: transport/mixing and background radiation. The principle of PNA is to introduce a radioactive substance into a pipe by bombarding fluid in the pipe with neutron pulses. The fluid in the pipe is activated and subsequently transported and mixed with the flow. Gamma radiation emitted from the activity is measured with one or two detectors downstream from the activation point. The time-resolved signal from the detectors is used to calculate the average velocity of the water flow. Due to the short distance between the neutron generator and the pipe the activity in the pipe becomes highly inhomogeneous. The transport and mixing of the activity were simulated using colour which was injected into the flow. It was found that the inhomogeneous activity distribution must be taken into account if the precision of the measurements is to be improved. The shape of the background in PNA affects the shape and position of the time spectrum. The nature of the background has been determined using one detector upstream and one downstream of the neutron generator. The background was shown to be caused by {sup 16}N. A method that subtracts the background from the PNA time spectrum was also developed.